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ABSTRACT

An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum

conservation, is applied to two-layer zonal quasigeostrophic channel flow. This constraintmust be satisfied for

any type of parameterization of eddy PVfluxes. Bottom topography strongly influences the integral constraint

compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using

asymptotic expansion in a small parameter, which is the ratio of the Rossby radius to the meridional extent of

the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer

coefficients that relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from

restrictions for the channel with flat bottom topography.

1. Introduction

Mesoscale variability in the ocean produces a strong

maximum in the kinetic energy spectrum. The hori-

zontal scale of such motion is usually comparable with

Rossby radius of deformation and is small relative to the

size of ocean basins (Kamenkovich et al. 1986).

Mesoscale eddies can substantially affect the large-scale

ocean circulation. In some circumstances eddies can trans-

fer their energy to the large-scale flow (Scott and Wang

2005), and in others they take energy from the large scale

circulation (Kamenkovich et al. 1986). In zonal flows

mesoscale eddies can influence the large-scale flow

(McWilliams et al. 1978; McWilliams and Chow 1981;

Treguier andMcWilliams 1990;Wolff et al. 1991; Ivchenko

et al. 1997). Eddies can both decreasemeanmomentum

and concentrate momentum in the center of jets.

Eddy-resolving numerical ocean circulation models,

which allow development of mesoscale eddies, being

averaged in space and time produce different time- and

space-averaged solutions comparedwith coarse-resolution

models without parameterization of eddies. In spite of

enormous improvements in computer hardware and soft-

ware, numerical simulations for climatological purposes

(many decades) with very high resolution remain un-

realistic. Therefore parameterization of mesoscale eddies is

an important problem in modern oceanography.

Averaging over the system of dynamical equations in-

troduces eddy fluxes of momentum, temperature, salinity,
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potential vorticity, and the other properties. The nature

of these fluxes is unknown a priori. Mesoscale variability

cannot be ignored and we have to either describe (re-

solve) individual eddies, or parameterize them, that is,

develop physically correct links between eddy fluxes and

mean variables and their gradients.

There has been substantial interest in diffusive pa-

rameterizations of eddy fluxes of potential vorticity, which

introduce transfer coefficients in recent studies (Eden

2010; Eden and Greatbatch 2008; Marshall et al. 2012;

Marshall and Adcroft 2010; Ringler and Gent 2011).

The important step that should be considered before

using any parameterization scheme is to formulate in-

tegral constraints. In the basic equations the eddy fluxes

arising after averaging from the nonlinear advection

terms and therefore can be written in divergent form

(divergence of eddy fluxes). If these equations are in-

tegrated over the whole basin the divergence of eddy

fluxes results in normal fluxes through the lateral

boundaries and the sea floor (with variable bottom to-

pography). The normal fluxes either cancel or must be

balanced by other processes. This requirement, which is

an integral constraint on the flow, must be satisfied for

any type of parameterization. This leads to restrictions

on the transfer coefficients, introduced by the specific

type of parameterization.

The simplest example of an integral constraint can be

shown for quasigeostrophic zonal flow. The well-known

Bretherton theorem (Bretherton 1966) states that the

integral of meridional eddy flux of potential vorticity

must be zero for a flat bottom zonal channel. This the-

orem means conservation of total mean zonal flow:

eddies only redistribute zonal momentum (see section 2).

The momentum input to the zonal channel is balanced

by viscous bottom friction and partly by viscous lateral

friction in the flat bottom domain. Applying this con-

straint to a diffusive parameterization of potential vor-

ticity, Marshall (1981) demonstrated that the transfer

coefficient in the lower layer of a two-layer model must

be higher than the coefficient in the upper layer for a flat

bottom channel. He showed that this feature of the

transfer coefficients of potential vorticity (CPV) is linked

with Pedlosky’s instability conditions (Pedlosky 1979).

What happens in a similar zonal channel but with bot-

tom topography? In this case the input by wind is bal-

anced mainly by inviscid topographic form stress (Munk

and Palmén 1951; Ivchenko et al. 1996; Stevens and

Ivchenko 1997) but not viscous terms. This means that

the integral constraint is severely distorted compared to

the Bretherton theorem. Indeed, the total eddy flux of

PV is not zero, but equal to the integrated topographic

form stress (Ivchenko 1987; Vallis 2006). How this mod-

ified constraint influences the effective values of the

transfer coefficients for a diffusive parameterization is

the main object of this study.

This study combines two different approaches:

(i) the numerical eddy-resolving experiment (Section

3, and Figs. 1–7); and

(ii) application of an analytical solution for the steady-

state quasigeostrophic channel model with topog-

raphy (sections 4 and 5) to the integral constraint

(section 6 and Figs. 8 and 9).

Using the numerical model allows us to see the solution

with explicit interactionof eddies and themeanflow, that is,

without parameterization. This allows us to have a view of

developing channel flow, to consider the zonally averaged

profiles and amplitude spectrum of the streamfunction.

The analytical solution represents a major part of the

study. We use parameters taken directly from the nu-

merical results in our analytical solution.

2. Basic quasigeostrophic equation for
the zonal channel

The quasigeostrophic equations for the two-layer

model can be written as

›q1
›t

1 J(C1, q1)5 1/H1curlzt1F1, and (1)

›q2
›t

1 J(C2, q2)52�curlzv2 1F2 , (2)

where qi andCi are quasigeostrophic potential vorticity

(QPV) and streamfunction, respectively; subscripts 1

and 2 mark the upper and lower layers whose mean

thicknesses Hi are constant; t is the wind stress. Here,

vi is the vector of horizontal velocity, with the zonal

component ui 52›Ci/›y, and meridional component

yi 52›Ci/›x; Fi is the lateral friction; and J(�,�) is the
Jacobian operator, J(A,B)52(›A/›y)(›B/›x)1 (›A/

›x)(›B/›y).

The layer-wise potential vorticities qi are given by

q15=2C11 f 2
f 20

g0H1

(C12C2), and (3)

q25=2C2 1 f 1
f 20

g 0H2

(C12C2)1
f0
H2

B , (4)

where g0 5 g(r2 2 r1)/r0 is the reduced gravity, g is the

acceleration due to gravity; ri is the averaged density of

layer i and r0 is a reference density. Here, f and f0 are the

Coriolis parameter and its value at a reference latitude,

respectively, and B is the deviation of bottom topogra-

phy from the constant depth of H 5 H1 1 H2.
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Averaging Eqs. (1)–(4) in time and zonally results in

›q1
›t

52
›

›y
y01q

0
121/H1

›

›y
tx1F1 , (5)

›q2
›t

52
›

›y
y02q

0
21 �

›

›y
u21F2 , (6)

q152
›

›y
u11 f 2

f 20
g0H1

(C1 2C2), and (7)

q252
›

›y
u21 f 1

f 20
g0H2

(C1 2C2)1 f0/H2B . (8)

The overbar and prime denote the time and zonal

average and the eddy component (the deviation from

the zonal-time mean), respectively.

The well-known condition for conservation of mo-

mentum in a zonal flat bottom channel in the absence of

external forcing and friction is the theorem of Bretherton

(Bretherton 1966; McWilliams et al. 1978):

ðL
0
(H1y

0
1q

0
11H2y

0
2q

0
2) dy5 0. (9)

External forcing (wind stress) will be balanced by

viscous dissipation, that is, by bottom and lateral fric-

tion. This flat bottom case results in unrealistically high

friction coefficients if we want to have realistic zonal

transport. A major modification introduced by inclusion

of bottom topography is that the bottom form stress

balances the forcing. This mechanism is inviscid and

proves to be very effective in drastically reducing the

total zonal transport compared to the flat bottom case.

Indeed, the Bretherton theorem (9) in this case can be

rewritten as (Ivchenko 1987; Vallis 2006):

ðL
0
(H1y

0
1q

0
11H2y

0
2q

0
2) dy5 f0

ðL
0
y2Bdy . (10)

The term under the integral on the rhs of (10) is the

topographic form stress since

f0y2B52p2
›B

›x
, (11)

where p2 is the pressure in the lower layer.

In experiments with a flat bottom, there is no sub-

stantial variability in the zonal transport and no standing

(stationary in time) eddies because of temporal and zonal

invariance. The transient eddies can contain patterns

propagating zonally but are independent (on average) of

the zonal coordinate. A strong zonal mean jet forms in

each layer with amaximum in the center when a sinusoidal

distribution of zonal wind stress is applied (McWilliams

et al. 1978; McWilliams and Chow 1981; Ivchenko 1984;

Ivchenko et al. 1997; Olbers 2005; Ivchenko et al. 2008).

The upper jet is stronger because the eddy-induced lat-

eral Reynolds stress transfers the eastward momentum

to its center making it narrower and more intense (Held

1975).

Experiments show that even a small zonal variation in

B substantially reduces the zonal transport.

3. Numerical model and experiments with
the eddy-resolving model

Progress in understanding eddy dynamics in zonal

flows came after a number of studies used quasigeo-

strophic zonal channel models (McWilliams et al. 1978;

McWilliams and Chow 1981; Wolff and Olbers 1989;

Treguier andMcWilliams 1990;Wolff et al. 1991; Ivchenko

et al. 1997; Olbers 2005). Experiments were conducted

with flows in rectangular channels of different zonal

extent with or without topographic obstacles and driven

by different wind stresses. The basic questions answered

with QG models concern momentum balance, vertical

penetration of momentum, and the convergence of

zonal momentum in jets. The zonal channel represents

a multiply-connected domain and needs auxiliary con-

ditions, for which McWilliams (1977) conditions were

used. The total zonal transport as well as the pattern of

the mean flow and eddy activity proves to be strongly

dependent on the presence, and details, of the bottom

topography. Here we employ a slightly modified version

of the quasigeostrophic model comprehensively de-

scribed by Sinha and Richards (1999). The model ge-

ometry consists of a zonal reentrant channel of length

Lx 5 7680 km (sufficiently long to minimize upstream

effects, the precise length is chosen for reasons of com-

putational efficiency), width L 5 1500 km and depth

H 5 5 km. Here, x, y and z axes are oriented eastward,

northward, and vertically upward, respectively. Themodel

solves the quasigeostrophic equations in Cartesian co-

ordinates on a beta plane centered at 508S. The flow is

constrained by rigid boundaries to the north and south

and is forced by a sinusoidal zonal eastward wind stress

t [tx 5 t0 sin(py/L), ty 5 0, where t0 is a constant].

Dissipation is effected by a linear bottom friction law and

a biharmonic lateral friction operator. The model is

solved for two vertical normal modes, or equivalently,

two vertical layers as these two formulations can be

shown to correspond exactly (Flierl 1978). For the pur-

poses of this paper we depart from Sinha and Richards

(1999) and run the model in two-layer mode, adjusting

the layer depths and reduced gravity to mimic the ide-

alized Southern Ocean model of Wolff et al. (1991). We
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also select a slightly finer grid resolution of 10 km and

specify bottom topography,B that is sinusoidal in both x

and y directions [B 5 B0 sin(8px/Lx) sin(2py/L)] in

order to correspond with the analytical solution derived

in the following sections. Other than this, the model

parameters are as listed by Sinha and Richards (1999)

(Table 1 of their paper). In particular the Rossby radius,

LR, is set to be 36 km and the amplitude of the deviation

of bottom topography B0 5 300 m. The model is run

from rest, forced by the specified constant (in time) wind

stress for 200 model years and model statistics (mean

layer wise streamfunction and potential vorticity) are

obtained by averaging over the final 100 years of the

experiment.

Numerical results

Figure 1 shows the domain-averaged layer wise ki-

netic energies and potential energy as a function of time.

The model spins up to an equilibrated state within about

20 years and remains stable for the remainder of the

experiment. Even after 200 years of integration, a small

trend is discernible in the energy time series and small

zonal and meridional asymmetries remain in the mean

state (see subsequent figures). This suggests that an even

longer integration is desirable; however, we do not ex-

pect any qualitative change in the solution after the

initial (20 yr) adjustment phase. Instantaneous stream-

functions and potential vorticities at year 100 (Fig. 2)

indicate that themodel simulates narrow jets (compared

with the forcing length scale) and a mature eddy field.

Typical eddy length scales are of order 100–300 km and

are well resolved by the model grid. The mean stream-

functions (Fig. 3) show two narrow jets (northern and

southern), with meanders on the length scale of the si-

nusoidal topography. Importantly, the deflection over

the topography is observed to be as predicted by the

analytical solution. The zonal mean zonal velocity ob-

tained from the derivative of the streamfunction is

shown in Fig. 4. The two meandering jets show up as

three regions of intense current. A zonal section of the

mean streamfunction (Fig. 5) shows that the solution is

dominated by the topographic length scale, but there are

also clearly higher wavenumber harmonics present. This

is illustrated in Fig. 6 which shows the Fourier spectrum

of the mean streamfunction at the same latitude. The

flow is almost entirely composed of wavenumbers 4, 6,

and 8. We note that only wavenumber 4 will contribute

to the topographic term in the generalized Bretherton

relation (see Section 6) and that it is the dominant wave-

number in terms of amplitude. In fact for the form of to-

pography specified, the topographic form stress will be

determined solely by thewavenumber 4 component of the

streamfunction, which is in phase with the topography.

As well as giving us an impression of the flow field

associated with this configuration of bottom topography,

the numerical results will be used later to estimate the

free parameters of the analytical solution developed in

the next sections.

FIG. 1. Time series of kinetic energy (KE) for the upper layer (black), lower layer (red), and

available potential energy (APE) (green) from the QG model.
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4. Parameterization of eddy QPV fluxes

Let us assume a diffusive parameterization for QPV

eddy fluxes. In the case of a 2-layer model this can be

written as

y0iq
0
i 52Ki

›qi
›y

, (12)

where Ki $ 0 is the coefficient of diffusion of quasi

geostrophic potential vorticity (we will call it CPV).

Expression (10) places restrictions on the coefficients

Ki. We set external forcing zonal wind stress tx to be

sinusoidal in the meridional coordinate and independent

of the zonal coordinate:

tx5 t0 sin
�py
L

�
, (13)

where t0 is an amplitude of zonal wind stress.We also set

bottom topography deviation B as

B5B0 sin

�
2kpx

Lx

�
sin

�
2py

L

�
, (14)

where B0 is the amplitude of bottom topography devia-

tion. Such topography is periodic in the zonal direction,

takes zero values at boundaries (y 5 0, L), and has zero

mean,B5 0.We substitute (12) in the equations forQPV

[(5)–(6)] for the steady state regime (i.e., neglecting time

derivatives) and also neglecting the lateral friction, and

rewrite them in nondimensional form (Marshall 1981;

Ivchenko 1987; Ivchenko et al. 1997):

g
›

›y*

�
�r1
›q1*

›y*

�
2

us
uc

cos(py*)5 0, and (15)

g
›

›y*

�
�r2
›q2*

›y*

�
1 �*

›u2*

›y*
5 0, (16)

where the asterisk marks nondimensional parameters:

qi 5bLqi*; g 5 LR/L; LR 5 (g 0H1H2/f
2
0H)1/2; y 5 Ly*;

ui 5 ucui*; � 5 bL�*; di 5Hi/H; Ci 5LucCi*.

The quantity �ri is the nondimensional CPV, �r1 5 K1/

(LRuc), �r2 5 Q�r1. We have us 5pt0/H1bL; and uc 5
g0bH/f 20 ; us is a typical wind-driven velocity; and uc is

a typical channel velocity, chosen with the expectation

that vertical shears will build up sufficiently to balance

the b-term in the expression for meridional gradient of

QPV (Marshall 1981).

Expressions for meridional gradients of QPV are ob-

tained by taking the time and zonal average of Eqs.

FIG. 2. Instantaneous (top) upper- and (bottom) lower-layer streamfunction (color shading) after 200 years of integration. Contours

show the amplitude (max 300 m) of the bottom topography. Solid (dashed) contours indicated the positive (negative) topographic

anomaly. Contour interval is 50 m.
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(3)–(4) and then differentiating with respect to y. In

nondimensional form these are

›q1*

›y*
52

g2

d1d2

›2u1*

›y*2
1 11

1

d1
(u1*2 u2*), and (17)

›q2*

›y*
52

g2

d1d2

›2u2*

›y*2
1 12

1

d1
(u1*2 u2*) . (18)

Further insight can be gained by solving analytically

the system of Eqs. (15)–(18) for QPV for some arbitrary

Ki profiles and then investigating the effect of the in-

tegral constraint (10).

The no-flux boundary condition at the walls should be

satisfied, that is,

y0iq
0
ij0,L 5 0, (19)

FIG. 3. As in Fig. 2, but for the mean streamfunction averaged over years 101–200.

FIG. 4. (top) Upper- and (bottom) lower-layer zonal mean zonal velocity averaged

over years 101–200.

316 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43



or in nondimensional parameterized form, using (12):

 
�ri
›qi*

›y*

!�����
0,1

5 0. (20)

Coefficient �ri (CPV) is a free parameter. As a first step

we consider a constant value for the CPV in each layer

and therefore their ratio Q 5 const. It would be worth-

while to consider a spatially variable CPV, for example,

linked to ui, qi, and/or internal and external parameters,

but it is not clear how one would proceed and to do so

would prevent us from obtaining an analytical solution

that provides important insight into the problem and

enables us to find the minimal number of governing

nondimensional parameters (for more detail see sum-

mary and discussion).

In the general case we cannot expect the meridional

gradient of QPV to be zero on the walls. This means that

CPV must be zero on walls. We consider steady flow in

which the diffusivity for QPV in the main part of the

current is constant almost everywhere, except small

boundary layers near walls (D � 1), where we assume

the CPV to be proportional to the distance to the wall:

�r15

8><
>:

r5 const D# y*# 12D

r � y* 0# y*#D

r(12 y*) (12D)# y*# 1

. (21)

The coefficient of diffusivity in the lower layer �r2 is
�r2 5Q�r1 at any point, 0# y*# 1. TheQmust be found

from integral constraint (10).

We set streamfunctions Ci and corresponding veloc-

ities in the form of a product of a meridionally varying

function,Q(y), and a zonally varying Fourier time series:

Ci(x, y)5Q(y)

"
11 �

2N

l51

al sin

�
lpx

Lx

�
1 �

2N

l51

bl cos

�
lpx

Lx

�#
.

(22)

To satisfy zonal periodicity (i.e.,Cij0 5CijLx
) the odd

modes have to be excluded, that is,

Ci(x, y)5Ci(y)

"
11 �

2N

l52

al sin

�
lpx

Lx

�
1 �

2N

l52

bl cos

�
lpx

Lx

�#
,

(23)

where l is constrained to be even. Note, that Q(y) is

equal to the zonal averaged value Ci(y).

In the next section we will solve the time and zonally

averaged Eqs. (15)–(16).

FIG. 5. (top) Upper and (bottom) lower time mean streamfunction as a function of zonal

coordinate for y 5 600 km, averaged over years 101–200.

FIG. 6. Amplitude spectrum of the time mean (years 101–200)

barotropic streamfunction for y 5 600 km.
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5. Zonally averaged solutions

Equations (15)–(16) for D # y* # 1 2 D can be re-

written in the following form:

1

Re

d2q1*

dy*2
2 cos(py*)5 0, and (24)

1

D

d2q2*

dy*2
1

du2*

dy*
5 0, (25)

where Re 5 usL/K1 is the analog of the Reynolds

number, and characterizes the ratio of the forcing and

QPV diffusion in the upper layer; D 5 �uc/(bK2) char-

acterizes the ratio of bottom friction to QPV diffusion in

the lower layer.

Equation (24) represents the main dynamical balance

in the upper layer, where the external forcing (curl of

wind stress) is balanced by the eddy fluxes of the QPV.

Equation (25) is the main dynamical balance for the

lower layer, where the eddy fluxes of the QPV are bal-

anced by bottom friction.

Equations similar to (24)–(25) can be written for the

southern and northern boundary layers, that is, for the

southern boundary, 0 # y* , D:

d

dy*

�
y*

dq1*

dy*

�
2ReD cos(py*)5 0, and (26)

d

dy*

�
y*

dq2*

dy*

�
1DD

du2*

dy*
5 0. (27)

Similar equations can be written for the boundary

layer near the northern wall, that is, 12D, y*# 1 (not

shown).

The system of equations is solved with boundary

conditions that match QPV fluxes and velocities at the

boundaries of the regions, that is, at y* 5 D, 1 2 D. As

the forcing at the walls goes to zero, then

ui
*j0,15 0 (28)

(see Marshall 1981).

Our system has a small parameter g, which charac-

terizes the ratio of the Rossby deformation radius to the

channel width. Substituting (17)–(18) into (24)–(27) one

obtains a system of equations with a small parameter at

highest derivative. Also in the equation for the lower

layer there are regular singularities at the points y* 5 0

and y* 5 1. To solve the system we use an asymptotic

expansion by a small parameter and to eliminate difficul-

ties, related to the regular singularities we use a Frobenius

method (Nayfeh 1973; Ivchenko et al. 1997), which is

an asymptotic expansion in power series in the vicinity

of regular singularities. We present ui* in the form of the

following asymptotic series:

ui*(y*)5 u
(0)
i (y*)1 gu

(1)
i (y*)1 g2u

(2)
i (y*)1 � � �

1 ~u
(0)
i (z)1 g~u

(1)
i (z)1 g2~u

(2)
i (z)1 � � �

1 ~~u
(0)

i (j)1 g~~u
(1)

i (j)1 g2~~u
(2)

i (j)1 � � � . (29)

Here z and j are so-called ‘‘stretched coordinates,’’

z5 y*/g, and j5 (12 y*)/g, u
(j)
i (y*) is a basic system of

functions and ~u
( j)
i (z), and ~~u

( j)

i (j) are a system of ‘‘cor-

rection functions,’’ which are important only near

the walls and exponentially decreasing with distance,

that is,

~u
( j)
i (z)/ 0, as z/‘, and (30)

~~u
( j)

i (j)/ 0, as j/‘ . (31)

Solving our systemwe obtain the following asymptotic

solutions for D # y* # (1 2 D):

u1*5

�
Red1
p

1
Red1
Dd2p

�
sin(py*)2d12

1

Dd2
1O(g2), and

(32)

u2*5
Red1
Dd2p

sin(py*)2
1

Dd2
1O(g2) . (33)

The asymptotic solutions for the thin boundary layer

0 # y* , D can be written as

u1*5 (ReDd12 d1)[12 exp(2
ffiffiffi
d

p
2z)]

1
y*

DDd2
(ReDd121)2g

�
(ReDd12 d1)

4DDd2
z exp(2

ffiffiffi
d

p
2z)

	

2 g

"
(ReDd12 d1)

4DD
ffiffiffi
d

p
2

z2 exp(2
ffiffiffi
d

p
2z)

#
1O(g2), and

(34)

u2*51
y*

DDd2
(ReDd12 1)

2 g
(ReDd12 d1)

DDd2
z exp(2

ffiffiffi
d

p
2z)1O(g2) . (35)

Similar solutions can easily be obtained for the other

thin boundary layer 1 2 D , y* # 1.
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6. Integral constraint

Expression (10) can be written in dimensionless form

as

ð1
0

�
d1r

›q1*

›y*
1 d2rQ

›q2*

›y*

�
dy*5

f0S

HLRucb

ð1
0
y2B* dy*,

(36)

where S is the scaling of y2B, that is,

y2B5 S3 y2B*, (37)

and y2 is obtained from C2 in (23).

We have to split integrals over the main part of the

channel (i.e., between D # y* # 1 2 D) and the two

boundary layers (0 # y* , D and 1 2 D , y* # 1):

ðD
0

�
d1ry*

›q1*

›y*
1 d2ry*Q

›q2*

›y*

�
dy*1

ð12D

D

�
d1r

›q1*

›y*
1 d2rQ

›q2*

›y*

�
dy*1

ð1
12D

�
d1r(12 y*)

›q1*

›y*

1 d2r(12 y*)Q
›q2*

›y*

	
dy*5

f0S

HLRucb

ðD
0
y2B*dy*1

ð12D

D
y2B*dy*1

ð1
12D

y2B*dy*

 !
. (38)

It is straightforward to calculate gradients of non-

dimensional QPV by using expressions for ui* for the

main part of the channel [Eqs. (32)–(33) and for the

southern [Eqs. (34)–(35)] and northern (not shown)

boundary layers.

In our system there are two small parameters: g � 1,

and D � 1. Substituting our asymptotic solutions for

velocities and potential vorticities, it can be shown, that

all contributions to the integrals in (38) from boundary

layers can be disregarded, since they are of smaller order

O(D2), or O(Dg) or O(g2) when compared with the

contributions from the channel outside the boundary

layers, D # y* # 1 2 D.
Note, that all ‘‘sine’’ components in (23) provide no

contribution to the integral of bottom form stress [rhs of

(36)]. The only nonzero contribution to the rhs of (36)

from the ‘‘cosine’’ part of (23) is the component with the

wavenumber equal to the zonal wavenumber of the to-

pography, that is, where l 5 2k.

The balance between the second integral in the lhs

and the second integral of the rhs of (38) is

2Red1
p2

r1 rQ2 rQ
2Red1
p2

5
4f0B0bkd1L

2usQ

3pHLRLxd2uc�

2
f0B0bkLrQ

2HLxd2�
, (39)

where b 5 b2k in (23).

The lhs of expression (39) represents the integral of

eddy fluxes of QPV, and the rhs is the topographic form

stress. The ratio of eddy QPV diffusivity in the upper

layer compared to the lower layer can be expressed in

the following form:

1/Q5 11
2B0Lf0bkp

3HLxd2�
2

p2LRucr

2d1usL
2

B0p
2LRucf0bkr

4d1usHLxd2�
.

(40)

So, the ratio 1/Q is a function of nondimensional eddy

QPV diffusivity in the upper layer and a number of

parameters.

The expression (40) is our first constraint on the dif-

fusivity coefficients. There are also two additional re-

strictions. One is based on the fact that topographic form

stress can only decelerate the mean flow, that is,

f0

ðL
0
y2Bdy, 0. (41)

Another restriction is that coefficients in both layers

should be positive or zero; zero values correspond to the

trivial ‘‘no-eddy’’ regime and are not discussed. If both

coefficients are positive then the rhs in (40) is positive.

Consider a channel in the Southern Hemisphere

(‘‘Southern Ocean’’), f0 5 2jf0j.
The wavenumber k in (40) is the zonal wavenumber of

the bottom topography [see (14)]. In our numerical eddy-

resolving experiments the value of k is equal to 4. For

fitting–comparison of our theory with the numerical ex-

periments we use the same value k 5 4. We have calcu-

lated and plotted coefficient b as a function of latitude in

Fig. 7. Values of b are predominantly negative, except

small positive values near the lateral boundaries and spike

in the center of the channel. The latter appears since the

time- and zonal-mean streamfunction is close to zero at

the center of the channel. The negative sign of b corre-

sponds to conservation of QPV, that is, deflection of mean

flow equatorward above a bump. The average value for

the Fourier coefficient b520.16 (see Fig. 7). Let b52jbj.
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Parameters aT and aB can be introduced as

aT 5
B0Ljf0jjbjk
HLxd2�

, and (42)

aB5
LRuc
d1usL

. (43)

The physical sense of parameter aT is the relative

importance of inviscid topographic form stress to vis-

cous bottom friction. To discuss the physical sense of aB

we introduce two time scales: the first Ts is the time of

propagation of particle with typical wind-induced ve-

locity us over the distance of baroclinic Rossby radius

LR:

Ts 5
LR

us
. (44)

Another time scale Tc is the time of propagation of

a particle with the typical baroclinic velocity uc over

a distance corresponding to the channel width L:

Tc 5
L

uc
. (45)

Parameter aB is proportional to Ts/Tc, since

aB5
LRuc
d1usL

5
H

H1

�
LR

us

��
L

uc

�21

5 (H/H1)
Ts

Tc

. (46)

Equations (40) may be rewritten as

K1/K2 5
1

Q
5 11

2p

3
aT 2

p2

2
aBr2

p2

4
aTaBr . (47)

Expression (41) leads to the following restriction:

r,
8

3paB

. (48)

Because K1/K2 . 0, from (47), we have

r,Rcr5
121 8paT

6p2aB 1 3p2aTaB

. (49)

Restriction (49) is stronger than (48).

Expression (47) together with (49) substantially re-

stricts the values of the CPV.

In the flat bottom caseQ. 1, that is, the coefficient in

lower layer is higher than that in the upper layer

(Marshall 1981), as can be seen from (47) with aT 5 0

(since B0 5 0):

K1/K25 12
p2

2
aBr . (50)

Since the rhs of (50) is less than 1 the CPV in the lower

layer is higher than the CPV in the upper layer.

The condition that the K1 . K2 in the channel with

bottom topography is

r,R5
8aT

6paB1 3paTaB

. (51)

Note, that (51) is stronger than (49), that is,

R,Rcr . (52)

With selected aT and aB the value of r cannot be

greater than Rcr; approaching Rcr results in strong

growth of CPV in the lower layer (see Figs. 8 and 9).

To estimate averaged values of aT and aB we used the

output of our eddy-resolving experiment and external

parameters from the model (see Sinha and Richards

1999). The mean values of the parameters aT and aB

based on our eddy-resolving experiment are the fol-

lowing: aT 5 9.38 and aB 5 0.85.

If aT is constant, increasing aB leads to decreasing

both R and Rcr (Fig. 8); If the time of propagation Ts of

a particle with typical wind-induced velocity over the

FIG. 7. Nondimensional amplitude of the wavenumber-4 component of the time mean lower

layer streamfunction from the quasigeostrophic model (years 101–200). Only the amplitude of the

component which contributes to the topographic form stress is included (see text for explanation).
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distance of a Rossby radius is much greater than the time

of propagation Tc of a particle with characteristic baro-

clinic velocity over the meridional channel width then

(in limits) it tends to zero values of both Rcr and R: no

eddying regime is permissible.

lim
a
B
/‘

Rcr 5 0, and (53)

lim
a
B
/‘

R5 0. (54)

Conversely to the previous case, if aB is very small, all

values of r, ‘ are permissible and the coefficient in the

upper layer is higher than that in lower layer.

lim
a
B
/0

Rcr5‘, and (55)

lim
a
B
/0

R5‘ . (56)

In the case that aB is constant, increasing the value of

aT leads to increasing values of Rcr and R (see Fig. 9),

asymptotically approaching

lim
a
T
/‘

Rcr 5
8

3paB

, and (57)

lim
a
T
/‘

R5
8

3paB

. (58)

Very high values of aT correspond to dominance of

inviscid topographic form stress, relative to viscous

bottom friction. In this case bothRcr andR are finite and

equal; the coefficient in the upper layer is higher than the

in lower layer for any permissible r (see Figs. 8 and 9).

Very small values of aT (dominance of viscous topo-

graphic friction over inviscid topographic form stress)

FIG. 8. Relationship between nondimensional upper (K1) and lower (K2) layer CPV as

a function of aB for fixed aT 5 9.38 from the analytical solution [Eq. (47)] (colored solid lines).

Colored dashed lines indicate the value of R [Eq. (51)]. The solid diagonal black line indicates

K1 5 K2. Inset shows an expanded portion of the main panel marked by the dotted black line.

FIG. 9. Similar to Fig. 8, showing the relationship between upper

(K1) and lower (K2) layer CPV as a function of aT for fixed aB 5
0.85.
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leads to a finite value ofRcr which is inversely proportional

to aB:

lim
a
T
/0

Rcr 5
2

p2aB

, (59)

In this case the coefficient in lower layer is greater

than the coefficient in upper layer for all permissible r:

lim
a
T
/0

R5 0. (60)

There is a caveat for extreme values of parameters aB

and aT because quasigeostrophic scalingmay be violated.

However, it seems that the tendency of dependence ofRcr

and R to extremes of these parameters makes physical

sense.

7. Summary and discussion

New schemes for the parameterization of eddy fluxes

in ocean models were developed in recent years (Eden

2010; Eden and Greatbatch 2008; Marshall et al. 2012;

Marshall and Adcroft 2010; Ringler and Gent 2011).

Indeed, we have to either resolve mesoscale eddies or

parameterize them. In the latter case strict integral

constraints must be satisfied. Note that not only ‘‘in-

ternal values’’ like mean PV, velocity and so on will be

involved in such restrictions, but also geometry (bottom

topography). We can a priori understand that for a dif-

fusive parameterization of potential vorticity the in-

viscid term (topographic form stress) will be of leading

order, since it participates in the main momentum bal-

ance: in the ACC topographic form stress balances wind

stress input.

The CPV is a free parameter and cannot be negative

both for physical and mathematical reasons. One can

expect a complicated spatial distribution of this co-

efficient. Even in the simplest case with a flat bottom and

sinusoidal meridional profile of wind stress (as used in

this study), the CPV for the zonally averaged case has a

‘‘double-bump’’ distribution (see McWilliams and

Chow 1981), that is, values increase from the boundaries

to the periphery of themean jet close to the center of the

channel, and then reduce to a local minimum in the

center of the channel, where the zonal velocity achieves

the highest values. The physical hypothesis for the de-

pendence of the CPV on variables of the model is im-

portant for realistic redistribution of momentum and

QPV. However, such a relation is not yet known for

channels with bottom topography. It is important to

note that using a complicated expression for the CPV

would allow us to obtain only a numerical solution and

would prevent an analytical–asymptotic solution being

obtained. Without an analytical solution we cannot find

the integral constraint as an analytical function, like Eqs.

(40) or (47) and an analytical function for physically

meaningful parameters, like aT and aB. For this reason

we use constant values of the CPV everywhere except

for in the thin boundary layers. Our approach allows us

to introduce two new parameters with a clear physical

sense and this can provide advantages for application to

more general cases (more complicated bottom topog-

raphy, or even in closed basins): using these parameters

will allow a simple and physically meaningful scheme of

parameterization to be constructed.

We found a solution for the zonal channel with sinu-

soidally varying bottom topography both in meridional

and zonal directions. The solution is an asymptotic ex-

pansion on the small parameter g, which is the Rossby

radius divided by themeridional size of the channel. The

integral constraint, which is a generalized form of

Bretherton’s theorem, demonstrates the strong in-

fluence of bottom topography on the range of admissible

values of the transfer coefficients. This approach could

be used to find a solution to satisfy any smoothly varying

bottom topography.

We have demonstrated that the CPV in the upper

layer of the zonal channels with bottom topography

must be higher than corresponding CPV in the lower

layer [if the bottom topography deviation B is high

enough, see (51)]. This is contrary to the flat bottom

case.

The developed equation, based on integral constraint

links effective values of CPV in upper and lower layers

with two parameters: aT and aB. Parameter aB is pro-

portional to a time scale Ts, which is the typical time of

propagation of the particle with a typical wind-induced

velocity us over the distance of a baroclinic Rossby ra-

dius divided by time scale Tc, which is the time of

propagation of the particle with typical baroclinic ve-

locity uc over a distance corresponding to the channel

width L. The other important parameter aT is the

measure of importance of inviscid bottom form stress to

the viscous bottom friction. The mean value of aT was

estimated directly from our eddy-resolving numerical

model.

According to our theory the mean value of coefficient

in the upper layer is a range between zero and Rcr, [see

Eq. (49)]. Expression (47) allows us to find a mean value

for the coefficient in the lower layer for a given co-

efficient in the upper layer, r (or vice versa).

For the case of primitive equation models, eddy flux

parameterizations must still satisfy a similar integral

constraint if they are to produce physically correct re-

sults. This is particularly true for climate models, where

it is necessary to trade resolution for faster computation,
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and the use of such parameterizations is unavoidable. In

contrast to parameterizations of eddy-induced tracer

fluxes (such as the Gent–McWilliams scheme), which

are both well established and fully incorporated into

ocean general circulation models (and climate models),

the effects of eddies on momentum are at present very

crudely represented. The results presented here will be

of relevance to the formulation of more sophisticated

and accurate parameterizations schemes for eddy mo-

mentum fluxes in ocean general circulation models. In

particular, analogous parameters to aT and aB and Rcr

are likely to be of similar importance in more realistic

models such as the NEMO ocean general circulation

model (Madec 2008) and the HadGEM3 climate model

(Hewitt et al. 2011).
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