Boson sampling on a photonic chip
Boson sampling on a photonic chip
While universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We construct a quantum boson sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmark our QBSM with three and four photons and analyze sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.
798-801
Spring, Justin B.
daf7635a-8c7f-441a-a1bf-52d04b584806
Metcalf, Benjamin J.
9e0aa2db-b894-43b8-add4-4d31ec09f3af
Humphreys, Peter C.
9c48abe6-ed60-4d1b-b33a-6a774e9921de
Kolthammer, W.Steven
7f364924-236b-4bc2-88b4-3c2a091cff8f
Jin, Xian-Min
ae468859-d37c-41d5-ab8c-5389aa4d533e
Barbieri, Marco
ed77e1c5-6b04-4b0d-a145-6bfe989556b2
Datta, Aanimesh
45df0336-2e55-4c29-988c-0f5ea439f1a7
Thomas-Peter, Nicholas
768fa7c7-6937-49d6-a150-ab1859bb77cb
Langford, Nathan K.
083085ed-1d96-4e99-a1d7-93ae584091c7
Kundys, Dmytro
c6bf92f9-9b7f-4541-a140-56dc800bfc7a
Gates, James C.
b71e31a1-8caa-477e-8556-b64f6cae0dc2
Smith, Brian J.
954d05af-a64d-404b-b03e-770e9cff1ac7
Smith, Peter G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Walmsley, Ian A.
a9b02ef9-f5d9-473f-ac01-bbbe06d28170
20 December 2012
Spring, Justin B.
daf7635a-8c7f-441a-a1bf-52d04b584806
Metcalf, Benjamin J.
9e0aa2db-b894-43b8-add4-4d31ec09f3af
Humphreys, Peter C.
9c48abe6-ed60-4d1b-b33a-6a774e9921de
Kolthammer, W.Steven
7f364924-236b-4bc2-88b4-3c2a091cff8f
Jin, Xian-Min
ae468859-d37c-41d5-ab8c-5389aa4d533e
Barbieri, Marco
ed77e1c5-6b04-4b0d-a145-6bfe989556b2
Datta, Aanimesh
45df0336-2e55-4c29-988c-0f5ea439f1a7
Thomas-Peter, Nicholas
768fa7c7-6937-49d6-a150-ab1859bb77cb
Langford, Nathan K.
083085ed-1d96-4e99-a1d7-93ae584091c7
Kundys, Dmytro
c6bf92f9-9b7f-4541-a140-56dc800bfc7a
Gates, James C.
b71e31a1-8caa-477e-8556-b64f6cae0dc2
Smith, Brian J.
954d05af-a64d-404b-b03e-770e9cff1ac7
Smith, Peter G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Walmsley, Ian A.
a9b02ef9-f5d9-473f-ac01-bbbe06d28170
Spring, Justin B., Metcalf, Benjamin J., Humphreys, Peter C., Kolthammer, W.Steven, Jin, Xian-Min, Barbieri, Marco, Datta, Aanimesh, Thomas-Peter, Nicholas, Langford, Nathan K., Kundys, Dmytro, Gates, James C., Smith, Brian J., Smith, Peter G.R. and Walmsley, Ian A.
(2012)
Boson sampling on a photonic chip.
Science, 339 (6121), .
(doi:10.1126/science.1231692).
Abstract
While universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We construct a quantum boson sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmark our QBSM with three and four photons and analyze sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.
Text
5716
- Author's Original
More information
Published date: 20 December 2012
Organisations:
Optoelectronics Research Centre, Electronics & Computer Science
Identifiers
Local EPrints ID: 347643
URI: http://eprints.soton.ac.uk/id/eprint/347643
ISSN: 0036-8075
PURE UUID: 878fbf63-9eba-42bf-ba18-654c37d81a04
Catalogue record
Date deposited: 30 Jan 2013 11:08
Last modified: 15 Mar 2024 03:07
Export record
Altmetrics
Contributors
Author:
Justin B. Spring
Author:
Benjamin J. Metcalf
Author:
Peter C. Humphreys
Author:
W.Steven Kolthammer
Author:
Xian-Min Jin
Author:
Marco Barbieri
Author:
Aanimesh Datta
Author:
Nicholas Thomas-Peter
Author:
Nathan K. Langford
Author:
Dmytro Kundys
Author:
James C. Gates
Author:
Brian J. Smith
Author:
Peter G.R. Smith
Author:
Ian A. Walmsley
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics