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This paper discusses preferential opponent selection in public goods games. It is
shown that a preference to play with successful opponents strongly enhances the
prevalence of cooperation. The finding is robust on spatial grids and heterogeneous
networks. Importantly, I also demonstrate that positive opponent selection biases
can evolve and become dominant in initially randomly mixed populations without
selection bias.
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1. Introduction

Altruism describes individual behavior that benefits the group, but comes at a cost
to the individual. In spite of this, altruism is found in many contexts in biology,
economics and social science and understanding it still poses some major challenges.
The key technique to understand the prevalence of altruism is the framework pro-
vided by evolutionary game theory [1]. It explores the evolution of strategies in
populations of individuals in game theoretic settings.

The evolutionary prisoner’s dilemma game [2] and evolutionary public goods
games (PGGs) are probably the two most studied models that can illustrate the
emergence of cooperation in competitive evolutionary games. Whereas the pris-
oner’s dilemma game is a model for cooperation with bilateral interactions, a PGG
is the standard model for cooperation in situations with multilateral interactions.

A typical PGG with binary strategy choices between N agents can be described
as follows. All agents simultaneously make a choice whether they contribute a fixed
amount of $1 to a public pool or not. After contributions have been collected, the
public pool is multiplied by a factor » > 1 and divided into equal shares which
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are handed back to all agents who took part in the game. In this setting agents
who do not contribute (“defectors”) can earn higher payoffs at the expense of agents
who contributed (“cooperators”) and thus be individually better off than the latter.
However, the outcome for the group is maximized if all agents cooperate, since then
all moneys earn the benefit of the public good expressed by a multiplier » > 1. In
an evolutionary setting with well-mixed populations defection always prevails for
r > 1 in such one-off games as described above.

Modeling the emergence of cooperation in evolutionary social dilemmas has
attracted considerable interest over the past years and various mechanisms that
can allow for the survival of cooperation have been uncovered. Some very well-
known ones amongst them are kin selection [3], the evolution of complex behavior
in repeated games [2, 4], indirect reciprocity [5], volunteering [6, 7] and network
reciprocity [8-16], see [17] for a review on the topic. Since it has been discovered
that many complex biological and social systems are connected by complex networks
(cf. [18-20] for reviews), the latter mechanism has shifted into the focus of interest.
Recent studies have shown that heterogeneous interaction topologies that allow
some agents to earn much larger payoffs than others strongly boost cooperation [12—
16]. Other models have explored other sources of heterogeneity — like payoff matrix
noise [21] or quenched stochasticity in the payoff matrix [22, 23], heterogeneity in
strategy adoption [24], wealth accumulation [25] or the Matthew effect [26] — for
agents interacting on regular networks. In most of these settings a similar boost of
cooperation can be observed.

Some other relevant recent studies have explored the role of “aspirations” in
the prisoner’s dilemma game [27-29] and in PGGs [30, 31]. These models interpret
“aspirations” as a bias in the selection of reference agents for strategy adoption.
An important result of this work is that a tendency of agents for preferentially
imitating very successful agents supports cooperation. Similarly, [32] has investi-
gated biases in opponent selection in the context of the prisoner’s dilemma, finding
that a preference to play against successful agents can give a strong advantage to
cooperation. This paper follows up on the latter study, exploring the mechanism
of opponent selection in the context of the PGG. Similar to [32], it is found that
opponent selection biases can strongly enhance cooperation far beyond the effect
of network reciprocity alone.

It is worthwhile noting that opponent selection has also been addressed in co-
evolutionary models of cooperation in the prisoner’s dilemma, in which, subject to
certain rules, agents rewire (or reweigh) connections during the evolution of strate-
gies [33-40], see [41] for a recent review. The present framework is different from this
work in two regards: (i) by the opponent selection mechanism effectively a dynam-
ical weighing of links is applied, but there is no positive feedback to explicitely
reinforce links that generate larger than average payoffs as e.g., in [40] and (ii)
as regards strategy diffusion the opponent selection mechanism leaves the network
topology unaltered.
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This paper is organized as follows. Section 2 introduces the details of the
evolutionary PGG game and describes the model of opponent selection. Section 3.1
then explores the evolutionary PGG in space and Sec. 3.2 extends these results to
heterogeneous networks. In Sec. 3.3 it is explored how opponent selection biases
can arise by evolution from an initially unskewed population. Section 4 which sum-
marizes and discusses the presented results concludes the paper.

2. Model

Following the standard model in the literature on games on networks agents are
identified with nodes and interactions are represented by the links of a network
[8-16]. The network is considered as binary and undirected, given by its adjacency
matrix A = (aij)%zl. One sets a;; = 1 if the agents 7 and j are linked and a;; =0
otherwise. Agents interact with their network neighbors in two ways. First, if an
agent is selected for game play, a PGG is played involving the selected agent and
all of its neighbors. Second, the same links that define interactions for game play
also define sets of possible partners for strategy spread.

More specifically, I consider a set of N agents with pure strategies, either to
contribute to all PGG they play (strategy s = 1, “cooperate”) or not to contribute
to all PGGs (strategy s = 0, “defect”). A round of game play consists of every agent
selecting a game partner. Game partners are selected according to previous success.
The selection rule is probabilistic and an agent ¢ will select one of its neighbors j
for game play with probability

exp(w(m; — mi))

Pselect(ihj) = Z] aij exp(w(ﬂ'j - ﬂ-l)) 7 (1)

where 7; stands for the accumulated payoff of agent ¢ in the previous round of game
play. The parameter w characterizes the agents’ biases towards selecting more or
less successful partners for game play. A choice of w > 0 gives a preference for
more successful partners and a choice of w < 0 biases selection towards selecting
less successful opponents. Choosing w = 0 reproduces the unbiased game, albeit at
a different ratio of timescales of game play and strategy spread than in the usual
deterministic PGG in which PGGs are played between a focal agent and all of its
neighbors before strategy spread occurs. This issue has recently been discussed in
the context of the prisoner’s dilemma game on scale-free networks [42]. For the
framework discussed here, the same timescales as in the deterministic game could
be reproduced by repeating the selection procedure and game play as many times
as an agent has neighbors. Modifying the game setup in this way does not change
the qualitative result. For reasons of simplicity (and to save computation time) this
study will focus on the game where every agent selects one game partner in each
round of game play.

If agent j is selected for game play, a PGG involving agent j and all of its
neighbors will take place. As in a standard PGG with binary strategy choices,
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payoffs from a game centered around j are

(s +20095i8) oy
1+ Ei Qg5
7(s) = (2)
r(sj + 20 ajisi) 520

1+Ei aji

i.e., a cooperator receives the benefits of the game minus his contribution and
defectors receive the benefits of the game without deduction (as they contributed
nothing). The parameter > 1 quantifies the severity of the dilemma situation, the
smaller  the “tougher” the public goods dilemma.

After cumulated payoffs have been calculated strategies can adapt in the
population. Strategy adaptation is modeled as a synchronous process using Fermi-
pairwise updating as in [43], i.e., the focus agent, say i, selects one neighbor at
random for reference and imitates the neighbors strategy with probability

1
1+ exp((m —m;)/kK)’

]D(Sz — Sj) = (3)
where the parameter x is a measure for the noise in the updating process.

Initializing the setup with random allocations of 50% cooperator and 50%
defector agents and zero payoffs, game play and strategy updating are iterated
till a quasi-stationary state has been reached. Following this, averages of the frac-
tion of cooperators n, are calculated over a further 10* iterations. For spatial net-
works, simulations have been carried out on lattices of sizes between 100 x 100
upto 400 x 400, for scale-free networks N = 10% nodes are simulated. In case of
experiments on heterogeneous networks the stationary fractions of cooperators are
further averaged over at least 500 network realizations.

3. Results
3.1. Evolution of cooperation in spatial games

Figure 1 gives the dependence of the average stationary fraction of cooperators on
the order parameter r for several game partner selection biases w in spatial public
goods games. For tough dilemma settings and low values of the order parameter
r defection is dominant. Increasing r at some stage cooperators can coexist with
defectors until cooperation dominates for very large r. Figure 1 illustrates that
opponent selection biases have a strong impact on the transition from defection
to coexistence of defection and cooperation and finally dominance of cooperation.
They effect both the critical value of r at which cooperators go extinct, but also
the general shape of the transition.

Analyzing the data in Fig. 1, one immediately notes that negative biases
(“playing against less successful opponents”) make it substantially harder for coop-
eration to emerge. Positive biases (“playing against more successful opponents”)
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Fig. 1. Dependence of the stationary fraction of cooperators on the factor r for the spatial public
goods game with opponent selection biases (see legend for values of w) for k = 0.1. The data have
been obtained on a 100 x 100 grid with von Neumann neighborhoods.

typically have the opposite effect: Cooperation can emerge for tougher dilemma
settings then in the other case. An exception to this rule are very strong positive
selection biases at which the prevalence of cooperation declines slightly. This effect
will be discussed in more detail below.

A better overview about the the effect of selection biases on cooperation can be
obtained from phase diagrams that show the dependence of the onset of cooperation
r. on the selection bias parameter w. This diagram is given in Fig. 2 for low,
intermediate and large noise levels « in the strategy adaptation process. The general
rule that positive opponent selection biases favor cooperation holds independent of
the noise in the strategy adaption. For all considered noise levels there is a steep
transition between the parameter range of w < 0 and w > 0 and 7. is found to
converge quickly in the limits w — 4o0.

25 1 1 1 1
5 -4 -3 -2 -1

Fig. 2. Dependendence of the threshold value of the parameter r at which cooperators go extinct
on the preference parameter w for various noise levels k. Above the respective lines cooperators
can survive (or even dominate), below defection is the only viable strategy. Best conditions for
cooperation can be achieved for k = 0.01 and w = 0.5 for which r. = 2.85 £ 0.01.
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How can the strong boost for cooperation from positive opponent selection biases
be explained? The argument runs along similar lines as for the analog analysis for
cases of the prisoner’s dilemma game advanced in [32]. In a structured popula-
tion cooperation can survive by forming close-knit pockets of cooperators [8, 11].
Such an arrangement protects cooperators inside the clusters of cooperation from
invasions by defectors and benefits cooperators at the fringe of the cluster by pro-
viding them with opportunities to generate payoff from cooperative interactions
with other cooperators. Once pockets of cooperators have been established, posi-
tive opponent selection biases will reinforce the mutual support of cooperators. This
is so, because opponent selection biases reduce interactions with defectors (which
earn less payoff than cooperators inside the pockets of cooperation) and increase
interactions between cooperators at the fringe and inside clusters of cooperators. In
this way a hierarchy of payoffs is established: Nodes inside clusters of cooperators
have the highest payoffs, because they (i) only interact with other cooperators and
(ii) attract additional interactions in comparison to other agents with less payoff.
Opponent selection biases thus shield clusters of cooperators.

This protective shielding effect is absent in the initially well-mixed populations.
In well-mixed populations, defectors can generally obtain larger payoffs than coop-
erators. Consequently, positive opponent selection biases increase the (relative)
number of interactions between cooperators and defectors and negative selection
biases reduce the number of interactions between cooperators and defectors, i.e.,
help cooperators to avoid defectors. Hence, starting from a random initial allocation
of strategies, strong positive opponent selection biases can lead to the extinction of
cooperation before a structured arrangement of cooperators and defectors has been
reached.

The result of these two opposing tendencies — strong support for cooperation
from positive biases in structured arrangements and a strong boost for defection
from positive biases in randomly mixed populations — is an optimal preference
level w for opponent selection. This is seen as a shallow minimum in r, for w ~
0.3,...,0.5 (the details depending on the noise level k) which marks a region in
parameter space where cooperation is maximized, cf. Fig. 2.

The above numerical data are complemented by the data exhibited in Fig. 3,
which illustrates the full phase diagrams, demarcating regions where defectors or
cooperators dominate from the coexistence region in between. The data are given
for low k = 0.1 (panel a), intermediate x = 0.5 (panel b) and large k = 2.0 (panel ¢)
noise levels in the strategy adaptation process. The figures illustrate changes in the
shape of the transition between cooperation and defection with changes in opponent
selection biases. There are several interesting observations to be made.

