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ABSTRACT

With the growing popularity of electric vehicles (EVs), thember
of public charging stations is increasing rapidly, allogvidrivers
to charge their cars while parked away from home or en-route t
their destination. However, as a full charge can take a fbogmi
amount of time, drivers may face queues and uncertaintyamal-
ability of charging facilities at different stations andhés. In this
paper, we address this problem by proposing a novel, twedsid
market for advance reservations, in which agents, reptiegeBV
owners, report their preferences for time slots and chgriyina-
tions, while charging stations report their availabilitydacosts. In
our model, both parties are rational, profit-maximisingtess, and
buyers enter the market dynamically over time. Given this ap-
ply techniques from online mechanism design to developangi
mechanism which is truthful on the buyer side (i.e., drivease
no incentive to misreport their preferences or to delayrtreser-
vations). For the seller side, we adapt three well-knowipgi
mechanisms and compare them both theoretically and eralbyric
Using realistic simulations, we demonstrate that two of pra-
posed mechanisms consistently achieve a high efficiencyof2®

of optimal), while offering a trade-off between stabilitychbudget
balance. Surprisingly, the third mechanism, a common payme
mechanism that is truthful in simpler settings, achievegaifs-
cantly lower efficiency and runs a high deficit.

Categories and Subject Descriptors
1.2.11 [Al]: Distributed Al—Multiagent systems
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1. INTRODUCTION

Recent years have seen increasing interest in electriclesEVs)
as a key technology for achieving efficient transportatidgtn fow
carbon emissions [1]. However, large-scale use of EVs wiie
a host of new challenges for electricity distribution netkeo|[5,
14]. More specifically, electric vehicles are high eledtyicon-
sumers and, moreover, charging an electric vehicle takesiaer-
ably more time than fueling a petrol-powered vehitl&hus, the
problem of efficiently scheduling the charging of a large bemof
EVs at multiple charging stations will become increasinglgss-
ing and challenging, especially as both electric vehicleens and
charging stations can be seen as self-interested paritesested
in minimising their costs, or maximising their profits, resgively.

Fully charging an EV takes a minimum of half an hour, even with
the fastest available chargers on the market today.

To address this problem, we present the first system where EVs
are matched to charging stations in a two-sided online nhatke
this system, agents representing EV drivers enter the ripdake
dynamically over time, at which point they place bids &mlvance
reservationson behalf of their owners. Through these bids, agents
express their preferences for different time slots andgihgrsta-
tions. At the same time, charging stations can offer avkilabarg-
ing units through the reservation system, and report thigiimnum
prices for different time slots. The system then allocatggebs to
these advance time slabsling i.e., as they enter the marketplace.

The proposed system is very general and we show how it can be
used in two specific real-world scenarios: fark 'n charge where
the EV is charged while parked at a convenient location away f
home and (2en-route chargingwhere the EV requires charging
on the way to a destination. In these scenarios, we envikarthe
agent is integrated with an automated advice interface aodta
planner, which enables the agent to trade off price, aviitiaand
distance, and automatically re-routes the user to the aptesta-
tions. Online systems exhibiting some of these featurealezady
beginning to emerge. For examp&oogle Map$provides interac-
tive directions, allowing drivers to make informed choibetween
multiple routes based on distance, estimated time of dyigirfuel
costs. In terms of EV charging, companies sucPlagSharé and
ChargePoint provide interactive maps of available EV charging
points in the US and Canada (including some reservatiolities).

Our work is closely related to combinatorial exchanges, r@he
buyers and sellers are matched based on their (combiriames
erences. These are mainly concerned with finding allocatémml
payments that incentivise truthful bidding, while satisfy other
properties such as individual rationality (buyers andesslinake
no loss from participating) and budget balance (the systeauco-
tioneer makes no loss). A seminal result in this field is by Né=A
[9], who proposes a payment scheme to achieve truthfulnee®i
sided markets with identical goods. Goretral. [7] extend this to
combinatorial two-sided auction markets, and propose egolare
called generalised trade reduction in order to ensure akeep-
nomic properties including truthfulness. However, thid amilar
work assumes a static setting where all buyers and sellerallar
present in the market at the same time. In our setting, onttier o
hand, buyers enter the system dynamically and need to i
without knowing future demand.

Incentivising truthful behaviour in settings with dynanmarket
entry is studied in the field abnline mechanism desigsee [11,
Ch.16] for a survey). Existing work, such as [12, 6], largebn-

2http: // maps. googl e. com
htt p: // wwv. pl ugshare. com
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siders one-sided markets (e.g., with one seller and mangrbuy
In contrast, we look at two-sided markets with multiple nsyghe
EVs) and multiple sellers (the charging stations). Onlime-sided
markets are studied in [3, 4], but all buyers and sellers ssaraed
to trade a single unit of the same commodity. Our setting ishmu
more complex, since buyers have different preferencesfferent
sellers and time slots, and sellers can have multiple timts sind
multiple units per time slot. As we will show, this added cdexp
ity has significant implications for the properties of therked.

have different preferences regarding both the station hédniike
to charge at, as well as the time of the reservation. For elarm
the park 'n charge scenario, the buyer prefers a destinataser
to his final destination. In the en-route charging scendnebuyer
prefers those stations which result in a smaller detour,vemdh
are ideally placed between the departure point and thendisin
(e.q., if the battery’s state of charge is low, he would resjai sta-
tion close to the departure point). We abstractly represenh
preferences by a matrix?, where each elememj,t denotes the

More recently, some research has attempted to address the EMvillingness to pay, ovalug of an agent for receiving a charging

charging problem from a cooperative scheduling perspectin
this vein, [13, 8] consider constructing an online charginogedule
which takes into account spatial and temporal constraiithile
some of these approaches use similar concepts to our watk asu
placing advance reservations while en-route (e.g., [Bfy rely on
a centralised scheduler and fully cooperative agents. rtrast, we
assume that agents are self-interested and can stratggisisie-
porting their preferences. Furthermore, we propose a tiedised
marketplace where agents perform much of the computatiar, s
as the routing and computing the EV’s energy requirements. A
small number of papers have studied the EV scheduling proble
considering strategic, self-interested agents [6, 16, Hejwever,
these study a one-sided setting with a single, fixed changbigf.
Against this background, this paper makes the followingrion
butions to the existing state of the art:

e We introduce the first two-sided market architecture forahat
ing EV owners to charging stations using advance resenatio

e Forthis system, we develop a payment mechanism that is truth
ful and individually rational on the buyer side. On the sefliele,
we outline a number of payment mechanisms and explore their
theoretical properties. As part of this, we present an irsibis
ity result which shows that no payment can always be trutiful
sellers when a greedy allocation rule is used.

e We show how our reservation system can be applied to two
realistic scenarios, and we analyse the equilibrium betavof
agents in these scenarios using extensive simulations.eviermt
strate that two of our proposed payment mechanisms induicgha h
allocative efficiency (around 90-95% of the optimal), andsivew
that one of these achieves a higher stability at the expeinsmo
ning a small deficit. Surprisingly, we find that a well-knowayp
ment mechanism that is truthful for sellers in simpler setiper-
forms poorly, in terms of both efficiency and deficit.

The remainder of the paper is organised as follows. In Se@io
we first present our system model. In Section 3 we describalthe
location mechanism and several payment mechanisms for aur m
ket, and analyse their theoretical properties. Then, irtiGed
we instantiate our model in two real-world scenarios. Ushese
scenarios, we evaluate and compare the proposed mechamisms
pirically in Section 5. We conclude in Section 6.

2. AGENT MODELS

The system consists of a set of agentbayers B = {1,2,...},
who arrive dynamically over time, and are interested inmgag a
slot for charging their EV at one of the available chargirggists,
denoted by the sef. W.l.o.g.,i’ > i means that buyei’ enters
the market aftes. Furthermore, we assume that charging occurs
at discrete time slots (e.g., half-hourly slots), denotgdhie setr’,

and that a car is fully charged during such a time slot (tleesf

a buyer requires only a single time slétEach buyer € B can

5In future work, we plan to extend our model to include seting
where buyers can partially charge and/or need several slots

slot attimet € T in stationj € S. Note that this representation is
very general, and can capture the costs (both in terms ofaimde
money) due to a detour, as well as stations or times whicméga-
sible given the battery’s current state of charge (in whiabecthe
value for a particular slot or time is zero or even negativi)ese
preferences constitute an agent'’s private informatiorkrfown to
other buyers or the stations), also referred to as an aggpes

On the supply side, each statiorsetlercan have multiple charg-
ing units, K = {1,2,...}, which means that, for each particular
time slot, possibly several reservations can be sold. Etatlos
j has a cost for selling a certain number of time slots throbgh t
reservation system, denoted by the madtﬁxwherec{’ « 1S the cost
of stationj € S at timet € T for the kth unit, ¥k € K (where
k = 1 is the reservation for time slatwhich has been allocated
first, k = 2 the second reservation, etc.). If statiphas at mosk’
units available at a particular time we simply setcgyk = oo for

k > k7. In practice, these costs represenp@portunity costi.e.,
the expected value of instead selling the unit on demandhowtta
reservation. This opportunity cost can be calculated byptoba-
bility that a certain unit is sold, multiplied by the profit sélling
the unit on demand. Typically, peak times are expected todre m
profitable (since the probability that the slot is used iasBs), and
so have a higher opportunity cost. Furthermore, we assuate th
the marginal cost for additional units is non-decreasingatTs,
Vji€eSteT:c, , >c, Thisisa natural assumption, as
shown by the following example:

EXAMPLE 1. Consider a park 'n charge with 1 time slot and 2
units. On-demand units are always soldsaf. The station always
manages to sell at least 1 unit on demand, and sells both units
with probability 50%. Therefore, the opportunity cost o tiirst
reservation i€).5 - $10 = $5, while the opportunity cost for selling
the second unit through the reservation systefflis

These costs differ for each station, and are estimated tstatiens
based on observed past demand. Therefore, the costs ottt
station’s private information dype

Given this, both buyers and sellers are asked to reporttijyss
to acentre(i.e., the reservation system) which then computes an
allocation and payment for each agent. Buyers report theas as
they enter the market, whereas sellers report their typadviance
for the entire period’.® Formally, let¥* andé&’ denote the report
for a buyer: and sellerj respectively,v and ¢ the reports of all
buyers and sellers, and~¢ (¢7) all buyer (seller) reports except
that of i (j). We define thallocationfor buyeri € B by a tuple
x' = (4, t, k), if buyeri receives theith unit, k € K, of time slot
t € T from sellerj € S (note thatt does not refer to a particular
physical charging unit, but to the order in which the resgovawas
allocated), and use’ = (()) to denote the case where the buyer
is not allocated any slot. For the seller, we udeto denote the

5In practice, the period can be limited to, e.g., the next 24r§i0
and sellers can update their types as new time slots becoaile av
able. For simplicity, we assume a single reporting stage.



allocation matrix at the end of the peri@d wherex{,k = 1 means
that the slot was allocated to a buyer, ar;[cL = 0 means the slot
remained unallocated. Furthermore, we defihéo be buyeri's
required payment to the centre, aptlthe payment received by
sellerj from the centre. We then define the utility function for a
buyeri € B as:

S Lo—pt ifat = {4t k)
UB oty v],t p | ) ) by 1
v'p',o) {0 it ' = (0) .
and for a sellej € S as:
U, X)) =p' = Y dyal, @

(t,k)eT XK

3. MARKET MECHANISM

Given the setting from the previous section, we would likdesign
a marketplace that satisfies the following properties:

e Truthfulness: This property requires that both sellers and buy-
ers are incentivised to always truthfully report their tyge the
centre, i.e., reporting the true type is a dominant strategy

e No Delay: In addition to truthful reporting, another way for
buyersto strategise is to delay their entry into the market. No
delay means that there is no incentive for buyers to do so.

e Efficiency: In general, an outcome is efficient if the goods
are allocated to those who value them the most. Here, anesffici
allocation maximises the sum of values minus the sum of costs

e Individual Rationality: Individual rationality requires that
participants are never worse off when participating in thecha
anism. In this case, this means that both buyers and sel&es h
non-negative utilities.

e Budget Balance:Weakbudget balance requires that the mech-
anism requires no outside subsidy, i.e., the sum of paynrents
ceived from buyers is at least as great as the sum of paynents t
the sellers. The property #rict if they are equal.

In what follows, we first consider the allocation mechanisim o
the marketplace, which specifies how buyers are allocat¢ich®
slots and sellers as the buyers enter the marketplace. Ten,
present various payment mechanisms for both buyers aretsell
Finally, we analyse the theoretical properties of both tfaxation
and payment mechanisms.

3.1 Allocation Mechanism

The allocation rule plays an important role in terms of ahitag
efficiency (as well as the other properties). However, withmer-
fect foresight, it is impossible to achieve perfect efficigm online
settings such as ours. Typically, researchers analyse-cass re-
sults, and a simple greedy allocation rule has been showm to b
2-competitive (i.e., achieve at least half of the optimalseéttings
with single-dimensional types [11, Ch. 16]. Furthermotehas
been shown to achieve close to optimal on average in relatieei(
simpler) settings [6]. Given this, we also consider a greathca-
tion mechanism which works as follows. Once the buyer asrine
the market and reports his type to the centre, he is immdgiate
located the slot which maximises the difference betweewdlise
and the seller’s cost, provided this is positive. Otherywigeslot is
allocated. More formally, an allocatiarf for buyers is given by’
= f(¥'e, X;) = o (3)

~J
arg max it — Cip

<j,t,k)€X7;\73;:’tféiyk20

"If there are multiple solutions, a tie-breaking rule is used

wherez® = () if there is no solution and’; C S x T x K are the
currently available allocations when buyi@nters the marketplace.
Specifically, X1 = S x T x {1} for the first buyer entering the
market and for subsequent buyers this is updated as follows:
[ {Xi\{@‘, LY UG LE+1)} ol = (k)
1+1 — )

X if 2" = (0)

In addition, we will usex’” = g(&’|¢”7,¥) to denote the seller
allocation matrix as a function of her repogt,.

3.2 Payment Mechanisms

Setting the payment correctly is important to obtain trubhéss,
and to prevent speculation by strategic agents [11], whiduiin
should improve stability (reduce price fluctuations) arfitiefncy
(since without truthful reports the allocations are likétybe in-
efficient). However, obtaining truthfulness on both sidéshe
market is a challenging problem and currently no truthfuche
anism exists for the setting we consider. Furthermore, awille
show in Section 3.3, when using the greedy allocation meashan
discussed above, there exists no payment that always ivisest
truthful reporting. Therefore, we only consider paymentsol in-
centivise truthful behaviour on the buyer side. On the salide,
there is no obvious choice of payment, and so we considee thre
different payments from the literature, each having défgrtheo-
retical and empiricial properties in our setting. In thistgen, we
present these payments, while we discuss their theorgiicg-
erties in Section 3.3. We then go on to compare these payments
experimentally in Section 5.

Buyer Payment: Whenever the buyer is allocated a slot, his
payment is set equal to the seller’s reported costs. Foymall=
& it xt = (j,t,k), andp’ = 0if ' = ().

'For the seller payments, we consider three variants:

Posted Price:The seller payment for each allocated slot is equal
to the reported cost for that slot. Therefore, the total payis
P = X merxx G - T - Note that this payment can be ex-
ecuted without the need for a centre, since sellers can gipqsit
their prices for their currently available time slots, amtle buyer
agent then selects the best seller and time slot by solviogtitm 3
and pays the posted price. Hence the name of the payment.

Reverse Vickrey: This seller payment is computed for each ar-
riving buyer and is equal to the standard Vickrey paymentafor
single item, albeit for a reverse setting (with a single buged
multiple sellers). Formally, leiX;” = X; N S\ {j} x T x K
denote the available allocations when buyerrives in the mar-
ket, but without the slots from sellgt Then, letz” = (j,t,k) =
f(¥'|e, X;) denote the actual allocation and ; = (j',t', k') =
f(¥'e77, X;7) the best alternative allocation without considering
sellerj. Given this, sellef’s payment for an allocation® is:

if ' = ()
if 2° # (0) Az”

-/
j .
— ¢, ,s) Otherwise

0
Pir = Utk

Utk — (vt’,k’

) @

and the total payment ig? = 3>, i Ly, - 1

Critical Value: The notion of critical value has been introduced
in the mechanism design literature to produce truthful rmagms
for single-parameter domaing) which the allocation decisions are
binary (the agent is either allocated the item or bundle oty and
an agent simply has a value for ‘winning’ (see, e.g., [11,9Qh.
In these domains, the critical value is equal to the lowelstevéor
highest cost) that could have been reported and still wiestém
or bundle (i.e., for which the allocation remains unchangédour



setting, however, we need to adapt the notion of criticaleaince
a seller has possibly multiple slots and multiple units facteslot,
and so her type is multi-dimensiorfalSpecifically, given an allo-
cationx?, we define the critical value in our setting as the highest
sum of cost$or the allocated slots, for which the allocation remains
unchanged in terms of the slots sold. That is, the slots aitsl cem
be sold to different buyers, as long as the allocation mastix
remains the same. Formally:

>

(t,k)ETXK

j:

max cik xzk (5)

eieCi|g(eile—d,v)=xJ

whereC? is the set of all possible reports of type from seljer
Note that, to compute the payment, the centre needs to reeun t
entire market for each possible seller misreport. Furtloeemin
the case each seller only has a single time slot and unit,kibneea
equation reduces to the critical value for single-valuethdims as

in [11, Ch.9] (albeit forcostsinstead ofvalues.

3.3 Theoretical Properties
We now discuss the theoretical properties of the allocatimhpay-

is always negative or zero). Given this, WMON requires tfeat,
all ¢’,¢’ € C’, the following holds (we remove the conditional
part of the seller allocation functiog, for brevity):

V(&,9(&)=V(c,g(&") 2 V(&,9(c") -V (e g(c))) (6)

Now, consider an example with 1 seller, 2 time slots, and f.peTi
time slot. The seller's costs are given by = (2,2) (i.e., costs
are equal for both time slots). Furthermore, there are tweitsy
the first one entering the market has type = (6, 5), while the
second one has type® = (10,0). Given truthful reporting, the
greedy mechanism will allocate the first buyer to the first, gad
not allocate the second buyer (since the early slot is takemgre-
fore, V(c',g(c')) = —2. Now, if the seller's costs for the two
slots were to béuigher, e.g.,é* = (8, 3), she would be allocated
both slots, and/ (&', g(¢')) = —11. Furthermore, we have that
Vi(ct, g(&")) = —4andV (&', g(c')) = —8. Given these values,
Equation 6 becomes-11 +4 > —8 + 2 +» —7 > —6, which
clearly does not hold. (]

The intuition for the above impossibility theorem is as dalk.

ment mechanisms discussed in Section 2. We first consider theSince the centre has no perfect foresight and greedy altbocit

properties for a buyer, then for a seller and, finally, for ¢teatre.
For the buyer, three properties apply: truthfulness, naydeind in-
dividual rationality. It is easy to see that, given the rigbhditions
and using the buyer payment, all these properties are satisfi

THEOREM 1. The Buyer Payment as defined in Section 3.2 is
truthful and individually rational for buyers. Moreover V;j <
S,teT,keK:c ., >c,, buyershave noincentive to delay
their entry into the market, i.e., no delay.

PROOF lItis evident that Buyer Payment is individually rational
asp' < vit if z¢ = (j,t, k) according to Equation 3 and therefore
buyeri’s utility U (v?, p*, 2*) > 0 (see Equation 1).

According to Proposition 9.27 of [11], the payment is truthf
for buyers because (§)* does not depend on’ and given other
agents’ reportsp’ is the same for any* that gives the same al-
locationz?, (ii) the greedy mechanism (i.e., Equation 3) optimises
for each buyes. Sincevj € S;t € T,k € K : ¢/, ., > ¢/,,
SOMAX(j ¢ kyex; Vst — cﬁk might decrease if enters later, given
thats's valuation remains the same or decreases wiegners later.
Thus,UZ (v*, p*, 2*) might decrease wheidelays his entry. (]

In terms of the sellers, all the payments proposed satigfiy in
vidual rationality (we omit a formal proof since the resute triv-
ial). However, as mentioned in Section 3.2, obtaining fulttess
is challenging and none of the proposed payments satisfyptbp-
erty in general. Indeed, as the following theorem shows naiee
ing the greedy allocation mechanism from Section 3.1, thrists
no paymenthat always satisfies truthfulness.

THEOREM 2. If slots are allocated using the greedy mechanism
given by Equation 3, there exists no payment which alwaysfiset
truthfulness for the seller.

PROOF The proof is based on showing, by example, that the
allocation rule violates weak monotonicity (WMON), which &
necessary condition for such a payment to exist (see [2] éor d
tails). LetV (c’, x?) = =32, 1 erux C.i - %7, denote selley’s
utility/valuation without considering any payments (mgtithat this

8Note that [2] defines payments for multi-dimensional typésw-
ever, these payments are only applicable to (partially@@d do-
mains, which is not the case in our setting. We refer the rede
[2] for further details.

necessarily inefficient, it sometimes allocatesrebuyers to a seller
if she reportdighercosts, thereby violating WMON. An anticipat-
ing seller could always take advantage of such a situatiot,sa
the mechanism is not truthful in dominant strategies. Thibjem
can be addressed by “ironing” the allocation, which invelean-
celling those allocations which violate WMON. However, e¥er
relatively simple settings, such as single-parameter @ 2]
or one-sided markets where buyers have decreasing mavgikal
ues [6], these cancellations introduce additional inefficies (since
the canceled units cannot be reallocated), are generathpot@-
tionally demanding, and are often difficult to apply in preet(e.g.,
in the EV charging scenario, it requires discharging a dastead,
we take a different approach and choose to relax the trutéésl
property. Specifically, we consider weaker notions of fiuitiess
in the hope that these will reduce (but not eliminate) sptn in
practice. In Section 5 we then empirically compare the meishas
by allowing agents to strategise.

