HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk



http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Stochastic Programming Models and
Methods for Portfolio Optimization and
Risk Management

by
Rudabeh Meskarian

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Social and Human Sciences

School of Mathematics

November 2012


http://www.soton.ac.uk
mailto:rm3g08@soton.ac.uk
http://www.soton.ac.uk/about/faculties/faculty_social_human_sciences.htmL
http://www.ecs.soton.ac.uk




UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES
SCHOOL OF MATHEMARICS

Doctor of Philosophy

by Rudabeh Meskarian

This project is focused on stochastic models and methods and their application in port-
folio optimization and risk management. In particular it involves development and
analysis of novel numerical methods for solving these types of problem. First, we study
new numerical methods for a general second order stochastic dominance model where
the underlying functions are not necessarily linear. Specifically, we penalize the sec-
ond order stochastic dominance constraints to the objective under Slater’s constraint
qualification and then apply the well known stochastic approximation method and the
level function methods to solve the penalized problem and present the corresponding
convergence analysis. All methods are applied to some portfolio optimization problems,
where the underlying functions are not necessarily linear all results suggests that the
portfolio strategy generated by the second order stochastic dominance model outper-
form the strategy generated by the Markowitz model in a sense of having higher return
and lower risk. Furthermore a nonlinear supply chain problem is considered, where the
performance of the level function method is compared to the cutting plane method. The
results suggests that the level function method is more efficient in a sense of having
lower CPU time as well as being less sensitive to the problem size. This is followed
by study of multivariate stochastic dominance constraints. We propose a penalization
scheme for the multivariate stochastic dominance constraint and present the analysis
regarding the Slater constraint qualification. The penalized problem is solved by the
level function methods and a modified cutting plane method and compared to the cut-
ting surface method proposed in [70] and the linearized method proposed in [4]. The
convergence analysis regarding the proposed algorithms are presented. The proposed
numerical schemes are applied to a generic budget allocation problem where it is shown
that the proposed methods outperform the linearized method when the problem size is
big. Moreover, a portfolio optimization problem is considered where it is shown that the
a portfolio strategy generated by the multivariate second order stochastic dominance
model outperform the portfolio strategy generated by the Markowitz model in sense of
having higher return and lower risk. Also the performance of the algorithms is inves-
tigated with respect to the computation time and the problem size. It is shown that
the level function method and the cutting plane method outperform the cutting surface

method in a sense of both having lower CPU time as well as being less sensitive to
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the problem size. Finally, reward-risk analysis is studied as an alternative to stochastic
dominance. Specifically, we study robust reward-risk ratio optimization. We propose
two robust formulations, one based on mixture distribution, and the other based on the
first order moment approach. We propose a sample average approximation formula-
tion as well as a penalty scheme for the two robust formulations respectively and solve
the latter with the level function method. The convergence analysis are presented and
the proposed models are applied to Sortino ratio and some numerical test results are
presented. The numerical results suggests that the robust formulation based on the
first order moment results in the most conservative portfolio strategy compared to the

mixture distribution model and the nominal model.
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Chapter 1

Introduction

The focus of this thesis is on the development of stochastic programming models and
methods for financial portfolio optimization and risk management problems. In this
chapter, we give an introduction to the problems considered and discuss the methodolo-

gies used in this thesis. An outline of this thesis is provided at the end.

1.1 Motivation

The recent financial crisis around the world, the globallization of financial markets,
deregulation and the increasing complexity of financial products, have raised the im-
portance of effective financial portfolio optimization and risk management techniques.
The recent changes in the financial and banking industry has resulted in significant
adjustment in the risk profile of both financial and non-financial institutions. The im-
portant role of these institutions in both economic growth and financial stability has

made financial portfolio optimization and risk management more important than ever.

Consequently, in this thesis we are going to study various stochastic programming meth-
ods and models, focusing on numerical, as well as the underlying theories with specific

applications in financial portfolio optimization and risk management.

1.2 Financial Portfolio Optimization and Risk Manage-

ment

The problem of optimizing a portfolio of finitely many assets is a classical problem in
theoretical and computational finance. Since the pioneering work of Markowitz [98] it is

agreed that portfolio performance should be measured in two distinct dimensions: the
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expected rate of return (mean), and the risk which measures the uncertainty of the rate

of return.

Portfolio selection has always been the main problem in finance, due to uncertainty
about future returns. To choose amongst random variables, there are three main models
that can be used, these include mean-risk models, expected utility maximization, and

stochastic dominance models (for a detailed review see [118]).

Markowitz developed the mean-risk model for portfolio selection problems, where pref-
erences among return distributions are classified using a trade-off between mean and
risk [98, 99, 100].

Von Neumann and Morgenstern [141] introduced the expected utility concept to decision
theory. In expected utility theory, the expected utility as a single scalar value is attached
to each random variable. Preference is then defined by comparing expected utilities with

a larger value preferred.

The mean-risk model has been criticized by extensive studies both in theoretical and
empirical aspects. The main reason is that, there is only a limited set of circumstances
under which the mean-risk model applies. The first one, is the quadratic utility functions
assumption which implies that beyond some level of return, the investor’s marginal utility
for wealth becomes negative as their risk aversion increases with wealth. Secondly, it
requires the return distribution to belong to a certain class such as normal, lognormal,
exponential and uniform distributions (see, Bawa [8]). Fama [53], Breen and Savage
[25] have shown that the distribution of stock process changes is inconsistent with the

assumption of normal probability functions.

The above offers the motivation to search for alternative models. In this research we focus
on the stochastic dominance model which has a better theoretical basis as compared to
the other two models mentioned above. The stochastic dominance is a non-parametric
method, which does not model an explicit utility function, but takes into account all
possible forms of this function which conform to a set of restrictions. The stochastic
dominance notion accounts for the entire probability distribution and employs some

general condition for decision maker’s risk preferences.

In the stochastic dominance theory, the first order stochastic dominance was developed
by Quirk and Saposnik [111]. It requires only that the first derivative of the utility
function be positive throughout or monotone increasing; therefore, it allows for risk
preference, risk indifference, or risk aversion. Hadar and Russell in 1969 [68] tried to
find a set of rules to make predictions about the preferences possible; as a result, second
order stochastic dominance was brought into the field of economics. They eliminates
risk preference by adding the restriction that the second derivative of the utility function
be everywhere non-positive. Consequently, second order stochastic dominance adds

assumption of global risk aversion; thus utility is everywhere concave. Second order
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stochastic dominance is known as an important choice criterion in portfolio selection, as
it closely represents the model of risk-averse economic behavior. However, until recently
due to computational difficulties it has not been used as an alternative to other portfolio
construction models. This motivates us to focus on development of efficient numerical

methods for stochastic programming problems with second order stochastic dominance.

1.3 Stochastic Programming

Stochastic programming has been one of the main approaches for decision making prob-
lems in finance including portfolio optimization and risk management. Stochastic pro-
gramming is mathematical programming with random parameters. Initiated in the late
fifties by Dantzig and Madansky, stochastic programming provides a paradigm to in-
clude uncertainty into optimization-based decision models [26, 77]. It makes modeling
possible in case the parameters needed are random, i.e. the value could be from sets,
continuous or discrete. We still need to know what set it is and the corresponding be-
havior (probability distribution over this set). A big assumption of general stochastic
programming is that the probability distributions of random parameters are known.
In most cases, we can use historical data or do simulation with assumptions upon the

statistical parameters.

This research, studies various modeling techniques and numerical methods based on

stochastic programming that help seek optimal strategies in financial risk management.

1.4 Outline of the Thesis

In Chapter 2, we provide the literature review with regard to the portfolio optimization,
development of the stochastic dominance theory and optimization methodologies. In
Chapter 3, we consider a stochastic programming problem with second order stochastic
dominance constraints where the underlying functions could be linear and /or nonlinear.
We apply an exact penalization technique and move the constraints to the objective. We
propose a series of algorithms for solving the penalized problem including: the stochastic
approximation method and the level function methods. Moreover, we apply the model
to a portfolio optimization problem and report series of numerical tests and compare
the performance to the Markowitz model. Finally, we propose a nonlinear supply chain
problem and investigate the performance of the proposed algorithms. In Chapter 4,
we focus on a stochastic programming problem with multivariate stochastic dominance
constraints. The multivariate stochastic dominance refers to the stochastic ordering of
random vectors [40]. We discuss the Slater constraint qualification and propose an exact
penalization scheme for this type of problem. We solve the penalized problem with the

stochastic approximation method, the level function methods, a modified cutting plane
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method and compare their performance to the cutting surface algorithm proposed in
[70]. Moreover, we carry out some numerical tests and report the results. In Chapter
5, we consider a robust optimization of financial performance ratio with a focus on
one-sided variability measures such as Sortino-Satchell ratio [134]. We focus on robust
optimization of the problem based on the mixture distribution and the first order moment
approach followed with an exact penalization technique. Moreover, we carry out some
numerical test and report the results. In Chapter 6, we provide some conclusions and

discuss future research directions.



Chapter 2

Literature Review

2.1 Financial Optimization and Risk Management

Most significant financial problems involve decision making under uncertainty. One
example is the portfolio optimization problem. In this situation, the decision maker has
numerous plausible choices, wide outcome uncertainty, and large financial implications.
As discussed, there are three well established models for portfolio optimization: mean-
risk models, expected utility maximization and stochastic dominance. In this chapter we
provide the literature review of the optimization methods in finance including stochastic
dominance and related risk measures followed by a review of stochastic optimization

techniques, as well as robust optimization methods.

2.1.1 Expected utility maximization in decision theory

The concept of comparing random variables using their expected utilities dates back
to 1738 [13]. However, it was only in the last century and in an economic context,
that expected utility theory was extensively used. Most significantly, Von Neumann
and Morgenstern [141] introduced the expected utility concept to decision theory. In
expected utility theory, the expected utility as a single scalar value is attached to each
random variable. Preference is then defined by comparing expected utilities with a larger

value preferred.

Expected utility theory provides basis for extending a utility function defined on real
numbers (outcomes) to a utility function defined on random variable. A utility value is
assigned to each random variable in terms of the utility values of its outcomes and the

probabilities associated with these outcomes: Given a utility function U, the expected
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utility of a random variable f(x,¢) is:
BU(f(@.6)) = [ U(f(w.0))dF (@),

where F' is the distribution function of f(z,{). Additionally, if the distribution is of a
discrete nature and the random variable £ has the outcomes &1, . . ., &, with probabilities

P1,---,Pm, the expected utility of f(z,£) is defined as:

The main shortfall of a utility function is the assumption that they reflect the behavior
of investors. The first assumption states that all the investors are rational (prefer more
wealth), therefore the utility function is assumed to be nondecreasing. The second
assumption is that the investors are risk averse which means that, as wealth increases,
each additional growth is less valuable than the previous one. There are two attitudes
categorized as risk neutral and risk seeking, which are not being considered [58, Chapter
2].

Once a utility function is constructed, one could find the efficient portfolios with respect

to utility criterion by solving the following optimization problem:

max  E[U(f(,£))]
s.t. x e X,

where x € X is a decision vector with X being a nonempty convex subset of R™.

Overall, The expected utility maximization requires the specification of the utility func-
tion, which is a subjective task; for example, consider two utility functions belonging to
the same class (nondecreasing and concave), the maximization problem could lead to a

different ranking of random variables.

While it is not easy to find out the precise utility function for each investor, we can
order utilities of portfolios by preference instead. Stochastic dominance manages to
rank portfolios consistent with general utility functions. In Chapter 3 and 4, we will
show how stochastic dominance can be used to control and manage market risk so as to

construct an optimal portfolio strategy.

2.1.2 The mean-risk model

Mean-risk models were developed in early fifties for the portfolio selection problem.
Under mean-risk models, two scalars are attached to each random variable: the expected
return and the associated risk measure. Preference is then defined using a trade-off
between the mean where a larger value is desirable and the risk where a smaller value

is desirable.
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Consider two portfolios with returns f(z,¢) and f(y,§) and risks measures indicated
by p(f(z,&)) where x is the vector containing the proportion of wealth invested in each
asset and & is the random return of each asset. The random variable f(z,¢) is efficient if
and only if there is no other portfolio, such as f(y, ) that has higher expected return as
well as lower risk. If the mentioned condition is met then f(z,£) is an efficient portfolio.
Therefore, an efficient portfolio has the lowest level of risk for a given return. The
efficient portfolios are obtained by solving optimization problems; the most common
formulation is to set a minimum target on the portfolios return while minimizing the
risk [78]:

min  p(f(z,£))

st. E[f(x,&)] > Ry,

e X,

where x € X is a decision vector with X being a nonempty convex subset of R"™ and R,
represent the benchmark of expected return of the portfolio set by the investor. Solving
the above for different values of Ry would eventually give us a set of minimum risk

portfolios (efficient portfolios) for each value of Rj.

An alternative formulation of the above problem is the one which explicitly trades risk

against the return in the objective function:

max E[f(z,£)] — Ap(f(z,€))
s.t. A>0,
x e X.

Repeatedly solving the above and varying the trade-off coefficient A would result in

portfolios constructing the efficient frontier.

Mean-risk models are convenient from a computational point of view. However, depend-
ing on the risk measure used, they may lack a rational and theoretical basis for making
a choice. Moreover, they use only two statistics to characterize a distribution, and thus
may ignore important information. One approach is to construct mean-risk models that
are consistent with expected utility maximization / stochastic dominance; this has been

the research subject of several recent papers [104, 105, 106, 148] .

Markowitz [98] proposed variance as a risk measures. Variance, as one of the key statis-
tical parameters, has been used to measure market risk in mean-risk model. Its appli-
cation, however, has several drawbacks. A straightforward explanation is that variance
considers extremely high and extremely low returns equally undesirable. Besides down-
side risk, variance also takes upside variability as risk. The analysis of pros and cons of
variance can be found in [99, Chapter 9]. From the risk measures perspective, variance
is not coherent. We will give the definition of coherent risk measure with examples of

such measures in the next section.
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2.1.3 Coherent risk measures
2.1.3.1 Coherent risk measures characteristics

Many people think of the risk inherent in a financial random variable as tied entirely
to the uncertainty (inconstancy) in that variable. Risk measures, most notably the
coherent measures of risk were introduced by Artzner et al. [5, 6]. They defined a

coherent measure of risk as follows:

Definition 2.1. A risk measure p(§), where £ € ) is a random variable (future value
of a portfolio) defined on probability space (€2, F, P), is called coherent if it satisfies the

following conditions:

1. Translation invariance: for all £ € ), and all real numbers «, we have p(§ + «) =

p(§) —a;
2. Subadditivity: for all & and & € Q, p(&1 + &) < p(&1) + p(&2).
3. Positive homogeneity: for all A > 0 and all £ € Q, p(A) = Ap(§).

4. Monotonicity: for all & and & € Q, with & < &, we have p(&2) < p(&1)-

Translation invariance implies that by adding an amount « to the portfolio, the risk will
be reduced by a because the future value of the portfolio will increase by «. Subadditiv-
ity demonstrates the diversification of the portfolio. Positive homogeneity holds, because
multiplying the same position cannot lead to diversification. Monotonicity is natural.
Ruszczyniski and Shapiro [122] exploited representation of coherence using convex anal-
ysis from a topology perspective, they generalize the dual theorem given in Artzner et
al. [6], Cheridito et al. [28], Delbaen [34], Fiillmer and Schied [59] and Rockafellar et al.
[116].

Several risk measures have been proved to be coherent, including Value at Risk (VaR)
and Conditional Value at Risk (CVaR). In the following parts, we will discuss VaR and

CVaR which have been attracting significant attention from the financial industry.

2.1.3.2 Value at Risk and Conditional Value at Risk

Value at risk [2, 83, 85, 115, 140] is the best known tail risk measure as it only takes
into account the left tail of distributions, which corresponds to the largest losses. it
describes the maximum loss with a specified confidence level. Value at Risk has been
accepted and used in a lot of financial institutions. Let f(x,{) denote the measure of
performance (or the loss), where z € X is a decision vector with X being a subset of

R™ and & € R™ is a random vector. For each z, the loss f(x,¢) is a random variable
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having a distribution R induced by that of £. Let p(§) denote the probability density of
&. The probability of f(x,£) not exceeding a threshold « is then given by

B(x,0) = /f o PO

As a function of « for fixed x, ®(x, «) is the cumulative distribution function for the loss
associated with x. It completely determines the behavior of this random variable and is
fundamental in defining VaR and CVaR. In general, it is nondecreasing with respect to

.

The 8-VaR for the loss random variable associated with z and specified probability level
B € (0,1), is defined as:

ag(z) =min{a € R: &(z,a) > S}.

It can be seen that, ag(x) comes out as the left endpoint of the nonempty interval
consisting of the values « such that ®(x,«) = [S. This follows from ®(z,«) being
continuous and nondecreasing with respect to a. In short, 5-VaR gives the lowest

amount of loss « that will not be exceeded with probability 5, i.e.

O(z,ag(x)) > p. (2.1.1)
Similarly, -CVaR is defined as:
o) =-p)" [ Fla, OplE)de.
f(z,€)>ap(x)

The 5-CVaR is the conditional expectation of the loss associated with x relative to that
loss being ag(x) or greater. It can be seen that the probability that f(z,§) > ag(z) is
equal to 1 — 3.

VaR and CVaR have been widely applied in portfolio selection problems. The theory of
probabilistic functions and percentiles was introduced in [140]. The problem with CVaR
constraints was translated to L-shape and solved efficiently in [85]. A decomposition
framework handling CVaR objectives and constraints in two-stage stochastic models

was discussed in [52].

Although VaR is widely used, but there are some disadvantages about its properties.
The main problem with VaR is that, it actually is not coherent because the subadditivity
condition is not satisfied. This implies that the VaR of a portfolio with two assets may be
greater than the sum of individual VaRs of the two assets, i.e. ag(x+y) > ag(r)+as(y),
for more detail see [6]. On the other hand, CVaR is a coherent measure of risk, and has

better properties compared to VaR.
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It is difficult to handle CVaR because of the VaR function ag(x) involved in the defini-
tion, unless we have an analytical representation for VaR. Rockafellar and Uryasev [115]

characterized ¢g(x) in temrs of the function Fj defined by

Fo(w,a) = o+ (1- ) /f o 6 e

where [f(z,€) — o]+ = max(f(z,£) — «,0). The Fg(x,a) is convex and continuously
differentiable with respect to . The 5-CVaR of loss associated with any z € X can be

determined from the formula

¢p(x) = min Fa(z, o).

a€cR
Consequently
min¢g(x) = min Fi(x, o),
:EGX(bB( ) (,z)eX xR 6( )

where a pair (z*,a*) achieves the right-hand side minimum if and only if z* achieves

the first minimum and «o* is the corresponding VaR. This is proved in [115, Theorem 1].

Dentcheva and Ruszczyniski [38] showed that there is a fundamental relationship between
the concept of CVaR and the second order stochastic dominance constraints. Specifically,
they showed that second order stochastic dominance can be interpreted as a series of
CVaR constraints for various threshold values. In the next section we will define and
discuss the stochastic dominance and relation of VaR and CVaR to the second order

stochastic dominance.

2.2 Stochastic Dominance

Stochastic dominance is based on an axiomatic model of risk-averse preferences [56]. It
originated in the majorization theory [69] for the discrete case and was later extended
to general distributions [67, 119]. Since then it has been widely used in economics
and finance (see [90] for numerous references); Quirk and Saposnik [111] considered the
first order stochastic dominance relation and demonstrated the connection to utility
functions. Second order stochastic dominance was brought to economics by Hardar
and Russel [68] and third order stochastic dominance by Whitmore [144]. A detailed

discussion is given in [84].

The main difference of stochastic dominance to other portfolio selection models is that it
takes into account the entire distribution of a random variables. Furthermore, it is linked
to the expected utility theory [141]. However, it does not require explicitly specifying a
utility function [111].
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FIGURE 2.2.1: Fist order stochastic dominance [75, Chapter 9].

With stochastic dominance relations, the random variables are ranked under assump-
tions about general characteristics of utility functions that follow from prevalent modes
of economic behavior. Stochastic dominance ensures that all individuals, whose utility

functions are in the same class, rank choices in the same way.

2.2.1 Definition of stochastic dominance

In the stochastic dominance approach random variables are compared by pointwise com-
parison of some performance functions constructed from their distribution functions. Let
Fi(f(x,€);p) and Fi(f(y,€);p) denote the cumulative distribution function of f(z,¢)
and f(y,§), respectively. It is said that f(z,&) stochastically dominate f(y,&) in the
first order, denoted by f(z,§) =) f(y, &), if

Fi(f(@,&)in) < Fi(f(y,€)im), Vn € R.
This is illustrated in Figure 2.2.1.

Similarly, f(z,&) stochastically dominates f(y,{) in the second order (Figure 2.2.2),
denoted by f(xv 5) t(2) f(y> 5)7 if

B (f(2,8)im) < Fa(f(y,€)im), Vn € R,

where

n
Fy(f(x.€)im) = /_ Fi(f(x,€); a)da,

see Hardar and Russell [68] and Rothschild and Stiglitz [119]. The function F»(f(z,£);n)

can be expressed as the expected shortfall [104]: for each target value n we have

B(f(x,8);n) = El(n — f(2,€))+]; (2.2.2)

where (n — f(z,€))+ = max(n — f(z,£),0). The function F5(f(z,§);-) is continuous,
convex, nonnegative, and nondecreasing. It is well defined for all random variables

f(x, &) with finite expected value. Due to this representation, the second order stochastic
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0 N

FIGURE 2.2.2: Second order stochastic dominance [75, Chapter 9].

dominance relation can be equivalently characterized by the following infinite system of
inequalities:
El(n — f(#,8)+] <E[(n — f(y,£))+], Yn € R. (22.3)

Stochastic dominance relations are of crucial importance for decision theory. It is known
that f(x,€) =) f(y,§) if and only if

E[U(f(z,6)] = E[U(f(y,4)); (2.2.4)

for any nondecreasing function U(-) for which these expected values are finite. Further-
more, f(z,£) =) f(y,€) if and only if (2.2.4) holds true for every nondecreasing and

concave U (+) for which these expected values are finite [101].

A survey of stochastic dominance and utility theory can be found in [90]. The proof of
consistency of the stochastic dominance with utility theory and further analysis in this
topic can be found in [67, 139].

Unfortunately, application of second order stochastic dominance as a criteria of choice
proves to be difficult. Generally, comparing two random variables with respect to second
order stochastic dominance involves an infinite number of comparisons. Some models

that use second order stochastic dominance have been proposed in the literature.

Dentcheva and Ruszczyniski [36] showed that the second order stochastic dominance
can be incorporated in the form of a set of linearized constraints. They proved that
the second order stochastic dominance constraints construct a convex and closed set.
Additionally, the optimality and duality conditions were also discussed in this paper.
An alternative approach to mean-risk portfolio models was provided by using stochastic
dominance. Moreover, it was shown that the Lagrange multiplier associated with the

dominance constraint can be identified with a certain concave and nondecreasing utility
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function. An application to static portfolio selection with a utility function constructed

based on the methodology of Lagrange can be found in [38].

Optimization problems involving nonlinear stochastic dominance constraints, where
stochastic dominance is used to compare nonlinear functions of random factors, were
considered in [37]. Their newly developed optimality and duality theory for this special
class of problems also allows the creation of a decomposition approach to the problem,

which they illustrated with a portfolio example.

Roman et al. [117] proposed a multi-objective portfolio selection model with second
order stochastic dominance constraints to track or outperform a reference point, while
Fébian et al. [52] developed an efficient method to solve this model based on a cutting

plane scheme.

