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Semantic type checking in scientific workflows 

by Kheiredine Derouiche 

 

Scientists are increasingly utilizing Grids to manage large data sets and execute 

scientific experiments on distributed resources [1]. Scientific workflows are used as 

means for modelling and enacting scientific experiments [2]. Windows Workflow 

Foundation (WF) is a major component of Microsoft’s .NET technology which offers 

lightweight support for long-running workflows. It provides a comfortable graphical 

and programmatic environment for the development of extended BPEL-style 

workflows but offers little support for ensuring that the resulting workflows are 

complete, robust and meaningful in the user’s scientific domain. 

 

Workflow building tools rely on the developer’s understanding of multiple services and 

the data required to execute them. Syntactic type definitions of these data are not 

meaningful enough to ensure type safety, which are only discovered during execution. 

We aim to enrich type definitions with semantics in order to guide developers to 

resolve type mismatch issues at design time. 

 

The approach we have taken is to develop SAWDL-compliant annotations for 

workflow and use them with a semantic reasoned to guarantee semantic type 

correctness in scientific workflows.  
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Chapter 1 Introduction 

Scientists now routinely utilize computational tools and information repositories to 

conduct their experiments. Such resources are made available with programmatic 

access as Web Services. This e-Science approach enables scientists and researchers to 

collaborate. Grid computing builds infrastructures for e-Science to support global 

distributed collaboration [3].  Research and development efforts within the Grid 

community have produced protocols, services, and tools that address the challenges of 

the field. The Globus Toolkit and UNICORE are two popular Grid systems that have 

provided a rich set of services for different scientific domains. Scientists want tools that 

allow them to bring together the power of various computational and data resources by 

developing and executing their own scientific workflows. Resources are supplied by 

third parties and the operations provided are often incompatible with each other. 

Resolving resource mismatches requires the designer’s intervention, which can be 

difficult and time-consuming task for scientists. Another major problem is the 

unreliable handling of failed workflows. Such complexities should be hidden from the 

user by the workflow system. 

 

Web Services provide a basis for distributed, service-oriented systems. Web Service 

standards such as WSDL provide syntactic descriptions of Web Service functionalities 

using XML Schemas to describe composite data types and method interfaces. These 

standards fail to capture the domain semantics of scientific data. Web Services also fail 

to provide reliability during execution because they lack the isolation property. Current 

failure handling mechanisms fail to mitigate the effect of failure on the overall 

execution of the workflow. Semantic ontologies provide an approach to define 

hierarchies of failure at different levels. Thus, allowing us to define more intelligent 

handling mechanisms. In this thesis, we present an implementation that successfully 

integrates semantics into a standard industrial business workflow management system, 

thus allowing the automatic detection and resolution of service mismatches in 
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workflows at design time. In addition, we demonstrate how compensations can be used 

semantically to resolve workflow failure issues. 

 

This thesis is structure as the following: In Chapter 2, we provide a general overview of 

the Semantic Web and current standards. In Chapter 3, we discuss Web Services 

standards and the emerging efforts in the Semantic Web Services field. In Chapter 4, 

we discuss the issue of Web Service composition and the related problems in current 

standards. In Chapter 5, we present our solution and the implementation of the 

framework. In Chapter 6, we conclude by reemphasising our achievements and the 

contribution of our work and identify the scope of our future research. 
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Chapter 2 The Semantic Web 

2.1 Introduction 

The World Wide Web consists of documents in various formats, including text, images, 

audio, and videos. These documents are usually unorganised and can only be consumed 

by humans. Such data can be difficult to manage and understand by software agents 

and unreliable. The Semantic Web is a vision in which the existing Web will include an 

unambiguous notion of meaning in data and services. This will make the knowledge 

organized and machine understandable [4]. 

 

The Semantic Web is slowly being commercialized and deployed by companies and 

communities. Companies such as Celcorp, Ontoprise, and Unicorn already offer 

semantic integration solutions [5]. 

 

The Semantic Web benefits from an open source development community. 

Applications of ontologies such as Friend of a Friend (FOAF) and Dublin Core are 

already widespread within the Web community. The academic community has 

developed applications that demonstrate the potential power of the Semantic Web [6-

8]. 
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2.2 Enabling Technologies 

2.2.1 RDF/RDFS 

The Semantic Web consists of a set of core enabling technologies usually illustrated 

through a layered diagram referred to as “Semantic Web Layer Cake” [9], show in 

Figure 1. 

Figure 1 - The Semantic Web Layer Cake 

The Resource Description Framework (RDF) [10] is a W3C specification. RDF can be 

used to associate information with any resource with an URI. These statements are 

made in the form of subject-predicate-object expressions, called triples. The subject is a 

resource, always identified by a Uniform Resource Identifier (URI). The predicate is a 

resource representing a relationship. The object is a resource or a Unicode string literal. 

RDF Schema is an extensible knowledge representation language intended to structure 

RDF resources.  

2.2.2 OWL 

The Web Ontology Language (OWL) [11] is a family of language specifications for 

defining and instantiating ontologies. The specifications define a type system along 

with additional constraints. OWL is based on the earlier languages OIL and 

DAML+OIL. OWL allows information to be processed by applications using reasoning 
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techniques. OWL currently has three increasingly expressive languages OWL Lite, 

OWL DL, and OWL Full.  

 

OWL Full contains all OWL language constructs and provides free, unconstrained use 

of RDF constructs. OWL Full allows classes to be treated as entities, whereas in OWL 

DL and OWL Lite only instances of a class are individual entities. OWL DL is a 

sublanguage of OWL which places a number of constraints on the use of the OWL 

language constraints. For example properties inverse of, symmetric, and transitive can 

never be specified for datatype properties. OWL Lite abides by all the restrictions 

OWL DL puts on the use of the OWL language constructs. In addition, it forbids the 

use of some constructs such as owl:oneOf, owl:unionOf, and 

owl:disjointWith. In practice, working with OWL Full is generally too complex 

for a logical reasoner to use for logical deduction, but OWL DL is both complete and 

decidable and hence easier to reason over and use. 
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Chapter 3 Semantic Web Services 

3.1 Service Orientation and Web Services 

Interoperability problems are important in Business-to-Business (B2B) electronic 

commerce. To solve such problems, much effort was invested in the Enterprise 

Application Integration (EAI) and B2B Integration field. This has led to the 

development of various solutions, most of which use adapters to connect legacy 

systems. The Common Object Request Broker Architecture (CORBA) [12] from the 

Object Management Group (OMG) and the Distributed Common Object Model 

(DCOM) [13] from Microsoft were two major efforts that attempted to achieve 

interoperability in distributed systems. CORBA’s inherit complexity and DCOM’s 

dependence on Windows led to their failure to achieve universal uptake. The protocols 

failed properly to interoperate due to some differences in their implementation such as 

the format for payloads and message representation of communication endpoints. These 

protocols did not provide a proper type system, and applications were reduced to 

extracting semantics via HTML parsing. An important factor in CORBA’s and 

DCOM’s decline was XML. Microsoft gave up on DCOM and developed SOAP [14] 

with its partners. This protocol used XML as the on-the-wire encoding for remote 

procedure calls. With the success of SOAP as a market strategy, numerous vendors 

moved their efforts toward the Web Services market. This boosted the rapid the 

advance that Web Services enjoys now. 

 

Web Services play a major role in Service-Oriented-Architecture (SOA) [15] as they 

fulfil many of its requirements of platform-independence and interoperability. Web 

Services are built on a set of open core standards defined by standards bodies such as 

the World Wide Web Consortium (W3C) and the Organization of Structured 

Information Standards (OASIS). Simple Object Access Protocol (SOAP), a W3C 
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recommendation, is an XML-based RPC protocol. SOAP encoded messages can be 

delivered using transport protocols such as HTTP and SMTP. Web Services 

Description Language (WSDL) [16], currently in version 2.0, is another W3C 

recommendation. WSDL is an XML-based language that provides a model for 

describing Web Services. WSDL defines services as a set of endpoints operating on 

messages. Universal Description Discovery and Integration (UDDI) [17] is an open 

initiative sponsored by OASIS. It is an XML-based registry enabling businesses to 

publish service listings and discover each other. Although UDDI Business Registries 

(UBR) were discontinued early 2006, the standard is still supported in several vendors’ 

products and services. While SOAP and WSDL have been widely adopted by software 

vendors, UDDI has not gained wider adoption in industry despite the fact that 

enterprises are increasingly deploying Web Services. UDDI’s complexity and lack of 

functionality are among the features that discouraged its uptake by software developers. 

DISCO was Microsoft’s version of UDDI. DISCO documents were published to clients 

through a Web Server, and they provided links to resources describing the Web 

Service. 

 

In addition to these core standards, additional specifications have been developed or are 

being developed to extend Web Services capabilities. These specifications are generally 

referred to as WS-*. Commercial and industrial interest in SOA and Web Services 

contributed greatly to their adoption by vendors and to the fast evolution of several 

standards. Figure 2 illustrates the Web Services building blocks for developing 

distributed applications. 

Figure 2 - Web Services building blocks 
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Figure 3 illustrates a common usage scenario for Web Services that can be defined by 

three phases: Publish, Find, and Bind; and three entities: the service requester, which 

invokes the services; the service provider, which responds to requests; and the registry 

where services can be published and advertised. Service descriptions are published by 

service providers to a service registry. These services are discovered by querying or 

browsing the registry. 

3.2 The Semantic Approach to Web Services 

The semantic approach to Web Services aims to enable the automatic discovery, 

composition and execution of Web Services. Traditional technologies for Web Services 

(WSDL) only provide descriptions at syntactic level, making it difficult to interpret the 

domain meaning of inputs and outputs flowing between requesters and providers. In the 

same way that Semantic Web technologies allow semantic markup of data on the Web 

to make it machine understandable, Web Service can now be augmented with semantic 

annotations to make them discoverable by software agents, as well as composable and 

executable. 

 

In the next section, we review three research efforts addressing the Semantic Web 

Services issues. 

UDDI 

Registry 

Service 

Consume

 

 

Web 

Service 

 

 

WSDL 

SOAP 

Points to Description 

Communicates with XML 
Messages 

Finds 

Service 

Describes 

Service 

Points to Service 

Figure 3 - Web Service usage scenario 
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3.2.1 The Web Ontology Language for Services: OWL-S 

OWL-S [18] (formerly known as DAML-S) is an OWL ontology that includes three 

primary subontologies: the service profile, process model, and grounding. The service 

profile is used to describe the capabilities of the service. The process model describes 

how the service is performed. The grounding specifies how the service is actually 

invoked. The service profile and process model provide characterizations of a service, 

and the grounding provides details related to message format, transport protocol. Figure 

4 shows the top level ontology classes and the relationships between them. For 

example, the presents property represents a relationship between a Service and a 

Profile. 

Each service described using OWL-S is represented by an instance of the OWL class 

Service, which has properties that associate it with a process model, one or more 

groundings, and optionally one or more profiles. A process model provides the 

complete description of how to interact with the service at an abstract level, and the 

grounding supplies the details of how to embody those interactions in real messages to 

and from the service. Each service profile can be thought of as a summary of the 

process model aspects plus additional advertising information. Several types of 

grounding exist for OWL-S; the default one employs WSDL. 

 

The Service Profile 

The OWL-S profile specifies the capabilities of services. Discovering services that 

satisfy a request is accomplished by exploiting the OWL-S profile structure and the 

references to OWL concepts. The principal elements in a profile include the inputs, 

outputs, preconditions and effects (IOPEs) associated with the service — it is required 

Profile 

Process 

Grounding 

Service 

presents 

described by 

supports 

Figure 4 - Top level of Service Ontology 
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to list all IOPEs. The IOPEs describe the functional aspect of the service, i.e. the 

service expects data as input and returns data as output. IOPEs specify the 

preconditions that need to be satisfied and the effects during the execution. Services are 

usually stateless i.e. they do not change the state of information, preconditions and 

effects in this case are not necessary. Figure 5 shows a partial example of a profile for a 

service, expressed in OWL. The profile describes the input the service takes. The other 

parameters are not described because they are unimportant.  

The Process Model 

The process model specifies the possible patterns of interaction with a Web Service. 

There are two types of processes that can be invoked: atomic and composite. Atomic 

processes are single black-box processes. Composite processes can consist of atomic 

and composite processes linked using control flow flow constructs such as sequences, 

conditional branches and loops. A third type, the simple process, is a non-invocable and 

abstracted view of atomic and composite processes. A process in OWL-S has a set of 

associated features (IOPEs) linked by properties such as hasInput, has Output, etc. 

Figure 6 shows the atomic process corresponding to the profile in Figure 5. The atomic 

process specifies that it has an input DNA sequence using the property hasInput and 

points to its semantic type using the parameterType property. The ontology used is the 

myGrid domain Bioinformatics ontology.  

 

<BLASTProfile rdf:ID=”WUBLAST”> 
  <serviceName>BLAST Service</serviceName> 
  <hasInput rdf:resource=”&blast_process;#DNASequence_In”/> 
  ...... 
</BLASTProfile> 

   

Figure 6 - An OWL-S Process 

Figure 5 - A partial OWL-S profile 

<AtomicProcess rdf:ID=”blastp”> 
    <hasInput rdf:resource=”#blastp_In”> 
</AtomicProcess> 
 
<Input rdf:ID=”blastp_In”> 
    <paramterType  
        rdf:resource=”http://www.mygrid.org.uk/ontology#DNA_sequence”/> 
</Input> 
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The Grounding 

The grounding ontology of OWL-S is used to specify how abstract information detailed 

by atomic processes is realized by concrete information in deployed Web Services. 

Grounding maps each atomic process to a WSDL operation, and relates each OWL-S 

process input and output to elements of the XML serialization of operation input and 

output messages. Mappings enable the translation of semantic inputs to the appropriate 

WSDL messages for the service execution, and translate back output messages to 

semantic descriptions. 

 

Figure 7 shows the corresponding grounding of the blast operation. The wsdlOperation 

property of WsdlAtomicProcessGrounding specifies the portType/operation pair from 

WSDL. The wsdlInputMessage property is mapped to the request message in WSDL. 

The wsdlInput property specifies mappings between OWL-S parameters and WSDL 

message parts. 

<WsdlGrounding rdf:ID=”Grounding_BLAST”> 
  <hasAtomicProcessGrounding   
     rdf:resource=”#WsdlGrounding_blastp”/> 
</WsdlGrounding> 
 
<WsdlAtomicProcessGrounding rdf:ID=”WsdlGrounding_blastp”> 
 <owlsProcess rdf:resource=”&blast_process;blastp”/> 
  <wsdlOperation rdf:resource=”#blastp”/> 
   
 <wsdlInputMessage> 
 <xsd:anyURI rdf:value=”&BLASTGroundingWSDL;#blastp_Input”> 
 </wsdlInputMessage> 
 
 <wsdlInputs rdf:parseType=”Collection”> 
  <WsdlInputMessageMap> 
   <owlsParameter rdf:resource=”&blast_process;#DNASequence_In”/> 
    <wsdlMessagePart> 
        <xsd:anyURI rdf:value=”BLASTGroundingWSDL;#sequence”/> 
    </wsdlMessagePart> 
   </WsdlInputMessageMap> 
 </wsdlInputs> 
</WsdkAtomicProcessGrounding> 
 
<WsdlOperationRef rdf:ID=”blastp_operation”> 
 <portType> 
  <xsd:anyURI rdf:value=”&BLASTGroundingWSDL;#blastp_PortType”/> 
 </portType> 
 <operation> 
  <xsd:anyURI rdf:value=”&BLASTGroundingWSDL;#blastp_op”/> 
 </operation> 
</WsdlOperationRef> 

Figure 7 - An OWL-S Grounding 
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Implementations 

Task Computing is a project that has been developed at the Fujistu Laboratories in 

America [19]. The framework provides an interface for a collection of services and 

devices such as agendas, display devices, and email clients. An execution environment 

was developed to consume the provided semantic descriptions. Users are guided to 

compose simple workflows that accomplish tasks such as locating an address from a 

contact card and printing the directions there. The environment relies on semantic 

reasoning to aid select compatible services. Workflows are limited to sequences, where 

services are connected via their inputs and outputs. 

 

The authors argue that WSDL definitions provide functional descriptions of services, 

thus requiring programmers to understand the semantics of these services. 

Hence, they introduce Semantic Service Descriptions (SSDs), service layer 

semantic descriptions that can be applied to different components of a service, 

for example inputs, outputs, and class entities. 

 

The authors propose using OWL-S as one possible implementation of a semantic 

description language. They further explain that service composition can rely on 

input and output semantic compatibility or entities hierarchical relationships.  

3.2.2 The Web Service Modelling Ontology: WSMO 

WSMO [20] is an ontology for the description of Web Service. The definition of 

WSMO hinges on the following four concepts: Web Services, Goals, Ontologies and 

Mediators. The following list provides an explanation of the meaning of the four 

concepts. 

 

Web Services expose the interface of businesses on the Internet. They describe the 

capabilities of the Web Service, and how these capabilities are fulfilled. 

Goals represent the objectives that a client seeks to fulfil. These objectives are 

characterized by post conditions that describe the information state the client 

desires, and effects that describe the state of the world that the client desires to 

achieve. 
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Ontologies provide a formal specification of the domain. Ontologies provide formal 

semantic to exchanged information by facilitating interoperation, and specify 

the precise terminology accepted by Web Services facilitating the definition of 

semantic descriptions. 

Mediators provide a general mechanism to overcome interoperability issues between 

Web Services. They provide a mapping between different ontologies concerned 

with related domains. 

 

Goal, WebService and Ontology components are linked by four types of mediators as 

follows: 

• OO mediators link ontologies to ontologies, 

• WW mediators link web services to web services, 

• WG mediators link web services to goals, and finally, 

• GG mediators link goals to goals. 

 

A few tools and APIs are available for WSMO. WSMO Studio is a WSMO compliant 

editor available as an Eclipse plugin. WSML Rule Reasoner is a reasoner 

implementation for Web Services Modelling Language (WSML). WSMO4J is a Java 

API for building WSMO based applications. The Web Services Execution Environment 

(WSMX) is the execution environment for Semantic Web Services based on WSMO. 

Due to the lack of technical documentation and working scenarios, WSMO is not being 

adopted by academic and industrial researchers. Efforts on WSMO focus on producing 

a conceptually complete and sound framework for describing Web Services rather than 

a lightweight working solution. The WSMO project uses the WSML as an ontology 

language rather than OWL, which is a W3C recommendation. WSMX is limited to 

WSML, which provides syntax and semantics for WSMO. This limits the usability of 

WSMO since most ontologies are defined in OWL. 

3.2.3 Semantic Annotations for Web Service Description Language 

Introduction 

Current Web Services technologies are built around SOAP and WSDL. These 

technologies provide a solid foundation for resolving integration problems but do not 

scale well when it comes to search and mediation. Automation in Web Services 
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requires more than XML descriptions of the data structure and syntax. This sort of 

automation can be achieved using Semantic technologies, such as those underlying the 

Semantic Web. 

 

Building on WSDL, Semantic Annotations for Web Service Description Language 

(SAWSDL) [21] adds hooks that let WSDL components point to their semantics (see 

Figure 8). The SAWSDL specifications do not provide any specific semantics; rather, it 

allows the annotation of syntactic WSDL descriptions with pointers to semantic 

concepts. These concepts can be consumed by software systems to (partially or fully) 

automate tasks such as service discovery, composition, and invocation. 

 

Technically, SAWSDL is a set of extensions for WSDL. WSDL uses XML as a 

common data-exchange format and apply XML Schema for data typing. It describes a 

Web Service on three levels: 

Reusable abstract interface defines a set of operations, each representing a 

simple exchange of messages described with XML Schema element 

declarations. 

Binding describes message serialization; it follows the structure of an interface 

and fills in the necessary networking details (for instance SOAP or HTTP). 

Service represents a single physical Web Service that implements a single 

inteface; the Web Service can be accessed at multiple network endpoints.  

Figure 8 - WSDL with SAWSDL Annotations 
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WSDL describes the Web Service on a syntactic level, whereas SAWSDL specifies 

WSDL components semantic by extending WSDL with a semantic layer. Specifically, 

SAWSDL defines extension attributes that can be applied both in WSDL and in XML 

Schema to annotate WSDL interfaces, operations, and their input and output messages. 

These extensions take two forms: model references that point to semantic concepts and 

schema mapping that specify data transformation between messages’ XML data 

structure and the associated semantic model. The table in Figure 9 summarises the 

complete syntax introduced by SAWSDL. 

 

Several tested implementations have developed for the SAWSDL specifications [22]. 

Direct implementations are parser APIs that make the annotation available to 

applications and tools that let users annotate WSDL documents with semantic 

annotations. The Woden API [23] for WSDL 2.0 and the WSDL4J API [24] for WSDL 

1.1 were both extended to handle SAWSDL. Two GUI tools exist to help annotate 

WSDL documents with semantics: Radiant from the University of Georgia and the 

Web Service Modelling Ontology (WSMO) Studio from Ontotext. 

 

Name Description 
modelReference A list of references to concepts in some semantic 

models (XML attribute) 

liftingSchemaMapping A list of pointers to alternative data-lifting  

transformations (XML attribute) 

loweringSchemaMapping A list of pointers to alternative data-lifting  

transformations (XML attribute) 

attrExtensions Attaches attribute extensions where only element 

extensibility is allowed (XML attribute) 

Figure 9 - SAWSDL syntax summary. 

Model References 

A model reference is an extension attribute, sawsdl:modelReference, which can be  

applied to any WSDL or XML Schema element. However, SAWSDL defines its 

meaning only for wsdl:interface, wsdl:operation, wsdl:fault, xs:element, 

xs:complexType, xs:simpleType, and xs:attribute. This attribute allows 

multiple annotations to be associated with a given WSDL or XML Schema component 

via a set of URIs, each one identifying concepts expressed in different semantic 
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representation languages. Model references generically refer to semantic concepts, 

serving as hooks for attaching semantics. They are used to describe the meaning of data 

or to specify the function of a Web Service operation. 

 

Schema Mapping 

SAWSDL provides two attributes for attaching schema mappings: 

sawsdl:liftingSchemaMapping and sawsdl:loweringSchemaMapping. 

Lifting mappings transform XML data from a Web Service message into a semantic 

model (for instance, into RDF data that follows some ontology), whereas lowering 

mappings transform data from a semantic model into an XML message. Lifting and 

lowering transformations address post-discovery issues in using Web Services. 

Mismatches between the semantic model and the structure of the inputs and outputs can 

exist between matched Web Services. In XML Schema, an XML elements’ content is 

described by type definitions and the name is added as an element declaration. 

SAWSDL model reference and schema mapping annotations can be both on types and 

on elements. 

 

WSDL 1.1 Support 

The SAWSDL specifications are built primarily for WSDL 2.0, but it also supports WSDL 1.1. 

Both model references and schema mappings apply without modification to WSDL 1.1. 

However, the XML Schema for WSDL 1.1 allows only element extensions on operations, so a 

WSDL 1.1 document with the SAWSDL modelReference attribute on an operation would 

not be valid. To overcome this obstacle, SAWSDL defines the element attrExtensions to 

carry extension attributes in places where only element extensibility is allowed. Instead of 

putting the model reference directly on the operation element, SAWSDL can put it on the 

attrExtensions element, and then insert that into the operation element. 

 

Annotating WSDL Documents 

The different semantic annotation constructs in SAWSDL serve to describe 

semantically an aspect of the Web Service. Annotating element declarations and type 

definitions in XML Schema with model references accompanied by lifting and 

lowering schema mappings provide an information model. This model is needed when 

performing data mediation when it is exchanged between the semantic client and the 

XML-based Web Service. The description of service capabilities advertizes what the 
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service offers to users, and thus it enables the service to be discovered, composed, and 

eventually invoked. Pointing to the appropriate description of a Web Service’s 

capability is achieved by annotating the service and the interface constructs by model 

reference annotations. Apart from describing the service (or the interface) as a whole, 

capabilities can be ascribed to the operations using model reference pointers. The latter 

type of annotations might be needed by semantic clients to perform a more fine-grained 

operation discovery, whereas annotations of service and interface constructs serve to 

categorise the different services; this is useful for general service discovery. 

 

Figure 10 shows an example of a WSDL 1.1 document describing a Bioinformatics 

Web Service that fetches a DNA sequence in the FASTA format from the DNA Data 

Bank of Japan (DDBJ) using an access number. The service description of the input 

and the output of the operation in the Web Service ambiguously name the input and the 

output getFasta_DDBJEntryIn and getFasta_DDBJEntryOut respectively. The 

message component specifies that part of the output message is of type string, but says 

nothing about the semantic meaning of the data returned from the operation. By adding 

the SAWSDL model reference annotation, we can point to a semantic concept that 

semantically describes the data retrieved from the service. In our example we annotated 

the output with the DNA_sequence concept from the myGrid ontology, which is an 

OWL Domain Ontology for Bioinformatics. 

 

Discussion 

OWL-S, WSMO, and SAWSDL share the vision that ontologies are essential to 

support automatic discovery, composition and interoperation of Web Services. OWL-S 

<wsdl:definitions...> 
<wsdl:message name='getFASTA_DDBJEntry'> 
 <wsdl:part name='Result' type='xsd:string'   
sawsdl:modelReference="http://www.mygrid.org.uk/ontology#DNA_sequence"/>  
</wsdl:message> 
... 
<wsdl:portType name='GetEntry'> 
 <wsdl:operation name='getFASTA_DDBJEntry'> 
  <wsdl:input name='getFASTA_DDBJEntryIn' 
   message='tns:getFASTA_DDBJEntryIn'/> 
  <wsdl:output name='getFASTA_DDBJEntryOut' 
   message='tns:getFASTA_DDBJEntryOut'/> 
 </wsdl:operation> 
... 
</wsdl:portType> 
</wsdl:definitions> 
 

Figure 10 - A WSDL 1.1 document annotated with SAWSDL 
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defines a set of ontologies that support reasoning about Web Services, following the 

chronological order of SWS framework tasks – discovery uses descriptions from the 

profile and process ontology and invocation needs grounding descriptions in the 

grounding ontology. WSMO on the other hand define a conceptual framework within 

which ontologies are created. WSMO makes clear distinction between the types of Web 

Services i.e. requesters and providers, and outline the role of mediators as a solution to 

the interoperation problem. Both efforts define a formal framework that is highly 

expressive and could be too complex for some domains. 

 

Heavy approaches like OWL-S and WSMO can be impractical for manual annotation 

for data and tasks in scientific domains. Tasks in Bioinformatics are rather lightweight 

and often stateless since the state of information does not change. This omits the need 

for preconditions and most importantly effects. Even though SAWSDL itself does not 

provide actual SWS modelling capabilities but by embedding annotations directly in 

WSDL documents, existing WSDL repositories can be used for semantic discovery of 

services. Furthermore, developing applications based on SAWSDL is relatively easy 

since it is reduced to upgrading existing tools for Web Services. We therefore have a 

strong belief that SAWSDL is the right SWS technology for annotating scientific data 

and services. 

3.3 Semantic Web Services in the Grid: The Semantic Grid 

Both the Grid and the Semantic Web communities started as two distinct research 

efforts. The need to develop new Grid applications and make reuse of data and 

workflows led to the proposition of the Semantic Grid. It is a joint effort that aims to 

enable building scientific solutions for scientific problems. Realizing this vision is 

achieved by applying Semantic Web technologies to Grid developments, from Grid 

services to Grid applications. 

 

InteliGrid [25] proposes an architecture based on three layers: conceptual, software and 

basic resource. The conceptual layer represents descriptions of resources in the form of 

ontologies, graphs, etc. The software layer consists of software that consumes 

descriptions defined in the conceptual layer. The basic resource layer includes the low 
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level infrastructure. Service discovery and other functionalities are supported by 

ontology services provided by the software layer. 

 

S-OGSA [26] is a proposed architecture that extends OGSA by providing support to 

semantic content. The approach proposes the use of semantic services that can manage 

knowledge about resources in the Grid. The proposed model identifies resources on the 

Grid such as services and data, knowledge about these resources in the form of 

ontologies, graphs, etc, and the actual association between knowledge and resources. 

The architecture introduces specialised services that can create, manage, and consume 

ontologies and metadata. 

 

Although WSMO and OWL-S were not developed in the Grid context, they do provide 

a methodology and language to describe relevant aspects of services and information 

resources in order to enable the automation of tasks such as selection, composition and 

monitoring of complex services. Resources discovery on the Grid can be facilitated by 

using Semantic Web languages including RDF, OWL, and WSMO. The expressivity of 

these languages allows sophisticated reasoning in order to discover and select required 

resources. Complex tasks can be realized by aggregating and composing multiple 

resources on the Grid. This is facilitated by supporting workflow description and 

enactment. Existing languages such as OWL-S define process (workflow) using the 

OWL-S process model ontology. WSMO defines the process model and execution 

semantics for workflow description and execution using abstract state machines. Aside 

from solving the composition problem, developers are concerned with data and control 

flow compatibility. Annotating data and workflows facilitates matching and supports 

any necessary conflict detection. 

 

OWL-S and WSMO are two initiatives that aim to describe requests and Web Service 

functionality in a way that can help in the automation of service discovery and 

composition. They also proved to be good candidates in realizing the vision of the 

Semantic Grid, and could be key components when building Grid applications. 

However, the vision of the Semantic Grid has yet to be realized. Several architectures 

and prototypes have been proposed for the Semantic Grid [27, 28], however none of 

them cope properly with the current requirements of the Grid such as scalability, 

security and performance. Many challenges face the uptake of the Semantic Grid. The 
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Semantic Grid needs to demonstrate the added value of semantics in Grids, facilitate 

the task of gathering, managing, and maintaining data, improve the performance of 

creating and retrieving semantic metadata, and last but not least securing exposed 

metadata and automated reasoning. 
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Chapter 4 Scientific Workflow 

Systems 

4.1 Introduction to Workflows 

Web Services standards provide solutions to the interoperability problems. However, 

existing methods for creating business processes are not designed to work with cross-

organizational components. Orchestration describes an aspect of creating business 

processes from composite Web Services. Microsoft’s XLANG and IBM’s Web 

Services Flow Language (WSFL) were the early standards proposed for designing 

business processes. These efforts were later combined to form the Business Process 

Execution Language for Web Services (BPEL4WS) [29] or BPEL for short. BPEL 

allows enables a user to specify how different Web Services can be composed together 

in various ways to design an executable workflow. Designed workflows can also 

presented as new services, thus enabling recursive composition of workflows. Another 

way of describing workflows is as choreography. Choreography describes the 

observable interactions between services from a global point of view rather than a 

service perspective. The Web Services Choreography Description Language (WS-

CDL) is a choreography language that can be used to describe workflows. WS-CDL as 

a workflow solution may provide better flexibility because choreography descriptions 

can be changed independently of the services. However, a few unresolved issues have 

an impact on wider adoption of WS-CDL in particular and choreography in general. 

Choreography languages’ lack of a concrete syntax definition requires developers to 

use orchestration languages in order to render workflows executable. 

 

Scientists face many of the same challenges that are found in enterprise computing, 

namely integrating distributed and heterogeneous resources. Collaborations are 
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becoming more geographically dispersed and use machines distributed across several 

institutions. Scientists are increasingly relying on Web technology to perform in silico 

experiments. The task of running and coordinating scientific applications across several 

domains, however, remains complex.  

4.2 Scientific Workflow Systems 

Several research efforts [30, 31] have investigated the suitability of BPEL and its 

implementation for scientific workflows. Some approaches involved the identification 

of the requirements of scientific workflows and assessing to what extent the BPEL 

specifications satisfy these requirements. Other approaches followed an experimental 

methodology by implementing scientific workflows that solve some scientific 

problems. The research work demonstrated that BPEL could be successfully used to 

combine Grid services to develop scientific workflows, and to deploy these workflows 

using an enactment engine.  

 

The research community produced various specialized workflow systems designed 

specifically to aid the development of scientific workflows. Globus [32]  is an open 

source toolkit that implements many Grid related standards. It is the paradigmatic 

example of a heavy-weight Grid system. Globus provides a low-level toolkit that 

enables the construction of Grid based applications. The toolkit is composed of several 

software components. These components are divided into five categories. 

• Security components are based on the Grid Security Infrastructure (GSI). 

• Data Management components such as Open Grid Services Architecture Data 

Access and Integration (OGSA-DAI) and GridFTP allow large data 

management.  

• Execution Management components such as Grid Resource Allocation and 

Management (GRAM) deal with the initiation, monitoring, management, and 

scheduling of executable programs. 

• Information Services refer to the Monitoring and Discovery Services (MDS). It 

includes components such as WebMDS, Index, and Trigger to discover and 

monitor resources.  

• Common Runtime components provide libraries and tools to build WS and non-

WS services. 
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Discovery mechanisms in Globus are concerned with obtaining, indexing, and 

processing information about the state of services and resources. The Globus toolkit 

provides services such as GRAM that defines resource properties to enable service 

discovery. Aggregator resources collect state information from registered information 

sources, which can be queried using command line, web based, and Web Service 

interfaces. The information collected by these aggregator services is maintained as 

XML, and can be queried via Xpath queries (as well as other Web Services 

mechanisms).   

 

Different workflow systems have been proposed in order to support developing Grid 

applications with the Globus toolkit. GridAnt [33] is an XML/Java-based tool for 

representing and executing workflows of computational codes and Web Services. 

GridAnt contains a control construct for expressing parallel and sequential tasks. Data 

is propagated between the different tasks in the workflow using a simple copy 

command. The framework does not provide any mechanism to check for data type 

mismatch or heterogeneity.  

 

UNICORE [34] is a Grid middleware that allows users to access Grid resources. The 

UNICORE Grid system consists of the Client, Gateway, Network Job Supervisor 

(NJS), and Target System Interface (TSI) software Components. The UNICORE Client 

allows end-users to connect to a UNICORE gateway. The UNICORE Gateway is the 

entry point for all UNICORE connections. The UNICORE NJS manages submitted 

UNICORE jobs, it also realises Abstract Job Objects (AJO) into concrete execution 

commands and hands them over to the TSI. The UNICORE TSI accepts the submitted 

job components and passes them to the local system for execution. A UNICORE AJO 

used to be modelled as a directed acyclic graph (DAG) of tasks or other jobs. It has 

been extended to include conditionals and loops, available via the client GUI. DAGs 

define dependencies in job submission and dictates the order of execution. However, 

job descriptions provide no mechanism to check for semantic compatibility of pipelined 

data between different jobs. 

 

Kepler [35] is scientific workflow system that has a graphical user interface, thus 

enabling users to design and execute workflows. Kepler workflows can be exchanged 
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in XML using Ptolemy Modelling Markup Language (MoML). Ptolemy is the 

underlying system of Kepler, making the system actor-oriented. Scientific workflows in 

Kepler are viewed as a composition of components called actors. Using the 

extensibility feature of actors, support for Web Services is provided through generic 

Web Service actors. The Kepler system benefits from an extension that implements 

what is called smart semantic links [36]. The system identifies structural and semantic 

data types, where ports on actors (input, output) are associated with OWL-DL ontology 

based semantic type [37]. The proposed approach generates mappings in XQuery and 

XSLT to transform data from a source structure to a target structure. Parameter 

mapping is a work in progress not yet supported by Kepler. While the system provides 

mapping between structural data types, grounding of semantic data types to structural 

data types does not exist. The use of semantics is reduced to symbolically check data 

compatibility. In our approach, we propose a safe type system, where semantics are 

grounded to concrete data and are part of the data transformation process. SPARQL 

[38] is used to transform semantic data from one structure to another, while semantic 

reasoning is used to check for data compatibility. 

 

Triana [39] is a workflow system that has a graphical user interface allowing users to 

add services to the workflow. The Grid Application Protocol (GAP) Interface allows 

Triana to communicate with composed services, including Web Services. WServe is 

the API that implements the GAP binding for We b Services. Using this API, services 

are queried from a UDDI server and are invoked through a WS Gateway. Using the 

graphical interface, services are composed and connected with pipes. Resulting 

compositions can be written in a proprietary format or BPEL [40]. To our knowledge 

uses information about input and output data-type objects to perform design-time type 

checking i.e. ensuring data compatibility between components [41] . This approach 

does not capture any semantic information about the exchanged data, nor does it deal 

with structural mismatches. It is as good as the type checking mechanism used in 

Windows Workflow Foundation. 

 

The Taverna Workbench [42] is a tool targeted at developing workflows in 

bioinformatics. Taverna provides a graphical tool for creating and executing 

workflows. Workflows are taken to be a graph of processors represented in the Simple 
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Conceptual Unified flow Language (Scufl), an XML-based language. Workflows in 

Scufl consist of three main components: 

• Processors are transformations that take input data and produce output data. 

Types of processors include WSDL types, nested types, local processor types, 

and string constant types.  

• Data links are data bindings between sources and sinks. Data sources can be a 

processor output and the data sink can be a processor input. 

• Coordination constrains link two processors and control their execution. These 

constraints specify the order execution of processors where no direct 

dependency exists. 

Services and workflows in Taverna are annotated using Feta descriptions in RDF(S), 

which are queried through reasoning using Jena [43].  The Feta engine uses the 

annotations to discover Web Services and Workflows using a semantic approach. Users 

can add discovered services without checking for their compatibility. Taverna proposes 

using specialised services called shims [44] that are similar to WSMO mediators. 

Shims are services that transform data that are compatible from one format to another. 

These services do not perform a structural transformation of data as it is concerned with 

format only. Moreover, the mismatches between connected services have to be detected 

by the workflow designed, and shim services are manually added as required. 
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Chapter 5 Semantic Annotations 

in Windows Workflow Foundation 

5.1 Microsoft’s Windows Workflow Foundation 

In the business domain, human-intensive and machine-intensive processes are 

combined to express the required business processes. Workflow is a mechanism that 

expresses business processes as a collection of activities. Workflows can be created, 

executed, and managed using Business Process Management (BPM) systems. Many 

approaches have emerged to provide solutions to workflow problems: Web Service 

Flow Language (WSFL), Web Services for Business Process Design (XLANG), and 

Business Process Execution Language (BPEL), to name a few. BPEL is the one with 

most traction in part due to its backing by major industry vendors. BPEL allows the 

orchestration of Web Services into business workflows. However, it restricts the 

developer to creating workflows from services only. This limits the scope of BPEL 

when it comes to the integration of non-serviceable legacy applications.  

 

Windows Workflow Foundation (WF) solves the integration problem and allows the 

creation of workflows that compose Web Services with legacy systems. WF is the 

latest addition from Microsoft to workflow management systems. It is released as part 

of the .NET Framework 3.0 and 3.5. The technology provides developers with a group 

of workflow-related components, thus allowing the creation, execution, monitoring and 

tacking of workflows. 

 

WF workflows can be developed using Visual Studio. The WF extension to Visual 

Studio provides a visual designer, a set of workflow templates, and visual debugging 

capabilities, easing the workflow development task. The Extensible Application 
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Markup Language (XAML) is a new XML-based language commonly used to develop 

WF workflows. Workflows can also be developed using code in any CLR language, or 

using markup with code separation. WF workflows are expressed as a collection of 

composed activities. Activities are used to represent business specific activities. WF 

provides a set of general-purpose activities and allows developers to create their own 

domain-specific activities. WF supports two types of workflows: structured and state 

machine. A sequential workflow is procedural in nature; the composed activities are 

executed in sequence resulting in a predictable execution path. State machine 

workflows, in the other hand, are event driven and workflow execution relies on 

external events.  

 

In addition to the activity library, WF provides a runtime engine and runtime services 

components that executes workflows and provides monitoring and tracking services. 

WF workflows can be hosted on different host applications varying from console 

applications to windows services. The runtime services manage workflow instances, 

transactions, tracking, and state management. 

 

WF workflows can be composed of Web Services, desktop applications and legacy 

systems. The WF runtime provides a backbone to execute and coordinate workflow 

instructions. It would be analogous to a BPEL engine, but it differs in its deployment 

strategy. The BPEL engine forms part of a server-tier deployment, whereas WF 

runtime is deployable classically on the server side, as well as any other application that 

can be linked to the .NET framework. This architecture makes WF a more lightweight 

and faster framework than BPEL. 

5.2 Web Service in Windows Workflow Foundation 

With the success of Web Services in the business domain, the scientific community 

started migrating their Grid resources and applications to follow SOA. In order to 

standardise this new Grid service based architecture, the Global Grid Forum (GGF) 

developed the Open Grid Services Architecture (OGSA) specifications. OGSA is based 

on other Web Services technologies, notably WSDL and SOAP. Due to the wide use of 

Web Services both in business and scientific domains, workflow systems in both 
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domains had to provide support for invoking Web Services as well as publishing 

developed workflows as Web Services. 

 

OGSA provides a common architecture for developing grid-based applications where 

Web Services are the underlying middleware. Web Services can, in principle, be 

stateless or stateful, however they are usually stateless and there is no standard way of 

making them standard. The Open Grid Services Infrastructure (OGSI) was a GGF 

proposal that intended to provide an infrastructure layer for OGSA. OGSI [45] 

addressed the statelessness issues by extending Web Services to accommodate statefull 

Grid resources. It essentially defined a mechanism for creating, managing and 

exchanging information among Grid Services by extending WSDL and XML Schema. 

OGSI evolved into the Web Services Resources Framework (WSRF) specifications 

[46]. The specifications constitute WS-Resource, WS-Resource Properties, WS-

Resource Lifetime, WS-Service Group, and WS-Base Fault. WSRF provides support 

for implementing stateful Web Services. WSRF competes for wider industry adoption 

with similar specifications. The Web Services Interoperability Organization (WS-I) is 

an industrial body that aims to achieve interoperability amongst the stack of Web 

Services specifications (WS-*). These specifications include WS-Security which 

provides means for applying security to Web Services by, for example, attaching 

signature and encryption headers to SOAP. WS-Addressing is another specification that 

defines mechanism allowing communicating addressing information between Web 

Services. Due to competing specifications, interoperability issues arise in the Web 

Services world. For instance, WS-Transfer, WS-Eventing and WS-Management 

standards proposed by Microsoft, IBM, Sun, and Intel are functionally similar to 

WSRF. 

 

The Web Services functionalities are supported in WF through the basic activity 

library. The InvokeWebServiceActivity is used to invoke a Web Service from within a 

workflow. A reference to the Web Service is added to the workflow using its WSDL 

description file. This results in the generation of a proxy class to be used to invoke the 

Web Service once the activity is configured properly. WF workflows can also be 

published as Web Services, thus different workflows can communicate with each other 

if their instances are exposed as Web Services. The activities WebServiceInputActivity 

and WebServiceOutputActivity enable the workflow to be used as Web Service end 
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points. The first activity enables a workflow to receive a Web Service request, and the 

second activity pairs with the first to respond to a Web Service request. The 

WebServiceFaultActivity pairs with WebServiceInputActivity to raise an exception 

packaged into a SOAP exception. Workflows published as Web Services are invoked 

from other workflows using the InvokeWebServiceActivity. 

5.3 Scientific Workflows in Windows Workflow Foundation 

Although WF is presented as a solution to business problems, the work in [47] 

presented an implementation of scientific workflows using WF in wind tunnel 

applications. The implementation demonstrated that WF is interoperable with Grid 

services, specifically the Globus grid services. The evaluation of BPEL for scientific 

workflows pushed researchers to identify the differences between business and 

scientific workflows, and the requirements for the latter. In [30], different tasks were 

identified when managing scientific workflows. The tasks included defining the 

workflows, deploying them and finally the enactment of the workflows. For WF, the 

basic activity library shipped with the framework provides the necessary support to 

invoke Web Services and to send and receive message content in and out of the 

workflow. Orchestrating different Web Services is enabled through control and data 

flow constructs, such as sequencing, repetitive and conditional execution of activities. 

These simple and complex constructs are supported in WF through activities like 

IfElse, Parallel, and While. WF also enables sub-workflows to be combined to define 

workflows that are more complex. The framework allows workflows to be published as 

Web Services, and invoked from other workflows using the InvokeWorkflow activity. 

WF makes a distinction between exceptions, transactions, and compensation. 

Consequently different handlers are defined for each type of failure. WF workflows can 

be deployed by the runtime engine provided by the framework. The WF framework 

provides a set of runtime services that enable the monitoring of workflow execution 

such as tracking, persistence, and transactions. The experimental implementation in 

[47] successfully orchestrated Globus Grid services in WF using MyCoG. We believe 

that WF is a good candidate for Grid service orchestration and scientific workflows 

development and deployment due to its lightweight and performance. A thorough 

analysis of the WF framework is required to prove that it satisfies the needs of 

orchestrating Grid services into scientific workflows. 
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Bioinformatics refer to the creation of algorithms and computational techniques to 

solve biological problems arising from analysing biological data. Performing in-silico 

experiments frequently requires bioinformaticians to use a combination of local 

applications and most importantly remote services owned by various organisations.  

 

 

Figure 11 shows an example of an in silico experiment for the task of searching for 

similar sequences to a given DNA sequence. The bioinformatician identifies several 

services that implement sequence alignment methods. The user chooses to use an 

implementation of the BLAST algorithm. Finally, the specific WSWUBlast service is 

chosen. The user invokes the blastn method and supplies the corresponding parameters 

i.e. the DNA sequence to be queried, the database to search, and an email to receive the 

results. More complex bioinformatics tasks involve the execution of more services and 

most often the manual handling and management of generated data. Documenting the 

experiments into workflows and automating the process is what researchers in the field 

currently are trying to achieve [48-50]. The vision lies in developing workflows in an 

automatic or at least a semi-automatic way, aiming to minimize the efforts required by 

the user in conducting their experiments, by simplifying the task to a “drag and drop” 

process. By producing self documenting workflows and automating the execution of 

specified tasks, the complexity is hidden from scientific users as well as supporting 

collaboration by sharing data and experiments. 
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Figure 11 - An in silico experimental design: Seuqence Similarity Search 
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Chapter 6 Semantically Resolving 

Type Mismatches 

6.1 Semantic Annotations in Windows Workflow Foundation 

6.1.1 Semantic Parameter Binding in Scientific Workflows 

One common approach in modelling scientific workflows is directed acyclic graphs 

(DAGs), where arcs denote scheduling dependencies between computation tasks called 

jobs [51, 52]. Alternatively, scientific workflow systems adopt expressive languages for 

modelling scientific workflows based on dataflow process networks [53, 54]. 

 

Dataflow is a natural paradigm for data-driven and data intensive scientific workflows. 

Workflows expressed using dataflow process networks can be efficiently analysed and 

scheduled, and are also a simple and intuitive model for workflow designers [55]. In 

addition to building workflow using the dataflow model, it is necessary to use control 

flow constructs such as branching, iteration, and concurrency in order to engineer 

robust and adaptive workflows. Constructs help build complex workflows that connect 

different Web Services and applications requiring the alignment of input and output 

data structures (schemas). 

 

WF supports Web Services through the Web Service activity library. The framework 

provides dependency properties on activities as a mean to store their values or the 

workflow’s state. Activity binding binds a property on an activity to a property on 

another activity or on the workflow itself. Binding properties ensures data propagation 

between activities in the workflow. When composing activities to build a workflow, the 

user needs to bind the properties of the activities as they are added. At design time, WF 
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validates the bindings between activities using a mechanism that checks the 

assignability of the runtime type of one property to another. Web Services activities 

expose their parameters (inputs, and outputs) as properties, which are linked to other 

properties i.e. parameters using the activity binding mechanism. A binding between 

two parameters from two composed activities is valid if their types are exactly the 

same, implement the same interface, or have an inheritance relationship. Syntactic 

matching is the key to successfully validating the compatibility of two types. 

 

Web Services are usually owned and provided by different organisations. Developers 

of these Web Services do not necessarily agree on the naming or the representation of 

data in their implementations, which is very essential in syntactic matching. This 

mechanism, however, has two flaws, first it omits equivalent types with different 

names, second it omits equivalent types that have different internal data representation. 

To overcome this problem, a new level of type description needs to be introduced. 

 

In order to convey the semantic information about data passed between activities in a 

workflow, we proposed the annotation of these data with semantic concepts. This 

allowed us to use semantic matching technique to validate data bindings on the 

syntactic level as well as the semantic level. Among the different annotation 

mechanisms we chose SAWSDL. SAWSDL builds on existing Web Services standard, 

so the implementation of SAWSDL-based applications is more efficient. By using 

model references to point to semantic concepts in existing ontologies gives the 

developer access to a wide and rich range of ontologies in different domains. Finally, it 

enables semantic interoperability by supporting rich mapping mechanism between Web 

Services XML Schema types and ontologies. 
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We rely on semantic matching techniques automatically to connect semantically 

compatible between composed Web Services. Figure 12 summarises the semantic 

matching technique employed to find the level of match between two semantic 

concepts in some ontology representation language. When a service is added to the 

workflow, WF attempts to match automatically the input parameters of that service to 

the output parameters of the service it is connected to in the workflow. This ensures 

that all the data bindings between composed Web Services are semantically valid at 

design time. We identify three level of match, exact, subtype, and fail. The exact match 

denotes a semantic equivalence between the two semantic concepts. The two 

parameters can be safely connected. Subsumption means that a semantic concept is a 

subconcept or a superconcept of another semantic concept. In our matching engine, we 

consider a subtype match in one direction, i.e. it is safe to connect an input to an output 

if the input parameter’s type is a subtype of the output parameter’s type. If the reasoner 

fails to find a semantic match between two parameters, it is said that the match failed 

and the two parameters cannot be connected together due to the lack of sufficient 

semantic information to bind them automatically bind.  

Figure 12 - Semantic Similarity Matching 
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6.1.2 Parameter Mapping at Design Time 

Model references operate at the semantic level and provide a safe type system where 

compatible parameters can be connected disregarding their syntactic differences in the 

case where they are semantically similar. However, as mentioned above even if 

compatible types are semantically similar they could structurally different. 

 

Figure 13 illustrates how ontologies can act as mediators that can lift the data in XML 

format to data in the shared ontology and then lower it to another XML format using 

the lifting annotation from the first schema and the lowering one from the second 

schema. Using the combination of shared ontologies and schema mappings, resolving 

structural conflicts between compatible parameters is straightforward. As well as 

transforming data from one form to another, the schema mappings are essential to pass 

the necessary data from a supertype to its subtype. It is not until execution time that 

these mappings are executed.  

6.1.3 Integration and Implementation 

In order to support the SAWSDL annotations, we exploited WF’s extensibility feature 

and developed a custom activity to represent Semantic Web Services. The Semantic 

Web Service (SWS) activity extends the existing Web Service activity by supporting 

the model reference and both types of schema mappings. The SWS activity consumes 

SAWSDL documents and applies the necessary mechanisms in order to bind 

automatically compatible parameters between composed Web Services. The activity 

can act as a conventional Web Service activity and consume WSDL documents to 
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Figure 13 - XML Data Mediation 
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generate the Web Service and execute it. Figure 14 illustrates the architecture of the 

tool, its components and their interactions. 

The .NET framework provides standard libraries for developing WSDL 1.1 based 

applications, but no current support for WSDL 2.0 specifications. Furthermore, most of 

the Web Services in Bioinformatics and other scientific domains provide WSDL 1.1 

description files. Due to the aforementioned reasons, we opted to provide an 

implementation for the WSDL 1.1 semantic annotations rather than WSDL 2.0. 

Supporting WSDL 2.0 semantic annotations can be providing by implementing 

translations in XSLT since both specifications are XML based. Our API extends 

.NET’s WSDL 1.1 API by providing full support for all SAWSDL annotations 

including model reference and schema mappings. 

 

The SAWSDL specifications do not restrict the annotation mechanism to a specific 

ontology representation language. However, for the sake of our implementation we 

selected OWL and RDF, being two W3C recommendations and widely used for 

developing ontologies. By adopting OWL and RDF we gained access to a wide range 

of existing domain models e.g. life sciences and healthcare. What’s more, OWL and 

RDF are well supported by the research community. Part of implementing our tool 

required us to integrate the reasoning capability in order to perform the semantic 

matching between services’ parameters. There are a few .NET libraries that provide 
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read and write support of OWL and RDF, including SemWeb1 and Euler2. However, 

None of these libraries, however, provide full, robust support and inferencing 

capabilities for OWL and RDF.  

 

Jena [56] is an open source Semantic Web framework for Java. It provides a well 

supported API for OWL and RDF. The framework includes a few generic reasoners, 

but also supports the use of external reasoners such as Pellet [57]. To gain access to 

these features we had to make Java and C# interoperable. At this stage, two options 

were available: first expose the necessary semantic reasoning capabilities as a Web 

Service and invoke it whenever needed or second convert the Jena libraries to .NET. 

We opted for the second option since executing native .NET code is faster than 

exchange XML messages, as well as being more reliable. IKVM 3is an implementation 

of Java for the .NET framework. It includes a Java Virtual Machine implemented in 

.NET, a .NET implementation of the Java class libraries, and tools that enable Java and 

.NET interoperability. IKVM provides a static compiler that converts Java API to .NET 

Common Intermediate Language (CIL), producing .NET Dynamic-Link Libraries 

(DLL). Using IKVM we recompiled the Jena libraries into a .NET library and used it to 

integrate the semantic reasoner into the SWS activity. 

 

When the developed workflow is executed, the schema mappings associated with the 

data types are executed. No restriction exists on the choice of the mapping language, so 

we opt to use XSLT and SPARQL combination to support the bidirectional mapping. 

XSLT and XQuery are supported by a set of .NET library natively. We provide support 

for SPARQL using Jena’s .NET libraries. At runtime, XML data is lifted to semantic 

data using XSLT and XQuery translations, and then lowered back to XML data using 

SPARQL queries and XSLT transformations. 

                                                 
1 http://razor.occams.info/code/semweb/ 
2 http://www.agfa.com/w3c/euler/ 
3 http://www.ikvm.net/ 
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6.2 Applying the Semantics to Scientific Workflows 

We present a case study in the Bioinformatics domain in order to show how our tool 

will automatically bind the parameters of two Web Services. Several scientific 

organisations provide different public bioinformatics Web Services. The European 

Bioinformatics Institute (EBI) is one such organisation that provides access to different 

services, for example database retrieval and similarity searches. Most of the key data 

types in bioinformatics have multiple data representation. Most of the operations in 

bioinformatics services have weakly types parameters. In most cases, parameters are 

defined either as strings or as arrays of strings. The use of strings becomes ambiguous 

and inefficient when it comes to composing Web Services safely, thus the need for a 

strong typing system in the developing environment becomes necessary. We proposed 

introducing semantic annotations to the workflow environment. For the sake of our 

work, we suggested applying the SAWSDL annotations to the Windows Workflow 

Foundation environment. We claim that such a workflow system provides a strong 

typed system that ensures composing Web Services safely. 

 

Figure 15 illustrates a simple typical workflow in bioinformatics. The task here is to 

find all the sequences that are similar to a given biological sequence. The workflow is 

composed of two Web Services. The first Web Service is GetEntry and it provides 

operations to retrieve entries from DNA and Protein databases in several formats using 

WU-Blast: 
blastp 

 

String:accession 

String:jobID 

String:sequence String:database String:email 

GetEntry: 
getFASTA_DDBJEntry 

 

Figure 15 - A Bioinformatics Workflow Case Study 
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unique accession numbers. The getFASTA_DDBIEntry specifically retrieves a DNA 

sequence from the DNA Data Bank of Japan (DDBJ)4 in the FASTA format. The input 

of this operation is accession which is of type string, and the output is sequence, also of 

type string. The second Web Service is WSWUBlast, standing for Washington 

University Basic Local Alignment Search Tool. It is used to compare a sequence with 

those contained in nucleotide and protein databases. The blastp operation takes a 

protein sequence and compares it against a protein database. In addition to the 

sequence query, the user needs to specify the database to use and an email for 

retrieving the results. The sequence parameter is of type string, but it does not convey 

the nature of the sequence, in other words whether it is a DNA sequence or a protein 

sequence. The operation returns a jobID to retrieve the search results. The example 

above just gives a simple scenario where data is not well annotated and maintained. 

Working with a few Web Services could be manageable. However, as the tasks get 

more complex, and the workflows grows larger keeping a track of what services do and 

what kind of data is required becomes more difficult. The workflow above is 

successfully validated when built using WF and the conventional Web Service activity, 

where in fact we have a conflict of retrieving a DNA sequence and using the wrong 

algorithm to find similar matches. 

 

We demonstrated how, by applying semantic annotations to WF, we can automatically 

dynamically bind parameters of composed Web Services at design time. This approach 

is also used to detect mismatches and conflicts between connected Web Services, thus 

becoming a debugging tool as well as a building tool. Figure 16 shows a simple 

example where the mismatch between the two parameters is detected. When the 

operation from GetEntry is invoked, it results in retrieving a DNA sequence form the 

DDBJ database. This output parameter is of type string. The similarity search operation 

from WU-Blast takes a sequence of type string and finds all the similar sequences. WF 

successfully validates this workflow at design time by using syntactic techniques. The 

semantics of the data passed from the first service to the second is not validated to 

verify that it is safe to execute the composition of the two services. 

 

                                                 
4 http:www.ddbj.nig.ac.jp 
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Figure 16 - The Semantic Annotations Applied to WF 

The myGrid project provides an OWL version of a Domain Ontology5 for 

bioinformatics concepts, such us genes, proteins, and enzymes. We annotated the 

sequence output parameter of getFasta_DDBJEntry with the semantic concept 

DNA_sequence, and the sequence input parameter of blastp with protein_sequence. 

Protein_sequence is a subclass of the biological_sequence concept, and DNA_sequence 

is a subclass of the nucleotide_sequence, which is in itself a subclass of the concept 

biological_sequence. When the second service is added to the workflow, WF tries to 

bind the two parameters by trying to match between the two parameters. The two 

semantic concepts are not equivalent nor are they subsumed by one another. The match 

fails, and WF detects the mismatch and reports it back to the user. 

  

                                                 
5 http://www.mygrid.co.uk/ontology 
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Chapter 7 Workflow 

Compensations Mechanisms 

7.1 Workflow Failure Handling 

Our approach already ensures type safety during workflow composition. However, 

abnormal situations such as system failures and deviations (exceptions) are 

unavoidable. Proper exception handling mechanisms are needed to deal with those 

deviations. Validating workflows is important to users such as scientists as it ensures 

the correctness and the reliability of their experiments. Different approaches have been 

proposed to validate workflows.  

 

Some efforts use provenance in their validation techniques [58]. The mechanism stores 

metadata about processes, operations, and data types after workflow execution. 

Validation uses semantic reasoning over provenance data such as XML data and some 

specified properties such as XML Schemas. The use of provenance verifies the 

correctness of a workflow after its execution. However, it does not handle exceptions at 

execution time, which ensures terminating faulting workflows to a correct and stable 

state.  

 

Another approach applies atomicity rules used in database transactions on activities in 

workflows [59]. This notion of atomicity is supported by an event log presented as a 

provenance system that handles system failures. However, as discussed in [60], the use 

of traditional ACID transactions to deal with errors is not useful in Web Services due to 

differences from closely coupled systems. The ACID properties are not present in Web 

Services. Since cancelling atomic activities is not feasible, compensation needs to be 

associated with a scope, which groups related transactions to be cancelled.  
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Besides capturing data semantics, a different approach [61] proposes logging data 

dependencies in order to recover from failures. The recovery mechanism restarts 

faulting workflows, and reconstructs them by tracking the execution logs. This 

approach does not verify the reliability of the workflow before its execution, and 

ignores the importance of defining explicit exceptions and compensations to handle 

errors and faults. 

 

In the following sections, we will be analysing compensations, and the way they differ 

from exceptions. We will be reviewing the compensations mechanisms introduced in 

the de facto workflow composition language BPEL, and identifying the main issues 

with the proposed recovery mechanisms. In light the of our BPEL compensations 

analysis we will be reviewing the WF compensations mechanisms, and our proposed 

approach to solve the issues associated with deviant workflows. 

7.2 Workflow Compensation Analysis 

Workflows involve hierarchies of activities whose execution needs to be orchestrated. 

These activities typically involve interactions and coordination between multiple 

partners. Faults may happen at any stage during the execution of the activities. Standard 

atomic transactions, such as database transactions, use rollback mechanisms to handle 

faults, thus maintaining the atomicity property. However, in long running transactions 

(LRT), rollback is not always possible because parts of the transaction will have been 

committed, or cannot be undone using automatic techniques. Compensations can 

partially solve this issue by providing mechanisms that semantically undo the effects of 

an executed activity.  

 

Workflows (or any orchestration language) can provide constructs through which 

compensations for actions can be declared. In the context of BPEL and WF, these 

constructs are called compensation handlers. Compensation handlers are associated 

with scopes of activities in workflows, and they can be nested arbitrarily. 

Compensations are intended to be a backward recovery mechanism since they can only 

be invoked on successfully completed scopes. Compensations can only be defined as 

fault (exception) handlers. Unlike simple exception handlers, compensations attempt to 

restore the workflow to a consistent state rather than just abort or terminate the 
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execution. Once a workflow is restored, forward handling mechanisms can be applied 

in order to restart and resume the workflow execution by either retrying the same 

execution path or trying alternatives. An important aspect of Web Services workflows 

is that not all activities are automated and most resources cannot be locked. In these 

scenarios, reversing the effect of completed activities cannot be accomplished, and the 

use of forward and backward handling mechanisms is more difficult. Compensations 

can be nested and applied to scopes at different levels of the workflow. It is necessary 

to define clearly how such complex compensations are executed in order to guarantee a 

consistent recovery process. For example, concurrent activities might have 

compensations associated to the scope of each of them as well as the scope of their 

composition. The history of workflow execution is necessary here to define the 

backward execution path. 

7.2.1 BPEL Compensations 

Since traditional ACID techniques may not be used with LRTs, the BPEL specification 

defines mechanisms to deal with unforeseeable faults, i.e. events that occur contrary to 

the expected behaviour. These fault-handling mechanisms were inherited from 

XLANG. XLANG defined constructs to handle and raise exceptions, as well as specify 

compensation blocks that compensate long running transactions. These constructs can 

also be used in BPEL to handle faults and deal with LRTs. Compensation constructs in 

BPEL attempt to undo the effect of executed activities before a fault. However, how 

many activities should or could be compensated depends on the situation. As 

workflows get more complex, the task of designing compensation and fault solutions 

becomes more difficult [62].  

 

Activities in BPEL can be associated with scopes, which provide a context for their 

execution behaviour. Each scope requires a primary activity that defines its normal 

behaviour. The primary activity can be a complex activity, with many nested activities 

that all share the context provided by their enclosing scope. Scopes themselves can be 

nested to construct complex hierarchies.  

 

In order to handle faults and errors in LRTs, BPEL provides compensation constructs. 

Compensations in BPEL provide a mechanism to reverse the effect of committed 
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transactions as best as possible. The logic of a compensation is defined within a 

compensationHandler. Compensations can be associated with a particular scope, and 

are only installed after its successful execution. An unhandled fault causes the 

invocation of all the compensations in the workflow. This is defined in BPEL as default 

compensation.  

 

Default compensations simply attempt to terminate the workflow after trying to restore 

it to a stable state. However, this approach is not fault tolerant as it does not attempt to 

minimize the effect of the fault and relies completely on the designer to define the fault 

handling logic. Furthermore, the termination of the whole workflow will cost the user 

any results acquired during the execution of the workflow, as well as having the 

possibility of causing inconsistency across the non-isolated transactions.  

 

The recovery mechanism provided by BPEL offers limited capabilities that are not 

enough to define the handling logic of complex scenarios. To alleviate the complexity 

of designing strong fault handling solutions, some approaches proposed enhancing the 

design capabilities through improving various aspects of the language [63]. Using an 

XML annotation mechanism, a designer can provide meta-descriptions that can be used 

to generate the appropriate BPEL constructs. In an effort to simplify the construction of 

compensation handlers, their approach allows the specification of safe points. Any 

faults occurring beyond a certain safe point will be propagated up to that point, causing 

the invocation of any installed compensations in reverse order. This approach relies on 

the designer to specify points in the workflow where he thinks it is safe to restart from, 

with the assumption that the state of the workflow is stable enough to resume its 

execution. 

 

An alternative approach is to define a fault handling logic that produces fault tolerant 

BPEL workflows [64]. This approach separates the business logic of the workflow and 

its fault handling logic. Specifically, the fault handling logic is specified by a set of 

Event-Condition-Action (ECA) rules that build on fault-tolerant patterns. These ECA 

rules are consumed at runtime with the business logic to generate business processes. 

Some of the patterns used include Ignore, Skip, and Retry. These patterns represent the 

action section of the ECA rules, and can be specific to the various types of faults 

emitted by the faulting scope. This leaves the task of specifying the fault types, and the 
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different actions to be taken in different cases. In both proposed approaches, the design 

of the fault logic is not verified for soundness and completeness. Practically speaking, 

the workflow is not validated against a set of clear semantics that guides the designer 

while specifying the fault handling logic. 

 

We look next at Windows Workflow Foundation (WF) and the different fault handling 

mechanisms it provides, and highlight the main differences between the two standards. 

7.2.2 WF Compensations 

WF provides a rollback mechanism for conventional short lived transactions, as well as 

compensating mechanism to handle long running transactions. The ACID properties are 

applied when developing and executing short lived transactions since resources can be 

locked and changes are not committed until the complete successful execution of 

transaction. The activity CompensatableTransaction in WF provides a way to define 

the logic of a short lived transaction. This type of transaction can handle faults 

occurring before and after committing. Roll back techniques are used to handle faults 

occurring while the transaction is being executed and, since the ACID properties are 

enforced, it is safe to just restore the state of the workflow. When a transaction is 

successfully executed, all the changes are committed to the workflow and the locks on 

resources used are released. A compensating activity can be associated with the 

transaction so that fault occurring later can be used to attempt to compensate the effect 

of the transaction. 

 

Long running transactions cannot lock resources for an extended period of time. They 

do not, therefore, possess atomicity and isolation. Since a long running transaction is 

defined by the nesting and composition of activities within its scope, it is considered 

committed when the last statement in it has completed. Long running transactions can 

be defined in WF through the CompensatableSequence activity. Since the ACID 

properties cannot be maintained, compensation serve as a fault handling mechanism 

that can help mitigate the effect of a committed transaction in a way. 
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Table 1 - Fault Handling 

Above is a simple table showing the similarity and difference between the fault 

handling mechanisms of short lived and long running transactions. 

 

Compensations can be associated with short lived and long running transactions, and 

they can be invoked explicitly or implicitly. Explicit invocation of compensations can 

be made through the compensate call from fault handlers or compensation handlers. 

Through explicit compensations developers can define different fault handling 

mechanisms. In the absence of such constructs WF’s runtime engine will, however, 

implicitly invoke all the compensations in the workflow and attempt to bring it to the 

initial state. The latter mechanism is rather abrupt and it does not provide or guarantees 

a sound fault handling mechanism. Furthermore, faults occurring within a long running 

transactions are not properly handled since committed changes within the scope of the 

transaction cannot be reversed using rollbacks or compensations. This leaves the 

workflow in an unstable state. 

7.2.3 Evaluation of fault handling mechanisms 

Although the BPEL specifications define how default compensations are implicitly 

invoked, this mechanism fails to properly handle specific scenarios where faults causes 

the workflow to invoke all the installed compensations. We show the particular issues 

that we believe are unforeseen yet important to minimize the effect of unexpected 

faults. We have deployed our BPEL test cases on two deployment engines Oracle’s 

BPEL Process Manager [65] and Sun’s BPEL Service Engine [66]. Figure 17 illustrates 

how the workflow behaves when a fault occurs within a scope associated with a 

compensation handler. In the example below, when a fault occurs within the scope S2, 

its compensation handler CH(S2) is not invoked. If the fault is not caught by a fault 

handler in S2, then any effects that resulted from executing the activities of S2 are not 

Fault Scope CompensatableSequence CompensatableTransaction 

Inside Fault can be caught by fault handler 

but compensation handler cannot be 

invoked 

The transaction can be rolled back 

using the persistence service 

Outside The fault triggers the compensation for the transaction 
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compensated; this may leave the workflow in a incorrect state. Consequently, since the 

workflow cannot recover from its faulting state, all the installed compensations will be 

invoked, i.e. CH(S1), in attempt to undo the workflow execution. However, this 

approach does not guarantee that the workflow has been brought to a stable state, and it 

might even affect further attempts to execute the workflow again.  

 

WF does not provide formal specifications to workflow definitions, but its deployment 

engine behaves in a similar way to its BPEL counterpart. We further illustrate further 

how fault propagation affects the compensation mechanism in WF. Through fault 

unwinding, compensation invocation can be carried out in a controlled manner. As the 

fault is propagated through the workflow, specific compensation handlers are explicitly 

invoked. By rethrowing a fault from one scope to an outer one, fault handlers are 

supposed to contain the effect of the fault. However, in WF rethrowing a fault will 

trigger the compensation handler of any successfully executed scope within the 

throwing scope. This mechanism makes more difficult to define robust fault handling 

mechanism as WF takes over. 

S2 
CH(S2) 

 

Fault 
… 

… 

S1 
CH(S1) 

… 

… 

Figure 17 – Fault within scope 
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Figure 18 provides a scenario where rethrowing a fault will trigger the default 

compensations of the workflow. Scope S4 throws a fault that is caught by S2’s fault 

handler FH2. FH2 decides not to compensate S3, and rethrows the fault to S1. Before 

the fault is caught by S1’s fault handler FH1, WF will flag S2 as faulting and will 

trigger its default compensation, which will invoke all the installed compensations of 

its inner scopes, i.e. the compensation CH3 of S3. The WF runtime engine does not 

deliver the expected behaviour when invoking default compensations; we therefore 

propose keeping track of all the installed compensations during the workflow execution 

and instead push the control to the compensation handlers. This will enable us to 

activate and deactivate the compensations depending on the annotations of the different 

scopes. The user will still be able to use the compensation construct. The compensating 

logic will, however, be wrapped in a semantically controlled construct, so that we 

verify defined explicit compensations, and we make implicit compensations explicit 

like. 

 

In the following section, we will investigate how semantic enriched workflows might 

guide developers into defining semantically reliable workflows. We will demonstrate 

S1 

S2 

S3 

S4 

CH3 

FH2 

FH1 

Figure 18 - Fault Propagation 
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our approach by implementing a prototype tool for Microsoft’s Windows Workflow 

Foundation. 

7.3 Semantics of Reliable Workflows 

The Semantic Web technology allows the annotation of concepts from a specific 

knowledge domain to content, so that information can be derived from these data by 

employing semantic reasoning techniques. If a sound ontology could be engineered to 

describe a specific domain, it can be used to enrich and validate content in a 

compositional way. We have already enforced type safety in workflow systems through 

the annotation of types in Web Services. Our approach allows the semantic 

augmentation of workflows so that runtime type mismatches are handled at design time 

[67]. A few approaches tackled this issue and introduced fault handling and recovery 

systems. 

7.3.1 Workflow Verification and Validation 

Recovery approaches are usually based on a standard notion of explicit fault handlers 

known from programming languages such as Java or C++, and compensation actions 

for undoing effects of unsuccessfully finished activities. Some efforts relied on the 

classification of faults within a hierarchy of events [68, 69]; in these approaches, as the 

workflow is executed, various events are emitted and structured to be used by what the 

authors define as Constraint violation handlers (CV-Handlers). CV-Handlers are 

essentially event handlers that are triggered by specific events defined in the recovery 

ontology that are emitted by the system. Recovery actions are defined in these CV-

Handlers to handle workflow faults properly. The events ontology does define different 

types of events depending on the emitting action, however it does not add to the 

existing compensation mechanism. The proposed compensation approach is easily 

comparable to the one found in BPEL or WF, and does not exploit the semantic 

annotation accumulated during the workflow execution. 

 

Compensations are designed to undo the effects of executing an activity. However, a 

scope activity can only be associated with a single compensation handler. This implies 

that compensation handlers do not distinguish between different fault types, i.e. if a 
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compensation is invoked it can compensate the activity in a generic way; and proper 

handling semantics cannot be specified. Although the BPEL compensation semantics 

have not been extended to allow multiple compensations, a transaction language called 

Structured Activity Compensation (StAC) [70] which defines compensation constructs 

comparable to BPEL has been extended to allow an activity to have more than one 

compensation handler [71]. This approach might alleviate the ambiguity of default 

compensations, but it does not address it directly.  

 

Semantically BPEL or WF cannot be extended to accommodate multiple 

compensations, but it can be pushed to the compensation itself. Multiple compensations 

allow the indexing of different compensating logics, then the selective invocation of 

these compensations. We briefly give an example of how multiple compensations can 

be defined and invoked. 

 

We aim to develop an ontology specific to the compensation concept, where the user 

can annotate the workflow component with a set of concept, which should enable the 

verification of the compensation constructs and how they should be defined to handle 

various faults. One approach to realise this system is through controlling fault 

unwinding. As previously explained, default compensations have the defect of 

unreliably propagating a fault through a workflow. This approach overlooks the effect 

of executing a compensation on the workflow. Furthermore, complete fault unwinding 

neglects the possibility that the workflow could be partially compensated, hence 

bringing it to a state where some results could be retained, or where some components 

could be restarted.  

7.3.2 Semantics of WF Compensation 

The concept of default compensation is ambiguous, and it can be regarded as an 

emergency recovery mechanism where unexpected behaviour may trigger handled 

faults and cause the whole workflow to terminate. We aim to assess the semantics of 

compensatable scopes and assist the developer in defining compensation handlers 

where necessary. This is to avoid the invocation of default compensation and make sure 

that the workflow always terminates in a stable state. 
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We provide here an initial insight into the defined semantics of compensatable scopes 

in WF and the associated compensation handlers. For the sake of completeness we also 

provide annotation data to scopes not requiring compensations. Activities that do not 

change global state such as searching for a flight do not require compensating actions 

since they do not have an effect on the state of the workflow. These scopes can be 

annotated as “non-compensatable” scopes since they do not require compensation, 

which will help the algorithm decide how to handle fault within them.  

 

Due to the distributed nature of long running activities, it is not always possible to 

recover from faults. We might refer to activities with such semantics as “non-

recoverable” activities. These activities do not have compensations associated to them 

since they cannot be compensated. Faults emitted from these activities might be 

referred to as “Fatal faults”.  

 

Compensatable scopes can be categorized as fully and partially compensatable. Fully 

compensatable scopes are associated with compensating actions that semantically 

undoes the effect of the scope. For example, getting a full refund for a flight ticket can 

be regarded as a compensating action for a fully compensatable scope that is the 

purchase of a flight ticket. Partially compensatable scopes are associated with 

compensating actions that is not equal to the effect of the scope. For example, getting a 

90% refund of flight cancellation can be regarded as a partial compensation for a 

partially compensatable scope. 

 

The above classification can be used as a guideline to develop an ontology that 

categorizes scopes, and their semantic compensatability. We also propose defining an 

ontology to describe compensations themselves. The semantics can be used to annotate 

compensating actions in a workflow. We believe that providing information on the 

compensability of a scope and the available compensating actions will optimize the 

reasoning capabilities when devising recovery strategies. 

 

The first evident action of a compensation is actually to compensate. This is obviously 

dependent on the compensatability of the scope. A fully compensatable scope infers 

that the compensating action will fully compensate the scope, and likewise for partially 

compensatable scopes. A compensation may rethrow a fault if the error needs to be 
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propagated further. A skip action can be regarded as the negating action of a rethrow 

action. A scope can be skipped after it was compensated or if it was deemed as non-

compensatable, in either case the workflow will resume execution. A terminate action 

is a workflow level action that will trigger all the installed compensations in a 

workflow. Such action can be invoked to handle fatal faults emitted from a faulting 

critical scope. A further compensating action is retrying a compensated scope. This can 

also be regarded as a recovery mechanism, since the workflow attempts to contain the 

fault and resume workflow execution at a certain checkpoint. These compensating 

actions are not exclusive. For an example, a compensating action can compensate a 

scope then rethrow a fault or decide to skip. 

 

We give below a case study on the usage of the proposed semantic annotations and the 

implementation details of the recovery actions. 

 

In Figure 19, we present a simple scenario outlining how our semantics can be applied 

to a workflow. In the presented example, a user can attempt to book a flight, then a 

hotel, and finally a car.  

 

Each activity has an associated cancellation handler, where a business logic can defined 

to appropriately cancel the effect of the activity and propagate the failure in the 

workflow. This provides the ability to handle failures in workflows at various levels of 

granularity. 

 

We assume all the activities defined in the proposed scenario can be compensated, 

whether fully or partially. A fully compensatable booking activity is a fully refundable 

one upon cancellation. If a cancelled booking incurs a charge, we define is a partially 

compensatable one. Now we can classify the flight and car booking services as fully 

compensatable activities, assuming that they are fully refundable. We also classify the 

hotel booking service as a partially compensatable, activity, since cancellation incurs a 

charge. 

 

The workflow to handle the cancellation of these bookings is defined the activity level, 

and explicitly in the cancellation handler of each activity or scope. 
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We can also annotate the compensations with our semantics as follows. The 

compensations for booking the flight and hotel can be annotated as “compensate” and 

“rethrow”. This means that if any of these scopes fail, their compensations are invoked, 

and the fault is propagated to the enclosing scope. The compensation for the car 

booking service can be annotated as “compensate” and “skip”. Failing in booking a car 

should not affect the execution of the workflow. The effect of executing the service 

should be compensated, and the workflow should resume it execution resulting in a 

successful booking of a flight and a hotel. 

 

 
 

 

In the light of this scenario, we can also use the annotations to devise various recovery 

strategies where the state of the workflow execution can be easily manipulated. Using 

semantic reasoning capabilities, we use the semantic annotations of activities and 

associated compensations to validate the defined handling logic of the compensating 

Book Flight Cancel Flight Booking 

Book Hotel Cancel Hotel Booking 

Book Car Cancel Car Booking 

Activity Scope Compensation 

Figure 19 - Compensation Sematnics 



53 
 
actions. For example, a non-recoverable scope would require the invocation of the 

terminate action in order to invoke all the compensations and halt the execution of the 

workflow. 
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Chapter 8 Conclusions and 

Future Work 

8.1 Conclusion 

In this thesis we discussed the open problem of structural and semantic mismatches 

associated with data in data-driven workflows, and we presented our ongoing approach 

that augments services with annotations in order to ensure type safety and workflow 

correctness through grounding type semantics to concrete data structures. We identified 

that mismatches can occur at two levels during workflow composition. Existing 

approaches like Taverna deal with structural mismatches between data and ignore the 

compatibility at the conceptual level. Other workflow systems like Kepler identify and 

separate semantic data from its concrete grounding, thus do not provide mapping 

solutions for structural mismatches. The rest of the workflow systems do not address 

either issue, delegating the task of ensuring workflow correctness to developers. Our 

approach provides a strongly typed workflow system, where mismatches are detected at 

the conceptual level as well as the concrete level. To this purpose we developed a 

prototype that implements a collection of semantic technologies to realise both 

approaches. We argued the reliability of using Windows Workflow Foundation 

framework as scientific workflow development system. The framework provides robust 

support for Web Services and allows us to build complex data-driven and control-

driven workflows. However, it is not enabled for semantic type verification, so no 

mechanism exists in order to track the consistency of semantic information in 

propagated data. Annotating data with metadata captures the semantic information 

required to carry out type verification at the semantic level. Current Grid services are 

based on Web Services standards as defined by the OGSA specifications. We made use 

of Web Services annotation technologies to achieve our goal. Our tool relies on 



55 
 
Semantic Web techniques such as semantic reasoning to assist the workflow 

composition task. We extended the WF framework to make it compliant with 

SAWSDL specifications. We demonstrated the effectiveness of our approach using an 

in silico experiment in Bioinformatics as a test case. Our proposed approach provides a 

safe type system for a sound workflow development environment, as well as a reliable 

grounding mechanism for semantic data to enable workflow execution. 

 

Another aspect of workflow development that we investigated in this report is 

workflow reliability. Current workflow systems provide mechanisms to handle and 

recover from failures. Activities in workflows can be associated with fault, event and 

compensation handlers. Fault handlers deal with faults emitted from an activity. They 

also implicitly invoke rollbacks in the case of short lived transactional activities.  

Long running transactional activities cannot lock resources for long periods, and thus 

the effect of its execution cannot be isolated. Since LRTs typically cannot be undone, 

compensations provide a mechanism to define a recovery logic for the effect of these 

activities.  

 

Workflow composition languages such as BPEL and WF define compensations; their 

specifications, however, are ambiguous and may get complicated when dealing with 

complex workflows. Two types of compensations are identified, explicit and implicit. 

While explicit compensations have to be invoked in order to compensate a successfully 

completed activity, implicit compensations are usually invoked when an unhandled 

fault may cause the workflow to terminate. Implicit compensations can be considered 

emergency mechanisms where the workflow will try to invoke all the installed 

compensations then terminate the execution. This approach suffers from inflexibility 

and several efforts have attempted to alleviate its effect by introducing recovery 

mechanisms. 

 

In our research, we have showed how a semantic approach can be used in order to 

develop an ontology to annotate activities and compensations in a workflow. These 

semantic annotations can be consumed in order to validate the compensations defined 

in the workflow. We attempt to eliminate the use of implicit compensations by 

invoking runtime recovery mechanisms that will make planned invocation of 

compensations rather than a complete workflow termination. This approach should 
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leverage the task and guide workflow development. It should also tackle the 

shortcoming of current compensation approaches by ensuring workflow reliability and 

sensible fault recovery. 

 

We have introduced an initial attempt at compensation and activity classification, and 

outlined how these semantics can be used to annotate workflows. We have also 

explained how WF can be extended to recover from workflow faults. 

8.2 Future Work 

We believe that our framework is realisable. With the proper definition of an activity 

and compensation ontology, we can extend WF to integrate the semantic annotation of 

workflow, as well as validation and recovery functionalities. Using reasoning 

mechanisms semantic information can be used to infer the necessary constraints to 

handle the failure of the workflow. Using our proposed approach semantics can be 

integrated to programming languages in order to provide a robust development 

environment. The C# programming language allows adding metadata through 

attributes. These attributes provide a method of associating information with C# code 

including types, methods, properties and so forth. The attributes can be queried at 

runtime by using reflections. Semantic workflow information can be used at execution 

time to monitor workflows for faults and trigger the correct handling mechanism, or 

infer a suitable one attempting to terminate the workflow and maintain a correct state. 
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