Computational Thinking: The Developing Definition

Cynthia C. Selby
University of Southampton
Highfield
Southampton UK
44 (0) 2380 593475

C.Selby@soton.ac.uk

ABSTRACT

Since Jeanette Wing’s use of the term computational thinking in
2006, various discussions have arisen seeking a robust definition of
the phrase. With no consensus having been found in the
intervening years, there are even suggestions that a definition is not
important. Perhaps focus should be on how computational thinking
is taught and how its acquisition might be observed. However, in
order to facilitate consistent curriculum design and appropriate
assessment, it is argued that a definition should still be sought.

In order to contribute to the discussions surrounding a definition of
computational thinking, this review of literature spans the years
since 2006. The most frequently occurring terms, descriptions, and
meanings are identified. Consideration is given to the motivation
for inclusion or exclusion of a term by each individual author.
Where possible, if a description has been given, an associated term
is supplied.

Criteria are developed for the objectives of a computational
thinking definition, in accordance with the needs identified in the
literature. Using the criteria as a guide and the collected terms as
the vocabulary, a definition of computational thinking is proposed.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and Education,
Curriculum

General Terms
Standardization, Theory

Keywords
Computational thinking, definition, abstraction, decomposition,
algorithmic thinking, generalization, evaluation

1. INTRODUCTION

The term “computational thinking,” when used by Jeanette Wing
[19] in her call to make thinking like a computer scientist a
fundamental skill for everyone, excited educators. This presented
an opportunity to promote computer science to a wider audience,
but also introduced a problem. She did not precisely define the
term. What exactly is this “computational thinking” for everyone?

Copyright

Since then, there have been attempts by authoritative individuals
and groups [1, 16, 9, 6] to derive a definition for computational
thinking. The development of a definition, as found in the literature
is recounted in following sections, but the selection process for the
literature follows immediately.

A selection of literature applicable to the topic of computational
thinking was refined using the following method. An Internet
search engine query using the criteria “Jeannette Wing” AND
“computational thinking” was initially executed. The first four
pages of results were interpreted for applicability of title. All
documents identified as having applicable titles were individually
inspected. This resulted in six individual documents. The ACM
Digital Library was searched using the term “Jeannette Wing” in
the author field. An additional search was made using “Jeannette
Wing” in any field. Both searches were refined to return articles
published since 2005. All results were inspected first for title
suitability. All suitably titled articles were then refined by abstract,
if provided. If no abstract was provided, then the first page of the
article was read. This led to the identification of thirteen articles
and reports. Curriculum designs, specifically for K-12 learners,
were sought next. This search highlighted proposed or current
computer science curriculums in Israel, Germany, New Zealand,
India, England, and the USA. This search led to the identification
of seven appropriate documents. Four of the total potential items,
including some video lectures, were repetitions of an author’s
previous comments. Therefore, of the initially identified twenty-
six documents, twenty-two were selected for this investigation.

2. EVIDENCE FROM LITERATURE

Although some authors/papers/commentaries may assert that a
precise definition of computational thinking is not required [10,
13], others value such a description for a number of reasons [1, 17,
16]. The reform of computer science education, in line with Wing’s
vision, will necessitate the creation of curriculums that address the
broader issue of computational thinking as well as computer
science concepts. A rigorous and agreed definition might ensure
that computational thinking in these new curriculums for the K-12
years will be more than, as Joyce Malyn-Smith argued, “... just a
bunch of examples that are placed into the curriculum at the
discretion of individual teachers” [17, p.33]. Further, Jan Cuny
suggests that once computational thinking is included in a
curriculum, it requires assessment. Without agreement on a
common definition of computational thinking, it will be difficult, if
not impossible, to develop appropriate assessment tools that
actually measure the ability to think computationally [16].

