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Abstract

Accurate prediction of nonpremixed turbulent combustion using large eddy simulation

(LES) requires detailed modeling of the mixing between fuel and oxidizer at scales finer

than the LES filter resolution. In conserved scalar combustion models, the small scale mix-

ing process is quantified by two parameters, the subfilter scalar variance and the subfilter

scalar dissipation rate. The most commonly used models for these quantities assume a local

equilibrium exists between production and dissipation of variance. Such an assumption has

limited validity in realistic, technically relevant flow configurations. However, nonequilib-

rium models for variance and dissipation rate typically contain a model coe�cient whose

optimal value is unknown a priori for a given simulation. Furthermore, conventional dy-

namic procedures are not useful for estimating the value of this coe�cient. In this work,

an alternative dynamic procedure based on the transport equation for subfilter scalar vari-

ance is presented, along with a robust conditional averaging approach for evaluation of the
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model coe�cient. This dynamic nonequilibrium modeling approach is used for simulation

of a turbulent lifted ethylene flame, previously studied using DNS by Yoo et al. (Proc.

Comb. Inst., 2011). The predictions of the new model are compared to those of a static

nonequilibrium modeling approach using an assumed model coe�cient, as well as those of

the equilibrium modeling appoach. The equilibrium models are found to systematically

underpredict both subfilter scalar variance and dissipation rate. Use of the dynamic proce-

dure is shown to increase the accuracy of the nonequilibrium modeling approach. However,

numerical errors that arise as a consequence of grid-based implicit filtering appear to de-

grade the accuracy of all three modeling options. Thus, while these results confirm the

usefulness of the new dynamic model, they also show that the quality of subfilter model

predictions depends on several factors extrinsic to the formulation of the subfilter model

itself.

Keywords: Large eddy simulation, subfilter modeling, dynamic modeling, lifted

flame

Word count: 6140, based on Method 2

Form of presentation: Oral

Colloquium: Turbulent Flames

2



1. Introduction

In large eddy simulation (LES) of turbulent combustion, the description of small scale

scalar mixing is crucial for the accurate prediction of turbulence-chemistry interaction [1].

Typically, this mixing is characterized by two variables, namely, scalar variance and scalar

dissipation rate. The former quantifies the level of unmixedness at the scales not resolved

by LES, and the latter describes the rate of mixing of the scalars that will lead to a

decay of the scalar variance. The turbulent length scales are divided into resolved and

unresolved (subfilter) scale in LES, with the scalar variance referring to the subfilter scalar

distribution. By definition, dissipation rate is proportional to scalar gradient squared, and

is active only at the small scales. Consequently, both these quantities are not directly

resolved by LES and need to be modeled. It is well established that small errors in these

models can significantly alter lift-o↵ heights of flames [2], soot formation and evolution [3],

as well as pollutant predictions [4].

While the small-scale mixing of all gas-phase scalars is important, determination of

the dissipation rate and variance of a conserved scalar is particularly relevant, given the

widespread use of mixture-fraction based models for combustion (including flamelet mod-

els [5–7] and conditional moment closure [8–11]). Typically, the models for dissipation

rate and variance are related to one another, and utilize a major simplification called the

equilibrium assumption. Here, the local production of subfilter variance is assumed to

be exactly balanced by scalar dissipation, leading to algebraic models for both quantities.

In particular, this assumption allows the use of the so-called dynamic modeling approach

[12, 13], which enables the computation of model coe�cients in situ. Since one of the

main drawbacks of the Reynolds-averaged Navier-Stokes (RANS) simulations is the lack of

universal values of model coe�cients, this ability in LES to determine coe�cient values on
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the fly is considered to be one of the principal reasons for the accuracy of the technique.

However, the use of the local equilibrium assumption introduces large errors, and has been

found to vastly over predict scalar mixing (and hence scalar dissipation rate).

The focus of this work is to demonstrate a novel nonequilibrium model for variance and

dissipation rate, which relies on the solution of a transport equation for subfilter variance.

In the past, this approach had been eschewed since it requires the specification of a model

coe�cient. Here, this hurdle is overcome by formulating a dynamic modeling approach for

the entire transport equation. The model is tested using LES of a lifted flame, with both

a priori and a posteriori comparisons with a high-resolution direct numerical simulation

(DNS) [14].

2. Subfilter models for scalar mixing

Combustion modeling approaches in LES are commonly based on the mixture fraction,

Z, which is a conserved scalar in gas-phase systems [1]. The transport equation for mixture

fraction can be written as

⇢Z

t

⇢ũ
i

Z

x
i

x
i

⇢ D D
T

Z

x
i

, (1)

where ⇢ is the filtered density, Z is the Favre-filtered mixture fraction, and u
i

is the filtered

velocity. The spatial filtering operation is characterized by a filterwidth � and is related

to the density-weighted Favre filtering operation by Z ⇢Z ⇢. The remaining quantities in

Eq. 1 are D, the di↵usivity of the mixture fraction that is typically equated to the thermal

di↵usivity, and D
T

, a modeled eddy di↵usivity.

However, knowledge of the filtered mixture fraction field is insu�cient to accurately

predict combustion. Models are required for the subfilter scalar unmixedness (or variance)
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as well as the dissipation rate defined as

Z
v

Z2 Z2, (2)

and

�
Z

2D
Z

x
i

Z

x
i

. (3)

To obtain the filtered thermochemical composition, these variables are related through a

one-point, one-time probability density function (PDF) as follows

P Z,�
Z

� Z,Z
v

� �
Z

�
Z

, (4)

where � refers to a beta PDF [15], and � is a delta PDF. This joint PDF is then convoluted

with the flamelet mapping function to obtain the required gas phase composition.

To determine scalar variance, it is possible to construct a variance transport equation

(VTE) similar to that used in RANS formulations [16],

⇢Z
v

t
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Z

, (5)

where ✏
Z

is the subfilter dissipation rate given by

✏
Z

�
Z

2D
Z

x
i

Z

x
i

, (6)

and appears as an unclosed sink term. In terms of modeling, both Z
v

and �
Z

(or ✏
Z

) need

to be modeled, and are related by the transport of scalar variance.

In the equilibrium modeling approach, a local balance is assumed to exist between the

rate at which variance is destroyed at the small scales and the rate at which it is produced,
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as given by the second term on the right hand side of Eq. 5. This results in the model

✏
Z

2D
T

Z

x
i

Z

x
i

(7)

for the subfilter dissipation [13, 17]. The corresponding variance model is

Z
v

C
v

�2 Z

x
i

Z

x
i

. (8)

The coe�cient C
v

in Eq. 8 can be determined dynamically [13, 18]. Dynamic modeling is a

procedure specific to LES that allows model coe�cients to be estimated from the filtered

fields during a simulation, rather than prescribed a priori [19, 20].

Prior studies have shown that the equilibrium approach is invalid even in the simplest

of flows [21, 22], leading to large underprediction of scalar variance. Consequently, the use

of the VTE (Eq. 5) is a viable alternative. This transport equation can also be written in

an alternate form based on the second moment of the scalar,

⇢Z2

t

⇢ũ
i

Z2

x
i

x
i

⇢ D D
T

Z2

x
i

⇢�
Z

, (9)

with the variance then be computed from its definition (Eq. 2). It has been shown that

the STE provides a numerically accurate formulation [21]. Here, both VTE and STE

formulations will considered in order to determine the role of numerical errors in the model

predictions.

Since the equilibrium model (Eq. 7) can no longer be used with a transport equation-

based variance description, the dissipation rate is typically closed using

✏
Z

C
⌧

Z
v

⌧
Z

, (10)
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where C
⌧

is a model coe�cient and ⌧
Z

is a mixing timescale [16]. Essentially, this model

relates the small-scale dissipation rate to the timescales associated with filter-scale turbu-

lent structures. A variety of mixing time scale expressions can be formulated. Here, the

common closure

⌧
Z

�2

D D
T

(11)

is used [4, 23, 24].

The model coe�cient, C
⌧

, is dependent on the filterwidth as well as the local distribution

of length scales. Since no universal value is applicable, a wide range of values have been

used in the past [4, 24]. A higher accuracy could be gained if the model coe�cient could

be evaluated dynamically. With this in mind, the VTE-based dynamic modeling approach

is formulated next.

3. VTE-based dynamic model

3.1. Basic Formulation

The new dynamic scalar dissipation rate and variance model utilizes a scale similarity

assumption to formulate a scaling law. Consider � to be the filterwidth, and the test filter

� to be of size 2�. The spatial test filtering operation is indicated by and can be

used to form a test filter scale Favre filtering operator that is related to the LES filter

scale Favre filter by Z ⇢Z ⇢ ⇢Z ⇢. Using this notation, the transport equation for the

sub-test filter scalar variance, given by Z
t

ZZ ZZ, can be written as

⇢̂Z
t

t

⇢̂u
i

Z
t

x
i

x
i

⇢̂ D Dt

T

Z
t

x
i

2⇢̂Dt

T

Z

x
i

Z

x
i

C
⌧

⇢̂
Z

t

⌧ t

Z

. (12)

A model quantity that is evaluated at the test filter level is indicated by a superscript t

(e.g. Dt

T

) to distinguish it from a subfilter model quantity which undergoes test filtering
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(e.g. D
T

). Note that C
⌧

is assumed to have the same value at both filter scales. Test

filtering Eq. 5 in its entirety and subtracting it from Eq. 12 gives the relationship

C
⌧

X Y F P T, (13)

if variations in C
⌧

values over length scales smaller than � are neglected. The quantity X

on the left hand side of Eq. 13 is given by

X ⇢̂
Z

t

⌧ t

Z

⇢
Z

v

⌧
Z

. (14)

The first two terms on the right hand side of Eq. 13 represent the di↵erences in convective

and di↵usive fluxes of variance,

F
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, (15)

and in production of variance,

P 2⇢̂Dt

T

Z

x
i

Z

x
i

2⇢D
T

Z

x
i

Z

x
i

, (16)

at the test and LES filter scale. The third term represents accumulation or loss of variance

between LES filter and test filter scales,

T
⇢̂L

v

t
, (17)

where L
v

is the variance Leonard term given by L
v

ZZ ZZ or, equivalently, by

L
v

Z
t

Z
v

.

Dynamic model coe�cients are typically evaluated using one of a variety of averaging
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procedures to reduce numerically destabilizing fluctuations in the coe�cient values. Ad-

ditionally, the use of an averaging procedure reflects the inherently statistical nature of

LES subfilter modeling and can incorporate an ordinary least squares regression technique

[13, 25]. A priori analysis of the model [22] in the framework of the optimal estimator

concept [18, 26, 27] suggests a novel conditional averaging procedure for the determination

of C
⌧

. Three-dimensional, spatially and temporally varying fields of C
⌧

values are found

from

C
⌧

�
hXY � ⇢Z

v

⌧
Z

, XY 0i
hX2 � ⇢Z

v

⌧
Z

, XY 0i . (18)

Conceptually, this approach seeks to determine C
⌧

by averaging over instantaneous flow

structures. Therefore, the average can be evaluated by sampling over the entire computa-

tional domain, with the spatial variation of the conditioning variable substituting for any

explicit geometrical dependence. Further details of the coe�cient determination procedure

will be provided in Sec. 4.3, in the context of the flow configuration, combustion modeling

approach, and numerical implementation used to carry out a posteriori evaluation of the

model.

4. Simulation Description

The LES test case chosen for evaluation of the new model is a lifted ethylene jet flame,

previously studied using DNS [14]. The availability of a DNS data set for comparison facili-

tates direct assessment of the scalar dissipation rate and scalar variance model predictions,

in contrast to an indirect assessment based on the predicted flow thermochemistry.

4.1. Flow Configuration and DNS Parameters

The flow configuration consists of a three-dimensional slot burner [14]. Its primary

characteristics are summarized here, with additional details available in Ref. 14.
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The central jet, of width H 2mm has a chemical composition of 18% ethylene (C2H4)

and 82% nitrogen by volume with a temperature of 550 K. The coflow is composed of air,

heated to 1550 K and at atmospheric pressure. The combustion chemistry is described

by a 22 species reduced ethylene mechanism [28]. The mean velocities of the central jet

and coflow are 204 m/s and 20 m/s, respectively. Velocity fluctuations from an auxiliary

simulation of homogeneous, isotropic turbulence are added to the mean inlet velocity,

imparting a 10% turbulence intensity to the central jet. The Reynolds number of the flow,

based on the central jet width and mean velocity, is 10, 000.

The computation domain spans L
x

15H in the streamwise direction, L
y

20H

in the stream normal direction, and L
z

3H in the periodic spanwise direction. The

computational mesh of the DNS is uniform over the region of the domain containing the

flame with a grid spacing of 15 µm. The simulation was performed using a fourth order

Runge-Kutta method for time integration and an eighth order central di↵erence scheme

for spatial discretization.

4.2. Combustion Model

In the LES computations described in this work, combustion is modeled using an un-

steady flamelet/progress variable approach [29], accounting for di↵erential di↵usion e↵ects

[30, 31]. The flamelet solutions are calculated using the same 22 species ethylene mech-

anism employed in the DNS [28]. The progress variable, C, is defined as the sum of the

mass fractions of H2O, H2, CO, and CO2. The value of a filtered thermochemical variable

 is accessed from the unsteady flamelet library F according to

 F Z,Z
v

, C,� . (19)
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4.3. LES Numerical Parameters and Implementation

The LES computations were performed on the DNS computational domain, using fil-

tered inflow boundary conditions. The LES mesh consists of 171 172 32 points in

the three coordinate directions. A structured LES solver with second-order discretization

schemes for the nonlinear and viscous terms were used [32]. The nonlinear terms in the

scalar equations were treated using the BQUICK scheme [33]. A semi-implicit temporal

integration was used [32]. Standard dynamic models were used to determine eddy viscosity

and eddy di↵usivity values [12].

The combustion model’s predictions of density are sensitive to the reference stoichio-

metric scalar dissipation rate value. This quantity depends on the local value of �
Z

, which

in turn depends on the subfilter dissipation rate model coe�cient C
⌧

. Therefore, the dy-

namic estimate for C
⌧

must be made in way that avoids potentially numerically destabilizing

fluctuations in density. The conditional coe�cient evaluation procedure (Eq. 18) naturally

satisfies this requirement in statistically stationary flow such as the one considered here,

because the conditional average is also, implicitly, a temporal average. At the outset of a

simulation, when relatively few samples have been accumulated, sudden variations in C
⌧

can still occur. Additionally, the time derivative term T of the dynamic model (Eq. 17)

must typically be computed as a backwards di↵erence. Of course, this is not possible at

the first timestep.

To deal with both these issues, the dynamic estimate of C
⌧

was computed as follows.

On the first timestep of a simulation, ⇢L
v

is calculated from the initial conditions and C
⌧

is

set to some pre-selected fixed value, here C
⌧

2. On the second and subsequent timesteps,

T is computed from the previous and current timestep values of ⇢L
v

. The other terms of

the model (Eqs. 14-16) can be found from the most recent velocity and scalar fields. Next,

the quantities XY x, t and X2
x, t are grouped into discrete bins (indexed by p) based on
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the value of the conditioning variable � x, t and satisfaction of the condition XY x, t 0.

A running average XY
p

and X2
p

is kept for each bin, and C
⌧,p

is found at the bin midpoint

value �
p

from the updated XY
p

and X2
p

averages. To return to the physical computational

mesh, C
⌧

x, t is determined by interpolation between C
⌧,p

values. A decaying exponential

weighting function is used to transition between the pre-selected coe�cient value and the

dynamically determined one. A transition time equal to approximately one third of a jet

timescale, ⌧
j

L
x

U
j

, was found to ensure su�cient smoothness.

