
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

SEMANTIC TYPE CHECKING IN SCIENTIFIC WORKFLOWS

By

Kheiredine Derouiche

A thesis submitted for MPhil

School of Electronics and Computer Science,

University of Southampton,

United Kingdom.

December, 2009

ii

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Semantic type checking in scientific workflows

by Kheiredine Derouiche

Scientists are increasingly utilizing Grids to manage large data sets and execute

scientific experiments on distributed resources [1]. Scientific workflows are used as

means for modelling and enacting scientific experiments [2]. Windows Workflow

Foundation (WF) is a major component of Microsoft’s .NET technology which offers

lightweight support for long-running workflows. It provides a comfortable graphical

and programmatic environment for the development of extended BPEL-style

workflows but offers little support for ensuring that the resulting workflows are

complete, robust and meaningful in the user’s scientific domain.

Workflow building tools rely on the developer’s understanding of multiple services and

the data required to execute them. Syntactic type definitions of these data are not

meaningful enough to ensure type safety, which are only discovered during execution.

We aim to enrich type definitions with semantics in order to guide developers to

resolve type mismatch issues at design time.

The approach we have taken is to develop SAWDL-compliant annotations for

workflow and use them with a semantic reasoned to guarantee semantic type

correctness in scientific workflows.

iii

Contents

Chapter 1 Introduction ... 1

Chapter 2 The Semantic Web .. 3

2.1 Introduction .. 3

2.2 Enabling Technologies... 4

2.2.1 RDF/RDFS ... 4

2.2.2 OWL .. 4

Chapter 3 Semantic Web Services ... 6

3.1 Service Orientation and Web Services .. 6

3.2 The Semantic Approach to Web Services ... 8

3.2.1 The Web Ontology Language for Services: OWL-S 9

3.2.2 The Web Service Modelling Ontology: WSMO 12

3.2.3 Semantic Annotations for Web Service Description Language 13

3.3 Semantic Web Services in the Grid: The Semantic Grid 18

Chapter 4 Scientific Workflow Systems .. 21

4.1 Introduction to Workflows ... 21

4.2 Scientific Workflow Systems .. 22

Chapter 5 Semantic Annotations in Windows Workflow Foundation 26

5.1 Microsoft’s Windows Workflow Foundation .. 26

5.2 Web Service in Windows Workflow Foundation .. 27

5.3 Scientific Workflows in Windows Workflow Foundation 29

Chapter 6 Semantically Resolving Type Mismatches 31

6.1 Semantic Annotations in Windows Workflow Foundation 31

6.1.1 Semantic Parameter Binding in Scientific Workflows 31

6.1.2 Parameter Mapping at Execution Time ... 34

6.1.3 Integration and Implementation ... 34

6.2 Applying the Semantics to Scientific Workflows .. 37

Chapter 7 Workflow Compensations Mechanisms .. 40

7.1 Workflow Failure Handling ... 40

iv

7.2 Workflow Compensation Analysis .. 41

7.2.1 BPEL Compensations .. 42

7.2.2 WF Compensations .. 44

7.2.3 Evaluation of fault handling mechanisms .. 45

7.3 Semantics of Reliable Workflows ... 48

7.3.1 Workflow Verification and Validation .. 48

7.3.2 Semantics of WF Compensation .. 49

Chapter 8 Conclusions and Future Work ... 54

8.1 Conclusion ... 54

8.2 Future Work ... 56

Chapter 9 Bibliography .. 57

v

List of Figures

Figure 1 - The Semantic Web Layer Cake ... 4

Figure 2 - Web Services building blocks ... 7

Figure 3 - Web Service usage scenario .. 8

Figure 4 - Top level of Service Ontology .. 9

Figure 5 - A partial OWL-S profile ... 10

Figure 6 - An OWL-S Process ... 10

Figure 7 - An OWL-S Grounding .. 11

Figure 8 - WSDL with SAWSDL Annotations ... 14

Figure 9 - SAWSDL syntax summary. .. 15

Figure 10 - A WSDL 1.1 document annotated with SAWSDL 17

Figure 11 - An in silico experimental design: Seuqence Similarity Search 30

Figure 12 - Semantic Similarity Matching... 33

Figure 13 - XML Data Mediation .. 34

Figure 14 - The Architecture of the Automatic Binding System 35

Figure 15 - A Bioinformatics Workflow Case Study .. 37

Figure 16 - The Semantic Annotations Applied to WF ... 39

Figure 17 – Fault within scope... 46

Figure 18 - Fault Propagation .. 47

Figure 19 - Compensation Sematnics .. 52

vi

List of Tables

Table 1 - Fault Handling .. 45

vii

Acknowledgements

I would like to thank the Algerian Ministry of Higher Education and Scientific

Research for funding my research.

I would also like to thank my supervisor Denis Nicole for his supervision, and

continuous support.

I would, finally, like to thank my parents for providing me with their support during my

studies, and their continuous encouragement in good and bad times.

Chapter 1 Introduction

Scientists now routinely utilize computational tools and information repositories to

conduct their experiments. Such resources are made available with programmatic

access as Web Services. This e-Science approach enables scientists and researchers to

collaborate. Grid computing builds infrastructures for e-Science to support global

distributed collaboration [3]. Research and development efforts within the Grid

community have produced protocols, services, and tools that address the challenges of

the field. The Globus Toolkit and UNICORE are two popular Grid systems that have

provided a rich set of services for different scientific domains. Scientists want tools that

allow them to bring together the power of various computational and data resources by

developing and executing their own scientific workflows. Resources are supplied by

third parties and the operations provided are often incompatible with each other.

Resolving resource mismatches requires the designer’s intervention, which can be

difficult and time-consuming task for scientists. Another major problem is the

unreliable handling of failed workflows. Such complexities should be hidden from the

user by the workflow system.

Web Services provide a basis for distributed, service-oriented systems. Web Service

standards such as WSDL provide syntactic descriptions of Web Service functionalities

using XML Schemas to describe composite data types and method interfaces. These

standards fail to capture the domain semantics of scientific data. Web Services also fail

to provide reliability during execution because they lack the isolation property. Current

failure handling mechanisms fail to mitigate the effect of failure on the overall

execution of the workflow. Semantic ontologies provide an approach to define

hierarchies of failure at different levels. Thus, allowing us to define more intelligent

handling mechanisms. In this thesis, we present an implementation that successfully

integrates semantics into a standard industrial business workflow management system,

thus allowing the automatic detection and resolution of service mismatches in

2

workflows at design time. In addition, we demonstrate how compensations can be used

semantically to resolve workflow failure issues.

This thesis is structure as the following: In Chapter 2, we provide a general overview of

the Semantic Web and current standards. In Chapter 3, we discuss Web Services

standards and the emerging efforts in the Semantic Web Services field. In Chapter 4,

we discuss the issue of Web Service composition and the related problems in current

standards. In Chapter 5, we present our solution and the implementation of the

framework. In Chapter 6, we conclude by reemphasising our achievements and the

contribution of our work and identify the scope of our future research.

3

Chapter 2 The Semantic Web

2.1 Introduction

The World Wide Web consists of documents in various formats, including text, images,

audio, and videos. These documents are usually unorganised and can only be consumed

by humans. Such data can be difficult to manage and understand by software agents

and unreliable. The Semantic Web is a vision in which the existing Web will include an

unambiguous notion of meaning in data and services. This will make the knowledge

organized and machine understandable [4].

The Semantic Web is slowly being commercialized and deployed by companies and

communities. Companies such as Celcorp, Ontoprise, and Unicorn already offer

semantic integration solutions [5].

The Semantic Web benefits from an open source development community.

Applications of ontologies such as Friend of a Friend (FOAF) and Dublin Core are

already widespread within the Web community. The academic community has

developed applications that demonstrate the potential power of the Semantic Web [6-

8].

4

2.2 Enabling Technologies

2.2.1 RDF/RDFS

The Semantic Web consists of a set of core enabling technologies usually illustrated

through a layered diagram referred to as “Semantic Web Layer Cake” [9], show in

Figure 1.

Figure 1 - The Semantic Web Layer Cake

The Resource Description Framework (RDF) [10] is a W3C specification. RDF can be

used to associate information with any resource with an URI. These statements are

made in the form of subject-predicate-object expressions, called triples. The subject is a

resource, always identified by a Uniform Resource Identifier (URI). The predicate is a

resource representing a relationship. The object is a resource or a Unicode string literal.

RDF Schema is an extensible knowledge representation language intended to structure

RDF resources.

2.2.2 OWL

The Web Ontology Language (OWL) [11] is a family of language specifications for

defining and instantiating ontologies. The specifications define a type system along

with additional constraints. OWL is based on the earlier languages OIL and

DAML+OIL. OWL allows information to be processed by applications using reasoning

5

techniques. OWL currently has three increasingly expressive languages OWL Lite,

OWL DL, and OWL Full.

OWL Full contains all OWL language constructs and provides free, unconstrained use

of RDF constructs. OWL Full allows classes to be treated as entities, whereas in OWL

DL and OWL Lite only instances of a class are individual entities. OWL DL is a

sublanguage of OWL which places a number of constraints on the use of the OWL

language constraints. For example properties inverse of, symmetric, and transitive can

never be specified for datatype properties. OWL Lite abides by all the restrictions

OWL DL puts on the use of the OWL language constructs. In addition, it forbids the

use of some constructs such as owl:oneOf, owl:unionOf, and

owl:disjointWith. In practice, working with OWL Full is generally too complex

for a logical reasoner to use for logical deduction, but OWL DL is both complete and

decidable and hence easier to reason over and use.

6

Chapter 3 Semantic Web Services

3.1 Service Orientation and Web Services

Interoperability problems are important in Business-to-Business (B2B) electronic

commerce. To solve such problems, much effort was invested in the Enterprise

Application Integration (EAI) and B2B Integration field. This has led to the

development of various solutions, most of which use adapters to connect legacy

systems. The Common Object Request Broker Architecture (CORBA) [12] from the

Object Management Group (OMG) and the Distributed Common Object Model

(DCOM) [13] from Microsoft were two major efforts that attempted to achieve

interoperability in distributed systems. CORBA’s inherit complexity and DCOM’s

dependence on Windows led to their failure to achieve universal uptake. The protocols

failed properly to interoperate due to some differences in their implementation such as

the format for payloads and message representation of communication endpoints. These

protocols did not provide a proper type system, and applications were reduced to

extracting semantics via HTML parsing. An important factor in CORBA’s and

DCOM’s decline was XML. Microsoft gave up on DCOM and developed SOAP [14]

with its partners. This protocol used XML as the on-the-wire encoding for remote

procedure calls. With the success of SOAP as a market strategy, numerous vendors

moved their efforts toward the Web Services market. This boosted the rapid the

advance that Web Services enjoys now.

Web Services play a major role in Service-Oriented-Architecture (SOA) [15] as they

fulfil many of its requirements of platform-independence and interoperability. Web

Services are built on a set of open core standards defined by standards bodies such as

the World Wide Web Consortium (W3C) and the Organization of Structured

Information Standards (OASIS). Simple Object Access Protocol (SOAP), a W3C

7

recommendation, is an XML-based RPC protocol. SOAP encoded messages can be

delivered using transport protocols such as HTTP and SMTP. Web Services

Description Language (WSDL) [16], currently in version 2.0, is another W3C

recommendation. WSDL is an XML-based language that provides a model for

describing Web Services. WSDL defines services as a set of endpoints operating on

messages. Universal Description Discovery and Integration (UDDI) [17] is an open

initiative sponsored by OASIS. It is an XML-based registry enabling businesses to

publish service listings and discover each other. Although UDDI Business Registries

(UBR) were discontinued early 2006, the standard is still supported in several vendors’

products and services. While SOAP and WSDL have been widely adopted by software

vendors, UDDI has not gained wider adoption in industry despite the fact that

enterprises are increasingly deploying Web Services. UDDI’s complexity and lack of

functionality are among the features that discouraged its uptake by software developers.

DISCO was Microsoft’s version of UDDI. DISCO documents were published to clients

through a Web Server, and they provided links to resources describing the Web

Service.

In addition to these core standards, additional specifications have been developed or are

being developed to extend Web Services capabilities. These specifications are generally

referred to as WS-*. Commercial and industrial interest in SOA and Web Services

contributed greatly to their adoption by vendors and to the fast evolution of several

standards. Figure 2 illustrates the Web Services building blocks for developing

distributed applications.

Figure 2 - Web Services building blocks

Discovery

UDDI, DISCO

Description
WSDL, XML Schema, Docs

Message Format
SOAP

Encoding

XML

Transport

HTTP, HTTPS, SMTP, etc

8

Figure 3 illustrates a common usage scenario for Web Services that can be defined by

three phases: Publish, Find, and Bind; and three entities: the service requester, which

invokes the services; the service provider, which responds to requests; and the registry

where services can be published and advertised. Service descriptions are published by

service providers to a service registry. These services are discovered by querying or

browsing the registry.

3.2 The Semantic Approach to Web Services

The semantic approach to Web Services aims to enable the automatic discovery,

composition and execution of Web Services. Traditional technologies for Web Services

(WSDL) only provide descriptions at syntactic level, making it difficult to interpret the

domain meaning of inputs and outputs flowing between requesters and providers. In the

same way that Semantic Web technologies allow semantic markup of data on the Web

to make it machine understandable, Web Service can now be augmented with semantic

annotations to make them discoverable by software agents, as well as composable and

executable.

In the next section, we review three research efforts addressing the Semantic Web

Services issues.

UDDI

Registry

Service

Consume

Web

Service

WSDL

SOAP

Points to Description

Communicates with XML
Messages

Finds

Service

Describes

Service

Points to Service

Figure 3 - Web Service usage scenario

9

3.2.1 The Web Ontology Language for Services: OWL-S

OWL-S [18] (formerly known as DAML-S) is an OWL ontology that includes three

primary subontologies: the service profile, process model, and grounding. The service

profile is used to describe the capabilities of the service. The process model describes

how the service is performed. The grounding specifies how the service is actually

invoked. The service profile and process model provide characterizations of a service,

and the grounding provides details related to message format, transport protocol. Figure

4 shows the top level ontology classes and the relationships between them. For

example, the presents property represents a relationship between a Service and a

Profile.

Each service described using OWL-S is represented by an instance of the OWL class

Service, which has properties that associate it with a process model, one or more

groundings, and optionally one or more profiles. A process model provides the

complete description of how to interact with the service at an abstract level, and the

grounding supplies the details of how to embody those interactions in real messages to

and from the service. Each service profile can be thought of as a summary of the

process model aspects plus additional advertising information. Several types of

grounding exist for OWL-S; the default one employs WSDL.

The Service Profile

The OWL-S profile specifies the capabilities of services. Discovering services that

satisfy a request is accomplished by exploiting the OWL-S profile structure and the

references to OWL concepts. The principal elements in a profile include the inputs,

outputs, preconditions and effects (IOPEs) associated with the service — it is required

Profile

Process

Grounding

Service

presents

described by

supports

Figure 4 - Top level of Service Ontology

10

to list all IOPEs. The IOPEs describe the functional aspect of the service, i.e. the

service expects data as input and returns data as output. IOPEs specify the

preconditions that need to be satisfied and the effects during the execution. Services are

usually stateless i.e. they do not change the state of information, preconditions and

effects in this case are not necessary. Figure 5 shows a partial example of a profile for a

service, expressed in OWL. The profile describes the input the service takes. The other

parameters are not described because they are unimportant.

The Process Model

The process model specifies the possible patterns of interaction with a Web Service.

There are two types of processes that can be invoked: atomic and composite. Atomic

processes are single black-box processes. Composite processes can consist of atomic

and composite processes linked using control flow flow constructs such as sequences,

conditional branches and loops. A third type, the simple process, is a non-invocable and

abstracted view of atomic and composite processes. A process in OWL-S has a set of

associated features (IOPEs) linked by properties such as hasInput, has Output, etc.

Figure 6 shows the atomic process corresponding to the profile in Figure 5. The atomic

process specifies that it has an input DNA sequence using the property hasInput and

points to its semantic type using the parameterType property. The ontology used is the

myGrid domain Bioinformatics ontology.

<BLASTProfile rdf:ID=”WUBLAST”>
 <serviceName>BLAST Service</serviceName>
 <hasInput rdf:resource=”&blast_process;#DNASequence_In”/>

</BLASTProfile>

Figure 6 - An OWL-S Process

Figure 5 - A partial OWL-S profile

<AtomicProcess rdf:ID=”blastp”>
 <hasInput rdf:resource=”#blastp_In”>
</AtomicProcess>

<Input rdf:ID=”blastp_In”>
 <paramterType
 rdf:resource=”http://www.mygrid.org.uk/ontology#DNA_sequence”/>
</Input>

11

The Grounding

The grounding ontology of OWL-S is used to specify how abstract information detailed

by atomic processes is realized by concrete information in deployed Web Services.

Grounding maps each atomic process to a WSDL operation, and relates each OWL-S

process input and output to elements of the XML serialization of operation input and

output messages. Mappings enable the translation of semantic inputs to the appropriate

WSDL messages for the service execution, and translate back output messages to

semantic descriptions.

Figure 7 shows the corresponding grounding of the blast operation. The wsdlOperation

property of WsdlAtomicProcessGrounding specifies the portType/operation pair from

WSDL. The wsdlInputMessage property is mapped to the request message in WSDL.

The wsdlInput property specifies mappings between OWL-S parameters and WSDL

message parts.

<WsdlGrounding rdf:ID=”Grounding_BLAST”>
 <hasAtomicProcessGrounding
 rdf:resource=”#WsdlGrounding_blastp”/>
</WsdlGrounding>

<WsdlAtomicProcessGrounding rdf:ID=”WsdlGrounding_blastp”>
 <owlsProcess rdf:resource=”&blast_process;blastp”/>
 <wsdlOperation rdf:resource=”#blastp”/>

 <wsdlInputMessage>
 <xsd:anyURI rdf:value=”&BLASTGroundingWSDL;#blastp_Input”>
 </wsdlInputMessage>

 <wsdlInputs rdf:parseType=”Collection”>
 <WsdlInputMessageMap>
 <owlsParameter rdf:resource=”&blast_process;#DNASequence_In”/>
 <wsdlMessagePart>
 <xsd:anyURI rdf:value=”BLASTGroundingWSDL;#sequence”/>
 </wsdlMessagePart>
 </WsdlInputMessageMap>
 </wsdlInputs>
</WsdkAtomicProcessGrounding>

<WsdlOperationRef rdf:ID=”blastp_operation”>
 <portType>
 <xsd:anyURI rdf:value=”&BLASTGroundingWSDL;#blastp_PortType”/>
 </portType>
 <operation>
 <xsd:anyURI rdf:value=”&BLASTGroundingWSDL;#blastp_op”/>
 </operation>
</WsdlOperationRef>

Figure 7 - An OWL-S Grounding

12

Implementations

Task Computing is a project that has been developed at the Fujistu Laboratories in

America [19]. The framework provides an interface for a collection of services and

devices such as agendas, display devices, and email clients. An execution environment

was developed to consume the provided semantic descriptions. Users are guided to

compose simple workflows that accomplish tasks such as locating an address from a

contact card and printing the directions there. The environment relies on semantic

reasoning to aid select compatible services. Workflows are limited to sequences, where

services are connected via their inputs and outputs.

The authors argue that WSDL definitions provide functional descriptions of services,

thus requiring programmers to understand the semantics of these services.

Hence, they introduce Semantic Service Descriptions (SSDs), service layer

semantic descriptions that can be applied to different components of a service,

for example inputs, outputs, and class entities.

The authors propose using OWL-S as one possible implementation of a semantic

description language. They further explain that service composition can rely on

input and output semantic compatibility or entities hierarchical relationships.

3.2.2 The Web Service Modelling Ontology: WSMO

WSMO [20] is an ontology for the description of Web Service. The definition of

WSMO hinges on the following four concepts: Web Services, Goals, Ontologies and

Mediators. The following list provides an explanation of the meaning of the four

concepts.

Web Services expose the interface of businesses on the Internet. They describe the

capabilities of the Web Service, and how these capabilities are fulfilled.

Goals represent the objectives that a client seeks to fulfil. These objectives are

characterized by post conditions that describe the information state the client

desires, and effects that describe the state of the world that the client desires to

achieve.

13

Ontologies provide a formal specification of the domain. Ontologies provide formal

semantic to exchanged information by facilitating interoperation, and specify

the precise terminology accepted by Web Services facilitating the definition of

semantic descriptions.

Mediators provide a general mechanism to overcome interoperability issues between

Web Services. They provide a mapping between different ontologies concerned

with related domains.

Goal, WebService and Ontology components are linked by four types of mediators as

follows:

• OO mediators link ontologies to ontologies,

• WW mediators link web services to web services,

• WG mediators link web services to goals, and finally,

• GG mediators link goals to goals.

A few tools and APIs are available for WSMO. WSMO Studio is a WSMO compliant

editor available as an Eclipse plugin. WSML Rule Reasoner is a reasoner

implementation for Web Services Modelling Language (WSML). WSMO4J is a Java

API for building WSMO based applications. The Web Services Execution Environment

(WSMX) is the execution environment for Semantic Web Services based on WSMO.

Due to the lack of technical documentation and working scenarios, WSMO is not being

adopted by academic and industrial researchers. Efforts on WSMO focus on producing

a conceptually complete and sound framework for describing Web Services rather than

a lightweight working solution. The WSMO project uses the WSML as an ontology

language rather than OWL, which is a W3C recommendation. WSMX is limited to

WSML, which provides syntax and semantics for WSMO. This limits the usability of

WSMO since most ontologies are defined in OWL.

3.2.3 Semantic Annotations for Web Service Description Language

Introduction

Current Web Services technologies are built around SOAP and WSDL. These

technologies provide a solid foundation for resolving integration problems but do not

scale well when it comes to search and mediation. Automation in Web Services

14

requires more than XML descriptions of the data structure and syntax. This sort of

automation can be achieved using Semantic technologies, such as those underlying the

Semantic Web.

Building on WSDL, Semantic Annotations for Web Service Description Language

(SAWSDL) [21] adds hooks that let WSDL components point to their semantics (see

Figure 8). The SAWSDL specifications do not provide any specific semantics; rather, it

allows the annotation of syntactic WSDL descriptions with pointers to semantic

concepts. These concepts can be consumed by software systems to (partially or fully)

automate tasks such as service discovery, composition, and invocation.

Technically, SAWSDL is a set of extensions for WSDL. WSDL uses XML as a

common data-exchange format and apply XML Schema for data typing. It describes a

Web Service on three levels:

Reusable abstract interface defines a set of operations, each representing a

simple exchange of messages described with XML Schema element

declarations.

Binding describes message serialization; it follows the structure of an interface

and fills in the necessary networking details (for instance SOAP or HTTP).

Service represents a single physical Web Service that implements a single

inteface; the Web Service can be accessed at multiple network endpoints.

Figure 8 - WSDL with SAWSDL Annotations

15

WSDL describes the Web Service on a syntactic level, whereas SAWSDL specifies

WSDL components semantic by extending WSDL with a semantic layer. Specifically,

SAWSDL defines extension attributes that can be applied both in WSDL and in XML

Schema to annotate WSDL interfaces, operations, and their input and output messages.

These extensions take two forms: model references that point to semantic concepts and

schema mapping that specify data transformation between messages’ XML data

structure and the associated semantic model. The table in Figure 9 summarises the

complete syntax introduced by SAWSDL.

Several tested implementations have developed for the SAWSDL specifications [22].

Direct implementations are parser APIs that make the annotation available to

applications and tools that let users annotate WSDL documents with semantic

annotations. The Woden API [23] for WSDL 2.0 and the WSDL4J API [24] for WSDL

1.1 were both extended to handle SAWSDL. Two GUI tools exist to help annotate

WSDL documents with semantics: Radiant from the University of Georgia and the

Web Service Modelling Ontology (WSMO) Studio from Ontotext.

Name Description
modelReference A list of references to concepts in some semantic

models (XML attribute)

liftingSchemaMapping A list of pointers to alternative data-lifting

transformations (XML attribute)

loweringSchemaMapping A list of pointers to alternative data-lifting

transformations (XML attribute)

attrExtensions Attaches attribute extensions where only element

extensibility is allowed (XML attribute)

Figure 9 - SAWSDL syntax summary.

Model References

A model reference is an extension attribute, sawsdl:modelReference, which can be

applied to any WSDL or XML Schema element. However, SAWSDL defines its

meaning only for wsdl:interface, wsdl:operation, wsdl:fault, xs:element,

xs:complexType, xs:simpleType, and xs:attribute. This attribute allows

multiple annotations to be associated with a given WSDL or XML Schema component

via a set of URIs, each one identifying concepts expressed in different semantic

16

representation languages. Model references generically refer to semantic concepts,

serving as hooks for attaching semantics. They are used to describe the meaning of data

or to specify the function of a Web Service operation.

Schema Mapping

SAWSDL provides two attributes for attaching schema mappings:

sawsdl:liftingSchemaMapping and sawsdl:loweringSchemaMapping.

Lifting mappings transform XML data from a Web Service message into a semantic

model (for instance, into RDF data that follows some ontology), whereas lowering

mappings transform data from a semantic model into an XML message. Lifting and

lowering transformations address post-discovery issues in using Web Services.

Mismatches between the semantic model and the structure of the inputs and outputs can

exist between matched Web Services. In XML Schema, an XML elements’ content is

described by type definitions and the name is added as an element declaration.

SAWSDL model reference and schema mapping annotations can be both on types and

on elements.

WSDL 1.1 Support

The SAWSDL specifications are built primarily for WSDL 2.0, but it also supports WSDL 1.1.

Both model references and schema mappings apply without modification to WSDL 1.1.

However, the XML Schema for WSDL 1.1 allows only element extensions on operations, so a

WSDL 1.1 document with the SAWSDL modelReference attribute on an operation would

not be valid. To overcome this obstacle, SAWSDL defines the element attrExtensions to

carry extension attributes in places where only element extensibility is allowed. Instead of

putting the model reference directly on the operation element, SAWSDL can put it on the

attrExtensions element, and then insert that into the operation element.

Annotating WSDL Documents

The different semantic annotation constructs in SAWSDL serve to describe

semantically an aspect of the Web Service. Annotating element declarations and type

definitions in XML Schema with model references accompanied by lifting and

lowering schema mappings provide an information model. This model is needed when

performing data mediation when it is exchanged between the semantic client and the

XML-based Web Service. The description of service capabilities advertizes what the

17

service offers to users, and thus it enables the service to be discovered, composed, and

eventually invoked. Pointing to the appropriate description of a Web Service’s

capability is achieved by annotating the service and the interface constructs by model

reference annotations. Apart from describing the service (or the interface) as a whole,

capabilities can be ascribed to the operations using model reference pointers. The latter

type of annotations might be needed by semantic clients to perform a more fine-grained

operation discovery, whereas annotations of service and interface constructs serve to

categorise the different services; this is useful for general service discovery.

Figure 10 shows an example of a WSDL 1.1 document describing a Bioinformatics

Web Service that fetches a DNA sequence in the FASTA format from the DNA Data

Bank of Japan (DDBJ) using an access number. The service description of the input

and the output of the operation in the Web Service ambiguously name the input and the

output getFasta_DDBJEntryIn and getFasta_DDBJEntryOut respectively. The

message component specifies that part of the output message is of type string, but says

nothing about the semantic meaning of the data returned from the operation. By adding

the SAWSDL model reference annotation, we can point to a semantic concept that

semantically describes the data retrieved from the service. In our example we annotated

the output with the DNA_sequence concept from the myGrid ontology, which is an

OWL Domain Ontology for Bioinformatics.

Discussion

OWL-S, WSMO, and SAWSDL share the vision that ontologies are essential to

support automatic discovery, composition and interoperation of Web Services. OWL-S

<wsdl:definitions...>
<wsdl:message name='getFASTA_DDBJEntry'>
 <wsdl:part name='Result' type='xsd:string'
sawsdl:modelReference="http://www.mygrid.org.uk/ontology#DNA_sequence"/>
</wsdl:message>
...
<wsdl:portType name='GetEntry'>
 <wsdl:operation name='getFASTA_DDBJEntry'>
 <wsdl:input name='getFASTA_DDBJEntryIn'
 message='tns:getFASTA_DDBJEntryIn'/>
 <wsdl:output name='getFASTA_DDBJEntryOut'
 message='tns:getFASTA_DDBJEntryOut'/>
 </wsdl:operation>
...
</wsdl:portType>
</wsdl:definitions>

Figure 10 - A WSDL 1.1 document annotated with SAWSDL

18

defines a set of ontologies that support reasoning about Web Services, following the

chronological order of SWS framework tasks – discovery uses descriptions from the

profile and process ontology and invocation needs grounding descriptions in the

grounding ontology. WSMO on the other hand define a conceptual framework within

which ontologies are created. WSMO makes clear distinction between the types of Web

Services i.e. requesters and providers, and outline the role of mediators as a solution to

the interoperation problem. Both efforts define a formal framework that is highly

expressive and could be too complex for some domains.

Heavy approaches like OWL-S and WSMO can be impractical for manual annotation

for data and tasks in scientific domains. Tasks in Bioinformatics are rather lightweight

and often stateless since the state of information does not change. This omits the need

for preconditions and most importantly effects. Even though SAWSDL itself does not

provide actual SWS modelling capabilities but by embedding annotations directly in

WSDL documents, existing WSDL repositories can be used for semantic discovery of

services. Furthermore, developing applications based on SAWSDL is relatively easy

since it is reduced to upgrading existing tools for Web Services. We therefore have a

strong belief that SAWSDL is the right SWS technology for annotating scientific data

and services.

3.3 Semantic Web Services in the Grid: The Semantic Grid

Both the Grid and the Semantic Web communities started as two distinct research

efforts. The need to develop new Grid applications and make reuse of data and

workflows led to the proposition of the Semantic Grid. It is a joint effort that aims to

enable building scientific solutions for scientific problems. Realizing this vision is

achieved by applying Semantic Web technologies to Grid developments, from Grid

services to Grid applications.

InteliGrid [25] proposes an architecture based on three layers: conceptual, software and

basic resource. The conceptual layer represents descriptions of resources in the form of

ontologies, graphs, etc. The software layer consists of software that consumes

descriptions defined in the conceptual layer. The basic resource layer includes the low

19

level infrastructure. Service discovery and other functionalities are supported by

ontology services provided by the software layer.

S-OGSA [26] is a proposed architecture that extends OGSA by providing support to

semantic content. The approach proposes the use of semantic services that can manage

knowledge about resources in the Grid. The proposed model identifies resources on the

Grid such as services and data, knowledge about these resources in the form of

ontologies, graphs, etc, and the actual association between knowledge and resources.

The architecture introduces specialised services that can create, manage, and consume

ontologies and metadata.

Although WSMO and OWL-S were not developed in the Grid context, they do provide

a methodology and language to describe relevant aspects of services and information

resources in order to enable the automation of tasks such as selection, composition and

monitoring of complex services. Resources discovery on the Grid can be facilitated by

using Semantic Web languages including RDF, OWL, and WSMO. The expressivity of

these languages allows sophisticated reasoning in order to discover and select required

resources. Complex tasks can be realized by aggregating and composing multiple

resources on the Grid. This is facilitated by supporting workflow description and

enactment. Existing languages such as OWL-S define process (workflow) using the

OWL-S process model ontology. WSMO defines the process model and execution

semantics for workflow description and execution using abstract state machines. Aside

from solving the composition problem, developers are concerned with data and control

flow compatibility. Annotating data and workflows facilitates matching and supports

any necessary conflict detection.

OWL-S and WSMO are two initiatives that aim to describe requests and Web Service

functionality in a way that can help in the automation of service discovery and

composition. They also proved to be good candidates in realizing the vision of the

Semantic Grid, and could be key components when building Grid applications.

However, the vision of the Semantic Grid has yet to be realized. Several architectures

and prototypes have been proposed for the Semantic Grid [27, 28], however none of

them cope properly with the current requirements of the Grid such as scalability,

security and performance. Many challenges face the uptake of the Semantic Grid. The

20

Semantic Grid needs to demonstrate the added value of semantics in Grids, facilitate

the task of gathering, managing, and maintaining data, improve the performance of

creating and retrieving semantic metadata, and last but not least securing exposed

metadata and automated reasoning.

21

Chapter 4 Scientific Workflow

Systems

4.1 Introduction to Workflows

Web Services standards provide solutions to the interoperability problems. However,

existing methods for creating business processes are not designed to work with cross-

organizational components. Orchestration describes an aspect of creating business

processes from composite Web Services. Microsoft’s XLANG and IBM’s Web

Services Flow Language (WSFL) were the early standards proposed for designing

business processes. These efforts were later combined to form the Business Process

Execution Language for Web Services (BPEL4WS) [29] or BPEL for short. BPEL

allows enables a user to specify how different Web Services can be composed together

in various ways to design an executable workflow. Designed workflows can also

presented as new services, thus enabling recursive composition of workflows. Another

way of describing workflows is as choreography. Choreography describes the

observable interactions between services from a global point of view rather than a

service perspective. The Web Services Choreography Description Language (WS-

CDL) is a choreography language that can be used to describe workflows. WS-CDL as

a workflow solution may provide better flexibility because choreography descriptions

can be changed independently of the services. However, a few unresolved issues have

an impact on wider adoption of WS-CDL in particular and choreography in general.

Choreography languages’ lack of a concrete syntax definition requires developers to

use orchestration languages in order to render workflows executable.

Scientists face many of the same challenges that are found in enterprise computing,

namely integrating distributed and heterogeneous resources. Collaborations are

22

becoming more geographically dispersed and use machines distributed across several

institutions. Scientists are increasingly relying on Web technology to perform in silico

experiments. The task of running and coordinating scientific applications across several

domains, however, remains complex.

4.2 Scientific Workflow Systems

Several research efforts [30, 31] have investigated the suitability of BPEL and its

implementation for scientific workflows. Some approaches involved the identification

of the requirements of scientific workflows and assessing to what extent the BPEL

specifications satisfy these requirements. Other approaches followed an experimental

methodology by implementing scientific workflows that solve some scientific

problems. The research work demonstrated that BPEL could be successfully used to

combine Grid services to develop scientific workflows, and to deploy these workflows

using an enactment engine.

The research community produced various specialized workflow systems designed

specifically to aid the development of scientific workflows. Globus [32] is an open

source toolkit that implements many Grid related standards. It is the paradigmatic

example of a heavy-weight Grid system. Globus provides a low-level toolkit that

enables the construction of Grid based applications. The toolkit is composed of several

software components. These components are divided into five categories.

• Security components are based on the Grid Security Infrastructure (GSI).

• Data Management components such as Open Grid Services Architecture Data

Access and Integration (OGSA-DAI) and GridFTP allow large data

management.

• Execution Management components such as Grid Resource Allocation and

Management (GRAM) deal with the initiation, monitoring, management, and

scheduling of executable programs.

• Information Services refer to the Monitoring and Discovery Services (MDS). It

includes components such as WebMDS, Index, and Trigger to discover and

monitor resources.

• Common Runtime components provide libraries and tools to build WS and non-

WS services.

23

Discovery mechanisms in Globus are concerned with obtaining, indexing, and

processing information about the state of services and resources. The Globus toolkit

provides services such as GRAM that defines resource properties to enable service

discovery. Aggregator resources collect state information from registered information

sources, which can be queried using command line, web based, and Web Service

interfaces. The information collected by these aggregator services is maintained as

XML, and can be queried via Xpath queries (as well as other Web Services

mechanisms).

Different workflow systems have been proposed in order to support developing Grid

applications with the Globus toolkit. GridAnt [33] is an XML/Java-based tool for

representing and executing workflows of computational codes and Web Services.

GridAnt contains a control construct for expressing parallel and sequential tasks. Data

is propagated between the different tasks in the workflow using a simple copy

command. The framework does not provide any mechanism to check for data type

mismatch or heterogeneity.

UNICORE [34] is a Grid middleware that allows users to access Grid resources. The

UNICORE Grid system consists of the Client, Gateway, Network Job Supervisor

(NJS), and Target System Interface (TSI) software Components. The UNICORE Client

allows end-users to connect to a UNICORE gateway. The UNICORE Gateway is the

entry point for all UNICORE connections. The UNICORE NJS manages submitted

UNICORE jobs, it also realises Abstract Job Objects (AJO) into concrete execution

commands and hands them over to the TSI. The UNICORE TSI accepts the submitted

job components and passes them to the local system for execution. A UNICORE AJO

used to be modelled as a directed acyclic graph (DAG) of tasks or other jobs. It has

been extended to include conditionals and loops, available via the client GUI. DAGs

define dependencies in job submission and dictates the order of execution. However,

job descriptions provide no mechanism to check for semantic compatibility of pipelined

data between different jobs.

Kepler [35] is scientific workflow system that has a graphical user interface, thus

enabling users to design and execute workflows. Kepler workflows can be exchanged

24

in XML using Ptolemy Modelling Markup Language (MoML). Ptolemy is the

underlying system of Kepler, making the system actor-oriented. Scientific workflows in

Kepler are viewed as a composition of components called actors. Using the

extensibility feature of actors, support for Web Services is provided through generic

Web Service actors. The Kepler system benefits from an extension that implements

what is called smart semantic links [36]. The system identifies structural and semantic

data types, where ports on actors (input, output) are associated with OWL-DL ontology

based semantic type [37]. The proposed approach generates mappings in XQuery and

XSLT to transform data from a source structure to a target structure. Parameter

mapping is a work in progress not yet supported by Kepler. While the system provides

mapping between structural data types, grounding of semantic data types to structural

data types does not exist. The use of semantics is reduced to symbolically check data

compatibility. In our approach, we propose a safe type system, where semantics are

grounded to concrete data and are part of the data transformation process. SPARQL

[38] is used to transform semantic data from one structure to another, while semantic

reasoning is used to check for data compatibility.

Triana [39] is a workflow system that has a graphical user interface allowing users to

add services to the workflow. The Grid Application Protocol (GAP) Interface allows

Triana to communicate with composed services, including Web Services. WServe is

the API that implements the GAP binding for We b Services. Using this API, services

are queried from a UDDI server and are invoked through a WS Gateway. Using the

graphical interface, services are composed and connected with pipes. Resulting

compositions can be written in a proprietary format or BPEL [40]. To our knowledge

uses information about input and output data-type objects to perform design-time type

checking i.e. ensuring data compatibility between components [41] . This approach

does not capture any semantic information about the exchanged data, nor does it deal

with structural mismatches. It is as good as the type checking mechanism used in

Windows Workflow Foundation.

The Taverna Workbench [42] is a tool targeted at developing workflows in

bioinformatics. Taverna provides a graphical tool for creating and executing

workflows. Workflows are taken to be a graph of processors represented in the Simple

25

Conceptual Unified flow Language (Scufl), an XML-based language. Workflows in

Scufl consist of three main components:

• Processors are transformations that take input data and produce output data.

Types of processors include WSDL types, nested types, local processor types,

and string constant types.

• Data links are data bindings between sources and sinks. Data sources can be a

processor output and the data sink can be a processor input.

• Coordination constrains link two processors and control their execution. These

constraints specify the order execution of processors where no direct

dependency exists.

Services and workflows in Taverna are annotated using Feta descriptions in RDF(S),

which are queried through reasoning using Jena [43]. The Feta engine uses the

annotations to discover Web Services and Workflows using a semantic approach. Users

can add discovered services without checking for their compatibility. Taverna proposes

using specialised services called shims [44] that are similar to WSMO mediators.

Shims are services that transform data that are compatible from one format to another.

These services do not perform a structural transformation of data as it is concerned with

format only. Moreover, the mismatches between connected services have to be detected

by the workflow designed, and shim services are manually added as required.

26

Chapter 5 Semantic Annotations

in Windows Workflow Foundation

5.1 Microsoft’s Windows Workflow Foundation

In the business domain, human-intensive and machine-intensive processes are

combined to express the required business processes. Workflow is a mechanism that

expresses business processes as a collection of activities. Workflows can be created,

executed, and managed using Business Process Management (BPM) systems. Many

approaches have emerged to provide solutions to workflow problems: Web Service

Flow Language (WSFL), Web Services for Business Process Design (XLANG), and

Business Process Execution Language (BPEL), to name a few. BPEL is the one with

most traction in part due to its backing by major industry vendors. BPEL allows the

orchestration of Web Services into business workflows. However, it restricts the

developer to creating workflows from services only. This limits the scope of BPEL

when it comes to the integration of non-serviceable legacy applications.

Windows Workflow Foundation (WF) solves the integration problem and allows the

creation of workflows that compose Web Services with legacy systems. WF is the

latest addition from Microsoft to workflow management systems. It is released as part

of the .NET Framework 3.0 and 3.5. The technology provides developers with a group

of workflow-related components, thus allowing the creation, execution, monitoring and

tacking of workflows.

WF workflows can be developed using Visual Studio. The WF extension to Visual

Studio provides a visual designer, a set of workflow templates, and visual debugging

capabilities, easing the workflow development task. The Extensible Application

27

Markup Language (XAML) is a new XML-based language commonly used to develop

WF workflows. Workflows can also be developed using code in any CLR language, or

using markup with code separation. WF workflows are expressed as a collection of

composed activities. Activities are used to represent business specific activities. WF

provides a set of general-purpose activities and allows developers to create their own

domain-specific activities. WF supports two types of workflows: structured and state

machine. A sequential workflow is procedural in nature; the composed activities are

executed in sequence resulting in a predictable execution path. State machine

workflows, in the other hand, are event driven and workflow execution relies on

external events.

In addition to the activity library, WF provides a runtime engine and runtime services

components that executes workflows and provides monitoring and tracking services.

WF workflows can be hosted on different host applications varying from console

applications to windows services. The runtime services manage workflow instances,

transactions, tracking, and state management.

WF workflows can be composed of Web Services, desktop applications and legacy

systems. The WF runtime provides a backbone to execute and coordinate workflow

instructions. It would be analogous to a BPEL engine, but it differs in its deployment

strategy. The BPEL engine forms part of a server-tier deployment, whereas WF

runtime is deployable classically on the server side, as well as any other application that

can be linked to the .NET framework. This architecture makes WF a more lightweight

and faster framework than BPEL.

5.2 Web Service in Windows Workflow Foundation

With the success of Web Services in the business domain, the scientific community

started migrating their Grid resources and applications to follow SOA. In order to

standardise this new Grid service based architecture, the Global Grid Forum (GGF)

developed the Open Grid Services Architecture (OGSA) specifications. OGSA is based

on other Web Services technologies, notably WSDL and SOAP. Due to the wide use of

Web Services both in business and scientific domains, workflow systems in both

28

domains had to provide support for invoking Web Services as well as publishing

developed workflows as Web Services.

OGSA provides a common architecture for developing grid-based applications where

Web Services are the underlying middleware. Web Services can, in principle, be

stateless or stateful, however they are usually stateless and there is no standard way of

making them standard. The Open Grid Services Infrastructure (OGSI) was a GGF

proposal that intended to provide an infrastructure layer for OGSA. OGSI [45]

addressed the statelessness issues by extending Web Services to accommodate statefull

Grid resources. It essentially defined a mechanism for creating, managing and

exchanging information among Grid Services by extending WSDL and XML Schema.

OGSI evolved into the Web Services Resources Framework (WSRF) specifications

[46]. The specifications constitute WS-Resource, WS-Resource Properties, WS-

Resource Lifetime, WS-Service Group, and WS-Base Fault. WSRF provides support

for implementing stateful Web Services. WSRF competes for wider industry adoption

with similar specifications. The Web Services Interoperability Organization (WS-I) is

an industrial body that aims to achieve interoperability amongst the stack of Web

Services specifications (WS-*). These specifications include WS-Security which

provides means for applying security to Web Services by, for example, attaching

signature and encryption headers to SOAP. WS-Addressing is another specification that

defines mechanism allowing communicating addressing information between Web

Services. Due to competing specifications, interoperability issues arise in the Web

Services world. For instance, WS-Transfer, WS-Eventing and WS-Management

standards proposed by Microsoft, IBM, Sun, and Intel are functionally similar to

WSRF.

The Web Services functionalities are supported in WF through the basic activity

library. The InvokeWebServiceActivity is used to invoke a Web Service from within a

workflow. A reference to the Web Service is added to the workflow using its WSDL

description file. This results in the generation of a proxy class to be used to invoke the

Web Service once the activity is configured properly. WF workflows can also be

published as Web Services, thus different workflows can communicate with each other

if their instances are exposed as Web Services. The activities WebServiceInputActivity

and WebServiceOutputActivity enable the workflow to be used as Web Service end

29

points. The first activity enables a workflow to receive a Web Service request, and the

second activity pairs with the first to respond to a Web Service request. The

WebServiceFaultActivity pairs with WebServiceInputActivity to raise an exception

packaged into a SOAP exception. Workflows published as Web Services are invoked

from other workflows using the InvokeWebServiceActivity.

5.3 Scientific Workflows in Windows Workflow Foundation

Although WF is presented as a solution to business problems, the work in [47]

presented an implementation of scientific workflows using WF in wind tunnel

applications. The implementation demonstrated that WF is interoperable with Grid

services, specifically the Globus grid services. The evaluation of BPEL for scientific

workflows pushed researchers to identify the differences between business and

scientific workflows, and the requirements for the latter. In [30], different tasks were

identified when managing scientific workflows. The tasks included defining the

workflows, deploying them and finally the enactment of the workflows. For WF, the

basic activity library shipped with the framework provides the necessary support to

invoke Web Services and to send and receive message content in and out of the

workflow. Orchestrating different Web Services is enabled through control and data

flow constructs, such as sequencing, repetitive and conditional execution of activities.

These simple and complex constructs are supported in WF through activities like

IfElse, Parallel, and While. WF also enables sub-workflows to be combined to define

workflows that are more complex. The framework allows workflows to be published as

Web Services, and invoked from other workflows using the InvokeWorkflow activity.

WF makes a distinction between exceptions, transactions, and compensation.

Consequently different handlers are defined for each type of failure. WF workflows can

be deployed by the runtime engine provided by the framework. The WF framework

provides a set of runtime services that enable the monitoring of workflow execution

such as tracking, persistence, and transactions. The experimental implementation in

[47] successfully orchestrated Globus Grid services in WF using MyCoG. We believe

that WF is a good candidate for Grid service orchestration and scientific workflows

development and deployment due to its lightweight and performance. A thorough

analysis of the WF framework is required to prove that it satisfies the needs of

orchestrating Grid services into scientific workflows.

30

Bioinformatics refer to the creation of algorithms and computational techniques to

solve biological problems arising from analysing biological data. Performing in-silico

experiments frequently requires bioinformaticians to use a combination of local

applications and most importantly remote services owned by various organisations.

Figure 11 shows an example of an in silico experiment for the task of searching for

similar sequences to a given DNA sequence. The bioinformatician identifies several

services that implement sequence alignment methods. The user chooses to use an

implementation of the BLAST algorithm. Finally, the specific WSWUBlast service is

chosen. The user invokes the blastn method and supplies the corresponding parameters

i.e. the DNA sequence to be queried, the database to search, and an email to receive the

results. More complex bioinformatics tasks involve the execution of more services and

most often the manual handling and management of generated data. Documenting the

experiments into workflows and automating the process is what researchers in the field

currently are trying to achieve [48-50]. The vision lies in developing workflows in an

automatic or at least a semi-automatic way, aiming to minimize the efforts required by

the user in conducting their experiments, by simplifying the task to a “drag and drop”

process. By producing self documenting workflows and automating the execution of

specified tasks, the complexity is hidden from scientific users as well as supporting

collaboration by sharing data and experiments.

DNA Sequence

Similarity

 BLAST

Service

WSWUBlast Service

Operation

blastn

(query, database, email)

Task Service

Specific Services

Figure 11 - An in silico experimental design: Seuqence Similarity Search

31

Chapter 6 Semantically Resolving

Type Mismatches

6.1 Semantic Annotations in Windows Workflow Foundation

6.1.1 Semantic Parameter Binding in Scientific Workflows

One common approach in modelling scientific workflows is directed acyclic graphs

(DAGs), where arcs denote scheduling dependencies between computation tasks called

jobs [51, 52]. Alternatively, scientific workflow systems adopt expressive languages for

modelling scientific workflows based on dataflow process networks [53, 54].

Dataflow is a natural paradigm for data-driven and data intensive scientific workflows.

Workflows expressed using dataflow process networks can be efficiently analysed and

scheduled, and are also a simple and intuitive model for workflow designers [55]. In

addition to building workflow using the dataflow model, it is necessary to use control

flow constructs such as branching, iteration, and concurrency in order to engineer

robust and adaptive workflows. Constructs help build complex workflows that connect

different Web Services and applications requiring the alignment of input and output

data structures (schemas).

WF supports Web Services through the Web Service activity library. The framework

provides dependency properties on activities as a mean to store their values or the

workflow’s state. Activity binding binds a property on an activity to a property on

another activity or on the workflow itself. Binding properties ensures data propagation

between activities in the workflow. When composing activities to build a workflow, the

user needs to bind the properties of the activities as they are added. At design time, WF

32

validates the bindings between activities using a mechanism that checks the

assignability of the runtime type of one property to another. Web Services activities

expose their parameters (inputs, and outputs) as properties, which are linked to other

properties i.e. parameters using the activity binding mechanism. A binding between

two parameters from two composed activities is valid if their types are exactly the

same, implement the same interface, or have an inheritance relationship. Syntactic

matching is the key to successfully validating the compatibility of two types.

Web Services are usually owned and provided by different organisations. Developers

of these Web Services do not necessarily agree on the naming or the representation of

data in their implementations, which is very essential in syntactic matching. This

mechanism, however, has two flaws, first it omits equivalent types with different

names, second it omits equivalent types that have different internal data representation.

To overcome this problem, a new level of type description needs to be introduced.

In order to convey the semantic information about data passed between activities in a

workflow, we proposed the annotation of these data with semantic concepts. This

allowed us to use semantic matching technique to validate data bindings on the

syntactic level as well as the semantic level. Among the different annotation

mechanisms we chose SAWSDL. SAWSDL builds on existing Web Services standard,

so the implementation of SAWSDL-based applications is more efficient. By using

model references to point to semantic concepts in existing ontologies gives the

developer access to a wide and rich range of ontologies in different domains. Finally, it

enables semantic interoperability by supporting rich mapping mechanism between Web

Services XML Schema types and ontologies.

33

We rely on semantic matching techniques automatically to connect semantically

compatible between composed Web Services. Figure 12 summarises the semantic

matching technique employed to find the level of match between two semantic

concepts in some ontology representation language. When a service is added to the

workflow, WF attempts to match automatically the input parameters of that service to

the output parameters of the service it is connected to in the workflow. This ensures

that all the data bindings between composed Web Services are semantically valid at

design time. We identify three level of match, exact, subtype, and fail. The exact match

denotes a semantic equivalence between the two semantic concepts. The two

parameters can be safely connected. Subsumption means that a semantic concept is a

subconcept or a superconcept of another semantic concept. In our matching engine, we

consider a subtype match in one direction, i.e. it is safe to connect an input to an output

if the input parameter’s type is a subtype of the output parameter’s type. If the reasoner

fails to find a semantic match between two parameters, it is said that the match failed

and the two parameters cannot be connected together due to the lack of sufficient

semantic information to bind them automatically bind.

Figure 12 - Semantic Similarity Matching

 A Semantic

Concept

A Semantic

Concept
Semantic
Reasoner

Level of match:

• Exact

• Subtype

• Fail

34

6.1.2 Parameter Mapping at Design Time

Model references operate at the semantic level and provide a safe type system where

compatible parameters can be connected disregarding their syntactic differences in the

case where they are semantically similar. However, as mentioned above even if

compatible types are semantically similar they could structurally different.

Figure 13 illustrates how ontologies can act as mediators that can lift the data in XML

format to data in the shared ontology and then lower it to another XML format using

the lifting annotation from the first schema and the lowering one from the second

schema. Using the combination of shared ontologies and schema mappings, resolving

structural conflicts between compatible parameters is straightforward. As well as

transforming data from one form to another, the schema mappings are essential to pass

the necessary data from a supertype to its subtype. It is not until execution time that

these mappings are executed.

6.1.3 Integration and Implementation

In order to support the SAWSDL annotations, we exploited WF’s extensibility feature

and developed a custom activity to represent Semantic Web Services. The Semantic

Web Service (SWS) activity extends the existing Web Service activity by supporting

the model reference and both types of schema mappings. The SWS activity consumes

SAWSDL documents and applies the necessary mechanisms in order to bind

automatically compatible parameters between composed Web Services. The activity

can act as a conventional Web Service activity and consume WSDL documents to

XML

DATA

XML

DATA
Shared

Ontologies
Lifting

Lowering

Figure 13 - XML Data Mediation

35

generate the Web Service and execute it. Figure 14 illustrates the architecture of the

tool, its components and their interactions.

The .NET framework provides standard libraries for developing WSDL 1.1 based

applications, but no current support for WSDL 2.0 specifications. Furthermore, most of

the Web Services in Bioinformatics and other scientific domains provide WSDL 1.1

description files. Due to the aforementioned reasons, we opted to provide an

implementation for the WSDL 1.1 semantic annotations rather than WSDL 2.0.

Supporting WSDL 2.0 semantic annotations can be providing by implementing

translations in XSLT since both specifications are XML based. Our API extends

.NET’s WSDL 1.1 API by providing full support for all SAWSDL annotations

including model reference and schema mappings.

The SAWSDL specifications do not restrict the annotation mechanism to a specific

ontology representation language. However, for the sake of our implementation we

selected OWL and RDF, being two W3C recommendations and widely used for

developing ontologies. By adopting OWL and RDF we gained access to a wide range

of existing domain models e.g. life sciences and healthcare. What’s more, OWL and

RDF are well supported by the research community. Part of implementing our tool

required us to integrate the reasoning capability in order to perform the semantic

matching between services’ parameters. There are a few .NET libraries that provide

Level of

M
atch

Semantic

Concepts

Activity

 Binding

SW
S A

ctivity

SW
S A

ctivity

Web Service 2
Operation

SAWSDL
Parser

Semantic
Reasoner

Parameter
Binder

Web Service 1
Operation

Output

Input

SAWSDL

SAWSDL

Semantic

Concepts

Figure 14 - The Architecture of the Automatic Binding System

36

read and write support of OWL and RDF, including SemWeb1 and Euler2. However,

None of these libraries, however, provide full, robust support and inferencing

capabilities for OWL and RDF.

Jena [56] is an open source Semantic Web framework for Java. It provides a well

supported API for OWL and RDF. The framework includes a few generic reasoners,

but also supports the use of external reasoners such as Pellet [57]. To gain access to

these features we had to make Java and C# interoperable. At this stage, two options

were available: first expose the necessary semantic reasoning capabilities as a Web

Service and invoke it whenever needed or second convert the Jena libraries to .NET.

We opted for the second option since executing native .NET code is faster than

exchange XML messages, as well as being more reliable. IKVM 3is an implementation

of Java for the .NET framework. It includes a Java Virtual Machine implemented in

.NET, a .NET implementation of the Java class libraries, and tools that enable Java and

.NET interoperability. IKVM provides a static compiler that converts Java API to .NET

Common Intermediate Language (CIL), producing .NET Dynamic-Link Libraries

(DLL). Using IKVM we recompiled the Jena libraries into a .NET library and used it to

integrate the semantic reasoner into the SWS activity.

When the developed workflow is executed, the schema mappings associated with the

data types are executed. No restriction exists on the choice of the mapping language, so

we opt to use XSLT and SPARQL combination to support the bidirectional mapping.

XSLT and XQuery are supported by a set of .NET library natively. We provide support

for SPARQL using Jena’s .NET libraries. At runtime, XML data is lifted to semantic

data using XSLT and XQuery translations, and then lowered back to XML data using

SPARQL queries and XSLT transformations.

1 http://razor.occams.info/code/semweb/
2 http://www.agfa.com/w3c/euler/
3 http://www.ikvm.net/

37

6.2 Applying the Semantics to Scientific Workflows

We present a case study in the Bioinformatics domain in order to show how our tool

will automatically bind the parameters of two Web Services. Several scientific

organisations provide different public bioinformatics Web Services. The European

Bioinformatics Institute (EBI) is one such organisation that provides access to different

services, for example database retrieval and similarity searches. Most of the key data

types in bioinformatics have multiple data representation. Most of the operations in

bioinformatics services have weakly types parameters. In most cases, parameters are

defined either as strings or as arrays of strings. The use of strings becomes ambiguous

and inefficient when it comes to composing Web Services safely, thus the need for a

strong typing system in the developing environment becomes necessary. We proposed

introducing semantic annotations to the workflow environment. For the sake of our

work, we suggested applying the SAWSDL annotations to the Windows Workflow

Foundation environment. We claim that such a workflow system provides a strong

typed system that ensures composing Web Services safely.

Figure 15 illustrates a simple typical workflow in bioinformatics. The task here is to

find all the sequences that are similar to a given biological sequence. The workflow is

composed of two Web Services. The first Web Service is GetEntry and it provides

operations to retrieve entries from DNA and Protein databases in several formats using

WU-Blast:
blastp

String:accession

String:jobID

String:sequence String:database String:email

GetEntry:
getFASTA_DDBJEntry

Figure 15 - A Bioinformatics Workflow Case Study

38

unique accession numbers. The getFASTA_DDBIEntry specifically retrieves a DNA

sequence from the DNA Data Bank of Japan (DDBJ)4 in the FASTA format. The input

of this operation is accession which is of type string, and the output is sequence, also of

type string. The second Web Service is WSWUBlast, standing for Washington

University Basic Local Alignment Search Tool. It is used to compare a sequence with

those contained in nucleotide and protein databases. The blastp operation takes a

protein sequence and compares it against a protein database. In addition to the

sequence query, the user needs to specify the database to use and an email for

retrieving the results. The sequence parameter is of type string, but it does not convey

the nature of the sequence, in other words whether it is a DNA sequence or a protein

sequence. The operation returns a jobID to retrieve the search results. The example

above just gives a simple scenario where data is not well annotated and maintained.

Working with a few Web Services could be manageable. However, as the tasks get

more complex, and the workflows grows larger keeping a track of what services do and

what kind of data is required becomes more difficult. The workflow above is

successfully validated when built using WF and the conventional Web Service activity,

where in fact we have a conflict of retrieving a DNA sequence and using the wrong

algorithm to find similar matches.

We demonstrated how, by applying semantic annotations to WF, we can automatically

dynamically bind parameters of composed Web Services at design time. This approach

is also used to detect mismatches and conflicts between connected Web Services, thus

becoming a debugging tool as well as a building tool. Figure 16 shows a simple

example where the mismatch between the two parameters is detected. When the

operation from GetEntry is invoked, it results in retrieving a DNA sequence form the

DDBJ database. This output parameter is of type string. The similarity search operation

from WU-Blast takes a sequence of type string and finds all the similar sequences. WF

successfully validates this workflow at design time by using syntactic techniques. The

semantics of the data passed from the first service to the second is not validated to

verify that it is safe to execute the composition of the two services.

4 http:www.ddbj.nig.ac.jp

39

Figure 16 - The Semantic Annotations Applied to WF

The myGrid project provides an OWL version of a Domain Ontology5 for

bioinformatics concepts, such us genes, proteins, and enzymes. We annotated the

sequence output parameter of getFasta_DDBJEntry with the semantic concept

DNA_sequence, and the sequence input parameter of blastp with protein_sequence.

Protein_sequence is a subclass of the biological_sequence concept, and DNA_sequence

is a subclass of the nucleotide_sequence, which is in itself a subclass of the concept

biological_sequence. When the second service is added to the workflow, WF tries to

bind the two parameters by trying to match between the two parameters. The two

semantic concepts are not equivalent nor are they subsumed by one another. The match

fails, and WF detects the mismatch and reports it back to the user.

5 http://www.mygrid.co.uk/ontology

WU-Blast
blastp

Protein Sequence

GetEntry
getFASTA_DDBJEntry

DNA Sequence

String:sequence

String:sequence

Fail Match

40

Chapter 7 Workflow

Compensations Mechanisms

7.1 Workflow Failure Handling

Our approach already ensures type safety during workflow composition. However,

abnormal situations such as system failures and deviations (exceptions) are

unavoidable. Proper exception handling mechanisms are needed to deal with those

deviations. Validating workflows is important to users such as scientists as it ensures

the correctness and the reliability of their experiments. Different approaches have been

proposed to validate workflows.

Some efforts use provenance in their validation techniques [58]. The mechanism stores

metadata about processes, operations, and data types after workflow execution.

Validation uses semantic reasoning over provenance data such as XML data and some

specified properties such as XML Schemas. The use of provenance verifies the

correctness of a workflow after its execution. However, it does not handle exceptions at

execution time, which ensures terminating faulting workflows to a correct and stable

state.

Another approach applies atomicity rules used in database transactions on activities in

workflows [59]. This notion of atomicity is supported by an event log presented as a

provenance system that handles system failures. However, as discussed in [60], the use

of traditional ACID transactions to deal with errors is not useful in Web Services due to

differences from closely coupled systems. The ACID properties are not present in Web

Services. Since cancelling atomic activities is not feasible, compensation needs to be

associated with a scope, which groups related transactions to be cancelled.

41

Besides capturing data semantics, a different approach [61] proposes logging data

dependencies in order to recover from failures. The recovery mechanism restarts

faulting workflows, and reconstructs them by tracking the execution logs. This

approach does not verify the reliability of the workflow before its execution, and

ignores the importance of defining explicit exceptions and compensations to handle

errors and faults.

In the following sections, we will be analysing compensations, and the way they differ

from exceptions. We will be reviewing the compensations mechanisms introduced in

the de facto workflow composition language BPEL, and identifying the main issues

with the proposed recovery mechanisms. In light the of our BPEL compensations

analysis we will be reviewing the WF compensations mechanisms, and our proposed

approach to solve the issues associated with deviant workflows.

7.2 Workflow Compensation Analysis

Workflows involve hierarchies of activities whose execution needs to be orchestrated.

These activities typically involve interactions and coordination between multiple

partners. Faults may happen at any stage during the execution of the activities. Standard

atomic transactions, such as database transactions, use rollback mechanisms to handle

faults, thus maintaining the atomicity property. However, in long running transactions

(LRT), rollback is not always possible because parts of the transaction will have been

committed, or cannot be undone using automatic techniques. Compensations can

partially solve this issue by providing mechanisms that semantically undo the effects of

an executed activity.

Workflows (or any orchestration language) can provide constructs through which

compensations for actions can be declared. In the context of BPEL and WF, these

constructs are called compensation handlers. Compensation handlers are associated

with scopes of activities in workflows, and they can be nested arbitrarily.

Compensations are intended to be a backward recovery mechanism since they can only

be invoked on successfully completed scopes. Compensations can only be defined as

fault (exception) handlers. Unlike simple exception handlers, compensations attempt to

restore the workflow to a consistent state rather than just abort or terminate the

42

execution. Once a workflow is restored, forward handling mechanisms can be applied

in order to restart and resume the workflow execution by either retrying the same

execution path or trying alternatives. An important aspect of Web Services workflows

is that not all activities are automated and most resources cannot be locked. In these

scenarios, reversing the effect of completed activities cannot be accomplished, and the

use of forward and backward handling mechanisms is more difficult. Compensations

can be nested and applied to scopes at different levels of the workflow. It is necessary

to define clearly how such complex compensations are executed in order to guarantee a

consistent recovery process. For example, concurrent activities might have

compensations associated to the scope of each of them as well as the scope of their

composition. The history of workflow execution is necessary here to define the

backward execution path.

7.2.1 BPEL Compensations

Since traditional ACID techniques may not be used with LRTs, the BPEL specification

defines mechanisms to deal with unforeseeable faults, i.e. events that occur contrary to

the expected behaviour. These fault-handling mechanisms were inherited from

XLANG. XLANG defined constructs to handle and raise exceptions, as well as specify

compensation blocks that compensate long running transactions. These constructs can

also be used in BPEL to handle faults and deal with LRTs. Compensation constructs in

BPEL attempt to undo the effect of executed activities before a fault. However, how

many activities should or could be compensated depends on the situation. As

workflows get more complex, the task of designing compensation and fault solutions

becomes more difficult [62].

Activities in BPEL can be associated with scopes, which provide a context for their

execution behaviour. Each scope requires a primary activity that defines its normal

behaviour. The primary activity can be a complex activity, with many nested activities

that all share the context provided by their enclosing scope. Scopes themselves can be

nested to construct complex hierarchies.

In order to handle faults and errors in LRTs, BPEL provides compensation constructs.

Compensations in BPEL provide a mechanism to reverse the effect of committed

43

transactions as best as possible. The logic of a compensation is defined within a

compensationHandler. Compensations can be associated with a particular scope, and

are only installed after its successful execution. An unhandled fault causes the

invocation of all the compensations in the workflow. This is defined in BPEL as default

compensation.

Default compensations simply attempt to terminate the workflow after trying to restore

it to a stable state. However, this approach is not fault tolerant as it does not attempt to

minimize the effect of the fault and relies completely on the designer to define the fault

handling logic. Furthermore, the termination of the whole workflow will cost the user

any results acquired during the execution of the workflow, as well as having the

possibility of causing inconsistency across the non-isolated transactions.

The recovery mechanism provided by BPEL offers limited capabilities that are not

enough to define the handling logic of complex scenarios. To alleviate the complexity

of designing strong fault handling solutions, some approaches proposed enhancing the

design capabilities through improving various aspects of the language [63]. Using an

XML annotation mechanism, a designer can provide meta-descriptions that can be used

to generate the appropriate BPEL constructs. In an effort to simplify the construction of

compensation handlers, their approach allows the specification of safe points. Any

faults occurring beyond a certain safe point will be propagated up to that point, causing

the invocation of any installed compensations in reverse order. This approach relies on

the designer to specify points in the workflow where he thinks it is safe to restart from,

with the assumption that the state of the workflow is stable enough to resume its

execution.

An alternative approach is to define a fault handling logic that produces fault tolerant

BPEL workflows [64]. This approach separates the business logic of the workflow and

its fault handling logic. Specifically, the fault handling logic is specified by a set of

Event-Condition-Action (ECA) rules that build on fault-tolerant patterns. These ECA

rules are consumed at runtime with the business logic to generate business processes.

Some of the patterns used include Ignore, Skip, and Retry. These patterns represent the

action section of the ECA rules, and can be specific to the various types of faults

emitted by the faulting scope. This leaves the task of specifying the fault types, and the

44

different actions to be taken in different cases. In both proposed approaches, the design

of the fault logic is not verified for soundness and completeness. Practically speaking,

the workflow is not validated against a set of clear semantics that guides the designer

while specifying the fault handling logic.

We look next at Windows Workflow Foundation (WF) and the different fault handling

mechanisms it provides, and highlight the main differences between the two standards.

7.2.2 WF Compensations

WF provides a rollback mechanism for conventional short lived transactions, as well as

compensating mechanism to handle long running transactions. The ACID properties are

applied when developing and executing short lived transactions since resources can be

locked and changes are not committed until the complete successful execution of

transaction. The activity CompensatableTransaction in WF provides a way to define

the logic of a short lived transaction. This type of transaction can handle faults

occurring before and after committing. Roll back techniques are used to handle faults

occurring while the transaction is being executed and, since the ACID properties are

enforced, it is safe to just restore the state of the workflow. When a transaction is

successfully executed, all the changes are committed to the workflow and the locks on

resources used are released. A compensating activity can be associated with the

transaction so that fault occurring later can be used to attempt to compensate the effect

of the transaction.

Long running transactions cannot lock resources for an extended period of time. They

do not, therefore, possess atomicity and isolation. Since a long running transaction is

defined by the nesting and composition of activities within its scope, it is considered

committed when the last statement in it has completed. Long running transactions can

be defined in WF through the CompensatableSequence activity. Since the ACID

properties cannot be maintained, compensation serve as a fault handling mechanism

that can help mitigate the effect of a committed transaction in a way.

45

Table 1 - Fault Handling

Above is a simple table showing the similarity and difference between the fault

handling mechanisms of short lived and long running transactions.

Compensations can be associated with short lived and long running transactions, and

they can be invoked explicitly or implicitly. Explicit invocation of compensations can

be made through the compensate call from fault handlers or compensation handlers.

Through explicit compensations developers can define different fault handling

mechanisms. In the absence of such constructs WF’s runtime engine will, however,

implicitly invoke all the compensations in the workflow and attempt to bring it to the

initial state. The latter mechanism is rather abrupt and it does not provide or guarantees

a sound fault handling mechanism. Furthermore, faults occurring within a long running

transactions are not properly handled since committed changes within the scope of the

transaction cannot be reversed using rollbacks or compensations. This leaves the

workflow in an unstable state.

7.2.3 Evaluation of fault handling mechanisms

Although the BPEL specifications define how default compensations are implicitly

invoked, this mechanism fails to properly handle specific scenarios where faults causes

the workflow to invoke all the installed compensations. We show the particular issues

that we believe are unforeseen yet important to minimize the effect of unexpected

faults. We have deployed our BPEL test cases on two deployment engines Oracle’s

BPEL Process Manager [65] and Sun’s BPEL Service Engine [66]. Figure 17 illustrates

how the workflow behaves when a fault occurs within a scope associated with a

compensation handler. In the example below, when a fault occurs within the scope S2,

its compensation handler CH(S2) is not invoked. If the fault is not caught by a fault

handler in S2, then any effects that resulted from executing the activities of S2 are not

Fault Scope CompensatableSequence CompensatableTransaction

Inside Fault can be caught by fault handler

but compensation handler cannot be

invoked

The transaction can be rolled back

using the persistence service

Outside The fault triggers the compensation for the transaction

46

compensated; this may leave the workflow in a incorrect state. Consequently, since the

workflow cannot recover from its faulting state, all the installed compensations will be

invoked, i.e. CH(S1), in attempt to undo the workflow execution. However, this

approach does not guarantee that the workflow has been brought to a stable state, and it

might even affect further attempts to execute the workflow again.

WF does not provide formal specifications to workflow definitions, but its deployment

engine behaves in a similar way to its BPEL counterpart. We further illustrate further

how fault propagation affects the compensation mechanism in WF. Through fault

unwinding, compensation invocation can be carried out in a controlled manner. As the

fault is propagated through the workflow, specific compensation handlers are explicitly

invoked. By rethrowing a fault from one scope to an outer one, fault handlers are

supposed to contain the effect of the fault. However, in WF rethrowing a fault will

trigger the compensation handler of any successfully executed scope within the

throwing scope. This mechanism makes more difficult to define robust fault handling

mechanism as WF takes over.

S2
CH(S2)

Fault
…

…

S1
CH(S1)

…

…

Figure 17 – Fault within scope

47

Figure 18 provides a scenario where rethrowing a fault will trigger the default

compensations of the workflow. Scope S4 throws a fault that is caught by S2’s fault

handler FH2. FH2 decides not to compensate S3, and rethrows the fault to S1. Before

the fault is caught by S1’s fault handler FH1, WF will flag S2 as faulting and will

trigger its default compensation, which will invoke all the installed compensations of

its inner scopes, i.e. the compensation CH3 of S3. The WF runtime engine does not

deliver the expected behaviour when invoking default compensations; we therefore

propose keeping track of all the installed compensations during the workflow execution

and instead push the control to the compensation handlers. This will enable us to

activate and deactivate the compensations depending on the annotations of the different

scopes. The user will still be able to use the compensation construct. The compensating

logic will, however, be wrapped in a semantically controlled construct, so that we

verify defined explicit compensations, and we make implicit compensations explicit

like.

In the following section, we will investigate how semantic enriched workflows might

guide developers into defining semantically reliable workflows. We will demonstrate

S1

S2

S3

S4

CH3

FH2

FH1

Figure 18 - Fault Propagation

48

our approach by implementing a prototype tool for Microsoft’s Windows Workflow

Foundation.

7.3 Semantics of Reliable Workflows

The Semantic Web technology allows the annotation of concepts from a specific

knowledge domain to content, so that information can be derived from these data by

employing semantic reasoning techniques. If a sound ontology could be engineered to

describe a specific domain, it can be used to enrich and validate content in a

compositional way. We have already enforced type safety in workflow systems through

the annotation of types in Web Services. Our approach allows the semantic

augmentation of workflows so that runtime type mismatches are handled at design time

[67]. A few approaches tackled this issue and introduced fault handling and recovery

systems.

7.3.1 Workflow Verification and Validation

Recovery approaches are usually based on a standard notion of explicit fault handlers

known from programming languages such as Java or C++, and compensation actions

for undoing effects of unsuccessfully finished activities. Some efforts relied on the

classification of faults within a hierarchy of events [68, 69]; in these approaches, as the

workflow is executed, various events are emitted and structured to be used by what the

authors define as Constraint violation handlers (CV-Handlers). CV-Handlers are

essentially event handlers that are triggered by specific events defined in the recovery

ontology that are emitted by the system. Recovery actions are defined in these CV-

Handlers to handle workflow faults properly. The events ontology does define different

types of events depending on the emitting action, however it does not add to the

existing compensation mechanism. The proposed compensation approach is easily

comparable to the one found in BPEL or WF, and does not exploit the semantic

annotation accumulated during the workflow execution.

Compensations are designed to undo the effects of executing an activity. However, a

scope activity can only be associated with a single compensation handler. This implies

that compensation handlers do not distinguish between different fault types, i.e. if a

49

compensation is invoked it can compensate the activity in a generic way; and proper

handling semantics cannot be specified. Although the BPEL compensation semantics

have not been extended to allow multiple compensations, a transaction language called

Structured Activity Compensation (StAC) [70] which defines compensation constructs

comparable to BPEL has been extended to allow an activity to have more than one

compensation handler [71]. This approach might alleviate the ambiguity of default

compensations, but it does not address it directly.

Semantically BPEL or WF cannot be extended to accommodate multiple

compensations, but it can be pushed to the compensation itself. Multiple compensations

allow the indexing of different compensating logics, then the selective invocation of

these compensations. We briefly give an example of how multiple compensations can

be defined and invoked.

We aim to develop an ontology specific to the compensation concept, where the user

can annotate the workflow component with a set of concept, which should enable the

verification of the compensation constructs and how they should be defined to handle

various faults. One approach to realise this system is through controlling fault

unwinding. As previously explained, default compensations have the defect of

unreliably propagating a fault through a workflow. This approach overlooks the effect

of executing a compensation on the workflow. Furthermore, complete fault unwinding

neglects the possibility that the workflow could be partially compensated, hence

bringing it to a state where some results could be retained, or where some components

could be restarted.

7.3.2 Semantics of WF Compensation

The concept of default compensation is ambiguous, and it can be regarded as an

emergency recovery mechanism where unexpected behaviour may trigger handled

faults and cause the whole workflow to terminate. We aim to assess the semantics of

compensatable scopes and assist the developer in defining compensation handlers

where necessary. This is to avoid the invocation of default compensation and make sure

that the workflow always terminates in a stable state.

50

We provide here an initial insight into the defined semantics of compensatable scopes

in WF and the associated compensation handlers. For the sake of completeness we also

provide annotation data to scopes not requiring compensations. Activities that do not

change global state such as searching for a flight do not require compensating actions

since they do not have an effect on the state of the workflow. These scopes can be

annotated as “non-compensatable” scopes since they do not require compensation,

which will help the algorithm decide how to handle fault within them.

Due to the distributed nature of long running activities, it is not always possible to

recover from faults. We might refer to activities with such semantics as “non-

recoverable” activities. These activities do not have compensations associated to them

since they cannot be compensated. Faults emitted from these activities might be

referred to as “Fatal faults”.

Compensatable scopes can be categorized as fully and partially compensatable. Fully

compensatable scopes are associated with compensating actions that semantically

undoes the effect of the scope. For example, getting a full refund for a flight ticket can

be regarded as a compensating action for a fully compensatable scope that is the

purchase of a flight ticket. Partially compensatable scopes are associated with

compensating actions that is not equal to the effect of the scope. For example, getting a

90% refund of flight cancellation can be regarded as a partial compensation for a

partially compensatable scope.

The above classification can be used as a guideline to develop an ontology that

categorizes scopes, and their semantic compensatability. We also propose defining an

ontology to describe compensations themselves. The semantics can be used to annotate

compensating actions in a workflow. We believe that providing information on the

compensability of a scope and the available compensating actions will optimize the

reasoning capabilities when devising recovery strategies.

The first evident action of a compensation is actually to compensate. This is obviously

dependent on the compensatability of the scope. A fully compensatable scope infers

that the compensating action will fully compensate the scope, and likewise for partially

compensatable scopes. A compensation may rethrow a fault if the error needs to be

51

propagated further. A skip action can be regarded as the negating action of a rethrow

action. A scope can be skipped after it was compensated or if it was deemed as non-

compensatable, in either case the workflow will resume execution. A terminate action

is a workflow level action that will trigger all the installed compensations in a

workflow. Such action can be invoked to handle fatal faults emitted from a faulting

critical scope. A further compensating action is retrying a compensated scope. This can

also be regarded as a recovery mechanism, since the workflow attempts to contain the

fault and resume workflow execution at a certain checkpoint. These compensating

actions are not exclusive. For an example, a compensating action can compensate a

scope then rethrow a fault or decide to skip.

We give below a case study on the usage of the proposed semantic annotations and the

implementation details of the recovery actions.

In Figure 19, we present a simple scenario outlining how our semantics can be applied

to a workflow. In the presented example, a user can attempt to book a flight, then a

hotel, and finally a car.

Each activity has an associated cancellation handler, where a business logic can defined

to appropriately cancel the effect of the activity and propagate the failure in the

workflow. This provides the ability to handle failures in workflows at various levels of

granularity.

We assume all the activities defined in the proposed scenario can be compensated,

whether fully or partially. A fully compensatable booking activity is a fully refundable

one upon cancellation. If a cancelled booking incurs a charge, we define is a partially

compensatable one. Now we can classify the flight and car booking services as fully

compensatable activities, assuming that they are fully refundable. We also classify the

hotel booking service as a partially compensatable, activity, since cancellation incurs a

charge.

The workflow to handle the cancellation of these bookings is defined the activity level,

and explicitly in the cancellation handler of each activity or scope.

52

We can also annotate the compensations with our semantics as follows. The

compensations for booking the flight and hotel can be annotated as “compensate” and

“rethrow”. This means that if any of these scopes fail, their compensations are invoked,

and the fault is propagated to the enclosing scope. The compensation for the car

booking service can be annotated as “compensate” and “skip”. Failing in booking a car

should not affect the execution of the workflow. The effect of executing the service

should be compensated, and the workflow should resume it execution resulting in a

successful booking of a flight and a hotel.

In the light of this scenario, we can also use the annotations to devise various recovery

strategies where the state of the workflow execution can be easily manipulated. Using

semantic reasoning capabilities, we use the semantic annotations of activities and

associated compensations to validate the defined handling logic of the compensating

Book Flight Cancel Flight Booking

Book Hotel Cancel Hotel Booking

Book Car Cancel Car Booking

Activity Scope Compensation

Figure 19 - Compensation Sematnics

53

actions. For example, a non-recoverable scope would require the invocation of the

terminate action in order to invoke all the compensations and halt the execution of the

workflow.

54

Chapter 8 Conclusions and

Future Work

8.1 Conclusion

In this thesis we discussed the open problem of structural and semantic mismatches

associated with data in data-driven workflows, and we presented our ongoing approach

that augments services with annotations in order to ensure type safety and workflow

correctness through grounding type semantics to concrete data structures. We identified

that mismatches can occur at two levels during workflow composition. Existing

approaches like Taverna deal with structural mismatches between data and ignore the

compatibility at the conceptual level. Other workflow systems like Kepler identify and

separate semantic data from its concrete grounding, thus do not provide mapping

solutions for structural mismatches. The rest of the workflow systems do not address

either issue, delegating the task of ensuring workflow correctness to developers. Our

approach provides a strongly typed workflow system, where mismatches are detected at

the conceptual level as well as the concrete level. To this purpose we developed a

prototype that implements a collection of semantic technologies to realise both

approaches. We argued the reliability of using Windows Workflow Foundation

framework as scientific workflow development system. The framework provides robust

support for Web Services and allows us to build complex data-driven and control-

driven workflows. However, it is not enabled for semantic type verification, so no

mechanism exists in order to track the consistency of semantic information in

propagated data. Annotating data with metadata captures the semantic information

required to carry out type verification at the semantic level. Current Grid services are

based on Web Services standards as defined by the OGSA specifications. We made use

of Web Services annotation technologies to achieve our goal. Our tool relies on

55

Semantic Web techniques such as semantic reasoning to assist the workflow

composition task. We extended the WF framework to make it compliant with

SAWSDL specifications. We demonstrated the effectiveness of our approach using an

in silico experiment in Bioinformatics as a test case. Our proposed approach provides a

safe type system for a sound workflow development environment, as well as a reliable

grounding mechanism for semantic data to enable workflow execution.

Another aspect of workflow development that we investigated in this report is

workflow reliability. Current workflow systems provide mechanisms to handle and

recover from failures. Activities in workflows can be associated with fault, event and

compensation handlers. Fault handlers deal with faults emitted from an activity. They

also implicitly invoke rollbacks in the case of short lived transactional activities.

Long running transactional activities cannot lock resources for long periods, and thus

the effect of its execution cannot be isolated. Since LRTs typically cannot be undone,

compensations provide a mechanism to define a recovery logic for the effect of these

activities.

Workflow composition languages such as BPEL and WF define compensations; their

specifications, however, are ambiguous and may get complicated when dealing with

complex workflows. Two types of compensations are identified, explicit and implicit.

While explicit compensations have to be invoked in order to compensate a successfully

completed activity, implicit compensations are usually invoked when an unhandled

fault may cause the workflow to terminate. Implicit compensations can be considered

emergency mechanisms where the workflow will try to invoke all the installed

compensations then terminate the execution. This approach suffers from inflexibility

and several efforts have attempted to alleviate its effect by introducing recovery

mechanisms.

In our research, we have showed how a semantic approach can be used in order to

develop an ontology to annotate activities and compensations in a workflow. These

semantic annotations can be consumed in order to validate the compensations defined

in the workflow. We attempt to eliminate the use of implicit compensations by

invoking runtime recovery mechanisms that will make planned invocation of

compensations rather than a complete workflow termination. This approach should

56

leverage the task and guide workflow development. It should also tackle the

shortcoming of current compensation approaches by ensuring workflow reliability and

sensible fault recovery.

We have introduced an initial attempt at compensation and activity classification, and

outlined how these semantics can be used to annotate workflows. We have also

explained how WF can be extended to recover from workflow faults.

8.2 Future Work

We believe that our framework is realisable. With the proper definition of an activity

and compensation ontology, we can extend WF to integrate the semantic annotation of

workflow, as well as validation and recovery functionalities. Using reasoning

mechanisms semantic information can be used to infer the necessary constraints to

handle the failure of the workflow. Using our proposed approach semantics can be

integrated to programming languages in order to provide a robust development

environment. The C# programming language allows adding metadata through

attributes. These attributes provide a method of associating information with C# code

including types, methods, properties and so forth. The attributes can be queried at

runtime by using reflections. Semantic workflow information can be used at execution

time to monitor workflows for faults and trigger the correct handling mechanism, or

infer a suitable one attempting to terminate the workflow and maintain a correct state.

57

Chapter 9 Bibliography

1. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid
computing. SIGMOD Rec, volume. 34, issue 3, pages 44-49, 2005.

2. Y. Gil et al. Artificial intelligence and grids: workflow planning and beyond.
Intelligent Systems, IEEE, volume 19, issue 1, pages 26-33, 2004.

3. C. Kesselman and I. Foster. The Grid: Blueprint for a New Computing
Infrastructure. 1998: Morgan Kaufmann Publishers, ISBN: 1558604758.

4. T. Berners-Lee, J. Hendler, and O. Lassila (May 17, 2001). "The Semantic
Web". In Scientific American Magazine. [cited 2008 12].

5. I. Polikoff and D. Allemang. TopQuadrant Technology Briefing v1.2, Semantic
Technology. 2004.

6. N.F. Noy, R.W. Fergerson, and M.A. Musen. The Knowledge Model of
Protégé-2000: Combining Interoperability and Flexibility. In Proceedings of the
12th European Workshop on Knowledge Acquisition, Modeling and
Management, pages 17-32, 2000. Springer-Verlag.

7. D. Quan. Haystack: A Customizable General-Purpose Information Management
Tool for End Users of Semistructured Data. 2005.

8. N. Shadbolt et al. CS AKTive Space, or how we learned to stop worrying and
love the semantic Web. Intelligent Systems, IEEE, volume 19, issue3, pages 41-
47, 2004.

9. T. Berners-Lee. "Semantic Web - XML2000, slide 10". W3C.
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html [cited 2008 12]

10. F. Manola and E. Miller. RDF Primer: W3C Recommendation. 2004 [cited
2008 12].

11. D.L. McGuinness and F.V. Harmelen. OWL Web Ontology Language
Overview W3C Recommendation. 2004 [cited 2008 12].

12. T. Scallan. A CORBA Primer.
http://www.omg.org/news/whitepapers/seguecorba.pdf [cited 2008 12].

58

13. DCOM Technical Overview, Microsoft Coroporation, November 1996.

http://msdn.microsoft.com/en-us/library/ms809340.aspx [cited 2008 12].

14. D. Box et al. Simple Object Access Protocol (SOAP) 1.1. 2000 [cited 2008 12].

15. M. Bell. Introduction to Service-Oriented Modeling. Service-Oriented
Modeling: Service Analysis, Design, and Architecture. Wiley & Sons. ISBN
978-0-470-14111-3.

16. R. Chinnici et al. Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language, W3C Recommendation. 2007 [cited 2008 12].

17. T. Bellwood et al. UDDI Technical White Paper.
www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf, 2002.

18. D. Martin et al. OWL-S: Semantic Markup for Web Services: W3C Member
Submission. 2004 [cited 2008 12].

19. R. Masuoka et al. Semantic Web and Ubiquitous Computing - Task Computing
as an Example. In AIS SIGSEMIS Bulletin, volume 1, issue 3, pages 21-24,
2004.

20. H. Lausen, A. Polleres, and D. Roman. Web Service Modeling Ontology
(WSMO): W3C Member Submission. 2005 [cited 2008 12].

21. J. Kopecky et al. SAWSDL: Semantic Annotations for WSDL and XML
Schema. Internet Computing, IEEE, volume 11, issue 6, pages 60-67, 2007.

22. SAWSDL Candidate Recommendation Implementation Report. W3C.
http://www.w3.org/2002/ws/sawsdl/CR/ [cited 2008 12]

23. Woden4SAWSDL. http://lsdis.cs.uga.edu/projects/meteor-
s/opensource/woden4sawsdl/index.html [cited 2008 12]

24. Web Services Description Language for Java Toolkit (WSDL4J).
http://sourceforge.net/projects/wsdl4j/ [cited 2008 12]

25. Ž. Turk et al. Towards Engineering on the Grid. In proceedings of the 5th
European conference on product and process modelling in the building and
construction industry - ECPPM. 2004. Istanbul, Turkey.

26. O. Corcho et al. An overview of S-OGSA: A Reference Semantic Grid
Architecture. Journal of Web Semantics, volume 4, issue 2, pages 102-115,
2006.

27. M. Bubak and S. Unger. K-WfGrid - The Knowledge-based Workflow System
for Grid Applications. In Proceedings of CGW'06, Vol. II. 2007: ACC
CYFRONET AGH.

28. H. Zhuge. China's E-Science Knowledge Grid Environment. IEEE Intelligent
Systems, volume 19, issue 1, pages 13-17, 2004.

59

29. T. Andrews et al. Business Process Execution Language for Web Services

Verison 1.1. 2003 [cited 2008 12].

30. W. Emmerich et al. Grid Service Orchestration using the Business Process
Execution Language (BPEL). Journal of Grid Computing, volume 3, issue 3.
pages 283-304, 2005.

31. A. Akram, D. Meredith, and R. Allan. Evaluation of BPEL to Scientific
Workflows. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on. 2006.

32. I. Foster. A Globus Primer.
http://globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf, August 2005 [cited 2008
12].

33. G.V. Laszewski et al. GridAnt - Client Side Grid Workflow Management with
Ant. 2003 [cited 2008 12].

34. D.W. Erwin and D.F. Snelling. UNICORE: A Grid Computing Environment. In
Proceedings of the 7th International Euro-Par Conference Manchester on
Parallel Processing. 2001, Springer-Verlag.

35. B. Ludscher et al. Scientific workflow management and the Kepler system:
Research Articles. Concurr. Comput. : Pract. Exper., volume 18, issue 10, pages
1039-1065, 2006.

36. S. Bowers and B. Ludäscher. Actor-Oriented Design of Scientific Workflows.
In Conceptual Modeling – ER 2005. Pages 369-384, 2005.

37. J. Zhang. Ontology-Driven Composition and Validation of Scientific Grid
Workflows in Kepler: a Case Study of Hyperspectral Image Processing. In
Proceedings of the Fifth International Conference on Grid and Cooperative
Computing Workshops. 2006, IEEE Computer Society.

38. E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF: W3C
Recommendation. 2008 [cited 2008 12].

39. D. Churches et al. Programming scientific and distributed workflow with Triana
services: Research Articles. Concurr. Comput. : Pract. Exper., volume 18, issue
10, pages 1021-1037, 2006.

 40. S. Majithia et al. Triana: a graphical Web service composition and execution
toolkit. In Web Services, 2004. Proceedings. IEEE International Conference on.
2004.

41. I. Taylor et al. Triana Applications within Grid Computing and Peer to Peer
Environments. Journal of Grid Computing, volume 1, issue 2, pages 199-217,
2003.

42. T. Oinn et al. Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, volume 20, issue 17, pages 3045-
3054, 2004.

60

43. P. Lord et al. Feta: A Light-Weight Architecture for User Oriented Semantic

Service Discovery. In The Semantic Web: Research and Applications. Pages
17-31, 2005.

44. D. Hull et al. Treating shimantic web syndrome with ontologies. In Proc. of
AKT-SWS04, 2004, ISSN: 1613-0073.

45. S. Tuecke et al. Open Grid Services Infrastructure (OGSI) version 1.0. 2003
[cited 2008 12].

46. T. Banks. Web Services Resource Framework (WSRF) - Primer v1.2. 2006
[cited 2008 12].

47. A. Paventhan et al. Leveraging Windows Workflow Foundation for Scientific
Workflows in Wind Tunnel Applications. In Data Engineering Workshops,
2006. Proceedings. 22nd International Conference on. 2006.

48. L.A. Digiampietri, C.B. Medeiros, and J.C. Setubal. A framework based on
Web service orchestration for bioinformatics workflow management. Genet
Mol Res, volume 4, issue 3, pages 535-54, 2005.

49. S. Bowers et al. Enabling ScientificWorkflow Reuse through Structured
Composition of Dataflow and Control-Flow. In Proceedings of the 22nd
International Conference on Data Engineering Workshops. 2006, IEEE
Computer Society.

50. M. Peleg, I. Yeh, and R.B. Altman. Modelling biological processes using
workflow and Petri Net models. Bioinformatics, volume 18, issue 6, pages 825-
837, 2002.

51. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
Condor experience: Research Articles. Concurr. Comput. : Pract. Exper.,
volume 17, issues 2-4, pages 323-356, 2005.

52. E. Deelman et al. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Sci. Program., volume 13, issue 3, pages
219-237, 2005.

53. E.A. Lee and T.M. Parks. Dataflow process networks. In Readings in
hardware/software co-design, pages 59-85, 2002. Kluwer Academic Publishers.

54. G. Kahn and D. Macqueen. Coroutines and Networks of Parallel Processes. In
Information Processing 77. 1977: North Holland Publishing Company.

55. E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. In Tutorial: hard real-time systems.
1989, IEEE Computer Society Press. p. 237-248.

56. J.J. Carroll et al. Jena: implementing the semantic web recommendations. In
Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters. 2004, ACM: New York, NY, USA.

61

57. B. Parsia and E. Sirin. Pellet: An OWL DL Reasoner. In 3rd International

Semantic Web Conference (ISWC2004). 2004.

58. S. Miles et al. Provenance-based validation of e-science experiments. Web
Semant., volume 5, issue 1, pages 28-38, 2007.

59. L. Wang et al. A Dataflow-Oriented Atomicity and Provenance System for
Pipelined Scientific Workflows. In Computational Science – ICCS 2007. 2007.
pages 244-252.

60. R. Lara et al. Semantic Web Services: Description Requirements and Current
Technologies. 2003.

61. T. Tavares et al. An Efficient and Reliable Scientific Workflow System. In
Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE
International Symposium on. 2007.

62. H. Yi and P.A. Watters. On the Complexity of Compensation Handling in WS-
BPEL 2.0 for 3rd Party Logistics. In Digital EcoSystems and Technologies
Conference, 2007. DEST '07. Inaugural IEEE-IES. 2007.

63. S. Modafferi and E. Conforti. Methods for Enabling Recovery Actions in Ws-
BPEL. In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE. 2006. pages 219-236.

64. L. An et al. A Declarative Approach to Enhancing the Reliability of BPEL
Processes. In Web Services, 2007. ICWS 2007. IEEE International Conference
on. 2007.

65. M.J.C.S. Reis, G.M.M.C. Santos, and P.J.S.G. Ferreira. Promoting the
educative use of the internet in Portuguese primary schools: a case study. Aslib
Proceedings, volume 60, issue 2, pages 111-129, 2008.

66. B.C. Neves and H.F. Gomes. Digital inclusion in Brazil: an experience inside
the university. BiD, issue 21, pages 5-5, 2008.

67. K. Derouiche and D.A. Nicole. Semantically Resolving Type Mismatches in
Scientific Workflows. Lecture Notes in Computer Science On the Move to
Meaningful Internet Systems 2007: OTM 2007 Workshops. Issue 4805, pages
125-135, 2007.

68. R. Vaculin and K. Sycara. Semantic Web Services Monitoring: An OWL-S
Based Approach. In Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual. 2008.

69. R. Vaculin, K. Wiesner, and K. Sycara. Exception Handling and Recovery of
Semantic Web Services. In Networking and Services, 2008. ICNS 2008. Fourth
International Conference on. 2008.

70. M.J. Butler and C. Ferreira. A Process Compensation Language. In Proceedings
of the Second International Conference on Integrated Formal Methods. 2000,
Springer-Verlag.

62

71. M. Chessell et al. Extending the concept of transaction compensation. IBM

Syst. J., volume 41, issue 4, pages 743-758, 2002.