Proposals have been made to suggest that the time has come to
move on from defining computational thinking. Guzdial [10] has
suggested that a very broad definition is acceptable. More

importantly, the focus should now be shifted away from what
computational thinking is to how computational thinking should be
taught and how evidence of its acquisition might be observed in
learners. Professor of Computer Science, Chenglie Hu [13], goes
further. He suggests teachers are confident that the teaching of
computer science does promote computational thinking. Even
though they may not know exactly how this mechanism works,
teachers know that the more learners practice computation, in terms
of computer science, the better at computational thinking they
become. Assuming that this is true, perhaps the focus should be on
the practice of computing rather than on defining computational
thinking. This same argument is expressed by some of those who
design or influence the design of computer science curriculums.
Several computer science curriculums [5, 4, 2, 3] while
acknowledging the wvagueness of a computational thinking
definition, continue to include a focus on concepts and techniques
from computer science. In presenting these concepts and
techniques, the curriculums include terminology often found in
descriptions of computational thinking. In an attempt to resolve
some of the inconsistencies, these descriptive terms will be
discussed in more detail below.

The balance of argument is still in favor of searching for a robust
definition of computational thinking. To that end, the publications,
selected as indicated above, were read in chronological order to
discern the development of the phrase, computational thinking,
over time. Descriptions and suggested definitions of computational
thinking were identified in each publication. The terminology,
common across descriptions and definitions, was collected. Where
interpretation allowed, similar terms were grouped together. The
most frequently occurring individual terms and groups are
presented in the following sections. From this basic collection of
terms, a definition of computational thinking is formulated and
proposed. Justification for the inclusion or exclusion of terms is
presented on a term-by-term basis. The resulting definition reflects
much of the consensus found in the literature while removing the
less well-defined terms.

3. REFLECTION ON CONSENSUS

Three terms appear consistently throughout the literature reviewed
here. There appears to be a consensus that a definition of
computational thinking should include the idea of a thought
process, the concept of abstraction, and the concept of
decomposition. Support for inclusion of these terms in a definition
of computational thinking is presented in this section.

When introducing the term, computational thinking, Wing [19]
described it as a way that humans think about solving problems. It
incorporates the set of mental tools used in computer science.
These tools are used to transform a difficult problem into one that
can be solved more easily. In adding his voice to Wing’s, calling
for the explicit teaching of computational thinking, Guzdial [9]
refers to computational thinking as a way of thinking about
computing. Participants in the workshop on the scope and nature
of computational thinking [16], although not tasked with defining
computational thinking, nevertheless agreed that it incorporates a
range of mental tools and concepts from computer science. This
idea is extended to represent problems as information processes and
solutions as algorithms [7]. Al Aho [7] picks up the idea of problem
transformation when he describes computational thinking as the
thought processes in formulating problems and solutions that can
be expressed as algorithms. These thought processes do have
focus; frequently that focus is described as problem solving.
Finally, Wing expresses these refinements by defining
computational thinking as “... the thought processes involved in

formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an
information-processing agent” (Cuny, Snyder, Wing, 2010, cited in
[22], p.20). Because of this consensus, a definition of
computational thinking should include the concept of a thought
process.

Although the idea of abstraction, hiding complexity, as being part
of computational thinking is introduced by Wing in her original
article [19], it expands over the next few years. She amends the
definition to include simultaneous consideration for multiple layers
of abstraction and consideration for defining the interfaces between
the layers [20]. Even Peter Denning [18] acknowledges that
abstraction plays an important part in computing, including
programming. However, he points out that the act of abstracting is
not unique to computer science. The next year, Wing [21] defines
abstraction as the cornerstone of computational thinking. Several
participants in the workshop on the scope and nature of
computational thinking (NRC) concur that computational thinking
has a focus around the process of abstraction, creating them and
defining the relationships between them [16]. More recently, in
their report on workshops sponsored by the Computer Science
Teachers Association (CSTA) and the International Society for
Technology in Education (ISTE) to incorporate computational
thinking into the K-12 curriculum, Barr and Stephenson [1] also
include the ability to abstract in a definition of computational
thinking. The concept of abstraction is explored by L’Heureux et
al. [15] where it is one of six aspects of their information
technology approach to computational thinking. Because of this
consensus, a definition of computational thinking should include
the concept of abstraction.