4.4. A Posteriori Comparison Issues

Performing e↵ective and informative a posteriori model evaluations under current LES

simulation methods is not a simple endeavor. Undoubtedly, the most straightforward way

to find out how a model performs in a practical LES simulation is simply to carry out

the simulation using the model. However, model assessments made in this way may lack

generalizability, since they also include the e↵ects of all the other approximations, physical

and numerical, specific to that simulation. The use of implicit, grid-based filtering in LES

causes a close coupling of numerical and modeling errors since both predominantly a↵ect

length scales of the flow close to the grid resolution and nominal LES filterwidth. Three

factors a↵ecting LES of reacting flow compound this problem. First, the dependence of the

large scale flow dynamics on the small scales in LES of combustion is stronger than that

encountered in LES of nonreactive flow [1]. Second, the response of the combustion model

to errors in its input parameters can be strongly nonlinear. Third, second-order spatial

discretizations are widely used in LES of combustion despite their high truncation error

due to their greater numerical robustness [32].

In order to compare the LES model predictions to the DNS results, the DNS data fields

must be filtered. Since the LES mesh is non-uniform and hence has a variable filterwidth,
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the use of a uniform filterwidth to filter the DNS data might introduce errors. To test the

impact of these di↵erences, the DNS data was filtered using two filter sizes set of 7 and

9 DNS grid spacings. It was found that the di↵erence between these two filtered fields

were much smaller than the di↵erence between the LES results and the filtered DNS field.

Hence, it was concluded that the filter definition used for processing the DNS data was not

a major source of errors. The filtered DNS results plotted in Sec. 5 were computed with

� 135 µm.

5. Results

In this section, three sets of scalar variance and dissipation rate modeling results are

compared to DNS values. The three cases are a dynamic nonequilibrium modeling approach

combining the STE with dynamic estimation of C
⌧

, a static nonequilibrium modeling ap-

proach using the STE and an assumed coe�cient value C
⌧

2, and the equilibrium mod-

eling approach. The coe�cient C
v

in the equilibrium variance model (Eq. 8) is determined

from the Leonard term expansion dynamic model [18]. Fig. 1 shows instantaneous con-

tours of temperature from DNS and from LES using the dynamic nonequilibrium modeling

approach.

Time averaged profiles of �
Z

, Z
v

, and related quantities are shown at axial locations

of x H 0.5, 3, and 6, which is approximately equal to the average flame lift-o↵ height of

x H 5.8 found in the DNS. This range of axial locations was selected for three reasons.

First, accurate modeling of the scalar dissipation rate in this region of the flow is highly

relevant for capturing the flame base dynamics in LES. Second, the flow dynamics at

these locations are minimally a↵ected by heat release. This reduces feedback from errors

intrinsic to the unsteady flamelet combustion model to the scalar variance and dissipation

rate predictions that are the main focus of the analysis. Third, as the distance from the
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Figure 1: Representative instantaneous snapshots of temperature in (left) DNS;
(right) LES, using the dynamic nonequilibrium model.

inlet increases, all the sources of error mentioned in Sec. 4.4 potentially accumulate and

impact scalar modeling outcomes. Thus, it becomes increasingly di�cult to isolate the

e↵ect of the modeling closure.

5.1. Scalar Dissipation Rate Modeling

Fig. 2 shows time averaged cross stream profiles of the filtered scalar dissipation rate at

three axial locations up to x H 6. At each of these locations, the dynamic nonequilibrium

modeling approach predicts the highest values of �
Z

, followed by the static nonequilibrium

approach. This is directly attributable to the improved estimate of C
⌧

achieved with the

dynamic model. Values of C
⌧

obtained from the dynamic model ranged between just over

13 at low values of the conditioning variable � ⇢Z
v

⌧
Z

to just under 3 at the highest,

and most rarely encountered, values of �. An instantaneous snapshot of C
⌧

values is shown

in Fig. 3.

14



Figure 2: Time-averaged cross stream profiles of filtered scalar dissipation rate h�
Z

i
at axial locations (a) x H 0.5 (b) x H 3 (c) x H 6 from ( ) filtered DNS;
(black squares) LES, dynamic C

⌧

; (white squares) LES, C
⌧

2; (black triangles)
LES, equilibrium model.

The equilibrium modeling approach yields substantially lower values of �
Z

than either of

the nonequilibrium modeling cases. Computation of the equilibrium model with a higher

order finite di↵erence scheme confirmed that part, but not all, of its underprediction is

numerical in origin. The trends shown in Fig. 2 were found to persist in profiles obtained

farther downstream (not shown). It is notable that the �
Z

profiles in Fig. 2 resulting from

the nonequilibrium modeling approaches (both static and dynamic) are o↵set from the

DNS profiles, peaking closer to the core of the jet. However, if this o↵set is corrected for,

the dynamic nonequilibrium model generally gives the best match to the DNS.