In particular, the following theorem shows that the Revéfisk-
rey payment (see Section 3.2) satisfiggopic truthfulnesfor sell-
ers, which we define as being truthful for a seller when igmgri
future buyers. Formally:

THEOREM 3. Suppose that a sellei is able to report a cost
matrix, ¢’, for each buyer entering the market. Then, Reverse
Vickrey is truthful ifi is the last buyer and this is known By

PROOF The assumption in the theorem leads to an equivalent
case where there is only one buyer buying one time slot frota mu
tiple sellers. It is evident that (i)’ does not depend oe/, and
it is the same for any’ that receives the same allocation fpr
given other agents’ reports, and (jis utility U°(c?,p?,x7) is
maximised because of Equations 3 and 4. Therefore, sellers a
truthful under this assumption.[d

Furthermore, we show that the Critical Value payment isfruit
for a specific setting where each buyer is only interestedsingle
(but possibly different) time slot — buyers are said tosiegle-
mindedin terms of time slots — and each seller has at most a single
unit for each time slot (in Section 4.1 we discuss these agtans
in relation to the park 'n charge scenario). Formally:

THEOREM 4. If ||K|| = 1andVi € B,Vj,j' € S,Vt,t' €
T:vjy >0Av 0 >0=>1t= t’, Critical Value is truthful.



PROOF. (Sketch) Since each buyer is interested in at most one sL:[t1,2]
time slot, the seller cannot influence to which slot a buyelis- 45 60 Destination
cated by misreporting. Therefore, in terms of incentivies getting

is equivelent to one where each time slot is sold by indepande 75 20

sellers. Given that there is at most 1 unit, each such szligpe Source }H

can be represented by a single parameter. It is easy to sge tha s2:[t1,t2]

in this setting, greedy allocations are monotonic, and soctiti- Figure 1: Example for en-route charging scenario.

cal value payment incentivises truthful bidding in singlrameter

domains (see also [11, Ch. 9.5.4])1] parking is for an extended period, the buyer is typicallgiasted

in a particular time slot (e.g., a certain day), and so it &son-
able to assume that a buyer is single-minded in terms of the fi
slots. At the same time, a buyer has different preferencestab

EXAMPLE 2. Consider a seller with 1 time slot and 2 units, ~the locations of the parking place. Specifically, we assume a
and typec! = (1,5) for her two units, and two buyers with' = buyer’s utility depends on the travel distance to the statis well
(4) andv? = (6). If the seller reports her true type, both units ~ as the convenience in terms of reaching the actual destmaln
are allocated and her critical payment i) (as she could have  the experiments, we use the following simple linear valuefion
reported up to{4, 6)), and her Lljtility isUS =10 -6 = 4. On to capture these aspects:
the other hand, if she reporis' = (5,5), only the first slot is drive  swalk max drive walk
allocated, and her critical payment<'& i—lowever, her utility is Vi(d™, d™) = v — i - dT = B - d )
6 — 1 =5 and so she is better off misreporting. whered®™® represents the distance from the point of origin to the
charging stationd"®* the distance from the parking place to the
actual destination (which can be walking distance or, deipen
on the exact setting, the distance or time using local pubdigs-
port), andw; and §; capture the user’s preferences in terms of
two distances. Furthermore)}'® represents the cost of the buyer’s
most preferredutside optiorwhen not using the reservation sys-
tem (e.g., the cost of an on-demand parking place or usind-an a
ternative mode of transportation). This cost can inclugeattual
price paid for using the outside option, as well as incoreeces
such as increased travel time. This cost is avoided if thetage
allocated a slot, and so it representsatuein Equation 7.

Now, using this function, the user only requires to spedify t
preference parametets, 3;, andv;"™ whereas the agent is able
to compute theld™® and d4®* for each statiory by using a rout-
ing algorithm and other available information (such asdtaine
using local transport). Given this and the required time, slo
the agent can compute the buyer value matrix by seﬁtm =
Vi(d§™e, dj),j € Sandv, =0fort #1'

The following example shows that truthfulness cannot bészeld
for more general settings using the Critical Value payment.

Similarly, we can use the example in the proof of Theorem 2 to
show that truthfulness is violated when bidders are notsingnded

in term of time slots. In this example, the critical payment @
when the seller is truthful (the value of buyer 2), and hélitytis

U® =10 — 2 = 8. On the other hand, if the seller reports between
6 and 10 for the first slot, both slots get allocated, the critical pay
ment is15, and her utility isU® =15—4 = 11. Clearly, the seller
has an incentive to misreport.

So far, we have not discussed the Posted Price payment. Triv-
ially, this payment is not truthful for any of the above spéciases.
However, of the three seller payments, only Posted Priceids b
get balanced (since, for each allocation, the paymentueddiom
the buyer is equal to the payment given to the seller), whscmi
advantage for the centre. For the other two payments, thieecen
always runs aleficit (since the payments to the sellers are always
at least as high as the payments received from the buyers).

4. REAL-WORLD SCENARIOS

The model presented so far contains an abstract reprasentét 4.2 En-Route Charging Scenario
buyer valuations. To demonstrate how buyer valuations eatteb In this scenario, we assume that a buyer has a preferred fiare o

rived in practice, and the role of the buyer agent in doingvé®, 5| 4t the final destination, denoted by (e.g., arriving at work
present instantiations of two different scenarios: parlcharge at 9:00am), at which his utility is maximised. The utilityaleases
(_where the main aim Is to find the cr_]arglng station clo_se_speo U if the true arrival time is either too early or too late. Fantimore,
final destination), and en-route charging (where the mamisito the buyer prefers shorter car journeys (including the dhgjgo
arrive at some destlna_1t|on ata particular point in time)eSehsce- longer ones. For illustration purposes, we model thesepeates
narios are then used in Section 5 to evaluate the paymenmnsshe by simple constants, which indicate a linear decay in yiikit-

proposed within a realistic setting. though other functions can be easily applied. Formally,vélee
4.1 Park'n Charge Scenario derived given a departure tim&'®P, and actual arrival time at des-

. . . L . tination,t®", is given by:
In this scenario, we consider a situation where EVs chargéewh g y

parked away from home for an extended period of time (e.g., a V(19 12 = oM — o - (877 — %P — c(t] — 7)) (8)
full day), and where users can reserve a parking place ¢harg-
ing station) ahead of time. This can include large car pada n
shopping centres as well as smaller, private car pari&ince the

wherec(z) = B;-xif £ > 0, 0rc(x) = —v; -z if z < 0. Here,a

is a coefficient modeling the buyer’s cost for the journeyetinvhile

. Bi,~vi > 0 model the costs for early and late arrival, respectively.
°In practice, the budget balance problem can be addressed byas before, v represents theostof the buyer’'s most preferred
charging fees, such as participation fees for buyers arsiters. outside option when not using the reservation system.

However, fees are outside the scope of this paper. Nevesshel ; : : .
in Section 5 we experimentally compare the size of the ddficit Now, given an appropriate r_ouner:)g algorlthm, the agent @m-c
different payment mechanisms and scenarios. pute the required departure timé®, and arrival time at destina-

Several services for reserving a parking space already xis ~ tion, ¢*", when using a particular statighand time slot;, which
practice, such asww. par kat myhouse. com although they can then be used to compute the value of that station and tihe s
currently do not include charging facilities. v; .. Consider the simple example in Figure 1, which contains 2




stations,s1 and s2 with the same 2 time slots eactl, and¢2.
The values on the edges represent the travel time in minufes.
we assume that charging tak&sminutes, the values can be com-
puted as followsw?; , = V;(t1 — 45,1 + 60 + 30), viy ;0 =
Vi(t2 — 45,12 + 60 + 30), vis 1 = Vi(t1 — 75,1 + 20 + 30),
andvly 1o = Vi(t2 — 75,12 + 20 + 30).

Note that Equation 7 could be easily extended to take into ac-
count other factors, such as deadlines and earliest depairnes,
which would exclude certain time slots from being feasilbtead-
dition, in practice each vehicle battery has a cerstitte of charge
(SOC), which limits the driving range and so the feasibl¢icta.
Similar to the driving distance, the agent can use a nadgatys-
tem to calculate the required SOC for reaching a particu&tion
(most existing satellite navigation systems already hhigeability
which is used to allow users to select the most fuel efficiente).
Finally, we note that both Equations 7 and 8 are illustragixam-
ples and could be replaced by more complex, non-additiviyuti
functions without affecting the mechanisms discussedigyhper.

5. EVALUATION

In this section, we evaluate our proposed payment mechargam
pirically, in order to examine and critically compare themréal-
istic settings. Specifically, while we discussed severabthtical
properties in Section 3.3 (including whether they are btidhge
anced, truthful and efficient), we are now interested in tjiang

some of their performance characteristics in practiceh(sschow
large their deficits are, how strategic behaviour affectsstystem
and how far they are from optimal efficiency). In the follogjrwe
first describe our experimental methodology, and then gigelts
for the two real-world scenarios we described in Section 4.

5.1 Experimental Methodology

To evaluate our payment mechanisms in practice, we simalate
number of realistic settings by randomly sampling buyeid seil-
ers from certain distributions (detailed below). When thecha-
nism is truthful, as is the case for buyers and for Criticduégpay-
ments to stations in the settings defined by Theorem 4, werassu
that participants adopt the dominant strategy and repathftrlly.

In all other cases, sellers may benefit from strategicallgreai
porting their costs. In order to capture this strategic bigha in
a principled manner, we use a simple form of adaptive leggnin
iterated best response [10]. Using this learning approaetfirst
sample the set of buyers and sellers, and then initialisecinarts,
&7, of each sellej to random values. To ensure computational fea-
sibility, we restrict the possible reports for each agst to a finite

set!* and we enforcé’ , < ¢ wr1- Then, we iteratively choose
each seller in sequence and set her report to the best resporen
the current reports of others (if this improves on her presiac-
tion). When a seller is indifferent between several be@sponses,
we choose the one with the highest sum of costs for allocdiés] s
as we found this speeds up convergence in practice. Thigcest
until no seller has an incentive to change her response, iehwh
point the reports correspond to a Nash equilibrium [10]. \lge a
terminate the search when it has iterated over all selledgiftes,
which typically indicates that they have entered a cycleesftive-
sponses that do not converge.

We chose iterated best response here, because it is onesofithe
plest forms of learning, where agents act only in respongbeo
utilities they derive and without anticipating the futuesponses
of others. Thus, if this approach converges quickly to a Neagh-

n the experiments, we choose 11 fixed costs that evenlyadiser
the distribution of buyer valuations.

librium, it is an indication that agents do not require ssfibated
learning techniques to perform well in these settings aatidtable
equilibrium prices can be reached through simple reactrates
gies. Note, however, that this analysis assumes agentoogwute
their best responses iteratively for a given, fixed set ofebsty In
practice, buyer populations change from day to day, anébatat
have limited knowledge about the consequences of theiorasti
which they may need to explore over time. In this paper, we ab-
stract away from these complexities and focus on a prindiptgii-
librium analysis, leaving other learning approaches toritvork.
Given this methodology and in order to compare our alteveati
payment mechanisms, we record the following system prigzert
when equilibrium has been reached (or after 100 iterations)

e Efficiency: The difference between all buyer values and sta-
tion costs, as a proportion of the optimal. Specificallysttd
W(x)/W(x*), wherex is the vector of all buyer allocations cho-
sen by the mechanisti/ (x) = 3, w(i, 2*) andw(i, (j, t, k))
=i, - cgk (with special casev(i, (0)) = 0). The vectorx™ is
the optimal allocation that maximiség (x).

e Convergence: Whether the iterated best response algorithm
converged to an equilibrium within 100 iterations. As dissed
above, this is an indicator for the stability of the mechanis

e Deficit: The overall difference between the payments received
from buyers, and the payments made to sellers, as a propaftio
the optimal values derived, .63,z pi — > c 5 pi) /W (x7).

For statistical significance, we repeat all experiment910tes
and show 95% confidence intervals. We also consider settiiigs
varying numbers of buyers, keeping the number of statiorezlfix
in order to investigate different ratios between supply dewhand.

5.2 Park’n Charge Results

To simulate the park 'n charge scenario outlined in Sectidnwe
assume that stations and buyers are distributed on a twendional
Euclidean plane, and that the travel distance between timspis
equal to the straight-line distance between them (whereuttie
length is 1km). More specifically, we assume that some area of
interest is centred on coordinatgy 0), e.g., the centre of a city,
a shopping district or a business park. We then generatedtae |
tions of 15 charging stations around this by adding Gaussiise
with standard deviatiowr = 1km independently to the andy
coordinates of the central location. This approximateliofes the
patterns observed on PlugShare, where home chargingdosati
are clustered around urban centres. We assume costs aftalhst
are 0 and, for simplicity, we assumg’|| = 1 and||K]|| = 1.
This mirrors a setting where stations are private home osvtiet
rent out a single parking space, and it ensures the Critaainént
mechanism is truthful for sellers (see Section 3.3).

To simulate buyers, we assume they start their journey durth
away from the centre of interest (we add noise witk= 50km),
while their destination is closer to the centre (perturbéith w =
1km). Thus, their journey represents a considerable draithen
EV battery. To instantiate the values f@f®, o; and; in Equa-
tion 7 for a particular buyerin an intuitive manner, we first assume
an ideal reference station that is located exactly on thetsiges-
tination coordinates. We then generate a (hypotheticalieva®'
for this station from the uniform distribution shown in Takl(a).
Next, we randomly determine the ratio of the two penalty pera
ters8;/a;. This indicates the buyer’s relative preference for driv-
ing over walking, e.g.8; /a; = 10 indicates the buyer is indiffer-
ent between driving an additional 10km or walking an addaio
1km. Finally, we determine a maximum walking distant;&" the
buyer is willing to tolerate (assuming™® is equal to the direct



(a) Park 'n charge. (b) En-Route Charging.

Variable | Distribution Variable | Distribution
S U(85, $20) S U($0, $10)
Bi/cvi U(2,15) t; (30, 120)min
d’z.“ax U(0.5,5)km tearliest ty — U (60, 180)min
laest 1 4= _ 14(30, 120)min
i 14(0.5,2)

Table 1: Experimental variables.

line distance to the destination) before preferring thesidet op-
tion. These parameters together allow us to calculd® «; and
Bi, and thereford/;, for any particular charging station. When the
buyer has a negative value for all stations, we re-samptebtheer.
Figure 2 shows the full results in the park 'n charge scenasio

we vary the number of buyers. Here, we compare the outcomes

of our different mechanisms when all stations report tuitirf(la-
beledtruthful in the figure), and when they strategise using iter-
ated best response (labelkdirning). The first significant result

here is that the efficiency of the mechanisms is far worse when

sellers report their costs truthfully, but reaches 90% oremaf
optimal when stations strategise. This is because the graled
location rule will allocate all buyers in sequence (wherasible),
regardless of whether buyers with higher valuations mayeain
the future. When stations strategise in the Posted PriceRand
verse Vickrey mechanisms, however, they artificially imsetheir
reported costs to ensure they are allocated high-valuetsagamnd
thus receive higher payments).

Interestingly, the truthful Critical Value mechanism does per-
form very well. In addition to receiving a low efficiency whérere
are many buyers in the market, it incurs a high overall defidiis
is because the mechanism effectively compensates stétiohs-
ing allocated low-value agents, which is in some cases niane t
the overall value generated. The Reverse Vickrey mechaaism
incurs a deficit, but this is relatively low. Specifically,time strate-

gic setting, this is around 10% and lower than the same mecha-

nism in the truthful setting, because stations generafigntehigher

costs, leading to a higher revenue generated from buyer gatgm
Finally, we note that iterated best response convergesiszons

tently to a Nash equilibrium in the Posted Price and Reveisk-V

rey mechanisms when demand is low or very high. Between thesedistributionu(o o9 whereyhion

extremes, convergence drops, with a minimum approximatbgn
the number of buyers equals the number of stations. Bridfiy, t
is because the valuations of buyers are sufficiently divieese to
allow stations to repeatedly undercut their competitor&qs un-
til some stations are forced out of the allocation, pricesraised
again and the cycle repeats. However, the Reverse Vickrepme

anism often leads to more stable outcomes. This is becaese th

mechanism has less scope for strategic behaviour — a ssatén
ported cost influences what buyer she is allocated, but eqgbaly-
ment she receives through that allocation. The better cganee
properties of the Reverse Vickrey mechanism also explaisiell
increase in efficiency over the Posted Price mechanism. Vihen
setting fails to converge, it typically results in a pooréoeation.

5.3 En-Route Charging Results

Next, we look at the en-route charging scenario. To ensuae th
calculating the best response is computationally feasibte, we
restrict our analysis to 3 stations, with 2 possible timéss(each
of which corresponds to 30 minutes of charging) and 2 chgrgin
units? This time, we assume buyers are wishing to travel be-

tween two areas on a Euclidean space, one of which is centred

2In practice, agents can employ heuristics to deal with fegea
settings, and we have verified that similar trends are obslemhen
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Figure 2: Results of the park 'n charge scenario.

on (—100,0) and the other one ofi100, 0) (i.e., 200km apart),
with Gaussian noises(= 10km) added independently to each co-
ordinate. This represents a long-distance journey thatlikly
exhaust the EV battery, necessitating a stop at a rechastatign.
Stations are again centred () 0), with noise addeds = 50km).
As stations in these settings may be able to sell their charca-
pacity to customers without reservations, we assume statiocur
opportunity costs, which we draw independently from thearm

is the expected maximum val-
uation of any customer.

To generate)]"™, a;, 8; and+y;, we again assume an ideal sta-
tion that immediately provides the buyer with a full chargeis
departure location, and we attach a random vaffieto this (see
Table 1(b) for the distributions). We also draw a random tead
t;, which we represent in minutes after the start of the firstgcha
ing slot. Next, we draw random parameters for the earliese ti
the buyer is willing to arrive at the destinatiotf*"* as well as
the latest acceptable arrival tim&st Specifically, assuming a di-
rect drive from departure point to destination, these agdithes at
which the buyer becomes indifferent to taking the outsid&oop
To capture the driver’s willingness to take a detour, we darap
delay tolerance);, which is the maximum proportional increase
over the direct travel time that the driver is willing to tcdée (as-
suming arrival at;). For example, when,; = 0.75 and the usual
direct travel time is 80 minutes, the driver becomes indgffe to
the outside option when the detour to a charging statiorugieg
charging) takes an additional hour. Finally, we sample émeain-
ing state of charge uniformly at random, such that the vehiein
reach at least one charging station, but not the destinatist
suming an average travel speed of 100 km/h, these paranagéers

using simple hill-climbing to approximate the best resgons
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Figure 3: Results of the en-route charging scenario.

again sufficient to calculate]™, «;, 3; and~; for buyeri, and
we re-sample any buyers that do not have aj]y > 0 (or where
the destination is closer to the departure location tham#srest
charging station).

Figure 3 contains the results for the en-route chargingngett
The overall trends are broadly similar here to the park 'nrgha

scenario, so we concentrate on the main differences. fieshaddi-
tionally include the Critical Value payment mechanism wéarn-

ing agents here, because it is no longer truthful for stati®erhaps

surprisingly, the mechanism performs very poorly here, garad
to the other non-truthful mechanisms. In particular, efficy suf-
fers, because stations no longer have an incentive to beatdid
late-arriving high-value buyers, as the mechanism wigabrrect
for these in any case. As a consequence of this, the deficitiaks

when there are many buyers — stations can report low costdf+e

ing in low payments from the buyers, but still collect higfiticel
value payments from the mechanism.

Next, we note that overall convergence for the Posted Pride a

Reverse Vickrey mechanisms is significantly higher thahémark
'n charge scenario. This is due to the introduction of pesitiosts
in this setting, which significantly reduce the scope foatggising,
as stations may incur losses when they under-report thsis.co
In conclusion, the results throughout this section indidiat
strategic behaviour on the seller side typically leads tagaifs-
cantly higher overall efficiency than truthful mechanismsére
these are feasible, as in the park 'n charge scenario, oevelgemts

do not strategise). Furthermore, the results show that glsim
Posted Price mechanism leads to a high efficiency and mayebe th
preferred choice because it is budget balanced. In somagstt

where stability of the prices is important, the Reverse kégkis
advantageous, and can even result in a small increase ireeéyc
but it runs at a slight deficit.

6. CONCLUSIONS

In this paper, we considered the problem of allocating sibtbarg-
ing stations to EV owners. To address this, we proposed d adve
vance reservation system that matches drivers to avaitahlions

using a two-sided market, and we explored a number of patenti

payment mechanisms for both sides of this market. Usingra pri
cipled equilibrium analysis, we showed that strategic liha on

the seller side can lead to a high overall efficiency, and weafe

strated that some of our mechanisms offer a trade-off betste
bility and budget balance. In practice, we envisage thatmecha-
nism can be integrated with assistive driver technolodiasseam-
lessly perform both routing and instant advance resemvdtiac-

tions on behalf of the driver.

In future work, we plan to explore some of the human challenge

associated with participating in the market we propose, iarghr-
ticular, how some of its complexities can be hidden from siséfe
will also explore more complex scenarios, including longtahce
trips with multiple recharging stops and partial chargiagd we
will investigate other learning approaches beyond iteriest re-
sponse that can deal with uncertainty in demand.
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