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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

SCHOOL OF MATHEMARICS

Doctor of Philosophy

by Rudabeh Meskarian

This project is focused on stochastic models and methods and their application in port-

folio optimization and risk management. In particular it involves development and

analysis of novel numerical methods for solving these types of problem. First, we study

new numerical methods for a general second order stochastic dominance model where

the underlying functions are not necessarily linear. Specifically, we penalize the sec-

ond order stochastic dominance constraints to the objective under Slater’s constraint

qualification and then apply the well known stochastic approximation method and the

level function methods to solve the penalized problem and present the corresponding

convergence analysis. All methods are applied to some portfolio optimization problems,

where the underlying functions are not necessarily linear all results suggests that the

portfolio strategy generated by the second order stochastic dominance model outper-

form the strategy generated by the Markowitz model in a sense of having higher return

and lower risk. Furthermore a nonlinear supply chain problem is considered, where the

performance of the level function method is compared to the cutting plane method. The

results suggests that the level function method is more efficient in a sense of having

lower CPU time as well as being less sensitive to the problem size. This is followed

by study of multivariate stochastic dominance constraints. We propose a penalization

scheme for the multivariate stochastic dominance constraint and present the analysis

regarding the Slater constraint qualification. The penalized problem is solved by the

level function methods and a modified cutting plane method and compared to the cut-

ting surface method proposed in [70] and the linearized method proposed in [4]. The

convergence analysis regarding the proposed algorithms are presented. The proposed

numerical schemes are applied to a generic budget allocation problem where it is shown

that the proposed methods outperform the linearized method when the problem size is

big. Moreover, a portfolio optimization problem is considered where it is shown that the

a portfolio strategy generated by the multivariate second order stochastic dominance

model outperform the portfolio strategy generated by the Markowitz model in sense of

having higher return and lower risk. Also the performance of the algorithms is inves-

tigated with respect to the computation time and the problem size. It is shown that

the level function method and the cutting plane method outperform the cutting surface

method in a sense of both having lower CPU time as well as being less sensitive to
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iv

the problem size. Finally, reward-risk analysis is studied as an alternative to stochastic

dominance. Specifically, we study robust reward-risk ratio optimization. We propose

two robust formulations, one based on mixture distribution, and the other based on the

first order moment approach. We propose a sample average approximation formula-

tion as well as a penalty scheme for the two robust formulations respectively and solve

the latter with the level function method. The convergence analysis are presented and

the proposed models are applied to Sortino ratio and some numerical test results are

presented. The numerical results suggests that the robust formulation based on the

first order moment results in the most conservative portfolio strategy compared to the

mixture distribution model and the nominal model.
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Chapter 1

Introduction

The focus of this thesis is on the development of stochastic programming models and

methods for financial portfolio optimization and risk management problems. In this

chapter, we give an introduction to the problems considered and discuss the methodolo-

gies used in this thesis. An outline of this thesis is provided at the end.

1.1 Motivation

The recent financial crisis around the world, the globallization of financial markets,

deregulation and the increasing complexity of financial products, have raised the im-

portance of effective financial portfolio optimization and risk management techniques.

The recent changes in the financial and banking industry has resulted in significant

adjustment in the risk profile of both financial and non-financial institutions. The im-

portant role of these institutions in both economic growth and financial stability has

made financial portfolio optimization and risk management more important than ever.

Consequently, in this thesis we are going to study various stochastic programming meth-

ods and models, focusing on numerical, as well as the underlying theories with specific

applications in financial portfolio optimization and risk management.

1.2 Financial Portfolio Optimization and Risk Manage-

ment

The problem of optimizing a portfolio of finitely many assets is a classical problem in

theoretical and computational finance. Since the pioneering work of Markowitz [98] it is

agreed that portfolio performance should be measured in two distinct dimensions: the

1



2 Chapter 1 Introduction

expected rate of return (mean), and the risk which measures the uncertainty of the rate

of return.

Portfolio selection has always been the main problem in finance, due to uncertainty

about future returns. To choose amongst random variables, there are three main models

that can be used, these include mean-risk models, expected utility maximization, and

stochastic dominance models (for a detailed review see [118]).

Markowitz developed the mean-risk model for portfolio selection problems, where pref-

erences among return distributions are classified using a trade-off between mean and

risk [98, 99, 100].

Von Neumann and Morgenstern [141] introduced the expected utility concept to decision

theory. In expected utility theory, the expected utility as a single scalar value is attached

to each random variable. Preference is then defined by comparing expected utilities with

a larger value preferred.

The mean-risk model has been criticized by extensive studies both in theoretical and

empirical aspects. The main reason is that, there is only a limited set of circumstances

under which the mean-risk model applies. The first one, is the quadratic utility functions

assumption which implies that beyond some level of return, the investor’s marginal utility

for wealth becomes negative as their risk aversion increases with wealth. Secondly, it

requires the return distribution to belong to a certain class such as normal, lognormal,

exponential and uniform distributions (see, Bawa [8]). Fama [53], Breen and Savage

[25] have shown that the distribution of stock process changes is inconsistent with the

assumption of normal probability functions.

The above offers the motivation to search for alternative models. In this research we focus

on the stochastic dominance model which has a better theoretical basis as compared to

the other two models mentioned above. The stochastic dominance is a non-parametric

method, which does not model an explicit utility function, but takes into account all

possible forms of this function which conform to a set of restrictions. The stochastic

dominance notion accounts for the entire probability distribution and employs some

general condition for decision maker’s risk preferences.

In the stochastic dominance theory, the first order stochastic dominance was developed

by Quirk and Saposnik [111]. It requires only that the first derivative of the utility

function be positive throughout or monotone increasing; therefore, it allows for risk

preference, risk indifference, or risk aversion. Hadar and Russell in 1969 [68] tried to

find a set of rules to make predictions about the preferences possible; as a result, second

order stochastic dominance was brought into the field of economics. They eliminates

risk preference by adding the restriction that the second derivative of the utility function

be everywhere non-positive. Consequently, second order stochastic dominance adds

assumption of global risk aversion; thus utility is everywhere concave. Second order
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stochastic dominance is known as an important choice criterion in portfolio selection, as

it closely represents the model of risk-averse economic behavior. However, until recently

due to computational difficulties it has not been used as an alternative to other portfolio

construction models. This motivates us to focus on development of efficient numerical

methods for stochastic programming problems with second order stochastic dominance.

1.3 Stochastic Programming

Stochastic programming has been one of the main approaches for decision making prob-

lems in finance including portfolio optimization and risk management. Stochastic pro-

gramming is mathematical programming with random parameters. Initiated in the late

fifties by Dantzig and Madansky, stochastic programming provides a paradigm to in-

clude uncertainty into optimization-based decision models [26, 77]. It makes modeling

possible in case the parameters needed are random, i.e. the value could be from sets,

continuous or discrete. We still need to know what set it is and the corresponding be-

havior (probability distribution over this set). A big assumption of general stochastic

programming is that the probability distributions of random parameters are known.

In most cases, we can use historical data or do simulation with assumptions upon the

statistical parameters.

This research, studies various modeling techniques and numerical methods based on

stochastic programming that help seek optimal strategies in financial risk management.

1.4 Outline of the Thesis

In Chapter 2, we provide the literature review with regard to the portfolio optimization,

development of the stochastic dominance theory and optimization methodologies. In

Chapter 3, we consider a stochastic programming problem with second order stochastic

dominance constraints where the underlying functions could be linear and/or nonlinear.

We apply an exact penalization technique and move the constraints to the objective. We

propose a series of algorithms for solving the penalized problem including: the stochastic

approximation method and the level function methods. Moreover, we apply the model

to a portfolio optimization problem and report series of numerical tests and compare

the performance to the Markowitz model. Finally, we propose a nonlinear supply chain

problem and investigate the performance of the proposed algorithms. In Chapter 4,

we focus on a stochastic programming problem with multivariate stochastic dominance

constraints. The multivariate stochastic dominance refers to the stochastic ordering of

random vectors [40]. We discuss the Slater constraint qualification and propose an exact

penalization scheme for this type of problem. We solve the penalized problem with the

stochastic approximation method, the level function methods, a modified cutting plane
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method and compare their performance to the cutting surface algorithm proposed in

[70]. Moreover, we carry out some numerical tests and report the results. In Chapter

5, we consider a robust optimization of financial performance ratio with a focus on

one-sided variability measures such as Sortino-Satchell ratio [134]. We focus on robust

optimization of the problem based on the mixture distribution and the first order moment

approach followed with an exact penalization technique. Moreover, we carry out some

numerical test and report the results. In Chapter 6, we provide some conclusions and

discuss future research directions.



Chapter 2

Literature Review

2.1 Financial Optimization and Risk Management

Most significant financial problems involve decision making under uncertainty. One

example is the portfolio optimization problem. In this situation, the decision maker has

numerous plausible choices, wide outcome uncertainty, and large financial implications.

As discussed, there are three well established models for portfolio optimization: mean-

risk models, expected utility maximization and stochastic dominance. In this chapter we

provide the literature review of the optimization methods in finance including stochastic

dominance and related risk measures followed by a review of stochastic optimization

techniques, as well as robust optimization methods.

2.1.1 Expected utility maximization in decision theory

The concept of comparing random variables using their expected utilities dates back

to 1738 [13]. However, it was only in the last century and in an economic context,

that expected utility theory was extensively used. Most significantly, Von Neumann

and Morgenstern [141] introduced the expected utility concept to decision theory. In

expected utility theory, the expected utility as a single scalar value is attached to each

random variable. Preference is then defined by comparing expected utilities with a larger

value preferred.

Expected utility theory provides basis for extending a utility function defined on real

numbers (outcomes) to a utility function defined on random variable. A utility value is

assigned to each random variable in terms of the utility values of its outcomes and the

probabilities associated with these outcomes: Given a utility function U , the expected

5
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utility of a random variable f(x, ξ) is:

E[U(f(x, ξ))] =

∫ ∞

−∞
U(f(x, α))dF (α),

where F is the distribution function of f(x, ξ). Additionally, if the distribution is of a

discrete nature and the random variable ξ has the outcomes ξ1, . . . , ξm with probabilities

p1, . . . , pm, the expected utility of f(x, ξ) is defined as:

E[U(f(x, ξ))] = p1U(f(x, ξ1)) + · · · + pmU(f(x, ξm)).

The main shortfall of a utility function is the assumption that they reflect the behavior

of investors. The first assumption states that all the investors are rational (prefer more

wealth), therefore the utility function is assumed to be nondecreasing. The second

assumption is that the investors are risk averse which means that, as wealth increases,

each additional growth is less valuable than the previous one. There are two attitudes

categorized as risk neutral and risk seeking, which are not being considered [58, Chapter

2].

Once a utility function is constructed, one could find the efficient portfolios with respect

to utility criterion by solving the following optimization problem:

max E[U(f(x, ξ))]

s.t. x ∈ X,

where x ∈ X is a decision vector with X being a nonempty convex subset of Rn.

Overall, The expected utility maximization requires the specification of the utility func-

tion, which is a subjective task; for example, consider two utility functions belonging to

the same class (nondecreasing and concave), the maximization problem could lead to a

different ranking of random variables.

While it is not easy to find out the precise utility function for each investor, we can

order utilities of portfolios by preference instead. Stochastic dominance manages to

rank portfolios consistent with general utility functions. In Chapter 3 and 4, we will

show how stochastic dominance can be used to control and manage market risk so as to

construct an optimal portfolio strategy.

2.1.2 The mean-risk model

Mean-risk models were developed in early fifties for the portfolio selection problem.

Under mean-risk models, two scalars are attached to each random variable: the expected

return and the associated risk measure. Preference is then defined using a trade-off

between the mean where a larger value is desirable and the risk where a smaller value

is desirable.
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Consider two portfolios with returns f(x, ξ) and f(y, ξ) and risks measures indicated

by ρ(f(x, ξ)) where x is the vector containing the proportion of wealth invested in each

asset and ξ is the random return of each asset. The random variable f(x, ξ) is efficient if

and only if there is no other portfolio, such as f(y, ξ) that has higher expected return as

well as lower risk. If the mentioned condition is met then f(x, ξ) is an efficient portfolio.

Therefore, an efficient portfolio has the lowest level of risk for a given return. The

efficient portfolios are obtained by solving optimization problems; the most common

formulation is to set a minimum target on the portfolios return while minimizing the

risk [78]:

min ρ(f(x, ξ))

s.t. E[f(x, ξ)] ≥ Rb,

x ∈ X,

where x ∈ X is a decision vector with X being a nonempty convex subset of Rn and Rb

represent the benchmark of expected return of the portfolio set by the investor. Solving

the above for different values of Rb would eventually give us a set of minimum risk

portfolios (efficient portfolios) for each value of Rb.

An alternative formulation of the above problem is the one which explicitly trades risk

against the return in the objective function:

max E[f(x, ξ)]− λρ(f(x, ξ))

s.t. λ ≥ 0,

x ∈ X.

Repeatedly solving the above and varying the trade-off coefficient λ would result in

portfolios constructing the efficient frontier.

Mean-risk models are convenient from a computational point of view. However, depend-

ing on the risk measure used, they may lack a rational and theoretical basis for making

a choice. Moreover, they use only two statistics to characterize a distribution, and thus

may ignore important information. One approach is to construct mean-risk models that

are consistent with expected utility maximization / stochastic dominance; this has been

the research subject of several recent papers [104, 105, 106, 148] .

Markowitz [98] proposed variance as a risk measures. Variance, as one of the key statis-

tical parameters, has been used to measure market risk in mean-risk model. Its appli-

cation, however, has several drawbacks. A straightforward explanation is that variance

considers extremely high and extremely low returns equally undesirable. Besides down-

side risk, variance also takes upside variability as risk. The analysis of pros and cons of

variance can be found in [99, Chapter 9]. From the risk measures perspective, variance

is not coherent. We will give the definition of coherent risk measure with examples of

such measures in the next section.
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2.1.3 Coherent risk measures

2.1.3.1 Coherent risk measures characteristics

Many people think of the risk inherent in a financial random variable as tied entirely

to the uncertainty (inconstancy) in that variable. Risk measures, most notably the

coherent measures of risk were introduced by Artzner et al. [5, 6]. They defined a

coherent measure of risk as follows:

Definition 2.1. A risk measure ρ(ξ), where ξ ∈ Ω is a random variable (future value

of a portfolio) defined on probability space (Ω,F , P ), is called coherent if it satisfies the

following conditions:

1. Translation invariance: for all ξ ∈ Ω, and all real numbers α, we have ρ(ξ + α) =

ρ(ξ)− α;

2. Subadditivity: for all ξ1 and ξ2 ∈ Ω, ρ(ξ1 + ξ2) ≤ ρ(ξ1) + ρ(ξ2).

3. Positive homogeneity: for all λ ≥ 0 and all ξ ∈ Ω, ρ(λξ) = λρ(ξ).

4. Monotonicity: for all ξ1 and ξ2 ∈ Ω, with ξ1 ≤ ξ2, we have ρ(ξ2) ≤ ρ(ξ1).

Translation invariance implies that by adding an amount α to the portfolio, the risk will

be reduced by α because the future value of the portfolio will increase by α. Subadditiv-

ity demonstrates the diversification of the portfolio. Positive homogeneity holds, because

multiplying the same position cannot lead to diversification. Monotonicity is natural.

Ruszczyński and Shapiro [122] exploited representation of coherence using convex anal-

ysis from a topology perspective, they generalize the dual theorem given in Artzner et

al. [6], Cheridito et al. [28], Delbaen [34], Füllmer and Schied [59] and Rockafellar et al.

[116].

Several risk measures have been proved to be coherent, including Value at Risk (VaR)

and Conditional Value at Risk (CVaR). In the following parts, we will discuss VaR and

CVaR which have been attracting significant attention from the financial industry.

2.1.3.2 Value at Risk and Conditional Value at Risk

Value at risk [2, 83, 85, 115, 140] is the best known tail risk measure as it only takes

into account the left tail of distributions, which corresponds to the largest losses. it

describes the maximum loss with a specified confidence level. Value at Risk has been

accepted and used in a lot of financial institutions. Let f(x, ξ) denote the measure of

performance (or the loss), where x ∈ X is a decision vector with X being a subset of

R
n, and ξ ∈ R

m is a random vector. For each x, the loss f(x, ξ) is a random variable



Chapter 2 Literature Review 9

having a distribution R induced by that of ξ. Let p(ξ) denote the probability density of

ξ. The probability of f(x, ξ) not exceeding a threshold α is then given by

Φ(x, α) =

∫

f(x,ξ)≤α
p(ξ)dξ.

As a function of α for fixed x, Φ(x, α) is the cumulative distribution function for the loss

associated with x. It completely determines the behavior of this random variable and is

fundamental in defining VaR and CVaR. In general, it is nondecreasing with respect to

α.

The β-VaR for the loss random variable associated with x and specified probability level

β ∈ (0, 1), is defined as:

αβ(x) = min {α ∈ R : Φ(x, α) ≥ β} .

It can be seen that, αβ(x) comes out as the left endpoint of the nonempty interval

consisting of the values α such that Φ(x, α) = β. This follows from Φ(x, α) being

continuous and nondecreasing with respect to α. In short, β-VaR gives the lowest

amount of loss α that will not be exceeded with probability β, i.e.

Φ(x, αβ(x)) ≥ β. (2.1.1)

Similarly, β-CVaR is defined as:

φβ(x) = (1− β)−1

∫

f(x,ξ)≥αβ(x)
f(x, ξ)p(ξ)dξ.

The β-CVaR is the conditional expectation of the loss associated with x relative to that

loss being αβ(x) or greater. It can be seen that the probability that f(x, ξ) ≥ αβ(x) is

equal to 1− β.

VaR and CVaR have been widely applied in portfolio selection problems. The theory of

probabilistic functions and percentiles was introduced in [140]. The problem with CVaR

constraints was translated to L-shape and solved efficiently in [85]. A decomposition

framework handling CVaR objectives and constraints in two-stage stochastic models

was discussed in [52].

Although VaR is widely used, but there are some disadvantages about its properties.

The main problem with VaR is that, it actually is not coherent because the subadditivity

condition is not satisfied. This implies that the VaR of a portfolio with two assets may be

greater than the sum of individual VaRs of the two assets, i.e. αβ(x+y) ≥ αβ(x)+αβ(y),

for more detail see [6]. On the other hand, CVaR is a coherent measure of risk, and has

better properties compared to VaR.
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It is difficult to handle CVaR because of the VaR function αβ(x) involved in the defini-

tion, unless we have an analytical representation for VaR. Rockafellar and Uryasev [115]

characterized φβ(x) in temrs of the function Fβ defined by

Fβ(x, α) = α+ (1− β)−1

∫

f(x,ξ)≥α
[f(x, ξ)− α]+p(ξ)dξ,

where [f(x, ξ) − α]+ = max(f(x, ξ) − α, 0). The Fβ(x, α) is convex and continuously

differentiable with respect to α. The β-CVaR of loss associated with any x ∈ X can be

determined from the formula

φβ(x) = min
α∈R

Fβ(x, α).

Consequently

min
x∈X

φβ(x) = min
(α,x)∈X×R

Fβ(x, α),

where a pair (x∗, α∗) achieves the right-hand side minimum if and only if x∗ achieves

the first minimum and α∗ is the corresponding VaR. This is proved in [115, Theorem 1].

Dentcheva and Ruszczyński [38] showed that there is a fundamental relationship between

the concept of CVaR and the second order stochastic dominance constraints. Specifically,

they showed that second order stochastic dominance can be interpreted as a series of

CVaR constraints for various threshold values. In the next section we will define and

discuss the stochastic dominance and relation of VaR and CVaR to the second order

stochastic dominance.

2.2 Stochastic Dominance

Stochastic dominance is based on an axiomatic model of risk-averse preferences [56]. It

originated in the majorization theory [69] for the discrete case and was later extended

to general distributions [67, 119]. Since then it has been widely used in economics

and finance (see [90] for numerous references); Quirk and Saposnik [111] considered the

first order stochastic dominance relation and demonstrated the connection to utility

functions. Second order stochastic dominance was brought to economics by Hardar

and Russel [68] and third order stochastic dominance by Whitmore [144]. A detailed

discussion is given in [84].

The main difference of stochastic dominance to other portfolio selection models is that it

takes into account the entire distribution of a random variables. Furthermore, it is linked

to the expected utility theory [141]. However, it does not require explicitly specifying a

utility function [111].
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Figure 2.2.1: Fist order stochastic dominance [75, Chapter 9].

With stochastic dominance relations, the random variables are ranked under assump-

tions about general characteristics of utility functions that follow from prevalent modes

of economic behavior. Stochastic dominance ensures that all individuals, whose utility

functions are in the same class, rank choices in the same way.

2.2.1 Definition of stochastic dominance

In the stochastic dominance approach random variables are compared by pointwise com-

parison of some performance functions constructed from their distribution functions. Let

F1(f(x, ξ); p) and F1(f(y, ξ); p) denote the cumulative distribution function of f(x, ξ)

and f(y, ξ), respectively. It is said that f(x, ξ) stochastically dominate f(y, ξ) in the

first order, denoted by f(x, ξ) �(1) f(y, ξ), if

F1(f(x, ξ); η) ≤ F1(f(y, ξ); η), ∀η ∈ R.

This is illustrated in Figure 2.2.1.

Similarly, f(x, ξ) stochastically dominates f(y, ξ) in the second order (Figure 2.2.2),

denoted by f(x, ξ) �(2) f(y, ξ), if

F2(f(x, ξ); η) ≤ F2(f(y, ξ); η), ∀η ∈ R,

where

F2(f(x, ξ); η) :=

∫ η

−∞
F1(f(x, ξ);α)dα,

see Hardar and Russell [68] and Rothschild and Stiglitz [119]. The function F2(f(x, ξ); η)

can be expressed as the expected shortfall [104]: for each target value η we have

F2(f(x, ξ); η) = E[(η − f(x, ξ))+], (2.2.2)

where (η − f(x, ξ))+ = max(η − f(x, ξ), 0). The function F2(f(x, ξ); ·) is continuous,

convex, nonnegative, and nondecreasing. It is well defined for all random variables

f(x, ξ) with finite expected value. Due to this representation, the second order stochastic
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Figure 2.2.2: Second order stochastic dominance [75, Chapter 9].

dominance relation can be equivalently characterized by the following infinite system of

inequalities:

E[(η − f(x, ξ))+] ≤ E[(η − f(y, ξ))+], ∀η ∈ R. (2.2.3)

Stochastic dominance relations are of crucial importance for decision theory. It is known

that f(x, ξ) �(1) f(y, ξ) if and only if

E[U(f(x, ξ))] ≥ E[U(f(y, ξ))], (2.2.4)

for any nondecreasing function U(·) for which these expected values are finite. Further-

more, f(x, ξ) �(2) f(y, ξ) if and only if (2.2.4) holds true for every nondecreasing and

concave U(·) for which these expected values are finite [101].

A survey of stochastic dominance and utility theory can be found in [90]. The proof of

consistency of the stochastic dominance with utility theory and further analysis in this

topic can be found in [67, 139].

Unfortunately, application of second order stochastic dominance as a criteria of choice

proves to be difficult. Generally, comparing two random variables with respect to second

order stochastic dominance involves an infinite number of comparisons. Some models

that use second order stochastic dominance have been proposed in the literature.

Dentcheva and Ruszczyński [36] showed that the second order stochastic dominance

can be incorporated in the form of a set of linearized constraints. They proved that

the second order stochastic dominance constraints construct a convex and closed set.

Additionally, the optimality and duality conditions were also discussed in this paper.

An alternative approach to mean-risk portfolio models was provided by using stochastic

dominance. Moreover, it was shown that the Lagrange multiplier associated with the

dominance constraint can be identified with a certain concave and nondecreasing utility
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function. An application to static portfolio selection with a utility function constructed

based on the methodology of Lagrange can be found in [38].

Optimization problems involving nonlinear stochastic dominance constraints, where

stochastic dominance is used to compare nonlinear functions of random factors, were

considered in [37]. Their newly developed optimality and duality theory for this special

class of problems also allows the creation of a decomposition approach to the problem,

which they illustrated with a portfolio example.

Roman et al. [117] proposed a multi-objective portfolio selection model with second

order stochastic dominance constraints to track or outperform a reference point, while

Fábián et al. [52] developed an efficient method to solve this model based on a cutting

plane scheme.

The application of stochastic dominance in energy planning and decision problems, where

the decision variables are integer has been discussed in [63, 64, 62] in the form of a mixed

integer problem, including both first order and second order stochastic dominances.

Stability and structural properties of the integer problems with dominance constraints

were analysed in these papers. The authors applied a branch and bound decomposition

algorithm to solve the problems.

In a more recent development, Dentcheva and Ruszczyński [40] introduced the concept

of positive linear multivariate stochastic dominance and obtained necessary conditions of

optimality for non-convex problems. Furthermore, Homem-de-Mello et al. [70] proposed

a sample average cutting-surface algorithm for optimization problems with multidimen-

sional polyhedral second-order stochastic dominance constraints. More recently, Hu et

al. [72] proposed a new concept of stochastically weighted dominance, in which they

treat the vector of weights as a random vector. They showed that such an approach is

much less restrictive than the deterministic weighted approach.

2.2.2 Relation of VaR and CVaR to stochastic dominance

We first need to discuss the inverse stochastic dominance relation, which compares the

Lorenz curves of two random variables and it is referred to as Lorenz dominance. For a

random variable f(x, ξ), we define the left-continuous inverse of the cumulative distri-

bution function F1(f(x, ξ); ·) as follows:

F(−1)(f(x, ξ); p) = inf {η : F1(f(x, ξ); η) ≥ p} , for 0 < p < 1.

Consequently, first order stochastic dominance can be characterized equivalently as:

F(−1)(f(x, ξ); p) ≥ F(−1)(f(y, ξ); p) ∀p ∈ (0, 1). (2.2.5)
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Figure 2.2.3: First order stochastic dominance : in the inverse form [75, Chapter 9].

This is shown in Figure 2.2.3. The first order stochastic dominance constraint can be

interpreted as a continuum of chance constraints in stochastic optimization (see, [129]).

Similarly, we can characterized the second order stochastic dominance by using the

Lorenz function as follows:

F(−2)(f(x, ξ); p) ≥ F(−2)(f(y, ξ); p) ∀p ∈ [0, 1], (2.2.6)

where

F(−2)(f(x, ξ); p) :=

∫ p

0
F(−1)(f(x, ξ);α)dα.

This is well known from the work by Orgyczak and Ruszczyński [106]. The second order

relation is illustrated in Figure 2.2.4.

Dentcheva and Ruszczyński, showed that the infinite set of inequalities (2.2.5) and (2.2.6)

have relations to the concepts of VaR and CVaR, which are fundamental characteristics

of portfolio return. The VaR constraint can be formulated as follows. Let L(x, ξ) =

−f(x, ξ). Let ωp denote the maximum fraction of initial capital allowed for risk exposure

at risk level p ∈ (0, 1). We require that

P[L(x, ξ) ≤ ωp] ≥ 1− p.
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Figure 2.2.4: Second order stochastic dominance: in the inverse form [75, Chapter
9].

Denote the left (1 − p) quantile of the random variable L(x, ξ) by VaRp(L(x, ξ)), then

we can formulate VaR constraint as

VaRp(L(x, ξ)) ≤ ωp.

Consequently, it can be seen that the first order stochastic dominance relation (2.2.5) is

equivalent to the continuum of VaR constraints [75, Chapter 9]. Portfolio x dominates

another portfolio y in the first order, if

VaRp(L(x, ξ)) ≤ VaRp(L(y, ξ)), ∀p ∈ (0, 1).

Furthermore, the CVaR at level p for continuous distribution is given by

CVaRp(L(x, ξ)) = E[L(x, ξ)|L(x, ξ) ≥ VaRp(L(x, ξ))].

Rockafellar and Uryasev [115] used extremal properties of quantiles to equivalently rep-

resented CVaRp as

CVaRp(L(x, ξ)) = inf
η

{

1

p
E[η − f(x, ξ))+]− η

}

.

Notice that

CVaRp(L(x, ξ)) = −
1

p
F(−2)(f(x, ξ), p), (2.2.7)
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using (2.2.7) and (2.2.6), it can be seen that the second order stochastic dominance is

equivalent to the continuum of CVaR constraints:

CVaRp(L(x, ξ)) ≤ CVaRp(L(x, ξ)), ∀p ∈ (0, 1]. (2.2.8)

2.3 Financial Performance Ratio

There are two basic approaches to the problem of portfolio selection under uncertainty.

One of them as discussed, is the stochastic dominance approach. The other is the

reward-risk analysis in which the portfolio choice is made with respect to the expected

portfolio return and the associated risk. A portfolio with higher return and lower risk

is preferred.

Related to reward-risk analysis is the reward-risk ratio optimization. Since the publi-

cation of the well-known Sharpe Ratio [132] which is based on mean-variance analysis,

other performance ratios like STARR ratio, Minimax measure, Sortino ratio, Farinelli-

Tibiletti ratio and most recently, Rachev ratio and the Generalized Rachev ratio have

been proposed. For detailed discussion and comparison see Biglova et. al. [22], Rachev

et. al. [124], and references therein. These new measures take into account the phe-

nomena that the assets returns distributions are fat-tailed and skewed, by incorporation

proper reward and risk measures.

2.3.1 Sharpe ratio

The well-known Sharpe ratio [132] of a portfolio with return µ(x, ξ) and a benchmark

Y (ξ) can be calculated as:

ΦSharpe(µ(x, ξ), Y (ξ) =
E[µ(x, ξ)− Y (ξ)]

σ(µ(x, ξ)− Y (ξ))
,

where σ denotes the standard deviation. Sharpe ratio quantifies reward and risk through

two-sided type measures, consequently positive and negative deviations from the bench-

mark are weighted in the same manner. Although that may be correct in some cir-

cumstances, such as if we are aiming at capturing the “stability” around a “central

tendency”, that could be misleading if we are interested in keeping under control the

over performance and/or the under performance. This drawback could get worse if we

deal with skewed and fat tailed returns. In fact, evidence shows that investors do not

share a unilateral risk aversion in rewarding and losing. A way of separately measuring

reward and loss is the use of one-sided type parameter-dependent measures; that is the

case of Sortino, Farinelli-Tibiletti and Rachev ratios.
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2.3.2 Sortino ratio

Sortino ratio is a measure developed by F. A. Sortino to differentiate between good

and bad volatility in the Sharpe ratio. This differentiation of upwards and downwards

volatility allows the calculation to provide a risk-adjusted measure of a security or fund’s

performance without penalizing it for upward price changes. Let µ(x, ξ) be the portfolio

return, then the Sortino ratio is calculated as follows:

ΦSS(µ(x, ξ), Y (ξ)) =
E[µ(x, ξ), Y (ξ)]

E[((Y (ξ)− µ(x, ξ))+)q]1/q
,

where Y (ξ) is the benchmark, q > 0 and denote the left orders of the performance ratio.

The Sortino ratio is similar to the Sharpe ratio, except it uses downside deviation for

the denominator instead of standard deviation, the use of which does not discriminate

between up and down volatility.

2.4 Stochastic Programming

Stochastic programming is the study of procedures for decision making under uncertainty

over time. The uncertainty can be in the models parameters or in the model itself.

Parameters may be uncertain because of lack of reliable data, future and unobservable

events. The uncertainty of events, details of the problem structures and constraints

and the risky payoff of decisions are modeled in an optimization framework. High

performance PCs are used to enable exact and approximate algorithms to determine

robust decisions that hedge against future uncertainty.

Stochastic programming provides a general purpose-modeling framework, which captures

the real-world features such as turnover constraints, transaction costs, risk aversion,

limits on groups of assets and other consideration. Stochastic programming models have

been proposed and studied since late 1950s by Dantzing [32, 31], Beale [9], Charnes and

Cooper [27] and others. They proposed a stochastic view to replace the deterministic

one, where the unknown coefficients or parameters are random with assumed probability

distribution that is independent of the decision variables. Stochastic program can be

presented as:

min
x∈X

{f(x) := E[F (x, ξ)]},

where ξ is a random variable vector having probability distribution P and X is a finite

set. F (x, ξ) is a real valued function of two (vector) variables x and ξ, and

E[F (x, ξ)] =

∫

F (x, ξ)P (dξ),
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is the corresponding expected value. We assume that the expected value function f(x)

is well defined.

The main issue in stochastic programming besides modeling comes from the solution

techniques. The main challenge in solving stochastic programming is the size of the

model. It can easily grow with the increase of time horizons and the set of random pa-

rameters values. There are methods and algorithms, like Monte Carlo sampling methods

[127] for solving large scale problems and stochastic approximation (SA) method which

can be traced back to the pioneering work of Robbins and Monro [112].

2.4.1 Sample average approximation methods

For numerical problems in a large number of dimensions, sample average approximation

methods, also known as Monte Carlo methods are often more efficient than conventional

numerical methods. However, implementation of the Monte Carlo method requires sam-

pling from high dimensional probability distributions and this may be very difficult and

expensive in analysis and computer time.

Suppose that we can generate a sample of N replications of the random vector ξ. In

the Monte Carlo sampling method this is accomplished by generating a random se-

quence U1, U2, . . . of numbers independent of each other and uniformly distributed on

the interval [0, 1], and then constructing a sample of ξ by an appropriate transforma-

tion. We can consider the sequence ω :=
{

U1, U2, . . .
}

as an element of the probability

space equipped with the corresponding (product) probability measure, and the sample

ξi = ξi(ω), i = 1, 2, . . . as a function of ω. Further, we could view the generated sample

ξ1, ξ2, . . . as a sequence of random vectors, each having the same probability distribution

as ξ. If the generated random vectors are (stochastically) independent of each other,

we say that the sample is independent identically distributed. By ξ1, ξ2, . . . we denote

a particular realization of the considered random sample. With the generated sample

ξ1, . . . , ξN we associate the sample average function

f̂N(x) :=
1

N

N
∑

i=1

F (x, ξi). (2.4.9)

Since each ξi has the same probability distribution as ξ , we have that for any x ∈ X,

E[F (x, ξi)] = f(x), (2.4.10)

and hence

E[f̂N(x)] = f(x). (2.4.11)

That is, f̂N(x) is an unbiased estimator of f(x). Moreover, the Law of Large Numbers

(LLN) can be applied with the implication that f̂N (x) converges to f(x) w.p.1. uniformly
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as N → ∞ [121, Proposition 19]. Therefore we can say that f̂N(x) is a consistent

estimator of (x). This certainly holds true if the sample is independent identically

distributed.

Note that the Monte Carlo method is not an algorithm, the obtained problem still

has to be solved by an appropriate numerical procedure. Recent theoretical studies

[82, 121, 131] and numerical experiments (see [92, 97]) show that the Monte Carlo

method coupled with a good (deterministic) algorithm could be reasonably efficient for

solving certain classes of stochastic programming problems.

2.4.2 Stochastic approximation methods

It is quite often that an optimization problem can be reduced to finding zeros (roots) of

an unknown function f(·), which can be observed but the observation may be corrupted

by error. This is in short the topic of stochastic approximation (SA). The error source

may be observation noise, but may also come from structural inaccuracy of the observed

function.

The SA method can be traced back to the pioneering work of Robbins and Monro [112]

and Keifer and Wolfowitz [79]. They introduced the basic recursive algorithm for finding

roots of an unknown function on the basis of noisy observations.

The Robbins-Monro algorithm and the Kiefer-Wolfowitz algorithm are the two most

commonly used algorithms for unconstrained stochastic optimization. They differ in

how they estimate the gradient of the objective function. The Robbins-Monro algo-

rithm estimates the gradient directly, whereas the Kiefer-Wolfowitz algorithm uses finite

differences to estimate the gradient.

Since then the SA algorithm has become widely used in stochastic optimization (see,

[7, 47, 48, 49, 51, 86, 50], and references therein). This is due to the large number

of applications and the interesting theoretical issues in the analysis of “dynamically

defined” stochastic processes. The basic idea is a stochastic difference equation such as

θn+1 = θn + ǫnYn, where θn takes its value in some Euclidean space, Yn is a random

variable, and the “step size” ǫn > 0 is small and goes to zero as n→ ∞. In its simplest

form, θ is a parameter of a system and the random vector Yn is a function of noisy

observations taken on the system when the parameter is set to θn. One recursively

adjusts the parameters so that some goal is met asymptotically.

2.5 Robust Optimization

Today, stochastic programming has established itself as a powerful modeling tool when

an accurate probabilistic description of the randomness is available; however, in many
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real-life applications the decision-maker does not have this information, for instance

when it comes to estimating financial stock returns. The need for an alternative, non-

probabilistic, theory of decision-making under uncertainty has become pressing in recent

years because of volatile market conditions and unstable economical states, which reduce

the amount of reliable information available and make it obsolete more quickly.

Traditional models of decision making under uncertainty assume perfect information,

i.e. accurate values for the system parameters and specific probability distributions for

the random variables. However, such information is rarely available in practice. Soyster

addressed this issue in his work [135] in the early 1970s, where every uncertain param-

eter in convex programming problems was taken equal to its worst-case value within a

set. While this achieved the desired effect of immunizing the problem against parame-

ter uncertainty, it was widely considered too conservative for practical implementation.

Ben-Tal and Nemirovski [10, 11, 12] and El-Ghaoui and Lebret [45, 46] addressed the

issue of over conservatism by restricting the uncertain parameters to belong to ellip-

soidal uncertainty sets, which removes the most unlikely outcomes from consideration

and yields tractable mathematical programming problems. A drawback of this method

is that it increases the complexity of the problem considered, e.g., the robust counter-

part of a linear programming problem is a second-order cone problem. More recently,

Bertsimas and Sim [20, 21] and Bertsimas et. al. [17] have proposed a robust opti-

mization approach based on polyhedral uncertainty sets, which preserves the class of

problems under analysis, e.g., the robust counterpart of a linear programming problem

remains a linear programming problem, and thus has advantages in terms of tractability

in large-scale settings. It can also be connected to the decision maker’s attitude towards

uncertainty, providing guidelines to construct the uncertainty set from the historical

realizations of the random variables using data-driven optimization [15].

2.5.1 Problem of moments

Given historical data, it is easier to estimate moment information of random parame-

ters than to derive their probability distributions. This motivates the use of moment

information in developing uncertainty models for random parameters. The problem of

moments and its variations have been extensively studied and applied to many opti-

mization problems in the literature.

The problem of moment has been studied by Stieltjes [136] in the ninetheenth cen-

tury. The problem is related to the characterization of a feasible sequence of moments.

Schmudgen [126], Putinar [110], and Curto and Fialkow [30] derived necessary and suffi-

cient conditions sequences of moments with different settings. The problem of moments

is also related to optimization over polynomials (the dual theory of moment). Lasserre

[87] and Parrilo [107] among others proposed relaxation hierarchies for optimization over

polynomials using moment results.
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Bertsimas and Popescu [19] further studied the optimal inequalities given moment in-

formation. Moment problems in finance such as option pricing problems have been

investigated in the literature (see [18, 94, 23]).





Chapter 3

Stochastic Programs with Second

Order Stochastic Dominance

Constraints

3.1 Overview

Inspired by the successful applications of the stochastic optimization with second order

stochastic dominance (SSD) model in portfolio optimization, we study new numerical

methods for a general SSD model where the underlying functions are not necessarily

linear. Specifically, we penalize the SSD constraints to the objective and then apply

the well known stochastic approximation (SA) method and the level function methods

to solve the penalized problem. Both methods are iterative: the former requires the

calculation of only one approximate subgradient per iteration and can be applied to the

case when the underlying functions are highly nonlinear and/or non-smooth, and the

distribution of the random variable may be unknown.

The main contribution of this chapter can be summarized as follows:

• We exploit a recently developed exact penalization scheme for stochastic program-

ming models with SSD constraints and apply the stochastic approximation method

and the level function methods to solve the penalized problem.

• We apply the penalization scheme and the numerical methods to some portfolio

problems where the underlying return functions are not necessarily linear and

present some test results. Moreover, we use real world test data to set up both

backtest and out-of-sample test for investigating the performance of the portfolio

based on the SSD model in comparison with the Markowitz model. Furthermore,

a nonlinear supply chain problem is introduced, and the performance of the level

23
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function methods along with the cutting plane method discussed in [81, 52] is

investigated.

Throughout this chapter, we use the following notation. Let xT y denotes the scalar

products of two vectors x and y, and let ‖ · ‖ denotes the Euclidean norm. For a real

valued smooth function h(x), we use ∇h(x) to denote the gradient of h at x. Let “conv”

denotes the convex hull of a set.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the opti-

mization problem and discuss preliminaries needed throughout the chapter. In Section

3.3 we discuss the stochastic quasi-gradient algorithm and the level function algorithms

and analyze the convergence of optimal solutions. In Section 3.4, we apply the proposed

methods to portfolio optimization problems, a supply chain problem and report some

numerical test results. Finally, in Section 3.5 we present some conclusions.

3.2 Stochastic Optimization Problem with SSD Constraints

3.2.1 Introduction

The notion of stochastic dominance as a constraint for optimization problems was in-

troduced by Dentcheva and Ruszczyński [36]. The concept of stochastic dominance

is fundamental when comparing two random variables, it allows one to define prefer-

ence among random variables. This concept has been playing an important role in

portfolio optimization. Let g(x, ξ) be a concave function, with decision vector x and

random variable ξ. Let F (g(x, ξ); η) denote the cumulative distribution function of

g(x, ξ). We say that g(x, ξ) stochastically dominates g(y, ξ) in the first order, denoted

by g(x, ξ) �(1) g(y, ξ), if

F (g(x, ξ); η) ≤ F (g(y, ξ); η), ∀η ∈ R.

Similarly, g(x, ξ) stochastically dominates g(y, ξ) in the second order, denoted by g(x, ξ) �(2)

g(y, ξ), if
∫ η

−∞
F (g(x, ξ);α)dα ≤

∫ η

−∞
F (g(y, ξ);α)dα, ∀η ∈ R.

Consider the following optimization problem with second order stochastic dominance

constraints:
max
x

E[f(x, ξ)]

s.t. g(x, ξ) �(2) g(y, ξ),

x ∈ X ,

(3.2.1)

where f : Rn × R
k → R, g : Rn × R

k → R, are concave continuous functions both in x

and ξ, x ∈ X is a decision vector with X being a nonempty convex subset of Rn, y ∈ X
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is a predefined vector, and ξ : Ω → Ξ ⊂ R
k is a random vector defined on probability

space (Ω,F , P ) with support Ξ, E[·] denotes the expected value w.r.t. the probability

distribution of ξ.

Dentcheva and Ruszczyński analyzed several aspects of the stochastic dominance model

including optimality and duality [38, 39], as well as numerical methods [36]. Roman et al.

[117] proposed a multi-objective portfolio selection model with second order stochastic

dominance constraints, and Fábián et al. [52] developed an efficient method to solve

this model based on a cutting plane scheme.

It is well known [104, 145] that the second order stochastic dominance constraints in

(3.2.1) can be reformulated as

E[(η − g(x, ξ))+] 6 E[(η − g(y, ξ))+], ∀η ∈ R,

where (η− g(x, ξ))+ = max(η− g(x, ξ), 0). Consequently, problem (3.2.1) can be formu-

lated as a stochastic semi-infinite programming problem:

min
x

−E[f(x, ξ)]

s.t. G(x, η) := E[(η − g(x, ξ))+]− E[(η − g(y, ξ))+] 6 0, ∀η ∈ R,

x ∈ X .

(3.2.2)

To overcome serious technical difficulties associated with the dominance constraint, a

so-called relaxed form of the program is proposed:

min
x

−E[f(x, ξ)]

s.t. G(x, η) 6 0, ∀η ∈ [a, b],

x ∈ X ,

(3.2.3)

where [a, b] is a closed interval in R. Dentcheva and Ruszczyński [36] showed that, if

ξ has uniformly bounded distribution, problem (3.2.3) is equivalent to problem (3.2.2)

for some appropriate interval [a, b]. However, under general conditions, (3.2.3) is a

relaxation of (3.2.2) in the sense that (3.2.3) has a larger set of feasible solutions and

subsequently its optimal value gives a lower bound for the problem (3.2.2). Furthermore,

the relaxed problem (3.2.3) is more likely to satisfy the Slater condition which is closely

related to numerical stability.

3.2.2 Clarke’s subgradient and exact penalization method

The focus of this chapter is on numerical methods for solving the relaxed SSD problem

(3.2.3). There are three issues to deal with: (a) the expectation of random functions

in both the objective and constraints, (b) the infinite number of constraints, (c) the

non-smoothness resulting from the max functions.
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An exact penalization scheme for problem (3.2.3) is used to move the infinite number of

constraints to the objective. The penalty function method is well known [66] and has

recently been used by Liu and Xu [93] for (3.2.3). Specifically, we consider the following

problem:

min
x

ϕ(x, ρ) = −E[f(x, ξ)] + ρϑ(x)

s.t. x ∈ X ,
(3.2.4)

where ρ > 0 is a penalty parameter and

ϑ(x) := max
η∈[a,b]

P (x, η), (3.2.5)

where

P (x, η) := max(G(x, η), 0). (3.2.6)

Liu and Xu [93] established the equivalence between problem (3.2.2) and penalized prob-

lem (3.2.4) in the sense of optimal solutions under some moderate conditions. Penalty

methods for stochastic programs have also been discussed by Branda [24] and Dupačová

et al. [42].

Definition 3.1. Problem (3.2.3) is said to satisfy strong Slater condition, if there exists

a positive number µ such that for any feasible point x satisfying G(x, η) = 0 for some

η ∈ [a, b] there exists a point x∗ with G(x∗, η) < 0 for all η ∈ T and

‖x− x∗‖ ≤ µmin
η∈T

(−G(x∗, η)). (3.2.7)

Definition 3.2. Problem (3.2.3) is said to satisfy Slater condition, if there exists a

positive number δ̄ and a point x̄ ∈ X such that

max
η∈T

G(x, η) ≤ −δ̄.

Since X is a compact, the Slater condition implies the strong Slater condition and then

the positive number µ in Definition 3.1 can be estimated by

µ := sup
x∈X

‖x− x̄‖

min
η∈T

−G(x̄, η)
. (3.2.8)

See [65, Proposition 1 and 2] and [93] for details about the relationship.

Theorem 3.3. [93, Theorem 2.3] Assume that problem (3.2.3) satisfies the Slater con-

dition, that is, there exists a positive number δ and a point x̄ ∈ X such that

max
η∈T

G(x̄, η) < −δ. (3.2.9)

Assume also that X is a compact set, and f(·, ξ) and g(·, ξ) are locally Lipschitz continu-

ous w.r.t. x and their Lipschitz modulus are bounded by an integrable function κ(ξ) > 0.
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Then there exists a positive constant ρ̂ such that for any ρ > ρ̂, the set of optimal

solutions of the problems (3.2.2) and (3.2.4) coincide.

Proof. Let d(x,D) := infx′∈D ‖x− x′‖ denotes the distance from a point x to a set D.

Under the Slater condition, it follows by [93, Lemma 2.5] that there exists a constant

β > 0 such that

d(x,F) ≤ β ‖E[G(x, η)]+‖∞ , ∀x ∈ X , (3.2.10)

where F denotes the feasible set of problem (3.2.4). Let C denotes the Lipschitz modulus

of E[f(x, ξ)]. By [29, Proposition 2.4.3] for any ρ > βC, the two optimal solutions of

problems (3.2.2) and (3.2.4) coincide. Note that under the Slater condition assumption,

we can set C = E[κ(ξ)]. This shows the existence of a positive constant ρ̄ := βC. The

proof is complete.

In what follows, we focus on development of numerical methods for solving penalized

optimization problem (3.2.4).

Let v : Rn → R
m be a locally Lipschitz continuous function. Recall that Clarke gener-

alized derivative of v at point x in direction d is defined as

vo(x, d) := lim sup
y→x,t↓0

v(y + td)− v(y)

t
.

The function v is said to be Clarke regular at x if the usual one sided directional deriva-

tive, denoted by v′(x, d), exists for all d ∈ R
n and vo(x, d) = v′(x, d). The Clarke

generalized gradient (also known as Clarke subdifferential) is defined as

∂v(x) := {ζ : ζTd 6 vo(x, d)}.

see [29, Chapter 2].

Proposition 3.4. Let G(x, η) be defined as in (3.2.2). Assume that g(x, ξ) is contin-

uous w.r.t. x and ξ is Lipschitz continuous w.r.t. x with integrably bounded Lipschitz

modulus κ(ξ). Let T = [a, b]

P (x, η) := max(G(x, η), 0), (3.2.11)

and

ϑ(x) := max
η∈T

P (x, η). (3.2.12)

For any fixed x ∈ X , let T ∗(x) denotes the set of η̄ ∈ T such that P (x, η̄) = max
η∈T

P (x, η).

Then

∂xP (x, η) =











{0} , if G(x, η) < 0,

conv {0, ∂xG(x, η)} , if G(x, η) = 0,

∂xG(x, η), if G(x, η) > 0.

(3.2.13)
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Moreover, ϑ(x) is Lipschitz continuous with Lipschitz modulus E[κ(ξ)] and

∂ϑ(x) = conv







⋃

η∈T ∗(x)

∂xP (x, η)







. (3.2.14)

Proof. Since g(x, ξ) is concave, then G(x, η) is convex in x and hence it is Clarke regular,

see [29, Proposition 2.3.6]. By [29, Proposition 2.3.12],

∂x[G(x, η)]+ =











{0} , if G(x, η) < 0,

conv {0, ∂xG(x, η)} , if G(x, η) = 0,

∂xG(x, η), if G(x, η) > 0.

(3.2.15)

The verification of Lipschitzness of ϑ(x) is straightforward. Applying the Levin-Valadier

theorem (see [121, Section 2, Theorem 51]) to ϑ(x), we obtain (3.2.14).

Remark 3.5. Under the conditions of Theorem 3.3, problem (3.2.4) is a convex mini-

mization problem with the objective function ϕ(x, ρ) being Lipschitz continuous. The

optimality condition of the problem can be written as

0 ∈ −E[∇f(x, ξ)] + ρ∂ϑ(x) +NX (x), (3.2.16)

where NX (x) denotes the normal cone to X at point x in the sense of convex analy-

sis [114]. Let PX (x) = argminy∈X ‖x− y‖ denote the orthogonal projection of x on X .

Then the optimality condition (3.2.16) can be stated as follows: there exists w ∈ ∂ϑ(x)

such that

PX (x+ E[∇f(x, ξ)]− ρw) = x. (3.2.17)

We will use this in Section 3.3.

3.3 Solution Methods

In this section we are concerned with numerical methods for solving problem (3.2.4).

Specifically, we propose three methods: the stochastic approximation (SA) method and

the level function methods to solve problem (3.2.4).

3.3.1 Stochastic approximation algorithm

In this section we discuss the stochastic approximation method for solving the penalized

problem (3.2.4). One of the main reasons that we apply this method is that the objective

function of (3.2.4) is non-smooth.
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The stochastic approximation (SA) method can be traced back to the pioneering work

of Robbins and Monro [112]. Since then the SA algorithm has become widely used in

stochastic optimization (see, [7, 47, 48, 49, 51, 86, 50], and reference therein). In this

section, we focus on a stochastic quasi-gradient method (SQG) which generalizes the

SA method. The SQG method is a stochastic algorithmic procedure for solving general

constrained optimization problems with non-differentiable, non-convex functions. Poljak

[109] proposed techniques for investigating the local convergence of stochastic optimiza-

tion processes and proved some results concerning differentiable optimization. A formal

investigation of the asymptotic rate of convergence of SQG procedures was also carried

out by Poljak [109].

Let xk ∈ X be an approximate solution of (3.2.4). The SQG method calculates a quasi-

gradient, denoted by ζk, of ϕ(x, ρ) at xk such that

E[ζk/ {x0, . . . , xk}] ∈ −E[∇f(xk, ξ)] + ρ∂xϑ(xk) + νk, (3.3.18)

where νk is a controlled error, and by Proposition 3.4

∂xϑ(xk) = conv







⋃

η∈T ∗(xk)

∂xP (xk, η)







, (3.3.19)

where T ∗(xk) is the set of solutions to (3.2.12) for x = xk. In order to calculate an

element of ∂xϑ(xk), we need to find an η ∈ T ∗(xk). This amounts to solving optimization

problem (3.2.12) w.r.t. η. Note that P (x, η) := max(G(x, η), 0), and G(x, η) = E[(η −

g(x, ξ)+]−E[(η−g(y, ξ)+]. Obviously for a fixed x, G(x, η) is the difference of two convex

functions in η, which means P (x, η) is not a convex function in η. Homem-de-Mello et

al. [70] tackled this type of challenge with a branch and cut method: reformulating

the problem as a DC-programming problem and then solving it with branch and cut

algorithm. Here, we propose to approximate this subgradient through sampling. Let

ξ1, . . . , ξN be a sampling of ξ, and wki be a subgradient of ϑ(x) at xk. Then we may

choose

ζk =
1

N

N
∑

i=1

(

−∇f(xk, ξ
i) + ρwki

)

.

Let us explain how to calculate the wki . By [36, Proposition 3.2], we reformulate the

constraints

E[(η − g(x, ξ))+] 6 E[(η − g(y, ξ))+], ∀η ∈ [a, b],

as

E[(ηi − g(x, ξ))+] 6 E[(ηi − g(y, ξ))+], i = 1, . . . , N,

where ηi = g(x, ξi), i = 1, . . . , N . Assume that g(x, ξ) is bounded. Then we may choose

the interval [a, b] such that g(x, ξ) ∈ [a, b] for all x ∈ X , ξ ∈ Ξ, which means ηi ∈ [a, b],
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i = 1, . . . , N . Consequently we can reformulate problem (3.2.12) as follows:

max
ηi

1

N

N
∑

i=1

(ηi − g(xk, ξ
i))+ −

1

N

N
∑

i=1

(ηi − g(y, ξi))+. (3.3.20)

Based on the discussions above, we present a stochastic quasi-subgradient algorithm for

solving problem (3.2.4).

Algorithm 3.1 (Stochastic quasi-subgradient algorithm)

Step 1. Set a sequence of stepsizes {λk} satisfying

∞
∑

k=0

λ2k <∞,
∞
∑

k=0

λk = ∞, λk > 0. (3.3.21)

Choose an initial vector x0 ∈ X , set k = 0.

Step 2. At xk calculate an approximated subgradient of ϕ(x, ρ), denoted by ζk, that is

E[ζk/x0, . . . , xk] ∈ −E[∇f(xk, ξ)] + ρ∂xϑ(xk) + νk, (3.3.22)

where ∂xϑ(x) is as in Proposition 3.4 and νk is a controlled error satisfying

∞
∑

k=0

E[λk ‖νk‖+ λ2k ‖ζk‖
2] <∞. (3.3.23)

Step 3. Set

xk+1 := PX (xk − λkζk), (3.3.24)

where PX (x) is the orthogonal projection of x on X .

Step 4. If xk+1 = xk and νk = 0, stop. Otherwise, set k := k + 1, go to Step 2.

Let us make a comment on the stopping rule. In the case when xk+1 = PX (xk−λkζk) =

xk, we have

−λζk ∈ NX (xk),

and hence

− ζk ∈ NX (xk). (3.3.25)

Since νk = 0, then

0 ∈ −E[∇f(xk, ξ)] + ρ∂xϑ(xk) +NX (xk), (3.3.26)

which, by Remark 3.5, implies that xk is an optimal solution of (3.2.4).

Let us now consider the case that xk = xk0 for k ≥ k0 but νk 6= 0. By (3.3.25),

0 ∈ −E[∇f(xk, ξ)] + ρ∂xϑ(xk) + νk +NX (xk).



Chapter 3 Stochastic Programs with Second Order Stochastic Dominance

Constraints 31

Under (3.3.23), νk → 0 as k → ∞. By taking a limit on the equation above, we have

0 ∈ −E[∇f(xk0 , ξ)] + ρ∂xϑ(xk0) +NX (xk0),

which implies that xk0 satisfies the first order optimality condition and hence xk0 is an

optimal solution.

In what follows, we study the convergence of the general case.

Definition 3.6. Let ‖ · ‖ denotes the Euclidean norm. A random process {xk} valued

in R
n and adapted to the filtration Fk is called a random quasi-Feyer sequence w.r.t. a

set S ⊆ R
n, if E[‖x0‖] <∞, and for any s ∈ S,

E[‖xk+1 − s‖ /Fk] 6 ‖xk − s‖+ σk,

and

∞
∑

k=0

E[σk] <∞, σk > 0,

where σk is an error.

Lemma 3.7. [48, page 98] Let {xk} be a stochastic quasi-Feyer sequence w.r.t. Z. Then

the following assertions hold.

(i) The sequence
{

‖z − xk‖
2
}

converges w.p.1. for any z ∈ Z, and E[‖z − xk‖
2] <

C <∞ for some constant C.

(ii) The set of accumulation points of {xk} is not empty. Suppose that an accumulation

point of {xk} belongs to Z. Then {xk} has only one limiting point.

We are now ready to present our main results.

Theorem 3.8. Let {xk} be generated by the Algorithm 3.1 and let X ∗ denote the set

of optimal solutions of (3.2.4). Assume: (a) f(x, ξ) and g(x, ξ) are concave for almost

every ξ and continuous w.r.t. both x and ξ, (b) X is a convex compact set, (c) there

exists a constant C > 0 such that E[‖ζk‖
2 /Fk] 6 C, ζk satisfy (3.3.22), {λk}, and νk

satisfy conditions (3.3.21) and (3.3.23) w.p.1. Then there is a subsequence {xki} such

that {xki} → x∗ and ϕ(xki , ρ) → ϕ(x∗, ρ), where x∗ ∈ X ∗.

Proof. Let {xk} be generated by (3.3.24) and x∗ ∈ X ∗. By definition

‖x∗ − xk+1‖
2 = ‖x∗ − PX(xk − λkζk)‖

2

6 ‖x∗ − xk + λkζk‖
2

= ‖x∗ − xk‖
2 + 2λkζ

T
k (x

∗ − xk) + λ2k ‖ζk‖
2 .

(3.3.27)
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Let Fk = {x1, . . . , xk}. Taking the conditional expectation on both sides of the above

inequality w.r.t. Fk, we have

E[‖x∗ − xk+1‖
2 /Fk] 6 E[‖x∗ − xk‖

2] + 2λkE[ζk/Fk]
T (x∗ − xk) + λ2kE[‖ζk‖

2 /Fk].

Observe from (3.3.22) that E[ζk/Fk]− νk ∈ ∂xϕ(xk, ρ). By the convexity of ϕ(x, ρ), we

have

E[ζk/Fk]
T (x∗ − xk)− νTk (x

∗ − xk) 6 ϕ(x∗, ρ)− ϕ(xk, ρ). (3.3.28)

Using conditions (b) and (c) and taking into account that ϕ(x∗, ρ) − ϕ(xk, ρ) 6 0, we

obtain from the above two inequalities that

E[‖x∗ − xk+1‖
2 /Fk] 6 ‖x∗ − xk‖

2 + C̃(λk ‖νk‖+ λ2k ‖ζk‖
2),

where C̃ is a constant.

In view of (3.3.23) and Definition 3.6, it is clear that {xk} is a stochastic quasi-Feyer

sequence w.r.t. X ∗. Consequently, the sequence ‖xk − x∗‖2 → 0 w.p.1.. Furthermore,

the set of accumulation points of {xk} is not empty. Consequently, if we show that one

of the accumulation points belongs to X ∗, then from condition (c) it follows that {xk}

converges w.p.1. to a point in X ∗ [48].

Referring back to (3.3.27) and taking expectations, we have

E[‖x∗ − xk+1‖
2] 6 E[‖x∗ − x1‖

2] + 2
k
∑

i=1

λiE[ζi/Fi]
T (x∗ − xi) +

k
∑

i=1

E[λ2i ‖ζi‖
2 /Fi],

through (3.3.28), this yields

E[‖x∗ − xk+1‖
2] 6

E[‖x∗ − x1‖
2] + 2

k
∑

i=1

λiE[ϕ(x
∗, ρ)− ϕ(xi, ρ) + ‖νi‖ ‖xi − x∗‖] +

k
∑

i=1

E[λ2i ‖ζi‖
2 /Fi],

6 E[‖x∗ − x1‖
2] + 2

k
∑

i=1

λiE[ϕ(x
∗, ρ)− ϕ(xi, ρ)] + C̃

k
∑

i=1

E[λi ‖νi‖+ λ2i ‖ζi/Fi‖
2].

This and condition (3.3.23) implies

∞
∑

i=1

λiE[ϕ(xi, ρ)− ϕ(x∗, ρ)] <∞.

Since
∞
∑

i=1

λi = ∞ and ϕ(xi, ρ)− ϕ(x∗, ρ) > 0,
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then there exists a subsequence xki such that ϕ(xki , ρ) − ϕ(x∗, ρ) → 0, w.p.1. This

shows there exists a subsequence such that ‖xki − x∗‖ → 0 w.p.1. and this completes

the proof.

Before concluding this section, we make a few general comments on stochastic quasi-

subgradient method. The stochastic quasi-subgradient method [47, 48, 49] has been

developed to solve stochastic problems with complicated functions. The main advantage

of this method is that, at each iteration, the search direction is a stochastic subgradient

of the objective function. Another advantage of stochastic approximation methods is

that it allows working directly with the samples of random variables, rather than the

full distributions. However, this advantage comes at a cost. One difficulty is the choice

of the stepsize. In general, choosing the stepsize requires some experimentation, and

there are no hard or fast rules for making the choice.

The SQG method uses a quasi-subgradient of the objective function at each iteration.

However, it might be helpful to use the subgradient information at the previous iterate.

This motivates us to resort to the level function method from non-smooth optimization

proposed by Lemarechal et al. [89] and extended by Xu [146].

3.3.2 Level function algorithm

In this section, we consider level function method for solving (3.2.4). The fundamental

idea of the method is to use a subgradient of the objective function at each iteration

to construct a linear function and treat the minimizer of the maximum of the linear

function as the next iterate.

Let us start with some basic definition of the method.

Let α ∈ R be a scalar and ϕ(x, ρ) be a general continuous function. We use

Tϕ(α) = {x ∈ X : ϕ(x, ρ) < α} ,

to denote the strict lower level set of ϕ. We discuss the case where the distribution of

random variable ξ is known and a subgradient could be calculated based on the available

scenarios. This will aid us in the calculation of a subgradient of the objective function

at each iteration.

Definition 3.9. Let ϕ(x, ρ) be continuous function and x ∈ X , where X is a nonempty

convex subset of Rn. A function σ : Rn → R is called a level function of ϕ at x if it

satisfies the following conditions:

(a) σ(x) = 0,

(b) σ is a continuous convex function,
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(c) Tϕ(ϕ(x, ρ)) ⊂ Tσ(0).

From the definition, we can see that the minimizers of ϕ are contained in Tϕ(ϕ(x, ρ))

and x is optimal if and only if Tϕ(ϕ(x, ρ)) = ∅.

In what follows, we apply the level function method to (3.2.4). Let f(x, ξ) and g(x, ξ)

be continuous convex and concave functions, respectively. Let ζk ∈ ∂xϕ(xk, ρ), then

σxk
(x) = ζTk (x− xk)/ ‖ζk‖ ,

is a level function of ϕ(x, ρ) at xk.

Algorithm 3.2 (Scaled level function algorithm)

Step 1. Let ǫ > 0 be a constant, select a starting point x0 ∈ X ; set k:=0.

Step 2. Calculate ζk ∈ ∂xϕ(xk, ρ). Define the functions σxk
(x) and σk(x) by

σxk
(x) = ζTk (x− xk)/ ‖ζk‖ ,

σk(x) = max {σk−1(x), σxk
(x)} ,

where σ−1(x) ≡ −∞. Let

xk+1 ∈ argmin
x∈X

σk(x),

and

∆(k) = −σk(xk+1).

Step 3. If ∆(k) 6 ǫ, stop. Otherwise, set k := k + 1, go to Step 2.

It is important to note that here we need to calculate a subgradient of ϕ(x, ρ) at each

iterate. This is more demanding than the stochastic approximation method where only

a quasi-subgradient is calculated at each iterate. However, in some practical instances,

the random variable may have a finite distribution, in that case ϕ(x, ρ), can be written

as a sum of a finite number of deterministic functions. Calculating a subgradient of such

a function might be numerically possible. In the case when we are not able to obtain a

closed form of the expected value of the underlying functions, we may use the sample

average approximation method [127] to approximate ϕ(x, ρ) and reduce it to a finite

sum.

Theorem 3.10. Let ϕ(x, ρ) be defined as in (3.2.4) and let the assumptions of Theorem

3.3 hold. Then lim
k→∞

∆(k) = 0 and there exists a subsequence of {xk} converging to a

global minimizer of ϕ over X .

Proof. Under the assumptions, each of the level functions {σxk
(x)} generated by Algo-

rithm 3.2 is Lipschitz on X . The conclusion follows from [146, Theorem 3.2].
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The Algorithm 3.2 takes a minimizer of σk(x) as the next iterate, the main drawback is

that it is not possible to predict the maximum number of iterations required to reduce

∆(k) to a prescribed precision. To overcome this problem, Xu [146] modified the Algo-

rithm 3.2 by updating an iterate using projection of the current point to a level set of

σk(x). This projection idea belongs to Lemarechal, Nemirovskii and Nesterov [89], who

applied it to convex programming.

Algorithm 3.3 (Projected level function algorithm)

Step 1. Let ǫ > 0 be a constant, and select a constant λ ∈ (0, 1) and a starting point

x0 ∈ X ; set k = 0.

Step 2. Calculate a level function σxk
(x) of ϕ at x, and set

σk(x) = max {σk−1(x), σxk
(x)} ,

where σ−1 = −∞. Let

x̂k = argmin {ϕ(xj , ρ) : j ∈ 0, . . . , k} ,

and

xk+1 ∈ PQk
(x̂k, Qk),

where

Qk := {x ∈ X : σk(x) 6 −λ∆(k)} , ∆(k) = −min
x∈X

σk(x),

and PQk
is the Euclidean projection of the point x on a set Qk.

Step 3. If ∆(k) 6 ǫ, stop. Otherwise, set k := k + 1, go to Step 2.

Note that, when λ = 1, Qk becomes the set of minimizers of σk over X . Consequently,

Algorithm 3.3 becomes identical to Algorithm 3.2. The following convergence results

follow directly from [146, Theorem 3.3].

Theorem 3.11. Let {xk} be generated by Algorithm 3.3. Assume the conditions of

Theorem 3.10. Then

∆(k) 6 ǫ, for k > M2d2ǫ−2λ−2(1− λ2)−1,

where ǫ is specified as in Algorithm 3.3, M is the Lipschitz modulus of ϕ over X , and d

is the diameter of X defined as

d = sup
x,y

{‖x− y‖ , x, y ∈ X} .
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For the proof refer to [146, Theorem 3.3].

3.4 Numerical Tests

We have carried out a number of numerical tests on the proposed algorithms by using

MATLAB 7.10 built-in nonlinear programming solver “fmincon” installed on a Viglen

PC with Windows XP operating system and 2.96 GB of RAM. The optimization sub-

problems within the Algorithm 3.2 and 3.3 are solved using IBM ILOG CPLEX Studio

12.4. In this section, we report the test results.

We consider primarily two portfolio optimization problems to examine the SSD model

(3.2.2) and efficiency of our proposed numerical methods, that is, the penalization ap-

proach (3.2.4) and algorithms discussed in Section 3.3.

Suppose that we have a fixed capital to be invested in n assets. Let Ri, i = 1, . . . , n,

denotes the return of asset i. In practice, the return is often uncertain and we use a

random variable ξ to describe the uncertainty. Specifically, we write Ri as Ri(ξ) and in

doing so we are assuming that all n assets have identical random factor.

To simplify the discussion, we normalize the capital to 1 and use xi, i = 1, . . . , n, to

denote the fraction of capital to be invested in asset i. The portfolio return can then be

formulated as:

g(x, ξ) := R1(ξ)x1 +R2(ξ)x2 + · · ·+Rn(ξ)xn. (3.4.29)

We apply the SSD model (3.2.2) to optimize our investment strategy. To ease the

citation, we repeat the model:

min
x

E[f(x, ξ)]

s.t. g(x, ξ) �(2) g(y, ξ),

x ∈ X ,

(3.4.30)

where g is defined by (3.4.29). We need to specify f(x, ξ) and X . We will start with the

simplest case of f(x, ξ) = −g(x, ξ) and X := {x :
∑n

i=1 xi = 1, xi ≥ 0} and then consider

a variation, which allows f to include a quadratic term and xi to take a negative value

in order to address some practical need where investment in a particular asset is not too

small and/or the short selling occurs. We will come to the details of the variations later

on. Here y denotes a benchmark investment with yi =
1
n , for i = 1, . . . , n.

To examine the appropriateness of the SSD model, we calculate the Conditional Value

at Risk (CVaR) for random variables g(x∗, ξ) and g(y, ξ) where x∗ is an approximate

optimal solution obtained from solving (3.4.29). Recall, that by definition for a specified

probability level α, the Value at Risk (VaR) of a portfolio is the lowest amount C such
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that, with probability α, the profit does not fall below C. The CVaRα is the conditional

expectation of profit below C. In our context,

CVaRα(g(x
∗, ξ)) = sup

C

{

C−
1

α
E[(C− g(x∗, ξ))+]

}

, (3.4.31)

where α ∈ (0, 1) is a prespecified constant.

Dentcheva and Ruszczyński [38] showed that there is a fundamental relationship between

the concept of CVaR and the second order stochastic dominance constraint. Specifically

they showed that

g(x, ξ) �(2) g(y, ξ),

if and only if

CVaRα(g(x, ξ)) > CVaRα(g(y, ξ)), ∀α ∈ (0, 1],

which means that as the return of a portfolio increases the CVaR of that portfolio also

increases. Three values of α are commonly considered: 0.90, 0.95, 0.99. However, in our

analysis we focus on the case of α = 0.95.

3.4.1 Numerical performance

Example 3.1. We consider a history of percentage returns, for m = 6 and m = 10 time

periods, for a group of n = 2 and n = 5 assets

in Table 3.4.1 and Table 3.4.2, respectively.

Returns % for period

January February March April May June
Asset 1 1.2 1.3 1.4 1.5 1.1 1.2
Asset 2 1.3 1.0 0.8 0.9 1.4 1.3

Table 3.4.1: Monthly rates of return on two assets.

Returns % for period

1 2 3 4 5 6 7 8 9 10
Asset 1 1.2 1.3 1.4 1.5 1.1 1.2 1.1 1.0 1.0 1.1
Asset 2 1.3 1.0 0.8 0.9 1.4 1.3 1.2 1.1 1.2 1.1

Asset 3 0.9 1.1 1.0 1.1 1.1 1.3 1.2 1.1 1.0 1.1

Asset 4 1.1 1.1 1.2 1.3 1.2 1.2 1.1 1.0 1.1 1.2

Asset 5 0.8 0.75 0.65 0.75 0.8 0.9 1.0 1.1 1.1 1.2

Table 3.4.2: Rates of return on five assets over ten periods.

Our aim is to find an optimal investment strategy for a fixed capital in the n assets which

maximizes the expected profit subject to certain risk averse measures. Particularly we
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consider the following model:

min
x

E[f(x, ξ)] = −E[g(x, ξ)]

s.t. g(x, ξ) �(2) g(y, ξ),

x ∈ X .

(3.4.32)

For the purpose of this example we set the upper and lower bound on the fraction of

capital invested in each asset to 0.6 and 0, respectively. We do this to ensure diversifica-

tion. Minimizing this function can be regarded as an attempt to get as close as possible

to meeting requirements on both return and risk.

We apply the exact penalization as discussed in Section 3.2.2 to Examples 3.1 and set

the penalty parameter ρ = 1000. We solve the reformulated problem with Algorithms

3.1, 3.2, and 3.3. For Algorithm 3.1, we use the step size:

λk =
1

k
,

and the stopping rule:

‖xk+1 − xk‖ 6 δx ‖xk+1‖ , ‖ϕ(xk+1, ρ)− ϕ(xk, ρ)‖ 6 δϕ ‖ϕ(xk+1, ρ)‖ ,

where δx = 0.001 and δϕ = 0.001 are specified precisions.

For Algorithms 3.2 and 3.3 we use ǫ = 0.001 and λ = 0.5.

Consider Example 3.1, we apply the Algorithms 3.1, 3.2 and 3.3 to solve this problem.

The optimal fractions of the invested capital from the starting point x0 = (1, 0)T are

shown in Table 3.4.3.

In order to investigate the accuracy of the solution, we calculated the norm of the

subgradient at this solution. The norm of subgradient at x = (0.6, 0.4) is equal to

0.0068 which confirms that the solution is close to optimal.

Alg. Iter. Time x E[g(x, ξ)] CVaR

3.1 6 0.845 (0.600, 0.400) 1.217 0.9824
3.2 6 0.631 (0.599, 0.401) 1.218 0.9824
3.3 6 0.628 (0.599, 0.401) 1.218 0.9824

Table 3.4.3: Example 3.1 using data in Table 3.4.1. Time is in minutes, the expected
return of the benchmark portfolio E[g(y, ξ)] = 1.200 and its CVaR = 0.897.

In Table 3.4.3 and the rest of the tables “Iter” refers to the number of iterations, “Alg”

is the short form for algorithm, and “S-sell” refers to short selling.

The results are obtained after 6 iterations by Algorithm 3.1 and 3.2 and are equivalent

to the results obtained by Algorithm 3.3. Additionally, as it is expected both the return

and its CVaR of the selected portfolio are higher than the benchmark return and CVaR.
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Further, we use the data of 5 assets over 10 periods in Table 3.4.2 and examine Example

3.1. Table 3.4.4 shows the results of this example.

Alg. Iter. Time x E[g(x, ξ)] CVaR

3.1 115 5 (0.325, 0.231, 0.177, 0.266, 0) 1.147 1.004
3.2 7 0.8931 (0.322, 0.231, 0.177, 0.266, 0) 1.148 1.004
3.3 5 0.6355 (0.325, 0.231, 0.177, 0.266, 0) 1.148 1.004

Table 3.4.4: Example 3.1 using data in Table 3.4.2. Time is in minutes, the expected
return of the benchmark portfolio E[g(y, ξ)] = 1.093 and its CVaR = 0.895.

As it can be seen, all three algorithms result in a similar optimal portfolio. Also the

selected portfolio dominates the benchmark portfolio in a sense that the CVaR of the

selected portfolio is greater than that of the benchmark portfolio. However, the number

of iterations is different and as a result the computation times differ. Algorithm 3.3

performed better than the other algorithms as it converged to the optimal portfolio

with respect to the number of iteration and computation time.

Note that in Example 3.1, both f and g are linear. In what follows, we consider nonlinear

portfolio optimization problems where either f or g or both are nonlinear. This is to

demonstrate that the proposed algorithms can cope with both linear and nonlinear

portfolio optimization problems.

Example 3.2. In Example 3.1 we considered an optimization problem where any frac-

tion of capital between 0 and 0.6 was acceptable. However, due to transaction cost,

investors do not like to invest very small amount of their capital in different assets.

We now reformulate Example 3.1 into a slightly more complicated problem in which

we do not want to invest very small amounts in an asset. We consider the following

performance function:

f(x, ξ) = −g(x, ξ) −
n
∑

i=1

x2i , (3.4.33)

and incorporate (3.4.33) into the optimization problem (3.4.32). In the section we will

consider two cases:

• Short-selling is allowed and upper and lower bounds on the fraction of capital

invested in each asset are set to 2 and -1.

• Short-selling is prohibited and the bounds are set to 0.6 and 0 to ensure diversifi-

cation.

The invested fractions which solve this problem using the discussed algorithms and the

data in Table 3.4.1 are the same as the result obtained in Example 3.1. However, the

results of the problem using data in Table 3.4.2 are shown in Table 3.4.5.
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Furthermore, we collect 300 daily historical returns of 95 FTSE 100 assets prior to March

2011 and a cash account paying 0.5% interest. We used the first 200 daily returns to

construct the portfolio strategy based on the performance function (3.4.33). We also

used the FTSE 100 Index as the benchmark. The results are presented in Table 3.4.6.

Alg. Problem Iter. Time x E[g(x, ξ)] CVaR

3.1
S-sell 684 16 (0.127, 0.495, 0.550, 0.380, -0.553) 1.230 1.045

No S-sell 226 9 (0.600, 0, 0, 0.400, 0) 1.1740 1.007

3.2
S-sell 6 0.899 (0.400, 0.514, 0.314, 0.390, -0.500) 1.260 1.063

No S-sell 6 0.768 (0.600, 0, 0, 0.400, 0) 1.1740 1.007

3.3
S-sell 4 0.649 (0.39, 0.527, 0.287, 0.3, -0.5) 1.260 1.063

No S-sell 4 0.577 (0.600, 0, 0, 0.400, 0) 1.1740 1.007

Table 3.4.5: Example 3.2 using data in Table 3.4.2. Time is in minutes, the expected
return of the benchmark portfolio E[g(y, ξ)] = 1.200 and its CVaR = 0.897.

Alg. Problem Iter. Time No.Assets E[g(x, ξ)] CVaR

3.1
S-sell 792 28.542 32 0.089 0.079

No S-sell 685 25.43 27 0.036 0.025

3.2
S-sell 16 1.274 40 0.094 0.082

No S-sell 13 0.973 26 0.037 0.026

3.3
S-sell 12 0.640 40 0.094 0.082

No S-sell 10 0.561 26 0.037 0.026

Table 3.4.6: Example 3.2 using FTSE 100 historical return. Time is in minutes, “No.
Assets” represent the number of assets in the optimal portfolio. The expected return

of the benchmark portfolio E[g(y, ξ)] = −0.051 and its CVaR = 0.023.

It can be seen that when short-selling is allowed the optimal portfolio has higher return

compared to the case where short-selling is prohibited, however this higher return is

associated with a higher risk. A rational risk-averse investor is expected to discourage

short-selling as the excess return is not worth the extra risk. Additionally, the financial

authorities in many countries including the U.K. and the U.S.A. restrict many financial

institutions such as pension funds from the practice of short-selling.

Note that both of the level function algorithms converge to very similar portfolios. The

portfolio returns are higher than the benchmark portfolio return and as it was expected

the CVaR of the selected portfolios are higher than the CVaR of benchmark portfolio.

Although the fraction of the capital invested in each asset differ from the results from

stochastic approximation method (Algorithm 3.1), but the optimal portfolios return

and risk are very close. The number of iterations in the level function method are much

lower compared to the stochastic approximation method, consequently the optimization

time is lower for the level function method. Furthermore, it could be seen that the

projected level function algorithm converges to the optimal solution with fewer number

of iterations compared to the scaled level function algorithm. This makes Algorithm 3.3

more attractive than Algorithm 3.2.
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In next section, we demonstrate the advantage of taking stochastic dominance con-

straints into account using real world data for a portfolio optimization problem followed

with a bakctest and a out-of-sample analysis.

3.4.2 Portfolio performance

In this section we focus on optimization problem (3.4.32) where g(y, ξ) is set to be equal

to FTSE 100 Index and draw some conclusions.

We use the FTSE 100 data collected and a cash account paying 0.5% interest. We used

the first 200 observations to construct the portfolio strategy and the further 100 daily

returns for an out-of-sample test. In practice there are many strict regulations imposed

by authorities on short selling and as a result many financial institutions prohibit any

short selling activity. Consequently, in this example we only consider the case where

short selling is not allowed and set the upper and lower bounds on portion of capital

invested at 0.6 and 0, in order to ensure diversification.

We solve the above optimization problem using the FTSE 100 data and compare the

proposed algorithms. The results are presented in Table 3.4.7.

Algorithm Iter. Time No.Assets E[g(x, ξ)] CVaR

3.1 735 25.64 31 0.036 0.027
3.2 9 1.717 29 0.037 0.027
3.3 7 1.215 29 0.037 0.027

Table 3.4.7: Result of the problem using FTSE 100 data. Time is in minutes,
No.Assets represents the number of assets in the optimal portfolio. The expected

return of the benchmark portfolio E[g(y, ξ)] = −0.051 and its CVaR = 0.023.

In the remainder of this section we concentrate on the investigating of the efficiency of

selected portfolios by Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3.

Furthermore, to investigate the dominance relationship we present the graph of cumu-

lative distribution functions of portfolio return generated by the SSD model using the

Algorithms 3.1-3.3, Markowitz model and the FTSE 100 Index in Figure 3.4.5. It is clear

that the generated portfolio strategy dominates the benchmark portfolio. Moreover, to

see the performance of the generated strategy out-of-sample we present graph of cumu-

lative return of the of portfolio return generated by the SSD model using the Algorithms

3.1-3.3, Markowitz model and the FTSE 100 Index in Figure 3.4.6. It can be seen that

the return generated by the portfolio strategy based on the SSD model is much higher

compared to the Markowitz model and the benchmark portfolio.

To illustrate the benefit of using stochastic dominance constraints, we set up a backtest

which is a key component of effective trading-system development in finance. It is

accomplished by reconstructing, with historical data, trades that would have occurred
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Figure 3.4.1: Difference between the portfolio return and the return of Markowitz
model, in-sample.
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Figure 3.4.2: Difference between the portfolio return and the return of FTSE 100
index, in-sample.

in the past using rules defined by a given strategy. Furthermore, we set up an out-

of-sample test to evaluate the performance of the selected portfolio over the remaining

100 samples. For the backtest the model finds the optimal portfolio weights from 200

historical market data, then the portfolio strategy is applied to the same data and daily

portfolio return is calculated for each day (Figures 3.4.1 and 3.4.2). In the out-of-sample

test, the same portfolio strategy is applied to the remaining data of 100 days and the

portfolio return is again calculated for each day (Figures 3.4.3 and 3.4.4). In both tests

the portfolio performance is compared with FTSE 100 Index and an investment strategy
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Figure 3.4.3: Difference between the portfolio return and the return of Markowitz
model, out-of-sample.
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Figure 3.4.4: Difference between the portfolio return and the return of FTSE 100
index, out-of-sample.

generated by a Markowitz model as described below:

max
x∈X

E[g(x, ξ)] − λE[R(x, ξ)]

s.t. E[g(x, ξ)] ≥ Rb,
n
∑

i=1

xi = 1, x ≥ 0, x ∈ X ,

(3.4.34)

where λ = 1 is a fixed nonnegative number, E[R(x, ξ)] is the portfolio variance, Rb is
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Figure 3.4.5: In-sample cumulative distribution functions for the generated portfolio
strategy based on the SSD models, Markowitz model and FTSE 100 Index (benchmark).
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Figure 3.4.6: Out-of-sample cumulative return for the generated portfolio strategy
based on the SSD models, Markowitz model and FTSE 100 Index (benchmark).

the benchmark return set equal to the FTSE 100 Index, and E[g(x, ξ)] is the return

defined as in (3.4.29). The Markowitz model (3.4.34) assumes that portfolio can be

characterized by their mean return and variance.

To compare the performance of the the two portfolios we use the Sortino ratio [134].

The Sortino ratio measures the risk-adjusted return of an investment asset, portfolio

or strategy. It is a modification of the Sharpe ratio but penalizes only those returns

falling below a user-specified target, or required rate of return, while the Sharpe ratio

penalizes both upside and downside volatility equally. We used risk free rate (0.5%) and

the benchmark portfolio (Index return) as the required rate of return. We calculated the

Sortino ratio both at the 200th day and 300th day. The results are shown in Table 3.4.8.

It can be seen that the portfolios constructed by the SSD model (3.4.32) and solved by

proposed Algorithm 3.3 and Algorithm 3.1 perform better than the Markowitz model

(3.4.34) and a FTSE 100 Index based on the backtest and out-of-sample test as well as

the Sortino ratio.
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Model Required return 200th day Sortino ratio 300th day Sortino ratio

SSD Model
Benchmark 0.1902 0.0049
Risk-free 0.1449 0.0545

Markowitz Model
Benchmark 0.0658 -0.0616
Risk-free -0.0066 0.0177

Table 3.4.8: Sortino ratio of the portfolio generated by optimization problem with
SSD constraints and the Markowitz model.

Note that the two algorithms generate similar results, but their numerical efficiency

differ significantly in terms of CPU time and the number of iterations. Figure 3.4.7

shows the CPU time of different numbers of assets for Algorithm 3.1 and 3.3.
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Figure 3.4.7: CPU time in minutes versus the number of instruments.

3.4.3 A supply chain problem

This example is a supply chain problem recently considered by Dentcheva and Martinez

[35, Section 4]. Since, previous numerical analysis proved that the stochastic approxima-

tion method (Algorithm 3.1) is inefficient. In this example we only consider Algorithm

3.3 along with the cutting plane method introduced by [81] and applied to stochastic

problems with second order stochastic dominance constraint in [52].

Example 3.3. (Dentcheva and Martinez [35]) A company has a set F of factories that

produce and supply perishable product to a set O of stores. Assume that the goods are

supplied before the demand is observed. If the demand is not met, the customers buy

the product elsewhere and the sales are lost. If the stock of the store is larger than the

demand, then the remaining products need to be disposed of. Assume that the disposal

cost is a deterministic quantity and that each factory has a limited capacity to produce

goods. Furthermore, we assume that a benchmark of the acceptable cost distribution is

available. The objective is to determine a production and shipping plan for each factory

in order to minimize the expected cost of the company. Denote by xij the quantity of
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goods delivered by factory i to store j, wi is the quantity produced by factory i, zj is the

number of sales at store j, and yj is the amount disposed at store j. The shipping cost

from factory i to store j is denoted by cij ; the production cost of one unit of product at

store i is ai; the capacity of store i is Ci. The disposal cost on site j is dj and the price

store j sets for the product is bj .

Dentcheva and Martinez proposed a two-stage stochastic program with stochastic order-

ing constraint model for this problem, see [35, Section 4] for details. Here, we formulate

the problem as a one-stage stochastic problem with SSD constraints as follows:

min

F
∑

i=1

O
∑

j=1

cijxij +

F
∑

i=1

aiwi +

S
∑

s=1

psQ(x,Ds)

s.t. −Q(x,D) �2 −Y,

wi =

O
∑

j=1

xij, i = 1, . . . , F,

0 ≤ wi ≤ Ci, i = 1, . . . , F,

xij ≥ 0, i = 1, . . . , F ; j = 1, . . . , O,

(3.4.35)

where D := (D1, . . . ,DS), and

Q(x,Ds) :=

O
∑

j=1

(dj(xj −Ds
j )+ − bj(D

s
j − (Ds

j − xj)+)),

xj =
∑F

i=1 xij and Y is a benchmark with S scenarios.

We assume that each component Dj of the demand D satisfies the γ-distribution with

parameters (2, 3), j = 1, . . . , J . Each data set is generated through i.i.d. sampling with

size S and ps := 1
S , for s = 1, . . . , S. The benchmark is constructed from solving the

problem without SSD constraints. We have carried out a number of numerical tests on
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Figure 3.4.8: Computational time versus the number of observations for F = 10 and
O = 10, Example 3.3

the two algorithms for problem (3.4.35).
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Our tests are concentrated on CPU time against increment of sample size and problem

size. There are two cases which may lead to the change of problem size: increase of

the number of factories F and increase of the number of stores O. Figure 3.4.8 depicts

CPU time of the two algorithms as the size increases from 10 to 3000, whereas Figure

3.4.9 and Figure 3.4.10 depict the sensitivity of CPU time against the change of F and

O respectively.

We have made a few observations from the numerical tests. First, the two algorithms

perform well as sample size increases particularly when the size goes beyond 2000, see

Figure 3.4.8. This is primarily because the sample size does not increase the size of

problem (3.4.35) albeit it increase the number of terms in both the objective and con-

straint functions. Second, Algorithm 3.3 performs better than the other algorithm in

most cases.
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Figure 3.4.9: Computational time versus the number of observations for O = 10 and
S = 100, Example 3.3
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Figure 3.4.10: Computational time versus the number of observations for F = 10
and S = 100, Example 3.3

An underlying reason is that it constructs a single level function instead of adding two

or more cutting planes as in the cutting-plane method. Third, increase of the number of

stores O has more significant impact on on both the number of iterations and the CPU
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time in the two algorithms than does the increase of the number of factories F . See

Figures 3.4.9 and 3.4.10. This is primarily due to the fact that increasing O results in

more nonsmooth terms in the constraint functions while increasing F does not have such

consequence, see the composition of Q(x,Ds). Finally, in comparison with Dentcheva

and Martinez’s test results, our algorithm is less sensitive to the increase of sample size

because we don’t introduce new variables to deal with plus functions, on the other hand,

our algorithm are more sensitive to the increase of O whereas their algorithms deal with

such a problem through introduction of a new variable per scenario to get around the

nonsmoothness of the plus function.

3.5 Conclusions

Our preliminary numerical tests show that Algorithm 3.3 (projected level function) is

numerically more efficient than Algorithm 3.1 (Stochastic approximation). However,

Algorithm 3.1 has a unique advantage; that is at each iteration only one approximated

subgradient of the objective function is calculated.

Furthermore, the portfolio optimization problem with SSD constraints performs better

than the Markowitz model and it also outperforms the benchmark both in-sample and

out-of-sample in sense of portfolio return, which was shown by the results from the back-

test and out-of-sample test (Figures 3.4.1–3.4.4). This result was also confirmed with

Sortino ratio calculation shown in Table 3.4.8, where the portfolio optimization problem

with SSD constraints has higher risk adjusted-return compared to the Markowitz model.

Finally, the supply chain optimization problem with SSD constraints investigated the

performance of the Algorithm 3.3 along with cutting plane method [81, 52] in a sense

of CPU time versus the size of the problem. It was concluded that the Algorithm 3.3

is less sensitive to the sample size, however this algorithm was sensitive to changes in

number of stores “O”.
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4.1 Overview

In this chapter we study optimization problems with multivariate stochastic dominance

constraints where the underlying functions are not necessarily linear. Stochastic domi-

nance is used to compare the distribution of two random variables [101], thus providing

a way to measure risk. Over the past few years there has been an increase in the dis-

cussion on stochastic programs with stochastic dominance constraints. Dentcheva and

Ruszczyński [36, 37] first introduced optimization problems with stochastic dominance

constraints. This is an attractive approach for managing risks in an optimization set-

ting. While pursuing expected profits, one avoids high risks by choosing options that

are preferable to a random benchmark.

Much of the work on optimization with stochastic dominance has focused on the case

where the underlying random quantities being compared are unidimensional [38, 39, 95,

103]. More recently, Dentcheva and Ruszczyński [40] proposed the concept of positive

linear second order stochastic dominance which is a special case of multivariate stochas-

tic dominance and obtained necessary conditions of optimality for non-convex problems.

The notion of multivariate stochastic dominance refers to the stochastic ordering of ran-

dom vectors. It can be used as a tool for multicriterion decision making, since each

component of vectors can be interpreted as the uncertain outcome of a given criterion.

49
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Homem-de-Mello and Mehrota [70] expanded the definition of positive linear second or-

der dominance to polyhedral second order dominance and called it P -dominance. They

proposed a sample average cutting-surface algorithm for optimization problems with

multidimensional polyhedral linear second order stochastic dominance constraints. Hu

et al. [73] extended this work and presented a more general definition of stochastic

dominance over random vectors as natural extension of the polyhedral linear stochastic

dominance concept. More recently, Hu et al. [72] proposed a new concept of stochasti-

cally weighted dominance, in which they treat the vector of weights as a random vector

to deal with large number of weights for bigger problems. They showed that such an

approach is much less restrictive than the deterministic weighted approach. More re-

cently, Armbruster and Luedtke [4] derived a linear formulation for multivariate second

order stochastic dominance which can be solved with off the shelf linear programming

solvers.

Inspired by notion of multivariate stochastic dominance and our earlier work on uni-

dimensional second order stochastic dominance constraints particularly dealing with

nonlinear underlying functions, we study stochastic optimization problems with multi-

variate second order stochastic dominance (SSD) constraints. Sun et al. [137] proposed

an exact penalization scheme for scalar second order stochastic dominance. In this

chapter we effectively extend the methods proposed in [137] to stochastic programs with

multivariate second order stochastic dominance constraints. We propose an exact penal-

ization scheme for such problems and solve the penalized problem by the level function

method and a modified cutting plane method and compare them to the cutting surface

method proposed by Homem-de-Mello et al. [70] and the linearized method proposed

by Armbruster and Luedtke [4].

The main contribution of this chapter can be summarized as follows:

• We develop a penalization scheme for stochastic programs with multivariate second

order stochastic dominance constraints. We do so by exploiting Clarke’s exact

penalty function theorem [29, Proposition 2.4.3] and Robinson’s error bound [113].

We reformulate the multivariate stochastic dominance constraints and demonstrate

that the reformulated problem satisfies the Slater Constraint Qualification under

some moderate conditions. Furthermore, an exact penalization scheme based on

L∞-norm is derived. Based on the exact penalization formulations, we apply a well

known level function method in nonsmooth optimization as discussed in Chapter

3 to the penalized problems. An obvious advantage of this approach is that we

can effectively deal with excessive number of constraints, non-smoothness in the

constraints and nonlinearity of the underlying functions.

• A modified cutting plane method is also proposed. This cutting plane method

differs from those in the literature [120] in that it applies to the maximum of the

constraint functions rather than each constraint function. Moreover, our modified
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cutting plane method uses the cutting plane representation proposed in [81], so it

differ from the methods proposed in [70, 73]. The idea of applying the cutting-

plane method to the maximum of the constraint functions is similar to the idea

in algorithm proposed by Fábián et al. [52]. However, their method is applied

to linear models while our modified cutting plane method is also applicable to

nonlinear case. Therefore we may regard our algorithm as an extension of theirs.

Furthermore, the proposed numerical methods provides an alternative approach to

the existing cutting surface method for multivariate stochastic dominance intro-

duced by Homem-de-Mello and Mehrota [70] and the linearized method proposed

by Armbruster and Luedtke [4].

• We examine the efficiency of the penalization scheme and the numerical methods

by presenting an academic problem, a generic budget allocation problem, and a

real world portfolio optimization problem. The budget allocation model is inspired

by the homeland security application of Hu et al. [71] and the budget allocation

example of Armbruster and Luedtke [4], in which a limited budget must be allo-

cated to a set of possible projects, and the allocation must stochastically dominate

a given benchmark. For the portfolio optimization problem, we use real world

test data of three indices to set up backtest and out-of-sample test to inspect the

performance of the generated portfolio and compare it to the benchmark portfolio

and a portfolio strategy generated by Markowitz model.

Let us now present some of the notation that are used in the following sections. Let xT y

denoted the scalar product of two vectors x and y, and let ‖ · ‖ denotes the Euclidean

norm, while ‖ · ‖∞ denotes the maximum norm of continuous functions defined over a

set T . Let d(x,D) := infx′∈D ‖x − x′‖ denote the distance from a point x to a set D.

For a real valued smooth function f , we use ∇f(x) to denote the gradient of f at x.

The expected value operator is denoted by E. The standard symbol L1(Ω,F , P ;R
m)

(shortly Lm
1 ) denotes the space of all integrable mappings X from Ω to R

m. If the values

are taken in R the superscript m will be omitted.

The rest of this chapter is organized as follows. In Section 4.2, we define the optimization

problem, discuss the Slater constraint qualification and present the exact penalization

schemes. In Section 4.3, we discuss the solution method and correspondingly the algo-

rithms. In Section 4.4, we apply the proposed method to some portfolio optimization

problems and report some numerical test results. Finally, we present some conclusion

in Section 4.5.



52
Chapter 4 Stochastic Programs with Multivariate Second Order Stochastic Dominance

Constraints

4.2 Stochastic Optimization Problem with Multivariate SSD

Constraints

4.2.1 Introduction

The concept of stochastic ordering for scalar random variables has been introduced

in statistics and further applied and developed in economics [57]. Let g(x, ξ) be a

concave function, with decision vector x and random variable ξ. It is said that g(x, ξ)

stochastically dominates a random variable Y (ξ) ∈ L1 in the first order, denoted by

g(x, ξ) �1 Y (ξ) if

F (g(x, ξ); η) ≤ F (Y (ξ); η), ∀η ∈ R, (4.2.1)

where F (g(x, ξ); η) and F (Y (ξ); η) are the cumulative distribution functions of g(x, ξ)

and Y (ξ), respectively. Let F2(g(x, ξ); ·) be defined as

F2(g(x, ξ); η) =

∫ η

−∞
F (g(x, ξ);α)dα for η ∈ R.

Similarly, we say that g(x, ξ) dominates in the second order a random variable Y (ξ) ∈ L1

if

F2(g(x, ξ); η) ≤ F2(Y (ξ); η), ∀η ∈ R. (4.2.2)

We denote the relation (4.2.2) as g(x, ξ) �(2) Y (ξ).

Definition 4.1. A random vector G(x, ξ) ∈ Lm
1 linearly dominates a random vector

Y (ξ) ∈ Lm
1 in positive linear second order, written as G(x, ξ) �P lin

(2) Y (ξ), if

νTG(x, ξ) �P lin
(2) νTY (ξ), ∀ν ∈ R

m
+ . (4.2.3)

In the same manner one can define the first and higher order linear dominance relations:

νTG(x, ξ) �P lin
(k) νTY (ξ), k = 1, 2, . . . provided that (k − 1)-st moments of G(x, ξ) and

Y (ξ) are finite.

It is clear that the set of scalarizing vectors ν in (4.2.3) can be truncated, by imposing

the normalization constraint ν ∈ S, where S is the simplex:

S =
{

ν ∈ R
m
+ : ν1 + ν2 + · · ·+ νm = 1

}

. (4.2.4)

This restriction does not change the relation (�P lin
(2) ).

In this chapter, we consider the following optimization problem with multivariate second

order stochastic dominance (SSD) constraints:

min
x∈X

E[f(x, ξ)]

s.t νTG(x, ξ) �P lin
(2) νTY (ξ), ∀ν ∈ S,

(4.2.5)
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where f : R
n × R

k → R is convex continuous function and G : R
n × R

k → R is

concave continuous function, both in x and ξ , x ∈ X is a decision vector with X

being a nonempty convex subset of R
n and ξ : Ω → Ξ ⊂ R

k is a random vector

defined on probability space (Ω,F , P ) with support Ξ, E[·] denotes the expected value

w.r.t. the probability distribution of ξ. The random variable Y (ξ) plays the role of a

benchmark outcome. For example, one may consider Y (ξ) = G(x̄, ξ), where x̄ ∈ X is

some reasonable value of the decision vector, which is currently employed in the system.

We shall investigate the case when G(x, ξ) and Y (ξ) are m-dimensional random vectors,

rather than scalar variables.

Using the properties of second order dominance [104, 145] and the definition of positive

linear dominance, we reformulate the multivariate stochastic dominance constraint in

(4.2.5) as,

E[(νT η − νTG(x, ξ))+] ≤ E[(νT η − νTY (ξ))+], ∀(η, ν) ∈ R
m × S,

where (η − νTG(x, ξ))+ = max(η − νTG(x, ξ), 0). Consequently, we reformulate the

optimization problem (4.2.5) as a stochastic semi-infinite programming problem:

min
x∈X

E[f(x, ξ)] (4.2.6)

s.t. H(x, η, ν) := E[(νTη − νTG(x, ξ))+]− E[(νT η − νTY (ξ))+] ≤ 0, ∀(η, ν) ∈ R
m × S.

Our focus is on numerical methods for solving the stochastic semi-infinite programming

problem (4.2.6). There are three issues to deal with: (a) the expectation of random

functions in both the objective and constraints, (b) the infinite number of constraints,

(c) the non-smoothness resulting from the max functions.

Homem-de-Mello et al. [70] introduced a more general notion of dominance which in-

cludes positive linear dominance as a particular case. They considered the case where

the set S is assumed to be a polyhedron. By using the polyhedral properties they pro-

posed a cutting-surface algorithm. They dealt with the constraints by considering a

cut generation, and solved the problem by a branch-and-cut algorithm. Although the

proposed cutting-surface method is effective, it is computationally demanding. In par-

ticular, even for the case of second-order stochastic dominance, which induces a convex

feasible region, their algorithm requires global optimization of a nonconvex problem as

a subproblem. Furthermore, Armbruster and Luedtke [4] proposed to use a different

notion of multivariate stochastic dominance as a constraint in a stochastic optimization

model. They derived an LP formulation for an SSD constraint which could be solved

using off-the-shelf linear programming solvers.
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In the rest of the chapter, we consider problem (4.2.6) with the focus on the case when

ξ has a discrete distribution, that is

min
x

N
∑

i=1

pif(x, ξ
i) (4.2.7)

s.t.

N
∑

i=1

pi(ν
T η − νTG(x, ξi))+ −

N
∑

i=1

pi(ν
T η − νTY (ξi))+ ≤ 0, ∀(η, ν) ∈ R

m × S,

x ∈ X ,

where the random variable ξ has a finite distribution, that is, P (ξ = ξi) = pi, for

i = 1, . . . , N . In what follows, we investigate the Slater constraint qualification of the

problem (4.2.7) and its reformulation, followed by an exact penalization scheme and

numerical methods.

4.2.2 Slater constraint qualification

In the literature of stochastic programs with second order stochastic dominance con-

straints, Slater constraint quialification (SCQ) has been used as a key condition for

deriving optimality conditions and exact penalization, see [36, 93].

Note that, the problem (4.2.7) is said to satisfies the SCQ if there exists x0 ∈ X such

that

N
∑

i=1

pi(ν
T η − νTG(x0, ξ))+ −

N
∑

i=1

(νT η − νTY (ξ))+ < 0, ∀(η, ν) ∈ R
m × S. (4.2.8)

Unfortunately, this kind of constraint qualification is not satisfied. To see this, as dis-

cussed in [137], for a fixed ν ∈ S let

Y (Ξ) := {Y (ξi) : i = 1, . . . , N},

and

η∗ := min{Y (ξ1), . . . , Y (ξN )}.

For any η ≤ η∗, it can be verified that E[(νT η−νTY (ξ))+] = 0. For those η, the feasible

constraint of problem (4.2.7) reduces to

E[(νTη − νTG(x, ξ))+]− E[(νT η − νTY (ξ))+] = 0,

because the left hand term is non-negative. Consequently, there does not exist a feasible

point x0 ∈ X such that (4.2.8) holds.
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More recently, Homem-de-Mello and Mehrota [70] proposed an alternative approach to

deal with the SCQ issue, by considering ǫ-feasible solutions:

min
x

E[f(x, ξ)]

s.t. E[(νT η − νTG(x, ξ))+] ≤ E[(νT η − νTT (ξ))+] + ǫ,∀(η, ν) ∈ R
m × S,

(4.2.9)

where ǫ is a small positive number. The relaxed problem (4.2.9) satisfies SCQ as long

as the original problem is feasible. However, it must be shown that the feasible solution

set of the relaxed problem approximates the feasible solution set of the original problem,

which often in turn requires the original problem to satisfy certain regularity conditions

such as lower semicontinuity of the feasible solution set of the relaxed problem.

In what follows, we propose an alternative way to tackle this problem by reformulating

problem (4.2.6) using [36, Proposition 3.2] and [73] as follows:

min
x

N
∑

i=1

pif(x, ξ
i)

s.t.

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ ≤ γj(ν), ∀ν ∈ S, j = 1, · · · , N,

x ∈ X ,

(4.2.10)

where ηj := Y (ξj) and γj(ν) :=
∑N

i=1 pi(ν
T ηj − ν

TY (ξi))+. Note that, the reformulated

problem also does not satisfy the SCQ.

Let us define the power set of {1, . . . , N}, that is, a collection of all subsets of {1, . . . , N}

including empty set and itself. Let N denote the power set excluding the empty set and

for j = 1, . . . , N ,

ψj(x, ν) := max
J∈N

∑

i∈J

pi(ν
T ηj − νTG(x, ξi))− γj(ν). (4.2.11)

Consequently, we can reformulate problem (4.2.10) as

min
x

N
∑

i=1

pif(x, ξ
i)

s.t. ψj(x, ν) ≤ 0, ∀ν ∈ S, j = 1, · · · , N,

x ∈ X .

(4.2.12)

In what follows, we show that problem (4.2.12) is equivalent to problem (4.2.10) but,

under some circumstances, (4.2.12) satisfies the SCQ.

Lemma 4.2. Let ψj(x, ν) be defined as in (4.2.11). Let

ϕj(x, ν) := max
J∈N

∑

i∈J

pi(ν
T ηj − νTG(x, ξi)).
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Then
N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ = max{ϕj(x, ν), 0}, (4.2.13)

for each fixed ν ∈ S.

Proof. Let ν ∈ S be fixed, we consider two cases. Case 1. ϕj(x, ν) ≤ 0, and Case 2.

ϕj(x, ν) > 0.

Case 1. ϕj(x, ν) ≤ 0 implies that max{ϕj(x, ν), 0} = 0 and νT ηj − νTG(x, ξi) ≤ 0, for

j 6= {1, · · · , N}. This implies that

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ = 0,

hence (4.2.13) holds.

Case 2. Now consider case when ϕj(x, ν) > 0, then there exists a nonempty subset

J ⊆ {1, . . . , N} such that

ϕj(x, ν) =
∑

i∈J

pi(ν
T ηj − νTG(x, ξi)) > 0.

It suffice to either show that

∑

i∈J

pi(ν
T ηj − νTG(x, ξi)) =

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+,

or equivalently J consists of every index i with

νTηj − νTG(x, ξi) > 0.

Note that, if J does not include such an index, then adding it to J would increase

the quantity
∑

J∈N pi(ν
T ηj − νTG(x, ξi)). This contradicts the fact that ϕj(x, ν) is the

maximum. Likewise, J does not consist of an index i with

νTηj − νTG(x, ξi) < 0,

as removing the index will also increase the quantity
∑

J∈N pi(ν
T ηj −ν

TG(x, ξi)). This

completes the proof.

We are now ready to state the main results.

Theorem 4.3. Let G(x, ξ) and Y (ξ) be defined as in problem (4.2.7) and ψj(x, ν) be

defined as in (4.2.11). Then
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(i) νTG(x, ξ) �(2) ν
TY (ξ) for all ν ∈ S if and only if

ψ̄j(x) := max
ν∈S

ψj(x, ν) ≤ 0, for j = 1, · · · , N ; (4.2.14)

(ii) problems (4.2.10) and (4.2.12) are equivalent;

(iii) if there exists a feasible point x̄ such that νTG(x̄, ξ) �(1) ν
TY (ξ) and νTG(x̄, ξ) >

νTY (ξ) for all ξ ∈ Ξ, then the system of inequalities (4.2.14) satisfies the SCQ.

Proof. The proof is similar to that of [137, Theorem 2.1] except that we have to deal

with parameter ν.

Part (i). By [36, Proposition 3.2], νTG(x, ξ) �(2) ν
TY (ξ) for all ν ∈ S if and only if

max
ν∈S

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν) ≤ 0, for j = 1, · · · , N, (4.2.15)

or equivalently for j = 1, . . . , N ,

max
ν∈S

max

{

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν), 0

}

= 0.

By (4.2.13),

max

{

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν), 0

}

= max {max {ϕj(x, ν), 0} − γj(ν), 0} .

Note that for any value a ∈ R and r > 0, it is easy to verify that

max{max{a, 0} − r, 0} = max{a− r, 0}. (4.2.16)

Using (4.2.16), we have that

max{max{ϕj(x, ν), 0} − γj(ν), 0} = max{ϕj(x, ν)− γj(ν), 0} = max{ψj(x, ν), 0}.

The last equality is due to the definition of ψj . The discussion above demonstrates that

(4.2.15) is equivalent to (4.2.14) and hence the conclusion.

Part (ii) follows from Part (i) in that the feasible set of the two problems coincides, i.e.,

{

x ∈ X : max
ν∈S

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν) ≤ 0

}

= {x ∈ X : ψ̄j(x) ≤ 0}.
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Part (iii). Let γ̂(ν) :=
∑N

i=1 pi(ν
T η0 − νTY (ξi))+, where

νT η0 := min{νTY (ξ1), . . . , νTY (ξN )}.

By definition of νTη0 the
∑N

i=1 pi(ν
T η0−ν

TY (ξi))+ = 0. Therefore, γ̂(ν) := 0. Likewise,

the assumption νTG(x̄, ξ) > νT η0 for ξ ∈ Ξ implies that

max
ν∈S

max
J∈N

N
∑

i∈J

pi(ν
T η0 − νTG(x̄, ξi)) < 0.

This shows

max
ν∈S

[

max
J∈N

∑

i∈J

pi(ν
T η0 − νTG(x̄, ξi))− γ̂(ν)

]

< 0. (4.2.17)

For each fixed ν ∈ S, let νT η1, . . . , ν
T ηN , where ηj := T (ξj) denote the N elements in

set νTY (Ξ),

νT η1 ≤ νTη2 ≤ · · · ≤ νT ηN .

Then the inequality (4.2.17) means that

ψ̄1(x̄) := max
ν∈S

[

max
J∈N

∑

i∈J

pi(ν
T η1 − νTG(x̄, ξi))−

N
∑

i=1

pi(ν
T η1 − νTY (ξi))+

]

< 0.

In what follows, we show that

ψ̄j(x̄) < 0, for j = 2, · · · , N.

By definition, for j = 2, . . . , N

ψ̄j(x̄) = max
ν∈S

[

max
J∈N

N
∑

i∈J

pi(ν
T ηj − νTG(x̄, ξi))−

N
∑

i=1

pi(ν
T ηj − νTY (ξi))+

]

≤ max
ν∈S

[

max

{

max
J∈N

N
∑

i∈J

pi(ν
T ηj − νTG(x̄, ξi)), 0

}

−
N
∑

i=1

pi(ν
T ηj − νTY (ξi))+

]

= max
ν∈S

[max {ϕj(x, ν), 0} − γj(ν)]

=
(4.2.13)

max
ν∈S

[

N
∑

i=1

pi((ν
T ηj − νTG(x̄, ξi))+ − (νT ηj − νTY (ξi))+)

]

= max
ν∈S

[

∫ νT ηj

−∞
(F1(ν

TG(x̄, ξ), α) − F1(ν
TY (ξ), α))dα

]

. (4.2.18)

The equality (4.2.18) is due to the equivalent representation of second order stochastic

dominance [40].

Assume without loss of generality that νT η1 < νT η2 (otherwise ψ̄2(x̄) = ψ̄1(x̄) < 0). Let
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νT ηmin ∈ (νT η1,min{minξ∈ΞG(x̄, ξ
i), νT η2}) for a given ν. Note that by assumption

νT η1 < min{minξ∈ΞG(x̄, ξ
i), νT η2}, ν

T ηmin exists. Then

max
ν∈S

[

∫ νT ηj

−∞
(F1(ν

TG(x, ξ), α) − F1(ν
TY (ξ), α))dα

]

= max
ν∈S

[

∫ νT ηmin

−∞
(F1(ν

TG(x̄, ξ), α) − F1(ν
TY (ξ), α))dα

+

∫ νT ηj

ηmin

(F1(ν
TG(x, ξ), α) − F1(ν

TY (ξ), α))dα

]

.

Note that

max
ν∈S

[

∫ νT ηmin

−∞
(F1(ν

TG(x̄, ξ), α) − F1(ν
TY (ξ), α))dα = 0− p1(ν

T ηmin − νT η1)

]

< 0,

where p1 is the probability that Y (ξ) takes value η1. On the other hand, νTG(x̄, ξ) �(1)

νTY (ξ) implies

max
ν∈S

[

∫ νT ηj

η̄
(F1(ν

TG(x̄, ξ), α) − F1(ν
TY (ξ), α))dα

]

< 0.

This shows that

max
ν∈S

[

∫ νT ηj

−∞
(F1(ν

TG(x̄, ξ), α) − F1(ν
TY (ξ), α))dα

]

< 0, for j = 2, · · · , N. (4.2.19)

The conclusion follows by combining (4.2.17)–(4.2.19).

Theorem 4.3 states that although problem (4.2.10) and (4.2.7) do not satisfy SCQ, the

reformulated problem (4.2.12) may do under some circumstances. the reason behind this,

is to do with plus function (·)+. Consdier a single variate function a(x) = x. It is easy to

see that the single inequality a(x) ≤ 0 satisfies SCQ but (a(x))+ ≤ 0 does not although

the two inequalities represent the same set (−∞, 0]. Clearly, the constraint qualification

is closely related to the function which represents the feasible set. In problem (4.2.12),

we give an alternative presentation of the feasible constraints of problem (4.2.10) and

(4.2.7) without the plus function.

4.2.3 Exact penalization with L∞-norm

In this section we apply an exact penalization technique to the problem (4.2.12). This

scheme includes application of an exact penalty function method with L∞-norm. Let us

now present the technical results needed in the rest of this section.
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Lemma 4.4. [137, Lemma 3.1] Let f : Rn → R be continuous function and g : Rn → R

be continuous and convex. Let X ⊆ R
n be a compact and convex set. Consider the

following constrained problem

minx f(x)

s.t. g(x) ≤ 0,

x ∈ X .

(4.2.20)

(i) If g(x) satisfies the SCQ, that is there exists a point x0 and a real number δ > 0

such that

δB ⊂ g(x0) +K,

and the feasible set, denoted by P , is bounded, then

d(x, P ) ≤ δ−1Dd∞(0, g(x) +K),

where B is the closed unit ball in R
m and K := [0,+∞)m, and D denotes the

diameter of P .

(ii) If f(x) is Lipschitz continuous on X with modulus κ, then for

ρ > κδ−1D,

the set of optimal solutions of (4.2.6) coincides with the set of optimal solutions

of problem

min f(x) + ρ‖(g(x))+‖∞

s.t. x ∈ X .
(4.2.21)

Proof. Part(i) follows from Robinson’s error bound for convex systems [113] and Part

(ii) follows from Part(i) and Clarke’s exact penalty function [29, Proposition 2.4.3].

One popular penalty scheme in optimization is based on the L∞-norm. Here we consider

such penalization scheme for (4.2.12) as follows:

min
x

N
∑

i=1

pif(x, ξ
i) + ρ max

j∈{1,··· ,N}
(max
ν∈S

ψj(x, ν))+, (4.2.22)

and for problem (4.2.10)

min
x∈X

N
∑

i=1

pif(x, ξ
i) + ρ max

j∈{1,··· ,N}
(max
ν∈S

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν))+. (4.2.23)

In what follows, we show that the two penalty schemes are equivalent, and estimate the

penalty parameter. This will effectively justify the exact penalization function (4.2.23)

for problem (4.2.10), although it does not satisfy the SCQ.
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Assumption 4.5. f(x, ξi) and G(x, ξi) are continuously differentiable w.r.t. x for i =

1, . . . , N . Moreover, they are globally Lipschitz over X , that is, there exists κ(ξ) < +∞

such that

max
(∥

∥∇xf(x, ξ
i)
∥

∥ ,
∥

∥∇xG(x, ξ
i)
∥

∥

)

≤ κ(ξi), i = 1, · · · , N.

Theorem 4.6. Assume that the problem (4.2.22) satisfies the SCQ and Assumption 4.5

holds; the feasible set of problem (4.2.12) is bounded. Then

(i) problem (4.2.22) and (4.2.23) are equivalent;

(ii) there exist positive constants δ̄ and D̄ such that when

ρ >
N
∑

i=1

piκ(ξ
i)δ̄−1D̄, (4.2.24)

the set of optimal solutions of (4.2.12) coincide with that of (4.2.22) and the set

of optimal solutions of (4.2.10) coincides with that of (4.2.23).

Proof. Part (i). Using Lemma 4.2 and (4.2.16), the equivalence of the problem (4.2.22)

and (4.2.23) can be verified as follows

max
j∈{1,...,N}

(max
ν∈S

ψj(x, ν))+ = max
j∈{1,...,N}

[

max
ν∈S

max
J∈N

∑

i∈J

pi(ν
T ηj − νTG(x, ξi))− γj(ν)

]

+

= max
j∈{1,...,N}

[

max
ν∈S

N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν)

]

+

.

Part (ii). let Q denote the feasible set of problem (4.2.12) and define

Ψ(x, ν) := (ψ1(x), · · · , ψN (x))T .

Since Q is bounded,
∑N

i=1 pif(x, ξ
i) is Lipschitz continuous with modulus

∑N
i=1 piκ(ξ

i),

problem (4.2.12) is convex and satisfies the SCQ. Using Lemma 4.4, there exists real

number δ̄ > 0 and D̄ > 0 such that

ρ̄ >
N
∑

i=1

piκ(ξ
i)δ̄−1D̄,

the set of optimal solutions of problem (4.2.10) coincides with that of (4.2.23). Moreover,

since problem (4.2.12) and (4.2.10) are equivalent, and problem (4.2.22) and (4.2.23) are

also equivalent, the set of optimal solutions of problem (4.2.12) coincides with that of

(4.2.22).

In the rest of this chapter, we apply the level function methods, and a modified cutting-

plane method to solve the penalized optimization problem (4.2.22).
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4.3 Solution Methods

In this section we discuss the solution methods used to solve the optimization problem

(4.2.22). Specifically, we apply the following methods: the level function method and a

modified cutting plane method and compare them to the cutting surface algorithm [70]

and the linearized method proposed in [4].

4.3.1 Level function methods

Level function method is popular numerical approach for solving deterministic nons-

mooth optimization problems. It is proposed by Lemaréchal et al. [89] for solving

nonsmooth convex optimization problems and extended by Xu [146] for solving quasi-

convex optimization problems. In Chapter 3, we applied the level function methods to

stochastic programming problems with scalar second order stochastic dominance con-

straints where the distribution of ξ is discrete. In this chapter, we apply the level function

methods (Algorithms 3.2 and 3.3) as discussed in Chapter 3 to the penalized problem

(4.2.22). Let us define ϑ(x, ρ) as follows:

ϑ(x, ρ) :=
N
∑

i=1

pif(x, ξ
i) + ρ max

j∈{1,··· ,N}
(max
ν∈S

ψj(x, ν))+.

Let ζk ∈ ∂xϑ(xk, ρ), then

σxk
(x) = ζTk (x− xk)/ ‖ζk‖ ,

is a level function of ϑ(x, ρ) at xk.

To avoid confusion, in this chapter we refer to Algorithm 3.2 and Algorithm 3.3 as

Algorithm 4.1 and Algorithm 4.2, respectively. In what follows, we present the theorem

regarding the level function methods and discuss the method used in estimation of

penalty parameter.

Theorem 4.7. Let {xk} be generated by Algorithm 4.2. Assume that f(x, ξ) and com-

ponents of G(x, ξ) are Lipschitz continuous functions with modulus Lf (ξ) and LG(ξ)

respectively, where E[Lf (ξ)] < +∞, E[LG(ξ)] < +∞ and that the sequence of level

functions {σxk
(x)} is uniformly Lipschitz with constant M . Then

∆(k) ≤ ǫ, for k > M2Υ2ǫ−2λ−2(1− λ2)−1,

where Υ represents the diameter of the solution set X , ǫ and λ are given in Algorithm

4.2.
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Proof. It is easy to observe that the Lipschitz continuity of G(x, ξ) w.r.t. x with modu-

lus LG(ξ) implies the Lipschitz continuity of ψj(x, ν) with the same Lipschitz modulus

E[LG(ξ)]. Along with the Lipschitzness of f(x, ξ), this shows ϑ(x, ρ) is Lipschitz con-

tinuous with modulus E[Lf (ξ)] + ρE[LG(ξ)]. On the other hand, since ϑ(x, ρ) is convex,

the function σxk
(x) constructed at each iterate is a level function with modulus 1. The

rest follows from Xu [146, Theorem 3.3].

In Algorithm 4.1 and Algorithm 4.2, a penalty parameter in ϑ(x, ρ) is fixed. In some

cases, it might be difficult to estimate a good penalty parameter. One way to tackle this

issue is to start with an estimate of penalty parameter and solve the resulting penalized

problem with the above algorithms. The feasibility of the obtained solution is checked:

if it is feasible the optimal solution is obtained, otherwise, the penalty parameter is

increased the process is repeated. This kind of procedure in known as Simple Penalty

Function Method in the literature of optimization, see for instance [138, Algorithm

10.2.3]. We describe the aforementioned procedure formally in the following algorithm

for the penalized problem (4.2.22).

Algorithm 4.3 (Simple Penalty Function Method for penalized problem (4.2.22)).

Step 1. Let ǭ be a positive number. Let ρ0 be an intial estimate of the penalty parameter.

Set t := 0.

Step 2. For ρ̄ := ρt, apply Algorithm 4.1 or 4.2 to solve problem (4.2.22). Let xt denote

the solution obtained from solving the problem.

Step 3. If maxj∈{1,...,N}(maxν∈S(
∑N

i=1 pi(ν
T ηj − νTG(xt, ξ

i))+ − γj(ν))+) ≤ ǭ, stop; oth-

erwise, set xt+1 := xt, ρt+1 := 10ρt and t := t+ 1, go to step 2.

Algorithm 4.3 terminates in a finite number of iterations in that the exact penalty

parameters for problem (4.2.22) is finite, see Theorems 4.6.

An alternative way to deal with the issue of penalty parameters is to solve the following

problem

min
x∈X

max
j∈{1,...,N}

(max
ν∈S

(
N
∑

i=1

pi(ν
T ηj − νTG(x, ξi))+ − γj(ν))). (4.3.25)

This can be achieved by applying Algorithm 4.1 or 4.2 directly. The optimal value of

(4.3.25) effectively gives an upper bound for parameter δ̄ (see Theorems 4.6). Note that

these parameters are dependent on the Slater condition of (4.2.12).
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4.3.2 Modified cutting plane algorithm

Rodulf and Ruszczyński [120] and Fábián et al. [52] proposed cutting plane methods to

solve stochastic program with unidimensional second order stochastic dominance con-

straints when the underlying random variable has finite distribution. This method is

an extension of the cutting-plane method developed by Haneveld and Vlerk [81] for in-

tegrated chance constraints (ICC). In what follows, we consider a modification of the

procedure where a cut is constructed.

Reformulate the optimization problem (4.2.12) as:

min
x,z

z

s.t. ψ(x, ν) := max
j∈{1,...,N}

ψ̄j(x) ≤ 0,

N
∑

i=1

pif(x, ξ
i)− z ≤ 0,

x ∈ X , z ∈ Z,

(4.3.26)

where ψ̄j(x) := maxν∈S ψj(x, ν), Z is a closed convex compact subset of R such that

{

N
∑

i=1

pif(x, ξ
i) : x ∈ X

}

⊂ Z.

Note that, the existence of set Z is due to the fact that f(x, ξi), i = 1, . . . , N , is

a continuous function and X is a compact set. Also the components of G(x, ξ) are

concave and f(x, ξ) is convex w.r.t. x, which implies that ψ(x, ν) is convex w.r.t. x and
∑N

i=1 pif(x, ξ
i)− z is convex w.r.t. (x, z). We apply the classical cutting-plane method

[80] to both ψ(x, ν) and
∑N

i=1 pif(x, ξ
i) − z. Specifically, we propose the following

algorithm.

Algorithm 4.4 (Modified cutting plane algorithm)

Define the optimization problem at iteration t as

min
x,z

z

s.t. x ∈ X , z ∈ Z,

(x, z) ∈ Pt :=
{

(x, z) ∈ X × Z : aTl x ≤ bl, d
T
l x+ elz ≤ kl, l = 1, . . . , t

}

.

(4.3.27)

Set t := 0, P0 := X × Z. For each t, carry out the following.

Step 1. Solve the optimization problem (4.3.27), finding the optimal solution (xt, zt). If

the problem (4.3.27) is infeasible, stop. Otherwise go to Step 2.
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Step 2. Find the solution to maxj∈{1,...,N} ψ̄j(x) and find optimal solution (η∗, ν∗), and set

γ(ν∗t ) :=
∑N

i=1 pi(ν
∗
t
T η∗t − ν∗t

TY (ξi))+. If

N
∑

i=1

pi(ν
∗T η∗ − ν∗TG(x, ξi))+ ≤ γ(ν∗t ),

and
N
∑

i=1

pif(xt, ξ
i)− zt ≤ 0,

stop: (xt, zt) is an optimal solution. Otherwise go to Step 3.

Step 3. Construct the set

Jt :=
{

i : (ν∗T η∗ − ν∗TG(x, ξi)) > 0
}

,

and the feasibility cuts aTt+1x ≤ bt+1, and d
T
t+1x+ et+1z ≤ kt+1, where

at+1 = −
∑

i∈Jt

pi∇xν
∗TG(xt, ξ

i),

bt+1 =
∑

i∈Jt

pi(−∇xν
∗TG(xt, ξ

i)Txt + ν∗TG(xt, ξ
i)− η∗) + γ(ν∗),

dt+1 = −∇xf(x, ξ), et+1 = −1, kt+1 = −∇xf(xt, ξ)
Txt + f(xt, ξ).

and set

Pt+1 = Pt ∩
{

(x, z) ∈ X × Z : aTt+1x ≤ bt+1, d
T
t+1x+ et+1z ≤ kt+1

}

.

Proceed with iteration t+ 1.

Remark 4.8. We make a few comments about Algorithm 4.4.

(i) Algorithm 4.4 differs from the cutting-plane method discussed in [120, 52] in the

way feasible cuts are constructed. In the former, N constraints/cuts are added

at each iteration, these cuts are not necessarily the extreme support of ψ(x, ν)

at xt. In Algorithm 4.4, we exclude all those non-support constraints, instead we

include a cut at the extreme support (to ψ(x, ν) at xt) which we believe is the most

effective and a single linear cut is adequate to ensure the convergence. All other

non-support constraints/cuts may potentially reduce numerical efficiency. This

approach is similar to the algorithm proposed by Fábián et al. [52]. Note that,

Fábián’s algorithm is applied to linear models while Algorithm 4.4 is applicable

to the nonlinear case. Therefore, we may regard the latter as an extension of the

former.
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(ii) In Step 2 of the above algorithm, we solve the following DC-program

max
(η,ν)∈[a,b]×S

ψ(η, ν) :=
N
∑

i=1

pi[(ν
T η − νTG(xt, ξ

i))+ − (νT η − νTY (ξi))+],

where [a, b] ⊇ {η1, . . . , ηN} and S is defined as in (4.2.4).

(iii) When f is linear w.r.t. x, there is no need to introduce additional variable z

because the objective is linear.

We now present the convergence results.

Theorem 4.9. Let {(xt, zt)} be a sequence generated by the Algorithm 4.4. Let

P := {(x, z) ∈ X × Z : ψ(x, ν) ≤ 0,E[f(x, ξ)]− z ≤ 0} ⊂ X × Z,

where ψ(x, ν) is defined in problem (4.3.26). Assume: (a) f(x, ξ) and each of the com-

ponent gi(x, ξ) of G(x, ξ) are continuously differentiable and convex w.r.t. x for almost

every ξ, (b) X × Z ∈ R
n is a compact set, (c) there exists a positive constant L such

that the Lipschitz modulus of E[f(x, ξ)] and ψ(x, ν) are bounded by L on X ×Z, (d) the

set P is nonempty. Then, {(xt, zt)} contains a subsequence which converges to a point

(x∗, z∗) ∈ P , where (x∗, z∗) is the optimal solution.

Proof. The proof is similar to the results in [80]. Note that, at each iteration t > 0, at+1 ∈

∂xψ(xt, ν), dt+1 = ∇E[f(xt, ξ)], and et+1 = ∇z(E[f(xt, ξ)]− zt = −1. Then aTt+1x− bt+1

and dTt+1x+et+1z−kt+1 are the extreme support to the graphs of ψ(x, ν) and E[f(x, ξ)]−z

at (xt, zt) respectively. By condition (a), ψ(x, ν) and E[f(x, ξ)] are convex and contin-

uous w.r.t. (x, z). Consequently, if (xt, zt) ∈ P and max{ψ(x, ν), E[f(x, ξ)]} ≤ 0,

then

max{aTt+1xt − bt+1, d
T
t+1xt + et+1z − kt+1} ≤ 0.

Further, for all (xt, zt) /∈ P ,

max{aTt+1xt − bt+1, d
T
t+1xt + et+1z − kt+1} = max{ψ(xt, ν), E[f(xt, ξ)] − zt} > 0.

Therefore, when (xt, zt) /∈ P , the set P and the point (xt, zt) lie on opposite sides of the

cutting angle max{aTt+1xt − bt+1, d
T
t+1xt + et+1z − kt+1} = 0.

Note that, from the definition of Pt and (xt, zt), we know that P ⊂ Pt ⊂ Pt−1, (xt, zt)

minimizes z in Pt and zt−1 ≤ zt. In the case when (xt, zt) ∈ P , it is easy to verify that

(xt, zt) is the optimal solution of problem (4.3.26). Indeed, since (xt, zt) is an optimal

solution, for every (x, z) ∈ Pt, we have z ≥ zt. Since P ⊂ Pt, then z ≥ zt for (x, z) ∈ P ,

which implies optimality of (xt, zt) over P .

In what follows, we focus on the case when (xt, zt) /∈ P ∀t. Since X × Z is a compact

set, the sequence {(xt, zt)} contains a subsequence which converges to (x∗, z∗) ∈ X ×Z.
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Assume without loss of generality that (xt, zt) → (x∗, z∗). Let P ∗ = ∩tPt. Since Pt is

compact and P ⊂ Pt, we have P ⊂ P ∗ and (x∗, z∗) ∈ P ∗. On the other hand, since

z ≥ zt,∀(x, z) ∈ Pt,

then

z ≥ z∗,∀(x, z) ∈ P ∗. (4.3.28)

Indeed, if this is not true, then there exists (x̂, ẑ) ∈ P ∗ such that ẑ < z∗. Since zt → z∗,

there exists some sufficiently large t such that ẑ < zt. This is not possible because

(xt, zt) is an optimal solution in Pt while (x̂, ẑ) ⊂ P ∗ ⊂ Pt is a feasible solutions. This

shows that (4.3.28) holds. Since P ⊂ P ∗, the inequality also holds for all (x, z) ∈ P ,

which implies (x∗, z∗) is an optimal solution of problem (4.3.27) if (x∗, z∗) ∈ P .

In what follows, we show that (x∗, z∗) ∈ P . Note that, (xt, zt) minimizes z in Pt, that

is, it satisfies the inequalities:

aTl+1x− bl+1 ≤ 0, (4.3.29)

and

dTl+1x+ el+1z − kl+1 ≤ 0, (4.3.30)

for l = 0, . . . , t − 1 and by condition (c), max{‖al+1‖ , ‖dl+1‖} ≤ L, ∀l. Let {xt, zt}

denote the subsequence. We claim that {max{ψ(xt, ν), E[f(xt, ξ)]− zt}} must converge

to 0. Note that since

bl+1 =
∑

i∈Jl

pi(−∇xν
∗TG(xl, ξ

i)Txl + ν∗TG(xl, ξ
i)− η∗) + γ(ν∗),

= aTl+1xl − ψ(xl, ν
∗),

= aTl+1xl − ψ(xl, ν),

then (4.3.29) implies

ψ(xl, ν) + aTl+1(x− xl) ≤ 0.

Similarly, by the definition of el+1, kl+1, we have from (4.3.30) that

E[f(xl, ξ)] + dTl+1(x− xl)− z ≤ 0.

Assume that the desired convergence does not occur. Then there exists an r > 0

independent of t such that

r ≤ max{ψ(xl, ν), E[f(xl, ξ)] − zl}

≤ max{aTl+1(xl − xt), d
T
t+1(xl − xt)− (zl − zt)},

≤ (L+ 1) ‖(xl, zl)− (xt, zt)‖ ,
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for all 0 ≤ l ≤ t−1, which shows that {(xt, zt)} does not converge, a contradiction. This

shows that

{max{ψ(xt, ν), E[f(xt, ξ)]− zt}}

converges to 0 and hence (xt, zt) ∈ P is the optimal solution.

4.3.3 Cutting surface algorithm

In this section we give details of the cutting surface algorithm proposed by Homem-de-

Mello et al. [70] to solve optimization problem with multivariate stochastic dominance

constraints. They use cut-generation approach for solving the problem instead of adding

all the constraints up front. In what follows, we restate the problem formulation and

the cutting surface algorithm as discussed in [70].

Theorem 4.10. [70, Theorem 1] Let P be a nonempty convex set. Let

Pi :=
{

(ν, y)|yl ≥ νT (ci − cl), yl ≥ 0, ν ∈ P̃ , l = 1, . . . , r
}

, i = 1, . . . , r. (4.3.31)

where P̃ := cl cone(P ) ∩∆ [70, Proposition 1]. Then, the multivariate stochastic domi-

nance constraints are equivalent to

t
∑

j=1

pj(ν
ikT ci−νik

T

Ajx)+ ≤
r
∑

l=1

ql(ν
ikT ci−νik

T

cl)+, i = 1, . . . , r, k = 1, . . . , νi, (4.3.32)

where νik are the ν-component of the vertex solutions of Pi.

They define the following problem:

min
x

−E[f(x, ξ)] (4.3.33)

s.t.

t
∑

j=1

pj(ν
ikT ci − νik

T

Ajx)+ ≤
r
∑

l=1

ql(ν
ikT ci − νik

T

cl)+, i = 1, . . . , r, k = 1, . . . , νi.

In the cut-generation approach they solve a sequence of linear relaxations of (4.3.33),

over a subset of constraints in (4.3.33). At a solution x̂ of a relaxed problem, they

consider the subproblems

min
ν,y

g(ν, y) :=

r
∑

l=1

qlyl −
t
∑

j=1

pj(ν
T ci − νTAj x̂)+

s.t. (ν, y) ∈ Pi.

(4.3.34)
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If all (4.3.34) have a non-negative objective value, we have a solution of (4.3.33). Other-

wise, we have a vertex solution ν̂ of (4.3.34) with a negative objective value. Correspond-

ing to this vertex, the constraint
∑t

j=1 pj(ν
ikT ci−νik

T
Ajx)+ ≤

∑r
l=1 ql(ν

ikT ci−νik
T
cl)+,

is a valid cut for x̂.

Algorithm 4.5 outlines the basic steps.

Algorithm 4.5 (Cutting surface algorithm [70])

Step 0. Set s := 0, ν0 :=an arbitrary vertex of Ki, where i ∈ {1, . . . , r} is also chosen

arbitrary. Set V:= (ν0, 0, i).

Step 1. Solve a linear programming reformulation of the problem

min E[f(x, ξ)] (4.3.35)

s.t.
t
∑

j=1

pj(ν
ikT ci − νik

T

g(x, ξj))+ ≤
r
∑

l=1

ql(ν
ikT ci − νik

T

Y l)+, (ν, y, i) ∈ Vs.

If the problem is infeasible, stop; if it is unbounded, then let x̂ and ĥ be respectively

a solution and a direction that generate a ray and go to Step 2. Otherwise, let x̂

be an optimal solution (4.3.35) and go to Step 3.

Step 2. For each j = 1, . . . , t, solve the linear program

min νTg(ĥ, ξj)

s.t. ν ∈ P̃ .
(4.3.36)

If any of the problems (4.3.36) has negative objective value, let ν̄ be a ver-

tex optimal solution to that problem and choose i ∈ {1, . . . , r} arbitrarily; let

Vs+1 :=Vs ∪ {(ν̄, 0, i)} and go to Step 5. Otherwise (i.e. of the problems (4.3.36)

have non-negative objective values for all j), go to Step 3.

Step 3. Solve problems (4.3.34) to find one or more vertex solution(s) (ν, y) ∈Ki, for some

i ∈ 1, . . . , r, such that

r
∑

l=1

qlyl −
t
∑

j=1

pj(ν
T ci − νTg(x̂, ξj)+ < 0.

Let (νik, yik), k = 1, . . . , ki be these identified vertices.

Step 4. If no vertex solution is found in Step 3, stop; otherwise, let

Vs+1 := Vs ∪ {(νik, yik, i), k = 1, . . . , ki}.

Step 5. Set s := s+ 1 and go to Step 1.
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Theorem 4.11. [70, Theorem 4] Algorithm 4.5 terminates after a finite number of

steps with either an optimal solution to the true problem, or a proof of infeasibility or

unboundedness of the true problem.

In next section, we investigate the efficiency of the above algorithms along with the

linearized method in [4].

4.4 Numerical Tests

We have carried out an academic test, a budget allocation example as well as a real

world portfolio optimization problem on the proposed model and algorithms by using

MATLAB 7.10 and IBM ILOG CPLEX 12.4 installed on a HP Notebook PC with

Windows 7 operating system, and Intel Core i7 processor.

We consider primarily an academic test problem introduced in [70, Section 2.2] to ex-

amine the penalization approach and efficiency of our proposed methods. Additionally,

for comparison purposes we consider a budget allocation problem as discussed in [4].

Moreover, we consider a portfolio optimization problem with real world test data to

further investigate the efficiency of the proposed stochastic programming model with

multivariate SSD constraint and compare it to the return generated by a Markowitz

model and corresponding indices. Furthermore, to estimate the penalty parameter we

have solved the optimization problem (4.3.25) using Algorithm 4.2 as discussed at the

end of Section 4.3.1. Another approach is to integrate Algorithm 4.3 in Algorithm 4.1

and 4.2, to find a suitable penalty parameter. We solved the reformulated problem with

Algorithms 4.1–4.5. For Algorithms 4.1 and 4.2 we use ǫ = 0.0001 and λ = 0.5. In the

rest of this section we report the corresponding results.

4.4.1 An academic example

Example 4.1. Homem-de-Mello et al. [70] considered the following model using stochas-

tic dominance:
maxx 3x1 + 2x2,

s.t.

−







ξ1 2

2 ξ2

1 0







[

x1

x2

]

�(2) −







ξ3

160

ξ4






,

(4.4.37)

where, ξi, i = 1, . . . , 4 denotes a random variable. Let ξ1 := 4 ± α, ξ2 := 2 ± α,

ξ3 := 200±10β, and ξ4 := 40±5β where α and β are equal to 1. Where ξ3 := 200±10β

suggests that the ξ1 is a binary between 3 and 5.
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To solve the optimization problem (4.4.37), Homem-de-Mello et al. [70] linearized the

program and eliminated the redundant constraints. They obtained the optimal solution

of problem (4.4.37) (with α = β = 1) to be x = (28.18, 34.55) and the corresponding

objective value to be f = 153.44. Here we reformulate the optimization problem (4.4.37)

as discussed in Section 4.2.3 and solved the reformulated problem by the proposed algo-

rithms. We set the penalty parameter ρ = 50 and double it at each iteration. The opti-

mal solution obtained by the proposed algorithms after 4 iteration is x = (27.99, 34.66)

and the corresponding objective value is f = 153.29.

4.4.2 A budget allocation model

The purpose of this example is to compare the efficiency of the level function method,

and a modified cutting-plane method based on the exact penalization scheme with the

linearized method proposed by Armbruster and Luedtke [4].

In what follows we present the budget allocation problem and study the behavior of

the proposed model and methods to solve a simple budget allocation problem. This

example is inspired by the budget allocation problem of Armbruster and Luedtke [4]

and the example in [71]. Here we restate the problem:

Example 4.2. Given a fixed budget, the problem is to determine what fraction of the

budget to allocate to a set of candidate projects, t ∈ T with |T | = T . The quality of

a budget allocation is characterized by d distinct objectives, for which larger values are

preferred. Each project t ∈ T is characterized by a d-dimensional random vector of

reward rates Rt for these objectives. Thus, given a feasible budget allocation x ∈ X :=

{x ∈ R
T
+ : x · 1 = 1}, the values of the d objectives are

∑

t∈T Rtxt. We assume that

we are given a d-dimensional random vector Y that indicates a minimal acceptable joint

performance of these objectives, and we require the performance of the chosen budget

allocation to stochastically dominate Y . Subject to this condition, the goal is to maximize

a weighted combination of the expected values of the measures:

max
x∈X

∑

t∈T

wT
E[Rt]xt

s.t.
∑

t∈T

Rtxt �
P lin
(2) Y,

(4.4.38)

where w ∈ R
d
+ is a given weight vector.

For the test instances, we assumed that the reward rate R := [R1, R2, . . . , RT ] are one

of N equally likely scenarios {Rj : j ∈ N} sampled from a joint normal distribution

with mean µ and covariance matrix Σ. The components of µ are chosen randomly

from U [10, 20] and the covariance matrix Σ was calculated as follows. The coefficient

of variations were chosen from U [0.2, 1.1]. The correlation of any two distinct elements
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(t, k) and (t′, k′) were chosen from U [−0.2, 0.4] if they share a project (t = t′) and from

U [−0.1, 0.1] if they share an objective (k = k′) and were 0 otherwise. The benchmark

random vector Y was determined from an allocation in which all projects are allocated

an equal fraction of the budget, but to avoid being overly conservative, was then reduced

by a fixed fraction δ of its mean. Specifically, a given realizations Rj
t ∈ R

d, for each

scenario j and project t, realization j of Y has a probability qy(j) = 1/N and is given by

Y j = Bj − δ( 1
N

∑N
k=1B

k) where Bj = 1
T

∑

t∈T R
j
t . In this example, we set the δ = 0.1

and weight all objectives equally in the objective, w = (1, . . . , 1).

Table 4.4.1 shows the computation times to solve these instances using the exact penal-

ization scheme and solved by the projected level function algorithm and the modified

cutting plane algorithm. Since the results of Algorithm 4.1 are identical to Algorithm

4.2, we only present the results for Algorithm 4.2. For these experiments, we varied the

number of objectives d ∈ {3, 5}, the number of projects T ∈ {50, 100}, and the number

of scenarios N = M ∈ {100, 300, 500}. For each combination of these parameters we

display the average computation time in seconds over five instances at that size.

(d, T ) Algorithms N = 100 N = 300 N = 500

(3,50)
Algorithm 4.2 2.36 13.05 46.86
Algorithm 4.4 24.13 219.67 739.27

(3,100)
Algorithm 4.2 2.69 14.78 53.48
Algorithm 4.4 104.80 - -

(5,50)
Algorithm 4.2 5.38 14.04 90.18
Algorithm 4.4 24.10 236.28 527.14

(5,100)
Algorithm 4.2 10.20 26.69 98.47
Algorithm 4.4 117.94 - -

Table 4.4.1: Average solution times in seconds of five instances solved by projected
level function algorithm and the modified cutting plane algorithm. The ”‘-”’ indicate

that the algorithms could not solve the problem within 30 minutes limit.

(d, T ) N = 100 N = 300 N = 500
(3,50) 0.3 12.3 86.2
(3,100) 0.3 8.9 61.6
(5,50) 0.6 37.8 181.8
(5,100) 0.7 23.0 105.6

Table 4.4.2: Average solution times in seconds of five instances solved using linear
SSD model proposed in [4].

These results indicate that with the exact penalization scheme and Algorithm 4.2 it

is possible to solve instances with a relatively large number of scenarios with lower

computation time compared to the linear SSD formulation model’s results shown in Table

4.4.2. Although, the opposite is true for lower number of scenario, but one advantage of

the proposed exact penalized model and the solution methods is that they can deal with

both linear and nonlinear underlying functions. Furthermore, Algorithm 4.4 proved to

be less efficient. This is because as the sample size increases, the construction of set Jt

in Step 3 of the algorithm takes longer time.
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4.4.3 Portfolio performance

Suppose that we have a fixed capital to be invested in n assets. Let Ri, i = 1, . . . , n,

denote the return of asset i. In practice, the return is often uncertain and we use a

random variable ξ to describe the uncertainty. Specifically, we write Ri as Ri(ξ) and in

doing so we are assuming that all n assets have an identical random factor depending

on ξ.

To simplify the discussion, we normalize the capital to 1 and use xi, i = 1, . . . , n, to

denote the fraction of capital to be invested in asset i. The portfolio return can then be

formulated as:

f(x, ξ) := R1(ξ)x1 +R2(ξ)x2 + · · · +Rn(ξ)xn. (4.4.39)

We use the optimization problem (4.2.5) to optimize our investment strategy. To ease

the presentation, we repeat the model:

min
x∈X

−E[f(x, ξ)]

s.t νT g(x, ξ) �P lin
(2) νTY (ξ), ∀ν ∈ S,

(4.4.40)

where f is defined by (4.4.39). We need to specify g(x, ξ) and X. The random variable

Y (ξ) plays the role of a benchmark outcome. For example, one may consider Y (ξ) =

g(x̄, ξ), where x̄ ∈ X is some reasonable value of the decision vector, which is currently

employed in the system. Note that g(x, ξ) and Y (ξ) are m-dimensional random vectors,

rather than scalar variables. Additionally, we use set of linear constraints to define the

set S, see (4.2.4).

To further examine the efficiency of the multivariate SSD model, we calculate the Con-

ditional Value at Risk (CVaR) for random variable f(x∗, ξ) where x∗ is an approximate

optimal solution obtained from solving (4.2.23). By definition for a specified probability

level α, the Value at Risk (VaR) of a portfolio is the lowest amount C such that, with

probability α, the profit does not fall below C. The CVaRα is the conditional expectation

of profit below C. In our context,

CVaRα(f(x
∗, ξ)) = sup

C

{

C−
1

α
E[(C− f(x∗, ξ))+]

}

, (4.4.41)

where α ∈ (0, 1) is a pre-specified constant. Three values of α are commonly considered:

0.90, 0.95, 0.99. However, in our analysis we focus on the case of α = 0.95.

Let us now estimate the penalty parameter ρ through Theorem 4.6. Referring back to

Theorem 4.6, we need to calculate κ, δ, and D. Let x0 ∈ X be the weights for an equally
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weighted portfolio, the
∑N

i=1 piκ(ξ
i) = 0.0084. The δ can be calculated as follows:

δ := − max
j∈1,...,N

{

max
ν∈S

(

max
J∈N

∑

i∈J

pi(ν
T ηj − νTG(x0, ξ

i))−
N
∑

i=1

pi(ν
T ηj − νTY (ξi))+

)}

,

and we found δ ≈ 4.865E-005. We choose D = 1 and estimate the penalty parameter as

follows:

ρ ≥
N
∑

i=1

piκ(ξ
i)δ−1D = 192.39.

Example 4.3. We consider m history of percentage returns, for three different group

of n assets. Each of these groups could belong to a different Index. Our aim is to

find an optimal investment strategy for a fixed capital in the n assets which maximized

the expected profit subject to certain risk averse measures. Particularly we consider the

following model:

min
x∈X

−E[f(x, ξ)],

s.t νT g(x, ξ) �(2) ν
TY (ξ),

where g(x, ξ) = [g1(x, ξ) g2(x, ξ) g3(x, ξ)] and Y (ξ) = [Y1(ξ) Y2(ξ) Y3(ξ)]. We apply

the exact penalization as explained in Section 4.2.3 ans solve the reformulated problem

by the level function algorithms (Algorithm 4.1 and 4.2), the cutting plane method

(Algorithm 4.4), and the cutting-surface method (Algorithm 4.5). For the purpose of

this example we set the upper bound and lower bound on the capital invested equal to

0.2 and 0, respectively.

We collected 300 daily historical returns of 53 FTSE 100, 53 Nasdaq100 and 30 Dow

Jones assets prior to March 2011. We use the first 100 observations to construct the

portfolio strategy. We solve the optimization problem using level function algorithms,

modified cutting-plane method, and the cutting surface method. Table 4.4.3 shows the

result of this example. In this example each component of the vector g(x, ξ) corresponds

to the sum of return of the assets belonging to each of the three indices computed as

described in (4.4.39).

Algorithm Iter. Time No. Assets Return CVaR
4.1 10 0.0188 6 0.034 0.015
4.2 9 0.0174 6 0.034 0.015
4.4 4 0.0166 6 0.034 0.014
4.5 6 0.653 6 0.034 0.015

Table 4.4.3: Time is in minutes. No. Assets refers to the number of assets
in the optimal portfolio. The expected return of the benchmark portfolio Y =

[0.0051 0.0085 0.0069].

As it can be seen all four algorithms result in very similar portfolios with identical

expected return and number of assets in the portfolio.
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We set up a backtest and use the remaining 200 observations to construct an out-of-

sample test in order to investigate the performance of the selected portfolio. Figures

4.4.1 and 4.4.2 show the difference of return on selected portfolio and benchmark port-

folio. The benchmark portfolio represent the average return of the three indices. The

comparison of the return to each index individually is presented in Figures A.1.1-A.1.6

in the Appendix A.
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Figure 4.4.1: Backtesting of the difference of return on selected portfolios and indices.
The benchmark portfolio is the average return of the indices.
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Figure 4.4.2: Out of sample test of the difference of return on selected portfolios and
indices. The benchmark portfolio is the average return of the indices.

It can be seen that in both Figures 4.4.1 and 4.4.2, the line lies mostly above the zero line

which means that the generated portfolio return is higher than the benchmark portfolio.
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Furthermore, to investigate the dominance relationship we present the graph of cumu-

lative distribution functions of portfolio return generated by the multi-SSD model using

the Algorithms 4.2-4.5, Markowtitz model and the benchmark portfolio in Figure 4.4.3.

It is clear that the generated portfolio strategy dominates the benchmark portfolio.

Moreover, to see the performance of the generated strategy out-of-sample we present
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Figure 4.4.3: Cumulative distribution functions for the portfolio strategy generated
by the Multi-SSD models, Markowitz model and the benchmark portfolio.

graph of cumulative return of the of portfolio return generated by the multi-SSD model

using the Algorithms 4.2-4.5, Markowtitz model and the benchmark portfolio in Fig-

ure 4.4.4. It can be seen that the return generated by the portfolio strategy based on

the Multivariate SSD model is much higher compared to the Markowitz model and the

benchmark portfolio.
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Figure 4.4.4: Out-of-sample cumulative return for the generated portfolio strategy
based on the Multivariate SSD models, Markowitz model and the benchmark portfolio).

To illustrate the benefit of using multivariate stochastic dominance constraints, we com-

pare the portfolio strategy constructed by the optimization problem (4.2.22) with an
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investment strategy generated by Markowitz model as described below:

max
x∈X

E[f(x, ξ)]− λE[R(x, ξ)]

s.t. E[gi(x, ξ)] ≥ Rb
i , i = 1, . . . ,m,

n
∑

i=1

xi = 1, x ≥ 0, x ∈ X ,

(4.4.42)

where λ = 1 is a fixed nonnegative number, E[R(x, ξ)] is the portfolio variance, Rb
i is the

benchmark return set equal to the index i, E[gi(x, ξ)] is the return of the asset belonging

to index i, and E[f(x, ξ)] is the return defined as in (4.4.39).

Table 4.4.4 compares the portfolio generated by Markowitz model to the generated

portfolio by the multivariate SSD model. As it can be seen, although the number of

assets in the optimal portfolio are the same but the portfolio generated by the Markowitz

model has a lower return and a higher CVaR.

Model No. Assets Return CVaR
Multivariate SSD 6 0.034 0.014

Markowitz 6 0.032 0.018

Table 4.4.4: Time is in minutes. No. Assets refers to the number of assets in the
optimal portfolio.

Figures 4.4.5 and 4.4.6 present the result of the backtest and out-of-sample test as

described earlier. As it can be seen the portfolio generated by the optimization problem

(4.2.23) outperforms the strategy generated by the Markowitz model (4.4.42) by having

relatively higher returns both in-sample and out-of-sample.
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Figure 4.4.5: Comparing the backtest of the portfolio return of the optimization
problem with multivariate SSD constraint and the Markowitz model.

To further compare the performance of the the two portfolio we use the Sortino ratio.

The Sortino ratio measures the risk-adjusted return of an investment asset, portfolio or

strategy. We used risk free rate (0.5%) and the benchmark portfolio as the required
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Figure 4.4.6: Comparing out-of-sample test of the portfolio return of the optimization
problem with multivariate SSD constraint and the Markowitz model.

rate of return. We calculated the Sortino ratio both at the 100th day and 300th day.

The results are shown in Table 4.4.5. As it can be seen the portfolio generated by the

multivariate SSD model out perform the portfolio generated by the Markowitz model

by having higher risk-adjusted return.

Model Required return 100th day Sortino ratio 300th day Sortino ratio

Multivariate SSD Model
Benchmark 0.3969 0.3903
Risk-free 0.2643 0.0749

Markowitz Model
Benchmark 0.1716 0.1308
Risk-free 0.1795 0.0637

Table 4.4.5: Sortino ratio of the portfolio generated by optimization problem with
multivariate SSD constraints and the Markowitz model.

Furthermore, we test the algorithms for various number of assets and record the CPU

time. Figure 4.4.7 presents the result for this test. As it can be seen, all algorithms

solve relatively large problems within a reasonable time. Additionally, we investigate the

performance of the Algorithm 4.2, 4.4, and 4.5 as the number of observations increases.

This is illustrated in Figure 4.4.8. Although the Figure 4.4.8 shows that the Algorithm

4.5 becomes inefficient, in our numerical tests increasing the number of observations did

not result in a better portfolio.

4.5 Conclusion

In this chapter we studied stochastic programming with multivariate second order stochas-

tic dominance constraints. Specifically, we proposed an exact penalty method for second

order multivariate stochastic dominance constraints. Furthermore, we solved the penal-

ized problem (4.2.22) using the level function method as well as a modified cutting-plane

method inspired by the methods proposed in [120, 52]. These method were compared
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Figure 4.4.7: Graph of CPU time for various number of instruments for each algo-
rithm.
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Figure 4.4.8: Graph of CPU time for various number of instruments for each algo-
rithm.

to the cutting surface method proposed in [70], and the linearized method proposed in

[4].

We applied the penalization scheme and the numerical methods to an academic test

problem, a budget allocation problem, and a portfolio optimization problem. The aca-

demic test results showed that the penalization approach and the numerical methods

results in similar optimal solution as the solution generated in [70, Section 2.2]. The

budget allocation problem showed that the proposed method solved with Algorithm 4.2

is more efficient compared to the linearized method when the sample size is large. How-

ever, this is not the case when sample size is relatively small. The main advantage of our

proposed method to the linearized method is that it can deal with nonlinear underlying

functions. In the portfolio optimization problem, we used data of 136 assets from three

different indices (FTSE 100, Nasdaq100, and Daw Jones). To investigate the perfor-

mance of generated portfolio strategy, we set up a backtest and an out-of-sample test

and compared the performance of the selected portfolio to the corresponding indices.

We concluded that the generated portfolio performs better than the indices in sense of

higher return both in-sample and out-of-sample.
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Furthermore, to illustrate the benefit of considering multivariate stochastic dominance,

we introduced the Markowitz model (4.4.42) and compared the performance of the Mul-

tivariate SSD model to Markowitz model both in-sample and out-of-sample as well as

based on the Sortino ratio. It was concluded that the portfolio optimization problem

with multivariate SSD constraints outperforms the portfolio optimization problem based

on Markowitz model by having higher risk-adjusted return.

Moreover, we performed a test to investigate the effect of number of instrument on

the computation time for each algorithm. These test suggested as anticipated that

the projected level function algorithm and the cutting plane method can solve a large

problems within reasonable time.



Chapter 5

Robust Reward-Risk Ratio

Optimization

5.1 Overview

Stochastic programming has established itself as a powerful modeling tool when an

accurate probabilistic description i.e. accurate values for the system parameters and

specific probability distributions for the random variables are available. However, such

information is rarely available in practice. In such situations, there are two major ways

to deal with the uncertainties. One is through sample average approximations (SAA)

also known as Monte Carlo method, where SAA of the expected value of the underlying

function is constructed using empirical data, for a detailed discussion see [127]. The

other is to use partial information such as moment to identify a set of possible probability

distributions within which the true distribution lies. A robust optimization approach to

this problem is based on making the decision that would be appropriate given the worst

probability distribution amongst the set of possible distributions.

The robust optimization for stochastic programming can be traced back to the work

by Scarf [125]. There has been extensive improvements in this field primarily driven

by applications in risk management, finance and engineering [61, 65, 102, 154]. Given

historical data, it is easier to estimate moment information of random parameters than

to derive their probability distributions. This motivates the use of moment information

in developing uncertainty models for random parameters.

The problem of moment has been studied by Stieltjes [136] in the ninetheenth cen-

tury. The problem is related to the characterization of a feasible sequence of moments.

Schmudgen [126], Putinar [110], and Curto and Fialkow [30] derived necessary and suffi-

cient conditions sequences of moments with different settings. The problem of moments

is also related to optimization over polynomials (the dual theory of moment). Lasserre

81
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[87] and Parrilo [107] among others proposed relaxation hierarchies for optimization over

polynomials using moment results. Bertsimas and Popescu [19] studied further the opti-

mal inequalities given moment information. Moment problems in finance such as option

pricing problems have been investigated in the literature (see [18, 94, 23]).

Inspired with the notion of reward-risk ratio optimization, we study robust stochas-

tic reward-risk ratio optimization. We propose two robust formulations, one based on

mixture distribution, and the other based on the first moment approach. We propose

a sample average approximation formulation as well as a penalty scheme for the two

robust formulations, respectively and solve the latter with the level function method

proposed by Lemarechal et al. [89] and extended by Xu [146].