The o↵set of the nonequilibrium models’ filtered scalar dissipation rate profiles from

the DNS profiles is an interesting feature of these results. Since it is observable for both
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Figure 3: Representative instantaneous snapshot of C
⌧

values predicted by the dy-
namic model.

dynamic and static approaches, it is not induced by the spatial variation of the C
⌧

values

obtained from the dynamic procedure. Instead, it appears to be related to some other

feature of the model. More detailed discussion of this phenomenon is deferred to Sec. 5.2.

As discussed previously, the filtered scalar dissipation rate can be separated into a

resolved component �
Z,res

, for which no modeling is required, and a subfilter component

✏
Z

, which must be modeled. Only ✏
Z

is directly a↵ected by the dynamic estimate of C
⌧

. The

resolved and subfilter components of the dissipation rate obtained from the DNS data and

from the dynamic nonequilibrium model are illustrated in Fig. 4. The axial locations shown

correspond to those in Fig. 2. Nearest the inlet [Fig. 4(a)], the DNS filtered dissipation

rate is dominated by its resolved component. Moving downstream, �
Z,res

continues to

make up a large portion of the filtered dissipation rate, �
Z

. The LES results show far
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Figure 4: Time-averaged cross stream profiles of subfilter scalar dissipation rate h✏
Z

i
and resolved scalar dissipation h�

Z,res

i at axial locations (a) x H 0.5 (b) x H 3
(c) x H 6. Results are shown for (white triangles) exact subfilter dissipation
from DNS; (black triangles) resolved dissipation from DNS; (white squares) modeled
subfilter dissipation from LES, using dynamic C

⌧

; (black squares) resolved subfilter
dissipation from LES using the dynamic nonequilibrium model.
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lower values of �
Z,res

, causing much of the underprediction of peak �
Z

values. Like the

equilibrium model for �
Z

, the resolved dissipation depends on the square of the magnitude

of the filtered scalar gradient and is prone to under prediction in LES computations using

grid-based filtering [21, 34]. It was verified that increasing the order of the finite di↵erence

scheme used to compute �
Z,res

increased that quantity’s magnitude.

5.2. Scalar Variance Modeling

The values of subfilter dissipation predicted using Eq. 10 in the nonequilibrium model-

ing approach depend directly on the subfilter scalar variance values. The close relationship

between the two quantities is evident in a comparison of Fig. 4 to Fig. 5, which shows the

subfilter variance predictions of the three modeling cases as well as the DNS results. All

three models underpredict the variance near the inlet. Farther downstream, the nonequilib-

rium models yield variance values that are too large, while the equilibrium model continues

to underpredict the variance.

The inward o↵set of the ✏
Z

profiles of the nonequilibrium model is clearly due to a

similar o↵set of the Z
v

profiles. This error in the variance cannot be directly attributed to

dissipation rate modeling errors. Instead, it must be due to terms in the variance model

related to the transport and production of variance. In Sec. 2, it was mentioned that the

STE lacks an explicit variance production term. However, an e↵ective variance production

term is contained within the model formulation. The evolution of the variance under the

VTE model can be written as

d⇢Z
v,VTE

dt

d⇢Z2

dt

d⇢Z2

dt
. (20)
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Figure 5: Time-averaged cross stream profiles of subfilter scalar variance Z
v

at axial
locations (a) x H 0.5 (b) x H 3 (c) x H 6 from ( ) filtered DNS; (black
squares) LES, dynamic C

⌧

; (white squares) LES, C
⌧

2; (black triangles) LES,
equilibrium model.

In contrast, the evolution of the variance under the STE can be thought of as

d⇢Z
v,STE

dt

d⇢Z2

dt
2Z

d⇢Z

dt
. (21)

In the VTE, variance production appears in the equation for the evolution of Z, the second

term on the right hand side of Eq. 20. Comparing this with the second term on the right

hand side of Eq. 21 allows the implicit production in the STE to be defined as

PSTE
x

i

⇢D
T

Z2

x
i

2Z
x

i

⇢D
T

Z

x
i

. (22)
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Recall that the explicit production term in the VTE is

P 2⇢D
T

Z

x
i

Z

x
i

. (23)

At the level of continuous equations, PSTE and P are equivalent. However, they yield

di↵erent values when evaluated discretely, as shown in Fig. 6. The disparity between these

two variations of the production term is indicative of the sensitivity of LES solutions to

the precise form of the equations used. The results shown in Fig. 6 also help to explain

the excess variance generated towards the center of jet. Note that these results should

not be interpreted as implying that the VTE is more accurate than the STE. Indeed, the

greater smoothness of the averaged VTE production term suggest a tendency to lose higher

wavenumber fluctuations due to the gradient-squared form of P.

Figure 6: Time-averaged cross stream profiles of production terms at x H 6 from
( ) PSTE; ( ) P .

6. Summary and conclusions

In this work, a dynamic nonequilibrium approach for modeling of subfilter scalar vari-

ance and dissipation rate in LES has been formulated and used for simulation of a turbulent

lifted ethylene flame. The dynamic procedure is based on the variance transport equation

and allows optimal values of a flow- and filterwidth-depedent coe�cient C
⌧

appearing in

20



the subfilter dissipation rate closure to be estimated on the fly. Conventional equilibrium

and static nonequilibrium modeling approaches are also tested. In the lifted flame simu-

lation, equilibrium modeling approaches are found to substantially underpredict subfilter

scalar variance and filtered scalar dissipation rate. In contrast, the dynamic nonequilib-

rium modeling approach predicts the magnitude of the filtered scalar dissipation rate more

accurately while overpredicting the subfilter scalar variance. Comparison of the results of

the dynamic and static nonequilibrium modeling approaches shows that this error is not

solely attributable to the subfilter dissipation rate closure. Instead, it also reflects errors

in the computation of other terms of the model, which are at least partially numerical in

nature.

In closing, these simulations confirm the viability of the dynamic nonequilibrium mod-

eling approach for realistic LES computations. However, they also show that grid-based

implicit filtering, in addition to negatively a↵ecting the accuracy of simulations, limits

the strength of the conclusions that can be drawn from a posteriori analysis due to the

close coupling of modeling and numerical errors. Thus, methods to reduce numerical error

while maintaining numerical stability are needed in reacting flow LES along with improved

subfilter closures, such as the dynamic nonequilibrium modeling approach presented here.
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List of Figure Captions

Figure 1: Representative instantaneous snapshots of temperature in (left) DNS; (right)

LES, using the dynamic nonequilibrium model.

Figure 2: Time-averaged cross stream profiles of filtered scalar dissipation rate h�
Z

i at

axial locations (a) x H 0.5 (b) x H 3 (c) x H 6 from ( ) filtered DNS;

(black squares) LES, dynamic C
⌧

; (white squares) LES, C
⌧

2; (black triangles)

LES, equilibrium model.

Figure 3: Representative instantaneous snapshot of C
⌧

values predicted by the dynamic

model.

Figure 4: Time-averaged cross stream profiles of subfilter scalar dissipation rate h✏
Z

i and

resolved scalar dissipation h�
Z,res

i at axial locations (a) x H 0.5 (b) x H 3

(c) x H 6. Results are shown for (white triangles) exact subfilter dissipation

from DNS; (black triangles) resolved dissipation from DNS; (white squares) modeled

subfilter dissipation from LES, using dynamic C
⌧

; (black squares) resolved subfilter

dissipation from LES using the dynamic nonequilibrium model.

Figure 5: Time-averaged cross stream profiles of subfilter scalar variance Z
v

at axial lo-

cations (a) x H 0.5 (b) x H 3 (c) x H 6 from ( ) filtered DNS; (black

squares) LES, dynamic C
⌧

; (white squares) LES, C
⌧

2; (black triangles) LES,

equilibrium model.

Figure 6: Time-averaged cross stream profiles of production terms at x H 6 from ( )

PSTE; ( ) P.
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