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Abstract 

SIGNIFICANCE: A mismatch between energy supply and demand induces tissue hypoxia 

with the potential to cause cell death and organ failure. Whenever arterial oxygen 

concentration is reduced, increases in blood flow - ‘hypoxic vasodilation’ - occur in an 

attempt to restore oxygen supply. Nitric oxide is a major signalling and effector molecule 

mediating the body’s response to hypoxia, given its unique characteristics of vasodilation 

(improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing 

oxygen consumption and promoting utilization of alternative pathways).  

RECENT ADVANCES: This review covers the role of oxygen in metabolism and responses 

to hypoxia, the hemodynamic and metabolic effects of nitric oxide, and mechanisms 

underlying the involvement of nitric oxide in hypoxic vasodilation. Recent insights into nitric 

oxide metabolism will be discussed, including the role for dietary intake of nitrate, 

endogenous nitrite reductases, and release of nitric oxide from storage pools. The 

processes through which nitric oxide levels are elevated during hypoxia are presented, 

namely (i) increased synthesis from nitric oxide synthases, increased reduction of nitrite to 

nitric oxide by heme- or pterin-based enzymes and increased release from nitric oxide 

stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase.  

CRITICAL ISSUES: Several reviews covered modulation of energetic metabolism by nitric 

oxide, while here we highlight the crucial role NO plays in achieving cardiocirculatory 

homeostasis during acute hypoxia through both vasodilation and metabolic suppression 

FUTURE DIRECTIONS: We identify a key position for nitric oxide in the body’s adaptation to 

an acute energy supply-demand mismatch. 
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Introduction 

 

Patients undergoing major surgery or suffering critical illness have increased cellular energy 

demands yet commonly experience challenges in ensuring an adequate oxygen supply. An 

oxygen supply-demand imbalance can be immediately life-threatening, such as in cardiac 

arrest or major haemorrhage, or it may cause more insidious damage. As organ function is 

critically linked to both oxygen availability (30) and adequate utilization, bioenergetic 

deficiency is likely to be a crucial factor underlying the pathogenesis of cell death (39) and 

multiple organ failure (18,202). 

 

The main purpose of the cardiovascular system is to provide oxygen and metabolic 

substrates at a rate that can both meet and respond rapidly to changes in local demand. 

Whenever arterial oxygen concentration is reduced, increases in local blood flow - ‘hypoxic 

vasodilation’ - occur in an attempt to restore oxygen supply (102). The ability of hypoxia to 

increase tissue blood flow is a local response that can be demonstrated in isolated organs, 

thus it can occur without the involvement of neurally-mediated reflex mechanisms. A variety 

of mediators such as adenosine (22), ATP-sensitive potassium channels (65)  and 

prostaglandins (173) are implicated, however significant human and animal data point 

towards nitric oxide (NO) as a major regulator of vascular perfusion and matching of energy 

supply and demand (24,25,76,119,147,190). Nevertheless, considerable controversy 

persists with respect to its sources and mechanisms of action.  

 

Several reviews have covered modulation of energetic metabolism by nitric oxide 

(33,219,232). In this article we highlight the crucial role NO plays in achieving 

cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic 

suppression, and the various mechanisms through which NO production is enhanced. We 

identify a key position for nitric oxide in the body’s adaptation to an acute energy supply-

demand mismatch. 
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Bioenergetic reactions and the role of oxygen 

 

Living cells constantly perform work to maintain their structures, synthesize cellular 

components, generate transmembrane ionic gradients, and to undertake their physiologic 

roles. As most of these metabolic processes are thermodynamically unfavorable, they are 

coupled directly or indirectly to the hydrolysis of ATP to provide the necessary free energy. 

ATP supply is maintained through mitochondrial and cytoplasmic reactions that proceed with 

and without the need for oxygen (32). With its net yield of 2 moles ATP per mole of glucose, 

glycolysis is generally insufficient to maintain steady-state energy levels in most cell types. 

Exceptionally, some cells (e.g. erythrocytes) rely solely upon glycolytic production of ATP. 

Many immune cells use glucose and glutamine as their primary fuel sources, although 

ketone bodies and fatty acids can be used to a lesser degree (168). Glucose appears to be 

particularly necessary for cell survival, size, activation and cytokine production. Resting 

lymphocytes have low-energy needs and derive most of their ATP from oxidative 

phosphorylation; switching to the activated state requires a dramatic increase in metabolism, 

which is mainly derived from rapid upregulation of glycolysis (80). Organs also vary in their 

predominant energy substrate. Whereas most utilize carbohydrates as their major energy 

source, some (e.g. cardiomyocytes) predominantly use fatty acids.  Notably, this preference 

can change with a reduction in oxygen availability.  

 

Pathways leading to ATP synthesis have been extensively studied (145). Briefly, the 

glycolytic end-product pyruvate, and fatty acids enter mitochondria where they are 

metabolized to acetyl CoA. This enters the tricarboxylic acid (Krebs’) cycle whereby 

oxidation reactions directly produce ATP equivalents and electron donors. Electrons are 

transported down the respiratory chain, generating a proton gradient across the inner 

mitochondrial membrane, which serves as the driving force for phosphorylation of ADP to 

ATP. By comparison with glycolysis, 1 mole of glucose liberates approximately 30 moles of 
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ATP. Oxygen is crucially required as the terminal electron acceptor by the last complex of 

the chain, cytochrome c oxidase (CcO, complex IV) (44). In the steady state, approximately 

90% of total body O2 consumption occurs within mitochondria (204), and is primarily directed 

towards oxidative phosphorylation. A constant O2 supply is thus critical for continued cell 

function and survival. When compromised (e.g. supply reduced and/or demand excessively 

increased), a state of metabolic crisis ensues (231) with potential activation of cell death 

pathways. 

 

Oxygen and nutrients required by mammalian cells to support metabolism cannot be directly 

obtained in sufficient quantity by diffusion alone. From an evolutionary perspective, this 

limitation was resolved by the development of a cardio-respiratory system whose activity is 

closely regulated such that, in the steady state, ventilation delivers oxygen to the alveolar 

capillaries at the same rate of delivery by the vasculature to the tissues, and of consumption 

by metabolic processes within the tissues (233). The quantity of oxygen delivered to tissues 

(DO2) depends on arterial oxygen content (mainly carried by hemoglobin) and cardiac output. 

Regulation and distribution of cardiac output is driven by regional O2 consumption (VO2) that 

proceeds at a rate set by tissue metabolic activity. If DO2 is reduced, VO2 is initially maintained 

by increased O2 extraction. If delivery is reduced further, a critical point is reached below which 

tissue extraction cannot increase any further, leading to a fall in VO2 (212). Several 

complementary macro- and microcirculatory mechanisms act to prevent the onset of tissue 

hypoxia in the face of a reduced DO2. These include a redistribution of blood flow to ‘vital’ 

organs, increased recruitment of perfused microvessels to facilitate O2 availability (233), as 

depicted in figure 1 and, as discussed later, a decrease in tissue utilization (metabolism) 

 

Sensing hypoxia 

How eukaryotic cells sense reductions in pO2 remains contentious. Five main mechanisms 

have been proposed (132) based on, respectively, heme-based proteins, O2-sensitive ion 
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channels, AMP kinase, NADPH oxidase and mitochondria. Thus, hypoxia may be detected 

by an allosteric shift towards a deoxy- configuration in proteins capable of reversibly binding 

O2 at a heme site, or by ion channels affected by local pO2, as has been shown in carotid 

body cells where hypoxia can inhibit a specific K+ current. Reduced O2 levels increase the 

AMP:ATP ratio thus, at sufficient magnitude, AMP-activated protein kinases (AMPK) are 

induced, modulating cellular metabolism at various levels via target protein phosphorylation. 

With molecular O2, NADPH oxidase or other non-mitochondrial enzymes such as xanthine 

oxidase or flavin-containing dehydrogenases generate superoxide (O2
.-), providing a second 

messenger that may regulate cellular activity through redox modifications. Finally, increased 

mitochondrial reactive oxygen species (ROS) production during hypoxia may result in 

mitochondrial O2 sensing through changes in redox state of the electron transport chain, 

though without necessarily affecting respiration (50,72,96). Mitochondria may play a critical 

role in oxygen sensing. This model has been controversial as previous studies, which mainly 

relied on pharmacologic tools, produced conflicting reports (223). However, recent studies 

using genetic and biochemical approaches have provided evidence for a role of 

mitochondrial reactive oxygen species (mROS) in oxygen sensing and hypoxia-inducible 

transcription factor-1 (HIF-1) activation (38). Indeed, blocking superoxide anion production 

by suppressing the Rieske iron-sulfur protein of complex III impairs HIF-1 induction by 

hypoxia, whereas hydrogen peroxide or agents that produce ROS activate HIF-1 during 

normoxia (95). These data indicate that mitochondria can function as O2 sensors and 

stabilize HIF-1α during hypoxia by releasing ROS to the cytosol (96). 

