The Tony Davies High Voltage Laboratory

Nano-Silica Filled Polystyrene:

Correlating Breakdown Strength and Particle Agglomeration.

M Praeger*1, A S Vaughan1, and S G Swingler1

¹Tony Davies High Voltage Laboratory, University of Southampton, Southampton, UK

Introduction:

This work is part of an EPSRC funded project: "Transformation of the Top and Tail of Energy Networks"

- Collaboration between 8 universities.
- And several industrial companies.

Project Overview:

- The low carbon economy will challenge existing energy networks in two key areas:
 - Tail:- Investigating the possibility of low voltage DC power delivery to the home.
 - Top :- High voltage transmission to facilitate transcontinental energy exchange.
 - HVDC cable design and materials technologies.
 - Enabling future target ratings of 1 MV and 5 kA.

Current Aims for WP 1.3.1:

- We are currently investigating nano-filled dielectrics as a possible technology for high rating HVDC cable insulation.
- In particular, we aim to deepen understanding of the physical processes governing the action of nano-fillers;
- ...to enable engineering of better nano-dielectrics in the future.

Overview of Talk:

- ✓ Project overview and introduction.
- Some simple theoretical concepts for nano dielectrics.
- Overview of the present experimental work.
- Some initial results.
- Conclusion and future work.

Nano-dielectrics: (why they are interesting/strange).

- Add small quantities of nano-scale fillers to modify the material properties.
 - Relative Permittivity, Thermal Conductivity, etc.
- Simple predictions based on mixing ratios do not work:
 - Property X of A=1, Property X of B=2,
 - 50:50 Mixture of A and B has Property $X \neq 1.5$.
- The properties are often a function of filler size.
 - Sometimes with a peak at low filler fraction.
- Nano-fillers potentially allow:
 - the production of materials with **extraordinary** properties,
 - ...or with properties **tailored** to particular applications.

Nano-dielectrics 2: (Interphase)

• A possible explanation for some of the "strangeness" lies in the action of the interface region between the base polymer matrix and the nano-filler.

Nano-dielectrics 2: (Interphase)

More filler is not always better:

- 2D "Monte Carlo" simulation:
- Progressively more filler is added.
- New particles can only occupy a matrix or interphase position.
- Unmodified filler is exhausted and the effect saturates.
- This produces a maximum in interphase volume at relatively low filler fractions.

Particle Dispersal:

- Agglomeration is serious issue for nano-dielectrics.
- When particles aggregate the effective particle size is much higher than expected.
 - Much of the benefit of the nano-filler can be lost.
 - Large aggregations may constitute significant defects in the base material which can make properties worse.
- Achieving good particle dispersal can be challenging.
 - This causes variability between experiments,
 - and has slowed the uptake of nano-fillers for industrial use.

Overview of experimental work:

"we aim to deepen understanding of the physical processes governing the action of nano-fillers;

...to enable engineering of better nano-dielectrics in the future."

- In the remainder of this section I will briefly present two studies:
 - DC breakdown.
 - SEM following Permanganic etching.
- We aim to correlate these results in order improve our understanding of the action of the nano fillers.
 - In particular we are interested in the effects of particle agglomeration.

Material System:

- For this initial study we have chosen polystyrene as the polymer matrix.
 - The amorphous matrix allows permanganic etching to reveal the nano fillers for SEM.
 - There are no lamella or crystal structures to complicate the analysis.
- The filler used is nano-silica:
 - Spherical porous type (637246 ALDRICH)
 - Typical particle size 5-15 nm

Very simple sample preparation:

- Weight out PS and NS.
- Sonicate NS in DCM for 1 hour.
- Dissolve PS in DCM and add sonicated PS+NS.
- Shake samples for 1 hour.
- Evaporate DCM at room temperature.

• Samples are granulated and pressed 5 times at 175°C to remove residual solvent and bubbles.

The Tony Davies Hi9h Voltage Laboratory

Southampton Southampton

DC breakdown:

- Breakdown tests carried out under silicone oil.
- Between two ball-bearings.
- Ramp rate of 100 V/s.
- Typical film thickness of 80 μm.
- These results clearly indicate a degradation of breakdown strength with the addition of nano filler.

Southampton

DC breakdown:

Weibull Plot of PS NS DC-Breakdown Data.

Breakdown E Field /kV.mm

- Between tv
- Ramp rate
- Typical film
 μm.
- These resu
 a degradat
 strength w
 nano filler.

The Tony Davies Hi9h Volta9e Laboratory

Southampton

Permanganic Etch

• Etch solution:

```
5 \text{ H}_2\text{SO}_4: 2 \text{ H}_3\text{PO}_4: 1 \text{ H}_2\text{O} + 1\% \text{ KMnO}_4
Sulphuric Acid: Phosphoric Acid: Water + Potassium Permanganate
```

- It is vital to agitate continuously during etch.
- Quench solution:

```
2 H_2So_4 : 7 H_2O + 20\% H_2O_2
Sulphuric Acid : Water + Hydrogen Peroxide
```

Caution: The etchant can be explosive if mixed incorrectly.

Southampton Southampton

SEM imaging:

Before Etch:

After Etch (4 hours):

Southampton Southampton

SEM imaging:

Southampton

SEM imaging:

Some regions have better filler dispersal:

1 Hour Etch:

Conclusions:

- The simple sample preparation protocol tested resulted in significant nano-filler agglomeration.
- The agglomerated nano-filler decreased the DC breakdown strength.
- Permanganic etching of polystyrene provides excellent contrast between the nano-filler and the matrix.
- This technique successfully reveals the agglomeration of the filler.

Future Work:

- We now need to repeat the experiment with a protocol that achieves better nano-filler dispersion. (Coupling agent).
- Other material properties such as thermal conductivity or relative permittivity could also be measured and correlated with the degree of agglomeration.
- Image analysis of the SEM data is underway:
 - It is hoped this will yield useful statistics such as mean particle size for correlation with the breakdown data.

