
MALEC: A Multiple Access Low Energy Cache
Matthias Boettcher

University of Southampton
Southampton, UK

mb1e09@ecs.soton.ac.uk

Giacomo Gabrielli
ARM Ltd.

Cambridge, UK
giacomo.gabrielli@arm.com

Bashir M. Al-Hashimi
University of Southampton

Southampton, UK
bmah@ecs.soton.ac.uk

Danny Kershaw
NXP Semiconductors

Graz, Austria
daniel.kershaw@nxp.com

Abstract—This paper addresses the dynamic energy consump-
tion in L1 data cache interfaces of out-of-order superscalar
processors. The proposed Multiple Access Low Energy Cache
(MALEC) is based on the observation that consecutive memory
references tend to access the same page. It exhibits a perfor-
mance level similar to state of the art caches, but consumes
approximately 48% less energy. This is achieved by deliberately
restricting accesses to only 1 page per cycle, allowing the
utilization of single-ported TLBs and cache banks, and simplified
lookup structures of Store and Merge Buffers. To mitigate
performance penalties it shares memory address translation
results between multiple memory references, and shares data
among loads to the same cache line. In addition, it uses a Page-
Based Way Determination scheme that holds way information
of recently accessed cache lines in small storage structures called
way tables that are closely coupled to TLB lookups and are
able to simultaneously service all accesses to a particular page.
Moreover, it removes the need for redundant tag-array accesses,
usually required to confirm way predictions.

For the analyzed workloads, MALEC achieves average energy
savings of 48% in the L1 data memory subsystem over a high
performance cache interface that supports up to 2 loads and 1
store in parallel. Comparing MALEC and the high performance
interface against a low power configuration limited to only 1
load or 1 store per cycle reveals 14% and 15% performance
gain requiring 22% less and 48% more energy, respectively.
Furthermore, Page-Based Way Determination exhibits coverage
of 94%, which is a 16% improvement over the originally
proposed line-based way determination.

I. INTRODUCTION

Modern out-of-order superscalar processors rely on spec-
ulative execution, wide issue windows and multiple data
paths to exploit instruction-level parallelism, and on memory
hierarchies comprising fast on-chip SRAM caches to improve
memory access latency and throughput. The high contribution
of memory references to instruction streams as demonstrated
in Sec. III, makes it vital for first-level data caches to support
multiple accesses in parallel. However, finite energy sources
and limitations in semiconductor technology scaling result in
fixed energy budgets for mobile devices; in addition, cooling
and electricity costs are becoming increasingly important in
the desktop and server segments [4]. As a consequence, energy
efficiency has become a determining factor for microproces-
sors and one of the main obstacles to performance improve-
ments. As caches are one of the main contributors to the
on-chip energy consumption [13], cache-level optimisations
need to trade-off increased performance with degraded energy
efficiency.

This paper addresses the problem of implementing multiple-
access L1 data caches in an energy efficient manner. State of
the art microarchitectures such as Intel’s Sandy Bridge and
AMD’s Bulldozer allow up to two 128-bit loads and one 128-
bit store per cycle [1] [2]. Both rely on physical multi-porting
and cache banking (Sec. II). Next generation processors will
require even more sophisticated caches to handle aggres-
sive memory speculation and disambiguation techniques. The
Multiple Access Low Energy Cache (MALEC) builds upon
cache banking, but avoids the disadvantages of physical multi-
porting in terms of latency, area and energy consumption. It is
based on the observation that consecutive memory references
tend to access the same page. Our key contributions are:

• Page-Based Memory Access Grouping:
– restriction to access only one page per cycle; thus

allowing single-ported TLBs and cache banks
– simplified lookup structures for Store and Merge

Buffers that share results of page comparisons
– re-use of page address comparisons when merging

loads that access the same cache line
• Page-Based Way Determination:

– use of TLB lookups to index way information
– service all accesses to a specific page simultaneously
– use of validity information to allow the bypassing of

tag-arrays and directly access desired data-arrays
Sec. II and III list related work and justify our assumptions

on memory access patterns. Details on Page-Based Memory
Access Grouping and Page-Based Way Determination are
given in Sec. IV and V, respectively. Sec. VI then evaluates
our proposals before this paper concludes in Sec. VII.

II. RELATED WORK

Juan et al. [11] examined well known techniques to realize
multiple-access caches; namely, physical multi-porting, bank-
ing, virtual multi-porting and redundant copies. Hybrids of the
first two techniques achieve good performance-energy trade-
offs and are common in modern superscalar processors [1] [2].
Sec. VI compares our proposal, which utilizes cache banking
but does not rely on physical multi-porting, against such a
hybrid baseline. Recent proposals regarding the reduction of
leakage energy in caches, i.e. thanks to cache bank clock
gating or cache decay, are considered orthogonal to MALEC
and might be implemented in conjunction with it [7]. This is
also the case for TLB specific optimizations such as Chan and
Lan’s banking and filtering schemes [5].

Although a particular datum can only be located in one
way of an n-way set-associative cache, a conventional lookup
requires n tag- and data-array accesses. Techniques that at-
tempt to avoid redundant accesses may be categorized as “way
prediction”, “way estimation” and “way determination”. The
first category makes predictions based on MRU statistics [9]
[12]. While it is simple to implement, false predictions require
a second cache access to find the desired datum. Powell et al.
[16] mitigate this problem by increasing prediction accuracy
based on a combination of selective direct-mapping and way-
prediction. Way estimation techniques deliver multiple instead
of a single way [6] [8]. If the desired data resides within the
cache, it is guaranteed to be found within the given set of ways.
Consequently, no additional cycles are introduces, but energy
might be consumed for several redundant tag comparisons.
Nicolaescu et al.’s Way Determination Unit (WDU) stores
way information of recently accessed cache lines in a small
buffer [15]. Each line is associated with exactly one way
and guaranteed to hit there or miss the whole cache. Based
on this scheme, we propose Page-Based Way Determination
and compare it against an adapted WDU implementation
in Sec. V and VI-C, respectively. As our scheme operates
on page rather than line granularity, it can simultaneously
service all accesses to the same page and re-use TLB lookups
to index its way information. Furthermore, it uses validity
information to eliminate the need for tag-array accesses to
confirm predictions.

III. MOTIVATION

To estimate potential benefits from multiple-access data
caches, we analysed the most representative execution phase
(1 billion instructions identified by Simpoint v3.0) of SPEC
CPU2000 and MediaBench2 benchmarks. We observed an
average contribution of memory references to the overall
instruction count of 40% and a load/store ratio of 2/1. Fig. 1
illustrates the number of consecutive read accesses to the same
page, allowing n intermediate accesses to a different page. The
bar colours represent - from dark to light grey - groups of 1, 2,
3 to 4, 5 to 8, and more than 8 consecutive accesses. Hence, a
primarily light coloured bar indicates a very high page locality.
On average, 70% of all loads are directly followed by one
or more loads to the same page. Allowing one, two or three
intermediate access to a different page increases this ratio to
85%, 90% or 92%, respectively. Consequently, the majority of
loads are suitable for Page-Based Memory Access Grouping
and Page-Based Way Determination introduced in Sec. IV and
V. Stores show an even higher spatial locality. However, as this

SPEC-INT SPEC-FP MediaBench2 Overall0

20

40

60

80

100

Co
ns

. A
cc

. p
er

 P
ag

e*
 [%

] x=1 x=2 2<x 4 4<x 8 8<x

Fig. 1. Number of Consecutive Accesses to the same Page, allowing - left
to right - 0, 1, 2, 3, 4 and 8 intermediate Access to a different Page

property is already exploited by Merge Buffers, it is not further
discussed here. Focusing on line rather than page granularity
reveals that 46% of loads are directly followed by one or more
loads to the same line. MALEC exploits this observation by
allowing multiple loads to share data read from the L1 cache.

IV. PAGE-BASED ACCESS GROUPING

Fig. 2a and 2b give a high level description of MALEC
and its operation, emphasizing novel and modified elements
in black and dark grey, respectively. To demonstrate its scal-
ability, Fig. 2a is parameterized to service up to four loads
and two stores in parallel. Multiple parallel L1 accesses are
achieved by distributing accesses to independent cache banks
and merging loads to the same line (Arbitration Unit; MB
to merge stores). Energy savings result from the limitation to
access only one page per cycle (Input Buffer), allowing the
utilisation of single-ported components (i.e. uTLB, TLB and
L1 banks) and simplified Store (SB) and Merge Buffer (MB)
lookup structures. To reduce the performance impact of Page-
Based Memory Access Grouping, accesses are prioritized and
potentially re-ordered (Input Buffer) and newly introduced
latencies overlapped with address translations.

Fig. 2a includes several components common in state of the
art memory interfaces; e.g. a Translation Lookaside Buffer
(TLB) and a micro TLB (uTLB) to facilitate address trans-
lations. The latter is not strictly required by MALEC, but
increases the efficiency of Page-Based Way Determination
(Sec. V). Store and Merge Buffers allow the speculative exe-
cution of stores and reduce the number of L1 cache accesses
by merging data from multiple stores to the same address
region, respectively. Four independent 4-way set-associative
single-ported cache banks, each holding data corresponding
to a specific address region, allow up to four parallel cache
accesses with moderate miss rates. The utilized physically
indexed, physically tagged (PIPT) L1 data cache and the
serialized address translation and data access are common
in energy sensitive systems. Sec. VI evaluates the effects of
alternative setups.

Input Buffer: Stores finishing address computation are
sent to the SB and remain there until they commit into
the MB (Fig. 2b). Evicted MB entries (MBEs) and loads
are forwarded to the Input Buffer, which prioritizes them
and identifies groups accessing the same page. From high
to low priority, it includes up to: three loads from previous
cycles, four loads finishing address computation, and one
evicted MBE (not time critical, as corresponding stores already
committed). Each cycle, the virtual page ID (vPageID) of
the highest priority entry is passed to the uTLB for address
translation and simultaneously compared against all remaining,
currently valid entries. Matching entries are then passed to the
Arbitration Unit. Unmatched loads and those rejected by the
Arbitration Unit are held until the next cycle. Should the Input
Buffer’s storage elements be insufficient, one or more address
computation units are stalled.

Arbitration Unit: Based on the current selection of Input
Buffer elements, the Arbitration Unit selects up to four loads

Page-Based Access Grouping

P
a

g
e-

B
a

se
d

 W
a

y
D

et
er

m
in

a
ti

o
n

P
ro

ce
ss

o
r

In
te

rf
ac

e

A
d

d
re

ss
 C

o
m

p
u

ta
ti

o
n

pPageID

uTLB

#0

#1

...

#63

#0

#1

...

#15

#63

#0

#1

...

#15

#1

...

#1

...

- select banks
- merge loads
- limit # of
 accesses
- assign way
 information

L1

#8

1
 M

B
E

#0

vPageID

Matching
vPageID

TLB
#0

#1

...

#23

2
 s

t

#0

#3

4 results
Priority

MUX

4
 r

es
u

lt
s

Result
Bus 0

Result
Bus 1

Result
Bus 2

Result
Bus 3

Input Buffer Arbitration
Unit

From MB

Bank 0

Bank 1

Bank 2

Bank 3

2 st

4
 r

es
u

lt
s

4 ld / 1 MBE

4 ld / 1 MBE

4 ld / 1 MBE

4 ld / 1 MBE

4 ld

uWT

#0
WT

Update Way
Information

Priority
MUX

MB

SB

To Input Buffer

1
 M

B
E

4 ld

...

4 ld

Address
Computation

Virtual to Physical
Address Translations L1 Data Access

(a) Address
Computation

Is Load?

Hold in Input
Buffer

Highest
Priority?

Matching
vPageID?

Store
committed?

MB is full?

Read L1, SB & MB Write L1 Cache

Hold in SB

Translate Address

Evict MB Entry

Arbitration
Unit

Is Load?

Yes

Yes

No

Yes

No

Yes

Yes

Yes

No

No

Can be
merged?

Hold in MB

Yes

No

Process
this cycle?

Yes

No

No (MBE)

No (store)

(b)

Fig. 2. MALEC Configuration servicing up to four Loads and two Stores in parallel(a); High Level Descriptions of Load and Store Handling (b)

and one MBE to be serviced. For each cache bank, it identifies
the access with the highest priority given by its order within
the Input Buffer. In case of a load, it performs partial address
comparisons to identify other loads to the same cache line.
To reduce the energy impact of those comparisons, only the
three loads consecutive to the initial Input Buffer entry are
evaluated. The performance degradation due to this limitation
is less than 0.5% (analysis based on Sec. VI). Considering
that all loads/MBEs are known to share one page ID, the
actual comparators are very narrow and therefore fast and
energy efficient (comparatorbit = address spacebit - pageIDbit
- line offsetbit). Finally, to account for the limited number of
available result busses, only the four highest priority loads are
selected. An alternative, but more complex and potentially less
efficient, approach might determine the combination of loads
accessing the least number of cache banks.

SB, MB and L1: Memory accesses selected by the Arbi-
tration Unit are sent to the L1 cache and in case of loads to
the SB and MB, too. The cache itself is unmodified to allow
the re-use of existing, highly optimized designs. A special
case are sub-blocked caches that split data-arrays in several
independent segments (e.g. 128 bit wide) to save dynamic
power. MALEC expects those to return data from two adjacent
sub-blocks on every read, instead of only for loads that exceed
one sub-block. This requires additional comparator bits within
the Arbitration Unit, but doubles the probability for loads to
be merged. To reduce the energy impact of additional SB and
MB ports required to service up to four parallel loads, their
lookup structures are split into a shared segment for page IDs
and four separate segments for the remaining address bits. As
both segments can be looked up simultaneously, they do not
impose additional latency.

WT and uWT: Way Tables are not essential for MALEC,
but provide further energy savings as explained in Sec. V.

V. PAGE-BASED WAY DETERMINATION

Fig. 3 depicts the components involved in Page-Based
Way Determination, i.e. TLBs, WTs and the L1 cache. WTs
are closely coupled to their respective address translation
component; e.g. TLB hits return corresponding WT entries
in addition to address translation results. Consequently, the
energy per page-wide address lookup (20 bit for 4 KByte
pages and a 32 bit address space) is split over both structures.
The number of entries per WT, and therefore the number
of pages covered by it, equals the number of entries within
the corresponding TLB. Each entry can service all memory
references to a particular page simultaneously. Based on
validity information, the scheme allows the majority of cache
accesses (94%, Sec. VI-C) to bypass the cache’s tag-array.
This distinguishes it from other prediction schemes that need
to verify their results with at least one tag comparison (Sec. II).
Hence, MALEC supports two different cache access modes:

• Conventional cache access (way unknown):
– Parallel access to all tag- and all data-arrays
– Select data associated with matching tag

• Reduced cache access (way known and valid):
– Tag–arrays bypassed
– Access to one specific data-array only

The format used for WT entries (Fig. 3) combines validity
and way information within 2 bits per cache line, reducing

#63

#1
...

#0#0
#1
...

#63

TLB WT

1)

1) update uTLB&uWT on uTLB
 miss or TLB evictions
2) update WT on uWT dviction

uTLB#0
#1
...

#15

uWT
Index

Last
Entry

1)2)

#0
#1
...

#15

Index

L1 line fill/evictionpPageID Data

uWT miss but L1 hitDataSelect

2bit

Line 0 Line 1 ... Line 63

unknown
way 1
way 2
way 3

unknown
way 1
way 2
way 3

way 0
way 1
way 2

unknown

Valid &
WayID

...

128bit WT entry

Fig. 3. Overview of Page-Based Way Determination

area and leakage power by 1/3 compared to the naive format
that uses separate bit fields; i.e. 128bit instead of 192bit for 64
lines per page (4 KByte pages, 64 Byte cache lines). A cache
consisting of four banks may allocate lines 0..3 to separate
banks and lines 0, 4, 8, .., 60 to the same bank. By deeming
way 0 and 1 as ”way unknown” for lines 0..3 and lines 4..7,
respectively, we limit the number of available ways for a
particular cache line to 3, allowing 2 bits to encode way and
validity information. Note, while a single line is limited to
three cache ways, working sets may still utilize all four ways.
In fact, simulations based on Sec. VI show no measurable
increase of the L1 miss rate due to this limitation.

Validity bits are set/reset on cache line fills/evictions. Al-
though the WT includes all uWT entries, it is only updated if
no corresponding uWT entry was found. The synchronization
of uWT and WT is based on full entries. To reduce the number
of those transfers, we chose the second chance algorithm as
the uTLB replacement policy (random replacement for the
TLB). Because the cache performs line fills and evictions
based on physical tags, the uTLB and TLB need to be
modified to allow lookups based on physical, in addition
to virtual, PageIDs. Furthermore, the finite number of TLB
entries (64, Fig. 3) might require the eviction of a page that
still has corresponding lines within the cache. If the page is
re-accessed later on, a new WT entry is allocated and all
way information invalidated. To compensate for the loss of
information, the uWT is updated if it returns way unknown
but a subsequent conventional cache access hits. The last entry
register (Fig. 3) allows the feedback of those accesses to
update the corresponding uWT entry without a prior uTLB
lookup. In case of a multi cycle delay between way prediction
and L1 access, the register may be implemented as a FIFO (the
uTLB’s second chance replacement policy thereby prevents
the eviction of relevant entries). Simulations based on Sec. VI
show that this update mechanism increases the coverage of
Page-Based Way Determination from 75% to 94%.

The Arbitration Unit (Sec. IV) assigns way information
to groups of memory references accessing the same cache
line, and forwards it to the corresponding cache banks. As
the maximum number of ways required equals the number of
available cache banks, the energy consumed to evaluate WT
entries is independent of the number of memory references to
be serviced in parallel; hence, the scheme is highly scalable.

VI. EVALUATION

A. Methodology

The gem5 Simulator System was extended to allow the
performance evaluation of MALEC with cycle-level accuracy.
The resulting access statistics were then combined with energy
estimates obtained from CACTI v.6.5 [14] to determine the
dynamic and static energy consumption of the following
structures: L1 data cache (tag&data-arrays and control logic),
uTLB+uWT and TLB+WT. To account for reverse lookups
(i.e. based on physical addresses), uTLB and TLB are treated
as two separate fully associative tag-arrays for their uWT/WT
data-array. While conventional address translations access both

TABLE I
BASIC CONFIGURATIONS

Addr. Comp. per Cycle uTLB/TLB ports Cache Ports
Base1ldst 1 ld/st 1 rd/wt 1 rd/wt
Base2ld1st 2 ld + 1 st 1 rd/wt + 2 rd 1 rd/wt + 1 rd
MALEC 1 ld + 2 ld/st 1 rd/wt 1 rd/wt

tag-arrays, uWT/WT updates following cache line fills and
evictions only access the physical tag-array. Furthermore, as
the energy consumption of LQ, SB, and MB is very similar
for all analyzed configurations it is not taken into account.
This is also the case for lower memory levels, as MALEC
alters the timing of L2 accesses, but does not significantly
impact their number or miss rate. The Input Buffer utilized
in this section (five 20 bit comparators and storage for up to
two loads) is smaller than the uWT, which contributes to only
0.3% and 2.1% of the overall leakage and dynamic energy
consumption, respectively. Hence, the energy contribution of
the Input Buffer and the even smaller Arbitration Unit are
considered negligible.

Tab. I characterizes the configurations analyzed in this sec-
tion. Although both baselines resemble state of the art caches,
Base1ldst relies on single-ported components to ensure high
energy efficiency, while the performance oriented Base2ld1st
utilizes physical multi-porting in addition to cache banking
(Sec. II). The analyzed MALEC configuration (Tab. I) is
parameterized to fit the underlying processor-cache interface,
which was optimized for Base2ld1st (Tab. II). Moreover, to
allow fair comparisons, it operates on the same number of
LQ, SB and MB ports as well as address computation units
as Base2ld1st. While the latencies introduced by our proposal,
do not actually induce additional CPU cycles, MALEC3cycleL1

and Base2ld1st1cycleL1 widen the scope of this evaluation by
illustrating the impact of variations in the L1 access latency
(2±1 cycle). The energy values given for Base2ld1st1cycleL1

represent a best case scenario, because they are based on the
same (slow, but low energy) transistors used for all other
configurations and do not account for additional circuitry
required for parallel TLB and L1 lookups. The analyzed
benchmark suites and execution phases are equivalent to those
used in Sec. III.

B. Performance

Fig. 4a depicts execution times normalized to Base1ldst.
The analyzed MALEC configuration achieves a performance
improvement of 14% over Base1ldst. This is only 1% less
than Base2ld1st, which relies on a physically multi-ported

TABLE II
RELEVANT SIMULATION PARAMETERS

Component Parameter
Processor single-core, out-of-order, 1 GHz clock, 168 ROB entries,

6 element fetch&dispatch-width, 8 element issue-width
L1 interface 64 TLB entries, 16 uTLB entries, 40 LQ entries, 24 SB

entries, 4 MB entries, 32 bit addr. space, 4 KByte pages
L1 D-cache 32 KByte, 2 cycle latency, 64 byte lines, 4-way set-assoc.,

4 independent banks, PIPT, 128 bit sub-blocks per line
L2 cache 1 MByte, 12 cycle latency, 16-way set-assoc.
DRAM 256 MByte, 54 cycle latency
CACTI 32nm node, design objective low dyn. power, cell types: low

standby power data&tag-arrays, high perform. peripherals

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlb

mk
ga

p

vo
rte

x
bz

ip2
tw

olf

ge
o.

mea
n

wup
wise

sw
im

mgri
d

ap
plu mes

a
ga

lge
l

art

eq
ua

ke

fac
ere

c
am

mp
luc

as

fm
a3

d

six
tra

ck ap
si

ge
o.

mea
n

cjp
eg

djp
eg

h2
63

de
c

h2
63

en
c

h2
64

de
c

h2
64

en
c

jpg
20

00
de

c

jpg
20

00
en

c

mpe
g2

de
c

mpe
g2

en
c

mpe
g4

de
c

mpe
g4

en
c

ge
o.

mea
n

ge
o.

mea
n

60

70

80

90

100

110

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
[%

]

SPEC-INT SPEC-FP MediaBench2 Overall

Base1ldst Base1ldst_1cycleL1 Base2ld1st MALEC MALEC_3cycleL1 (a)

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlb

mk
ga

p

vo
rte

x
bz

ip2
tw

olf

ge
o.

mea
n

wup
wise

sw
im

mgri
d

ap
plu mes

a
ga

lge
l

art

eq
ua

ke

fac
ere

c
am

mp
luc

as

fm
a3

d

six
tra

ck ap
si

ge
o.

mea
n

cjp
eg

djp
eg

h2
63

de
c

h2
63

en
c

h2
64

de
c

h2
64

en
c

jpg
20

00
de

c

jpg
20

00
en

c

mpe
g2

de
c

mpe
g2

en
c

mpe
g4

de
c

mpe
g4

en
c

ge
o.

mea
n

ge
o.

mea
n

20
40
60
80

100
120
140
160

No
rm

. E
ne

rg
y

Co
ns

um
pt

io
n

[%
]

SPEC-INT SPEC-FP MediaBench2 Overall

Dynamic Energy Leakage Energy (b)

Fig. 4. Normalized Execution Times and Energy Consumption of - left to right - Base1ldst, Base2ld1st1cycleL1, Base2ld1st, MALEC and MALEC3cycleL1

uTLB, TLB and cache. The additional cycle introduced for
MALEC3cycleL1 reduces this average benefit from 14% to 10%,
and even results in a performance degradation of up to 4%
for mcf. Contrarily, the single-cycle variant of Base2ld1st
increases performance benefits from 15% to 20%. The excep-
tionally high improvements (≈17%) for gap are based on a
high proportion of loads (≈37%) on the overall instruction
count combined with the frequent execution of instruction
sequences that exhibit dependencies that prevent re-ordering.

Comparing SPEC-Int, SPEC-FP and MB2 reveals perfor-
mance improvements of 14%, 12% and 21%, respectively, and
a relatively high sensitivity to L1 access latency variations for
SPEC-Int. One reason for the increased benefits of SPEC-Int
over SPEC-FP is the higher contribution of memory accesses
within this suite; i.e. 45% instead of 40%. Although this
ratio is actually lower for MB2 (37%), its media kernels rely
on frequent, highly structured memory accesses that benefit
more from cache banking and load merging. Exceptionally
low improvements over Base1ldst are shown by mcf and
art. Reasons for this are large working sets combined with
low memory access locality leading to high miss rates and a
reduced influence of faster L1 accesses. Contrarily, djpeg and
h263dec exhibit excellent access locality and tend to execute
numerous memory accesses in parallel, resulting in speedups
of ≈30% for MALEC.

The performance benefits provided by MALEC originate
from two mechanisms: merging of loads and accessing multi-
ple cache banks in parallel. Both mechanisms require multiple
address translations per cycle, and therefore take advantage
of the ability to share translation results among accesses to
the same page. On average, merged loads contributes approx-
imately 21% to MALEC’s overall performance improvement.
The benchmarks gap and equake achieve significantly higher
percentages of 56% and 66%, due to particularly suitable
memory access patterns. Contrarily, mgrid exhibits a value
of less than 2%, implying loads with a relatively low spatial
(intra cache line) or temporal locality. In summary, the low
performance penalty of MALEC over Base2ld1st confirms

Sec. III’s assumption that it is sufficient to handle only
instructions accessing the same page within one cycle.

C. Energy Consumption

The dynamic and overall energy consumption of the con-
figurations analyzed in the previous section are illustrated in
Fig. 4b. Base2ld1st exhibits an increase in dynamic energy
of 42%. The primary cause of this are the additional physical
ports of its uTLB, TLB and L1 cache (Table I), required to
achieve its high performance operation. Contrarily, MALEC
saves 33% of dynamic energy compared to Base1ldst. The
unusually high savings for mcf originate in the exceptionally
high miss rate of the benchmark (≈ 7x the average). As
MALEC attempts to share L1 data among loads addressing
the same cache line, the effective number of loads accessing
and missing the cache is reduced. Without this ability, MALEC
would actually consume 5% more instead of 51% less dynamic
energy for mcf. Considering both, dynamic and leakage en-
ergy, Base2ld1st’s average energy consumption actually lies
48% above Base1ldst (Fig. 4b). Reason for this is the leakage
introduced by additional uTLB, TLB and L1 ports, which
outweighs savings due to reduced computation times; e.g. the
additional rd port increases L1 leakage by ≈80%, but the
average computation time is only reduced by 15%. A similar
effect can be observed for MALEC. Although it has the same
number of uTLB, TLB and L1 ports as Base1ldst, it’s uWT and
WT induce additional leakage, and thereby reduce its overall
energy saving to 22% (48% relative to Base2ld1st).

The dynamic energy consumption of the 1- and 3-cycle
latency adaptations is almost equivalent to their corresponding
baseline configurations. An exception is the improvement of
5% for gap thanks to Base2ld1st1cycleL1, which indicates a
reduced number of memory accesses. One explanation for this
is the faster computation of branch outcomes and targets, due
to shorter load latencies reducing the number of speculatively
executed instructions. In particular, while the number of com-
mitted loads is unaffected by Base2ld1st1cycleL1, the number of
executed loads is ≈ 9% lower than for Base2ld1st. Note, this

effect is only partially mitigated by a slightly increased L1D
miss-rate (+12% relative to Base2ld1st).

Page-Based Way Determination is based on Nicolaescu et
al.’s Way Determination Unit (WDU, Sec. II). To allow fair
comparisons between both schemes, we extended the WDU
with validity bits to allow reduced cache accesses (Sec. V).
Substituting WTs with 8, 16 and 32 entry-WDUs reveals 4%,
5% and 8% higher energy consumption. There are two reasons
for this. First, contrarily to the single-ported, lookup free WTs,
WDUs require four fully associative, tag-sized lookup ports
to support this specific MALEC configuration. Second, the
analyzed WDUs exhibit average coverage of only 68%, 76%
and 78% for 8, 16 and 32 entries, respectively. In comparison
to 94% for MALEC with WTs, this implies a significantly
lower number of reduced cache accesses. Generally speaking,
thanks to their small storage requirements, WDUs are suitable
for processor configurations similar to Base1ldst that are
designed for single-access caches. Contrarily, as the energy
consumption of page-based way determination is independent
of the number of memory references to be serviced in parallel
(Sec. V), its energy efficiency increases rather than decreases
on high performance processors.

D. Sensitivity Analysis

This section briefly discusses MALEC’s sensitivity to sys-
tem parameters. First, the efficiency of way prediction schemes
strongly depends on access locality; i.e. for streaming ap-
plications like mcf, Page-Based Way Determination exhibits
negative energy benefits. This dependency has been investi-
gated by prior work in the context of cache pollution; hence,
schemes like run-time cache bypassing might be applied [10].
These would also reduce the number of uTLB/TLB conflicts
due to frequent uWT/WT updates required by workloads with
very high miss rates. Second, although MALEC can mask
most of its latency behind address translations, it introduces
variability in load latency, by potentially holding Input Buffer
elements for several cycles. For the analysis above, we uti-
lized a conservative LQ implementation that does not issue
instructions that depend on loads until they are selected to
be serviced by the Arbitration Unit. More aggressive systems
may issue such instructions speculatively, i.e. assume a certain
latency, hold results if they arrive early, and trigger replays
similarly to load misses if necessary. In this context, the
speculative state held by MALEC is limited to the Input
Buffer, the Arbitration Unit and the SB; hence, exception
handling mechanisms do not need to consider way tables
or the MB. Third, while the previous section focuses on a
single-cores system, we consider multithreading and potential
synchronization or memory sharing issues as an orthogonal
aspect to our research. Finally, Page-Based Memory Access
Grouping and Page-Based Way Determination scale well with
most cache parameters, e.g. capacity, line size, associativ-
ity, number of banks, and available address space. In fact,
MALEC’s performance is primarily limited to the number
of memory references issued per cycle and the number of
available result busses. A special case are wider pages, which

increase the number of lines per WT entry. Hence, we suggest
to quantize TLB entries into 4 KByte segments and potentially
apply techniques like [3] that favour small pages. Alternatively,
the WT itself might be segmented. By allocating and replacing
WT chunks in a FIFO or LRU manner, their number could be
smaller than required to represent full pages.

VII. CONCLUSIONS

This paper presented an energy efficient L1 data cache
interface designed for out-of-order superscalar processors.
Based on the observation that consecutive memory references
tend to access the same page, it shares memory address
translation results between multiple loads and stores, simplifies
Store and Merge Buffer lookup structures and shares data
among loads accessing the same cache line. Page-Based Way
Determination simultaneously provides way information for
all cache lines mapping to a single page. Using an energy-
oriented cache interface (one load or store per cycle) as
baseline, MALEC achieves 14% speedup. On the contrary,
a performance-oriented interface (up to two loads and one
store per cycle) achieves 15% speedup, but consumed 48%
more instead of 22% less energy than the baseline. To better
utilize the performance capabilities offered by MALEC, we
are currently developing a processor configuration capable
of executing advanced SIMD operations and a set of highly
vectorized benchmarks.

REFERENCES

[1] “Intel 64 and IA-32 Architectures Optimization Reference Manual,” Intel
Corporation, Tech. Rep. June, 2011.

[2] “Software Optimization Guide for AMD Family 15h Processors,” Ad-
vanced Micro Devices, Tech. Rep. 47414, 2011.

[3] T. Barr, A. Cox, and S. Rixner, “SpecTLB: a mechanism for speculative
address translation,” in ISCA’11, 2011.

[4] S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, no. 5, 2005.

[5] Y. Chang and M. Lan, “Two new techniques integrated for energy-
efficient TLB design,” Trans. on VLSI Systems, vol. 15, no. 1, 2007.

[6] Y. Chang and S. Ruan, “Sentry tag: an efficient filter scheme for low
power cache,” in Proc. ACSAC’2002, 2002.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power,” in ISCA’02.

[8] M. Ghosh, E. Ozer, S. Ford, S. Biles, and H. Lee, “Way guard: a
segmented counting bloom filter approach to reducing energy for set-
associative caches,” in ISLPED’09, 2009.

[9] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-
associative cache for high performance and low energy consumption,”
in ISLPED’99, Aug. 1999.

[10] T. Johnson, D. Connors, M. Merten, and W.-M. Hwu, “Run-time cache
bypassing,” Computer-IEEE, vol. 48, no. 12, 1999.

[11] T. Juan, J. J. Navarro, and O. Temam, “Data caches for superscalar
processors,” ICS ’97, 1997.

[12] G. Keramidas, P. Xekalakis, and S. Kaxiras, “Applying decay to reduce
dynamic power in set-associative caches,” HiPEAC’07, 2007.

[13] S. Li, J. Ahn, R. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: an integrated power, area, and timing modeling framework for
multicore and manycore architectures,” in MICRO’42, no. c, 2009.

[14] N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A tool to
model large caches,” HP Laboratories, 2009.

[15] D. Nicolaescu, A. Veidenbaum, and A. Nicolau, “Reducing Power Con-
sumption for High-Associativity Data Caches in Embedded Processors,”
in DATE’03, Mar. 2003.

[16] M. Powell, A. Agarwal, T. Vijaykumar, B. Falsafi, and K. Roy, “Reduc-
ing set-associative cache energy via way-prediction and selective direct-
mapping,” MICRO-34, 2001.

