The University of Southampton
University of Southampton Institutional Repository

Modelling of instabilities in turbulent swirling flames

Modelling of instabilities in turbulent swirling flames
Modelling of instabilities in turbulent swirling flames
A large eddy simulation based data analysis procedure is used to explore the instabilities in turbulent non-premixed swirling flames. The selected flames known as SM flames are based on the Sydney swirl burner experimental database. The governing equations for continuity, momentum and mixture fraction are solved on a structured Cartesian grid and the Smagorinsky eddy viscosity model with dynamic procedure is used as the subgrid scale turbulence model. The thermo-chemical variables are described using the steady laminar flamelet model. The results show that the LES successfully predicts the upstream first recirculation zone generated by the bluff body and the downstream second recirculation zone induced by swirl. Overall, LES comparisons with measurements are in good agreement. Generated power spectra and snapshots demonstrate oscillations of the centre jet and the recirculation zone. Snapshots of flame SM1 showed irregular precession of the centre jet and the power spectrum at a downstream axial location situated between the two recirculation zones showed distinct precession frequency. Mode II instability defined as cyclic expansion and collapse of the recirculation zone is also identified for the flame SM2. The coupling of swirl, chemical reactions and heat release exhibits Mode II instability. The presented simulations demonstrate the efficiency and applicability of the LES technique to swirl flames.
swirl, instability, precession, combustion, large eddy simulation
10-18
Ranga Dinesh, K.K.J.
6454b22c-f505-40f9-8ad4-a1168e8f87cd
Jenkins, K.W.
4ca70a5c-46dd-40bf-ae46-9efa3790f8ea
Kirkpatrick, M.P.
cf76adda-898f-472d-a93a-c55d29b06fba
Malalasekera, W.
d3bc4153-1af3-41ab-9e42-4aa0d7cbaec7
Ranga Dinesh, K.K.J.
6454b22c-f505-40f9-8ad4-a1168e8f87cd
Jenkins, K.W.
4ca70a5c-46dd-40bf-ae46-9efa3790f8ea
Kirkpatrick, M.P.
cf76adda-898f-472d-a93a-c55d29b06fba
Malalasekera, W.
d3bc4153-1af3-41ab-9e42-4aa0d7cbaec7

Ranga Dinesh, K.K.J., Jenkins, K.W., Kirkpatrick, M.P. and Malalasekera, W. (2010) Modelling of instabilities in turbulent swirling flames. Fuel, 89 (1), 10-18. (doi:10.1016/j.fuel.2009.06.024).

Record type: Article

Abstract

A large eddy simulation based data analysis procedure is used to explore the instabilities in turbulent non-premixed swirling flames. The selected flames known as SM flames are based on the Sydney swirl burner experimental database. The governing equations for continuity, momentum and mixture fraction are solved on a structured Cartesian grid and the Smagorinsky eddy viscosity model with dynamic procedure is used as the subgrid scale turbulence model. The thermo-chemical variables are described using the steady laminar flamelet model. The results show that the LES successfully predicts the upstream first recirculation zone generated by the bluff body and the downstream second recirculation zone induced by swirl. Overall, LES comparisons with measurements are in good agreement. Generated power spectra and snapshots demonstrate oscillations of the centre jet and the recirculation zone. Snapshots of flame SM1 showed irregular precession of the centre jet and the power spectrum at a downstream axial location situated between the two recirculation zones showed distinct precession frequency. Mode II instability defined as cyclic expansion and collapse of the recirculation zone is also identified for the flame SM2. The coupling of swirl, chemical reactions and heat release exhibits Mode II instability. The presented simulations demonstrate the efficiency and applicability of the LES technique to swirl flames.

Text
FUEL_2010.doc - Author's Original
Download (2MB)

More information

Published date: January 2010
Keywords: swirl, instability, precession, combustion, large eddy simulation
Organisations: Engineering Science Unit

Identifiers

Local EPrints ID: 347352
URI: http://eprints.soton.ac.uk/id/eprint/347352
PURE UUID: e05d7e1b-549b-460b-ae53-92b0d3f9807c
ORCID for K.K.J. Ranga Dinesh: ORCID iD orcid.org/0000-0001-9176-6834

Catalogue record

Date deposited: 25 Jan 2013 16:15
Last modified: 15 Mar 2024 03:46

Export record

Altmetrics

Contributors

Author: K.W. Jenkins
Author: M.P. Kirkpatrick
Author: W. Malalasekera

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×