  

The hypoxia-inducible transcription factor 1 (HIF-1) pathway is central to the body’s innate 

response to the stressful condition of hypoxia. HIF is a heterodimer composed of α and β 

subunits that induces expression of multiple genes that promote adaptation and survival 

(214). The β subunit is constitutively expressed, while  subunit expression is tightly 

regulated by the local oxygen tension through the action of prolyl hydroxylase (PHD). When 

O2 tension falls below a critical threshold, proline residues cannot be hydroxylated. This 
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prevents ubiquitination, allowing the -subunit to accumulate and hetero-dimerize with HIF-

1β. The heterodimer can then bind to specific DNA regions within the nucleus, exerting its 

regulatory activities. The PHDs are considered effective O2 sensors in their own right as their 

Km values for oxygen are above atmospheric O2 concentrations (110). This allows small 

changes in O2 supply to affect the enzyme’s activity. 

 

For responses to occur, a decrease in PO2 must be detected by an O2 sensor that activates 

signalling pathways triggering functional responses. In general, adaptation to acute changes 

in O2 concentration (lasting from seconds to minutes) principally occur as a result of 

alterations of pre-existing proteins (e.g. involving phosphorylation or changes in redox state), 

whereas chronic changes (lasting from minutes to hours or longer) mainly occur through 

altered gene expression. 

 

Responding to hypoxia 

 (a) Transcriptomic 

Given oxygen’s essential role in cellular metabolism, a wide array of responses has evolved 

to cope with situations of oxygen supply-demand mismatch. Functional adaptation occurs at 

systemic, tissue and cellular levels, ultimately leading to a new phenotype that enhances the 

likelihood of survival (211). Such adaptation depends both on the modulation of activity of 

various enzymatic systems by metabolic messengers (e.g. pH, phosphate potential, redox 

potential), and on altered gene transcription with increased expression of genes encoding, 

for example, growth factors (e.g. VEGF, PDGF-β), cytokines (e.g. IL-1, IL-8), endothelin and 

adhesion molecules (e.g. VCAM-1, ICAM-1).  

 

The AMP kinase (AMPK) system is a well-conserved pathway for maintaining the balance 

between energy production and utilization (103). Triggered by an increase in AMP:ATP ratio, 

this system switches on an energy-preserving phenotype, both rapidly through 
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phosphorylating metabolic enzymes, and by a longer-term adaptation through regulating 

gene expression via phosphorylation of transcription factors and co-activators. AMPK targets 

include carbohydrate homeostasis, lipid metabolism, protein synthesis, mitochondrial 

biogenesis, cell signalling, proliferation, gene expression and transmembrane ion transport 

(128). 

 

Responses to hypoxia that involve induction or repression of gene expression are mainly 

mediated by HIF-1 (214). Three isoforms of HIF have been characterized, of which HIF-1α 

and HIF-2α are the most structurally similar and best studied. HIF-3 can be found as 

multiple splice variants, some of which can even inhibit activity of HIF-1 and HIF-2 (169). 

While HIF-1 is expressed ubiquitously in all cells, the other isoforms are only selectively 

expressed in certain tissues, such as vascular endothelium, lungs and kidney. Activation of 

HIF-1 and HIF-2 can regulate expression of many other genes induced by hypoxia, such as 

vascular endothelial growth factor (VEGF), a potent angiogenic factor that contributes to 

long-term adaptation to hypoxia through new blood vessel formation (130). However, each 

HIF isoform may have their unique targets offering different adaptive pathways to hypoxia 

(160); HIF-1 preferentially induces genes coding for the glycolytic pathway whereas HIF-2 is 

involved in regulation of genes important for cell cycle progression and induction of 

erythropoietin (161). The two HIF isoforms also have distinct and somewhat opposing roles 

to NO regulation in macrophages. While HIF-1 promotes iNOS expression and increases NO 

production, HIF-2 promotes arginase expression, reducing the amount of arginine available 

for NO synthesis (229). This may offer a balancing regulatory mechanism for NO 

homeostasis.  

  

Apart from O2 tension many other factors govern HIF stability, including microRNAs and  

post-translational modifications such as acetylation (91). In addition to O2, PHDs require 

Fe2+, 2-oxoglutarate and ascorbate to exert their activity, but may be inhibited by NO, Krebs’ 



Umbrello – page 9 

cycle intermediates and reactive oxygen species (126). To date, >200 HIF gene targets have 

been identified, including those encoding for proteins involved in angiogenesis, energy 

metabolism, erythropoiesis, cell proliferation and viability, vascular remodelling, and 

vasomotor responses (214).  

 

MicroRNAs, specific small, non-coding RNA sequences, also appear to be involved in the 

hypoxic response (140). These 19- to 24-ribonucleotide sequences, once transferred to the 

cytoplasm, inhibit target gene expression by translational repression and/or mRNA 

degradation. A common characteristic of the different microRNAs involved in hypoxic 

signalling is their dependence upon HIF (141). HIF may thus be the main modulator of the 

hypoxic response, either through direct gene induction, or by indirect microRNA-mediated 

gene repression (140). On the other hand, microRNAs may act as positive and negative 

feedback regulators of HIF-mediated responses (106). miR-210 is consistently upregulated 

in hypoxia and may play a central role in hypoxic signalling by modulating factors implicated 

in various pathways, e.g. downregulating expression of different components of the 

mitochondrial electron transport chain and the Krebs’ cycle, interfering with membrane 

trafficking, modulating migration and adhesion, differentiation and cell cycle (67).  

 

b) Hemodynamic effects  

At the systemic level, adaptation to hypoxemia affects many systems although the most 

evident changes involve the cardiocirculatory system. This response is composed of 

essentially unopposed local vasodilation in the heart and brain, and of a balance between 

the competing effects of locally-induced vasodilation and reflex chemoreceptor-sensed, 

sympathetic-mediated vasoconstriction in other tissues, e.g. kidney and skeletal muscle 

(206). This response pattern attempts to maintain an adequate O2 supply-demand ratio, 

compensating for any reduction in arterial O2 content, while preserving arterial perfusion 

pressure. Over 130 years ago, Roy and Brown recognized that interrupting tissue perfusion 
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produced a local, non neurally-mediated increase in blood flow, and that blood vessels could 

vary their diameter independently in response to local metabolic needs (208). Indeed, the 

main hemodynamic effect of hypoxia is systemic vasodilation with increases in cardiac 

output and heart rate, and redistribution of regional perfusion with increased coronary, 

carotid and hepatic and decreased renal blood flow. The sympathetic nervous system is 

activated with increased catecholamine levels but a reduced response to exogenous 

vasopressors (55,98,104,156,194,206,207).  Increases in forearm blood flow, a reduced 

vasomotor reflex and a reduced response to exogenous norepinephrine and angiotensin 

were noted in healthy volunteers made hypoxemic (104).  

c) Respiratory  

Haldane noted how hypoxia induced a rapid, shallow type of breathing in humans (101). The 

predominant ventilatory response is an increase in respiratory rate with a rise in bronchiolar 

tone (127), a response mainly mediated via hypoxemia-responsive peripheral 

chemoreceptors in the carotid and aortic bodies. 

d) Renal and endocrine  

Hypoxemia redistributes blood flow away from the kidney which, in response, increases 

blood volume via an antidiuretic and sodium-sparing effect (20,183). In volunteers breathing 

10.5% O2, blood pressure fell by 10% and urine output by 30% (109), yet vasopressin and 

cortisol levels significantly increased while urine osmolality more than doubled.  

e) Metabolic 

Mammalian cells undergo multiple adaptive modifications of metabolism in response to 

changes in O2 availability (184,215). Some organs with high metabolic demand (e.g. 

muscle, liver, brain, heart) cope with the initial energy imbalance through glycogenolysis, 
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phosphocreatine dephosphorylation and the adenylate kinase reaction (4). Moreover, a 

switch in fuel selection from lipid to carbohydrate oxidation optimizes the rate of ATP 

production by taking advantage of the higher ATP yield per mole of O2 consumed (94,113). 

ATP produced from fatty acid oxidation is strictly dependent upon the presence of oxygen. 

In contrast, glucose-derived ATP originates both from oxygen-dependent glycolysis and on 

glucose oxidation. During hypoxia, both fatty acid and glucose oxidation decrease, thereby 

increasing the importance of glycolytic-derived ATP which, in most cell types, only plays a 

minor role in normoxic conditions (182). However, in order to regenerate NAD+, pyruvate 

produced from glycolysis is converted to lactate rather than being utilized within the 

mitochondria, a process that ultimately depends on the presence of O2 as the terminal 

electron acceptor. Moreover, hydrogen ions. generated by the hydrolysis of glycolytic-

derived ATP, accumulate as these are not taken up by the mitochondria, and will eventually 

result in a fall in intracellular pH (210). Hypoxia, besides causing a critical reduction of 

oxygen availability for oxidative phosphorylation, also affects other mitochondrial processes 

including a decrease in Complex I-dependent respiration, and reversal of the direction of 

operation of the F0F1-ATPase (Complex V). This latter effect converts mitochondria into 

major ATP consumers as they attempt to restore and maintain membrane potential to 

prevent increased mitochondrial permeability transition and cell death (68). 

 

During hypoxia, expression and activity of carbohydrate transporters, and of enzymes 

involved in glycogenolysis and glycolysis are increased (215), while pyruvate 

dehydrogenase activity is inhibited (188). The net effect is a shunting of pyruvate away from 

mitochondria and an increase in glucose availability and glycolytic flux - the ‘Pasteur effect’. 

Hypoxia also realigns the subunit composition of cytochrome c oxidase (CcO), improving 

the efficiency of respiration (82). Furthermore, accumulation of the glycolytic intermediate, 

fructose 1,6-biphosphate, directly inhibits mitochondrial respiration (69), again linking an 

increase in glycolytic flux to decreases in O2 consumption. 
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Further adaptation to hypoxia is achieved through metabolic suppression, measured as a 

decrease in mitochondrial O2 consumption during hypoxia. This oxygen conformance  

(111) is recognized, at least to some extent, in human heart and in hepatocytes. It begins at 

partial pressures of O2 above the critical level at which diffusion limitation into the 

mitochondria affects oxidative phosphorylation (31). In addition, a reallocation of cellular 

energy between essential and non-essential ATP-demanding processes provides further 

defense against the energy mismatch. ATP-consuming processes are arranged in a 

hierarchy, with processes less critical for cell survival being first sacrificed (30). This is 

mainly achieved at the level of the two principal ATP consumers: ion pumps and protein 

synthesis. Hypoxia reversibly suppresses Na+/K+ ATPase activity and inhibits mRNA 

translation through multiple mechanisms (244). Indeed, a modified phenotype for adaptive 

hypoxia tolerance is expressed in indigenous highlander human populations (Quechuas, 

Sherpas and Tibetans), whereby improved coupling between ATP demand and supply 

pathways protects against imbalances due to environmental O2 limitation (112). Similarly, 

NO was increased in lowlanders acclimatizing to altitude; this was associated with changes 

in microcirculatory blood flow which increased local tissue oxygen delivery, in agreement 

with an adaptative role in hypoxia (147). 

Nitric oxide synthesis and metabolism  

a) Production by nitric oxide synthases 

A large proportion of NO synthesis occurs through the L-arginine-NO pathway (177), one of 

the main metabolic pathways for arginine (246) (as depicted in figure 2). With these 

reactions, the semi-essential amino acid L-arginine is metabolized to NO and L-citrulline by 

a family of nitric oxide synthases (NOS) (135). These enzymes are dimers formed by two 

monomers consisting of a flavin-containing reductase domain and a heme-containing 
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oxygenase domain. The NO synthesis reaction requires the presence of two oxygen 

molecules plus NADPH, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and 

tetrahydrobiopterin as coenzymes/cofactors (29). NOS may be ‘uncoupled’ in the absence 

(or reduced availability) of either L-arginine or tetrahydrobiopterin, or in the presence of the 

endogenous NOS inhibitor, asymmetric dimethylarginine (ADMA) (227,239). Here, electrons 

flowing from the reductase to the oxygenase domain are diverted to molecular O2 rather than 

to L-arginine, eventually resulting in production of superoxide rather than NO (239,247). 

Three isoforms of NOS have been characterized (135). The endothelial (eNOS) and 

neuronal (nNOS) isoforms are constitutively expressed. Although initially isolated in vascular 

endothelium and the nervous system, they have since been found in skeletal muscle, lung 

and liver and, recently, an eNOS-like NO producing machinery has been described in 

erythrocytes (134). These constitutive isoforms can rapidly increase NO production. In 

health, they play important regulatory roles in neurotransmission and the cardiovascular 

system. Production of the inducible isoform (iNOS) depends on transcription; several hours 

are needed to reach peak activity. Its gene transcript increases on exposure to pro-

inflammatory cytokines and bacterial products. In general, iNOS generates larger 

(nanomolar vs picomolar) quantities of NO compared to its constitutive isoforms (5). This is 

related to the amount of protein expressed. The existence of a specific mitochondrial variant 

of NOS (mtNOS) has been claimed (88,142). However, others challenge its existence as no 

specific mtNOS sequence has yet been found in mitochondrial DNA, nor has any pathway 

enabling NOS protein transport into these organelles been identified, nor could it be found 

when specifically sought (142). 

This picture is further complicated by the ability of most cells to express multiple isoforms in 

different compartments. In the heart, for instance, nNOS is expressed within the 

sarcoplasmic reticulum and its activation increases contractility, whereas eNOS is confined 

to the caveolae and inhibits β-adrenoreceptor-mediated increases in contractility (16). 

Moreover, constitutively expressed NOS can be modulated by post-translational 
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modifications and phosphorylation (216) or be induced (135), while iNOS may be 

constitutively expressed at low levels in some tissues (189). 

b) Dietary nitrite/nitrate intake 

Though traditionally considered as inert oxidative end-products, nitrate (NO3
-) and nitrite 

(NO2
-) may play an important role in NO homeostasis (164). Diet is a major source of NO3

- 

with particularly high levels in leafy green vegetables. An average serving of beetroot 

contains more nitrate than is endogenously generated per day from NO generated by all 

three NOS isoforms combined. Once absorbed, most nitrate is ultimately excreted in urine. 

However, up to 25% is taken up by salivary glands and concentrated in the saliva where it 

reaches levels 10-fold higher than in plasma. Facultative anerobe bacteria within the oral 

cavity then reduce it to nitrite while using it as an alternative electron acceptor to O2 during 

respiration (165). Nitrite-rich saliva is then swallowed where, within the acidic milieu of the 

gastric lumen, NO2
- is rapidly protonated to nitrous acid that further decomposes to NO. This 

is termed the “nitrate-nitrite-nitric oxide pathway” (166) (figure 3). 

Orally administered nitrate or nitrite can modulate the endogenous NO system in various 

physiologic and pathophysiologic conditions (41,241,249). Significant increases in plasma 

NO3
- and NO2

- levels were measured in human volunteers after beetroot juice ingestion, with 

lowering of arterial BP by about 10 mmHg. This was prevented by interrupting the 

enterosalivary circulation through non-swallowing of saliva (241), or by selective suppression 

of the oral microflora with an antiseptic mouthwash (193). 

c)  Generation by other pathways:  

(i) Systemic nitrite reduction 
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Endogenously-formed or dietary nitrite in blood and tissues may be recycled to form NO-like 

bioactive molecules (Figure 3). In a human forearm blood flow study (90), Gladwin et al 

found that of the various plasma NO-related species, only NO2
- had a significant arterial-

venous gradient, indicating a degree of consumption during circulatory transit, and thus 

suggestive of possible bioactivity. This gradient markedly increased with exercise and 

inhibition of regional NO synthesis, suggesting that NO2
- is a plasma carrier of NO 

bioequivalents that are peripherally converted into bioactive NO. However, these results 

could not be replicated by Lauer et al (144) who reported no vasodilatory effect following 

intra-arterial administration of NaNO2 into healthy volunteers. This may relate to a shorter 

duration of nitrite infusion, or the need for nitrite to undergo metabolic conversion before 

becoming vasoactive. A careful comparison of the route of administration, the concentration 

and total dose of nitrite is needed to better understand its role (45). 

Various possible in vivo pathways by which nitrite is reduced to NO have been investigated 

(figure 4). Nitrite can form NO non-enzymatically under acidic and/or ischemic conditions 

(251). Using 15N-labelled nitrite to identify the source of NO, and enzyme inhibitors to 

exclude other pathways, NO generation was explained by a reaction of spontaneous 

disproportionation; however, the in vivo relevance of this pathway remains uncertain. 