The application of stochastic dominance in energy planning and decision problems, where
the decision variables are integer has been discussed in [63, 64, 62] in the form of a mixed
integer problem, including both first order and second order stochastic dominances.
Stability and structural properties of the integer problems with dominance constraints
were analysed in these papers. The authors applied a branch and bound decomposition

algorithm to solve the problems.

In a more recent development, Dentcheva and Ruszczyniski [40] introduced the concept
of positive linear multivariate stochastic dominance and obtained necessary conditions of
optimality for non-convex problems. Furthermore, Homem-de-Mello et al. [70] proposed
a sample average cutting-surface algorithm for optimization problems with multidimen-
sional polyhedral second-order stochastic dominance constraints. More recently, Hu et
al. [72] proposed a new concept of stochastically weighted dominance, in which they
treat the vector of weights as a random vector. They showed that such an approach is

much less restrictive than the deterministic weighted approach.

2.2.2 Relation of VaR and CValR to stochastic dominance

We first need to discuss the inverse stochastic dominance relation, which compares the
Lorenz curves of two random variables and it is referred to as Lorenz dominance. For a
random variable f(z,&), we define the left-continuous inverse of the cumulative distri-
bution function Fi(f(z,§);-) as follows:

Fy(f(x,8);p) = inf {n: Fi(f(x,&);n) > p}, for 0 <p < 1.

Consequently, first order stochastic dominance can be characterized equivalently as:

Fay(f(2,8):p) = Foy(f(y:€)5p) ¥p € (0,1). (2.2.5)
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F_1)(R(y);p)

FIGURE 2.2.3: First order stochastic dominance : in the inverse form [75, Chapter 9].

This is shown in Figure 2.2.3. The first order stochastic dominance constraint can be
interpreted as a continuum of chance constraints in stochastic optimization (see, [129]).
Similarly, we can characterized the second order stochastic dominance by using the

Lorenz function as follows:

Fo)(f(,€):p) = Foo)(f(y:€);p) ¥p € [0,1], (2.2.6)

where

P
Foy(f(.€):p) = /O F o (f(x,€); a)da

This is well known from the work by Orgyczak and Ruszczyniski [106]. The second order

relation is illustrated in Figure 2.2.4.

Dentcheva and Ruszczyiiski, showed that the infinite set of inequalities (2.2.5) and (2.2.6)
have relations to the concepts of VaR and CVaR, which are fundamental characteristics
of portfolio return. The VaR constraint can be formulated as follows. Let L(x,&) =
—f(z,€). Let wy, denote the maximum fraction of initial capital allowed for risk exposure
at risk level p € (0,1). We require that

P[L(x,&) < wp) > 1 —p.
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E[f(z,¢)]

E[f(y,€)]

0\

FIGURE 2.2.4: Second order stochastic dominance: in the inverse form [75, Chapter
9.

Denote the left (1 — p) quantile of the random variable L(z,§) by VaR,(L(z,§)), then
we can formulate VaR constraint as
VaR,(L(z,§)) < wp.

Consequently, it can be seen that the first order stochastic dominance relation (2.2.5) is
equivalent to the continuum of VaR constraints [75, Chapter 9]. Portfolio  dominates

another portfolio ¢ in the first order, if
VaRy,(L(z,§)) < VaR,(L(y,€)), Vp € (0,1).
Furthermore, the CVaR at level p for continuous distribution is given by
CVaRy(L(x,¢)) = E[L(x, §)|L(z,§) > VaRy(L(x,£))]-

Rockafellar and Uryasev [115] used extremal properties of quantiles to equivalently rep-
resented CVaR,, as

OValy (L (z.6) = int { Tl — f(a. )] <0}

Notice that )
CV&RP(L(xaé)) = _]; (-2) (f(%,f),p), (227)
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using (2.2.7) and (2.2.6), it can be seen that the second order stochastic dominance is

equivalent to the continuum of CVaR constraints:

CVaR,(L(z,§)) < CVaR,(L(z,¢)), Vp € (0,1]. (2.2.8)

2.3 Financial Performance Ratio

There are two basic approaches to the problem of portfolio selection under uncertainty.
One of them as discussed, is the stochastic dominance approach. The other is the
reward-risk analysis in which the portfolio choice is made with respect to the expected
portfolio return and the associated risk. A portfolio with higher return and lower risk

is preferred.

Related to reward-risk analysis is the reward-risk ratio optimization. Since the publi-
cation of the well-known Sharpe Ratio [132] which is based on mean-variance analysis,
other performance ratios like STARR ratio, Minimax measure, Sortino ratio, Farinelli-
Tibiletti ratio and most recently, Rachev ratio and the Generalized Rachev ratio have
been proposed. For detailed discussion and comparison see Biglova et. al. [22], Rachev
et. al. [124], and references therein. These new measures take into account the phe-
nomena that the assets returns distributions are fat-tailed and skewed, by incorporation

proper reward and risk measures.

2.3.1 Sharpe ratio

The well-known Sharpe ratio [132] of a portfolio with return p(z,§) and a benchmark
Y (€) can be calculated as:

(I)Sharpe(,u(m7 5)7 Y(é‘) =

where o denotes the standard deviation. Sharpe ratio quantifies reward and risk through
two-sided type measures, consequently positive and negative deviations from the bench-
mark are weighted in the same manner. Although that may be correct in some cir-
cumstances, such as if we are aiming at capturing the “stability” around a “central
tendency”, that could be misleading if we are interested in keeping under control the
over performance and/or the under performance. This drawback could get worse if we
deal with skewed and fat tailed returns. In fact, evidence shows that investors do not
share a unilateral risk aversion in rewarding and losing. A way of separately measuring
reward and loss is the use of one-sided type parameter-dependent measures; that is the

case of Sortino, Farinelli-Tibiletti and Rachev ratios.
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2.3.2 Sortino ratio

Sortino ratio is a measure developed by F. A. Sortino to differentiate between good
and bad volatility in the Sharpe ratio. This differentiation of upwards and downwards
volatility allows the calculation to provide a risk-adjusted measure of a security or fund’s
performance without penalizing it for upward price changes. Let u(x, ) be the portfolio

return, then the Sortino ratio is calculated as follows:

Elp(z,), Y (€]
E[(Y(¢) — p(z, &) )91/’

where Y (§) is the benchmark, ¢ > 0 and denote the left orders of the performance ratio.

Dgs(p(,€),Y(E)) =

The Sortino ratio is similar to the Sharpe ratio, except it uses downside deviation for
the denominator instead of standard deviation, the use of which does not discriminate

between up and down volatility.

2.4 Stochastic Programming

Stochastic programming is the study of procedures for decision making under uncertainty
over time. The uncertainty can be in the models parameters or in the model itself.
Parameters may be uncertain because of lack of reliable data, future and unobservable
events. The uncertainty of events, details of the problem structures and constraints
and the risky payoff of decisions are modeled in an optimization framework. High
performance PCs are used to enable exact and approximate algorithms to determine

robust decisions that hedge against future uncertainty.

Stochastic programming provides a general purpose-modeling framework, which captures
the real-world features such as turnover constraints, transaction costs, risk aversion,
limits on groups of assets and other consideration. Stochastic programming models have
been proposed and studied since late 1950s by Dantzing [32, 31], Beale [9], Charnes and
Cooper [27] and others. They proposed a stochastic view to replace the deterministic
one, where the unknown coefficients or parameters are random with assumed probability
distribution that is independent of the decision variables. Stochastic program can be

presented as:

min {f(z) := E[F(z,§)]},

zeX
where £ is a random variable vector having probability distribution P and X is a finite

set. F(x,§) is a real valued function of two (vector) variables x and &, and

E[F(z,¢)] = / F(x,€)P(df),
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is the corresponding expected value. We assume that the expected value function f(z)
is well defined.

The main issue in stochastic programming besides modeling comes from the solution
techniques. The main challenge in solving stochastic programming is the size of the
model. It can easily grow with the increase of time horizons and the set of random pa-
rameters values. There are methods and algorithms, like Monte Carlo sampling methods
[127] for solving large scale problems and stochastic approximation (SA) method which

can be traced back to the pioneering work of Robbins and Monro [112].

2.4.1 Sample average approximation methods

For numerical problems in a large number of dimensions, sample average approximation
methods, also known as Monte Carlo methods are often more efficient than conventional
numerical methods. However, implementation of the Monte Carlo method requires sam-
pling from high dimensional probability distributions and this may be very difficult and

expensive in analysis and computer time.

Suppose that we can generate a sample of N replications of the random vector £. In
the Monte Carlo sampling method this is accomplished by generating a random se-
quence U, U2, ... of numbers independent of each other and uniformly distributed on
the interval [0, 1], and then constructing a sample of £ by an appropriate transforma-
tion. We can consider the sequence w := {U Lu2, .. } as an element of the probability
space equipped with the corresponding (product) probability measure, and the sample
¢ =¢(w),i=1,2,... as a function of w. Further, we could view the generated sample
€1, €2, ... as a sequence of random vectors, each having the same probability distribution
as &. If the generated random vectors are (stochastically) independent of each other,
we say that the sample is independent identically distributed. By ¢!, &2, ... we denote

a particular realization of the considered random sample. With the generated sample

€, ..., €N we associate the sample average function
1 & :
fnlw) =5 D F(a,€). (2.4.9)
i=1

Since each & has the same probability distribution as ¢ , we have that for any = € X,
E[F(z,£")] = f(=), (2.4.10)

and hence

E[fn(z)] = f(2). (2.4.11)

That is, fN(a:) is an unbiased estimator of f(xz). Moreover, the Law of Large Numbers

(LLN) can be applied with the implication that fy(z) converges to f(z) w.p.1. uniformly
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as N — oo [121, Proposition 19]. Therefore we can say that fN(m) is a consistent
estimator of (z). This certainly holds true if the sample is independent identically
distributed.

Note that the Monte Carlo method is not an algorithm, the obtained problem still
has to be solved by an appropriate numerical procedure. Recent theoretical studies
[82, 121, 131] and numerical experiments (see [92, 97]) show that the Monte Carlo
method coupled with a good (deterministic) algorithm could be reasonably efficient for

solving certain classes of stochastic programming problems.

2.4.2 Stochastic approximation methods

It is quite often that an optimization problem can be reduced to finding zeros (roots) of
an unknown function f(-), which can be observed but the observation may be corrupted
by error. This is in short the topic of stochastic approximation (SA). The error source
may be observation noise, but may also come from structural inaccuracy of the observed

function.

The SA method can be traced back to the pioneering work of Robbins and Monro [112]
and Keifer and Wolfowitz [79]. They introduced the basic recursive algorithm for finding

roots of an unknown function on the basis of noisy observations.

The Robbins-Monro algorithm and the Kiefer-Wolfowitz algorithm are the two most
commonly used algorithms for unconstrained stochastic optimization. They differ in
how they estimate the gradient of the objective function. The Robbins-Monro algo-
rithm estimates the gradient directly, whereas the Kiefer-Wolfowitz algorithm uses finite

differences to estimate the gradient.

Since then the SA algorithm has become widely used in stochastic optimization (see,
[7, 47, 48, 49, 51, 86, 50|, and references therein). This is due to the large number
of applications and the interesting theoretical issues in the analysis of “dynamically
defined” stochastic processes. The basic idea is a stochastic difference equation such as
Ont1 = 0, + €,Y,, where 0, takes its value in some Euclidean space, Y,, is a random
variable, and the “step size” ¢, > 0 is small and goes to zero as n — co. In its simplest
form, 6 is a parameter of a system and the random vector Y,, is a function of noisy
observations taken on the system when the parameter is set to 6#,. One recursively

adjusts the parameters so that some goal is met asymptotically.

2.5 Robust Optimization

Today, stochastic programming has established itself as a powerful modeling tool when

an accurate probabilistic description of the randomness is available; however, in many
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real-life applications the decision-maker does not have this information, for instance
when it comes to estimating financial stock returns. The need for an alternative, non-
probabilistic, theory of decision-making under uncertainty has become pressing in recent
years because of volatile market conditions and unstable economical states, which reduce

the amount of reliable information available and make it obsolete more quickly.

Traditional models of decision making under uncertainty assume perfect information,
i.e. accurate values for the system parameters and specific probability distributions for
the random variables. However, such information is rarely available in practice. Soyster
addressed this issue in his work [135] in the early 1970s, where every uncertain param-
eter in convex programming problems was taken equal to its worst-case value within a
set. While this achieved the desired effect of immunizing the problem against parame-
ter uncertainty, it was widely considered too conservative for practical implementation.
Ben-Tal and Nemirovski [10, 11, 12] and El-Ghaoui and Lebret [45, 46] addressed the
issue of over conservatism by restricting the uncertain parameters to belong to ellip-
soidal uncertainty sets, which removes the most unlikely outcomes from consideration
and yields tractable mathematical programming problems. A drawback of this method
is that it increases the complexity of the problem considered, e.g., the robust counter-
part of a linear programming problem is a second-order cone problem. More recently,
Bertsimas and Sim [20, 21] and Bertsimas et. al. [17] have proposed a robust opti-
mization approach based on polyhedral uncertainty sets, which preserves the class of
problems under analysis, e.g., the robust counterpart of a linear programming problem
remains a linear programming problem, and thus has advantages in terms of tractability
in large-scale settings. It can also be connected to the decision maker’s attitude towards
uncertainty, providing guidelines to construct the uncertainty set from the historical

realizations of the random variables using data-driven optimization [15].

2.5.1 Problem of moments

Given historical data, it is easier to estimate moment information of random parame-
ters than to derive their probability distributions. This motivates the use of moment
information in developing uncertainty models for random parameters. The problem of
moments and its variations have been extensively studied and applied to many opti-

mization problems in the literature.

The problem of moment has been studied by Stieltjes [136] in the ninetheenth cen-
tury. The problem is related to the characterization of a feasible sequence of moments.
Schmudgen [126], Putinar [110], and Curto and Fialkow [30] derived necessary and suffi-
cient conditions sequences of moments with different settings. The problem of moments
is also related to optimization over polynomials (the dual theory of moment). Lasserre
[87] and Parrilo [107] among others proposed relaxation hierarchies for optimization over

polynomials using moment results.
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Bertsimas and Popescu [19] further studied the optimal inequalities given moment in-
formation. Moment problems in finance such as option pricing problems have been

investigated in the literature (see [18, 94, 23]).






Chapter 3

Stochastic Programs with Second
Order Stochastic Dominance

Constraints

3.1 Overview

Inspired by the successful applications of the stochastic optimization with second order
stochastic dominance (SSD) model in portfolio optimization, we study new numerical
methods for a general SSD model where the underlying functions are not necessarily
linear. Specifically, we penalize the SSD constraints to the objective and then apply
the well known stochastic approximation (SA) method and the level function methods
to solve the penalized problem. Both methods are iterative: the former requires the
calculation of only one approximate subgradient per iteration and can be applied to the
case when the underlying functions are highly nonlinear and/or non-smooth, and the

distribution of the random variable may be unknown.

The main contribution of this chapter can be summarized as follows:

e We exploit a recently developed exact penalization scheme for stochastic program-
ming models with SSD constraints and apply the stochastic approximation method

and the level function methods to solve the penalized problem.

e We apply the penalization scheme and the numerical methods to some portfolio
problems where the underlying return functions are not necessarily linear and
present some test results. Moreover, we use real world test data to set up both
backtest and out-of-sample test for investigating the performance of the portfolio
based on the SSD model in comparison with the Markowitz model. Furthermore,

a nonlinear supply chain problem is introduced, and the performance of the level

23
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function methods along with the cutting plane method discussed in [81, 52] is

investigated.

Throughout this chapter, we use the following notation. Let 2”7y denotes the scalar
products of two vectors x and y, and let || - || denotes the Euclidean norm. For a real
valued smooth function h(z), we use Vh(z) to denote the gradient of h at z. Let “conv”

denotes the convex hull of a set.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the opti-
mization problem and discuss preliminaries needed throughout the chapter. In Section
3.3 we discuss the stochastic quasi-gradient algorithm and the level function algorithms
and analyze the convergence of optimal solutions. In Section 3.4, we apply the proposed
methods to portfolio optimization problems, a supply chain problem and report some

numerical test results. Finally, in Section 3.5 we present some conclusions.

3.2 Stochastic Optimization Problem with SSD Constraints

3.2.1 Introduction

The notion of stochastic dominance as a constraint for optimization problems was in-
troduced by Dentcheva and Ruszczynski [36]. The concept of stochastic dominance
is fundamental when comparing two random variables, it allows one to define prefer-
ence among random variables. This concept has been playing an important role in
portfolio optimization. Let g(x,£) be a concave function, with decision vector x and
random variable . Let F(g(x,£);n) denote the cumulative distribution function of

g(x,£). We say that g(z, &) stochastically dominates g(y, &) in the first order, denoted

F(g(x,&);n) < F(g(y,€);n), ¥n € R.

Similarly, g(, §) stochastically dominates g(y, £) in the second order, denoted by g(x, &) =)

9(y, ), if
n n
| F e < [* Pl ada, e r

o
Consider the following optimization problem with second order stochastic dominance

constraints:

max  E[f(z,¢)]
T € X,

where f : R® x RF - R, ¢ : R” x R¥ — R, are concave continuous functions both in z

and £, x € X is a decision vector with X being a nonempty convex subset of R, y € X
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is a predefined vector, and & : Q — = C R*¥ is a random vector defined on probability
space (2, F, P) with support =, E[-] denotes the expected value w.r.t. the probability
distribution of &.

Dentcheva and Ruszczynski analyzed several aspects of the stochastic dominance model
including optimality and duality [38, 39], as well as numerical methods [36]. Roman et al.
[117] proposed a multi-objective portfolio selection model with second order stochastic
dominance constraints, and Fabidn et al. [52] developed an efficient method to solve

this model based on a cutting plane scheme.

It is well known [104, 145] that the second order stochastic dominance constraints in

(3.2.1) can be reformulated as

E[(n—g(z,€)+] <E[(n —9(y,€))+], Vn € R,

where (n—g(z,£))+ = max(n—g(z,£),0). Consequently, problem (3.2.1) can be formu-

lated as a stochastic semi-infinite programming problem:

min  —E[f(x,¢)]

s.t. G(z,n) :=E[(n —g(x,8))+] - E[(n — 9(y,£))+] <0, ¥n €R, (32.2)
T € X.

To overcome serious technical difficulties associated with the dominance constraint, a

so-called relaxed form of the program is proposed:

min ~E[f(r,¢)]
st. G(z,n) <0, Vn € [a,b], (3.2.3)
T € X,

where [a,b] is a closed interval in R. Dentcheva and Ruszczynski [36] showed that, if
¢ has uniformly bounded distribution, problem (3.2.3) is equivalent to problem (3.2.2)
for some appropriate interval [a,b]. However, under general conditions, (3.2.3) is a
relaxation of (3.2.2) in the sense that (3.2.3) has a larger set of feasible solutions and
subsequently its optimal value gives a lower bound for the problem (3.2.2). Furthermore,
the relaxed problem (3.2.3) is more likely to satisfy the Slater condition which is closely

related to numerical stability.

3.2.2 Clarke’s subgradient and exact penalization method

The focus of this chapter is on numerical methods for solving the relaxed SSD problem
(3.2.3). There are three issues to deal with: (a) the expectation of random functions
in both the objective and constraints, (b) the infinite number of constraints, (c) the

non-smoothness resulting from the max functions.
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An exact penalization scheme for problem (3.2.3) is used to move the infinite number of
constraints to the objective. The penalty function method is well known [66] and has

recently been used by Liu and Xu [93] for (3.2.3). Specifically, we consider the following

problem:
min - p(z, p) = —E[f(z,)] + pd(z) (3.2.4)
st. xeX, o
where p > 0 is a penalty parameter and
J(x) := max P(z,n), (3.2.5)
nela,b]
where
P(z,n) == max(G(x,n),0). (3.2.6)

Liu and Xu [93] established the equivalence between problem (3.2.2) and penalized prob-
lem (3.2.4) in the sense of optimal solutions under some moderate conditions. Penalty
methods for stochastic programs have also been discussed by Branda [24] and Dupacova
et al. [42].

Definition 3.1. Problem (3.2.3) is said to satisfy strong Slater condition, if there exists
a positive number p such that for any feasible point = satisfying G(z,n) = 0 for some

n € [a, b] there exists a point 2* with G(z*,n) < 0 for all n € T' and
e — &) < pmin(~G(a*, ). (3.2.7)
neT

Definition 3.2. Problem (3.2.3) is said to satisfy Slater condition, if there exists a

positive number § and a point Z € X such that

< —4.
IgeagG(wm) <

Since X is a compact, the Slater condition implies the strong Slater condition and then
the positive number p in Definition 3.1 can be estimated by
|z —Z|

fh = sup —

i1 (3.2.8)
rex D G(z,n)

See [65, Proposition 1 and 2] and [93] for details about the relationship.

Theorem 3.3. [93, Theorem 2.3] Assume that problem (3.2.3) satisfies the Slater con-

dition, that is, there exists a positive number § and a point T € X such that

T —0. 2.
15171621% G(z,n) < =4 (3.2.9)

Assume also that X is a compact set, and f(-,€) and g(-,€) are locally Lipschitz continu-

ous w.r.t. x and their Lipschitz modulus are bounded by an integrable function k(&) > 0.
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Then there exists a positive constant p such that for any p > p, the set of optimal
solutions of the problems (8.2.2) and (3.2.4) coincide.

Proof. Let d(x,D) := inf¢ep ||z — 2'|| denotes the distance from a point z to a set D.
Under the Slater condition, it follows by [93, Lemma 2.5] that there exists a constant
8 > 0 such that

d(z, F) < BIEG(, )|, Vo € &, (3.2.10)

where F denotes the feasible set of problem (3.2.4). Let C denotes the Lipschitz modulus
of E[f(z,€)]. By [29, Proposition 2.4.3] for any p > SC, the two optimal solutions of
problems (3.2.2) and (3.2.4) coincide. Note that under the Slater condition assumption,
we can set C' = E[x(£)]. This shows the existence of a positive constant p := SC. The

proof is complete. O
In what follows, we focus on development of numerical methods for solving penalized
optimization problem (3.2.4).

Let v : R® — R™ be a locally Lipschitz continuous function. Recall that Clarke gener-

alized derivative of v at point z in direction d is defined as

td) —
v?(z,d) := lim sup oly + td) v(y)
t
y—x,tl0

The function v is said to be Clarke regular at x if the usual one sided directional deriva-
tive, denoted by v'(z,d), exists for all d € R™ and v°(z,d) = v'(x,d). The Clarke

generalized gradient (also known as Clarke subdifferential) is defined as
ov(x) == {¢: ¢Td < v°(x,d)}.

see [29, Chapter 2.

Proposition 3.4. Let G(z,n) be defined as in (3.2.2). Assume that g(x,&) is contin-
wous w.r.t. x and & is Lipschitz continuous w.r.t. x with integrably bounded Lipschitz
modulus k(§). Let T = [a,b]

P(z,n) := max(G(x,n),0), (3.2.11)
and
I(x) = rgea%P(m,n). (3.2.12)

For any fized x € X, let T*(x) denotes the set of 1 € T' such that P(x,n) = maxP(x,n).

neT
Then
{0}, if G(x,m) <0,

0. P(x,n) = ¢ conv{0,0,G(z,n)}, if G(z,n) =0, (3.2.13)
0.G(x,n), if G(z,n) > 0.
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Moreover, 9(x) is Lipschitz continuous with Lipschitz modulus E[k(§)] and

0Y(z) = conv U O, P(x,m) . (3.2.14)
n€T* ()

Proof. Since g(x, &) is concave, then G(x,n) is convex in x and hence it is Clarke regular,
see [29, Proposition 2.3.6]. By [29, Proposition 2.3.12],

{0}, if G(x,n) <0,
0:|G(z,m)]4 =< conv{0,0,G(z,n)}, if G(x,n) =0, (3.2.15)
0,G(x,n), if G(xz,n) > 0.

The verification of Lipschitzness of ¥(x) is straightforward. Applying the Levin-Valadier
theorem (see [121, Section 2, Theorem 51]) to ¥(x), we obtain (3.2.14). O

Remark 3.5. Under the conditions of Theorem 3.3, problem (3.2.4) is a convex mini-
mization problem with the objective function ¢(x, p) being Lipschitz continuous. The

optimality condition of the problem can be written as
0 € —E[Vf(z,§)] + pdd(z) + Nx(x), (3.2.16)

where Ny (z) denotes the normal cone to X' at point z in the sense of convex analy-
sis [114]. Let Py(z) = argminyecx ||« — y|| denote the orthogonal projection of  on X
Then the optimality condition (3.2.16) can be stated as follows: there exists w € 99(x)
such that

Py(z +E[Vf(z,8)] — pw) = x. (3.2.17)

We will use this in Section 3.3.

3.3 Solution Methods

In this section we are concerned with numerical methods for solving problem (3.2.4).
Specifically, we propose three methods: the stochastic approximation (SA) method and

the level function methods to solve problem (3.2.4).

3.3.1 Stochastic approximation algorithm

In this section we discuss the stochastic approximation method for solving the penalized
problem (3.2.4). One of the main reasons that we apply this method is that the objective

function of (3.2.4) is non-smooth.
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The stochastic approximation (SA) method can be traced back to the pioneering work
of Robbins and Monro [112]. Since then the SA algorithm has become widely used in
stochastic optimization (see, [7, 47, 48, 49, 51, 86, 50|, and reference therein). In this
section, we focus on a stochastic quasi-gradient method (SQG) which generalizes the
SA method. The SQG method is a stochastic algorithmic procedure for solving general
constrained optimization problems with non-differentiable, non-convex functions. Poljak
[109] proposed techniques for investigating the local convergence of stochastic optimiza-
tion processes and proved some results concerning differentiable optimization. A formal
investigation of the asymptotic rate of convergence of SQG procedures was also carried
out by Poljak [109].

Let 3, € X be an approximate solution of (3.2.4). The SQG method calculates a quasi-
gradient, denoted by (, of ¢(z, p) at zx such that

E[Ck/ {:170, cee ,l‘k}] S —E[Vf(l‘k, 5)] + p&cz?(:rk) + Vg, (3.3.18)

where vy, is a controlled error, and by Proposition 3.4

0.9(xy) = conv U Oz P(x,m) ¢, (3.3.19)
neT* ()

where T™(zy) is the set of solutions to (3.2.12) for x = z}. In order to calculate an
element of 0,9 (), we need to find an n € T (x). This amounts to solving optimization
problem (3.2.12) w.r.t. 7. Note that P(z,n) := max(G(z,n),0), and G(z,n) = E[(n —
9(x,&)+]—El(n—g(y,&)+]. Obviously for a fixed x, G(x,n) is the difference of two convex
functions in 7, which means P(x,n) is not a convex function in 7. Homem-de-Mello et
al. [70] tackled this type of challenge with a branch and cut method: reformulating
the problem as a DC-programming problem and then solving it with branch and cut
algorithm. Here, we propose to approximate this subgradient through sampling. Let
€L ..., €N be a sampling of £, and wg, be a subgradient of J(x) at xp. Then we may

choose

LN
k:NZ —V (21, &) + pwy,) -

Let us explain how to calculate the wy,. By [36, Proposition 3.2], we reformulate the

constraints
E[(n — g(z,)+] <E[(n — 9(y.£))+], Vn € [a,b],

as

E((ni —g(x,€)+] <E[mi — g9y, &))+], i=1,...,N,

where 1; = g(z,£), i =1,..., N. Assume that g(z,¢) is bounded. Then we may choose
the interval [a, ] such that g(z,§) € [a,b] for all z € X, £ € =, which means n; € [a, ],
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i=1,...,N. Consequently we can reformulate problem (3.2.12) as follows:
1< . 1< .
max NZ(TH —9(zg, &)+ — NZ(TH =9y, &))+- (3.3.20)
’ i=1 i=1

Based on the discussions above, we present a stochastic quasi-subgradient algorithm for

solving problem (3.2.4).

Algorithm 3.1 (Stochastic quasi-subgradient algorithm)

Step 1. Set a sequence of stepsizes {\x} satisfying
[o¢] [o¢]
d A <oo, > M=o0, A =0. (3.3.21)
k=0 k=0

Choose an initial vector zog € X, set k = 0.

Step 2. At zj, calculate an approximated subgradient of ¢(x, p), denoted by (j, that is
E[Ck/l’o, ... ,l’k] S —E[Vf(l’k, f)] + ,Oaxﬁ(l‘k) + v, (3.3.22)

where 0,9(z) is as in Proposition 3.4 and vy is a controlled error satisfying
[ee]
O ED vl + AR 1G] < oo (3.3.23)
k=0

Step 3. Set
Th+1 = Px(l’k - )\kgk), (3.3.24)

where Py(x) is the orthogonal projection of z on X.
Step 4. If x3 11 = x; and v, = 0, stop. Otherwise, set k:=k + 1, go to Step 2.

Let us make a comment on the stopping rule. In the case when z11 = Py (xp — A\p(r) =

xy, we have

—Xi € Ny (xp),

and hence
— Gk € Nx(z). (3.3.25)

Since v = 0, then
0 € —E[Vf(zg, &)] + p0r¥(xr) + Nx(zk), (3.3.26)

which, by Remark 3.5, implies that xj, is an optimal solution of (3.2.4).

Let us now consider the case that xy = xy, for k > ko but v # 0. By (3.3.25),

0e —E[Vf(l‘k,f)] + p0, ¥ (xy) + Vg +Nx(l‘k).
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Under (3.3.23), v, — 0 as k — oo. By taking a limit on the equation above, we have
0e _E[vf(mkm é‘)] + paﬂﬁﬁ(wko) + NX(xko)7

which implies that xy, satisfies the first order optimality condition and hence xy, is an

optimal solution.
In what follows, we study the convergence of the general case.

Definition 3.6. Let || - || denotes the Euclidean norm. A random process {zx} valued
in R™ and adapted to the filtration Fj is called a random quasi-Feyer sequence w.r.t. a
set S C R™, if E[||xo||]] < oo, and for any s € S,

Elllzrra = sll /Fel < llax — sl + ow,

and

0o
ZE[Uk] <00, o 20,
k=0

where o, is an error.

Lemma 3.7. [/8, page 98] Let {x}.} be a stochastic quasi-Feyer sequence w.r.t. Z. Then

the following assertions hold.

(i) The sequence {||z —a:k||2} converges w.p.1. for any z € Z, and E[||z — z3|*] <

C < oo for some constant C.

(i) The set of accumulation points of {xy} is not empty. Suppose that an accumulation

point of {xy} belongs to Z. Then {xy} has only one limiting point.

We are now ready to present our main results.

Theorem 3.8. Let {x} be generated by the Algorithm 3.1 and let X* denote the set
of optimal solutions of (3.2.4). Assume: (a) f(x,&) and g(x,&) are concave for almost
every £ and continuous w.r.t. both x and &, (b) X is a convexr compact set, (c) there
exists a constant C > 0 such that B[||Ce||? /Fi] < C, C satisfy (3.3.22), {\e}, and vy
satisfy conditions (3.3.21) and (3.3.23) w.p.1. Then there is a subsequence {xy,} such
that {zk, } — x* and o(xy,, p) = ©(x*, p), where x* € X*.

Proof. Let {xx} be generated by (3.3.24) and z* € X*. By definition

l2* = 21 |” = ||l2* — Px(zk — M) ||
< la* = o + Al (3.3.27)
= lla* — agl® + 2\ (=" — zp) + A% 1G]
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Let Fr = {z1,...,2r}. Taking the conditional expectation on both sides of the above

inequality w.r.t. Fj, we have

Ellle* — aprl* /Fi] < Ellle” — all®] + 20EG/Fil " (¥ — 2x) + ARE[ICI” /Fil-

Observe from (3.3.22) that E[(x/Fi] — vk € Ovp(zk, p). By the convexity of p(z, p), we

have
E[Ch/Fi]" (% — ) — v (2% — 21) < o(z*, p) — o1, p). (3.3.28)

Using conditions (b) and (¢) and taking into account that ¢(z*,p) — ¢(zk, p) < 0, we

obtain from the above two inequalities that
* 2 * 2 A 2
Elllz* =zl /F] < lla* = @ll* + CO lwall + AZ N1kl

where C is a constant.

In view of (3.3.23) and Definition 3.6, it is clear that {zx} is a stochastic quasi-Feyer
sequence w.r.t. X*. Consequently, the sequence ||z — m*|]2 — 0 w.p.1.. Furthermore,
the set of accumulation points of {zx} is not empty. Consequently, if we show that one
of the accumulation points belongs to X*, then from condition (c) it follows that {zj}

converges w.p.1. to a point in X™* [48].

Referring back to (3.3.27) and taking expectations, we have

k k
Efle* = zral®) < Elllz* —a1)*] +2) NEIG/F] (2" — 2i) + Y EDF (G /Fi,
i=1 i=1
through (3.3.28), this yields
E[l|lz* -z 11 <
k k
Efla* — x| +2 ) ME[p(2*, p) — @(wi, p) + |will 1z — 2*|] + D EDZIGI® /Fi,
i=1 i=1
k kK
<E[lle* — 21"} +2 ) NE[p(z*, p) = p(xi, )] + C DBl will + N 116/ Fill?):
i=1 1=1

This and condition (3.3.23) implies

> AiElp(i, p) — p(a*, p)] < oo,
=1

Since

Z)\i = oo and p(z;, p) — p(z*, p) = 0,

=1
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then there exists a subsequence xj, such that p(zx,,p) — ¢(z*,p) — 0, w.p.1. This
shows there exists a subsequence such that ||z, —2*|| — 0 w.p.1. and this completes
the proof. O

Before concluding this section, we make a few general comments on stochastic quasi-
subgradient method. The stochastic quasi-subgradient method [47, 48, 49] has been
developed to solve stochastic problems with complicated functions. The main advantage
of this method is that, at each iteration, the search direction is a stochastic subgradient
of the objective function. Another advantage of stochastic approximation methods is
that it allows working directly with the samples of random variables, rather than the
full distributions. However, this advantage comes at a cost. One difficulty is the choice
of the stepsize. In general, choosing the stepsize requires some experimentation, and

there are no hard or fast rules for making the choice.

The SQG method uses a quasi-subgradient of the objective function at each iteration.
However, it might be helpful to use the subgradient information at the previous iterate.
This motivates us to resort to the level function method from non-smooth optimization
proposed by Lemarechal et al. [89] and extended by Xu [146].

3.3.2 Level function algorithm

In this section, we consider level function method for solving (3.2.4). The fundamental
idea of the method is to use a subgradient of the objective function at each iteration
to construct a linear function and treat the minimizer of the maximum of the linear

function as the next iterate.
Let us start with some basic definition of the method.

Let @ € R be a scalar and ¢(x, p) be a general continuous function. We use
Tp(a) ={z € X : ¢(z,p) < a},

to denote the strict lower level set of . We discuss the case where the distribution of
random variable £ is known and a subgradient could be calculated based on the available
scenarios. This will aid us in the calculation of a subgradient of the objective function

at each iteration.

Definition 3.9. Let ¢(z, p) be continuous function and z € X', where X is a nonempty
convex subset of R”. A function ¢ : R® — R is called a level function of ¢ at z if it

satisfies the following conditions:

(a) o(z) =0,

(b) o is a continuous convex function,
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(¢) Typ(p(z,p)) C T5(0).

From the definition, we can see that the minimizers of ¢ are contained in T, (¢(z, p))

and z is optimal if and only if T,,(¢(z, p)) = 0.

In what follows, we apply the level function method to (3.2.4). Let f(x,€) and g(z,¢)

be continuous convex and concave functions, respectively. Let (i € dy¢(xk, p), then

0, () = G (@ — )/ |Gl
is a level function of ¢(x, p) at x.

Algorithm 3.2 (Scaled level function algorithm)

Step 1. Let € > 0 be a constant, select a starting point zg € X'; set k:=0.

Step 2. Calculate ( € O, (z, p). Define the functions o, (v) and oy (z) by
0 () = G (@ —xn) /|Gl

o(z) = max {ox_1(x), 04, (x)},

where 0_1(z) = —00. Let

Tp41 € argmin og(z),
zeX

and

A(k) = —O’k(IL’k_H).

Step 3. If A(k) < ¢, stop. Otherwise, set k := k + 1, go to Step 2.

It is important to note that here we need to calculate a subgradient of ¢(z, p) at each
iterate. This is more demanding than the stochastic approximation method where only
a quasi-subgradient is calculated at each iterate. However, in some practical instances,
the random variable may have a finite distribution, in that case ¢(z, p), can be written
as a sum of a finite number of deterministic functions. Calculating a subgradient of such
a function might be numerically possible. In the case when we are not able to obtain a
closed form of the expected value of the underlying functions, we may use the sample
average approximation method [127] to approximate (z,p) and reduce it to a finite

sul.

Theorem 3.10. Let ¢(x,p) be defined as in (3.2.4) and let the assumptions of Theorem
3.8 hold. Then klim A(k) = 0 and there exists a subsequence of {xy} converging to a
—00

global minimizer of @ over X.

Proof. Under the assumptions, each of the level functions {04, (x)} generated by Algo-
rithm 3.2 is Lipschitz on X. The conclusion follows from [146, Theorem 3.2].
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O

The Algorithm 3.2 takes a minimizer of ok (x) as the next iterate, the main drawback is
that it is not possible to predict the maximum number of iterations required to reduce
A(k) to a prescribed precision. To overcome this problem, Xu [146] modified the Algo-
rithm 3.2 by updating an iterate using projection of the current point to a level set of
o (x). This projection idea belongs to Lemarechal, Nemirovskii and Nesterov [89], who

applied it to convex programming.

Algorithm 3.3 (Projected level function algorithm)

Step 1. Let € > 0 be a constant, and select a constant A € (0,1) and a starting point
T € X set k=0.

Step 2. Calculate a level function o, () of ¢ at x, and set

ok(z) = max {ox_1(x), 04, (x)},

where 0_1 = —o00. Let

@ = argmin {p(x;,p) 1 j€0,...,k},

and

T € Pg, (T, Q)

where

Qr =1z € X :0k(z) < —AA(K)}, A(k) = —minoy(z),

and Pp, is the Euclidean projection of the point x on a set Q.
Step 3. If A(k) < ¢, stop. Otherwise, set k : =k + 1, go to Step 2.
Note that, when A = 1, @} becomes the set of minimizers of o) over X. Consequently,

Algorithm 3.3 becomes identical to Algorithm 3.2. The following convergence results
follow directly from [146, Theorem 3.3].

Theorem 3.11. Let {xx} be generated by Algorithm 3.3. Assume the conditions of
Theorem 3.10. Then

A(k) <e, for k> M2d%e2A72(1 = A2,

where € is specified as in Algorithm 3.3, M is the Lipschitz modulus of ¢ over X, and d
is the diameter of X defined as

d = sup{|lz —yll, z,y € X}.
x7y
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For the proof refer to [146, Theorem 3.3].

3.4 Numerical Tests

We have carried out a number of numerical tests on the proposed algorithms by using
MATLAB 7.10 built-in nonlinear programming solver “fmincon” installed on a Viglen
PC with Windows XP operating system and 2.96 GB of RAM. The optimization sub-
problems within the Algorithm 3.2 and 3.3 are solved using IBM ILOG CPLEX Studio

12.4. In this section, we report the test results.

We consider primarily two portfolio optimization problems to examine the SSD model
(3.2.2) and efficiency of our proposed numerical methods, that is, the penalization ap-

proach (3.2.4) and algorithms discussed in Section 3.3.

Suppose that we have a fixed capital to be invested in n assets. Let R;, i = 1,...,n,
denotes the return of asset 7. In practice, the return is often uncertain and we use a
random variable £ to describe the uncertainty. Specifically, we write R; as R;(§) and in

doing so we are assuming that all n assets have identical random factor.

To simplify the discussion, we normalize the capital to 1 and use z;, ¢ = 1,...,n, to
denote the fraction of capital to be invested in asset i. The portfolio return can then be
formulated as:

9(2,€) == Ri(€)ar + Ra(€)z2 + -+~ + Rul(€)zs. (3.4.20)

We apply the SSD model (3.2.2) to optimize our investment strategy. To ease the

citation, we repeat the model:

min E[f(z,¢)]

T € X,

where g is defined by (3.4.29). We need to specify f(z,€&) and X. We will start with the
simplest case of f(z,§) = —g(z,§) and X := {z : > " | ; = 1,2; > 0} and then consider
a variation, which allows f to include a quadratic term and x; to take a negative value
in order to address some practical need where investment in a particular asset is not too
small and/or the short selling occurs. We will come to the details of the variations later

on. Here y denotes a benchmark investment with y; = %, fori=1,...,n.

To examine the appropriateness of the SSD model, we calculate the Conditional Value
at Risk (CVaR) for random variables g(x*,&) and g(y,&) where z* is an approximate
optimal solution obtained from solving (3.4.29). Recall, that by definition for a specified
probability level «, the Value at Risk (VaR) of a portfolio is the lowest amount C such
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that, with probability «, the profit does not fall below C. The CVaR,, is the conditional

expectation of profit below C. In our context,
* 1 *
CVaka(o(a",) =sup {€ = ZBIC—ofa” )41 (34.31)

where a € (0,1) is a prespecified constant.

Dentcheva and Ruszczyniski [38] showed that there is a fundamental relationship between
the concept of CVaR and the second order stochastic dominance constraint. Specifically
they showed that

g(w,é') E(Q) 9(975)7

if and only if
CVaR,(g(z,§)) = CVaR4(g(y,§)), Ya € (0,1],

which means that as the return of a portfolio increases the CVaR. of that portfolio also
increases. Three values of o are commonly considered: 0.90, 0.95, 0.99. However, in our

analysis we focus on the case of a = 0.95.

3.4.1 Numerical performance

Example 3.1. We consider a history of percentage returns, for m = 6 and m = 10 time

periods, for a group of n =2 and n = 5 assets

in Table 3.4.1 and Table 3.4.2, respectively.

Returns % for period

January February March April May June
Asset 1 1.2 1.3 1.4 1.5 11 1.2
Asset 2 1.3 1.0 0.8 09 14 1.3

TABLE 3.4.1: Monthly rates of return on two assets.

Returns % for period

1 2 3 4 ) 6 7 8 9 10
Asset1 12 13 14 15 11 12 11 10 1.0 1.1
Asset2 1.3 1.0 08 09 14 13 12 11 12 1.1

Asset 3 09 1.1 10 11 11 1.3 1.2 11 10 1.1
Asset4 1.1 1.1 12 13 12 12 1.1 1.0 1.1 1.2
Asset 5 0.8 0.75 0.65 0.75 08 09 1.0 1.1 1.1 1.2

TABLE 3.4.2: Rates of return on five assets over ten periods.

Our aim is to find an optimal investment strategy for a fixed capital in the n assets which

maximizes the expected profit subject to certain risk averse measures. Particularly we
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consider the following model:

min E[f(z,8)] = —E[g(z, )]

st g(x,8) =@ 9(y,8), (3.4.32)
r e X.

For the purpose of this example we set the upper and lower bound on the fraction of
capital invested in each asset to 0.6 and 0, respectively. We do this to ensure diversifica-
tion. Minimizing this function can be regarded as an attempt to get as close as possible

to meeting requirements on both return and risk.

We apply the exact penalization as discussed in Section 3.2.2 to Examples 3.1 and set
the penalty parameter p = 1000. We solve the reformulated problem with Algorithms
3.1, 3.2, and 3.3. For Algorithm 3.1, we use the step size:

)\k = 7
and the stopping rule:

[@hs1 = 2l < O llwnsalls llo(zrsn, p) — (@, )| < b lo(zrsr, P

where 6, = 0.001 and d, = 0.001 are specified precisions.
For Algorithms 3.2 and 3.3 we use ¢ = 0.001 and A = 0.5.

Consider Example 3.1, we apply the Algorithms 3.1, 3.2 and 3.3 to solve this problem.
The optimal fractions of the invested capital from the starting point xo = (1,0) are
shown in Table 3.4.3.

In order to investigate the accuracy of the solution, we calculated the norm of the
subgradient at this solution. The norm of subgradient at x = (0.6,0.4) is equal to

0.0068 which confirms that the solution is close to optimal.

Alg. | Tter. | Time x Elg(z,£)] | CVaR
3.1 6 0.845 | (0.600, 0.400) 1.217 0.9824
3.2 6 0.631 | (0.599, 0.401) 1.218 0.9824
3.3 6 0.628 | (0.599, 0.401) 1.218 0.9824

TABLE 3.4.3: Example 3.1 using data in Table 3.4.1. Time is in minutes, the expected
return of the benchmark portfolio E[g(y, £)] = 1.200 and its CVaR = 0.897.

In Table 3.4.3 and the rest of the tables “Iter” refers to the number of iterations, “Alg”

is the short form for algorithm, and “S-sell” refers to short selling.

The results are obtained after 6 iterations by Algorithm 3.1 and 3.2 and are equivalent
to the results obtained by Algorithm 3.3. Additionally, as it is expected both the return
and its CVaR of the selected portfolio are higher than the benchmark return and CVaR.
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Further, we use the data of 5 assets over 10 periods in Table 3.4.2 and examine Example
3.1. Table 3.4.4 shows the results of this example.

Alg. | Tter. | Time T E[g(z,€)] | CVaR
3.1 115 5 (0.325, 0.231, 0.177, 0.266, 0) 1.147 1.004
3.2 7 0.8931 | (0.322, 0.231, 0.177, 0.266, 0) 1.148 1.004
3.3 9 0.6355 | (0.325, 0.231, 0.177, 0.266, 0) 1.148 1.004

TABLE 3.4.4: Example 3.1 using data in Table 3.4.2. Time is in minutes, the expected
return of the benchmark portfolio E[g(y,£)] = 1.093 and its CVaR = 0.895.

As it can be seen, all three algorithms result in a similar optimal portfolio. Also the
selected portfolio dominates the benchmark portfolio in a sense that the CVaR of the
selected portfolio is greater than that of the benchmark portfolio. However, the number
of iterations is different and as a result the computation times differ. Algorithm 3.3
performed better than the other algorithms as it converged to the optimal portfolio

with respect to the number of iteration and computation time.

Note that in Example 3.1, both f and g are linear. In what follows, we consider nonlinear
portfolio optimization problems where either f or g or both are nonlinear. This is to
demonstrate that the proposed algorithms can cope with both linear and nonlinear

portfolio optimization problems.

Example 3.2. In Example 3.1 we considered an optimization problem where any frac-
tion of capital between 0 and 0.6 was acceptable. However, due to transaction cost,
investors do not like to invest very small amount of their capital in different assets.
We now reformulate Example 3.1 into a slightly more complicated problem in which
we do not want to invest very small amounts in an asset. We consider the following

performance function:

fl@,6) = —g(x,6) = > =, (3.4.33)
=1

and incorporate (3.4.33) into the optimization problem (3.4.32). In the section we will

consider two cases:

e Short-selling is allowed and upper and lower bounds on the fraction of capital

invested in each asset are set to 2 and -1.

e Short-selling is prohibited and the bounds are set to 0.6 and 0 to ensure diversifi-

cation.

The invested fractions which solve this problem using the discussed algorithms and the
data in Table 3.4.1 are the same as the result obtained in Example 3.1. However, the

results of the problem using data in Table 3.4.2 are shown in Table 3.4.5.
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Furthermore, we collect 300 daily historical returns of 95 FTSE 100 assets prior to March
2011 and a cash account paying 0.5% interest. We used the first 200 daily returns to
construct the portfolio strategy based on the performance function (3.4.33). We also
used the FTSE 100 Index as the benchmark. The results are presented in Table 3.4.6.

Alg. | Problem | Iter. | Time T E[g(z,€)] | CVaR
31 S-sell 684 16 (0.127, 0.495, 0.550, 0.380, -0.553) 1.230 1.045
' No S-sell | 226 9 (0.600, 0, 0, 0.400, 0) 1.1740 1.007
3.9 S-sell 6 0.899 | (0.400, 0.514, 0.314, 0.390, -0.500) 1.260 1.063
“ | NoSsell| 6 |0.768 (0.600, 0, 0, 0.400, 0) 1.1740 | 1.007
4g | Sl | 4 0649 | (039, 0.527, 0.287, 03, -0.5) 1.260 | 1.063
’ No S-sell 4 0.577 (0.600, 0, 0, 0.400, 0) 1.1740 1.007

TABLE 3.4.5: Example 3.2 using data in Table 3.4.2. Time is in minutes, the expected
return of the benchmark portfolio E[g(y, £)] = 1.200 and its CVaR = 0.897.

Alg. | Problem | Iter. | Time | No.Assets | E[g(z,§)] | CVaR
31 S-sell 792 | 28.542 32 0.089 0.079
No S-sell | 685 | 25.43 27 0.036 0.025

3.9 S-sell 16 1.274 40 0.094 0.082
’ No S-sell | 13 0.973 26 0.037 0.026
33 S-sell 12 0.640 40 0.094 0.082
’ No S-sell | 10 | 0.561 26 0.037 0.026

TABLE 3.4.6: Example 3.2 using FTSE 100 historical return. Time is in minutes, “No.
Assets” represent the number of assets in the optimal portfolio. The expected return
of the benchmark portfolio E[g(y, £)] = —0.051 and its CVaR = 0.023.

It can be seen that when short-selling is allowed the optimal portfolio has higher return
compared to the case where short-selling is prohibited, however this higher return is
associated with a higher risk. A rational risk-averse investor is expected to discourage
short-selling as the excess return is not worth the extra risk. Additionally, the financial
authorities in many countries including the U.K. and the U.S.A. restrict many financial

institutions such as pension funds from the practice of short-selling.

Note that both of the level function algorithms converge to very similar portfolios. The
portfolio returns are higher than the benchmark portfolio return and as it was expected
the CVaR of the selected portfolios are higher than the CVaR of benchmark portfolio.
Although the fraction of the capital invested in each asset differ from the results from
stochastic approximation method (Algorithm 3.1), but the optimal portfolios return
and risk are very close. The number of iterations in the level function method are much
lower compared to the stochastic approximation method, consequently the optimization
time is lower for the level function method. Furthermore, it could be seen that the
projected level function algorithm converges to the optimal solution with fewer number
of iterations compared to the scaled level function algorithm. This makes Algorithm 3.3

more attractive than Algorithm 3.2.
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In next section, we demonstrate the advantage of taking stochastic dominance con-
straints into account using real world data for a portfolio optimization problem followed

with a bakctest and a out-of-sample analysis.

3.4.2 Portfolio performance

In this section we focus on optimization problem (3.4.32) where g(y, £) is set to be equal

to FTSE 100 Index and draw some conclusions.

We use the FTSE 100 data collected and a cash account paying 0.5% interest. We used
the first 200 observations to construct the portfolio strategy and the further 100 daily
returns for an out-of-sample test. In practice there are many strict regulations imposed
by authorities on short selling and as a result many financial institutions prohibit any
short selling activity. Consequently, in this example we only consider the case where
short selling is not allowed and set the upper and lower bounds on portion of capital

invested at 0.6 and 0, in order to ensure diversification.

We solve the above optimization problem using the FTSE 100 data and compare the
proposed algorithms. The results are presented in Table 3.4.7.

Algorithm | Tter. | Time | No.Assets | E[g(z,£)] | CVaR
3.1 735 | 25.64 31 0.036 0.027
3.2 9 1.717 29 0.037 0.027
3.3 7 1.215 29 0.037 0.027

TABLE 3.4.7: Result of the problem using FTSE 100 data. Time is in minutes,
No.Assets represents the number of assets in the optimal portfolio. The expected
return of the benchmark portfolio E[g(y, )] = —0.051 and its CVaR = 0.023.

In the remainder of this section we concentrate on the investigating of the efficiency of
selected portfolios by Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3.

Furthermore, to investigate the dominance relationship we present the graph of cumu-
lative distribution functions of portfolio return generated by the SSD model using the
Algorithms 3.1-3.3, Markowitz model and the FTSE 100 Index in Figure 3.4.5. It is clear
that the generated portfolio strategy dominates the benchmark portfolio. Moreover, to
see the performance of the generated strategy out-of-sample we present graph of cumu-
lative return of the of portfolio return generated by the SSD model using the Algorithms
3.1-3.3, Markowitz model and the FTSE 100 Index in Figure 3.4.6. It can be seen that
the return generated by the portfolio strategy based on the SSD model is much higher

compared to the Markowitz model and the benchmark portfolio.

To illustrate the benefit of using stochastic dominance constraints, we set up a backtest
It is

accomplished by reconstructing, with historical data, trades that would have occurred

which is a key component of effective trading-system development in finance.
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FIGURE 3.4.2: Difference between the portfolio return and the return of FTSE 100
index, in-sample.

in the past using rules defined by a given strategy. Furthermore, we set up an out-
of-sample test to evaluate the performance of the selected portfolio over the remaining
100 samples. For the backtest the model finds the optimal portfolio weights from 200
historical market data, then the portfolio strategy is applied to the same data and daily
portfolio return is calculated for each day (Figures 3.4.1 and 3.4.2). In the out-of-sample
test, the same portfolio strategy is applied to the remaining data of 100 days and the
portfolio return is again calculated for each day (Figures 3.4.3 and 3.4.4). In both tests

the portfolio performance is compared with FTSE 100 Index and an investment strategy
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generated by a Markowitz model as described below:

1;1635)(( Elg(z,¢)] — AE[R(x,&)]

st.  Elg(z,€)] > Ry, (3.4.34)
inzlszo,mex,
i=1

where A = 1 is a fixed nonnegative number, E[R(z,£)] is the portfolio variance, Rj is
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FIGURE 3.4.6: Out-of-sample cumulative return for the generated portfolio strategy
based on the SSD models, Markowitz model and FTSE 100 Index (benchmark).

the benchmark return set equal to the FTSE 100 Index, and E[g(z,£)] is the return
defined as in (3.4.29). The Markowitz model (3.4.34) assumes that portfolio can be

characterized by their mean return and variance.

To compare the performance of the the two portfolios we use the Sortino ratio [134].
The Sortino ratio measures the risk-adjusted return of an investment asset, portfolio
or strategy. It is a modification of the Sharpe ratio but penalizes only those returns
falling below a user-specified target, or required rate of return, while the Sharpe ratio
penalizes both upside and downside volatility equally. We used risk free rate (0.5%) and
the benchmark portfolio (Index return) as the required rate of return. We calculated the
Sortino ratio both at the 200th day and 300th day. The results are shown in Table 3.4.8.
It can be seen that the portfolios constructed by the SSD model (3.4.32) and solved by
proposed Algorithm 3.3 and Algorithm 3.1 perform better than the Markowitz model
(3.4.34) and a FTSE 100 Index based on the backtest and out-of-sample test as well as

the Sortino ratio.
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Model Required return | 200" day Sortino ratio | 300" day Sortino ratio
SSD Model Bﬁ?il_ Ifr;:gk 8:}22; 8:82;1?
Markowitz Model BEI:SCIE rfr;:zk —%%%5686 -(()), (;)f 715

TABLE 3.4.8: Sortino ratio of the portfolio generated by optimization problem with
SSD constraints and the Markowitz model.

Note that the two algorithms generate similar results, but their numerical efficiency
differ significantly in terms of CPU time and the number of iterations. Figure 3.4.7
shows the CPU time of different numbers of assets for Algorithm 3.1 and 3.3.
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FIGURE 3.4.7: CPU time in minutes versus the number of instruments.

3.4.3 A supply chain problem

This example is a supply chain problem recently considered by Dentcheva and Martinez
[35, Section 4]. Since, previous numerical analysis proved that the stochastic approxima-
tion method (Algorithm 3.1) is inefficient. In this example we only consider Algorithm
3.3 along with the cutting plane method introduced by [81] and applied to stochastic

problems with second order stochastic dominance constraint in [52].

Example 3.3. (Dentcheva and Martinez [35]) A company has a set F' of factories that
produce and supply perishable product to a set O of stores. Assume that the goods are
supplied before the demand is observed. If the demand is not met, the customers buy
the product elsewhere and the sales are lost. If the stock of the store is larger than the
demand, then the remaining products need to be disposed of. Assume that the disposal
cost is a deterministic quantity and that each factory has a limited capacity to produce
goods. Furthermore, we assume that a benchmark of the acceptable cost distribution is
available. The objective is to determine a production and shipping plan for each factory

in order to minimize the expected cost of the company. Denote by x;; the quantity of
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goods delivered by factory 7 to store j, w; is the quantity produced by factory i, z; is the
number of sales at store j, and y; is the amount disposed at store j. The shipping cost
from factory i to store j is denoted by ¢;;; the production cost of one unit of product at
store 4 is a;; the capacity of store 7 is C;. The disposal cost on site j is d; and the price

store j sets for the product is b;.

Dentcheva and Martinez proposed a two-stage stochastic program with stochastic order-
ing constraint model for this problem, see [35, Section 4] for details. Here, we formulate

the problem as a one-stage stochastic problem with SSD constraints as follows:

min Z Z%xw + Zazwl + Zps (xz,D?)

=1 j=1
st —Q(z,D) = —Y,
0]

w; = E xij,i:].,...,F,
j=1

ngigci,i:L...,F,
zij >0,0=1,...,F;5=1,...,0,

(3.4.35)

where D := (Dy,...,Dg), and

Q(z, D%) :=" (dj(wj — D§)1 = bj(D — (D§ — x)4)),
7=1

T; = Zf; 1 Tij and Y is a benchmark with S scenarios.

We assume that each component D; of the demand D satisfies the ~-distribution with
parameters (2,3), j = 1,...,J. Each data set is generated through i.i.d. sampling with
size S and pg := %, for s = 1,...,S5. The benchmark is constructed from solving the

problem without SSD constraints. We have carried out a number of numerical tests on
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FIGURE 3.4.8: Computational time versus the number of observations for F' = 10 and
O = 10, Example 3.3

the two algorithms for problem (3.4.35).
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Our tests are concentrated on CPU time against increment of sample size and problem
size. There are two cases which may lead to the change of problem size: increase of
the number of factories F' and increase of the number of stores O. Figure 3.4.8 depicts
CPU time of the two algorithms as the size increases from 10 to 3000, whereas Figure
3.4.9 and Figure 3.4.10 depict the sensitivity of CPU time against the change of F' and
O respectively.

We have made a few observations from the numerical tests. First, the two algorithms
perform well as sample size increases particularly when the size goes beyond 2000, see
Figure 3.4.8. This is primarily because the sample size does not increase the size of
problem (3.4.35) albeit it increase the number of terms in both the objective and con-

straint functions. Second, Algorithm 3.3 performs better than the other algorithm in

most cases.
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and S = 100, Example 3.3

An underlying reason is that it constructs a single level function instead of adding two
or more cutting planes as in the cutting-plane method. Third, increase of the number of

stores O has more significant impact on on both the number of iterations and the CPU
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time in the two algorithms than does the increase of the number of factories F. See
Figures 3.4.9 and 3.4.10. This is primarily due to the fact that increasing O results in
more nonsmooth terms in the constraint functions while increasing F' does not have such
consequence, see the composition of Q(z, D®). Finally, in comparison with Dentcheva
and Martinez’s test results, our algorithm is less sensitive to the increase of sample size
because we don’t introduce new variables to deal with plus functions, on the other hand,
our algorithm are more sensitive to the increase of O whereas their algorithms deal with
such a problem through introduction of a new variable per scenario to get around the

nonsmoothness of the plus function.

3.5 Conclusions

Our preliminary numerical tests show that Algorithm 3.3 (projected level function) is
numerically more efficient than Algorithm 3.1 (Stochastic approximation). However,
Algorithm 3.1 has a unique advantage; that is at each iteration only one approximated

subgradient of the objective function is calculated.

Furthermore, the portfolio optimization problem with SSD constraints performs better
than the Markowitz model and it also outperforms the benchmark both in-sample and
out-of-sample in sense of portfolio return, which was shown by the results from the back-
test and out-of-sample test (Figures 3.4.1-3.4.4). This result was also confirmed with
Sortino ratio calculation shown in Table 3.4.8, where the portfolio optimization problem

with SSD constraints has higher risk adjusted-return compared to the Markowitz model.

Finally, the supply chain optimization problem with SSD constraints investigated the
performance of the Algorithm 3.3 along with cutting plane method [81, 52] in a sense
of CPU time versus the size of the problem. It was concluded that the Algorithm 3.3
is less sensitive to the sample size, however this algorithm was sensitive to changes in

number of stores “O”.
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Stochastic Programs with
Multivariate Second Order
Stochastic Dominance

Constraints

4.1 Overview

In this chapter we study optimization problems with multivariate stochastic dominance
constraints where the underlying functions are not necessarily linear. Stochastic domi-
nance is used to compare the distribution of two random variables [101], thus providing
a way to measure risk. Over the past few years there has been an increase in the dis-
cussion on stochastic programs with stochastic dominance constraints. Dentcheva and
Ruszczyriski [36, 37] first introduced optimization problems with stochastic dominance
constraints. This is an attractive approach for managing risks in an optimization set-
ting. While pursuing expected profits, one avoids high risks by choosing options that

are preferable to a random benchmark.

Much of the work on optimization with stochastic dominance has focused on the case
where the underlying random quantities being compared are unidimensional [38, 39, 95,
103]. More recently, Dentcheva and Ruszczyriski [40] proposed the concept of positive
linear second order stochastic dominance which is a special case of multivariate stochas-
tic dominance and obtained necessary conditions of optimality for non-convex problems.
The notion of multivariate stochastic dominance refers to the stochastic ordering of ran-
dom vectors. It can be used as a tool for multicriterion decision making, since each

component of vectors can be interpreted as the uncertain outcome of a given criterion.

49
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Homem-de-Mello and Mehrota [70] expanded the definition of positive linear second or-
der dominance to polyhedral second order dominance and called it P-dominance. They
proposed a sample average cutting-surface algorithm for optimization problems with
multidimensional polyhedral linear second order stochastic dominance constraints. Hu
et al. [73] extended this work and presented a more general definition of stochastic
dominance over random vectors as natural extension of the polyhedral linear stochastic
dominance concept. More recently, Hu et al. [72] proposed a new concept of stochasti-
cally weighted dominance, in which they treat the vector of weights as a random vector
to deal with large number of weights for bigger problems. They showed that such an
approach is much less restrictive than the deterministic weighted approach. More re-
cently, Armbruster and Luedtke [4] derived a linear formulation for multivariate second
order stochastic dominance which can be solved with off the shelf linear programming

solvers.

Inspired by notion of multivariate stochastic dominance and our earlier work on uni-
dimensional second order stochastic dominance constraints particularly dealing with
nonlinear underlying functions, we study stochastic optimization problems with multi-
variate second order stochastic dominance (SSD) constraints. Sun et al. [137] proposed
an exact penalization scheme for scalar second order stochastic dominance. In this
chapter we effectively extend the methods proposed in [137] to stochastic programs with
multivariate second order stochastic dominance constraints. We propose an exact penal-
ization scheme for such problems and solve the penalized problem by the level function
method and a modified cutting plane method and compare them to the cutting surface
method proposed by Homem-de-Mello et al. [70] and the linearized method proposed
by Armbruster and Luedtke [4].

The main contribution of this chapter can be summarized as follows:

e We develop a penalization scheme for stochastic programs with multivariate second
order stochastic dominance constraints. We do so by exploiting Clarke’s exact
penalty function theorem [29, Proposition 2.4.3] and Robinson’s error bound [113].
We reformulate the multivariate stochastic dominance constraints and demonstrate
that the reformulated problem satisfies the Slater Constraint Qualification under
some moderate conditions. Furthermore, an exact penalization scheme based on
Loo-norm is derived. Based on the exact penalization formulations, we apply a well
known level function method in nonsmooth optimization as discussed in Chapter
3 to the penalized problems. An obvious advantage of this approach is that we
can effectively deal with excessive number of constraints, non-smoothness in the

constraints and nonlinearity of the underlying functions.

e A modified cutting plane method is also proposed. This cutting plane method
differs from those in the literature [120] in that it applies to the maximum of the

constraint functions rather than each constraint function. Moreover, our modified
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cutting plane method uses the cutting plane representation proposed in [81], so it
differ from the methods proposed in [70, 73]. The idea of applying the cutting-
plane method to the maximum of the constraint functions is similar to the idea
in algorithm proposed by Fabidn et al. [52]. However, their method is applied
to linear models while our modified cutting plane method is also applicable to
nonlinear case. Therefore we may regard our algorithm as an extension of theirs.
Furthermore, the proposed numerical methods provides an alternative approach to
the existing cutting surface method for multivariate stochastic dominance intro-
duced by Homem-de-Mello and Mehrota [70] and the linearized method proposed
by Armbruster and Luedtke [4].

e We examine the efficiency of the penalization scheme and the numerical methods
by presenting an academic problem, a generic budget allocation problem, and a
real world portfolio optimization problem. The budget allocation model is inspired
by the homeland security application of Hu et al. [71] and the budget allocation
example of Armbruster and Luedtke [4], in which a limited budget must be allo-
cated to a set of possible projects, and the allocation must stochastically dominate
a given benchmark. For the portfolio optimization problem, we use real world
test data of three indices to set up backtest and out-of-sample test to inspect the
performance of the generated portfolio and compare it to the benchmark portfolio

and a portfolio strategy generated by Markowitz model.

Let us now present some of the notation that are used in the following sections. Let 27y
denoted the scalar product of two vectors x and y, and let || - || denotes the Euclidean
norm, while || - [ denotes the maximum norm of continuous functions defined over a
set T. Let d(x,D) := infyep ||z — 2/| denote the distance from a point z to a set D.
For a real valued smooth function f, we use V f(x) to denote the gradient of f at x.
The expected value operator is denoted by E. The standard symbol £;(2, F, P;R™)
(shortly £7") denotes the space of all integrable mappings X from 2 to R™. If the values

are taken in R the superscript m will be omitted.

The rest of this chapter is organized as follows. In Section 4.2, we define the optimization
problem, discuss the Slater constraint qualification and present the exact penalization
schemes. In Section 4.3, we discuss the solution method and correspondingly the algo-
rithms. In Section 4.4, we apply the proposed method to some portfolio optimization
problems and report some numerical test results. Finally, we present some conclusion

in Section 4.5.
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4.2 Stochastic Optimization Problem with Multivariate SSD

Constraints

4.2.1 Introduction

The concept of stochastic ordering for scalar random variables has been introduced
in statistics and further applied and developed in economics [57]. Let g(x,&) be a
concave function, with decision vector x and random variable £. It is said that g(z, &)
stochastically dominates a random variable Y (§) € L£; in the first order, denoted by
9(,€) =1 Y (€) if

F(g(,&)in) < F(Y(€)im), vy € R, (4.2.1)

where F(g(z,€);n) and F(Y(€);n) are the cumulative distribution functions of g(z, &)

and Y (&), respectively. Let Fy(g(x,§);-) be defined as
"
Falgle.€in) = [ Flye.€sa)da fory € R

— o0

Similarly, we say that g(x, ) dominates in the second order a random variable Y (§) € £;
if

Fy(g(z,&);im) < Fa(Y(§);m), Vn € R. (4.2.2)
We denote the relation (4.2.2) as g(z,§) =) Y ().

Definition 4.1. A random vector G(z,£) € LT linearly dominates a random vector
Y (&) € L7 in positive linear second order, written as G(z,§) tgl)m Y (&), if

vIG(z,&) =" VY (€), Vv € RY. (4.2.3)

In the same manner one can define the first and higher order linear dominance relations:
vI'G(x, €) EZJ)"" vy (€), k = 1,2,... provided that (k — 1)-st moments of G(z,&) and
Y (&) are finite.

It is clear that the set of scalarizing vectors v in (4.2.3) can be truncated, by imposing

the normalization constraint v € S, where S is the simplex:

S={veRT:v+vys+ - +vy=1}. (4.2.4)

This restriction does not change the relation (tél)m)

In this chapter, we consider the following optimization problem with multivariate second

order stochastic dominance (SSD) constraints:

min E[f(x,¢)]

, (4.2.5)
st vTG(x,€) tél)m vy (¢), Vv e S,
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where f : R” x R¥ — R is convex continuous function and G : R® x R¥ — R is
concave continuous function, both in x and £ , x € X is a decision vector with X
being a nonempty convex subset of R” and £ : @ — Z C RF is a random vector
defined on probability space (€2, F, P) with support Z, E[] denotes the expected value
w.r.t. the probability distribution of £. The random variable Y (£) plays the role of a
benchmark outcome. For example, one may consider Y () = G(z,&), where T € X is
some reasonable value of the decision vector, which is currently employed in the system.
We shall investigate the case when G(z, &) and Y (£) are m-dimensional random vectors,

rather than scalar variables.

Using the properties of second order dominance [104, 145] and the definition of positive
linear dominance, we reformulate the multivariate stochastic dominance constraint in
(4.2.5) as,

E[(v'n —v'G(z,€))+] <E[w'n —v'Y(€)4], V(n,v) € R™ x 8,

where (n — vTG(z,€)); = max(n — vTG(x,£),0). Consequently, we reformulate the

optimization problem (4.2.5) as a stochastic semi-infinite programming problem:

min  E[f(z,¢)] (4.2.6)

st.  H(z,nv):=E[@'n—vTG(x,8):] —E[(vTn—TY(€)] <0, V(n,v) € R™ x S.

Our focus is on numerical methods for solving the stochastic semi-infinite programming
problem (4.2.6). There are three issues to deal with: (a) the expectation of random
functions in both the objective and constraints, (b) the infinite number of constraints,

(c) the non-smoothness resulting from the max functions.

Homem-de-Mello et al. [70] introduced a more general notion of dominance which in-
cludes positive linear dominance as a particular case. They considered the case where
the set S is assumed to be a polyhedron. By using the polyhedral properties they pro-
posed a cutting-surface algorithm. They dealt with the constraints by considering a
cut generation, and solved the problem by a branch-and-cut algorithm. Although the
proposed cutting-surface method is effective, it is computationally demanding. In par-
ticular, even for the case of second-order stochastic dominance, which induces a convex
feasible region, their algorithm requires global optimization of a nonconvex problem as
a subproblem. Furthermore, Armbruster and Luedtke [4] proposed to use a different
notion of multivariate stochastic dominance as a constraint in a stochastic optimization
model. They derived an LP formulation for an SSD constraint which could be solved

using off-the-shelf linear programming solvers.
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In the rest of the chapter, we consider problem (4.2.6) with the focus on the case when

¢ has a discrete distribution, that is

N

min Y s, €) (4:27)
i=1
N N

s.t. ZPi(VTﬂ — TG (x, €Y, — Zpi(VTn Ty (), <0, Y(n,v) € R™ x S,
i=1 =1
reX,

where the random variable ¢ has a finite distribution, that is, P(¢ = &%) = p;, for
i =1,...,N. In what follows, we investigate the Slater constraint qualification of the
problem (4.2.7) and its reformulation, followed by an exact penalization scheme and

numerical methods.

4.2.2 Slater constraint qualification

In the literature of stochastic programs with second order stochastic dominance con-
straints, Slater constraint quialification (SCQ) has been used as a key condition for

deriving optimality conditions and exact penalization, see [36, 93].

Note that, the problem (4.2.7) is said to satisfies the SCQ if there exists 2o € X such
that

N N
> 0T = v Glw0,€)) = Y (W —vTY(€))4 <0, V(n,v) ER™ x S, (4.2.8)
i=1 =1

Unfortunately, this kind of constraint qualification is not satisfied. To see this, as dis-
cussed in [137], for a fixed v € S let

Y(E):={Y():i=1,...,N},

and
n* :=min{Y(¢1),... ,Y(ﬁN)}.

For any n < n*, it can be verified that E[(vTn—vTY (€))+] = 0. For those 7, the feasible

constraint of problem (4.2.7) reduces to
E[(v'n — v G(z,8))+] - Elw'n - vV (€))+] =0,

because the left hand term is non-negative. Consequently, there does not exist a feasible
point xy € X such that (4.2.8) holds.
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More recently, Homem-de-Mello and Mehrota [70] proposed an alternative approach to

deal with the SCQ issue, by considering e-feasible solutions:

min E[f(x,£)]

(4.2.9)
st El0Tn— vTG(@,€))4] < B[ — vTT()] + € ¥(n,v) € R7 x S,

where € is a small positive number. The relaxed problem (4.2.9) satisfies SCQ as long
as the original problem is feasible. However, it must be shown that the feasible solution
set of the relaxed problem approximates the feasible solution set of the original problem,
which often in turn requires the original problem to satisfy certain regularity conditions

such as lower semicontinuity of the feasible solution set of the relaxed problem.

In what follows, we propose an alternative way to tackle this problem by reformulating
problem (4.2.6) using [36, Proposition 3.2] and [73] as follows:

N
=1

3 T T ‘ (4.2.10)
s.t. ZPi(V n;—v G,&)+ <vj(v), VWwes, j=1,---,N,
i=1
reX,

where n; := Y (&) and v;(v) = Zf\il pi(vTn; —vTY (€%))4. Note that, the reformulated
problem also does not satisfy the SCQ.

Let us define the power set of {1,..., N}, that is, a collection of all subsets of {1,..., N}
including empty set and itself. Let N denote the power set excluding the empty set and
forj=1,...,N,

Yi(z,v) = ?gﬁ}zpi(ﬂnj — T G(2,€") = (v). (4.2.11)
ieJ

Consequently, we can reformulate problem (4.2.10) as

N
min > pif (2,6
=1

st. Yj(r,v)<0,VwesS j=1,--- N,
rzeX.

(4.2.12)

In what follows, we show that problem (4.2.12) is equivalent to problem (4.2.10) but,

under some circumstances, (4.2.12) satisfies the SCQ.

Lemma 4.2. Let vj(x,v) be defined as in (4.2.11). Let

pj(x,v) = glgﬁ([Zpi(VTnj — TG (z,€Y)).
ieJ
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Then
N

ZPz‘(VTnj — TG (x,€") 4 = max{pj(z,v),0}, (4.2.13)
i=1

for each fixed v € S.

Proof. Let v € S be fixed, we consider two cases. Case 1. ¢;(z,v) < 0, and Case 2.
@j(xz,v) > 0.

Case 1. @;(z,v) < 0 implies that max{y;(z,v),0} = 0 and vTn; — vTG(z,£) < 0, for
j #A{1,--- ,N}. This implies that

N
ZpZ(UTT}] - VTG(xvgz))+ = 07
i=1

hence (4.2.13) holds.

Case 2. Now consider case when ¢;(z,v) > 0, then there exists a nonempty subset
J C{1,...,N} such that

j(z,v) = Zpi(VTnj —vIG(z,€Y) > 0.
ieJ
It suffice to either show that
> piw T = v G(z,6) = pi(vn; — v Gz, €))s,
Ng i=1

or equivalently J consists of every index ¢ with
vin; — v G(x, € > 0.

Note that, if J does not include such an index, then adding it to J would increase
the quantity Y ;o pi(v!n; — v G(z,£")). This contradicts the fact that ¢;(z,v) is the

maximum. Likewise, J does not consist of an index ¢ with
VT77j - I/TG(ZE, EZ) < 07

as removing the index will also increase the quantity > ;¢\, pi(vTn; —vTG(x,€%)). This
completes the proof. O

We are now ready to state the main results.

Theorem 4.3. Let G(x,£) and Y (§) be defined as in problem (4.2.7) and v;(x,v) be
defined as in (4.2.11). Then
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(i) vTG(x,¢) ~(2) vIY (&) for all v € S if and only if

Pi(x) = magcwj(m,y) <0, forj=1,---,N; (4.2.14)
ve

(ii) problems (4.2.10) and (4.2.12) are equivalent;

(iii) if there exists a feasible point T such that vI G(z,€) =) v1Y (§) and vI G(,€) >
vIY (&) for all € € 2, then the system of inequalities (4.2.14) satisfies the SCQ.

Proof. The proof is similar to that of [137, Theorem 2.1] except that we have to deal

with parameter v.

Part (i). By [36, Proposition 3.2], vTG(z,€) =(9) vTY (€) for all v € S if and only if

N
@ggzmﬂm — v G(2,&)4 —7(v) <0, forj=1,--- N, (4.2.15)

or equivalently for j =1,..., N,

N
max max {pru% ~ TG, €)s - vj(V),O} —0.

ves .
=1

By (4.2.13),

N
max {Zpi(l/Tnj — I/TG({L’, §i))+ — V), 0} = max {max {p;(z,v),0} —v;(v),0}.

i=1

Note that for any value a € R and r > 0, it is easy to verify that
max{max{a,0} —r,0} = max{a — r,0}. (4.2.16)
Using (4.2.16), we have that
max{max{g; (z,1),0} — (1), 0} = max{e; (z,v) — (1), 0} = max{s; (z, ), 0}.

The last equality is due to the definition of ;. The discussion above demonstrates that

(4.2.15) is equivalent to (4.2.14) and hence the conclusion.

Part (ii) follows from Part (i) in that the feasible set of the two problems coincides, i.e.,

N
{aj €X: I’?gg;pi(yipnj — TG, )4 —7;(v) < 0} = {z € X :;(z) <0}
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Part (iii). Let 4(v) := Zfil pi(vTno — vTY (€)),, where
vTno == min{rTY(eY),... . TY (V)]

By definition of 77y the Zf\il pi(WIno—vTY (€9), = 0. Therefore, 4(v) := 0. Likewise,
the assumption v G(z, &) > v for ¢ € Z implies that

—1G(z,£)) <0
rggggngXszv n — v G(z,¢"))

This shows

veS | TJeN

max [max sz viny —vTG(z,€Y)) — f?(u)] < 0. (4.2.17)

For each fixed v € S, let vTny,...,v N, where n; := T(&7) denote the N elements in
set V1Y (2),
vip < vl < <.

Then the inequality (4.2.17) means that

N
Y1 (%) := max [max sz vim —v G(:c £ )) Zpi(mi - I/TY(fi))_;_] < 0.
i=1

veS | JeN

In what follows, we show that

pi(z) <0, forj=2,---,N.

By definition, for j =2,..., N

N N
Ji@) = max maxzpz«ﬂnj—VTG@,&Z'))—pruTnj—VTY(sZ’)n]
=1

S N
ve _JE e

r N

< Iyneas)g max{glaxz:pzy n]—yTG } szl/ 77]—1/ Y (¢ )) ]

L ceJ

= rggg{ [max {goj(x,V),O} - ’Yj(V)]

[ N

42.13) e > i = v G(@,6) 1 - (T - VTY(ﬁi))+)]
-4 Li=1

= max /V m(Fl(VTG(gz,g),a) —Fl(VTY(g),a))da] . (4.2.18)

ves o

The equality (4.2.18) is due to the equivalent representation of second order stochastic

dominance [40].

Assume without loss of generality that v7n; < v (otherwise 19(Z) = 11 (Z) < 0). Let
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VI Nmin € (WTn, min{mingez G(7, &), v ne}) for a given v. Note that by assumption

vI'n < min{mineez G(7,£%), v 2}, v Ny exists. Then

max [ / Y RTG . €),0) —Fl(uTY(g),a))da]

vesS o

= max [/V 77"m(Fl(,/TCT*(:i~,5),0() - B (TY(€),a))da

vesS oo

+ [ BTG €),a) - F1<VTY<5>,a>>da] |

Nmin
Note that

ves — o0

. [/y NMmin (Fl (VTG(j‘, g)’ a) . Fl(VTY(g)’ a))da =0- pl(I/TT}mz‘n - I/Tnl)] <0,

where p; is the probability that Y (¢) takes value ;. On the other hand, v G(z, ) =)
vTY (€) implies

VTn.
VeS [ / (ROTG(@ 6),a) - F1<VTY<£>,a>>da] <0.
v ]
This shows that
VTnJ
max / (FL(WTG(7,€),0) — FL(VTY (€),0))da| <0, forj=2,--- | N. (4.2.19)
ve —00
The conclusion follows by combining (4.2.17)-(4.2.19). O

Theorem 4.3 states that although problem (4.2.10) and (4.2.7) do not satisfy SCQ, the
reformulated problem (4.2.12) may do under some circumstances. the reason behind this,
is to do with plus function (-);. Consdier a single variate function a(z) = x. It is easy to
see that the single inequality a(x) < 0 satisfies SCQ but (a(x))+ < 0 does not although
the two inequalities represent the same set (—oo,0]. Clearly, the constraint qualification
is closely related to the function which represents the feasible set. In problem (4.2.12),
we give an alternative presentation of the feasible constraints of problem (4.2.10) and
(4.2.7) without the plus function.

4.2.3 Exact penalization with L. -norm

In this section we apply an exact penalization technique to the problem (4.2.12). This
scheme includes application of an exact penalty function method with L..-norm. Let us

now present the technical results needed in the rest of this section.
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Lemma 4.4. [137, Lemma 3.1] Let f : R™ — R be continuous function and g : R™ — R
be continuous and convex. Let X C R™ be a compact and convexr set. Consider the

following constrained problem
min, f(z)
st.  g(z) <0, (4.2.20)
xzeX.

(i) If g(x) satisfies the SCQ, that is there exists a point xo and a real number 6 > 0
such that
0B C g(xo) + K,

and the feasible set, denoted by P, is bounded, then
d(x, P) < 67" Ddus (0, g(2) + K),

where B is the closed unit ball in R™ and K := [0,4+00)™, and D denotes the
diameter of P.

(ii) If f(x) is Lipschitz continuous on X with modulus K, then for
p> k6D,

the set of optimal solutions of (4.2.6) coincides with the set of optimal solutions

of problem

min  f(x) + pl|(g(x))+]|co (4.2.21)
st. xeX.

Proof. Part(i) follows from Robinson’s error bound for convex systems [113] and Part

(ii) follows from Part(i) and Clarke’s exact penalty function [29, Proposition 2.4.3]. O

One popular penalty scheme in optimization is based on the L,,-norm. Here we consider

such penalization scheme for (4.2.12) as follows:
]6{1, 7N} ves

N
ml}anZf(z, §Z) +p ,_max (max 1/}](:1:7 V))-‘r? (4222)
=1

and for problem (4.2.10)

N N
. i T T i
F(z, (T — v G(a, — i . (4.2.23
min ;pzf(ﬂc £)+pje{1?§§N}(lyg§<;pz(v n— v Gz, ) — (). (4.2.23)
In what follows, we show that the two penalty schemes are equivalent, and estimate the
penalty parameter. This will effectively justify the exact penalization function (4.2.23)
for problem (4.2.10), although it does not satisfy the SCQ.
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Assumption 4.5. f(z,¢%) and G(z, &%) are continuously differentiable w.r.t. x for i =
1,...,N. Moreover, they are globally Lipschitz over X, that is, there exists k(§) < +00
such that

max (|| V.. £ (2, )|, | VoG, €)|) < 5(€)), i =1, , N.

Theorem 4.6. Assume that the problem (4.2.22) satisfies the SCQ and Assumption 4.5
holds; the feasible set of problem (4.2.12) is bounded. Then

(i) problem (4.2.22) and (4.2.23) are equivalent;

(ii) there exist positive constants & and D such that when

N
p > me(&i)g_llj, (4.2.24)
i=1

the set of optimal solutions of (4.2.12) coincide with that of (4.2.22) and the set
of optimal solutions of (4.2.10) coincides with that of (4.2.23).

Proof. Part (i). Using Lemma 4.2 and (4.2.16), the equivalence of the problem (4.2.22)
and (4.2.23) can be verified as follows

T T 7
ma; max ), (x, v = ma max ma (v n; — v G(ax, — (v
je{l,..i(N}(ue?%( D+ jellonny yegje{;;pz( i (#,£")) = 5 )]

) +

N
= max nuagg;pi(va —v'G(z,€")4 — %‘(7/)] )

Part (ii). let Q denote the feasible set of problem (4.2.12) and define

\Ij(xvy) = (¢1($)’ e ’QpN(:L'))T'

Since Q is bounded, Zfil pif(z, &) is Lipschitz continuous with modulus Zfil pik(€Y),
problem (4.2.12) is convex and satisfies the SCQ. Using Lemma 4.4, there exists real
number 6 > 0 and D > 0 such that

N
p> me(&i)g_ll_),
i=1

the set of optimal solutions of problem (4.2.10) coincides with that of (4.2.23). Moreover,
since problem (4.2.12) and (4.2.10) are equivalent, and problem (4.2.22) and (4.2.23) are
also equivalent, the set of optimal solutions of problem (4.2.12) coincides with that of
(4.2.22). O

In the rest of this chapter, we apply the level function methods, and a modified cutting-

plane method to solve the penalized optimization problem (4.2.22).
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4.3 Solution Methods

In this section we discuss the solution methods used to solve the optimization problem
(4.2.22). Specifically, we apply the following methods: the level function method and a
modified cutting plane method and compare them to the cutting surface algorithm [70]

and the linearized method proposed in [4].

4.3.1 Level function methods

Level function method is popular numerical approach for solving deterministic nons-
mooth optimization problems. It is proposed by Lemaréchal et al. [89] for solving
nonsmooth convex optimization problems and extended by Xu [146] for solving quasi-
convex optimization problems. In Chapter 3, we applied the level function methods to
stochastic programming problems with scalar second order stochastic dominance con-
straints where the distribution of £ is discrete. In this chapter, we apply the level function
methods (Algorithms 3.2 and 3.3) as discussed in Chapter 3 to the penalized problem
(4.2.22). Let us define ¥(z, p) as follows:

N
(@, p) = ; pif(@.8) +p max (maxi;(z.v))..

Let ( € 0,9(xg, p), then

0, () = G (@ = xx) /|Gl
is a level function of J(x, p) at x.

To avoid confusion, in this chapter we refer to Algorithm 3.2 and Algorithm 3.3 as
Algorithm 4.1 and Algorithm 4.2, respectively. In what follows, we present the theorem
regarding the level function methods and discuss the method used in estimation of

penalty parameter.

Theorem 4.7. Let {xy} be generated by Algorithm 4.2. Assume that f(x,§) and com-
ponents of G(x,&) are Lipschitz continuous functions with modulus Ly(§) and Lg(§)
respectively, where E[L(§)] < 400, E[Lg(§)] < 400 and that the sequence of level

functions {0y, (x)} is uniformly Lipschitz with constant M. Then
A(k) <€, for k> M?*Y2e2X72(1 — \?) 7,

where T represents the diameter of the solution set X, € and \ are given in Algorithm

4.2.
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Proof. 1t is easy to observe that the Lipschitz continuity of G(z,§) w.r.t. « with modu-
lus Lg(&) implies the Lipschitz continuity of ;(x,v) with the same Lipschitz modulus
E[Lc(€)]. Along with the Lipschitzness of f(x,&), this shows ¥(z, p) is Lipschitz con-
tinuous with modulus E[L(§)] + pE[Lg(§)]. On the other hand, since ¥(z, p) is convex,
the function o, (z) constructed at each iterate is a level function with modulus 1. The
rest follows from Xu [146, Theorem 3.3]. O

In Algorithm 4.1 and Algorithm 4.2, a penalty parameter in ¥(x, p) is fixed. In some
cases, it might be difficult to estimate a good penalty parameter. One way to tackle this
issue is to start with an estimate of penalty parameter and solve the resulting penalized
problem with the above algorithms. The feasibility of the obtained solution is checked:
if it is feasible the optimal solution is obtained, otherwise, the penalty parameter is
increased the process is repeated. This kind of procedure in known as Simple Penalty
Function Method in the literature of optimization, see for instance [138, Algorithm
10.2.3]. We describe the aforementioned procedure formally in the following algorithm
for the penalized problem (4.2.22).

Algorithm 4.3 (Simple Penalty Function Method for penalized problem (4.2.22)).
Step 1. Let € be a positive number. Let pg be an intial estimate of the penalty parameter.
Set ¢t := 0.

Step 2. For p := p;, apply Algorithm 4.1 or 4.2 to solve problem (4.2.22). Let x; denote

the solution obtained from solving the problem.
N ; _
Step 3. If max;cq . ny(maxyes(30;0, pi(v"ny — v G4, €"))+ — 7j(¥)+) < & stop; oth-
erwise, set X1 1= xt, pey1 = 10p; and t :=1¢ + 1, go to step 2.
Algorithm 4.3 terminates in a finite number of iterations in that the exact penalty

parameters for problem (4.2.22) is finite, see Theorems 4.6.

An alternative way to deal with the issue of penalty parameters is to solve the following

problem
N
min ?ﬁéfm(nyﬂgg(; pi(vTn; = v G2, €)1 — v (v))). (4.3.25)

This can be achieved by applying Algorithm 4.1 or 4.2 directly. The optimal value of
(4.3.25) effectively gives an upper bound for parameter § (see Theorems 4.6). Note that

these parameters are dependent on the Slater condition of (4.2.12).
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4.3.2 Modified cutting plane algorithm

Rodulf and Ruszczynski [120] and Fabian et al. [52] proposed cutting plane methods to
solve stochastic program with unidimensional second order stochastic dominance con-
straints when the underlying random variable has finite distribution. This method is
an extension of the cutting-plane method developed by Haneveld and Vlerk [81] for in-
tegrated chance constraints (ICC). In what follows, we consider a modification of the

procedure where a cut is constructed.

Reformulate the optimization problem (4.2.12) as:

min z
t. = ) <0
st P(z,v) jefnf.}fjv}% (z) <0,
N 4 (4.3.26)
szf(x7gz) -z g 07
i=1
reX, z€ Z,

where 1/_)J(:1:) = max,es¥;(x,v), Z is a closed convex compact subset of R such that

N
{Zpif(a:,fi) ix € X} cZ.
i=1

Note that, the existence of set Z is due to the fact that f(z,¢&%), i = 1,...,N, is
a continuous function and X is a compact set. Also the components of G(z,§) are
concave and f(z,€) is convex w.r.t. x, which implies that ¢(x,v) is convex w.r.t. x and
Zfilpif(m, ¢1) — z is convex w.r.t. (z,2). We apply the classical cutting-plane method
[80] to both ¥(x,v) and Zf\il pif(z, &) — 2. Specifically, we propose the following

algorithm.

Algorithm 4.4 (Modified cutting plane algorithm)
Define the optimization problem at iteration t as
win 2
st. xe X, z€ Z,
(,2) €Pyi={(z,2) e X x Z:alx <b, dfv+ez <k, l=1,...,t}.
(4.3.27)

Set t :=0, Py := X x Z. For each t, carry out the following.

Step 1. Solve the optimization problem (4.3.27), finding the optimal solution (z, z¢). If
the problem (4.3.27) is infeasible, stop. Otherwise go to Step 2.
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Step 2. Find the solution to max;eqy . ¥j(x) and find optimal solution (%, *), and set
Ywp) = S pi( Ty = TY (€)1

N
> iyt =G, 6y < (),
=1

and

N
Zpif(xhgz) — Zt S 07
i=1
stop: (x¢, z¢) is an optimal solution. Otherwise go to Step 3.

Step 3. Construct the set
Ji = {z : (V*Tn* — I/*TG(z,§i)) > 0} ,
and the feasibility cuts atTHm < b1, and d;ﬂlx + et412 < k¢t1, where

Qi1 = — Z pisz*TG(xta gl)a
€Tt

bit1 = Z pi(=Var TG, &) wp + v Gy, €) — 1*) + 4 (vF),
€Tt

dip1 = =V f(2,8), erp1 = —1, ki1 = =V f (v, &) 2 + fla, €).

and set
_ LT T
P11 =PFPnN {(:L‘,Z) €EXXZ a1 <bgr, di v+ e112 < kt+1} .

Proceed with iteration ¢ + 1.

Remark 4.8. We make a few comments about Algorithm 4.4.

(i) Algorithm 4.4 differs from the cutting-plane method discussed in [120, 52] in the
way feasible cuts are constructed. In the former, N constraints/cuts are added
at each iteration, these cuts are not necessarily the extreme support of ¢ (z,v)
at x;. In Algorithm 4.4, we exclude all those non-support constraints, instead we
include a cut at the extreme support (to ¢ (x,v) at x;) which we believe is the most
effective and a single linear cut is adequate to ensure the convergence. All other
non-support constraints/cuts may potentially reduce numerical efficiency. This
approach is similar to the algorithm proposed by Fabidn et al. [52]. Note that,
Fébian’s algorithm is applied to linear models while Algorithm 4.4 is applicable
to the nonlinear case. Therefore, we may regard the latter as an extension of the

former.
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(ii) In Step 2 of the above algorithm, we solve the following DC-program

N
(n’y)rg@fz}xsw(m V) = ;pi[(an — v G(x, &) — (W =Y (€)1,

where [a,b] D {m,...,nn} and S is defined as in (4.2.4).

(iii) When f is linear w.r.t. x, there is no need to introduce additional variable z

because the objective is linear.

We now present the convergence results.

Theorem 4.9. Let {(x¢,2¢)} be a sequence generated by the Algorithm 4.4. Let
P:={(x,2) e X x Z :9Y(z,v) <0,E[f(x,8)] — 2 <0} C X x Z,

where (xz,v) is defined in problem (4.3.26). Assume: (a) f(x,£) and each of the com-
ponent g;(z,€) of G(x,§) are continuously differentiable and conver w.r.t. x for almost
every &, (b) X x Z € R™ is a compact set, (c) there exists a positive constant L such
that the Lipschitz modulus of B[f(x,&)] and ¥(x,v) are bounded by L on X x Z, (d) the
set P is nonempty. Then, {(x¢,2¢)} contains a subsequence which converges to a point

(z*,2*) € P, where (z*,z*) is the optimal solution.

Proof. The proof is similar to the results in [80]. Note that, at each iteration ¢ > 0, a;1 €
OpY(xy,v), dip1 = VE[f(x4,&)], and €411 = VL (E[f(x¢,£)] — 2t = —1. Then a;‘FH:L“ — by
and dtTHa:—i-eHl z—ki41 are the extreme support to the graphs of ¢ (z,v) and E[f (z,&)]—2
at (x4, z) respectively. By condition (a), ¢ (z,v) and E[f(z,£)] are convex and contin-
uous w.r.t. (x,z). Consequently, if (z;,2) € P and max{y(x,v), E[f(z,&)]} < 0,
then

max{a/ 1@ — bp1, dis 12 + €12 — ki1 } <O0.

Further, for all (x4, 2;) ¢ P,

max{al v — bes1, diy17 + €12 — ki1 } = max{y(ze,v), E[f(24,€)] — 2} > 0.

Therefore, when (x4, 2;) ¢ P, the set P and the point (x4, 2;) lie on opposite sides of the

cutting angle max{atTHact — b1, dtTHact +epr12 —kep1} = 0.

Note that, from the definition of P; and (zy, 2;), we know that P C P, C P,_q, (x4, %)
minimizes z in P; and 21 < 2. In the case when (x¢,2;) € P, it is easy to verify that
(x¢,2¢) is the optimal solution of problem (4.3.26). Indeed, since (x¢,2;) is an optimal
solution, for every (z,z) € P;, we have z > z. Since P C Py, then z > z for (z,2) € P,

which implies optimality of (x¢, z;) over P.

In what follows, we focus on the case when (x¢,2;) ¢ P Vt. Since X x Z is a compact

set, the sequence {(z¢,z)} contains a subsequence which converges to (z*,2*) € X x Z.
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Assume without loss of generality that (xy,2;) — (z*,2%). Let P* = N.P;. Since P is
compact and P C P;, we have P C P* and (z*, z*) € P*. On the other hand, since

z Z Zt,V(ZL',Z) € Pt7

then
z> 2" V(z,z) € P*. (4.3.28)

Indeed, if this is not true, then there exists (&, 2) € P* such that 2 < z*. Since z; — 2%,
there exists some sufficiently large ¢ such that Z < z;. This is not possible because
(x¢,2¢) is an optimal solution in P; while (z,2) C P* C P, is a feasible solutions. This
shows that (4.3.28) holds. Since P C P*, the inequality also holds for all (x,z) € P,
which implies (z*, 2*) is an optimal solution of problem (4.3.27) if (z*,2*) € P.

In what follows, we show that (z*,z*) € P. Note that, (z,2;) minimizes z in P, that
is, it satisfies the inequalities:
a1 — b1 <0, (4.3.29)

and
df x4+ ez — ki <0, (4.3.30)

for I = 0,...,t — 1 and by condition (c), max{|lajr1|,||di+1]|} < L, VI. Let {z, 2}
denote the subsequence. We claim that {max{y(x¢,v), E[f(z,§)] — 2} } must converge
to 0. Note that since

bir = Y pi(=Var Gla, ) w + v G, &) — ) +9(vY),
i€,

alzji-lxl - 1/1(9% V*))

= arlﬂ-lxl - 1/1(9% U)v

then (4.3.29) implies
Y(a,v) +afyy (@ —21) <0

Similarly, by the definition of €;1, k;4+1, we have from (4.3.30) that
E[f(x1,8)] + dlﬂl(az —x;) —2<0.

Assume that the desired convergence does not occur. Then there exists an r > 0

independent of £ such that

ﬁ
IN

max{(zi,v), E[f(21,8)] — 2}
max{aﬁrl(azl — 1), dal(azl —x)— (z1— 2},

< (LA D (@, 21) = (@4, 20) ]

IN
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for all 0 <1 < t—1, which shows that {(x¢, z;)} does not converge, a contradiction. This
shows that

{max{y(zt,v), E[f (21,8)] — 21}

converges to 0 and hence (¢, z;) € P is the optimal solution.

4.3.3 Cutting surface algorithm

In this section we give details of the cutting surface algorithm proposed by Homem-de-
Mello et al. [70] to solve optimization problem with multivariate stochastic dominance
constraints. They use cut-generation approach for solving the problem instead of adding
all the constraints up front. In what follows, we restate the problem formulation and

the cutting surface algorithm as discussed in [70].

Theorem 4.10. [70, Theorem 1] Let P be a nonempty convex set. Let
P, = {(V,y)|yl > VT(Ci — cl), y >0 veP, 1= 1,...,r}, i=1,...,r (4.3.31)

where P := cl cone(P) N A [70, Proposition 1]. Then, the multivariate stochastic domi-

nance constraints are equivalent to
t T
L L T T
ij(l/m d—vk Ay, < qu(ylk - i=1,. 0 k=1,... 1, (4.3.32)
j=1 =1

k

where v** are the v-component of the vertex solutions of P;.

They define the following problem:

mxin —E[f(x,&)] (4.3.33)

t r
s.t. E pj(VZk & — ik Ax)y < E ql(zﬁk & — ik cl)+, i=1,....,r, k=1,...,u.
j=1 1=1

In the cut-generation approach they solve a sequence of linear relaxations of (4.3.33),
over a subset of constraints in (4.3.33). At a solution & of a relaxed problem, they

consider the subproblems

V’y

T t
min  g(v,y) = qul - Z:JDJ'(I/TCZ — vl Aiz),
— et (4.3.34)

st. (v,y) € P,
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If all (4.3.34) have a non-negative objective value, we have a solution of (4.3.33). Other-

wise, we have a vertex solution © of (4.3.34) with a negative objective value. Correspond-
ing to this vertex, the constraint Z;=1 pj(Vichi_VikTAjm)Jr <>y a(W* =Rty

is a valid cut for z.

Algorithm 4.5 outlines the basic steps.

Algorithm 4.5 (Cutting surface algorithm [70])

Step 0.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Set s := 0, ¥ :=an arbitrary vertex of K;, where i € {1,...,r} is also chosen
arbitrary. Set V:= (19,0, 7).

Solve a linear programming reformulation of the problem

min  E[f(z,¢)] (4.3.35)
¢ I A T . r T 1. T

st S g = g, )y <3 — YL (ny,i) € V2.
j=1 =1

If the problem is infeasible, stop; if it is unbounded, then let & and h be respectively
a solution and a direction that generate a ray and go to Step 2. Otherwise, let &

be an optimal solution (4.3.35) and go to Step 3.

For each j =1,...,t, solve the linear program

min I/Tg(il,fj)

- (4.3.36)
st. veP.

If any of the problems (4.3.36) has negative objective value, let v be a ver-
tex optimal solution to that problem and choose i € {1,...,r} arbitrarily; let
Vsl =Vs U {(9,0,7)} and go to Step 5. Otherwise (i.e. of the problems (4.3.36)

have non-negative objective values for all j), go to Step 3.

Solve problems (4.3.34) to find one or more vertex solution(s) (v,y) €K;, for some
1€ 1,...,7, such that

r t
D oam— Y pir"d —vg(#,6), <.
1=1 j=1
Let (v*,4%), k =1,...,k; be these identified vertices.

If no vertex solution is found in Step 3, stop; otherwise, let

VL= s {(* gk 0), k=1,.. . k)

Set s := s+ 1 and go to Step 1.
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Theorem 4.11. [70, Theorem 4] Algorithm 4.5 terminates after a finite number of
steps with either an optimal solution to the true problem, or a proof of infeasibility or

unboundedness of the true problem.

In next section, we investigate the efficiency of the above algorithms along with the

linearized method in [4].

4.4 Numerical Tests

We have carried out an academic test, a budget allocation example as well as a real
world portfolio optimization problem on the proposed model and algorithms by using
MATLAB 7.10 and IBM ILOG CPLEX 12.4 installed on a HP Notebook PC with

Windows 7 operating system, and Intel Core i7 processor.

We consider primarily an academic test problem introduced in [70, Section 2.2] to ex-
amine the penalization approach and efficiency of our proposed methods. Additionally,
for comparison purposes we consider a budget allocation problem as discussed in [4].
Moreover, we consider a portfolio optimization problem with real world test data to
further investigate the efficiency of the proposed stochastic programming model with
multivariate SSD constraint and compare it to the return generated by a Markowitz
model and corresponding indices. Furthermore, to estimate the penalty parameter we
have solved the optimization problem (4.3.25) using Algorithm 4.2 as discussed at the
end of Section 4.3.1. Another approach is to integrate Algorithm 4.3 in Algorithm 4.1
and 4.2, to find a suitable penalty parameter. We solved the reformulated problem with
Algorithms 4.1-4.5. For Algorithms 4.1 and 4.2 we use € = 0.0001 and A = 0.5. In the

rest of this section we report the corresponding results.

4.4.1 An academic example

Example 4.1. Homem-de-Mello et al. [70] considered the following model using stochas-

tic dominance:
max, 3x1+ 2o,

S.t.
b2 3 (4.4.37)
2 ¢ [1] =) — 160,
1 0 ¢
where, &', i = 1,...,4 denotes a random variable. Let &' = 4 + a, &2 = 2 + q,

€3 :=2004+ 108, and £* := 40+ 508 where o and 3 are equal to 1. Where €3 := 200+ 1083
suggests that the &' is a binary between 3 and 5.
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To solve the optimization problem (4.4.37), Homem-de-Mello et al. [70] linearized the
program and eliminated the redundant constraints. They obtained the optimal solution
of problem (4.4.37) (with @ = § = 1) to be = = (28.18,34.55) and the corresponding
objective value to be f = 153.44. Here we reformulate the optimization problem (4.4.37)
as discussed in Section 4.2.3 and solved the reformulated problem by the proposed algo-
rithms. We set the penalty parameter p = 50 and double it at each iteration. The opti-
mal solution obtained by the proposed algorithms after 4 iteration is x = (27.99, 34.66)

and the corresponding objective value is f = 153.29.

4.4.2 A budget allocation model

The purpose of this example is to compare the efficiency of the level function method,
and a modified cutting-plane method based on the exact penalization scheme with the

linearized method proposed by Armbruster and Luedtke [4].

In what follows we present the budget allocation problem and study the behavior of
the proposed model and methods to solve a simple budget allocation problem. This
example is inspired by the budget allocation problem of Armbruster and Luedtke [4]

and the example in [71]. Here we restate the problem:

Example 4.2. Given a fized budget, the problem is to determine what fraction of the
budget to allocate to a set of candidate projects, t € T with |T| = T. The quality of
a budget allocation is characterized by d distinct objectives, for which larger values are
preferred. FEach project t € T is characterized by a d-dimensional random vector of
reward rates Ry for these objectives. Thus, given a feasible budget allocation x € X :=
{z € RY : 2.1 = 1}, the values of the d objectives are > e Rize. We assume that
we are given a d-dimenstonal random vector'Y that indicates a minimal acceptable joint
performance of these objectives, and we require the performance of the chosen budget
allocation to stochastically dominate Y. Subject to this condition, the goal is to maximize

a weighted combination of the expected values of the measures:

T
max Zw E[R¢|xy

teT . 4.4.38
S.t. ZRt{L’t Eél)zn K ( )
teT

where w € ]R‘Jir s a given weight vector.

For the test instances, we assumed that the reward rate R := [Ry, Rq, ..., Rp| are one
of N equally likely scenarios {R’ : j € N’} sampled from a joint normal distribution
with mean p and covariance matrix . The components of p are chosen randomly
from U[10,20] and the covariance matrix ¥ was calculated as follows. The coefficient

of variations were chosen from U[0.2,1.1]. The correlation of any two distinct elements
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(t,k) and (t', k") were chosen from U[—0.2,0.4] if they share a project (t = t') and from
U[—0.1,0.1] if they share an objective (k = k') and were 0 otherwise. The benchmark
random vector Y was determined from an allocation in which all projects are allocated
an equal fraction of the budget, but to avoid being overly conservative, was then reduced
by a fixed fraction d of its mean. Specifically, a given realizations Rg € R?, for each
scenario j and project t, realization j of Y has a probability ¢,(j) = 1/N and is given by
Yi =Bl —§(% Z,]j:l B*) where B/ = £ 3, + R!. In this example, we set the § = 0.1

and weight all objectives equally in the objective, w = (1,...,1).

Table 4.4.1 shows the computation times to solve these instances using the exact penal-
ization scheme and solved by the projected level function algorithm and the modified
cutting plane algorithm. Since the results of Algorithm 4.1 are identical to Algorithm
4.2, we only present the results for Algorithm 4.2. For these experiments, we varied the
number of objectives d € {3,5}, the number of projects T € {50,100}, and the number
of scenarios N = M € {100,300,500}. For each combination of these parameters we

display the average computation time in seconds over five instances at that size.

d,T) Algorithms | N =100 | N =300 | N =500
(3,50) Algorithm 4.2 2.36 13.05 46.86
’ Algorithm 4.4 24.13 219.67 739.27
Algorithm 4.2 2.69 14.78 53.48
(3,100) Algorithm 4.4 104.80 - -
(5,50) Algorithm 4.2 5.38 14.04 90.18
’ Algorithm 4.4 24.10 236.28 527.14
(5,100) Algorithm 4.2 10.20 26.69 98.47
’ Algorithm 4.4 117.94 - -

TABLE 4.4.1: Average solution times in seconds of five instances solved by projected
level function algorithm and the modified cutting plane algorithm. The ”‘-”’ indicate
that the algorithms could not solve the problem within 30 minutes limit.

(d,T) | N=100 | N =300 | N =500
(3,50) 0.3 12.3 86.2
(3,100) | 0.3 8.9 61.6
(5,50) 0.6 37.8 181.8
(5,100) | 0.7 23.0 105.6

TABLE 4.4.2: Average solution times in seconds of five instances solved using linear
SSD model proposed in [4].

These results indicate that with the exact penalization scheme and Algorithm 4.2 it
is possible to solve instances with a relatively large number of scenarios with lower
computation time compared to the linear SSD formulation model’s results shown in Table
4.4.2. Although, the opposite is true for lower number of scenario, but one advantage of
the proposed exact penalized model and the solution methods is that they can deal with
both linear and nonlinear underlying functions. Furthermore, Algorithm 4.4 proved to
be less efficient. This is because as the sample size increases, the construction of set J;

in Step 3 of the algorithm takes longer time.
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4.4.3 Portfolio performance

Suppose that we have a fixed capital to be invested in n assets. Let R;, i = 1,...,n,
denote the return of asset i. In practice, the return is often uncertain and we use a
random variable £ to describe the uncertainty. Specifically, we write R; as R;(§) and in
doing so we are assuming that all n assets have an identical random factor depending

on £.

To simplify the discussion, we normalize the capital to 1 and use z;, ¢ = 1,...,n, to
denote the fraction of capital to be invested in asset ¢. The portfolio return can then be

formulated as:
f(2,8) == Ri(§)z1 + Ra(§)w2 + -+ - + Ru(§)wn. (4.4.39)

We use the optimization problem (4.2.5) to optimize our investment strategy. To ease

the presentation, we repeat the model:

min —E[f(z,£)]

. (4.4.40)
st vig(z, &) =" Y (€), v € S,

where f is defined by (4.4.39). We need to specify g(z, &) and X. The random variable
Y (€) plays the role of a benchmark outcome. For example, one may consider Y (§) =
9(Z,&), where ¥ € X is some reasonable value of the decision vector, which is currently
employed in the system. Note that g(x, ) and Y (§) are m-dimensional random vectors,
rather than scalar variables. Additionally, we use set of linear constraints to define the
set S, see (4.2.4).

To further examine the efficiency of the multivariate SSD model, we calculate the Con-
ditional Value at Risk (CVaR) for random variable f(z*,¢) where z* is an approximate
optimal solution obtained from solving (4.2.23). By definition for a specified probability
level o, the Value at Risk (VaR) of a portfolio is the lowest amount C such that, with
probability «, the profit does not fall below C. The CVaR,, is the conditional expectation

of profit below C. In our context,
1
CVaka(f(a",€)) = sup{ € = ZEIC - £ 91 (4.41)

where a € (0,1) is a pre-specified constant. Three values of « are commonly considered:

0.90, 0.95, 0.99. However, in our analysis we focus on the case of o = 0.95.

Let us now estimate the penalty parameter p through Theorem 4.6. Referring back to

Theorem 4.6, we need to calculate x, §, and D. Let xg € X be the weights for an equally
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weighted portfolio, the Zf\il pik(€Y) = 0.0084. The & can be calculated as follows:

N
N (L. T 2\ O A %
5’—1»;?,%?;{2125 (%ZZGJW v G ) J pil iy (e ”*>}’

and we found ¢ ~ 4.865E-005. We choose D = 1 and estimate the penalty parameter as

follows:

N
p > pir(¢)6' D = 192.39.
i=1

Example 4.3. We consider m history of percentage returns, for three different group
of n assets. FEach of these groups could belong to a different Index. QOur aim is to
find an optimal investment strateqy for a fized capital in the n assets which mazximized
the expected profit subject to certain risk averse measures. Particularly we consider the
following model:

min  —E[f(z,£)],

st vig(e,€) =) VY (€),

where g(2,£) = [g1(2,€) g2(x,€) g3(x,§)] and Y(£) = [V1(§) Ya(§) Y3(£)]. We apply
the exact penalization as explained in Section 4.2.3 ans solve the reformulated problem
by the level function algorithms (Algorithm 4.1 and 4.2), the cutting plane method
(Algorithm 4.4), and the cutting-surface method (Algorithm 4.5). For the purpose of
this example we set the upper bound and lower bound on the capital invested equal to

0.2 and 0, respectively.

We collected 300 daily historical returns of 53 FTSE 100, 53 Nasdaql00 and 30 Dow
Jones assets prior to March 2011. We use the first 100 observations to construct the
portfolio strategy. We solve the optimization problem using level function algorithms,
modified cutting-plane method, and the cutting surface method. Table 4.4.3 shows the
result of this example. In this example each component of the vector g(zx,&) corresponds

to the sum of return of the assets belonging to each of the three indices computed as
described in (4.4.39).

Algorithm | Iter. | Time | No. Assets | Return | CVaR
4.1 10 | 0.0188 6 0.034 | 0.015
4.2 9 | 0.0174 6 0.034 | 0.015
44 4 | 0.0166 6 0.034 | 0.014
4.5 6 0.653 6 0.034 | 0.015

TABLE 4.4.3: Time is in minutes. No. Assets refers to the number of assets
in the optimal portfolio. The expected return of the benchmark portfolio ¥ =
[0.0051 0.0085 0.0069].

As it can be seen all four algorithms result in very similar portfolios with identical

expected return and number of assets in the portfolio.
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We set up a backtest and use the remaining 200 observations to construct an out-of-
sample test in order to investigate the performance of the selected portfolio. Figures
4.4.1 and 4.4.2 show the difference of return on selected portfolio and benchmark port-
folio. The benchmark portfolio represent the average return of the three indices. The
comparison of the return to each index individually is presented in Figures A.1.1-A.1.6
in the Appendix A.
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FIGURE 4.4.1: Backtesting of the difference of return on selected portfolios and indices.
The benchmark portfolio is the average return of the indices.
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FIGURE 4.4.2: Out of sample test of the difference of return on selected portfolios and
indices. The benchmark portfolio is the average return of the indices.

It can be seen that in both Figures 4.4.1 and 4.4.2, the line lies mostly above the zero line

which means that the generated portfolio return is higher than the benchmark portfolio.
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Furthermore, to investigate the dominance relationship we present the graph of cumu-
lative distribution functions of portfolio return generated by the multi-SSD model using
the Algorithms 4.2-4.5, Markowtitz model and the benchmark portfolio in Figure 4.4.3.
It is clear that the generated portfolio strategy dominates the benchmark portfolio.

Moreover, to see the performance of the generated strategy out-of-sample we present

0.9} | = = =Multivariate SSD Model ’ .
== Benchmark Portfolio K/ L4
0.8/ | mi=: Makowitz Model S ’ 1

0.7f
0.6
0.5F
0.4F
0.3f

Cumulative Distibution Function

0.2

0.1f

-4

FIGURE 4.4.3: Cumulative distribution functions for the portfolio strategy generated
by the Multi-SSD models, Markowitz model and the benchmark portfolio.

graph of cumulative return of the of portfolio return generated by the multi-SSD model
using the Algorithms 4.2-4.5, Markowtitz model and the benchmark portfolio in Fig-
ure 4.4.4. It can be seen that the return generated by the portfolio strategy based on
the Multivariate SSD model is much higher compared to the Markowitz model and the

benchmark portfolio.

50
O«W |
LR
/,/~/~ Saeaa .
£ -50+ ~/S, " 8. ~ |
2 S, i -
3 s~ - -
14 N Saaa
o 'S, .
2 -100- Sarerg Semme
8 A
g i o
3 -150f R 8
- -
= = =Markowitz Model Ss
‘‘‘‘‘ Benchmark Portfolio N,
—200} S . ]
= Multivariate SSD Model e
~’~‘-
_250 | | | | | | | | | =
100 120 140 160 180 200 220 240 260 280 300
Days

FIGURE 4.4.4: Out-of-sample cumulative return for the generated portfolio strategy
based on the Multivariate SSD models, Markowitz model and the benchmark portfolio).

To illustrate the benefit of using multivariate stochastic dominance constraints, we com-

pare the portfolio strategy constructed by the optimization problem (4.2.22) with an
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investment strategy generated by Markowitz model as described below:
max  E[f(z,6)] — AE[R(z, )]

inzl, x>0, zeX,
i=1

where A = 1 is a fixed nonnegative number, E[R(z, €)] is the portfolio variance, R? is the

benchmark return set equal to the index i, E[g;(x, £)] is the return of the asset belonging
to index 4, and E[f(z,£)] is the return defined as in (4.4.39).

Table 4.4.4 compares the portfolio generated by Markowitz model to the generated
portfolio by the multivariate SSD model. As it can be seen, although the number of

assets in the optimal portfolio are the same but the portfolio generated by the Markowitz
model has a lower return and a higher CVaR.

Model No. Assets | Return | CVaR
Multivariate SSD 6 0.034 0.014
Markowitz 6 0.032 0.018

TABLE 4.4.4: Time is in minutes. No. Assets refers to the number of assets in the
optimal portfolio.

Figures 4.4.5 and 4.4.6 present the result of the backtest and out-of-sample test as
described earlier. As it can be seen the portfolio generated by the optimization problem

(4.2.23) outperforms the strategy generated by the Markowitz model (4.4.42) by having
relatively higher returns both in-sample and out-of-sample.

= Multivariate SSD Model
[|= = = Markowitz Model

Returns %

0 10 20 30 40 50 60 70 80 90 100

F1GURE 4.4.5: Comparing the backtest of the portfolio return of the optimization
problem with multivariate SSD constraint and the Markowitz model.

To further compare the performance of the the two portfolio we use the Sortino ratio.
The Sortino ratio measures the risk-adjusted return of an investment asset, portfolio or
strategy. We used risk free rate (0.5%) and the benchmark portfolio as the required
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FIGURE 4.4.6: Comparing out-of-sample test of the portfolio return of the optimization
problem with multivariate SSD constraint and the Markowitz model.

rate of return. We calculated the Sortino ratio both at the 100" day and 300" day.
The results are shown in Table 4.4.5. As it can be seen the portfolio generated by the

multivariate SSD model out perform the portfolio generated by the Markowitz model

by having higher risk-adjusted return.

Model Required return | 100°" day Sortino ratio | 300"" day Sortino ratio
o Benchmark 0.3969 0.3903
Multivariate SSD Model Risk-freo 0.2643 0.0749
. Benchmark 0.1716 0.1308
Markowitz Model Risk-free 0.1795 0.0637

TABLE 4.4.5: Sortino ratio of the portfolio generated by optimization problem with
multivariate SSD constraints and the Markowitz model.

Furthermore, we test the algorithms for various number of assets and record the CPU

time. Figure 4.4.7 presents the result for this test. As it can be seen, all algorithms

solve relatively large problems within a reasonable time. Additionally, we investigate the

performance of the Algorithm 4.2, 4.4, and 4.5 as the number of observations increases.
This is illustrated in Figure 4.4.8. Although the Figure 4.4.8 shows that the Algorithm

4.5 becomes inefficient, in our numerical tests increasing the number of observations did

not result in a better portfolio.

4.5 Conclusion

In this chapter we studied stochastic programming with multivariate second order stochas-

tic dominance constraints. Specifically, we proposed an exact penalty method for second

order multivariate stochastic dominance constraints. Furthermore, we solved the penal-

ized problem (4.2.22) using the level function method as well as a modified cutting-plane

method inspired by the methods proposed in [120, 52]. These method were compared
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to the cutting surface method proposed in [70], and the linearized method proposed in

[4].

We applied the penalization scheme and the numerical methods to an academic test
problem, a budget allocation problem, and a portfolio optimization problem. The aca-
demic test results showed that the penalization approach and the numerical methods
results in similar optimal solution as the solution generated in [70, Section 2.2]. The
budget allocation problem showed that the proposed method solved with Algorithm 4.2
is more efficient compared to the linearized method when the sample size is large. How-
ever, this is not the case when sample size is relatively small. The main advantage of our
proposed method to the linearized method is that it can deal with nonlinear underlying
functions. In the portfolio optimization problem, we used data of 136 assets from three
different indices (FTSE 100, Nasdaql00, and Daw Jones). To investigate the perfor-
mance of generated portfolio strategy, we set up a backtest and an out-of-sample test
and compared the performance of the selected portfolio to the corresponding indices.
We concluded that the generated portfolio performs better than the indices in sense of

higher return both in-sample and out-of-sample.
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Furthermore, to illustrate the benefit of considering multivariate stochastic dominance,
we introduced the Markowitz model (4.4.42) and compared the performance of the Mul-
tivariate SSD model to Markowitz model both in-sample and out-of-sample as well as
based on the Sortino ratio. It was concluded that the portfolio optimization problem
with multivariate SSD constraints outperforms the portfolio optimization problem based

on Markowitz model by having higher risk-adjusted return.

Moreover, we performed a test to investigate the effect of number of instrument on
the computation time for each algorithm. These test suggested as anticipated that
the projected level function algorithm and the cutting plane method can solve a large

problems within reasonable time.



Chapter 5

Robust Reward-Risk Ratio

Optimization

5.1 Overview

Stochastic programming has established itself as a powerful modeling tool when an
accurate probabilistic description i.e. accurate values for the system parameters and
specific probability distributions for the random variables are available. However, such
information is rarely available in practice. In such situations, there are two major ways
to deal with the uncertainties. One is through sample average approximations (SAA)
also known as Monte Carlo method, where SAA of the expected value of the underlying
function is constructed using empirical data, for a detailed discussion see [127]. The
other is to use partial information such as moment to identify a set of possible probability
distributions within which the true distribution lies. A robust optimization approach to
this problem is based on making the decision that would be appropriate given the worst

probability distribution amongst the set of possible distributions.

The robust optimization for stochastic programming can be traced back to the work
by Scarf [125]. There has been extensive improvements in this field primarily driven
by applications in risk management, finance and engineering [61, 65, 102, 154]. Given
historical data, it is easier to estimate moment information of random parameters than
to derive their probability distributions. This motivates the use of moment information

in developing uncertainty models for random parameters.

The problem of moment has been studied by Stieltjes [136] in the ninetheenth cen-
tury. The problem is related to the characterization of a feasible sequence of moments.
Schmudgen [126], Putinar [110], and Curto and Fialkow [30] derived necessary and suffi-
cient conditions sequences of moments with different settings. The problem of moments

is also related to optimization over polynomials (the dual theory of moment). Lasserre

81
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[87] and Parrilo [107] among others proposed relaxation hierarchies for optimization over
polynomials using moment results. Bertsimas and Popescu [19] studied further the opti-
mal inequalities given moment information. Moment problems in finance such as option

pricing problems have been investigated in the literature (see [18, 94, 23]).

Inspired with the notion of reward-risk ratio optimization, we study robust stochas-
tic reward-risk ratio optimization. We propose two robust formulations, one based on
mixture distribution, and the other based on the first moment approach. We propose
a sample average approximation formulation as well as a penalty scheme for the two
robust formulations, respectively and solve the latter with the level function method
proposed by Lemarechal et al. [89] and extended by Xu [146].

The main contribution of this chapter can be summarized as follows:

e We propose a robust optimization problem for a reward-risk ratio optimization
based on mixture distribution and first order moment approach. For the case of
mixture distribution a sample average approximation formulation is also presented.
Moreover, an exact penalization scheme is proposed for the first order moment

approach to handle the semi-infinite constraints in the dual problem.

e The proposed methods are applied to the Sortino performance ratio and the ro-
bust formulations based on both mixture distribution and the first order moment

approach are derived.

e We investigate the numerical efficiency and accuracy of the proposed methods by
presenting a portfolio optimization problem and a fund of funds problem based
on real world data. We further, set up backtest and out-of-sample test to inspect
the performance of the generated portfolios and compare them to the benchmark

portfolio.

In the rest of this chapter we focus on numerical aspect of robust reward-risk ratio
optimization. In Section 5.2 we introduce a reward-risk ratio optimization with one
sided risk measure. In Section 5.2.2, we present robust formulation of reward-risk ratio
optimization problem with one sided risk measure based on both mixture distribution
and first moment approach followed with an exact penalization scheme. In Section 5.4,
we apply the proposed methods to Sortino performance ratio. In Section 5.5, we present

some numerical test results. Finally, in Section 5.6 we present the conclusions.
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5.2 Robust Reward-Risk Ratio Optimization

5.2.1 Introduction

There are two basic approaches to the problem of portfolio selection under uncertainty.
One is the stochastic dominance approach, based on the axiomatic model of risk-averse
preferences. The optimization problems that arise are not easy to solve in practice as it
was discussed in previous chapters. The other is the reward-risk analysis. According to
the reward-risk analysis, the portfolio choice is made with respect to two criteria, the
expected portfolio return and the portfolio risk. A portfolio is preferred to another one

if it has higher expected return and lower risk.

Related to the reward-risk analysis is the reward-risk ratio optimization. Since the
publication of the Sharpe ratio, see [132], which is based on the mean-variance analysis,
some new performance measures like the STARR ratio, the Minimax measure, Sortino
ratio, Farinelli-Tibiletti ratio and most recently the Rachev ratio and the Generalized
Rachev ratio have been proposed (for an empirical comparison, see Biglova et al. [22],
Rachev et al. [124] and the references therein). The new ratios take into account
empirically observed phenomena, that the distributions of asset’s returns are fat-tailed

and skewed, by incorporating proper reward and risk measures.

In this chapter, we focus on general performance measure optimization with one-sided
risk measure, where only downward variations are penalized. We will discuss this in

details in Section 5.4. Specifically, we consider following optimization problem:

zeX E[(Y(f) - /L(%, 6))4‘] ’

where Y'(£) is a benchmark and (a)4+ = max(a,0). Note that, the numerator is concave

and equivalent to the expected excess return over the benchmark, while the denominator
is a convex one sided risk measure. In what follows, we explore the possible simplification

of the problem that would facilitate the numerical solution.

Pinar et al. [108] showed that under some assumptions, the problem (5.2.1) can be

reformulated as:

(:c,glg)}((XR T
st Elp(@.) ~ Y(©) ~ 7Y () ~ plz.)4] > 0. (5:2:2)
z e X.

In what follows, we will present the robust reformulation of the problem (5.2.2) based

on the mixture distribution approach and the first order moment approach.
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5.2.2 Robust formulations

In mathematical optimization models, we commonly assume that the data inputs are
precisely known and ignore the influence of parameter uncertainties on the optimality
and feasibility of the models. Robust optimization addresses the issue of data uncer-
tainties from the perspective of computational tractability. Since its introduction by H
Scarf in 50s [125], the robust optimization model also known as the minimax stochastic
program, has granted a lot of interest in both academic and practitioner’s communities.

In what follows, we present a robust formulation for the optimization problem (5.2.1).

Let P denote a set of probability distributions which contains the true probability. We

consider a robust scheme for problem (5.2.1) as follows:

Eplu(z,§) —Y(§)]
max min . 5.2.3
PR EelV(©  a(w0)] (5:2:3)
Moreover, the robust counterpart of the problem (5.2.2) can be formulated as:
max T
(z,7)eXXR (524)
st min Epfu(z,§) - Y(§) - 7(Y(£) - n(=,£))+] 2 0

In the above two formulations, the robustness is in the sense that given the set of
probability measures P, an optimal solution is sought against the worst probability
measure which is used to compute the expected value of the objective function. Note
that, the robust problem (5.2.4) depends on the choice of P, and an optimal solution
of problems (5.2.3) and (5.2.4) provide a lower bound of the true optimal values of the
true problems (5.2.1) and (5.2.2), respectively.

Theorem 5.1. Consider the two robust optimization problems (5.2.4) and (5.2.3). The
solution of problem (5.2.4) is equivalent to the solution of problem (5.2.3).

Proof. Let (z*,7*) be the optimal solution to problems (5.2.4). Let & be the optimal
solution of the problem (5.2.3) and 7 be defined as

o Eplu(,6) ~ V()]
PEPERI(Y() — #(3,6)1]

=7.

Then
Ep[(u(z*,&) =Y (§)) =7 (Y(§) — u(a",§))+] 2 0, VP € P.
Consequently (a6 — V(6
1Y .’E*, B *
Er(V(§) —plam6) — 0D
then

min (@, —Y (O] o
PeP Ep[(Y (&) — p(z*,€))4] —
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Therefore, we can conclude that (z*,7*) is a feasible solution of problem (5.2.4), and

T > T

Similarly, for the problem (5.2.3) we can say that

B0 Gy 27 PP
Then
Epl(u(d €) — Y(€) — 7Y (€) — (i £)2] > 0, VP € P.
Therefore

min Bp[(u(2,€) — Y (€)) - 7(Y(€) — p(&,)+] 2 0.

Consequently, we can conclude that (&,7) is feasible solution of problem (5.2.4), and
T<T* O

In what follows, we focus on solving problem (5.2.4), we can reformulate the optimization

problem (5.2.4) as follows:

(z,TI)Iél)I}XR o (5.2.5)
st —[min Ep{(u(z,£) =Y (§)) = 7(V(§) — u(z, )] < 0.

Note that, the constraint is the optimization problem (5.2.5) can equivalently be written

as

e — Epl(u(e,€) = Y(€) = 7Y (€) — u(a, ©)4] 0. (5.2.6)

Consequently, the optimization problem (5.2.5) can be reformulated as follows:

(m,TI)nel)I}XR T (5.2.7)
st max —Ep[(u(,€) — Y(€) ~ (Y (&) — plw,€)+] 0.

In what follows, we focus on the constraint of optimization problem (5.2.7).

The robust optimization problem is also referred to as minimax, maximin or distribu-
tional robust optimization in the literature of stochastic programming. Research on
minimax robust optimization dates back to the pioneering work by Zackova [150] and
Dupac¢ové [41]. More recently, substantial extensions have been done by Shapiro and
Kleywegt [130], Shapiro and Ahmed [128], and Bertsimas et al. [16]. Relationship be-
tween robust optimziation and minimax/distributional robust optimization have been
discussed by Goh and Sim [60] and Xu et al. [147].

There are various ways to define the set P depending on the availability of information

on the distribution of the unknown parameter. In this chapter, we consider two specific
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cases, one is that P is defined as a mixture of a set of known probability distributions;
the other is that P is defined through first order moments.

5.2.3 Mixture distribution

Assume that £ is only known to belong to a set of distributions which consists of all the

mixutres of some predetermined likelihood distributions, i.e.,

L L
Pepé{Z)\lPl:ZAlzl, Alzo,lzl,...,L}, (5.2.8)
=1 =1

where P, ..., Py is the set of probability measures for [ = 1,...,L and L denotes the

number of the likelihood distributions.

In this setup, we assume that probability distributions P, I = 1,..., L, are known and
the true probability distribution is in the convex hull of them. Mixture distribution
has already been studied in robust statistics and used in modeling. More recently,
Zhu and Fukushima [153] studied robust optimization of CVaR of a random function
under mixture probability distributions. Here we apply the approach to a fractional

optimization problem.

With the P defined as in (5.2.8), we can write problem (5.2.6) as follows:

L
max — 3 NEp[(n(2,€) — Y (€)) — (Y (€) - ple, )]
=1
L
v Sht (5.2.9)
l;l> 0,1=1,...,L

Due to linearity with respect to variable A;, { = 1,. .., L, the problem (5.2.9) is equivalent

to

max —Ep[(u(e, &) — Y(€) = (Y (€) — pl(,))+].

1=1,..,.L

Consequently, the problem (5.2.7) can be reformulated as follows:

min -7
(z,7)eXXR
s.t. —Ep[(u(z,§) =Y () —7(Y(§) — p(x,8))+] <0, forl=1,..., L

(5.2.10)
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In the case when £ has a finite discrete distribution, that is, £ takes finite number of

values €1,..., &N, the formulation (5.2.10) can be simplified as follows:
min -7
(z,7)eEX R
st =S pillue,€) — Y (E) — 7V (&) — (@, &))] <0, for = 1,..., L.
i=1

(5.2.11)

where p% corresponds to the probability measure of P, in scenario .

In the case when P, satisfies continuous distribution, it might be undesirable to compute
expected values of the underlying random functions with respect to the distribution of
the probability measure. One way to tackle this issue is through sample average approx-
imation. For a fixed [, let {ll, . ,§lN ! denote independent and identically distributed
random variable to & with distribution F;. Then Ep,[f(z,£)] can be approximated by

N,

1 .
, > f@8).

i=1

Consequently, The sample average approximation of the optimization problem (5.2.10)

can be formulated as follows:

min —T
(z,7)eX xR
s.t. = pil(la, &) = V(&) = r(V (&) — pwlx,&))4] <0, forl=1,..., L.
i=1

(5.2.12)

The {li can be generated by computer simulation under probability distribution F;.

5.2.4 First order moment approach

Recall, the robust optimization problem (5.2.7). Let set P denote the possible probabil-
ity distributions that is assumed to include the true P. In what follows we discuss the

approach used to solve the optimization problem (5.2.7). Recall problem (5.2.5) and let

minEp(G(z,€,7)] = Epl(n(e,€) = Y(€) = 7(V(€) — ()4 . (5.2.13)

We denote by B the set of probability measures on (2, F) and Ep[G(z,§,7)] is given by
the integral

Ep(G(z,€,7)] = /_ Gla, €, 7)P(E).

It is reasonable to assume that we have some knowledge about certain moments of cor-

responding probability distribution. That is, the set P is defined by moment constraints
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as follows
Ep; =b,i=1,...
'P = P c BZ P[wl(é.)] (& Z ’ » Dy 7
Ep[vi(€)] <b;, i=p+1,....q,
where ¢; : 2 — R, 4 = 1,...,q, are measurable functions. In practice, b; is the mean

value of a random variable ;(§), which can often be estimated. Moment of distributions

are well discussed in the literature (see [142, 143] and references therein).

In what follows, we use the first order moment condition to derive the dual of problem
(5.2.13). For a given x € X, the Lagrangian dual of the problem (5.2.13) is as follows:

max  min L,(P,\), (5.2.14)
AERXRP xR P P=0
where
q
Ly(P,X) = Ep[G(z,&,7)] + Ao(1 — Ep[1]) + Y Aj(bi — Ep[thi(6))).
j=1

Consequently, we can write the dual problem (5.2.14) in the form
q
max Ao + Zbﬁ\z
AERXRPxRI™P i—1

q
s.t. )\0 + Z)‘Zwl(é‘) > G(‘T7§7T)7 § €.

i=1

(5.2.15)

Note that, if the set Z is finite, the problem (5.2.13) and its dual (5.2.15) are linear
programming problems. In that case there is no duality gap between these problems
unless both are feasible. If the set Z is infinite, then the dual problem (5.2.15) becomes
a linear semi-infinite programming problem. In that case one needs to verify some

regularity conditions in order to ensure “no duality gap” property. For further detail
see [129, Page 310].

We can reformulate the problem (5.2.15) as
q
min —Xo — Zbi)‘i
AERXRPxRI™P i—1

q
s.t. )\0 + Z)‘Zwl({) > G(‘T7§7T)7 § €.

i=1

(5.2.16)
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Applying the dual formulation (5.2.16) to the problem (5.2.6), we can write problem

(5.2.7) as the following semi-infinite problem

min —T
r€X,TERNERXRP xR
q

i=1 (5.2.17)
Ai>0, fore=p+1,...,q,

q
>\0 + Z)‘ZQZJZ(S) > G(£7£77—)7 g € E7

=1

In what follows, we will discuss an exact penalization to deal with the infinite number

of constraint in optimization problem (5.2.17).

5.2.4.1 An exact penalization

Bertocchi et al. [14] proposed an exact penalization approach for handling general semi-

infinite constraints where underlying functions are nonlinear in . Recall that

G(ZL‘,E,’T) = (:u(x7£) - Y(g)) - T(Y(&) - M(x7£))+

Assume that the support set of E is compact and for each £ € Z, G(z,§,7) is convex
w.r.t. . Let
R(I‘, T, )‘07 )‘) g) = G(I‘, g) T) - >\0 - ATQp(é.))

and w := (x,7, Ao, A). The semi-infinite constraint of (5.2.17) can be written as

ngaax R(w,§) <0. (5.2.18)
€=

Definition 5.2. Let F denote the set of solutions to (5.2.18). Problem (5.2.18) is said
to satisfy Slater condition if there exist a positive number ¢ and a point w € F such
that

max R(w, &) < —9.

fe=

The problem (5.2.18) is said to satisfy strong Slater condition if there exists a positive
number ~ such that for any w € F with R(w, ) = 0 for some £ € =, there exists a point
w with R(w,§) < 0 for all £ € = and

lw — @I < vmin —R(, £)+.
Note that, the strong Slater condition requires the Slater condition. The notion of strong

Slater condition is introduced by Gugat [65] for deriving error bound of a semi-infinite

convex system of inequalities.
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Lemma 5.3. Assume: a) the inequality system (5.2.18) satisfies the strong Slater con-
dition, b) function R(-,§) is convexr on W for every & € Z. Then there exists a positive
number v > 0 such that

d(w, F) < ymax(R(w,£))+,

where d(w, F) denotes the distance between point w and set F and ay = max(a,0) for
a € R.

For the proof refer to [14, Lemma 2.1].

Theorem 5.4. [14, Theorem 2.1] Consider the following convex program:

min  Q(w),
st. H(z,§) <0, (5.2.19)
weWw,

where W = X x Rx R x RP x RUP. Assume: a) the inequality system (5.2.18) satisfies
the strong Slater condition, b) function H(-,§) is convex on W for every & € E, c¢)
function Q) is convexr and Lipschitz continuous with modulus C. Then there exists a
positive number p such that the set of optimal solutions of (5.2.19) coincides with the

set of th optimal solutions of the following penalized problem:

min Q(w)+prggax(ﬂ(w,§))+,
st. weWw,

(5.2.20)

where p > p.

Proof. Under the strong Slater condition, it follows by Lemma 5.3 that there exists a
constant v > 0 such that
d(w, F) < fyrélagc(H(w,f))Jr.
SS

Let p be a positive constant such that p > vC. By [29, Proposition 2.4.3] we can show
that the two optimal solution sets of problems (5.2.20) and (5.2.19) coincide. This prove

the existence of a positive constant p := yC. The proof is complete. O

We can reformulate problem (5.2.17) by Theorem 5.4 as the following penalized mini-
mization problem:
min  —7 + pp(w),
w

q
st do+ Y _bid <0, (5.2.21)
=1

st. N>0, fore=p+1,...,q.
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where w := (x,7, \g, ), and

p(w) := Iggg(R(wém.

This is a deterministic nonsmooth convex program with simple constraints. Well known
method such as cutting plane method, bundle methods and subgradient methods can
be exploited to solve it. In what follows, we outline the level function method due
to Lemarechal et al. [89] and extended by Xu [146] for solving optimization problem
(5.2.21).

5.3 Solution Methods

In this section we will discuss the solution methods for solving optimization problem
(5.2.10) and (5.2.21).

The optimization problem (5.2.10) can be solved by MATLAB built-in solver “fmincon”
which is suitable for nonlinear constraint optimization problems. However, the problem
(5.2.21) is a deterministic nonsmooth convex program with simple constraint which is

best solved by algorithms such as the level function method as mentioned earlier.

5.3.1 Level function method

In this section, we focus on solving optimization problem (5.2.21) with the projected
level function algorithm as discussed in Chapter 3 (Algorithm 3.2). In what follows, we
refer to Algorithm 3.2 as Algorithm 5.1.

let ¥(w, p) be defined as follows:

J(w,p) == -7+ prggg(R(m &)+

where w := (x,7, A\g, A). Let (i € 0¥ (w, p), then
w (w) = G (w = we)/ [1Gell,
is a level function of J(w, p) at wy.

Theorem 5.5. Let {wy} be generated by Algorithm 5.1. Assume the conditions of
Theorem 5.4 are satisfied. Then

A(k) <e, for k> M2022072(1 =A%),
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where T represents the diameter of the solution set W, € and A\ are given in the projected

level function algorithm (Algorithm 3.2).

For the proof refer back to the proof of Theorem 4.7 in Chapter 4 and [146, Theorem
3.3].

In the projected level function algorithm (Algorithm 5.1) the penalty parameter in
J(w, p) is fixed. In some cases, it might be difficult to estimate the penalty parame-
ter. One way to tackle this issue as discussed in Chapter 4 is to start with an estimate
of penalty parameter and solve the resulting penalized problem with the level function
algorithms. The feasibility of the obtained solution is checked: if it is feasible the op-
timal solution is obtained, otherwise, the penalty parameter is increased the process
is repeated. This kind of procedure in known as Simple Penalty Function Method in
the literature of optimization, see for instance [138, Algorithm 10.2.3]. We describe the
aforementioned procedure formally in the following algorithm for the penalized problem
(5.2.21).

Algorithm 5.2 (Simple Penalty Function Method for penalized problem (5.2.21)).

Step 1. Let € be a positive number. Let pg be an intial estimate of the penalty parameter.
Set ¢t := 0.

Step 2. For p := p;, apply Algorithm 5.1 to solve problem (5.2.21). Let z; denote the

solution obtained from solving the problem.

Step 3. If max¢c=(R(w,§))+ < €, stop; otherwise, set wiy1 = wy, pry1 := 10p; and
t:=t+ 1, go to step 2.

Algorithm 5.2 terminates in a finite number of iterations in that the exact penalty

parameters for problem (5.2.21) is finite, see Theorems 5.4.

In what follows, we first discuss the financial performance ratio optimization and present
some examples. Then we present the robust reformulation of the performance ratio

followed by some numerical results.

5.4 Financial Performance Ratios

A major topic of debate in modern asset allocation modeling and managing techniques
is how to choose the best performance ratio. Decades ago, Sharpe [132] introduced the
well-known Sharpe Ratio for managing mutual funds. Subsequently, Zenios [152], Zenios
and Kang [151] and Sharpe [133] improved the ratio suggesting to refer the performance
to a benchmark. Although this ratio is fully compatible with normally distributed
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returns, it loses reliability as soon this property is relaxed (see [44, 88]). Consequently, a
number of alternative performance measures such as Sortino ratio [134], MiniMax ratio
[149] and Stable ratio [22, 74] have been proposed in the literature.

The well-known Sharpe ratio [132] of a portfolio with return p(z,{) and a benchmark
Y (€) can be calculated as:

(I)Sharpe(,u(m7 5)7 Y(é‘) =

where o denotes the standard deviation. Using the standard deviations as a measure of
risk results in equal penalization of both upside and downside deviations to the bench-
mark. Therefore, this type of ratio is suitable for investment where the main concern
is to control the stability of return around the benchmark. On the other hand, if the
investment is more concerned with the trade off between large favorable/unfavorable

deviations from the benchmark, the Sortino ratio is more appropriate [134].

Definition 5.6. The Sortino performance ratio for a portfolio with return u(z,€) and
benchmark Y (€) is defined as:

Pgs(u(r,§),Y(§) = ) )]/’

where d > 0, and denote the left orders of the performance ratio.

=

=

Al
|

=

K

o=

Sortino ratio substitutes the standard deviation as a measure of risk with left partial
moment of order d. Therefore, the only penalizing volatility is the undesirable one below
the benchmark. The original Sortino ratio [134] is defined for d = 2, it has been extended
tod > 1in [22, 123]. More recently, the case when d > 0 has been considered by Farinelli
and Tibeletti [54, 55].

In the remaining of this chapter, we concentrate on the Sortino performance ratio [134]
and propose a robust financial performance optimization model based on this ratio.
Recall, robust optimization problem (5.2.7), we can equivalently define the robust for-

mulation of the Sortino optimization problem as:

min —T
(z,7)EXER (5422)

st —max Ep[(u(z,€) = Y(€) = (Y (€) — plw, 1) <0,

In what follows, we present the robust formulation of the (5.4.22) based on the mixture
distribution uncertainty as discussed in Section 5.2.3 and first order moment approach

discussed in Section 5.2.4.

Recall the discussion in Section 5.2.3 on robust optimization based on mixture distri-

bution, specifically problem (5.2.10). We can reformulate problem (5.4.22) as a robust
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optimization based on mixture distribution as follows:

min —T
(z,7)eEX R
st. —Epl(u(z,€) — Y (©) - ((Y() - ple, )V <01=1,... L.
(5.4.23)
Moreover, in the case when & has a finite distribution, that is, £ takes finite number of
values €%,..., &V, the formulation (5.4.23) can be simplified as follows:
min -7
(z,7)eEX R
s.t. —Zpl (@,&) = Y(&) = 7(Y (&) = pnla.g)DHYV <01=1,...,L.

(5.4.24)

where p% corresponds to the probability measure of P, in scenario .

Consequently, The sample average approximation of the optimization problem (5.4.23)

can also be formulated as follows:

(w,TI)HGiEXR -7
N
st =y pilula. &) = Y(E)) = (Y (&) - pla, DV <0l=1,..., L.
i=1

(5.4.25)
As discussed earlier, the §li can be generated by computer simulation under probability
distribution F;.

Let us now present the reformulation of problem (5.4.22) based on first order moment
approach as discussed in Section 5.2.4. The problem (5.4.22) can be reformulated based

on first order moment approach as follows:

min —T
2EX, TER,AERXRP xR?[P
q
s.t. Ao+ Y bidi <0,
i=1 (5.4.26)

Ai>0, fori=p+1,...,q,

q
>\0 + Z)‘sz(é.) > G(x)g)d77)7 g € E7

i=1

where

G(x,6,d,7) = (u(x, &) = Y (&) — 7((Y (&) — u(x, &)%)



Chapter 5 Robust Reward-Risk Ratio Optimization 95

Subsequently, the problem (5.4.26) can be reformulated based on the penalization scheme

discussed in Section 5.2.4.1 as:
min  J(w, p) := —7 + prgaz(R(w, §))+
w e=

q
st Ao+ ) bidi <0,
i=1
ANi>0, fort=p+1,...,q,
weWw,

(5.4.27)

where

R(’UJ, g) = G(I‘, 57 d7 7_) - >\0 - ATQZJ(S)

As mentioned earlier, this is a deterministic nonsmooth convex program with simple

constraints which can be solved by well known method such as level function method.

5.5 Numerical Tests

We have carried out a portfolio performance ratio optimization and a fund of funds
investment problem on the proposed models and algorithm by using MATLAB 7.10 and
IBM ILOG CPLEX 12.4 installed on a HP Notebook PC with Windows 7 operating
system, and Intel Core i7 processor. We have integrated the Algorithm 5.2 in Algorithm
5.1 and set the initial penalty parameter equal to 500. Further, we set the A = 0.5 and
e = 0.0001.

Recall Sortino robust optimization problem (5.4.23), the nominal counter part of this

problem can be formulated as follows:

(r,ﬁ?ei?(eR 7 (5.5.28)
st —Elu(z,8) - V(&) —7((Y(§) — u(x, &)Y <0,

where for the purpose of our numerical test, we set d = 2 for both the mixture distribu-

tion problem as well as the nominal problem.

Particularly, we consider a portfolio optimization problem with real world test data
to investigate the efficiency of the proposed robust optimization models (5.4.23) and
(5.4.27), and compare the results to portfolio strategy generated by the nominal problem
(5.5.28). Moreover, we consider a fund of funds problem, which is an investment strategy
of holding a portfolio of other investment funds rather than investing directly in shares,
bonds or other securities, and compare the results to the strategy generated by the

nominal problem (5.5.28).
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5.5.1 Portfolio performance ratio

Suppose that we have a fixed capital to be invested in n assets. Let R;, i = 1,...,n,
denotes the return of asset 7. In practice, the return is often uncertain and we use a
random variable £ to describe the uncertainty. Specifically, we write R; as R;(§) and in

doing so we are assuming that all n assets have identical random factors.

To simplify the discussion, we normalize the capital to 1 and use z;, ¢ = 1,...,n, to
denote the fraction of capital to be invested in asset i. The portfolio return can then be

formulated as:
(@, &) == Ri(§)z1 + Ra(€)m2 + -+ + Rpu(§)wn. (5.5.29)

Example 5.1. We consider m history of rate of return, for a group of n assets. Our aim
is to find a robust optimal investment strategy for a fized capital in the n assets which
minimized the ratio of the risk and expected excess return. Particularly we consider the

following model:

min —T
(z,7)EXER . (5.5.30)
s.t. —max Ep[u(z,§) = Y(§) = 7((Y(€) — (2. €))}) /4 <o,

we apply the the reformulations based on the mizture distribution uncertainty and first

order moment problem discussed in Section 5.4, respectively.

We collected 2722 daily stock returns of 34 FTSE 100 assets from Jan 2005 to June 2012.
We use the first 1700 observations to generate portfolio strategies and the remaining
observations in constructing an out-of-sample test. We solve the mixture distribution
problem with the built-in MATLAB function “fmincon”, while the first order moment
problem is solved through the level function algorithm (Algorithm 5.1).

FTSE 100 Return

L L L a| L
0 600 800 1000 1200 1400 1600
Days

Olm ===

0 200 4

FIGURE 5.5.1: Time series analysis of the FTSE 100 Index used for setting the number
of L and the corresponding probabilities.
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Periods | Mean (10~%) | Variance (10~%)
Ly -4.6674 2.6880
Lo 4.3397 0.3923
L3 5.5324 0.5199
Ly -5.3644 1.8330

TABLE 5.5.1: Expected value and variance of returns of the FTSE 100 index in different
time periods (L).

Figure 5.5.1 shows the return of FTSE 100 index over the first 1700 observations. It can
be seen that the data set can be divided into four subsection. Furthermore, the expected
value and variances of returns of the FTSE 100 index corresponding to these different
time periods are listed in Table 5.5.1. In this example, according to our observation,
we assume that the samples are generated by the mixture distribution of four likelihood
distributions. Specifically, we assume that samples within each time period are generated

by normal distributions with means and variances shown in Table 5.5.1.

In the computation of the nominal portfolio optimization problem, we set L = 1 and
N; = 1700, i.e., all the samples are used in the model by assuming that they are generated
by one nominal probability distribution. In the computation of the mixture distribution
model, we set L = 4 and N; = 400, Ny = 490, N3 = 510, and N, = 300, where
we assume the samples within each time period are generated by the corresponding
likelihood distribution. In the computation of the first order moment problem, we let
the ¢ = 1 and define v (§) as the return function of the FTSE 100 index. Moreover,
in these tests we set the upper bound and lower bound on weights equal to 0.6 and 0,

respectively.

The results for the nominal problem, mixture distribution problem and first order mo-

ment problem are presented in Table 5.5.2.

Model Time(min) | Iter | No.Assets | Return | Risk
Nominal 0.0156 6 3 -0.0076 | 0.7542
Mixture distribution 0.0316 15 8 0.0016 | 0.2798
First order moment 0.9444 10 14 0.0033 | 0.1765

TABLE 5.5.2: The results of the three models for 34 stocks of FTSE 100 index, where
the benchmark is considered to be equal to the return of FTSE 100 index.

As it can be seen, the two robust portfolio models outperform the nominal portfolio in
sense of having both higher return and lower risk, while the first moment model having

the best performance.

Figures 5.5.2 and 5.5.3 show the backtest and out-of-sample test of the generated portfo-
lios for the three models. As it can be seen, the return of the nominal portfolio performs

poorly compared to the return of the portfolios generated by the mixture distribution
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FIGURE 5.5.2: Backtest of the of the excess return of the three generated portfolios.
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FIGURE 5.5.3: Out of sample test of the excess return of three generated portfolios.

and first order moment reformulations. Moreover, it can be seen that the portfolio con-
structed by the mixture distribution formulation is less conservative compared to the

first order moment’s problem both in-sample and out-of-sample.

Moreover, to see the performance of the generated strategies out-of-sample we present
graph of cumulative return of the of portfolio return generated by the nominal, mixture

distribution and the first order models in Figure 5.5.4. It can be seen that the return
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generated by the two robust formulations is much higher compared to that of the nominal

portfolio.
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FIGURE 5.5.4: Out-of-sample cumulative return for the generated portfolio strategy
based on the nominal, mixture distribution and first order moment models.

Figure 5.5.5 and 5.5.6 presents the risk profile of the generated portfolios both in-sample
and out-of-sample. It can be seen that the portfolio generated based on the first order

moment formulation has lower risk exposure compared to the other two models.

6
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FI1GURE 5.5.5: Comparison of the risk measure in-sample.

It should be noted that the 2008 financial crisis occurred in days 1400 to 2000 and
European sovereign-debt crisis occurred around days 2370 to present. As it can be seen,
the risk of the first order moment is the least during both of these periods compared
to the nominal strategy and the mixture distribution model. Additionally, the negative

excess return of the robust portfolios is much lower compared to the nominal portfolio in
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FIGURE 5.5.6: Comparison of the risk measure out-of-sample.

2008 financial crisis period, while the excess return of these portfolios are mostly positive

in period coinciding with the European sovereign-debt crisis.

It should be mentioned that although the excess return of the robust portfolios are lower
than of that of nominal portfolio but in many financial and non-financial institutions
such as pension funds and national insurance systems having consistently positive low

risk return is more attractive than having high but very risky returns.

5.5.2 Fund of funds investment

A “fund of funds” (FOF) is an investment strategy of holding a portfolio of other invest-
ment funds rather than investing directly in shares, bonds or other securities. In this
section we consider four funds representing FTSE 100 Index (Fund 1), S&P 500 (Fund
2), Nasdaql00 (Fund 3), and Hang Seng (Fund 4).

We have collected 2722 historical rate of return and let the benchmark be average return
of the four funds. As before, we have used the first 1700 observations to generate the
portfolio strategy and remaining observations are used to set up an out-of-sample test

to investigate the performance of the portfolio.

Figure 5.5.7 shows the return of the four funds over the first 1700 observations. It can be
seen that the data set can be divided into three subsection. Furthermore, the expected
value and variances of returns of the four funds corresponding to different time periods
are listed in Table 5.5.3. In this example, according to our observation, we assume that

the samples are generated by the mixture distribution of three likelihood distributions.
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FIGURE 5.5.7: Time series analysis of the FTSE 100 Index used for setting the number
of L and the corresponding probabilities.

Period Mean (1073) Variance (1073)

Fund1 Fund2 Fund3 Fund4 | Fund1l Fund 2 Fund 3 Fund 4
Ly -0.4667 -0.2322 -0.2055 -0.2288 | 0.2688 0.2251 0.5809 0.1296
Lo 0.4870 0.4242 0.4211 0.7660 | 0.0456 0.0443 0.1073 0.0860
Ls -0.5280 -0.4772 0.0752 0.2589 | 0.1827 0.1463 0.2103  0.4437

TABLE 5.5.3: Expected value and variance of returns of the four funds in different time
periods (L).

Specifically, we assume that samples within each time period are generated by normal

distributions with means and variances shown in Table 5.5.3.

In the computation of the nominal portfolio optimization problem, we set L = 1 and
N; = 1700, i.e., all the samples are used in the model by assuming that they are generated
by one nominal probability distribution. In the computation of the mixture distribution
model, we set L = 3 and N7 = 400, N, = 1000, and N3 = 300, where we assume the
samples within each time period are generated by the corresponding likelihood distribu-
tion. In the computation of the first order moment problem, we let the ¢ = 1 and define
11(€) as the return function of the equally weighted portfolio of the four funds. In what
follows, we set the upper bound and lower bound on the capital invested equal to 0.6

and 0, respectively.

Table 5.5.4 presents the results for this example. As can be seen, the first order moment
portfolio has the highest expected return with the least risk. Furthermore, the expected
return and the associated risk of the mixture distribution are slightly lower and higher
than of that of the first order moment problem, respectively. Moreover, it can be seen
that the portfolio strategies generated by the two robust models are more diversified

compared to the nominal strategy.
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Model Time(min) | Iter Funds Return | Risk
Nominal 0.0176 8 | 0.0000, 0.6000, 0.4000, 0.0000 | 0.0206 | 0.0048
Mixture distribution 0.0182 8 | 0.2387, 0.6000, 0.1613, 0.0000 | 0.0157 | 0.0033
First order moment 0.0863 7 1 0.1493, 0.4793, 0.3161, 0.0554 | 0.0212 | 0.0024

TABLE 5.5.4: The results of the three models for four funds, where the benchmark is
considered to be an equally weighted portfolio of these funds.

Nominal
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FIGURE 5.5.8: Comparison of the excess return of portfolio in-sample.

Figure 5.5.8 and 5.5.9 demonstrate the performance of the generated portfolio in-sample
and out-of-sample, respectively. As can be seen, the two robust optimizations have
positive excess returns both in-sample and out-of-sample whereas the excess return of
the nominal portfolio varies a lot around the zero line. Furthermore, it can be seen that
the excess return of the mixture distribution portfolio and that of first order moment
portfolio, are almost always positive in-sample. Moreover, it can be seen that the excess
return of the robust formulations outperform that of the nominal portfolio in the sense

of having lower negative excess return and equivalent positive excess return.

Moreover, to see the performance of the generated strategies out-of-sample we present
graph of cumulative return of the of portfolio return generated by the nominal, mixture
distribution and the first order models in Figure 5.5.10. It can be seen that the return
generated by the two robust formulations is much higher compared to that of the nominal

portfolio.

Figure 5.5.11 and 5.5.12 illustrate the risk associated with each portfolio in-sample and

out-of-sample, respectively. As anticipated, the risk of the first order moment model
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FIGURE 5.5.9: Comparison of the excess return of portfolio out-of-sample.
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FIGURE 5.5.10: Out-of-sample cumulative return for the generated portfolio strategy
based on the nominal, mixture distribution and first order moment models.

is least compared to the other two models both in-sample and out-of-sample, followed

closely by the mixture distribution model.

As discussed in the previous example, the 2008 financial crisis occurred in days 1400 to
2000 and European sovereign-debt crisis occurred around days 2370 to present. As it
can be seen, the risk of the first order moment is the least during both of these periods
compared to the nominal strategy and the mixture distribution model. Additionally, the
negative excess return of the robust portfolios is much lower compared to the nominal
portfolio in 2008 financial crisis period, while the excess return of these portfolios are

mostly positive in period coinciding with the European sovereign-debt crisis.
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FIGURE 5.5.12: Comparison of the risk measure out-of-sample.

In order to investigate the efficiency of the models and the solution methods with respect
to CPU time, we have solved the three model with the proposed algorithms first for an
increasing number of assets with a fixed sample size and second for an increasing number
of samples with a fixed number of assets. As it can be seen in Figures 5.5.13 and 5.5.14
the mixture distribution model and the nominal model solved by the built-in MATLAB

function “fmincon” are more efficient compared to the first order moment model solved
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by the level function algorithm. However, the first order moment is still efficient with a

CPU time of less than four minutes in both cases.
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5.6 Conclusion

In this chapter we focused on a robust formulation for a performance ratio optimization
based on one sided variability measure. We propose a robust optimization problem for
a reward-risk ratio optimization based on mixture distribution and first order moment
approach. For the case of mixture distribution, a sample average approximation for-
mulation was presented. Moreover, an exact penalization scheme was proposed for the
first order moment approach to handle the semi-infinite constraints in the dual problem.
The proposed methods were applied to the Sortino performance ratio and the robust
formulations based on both mixture distribution and the first moment approach are

derived.

We investigated the numerical efficiency and accuracy of the proposed methods by pre-
senting a portfolio optimization problem and a fund of funds problem based on real world
data. We further, set up backtest and out-of-sample test to inspect the performance of

the generated portfolios and compare them to the benchmark portfolio.

Based on the numerical tests results we can conclude that both of the robust formulations
result in more conservative but better portfolios compared to the nominal strategy in a
sense of both expected return and the associated risk. Moreover, the first order moment
problem results in the most conservative solution, where the excess return is lower but
mostly positive compared to that of the mixture distribution model and the nominal
model. Furthermore, the investigation of the efficiency of the models and methods with
respect to the CPU time revealed that the mixture distribution model and the nominal
model solved with the MATLAB built-in function “fmincon” are more efficient compared
to the first order moment model solved by the level function algorithm. However, the
largest first order moment problem with respect to both sample size and the number of

assets were solved in less than four minutes.



Chapter 6

Concluding Remarks

6.1 Research Outcomes

There are three basic approaches to the problem of portfolio selection under uncertainty;
stochastic dominance, expected utility maximization and the reward-risk analysis. In
this thesis we focused on stochastic optimization problems with stochastic dominance
constraints as well as reward-risk ratio optimization which is related to reward-risk

analysis.

The stochastic dominance notion has been employed in many areas including, medicine
and health (Madden [96]), poverty and inequality studies (Jeffrey and Eidman [76],
Anderson [1]), agriculture (Davidson, Duclos [33]) and financial decision making (see
Annaert et al [3], Levy [91]. Eeckhoudt [43] and references therein). We focused on
application of stochastic dominance in portfolio optimization. The advantages of using
stochastic dominance model was discussed in Chapter 2. Application of second order
stochastic dominance as a criteria of choice proves to be difficult. Generally, in solving
stochastic programming problems with second order stochastic dominance, one needs to
deal with three main issues; a) the expectation of random functions in the objective and
the constraint, b) infinite number of constraints, ¢) the non-smoothness arising from the

plus function in the constraints.

The main contribution of this thesis can be summarized as follows:

e To overcome the difficulties associated with scalar second order stochastic dom-
inance a recently developed exact penalization scheme for such problems is ex-
ploited. Moreover, a penalization scheme is developed for the multivariate sec-
ond order stochastic dominance by exploiting Clark’s exact penalty function [29,

Proposition 2.4.3] and Robinson’s error bound [113]. The multivariate stochastic
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dominance constraints are reformulated and it is shown that the reformulated prob-
lem satisfies the Slater Constraint Qualification under some moderate conditions.

Furthermore, an exact penalization scheme based on L,.-norm is derived.

e The resulting penalized problems are non-smooth convex optimization problems
which can efficiently be solved with numerical methods such as stochastic approx-
imation methods and level function methods. The convergence analysis regarding
the solution methods for each specific problem is presented. Moreover, a modi-
fied cutting plane method is proposed for the multivariate stochastic dominance
model. This cutting plane method differs from those in the literature [120] in
that it applies to the maximum of the constraint functions rather than each con-
straint function. Moreover, this modified cutting plane method uses the cutting
plane representation proposed in [81], so it differ from the methods proposed in
[70, 73]. The idea of applying the cutting-plane method to the maximum of the
constraint functions is similar to the idea in algorithm proposed by Fabian et al.
[52]. However, their method is applied to linear models while this modified cutting
plane method is also applicable to nonlinear case. Furthermore, the proposed nu-
merical methods provides an alternative approach to the existing cutting surface
method for multivariate stochastic dominance introduced by Homem-de-Mello and
Mehrota [70] and the linearized method proposed by Armbruster and Luedtke [4].

e Moreover, we focused on robust reward-risk ratio optimization to address the issue
of data uncertainties from the perspective of computational tractability. We con-
sidered robust formulations based on mixture distribution approach and first order
moment approach. The problems arising from the mixture distribution approach
can be solved with nonlinear solvers such as MATLAB built-in solver “fmincon”,
while the first order moment approach results in a semi-infinite programming prob-
lem. To overcome difficulties associated with this type of problem, we proposed
an exact penalization method to deal with the infinite number of constraints in
optimization problem. This resulted in reformulation of the optimization prob-
lem as a deterministic non-smooth convex program with simple constraints which
can be solved with well-known methods such as level function methods where the

convergence analysis were presented.

The numerical methods discussed in this thesis have some advantages and limitations.
These methods can efficiently solve non-smooth, nonlinear, convex optimization prob-
lems within reasonable computation times. The stochastic approximation method re-
quires calculation of only one approximate subgradient per iteration and can be applied
to the case when the underlying functions are highly nonlinear and/or non-smooth, and
the distribution of the random variable may be unknown. The level function methods re-
quire calculation of a subgradient instead of an approximate subgradient of the objective

function at each iterate and therefore it applies to the problem with known distribution
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of the random variable or the sample average approximated problems. A clear advantage
of the method is that we can estimate the number of iterations needed for a specified
precision. The modified cutting plane method discussed differs from those in literature
[120] in that it applies to the maximum of the constraint functions rather than each
constraint function. This saves considerable computation time because at each itera-
tion, our cutting-plane method requires the addiction of a couple of linear constraints
only. The approach also differs from that in [70, 73] because our modified cutting-plane
method uses the cutting-plane representation proposed in [81]. The idea of applying the
cutting-plane method to the maximum of the constraint functions is similar to the idea
in algorithm proposed by Fabidn et al. [52]. Note that Fabidn’s algorithm is applied to
linear models while our modified cutting plane method is applicable to nonlinear case.
Furthermore, the level function methods and the modified cutting plane method are not
sensitive to an increase in the size of the problem, as an increase in either the sample
size or the number of instruments does not have a significant impact on the performance
of these methods. It should be noted that, if the problem considered is linear then, some
off the shelf linear programming softwares would outperform these methods in sense of

computation time.

6.2 Future Research

Each of the chapters in this thesis contributed to the existing literature. So far we have
concentrated on second order stochastic dominance. This research can be extended
by considering stochastic optimization problems with first order stochastic dominance,
which is closely related to the Value at Risk (VaR) measure. VaR is a widely used risk
measure of the risk of loss on a specific portfolio of financial assets. It is commonly used
in risk management, risk measurement, financial reporting and computing regulatory
capital (Basel II, and III).

Another interesting possibility for continuing this research could lie in investigating the
properties of multivariate stochastically weighted dominance [72], in which the vector of
weights v is treated as a random vector. Such an approach is much less restrictive than

the deterministic weighted approach considered in this research.

Moreover, we have only concentrated on problems where the random variable is dis-
crete. We could further extend this research and consider problems with continuous
random variables. This type of problem has extensively been discussed in theoretical
literature. However, there has not been extensive research done on numerical analysis

and performance.

Furthermore, as it was discussed in this thesis, there are two basic approaches to the
problem of portfolio selection under uncertainty. One of them is the stochastic domi-

nance approach, and the other is the reward-risk analysis which is also related to the
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reward-risk ratio optimization. In this thesis we considered robust optimization of this
type of problem based on mixture distribution and first order moment approach. How-
ever, this research can be extended by considering distributionally robust optimization
under moment uncertainty where uncertainty is described in both the distribution form

(discrete, Gaussian, exponential, etc.) and moments (mean and covariance matrix).



Appendix A

Appendix

A.1 Figures for Chapter 4

The backtest and out-of-sample comparison of the generated portfolio with the multi-

variate SSD model to the indices. We present the figures related to the backtests followed

by the out-of-sample tests.
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F1GURE A.1.1: Backtest comparison of the Multivariate SSD model and the FTSE 100

Index.

As it can be seen the return of the portfolio strategy generated by the proposed model

and algorithms out perform the return of each individual index both in-sample and

out-of-sample.
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