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Bound geodesic orbits around a Kerr black hole can be parametrized by three constants of the motion:

the (specific) orbital energy, angular momentum, and Carter constant. Generically, each orbit also has

associated with it three frequencies, related to the radial, longitudinal, and (mean) azimuthal motions.

Here, we note the curious fact that these two ways of characterizing bound geodesics are not in a one-to-

one correspondence. While the former uniquely specifies an orbit up to initial conditions, the latter does

not: there is a (strong-field) region of the parameter space in which pairs of physically distinct orbits can

have the same three frequencies. In each such isofrequency pair, the two orbits exhibit the same rate of

periastron precession and the same rate of Lense-Thirring precession of the orbital plane, and (in a certain

sense) they remain ‘‘synchronized’’ in phase.

DOI: 10.1103/PhysRevD.87.084012 PACS numbers: 04.70.Bw, 04.70.�s

I. INTRODUCTION

The motion of test bodies in the Kerr metric of a rotating
black hole has been studied for almost half a century (see,
e.g., Refs. [1–5]). Much of the more recent work is moti-
vated by the need to understand radiative inspirals into a
Kerr black hole as sources of gravitational waves for
future detector experiments. Examples of recent work in-
clude an action-angle formalism [6], a frequency-domain
method for computing functionals of the orbit (such as the
gravitational perturbation from an orbiting test particle)
[7], a system for classifying Kerr orbits [8,9], and an
analytic method for solving the geodesic equations of
motion [10].

Timelike geodesics of the Kerr geometry are completely
integrable. They admit three nontrivial constants of motion
(‘‘first integrals’’), each associated with a Killing field of
the Kerr background: the time-translation and rotational
Killing vectors give rise to conserved (specific) orbital
energy E and azimuthal angular momentum Lz, and the
second-rank Killing tensor discovered by Carter [1] gives
rise to what is known as the Carter constant, Q. Up to
initial conditions, these three constants of motion uniquely
label all timelike geodesics of the Kerr geometry.

This paper is concerned with the family of bound geo-
desic orbits. Each bound orbit is confined to the interior of
a compact spatial torus given by rp � r � ra and �min �
� � �� �min , where hereafter t, r, �, ’ are Boyer-
Lindquist (BL) coordinates, r ¼ rp, ra are two radial turn-

ing points (‘‘periastron’’ and ‘‘apastron,’’ respectively),
and � ¼ �min , �� �min are two longitudinal turning
points. Generically, the motion is ergodic, in the sense
that a generic orbit will pass arbitrarily close to any point
on the torus within a finite time t (‘‘resonant’’ orbits,
mentioned briefly below, are an exception). The triplet

frp; ra; �min g provides an alternative parametrization of

bound geodesics, which is in a one-to-one correspondence
with that of fE;Lz;Qg [11].
Generically, bound orbits are triperiodic, with three

frequencies �r, ��, and �’ associated with the motions

in the radial, longitudinal, and azimuthal directions,
respectively. Of these, �r and �� are ‘‘libration’’-type
frequencies, defined from the (average) radial and longi-
tudinal periods, while �’ is a ‘‘rotation’’-type frequency,

describing the average rate at which the BL azimuthal
phase ’ accumulates in time. We define the above fre-
quencies with respect to BL time t; this is useful for
many purposes, because t is also the proper time of an
asymptotically far static observer (e.g., a gravitational-
wave detector). It is important to note that, in general,
the orbital radius r and polar angle � of a given orbit are
not (separately) periodic functions of t: the t interval
between successive periastron passages is not constant,
and neither is the t interval between successive � ¼ �min

passages constant. There is a choice of a time variable
(the so-called ‘‘Mino time’’—see Sec. III B below) in
terms of which the radial and longitudinal motions
completely separate and become precisely periodic.
However, in terms of BL time t, the orbital periodicity
can generally only be defined through an infinite time
average (or, equivalently, through an average over the
orbital torus [9]). We shall define the BL-time frequencies
more precisely below, following Schmidt [6] and Drasco
and Hughes [7].
The above general description simplifies in several

special cases. If the ratio �r=�� is a rational number
(‘‘resonant orbits’’), then the trajectory traced by the orbit
in the r-� plane is closed (with a finite t period), and
the ergodicity property is lost. If the orbit is equatorial
(� ¼ const ¼ �=2), then �� loses its meaning, and the
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orbit becomes biperiodic with frequencies �r and �’;

in this case, the radial motion is strictly periodic, with a
radial period 2�=�r. Similarly, if the orbit is circular
(rp ¼ ra), then �r loses its meaning, the orbit becomes

biperiodic with frequencies �� and �’, and the longitu-

dinal motion is strictly periodic with period 2�=��.
(Orbits that are both equatorial and circular are singly
periodic with frequency �’). Finally, in the special case

of a Schwarzschild black hole, one can always set up the
BL system so that the orbit is equatorial and biperiodic
with frequencies �r and �’.

The purpose of this article is to challenge the commonly
held notion (see, e.g., Ref. [12]) that the trio of frequencies
f�’;�r;��g provides a good parametrization of generic

bound geodesics in Kerr, i.e., one which is in one-to-one
correspondence with fE;Lz;Qg or frp; ra; �min g. We show

that this is not the case: there are infinitely many pairs of
‘‘isofrequency’’ orbits, which are physically distinct (i.e.,
have different fE;Lz;Qg values), and yet they share the
same values of f�’;�r;��g. This point was already made

briefly by two of us in Appendix A of Ref. [13] in reference
to a Schwarzschild black hole (where orbits are biperiodic
and two isofrequency orbits share the same values of �’

and �r). Here, we first revisit the Schwarzschild problem
to provide a further illumination of this phenomenon
and then extend the analysis to the Kerr case, showing
that isofrequency pairing occurs even among triperiodic
orbits.

We shall, on occasion, refer to a pair of isofrequency
orbits as ‘‘synchronous’’ because the phases of such orbits
remain synchronized in an average sense. For example,
two equatorial isofrequency orbits that pass through their
periastra simultaneously at ’ ¼ 0 will reach their next
periastra at the same time and with the same azimuthal
phase; they will have experienced an identical amount of
periastron advance. Although such orbits go ‘‘in and out of
phase’’ between periastron passages, their phase remains
synchronized ‘‘on average.’’ Wewill present some graphics
to illustrate this behavior.

Throughout this article, we use geometric units such that
the gravitational constant and the speed of light are both
equal to unity. We denote the black hole’s mass and spin by
M and aM, respectively. We use an overtilde to denote

adimensionalization using M; for example, ~�’ :¼ M�’

and ~a :¼ a=M. We adopt a convention whereby a > 0 and
a < 0 correspond to prograde and retrograde orbits,
respectively, with Lz always positive. We use the term
‘‘orbit’’ synonymously with ‘‘timelike geodesic orbit’’. In
Sec. II, we consider (biperiodic) synchronous orbits in
Schwarzschild geometry (a ¼ 0). We delineate the region
in the parameter space where such orbits occur and also
provide an intuitive explanation as to why isofrequency
pairing must occur. In Sec. III, we generalize our discus-
sion to the Kerr case, where we consider first equatorial
orbits and then generic, triperiodic orbits.

II. ISOFREQUENCY ORBITS IN
SCHWARZSCHILD GEOMETRY

A. Orbital frequencies and separatrix

The radial motion of geodesic test particles in the equa-
torial plane of a Schwarzschild black hole satisfies

_r 2¼E2�V; Vðr;LzÞ :¼
�
1�2M

r

��
1þL2

z

r2

�
; (1)

where a dot denotes differentiation with respect to proper
time, and Vðr;LzÞ is an effective potential for the radial

motion. Bound orbits exist forLz>2
ffiffiffi
3

p
M with 2

ffiffi
2

p
3 <E<1.

For each fE;Lzg in this range, _r2ðrÞ has three real roots,
and motion is allowed between the second-largest and
largest of these, which we label rp and ra, respectively.

A convenient alternative parametrization of bound orbits is
provided by the pair of values fp; eg defined through

Mp :¼ 2rpra

ra þ rp
; e :¼ ra � rp

ra þ rp
; (2)

which are relativistic generalizations of semilatus rectum
and eccentricity, respectively [14]. This parametrization is
in a one-to-one correspondence with that of fE;Lzg.
Explicitly,

E2 ¼ ðp� 2� 2eÞðp� 2þ 2eÞ
pðp� 3� e2Þ ;

L2
z ¼ p2M2

p� 3� e2
;

(3)

which can be inverted (for real e, p) to give unique ex-
pressions for pðE;LzÞ and eðE;LzÞ. In the ðp; eÞ space,
bound orbits span the range 0 � e < 1 with p � psðeÞ :¼
6þ 2e. The boundary psðeÞ (‘‘separatrix’’) separates
between stable and unstable orbits in the ðp; eÞ space
[15]. The ðp; eÞ ¼ ð6; 0Þ terminus of the separatrix curve
is known as the innermost stable circular orbit (ISCO). The
existence of a separatrix is one of the salient features of
motion in black hole spacetimes, and it marks a major
qualitative departure from Newtonian dynamics. As we
shall see, the occurrence of an isofrequency pairing of
orbits is intimately related to the existence of a separatrix.
The function rðtÞ is periodic with (t) period Tr.

Following Darwin [14], it is convenient to introduce the
‘‘relativistic anomaly’’ parameter �, which is related to t
via

dt

d�
¼ Mp2½ðp� 2Þ2 � 4e2�1=2ðp� 6� 2e cos�Þ�1=2

ðp� 2� 2e cos�Þð1þ e cos�Þ2 ;

(4)

and in terms of which the radial motion is given simply by
rð�Þ ¼ Mp=ð1þ e cos�Þ (taking � ¼ 0 at a periastron
passage). The radial period can then be computed via
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Tr ¼
Z 2�

0

dt

d�
d�; (5)

with associated radial frequency

�r :¼ 2�

Tr

: (6)

The azimuthal frequency of the orbit is defined as the
average of d’=dt (with respect to t) over a complete radial
period:

�’ :¼ 1

Tr

Z Tr

0

d’

dt
dt ¼ �’

Tr

; (7)

where �’ is the azimuthal phase accumulated over time
interval Tr. The latter can be computed via

�’ ¼
Z 2�

0

d’

d�
d� ¼

Z 2�

0

ffiffiffiffi
p

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 6� 2e cos�

p d�

¼ 4

ffiffiffiffi
p

�

r
K

�
� 4e

�

�
; (8)

where � :¼ p� psðeÞ and KðxÞ:¼R�=2
0 d�ð1�xsin2�Þ�1=2

is the complete elliptic integral of the first kind.
At the separatrix limit, � ! 0þ, both �’ and Tr diverge

at a similar rate [see Eqs. (9) and (10) below], so that

�r ! 0 while �’ attains a finite value [ ¼ ðM=r3pÞ1=2,
corresponding to the frequency of the unstable circular
orbit of radius rp ¼ p=ð1þ eÞ]. This gives rise to the

well-known ‘‘zoom-whirl’’ behavior [16]: orbits with
� � 1 can ‘‘whirl’’ around the black hole many times
near the periastron before ‘‘zooming’’ back out toward
the apastron.

B. Isofrequency orbits

As pointed out in Ref. [13], the Jacobian matrix of the
transformation ðp; eÞ ! ð�r;�’Þ turns out to be singular

along a certain curve in the parameter space, well outside
the separatrix. This indicates that the transformation is not
bijective. To see this most clearly, it is instructive to move
to a new orbital parametrization given by the pair ð�’; eÞ.
This reparametrization is admissible because (i) as argued
above, the original parametrization ðp; eÞ is a good one
and, (ii) as can be easily checked, �’ is a monotonically

decreasing function of p for any fixed e. Our argument now
follows from examining the structure of the �r ¼ const
contour lines in the ð�’; eÞ plane, as shown in Fig. 1. The

key feature here is that some �r ¼ const contours have
vertical tangents (the locus of which is shown by the
dashed black line in the figure). Each of these contour lines
is intersected twice by vertical lines just right of the
vertical tangent. But vertical lines are also �’ ¼ const

contours, and so the two intersections mark a pair of
isofrequency orbits. (Any two such isofrequency orbits
are clearly physically distinct: they have different
eccentricities).

In Fig. 2, we show, superimposed, the orbital trajectories
of a sample pair of isofrequency orbits of rather different
eccentricities. The radial and azimuthal motions of these
two orbits are plotted in Fig. 3. Since the rate of relativistic
periastron advance depends only on the frequency ratio
�’=�r, two isofrequency orbits will exhibit the same rate

of advance. This means that their phase remains synchro-
nized on average, a behavior illustrated in the figures.
Before giving a more detailed analysis, let us remark on

the practicalities of producing the contour map of Fig. 1.
The relation �rð�’; eÞ is not known analytically, so we

resort to a numerical calculation: First, for a given e, we
numerically invert the relation �’ðp; eÞ [Eq. (7)] to find

pð�’; eÞ. Then we use Eq. (6) to obtain �rðpð�’; eÞ; eÞ.
Much of the interesting portion of the parameter space for
our purpose lies very near the separatrix, where it becomes
numerically challenging to evaluate the divergent quanti-
ties Tr, �’ and their ratio in Eq. (7). In this problematic
domain, we instead use the near-separatrix analytic
expansions [15]:

0

0.2

0.4

0.6

0.8

1

01/8
Separatrix

FIG. 1 (color online). The ð�’; eÞ parameter space for bound
geodesic orbits in Schwarzschild geometry. Bound orbits are
confined to the region right of the curve marked separatrix. Thin
(blue) curves are contour lines of constant �r. The marginal
contour line �r ¼ 0 is shown as a thick (red) line. �r takes its
greatest value at the point marked c, representing a (slightly
perturbed) circular orbit of radius rc ¼ 8M. The dotted (black)
line shows the curve along which the Jacobian matrix of the
transformation ðp; eÞ $ ð�r;�’Þ becomes singular. The singu-

lar curve intersects the e ¼ 0 axis at b, corresponding to a
circular orbit of radius rb ¼ ð39þ ffiffiffiffiffiffiffiffi

145
p ÞM=8 ’ 6:3802M.

Any vertical (�’ ¼ const) line left of b intersects some

�r ¼ const contours twice. Each pair of intersections identifies
a pair of isofrequency orbits; a sample pair is marked in the plot.
Each and every orbit between the separatrix and the singular
curve has an isofrequency dual between the singular curve and
the dashed (green) curve representing circular-orbit duals
(COD). The COD is the locus of all orbits dual to circular orbits
of radius r with ri ¼ 6M< r< rb.
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�’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 2e

e

s
log

�
64e

�

�
þOð� log �Þ; (9)

Tr� 4Mð3þeÞ2ffiffiffi
e

p ð1þeÞ3=2
�
log

�
64e

�

�
þ�eð9þ6e�7e2Þ

4ð1�e2Þ3=2 þeIðeÞ
�

þOð�log�Þ: (10)

Here, the integral IðeÞ :¼ R
�
0 ð1þ e cos�Þ�2Dðcos�Þd�,

where

Dðcos�Þ ¼ 3þ 2e� e2cos 2�

2þ eð1� cos�Þ ½2ð1� cos�Þ�1=2 � 3þ e

� 1

4
ð7e� 3Þð1þ cos�Þ; (11)

is easily evaluated numerically.
It is in fact not hard to demonstrate the existence of

isofrequency orbits without resorting to a numerical cal-
culation as above. The argument follows from a few simple
observations, which we now describe. First, it is easily
established that, in the ðe;�’Þ plane, the separatrix e ¼
esð�’Þ is a curve of a positive slope as shown in Fig. 1

(noting that, in the figure, we have chosen the horizontal
axis with �’ increasing to the left, so that, e.g., the radius

of circular orbits increases to the right). To see this, use
Eq. (7) with Eqs. (9) and (10) to derive the relation �’ðeÞ
along the separatrix, and invert to obtain

esð�’Þ ¼
6 ~�2=3

’ � 1

1� 2 ~�2=3
’

; (12)

where, recall, ~�’ :¼ M�’. This gives des=d�’ > 0 in

the relevant range 0< ~�’ < 1=8. Next, examine the

curve �r ¼ 0 in the ðe;�’Þ plane: It runs up along the

separatrix, then proceeds horizontally along the line e ¼ 1
(which represents orbits with ra ! 1 and hence Tr ! 1)
and finally descends along the line �’ ¼ 0 (which repre-

sents weak-field orbits with rp ! 1, for which both

frequencies vanish). Hence, the �r ¼ 0 contour is repre-
sented by the thick red line in Fig. 1, circumscribing the
parameter space of bound orbits on three sides. From
continuity, it is now clear that a contour line of sufficiently
small�r must ‘‘bend backward’’ inside the wedge formed
by the separatrix and the e ¼ 1 line so that it becomes
vertical at a point. The existence of isofrequency pairs
follows immediately, as discussed above.
Let us now delineate the region in the parameter space

where isofrequency pairing occurs. In Fig. 1, we have
indicated in a dotted black line the curve along which the
transformation ðp; eÞ $ ð�r;�’Þ becomes singular. Each

and every orbit left of this singular curve has an isofre-
quency dual right of the curve. In particular, each and every
circular (e ¼ 0) orbit on the open segment ði; bÞ has an
isofrequency dual on the dashed green line marked as

0

1

2

3
4
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6

7

8
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3

4

5

6

7

8

P1

P2

A1

FIG. 2 (color online). Orbital trajectories in the equatorial
plane of a Schwarzschild black hole for a sample pair
of isofrequency orbits. The motion is counterclockwise, and
the black hole is drawn to scale. Orbit 1 (red, round
markers) has parameters ðp1; e1Þ ¼ ð6:255; 0:05Þ, and orbit
2 (blue, square markers) has parameters ðp2; e2Þ ’
ð6:718788076; 0:3522488173Þ. Both share the same orbital
frequencies, ð ~�r; ~�’Þ ’ ð0:01257801; 0:06426083Þ. The orbital

period of both orbits is Tr ’ 499:535318M, and each accumu-
lates �’ ’ 32:100669 radians during that period. Both orbits
start at their periastron marker 0 along the radial line P1. Each
successive marker shows the orbital phase after a time period of
n� Tr=8, where n is the marker number. At Tr=2 (marker 4),
both orbits are synchronized again at their apastra along the line
A1. When each test body has completed one orbit (marker 8),
they are again synchronized at their periastra along the line P2.
Both orbits have precessed by the same amount over their
common radial period.
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3

FIG. 3 (color online). Evolution of rðtÞ and ’ðtÞ ��’t for the
isofrequency pair shown in Fig. 2. Both radial and azimuthal
motions are ‘‘phase-synchronized’’ on average.
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COD. (Here, we define the radial frequency of a circular
orbit to be that of a slightly eccentric orbit, at the limit
e ! 0). Hence, each and every orbit between the separatrix
and the singular curve has an isofrequency dual between
the singular curve and the COD, and vice versa. We con-
clude that (i) all isofrequency pairs are confined to the
region left of the COD, and (ii) every orbit left of the
COD has an isofrequency dual.

How ‘‘strong field’’ is the region left of the COD, where
isofrequency pairing occurs? The isofrequency pair
of lowest azimuthal frequency sits where the singular
curve intersects the e ¼ 0 axis, at point b (refer again
to Fig. 1). To calculate the value of �’ at b, we analyti-

cally Taylor expand the Jacobian determinant J :¼
j@ð�r;�’Þ=@ðp; eÞj in e about e ¼ 0 (for fixed p). We

find, to leading order,

Jðe ! 0Þ ¼ � 9ð4p2 � 39pþ 86Þ
4M2p9=2ðp� 2Þðp� 6Þ3=2 ; (13)

of which the relevant root is

p ¼ 1

8
ð39þ ffiffiffiffiffiffiffiffi

145
p Þ ’ 6:3802: (14)

This corresponds to a circular orbit of radius rb ’ 6:3802M
and frequency �’ ¼ ðM=r3bÞ�2 ’ 0:06205=M. Recall this

is the lowest frequency of any isofrequency pair. The
isofrequency pair of highest frequency sits at the upper-

left corner of the diagram in Fig. 1; it has ~�’ ¼ 1=8.

Hence, for a Schwarzschild black hole, the range of iso-
frequency pairing is given by

0:06205 & ~�’ < 0:125: (15)

(For comparison, the ISCO frequency is ~�’ ¼ 6�3=2 ’
0:068). Evidently, the phenomenon is confined to the
very strong-field regime of the Schwarzschild black hole.

Finally, we note that all orbits in isofrequency pairs
are strongly zoom-whirling. For example, the lowest-
frequency isofrequency pair mentioned above (slightly
perturbed circular orbits of radii r ! r�b ) have �’ ’
4:1� 2�, i.e., they each complete more than 4 full revo-
lutions in ’ over a single radial period. This behavior is
also manifest in the example shown in Fig. 2.