Dedicated nitrite reductases are present in bacteria, but are lacking in humans. Nonetheless, 

certain mammalian enzymes show some nitrite reductase activity beyond their normal 

physiologic function. As an alternative to non-enzymatic reduction, proteins from the heme-

globin family (89) or from pterin-based molybdenum enzymes (149) may catalyze the NO2
--

reductase reaction to NO. An in vitro reaction of NO2
- with human deoxyhemoglobin forms 

NO and methemoglobin while an intra-arterial nitrite infusion produces, after several 

circulation times, a vasodilatory effect in healthy volunteers (60). Myoglobin, both in the 

heart and vasculature(105,185), also has significant NO2
--reductase activity, as do heme 

protein-containing enzymes such as the mitochondrial electron transport chain cytochromes 

(17,49,138), the cytochrome P450 family of microsomal heme proteins (151), and aldehyde 
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dehydrogenase (ALDH2), a mitochondrial enzyme involved in ethanol inactivation that has 

also been linked to the bioactivation of organic nitrates (13,51). Even eNOS and soluble 

guanylate cyclase (sGC), being heme-based enzymes, may have possible nitrite reductase 

activity, thereby offering an important alternative source of NO outside the conventional L-

arginine pathway (8,87).  

 

Given that Hb is an effective scavenger of NO, the possibility of a heme-independent 

pathway of NO synthesis from nitrite merits consideration as the in vivo relevance of nitrite 

reduction by heme-based enzymes may be challenged by the need for the newly 

synthesized NO to escape from this scavenging. The two most studied NO2
--reducing 

molybdenum-based enzymes are xanthine oxidoreductase (XOR) and aldehyde oxidase 

(149). The former plays a critical role in purine and pyrimidine catabolism, catalyzing 

oxidation of hypoxanthine to xanthine, and xanthine to uric acid. As it also reduces O2 to 

H2O2 and O2
.- XOR is a key enzyme in the process of oxidative injury. XOR can catalyze 

reduction of NO3
- to NO2

-, and NO2
- to NO under anerobic conditions; this can be blocked by 

the XOR-inhibitor, oxypurinol (152). Similarly, aldehyde oxidase, a cytosolic enzyme 

involved in biotransformation of drugs and xenobiotics, also has significant in vitro NO2
--

reductase activity (150).  

(ii) Release from pre-formed storage pools  

Attempting to solve the apparent paradox of the NO scavenging process being too rapid and 

effective to allow this short half-life molecule to exert its physiologic effects, it has been 

suggested that, depending on the oxygenation state of Hb, NO may either react with oxyHb 

to be oxidized to NO3
-, or can bind to the deoxygenated form to generate a nitrosyl-adduct 

(NO-Hb) that subsequently reacts with thiol groups to produce S-nitrosohemoglobin (SNO-

Hb) (121,191,225). SNO-Hb is more stable and has a longer half-life than NO, and its 
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administration can evoke a hypotensive response suggesting it acts as both carrier and 

donor of NO bioequivalents (figure 3). 

Other reservoirs of potential nitric oxide bioactivity include S-nitrosoalbumin (224), tissue 

nitrite, S-nitrosothiols (RSNO), N-nitrosamines (RNNO), and dinitrosyl iron complexes 

(DNIC). Their concentrations vary in different pathophysiologic states, typically showing 

marked elevation compared to basal levels in acute inflammation and reduction in the more 

chronic setting. Although little is known about their in vivo relevance, they may act as 

signalling molecules or storage forms of NO (43,73,237). Similar NO storage forms are 

found in other compartments such as the vascular wall (203). 

Regardless of location, all these compounds may be activated to release NO under certain 

conditions, and to contribute to the body pool of NO-related metabolites. Opinion still 

remains divided as to the in vivo importance of these mechanisms (90,118,198). A 

mitochondria-targeted S-nitrosothiol was recently shown to selectively induce NO production 

and S-nitrosylation (addition of an NO+ group to a protein thiol to form a nitrosothiol) at the 

mitochondrial level, producing vascular relaxation of pre-contracted aortic rings and 

protecting against ischemia-reperfusion (197). Molecules able to enhance trans-nitrosation 

reactions, transferring NO from one cysteine residue to another, constitute an emerging area 

of research in the field of drug design (86). 

d) NO metabolism 

The in vivo fate of NO is highly complex; several catabolic pathways exist (figure 5), with 

varying relevance in different body compartments (27,131). In vitro, NO rapidly reacts with 

O2 to form nitrogen dioxide (NO2). In the presence of NO at low concentration, the latter 

reacts with water to form equal amounts of nitrite and nitrate. At higher NO concentrations, 

NO2 reacts with another NO molecule to form dinitrogen trioxide (N2O3), which hydrolyses to 

form nitrite. In plasma, in the presence of O2, the principal reaction is formation of NO2
-  



Umbrello – page 18 

(115). Whether this is through autoxidation of NO, reaction with the plasma multi-copper 

oxidase ceruloplasmin (220), or oxidation by the mitochondrial cytochrome c oxidase in 

vascular cells is currently unclear (192,218,230). The situation differs in whole blood where 

the relatively high amount of oxyHb favours biotransformation of NO to NO3
- with 

concomitant formation of methemoglobin (27). This Hb reaction is considered by some as 

the primary catabolic process responsible for NO removal (107,124). A similar reaction with 

oxymyoglobin (to generate metmyoglobin and NO3
-) has been recently proposed as a crucial 

regulatory step of NO inactivation in muscle (40,79). However, other studies have shown 

that this reaction only takes place in conditions of excess NO (192).  

NO can also react with superoxide to produce peroxynitrite (ONOO-). The rapidity of this 

reaction, some 3-4-fold faster than O2
.- dismutation by superoxide dismutase, makes ONOO- 

formation a major potential disposal pathway of NO reactivity (92), though this does depend 

on the rate of tissue superoxide production. ONOO- itself may trigger oxidation or nitration 

reactions with various cellular targets modulating their biological activities, and is eventually 

converted into nitrate or nitrite (228). 

Nitrate and nitrite were long considered stable end-products of NO catabolism, however both 

are now recognized to be subject to further biotransformation (78,131,226). Highly reactive 

NO by-products (reactive nitrogen species) can react with protein thiol (-SH) groups to form 

S-nitrosothiols such as S-nitrosoalbumin, S-nitrosoglutathione and S-nitroso-hemoglobin 

(131), or with amines to generate N-nitrosamines. The physiologic significance of RNNOs is 

presently unknown, but concentrations change rapidly in response to an acute oxygen 

shortage (43).  NO itself can directly react with metals to generate metal nitrosyls, e.g. NO-

Hb. In addition to nitrosation, RSNOs may also be produced by oxidative nitrosylation. This 

reaction is mediated by generation of thiyl radicals (RS.) that may be derived from interaction 

of thiols with oxidants such as peroxynitrite (43). NO metabolism changes under hypoxic 

conditions, with greater production of metal nitrosyls, RSNOs and RNNOs (180). Some of 
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these products share some of the biologic properties of NO (226) and may possess the 

important biological functions of storing and transporting NO. Moreover, S-nitrosylation of 

thiol groups is a widespread post-translational redox-based protein modification. Similar to 

phosphorlyation, this exerts control over many protein classes in various physiologic and 

pathophysiologic conditions (108,157). 

e) Half-life of NO  

The process of NO transfer to its target remains incompletely understood. NO has high 

reactivity and a very short half-life, with measured blood levels being too low to likely exert 

any physiologically relevant effect (159). From in vitro studies, the half-life ranges from as 

little as 10-6 seconds to as much as 11.5 seconds (100). Mathematical modelling estimates 

an in vivo half-life of about 2 ms (158). Such a short half-life plus the rapid intravascular 

scavenging of NO has to be reconciled with the prominent autocrine and paracrine roles this 

molecule is believed to play in cellular physiology. Liao et al (154) proposed the existence of 

intravascular erythrocyte-free zones generated by blood flow that may increase the NO half-

life by several orders of magnitude due to reduced local NO scavenging, thus allowing the 

molecule to exert its biologic functions. Another possibility is the concept of stored NO 

bioactivity (66,221), as outlined above.  

To summarize, referring to the half-life of free NO may no longer be relevant given the 

rapidity of its transformation and interchange between different metabolites, many of which 

are longer lived than the parent molecule. A more complex system appears to be in place, in 

which the short half-life of NO itself is important in limiting the action of the molecule to its 

site of formation and to enable local signalling (autocrine and paracrine levels), while 

downstream biotransformation reactions make economical use of the NO produced as well 

as contributing to distant signalling (endocrine level). 

Nitric oxide and cardiovascular homeostasis 
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a) Nitric oxide as a regulator of vascular homeostasis  

NO is a core physiologic regulator of many cardiovascular processes, including platelet 

aggregation and adhesion, myocardial contractility, vascular permeability and tone 

(187,243). NO is essential for both global regulation and regional distribution of blood flow 

and pressure. Dysregulation of the NO system thus likely plays a fundamental role in many 

pathophysiologic conditions ranging from essential hypertension and atherosclerosis to the 

hypotension seen in acute shock states (243).   

Nitric oxide is a key contributor to new vessel formation: in endothelial cells, VEGF induced 

NO production via eNOS that, in turn, mediated angiogenesis (83). iNOS-derived NO may 

also have a role in angiogenesis (178). Besides being an effector of VEGF activation, NO 

also enhances growth factor synthesis in numerous cell types, mimicking the classical 

hypoxic stimulus (71). Thus, NO appears to act both as an upstream and a downstream 

mediator of VEGF-dependent angiogenesis. 

b) Mechanisms underlying the vasodilatory action of NO 

NO regulates blood pressure and flow through its effects on vascular smooth muscle tone. 

The shear stress generated by flowing blood against the endothelial surface triggers 

production of NO both basally (114), and in response to mechanostimulation (222). This 

increase in NO production is nonlinear with respect to shear stress (14). Of note, laminar 

blood flow (which increases shear stress) increases NO production whereas disturbed flow 

(causing low and oscillating shear stress) inhibits release of NO and fails to upregulate NOS 

(58). 

Being small and lipophilic, NO rapidly diffuses across membranes to reach vascular smooth 

muscle cells. Its main mechanism of action is mediated by nitrosylation of the heme-iron 

within sGC, leading to increased synthesis of cyclic GMP (cGMP) (243). This, in turn, 
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activates protein kinases that modulate myosin light chain kinase and phosphatase 

activities, resulting in less phosphorylation of myosin and, eventually, vasorelaxation (143). 

NO can also cause vasodilation via cGMP-mediated opening of calcium-sensitive (KCa) (10) 

and ATP-sensitive (KATP) (179) potassium channels. When these ion channels open, the 

outward efflux of potassium hyperpolarizes the plasma membrane, reducing vascular tone. 

NO also activates KATP and KCa channels in a cGMP-independent manner through direct S-

nitrosylation (28,129). NO may contribute to the regulation of intracellular free Ca2+ levels, 

either via cGMP-dependent inhibition of calcium influx through L-type Ca2+ channels (23), 

and/or via increased Ca2+ removal from the cytoplasm. The latter can occur by accelerating 

the Na+/Ca2+ exchanger (84), or by increasing sequestration into intracellular stores via the 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (2,56). This effect may be important as 

the constitutive isoforms of NOS are calcium-calmodulin-regulated (216). An increase in 

intracellular Ca2+ activates calmodulin leading to NO synthesis. Thus, it could be postulated 

that reduced intracellular levels of free calcium resulting from increased NO levels could 

reduce the amount of iNOS-generated NO, contributing to the fine tuning of NO levels. 

(figure 6) 

In health, eNOS mediates most of the hemodynamic actions of NO, contributing to blood 

flow regulation between different vascular beds according to their varying metabolic needs 

(177,243). NO derived from iNOS is traditionally considered to be primarily responsible for 

the vascular hyporeactivity and hypotension seen in inflammatory states (235). However, 

emerging data indicate an important role for nNOS-derived NO in basal microvascular tone 

regulation while eNOS-derived NO regulates changes in tone in response to agonists or 

shear stress (171). This suggests a potentially independent regulation of basal and 

stimulated blood flow.  
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Hypoxic vasodilation to improve coupling of oxygen delivery and utilization 

(a) Evidence for the involvement of NO  

Under hypoxemic conditions, a vasodilatory response occurs, augmenting blood flow in an 

attempt to maintain O2 delivery. Given its importance in the regulation of cardiovascular 

homeostasis, NO likely plays a key role. An association between NO and hypoxic 

vasodilation was first described in 1989 (196). This response was endothelium-dependent 

and significantly reduced by administration of oxyHb, acting as a potent NO scavenger. Ten-

fold higher levels of circulating NO products were found in residents of the Tibetan plateau 

compared to sea-level dwellers (76). This was associated with increased resting forearm 

blood flow suggesting an adaptive role that offsets the O2 lack caused by high altitude. In 

volunteers hypoxemia-induced increases in forearm blood flow were blocked by the non-

specific NOS inhibitor, L-NMMA (24). In awake sheep, hypoxemia-induced increases in 

cerebral blood flow and falls in cerebral vascular resistance were reversed by the sGC 

inhibitor, methylene blue (119). 

 

(b) Alternative theories 

Apart from its role as an energy source for cellular metabolic activity, ATP has important 

signaling characteristics, particularly in situations of reduced energy supply such as hypoxia. 

ATP release occurs in all major cell types (162), including endothelial cells, vascular smooth 

muscle cells and circulating red blood cells. In the blood vessel lumen, ATP levels increase 

during hypoxia (21) or conditions of increased shear stress (26). Precise mechanisms 

responsible for release are, at present, incompletely understood. Ellsworth et al have 

postulated a key role for the red blood cell (RBC) in sensing hypoxia (74) and modulating 

vascular tone via active release of ATP (75). Blood flow is significantly augmented, either 

through direct purinergic signaling or by inducing synthesis of vasoactive metabolites such 

as NO. These pathways do appear to intersect and interact with each other; indeed, NO can 

inhibit ATP release from RBCs (181) while nitrite enhances erythrocyte ATP synthesis and 

release during hypoxia (46). 
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(c) NO and control of metabolism 

In tandem with its role in hypoxic vasodilation, NO has potent inhibitory effects upon cellular 

metabolism that are significantly enhanced under hypoxic conditions (53,59). NO potently 

and reversibly reduces mitochondrial membrane potential (213) by competing with O2 at CcO 

(34). As less competition occurs in the presence of hypoxia, after an initial rapid (albeit 

reversible) inhibition of this enzyme, a potentially irreversible inhibition of Complex I occurs 

through nitrosylation and nitration that is also accelerated by hypoxia (52,81). For 

nitrosothiols and peroxynitrite to interact with Complex I, prior transition of the enzyme from 

its active (A) to its deactive (D) state is necessary, as only the D-form is susceptible to 

inactivation by these agents. Transition of Complex I from A to D preferentially occurs during 

hypoxia (85). This process may initially confer some degree of protection, reducing the 

amount of free radicals produced upon re-oxygenation, but may also initiate 

pathophysiological modifications of mitochondrial activity. Taken together, under conditions 

of reduced O2 availability NO mediates an important compensatory response through both 

enhancing supply and suppressing metabolic demand (figure 6). 

 

Other important effects of NO on intermediary metabolism are mediated through ONOO--

dependent activation of the AMPK system, or by direct nitrosation of critical thiols of target 

enzymes (122). The link between NO and the AMPK system involves different levels of 

regulation; for example, silencing of AMPK caused a decrease in cellular eNOS content 

(57). In particular, NO can limit energy-consuming anabolic processes such as hepatic 

gluconeogenesis and glycogen synthesis while inducing energy-producing catabolic 

pathways via increased expression of transmembrane carbohydrate transporters and a 

higher glycolytic flux (7,153). Over a longer time-scale, NO stimulates biogenesis of 

functionally active mitochondria (54). NO may also be an important modulator of the 

adaptive response to hypoxia; by redistributing O2 within cellular compartments and 

between neighbouring cells and interfering with the stabilization process of HIF-1, it 
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allows fine-tuning of cellular metabolism (99). Altered levels of NO and ROS likely impinge 

upon oxygen-sensing pathways. In a variety of cell types, NO stabilized HIF-1 protein and 

provoked HIF-1 target gene expression under normoxia (36). Whether this is due to NO 

itself or to a reactive intermediate, and whether or not the mechanism is cGMP-dependent 

is under active investigation (37). It does appear that the ability of NO to stabilize HIF-1 

depends to some extent on the formation of co-signals, such as, for instance, superoxide 

and the consequent production of peroxynitrite. 

 

Notwithstanding the above findings, some authors reported no impact of NO modulation on 

whole body (63) or myocardial (136) oxygen consumption. By contrast, others did find a 

modulating effect on whole body oxygen consumption (217). The negative studies used 

non-selective NOS inhibition but did not entertain the possibility that NO may be generated 

by alternate pathways such as nitrite reduction or release from RSNO. Moreover, the lack 

of effect after administering the NO donor sodium nitroprusside, or authentic NO, may be 

explained by the potent scavenging properties of haemoglobin and myoglobin. 

Conceivably, the effect of NO on oxygen delivery and consumption may be tissue-specific. 

In the brain, NO synergized with hypoxia to induce necrotic death via CcO inhibition in both 

neurons (120) and glia (170). NO-mediated inhibition of CcO may thus induce an adaptive 

state of reduced O2 consumption compensated for by increased glycolytic flux, or it may 

lead to a critical reduction in ATP production and cell death. The overall impact likely 

depends on the relative contribution of each process; this is turn depends on the extent 

and rate of metabolic perturbation and, perhaps, the cell type affected. 

 

(d) NO and microRNAs 

The interplay between NO and microRNA signalling is intriguing. Such cross-talk may 

connect a very fast and ubiquitous signalling pathway for the acute response to hypoxia 

with the master regulator of chronic hypoxia. This was recently demonstrated in studies of 

the mechanisms of ischemic or hypoxic myocardial preconditioning (209).  miR-21, a 
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microRNA induced in vascular tissue by shear stress, increased NO availability through 

phosphorylation of eNOS (242). Conversely, a NO donor modulated production of miR-21 

and other microRNAs, thereby regulating smooth muscle cell contraction (137). Brief bursts 

of myocardial ischemia induced miR-1, miR-21 and miR-24; this, in turn, induced eNOS 

mRNA and upregulated eNOS protein, whereas no effect was seen on iNOS. This miR-

induced, eNOS-derived NO had cardioprotective effects against ischemia-reperfusion 

injury, possibly by restoring the O2 supply/demand balance (248). 

  

Very recently, another aspect of miR-mediated regulation of the NO pathway was 

discovered: a well-known paradox of iNOS-derived NO is that cytokine stimulation can 

upregulate iNOS gene expression >2000-fold but, in some tissues, the increase in NO 

levels was far less (167). miR-939 decreased cytokine-induced iNOS protein expression 

but with no effect on iNOS mRNA levels or stability, thereby contributing to post-

translational silencing through direct binding to the iNOS gene (93).  Similarly, increases in 

miR-146a activity inhibited of LPS-induced iNOS expression and NO production (64). 

These findings have been interpreted as an endogenous protective mechanism against the 

untoward consequences of prolonged iNOS overexpression. 

 

(e) NO and the renin-angiotensin system  

The renin-angiotensin system (RAS) is an important regulator of blood flow and pressure 

through renal, vascular and central mechanisms (97). The classical pathway involves 

binding of angiotensin II to the angiotensin II type 1 receptor (AT1), to exert inotropic and 

vasocontrictor actions through increasing intracellular free calcium. The type 2 receptor 

(AT2) serves to counterbalance activation of the AT1 pathway; one of the main pathways 

associated with AT2 activation is stimulation of NO production (47). AT2 activation 

significantly attenuated mitochondrial respiration, and this was reversed by the NOS inhibitor 

L-NAME (1). 
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(f) NO levels in hypoxia: balance of synthesis and metabolism 

The NO concentration at any given location represents the balance between local 

synthesis and metabolism/elimination. During hypoxic vasodilation, the rise in NO levels 

may derive from increased production via NOS isoforms, and/or increased NO synthesis 

from alternate pathways (e.g. nitrite reduction or RSNO release), and/or reduced 

elimination, e.g. by conversion to NO2
- or NO3

- (figure 7). An alternative (or perhaps 

concurrent) mechanism is of vasodilation due to other factors such as ATP release by 

RBCs; the resulting increase in shear stress increases NO production which then further 

enhances the vasodilatory response. 

 

(i) Does hypoxia increase NO production by NOS? 

NOS-related NO production increases during hypoxia. In dogs, NOS inhibition reversed 

hypoxemia-induced tachycardia, hypotension and increases in cardiac output (12), findings 

subsequently replicated in human volunteer studies (25,48,236). However, NOS inhibition 

also accentuated the hypoxia-induced rise in pulmonary vascular resistance (25).  

 

Given the rapidity (seconds to minutes) of hypoxic vasodilation, the initial increase in NO 

synthesis is likely to be primarily mediated by a constitutively expressed NOS isoform. O2 

regulates transcription of eNOS (11) and possibly nNOS (19). With prolonged hypoxia, NO 

levels progressively rise; in an ex vivo macrophage model iNOS mRNA was detected after 

1.5 hours of hypoxia (9). HIF-1 may influence with iNOS expression under hypoxic 

conditions (125). In some cell types such as macrophages, hypoxia cannot by itself induce 

iNOS expression, whereas the synergistic combination of hypoxia and interferon-γ was a 

potent inducer (172). In other cell types (e.g. cardiomyocytes), hypoxic activation of the 

HIF-1 pathway could upregulate iNOS expression by itself, though this was significantly 

amplified with interleukin-1β (125). In pulmonary artery endothelial cells, hypoxia alone did 

not induce iNOS expression, but it significantly modulated cytokine induction of the gene, 

prolonging the half-life of cytokine-induced iNOS mRNA from 6 to 17 hours (250). 
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However, hypoxia itself can induce expression of inflammatory cytokines (133) which then 

can activate iNOS. Thus, a more complex scenario probably exists in vivo with co-

participation of all three isoforms. 

 

The oxygen atom in NO and citrulline is derived from molecular oxygen, regardless of 

synthesis by constitutive or inducible isoforms of NOS (146). Hypoxia could attenuate the 

NO component of endothelium-dependent vascular relaxation, likely due to decreased NO 

production secondary to oxygen depletion (123,200). The apparent Km values for oxygen 

were 17, 6 and 5 mmHg for neuronal, endothelial and inducible isoforms of NOS 

respectively(201). These values are close to the Km values of other enzymes that utilize O2 

as a substrate, e.g. CcO. As the neuronal isoform shows a higher Km value for O2, it is 

thus more sensitive to the prevailing oxygen concentration. 

 

Despite its apparent simplicity, the likelihood that hypoxic vasodilatation can be 

predominantly explained by de novo NOS synthesis presents at least three major 

contradictions. Given that NOS-derived NO synthesis requires molecular O2, it seems 

counter-intuitive in situations of O2 lack to record an increase in NO production. Indeed, 

some in vitro experiments report reductions in eNOS mRNA expression and decreased 

NO production during hypoxia (155,200,245). These results conflict with those cited 

above and may relate to the degree of hypoxia (or anoxia) experienced, the varying O2 

sensitivity of the different cells/tissues studied, and/or a possible biphasic nature of 

events relating to the time course of the overall response (e.g. feedback inhibition of 

NOS expression secondary to an acute initial increase in NO availability, followed by a 

gradual increase in expression as hypoxia persists). Nevertheless, these studies raise 

important concerns regarding the true significance of NOS-derived NO in hypoxia. 

Secondly, increased arginase activity during hypoxia is a well-known process 

(139,163), and this reduces the amount of substrate available for the reaction by NOS.  
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A more complex regulation of NO synthesis from NOS may exist during hypoxia. In a 

rodent model of chronic hypoxia, exposure to 10% O2 significantly increased pulmonary 

eNOS expression, in addition to an increase in ADMA concentration, reduced DDAH, 

(the enzyme responsible for ADMA disposal) and reduced tissue nitrate/nitrite (NOx) 

concentrations (175). They postulated that hypoxia reduces DDAH activity that, in turn, 

increases ADMA concentrations that leads to eNOS inhibition and reduced synthesis of 

NO. Finally, in several studies NOS inhibition could only partially reverse hypoxic 

vasodilation, thus other mechanisms must be implicated (35,148). 

 

 (ii) Does hypoxia increase NO release from SNO-Hb and other NO storage forms? 

Stamler’s theory for hypoxic vasodilation demands a central role for erythrocytes in 

matching blood flow to local metabolic demands. The affinity of hemoglobin for NO is 

similar to that for O2, i.e. high in the relaxed deoxygenated state, and low in the tense 

oxygenated state (225). A cysteine residue on the hemoglobin β-chain reacts with NO to 

form a nitroso-adduct (SNO-Hb) that acts as a carrier of NO bioactivity. Erythrocytes thus 

act as O2 sensors to control regional blood flow. Erythrocytes could rapidly relax thoracic 

aortic rings from both rabbits and mice under hypoxic but not normoxic conditions, though 

this relaxation could be inhibited by either depletion of SNO-Hb or sGC blockade (70).  

 

(iii) Does hypoxia increase reduction of nitrite to NO? 

The findings of an increased concentration of NO during hypoxic vasodilation, full reversal 

of these hemodynamic effects by sGC inhibition but not by NOS blockade, a strict O2 

dependence of the NOS reaction, and the possibility that NO2
- can be converted to NO, 

particularly under acidic conditions, suggest that nitrite itself may act as a NO-equivalent 

donor during hypoxia (3,176). cGMP-dependent nitrite vasodilation and the rise in 

measured NO have been interpreted as evidence for the involvement of a NO-mediated 

relaxation, rather than a direct NO2
- effect. Intravenous infusion of sodium nitrite (1 
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µmol/min) into healthy volunteers increased forearm blood flow and reduced pulmonary 

artery pressure only under hypoxemic (12% O2) conditions, but was not related simply to 

an increase in plasma nitrite concentration (116). These data are consistent with a direct 

extravascular metabolism of NO2
- to NO to exert hypoxia-associated bioactivity. Whether 

endogenous nitrite concentrations are sufficient to cause similar hemodynamic effects 

remains uncertain at present. 

 

Of the many different mammalian molecules with nitrite reductase activity (figure 4), the 

most extensively studied is hemoglobin. Addition of erythrocytes induced a left shift in the 

vasodilatory dose-response curve and cGMP accumulation in response to nitrite but only 

under hypoxic conditions (61). This could be inhibited by the NO scavenger, C-PTIO. Thus, 

NO2
- exerted a higher vasodilatory effect when deoxygenated Hb was present, again 

emphasizing the role of NO-dependent mechanisms in hypoxic vasodilation.  

 

Hemoglobin may be an important physiologic O2 sensor that can modulate vascular tone 

by (i) scavenging excess NO and (ii) increasing local blood flow through NO generation 

from nitrite when O2 content is reduced. This theory remains controversial because of the 

avid NO-scavenging properties of hemoglobin to the point that it has been argued that this 

phenomenon has minimal, if any, in vivo relevance (6). The Gladwin group countered with 

a recent ex vivo study using rat vascular rings (117) wherein the balance between the NO-

scavenging and generating properties of hemoglobin was specifically targeted during both 

normoxia and hypoxia. They found that nitrite displays a particular interaction with 

deoxyhemoglobin that promotes vasodilation despite its scavenging properties.  

 

Myoglobin can also act as a nitrite reductase, with NO being produced in vitro by reaction 

between NO2
- and myoglobin (199). This conversion was significantly reduced in cardiac 

tissue taken from a myoglobin knockout mouse model but restored by adding exogenous 

myoglobin. Under hypoxic conditions in vitro (238) and ex vivo (240) eNOS also displays 
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nitrite reductase activity. As for the pterin-based enzymes, both xanthine oxidoreductase 

(174,240) and aldehyde oxidase (195) are sources of NO2
- reduction, particularly during co-

existing hypoxia and acidosis.  

 

The apparently conflicting theories of NO2
- reduction and S-nitrosothiols acting as non-NOS 

dependent sources of NO, and as regulators of local blood flow under both physiologic and 

hypoxic/ischemic conditions, may be reconciled (42,77). Under physiologic conditions, 

nitrite is not directly reduced to NO but rather modulates many signalling pathways, 

including sGC activation. It also induces post-translational modifications normally 

associated with NO, such as the formation of nitroso- and nitrosyl species (42). NO2
- may 

therefore exert its signalling functions directly, without the need for intermediary formation 

of free NO. Hypoxia markedly potentiates tissue NO production from NO2
- in a dose-

dependent manner (77). This occurs particularly in heart, liver and vascular tissue, with 

multiple heme, iron-sulfur cluster and molybdenum-based reductases distributed among 

distinct subcellular compartments acting in a multifactorial and cooperative manner to 

catalyze the reaction. Acute hypoxia also reduces NO2
- concentrations yet enhances 

formation of NO metabolites such as RSNOs and RNNOs in an NO-independent manner. 

This suggests a pathway that generates bioactive NO metabolites directly from NO2
-. In this 

paradigm, conversion of NO2
- to NO and the storage of NO bioactivity as RSNOs may both 

be constituents of a more complex regulatory mechanism of interaction of multiple NO-

related species. The differences in oxygen dependence of nitrite reductase activity in 

tissues (exponential) versus red blood cells (optimum around the p50) suggest that the 

regulatory range of the latter may operate at intermediate levels of hypoxia whereas the 

former predominates as PO2 drops further. 

 

(iv) Does hypoxia reduce NO metabolism by cytochrome c oxidase? 

Moncada’s group suggested that the hypoxia-induced increase in NO is due to reduced 

elimination rather than increased production (186,234). Plausibility has been tested in a 
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computational model of brain O2 transport and metabolism (205), with description of the 

kinetic parameters that link decreased NO metabolism by CcO with low O2 concentrations. 

They showed in L-arginine-supplemented iNOS-overexpressing cells that the capacity of 

CcO to metabolize NO was diminished at low O2 tensions, and that this correlated with 

both the enzyme’s redox state and consequent sGC activation. The same effect was seen 

when the redox state was altered by cyanide rather than hypoxia. Whereas NOS inhibition 

was effective at reducing NO levels, NO2
- administration had no effect on NO release at 

any O2 tension (186,234). NO production was also similar at all O2 tensions, regardless of 

whether CcO was oxidized or reduced (234). They thus concluded that CcO (in its oxidized 

state) constantly inactivates NO, thus regulating its intracellular concentration. However, in 

the reduced state seen in hypoxia, impaired inactivation would account for the increase in 

NO. This leads to local vasodilatation with improvements in oxygen delivery and a 

concurrent reduction in oxygen consumption due to direct inhibition of CcO, thereby 

facilitating the matching of delivery to needs under hypoxic conditions. Further studies are 

needed to demonstrate the in vivo relevance of these findings. 

 

Conclusions 

Hypoxic vasodilatation is an adaptive response that involves elevations in local NO 

concentrations in response to an acute reduction in arterial PO2. This both increases blood 

flow to restore O2 delivery and also modulates local metabolic requirements, thus attempting 

to re-balance an acute oxygen supply-demand mismatch. Several mechanisms are 

implicated (Figure 7) including increased NO synthesis from NOS, increased reduction of 

nitrite to NO by heme- or pterin-based enzymes, increased release of NO from NO storage 

forms, and reduced deactivation by mitochondrial cytochrome c oxidase. Many of these 

mechanisms have been shown either in in vitro/ex vivo conditions or by utilization of 

pharmacologic dosing regimens, so the question remains as to their in vivo 

(patho)physiologic relevance. While tissue hypoxia can result from decreases in arterial PO2, 
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blood flow or hemoglobin concentration (15), the adaptive mechanism for each form of 

hypoxia need not be identical. A recent animal study (62) demonstrated that NOS inhibition 

did not blunt the increase in myocardial blood flow during acute normovolemic hemodilution, 

and suggested, at least in this form of tissue hypoxia, that NO did not mediate vasodilation. 

Further work is needed to fully elucidate the multiple and varied roles of NO under hypoxic 

conditions, and to integrate these into an overall picture. 
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Glossary of non-standard Abbreviations and Acronyms  

ADMA: asymmetric dimethylarginine;  ALDH2: aldehyde dehydrogenase;  AMPK: AMP-

activated protein kinases;  AO: aldehyde oxidase;  CcO: cytochrome c oxidase;  cGMP: 

cyclic GMP;  DO2: oxygen delivery;  Hb: haemoglobin;  HIF-1: hypoxia inducible factor-1;  

N2O3: dinitrogen tetroxide;  NO: nitric oxide;  NO2-: nitrate;  NO2: nitrogen dioxide;  NO3-: 

nitrate;  NOS: nitric oxide synthase;  O2.-: superoxide radical;  ONOO-: peroxynitrite;  PO2: 

partial pressure of oxygen;  RNNO: N-nitrosamines;  ROS: reactive oxygen species;  RSNO: 

S-nitrosothiols;  sGC: soluble guanylate cyclase;  SNO-Hb: S-nitrosohemoglobin;  VO2: 

oxygen consumption;  XOR: xanthine oxidoreductase 
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Figures and figure legends 

Figure 1. Oxygen supply-demand relationship.  

The relationship between oxygen delivery to cells and oxygen consumption is non-linear. 

Initial reduction in the amount of oxygen delivered are compensated by a series of adaptive 

mechanisms. If delivery is reduced further, a critical point is reached (DO2 crit) below which 

tissue extraction cannot increase any further, leading to a fall in consumption. Several 

complementary macro- and microcirculatory mechanisms act to prevent the onset of tissue 

hypoxia in the face of a reduced delivery, and many of them are mediated by nitric oxide. 

 

Figure 2. Metabolic pathways for arginine.  

Four major metabolic pathways for arginine exist: first, arginine is degraded to urea and 

ornithine by isoforms of the enzyme arginase. A large part of arginine is used for protein 

synthesis, and arginine is also involved in the biosynthesis of creatine. Another metabolic 

pathway of arginine is the synthesis of nitric oxide (NO) by endothelial, neuronal or inducible 

isoforms of the enzyme NO synthase (respectively, eNOS, nNOS and iNOS) with 

concomitant formation of citrulline. The NO synthesis reaction requires the presence of two 

oxygen molecules plus NADPH as coenzymes/cofactors, and proceeds with two steps, a 

first one in which the intermediate N(G)-hydroxy-L-arginine (N-OH-L-Arg) is formed, and a 

second one in which NO and citrulline are formed as products. 

 

Figure 3. Multiple pathways of NO synthesis. 

Nitric oxide (NO) synthesis occurs in blood and tissues through the classical L-arginine-NO 

pathway, where the semi-essential amino acid L-arginine is metabolized to NO and L-

citrulline by a family of nitric oxide synthases (NOS) that use oxygen as co-factor. 
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Endogenously-formed or dietary-derived nitrite in blood and tissues may be reduced to NO. 

Dedicated nitrite reductases are present in bacteria, but are lacking in humans. Nonetheless, 

certain mammalian enzymes under hypoxic conditions may show some nitrite reductase 

activity beyond their normal physiologic function, such as proteins from the heme-globin 

family or from pterin-based molybdenum enzymes. S-nitrosothiols (RSNO) are other 

circulating reservoirs and carriers of potential nitric oxide bioactivity. Their concentrations 

vary in different pathophysiologic states, and under hypoxic conditions they may be 

activated to release NO from their thiol (-SH) group. The most studied of such storage pool 

is hemoglobin (Hb): a cysteine residue on the β-chain may react with NO to form a nitroso-

adduct (SNO-Hb) that, under hypoxic conditions releases NO bioactivity.  Traditionally 

considered as inert oxidative end-products, dietary nitrate (NO3
-) and nitrite (NO2

-) contribute 

to NO homeostasis through the gastroenteric “nitrate-nitrite-nitric oxide pathway”. Once 

absorbed from the diet, a significant part of plasma NO3
- is concentrated in the saliva. 

Bacteria within the oral cavity then reduce it to nitrite. Nitrite-rich saliva is swallowed, and 

within the acidic milieu of the gastric lumen NO2
- is rapidly converted to NO. 

 

Figure 4. Enzymes with putative nitrite-reductase activity. 

Dedicated nitrite reductases are present in bacteria, but are lacking in humans. Nonetheless, 

certain mammalian enzymes show some nitrite reductase activity beyond their normal 

physiologic function. As an alternative to non-enzymatic reduction, proteins from the heme-

globin family (such as deoxygenated haemoglobin – HHb, and myoglobin – HMb, the 

mitochondrial cytochrome bc1 complex – CIII, cytochrome c oxidase – CcO, and cytochrome 

c – CytC, as well as aldehyde dehydrogenase – ALDH2, the endothelial isoform of NOS – 

eNOS, and soluble guanylate cyclase – sGC)  or from pterin-based molybdenum enzymes  ( 

such as xanthyne oxidoreductase – XOR, sulphide oxidase – SO and aldehyde oxidase – 
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AO) may all catalyze the NO2
--reductase reaction to NO, expecially under hypoxic 

conditions. 

 

Figure 5. Pathways of NO metabolism in normoxic conditions. 

NO rapidly reacts with molecular oxygen (O2) to form nitrogen dioxide (NO2). If NO is present 

at low concentration, the NO2 reacts with water to form equal amounts of nitrite and nitrate. 

At higher NO concentrations, NO2 reacts with another NO molecule to form dinitrogen 

trioxide (N2O3), which hydrolyses to form nitrite (NO2
-), or may dimerize to form dinitrogen 

tetraoxide (N2O4). In plasma, the principal fate of NO is formation of NO2
-, although the exact 

reaction is unclear (autoxidation, reaction with ceruloplasmin, or oxidation by the 

mitochondrial cytochrome c oxidase – CcO). In whole blood NO reacts with oxygenated 

hemoglobin (oxyHb) to form nitrate (NO3
-) with concomitant formation of methemoglobin 

(MetHb). A similar reaction with oxymyoglobin (oxyMb) happens in tissues.  NO can also 

react with superoxide (O2
.-) to produce peroxynitrite (ONOO-); the latter may directly trigger 

oxidation or nitration reactions with various cellular targets, and is eventually converted into 

nitrate or NO2. Highly reactive NO by-products (“reactive nitrogen oxide species”, i.e. ONOO-

, NO2, N2O3, N2O4), possibly through the formation of nitrosonium equivalents (NO+), can 

react with protein thiol (-SH) groups to form S-nitrosothiols (RSNOs), or with amines to 

generate N-nitrosamines (RNNOs). NO can also directly react with metals (Mex) to give 

metal nitrosyls (MexNO). In addition to nitrosation, RSNOs may also be produced by 

oxidative nitrosylation. 

 

Figure 6. Effects of increased NO levels during hypoxia in the balancing of oxygen 

supply and demand. 

Left panel (A). Metabolic and contractile state of an ideal cell during normoxic conditions. 

ATP supply is maintained through mitochondrial and cytoplasmic reactions. Glucose (Gluc) 
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is transported from the interstitium via GLUT carriers. The vast majority of pyruvate, the end-

product of glucose breakdown, enters the mitochondria after oxidation by the enzyme 

pyruvate dehydrogenase (PDH). Here, it is completely oxidized with reactions coupled to the 

synthesis of ATP. Oxygen (O2) is crucially required as the terminal electron acceptor of the 

respiratory chain, Cytochrome c Oxidase (CcO). A small part of the pyruvate is reduced to 

lactate by lactate dehydrogenase (LDH). In conditions of excess of substrate availability, 

glucose is stored as glycogen. The contractile state of the cell is maintained through cycling 

of myosin from a phosphorylated to a dephosphorylated state, via the enzymes myosin light 

chain kinase and phosphatase, respectively (MLCK and MLKP). 

Right panel (B). Adaptive modifications of metabolism and contractile state during hypoxia. 

The increased levels of exogenous or endogenously formed nitric oxide (NO) during hypoxia 

contribute to the adaptation to the energy supply-demand mismatch. NO reduces 

mitochondrial metabolic demand by competing with O2 at CcO. It also limits energy-

consuming anabolic processes such as glycogen synthesis and induces energy-producing 

catabolic pathways via the increased expression and activity of GLUT transporters, and of 

enzymes involved in glycogenolysis and glycolysis, while PDH activity is inhibited. The net 

effect is a shunting of pyruvate away from mitochondria and an increase in glucose 

availability and glycolytic flux. NO also activates the enzyme soluble guanylate cyclase 

(sGC), leading to increased synthesis of cyclic GMP (cGMP). This, in turn, modulates MLCK 

and MLCP activities, resulting in less phosphorylation of myosin and, eventually, 

vasorelaxation. NO can also cause vasodilation via cGMP-mediated opening of calcium-

sensitive (KCa) and ATP-sensitive (KATP) potassium channels. When these ion channels 

open, the outward efflux of K+ hyperpolarizes the plasma membrane, reducing vascular tone. 

NO may also activate those ion channels in a cGMP-independent manner through direct S-

nitrosylation of cysteine (SH) residues. Eventually, NO regulates the intracellular free Ca2+ 

concentration, either via a cGMP-dependent inhibition of calcium influx through L-type Ca2+ 

channels (LTC), and/or via an increased Ca2+ removal from the cytoplasm. The latter may 
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occur by accelerating the Na+/Ca2+ exchanger (SCE), or increasing the sequestration into 

intracellular stores via the sarcoplasmic/endoplasmic reticulum (SER). The net effects of an 

increase in NO levels are reduced consumption of oxygen, increased glycolytic ATP 

production, and vasodilation that increases the supply of oxygen and nutrients. Solid arrows 

indicate pathways induced by NO; dashed arrows indicate inhibition. 

 

Figure 7. Effects of hypoxia on NO metabolic pathways 

Possible mechanisms of increased NO levels under hypoxic conditions include: 1) increased 

production by NOS; 2) increased release from storage forms such as RSNO; 3) increased 

reduction from nitrite; 4) reduced metabolism by CcO. 
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