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ABSTRACT
With the growing popularity of electric vehicles (EVs), thenumber
of public charging stations is increasing rapidly, allowing drivers
to charge their cars while parked away from home or en-route to
their destination. However, as a full charge can take a significant
amount of time, drivers may face queues and uncertainty overavail-
ability of charging facilities at different stations and times. In this
paper, we address this problem by proposing a novel, two-sided
market for advance reservations, in which agents, representing EV
owners, report their preferences for time slots and charging loca-
tions, while charging stations report their availability and costs. In
our model, both parties are rational, profit-maximising entities, and
buyers enter the market dynamically over time. Given this, we ap-
ply techniques from online mechanism design to develop a pricing
mechanism which is truthful on the buyer side (i.e., drivershave
no incentive to misreport their preferences or to delay their reser-
vations). For the seller side, we adapt three well-known pricing
mechanisms and compare them both theoretically and empirically.
Using realistic simulations, we demonstrate that two of ourpro-
posed mechanisms consistently achieve a high efficiency (90–95%
of optimal), while offering a trade-off between stability and budget
balance. Surprisingly, the third mechanism, a common payment
mechanism that is truthful in simpler settings, achieves a signifi-
cantly lower efficiency and runs a high deficit.

Categories and Subject Descriptors
I.2.11 [AI ]: Distributed AI—Multiagent systems
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1. INTRODUCTION
Recent years have seen increasing interest in electric vehicles (EVs)
as a key technology for achieving efficient transportation with low
carbon emissions [1]. However, large-scale use of EVs will raise
a host of new challenges for electricity distribution networks [5,
14]. More specifically, electric vehicles are high electricity con-
sumers and, moreover, charging an electric vehicle takes consider-
ably more time than fueling a petrol-powered vehicle.1 Thus, the
problem of efficiently scheduling the charging of a large number of
EVs at multiple charging stations will become increasinglypress-
ing and challenging, especially as both electric vehicle owners and
charging stations can be seen as self-interested parties, interested
in minimising their costs, or maximising their profits, respectively.
1Fully charging an EV takes a minimum of half an hour, even with
the fastest available chargers on the market today.

To address this problem, we present the first system where EVs
are matched to charging stations in a two-sided online market. In
this system, agents representing EV drivers enter the marketplace
dynamically over time, at which point they place bids foradvance
reservationson behalf of their owners. Through these bids, agents
express their preferences for different time slots and charging sta-
tions. At the same time, charging stations can offer available charg-
ing units through the reservation system, and report their minimum
prices for different time slots. The system then allocates buyers to
these advance time slotsonline, i.e., as they enter the marketplace.

The proposed system is very general and we show how it can be
used in two specific real-world scenarios: (1)park ’n charge, where
the EV is charged while parked at a convenient location away from
home and (2)en-route charging, where the EV requires charging
on the way to a destination. In these scenarios, we envision that the
agent is integrated with an automated advice interface and aroute
planner, which enables the agent to trade off price, availability and
distance, and automatically re-routes the user to the relevant sta-
tions. Online systems exhibiting some of these features arealready
beginning to emerge. For example,Google Maps2 provides interac-
tive directions, allowing drivers to make informed choicesbetween
multiple routes based on distance, estimated time of driving or fuel
costs. In terms of EV charging, companies such asPlugShare3 and
ChargePoint4 provide interactive maps of available EV charging
points in the US and Canada (including some reservation facilities).

Our work is closely related to combinatorial exchanges, where
buyers and sellers are matched based on their (combinatorial) pref-
erences. These are mainly concerned with finding allocations and
payments that incentivise truthful bidding, while satisfying other
properties such as individual rationality (buyers and sellers make
no loss from participating) and budget balance (the system or auc-
tioneer makes no loss). A seminal result in this field is by McAfee
[9], who proposes a payment scheme to achieve truthfulness in two-
sided markets with identical goods. Gonenet al. [7] extend this to
combinatorial two-sided auction markets, and propose a procedure
called generalised trade reduction in order to ensure several eco-
nomic properties including truthfulness. However, this and similar
work assumes a static setting where all buyers and sellers are all
present in the market at the same time. In our setting, on the other
hand, buyers enter the system dynamically and need to be allocated
without knowing future demand.

Incentivising truthful behaviour in settings with dynamicmarket
entry is studied in the field ofonline mechanism design(see [11,
Ch.16] for a survey). Existing work, such as [12, 6], largelycon-

2http://maps.google.com/
3http://www.plugshare.com/
4http://www.chargepoint.net/



siders one-sided markets (e.g., with one seller and many buyers).
In contrast, we look at two-sided markets with multiple buyers (the
EVs) and multiple sellers (the charging stations). Online two-sided
markets are studied in [3, 4], but all buyers and sellers are assumed
to trade a single unit of the same commodity. Our setting is much
more complex, since buyers have different preferences for different
sellers and time slots, and sellers can have multiple time slots and
multiple units per time slot. As we will show, this added complex-
ity has significant implications for the properties of the market.

More recently, some research has attempted to address the EV
charging problem from a cooperative scheduling perspective. In
this vein, [13, 8] consider constructing an online chargingschedule
which takes into account spatial and temporal constraints.While
some of these approaches use similar concepts to our work, such as
placing advance reservations while en-route (e.g., [8]), they rely on
a centralised scheduler and fully cooperative agents. In contrast, we
assume that agents are self-interested and can strategise by misre-
porting their preferences. Furthermore, we propose a decentralised
marketplace where agents perform much of the computation, such
as the routing and computing the EV’s energy requirements. A
small number of papers have studied the EV scheduling problem
considering strategic, self-interested agents [6, 16, 15]. However,
these study a one-sided setting with a single, fixed chargingpoint.

Against this background, this paper makes the following contri-
butions to the existing state of the art:

• We introduce the first two-sided market architecture for match-
ing EV owners to charging stations using advance reservations.

• For this system, we develop a payment mechanism that is truth-
ful and individually rational on the buyer side. On the seller side,
we outline a number of payment mechanisms and explore their
theoretical properties. As part of this, we present an impossibil-
ity result which shows that no payment can always be truthfulfor
sellers when a greedy allocation rule is used.

• We show how our reservation system can be applied to two
realistic scenarios, and we analyse the equilibrium behaviour of
agents in these scenarios using extensive simulations. We demon-
strate that two of our proposed payment mechanisms induce a high
allocative efficiency (around 90–95% of the optimal), and weshow
that one of these achieves a higher stability at the expense of run-
ning a small deficit. Surprisingly, we find that a well-known pay-
ment mechanism that is truthful for sellers in simpler settings per-
forms poorly, in terms of both efficiency and deficit.

The remainder of the paper is organised as follows. In Section 2
we first present our system model. In Section 3 we describe theal-
location mechanism and several payment mechanisms for our mar-
ket, and analyse their theoretical properties. Then, in Section 4
we instantiate our model in two real-world scenarios. Usingthese
scenarios, we evaluate and compare the proposed mechanismsem-
pirically in Section 5. We conclude in Section 6.

2. AGENT MODELS
The system consists of a set of agents orbuyers, B = {1, 2, . . .},
who arrive dynamically over time, and are interested in reserving a
slot for charging their EV at one of the available charging stations,
denoted by the setS. W.l.o.g., i′ > i means that buyeri′ enters
the market afteri. Furthermore, we assume that charging occurs
at discrete time slots (e.g., half-hourly slots), denoted by the setT ,
and that a car is fully charged during such a time slot (therefore,
a buyer requires only a single time slot).5 Each buyeri ∈ B can

5In future work, we plan to extend our model to include settings
where buyers can partially charge and/or need several slots.

have different preferences regarding both the station he would like
to charge at, as well as the time of the reservation. For example, in
the park ’n charge scenario, the buyer prefers a destinationcloser
to his final destination. In the en-route charging scenario,the buyer
prefers those stations which result in a smaller detour, andwhich
are ideally placed between the departure point and the destination
(e.g., if the battery’s state of charge is low, he would require a sta-
tion close to the departure point). We abstractly representsuch
preferences by a matrixvi, where each elementvij,t denotes the
willingness to pay, orvalue, of an agenti for receiving a charging
slot at timet ∈ T in stationj ∈ S. Note that this representation is
very general, and can capture the costs (both in terms of timeand
money) due to a detour, as well as stations or times which are infea-
sible given the battery’s current state of charge (in which case the
value for a particular slot or time is zero or even negative).These
preferences constitute an agent’s private information (unknown to
other buyers or the stations), also referred to as an agent’stype.

On the supply side, each station orsellercan have multiple charg-
ing units,K = {1, 2, . . .}, which means that, for each particular
time slot, possibly several reservations can be sold. Each station
j has a cost for selling a certain number of time slots through the
reservation system, denoted by the matrixc

j , wherecjt,k is the cost
of stationj ∈ S at timet ∈ T for the kth unit, k ∈ K (where
k = 1 is the reservation for time slott which has been allocated
first,k = 2 the second reservation, etc.). If stationj has at mostkj

units available at a particular timet, we simply setcjt,k = ∞ for
k > kj . In practice, these costs represent anopportunity cost, i.e.,
the expected value of instead selling the unit on demand, without a
reservation. This opportunity cost can be calculated by theproba-
bility that a certain unit is sold, multiplied by the profit ofselling
the unit on demand. Typically, peak times are expected to be more
profitable (since the probability that the slot is used increases), and
so have a higher opportunity cost. Furthermore, we assume that
the marginal cost for additional units is non-decreasing. That is,
∀j ∈ S, t ∈ T : cjt,k+1 ≥ cjt,k. This is a natural assumption, as
shown by the following example:

EXAMPLE 1. Consider a park ’n charge with 1 time slot and 2
units. On-demand units are always sold at$10. The station always
manages to sell at least 1 unit on demand, and sells both units
with probability 50%. Therefore, the opportunity cost of the first
reservation is0.5 · $10 = $5, while the opportunity cost for selling
the second unit through the reservation system is$10.

These costs differ for each station, and are estimated by thestations
based on observed past demand. Therefore, the costs constitute the
station’s private information ortype.

Given this, both buyers and sellers are asked to report theirtypes
to a centre(i.e., the reservation system) which then computes an
allocation and payment for each agent. Buyers report their types as
they enter the market, whereas sellers report their types inadvance
for the entire periodT .6 Formally, letv̂i andĉj denote the report
for a buyeri and sellerj respectively,v̂ and ĉ the reports of all
buyers and sellers, and̂v−i (ĉ−j ) all buyer (seller) reports except
that of i (j). We define theallocation for buyeri ∈ B by a tuple
xi = 〈j, t, k〉, if buyer i receives thekth unit,k ∈ K, of time slot
t ∈ T from sellerj ∈ S (note thatk does not refer to a particular
physical charging unit, but to the order in which the reservation was
allocated), and usexi = 〈∅〉 to denote the case where the buyer
is not allocated any slot. For the seller, we usex

j to denote the

6In practice, the period can be limited to, e.g., the next 24 hours,
and sellers can update their types as new time slots become avail-
able. For simplicity, we assume a single reporting stage.



allocation matrix at the end of the periodT , wherexj

t,k = 1 means

that the slot was allocated to a buyer, andxj

t,k = 0 means the slot
remained unallocated. Furthermore, we definepi to be buyeri’s
required payment to the centre, andpj the payment received by
sellerj from the centre. We then define the utility function for a
buyeri ∈ B as:

UB(vi, pi, xi) =

{

vij,t − pi if xi = 〈j, t, k〉

0 if xi = 〈∅〉
(1)

and for a sellerj ∈ S as:

US(cj , pj ,xj) = pj −
∑

〈t,k〉∈T×K

cjt,k · xj

t,k (2)

3. MARKET MECHANISM
Given the setting from the previous section, we would like todesign
a marketplace that satisfies the following properties:

• Truthfulness: This property requires that both sellers and buy-
ers are incentivised to always truthfully report their types to the
centre, i.e., reporting the true type is a dominant strategy.

• No Delay: In addition to truthful reporting, another way for
buyersto strategise is to delay their entry into the market. No
delay means that there is no incentive for buyers to do so.

• Efficiency: In general, an outcome is efficient if the goods
are allocated to those who value them the most. Here, an efficient
allocation maximises the sum of values minus the sum of costs.

• Individual Rationality: Individual rationality requires that
participants are never worse off when participating in the mech-
anism. In this case, this means that both buyers and sellers have
non-negative utilities.

• Budget Balance:Weakbudget balance requires that the mech-
anism requires no outside subsidy, i.e., the sum of paymentsre-
ceived from buyers is at least as great as the sum of payments to
the sellers. The property isstrict if they are equal.

In what follows, we first consider the allocation mechanism of
the marketplace, which specifies how buyers are allocated totime
slots and sellers as the buyers enter the marketplace. Then,we
present various payment mechanisms for both buyers and sellers.
Finally, we analyse the theoretical properties of both the allocation
and payment mechanisms.

3.1 Allocation Mechanism
The allocation rule plays an important role in terms of obtaining
efficiency (as well as the other properties). However, without per-
fect foresight, it is impossible to achieve perfect efficiency in online
settings such as ours. Typically, researchers analyse worst-case re-
sults, and a simple greedy allocation rule has been shown to be
2-competitive (i.e., achieve at least half of the optimal) in settings
with single-dimensional types [11, Ch. 16]. Furthermore, it has
been shown to achieve close to optimal on average in related (albeit
simpler) settings [6]. Given this, we also consider a greedyalloca-
tion mechanism which works as follows. Once the buyer arrives in
the market and reports his type to the centre, he is immediately al-
located the slot which maximises the difference between hisvalue
and the seller’s cost, provided this is positive. Otherwise, no slot is
allocated. More formally, an allocationxi for buyeri is given by:7

xi = f(v̂i|ĉ, Xi) = argmax
〈j,t,k〉∈Xi|v̂

i
j,t

−ĉ
j
t,k

≥0

v̂ij,t − ĉjt,k (3)

7If there are multiple solutions, a tie-breaking rule is used.

wherexi = 〈∅〉 if there is no solution andXi ⊆ S×T ×K are the
currently available allocations when buyeri enters the marketplace.
Specifically,X1 = S × T × {1} for the first buyer entering the
market and for subsequent buyers this is updated as follows:

Xi+1 =

{

Xi\{〈j, t, k〉} ∪ {〈j, t, k + 1〉} if xi = 〈j, t, k〉

Xi if xi = 〈∅〉

In addition, we will usexj = g(ĉj |ĉ−j , v̂) to denote the seller
allocation matrix as a function of her report,ĉ

j .

3.2 Payment Mechanisms
Setting the payment correctly is important to obtain truthfulness,
and to prevent speculation by strategic agents [11], which in turn
should improve stability (reduce price fluctuations) and efficiency
(since without truthful reports the allocations are likelyto be in-
efficient). However, obtaining truthfulness on both sides of the
market is a challenging problem and currently no truthful mech-
anism exists for the setting we consider. Furthermore, as wewill
show in Section 3.3, when using the greedy allocation mechanism
discussed above, there exists no payment that always incentivises
truthful reporting. Therefore, we only consider payments which in-
centivise truthful behaviour on the buyer side. On the seller side,
there is no obvious choice of payment, and so we consider three
different payments from the literature, each having different theo-
retical and empiricial properties in our setting. In this section, we
present these payments, while we discuss their theoreticalprop-
erties in Section 3.3. We then go on to compare these payments
experimentally in Section 5.

Buyer Payment: Whenever the buyer is allocated a slot, his
payment is set equal to the seller’s reported costs. Formally, pi =
ĉjt,k if xi = 〈j, t, k〉, andpi = 0 if xi = 〈∅〉.

For the seller payments, we consider three variants:
Posted Price:The seller payment for each allocated slot is equal

to the reported cost for that slot. Therefore, the total payment is
pj =

∑

〈t,k〉∈T×K
cjt,k · xj

t,k. Note that this payment can be ex-
ecuted without the need for a centre, since sellers can simply post
their prices for their currently available time slots, and each buyer
agent then selects the best seller and time slot by solving Equation 3
and pays the posted price. Hence the name of the payment.

Reverse Vickrey: This seller payment is computed for each ar-
riving buyer and is equal to the standard Vickrey payment fora
single item, albeit for a reverse setting (with a single buyer and
multiple sellers). Formally, letX−j

i = Xi ∩ S \ {j} × T × K
denote the available allocations when buyeri arrives in the mar-
ket, but without the slots from sellerj. Then, letxi = 〈j, t, k〉 =
f(v̂i|ĉ, Xi) denote the actual allocation andxi

−j = 〈j′, t′, k′〉 =

f(v̂i|ĉ−j , X−j
i ) the best alternative allocation without considering

sellerj. Given this, sellerj’s payment for an allocationxi is:

pjt,k =











0 if xi = 〈∅〉

vit,k if xi 6= 〈∅〉 ∧ xi
−j = 〈∅〉

vit,k − (vit′,k′ − cj
′

t′,k′) otherwise

(4)

and the total payment is:pj =
∑

〈t,k〉∈T×K
pjt,k · xj

t,k.
Critical Value: The notion of critical value has been introduced

in the mechanism design literature to produce truthful mechanisms
for single-parameter domains, in which the allocation decisions are
binary (the agent is either allocated the item or bundle, or not) and
an agent simply has a value for ‘winning’ (see, e.g., [11, Ch.9]).
In these domains, the critical value is equal to the lowest value (or
highest cost) that could have been reported and still wins the item
or bundle (i.e., for which the allocation remains unchanged). In our



setting, however, we need to adapt the notion of critical value since
a seller has possibly multiple slots and multiple units for each slot,
and so her type is multi-dimensional.8 Specifically, given an allo-
cationxj , we define the critical value in our setting as the highest
sum of costsfor the allocated slots, for which the allocation remains
unchanged in terms of the slots sold. That is, the slots and units can
be sold to different buyers, as long as the allocation matrix, xj ,
remains the same. Formally:

pj = max
ĉ
j∈Cj |g(ĉj |ĉ−j ,v̂)=x

j

∑

〈t,k〉∈T×K

cjt,k · xj

t,k (5)

whereCj is the set of all possible reports of type from sellerj.
Note that, to compute the payment, the centre needs to rerun the
entire market for each possible seller misreport. Furthermore, in
the case each seller only has a single time slot and unit, the above
equation reduces to the critical value for single-valued domains as
in [11, Ch.9] (albeit forcostsinstead ofvalues).

3.3 Theoretical Properties
We now discuss the theoretical properties of the allocationand pay-
ment mechanisms discussed in Section 2. We first consider the
properties for a buyer, then for a seller and, finally, for thecentre.
For the buyer, three properties apply: truthfulness, no delay, and in-
dividual rationality. It is easy to see that, given the rightconditions
and using the buyer payment, all these properties are satisfied:

THEOREM 1. The Buyer Payment as defined in Section 3.2 is
truthful and individually rational for buyers. Moreover, if ∀j ∈
S, t ∈ T, k ∈ K : cjt,k+1 ≥ cjt,k, buyers have no incentive to delay
their entry into the market, i.e., no delay.

PROOF. It is evident that Buyer Payment is individually rational
aspi ≤ vjj,t if xi = 〈j, t, k〉 according to Equation 3 and therefore
buyeri’s utility UB(vi, pi, xi) ≥ 0 (see Equation 1).

According to Proposition 9.27 of [11], the payment is truthful
for buyers because (i)pi does not depend onvi and given other
agents’ reports,pi is the same for anyvi that gives the same al-
locationxi, (ii) the greedy mechanism (i.e., Equation 3) optimises
for each buyeri. Since∀j ∈ S, t ∈ T, k ∈ K : cjt,k+1 ≥ cjt,k,

somax〈j,t,k〉∈Xi
vij,t − cjt,k might decrease ifi enters later, given

thati’s valuation remains the same or decreases wheni enters later.
Thus,UB(vi, pi, xi) might decrease wheni delays his entry.

In terms of the sellers, all the payments proposed satisfy indi-
vidual rationality (we omit a formal proof since the resultsare triv-
ial). However, as mentioned in Section 3.2, obtaining truthfulness
is challenging and none of the proposed payments satisfy this prop-
erty in general. Indeed, as the following theorem shows, when us-
ing the greedy allocation mechanism from Section 3.1, thereexists
no paymentthat always satisfies truthfulness.

THEOREM 2. If slots are allocated using the greedy mechanism
given by Equation 3, there exists no payment which always satisfies
truthfulness for the seller.

PROOF. The proof is based on showing, by example, that the
allocation rule violates weak monotonicity (WMON), which is a
necessary condition for such a payment to exist (see [2] for de-
tails). LetV (cj ,xj) = −

∑

〈t,k〉∈T×K
cjt,k · xj

t,k denote sellerj’s
utility/valuation without considering any payments (noting that this
8Note that [2] defines payments for multi-dimensional types.How-
ever, these payments are only applicable to (partially) ordered do-
mains, which is not the case in our setting. We refer the reader to
[2] for further details.

is always negative or zero). Given this, WMON requires that,for
all cj , ĉj ∈ Cj , the following holds (we remove the conditional
part of the seller allocation function,g, for brevity):

V (ĉj , g(ĉj))−V (cj , g(ĉj)) ≥ V (ĉj , g(cj))−V (cj , g(cj)) (6)

Now, consider an example with 1 seller, 2 time slots, and 1 unit per
time slot. The seller’s costs are given byc1 = 〈2, 2〉 (i.e., costs
are equal for both time slots). Furthermore, there are two buyers,
the first one entering the market has typev

1 = 〈6, 5〉, while the
second one has typev2 = 〈10, 0〉. Given truthful reporting, the
greedy mechanism will allocate the first buyer to the first slot, and
not allocate the second buyer (since the early slot is taken). There-
fore, V (c1, g(c1)) = −2. Now, if the seller’s costs for the two
slots were to behigher, e.g.,ĉ1 = 〈8, 3〉, she would be allocated
both slots, andV (ĉ1, g(ĉ1)) = −11. Furthermore, we have that
V (c1, g(ĉ1)) = −4 andV (ĉ1, g(c1)) = −8. Given these values,
Equation 6 becomes:−11 + 4 ≥ −8 + 2 ↔ −7 ≥ −6, which
clearly does not hold.

The intuition for the above impossibility theorem is as follows.
Since the centre has no perfect foresight and greedy allocation is
necessarily inefficient, it sometimes allocatesmorebuyers to a seller
if she reportshighercosts, thereby violating WMON. An anticipat-
ing seller could always take advantage of such a situation, and so
the mechanism is not truthful in dominant strategies. This problem
can be addressed by “ironing” the allocation, which involves can-
celling those allocations which violate WMON. However, even for
relatively simple settings, such as single-parameter domains [12]
or one-sided markets where buyers have decreasing marginalval-
ues [6], these cancellations introduce additional inefficiencies (since
the canceled units cannot be reallocated), are generally computa-
tionally demanding, and are often difficult to apply in practice (e.g.,
in the EV charging scenario, it requires discharging a car).Instead,
we take a different approach and choose to relax the truthfulness
property. Specifically, we consider weaker notions of truthfulness
in the hope that these will reduce (but not eliminate) speculation in
practice. In Section 5 we then empirically compare the mechanisms
by allowing agents to strategise.

In particular, the following theorem shows that the ReverseVick-
rey payment (see Section 3.2) satisfiesmyopic truthfulnessfor sell-
ers, which we define as being truthful for a seller when ignoring
future buyers. Formally:

THEOREM 3. Suppose that a sellerj is able to report a cost
matrix, cj , for each buyeri entering the market. Then, Reverse
Vickrey is truthful ifi is the last buyer and this is known byj.

PROOF. The assumption in the theorem leads to an equivalent
case where there is only one buyer buying one time slot from mul-
tiple sellers. It is evident that (i)pj does not depend oncj , and
it is the same for anycj that receives the same allocation forj
given other agents’ reports, and (ii)j’s utility US(cj , pj ,xj) is
maximised because of Equations 3 and 4. Therefore, sellers are
truthful under this assumption.

Furthermore, we show that the Critical Value payment is truthful
for a specific setting where each buyer is only interested in asingle
(but possibly different) time slot — buyers are said to besingle-
mindedin terms of time slots — and each seller has at most a single
unit for each time slot (in Section 4.1 we discuss these assumptions
in relation to the park ’n charge scenario). Formally:

THEOREM 4. If ||K|| = 1 and ∀i ∈ B,∀j, j′ ∈ S,∀t, t′ ∈
T : vij,t > 0 ∧ vij′,t′ > 0 ⇒ t = t′, Critical Value is truthful.



PROOF. (Sketch) Since each buyer is interested in at most one
time slot, the seller cannot influence to which slot a buyer isallo-
cated by misreporting. Therefore, in terms of incentives, the setting
is equivelent to one where each time slot is sold by independent
sellers. Given that there is at most 1 unit, each such seller’s type
can be represented by a single parameter. It is easy to see that,
in this setting, greedy allocations are monotonic, and so the criti-
cal value payment incentivises truthful bidding in single-parameter
domains (see also [11, Ch. 9.5.4]).

The following example shows that truthfulness cannot be achieved
for more general settings using the Critical Value payment.

EXAMPLE 2. Consider a seller with 1 time slot and 2 units,
and typec1 = 〈1, 5〉 for her two units, and two buyers withv1 =
〈4〉 andv

2 = 〈6〉. If the seller reports her true type, both units
are allocated and her critical payment is10 (as she could have
reported up to〈4, 6〉), and her utility isUS = 10 − 6 = 4. On
the other hand, if she reportsc1 = 〈5, 5〉, only the first slot is
allocated, and her critical payment is6. However, her utility is
6− 1 = 5 and so she is better off misreporting.

Similarly, we can use the example in the proof of Theorem 2 to
show that truthfulness is violated when bidders are not single-minded
in term of time slots. In this example, the critical payment is 10
when the seller is truthful (the value of buyer 2), and her utility is
US = 10− 2 = 8. On the other hand, if the seller reports between
6 and10 for the first slot, both slots get allocated, the critical pay-
ment is15, and her utility isUS = 15−4 = 11. Clearly, the seller
has an incentive to misreport.

So far, we have not discussed the Posted Price payment. Triv-
ially, this payment is not truthful for any of the above special cases.
However, of the three seller payments, only Posted Price is bud-
get balanced (since, for each allocation, the payment received from
the buyer is equal to the payment given to the seller), which is an
advantage for the centre. For the other two payments, the centre
always runs adeficit (since the payments to the sellers are always
at least as high as the payments received from the buyers).9

4. REAL-WORLD SCENARIOS
The model presented so far contains an abstract representation of
buyer valuations. To demonstrate how buyer valuations can be de-
rived in practice, and the role of the buyer agent in doing so,we
present instantiations of two different scenarios: park ’ncharge
(where the main aim is to find the charging station closest to the
final destination), and en-route charging (where the main aim is to
arrive at some destination at a particular point in time). These sce-
narios are then used in Section 5 to evaluate the payment schemes
proposed within a realistic setting.

4.1 Park ’n Charge Scenario
In this scenario, we consider a situation where EVs charge while
parked away from home for an extended period of time (e.g., a
full day), and where users can reserve a parking place (i.e.,charg-
ing station) ahead of time. This can include large car parks near
shopping centres as well as smaller, private car parks.10 Since the
9In practice, the budget balance problem can be addressed by
charging fees, such as participation fees for buyers and/orsellers.
However, fees are outside the scope of this paper. Nevertheless,
in Section 5 we experimentally compare the size of the deficitfor
different payment mechanisms and scenarios.

10Several services for reserving a parking space already exist in
practice, such aswww.parkatmyhouse.com, although they
currently do not include charging facilities.
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s2:[t1,t2]
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Figure 1: Example for en-route charging scenario.

parking is for an extended period, the buyer is typically interested
in a particular time slot (e.g., a certain day), and so it is reason-
able to assume that a buyer is single-minded in terms of the time
slots. At the same time, a buyer has different preferences about
the locations of the parking place. Specifically, we assume that a
buyer’s utility depends on the travel distance to the station, as well
as the convenience in terms of reaching the actual destination. In
the experiments, we use the following simple linear value function
to capture these aspects:

Vi(d
drive, dwalk) = vmax

i − αi · d
drive − βi · d

walk (7)

whereddrive represents the distance from the point of origin to the
charging station,dwalk the distance from the parking place to the
actual destination (which can be walking distance or, depending
on the exact setting, the distance or time using local publictrans-
port), andαi and βi capture the user’s preferences in terms of
two distances. Furthermore,vmax

i represents the cost of the buyer’s
most preferredoutside optionwhen not using the reservation sys-
tem (e.g., the cost of an on-demand parking place or using an al-
ternative mode of transportation). This cost can include the actual
price paid for using the outside option, as well as inconveniences
such as increased travel time. This cost is avoided if the agent is
allocated a slot, and so it represents avaluein Equation 7.

Now, using this function, the user only requires to specify the
preference parametersαi, βi, andvmax

i whereas the agent is able
to compute theddrive

j anddwalk
j for each stationj by using a rout-

ing algorithm and other available information (such as travel time
using local transport). Given this and the required time slot, t,
the agent can compute the buyer value matrix by settingvij,t =

Vi(d
drive
j , dwalk

j ), j ∈ S andvij,t′ = 0 for t 6= t′.

4.2 En-Route Charging Scenario
In this scenario, we assume that a buyer has a preferred time of ar-
rival at the final destination, denoted byt∗i (e.g., arriving at work
at 9:00am), at which his utility is maximised. The utility decreases
if the true arrival time is either too early or too late. Furthermore,
the buyer prefers shorter car journeys (including the charging) to
longer ones. For illustration purposes, we model these preferences
by simple constants, which indicate a linear decay in utility, al-
though other functions can be easily applied. Formally, thevalue
derived given a departure time,tdep, and actual arrival time at des-
tination,tarr, is given by:

Vi(t
dep, tarr) = vmax

i − αi · (t
arr − tdep)− c(t∗i − tarr) (8)

wherec(x) = βi ·x if x ≥ 0, or c(x) = −γi ·x if x < 0. Here,αi

is a coefficient modeling the buyer’s cost for the journey time, while
βi, γi ≥ 0 model the costs for early and late arrival, respectively.
As before,vmax

i represents thecost of the buyer’s most preferred
outside option when not using the reservation system.

Now, given an appropriate routing algorithm, the agent can com-
pute the required departure time,tdep, and arrival time at destina-
tion, tarr, when using a particular stationj and time slott, which
can then be used to compute the value of that station and time slot,
vij,t. Consider the simple example in Figure 1, which contains 2



stations,s1 and s2 with the same 2 time slots each,t1 and t2.
The values on the edges represent the travel time in minutes.If
we assume that charging takes30 minutes, the values can be com-
puted as follows:vis1,t1 = Vi(t1 − 45, t1 + 60 + 30), vis1,t2 =

Vi(t2 − 45, t2 + 60 + 30), vis2,t1 = Vi(t1 − 75, t1 + 20 + 30),
andvis2,t2 = Vi(t2− 75, t2 + 20 + 30).

Note that Equation 7 could be easily extended to take into ac-
count other factors, such as deadlines and earliest departure times,
which would exclude certain time slots from being feasible.In ad-
dition, in practice each vehicle battery has a certainstate of charge
(SOC), which limits the driving range and so the feasible stations.
Similar to the driving distance, the agent can use a navigation sys-
tem to calculate the required SOC for reaching a particular station
(most existing satellite navigation systems already have this ability
which is used to allow users to select the most fuel efficient route).
Finally, we note that both Equations 7 and 8 are illustrativeexam-
ples and could be replaced by more complex, non-additive utility
functions without affecting the mechanisms discussed in this paper.

5. EVALUATION
In this section, we evaluate our proposed payment mechanisms em-
pirically, in order to examine and critically compare them in real-
istic settings. Specifically, while we discussed several theoretical
properties in Section 3.3 (including whether they are budget bal-
anced, truthful and efficient), we are now interested in quantifying
some of their performance characteristics in practice (such as how
large their deficits are, how strategic behaviour affects the system
and how far they are from optimal efficiency). In the following, we
first describe our experimental methodology, and then give results
for the two real-world scenarios we described in Section 4.

5.1 Experimental Methodology
To evaluate our payment mechanisms in practice, we simulatea
number of realistic settings by randomly sampling buyers and sell-
ers from certain distributions (detailed below). When the mecha-
nism is truthful, as is the case for buyers and for Critical Value pay-
ments to stations in the settings defined by Theorem 4, we assume
that participants adopt the dominant strategy and report truthfully.

In all other cases, sellers may benefit from strategically misre-
porting their costs. In order to capture this strategic behaviour in
a principled manner, we use a simple form of adaptive learning,
iterated best response [10]. Using this learning approach,we first
sample the set of buyers and sellers, and then initialise thereports,
ĉ
j , of each sellerj to random values. To ensure computational fea-

sibility, we restrict the possible reports for each costĉjt,k to a finite

set,11 and we enforcêcjt,k ≤ ĉjt,k+1. Then, we iteratively choose
each seller in sequence and set her report to the best response, given
the current reports of others (if this improves on her previous ac-
tion). When a seller is indifferent between several better responses,
we choose the one with the highest sum of costs for allocated slots,
as we found this speeds up convergence in practice. This continues
until no seller has an incentive to change her response, at which
point the reports correspond to a Nash equilibrium [10]. We also
terminate the search when it has iterated over all sellers 100 times,
which typically indicates that they have entered a cycle of best re-
sponses that do not converge.

We chose iterated best response here, because it is one of thesim-
plest forms of learning, where agents act only in response tothe
utilities they derive and without anticipating the future responses
of others. Thus, if this approach converges quickly to a Nashequi-

11In the experiments, we choose 11 fixed costs that evenly discretise
the distribution of buyer valuations.

librium, it is an indication that agents do not require sophisticated
learning techniques to perform well in these settings and that stable
equilibrium prices can be reached through simple reactive strate-
gies. Note, however, that this analysis assumes agents can compute
their best responses iteratively for a given, fixed set of buyers. In
practice, buyer populations change from day to day, and stations
have limited knowledge about the consequences of their actions,
which they may need to explore over time. In this paper, we ab-
stract away from these complexities and focus on a principled equi-
librium analysis, leaving other learning approaches to future work.

Given this methodology and in order to compare our alternative
payment mechanisms, we record the following system properties
when equilibrium has been reached (or after 100 iterations):

• Efficiency: The difference between all buyer values and sta-
tion costs, as a proportion of the optimal. Specifically, this is
W (x)/W (x∗), wherex is the vector of all buyer allocations cho-
sen by the mechanism,W (x) =

∑

i∈B
w(i, xi) andw(i, 〈j, t, k〉)

= vij,t − cjt,k (with special casew(i, 〈∅〉) = 0). The vectorx∗ is
the optimal allocation that maximisesW (x).

• Convergence: Whether the iterated best response algorithm
converged to an equilibrium within 100 iterations. As discussed
above, this is an indicator for the stability of the mechanism.

• Deficit: The overall difference between the payments received
from buyers, and the payments made to sellers, as a proportion of
the optimal values derived, i.e.,(

∑

i∈B
pi −

∑

j∈S
pj)/W (x∗).

For statistical significance, we repeat all experiments 1000 times
and show 95% confidence intervals. We also consider settingswith
varying numbers of buyers, keeping the number of stations fixed,
in order to investigate different ratios between supply anddemand.

5.2 Park ’n Charge Results
To simulate the park ’n charge scenario outlined in Section 4.1, we
assume that stations and buyers are distributed on a two-dimensional
Euclidean plane, and that the travel distance between two points is
equal to the straight-line distance between them (where theunit
length is 1km). More specifically, we assume that some area of
interest is centred on coordinates(0, 0), e.g., the centre of a city,
a shopping district or a business park. We then generate the loca-
tions of 15 charging stations around this by adding Gaussiannoise
with standard deviationσ = 1km independently to thex andy
coordinates of the central location. This approximately follows the
patterns observed on PlugShare, where home charging locations
are clustered around urban centres. We assume costs of all stations
are 0 and, for simplicity, we assume||T || = 1 and ||K|| = 1.
This mirrors a setting where stations are private home owners that
rent out a single parking space, and it ensures the Critical Payment
mechanism is truthful for sellers (see Section 3.3).

To simulate buyers, we assume they start their journey further
away from the centre of interest (we add noise withσ = 50km),
while their destination is closer to the centre (perturbed with σ =
1km). Thus, their journey represents a considerable drain onthe
EV battery. To instantiate the values forvmax

i , αi andβi in Equa-
tion 7 for a particular buyeri in an intuitive manner, we first assume
an ideal reference station that is located exactly on the buyer’s des-
tination coordinates. We then generate a (hypothetical) value vref

i

for this station from the uniform distribution shown in Table 1(a).
Next, we randomly determine the ratio of the two penalty parame-
tersβi/αi. This indicates the buyer’s relative preference for driv-
ing over walking, e.g.,βi/αi = 10 indicates the buyer is indiffer-
ent between driving an additional 10km or walking an additional
1km. Finally, we determine a maximum walking distancedmax

i the
buyer is willing to tolerate (assumingddrive is equal to the direct



(a) Park ’n charge.

Variable Distribution
vref
i U($5, $20)

βi/αi U(2, 15)
dmax
i U(0.5, 5)km

(b) En-Route Charging.

Variable Distribution
vref
i U($0, $10)

t∗i U(30, 120)min
tearliest
i t∗i − U(60, 180)min
tlatest
i t∗i − U(30, 120)min
λi U(0.5, 2)

Table 1: Experimental variables.

line distance to the destination) before preferring the outside op-
tion. These parameters together allow us to calculatevmax

i , αi and
βi, and thereforeVi, for any particular charging station. When the
buyer has a negative value for all stations, we re-sample that buyer.

Figure 2 shows the full results in the park ’n charge scenarioas
we vary the number of buyers. Here, we compare the outcomes
of our different mechanisms when all stations report truthfully (la-
beled truthful in the figure), and when they strategise using iter-
ated best response (labeledlearning). The first significant result
here is that the efficiency of the mechanisms is far worse when
sellers report their costs truthfully, but reaches 90% or more of
optimal when stations strategise. This is because the greedy al-
location rule will allocate all buyers in sequence (where feasible),
regardless of whether buyers with higher valuations may arrive in
the future. When stations strategise in the Posted Price andRe-
verse Vickrey mechanisms, however, they artificially increase their
reported costs to ensure they are allocated high-value agents (and
thus receive higher payments).

Interestingly, the truthful Critical Value mechanism doesnot per-
form very well. In addition to receiving a low efficiency whenthere
are many buyers in the market, it incurs a high overall deficit. This
is because the mechanism effectively compensates stationsfor be-
ing allocated low-value agents, which is in some cases more than
the overall value generated. The Reverse Vickrey mechanismalso
incurs a deficit, but this is relatively low. Specifically, inthe strate-
gic setting, this is around 10% and lower than the same mecha-
nism in the truthful setting, because stations generally report higher
costs, leading to a higher revenue generated from buyer payments.

Finally, we note that iterated best response converges consis-
tently to a Nash equilibrium in the Posted Price and Reverse Vick-
rey mechanisms when demand is low or very high. Between these
extremes, convergence drops, with a minimum approximatelywhen
the number of buyers equals the number of stations. Briefly, this
is because the valuations of buyers are sufficiently diversehere to
allow stations to repeatedly undercut their competitors’ prices un-
til some stations are forced out of the allocation, prices are raised
again and the cycle repeats. However, the Reverse Vickrey mech-
anism often leads to more stable outcomes. This is because the
mechanism has less scope for strategic behaviour — a station’s re-
ported cost influences what buyer she is allocated, but not the pay-
ment she receives through that allocation. The better convergence
properties of the Reverse Vickrey mechanism also explain the small
increase in efficiency over the Posted Price mechanism. Whena
setting fails to converge, it typically results in a poorer allocation.

