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Summary. A common problem is to compare two cross-sectional estimates for the same study
variable taken on two different waves or occasions, and to judge whether the observed change
is statistically significant. This involves the estimation of the sampling variance of the estimator
of change. The estimation of this variance would be relatively straightforward if cross-sectional
estimates were based upon the same sample. Unfortunately, samples are not completely over-
lapping, because of rotations used in repeated surveys. We propose a simple approach based
upon a multivariate (general) linear regression model. The proposed variance estimator is not
a model-based estimator. We show that the proposed estimator is design-consistent when the
sampling fractions are negligible. |t can accommodate stratified and two-stage sampling de-
signs. The main advantage of the proposed approach is its simplicity and flexibility. It can be
applied to a wide class of sampling designs, and can be implemented with standard statistical
regression techniques. Because of its flexibility, the proposed approach is well suited for the
estimation of variance for the EU-SILC surveys (e.g. Di Meglio et al., 2013). It allows to use a
common approach for variance estimation for the different types of designs. The proposed ap-
proach is a useful tool, because it only involves modelling skills and requires a limited knowledge
of survey sampling theory.

Keywords: Design-based approach, Linearisation, Multivariate regression, Stratification, Two-
stage sampling, Unequal inclusion probabilities.

1. Introduction

Measuring changes over time is a central problem for many users of social, economic and demo-
graphic data and is of interest in many areas of economics and social sciences. For example, the
European Union Statistics on Income and Living Conditions (EU-SILC) surveys are used to monitor
change in poverty within the European Union (Eurostat, 2012a). Smith et al. (2003) recognised that
assessing change is one of the most important challenges in survey statistics. Suppose we have two
partially overlapping samples s, and s»; where s; and s» denote respectively the samples from the
first and second wave (or first and second time period). In this paper, s denotes the union of s; and
so;thatis, s = 51 U 89.

The primary interest of many users is often in changes or trends from one time period to another.
We start by considering changes between totals. In § 4.3, we extend the proposed approach to more
complex measures of change. Suppose, we wish to estimate the following change
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between two population totals 71 = Zieg Y1 and 7o = Zieg Y2.i, of wave 1 and 2; where U
denotes the population of interest. The quantities y;.; and y2.; denote respectively the values of
variables of interest at wave 1 and 2. For simplicity, we assume that U is the same at both waves. The
estimator proposed in this paper can also be used when the population at wave 1 is different from the
population at wave 2. We adopt a design-based approach where the sampling distribution is specified
by the sampling design. The change A can be estimated by

A=7—T;
where 77 and T are two cross-sectional Horvitz and Thompson (1952) estimators given by

~ Y1 | ~ Y2i
o= Z T4 and 7= Z T2 , (1)

1ES8) 1Eso

The quantities m.; and mo.; are the first-order inclusion probabilities at wave 1 and 2. These proba-
bilities are defined in §2. The design-based variance of the change A is given by

var(A) = wvar(R) + var(R) — 2 cov(71, Ta) (2)

= war(Ty) + var(m) — 2 [T,’a?‘(?l)i,?a?‘(?g)]% p
VIE:V; 3)

where var(71) and var(72) denote respectively the design-based variances of 7; and 7>. The quanti-
ties cov(Ty, T2 ) and p denote respectively the covariance and the correlation between 7, and 7, with
respect to the sampling design. The matrix 33 is the design-based covariance matrix of the vector
(T1,72) T and V = (=1, 1)T.

Any standard design-based estimators can be used to estimate the variances var(71) and var(72),
such as direct or re-sampling estimators. We focus our attention on the correlation p between 7j and
72, which are estimated from different overlapping samples. Several estimators have been proposed
for the covariance in (2) (e.g. Kish, 1965; Tam, 1984; Nordberg, 2000; Holmes and Skinner, 2000;
Berger, 2004; Qualité and Tillé, 2008; Wood, 2008; Goga et al., 2009; Muennich and Zins, 2011;
Knottnerus and van Delden, 2012). In a series of simulations based on the Swedish Labour Force
Survey, Andersson et al. (2011a,b) showed that the estimator for the covariance proposed by Berger
(2004) gives accurate estimates when we are interested in change within domains defined by the
strata. In §3, we show that the estimator proposed in this paper and the estimator proposed by Berger
(2004) are approximately equal, when the sampling fractions are small.

The main contribution of the paper is to show that the correlation can be calculated using the
covariance of the residuals of a multivariate regression model with suitable interactions. Using this
fact, the proposed approach can tackle a large class of parameters. Any statistical software can
be used to compute the covariance matrix of the multivariate regression model. The multivariate
regression is not a super-population approach, as it gives design-consistent covariance estimates (see
Appendix A). However, it relies on the assumption that the sampling fractions are negligible, which
is usually the case for social surveys, such as the EU-SILC surveys (Eurostat, 2012a). The proposed
approach has the advantage of not requiring joint-inclusion probabilities which can be unknown with
rotating designs.

With small sampling fractions, the covariance can be estimated by the following standard Hansen
and Hurwitz (1943) ‘type’ estimator (e.g. Qualité, 2009, p. 83) based on the common sample 5. =
§1 M 83.

(ﬁr(?lz?Z)HH - n T‘Ii 1 Z (j}'ﬁ,;l - ?jl;f:) (j}'&;? - 5‘2;(:) 3 (4)

1S,



Variance estimation of change 3

where 5. = 81 M s and

. 1 y
e =— Y it
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The variables 7;.; and #2.; are defined by
Jia =y, 0{i € s1} and  fip = you o, 6{i € s2} (5)

with ¢.; = 0 when ¢ ¢ s;. The function §{ A} is the indicator function which is equal to one when
A is true and zero otherwise. The Hansen and Hurwitz (1943) ‘type’ estimator for the correlation is
given by

. - S |
prm = cov(Ty, T2)pm [var(T)var(m2)]” 2 ; (6)

where var(7,) and var(7;) denote respectively any standard design-based variance estimators of 73
and 7. In § 5, we show that (6) produces a variance estimator for change which may be less accurate
than the estimators we propose in § 3. Furthermore, resulting variance estimates for change can be
negative, as pg g could be larger than one, because the covariance and the variances are not estimated
from the same sample. Note that (4) is a covariance between ;. and 3;.2. The paper elaborates from
the principle that a covariance can be estimated from a linear model.

In §2, we define the class of rotating sampling designs considered in this paper. The proposed
estimator for the covariance is defined in §3. Alternative expressions for the proposed estimators
are given in § 3.1. In §4, we show how the proposed estimator can be extended to account for
stratification, multi-stage sampling and more complex measures of change. In §5, we support our
result with a simulation study based on the British Labour Force Survey data and on the Italian EU-
SILC survey data. In §6, we show how the proposed approach can be used to estimate the variance of
change of the EU-SILC at risk of poverty and social exclusion (AROPE) indicator.

2. Fixed size rotating sampling designs

With panel surveys, it is common practice to select new units in order to replace old units that have
been in the survey for a specified number of waves (e.g. Gambino and Silva, 2009; Kalton, 2009;
Eurostat, 2012a). The units sampled on wave 1 and on wave 2 usually represent a large fraction of
the first wave sample s;. This fraction is called the fraction of the common sample and is denoted by
g. For example, for the EU-SILC surveys, g = 75%. For the Canadian labour force survey and the
British labour force survey, g = 80%. For the Finish labour force survey, g = 60%.

The class of fixed size rotating sampling designs is defined as follows. Assume that s; is a
probability sample of size n; selected without replacement with first-order inclusion probabilities
m.: = pr{i € s1}, where pr{-} denotes the probability with respect to the design. Suppose that
s9 is a sample of size na selected with conditional inclusion probabilities m2.;(s1) = pr{i € sa|s1}
such that s, contains n,. units from s;; where 0 < n,. < n,. The wave 2 inclusion probabilities are
given by mo; = Ey[ma.i(s1)]; where E[ - | denotes the design expectation with respect to the first
wave design. Note that the fraction of the common sample is given by g = n./n;. The units from
51\, s2 are the units that rotate out and the units from s» \ 51 are the units that rotate in. In principle,
we can have g = 0 (when we have two non-overlapping samples) or g = 1 (when we have two
completely overlapping samples). The proposed approach is valid when g = 0 or 1. When g = 0 the
covariance equals zero. We consider that the sizes n;, ns and n,. are given quantities which are fixed
(non-random). The variance estimators, proposed in § 3, are consistent in this case. These estimators
may not be suitable when the sizes are random.
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This class contains standard rotating sampling designs such as the rotating randomised systematic
sampling design (e.g. Holmes and Skinner, 2000), the rotation groups sampling design (e.g. Kalton,
2009; Gambino and Silva, 2009, p. 415) used for the EU-SILC surveys (Eurostat, 2012a) and the
rotating design proposed by Tam (1984).

EXAMPLE 1. Suppose that the first wave sample sy is selected without replacement with inclu-
sion probabilities m1.;, and that the second wave sample s3 is a sample of n, units selected without
replacement from s, with probabilities proportional to p; combined with a sample of ny|. = ny —n,
units selected without replacement from U \ s1 with probabilities proportional to q;; where p; and ¢;
being known positive quantities; where U \ sy denotes the set of units not selected at wave 1. Tam
(1984) studied this design when mw1.; = n1/N and p; = q; = 1. The following equation gives the
wave 2 conditional first-order inclusion probabilities given s;.

To.i(81) = pi(s1)zni + ¢i(s1)(L — 214) 5

where z1.; = 0{i € s1}, pi(s1) = ne pif (X ieq, Pi) and qi(s1) = ng)e ‘i"é/(Z-ag.-“ qi). We assume
that the p; and q; are such that p;(s1) < 1 and ¢;(s1) < 1. An approximation for the wave 2
first-order inclusion probabilities is given by (e.g. Christine and Rocher, 2012)

T = Eilpi(s1)]mi + Eilgi(s1)](1 = m14) 5

where E1[pi(s1)] = ne pi/[3 e pimii] and Eilqi(s1)] = noje ¢i/[2, 0 @i(1 — m14)]. We have
that wa,; = T.'.-g?’i.-l_l?rl-!-;, when p; = L and q; = m1.; /(1 — m1.;). We also have that wa,; = 1.5, when
pi = 1/m4, qi = {m.i—ne/N}/(1 —m.i) and ny = na. Note that mo; = na /N whenp; = q; = 1,
Mg =M /J\-'r.

3. Proposed estimator of the variance for change

The estimation of the correlation would be relatively straightforward if s; and s» were the same
sample (g = 1). Unfortunately, s; and s are usually not completely overlapping sets of units
(g < 1), because rotations are usually used in repeated surveys (see § 2).
We propose to estimate the variance of change (2) by
var(A)0) =var (7)) + var(sy) — 2 5,5, [0ar(7y) var (7)) ; (7)
where var(7;) and var(7;) denote respectively any design-based variance estimator of 7y and 7.

The quantity ﬁp[-,llp is an estimator for the correlation. In this §, we propose two estimators for the
correlation: (11) and (12).

We propose to estimate the correlation from the covariance of the residuals of the following
multivariate (or general) linear regression model (see also Berger and Priam, 2010).

Ui ,351)2:1-!-; + ,Bél)z?!-; + ,3%)2:1-!-; 294 )
R Bl B G 2(2) 2(2) + €] (3)
Y2ii ,{31 z14 + ;32 Zo + -{312 214 224

where i € s = 51 U s5 and the residuals €; have a bivariate distribution with mean 0 and an unknown
variance-covariance matrix V. The distribution of €; does not need to be specified and is not used for
inference, as a least squares technique (or a projection in the space spanned by the design variables)
will be used. The response variables in the regression (8) are given by (5). The covariates z;.; and
zo.,; are design variables defined by

zy=0{i€s}, and 29;=0{i€sy}" (9)
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Note the absence of intercept and the presence of an interaction in the regression (8). When we
have completely overlapping samples (g = 1), we propose to remove the interaction z;.; zs.; and the
covariate zo,; from the model (8), as z1.; = zo,; forall ¢ € s in this case.

Let V (4) be the ordinary least squares estimate of the variance-covariance matrix V. Let

SW = qv (10)
where o« = (n — r) is a constant scale factor, where n = #s is the number of units in the sample
5§ = 51U sy and r is the number of linearly independent columns of Z,. In the Appendix A, we show
that S is a design consistent estimator of 3 ;. Therefore, a consistent estimator for the correlation
is given by

ﬁ prop

1
5(4) ((4) T(4)\ 72
@) = 1[2)( 1[1) 2[2)) ; (11)

(4)

where the quantity V., is the component (k, £) of the matrix V().

. . . . . (B
For the second estimator, we propose to substitute 3 .; and ga.; re-;peclwely by 1;5 )

)

(B)

and g ;" into

(8), where 1}55:) = 71 a zo,; and 1}53) = P2, Z1.i- The quantities 1;5 " and 1;2 plck out the common

sample elements, as 1;1 B~ 0and 1;23) = 0 wheni ¢ s.. Let V(B) be the ordinary least squares
estimate of V. The second estimator for the correlation is gwen by

7, = VP (0 UP) (12)
where the quantity V") is the component (k, ¢) of the matrix V (5,
Note both variance estimators of change based on (11) and (12) are always positive, because

Ja p[rffl)?p < 1land ﬁp[r-ﬁl S 1.

We have the following fixed size constraints D ;. z1:i = 11, ) ;¢ 225 = M and ) .., 2129 =

n., because only samples with these sample sizes can be selected. Thus, VA and VB are variance-
covariance matrices conditional on these variables which have their totals fixed by design. Note that
there is a clear analogy between Birch (1963)’s approach and the proposed conditioning approach.
This regression includes interactions between the variable z;.; and zy;. These interactions capture
the rotation of the sampling design which is represented by the constraint ) . z1.i22, = N.

The proposed approach requires the creation of design variables (9) which are used as covariates.
The interactions (in (8)) take the rotation of the design into account. The weighted variables of
interest (5) measured at each wave are used as response variables. The proposed estimator (11) takes
all the data into account, as it utilises the data of the units from the common sample and the units that
rotate in and out. The estimator (12) only utilises the data from the common sample.

The proposed estimator is easy to implement because it does not rely on joint-inclusion probabili-
ties. Furthermore, the proposed estimator is based on a multivariate regression approach which can be
implemented with most statistical software, without the need of a specialised statistical package. The
ordinary least squares estimate of the variance-covariance matrix can be easily calculated, as the mul-
tivariate regression (15) can be easily fitted by most statistical software. It is only necessary to create
the variables 9.1, §i.2, 21.; and z».;. For example, the SAS procedure REG can be used to fit the mul-
tivariate regression. The multivariate regression can also be fitted using the GLM Multivariate
procedure in SPSS. With Stata, the output e (Sigma) of the function mvreg () gives the variance-
covariance matrix. With the statistical software R (R Development Core Team, 2014), the command
estVar (Im(formula=Y~-1+Z1%Z2)) gives the variance-covariance matrix; where Z1 and Z2
denote the n x 1 vectors z; and z9 (see (18)) and Y is the matrix lu/; given by (16). Note that Berger
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(2005) showed that var(71) and var(7:) can also be calculated using a regression approach. Note
that when we have non-overlapping samples (g = 0), the interaction term is always equal to zero,
and therefore automatically removed by statistical software. With completely overlapping samples
(g = 1), the interaction term and z,.; are also automatically removed.

The advantage of the proposed approach is the fact that (i) it gives an approximately unbiased
estimator for the variance of change, (ii) it can be implemented with any standard statistical software
(iii) and it can be easily generalised to function of totals (see § 4.3).

3.1.  Alternative expressions for the proposed estimators
The proposed estimator for the variance of change (7) can be rewritten as

var(A)) =vTElw

where V = (—1, 1)T and ig is the following 2 x 2 matrix

= var(T ou(7y.75) 0
20— _ et ot B ), (13)
cov(T1,T2)prop var(Ts)
where
(ﬁr(?l ’ ?2);5;'{)'03; = ﬁp['f.'z)p [m(?l) m(?g)] %5 (]'4)

with a correlation ﬁp[.,'.z,p given by (11) or (12).

Matrix notations can be used to define the model (8) in a more convenient way. Let 3 =
(,B[Il):ﬁ[lg)) be the 3 x 2 matrix of parameters, where B = (BN g1 BINT and @ =
(,352) . ,Béz): ,BE?)T are parameters of the model (8). The model (8) can be re-written as

Y. =ZpB+e€; (15)
where € = (€1,.. ., e“)T. The quantities lu/; and Z, are respectively defined by
Y. = (y1.92), (16)
Z.‘i = (zlzzﬁzzf:) ) (]-?)
where
e = (Yo, bz Uen)
ze = (261,202, Zen) | (18)
e = (zl',lzﬁglzzl',ﬁzﬁ',?: T :zl',nzﬁ',n)—r . (]-9)

The model (15) is also a multivariate analysis of variance (MANOVA) model, as the covariates are
all dummy variables. With completely overlapping samples (g = 1) and non-overlapping samples,
we use £, = z1 instead; that is, z. and z; are removed from Z,.

Let 5{5" be the extra-diagonal element of §(4) and S{5 be the extra diagonal element of §(®) =

aV(B)_In Appendix B, we show that

a4 _aB) _ne—1
Sia" =51 =

cov(T1,T2)HH , (20)
which is approximately the Hansen and Hurwitz (1943) type estimator (4), when n, is sufficiently
large. When the first-order inclusion probabilities are equal (71,; = n1/N and m2,; = na/N), the
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&(4) a(B)

estimators Sy, and bl[g reduce to

N2n, _
O

al4) _ g(B)
512 :512 - Tins

(21

where @, denotes the following covariance between the variables y;.; and ys.; calculated from the
sample s,.

1
A(, = — P i i e It M T e ) 22
0= - ;a (Y13 — Yrie) (W2si — Y2:e) (22)

where ¢, = n;! Z-ae.—;“ Yeii-
The estimator of the covariance proposed by Tam (1984) (see also Qualité and Tillé (2008)) is
given by

e ninsg ne N?%n.._
cov(T1,72)ram = [ 1 —

o 23
Nne )/ n.—1 nins e (23)

Note that @5‘;) and :8;5.}23) reduces to the estimator proposed by Tam (1984) when they meet all of

the conditions of equal probabilities, the fraction nyna/Nn. is negligible and n,. is sufficiently large
(see (21) and (23)).

Note that the proposed estimators for the covariance given by (14) are different from @5‘;) :8;5.}23)
and cov(Ty, T2 ) i i, because the variances used in the proposed correlations ﬁp[.,'.lp are not necessarily
equal to var(7y) and var(7,) in (6). The Hansen-Hurwitz (HH)-type estimator for the correlation
Py in (6) is different from ﬁp[.,‘.?,;, in (11) and ﬁp[.ﬁ; in (12). Hence, the approach considered in this
paper is not a reformulation of the Hansen and Hurwitz (1943) estimator (4). In Appendix B, we
show that (12) is approximately equal to the estimator for the correlation proposed by Qualité (2009,
p- 83) and defined in (37).

3.2. Design consistency
In Appendix A, we show that S(4) is a design consistent estimator of Xz under a high entropy
without sampling design and under the following conditions.

maxmg; = o0p(l), for{ =1, 2, (24)
=
Maxme; = 0Oy ( 1 ) ' (25)
=t '
max Tuii op(1), when g # 0; (26)
A=t e

where 7.; = pr{i € s.}. Thus, ﬁp[.,‘.?,}, is a consistent estimator for the correlation, because it is
a smooth function of consistent estimators. This implies that (7) is a consistent estimator for the
variance of change, as long as var(7;) and var(7,) are design-consistent.

Most sampling designs used in practice have large entropy. There are designs with low entropy,
such as the non-randomized systematic sampling design. Under this sampling design, it is not possi-
ble to obtain an unbiased estimator for the variance.

The assumptions (24)-(26) hold when the sampling fraction is negligible. Note that g can be
large even when the sampling fractions are negligible; that is, the assumptions (24)-(26) may hold
even when g is large or when g = 1. With the rotating design described in Example 1 of §2, we have
that 7. ; = gmy; when p; = land ¢; = my;/(1 — my,;). Hence the assumptions (24)-(26) hold when
., g1, and mo; /g are negligible. Note that with non-overlapping samples (g = 0), the condition
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(26) does not need to hold and the covariance equals zero. The condition (26) may not hold when g
tends to zero more quickly than ma.;. This is a situation rarely found in practice. Furthermore, in this
situation the covariance cov(7q, 72) is negligible and it is reasonable to consider that cov(7y,72) = 0.

4. Extensions

4.1. Stratified sampling design

The proposed estimator can be easily extended to accommodate stratification. Suppose that we have
H strata Uy, Us, - -+ , Uy such that UleUh = U. Let s1; and sy, denote respectively the samples
of Uy, for wave 1 and 2. Let ny, ngp and n,y, be respectively the sample sizes of sy, sg; and
Sch = S1p (M S2p. Suppose that a fixed size rotating design (see §2) is implemented within each
stratum. We have the following covariates z1p,,; = 8{i € s15} and zo5; = §{i € sap, } which specify
in which stratum the unit 7 belongs.

The multivariate regression model is still given by (15) with the same response variables Y,
defined by (16), where 3;.; is defined by (5). However, the matrix Z, is different and contains
the stratification variables zy;,.; and zpy.; and the interactions zjp.; X zap.i. As we have a rotation
within each stratum, the sample sizes n.;, = # s, are fixed and we need to include the interactions
Z1h:i X Zapy in Z,. The ordinary least squares estimate of the variance-covariance of the residuals of
model (15) is used to estimate the correlation between T, and T5.

With the statistical software R (R Development Core Team, 2014), the command
estVar (Im (formula=Y~as.factor(Str.1)as.factor (Str.2))) gives the matrix
vV A), where Str.1 and Str.Z2 denote the n x 1 vectors of strata labels for wave 1 and 2. The
object Y is the matrix lu/;.

In Appendix C, we show that 55 =y 5y ) and S = 50 ) where S 1) ) (resp.

m)) denotes the within stratum covariance (resp. varlance) Nole that Sl‘” and bm‘f) are natural
estimators of covariance and variances under stratified designs. Consequently, the proposed estimator
for the covariance is consistent when the assumptions (24)-(26) hold within each stratum and when
the number of strata H is asymptotically bounded. This excludes heavily stratified designs.

The same result can be obtained for 813) and S (5) When we use the response variables ?}[1? and

(B _ _
7,:&;_&) (see(12)). This gives a consistent estimator when T’-ch”-lhl = Nepr n.lhl, forall h # h'.

4.2. Two-stage sampling design
Suppose that we have overlapping stratified samples of primary sampling units (PSU), and that the
rotation consists in rotating PSUs rather than secondary sampling units. We suggest using an ultimate
cluster strategy (Hansen et al., 1953) to estimate the covariance; because the sampling fraction is
assumed negligible. This usually holds for social surveys. This is the approach used in § 6.

The two-stage Horvitz and Thompson (1952) estimators 7 and T, are now given by

. - ?lg'i, ; o~ ?Z;i i
o=y — and 7 =) m— (27)

1E8] ! =2

where s; and s denote the first and the second wave sample of PSUs. The quantities m;.; and ma.; are
the first-order inclusion probabilities of the i-th PSU for the first and the second wave. The quantities
T1.; and Ty; denote the Horvitz and Thompson (1952) totals of the i-th PSU, for the first and the
second wave.
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Now, lu/; contains the following response variables,

Tl'_" '?2

_?:Jl-!-; = = 5{? = .‘:’1} and _?:Jg-!-; = : 5{? = .‘:’g} ; (28)

Tl T2
with §z; = 0 when ¢ ¢ s;. Let z15,; and zap; be the variables that specify the stratification of the
PSUs; that is, zg,,; = 1 if the ¢-th PSU is selected in stratum Uy, at wave ¢ = 1,2. The covariates

z1p.i and zpp,; and then interactions zjp.; X 2o are included in the matrix Z,. The ordinary least
square covariance matrix of the residuals can be used to estimate the covariance (see (7)). The second
estimator (see (12)) can also be used by multiplying 71.; and T2; respectively by zo.; and z;;.

If we have a rotation within PSUS, the proposed approach can still be used. In this case, g = 1
and the interactions and zs.; have to be removed from the model. This gives classical estimates of
covariances, as the samples of PSUs are the same at wave 1 and 2.

4.3. Complex measures of change

Suppose that we are interested in the variance of the change Ay = 05—0 or the relative change Ag =
ggfgl, where gg._. §1 are two smooth (differentiable) functions of estimators of totals. Therefore, in
both cases, 59 is a smooth function of totals; that is,

Ao = f(7); (29)
where T = (7,7 Ty, - ,7p) " and P is the number of totals. We consider that the first

totals of 7 are based on s;. The other totals are based on s3. The quantity 7, is the following Horvitz
and Thompson (1952) estimator.
?p - Z ﬂp;i:

LESy

where

s = 2080 € se) s (30)
T

where / = 1if p < Qand £ = 2if p > (). Note that we consider a general setting, where 6, could

depend on totals computed from s; and ss. This can be the case in practice. For example, the price

and volume indices are function of totals across several waves (e.g. Wood, 2009).

Suppose that Ay is an approximately unbiased estimator of Ay = f(7); where T = E(7). Using
the delta method (Taylor linearisation), we have that an approximation of Ay in the neighbourhood
of T is given by Ay — Ag = V(7)T(F — 7); where V(7) is the gradient of f(7) at 7. Therefore,
the proposed estimator for the variance is

var(Ag) = V(7) S V(7). (31)

The covariance matrix ﬁg_fq) in (31) can be estimated using the multivariate regression approach.
Now, the matrix lu/; contains P response variables (71.,..., ;jp.!.;)T which are given by (30). The
matrix Z, specifies the stratification and suitable interactions which depends on the design used (see
§64.2 and 4.1). Let V() be the ordinary least squares estimate of the P x P variance-covariance
matrix of the residuals of the model (15). The estimator of the variance-covariance matrix is given
by

pp' pp p'p

Ny (Y fopay (AT F 1
E_[T_f” = {L (4) (V[’l) V [AP) ’ [var(7,) var(7y)|Z ; pp'=1,..., P} : (32)
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where the right hand side of (32) denotes the element (p, p’) of the matrix ié_fq). The quantity ﬁfﬁ)
is the elements (p, p') of the matrix V(4| The estimator of the variance of change is given by (31)

with £ given by (32). Note that 7ar (Ag) > 0 because £ is positive definite. This is due to the

fact that ﬁg_fq) =D"VAWD and VA « S (see (10)) which is positive definite (see Appendix
T Ay 1
A), where D = diag{var(7,)¥ V5" 7, p=1,..., P}.

The second estimator (12) can be generalised for complex estimators of change by multiplying
Upii BY z2;; when p < @ and by z1,; when p > (). In this case, the covariance between estimators
based on the same sample would be computed from the common sample. We recommend to use the
estimator (32), because the covariance between estimators based on the same samples sy is computed
from the whole sample sy, and the covariance between estimators based on different samples are
computed from the common sample. This is another advantage of the proposed approach.

Another approach consists in substituting y;,; by linearised variables in (5) (e.g. Deville, 1999;
Demnati and Rao, 2004), and using the estimator of covariance (7). This approach is recommended
when gg._. i?l are not functions of totals (e.g. Oguz-Alper and Berger, 2014). For example, when gg
and @1 are Gini coefficients.

5. Empirical simulation studies

In a series of simulations based on the Swedish Labour Force Survey, Andersson et al. (2011b) (see
also Andersson et al. (2011a)) showed that for estimation of change within domains defined by the
strata, the estimator proposed by Berger (2004) gives accurate variance estimates of change. The
estimator proposed in this paper has the same property, as it reduces to the Berger (2004) estimator
when the sampling fractions are small (see (43)).

In this §, we report the results of two series of simulations. The first one is based upon the British
Labour Force Survey data and the second one is based upon the Italian EU-SILC survey data. For
each simulation, 10,000 samples were selected to compute the empirical relative bias (RB)

Elvar(A)] — var(A)
i,-'ar(z&)

and the empirical relative root mean square error (RRMSE)

mse[var(A)]Y/?

var(A)

RB = x 100% (33)

RRMSE = x 100%- (34)

The quantity var(A) denotes the empirical variance of A. The quantities E[var(A)] and
rr.ase[i??i‘i‘(ﬁ)] denote respectively the empirical expectation and the empirical mean square error of a
variance estimator var(A).

The Chao (1982) unequal probability design is used to select samples. The sample s; is selected
with inclusion probabilities my.;. The sample s3 is selected using the sampling design described in
Example I, with p; = L and ¢; = my,;/(1 — m;). The statistical software R is used to fit the
multivariate regression model. The variances var(7;) and var(7 ) are estimated by the Hajek (1964)
variance estimator.

5.1.  British Labour Force Survey Data
We consider the common sample of two waves of the British labour force survey: October-December
2007 and October-December 2008. The dataset is replicated 10 times in order to create a large dataset,
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Table 1. Observed RB and RRMSE for the change in unemployment and in mean income from an
artificial population based upon the British Labour Force Survey data. Wave 1: October-December
2007. Wave 2: October-December 2008. The values reported in this Table do not reflect the actual
estimates from the British Labour force Survey.

RB (%) RRMSE (%)
q Proposed Qualité and Tillé Tam Wood |Proposed Qualité and Tillé Tam  Wood
(2008) (1984) (2008) (2008) (1984) (2008)
Unemploy- 40% -7 -7 -6 -7 47 47 46 48
mentrate  54% -3 -2 -1 -2 49 49 47 50
68% -4 -3 -2 -2 52 52 48 53
Mean 40% -1 0 0 0 13 13 12 19
income 54% -1 0 0 0 14 14 12 22
68% -2 0 0 0 16 16 13 27

of size N = 27,320, which is treated as a population from which samples are selected. This popu-
lation is stratified into 5 strata based upon the consecutive number of stints. We use a proportional
allocation with equal inclusion probabilities within each stratum. We consider the change between
the unemployment rates and between the means of income. The sample sizes are n; = 250 and
ny = 275. We consider several fractions for the common sample: g = n./ny = 40%, 54% and
68%.

We compare the proposed estimator (7) based on (11) with the variance of change proposed by
Tam (1984) which is based on (23) and the estimators proposed by Qualit¢ and Tillé (2008) and
Wood (2008). The results of this simulation study are given in Table 1. The relative bias (RB) and the
relative root mean squared errors (RRMSE) are those of the variance estimator relative to the empirical
variance 1;0.:'(5). As this is an illustrative example, the values reported in Table 1 do not reflect the
actual estimates from the British Labour force Survey.

With the change in mean income, we observe slight negative biases for the proposed approach.
This is due to the fact that the finite population corrections are not taken into account. This effect is
more pronounced with skewed variables such as the income variable. All the estimators have similar
RB and RRMSE. We notice that the Wood (2008) estimator is slightly more unstable, and Tam (1984)
estimator is slightly more stable. The observed differences between the estimator proposed by Tam
(1984) and the proposed estimator is due to the fact that the covariance due to Tam (1984) is defined

by (23) and with the proposed approach the covariance is given by [Eﬁ?(?l)ﬁb?(?g)llﬁﬁp(-,ﬂ, =

-~ o~ 1/2
[var(71) S var(T2) S 5| /2 G0(71, 72)Tam (see (7). (11), (21) and (23)).

5.2.  ltalian Survey on Income and Living Conditions Data
In this §, we give the results of another simulation study based upon the Italian Statistics on Income
and Living Conditions (EU-SILC) survey (see §6 for a description of the EU-SILC surveys). For this
simulation study, we consider unequal inclusion probabilities. The common sample of two consecu-
tive years (2008 and 2009) is treated as a population from which stratified samples are selected. This
gives a population size N = 19,644. Stratified samples of size ny = np = 982 are selected using the
uni-stage Chao (1982) sampling design. The strata are the five geographical regions. We consider
that we have the same fraction of the common sample, g = 75%, within each stratum.

We consider the change between means (or proportions) of several variables of interest y;.; and
Yo.;- We consider three dummy variables of interest (afford holiday, own a car, at risk of poverty)
and one quantitative variable (equivalised disposable income). We also create artificial log-normal
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variables with different correlations between the variables of interest. The change between the means
(or proportions) is estimated by A = 7N~! — 7 N—1. We consider that the inclusion probabilities
m1.; are proportional to the inverse of the cross-sectional sampling weights at wave 1. We also con-
sider several domains of interest given by the type of accommodation (detached, semi-detached), the
population of home owners, the population of males and the population of females. The households
are the units, and the quantities y;.; and y».,; denote the household totals of the variables of interest.

We propose to compare the estimators of the form (7) based on different estimator for the corre-
lation. The following naive estimator is based on the estimator for the covariance proposed by Tam
(1984) (under equal probability sampling).

. e S . _1
psrs = CoU(T1,T2)Tam [Var(T1)srs var(T2)srs| 2 (35)
with
. 9 g ?}%
T,-'!‘l?‘(?‘f)_qg_q =N (1 — —r) —,
N g

¢ov(Ty, T2) T am defined by (23) and 52 = ng ! Y ies Wi — ¢)?; where 7j; is the sample mean of s,.
Another naive estimator is based upon the stratified Tam (1984) estimator. This correlation is
given by

g S ——— _1
Pssrs = cov(T1,T2)ssrs [var(Ti)ssrs var(T2)ssrs) 2; (36)
where
H AT 2
T P - T RT2h Tlch N RMeh ~
cov(T1,T2)ssrs = E E 1-— Och,
— - N h1leh TMeh — 1 LSVALDTY
h=11i€s5.p
=t mn 0'2
— - 2 : 2 : th 2 U
var (Tg)_q_qR_q = (1 \ ) \- T.I L:
h=11cssp h th
~ 1 Z _ _
Teh = —— (?)‘1-,-; - ?}1;;-,(.-) (?}2;'&, - yﬁhgc) H
MNep 2
L Sch
1 .
~ _ 2
b = — > (yei —en)
TNgh =
LESER

The quantities ¥ip.e, Yan. are the sample means of the common sample of the stratum h, and 7z, is
the sample mean of the stratum A at wave £. We consider the estimators (35) and (36) because they
are alternative straightforwardly calculated covariance and variance estimators.

Qualité (2009, p. 83) proposed an estimator for the correlation based on s, which is treated as a
second phase sample drawn randomly from s;. This estimator is given by

-~ Z-’j: T"-'ch(n'ch - 1)_1 Z'ﬁ, =8, ?}'ﬁ.;l - ?jlh',c ?}'ﬁ,;? - ?j?h',c
ek e (1 ) (2~ ) .

— — I
[var(T1)pr var(m2)mm)?

where

H
var(Te)uam = Z n‘h— 1) Z Yi2 — WFH) ' (38)

.
h=1 q}n( ‘oh =

where g, = nen/ne. Note that the variance estimator of change based on (6), (35), (36) are not
necessarily positive because the correlation can be larger than one as the covariance and the variances



Variance estimation of change 13

are based on different samples. The proposed variance estimator based on (11) is always positive.

The result of this simulation is given in Table 2. Note that we observe a large negative RB for
the Hansen and Hurwitz (1943) ‘type’ estimator (6). The observed RB of the proposed estimators
(based on ﬁp(.,‘.?,i, and ﬁp(.,f’ﬁ,) are usually negligible. We observe a slight negative bias for the proposed
estimators which is probably due to the fact that the finite population correction is ignored in the
correlations. The range of the RB of the proposed estimators across the variables in Table 2 is smaller
than the range of the RB of the naive estimators (based on pssrs and psrs). This means that there is
less chance of outlying estimates with the proposed approaches. The RRMSE of the naive estimators
are mostly larger than the RRMSE of the proposed estimators. For the log-normal distribution, the RB
and RRMSE of the naive estimators are significantly larger. We do not observe significant differences
between the estimator based on ﬁp(f,ﬁ, and po (Qualité, 2009, p. 83), in term of RB and RRMSE.

Finally, the proposed estimators and Qualité (2009, p. 83) estimator are a good compromise
in term of RB and RRMSE. The advantages of the proposed estimator are the fact that they can be
computed with any statistical software, they always giver positive variance estimates and they can be
easily implemented for change between functions of totals (see § 4.3).

6. AN APPLICATION TO THE EU-SILC HOUSEHOLD SURVEYS

We consider a key poverty indicator: the at-risk-of-poverty or social exclusion (AROPE) indicator
(Eurostat, 2012b; Atkinson and Marlier, 2010) which is used to monitor poverty within the European
Union. This indicator is calculated from the EU-SILC surveys (Eurostat, 2012a) which collect yearly
information on income, poverty, social exclusion and living conditions from approximately 300, 000
households across Europe.

We consider the change of the AROPE indicator between two consecutive years (2009 and 2010).
In this §, we show how to estimate the variance of the net change of the AROPE indicator. The compu-
tations of the estimator (31) were made in SAS by Guillaume Osier (European Central Bank), Emilio
Di Meglio (Eurostat Unit F4 Quality of Life) and Emanuela Di Falco (Eurostat Unit F4 Quality of
Life). The EU-SILC production data bases were used within the premises of Eurostat.

An ultimate cluster approach (see §4.2) was adopted, because the sampling fractions are small.
The units are the primary sampling units (PSUs). For some countries, the PSUs are households (e.g.
Austria, UK, Latvia). Scandinavian countries, use single stage design based on registers. In this
case, the PSUs are sets containing one individual. The response variables of the multivariate model
are given by (28) or equivalently

Ye.i = 6{i € s} Z We;5 Ye;j 5
JEPSU;
where s; is the sample of PSUSs at wave ¢, PSU; denotes the i-th PSU, yj,, is the value of the variable
of interest for individuals j and wy,; is the survey cross-sectional weight of individuals j at wave (.
The variables zy,.; are dummy variables which specify the stratification at PSU level. The variables
Je.i and zgp,.; need to be defined for all i € s = s; U s».

The AROPE depends on a poverty threshold which is estimated. The estimation of the poverty
threshold can be taken into account using a linearised variables technique (Osier, 2009). Oguz-
Alper and Berger (2014) showed how the proposed approach can be used to take into account the
variability of the threshold. For simplicity, we assume that the poverty threshold is fixed which
ensures conservative cross-sectional variances (Preston, 1995; Berger and Skinner, 2003).

In this §, we consider that the AROPE indicator is a ratio of two totals: an estimate of the total
number of individuals in poverty and social exclusion divided by an estimate of the population size
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Table 2. Observed RE and RRMSE for several variables of interest and several domain of interest. Italian
EU-sSILC data (2008, 2009). These values are for illustrative purpose only, and are not part of any results
officially released.

RB (%) of (7) with RRMSE (%) of (7) with
Variables Domains ﬁ{rf})J ﬁ{rij PHH Po PSSRS PSRS ﬁ;frf})i; ﬁ;f:i’l; PHH PQ PSSRS PSRS
prop Pprop
Afford Holiday Population 3.6 -3.0 -96 -3.0 13.2 12.2] 13.5 12.1 164 12.1 18.8 18.0
Detached -1.5 06 -72 -05 42 5.0| 27.3 239 285 239 230 233
Semi-detached -5.7 -5.0 -11.1 -5.0 =22 -1.5] 27.6 23.7 29.5 237 229 229
Home owner -29 25 -87 -24 10.8 10.5] 13.5 11.8 16.0 11.8 17.2 16.9
Males -3.8 -32 97 -3.1 79 7.3] 16.2 14.2 18.7 14.2 17.5 17.1
Females -3.5 -30 -94-29 9.7 9.3 157 14.0 18.1 140 17.5 17.2
Own Car Population 7.0 -6.2 -19.5 -6.1 0.2 1.4] 16.4 12.2 248 122 122 124
Detached -6.3 -5.0 -153 -48 -2.8 -1.3] 26.5 18.6 30.3 18.6 20.1 20.2
Semi-detached -6.4 -52 -152 -50 -2.7 -1.2] 28.5 20.5 32.1 205 216 21.6
Home owner -4.4 37 -139 -3.6 20 30| 143 11.0 19.7 11.0 12.1 124
Males -6.9 -6.1 -18.3 -6.0 -1.5 -0.2] 18.9 13.7 25.7 13.6 145 14.5
Females -6.2 -52 -17.8 -5.1 0.3 1.6] 18.0 13.0 24.8 129 14.1 14.3
Equivalised Population -5.8 4.7 -16.0 -4.6 4.1 4,51 294 22.6 333 226 203 293
Disposable Detached 3.6 -22 -116 -2.2 0.6 0.5] 404 32.6 42.1 326 374 37.6
Income Semi-detached -4.7 -32 -12.8 -3.1 0.7 1.8] 38.7 29.4 40.8 293 353 35.6
Home owner -4.0 -29 -128 -2.8 56 6.0 29.0 22.0 31.7 220 289 289
Males -5.0 -3.7 -144 3.6 4.1 4.8] 33.9 25.2 36.8 25.2 31.2 31.2
Females -5.8 -5.1 -155 -5.0 04 0.2] 274 23.2 31.1 232 26.0 26.1
At Risk of Population -2.6 -2.1 -58 -20 6.0 23] 26.7 24.1 275 24.1 27.1 257
Poverty Detached 4.0 -19 -73-18 1.5 1.3] 52.2 47.8 529 479 542 54.0
Semi-detached 1.1 05 -44 07 24  2.6] 58.0 53.2 58.5 532 53.8 539
Home owner 09 -0.1 -39 00 6.6 47| 29.8 27.5 303 275 32.0 31.1
Males -39 -35 -68 -34 3.0 0.5) 352 32.8 359 328 309 30.0
Females -1.8 -09 -53 -08 53 2.4 26.8 23.1 27.6 23.1 293 28.2
LogNormal Comr(y:,y2)=0.90| 4.8 -32 -14.1 -3.1 48 6.0] 35.2 29.2 379 29.2 349 353
Comr(yy,y2)=0.80 -3.9 -32 -11.1 -3.1 74  8.2] 23.2 18.7 256 188 243 248
Comr(y,,y2)=0.70| -1.9 -1.7 -7.6 -1.6 155 16.2] 27.2 24.1 28.1 24.1 33.6 34.0
Comr(y,,y2)=0.50 -1.2 -09 -48 -09 156 16.0] 15.8 149 16.5 149 232 235
Comr(y,,y2)=0.30 -1.5 -14 -37 -13 15.1 15.3] 13.3 129 13.7 129 21.6 21.7
Comr(y,,y2)=0.201 -2.9 -28 -47 -28 17.9 18.0] 15.1 14.7 155 14.7 248 249
Comr(y,,y2)=0.10f 2.3 -23 -3.6 -22 18.3 18.3] 13.0 12.8 13.3 128 23.6 23.6

(or exposure if we are interested in a domain). Hence 7 in (29) is a vector of four totals. The estimator
(31) is used. The effect of calibration can be taken into account, by replacing the response variables
by residuals (Deville and Siamdal, 1992). However, the effect of calibration was ignored, because the
calibration variables were not available. For multi-stage designs, the effect of re-weighting due to
non-response adjustments does not need to be taken into account, because these adjustments are done
within PSUs. For single stage designs, the effect of non-response adjustments is ignored. This is not
crucial, because single stage designs are often based on registers (like in the Scandinavian countries)
which usually have a small fraction of missing values. The effect of imputation was ignored. Note
that some countries use a rotation within PSU (e.g. Belgium). In this case, the proposed approach can
still be used (see end of §4.2).

The estimates based on the proposed approach are given in Table 3. We notice that the change
can be significant for some countries (the values in bold face). However, these estimates need to be
interpreted with caution. These estimates are for illustrative purpose only, and are not part of any
results officially released by Eurostat. The quality of these estimates relies on the availability and
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Table 3. lllustrative estimates of the AROPE indicator for 2009 and 2010 based on the EU-SILC surveys’
data. The estimates of change in bold face are statistically significant at 5%. These estimates need to be
interpreted with caution. These estimates are for illustrative purpose only, and are not part of any results
officially released by Eurostat. The values in bold face are significantly different from zero (p-value<0.05)

Country AROPE  AROPE Change  Standard | Country =~ AROPE  AROPE Change  Standard
2009 (%) 2010 (%) (in % point)  Error 2009 (%) 2010 (%) (in % point)  Error
Iceland 11.6 13.7 2.09 0.34 Malta 20.2 20.3 0.09 0.42
Czech Rep. 14.0 14.4 0.36 0.30 UK 220 23.1 1.18 0.25
Netherlands 15.1 15.1 0.07 0.14 Cyprus 229 23.6 0.67 0.55
Norway 15.2 14.9 0.34 0.28 Estonia 234 21.7 -1.69 0.38
Sweden 159 15.0 0.90 0.29 Spain 234 25.5 2.16 0.02
Finland 16.9 16.9 -0.01 0.33 Italy 247 24.5 -0.16 0.32
Austria 17.0 16.6 -0.44 0.27 Portugal 249 25.3 0.40 0.10
Slovenia 17.1 18.3 1.17 0.22 Ireland 25.7 29.9 418 0.93
Switzerland 17.2 17.2 -0.08 0.39 Greece 27.6 27.7 0.11 0.30
Denmark 17.6 18.3 0.74 0.40 Poland 27.8 27.8 -0.07 0.27
Luxembourg 17.8 17.1 -0.72 043 Lithuania  29.5 334 3.90 048
France 18.5 19.2 0.71 0.53 Hungary 29.6 29.9 0.32 041
Slovakia 19.6 20.6 1.01 0.17 Latvia 374 38.1 0.64 0.34
Germany 20.0 19.7 -0.26 0.24 Romania 43.1 41.4 -1.66 0.11
Belgium 20.2 20.8 0.66 0.07 Bulgaria 46.2 41.6 -4.57 0.75

quality of the design variables. These estimates are likely to overestimate the variance because the
effect of calibration adjustment was not taken into account. This effect may be more pronounced for
Scandinavian countries.

7. Discussion

The proposed approach can be used for a large class of parameters which can be expressed as func-
tions of totals (see § 4.3). The main contribution of the paper is to show that variance estimates can
be calculated using the covariance of the residuals of a multivariate regression model with suitable
interactions. It does not require the development of a specialised package, as any statistical software
can be used to compute the covariance of the residuals of the multivariate regression model. The
simplicity and flexibility of the proposed approach makes it a suitable tool for common variance
estimation procedure across the EU-SILC surveys.

One of the advantage of the proposed approach is the fact that the variance-covariance matrix is
estimated using a single regression model, even if we have several totals and several strata. Alterna-
tive approaches would involve calculating each component of the matrix separately by using (4), for
each combination of variables and for each stratum. This approach may give a negative definite co-
variance matrices and possible negative variance estimates of change. The proposed approach always
gives a positive definite covariance matrix and positive variance estimates.

For functions of totals, the linearised variable approach involves deriving linearised variables for
each measure of change that can be considered by the users. Another advantage of the proposed
approach is the fact that the same variance-covariance matrix can be used for several measures of
change (function of the same set of totals). Only the gradient V (7) differs. The proposed approach
involves computing a single covariance matrix (32) which could be provided to the users. This matrix
can be used for any differentiable function of the totals involved in (29). Only the gradient V (7) has
to be specified by the user. The proposed approach is more suitable when we do know which measure
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of change will be considered by the user and when confidential information, such as design variables
cannot be released. The users only need to know the covariance matrix. The EU-SILC user database
does not contain all the design and auxiliary variables for confidentiality reasons. For example, the
stratification is not available in the 2010 EU-SILC user database.

The proposed approach can be used under without replacement sampling with negligible sam-
pling fractions which is a common feature of social surveys. Large sampling fractions (combined
with sampling without replacement) are common practice in business surveys. The proposed ap-
proach is not suitable in this case. The approaches proposed by Nordberg (2000), Berger (2004),
Wood (2008), Goga et al. (2009), Muennich and Zins (2011) and Knottnerus and van Delden (2012)
can be used in this case.

With calibration within each wave, we propose to include the auxiliary variables in the regression
model (8) or (15). This would give a suitable covariance estimator for single stage designs because
the response variables will be projected within the space spanned by the auxiliary variables. For
more complex situations (e.g. multi-stage designs), we recommend using the approach proposed in
Section 4.3. Note that for regression estimators, the number of response variables in the multivariate
regression model is equal to the number of totals involved in the function of totals. For example, if
we have three auxiliary variables for each wave, the number of response variables is 2(1 + 3) = 8.

The proposed approach can also be extended for measures of poverty which are not functions of
totals (Oguz-Alper and Berger, 2014). It can also be extended for measuring trends from more than
two overlapping samples (Berger, 2011). Berger and Escobar (2013) extended the proposed approach
under non-response. The effect of panel attrition has been ignored in the variance estimation, and is
beyond the scope of this paper.

The proposed approach relies on a set of conditions which are met by a wide range of social
survey designs used in practice. We give here a summary of these conditions. We assume that the
number of strata is asymptotically bounded. This assumption might not be valid for heavily stratified
designs. We assume that the sampling fraction is negligible. The proposed approach relies on the
assumption that sample size of the overlapping sample is fixed. It cannot be used when this sample
size is random. We also assume that the sampling design has a high entropy. This assumption is
usually met in practice except with the non-randomised systematic sampling design.
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Appendix A (Proof of equation (43))

Berger (2004) showed that under the assumption of high entropy,
S§* =8~ 5:,.5,.81,; 39)
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is a consistent estimator for the covariance matrix 3 (defined in (3)); with

G2 E s i il

S,. = Dies Crii Ui Dies Cr2;i gt iz ) (40)
ies C12:i Pict Uiz2 D ies C2ii Yo ‘

. Dics Chii 21 Dics C12i 21 22 Dics Clii 21 22

Spn = Z-;e.-; C12:0 213 22y Z-;e.-; C2i 2230 Z-;e,.; Coyi Z1y 2244 ; (41)
ics Cli 2154 225 Zi,&'.-; Co.y 2154 2244 Zi,&'.-; Ceii 2154 2244

o _ Z-ae.—; Cii it 215 Z-ae.—; Cr2;i Wi 225 Z-ae.—; Cyi Uil 215 22 .

(S Cii i 12 ;i @2)
ics C12:4 Yi;2 2154 Z-,;e.., Co Yis2 2244 Z-,;e.., Co Yis2 2150 2244

where s = 51 U 53 denotes the overall sample. The quantities ¢;.;, €,..; and ¢;2.; are finite population
corrections given by ép; = (1 — mpi), €ei = (1 — mey) and é10; = 1 — w472,/ Tei. The variables
z1,; and zg.; are design variables defined by (9). The variables 3;.; and g2.; are defined by (5) with
Ve = Owhen i ¢ sg.

When we have non-overlapping samples, we may have g = 0 and 7,; = 0 for all <. In this case,
we consider that ¢10.; = 1 for all ¢ by definition, as ¢12,;9i.1¥i:2 = €12:i21:4 22.0 = €124 Y1224 = 0
for all 7. In this case, the last row and column of (41) have to be removed, as well as the last column
of (42). This way (39) reduces to an estimator of covariance for non-overlapping samples. Note that
the extra-diagonal element of (39) equal zero in this case.

The ordinary least squares estimate of the variance-covariance matrix V' of the residuals is given
by

VA = §A) /o,
where
SW = (Y, - 2B)T(Y, - Z,B) ; (43)
with
B=(z]z,)'2]Y,
The n x 2 matrix lu/; and the n x 3 matrix Z, are defined by (16) and (17). Note that (43) implies

§[A) = f-;—rlu/; - f&TZ-?(Z.-:rZH)_lz.-;Tf?' (44)
Assumptions (24)-(26) imply that (40), (41) and (42) reduce to
S;r =YY, Spn=2!2, and §,;,=Y]Z,. (45)

Finally by substituting (45) into (39), we obtain
§* = f-;TY'f - f-;TZH(Z.;rZH)_lz;rY?
— 5w,
using (44). Thus assuming (24)-(26), we have that S* = §A). Note that §(4) is positive definite
because S is a Gram matrix.
For completely overlapping samples (g = 1), the interactions are removed from the model and

(44) gives the standard estimator for the covariance, that is (4) with s, = s; = ss. This completes
the proof.
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Appendix B
When g = 1, the interaction zj,; 2z2.; and zp; are removed from the model (8). The proposed

approach gives the standard estimators for the correlation from completely overlapping samples. In
this Appendix, we consider that g < 1.

‘We have that
my 1 1
Z;r Lo =g 1 Mo 1 ;
1 1 1

where m1 = n1/n. and ma = na/n.. This implies that

a 0 —a
(z/z)'=| o0 b b | (46)
—a —b c

where a = [n.(my; — 1)]71, b= [n.(m2 — 1)] 7%, e = (myma — 1)[n.(my — 1)(ma —1)] 7L
We also have that

}?TZH — il il',c il](; : (4?)
. tZ;c tQ tZ;c
where 7 = n¢de. te.c = nedee and ty. = ng .Yy~ By multiplying (46) by (47), we have that
A AVAD A i1 0 qiz \ .
s e 0 722 gas )’

where ?11 - !’1(?1 _?1',(;)1 ?13 - C?l',c —a ?1 - b?l',c-s ?22 - b(?ﬁ _?2',0) and &23 - C?Q',c —a ?2',(; - b?ﬁ
Thus the element (1,2) of the matrix Y," Z,(Z[ Z,)=*Z Y, is given by

{f-;TZ.‘i(Z;rZH)_1Z;|—Y‘i}[1!2) = Fi'\ll?;-ﬁ',c + Fi'\lf‘!\?;-ﬁ',f." (48)
The element(1, 2) of the matrix Y, Y, is given by

(Y. Yolao) =D diadie (49)

1S,

By subtracting (48) from (49), and by using (44), we have that the element (1, 2) of S is given
by

olA v —~ P
Sk = Z Yin¥iz — Quatae — Qiataye
1S,
v o ?1'.(.'?2:(;
= Z Yiqllipg — ———
= n,
tES,
Ne —

1
= cov(T1, To) Hu
Ne

It can also be shown that the diagonal element (¢, ¢) of S i given by

4 _ 52 1 TN L (o =
S’ = Z?}.;-,f - m {(tf - tf-,c) + (me — ]‘)tt‘.‘;c}

Ay
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. - g — Ne . -
_ E b2 =2 : ¢ E v oe2 =2
- Yive = Ye + Yize — yt‘.‘|c

My le

sc €50/ 5e

= S G —i6e)* + Y (e — 9a)’ (50)
1ES, i€sy /s,

= Z (97— f’f)z - -
LESy

where vy = T"-‘t‘.‘|f.'(§t‘.‘ - f“ﬂc)g + n‘c(ﬁt‘.‘ - ?jt‘.",c)z 1 with n‘t‘.‘|c = Mg — Ng and

- 1 y - 1 y - 1 y
Ye = — Yie s Yie = — Yie s Yile = Yise 3
Ye .y E Yil s Ye; e E_? Yise s Yi . E Yize

S LESsy

where s, = s¢ \, 8¢ Note that the first term on the right hand side of (50) is the Hansen and Hurwitz
(1943) variance (see also Sirndal et al., 1992, pp 51 & 52). Thus ?ﬁf) is equal to the standard
with replacement variance estimator minus a negligible term ;. This term is negligible, because
Dics, Wise — _?33)2 = O,(N?*n~') and vy = O,(N?n~2). Thus, (11) is a consistent estimator for
the correlation because of (10).

Now, we show that (12) is approximately equal to the estimator for the correlation proposed by

Qualité (2009, p. 83) defined by (37). We have that 1}55:) - 7:,55:) = 0fori ¢ s.. Thus, ’§§424) _ §§.}23)
and (50) implies
(B . - N2
*Stgf )= Z (?f‘i:f - .W;c) :
1S,
Hence

cov(Ty, Ta)unm Z (G — f’l;c)g Z (i — f*z-,c)z

LES, LES,

1
]
~(B Ne — 1
pp['f'ogj = g

Mg

which is approximately equal to (37), when we have a single stratum and (n, — 1)n ! = 1.

Appendix C

For a stratified design, we have that the design variables are given by the n x (2H — 1) matrix

Z.‘i = (Z.‘il: ZHZ: e :Z.'fh: Tt Z?H) ;
where Zj, are ny, x 3 matrices given by Z,;, = (21n, 2on, Zen ), With z¢ = (21, 262, -+ :Z{'-!“)T
_ T — , .
and zep, = (21,10 22,10, 212022:20, °* * » ZLnph22im,n) - Note that iy, = #{s15 U sap }.
The n x 2 matrix Y, is given by

- - - - T
Y‘f = (Y-f—er-;—Zr :YT ) Y-;L') ;

sht™’

where Y.;, = (10, ¥2n) is a np x 2 matrix with §e, = (Gean. Jezn: - Yeman) -
The (3H) x (3H) block diagonal matrix Z_ Z, is given by

Z)Z, =diag{Z\Zs , -+ , Z)yZ.u} - (51)
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The 2 x (2H — 1) matrix Y, Z, is given by
f-;TZ-‘f = (f‘;]l.—z.‘ili f-;—'zrz-‘fzz U ??LZ"H) (52)

We also have that the 2 x 2 matrix lu/;Tlu’; is given by

H
YIY.-Y ¥

0 Yon: (53)
h=1

R Finally, by substituting (51), (52) and (53) into (44), we obtain the ordinary least squares estimate
S of the covariance of the residuals given by

H Z\Ya
§[A) = Zl‘;;}:}?;h - (}?;—]ljz.-fl: U -l‘;—-;—;fZ?H) d?ﬂ(} {Z-:Ez-fl I Z,IHZ.?H}_]-

h=1 Z;I'l Y; L

H
= Z [l‘}—}r;l‘;;h - ?TZ.-JL(Z,T Z.-fh)_lz;l;;}?;h]

sh sh

H a &
B Z Sun Sen .
— aT 5 :

-~
Sen Sazn

where S¢p, (resp. Sgen) denotes the within stratum covariances (resp. variances) of the residuals. The
same result can be derived for S7). This completes the proof.
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