Breaking problems down by functionality is identified by Wing
[19, 20] as part of computational thinking. Decomposition is
required when dealing with large problems, complex systems, or
complex tasks. The participants in the first NRC workshop also
identify the need for problem decomposition [16]. In the next
workshop, focusing on pedagogy, participants extend this idea.
Robert Tinker views the core of computational thinking as breaking
down big problems [17]. Danny Edelson points out that the
creation of solutions requires breaking problems down into chunks
of particular functionality and sequencing the chunks [17]. Most
recently, in refining his own definition of computational thinking,
Guzdial [11] includes the use of tools including abstraction and
decomposition. In light of this consensus, a definition of
computational thinking should include the concept of
decomposition.

Three terms are proposed for inclusion in the definition of
computational thinking. Inclusion of a thought process,
abstraction, and decomposition is supported by a consensus found
in the reviewed literature. Although consensus has been
demonstrated for these terms, others receive less support and more
varied interpretation. Some of these additional terms and their
applicability for inclusion in a definition of computational thinking
are discussed below.

4. REFLECTION ON CANDIDATE TERMS
Although less consistently than the terms above, several different
terms and ideas do recur across the literature reviewed here. Even
if a term or idea recurs, its interpretation is not always consistent
across articles. Several ideas proposed as part of a definition for
computational thinking are broad and high-level. A lack of specific
interpretation may make inclusion of these terms in a definition
difficult. These terms include logical thinking; problem solving;
algorithmic thinking; analysis; systems design; computer science

thinking; generalization; automation; and modeling, simulation,
and visualization. Support for inclusion or exclusion of these terms
in a definition of computational thinking is presented in this section.

The concept of logical thinking, although not specifically defined,
occurs several times in the literature spanning these years. Albeit
not perceived exactly as equivalent, terms to describe similar types
of thinking are grouped into this category. These include
mathematical thinking, engineering thinking, and heuristic
thinking. In her original article, Wing [19] indicates that
computational thinking incorporates heuristic reasoning to devise a
solution. In addition to abstraction and decomposition, as
described previously, Guzdial [11] also includes heuristic
reasoning as an appropriate tool to use when engaging in
computational thinking. Computational thinking is equivalent to
the logical reasoning used by people [12]. Logical reasoning is
included by lyer et al. [14] in their model computer science
curriculum in order to promote high-level thinking skills that are
not necessarily subject specific. L’Heureux et al. [15], in detailing
an aspect of their information technology approach to
computational thinking, define logical thinking as the ability to
develop and test hypotheses. Computational thinking also
intersects with engineering because computer systems interact with
the real world. However, computational thinkers can design and
create virtual worlds, not limited by physical reality [20]. Although
Wing [20] states that computer science relies on mathematics as a
foundation, Gerald Sussman [16] affirms that mathematical
thinking revolves around abstract structures while computational
thinking revolves around abstract methodology. Computational
thinking could be viewed as bringing science and engineering
together. It could be viewed as a meta-science concerned with
studying methods of thinking that are applicable to many different
disciplines [16]. While the ability to think logically,
mathematically, heuristically, and from an engineering perspective
are certainly capabilities that a computational thinker may exhibit,
references to these terms in this literature are not well expanded.
Tying a definition of computational thinking to other terms such as
logically or heuristically, with their open-ended interpretation, or to
specific disciplines such as mathematics or engineering may not
help advance the development of K-12 curriculums and may not
aid in the development of computational thinking assessment
instruments. For these reasons, terms expressing the idea of logical
thinking or equivalence may dilute a definition of computational
thinking.

Problem solving, in one form or another, appears frequently in the
literature presented here. There is agreement for describing
computational thinking as a problem-solving activity. However,
the literature does not illuminate problem solving in detail. Wing
[19, 21], of course, incorporates solving problems using computer
science concepts in her definition of computational thinking. The
broadness of the problem-solving skills employed in computational
thinking, in opposition to specific technical skills, is pointed out by
Larry Snyder [16]. A requirement for a computing device is
introduced by Barr and Stephenson [1], who state that the essence
of computational thinking is solving problems in a way that can be
implemented with a computer. Peter Henderson [17] concisely
describes computational thinking as a type of generalized problem
solving with constraints. Problem solving is emphasized by Marcia
Linn [16] who includes in the qualities of a successful
computational thinker, the ability to engage in sustained
investigative processes to generate problem solutions. As stated
above, computational thinking is a focused process. The focus is
often product oriented in response to an issue, context, or problem.
Although there appears to be a consensus that computational

thinking is a type of problem solving, the term may not be
sufficiently specific to define it. Computational thinking may be a
subset of problem solving, not defined by it. Due to the broadness
of the term, problem solving may not be suitable for inclusion in a
definition of computational thinking.

Although the term logical thinking, as described above, may not be
suitable to include in a definition of computational thinking, the
potentially analogous term, algorithmic thinking, requires further
investigation. In her original article, Wing [19] does not use the
term algorithmic thinking, preferring the word heuristic instead.
However, by 2011, she extends her definition of computational
thinking to include algorithmic and parallel thinking [22]. David
Moursund [16] suggests that computational thinking is related to
the idea of procedural thinking, as proposed by Seymour Papert in
Mindstorms. He defines a procedure as a step-by-step set of
instructions that can be carried out by a device. The same theme is
continued by Gerald Sussman [16], who defines computational
thinking as a way of devising explicit instructions for
accomplishing tasks. Inclusion of algorithmic thinking in a
curriculum for high schools appears prior to Wing’s contribution.
In the Israeli computer science curriculum, Gal-Ezer et al. [8]
placed an emphasis on inclusion of the study of algorithmic
processes. There appears to be a consensus that computational
thinking incorporates aspects of algorithmic thinking. The term
algorithm is interpreted as a step-by-step procedure for
accomplishing tasks, not just in computer science, but in other
disciplines. Because of its wide acceptance and appropriate
definition, algorithmic thinking may be applicable for inclusion in
a definition of computational thinking.

The term analysis is included by some commentators in the
definition of computational thinking. Interestingly, the term
appears in relation to both problems and solutions, as in analyze a
problem and analyze a solution. Analyze, in the context of
problems, fits the category of problem solving, as defined above.
However, analyze, in the context of solutions, could be interpreted
as the comparable term evaluate. In her initial article, Wing [19]
expresses the need for a computational thinker to make trade-offs,
by evaluating the use of time and space, power and storage. This
evaluation of algorithmic processes, including their power and
limitations, is foreshadowed by Gal-Ezer et al. [8]. Application of
the term to user interfaces is evidenced in the second objective of
the New Zealand proposed curriculum, as part of designing
programs [2]. In their IT approach, L’Heureux et al. [15] include
the ability to evaluate processes, in terms of efficiency and resource
utilization, and the ability to recognize and evaluate outcomes.
Although the term analyze attracts some agreement for inclusion in
a definition of computational thinking, descriptions of the term
found in this literature imply an evaluative process. Therefore,
because of consensus in the description, the term evaluate may be
suitable for inclusion in a definition of computational thinking.

Systems design, although less frequently mentioned, is still used to
describe computational thinking. Designing systems based on
concepts used in computer science is mentioned by Wing [19].
Again, this inclusion is foreshadowed by Gal-Ezer et al. [8] who
incorporates the study of the design and implementation of
computing systems in their curriculum. One of Peter Denning’s
Great Principles of Computing includes a category based on the
design and building of software systems [6]. He goes further in
describing systems as one of the four core practices, in which
computing professionals engage, along with programming,
modeling, and innovating [18]. The focus in each of these cases is
systems design as a product oriented process. It is evidence of the
ability to think computationally, not necessarily a definition of it.

Therefore, the term systems design may not be suitable for
inclusion in a definition of computational thinking.

Throughout the literature, terms closely related to the content of
computer science studies appear in descriptions of computational
thinking. Wing [20] herself introduces computer science concepts
such as thinking recursively, interpreting code as data and data as
code, type checking, prevention, detection, recovery through
redundancy, damage containment, error correction, prefetching,
and caching. Additional concepts such as parallel processing,
testing, debugging, search strategies, algorithmic complexity, and
pattern matching are recognized in the NRC report [16]. Barr and
Stephenson [2] include the abilities to think iteratively and
recursively. Not all of these concepts are unique to the field of
computer science. For example, mathematicians think iteratively
and engineers plan for recovery through redundancy. While each
of these concepts may be mastered by computational thinkers, none
of them uniquely defines or helps narrow a definition of
computational thinking. Therefore, terms interpretable as
computer science content may not be helpful in defining
computational thinking.

A specific term that appears sparingly in the literature definitions is
generalization. It is the ability to move from specific to broader
applicability, for example, understanding how to draw a square by
defining internal angles, then applying the same algorithm to
produce an approximation of a circle. The ability to recognize parts
of solutions that have been used in previous situations or that might
be used in future situations is included by Kolodner in a definition
of computational thinking [17]. These parts, or functional pieces,
can be used to solve the current problem or combined in different
ways to solve new problems [17]. The term generalization, itself,
is described in a proposed curriculum as recognizing common
patterns and by sharing common features [5]. The idea moves
forward from decomposition, described above. Generalization is
the step of recognizing how small pieces may be reused and
reapplied to similar or unique problems. Although the exact term,
generalization, is used sparingly in the literature, the idea of
recognizing and reusing common parts of a solution is a candidate
for inclusion in a definition of computational thinking.

Another term, popularized by Wing in defining computational
thinking, is automation. She connects the term to that of abstraction
when discussing the mechanization of abstraction layers and the
relationships between them [20]. Even Denning acknowledges that
this is what happens when programming [18]. Later, a stronger
connection is made by Wing [21] when defining computing as the
“automation of our abstractions” (p. 3718). This introduces the
need for a computational device to interpret the abstractions, the
need for a computer to execute a program. The process or processes
required in the creation of these automations may be candidates for
defining computational thinking. On the other hand, a program
artifact, similar to system design as discussed above, is only
evidence that computational thinking has taken place. Previously,
a consensus was presented that emphasized the thought process
aspect of computational thinking. Based on that consensus,
automation, interpreted as a program artifact, may not be a useful
addition to the definition of computational thinking.

Three additional terms, also used in discussions of computational
thinking, are modeling, simulation, and visualization. Wing [19]
began by defining computational thinking as modeling the
appropriate parts of a problem to facilitate a solution. Later, Brian
Blake [16] insists that the definition of computational thinking
should include modeling and visualizations. Brinda, Puhlmann,
and Schulte [3] have identified, as one achievable curriculum

standard, the processes involved in modeling data. On the other
hand, Edward Fox and Janet Kolodner [16] point out that it is the
manipulation of abstractions (models, simulations, and
visualizations) that contribute to the development of computational
thinking skills. Observing the results of changing variable values,
forming hypotheses, finding anomalies in data, and identifying
invariants can all be achieved by interacting with models,
simulations, and visualizations. The manipulation of these
representations are agreed to enhance the development of
computational thinking skills, but do not necessarily define it. In
parallel with automation, the terms model, simulation, and
visualization may not be suitable for inclusion in a definition of
computational thinking.

A diverse group of terms has been presented in this section. Each
of these terms has been employed in the literature in attempting to
define and describe computational thinking. Support for the
inclusion or exclusion of the term in the definition of computational
thinking has been investigated. The following section summarizes
the arguments presented above and suggests a definition of
computational thinking based on these arguments.

5. PROPOSED DEFINITION

The intent of this investigation is to shed new light on the
discussions that attempt to develop a definition of computational
thinking. Justification for a definition is presented in a previous
section. Based on an assumption that a definition is required, the
objectives for such a definition should be considered. In the case
of this investigation, the objects include: to define more narrowly,
not more broadly; to bring an order to the criteria not necessarily to
accommodate all viewpoints; to refine the definition to facilitate
assessment; to retain the validity of work that has been done
previously, such as the development of curriculums; to separate a
definition from those activities that might promote acquisition of
computational thinking skills; and to separate a definition from
those artifacts and activities that evidence the use of those skills.
Table 1 summarizes the justification for each prospective term’s
inclusion in or exclusion from a proposed definition of
computational thinking.

Term Status | Justification

A thought Include | Consensus found in the

process literature

Abstraction Include | Consensus found in the
literature

Decomposition Include | Consensus found in the
literature

Logical thinking | Exclude | Broad term, not-well defined

Problem solving | Exclude | Broad term, evidences the use
of skills, develops acquisition
of skills

Algorithmic Include | Well-defined across multiple

thinking disciplines

Evaluation Include | Well-defined across multiple
disciplines

Systems design Exclude | Evidences the use of skills

Computer Exclude | Evidences the use of skills

science content

Generalization Include | Well-defined concept,

although the term may not be

familiar
Automation Exclude | Evidences the use of skills
Modeling, Exclude | Evidences the use of skills in
simulation, and their creation, manipulation
visualization develops acquisition of skills

Table 1. Computational Thinking Definition Terminology

As supported by the preceding arguments, computational thinking
is an activity, often product oriented, associated with, but not
limited to, problem solving. It is a cognitive or thought process that
reflects

the ability to think in abstractions,

the ability to think in terms of decomposition,
the ability to think algorithmically,

the ability to think in terms of evaluation, and
the ability to think in generalizations.

This proposed definition attempts to incorporate only those terms
for which there is a consensus in the literature or those terms that
are well defined across disciplines. The intent is to focus on the
thinking aspect of the original phrase.

In other words, computational thinking is a focused approach to
problem solving, incorporating thought processes that utilize
abstraction, decomposition, algorithms, evaluation, and
generalizations. It is closely associated with, but not defined by,
the physical or applied skills of modeling, simulation, and
visualization.

6. CONCLUSION

There is a genuine need, as discussed previously, for a robust and
agreed definition of computational thinking. Such a definition may
facilitate the development of computer science curriculums in line
with Wing’s original vision to encourage computational thinking
for all. Such a definition may also ensure that the K-12 curriculums
will not become just a collection of interesting resources presented
at teachers’ discretions. Such a definition may ensure that
appropriate assessment tools can be developed which measure
computational thinking skills. The description, as proposed above,
narrows the definition by excluding some proposed terms. It
separates the practice of skills from the thinking. It separates the
results or evidence of the application of skills from the activity of
thinking. However, it does not invalidate the curriculum designs,
especially as they often focus on the doing or evidence of doing
computational thinking. It leaves open the possibilities to develop
assessment tools to measure the ability to think computationally.
Of course, the discussions of a definition for computational
thinking are not yet concluded. It may well be that the definition
changes as understanding of computational thinking develops over
the coming years. This is especially true as younger learners are
exposed to the concepts in fulfillment of Wing’s original vision of
computational thinking for all. This review of the literature simply
attempts to inform these discussions.

7. REFERENCES

[1] Barr, V. & Stephenson, C. 2011. Bringing computational
thinking to K-12: what is Involved and what is the role of the
computer science education community? ACM Inroads, 2,
48-54.

[2] Bell, T., Andreae, P. & Lambert, L. 2010. Computer Science
in New Zealand high schools. Proceedings of the Twelfth

Australasian Conference on Computing Education - Volume
103. Brisbane, Australia: Australian Computer Society, Inc.

[3] Brinda, T., Puhlmann, H. & Schulte, C. 2009. Bridging ICT
and CS: educational standards for computer science in lower
secondary education. Proceedings of the 14th annual ACM
SIGCSE conference on Innovation and technology in
computer science education. Paris, France: ACM.

[4] Computer Science Teachers Association Task Force. 2011.
K-12 Computer Science Standards, New York, ACM.

[5] Computing at School Working Group. 2012. Computer
Science: A curriculum for schools. Available:
http://www.computingatschool.org.uk/data/uploads/Computi
ngCurric.pdf [Accessed 26-12-2012].

[6] Denning, P. J. 2007. Computing is a natural science.
Commun. ACM, 50, 13-18.

[7]1 Denning, P. J. 2011. Ubiquity symposium: What have we
said about computation?: closing statement. Ubiquity, 2011,
1-7.

[8] Gal-Ezer, J., Beeri, C., Harel, D. & Yehudai, A. 1995. A high
school program in computer science. Computer, 28, 73-80.

[9] Guzdial, M. 2008. Education: Paving the way for
computational thinking. Commun. ACM, 51, 25-27.

[10] Guzdial, M. 2011. A Definition of Computational Thinking
from Jeannette Wing. Computing Education Blog [Online].
Available from:
http://computinged.wordpress.com/2011/03/22/a-definition-
of-computational-thinking-from-jeanette-wing/ [Accessed
22-03-11].

[11] Guzdial, M. 2012. A nice definition of computational
thinking, including risks and cyber-security. Computing
Education Blog [Online]. Available from:
http://computinged.wordpress.com/2012/04/06/a-nice-
definition-of-computational-thinking-including-risks-and-
cyber-security/ [Accessed 06-04-12].

[12] Henderson, P. B., Cortina, T. J. & Wing, J. M. 2007.
Computational thinking. Proceedings of the 38th SIGCSE
technical symposium on Computer science education.
Covington, Kentucky, USA: ACM.

[13] Hu, C. 2011. Computational thinking: what it might mean
and what we might do about it. Proceedings of the 16th
annual joint conference on Innovation and technology in
computer science education. Darmstadt, Germany: ACM.

[14] lyer, S., Baru, M., Chita, V., Khan, F. & Vishwanathan, U.
2010. Model Computer Science Curriculum for Schools.
Available: http://www.cse.iith.ac.in/~sri/papers/CSC-
April2010.pdf [Accessed 28-12-2012].

[15] L'Heureux, J., Boisvert, D., Cohen, R. & Sanghera, K. 2012.
IT problem solving: an implementation of computational
thinking in information technology. Proceedings of the 13th
annual conference on Information technology education.
Calgary, Alberta, Canada: ACM.

[16] National Research Council. 2010. Report of a Workshop on
the Scope and Nature of Computational Thinking. Available:
http://www.nap.edu/catalog.php?record _id=12840 [Accessed
10-05-2011].

[17] National Research Council. 2011. Report of a Workshop of
Pedagogical Aspects of Computational Thinking. Available:

http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://computinged.wordpress.com/2011/03/22/a-definition-of-computational-thinking-from-jeanette-wing/
http://computinged.wordpress.com/2012/04/06/a-nice-definition-of-computational-thinking-including-risks-and-cyber-security/
http://computinged.wordpress.com/2012/04/06/a-nice-definition-of-computational-thinking-including-risks-and-cyber-security/
http://computinged.wordpress.com/2012/04/06/a-nice-definition-of-computational-thinking-including-risks-and-cyber-security/
http://www.cse.iitb.ac.in/~sri/papers/CSC-April2010.pdf
http://www.cse.iitb.ac.in/~sri/papers/CSC-April2010.pdf
http://www.nap.edu/catalog.php?record_id=12840

http://www.nap.edu/catalog.php?record_id=13170 [Accessed
10-10-2011].

[18] Ubiquity. 2007. An Interview with Peter Denning on the
great principles of computing. Ubiquity, 2007, 1-1.

[19] Wing, J. 2006. Computational thinking. Commun. ACM, 49,
33-35.

[20] Wing, J. 2007. Computational Thinking [Online]. Available:
http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational
Thinking.pdf [Accessed 14-12-12].

[21] Wing, J. 2008. Computational thinking and thinking about
computing. Philosophical Transactions of The Royal Society
A, 366, 3717-3725.

[22] Wing, J. 2011. Research Notebook: Computational Thinking
- What and Why? The Link. Pittsburgh, PA: Carneige
Mellon.

http://www.nap.edu/catalog.php?record_id=13170
http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational_Thinking.pdf
http://www.cs.cmu.edu/afs/cs/usr/wing/www/Computational_Thinking.pdf

