LES of recirculation and vortex breakdown in swirling flames
LES of recirculation and vortex breakdown in swirling flames
In this study large eddy simulation (LES) technique has been applied to predict a selected swirling flame from the Sydney swirl burner experiments. The selected flame is known as the SM1 flame operated with fuel CH4 at a swirl number of 0.5. In the numerical method used, the governing equations for continuity, momentum and mixture fraction are solved on a structured Cartesian grid. Smagorinsky eddy viscosity model with the localised dynamic procedure of Piomelli and Liu is used as the subgrid scale turbulence model. The conserved scalar mixture fraction based thermo-chemical variables are described using the steady laminar flamelet model. The GRI 2.11 is used as the chemical mechanism. The Favre filtered scalars are obtained from the presumed beta probability density function (beta-PDF) approach. The results show that with appropriate inflow and outflow boundary conditions LES successfully predicts the upstream recirculation zone generated by the bluff body and the downstream vortex breakdown zone induced by swirl with a high level of accuracy. Detailed comparison of LES results with experimental measurements show that the mean velocity field and their rms fluctuations are predicted very well. The predictions for the mean mixture fraction, subgrid variance and temperature are also reasonably successful at most axial locations. The study demonstrates that LES together with the laminar flamelet model in general provides a good technique for predicting the structure of turbulent swirling flames.
combustion, large eddy simulation (les), recirculation, swirl, vortex breakdown (vb)
809-832
Malalasekera, W.
d3bc4153-1af3-41ab-9e42-4aa0d7cbaec7
Ranga Dinesh, K.K.J.
6454b22c-f505-40f9-8ad4-a1168e8f87cd
Ibrahim, S.S.
8bb2b4a9-8ae2-4ec0-b18e-09a056aa6b15
Masri, A.R.
648e7865-1569-4903-b2ae-9d2af1c278a6
2008
Malalasekera, W.
d3bc4153-1af3-41ab-9e42-4aa0d7cbaec7
Ranga Dinesh, K.K.J.
6454b22c-f505-40f9-8ad4-a1168e8f87cd
Ibrahim, S.S.
8bb2b4a9-8ae2-4ec0-b18e-09a056aa6b15
Masri, A.R.
648e7865-1569-4903-b2ae-9d2af1c278a6
Malalasekera, W., Ranga Dinesh, K.K.J., Ibrahim, S.S. and Masri, A.R.
(2008)
LES of recirculation and vortex breakdown in swirling flames.
Combustion Science and Technology, 180 (5), .
(doi:10.1080/00102200801894018).
Abstract
In this study large eddy simulation (LES) technique has been applied to predict a selected swirling flame from the Sydney swirl burner experiments. The selected flame is known as the SM1 flame operated with fuel CH4 at a swirl number of 0.5. In the numerical method used, the governing equations for continuity, momentum and mixture fraction are solved on a structured Cartesian grid. Smagorinsky eddy viscosity model with the localised dynamic procedure of Piomelli and Liu is used as the subgrid scale turbulence model. The conserved scalar mixture fraction based thermo-chemical variables are described using the steady laminar flamelet model. The GRI 2.11 is used as the chemical mechanism. The Favre filtered scalars are obtained from the presumed beta probability density function (beta-PDF) approach. The results show that with appropriate inflow and outflow boundary conditions LES successfully predicts the upstream recirculation zone generated by the bluff body and the downstream vortex breakdown zone induced by swirl with a high level of accuracy. Detailed comparison of LES results with experimental measurements show that the mean velocity field and their rms fluctuations are predicted very well. The predictions for the mean mixture fraction, subgrid variance and temperature are also reasonably successful at most axial locations. The study demonstrates that LES together with the laminar flamelet model in general provides a good technique for predicting the structure of turbulent swirling flames.
Text
CST_2008.doc
- Author's Original
More information
Published date: 2008
Keywords:
combustion, large eddy simulation (les), recirculation, swirl, vortex breakdown (vb)
Organisations:
Engineering Science Unit
Identifiers
Local EPrints ID: 347341
URI: http://eprints.soton.ac.uk/id/eprint/347341
ISSN: 0010-2202
PURE UUID: 9a5ee7f3-1c2e-456b-a1af-655676577b41
Catalogue record
Date deposited: 24 Jan 2013 15:57
Last modified: 15 Mar 2024 03:46
Export record
Altmetrics
Contributors
Author:
W. Malalasekera
Author:
S.S. Ibrahim
Author:
A.R. Masri
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics