Identification and analysis of instability in non-premixed swirling flames using LES
Identification and analysis of instability in non-premixed swirling flames using LES
Large eddy simulations (LES) of turbulent non-premixed swirling flames based on the Sydney swirl burner experiments under different flame characteristics are used to uncover the underlying instability modes responsible for the centre jet precession and large scale recirculation zone. The selected flame series known as SMH flames have a fuel mixture of methane-hydrogen (50:50 by volume). The LES solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The LES results are validated against experimental measurements and overall the LES yields good qualitative and quantitative agreement with the experimental observations. Analysis showed that the LES predicted two types of instability modes near fuel jet region and bluff body stabilized recirculation zone region. The Mode I instability defined as cyclic precession of a centre jet is identified using the time periodicity of the centre jet in flames SMH1 and SMH2 and the Mode II instability defined as cyclic expansion and collapse of the recirculation zone is identified using the time periodicity of the recirculation zone in flame SMH3. Finally frequency spectra obtained from the LES are found to be in good agreement with the experimentally observed precession frequencies.
947-971
Ranga Dinesh, K.K.J.
6454b22c-f505-40f9-8ad4-a1168e8f87cd
Jenkins, K.W.
4ca70a5c-46dd-40bf-ae46-9efa3790f8ea
Kirkpatrick, M.P.
cf76adda-898f-472d-a93a-c55d29b06fba
Malalasekera, W.
d3bc4153-1af3-41ab-9e42-4aa0d7cbaec7
5 February 2009
Ranga Dinesh, K.K.J.
6454b22c-f505-40f9-8ad4-a1168e8f87cd
Jenkins, K.W.
4ca70a5c-46dd-40bf-ae46-9efa3790f8ea
Kirkpatrick, M.P.
cf76adda-898f-472d-a93a-c55d29b06fba
Malalasekera, W.
d3bc4153-1af3-41ab-9e42-4aa0d7cbaec7
Ranga Dinesh, K.K.J., Jenkins, K.W., Kirkpatrick, M.P. and Malalasekera, W.
(2009)
Identification and analysis of instability in non-premixed swirling flames using LES.
Combustion Theory and Modelling, 13 (6), .
(doi:10.1080/13647830903295899).
Abstract
Large eddy simulations (LES) of turbulent non-premixed swirling flames based on the Sydney swirl burner experiments under different flame characteristics are used to uncover the underlying instability modes responsible for the centre jet precession and large scale recirculation zone. The selected flame series known as SMH flames have a fuel mixture of methane-hydrogen (50:50 by volume). The LES solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The LES results are validated against experimental measurements and overall the LES yields good qualitative and quantitative agreement with the experimental observations. Analysis showed that the LES predicted two types of instability modes near fuel jet region and bluff body stabilized recirculation zone region. The Mode I instability defined as cyclic precession of a centre jet is identified using the time periodicity of the centre jet in flames SMH1 and SMH2 and the Mode II instability defined as cyclic expansion and collapse of the recirculation zone is identified using the time periodicity of the recirculation zone in flame SMH3. Finally frequency spectra obtained from the LES are found to be in good agreement with the experimentally observed precession frequencies.
Text
CTM_2009.doc
- Author's Original
More information
Published date: 5 February 2009
Organisations:
Engineering Science Unit
Identifiers
Local EPrints ID: 347344
URI: http://eprints.soton.ac.uk/id/eprint/347344
PURE UUID: e1821af1-df64-4b67-a123-156a9499a720
Catalogue record
Date deposited: 25 Jan 2013 16:18
Last modified: 15 Mar 2024 03:46
Export record
Altmetrics
Contributors
Author:
K.W. Jenkins
Author:
M.P. Kirkpatrick
Author:
W. Malalasekera
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics