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Abstract—In this paper we first present a detailed study on the
trade-off between the computational complexity (directly related
to the power consumption) and classification accuracy for a
number of classifiers for classifying normal and abnormal ECGs.
In our analysis we consider the spectral energy of the constituent
waves of the ECG as the discriminative feature. Starting with the
exhaustive exploration of single heart-beat based classification to
ascertain the complexity-accuracy trade-off in different classifi-
cation algorithms, we then extend our study for multiple heart-
beat based classification. We use data available in Physionet as
well as samples from Southampton General Hospital Cardiology
Department for our investigation. Our primary conclusion is
that a classifier based on Linear Discriminant Analysis (LDA)
achieves comparable level of accuracy to the best performing
Support Vector Machine (SVM) classifiers with advantage of
significantly reduced computational complexity. Subsequently,
we propose an ultra low-power circuit implementation of the
LDA classifier that could be integrated with the ECG sensor
node enabling on-body normal and abnormal ECG classification.
The simulated circuit is synthesized at 130 nm technology and
occupies 0.70 mm2 of silicon area (0.979 mm2 after Place and
Route) while it consumes 182.94nW @ 1.08 V, estimated with
Synopsys PrimeTime when operating at 1 KHz. These results
clearly demonstrate the potential for low-power implementation
of the proposed design.

Index Terms—ECG Classification, Low-Energy, Discrete
Wavelet Transform, Computational Complexity Analysis, Remote
Healthcare Applications

I. INTRODUCTION

RECENT advances in the Internet of Things paradigm
(IoT) have paved the way for developing new services

by the seamless interconnection of a number of heteroge-
neous devices and the internet in both wired and wireless
fashion making information available “anytime anywhere”.
One such high potential service is the development and mass
deployment of next-generation remote healthcare systems that
enable continuous monitoring of chronic disease patients and
therefore facilitating clinicians in initiating preventive inter-
vention even before the symptoms of a critical episode are
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fully manifested. Such “proactive” rather than the traditional
“reactive” approach may not only reduce the mortality rate
significantly, but also result in significant cost savings by
minimising the hospital admission rate, bed time and costly
human intervention. The fundamental principle behind it is to
combine vital sign data of the patients captured by appropriate
sensors on body with patient’s history and practical clinical
knowledge for clinical decision, based on which an alarm is
generated for a possible impending episode. Collected data can
then be transmitted to an proper facility for further analysis.

It is already well-known in the clinical community that
continuous variability analysis of the vital sign data provides
more enriched clinically important information than a discrete
“snap shot” of them. Hence, continuous monitoring and the
associated signal processing in nomadic environment are the
key aspects of the next-generation remote healthcare systems.
The traditional approach is to continuously transmit the vital
sign data, captured by wireless sensors, to a server where
the computationally intensive signal analysis task takes place.
This is done due to the fact that the resource constrained
nature of the sensors does not allow the execution of complex
signal processing routines. However, the energy expenditure
of the front-end radio system does not permit continuous
monitoring for long time [1]. In addition, since the system’s
main purpose is to generate an alarm through preliminary
analysis, a trade-off between computational complexity and
accuracy of the signal processing algorithms can be made to
achieve a low-power on-sensor implementation. Thus, unless
any abnormality is detected data transmission is not required.
This in turn negates the requirement for continuous use of the
front-end radio system. The analysed data can be stored in
the local memory of the sensor and be transmitted at a pre-
set interval in burst mode, therefore maintaining the notion of
continuous monitoring while saving significant energy [1].

One of the main application areas of the IoT concept is on
next-generation remote healthcare monitoring systems with a
focus on Cardiovascular Diseases (CVD), which according to
the World Health Organisation (WHO) is the most prominent
disease [2]. The Electrocardiogram (ECG) captures the elec-
trical activity of the heart as a time series data and acts as
the first screening tool to detect heart abnormalities in the
standard clinical practice. Subsequently, the ECG plays the
central role in developing a remote CVD monitoring system
as it is portable and widely available. In such a system,
the main role of the ECG is to classify the normal and
abnormal heart rhythm and accordingly produce an alarm.
Any attempt for specific disease diagnosis could be hazardous,
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due to the limited amount of information (small number of
leads) available on a remote CVD monitoring system and
the various co-morbidities or confounding conditions that
manifest themselves in a similar way in the ECG trace albeit
being different clinical conditions. For instance, some ECG
morphological changes, indicative of some diseases, may not
be captured as they can only be seen in particular leads, which
may not be available in the remote system. Moreover, various
heart diseases are known to exhibit similar morphological
changes of the QRS complex (e.g. QRS duration) [3], thus
simply considering these as features and trying to classify a
disease based on them, is not practical as this in principle will
result into a one-to-many mapping. In addition, even in clinical
settings, where standard 12/15 lead ECG recordings are avail-
able, the ECG is only used as the first screening tool to help
clinicians decide what elaborate clinical investigation (medical
imaging, stress test etc..) is further required. Subsequently after
consultation with cardiologists from Southampton General
Hospital [4] and Policlinico Umberto I [5] participating in the
E.U. CHIRON project [6], the clinical expectation for a remote
CVD system is to indicate if there is any heart abnormality,
irrespective of the specific condition causing the abnormality.

In this paper we first carry out a thorough exploration on the
trade-off between the computational complexity and accuracy
of a number of classifiers in classifying normal and abnormal
ECGs with an aim to ascertain which is optimal for on-sensor
classification. This is considered to be the major novelty of this
work, as no comprehensive study on such trade-off has been
presented with particular focus on mobile monitoring systems.
The initial exploration is performed considering a single-beat-
scenario (one simultaneously captured beat per participating
lead) from each ECG record and is then extended to multi-
ple beats per participating lead (multiple-beat-scenario). Our
investigation shows that Linear Discriminant Analysis (LDA)
exhibits the best trade-off. Accordingly, we present a novel
circuit implementation of the LDA classifier which is suitable
for on-body sensor classification of normal and abnormal
ECGs with low power. The proposed architecture is not yet
implemented as a standalone ASIC, since it is a subsystem
of a complete on-body wearable CVD monitoring platform,
currently under integration. This includes various additional
subsystems (ECG data acquisition, ECG feature extraction,
etc.) and is developed under CHIRON project [6], of which
this work is a part. The rest of the paper is structured as
follows: in Section II we provide the fundamental principles
of the classifiers along with their computational complexity
analysis and Section III describes the feature space generation.
Results from classification experiments on both single-beat-
scenario and multiple-beat-scenario are described in Sections
IV and V respectively. Based on these outcomes, a low-
power architecture for LDA is described in Section VI and
its implementation and verification results are discussed in
Section VII. Conclusions are drawn in Section VIII.

II. FUNDAMENTALS OF THE CLASSIFIERS AND THEIR
COMPLEXITY

Although many different approaches have been considered
in ECG classification [7]–[13], in this work we consider five

different classifiers which have been shown in several studies
to have high performance. These are, Linear Discriminant
Analysis (LDA) and Quadratic Discriminant Analysis (QDA)
[14], Support Vector Machine (SVM) with Linear (SVML)
and Quadratic (SVMQ) kernels [7] and k-Nearest Neighbours
(k-NN) [8]. In the following we provide brief principles of
these classification techniques and calculate their arithmetic
computational complexity.

The fundamental assumption in LDA is that every class
distribution is Gaussian in nature and the covariance matrices
of the classes are identical. On the other hand QDA assumes
that the classes follow Gaussian distributions but with different
covariance matrix for each class [15]. The associated decision
boundary of LDA and QDA is given as f(x) =

∑n
i=1 Lixi+b

and f(x) =
∑n

i,j=1Qijxixj +
∑n

i=1 Lixi + b respectively,
where Qij , Li and b indicate the coefficients and the intercep-
tion of the hyperplanes respectively.

SVMs belong to the class of the binary classifiers based on
maximum margin strategy [16]. For determining the separating
hyperplane in high-dimensional feature space SVM uses a
kernel K(.). Typically a linear or a quadratic kernel is used
for the SVM-based classification. The output of SVM is
computed from y(x) = sgn(

∑
k �ky(xk)K(xk, x)+b), where

x, sgn, k and �k represent the new sample for labelling,
sign function, the number of support vectors (xk) and the
Lagrangian multipliers respectively. For Linear (SVML) and
Quadratic kernel (SVMQ), the associated kernel functions [16]
are KL =< xk, x > and KQ = (< xk, x > +1)2, where < . >
denotes inner product operation.

k-NN is a nonparametric classifier where every new sam-
ple is labeled from the majority class which has k-nearest
neighbours around this sample in the training set. The dis-
tance between the new sample and the training samples is
calculated using the Euclidean norm given as d(x, xk) =√∑n

i=1(xi − xki
)2, where x, xk indicate the new sample and

the training data respectively. In this work, we set k = 3.

A. Comparison of arithmetic computational complexity

Typically there are two sets of computations associated with
every classification techniques - computations required during
training and computations required for labelling new sample.
In practice, the first part is a one-time offline procedure that is
carried out before the deployment of the classifier. On the other
hand, sample labelling is the actual computational procedure
taking place during the operation of the classifier. Therefore
in the computational complexity analysis we have considered
only this part. The computational complexity for each method
is expressed in terms of their required arithmetic operations
as this is representative of the energy consumption required
for each classifier. Since several implementations of the same
arithmetic function and the classifier architecture are possible,
to provide a uniform platform, we consider flat unfolded
architecture without any resource sharing or parallelism and
describe the numbers of arithmetic operations required for
each of them. For k-NN, apart from the arithmetic operations
involved in computing the distance, those for determining the
k-nearest neighbours from the full set of training samples are
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also considered. For simplicity, the complexity of a subtraction
operation is considered equal to that of an addition. The
arithmetic complexities of different classifiers are illustrated
in Table I where N, M, S indicate the dimension of feature
vector, the number of Support Vectors (SVs) in SVM and the
number of training samples respectively.

TABLE I
TOTAL NUMBER OF ARITHMETIC OPERATIONS INVOLVED IN LABELLING A

NEW SAMPLE FOR THE FIVE CLASSIFIERS

Add (+) Mul (×) Sqr (()2) Sqrt (√ )
LDA N N 0 0
QDA N2 +N N2 +N N 0
SVML (N+1)M−1 (N +2)M 0 0
SVMQ (N+2)M−1 (N +2)M M 0
k-NN 2S(N+1)−6 0 SN S

From Table I it is evident that for a given dimension
of the feature vector LDA exhibits the least computational
complexity whereas SVM and k-NN strongly depends on
the number of SVs and training samples used respectively.
In addition, an increase in the number of feature vectors
will cause a linear increase in the computational complexity
of LDA, while the rest exhibit an approximately quadratic
increase (considering M and S comparable to N and squaring
operation equivalent to multiplication). It is to be noted that
as an arithmetic block a multiplier (and a divider) is several
times more energy consuming than an adder. Therefore due to
smaller number of multipliers required in LDA, it is expected
that LDA will consume much less energy than the other
classifiers.

In order to create an unified metric describing the overall
computational complexity for each of the classifiers, we used
2-input NAND gate complexity (NG). Considering unfolded
architecture and no resource sharing for each of the arithmetic
computational modules, and b-bit wordlength implementation,
the number of transistors required for each operation is T+ =
24b, T× and T()2 = 30b2− 36b, and T√ = 18( b2 +1)( b2 +3)
[17], where T∗ denotes the transistor count for the arithmetic
operation (*). Since a 2-input NAND gate requires 4 transis-
tors, these numbers could be transformed into NAND gate
equivalent as G+ = 6b, G× and G()2 = 15

2 b
2 − 9b and

G√ = 9
2 (

b
2 + 1)( b2 + 3).

III. FEATURE SPACE GENERATION

In standard clinical settings, 12-lead ECG is used where
each lead provides a different ECG trace. However, in a remote
CVD systems, the deployment of 12-lead ECG is not feasible.
In general, at maximum 5 leads are used in such systems [18].
We therefore restrict ourselves in exploring the performance
of the classifiers considering no more than 5 leads.

In this work we have opted to explore the use of the spectral
energy of the ECG signal as the main feature for classification.
However instead of considering the spectral energy of the
entire ECG-beat, we use the spectral energy of specific parts
of the ECG-beat as separate features. This is done from the
point of view that different classes of ECG abnormalities
may be reflected in different ECG waves (P, QRS and T)
therefore the individual characteristics of each of them may

have more discriminative properties for classifying normal and
abnormal ECG compared to the spectral energy of the entire
PQRST complex. We have performed an extensive exploration
on the applicability of the spectral energy as a discriminative
feature and it turned out that it can indeed be considered
as a robust feature particularly against misdetections of the
ECG boundaries - a typical situation often encountered in
automated ECG analysis. However the detailed description of
that exploration is beyond the scope of this work and will be
described in our future communication.

To calculate the spectral energy of each constituent ECG
wave, we first consider an isolated PQRST complex where
the ECG segmentation algorithm described in [19] is applied
to extract the temporal boundaries of each wave. Following the
PQRST complex is subjected to Discrete Wavelet Transform
(DWT) with Haar as the basis function. Without any loss of
generality other forms of basis functions could also be used.
The time-frequency localisation property of DWT is utilised
here for isolating the DWT coefficients corresponding to each
of the P, QRS and T wave. It has already been shown that
the high-frequency components of the ECG signal, like the
QRS complex are better localised at the DWT decomposition
levels 2 and 3 [20] whereas the low-frequency components
like P and T waves are better localised at level 5. The DWT
is implemented using Mallat’s algorithm [21] where at each
level of decomposition two coefficient vectors - one detail
(cD) and one approximate (cA) - are generated. The cA at
itℎ level is used as the input of (itℎ +1) decomposition level.
In our exploration we exclude the DWT coefficients at level
1 as from our experiments it has been shown that this level
is mostly dominated by high-frequency noise and therefore
contains little information pertinent to the ECG signal itself.
Once DWT coefficients are generated, the spectral energy for a
given interval [n1, n2] is calculated using Equation (1) below,
where Wm,n denotes the cD vector at decomposition level m.

E(n1,n2)
m =

n2∑
n=n1

∣Wm,n∣2 (1)

We have opted to utilize the spectral energy of the following
ECG parts as our feature set, the QRS complex, the P, T wave,
the QT interval and the PR interval. The QRS spectral energy
is obtained from both level 2 and 3 coefficients leading to two
different features QRS2 and QRS3. The energy of the P, T
wave and PR interval is calculated from level 5 coefficients
resulting in three more spectral energy features - P5, T5, PR5.
Finally the QT interval spectral energy, which contains both
high and low frequency components, is calculated by summing
the individual QT interval spectral energies from coefficients
in level 3 and 5, as well as coefficients in level 3, 4 and
5 to produce two different calculations of the QT interval
spectral energy (QT35, QT345). The reason for including level
4 in QT345 is to capture the transition of the spectral energy
from high to low frequency. In total 7 distinct spectral energy
features are calculated on a per lead basis and grouped into
three categories - the low-frequency feature group (L): P5,
T5, PR5; the high-frequency feature group (H): QRS2, QRS3;
and the combined high and low-frequency feature group (B):
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QT35, QT345.

IV. CLASSIFIER COMPLEXITY-ACCURACY TRADE-OFF FOR
SINGLE-BEAT-SCENARIO CLASSIFICATION

In this section, we present an analysis on the complexity-
accuracy trade-off of the five methods considered for the
classification of normal and abnormal ECGs based on the
single-beat-scenario. The spectral energy features are extracted
on a per lead basis, which means that if N leads are available
N simultaneously captured heart-beats are used.

A. ECG Databases

Two ECG databases were used to provide 104 12-lead
records as our experimental set with full clinical diagno-
sis/annotations. Within these 104 records, 52 are categorised
as normal and 52 as abnormal. Specifically, all of the 52
normal records (healthy control) are selected from the PTB
database (PTBDB), available in the PhysioNet [22], which
consists of 549 standard 15-lead ECG records, from healthy
and various disease categories subjects, sampled at 1 KHz . For
the set of abnormal samples, 17 abnormal records are obtained
from PTBDB, which cover all available Myocardial Infarction
subclasses (anterior, inferior, lateral and posterior), 18 are
equally collected from the other six disease classes (e.g. car-
diomyopathy, bundle branch block, dysrhythmia, myocardial
hypertrophy, valvular heart disease and myocarditis) and the
rest 17 abnormal records are obtained from the Southampton
General Hospital Cardiology Department’s database [4] and
pertain to patients with myocardial scar. These records are
standard 12-lead ECG sampled at 500 Hz, of 10 seconds
length.

B. Feature Ranking and Selection

We begin our exploration using all 12-lead ECGs available
and extract one full PQRST complex from each of the leads.
Each of these isolated PQRST complex undergoes the feature
generation procedure described in Section III resulting in 7
distinct spectral energy features per ECG beat and totalling to
7 × 12 = 84 features. Our aim is to identify the best set of
features, through simulation using different lead combinations,
and evaluate the classification performance under the five
aforementioned classifiers. Since exhaustive simulation in this
large feature space is time demanding, Fisher’s criterion [23] is
employed to select one feature from the L, H and B frequency
groups (described in Section III) for each lead, which can
separate the two classes to the maximal extent. By doing
so, we expect to identify the most discriminating features for
classification. In essence, Fisher’s criterion calculates the ratio
of the between-class variance to the within-class variance on
the basis of one feature and indicates the extent of mean
separation and overlap between the two classes. Once the
ratios of the 84 features are obtained, the distinctive feature
for each feature frequency group is determined by selecting
the highest one within each frequency group of each lead.
The final selected features for each lead, after applying this
principle, are shown in Table II.

TABLE II
THE MOST DISCRIMINANT ENERGY FEATURE IN EACH FREQUENCY GROUP

FOR EACH LEAD

Lead
(Abbr)

I
(1)

II
(2)

III
(3)

aVR
(4)

aVL
(5)

aVF
(6)

Fea L T5 T5 T5 T5 T5 T5

Grp H QRS2 QRS3 QRS2 QRS3 QRS3 QRS2

B QT345 QT345 QT35 QT345 QT35 QT345

Lead
(Abbr)

V1
(7)

V2
(8)

V3
(9)

V4
(10)

V5
(11)

V6
(12)

Fea L P5 P5 PR5 T5 T5 T5

Grp H QRS3 QRS2 QRS2 QRS3 QRS3 QRS2

B QT345 QT35 QT35 QT35 QT35 QT345

After deriving the optimal features, we use exhaustive sim-
ulation to identify the best combination of leads, that results
in maximum classification accuracy. Considering l number of
leads being available, out of the total of 12 leads, the number
of possible lead combination is C12

l , where Cp
q denotes the

combination of order q from p elements. In each of these lead
combinations, we opt to select at least one (at most three) fea-
ture(s) from each individual lead and build the feature space.
We restrict ourselves in considering at maximum 5 leads, in
order to remain in line with the constraints imposed by the
application scenario of remote CVD monitoring. The decision
to classify the ECG record to a class is based on the features
from the l available leads (heart-beats). All samples from each
feature are normalized with respect to their mean and standard
deviation at the beginning of our exploration. The training data
has been used for optimizing the parameters in the parametric
models of the classifiers while the regularization parameter
Cs of SVM is set to 1. Conventional quadratic programming
solving method is selected in the training phase for SVM.

For evaluating the performance of each of the classifiers we
use the metrics of specificity, sensitivity and overall testing
accuracy as defined in Eq. 2, where TP and FP denote
True Positives (correct abnormal classifications) and False
Positives (wrong abnormal classifications), while TN and FN
denote True Negatives (correct normal classifications) and
False Negatives (wrong normal classifications). Finally, NR
refers to the total number of records (104 in our experiments).

Spe =
TN

(TN + FP )
× 100%

Sen =
TP

(TP + FN)
× 100%

Acc =
(TP + TN)

NR
× 100%

(2)

By running exhaustive simulation and evaluating the results
for each of the classifiers under consideration, we select the
optimal lead combination and its associated feature combina-
tions exhibiting maximum accuracy for every lead scenario.
The term lead scenario refers to the number of participating
leads. Initially only one lead l = 1 is considered and from
the 12 available, the one that achieves maximum accuracy is
selected for each classifier. Following, we keep this lead and
combine it with each one of the remaining 11 in order to
identify the best lead combination for l = 2. This process
is repeated up to l = 5. By doing so, we ensure that the
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performance of a classifier is improving as we add extra leads,
hence their associated distinctive features. Table III shows the
lead combinations with which the classifiers obtain maximal
performance in all lead scenarios under consideration. The
‘(Lead, Feature) Combination’ column shows which features
from Table II in each feature frequency group for each lead
are used.

TABLE III
FEATURE SPACE SELECTION

# of
Lead

(Lead, Feature) Combination

LDA 1 (3,LHB)
2 (2,LH),(3,LB)
3 (2,LHB),(3,LHB),(7,LB)
4 (2,LHB),(3,LHB),(7,LB),(8,L)
5 (1,L),(2,LB),(3,LHB),(7,B),(8,L)

QDA 1 (4,LB)
2 (3,LHB),(4,LHB)
3 (3,LH),(4,LB),(5,LHB)
4 (3,LHB),(4,LB),(5,LHB),(10,H)
5 (3,LH),(4,HB),(5,HB)(6,L),(10,LH)

SVML 1 (2,LH)
2 (2,L),(3,LHB)
3 (2,L),(3,LH),(8,LHB)
4 (2,L),(3,LHB),(5,HB),(8,LB)
5 (2,L),(3,LB),(5,B),(6,LHB),(8,LHB)

SVMQ 1 (4,LH)
2 (4,L),(8,LHB)
3 (4,L),(5,LHB),(8,LHB)
4 (3,LH),(4,L),(5,L),(8,LHB)
5 (2,L),(3,LB),(4,L),(5,L),(8,LHB)

k-NN 1 (4,L)
2 (4,L),(5,L)
3 (4,LHB),(5,LHB),(9,H)
4 (4,LHB),(5,LH),(8,B),(9,HB)
5 (3,LHB),(4,LB),(5,LHB),(8,B),(9,H)

C. Classification Results Analysis and Discussion

To calculate the complexity of each classifier in terms of
2-input NAND gate equivalent (NG), a word length of b = 16
bit is considered. 10 runs of 10-fold cross validation is used to
obtain consistent performance of the classifier. Table IV lists
the the classification performance of LDA, QDA and k-NN
for their corresponding best lead combination in different lead
scenarios, along with their associated computational complex-
ity. By adding features from extra leads, the overall testing
accuracy of these three classifiers increases gradually. At the
same time NG also grows. This is because the dimension of
the feature vector increases.

Unlike the above three classifiers, the computational com-
plexity and performance of SVMs are affected by the number
of SVs employed. To increase/decrease the number of SVs,
the regularisation parameter Cs can be tuned [7]. This in-
directly influences both the performance and computational
complexity of SVM classifiers. Thus, to investigate the way the
performance and complexity of SVMs are affected by Cs, two
cases are considered. Case 1 is when the maximum accuracy
is obtained without being concerned about the number of SVs
deployed, while Case 2 is the scenario where the minimum
number of SVs, thus minimum complexity and the associated
accuracy are obtained. Initially, Cs was set to 1, to find out
the best lead (and feature) combination. Now, Cs is set after
performing grid search (Cs = 2i, i = −15,−14 . . . 14, 15)

during the training phase and the Cmin
s value that achieves

the minimum number of SVs is preserved for every lead
scenario as this corresponds to the case of least computational
complexity as shown in Table I.

Table V shows the performance and complexity analysis for
Case 1. As we expect, both SVML and SVMQ demonstrate
increasing testing accuracy with respect to the number of leads
deployed. Additionally with increasing number of leads the
number of SVs decreases. This is expected as adding more
leads increases the size of the feature set, which also leads to
the maximum accuracy to be obtained with less SVs. Table VI
depicts Case 2 for SVM. The obtained testing accuracy for
SVML and SVMQ shows that these two classifiers still achieve
a similar level of performance to LDA and k-NN while
outperforming QDA as in Case 1. The minimum number of
SVs, as obtained with use of Cmin

s is listed in Table VI.
The difference in the number of SVs, between Case 1 and
Case 2 for SVML is smaller than SVMQ, where a reduction
up to 30% can be observed when more than 1 leads are
considered. This dramatic decrease in the number of SVs
results in a reduction in the computational complexity of the
SVMQ compared to Case 1. As a result, in Case 2 the total
complexity in terms of NG is reduced significantly only for
SVMQ compared to the NG in Case 1. Therefore, we conclude
that the optimisation of the Cs parameter has a meaningfully
positive effect only on the complexity of SVMQ. When we
compare the performance of the five classifiers for different
lead scenarios, it is observed that SVMQ (Case 1) exhibits
the best performance in all situations except k-NN performs
slightly better in 5 lead scenario. In addition, specificity tends
to be higher than sensitivity in LDA, k-NN and SVMQ,
whereas in QDA the opposite happens. For SVML, the two
metrics outperform each other depending on the lead scenario.
Also, LDA outperforms QDA in every occasion and achieves
comparable performance to SVMQ.

By observing the overall NG required from Table IV,
Table V and Table VI, for each of the classifiers to label a new
sample, we argue that LDA approximately requires two orders
of magnitude less NG than k-NN and SVM and one less than
QDA. As the number of lead increases, NG increases gradually
for LDA, QDA and k-NN while it remains fairly constant
for both SVML and SVMQ. The results for both accuracy
and complexity indicate that while the NG count of LDA
is significantly smaller, than that of the other classifiers, the
accuracy it achieves is either the highest or within a 4% margin
of the best classifier for all lead scenarios apart from the 1
lead scenario where LDA demonstrates a 7% less accuracy
than SVMQ.

V. CLASSIFIER PERFORMANCE FOR
MULTIPLE-BEAT-SCENARIO CLASSIFICATION

Having performed the trade-off analysis for the single-beat-
scenario, we extend our study considering multiple heart-beats
to be utilized from each available lead. The primary reason
for this exploration is that from a morphological point of
view, relying only on a single heart-beat per lead to decide
the class of the record, may result in misclassifications as it
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TABLE IV
SPECIFICITY, SENSITIVITY, ACCURACY AND ASSOCIATED COMPUTATIONAL COMPLEXITY IN NUMBER OF NAND2 FOR LDA, QDA AND K-NN

# of LDA QDA k-NN
Lead Spe(%) Sen(%) Acc(%) NG(log10) Spe(%) Sen(%) Acc(%) NG(log10) Spe(%) Sen(%) Acc(%) NG(log10)
1 84.81 64.04 74.42 3.7494 63.08 85.96 74.52 4.1698 78.85 80.38 79.62 5.3833
2 81.54 86.92 84.23 3.8743 68.27 89.23 78.75 4.9507 91.54 84.42 87.98 5.6281
3 93.27 83.65 88.46 4.1754 83.08 82.50 82.79 5.0691 90.19 82.12 86.15 6.1270
4 93.46 84.81 89.13 4.2265 81.92 85.00 83.46 5.2659 90.00 84.23 87.12 6.1826
5 92.88 85.96 89.42 4.1754 80.96 87.69 84.33 5.2659 94.62 85.96 90.29 6.2762

TABLE V
SPECIFICITY, SENSITIVITY, ACCURACY, NUMBER OF SVS, Cs AND

ASSOCIATED COMPUTATIONAL COMPLEXITY IN NUMBER OF NAND2

(SVM CASE 1)

# of
Lead

Spe
(%)

Sen
(%)

Acc
(%)

# of
SVs

Cs NG
(log10)

SVML 1 61.15 89.04 75.10 86 1 5.8032
2 81.73 88.65 85.19 72 1 5.8857
3 89.81 83.08 86.44 72 1 6.0115
4 85.19 86.54 85.87 64 1 6.0555
5 88.08 85.96 87.02 60 1 6.1056

SVMQ 1 76.15 86.35 81.25 83 1 5.8700
2 90.77 86.54 88.65 59 1 5.8850
3 92.50 84.42 88.46 50 1 5.9690
4 94.04 86.92 90.48 44 1 5.8830
5 91.92 87.50 89.71 40 1 5.9136

is well-known, in the clinical practice that in several cases
an abnormal heart-beat may occur in isolation (e.g. ectopic
beats) while in principle the patient’s overall condition is
diagnosed as normal. Therefore if the isolated abnormal heart-
beat is chosen for analysis this may result in misclassifying
the entire record. As a result, for consistency check, it is
always advisable to consider multiple heart-beats per lead for
classification.

To begin with, we employ the feature sets and their combi-
nations as derived from the single-beat-scenario classification
described previously. However, for the multiple heart-beats
case, since the length of the signals in our two ECG databases
are different, the total number of heart-beats for each patient,
analysed in our study, is ultimately set to 7, as the minimum
number of heart-beats available amongst all 104 records is 7.
After isolating 7 beats per lead for each record the automated
wave boundary detection algorithm used previously is invoked
to obtain the boundaries of P, QRS and T waves within each
of the heart-beats.

One representative heart-beat per participating lead from
each patient is selected and used to train the classifiers accord-
ing to the feature selection for each lead scenario discussed
in Section IV. Since it has been demonstrated that the best
classification performance for each classifier is achieved in the
l = 5 lead scenario, we only consider this and it is expected
to give the best accuracy also in the multiple beat-scenario. In
total from each record 7∗ l beats are used and once classifiers
are trained, they are applied individually in each one of the
7 sets (7 single-beat-scenarios) of l beats for each patient.
To make the final decision on whether the record is normal
or abnormal, using the classification results on these 7 single-
beat-scenarios, one simple decision-making scheme is applied.
Each ECG record is classified into the class, in which the

TABLE VI
SPECIFICITY, SENSITIVITY, ACCURACY, NUMBER OF SVS, Cmin

s AND
ASSOCIATED COMPUTATIONAL COMPLEXITY IN NUMBER OF NAND2

(SVM CASE 2)

# of
Lead

Spe
(%)

Sen
(%)

Acc
(%)

# of
SVs

Cmin
s NG

(log10)
SVML 1 60.96 88.65 74.81 86 4 5.8032

2 82.31 88.27 85.29 68 2048 5.8598
3 90.58 81.92 86.25 68 512 5.9856
4 86.15 86.92 86.54 58 64 6.0105
5 87.88 84.23 86.06 50 32 6.0736

SVMQ 1 77.50 86.15 81.83 81 128 5.8752
2 90.77 85.19 87.98 40 64 5.7473
3 85.00 79.62 82.31 31 16 5.6686
4 89.04 86.35 87.69 25 64 5.6679
5 92.31 86.92 89.62 24 1024 5.6341

majority of the 7 single-beat-scenarios is classified. Since the
number of heart-beats is odd a tie cannot occur. This decision
rule was suggested by expert cardiologists since in the clinical
practice also a small number of ECG beats is investigated and
based on these, a decision on the patient’s condition is made.
Obviously continuous CVD monitoring enables the constant
evaluation of successive heart-beats and if more heart-beats
are classified as abnormal the alarm is triggered. To evaluate
the performance of each classifier we used the same metrics
as in single-beat classification scenario. The associated results
are shown in Table VII.

From Table VII, it can be seen that in terms of overall
accuracy LDA performs almost similarly to QDA , while
SVML, SVMQ, k-NN underperform. Although, both SVM
techniques demonstrate higher sensitivity than both LDA and
QDA their specificity is considerably lower. This translates
to these methods having high success in classifying abnormal
samples correctly, but are prone to misclassify normal records
as abnormal. Overall, the total accuracy of the five classifiers
reveals once again that LDA ouperforms its counterparts when
multiple-beats are considered in the 5 lead scenario.

Note that in the multiple-beat-scenario classification all
classifiers show reduced accuracy compared to the single-
beat based case. This may be because of the presence of
redundant information in the multiple heart-beats. Another
possible reason could be there is a need for more exploration
on how to optimally combine the feature sets resulted from the
single-beat-scenario classification for enhancing the accuracy
of multiple heart-beat based classification. This exploration
will be carried out in the future. However, from the present
results it is evident that when considering the trade-off between
computational complexity and accuracy, LDA provides the
best classifier choice.
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TABLE VII
MULTIPLE HEART-BEAT BASED SIMULATION RESULTS FOR EACH

CLASSIFIER

LDA QDA SVML SVMQ k-NN
Spe(%) 84.31 84.31 43.14 66.67 72.55
Sen(%) 86.96 84.78 91.30 89.13 84.78
Acc(%) 85.57 84.54 65.98 77.32 78.35

VI. HARDWARE ARCHITECTURE DESIGN FOR LDA

As it is evident from the experimental analysis, LDA
exhibits the best trade-off between complexity and accuracy
for classifying normal and abnormal ECGs. Therefore, a low-
energy VLSI solution of LDA-based classification system is
decided to be implemented. This investigation will allow us to
comment on the implementability of the proposed classifier on
resource constrained ambulatory ECG sensors, used in remote
CVD monitoring systems. The reason for implementing the
system as an ASIC instead of a microprocessor-based or DSP
solution has two folds: it is well established that a general-
purpose processor or a DSP-based design for any application
consumes at least 2-3 orders more power compared to its
equivalent ASIC implementation; and an ASIC design is far
more easier to be integrated with the ECG sensor, particularly
in body-worn sensor networks. As power consumption is the
main constraint in our case, it is preferable to choose an ASIC
solution. Thus, we aim to design the system using a minimal
number of multiplications. The Haar function is selected as
the basis function due to its low arithmetic complexity. In
particular, we eliminate the square root and division operations
present in the Haar transfer functions by combining the DWT
coefficients generation and the calculation of spectral energy.
The following notation conventions are used: 1T5 represents
the T wave boundaries of lead 1 at level 5, while 2QT345

indicates the QT waves boundaries of lead 2 at level 3, 4, 5
and so on.

The block diagram of the architecture is illustrated in
Fig. 1(a). The proposed architecture is intended to operate on
individual single-beat-scenarios. Considering the performance
results in Section IV and Section V, the final implementation
of the system is based on the 5 lead scenario of the LDA
classifier. At first the DWT cD coefficients at decomposition
levels 2-5 are computed, using the DWTLVm blocks in paral-
lel, where m indicates the index of decomposition level. The
corresponding DWTLVm blocks are selectively activated when
necessary, depending on which lead is under consideration
since the features associated with each lead may belong to any
of these decomposition levels according to Table III. By using
the appropriate cD coefficients, the corresponding spectral
energies are computed in the CoefSelection&Squaring block
(CSS). The entire process is done in a lead-by-lead sequence
so as to repeatedly take advantage of these functional blocks
in our system. We intentionally use a sequential approach
here since, according to the clinical specification, classification
of normal and abnormal ECGs within a few seconds time
is clinically acceptable. Therefore although the architecture
could be made faster by parallelizing the functional blocks
and dedicating them for each lead, this will eventually result
in a detrimental effect on the overall energy consumption. As
we will demonstrate in Section VII, with a clock frequency

of 1 KHz the proposed design satisfies the clinical timing
requirements, therefore we believe that there is no need in
minimizing latency at the expense of power consumption.
Once all desired spectral energy features are obtained, the
feature vectors are produced in FeatureVectorGenerator block
(FVG), followed by the LDA block which simply implements
the LDA algorithm and produces the final results. This is then
passed to the OutputLabel block in order to output the final
label of the input sample.

Two signals - SigStartTime and SigEndTime are used to
indicate the start and end time instances of a single heart-
beat within which the DWT coefficients are computed. We
also consider that the ECG waves boundaries detection is
done by some other blocks outside of the present architecture
and assume that the corresponding wave boundaries of ECG
clinical parameters (1T5, 2T5, 2QT345, 3T5, 3QRS2, 3QT35,
7QT345, 8P5) are available to the system once we have the
ECG signal at the input of the present system. CoefStart and
CoefEnd provide the CSS block with the signals that indicate
the wave boundaries detected externally and are also used for
selecting the set of appropriate cD coefficients for the spectral
energy computation, with FeaSel indicating which specific
spectral energy the CSS block should compute (refer to Table
III), as well as the feature vector FVG to generate. Note that
FeaSel is a select signal that selects one of the 13 cases of
spectral energy considered in this work.

The associated information processing dataflow is depicted
in Fig. 1(b). To describe the flow using an example, consider
the input ECG signal, Sig, feeds in random samples with a
length of 800 for each lead. SigStartTime and SigEndTime are
set to 1 and 800 respectively as the time frame of the signal.
As the PQRST complexes for each lead are fed sequentially,
the DWT coefficients at the selected decomposition levels are
computed in parallel and on-the-fly. The coefficient squaring
operation, required for computing spectral energy, is done in
the period TP (TP1 to TP5) followed by the sequential addition
operation to compute the spectral energy features. Once the
entire spectral energy computation is finished, AckLabel is
asserted in time period TP5, indicating that FinalLabel is
available. The process is shown in the upper half of Fig. 1(b).
The lower half of Fig. 1(b) explicitly shows the timing details
of when exactly each summation of the squared coefficients
is done for each lead in TP1 to TP5. These values are stored
temporarily into an intermediate register bank and keep on
accumulating along the time from TP1 up until TP5. These are
used by the FVG block to generate the feature vector. As the
LDA block receives the feature vector, the final classification
label is produced during TP5.

To process multiple heart-beats in real-time, the system
requires an additional memory bank to store the multiple heart-
beats. This is because our system is based on single heart-beat
classification thus needs to be applied iteratively for labeling
the individual single-beats present in the ECG sample. In the
following subsection we describe the details of each blocks
comprising the overall system.

In the DWTLvm block, in accordance with Haar DWT filter
transfer function, 2m consecutive data samples are used to
compute the detail coefficients cD at each decomposition level
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Fig. 1. (a) The hardware architecture of the proposed system; (b) Main data flow of the design

where m = 2, 3, 4, 5 in our case. Although the transfer function
involves term 1/

√
2, it can be ignored in this block and then

be considered as shifting in the FVG block, which in turn
simplifies the DWT computation block. Therefore, the detail
coefficients cD can be computed using simple additions and
subtractions. This is done on-the-fly with the incoming signal
samples. The architecture for generic coefficient computation
at decomposition level m is shown in Fig. 2(a).

The CSS block receives the detail coefficients and produces
the spectral energy of a specific ECG clinical parameter at a
certain DWT decomposition level. Its block diagram is shown
in Fig. 2(b). Four register banks, namely cDLV2RegBank,
cDLV3RegBank, cDLV4RegBank, cDLV5RegBank are used
for storing the detail coefficients generated by the DWTLVm
block. Depending on which lead we process, one or more of
the register banks are utilized to store the coefficients of certain
levels that are necessary in the squaring operation and the
others are temporarily ignored during the time of processing
that particular lead signal. Once the expected coefficients are
successfully stored in the associated register banks, FeaSel is
asserted and the corresponding cDStoreSel signal is gener-
ated for selecting the appropriate coefficient register bank(s)
for spectral energy computation. A synchronous up-counter
is used in ‘Squaring’ block, with CoefStart and CoefEnd
indicating the start and end values of the count operation
upon the selected register bank. Henceforth, the coefficients
from the CoefStart up to the CoefEnd will be sent to the
‘Squaring’ sequentially for squaring operation, followed by
‘Accumulator’ which sequentially sums up squared results.
Eventually the overall sum of the selected squared coefficients
is outputted as SumResults. Since the timing requirement of
our system can tolerate a longer processing time, the CSS
block is implemented in such a way that it only requires
one multiplier and one adder, with which the squaring and
summation of the squared coefficients, thus the spectral energy,
are computed.

FVG block is discussed as follows. As previously stated
in DWTLVm block, term 1/

√
2 was temporally removed.

However, to maintain the computation precision and at the

same time reduce the computational complexity of our system,
term 1/

√
2 has been implicitly considered in the stage of

spectral energy computation. To better explain it in details,
Eq.(3) shows the energy calculation procedure of the first
squared coefficient at level 2. It can be clearly seen that, at the
end of the equation, there is a squared coefficient alongside
with the squared term W2[0]

2 . This coefficient is resulted
from the previous 1/

√
2 term in cD coefficient computation.

After squaring, ultimately the 1/
√
2 term will lead to 1/4 ,

which can be considered as simple shifting. The same principle
can be applied in the decomposition level 3, 4, 5 and thereby
reducing arithmetic complexity of the system further.[

1√
2

(
1√
2
X[0] +

1√
2
X[1]

)
− 1√

2

(
1√
2
X[2] +

1√
2
X[3]

)]2
=(

1

2
)2 [(X[0] +X[1])− (X[2] +X[3])]2 = (

1

4
)W2[0]

2 (3)

Fig. 2(c) shows the architecture of the FVG block. The
above mentioned shifting process is implemented as the first
part to adjust the SumResults from the CSS block. Following
the shifting, there is a multiplexer associated with cDStoreSel
as the select signal which again is produced from ‘Select
Signal Convert’ with FeaSel as input. This multiplexer is
to select the proper shifted SumResults. In order to store
it into the InterRegBank at the proper position so that the
final features generated as in correct order, ‘SelStorePosition’
assists to localise the position in InterRegBank according to
the FeaSel. Finally, once all the adjusted squared SumResults
are stored appropriately, operation of outputting the features
will be initiated. Before Fea are sent out, Fea3, 6 and 7
require one more summation to derive the final result from
the associated values in the register bank while the rest are
sent straightaway to the LDA block.

Regarding the LDA block, mathematically LDA consists of
a linear function coefficients set and one constant, as given in
Section II. The coefficients and the constant have already been
derived in our simulation (single-beat-scenario classification
analysis in Section IV) using Matlab. However, since the con-
stant term turned out to be too small, we ignore it in our LDA
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Fig. 2. Hardware implementation of the individual blocks of the proposed architecture

TABLE VIII
SYNTHESIS RESULTS FOR THE PROPOSED SYSTEM

Technology ST130nm
Global Operating Voltage 1.08V
Clock Frequency 1 KHz
Total Dynamic Power 182.94nW
Total Dynamic Power (LDA block) 17.04nW
Total Cell Area 0.70mm2

NAND2 Equivalent Area 115.5K

block. Therefore, only LinearCoefRegBank is used to store the
set of coefficients. In addition, a normalisation process (i.e. z-
score) should also be done on each feature before operating
LDA. To simplify this process in our design, the mathematical
issues have been considered before the implementation of
our design. As we are only concerned about the sign of
the results of LDA, the division with the standard deviation
can then be eliminated with some expense, and substraction
with associated mean value from each feature is also adjusted
accordingly. Henceforth, BiasCoefRegBank is only needed to
store these adjusted mean values. With all these values set,
Fea1-8 generated from the previous block are firstly subtracted
by the corresponding adjusted mean value in sequential order,
followed by multiplication with the associated coefficient of
the linear function. The result is accumulated with the previous
one. When it is done, the final output Results is produced.
Fig. 2(d) shows the hardware implementation of the LDA
block.

Finally, the OutputLabel block which applies to Fig. 1(a), is
used for simply extracting the sign bit of the final output gen-
erated from LDA block as the label. This label is categorised
into two classes : >0 represents abnormal and <0 normal.

VII. SYSTEM VERIFICATION AND IMPLEMENTATION

The proposed architecture (see Fig. 1(a)) was coded in
Verilog and Synopsys Design Compiler was used to synthesize
the HDL code at 1 KHz clock frequency and 1.08 V supply
voltage, using the STMicroelectronics 130nm technology li-
brary. The power consumption of the design was estimated
at 182.94 nW, while the LDA block consumed an estimated
17.04 nW using Synopsis PrimeTime. Table VIII illustrates the
synthesis results, from where we conclude that the proposed
classification architecture is ideal for implementation in low-
power mobile CVD platforms and also has the potential to be
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Fig. 3. Core chip layout

integrated with an ambulatory ECG sensor, in the form of a
standalone ASIC. Fig. 3 depicts the core layout with labeled
blocks after Place and Route (PnR). The associated area is
0.979 mm2 and the equivalent NAND2 area is 161.8K. The
reason why these measurements are larger than the area in
Table VIII is due to pratical considerations as cell placing
and signal routing are reflected in PnR. The throughput of the
design, considering as starting point the time instance when
the first ECG sample is fed into the system up to the point
when the final label is produced, will vary depending on the
number of samples of the heart-beat and also the duration
of the ECG clinical parameters, in terms of samples, used
in calculating the spectral energy features. To provide an
approximation of the throughput, a single-beat-scenario was
conducted where the length of the heart-beat has been set
to 800 samples and the boundaries of P, QRS, QT, T were
set to 128 samples, 96 samples, 416 samples, 160 samples
respectively. When considering an ECG sampling frequency of
1KHz (the sampling frequency of the PTBDB) these values are
within the normal clinical limits for these parameters. Under
this set-up, 4516 clock cycles (at 1KHz operating frequency)
are required to output a label for one single-beat-scenario
which is approximately 4.5s. Such latency in classifying the
ECG signal and to that extent, trigger the “danger” alarm in
remote CVD systems is well accepted by cardiologists and
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Fig. 4. Comparison between the Matlab and post-synthesis implementations of the proposed classification system

physicians. This fact, in combination with the detrimental
effect on the power consumption, prompted us not to consider
a parallel architecture in our design.

In addition, a thorough experimental verification was con-
ducted to compare the classification results obtained by the
VLSI system at post-synthesis level against the Matlab-based
implementation. We considered a single-beat-scenario where 5
leads are available with the LDA as the classification method.
The 104 records (52 abnormal and 52 normal), described
in Section IV were also utilized for this experimentation.
Initially, we used all 104 records in order to train the LDA
classifier. For simplicity, this operation took place in Matlab
environment. Once the LDA coefficients were derived, they
were imported in the synthesized core to define the LDA
parameters. In the testing phase the same 104 ECG records
were utilized. A Verilog-coded testbench was constructed to
define the vectors (104 records) that were used as the input
data in the synthesized system. Ultimately, we compared
the numerical value of the trained LDA output produced
by Matlab-based implementation and the synthesised system.
Fig. 4(a) illustrates the the numerical value of the LDA output
for both the Matlab-based and the synthesised system for each
testing record. It is evident that the values from the two either
match or are very close. Fig. 4(b) shows the final classification
label for each record based on the operation of the LDA
classifier. It can be seen that the classification labels between
Matlab and the synthesised system fully agree. The same
records were misclassified among the two implementations. In
total we observed the same 7 abnormal records misclassified
as normal and the same 3 normal misclassified as abnormal
out of the total 104, in both implementations. This results
in the following values for specificity, sensitivity and overall
accuracy, Spe = 94.23%, Sen = 86.54% and Acc = 90.38%
of the proposed system. This investigation fully validates the
synthesised design of the proposed classification system. In
essence, also the multiple heart-beat classification scenario is
validated here, since this is simply an iterative application of
the single-beat method on multiple heart-beats. Finally, due to
the fact that the ECG signals considered are actual medical
records, we expect the same level of performance in the real-
life application of the proposed system.

VIII. CONCLUSION

In this paper, we presented an investigation on the complex-
ity/performance trade-off that various methodologies exhibit
in classifying normal and abnormal ECG signals in a remote
CVD monitoring system. These systems are viewed as one of
the many potential applications of the IoT paradigm. Due to
the fact that these systems operate on a limited energy budget
our primary focus was to effectively balance performance
with computational complexity (and hence energy). Using the
spectral energy contained in the constituent ECG waves and
calculated using DWT, we first conducted exhaustive simu-
lation experiments considering up to 5 leads to be available,
in order to identify the combination of leads (and features)
that achieves the best performance in discriminating normal
and abnormal ECG signals. In our experiments with 104 ECG
records, where both single and multiple-beats classification
scenarios were investigated, LDA achieved either the best
performance or an accuracy within 7% of the best performing
classifier albeit with several orders of less computational
demand. Accordingly we presented a low-energy VLSI design
of the LDA classifier which consumes only 182.94 nW power
when synthesised at 130 nm technology. In addition, we
have validated the consistence of our VLSI design, as the
classification results obtained from the 104 records through
the VLSI implementation completely match the ones produced
by the Matlab implementation. The aforementioned findings
reveal the potential for ASIC implementation that the proposed
solution has, for the classification of normal/abnormal ECGs
in resource constrained remote CVD monitoring applications.
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