First, for all noise levels transitions become very steep for large positive selec-
tion biases, i.e., the coexistence region almost vanishes for w > 0.5. Large negative
biases also reduce the size of the coexistence region, but the effect is much more
gradual, in particular if k is large. The size of the coexistence region is maximized
for slightly negative selection biases around w = —0.3 — a region in which negative
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Fig. 3. Phase diagram for the spatial public goods game with opponent selection biases for (a)
(the case of low noise levels) k = 0.1, (b) (the case of intermediate noise level) k = 0.5 and
(c) (the case of high noise levels) k = 2.0. Below the solid line cooperators go extinct and above
the dashed lines defectors cannot survive. The area between the solid and the dashed line marks
the coexistence region.

selection biases can initially help cooperators to avoid interactions with defec-
tors in wellmixed populations and where the undermining effect of negative oppo-
nent selection biases on cooperation in structured populations is not overwhelming
yet. For this balance of dilemma toughness r and selection bias w cooperators
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can survive, but since cooperators at the fringe of clusters of cooperators pref-
erentially seek out interactions with defectors cooperators find it very hard to
dominate.

3.2. Heterogeneous networks

The pervious section has demonstrated that biased opponent selection can strongly
support cooperation in spatial games. Since most real-world interaction networks
have a more heterogeneous topology it is of interest to investigate the influence
of network topology on the observed effect. A standard model for heterogeneous
networks is the Barabdsi—-Albert model [44], which has frequently been employed
in previous studies of evolutionary dilemma games as, e.g., [12-16, 23, 42].

The main effect of network heterogeneity for evolutionary dilemma games is a
strong boost for cooperation. The effect results from the superior ability of hub
nodes to generate payoff and spread their strategy to adjacent nodes. A cooperator
hub can enhance its payoff by spreading the cooperate strategy to its neighborhood
this way, but a defector hub would undermine its position by surrounding itself by
defectors.

It is important to note that the probabilistic neighbor selection rule of Eq. (1)
effectively preserves network heterogeneity for the unbiased situation of w = 0.
Even though every agent selects only one game partner, agents are selected as
game partners in proportion to their degrees by other agents, such that an agent
with degree k on average takes part in a number of games proportional to k + 1.

The panels of Fig. 4 summarize simulation data that illustrate the influence of
opponent selection biases on cooperation for the case of BA scale-free networks.
From panel (a) it is apparent that selecting better opponents (w > 0) also improves
the stationary numbers of cooperators on scale-free networks. Equally, negative
selection biases w < 0 reduce the chances for the survival of cooperators. The
main difference between the situation for regular spatial networks and scale-free
networks is an enhanced sensitivity to the bias-parameter in the case of the latter,
which results from the strongly uneven abilities of agents to generate payoff on
heterogeneous networks.

Due to the pronounced stochasticity in network topology and a strong influence
of the initial conditions on stationary fractions of cooperators, simulation data
for probabilistic opponent selection on scale-free networks are very noisy and an
exact determination of the transitions from dominance of defection to coexistence
of defection and cooperation and finally to dominance of cooperation for large r is
difficult. Instead of the proper phase diagram, the effect of opponent selection biases
on cooperation is well summarized by the dependence of the average of the fraction
of cooperators over a suitable interval of dilemma strengths r. For convenience I
thus define (n¢)ave = 1/3.8 f;';’ ne(r)dr. Numerical estimates for this quantity are
shown in panel (b) of Fig. 4. As for the case of spatial networks (cf. Fig. 2) a steep
transition in the number of surviving cooperators for w < 0 and w > 0 is apparent.
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<Nc>avg

Fig. 4. (a) Dependence of the average fraction of cooperators n. on r for various opponent
selection biases (given in the legend) and BA scale-free network topologies with (k) = 4 and
N = 10% nodes. (b) Dependence of the average fraction of cooperators averaged over the interval
r € [2.5,6.3] on opponent selection biases w. Data points represent averages over 500 independent
runs, error bars are about the size of the symbols. The noise level is k = 0.1.

The figure also highlights the strong sensitivity of cooperation to changes in w for
small biases and shows a quick saturation of the effect for biases |w| > 0.1.

3.3. Evolution of biases

So far, the paper has demonstrated that a skewed selection of opponents in PGGs
on networks can strongly support the evolution of cooperation. However, it is also
of interest whether such opponent selection biases could arise naturally. More point-
edly, starting from a randomly mixed population in which some actors prefer play-
ing against more successful opponents and others prefer games with less successful
opponents, could a positive selection bias emerge? Further, if such biases emerge,
would they be stable against the invasion of new strategies?

To address this question I have designed the following experiment. As before,
agents are pure strategists who either cooperate or defect in PGGs. However, addi-
tional to this each agent has its individual opponent selection bias w;. I assume that
these biases are uniformly distributed in the interval [—1, 1] in the initial population.
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When selecting opponents for game play (cf. Eq. (1) above), agents select
opponents on the basis of their individual preference w;. Game play and updat-
ing occur is introduced before. The only difference is that now not only strategies,
but also the individual traits w; are inherited, based on the rule given in Eq. (3).
When inheriting the trait w; a small amount of noise is added, i.e., the preference
w; of agent j who inherits w; from agent i is set to w; = w; +n, where 7 is a small
random number drawn uniformly at random from 7 € [—0.05,0.05].

Additional to the experiments in the previous section, also a small probability
of invasions of new strategies into the population is considered. This is implemented
in the following way. After strategy adaptation, an agent is replaced by a randomly
chosen mutant with a small probability pi,,. The mutant has strategy s = 0 with
probability 1/2 and strategy s = 1 otherwise and has an individual selection bias
w drawn uniformly at random from [—1, 1].

Opponent selection, game play and strategy adaptation and mutations are then
iterated till a quasi-stationary state has been reached. Figure 5 illustrates a typical
evolution experiment along these lines. Panel (a) gives the evolution of the fraction
of cooperators averaged over 100 trajectories. Starting with a random allocation of
strategies, the frequency of cooperators declines at first and recovers when spatial
clusters of cooperators have been established and positive opponent selection biases
start to emerge. The initial decline is due to the advantage of defection in well-mixed
populations. Panel (b) shows the simultaneous emergence of a positive selection bias
and illustrates the narrowing down of the variance of biases in the population. Panel
(c) complements this by giving snapshots of the distribution of the w parameters
in the population at various stages of the evolution.

One first realizes that even though the dilemma setting is close to the smallest
extinction threshold achievable for this noise level k = 0.1 (cf. Fig. 2, close inspec-
tion shows that the lowest extinction threshold is r. = 2.85 + 0.02 for w = 0.5 and
k = 0.1) cooperation can actually emerge in this co-evolutionary setting. Further,
once achieved cooperation is stable and dominant in the face of a relatively large
rate of entry of new mutants into the population (on average 10 new mutants enter
the population in each round).

Second, the experiment clearly illustrates that the evolution of cooperation goes
hand in hand with the evolution of positive opponent selection biases. This is seen
in panel (b). The shift in biases towards w > 0 is complemented by a narrowing
down of the variance of w in the population. By illustrating how the distribution of
w-parameters in the population gradually shifts towards larger positive values of w,
panel (c¢) further corroborates this finding. At the end of the experiment, the bulk
of the distribution of the w’s is centered around a mean value of around w = 0.7.
Invasions of randomly selected mutants cause a long tail towards negative values in
the distribution.

Cooperation and opponent selection biases cannot only evolve on spatial grids.
Very similar experiments for the case of scale-free networks demonstrate that biases
will also evolve when the underlying network is heterogeneous. Because typical
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Fig. 5. Evolution of (a) cooperation and (b) evolution of average biases and variance in the pop-
ulation from random initial distributions of the w-parameter. (¢) Distribution of the w-parameter
in the population after 0, 102, 103, 10* and 10° timesteps. b = 2.95, k = 0.1, piny = 1073,
Trajectories represent averages over 100 runs on a 100 x 100 square lattice.
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evolutionary paths look very similar to those for spatial grid shown in 5 a detailed
discussion is omitted.

4. Conclusions

This paper has presented results that extended previous work about opponent
selection in the prisoner’s dilemma game [32] to PGGs. It is shown that a posi-
tive bias to preferentially engage in PGGs with neighbors that previously earned
large payofls can strongly boost cooperation, both on spatial grids as also on scale-
free networks. In contrast, biases to engage in games with unsuccessful players
undermine cooperation. Opponent selection biases typically shift the onset of coop-
eration, but also influence the fractions of surviving cooperators in the coexistence
phases.

In the second part of the paper, I have also highlighted a mechanism for the
emergence of opponent selection biases. Starting with a randomly mixed population
in which equal shares of agents have either positive or negative opponent selection
biases the strategy of “preferentially playing against successful” opponents will
emerge as dominant, if biases are coinherited with game strategies. Importantly,
the result is robust in the presence of small rates of invasions of randomly selected
mutants.

Altogether, the paper points out a simple mechanism that can explain the
presence of cooperation in structured populations, even in very severe dilemma
situations.
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