5.3 En-Route Charging Results
Next, we look at the en-route charging scenario. To ensure that
calculating the best response is computationally feasiblehere, we
restrict our analysis to 3 stations, with 2 possible time slots (each
of which corresponds to 30 minutes of charging) and 2 charging
units.12 This time, we assume buyers are wishing to travel be-
tween two areas on a Euclidean space, one of which is centred

12In practice, agents can employ heuristics to deal with far larger
settings, and we have verified that similar trends are observed when

40%

50%

60%

70%

80%

90%

100%

 0  10  20  30  40  50  60  70  80  90  100

Efficiency (% of Optimal)

Reverse Vickrey Learning
Posted Price Learning

All Truthful

0%

20%

40%

60%

80%

100%

 0  10  20  30  40  50  60  70  80  90  100

Deficit (% of Optimal Welfare)

Critical Value Truthful
Reverse Vickrey Truthful
Reverse Vickrey Learning

0%

20%

40%

60%

80%

100%

 0  10  20  30  40  50  60  70  80  90  100
Number of Buyers

Convergence (% Converged)

Reverse Vickrey Learning
Posted Price Learning

Figure 2: Results of the park ’n charge scenario.

on (−100, 0) and the other one on(100, 0) (i.e., 200km apart),
with Gaussian noise (σ = 10km) added independently to each co-
ordinate. This represents a long-distance journey that will likely
exhaust the EV battery, necessitating a stop at a rechargingstation.
Stations are again centred on(0, 0), with noise added (σ = 50km).
As stations in these settings may be able to sell their charging ca-
pacity to customers without reservations, we assume stations occur
opportunity costs, which we draw independently from the uniform
distributionU(0, vhigh), wherevhigh is the expected maximum val-
uation of any customer.

To generatevmax
i , αi, βi andγi, we again assume an ideal sta-

tion that immediately provides the buyer with a full charge at his
departure location, and we attach a random valuevref

i to this (see
Table 1(b) for the distributions). We also draw a random deadline
t∗i , which we represent in minutes after the start of the first charg-
ing slot. Next, we draw random parameters for the earliest time
the buyer is willing to arrive at the destination,tearliest

i , as well as
the latest acceptable arrival time,tlatest

i . Specifically, assuming a di-
rect drive from departure point to destination, these are the times at
which the buyer becomes indifferent to taking the outside option.
To capture the driver’s willingness to take a detour, we sample a
delay tolerance,λi, which is the maximum proportional increase
over the direct travel time that the driver is willing to tolerate (as-
suming arrival att∗i ). For example, whenλi = 0.75 and the usual
direct travel time is 80 minutes, the driver becomes indifferent to
the outside option when the detour to a charging station (including
charging) takes an additional hour. Finally, we sample the remain-
ing state of charge uniformly at random, such that the vehicle can
reach at least one charging station, but not the destination. As-
suming an average travel speed of 100 km/h, these parametersare

using simple hill-climbing to approximate the best response.
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Figure 3: Results of the en-route charging scenario.

again sufficient to calculatevmax
i , αi, βi andγi for buyer i, and

we re-sample any buyers that do not have anyvij,t > 0 (or where
the destination is closer to the departure location than thenearest
charging station).

Figure 3 contains the results for the en-route charging setting.
The overall trends are broadly similar here to the park ’n charge
scenario, so we concentrate on the main differences. First,we addi-
tionally include the Critical Value payment mechanism withlearn-
ing agents here, because it is no longer truthful for stations. Perhaps
surprisingly, the mechanism performs very poorly here, compared
to the other non-truthful mechanisms. In particular, efficiency suf-
fers, because stations no longer have an incentive to be allocated
late-arriving high-value buyers, as the mechanism will later correct
for these in any case. As a consequence of this, the deficit also rises
when there are many buyers — stations can report low costs, result-
ing in low payments from the buyers, but still collect high critical
value payments from the mechanism.

Next, we note that overall convergence for the Posted Price and
Reverse Vickrey mechanisms is significantly higher than in the park
’n charge scenario. This is due to the introduction of positive costs
in this setting, which significantly reduce the scope for strategising,
as stations may incur losses when they under-report their costs.

In conclusion, the results throughout this section indicate that
strategic behaviour on the seller side typically leads to a signifi-
cantly higher overall efficiency than truthful mechanisms (where
these are feasible, as in the park ’n charge scenario, or where agents
do not strategise). Furthermore, the results show that a simple
Posted Price mechanism leads to a high efficiency and may be the
preferred choice because it is budget balanced. In some settings,
where stability of the prices is important, the Reverse Vickrey is
advantageous, and can even result in a small increase in efficiency,
but it runs at a slight deficit.

6. CONCLUSIONS
In this paper, we considered the problem of allocating slotsat charg-
ing stations to EV owners. To address this, we proposed a novel ad-
vance reservation system that matches drivers to availablestations
using a two-sided market, and we explored a number of potential
payment mechanisms for both sides of this market. Using a prin-
cipled equilibrium analysis, we showed that strategic behaviour on
the seller side can lead to a high overall efficiency, and we demon-
strated that some of our mechanisms offer a trade-off between sta-
bility and budget balance. In practice, we envisage that ourmecha-
nism can be integrated with assistive driver technologies that seam-
lessly perform both routing and instant advance reservation func-
tions on behalf of the driver.

In future work, we plan to explore some of the human challenges
associated with participating in the market we propose, and, in par-
ticular, how some of its complexities can be hidden from users. We
will also explore more complex scenarios, including long-distance
trips with multiple recharging stops and partial charging,and we
will investigate other learning approaches beyond iterated best re-
sponse that can deal with uncertainty in demand.
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