The main contribution of this chapter can be summarized as follows:

• We propose a robust optimization problem for a reward-risk ratio optimization

based on mixture distribution and first order moment approach. For the case of

mixture distribution a sample average approximation formulation is also presented.

Moreover, an exact penalization scheme is proposed for the first order moment

approach to handle the semi-infinite constraints in the dual problem.

• The proposed methods are applied to the Sortino performance ratio and the ro-

bust formulations based on both mixture distribution and the first order moment

approach are derived.

• We investigate the numerical efficiency and accuracy of the proposed methods by

presenting a portfolio optimization problem and a fund of funds problem based

on real world data. We further, set up backtest and out-of-sample test to inspect

the performance of the generated portfolios and compare them to the benchmark

portfolio.

In the rest of this chapter we focus on numerical aspect of robust reward-risk ratio

optimization. In Section 5.2 we introduce a reward-risk ratio optimization with one

sided risk measure. In Section 5.2.2, we present robust formulation of reward-risk ratio

optimization problem with one sided risk measure based on both mixture distribution

and first moment approach followed with an exact penalization scheme. In Section 5.4,

we apply the proposed methods to Sortino performance ratio. In Section 5.5, we present

some numerical test results. Finally, in Section 5.6 we present the conclusions.
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5.2 Robust Reward-Risk Ratio Optimization

5.2.1 Introduction

There are two basic approaches to the problem of portfolio selection under uncertainty.

One is the stochastic dominance approach, based on the axiomatic model of risk-averse

preferences. The optimization problems that arise are not easy to solve in practice as it

was discussed in previous chapters. The other is the reward-risk analysis. According to

the reward-risk analysis, the portfolio choice is made with respect to two criteria, the

expected portfolio return and the portfolio risk. A portfolio is preferred to another one

if it has higher expected return and lower risk.

Related to the reward-risk analysis is the reward-risk ratio optimization. Since the

publication of the Sharpe ratio, see [132], which is based on the mean-variance analysis,

some new performance measures like the STARR ratio, the Minimax measure, Sortino

ratio, Farinelli-Tibiletti ratio and most recently the Rachev ratio and the Generalized

Rachev ratio have been proposed (for an empirical comparison, see Biglova et al. [22],

Rachev et al. [124] and the references therein). The new ratios take into account

empirically observed phenomena, that the distributions of asset’s returns are fat-tailed

and skewed, by incorporating proper reward and risk measures.

In this chapter, we focus on general performance measure optimization with one-sided

risk measure, where only downward variations are penalized. We will discuss this in

details in Section 5.4. Specifically, we consider following optimization problem:

max
x∈X

E[µ(x, ξ)− Y (ξ)]

E[(Y (ξ)− µ(x, ξ))+]
, (5.2.1)

where Y (ξ) is a benchmark and (a)+ = max(a, 0). Note that, the numerator is concave

and equivalent to the expected excess return over the benchmark, while the denominator

is a convex one sided risk measure. In what follows, we explore the possible simplification

of the problem that would facilitate the numerical solution.

Pinar et al. [108] showed that under some assumptions, the problem (5.2.1) can be

reformulated as:

max
(x,τ)∈X×R

τ

s.t. E[µ(x, ξ)− Y (ξ)− τ(Y (ξ)− µ(x, ξ))+] ≥ 0,

x ∈ X.

(5.2.2)

In what follows, we will present the robust reformulation of the problem (5.2.2) based

on the mixture distribution approach and the first order moment approach.
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5.2.2 Robust formulations

In mathematical optimization models, we commonly assume that the data inputs are

precisely known and ignore the influence of parameter uncertainties on the optimality

and feasibility of the models. Robust optimization addresses the issue of data uncer-

tainties from the perspective of computational tractability. Since its introduction by H.

Scarf in 50s [125], the robust optimization model also known as the minimax stochastic

program, has granted a lot of interest in both academic and practitioner’s communities.

In what follows, we present a robust formulation for the optimization problem (5.2.1).

Let P denote a set of probability distributions which contains the true probability. We

consider a robust scheme for problem (5.2.1) as follows:

max
x∈X

min
P∈P

EP [µ(x, ξ) − Y (ξ)]

EP [(Y (ξ)− µ(x, ξ))+]
. (5.2.3)

Moreover, the robust counterpart of the problem (5.2.2) can be formulated as:

max
(x,τ)∈X×R

τ

s.t. min
P∈P

EP [µ(x, ξ)− Y (ξ)− τ(Y (ξ)− µ(x, ξ))+] ≥ 0.
(5.2.4)

In the above two formulations, the robustness is in the sense that given the set of

probability measures P, an optimal solution is sought against the worst probability

measure which is used to compute the expected value of the objective function. Note

that, the robust problem (5.2.4) depends on the choice of P, and an optimal solution

of problems (5.2.3) and (5.2.4) provide a lower bound of the true optimal values of the

true problems (5.2.1) and (5.2.2), respectively.

Theorem 5.1. Consider the two robust optimization problems (5.2.4) and (5.2.3). The

solution of problem (5.2.4) is equivalent to the solution of problem (5.2.3).

Proof. Let (x∗, τ∗) be the optimal solution to problems (5.2.4). Let x̂ be the optimal

solution of the problem (5.2.3) and τ̂ be defined as

min
P∈P

EP [µ(x̂, ξ)− Y (ξ)]

EP [(Y (ξ)− µ(x̂, ξ))+]
= τ̂ .

Then

EP [(µ(x
∗, ξ)− Y (ξ)) − τ∗(Y (ξ)− µ(x∗, ξ))+] ≥ 0, ∀P ∈ P.

Consequently
EP [µ(x

∗, ξ)− Y (ξ)]

EP [(Y (ξ)− µ(x∗, ξ))+]
≥ τ∗, ∀P ∈ P,

then

min
P∈P

EP [µ(x
∗, ξ)− Y (ξ)]

EP [(Y (ξ)− µ(x∗, ξ))+]
≥ τ∗.
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Therefore, we can conclude that (x∗, τ∗) is a feasible solution of problem (5.2.4), and

τ̂ ≥ τ∗.

Similarly, for the problem (5.2.3) we can say that

EP [µ(x̂, ξ)− Y (ξ)]

EP [(Y (ξ)− µ(x̂, ξ))+]
≥ τ̂ , ∀P ∈ P.

Then

EP [(µ(x̂, ξ)− Y (ξ))− τ̂(Y (ξ)− µ(x̂, ξ))+] ≥ 0, ∀P ∈ P.

Therefore

min
P∈P

EP [(µ(x̂, ξ)− Y (ξ)) − τ̂ (Y (ξ)− µ(x̂, ξ))+] ≥ 0.

Consequently, we can conclude that (x̂, τ̂ ) is feasible solution of problem (5.2.4), and

τ̂ ≤ τ∗.

In what follows, we focus on solving problem (5.2.4), we can reformulate the optimization

problem (5.2.4) as follows:

min
(x,τ)∈X×R

−τ

s.t. −[min
P∈P

EP [(µ(x, ξ) − Y (ξ))− τ(Y (ξ)− µ(x, ξ))+]] ≤ 0.
(5.2.5)

Note that, the constraint is the optimization problem (5.2.5) can equivalently be written

as

max
P∈P

− EP [(µ(x, ξ)− Y (ξ)) − τ(Y (ξ)− µ(x, ξ))+] ≤ 0. (5.2.6)

Consequently, the optimization problem (5.2.5) can be reformulated as follows:

min
(x,τ)∈X×R

−τ

s.t. max
P∈P

− EP [(µ(x, ξ)− Y (ξ))− τ(Y (ξ)− µ(x, ξ))+] ≤ 0.
(5.2.7)

In what follows, we focus on the constraint of optimization problem (5.2.7).

The robust optimization problem is also referred to as minimax, maximin or distribu-

tional robust optimization in the literature of stochastic programming. Research on

minimax robust optimization dates back to the pioneering work by Zackova [150] and

Dupačová [41]. More recently, substantial extensions have been done by Shapiro and

Kleywegt [130], Shapiro and Ahmed [128], and Bertsimas et al. [16]. Relationship be-

tween robust optimziation and minimax/distributional robust optimization have been

discussed by Goh and Sim [60] and Xu et al. [147].

There are various ways to define the set P depending on the availability of information

on the distribution of the unknown parameter. In this chapter, we consider two specific
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cases, one is that P is defined as a mixture of a set of known probability distributions;

the other is that P is defined through first order moments.

5.2.3 Mixture distribution

Assume that ξ is only known to belong to a set of distributions which consists of all the

mixutres of some predetermined likelihood distributions, i.e.,

P ∈ P ,

{

L
∑

l=1

λlPl :
L
∑

l=1

λl = 1, λl ≥ 0, l = 1, . . . , L

}

, (5.2.8)

where P1, . . . , PL is the set of probability measures for l = 1, . . . , L and L denotes the

number of the likelihood distributions.

In this setup, we assume that probability distributions Pl, l = 1, . . . , L, are known and

the true probability distribution is in the convex hull of them. Mixture distribution

has already been studied in robust statistics and used in modeling. More recently,

Zhu and Fukushima [153] studied robust optimization of CVaR of a random function

under mixture probability distributions. Here we apply the approach to a fractional

optimization problem.

With the P defined as in (5.2.8), we can write problem (5.2.6) as follows:

max −
L
∑

l=1

λlEPl
[(µ(x, ξ)− Y (ξ)) − τ(Y (ξ)− µ(x, ξ))+]

s.t.

L
∑

l=1

λl = 1,

λl ≥ 0, l = 1, . . . , L.

(5.2.9)

Due to linearity with respect to variable λl, l = 1, . . . , L, the problem (5.2.9) is equivalent

to

max
l=1,...,L

−EPl
[(µ(x, ξ) − Y (ξ))− τ(Y (ξ)− µ(x, ξ))+].

Consequently, the problem (5.2.7) can be reformulated as follows:

min
(x,τ)∈X×R

−τ

s.t. −EPl
[(µ(x, ξ)− Y (ξ))− τ(Y (ξ)− µ(x, ξ))+] ≤ 0, for l = 1, . . . , L.

(5.2.10)
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In the case when ξ has a finite discrete distribution, that is, ξ takes finite number of

values ξ1, . . . , ξN , the formulation (5.2.10) can be simplified as follows:

min
(x,τ)∈X×R

−τ

s.t. −
N
∑

i=1

pil[(µ(x, ξ
i
l )− Y (ξil ))− τ(Y (ξil )− µ(x, ξil ))+] ≤ 0, for l = 1, . . . , L.

(5.2.11)

where pil corresponds to the probability measure of Pl in scenario i.

In the case when Pl satisfies continuous distribution, it might be undesirable to compute

expected values of the underlying random functions with respect to the distribution of

the probability measure. One way to tackle this issue is through sample average approx-

imation. For a fixed l, let ξ1l , . . . , ξ
Nl

l denote independent and identically distributed

random variable to ξ with distribution Pl. Then EPl
[f(x, ξ)] can be approximated by

1

Nl

Nl
∑

i=1

f(x, ξil ).

Consequently, The sample average approximation of the optimization problem (5.2.10)

can be formulated as follows:

min
(x,τ)∈X×R

−τ

s.t. −
N
∑

i=1

pil[(µ(x, ξ
i
l )− Y (ξil ))− τ(Y (ξil )− µ(x, ξil ))+] ≤ 0, for l = 1, . . . , L.

(5.2.12)

The ξil can be generated by computer simulation under probability distribution Pl.

5.2.4 First order moment approach

Recall, the robust optimization problem (5.2.7). Let set P denote the possible probabil-

ity distributions that is assumed to include the true P . In what follows we discuss the

approach used to solve the optimization problem (5.2.7). Recall problem (5.2.5) and let

min
P∈P

EP [G(x, ξ, τ)] := EP [(µ(x, ξ)− Y (ξ)) − τ(Y (ξ)− µ(x, ξ))+]. (5.2.13)

We denote by B the set of probability measures on (Ξ,F) and EP [G(x, ξ, τ)] is given by

the integral

EP [G(x, ξ, τ)] =

∫

Ξ
G(x, ξ, τ)Pd(ξ).

It is reasonable to assume that we have some knowledge about certain moments of cor-

responding probability distribution. That is, the set P is defined by moment constraints



88 Chapter 5 Robust Reward-Risk Ratio Optimization

as follows

P :=

{

P ∈ B :
EP [ψi(ξ)] = bi, i = 1, . . . , p,

EP [ψi(ξ)] ≤ bi, i = p+ 1, . . . , q,

}

,

where ψi : Ξ → R, i = 1, . . . , q, are measurable functions. In practice, bi is the mean

value of a random variable ψi(ξ), which can often be estimated. Moment of distributions

are well discussed in the literature (see [142, 143] and references therein).

In what follows, we use the first order moment condition to derive the dual of problem

(5.2.13). For a given x ∈ X, the Lagrangian dual of the problem (5.2.13) is as follows:

max
λ∈R×Rp×R

q−p
+

min
P�0

Lx(P, λ), (5.2.14)

where

Lx(P, λ) := EP [G(x, ξ, τ)] + λ0(1− EP [1]) +

q
∑

j=1

λj(bi − EP [ψi(ξ)]).

Consequently, we can write the dual problem (5.2.14) in the form

max
λ∈R×Rp×R

q−p
+

λ0 +

q
∑

i=1

biλi

s.t. λ0 +

q
∑

i=1

λiψi(ξ) ≥ G(x, ξ, τ), ξ ∈ Ξ.

(5.2.15)

Note that, if the set Ξ is finite, the problem (5.2.13) and its dual (5.2.15) are linear

programming problems. In that case there is no duality gap between these problems

unless both are feasible. If the set Ξ is infinite, then the dual problem (5.2.15) becomes

a linear semi-infinite programming problem. In that case one needs to verify some

regularity conditions in order to ensure “no duality gap” property. For further detail

see [129, Page 310].

We can reformulate the problem (5.2.15) as

min
λ∈R×Rp×R

q−p
+

−λ0 −

q
∑

i=1

biλi

s.t. λ0 +

q
∑

i=1

λiψi(ξ) ≥ G(x, ξ, τ), ξ ∈ Ξ.

(5.2.16)
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Applying the dual formulation (5.2.16) to the problem (5.2.6), we can write problem

(5.2.7) as the following semi-infinite problem

min
x∈X,τ∈R,λ∈R×Rp×R

q−p
+

−τ

s.t. λ0 +

q
∑

i=1

biλi ≤ 0,

λi ≥ 0, for i = p+ 1, . . . , q,

λ0 +

q
∑

i=1

λiψi(ξ) ≥ G(x, ξ, τ), ξ ∈ Ξ,

(5.2.17)

In what follows, we will discuss an exact penalization to deal with the infinite number

of constraint in optimization problem (5.2.17).

5.2.4.1 An exact penalization

Bertocchi et al. [14] proposed an exact penalization approach for handling general semi-

infinite constraints where underlying functions are nonlinear in ξ. Recall that

G(x, ξ, τ) = (µ(x, ξ)− Y (ξ)) − τ(Y (ξ)− µ(x, ξ))+.

Assume that the support set of Ξ is compact and for each ξ ∈ Ξ, G(x, ξ, τ) is convex

w.r.t. x. Let

R(x, τ, λ0, λ, ξ) := G(x, ξ, τ) − λ0 − λTψ(ξ),

and w := (x, τ, λ0, λ). The semi-infinite constraint of (5.2.17) can be written as

max
ξ∈Ξ

R(w, ξ) ≤ 0. (5.2.18)

Definition 5.2. Let F denote the set of solutions to (5.2.18). Problem (5.2.18) is said

to satisfy Slater condition if there exist a positive number δ̄ and a point w̄ ∈ F such

that

max
ξ∈Ξ

R(w̄, ξ) ≤ −δ̄.

The problem (5.2.18) is said to satisfy strong Slater condition if there exists a positive

number γ such that for any w ∈ F with R(w, ξ) = 0 for some ξ ∈ Ξ, there exists a point

ŵ with R(ŵ, ξ) < 0 for all ξ ∈ Ξ and

‖w − ŵ‖ ≤ γmin
ξ∈Ξ

−R(ŵ, ξ)+.

Note that, the strong Slater condition requires the Slater condition. The notion of strong

Slater condition is introduced by Gugat [65] for deriving error bound of a semi-infinite

convex system of inequalities.
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Lemma 5.3. Assume: a) the inequality system (5.2.18) satisfies the strong Slater con-

dition, b) function R(·, ξ) is convex on W for every ξ ∈ Ξ. Then there exists a positive

number γ > 0 such that

d(w,F) ≤ γmax
ξ∈Ξ

(R(w, ξ))+,

where d(w,F) denotes the distance between point w and set F and a+ = max(a, 0) for

a ∈ R.

For the proof refer to [14, Lemma 2.1].

Theorem 5.4. [14, Theorem 2.1] Consider the following convex program:

min Q(w),

s.t. H(x, ξ) ≤ 0,

w ∈W,

(5.2.19)

where W = X ×R×R×R
p×R

q−p
+ . Assume: a) the inequality system (5.2.18) satisfies

the strong Slater condition, b) function H(·, ξ) is convex on W for every ξ ∈ Ξ, c)

function Q is convex and Lipschitz continuous with modulus C. Then there exists a

positive number ρ̄ such that the set of optimal solutions of (5.2.19) coincides with the

set of th optimal solutions of the following penalized problem:

min Q(w) + ρmax
ξ∈Ξ

(H(w, ξ))+,

s.t. w ∈W,
(5.2.20)

where ρ ≥ ρ̄.

Proof. Under the strong Slater condition, it follows by Lemma 5.3 that there exists a

constant γ > 0 such that

d(w,F) ≤ γmax
ξ∈Ξ

(H(w, ξ))+.

Let ρ be a positive constant such that ρ > γC. By [29, Proposition 2.4.3] we can show

that the two optimal solution sets of problems (5.2.20) and (5.2.19) coincide. This prove

the existence of a positive constant ρ̄ := γC. The proof is complete.

We can reformulate problem (5.2.17) by Theorem 5.4 as the following penalized mini-

mization problem:

min
w

−τ + ρϕ(w),

s.t. λ0 +

q
∑

i=1

biλi ≤ 0,

s.t. λi ≥ 0, for i = p+ 1, . . . , q.

(5.2.21)
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where w := (x, τ, λ0, λ), and

ϕ(w) := max
ξ∈Ξ

(R(w, ξ))+.

This is a deterministic nonsmooth convex program with simple constraints. Well known

method such as cutting plane method, bundle methods and subgradient methods can

be exploited to solve it. In what follows, we outline the level function method due

to Lemarechal et al. [89] and extended by Xu [146] for solving optimization problem

(5.2.21).

5.3 Solution Methods

In this section we will discuss the solution methods for solving optimization problem

(5.2.10) and (5.2.21).

The optimization problem (5.2.10) can be solved by MATLAB built-in solver “fmincon”

which is suitable for nonlinear constraint optimization problems. However, the problem

(5.2.21) is a deterministic nonsmooth convex program with simple constraint which is

best solved by algorithms such as the level function method as mentioned earlier.

5.3.1 Level function method

In this section, we focus on solving optimization problem (5.2.21) with the projected

level function algorithm as discussed in Chapter 3 (Algorithm 3.2). In what follows, we

refer to Algorithm 3.2 as Algorithm 5.1.

let ϑ(w, ρ) be defined as follows:

ϑ(w, ρ) := −τ + ρmax
ξ∈Ξ

(R(w, ξ))+,

where w := (x, τ, λ0, λ). Let ζk ∈ ∂wϑ(w, ρ), then

σwk
(w) = ζTk (w − wk)/ ‖ζk‖ ,

is a level function of ϑ(w, ρ) at wk.

Theorem 5.5. Let {wk} be generated by Algorithm 5.1. Assume the conditions of

Theorem 5.4 are satisfied. Then

∆(k) ≤ ǫ, for k > M2Υ2ǫ−2λ−2(1− λ2)−1,
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where Υ represents the diameter of the solution set W , ǫ and λ are given in the projected

level function algorithm (Algorithm 3.2).

For the proof refer back to the proof of Theorem 4.7 in Chapter 4 and [146, Theorem

3.3].

In the projected level function algorithm (Algorithm 5.1) the penalty parameter in

ϑ(w, ρ) is fixed. In some cases, it might be difficult to estimate the penalty parame-

ter. One way to tackle this issue as discussed in Chapter 4 is to start with an estimate

of penalty parameter and solve the resulting penalized problem with the level function

algorithms. The feasibility of the obtained solution is checked: if it is feasible the op-

timal solution is obtained, otherwise, the penalty parameter is increased the process

is repeated. This kind of procedure in known as Simple Penalty Function Method in

the literature of optimization, see for instance [138, Algorithm 10.2.3]. We describe the

aforementioned procedure formally in the following algorithm for the penalized problem

(5.2.21).

Algorithm 5.2 (Simple Penalty Function Method for penalized problem (5.2.21)).

Step 1. Let ǭ be a positive number. Let ρ0 be an intial estimate of the penalty parameter.

Set t := 0.

Step 2. For ρ̄ := ρt, apply Algorithm 5.1 to solve problem (5.2.21). Let xt denote the

solution obtained from solving the problem.

Step 3. If maxξ∈Ξ(R(w, ξ))+ ≤ ǭ, stop; otherwise, set wt+1 := wt, ρt+1 := 10ρt and

t := t+ 1, go to step 2.

Algorithm 5.2 terminates in a finite number of iterations in that the exact penalty

parameters for problem (5.2.21) is finite, see Theorems 5.4.

In what follows, we first discuss the financial performance ratio optimization and present

some examples. Then we present the robust reformulation of the performance ratio

followed by some numerical results.

5.4 Financial Performance Ratios

A major topic of debate in modern asset allocation modeling and managing techniques

is how to choose the best performance ratio. Decades ago, Sharpe [132] introduced the

well-known Sharpe Ratio for managing mutual funds. Subsequently, Zenios [152], Zenios

and Kang [151] and Sharpe [133] improved the ratio suggesting to refer the performance

to a benchmark. Although this ratio is fully compatible with normally distributed



Chapter 5 Robust Reward-Risk Ratio Optimization 93

returns, it loses reliability as soon this property is relaxed (see [44, 88]). Consequently, a

number of alternative performance measures such as Sortino ratio [134], MiniMax ratio

[149] and Stable ratio [22, 74] have been proposed in the literature.

The well-known Sharpe ratio [132] of a portfolio with return µ(x, ξ) and a benchmark

Y (ξ) can be calculated as:

ΦSharpe(µ(x, ξ), Y (ξ) =
E[µ(x, ξ)− Y (ξ)]

σ(µ(x, ξ)− Y (ξ))
,

where σ denotes the standard deviation. Using the standard deviations as a measure of

risk results in equal penalization of both upside and downside deviations to the bench-

mark. Therefore, this type of ratio is suitable for investment where the main concern

is to control the stability of return around the benchmark. On the other hand, if the

investment is more concerned with the trade off between large favorable/unfavorable

deviations from the benchmark, the Sortino ratio is more appropriate [134].

Definition 5.6. The Sortino performance ratio for a portfolio with return µ(x, ξ) and

benchmark Y (ξ) is defined as:

ΦSS(µ(x, ξ), Y (ξ) =
E[µ(x, ξ)− Y (ξ)]

E[((Y (ξ)− µ(x, ξ))+)d]1/d
,

where d > 0, and denote the left orders of the performance ratio.

Sortino ratio substitutes the standard deviation as a measure of risk with left partial

moment of order d. Therefore, the only penalizing volatility is the undesirable one below

the benchmark. The original Sortino ratio [134] is defined for d = 2, it has been extended

to d ≥ 1 in [22, 123]. More recently, the case when d > 0 has been considered by Farinelli

and Tibeletti [54, 55].

In the remaining of this chapter, we concentrate on the Sortino performance ratio [134]

and propose a robust financial performance optimization model based on this ratio.

Recall, robust optimization problem (5.2.7), we can equivalently define the robust for-

mulation of the Sortino optimization problem as:

min
(x,τ)∈X∈R

−τ

s.t. −max
P∈P

EP [(µ(x, ξ) − Y (ξ))− τ((Y (ξ)− µ(x, ξ))d+)
1/d] ≤ 0.

(5.4.22)

In what follows, we present the robust formulation of the (5.4.22) based on the mixture

distribution uncertainty as discussed in Section 5.2.3 and first order moment approach

discussed in Section 5.2.4.

Recall the discussion in Section 5.2.3 on robust optimization based on mixture distri-

bution, specifically problem (5.2.10). We can reformulate problem (5.4.22) as a robust
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optimization based on mixture distribution as follows:

min
(x,τ)∈X×R

−τ

s.t. −EPl
[(µ(x, ξ) − Y (ξ))− τ((Y (ξ)− µ(x, ξ))d+)

1/d] ≤ 0 l = 1, . . . , L.

(5.4.23)

Moreover, in the case when ξ has a finite distribution, that is, ξ takes finite number of

values ξi, . . . , ξN , the formulation (5.4.23) can be simplified as follows:

min
(x,τ)∈X×R

−τ

s.t. −
N
∑

i=1

pil[(µ(x, ξ
i
l )− Y (ξil ))− τ((Y (ξil )− µ(x, ξil ))

d
+)

1/d] ≤ 0 l = 1, . . . , L.

(5.4.24)

where pil corresponds to the probability measure of Pl in scenario i.

Consequently, The sample average approximation of the optimization problem (5.4.23)

can also be formulated as follows:

min
(x,τ)∈X×R

−τ

s.t. −
N
∑

i=1

pil[(µ(x, ξ
i
l )− Y (ξil ))− τ((Y (ξil )− µ(x, ξil ))

d
+)

1/d] ≤ 0 l = 1, . . . , L.

(5.4.25)

As discussed earlier, the ξil can be generated by computer simulation under probability

distribution Pl.

Let us now present the reformulation of problem (5.4.22) based on first order moment

approach as discussed in Section 5.2.4. The problem (5.4.22) can be reformulated based

on first order moment approach as follows:

min
x∈X,τ∈R,λ∈R×Rp×R

q−p
+

−τ

s.t. λ0 +

q
∑

i=1

biλi ≤ 0,

λi ≥ 0, for i = p+ 1, . . . , q,

λ0 +

q
∑

i=1

λiψi(ξ) ≥ G(x, ξ, d, τ), ξ ∈ Ξ,

(5.4.26)

where

G(x, ξ, d, τ) := (µ(x, ξil )− Y (ξil ))− τ((Y (ξil )− µ(x, ξil ))
d
+)

1/d.
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Subsequently, the problem (5.4.26) can be reformulated based on the penalization scheme

discussed in Section 5.2.4.1 as:

min
w

ϑ(w, ρ) := −τ + ρmax
ξ∈Ξ

(R(w, ξ))+

s.t. λ0 +

q
∑

i=1

biλi ≤ 0,

λi ≥ 0, for i = p+ 1, . . . , q,

w ∈W,

(5.4.27)

where

R(w, ξ) := G(x, ξ, d, τ) − λ0 − λTψ(ξ).

As mentioned earlier, this is a deterministic nonsmooth convex program with simple

constraints which can be solved by well known method such as level function method.

5.5 Numerical Tests

We have carried out a portfolio performance ratio optimization and a fund of funds

investment problem on the proposed models and algorithm by using MATLAB 7.10 and

IBM ILOG CPLEX 12.4 installed on a HP Notebook PC with Windows 7 operating

system, and Intel Core i7 processor. We have integrated the Algorithm 5.2 in Algorithm

5.1 and set the initial penalty parameter equal to 500. Further, we set the λ = 0.5 and

ǫ = 0.0001.

Recall Sortino robust optimization problem (5.4.23), the nominal counter part of this

problem can be formulated as follows:

min
(x,τ)∈X∈R

−τ

s.t. −E[µ(x, ξ)− Y (ξ)− τ((Y (ξ)− µ(x, ξ))d+)
1/d] ≤ 0,

(5.5.28)

where for the purpose of our numerical test, we set d = 2 for both the mixture distribu-

tion problem as well as the nominal problem.

Particularly, we consider a portfolio optimization problem with real world test data

to investigate the efficiency of the proposed robust optimization models (5.4.23) and

(5.4.27), and compare the results to portfolio strategy generated by the nominal problem

(5.5.28). Moreover, we consider a fund of funds problem, which is an investment strategy

of holding a portfolio of other investment funds rather than investing directly in shares,

bonds or other securities, and compare the results to the strategy generated by the

nominal problem (5.5.28).
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5.5.1 Portfolio performance ratio

Suppose that we have a fixed capital to be invested in n assets. Let Ri, i = 1, . . . , n,

denotes the return of asset i. In practice, the return is often uncertain and we use a

random variable ξ to describe the uncertainty. Specifically, we write Ri as Ri(ξ) and in

doing so we are assuming that all n assets have identical random factors.

To simplify the discussion, we normalize the capital to 1 and use xi, i = 1, . . . , n, to

denote the fraction of capital to be invested in asset i. The portfolio return can then be

formulated as:

µ(x, ξ) := R1(ξ)x1 +R2(ξ)x2 + · · ·+Rn(ξ)xn. (5.5.29)

Example 5.1. We consider m history of rate of return, for a group of n assets. Our aim

is to find a robust optimal investment strategy for a fixed capital in the n assets which

minimized the ratio of the risk and expected excess return. Particularly we consider the

following model:

min
(x,τ)∈X∈R

−τ

s.t. −max
P∈P

EP [µ(x, ξ) − Y (ξ)− τ((Y (ξ)− µ(x, ξ))d+)
1/d] ≤ 0,

(5.5.30)

we apply the the reformulations based on the mixture distribution uncertainty and first

order moment problem discussed in Section 5.4, respectively.

We collected 2722 daily stock returns of 34 FTSE 100 assets from Jan 2005 to June 2012.

We use the first 1700 observations to generate portfolio strategies and the remaining

observations in constructing an out-of-sample test. We solve the mixture distribution

problem with the built-in MATLAB function “fmincon”, while the first order moment

problem is solved through the level function algorithm (Algorithm 5.1).
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Figure 5.5.1: Time series analysis of the FTSE 100 Index used for setting the number
of L and the corresponding probabilities.
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Periods Mean (10−4) Variance (10−4)

L1 -4.6674 2.6880
L2 4.3397 0.3923
L3 5.5324 0.5199
L4 -5.3644 1.8330

Table 5.5.1: Expected value and variance of returns of the FTSE 100 index in different
time periods (L).

Figure 5.5.1 shows the return of FTSE 100 index over the first 1700 observations. It can

be seen that the data set can be divided into four subsection. Furthermore, the expected

value and variances of returns of the FTSE 100 index corresponding to these different

time periods are listed in Table 5.5.1. In this example, according to our observation,

we assume that the samples are generated by the mixture distribution of four likelihood

distributions. Specifically, we assume that samples within each time period are generated

by normal distributions with means and variances shown in Table 5.5.1.

In the computation of the nominal portfolio optimization problem, we set L = 1 and

Nl = 1700, i.e., all the samples are used in the model by assuming that they are generated

by one nominal probability distribution. In the computation of the mixture distribution

model, we set L = 4 and N1 = 400, N2 = 490, N3 = 510, and N4 = 300, where

we assume the samples within each time period are generated by the corresponding

likelihood distribution. In the computation of the first order moment problem, we let

the q = 1 and define ψ1(ξ) as the return function of the FTSE 100 index. Moreover,

in these tests we set the upper bound and lower bound on weights equal to 0.6 and 0,

respectively.

The results for the nominal problem, mixture distribution problem and first order mo-

ment problem are presented in Table 5.5.2.

Model Time(min) Iter No.Assets Return Risk

Nominal 0.0156 6 3 -0.0076 0.7542
Mixture distribution 0.0316 15 8 0.0016 0.2798
First order moment 0.9444 10 14 0.0033 0.1765

Table 5.5.2: The results of the three models for 34 stocks of FTSE 100 index, where
the benchmark is considered to be equal to the return of FTSE 100 index.

As it can be seen, the two robust portfolio models outperform the nominal portfolio in

sense of having both higher return and lower risk, while the first moment model having

the best performance.

Figures 5.5.2 and 5.5.3 show the backtest and out-of-sample test of the generated portfo-

lios for the three models. As it can be seen, the return of the nominal portfolio performs

poorly compared to the return of the portfolios generated by the mixture distribution
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Figure 5.5.2: Backtest of the of the excess return of the three generated portfolios.
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Figure 5.5.3: Out of sample test of the excess return of three generated portfolios.

and first order moment reformulations. Moreover, it can be seen that the portfolio con-

structed by the mixture distribution formulation is less conservative compared to the

first order moment’s problem both in-sample and out-of-sample.

Moreover, to see the performance of the generated strategies out-of-sample we present

graph of cumulative return of the of portfolio return generated by the nominal, mixture

distribution and the first order models in Figure 5.5.4. It can be seen that the return
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generated by the two robust formulations is much higher compared to that of the nominal

portfolio.
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Figure 5.5.4: Out-of-sample cumulative return for the generated portfolio strategy
based on the nominal, mixture distribution and first order moment models.

Figure 5.5.5 and 5.5.6 presents the risk profile of the generated portfolios both in-sample

and out-of-sample. It can be seen that the portfolio generated based on the first order

moment formulation has lower risk exposure compared to the other two models.
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Figure 5.5.5: Comparison of the risk measure in-sample.

It should be noted that the 2008 financial crisis occurred in days 1400 to 2000 and

European sovereign-debt crisis occurred around days 2370 to present. As it can be seen,

the risk of the first order moment is the least during both of these periods compared

to the nominal strategy and the mixture distribution model. Additionally, the negative

excess return of the robust portfolios is much lower compared to the nominal portfolio in
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Figure 5.5.6: Comparison of the risk measure out-of-sample.

2008 financial crisis period, while the excess return of these portfolios are mostly positive

in period coinciding with the European sovereign-debt crisis.

It should be mentioned that although the excess return of the robust portfolios are lower

than of that of nominal portfolio but in many financial and non-financial institutions

such as pension funds and national insurance systems having consistently positive low

risk return is more attractive than having high but very risky returns.

5.5.2 Fund of funds investment

A “fund of funds” (FOF) is an investment strategy of holding a portfolio of other invest-

ment funds rather than investing directly in shares, bonds or other securities. In this

section we consider four funds representing FTSE 100 Index (Fund 1), S&P 500 (Fund

2), Nasdaq100 (Fund 3), and Hang Seng (Fund 4).

We have collected 2722 historical rate of return and let the benchmark be average return

of the four funds. As before, we have used the first 1700 observations to generate the

portfolio strategy and remaining observations are used to set up an out-of-sample test

to investigate the performance of the portfolio.

Figure 5.5.7 shows the return of the four funds over the first 1700 observations. It can be

seen that the data set can be divided into three subsection. Furthermore, the expected

value and variances of returns of the four funds corresponding to different time periods

are listed in Table 5.5.3. In this example, according to our observation, we assume that

the samples are generated by the mixture distribution of three likelihood distributions.
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Figure 5.5.7: Time series analysis of the FTSE 100 Index used for setting the number
of L and the corresponding probabilities.

Period Mean (10−3) Variance (10−3)

Fund 1 Fund 2 Fund 3 Fund 4 Fund 1 Fund 2 Fund 3 Fund 4

L1 -0.4667 -0.2322 -0.2055 -0.2288 0.2688 0.2251 0.5809 0.1296
L2 0.4870 0.4242 0.4211 0.7660 0.0456 0.0443 0.1073 0.0860
L3 -0.5280 -0.4772 0.0752 0.2589 0.1827 0.1463 0.2103 0.4437

Table 5.5.3: Expected value and variance of returns of the four funds in different time
periods (L).

Specifically, we assume that samples within each time period are generated by normal

distributions with means and variances shown in Table 5.5.3.

In the computation of the nominal portfolio optimization problem, we set L = 1 and

Nl = 1700, i.e., all the samples are used in the model by assuming that they are generated

by one nominal probability distribution. In the computation of the mixture distribution

model, we set L = 3 and N1 = 400, N2 = 1000, and N3 = 300, where we assume the

samples within each time period are generated by the corresponding likelihood distribu-

tion. In the computation of the first order moment problem, we let the q = 1 and define

ψ1(ξ) as the return function of the equally weighted portfolio of the four funds. In what

follows, we set the upper bound and lower bound on the capital invested equal to 0.6

and 0, respectively.

Table 5.5.4 presents the results for this example. As can be seen, the first order moment

portfolio has the highest expected return with the least risk. Furthermore, the expected

return and the associated risk of the mixture distribution are slightly lower and higher

than of that of the first order moment problem, respectively. Moreover, it can be seen

that the portfolio strategies generated by the two robust models are more diversified

compared to the nominal strategy.
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Model Time(min) Iter Funds Return Risk

Nominal 0.0176 8 0.0000, 0.6000, 0.4000, 0.0000 0.0206 0.0048
Mixture distribution 0.0182 8 0.2387, 0.6000, 0.1613, 0.0000 0.0157 0.0033
First order moment 0.0863 7 0.1493, 0.4793, 0.3161, 0.0554 0.0212 0.0024

Table 5.5.4: The results of the three models for four funds, where the benchmark is
considered to be an equally weighted portfolio of these funds.
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Figure 5.5.8: Comparison of the excess return of portfolio in-sample.

Figure 5.5.8 and 5.5.9 demonstrate the performance of the generated portfolio in-sample

and out-of-sample, respectively. As can be seen, the two robust optimizations have

positive excess returns both in-sample and out-of-sample whereas the excess return of

the nominal portfolio varies a lot around the zero line. Furthermore, it can be seen that

the excess return of the mixture distribution portfolio and that of first order moment

portfolio, are almost always positive in-sample. Moreover, it can be seen that the excess

return of the robust formulations outperform that of the nominal portfolio in the sense

of having lower negative excess return and equivalent positive excess return.

Moreover, to see the performance of the generated strategies out-of-sample we present

graph of cumulative return of the of portfolio return generated by the nominal, mixture

distribution and the first order models in Figure 5.5.10. It can be seen that the return

generated by the two robust formulations is much higher compared to that of the nominal

portfolio.

Figure 5.5.11 and 5.5.12 illustrate the risk associated with each portfolio in-sample and

out-of-sample, respectively. As anticipated, the risk of the first order moment model
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Figure 5.5.9: Comparison of the excess return of portfolio out-of-sample.

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Days

C
um

ul
at

iv
e 

R
et

ur
n

 

 

Nominal
Mixture Distribution
First Order Moment

Figure 5.5.10: Out-of-sample cumulative return for the generated portfolio strategy
based on the nominal, mixture distribution and first order moment models.

is least compared to the other two models both in-sample and out-of-sample, followed

closely by the mixture distribution model.

As discussed in the previous example, the 2008 financial crisis occurred in days 1400 to

2000 and European sovereign-debt crisis occurred around days 2370 to present. As it

can be seen, the risk of the first order moment is the least during both of these periods

compared to the nominal strategy and the mixture distribution model. Additionally, the

negative excess return of the robust portfolios is much lower compared to the nominal

portfolio in 2008 financial crisis period, while the excess return of these portfolios are

mostly positive in period coinciding with the European sovereign-debt crisis.
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Figure 5.5.11: Comparison of the risk measure in-sample.
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Figure 5.5.12: Comparison of the risk measure out-of-sample.

In order to investigate the efficiency of the models and the solution methods with respect

to CPU time, we have solved the three model with the proposed algorithms first for an

increasing number of assets with a fixed sample size and second for an increasing number

of samples with a fixed number of assets. As it can be seen in Figures 5.5.13 and 5.5.14

the mixture distribution model and the nominal model solved by the built-in MATLAB

function “fmincon” are more efficient compared to the first order moment model solved
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Figure 5.5.13: Comparison of the CPU time versus the number of assets for a sample
of 100.
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Figure 5.5.14: Comparison of CPU time versus the sample size when the asset number
is fixed at 100.
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Figure 5.5.15: Zoom in of the comparison of CPU time versus the sample size for the
mixture distribution and the nominal models.

by the level function algorithm. However, the first order moment is still efficient with a

CPU time of less than four minutes in both cases.
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5.6 Conclusion

In this chapter we focused on a robust formulation for a performance ratio optimization

based on one sided variability measure. We propose a robust optimization problem for

a reward-risk ratio optimization based on mixture distribution and first order moment

approach. For the case of mixture distribution, a sample average approximation for-

mulation was presented. Moreover, an exact penalization scheme was proposed for the

first order moment approach to handle the semi-infinite constraints in the dual problem.

The proposed methods were applied to the Sortino performance ratio and the robust

formulations based on both mixture distribution and the first moment approach are

derived.

We investigated the numerical efficiency and accuracy of the proposed methods by pre-

senting a portfolio optimization problem and a fund of funds problem based on real world

data. We further, set up backtest and out-of-sample test to inspect the performance of

the generated portfolios and compare them to the benchmark portfolio.

Based on the numerical tests results we can conclude that both of the robust formulations

result in more conservative but better portfolios compared to the nominal strategy in a

sense of both expected return and the associated risk. Moreover, the first order moment

problem results in the most conservative solution, where the excess return is lower but

mostly positive compared to that of the mixture distribution model and the nominal

model. Furthermore, the investigation of the efficiency of the models and methods with

respect to the CPU time revealed that the mixture distribution model and the nominal

model solved with the MATLAB built-in function “fmincon” are more efficient compared

to the first order moment model solved by the level function algorithm. However, the

largest first order moment problem with respect to both sample size and the number of

assets were solved in less than four minutes.



Chapter 6

Concluding Remarks

6.1 Research Outcomes

There are three basic approaches to the problem of portfolio selection under uncertainty;

stochastic dominance, expected utility maximization and the reward-risk analysis. In

this thesis we focused on stochastic optimization problems with stochastic dominance

constraints as well as reward-risk ratio optimization which is related to reward-risk

analysis.

The stochastic dominance notion has been employed in many areas including, medicine

and health (Madden [96]), poverty and inequality studies (Jeffrey and Eidman [76],

Anderson [1]), agriculture (Davidson, Duclos [33]) and financial decision making (see

Annaert et al [3], Levy [91]. Eeckhoudt [43] and references therein). We focused on

application of stochastic dominance in portfolio optimization. The advantages of using

stochastic dominance model was discussed in Chapter 2. Application of second order

stochastic dominance as a criteria of choice proves to be difficult. Generally, in solving

stochastic programming problems with second order stochastic dominance, one needs to

deal with three main issues; a) the expectation of random functions in the objective and

the constraint, b) infinite number of constraints, c) the non-smoothness arising from the

plus function in the constraints.

The main contribution of this thesis can be summarized as follows:

• To overcome the difficulties associated with scalar second order stochastic dom-

inance a recently developed exact penalization scheme for such problems is ex-

ploited. Moreover, a penalization scheme is developed for the multivariate sec-

ond order stochastic dominance by exploiting Clark’s exact penalty function [29,

Proposition 2.4.3] and Robinson’s error bound [113]. The multivariate stochastic
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dominance constraints are reformulated and it is shown that the reformulated prob-

lem satisfies the Slater Constraint Qualification under some moderate conditions.

Furthermore, an exact penalization scheme based on L∞-norm is derived.

• The resulting penalized problems are non-smooth convex optimization problems

which can efficiently be solved with numerical methods such as stochastic approx-

imation methods and level function methods. The convergence analysis regarding

the solution methods for each specific problem is presented. Moreover, a modi-

fied cutting plane method is proposed for the multivariate stochastic dominance

model. This cutting plane method differs from those in the literature [120] in

that it applies to the maximum of the constraint functions rather than each con-

straint function. Moreover, this modified cutting plane method uses the cutting

plane representation proposed in [81], so it differ from the methods proposed in

[70, 73]. The idea of applying the cutting-plane method to the maximum of the

constraint functions is similar to the idea in algorithm proposed by Fábián et al.

[52]. However, their method is applied to linear models while this modified cutting

plane method is also applicable to nonlinear case. Furthermore, the proposed nu-

merical methods provides an alternative approach to the existing cutting surface

method for multivariate stochastic dominance introduced by Homem-de-Mello and

Mehrota [70] and the linearized method proposed by Armbruster and Luedtke [4].

• Moreover, we focused on robust reward-risk ratio optimization to address the issue

of data uncertainties from the perspective of computational tractability. We con-

sidered robust formulations based on mixture distribution approach and first order

moment approach. The problems arising from the mixture distribution approach

can be solved with nonlinear solvers such as MATLAB built-in solver “fmincon”,

while the first order moment approach results in a semi-infinite programming prob-

lem. To overcome difficulties associated with this type of problem, we proposed

an exact penalization method to deal with the infinite number of constraints in

optimization problem. This resulted in reformulation of the optimization prob-

lem as a deterministic non-smooth convex program with simple constraints which

can be solved with well-known methods such as level function methods where the

convergence analysis were presented.

The numerical methods discussed in this thesis have some advantages and limitations.

These methods can efficiently solve non-smooth, nonlinear, convex optimization prob-

lems within reasonable computation times. The stochastic approximation method re-

quires calculation of only one approximate subgradient per iteration and can be applied

to the case when the underlying functions are highly nonlinear and/or non-smooth, and

the distribution of the random variable may be unknown. The level function methods re-

quire calculation of a subgradient instead of an approximate subgradient of the objective

function at each iterate and therefore it applies to the problem with known distribution
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of the random variable or the sample average approximated problems. A clear advantage

of the method is that we can estimate the number of iterations needed for a specified

precision. The modified cutting plane method discussed differs from those in literature

[120] in that it applies to the maximum of the constraint functions rather than each

constraint function. This saves considerable computation time because at each itera-

tion, our cutting-plane method requires the addiction of a couple of linear constraints

only. The approach also differs from that in [70, 73] because our modified cutting-plane

method uses the cutting-plane representation proposed in [81]. The idea of applying the

cutting-plane method to the maximum of the constraint functions is similar to the idea

in algorithm proposed by Fábián et al. [52]. Note that Fábián’s algorithm is applied to

linear models while our modified cutting plane method is applicable to nonlinear case.

Furthermore, the level function methods and the modified cutting plane method are not

sensitive to an increase in the size of the problem, as an increase in either the sample

size or the number of instruments does not have a significant impact on the performance

of these methods. It should be noted that, if the problem considered is linear then, some

off the shelf linear programming softwares would outperform these methods in sense of

computation time.

6.2 Future Research

Each of the chapters in this thesis contributed to the existing literature. So far we have

concentrated on second order stochastic dominance. This research can be extended

by considering stochastic optimization problems with first order stochastic dominance,

which is closely related to the Value at Risk (VaR) measure. VaR is a widely used risk

measure of the risk of loss on a specific portfolio of financial assets. It is commonly used

in risk management, risk measurement, financial reporting and computing regulatory

capital (Basel II, and III).

Another interesting possibility for continuing this research could lie in investigating the

properties of multivariate stochastically weighted dominance [72], in which the vector of

weights ν is treated as a random vector. Such an approach is much less restrictive than

the deterministic weighted approach considered in this research.

Moreover, we have only concentrated on problems where the random variable is dis-

crete. We could further extend this research and consider problems with continuous

random variables. This type of problem has extensively been discussed in theoretical

literature. However, there has not been extensive research done on numerical analysis

and performance.

Furthermore, as it was discussed in this thesis, there are two basic approaches to the

problem of portfolio selection under uncertainty. One of them is the stochastic domi-

nance approach, and the other is the reward-risk analysis which is also related to the
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reward-risk ratio optimization. In this thesis we considered robust optimization of this

type of problem based on mixture distribution and first order moment approach. How-

ever, this research can be extended by considering distributionally robust optimization

under moment uncertainty where uncertainty is described in both the distribution form

(discrete, Gaussian, exponential, etc.) and moments (mean and covariance matrix).



Appendix A

Appendix

A.1 Figures for Chapter 4

The backtest and out-of-sample comparison of the generated portfolio with the multi-

variate SSD model to the indices. We present the figures related to the backtests followed

by the out-of-sample tests.
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Algorithm 4.2
FTSE100 Index

Figure A.1.1: Backtest comparison of the Multivariate SSD model and the FTSE 100
Index.

As it can be seen the return of the portfolio strategy generated by the proposed model

and algorithms out perform the return of each individual index both in-sample and

out-of-sample.
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Figure A.1.2: Backtest comparison of the Multivariate SSD model and the Nasdaq
100 Index.
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Figure A.1.3: Backtest comparison of the Multivariate SSD model and the Daw Jones
Index.
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Figure A.1.4: Out-of-sample comparison of the Multivariate SSD model and the
FTSE 100 Index.
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Figure A.1.5: Out-of-sample comparison of the Multivariate SSD model and the
Nasdaq 100 Index.
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Figure A.1.6: Out-of-sample comparison of the Multivariate SSD model and the Daw
Jones Index.
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ming: Modeling and Theory. SIAM, Philadelphia, PA, 2009.

[130] A. Shapiro and A. J. Kleywegt. Minimax analysis of stochastic problems. Opti-

mization methods and software, 17:523–542, 2002.

[131] A. Shapiro and A. Nemirovski. On complexity of stochastic programming prob-

lems, in:. Continuous Optimization: Current Trends and Applications, 2005.

[132] W. F. Sharpe. Mutual funds performance. Journal of Business, pages 119–138,

1966.

[133] W. F. Sharpe. The sharpe ratio. Journal of Portfolio Management, Fall:49–58,

1994.



124 BIBLIOGRAPHY

[134] F. A. Sortino and S. Satchell. Managing Downside Risk in Financial Markets.

Butterworth Heinemann, 2001.

[135] A. Soyster. Convex programming with set-inclusive constraints and applications

to inexact linear programming. Operations Research, 21:1154–1157, 1973.

[136] T. J. Stieltjes. Recherches sur les fractions continues. Annales de la Facculte des

Sciences de Toulouse, 8:1–122, 1894.

[137] S. Sun, H. Xu, R. Meskarian, and Y. Wang. Exact penalization, level function

method and modified cutting-plane method for stochastic programs with second

order stochastic dominance constraints. October,2011.

[138] W. Sun and Y. Yuan. Optimization Theory and Methods. Springer, New York,

2006.

[139] S. Tesfatsion. Stochastic dominance and the maximization of expected utility. The

Review of Economics Studies, 43:301–315, 1976.

[140] S. Uryasev. Conditional value-at-risk: Optimization algorithms and applications.

Financial Engineering News, 14:1–5, 2000.

[141] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior.

The Review of Economics Studies, 29:140–146, 1962.

[142] S. W. Wallace and H. Kjetil. Generating scenario trees for multi-stage decision

problems. Management Science, 47:295–307, 2001.

[143] S. W. Wallace, H. Kjetil, and K. Michal. A heuristic for moment-matching sce-

nario generation. Computational Optimization and Application: An International

Journal, 24:169–185, 2003.

[144] G. A. Whitmore. Third-degree stochastic dominance. The American Economics

Review, 60:457–459, 1970.

[145] G. A. Whitmore and M. C. Findlay. Stochastic Dominance: An Approach to

Decison-Making Under Risk. D. C. Health, Lexington, MA, 1978.

[146] H. Xu. Level function method for quasiconvex programming. Journal of Opti-

mization Theory and Applications, 108:407–437, 2001.

[147] H. Xu, C. Caramanis, and S. Mannor. A distributional interpretation of robust

optimization. Mathematics of Operations Research, 37:95–110, 2012.

[148] Y. Yamai and T. Yoshiba. Comparative analysis of expected shortfall and value

at risk: expected utility maximization and tail risk. Monetary and Economics

Studies, 20:57–86, 2002.



BIBLIOGRAPHY 125

[149] M. R. Young. A minimax portfolio selection rule with linear programming solution.

Management Science, 44:673–683, 1998.

[150] J. Zackova. On minimax solution of stochastic linear programming problems.

Casopis pro Pestovani Matematiky, 91:423–430, 1966.

[151] S. A. Zenios. Mean-absolute deviation portfolio optimization for mortgage backed

securities. Annals of Operations Research, 45:433–450, 1993.

[152] S. A. Zenios. A model for portfolio management with mortgage backed securities.

Annals of Operations Research, 43:337–356, 1993.

[153] S. Zhu and M. Fukushima. Worst-case conditional value-at-risk with application

to robust portfolio management. Operations Research, 57:1155–1168, 2009.

[154] S. Zymler, D. Kuhn, and B. Rustem. Worst-case conditional value-at-risk of non-

linear portfolios. Optimization Online, 2009.