III. ISOFREQUENCY ORBITS
IN KERR GEOMETRY

A. Equatorial orbits

We consider first the case of equatorial orbits, in which
the treatment is entirely analogous to that of orbits in
Schwarzschild spacetime. Equatorial orbits have Q ¼ 0
and are therefore parametrized by the pair fE;Lzg alone.
As in the Schwarzschild case, bound equatorial orbits may
instead be parametrized by the (BL coordinate values of
the) turning points fra; rpg, or by a pair fp; eg defined from

them as in Eq. (2). One can then write integral expressions
analogous to Eqs. (6) [with Eqs. (5) and (4)] and (7) [with
Eq. (8)] for the radial and azimuthal frequencies of
the motion; the dependence upon the black hole’s spin a
only enters via the explicit form of the functions
dt=d�ð�;p; e; aÞ and d’=d�ð�;p; e; aÞ, which are signifi-
cantly more complicated than their Schwarzschild (a ¼ 0)
reductions. The integral formulas for �r and �’, for

arbitrary spin, can be found in Sec. II A of Ref. [16], and
an analytic formula for the separatrix curve, psðeÞ, again
for arbitrary spin, is given in Ref. [17]. We will not repro-
duce these expressions here, given their complexity and
since we will be giving explicit formulas for generic orbits
in the next subsection.
One finds that our intuitive argument for the existence

of isofrequency orbits carries over directly from the
Schwarzschild case to equatorial orbits in Kerr. Along the
separatrix of the Kerr black hole, the function esð�’Þ is
most neatly expressed in terms of the periastron radius ~rp ¼
ð ~��1

’ � ~aÞ2=3 (which, on the separatrix, corresponds to the
radius of an unstable circular orbit of frequency �’) [17]:

es ¼
�~r2p þ 6~rp � 8~a~r1=2p þ 3~a2

~r2p � 2~rp þ ~a2
: (16)

It can be easily checked that des=d~rw < 0 and

d~rw=d ~�’ < 0 for all a and all�’ in the relevant range 0<

�’ <�max
’ , leading, again, to des=d�’ > 0. [Here,�max

’

is the whirl frequency of the marginally bound and margin-
ally stable orbit with E ¼ 1 (and e ¼ 1), an expression for
which will be given in Eq. (18) below.] The pattern of the
�r ¼ const contour lines in the ðe;�’Þ plane should, there-
fore, be qualitatively as in Fig. 1, including the crucial
feature that contour lines ‘‘curve back’’ inside the wedge
formed by the separatrix and the e ¼ 1 line. It follows that
isofrequency pairing should be a feature of equatorial orbits
for any black hole spin a (and, in particular, we expect to see
it in both prograde and retrograde orbits).
Figure 4 shows an actual contour-line map, similar

to that in Fig. 1, for the sample case a ¼ 0:5M. The
�r ¼ const contours were computed numerically as in
the Schwarzschild case, this time using the integral
expressions from Ref. [16]. Near the separatrix, we have
used the asymptotic expressions also given in Ref. [16].
Evidently, the essential features are as in the Schwarzschild
case. One again identifies a singular curve and a COD
curve in the ðe;�’Þ plane so that, for any orbit between

the separatrix and the singular curve, there exists a dual
isofrequency orbit between the singular curve and the
COD, and vice versa. The situation is qualitatively the
same for other values of the spin and for retrograde orbits.
Let us identify the frequency range �min

’ ðaÞ<�’ <

�max
’ ðaÞ, in which isofrequency pairing occurs. The a � 0

version of Eq. (13) is too complicated to be solved analyti-
cally for p ¼ rb (the radius of the outermost circular orbit
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belonging to an isofrequency pair) as we have done in the
Schwarzschild case, so we resort to numerical solutions.
Table I lists rb values for a sample of black hole spins.
Once a numerical value for rb is at hand (for a given a),
�min

’ is obtained via

~�min
’ ¼ 1

~r3=2b þ ~a
; (17)

where we have used the general relation between the
frequency of a circular equatorial orbit and its BL radius
[2]. The maximal value �max

’ corresponds to the whirl

frequency of the marginally bound marginally stable orbit
with e ¼ 1 (top left corner in Fig. 4). It is given by

~�max
’ ¼ 1

ð2� ~aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� ~a

p Þ3=2 þ ~a
: (18)

The range �min
’ ðaÞ<�’ <�max

’ ðaÞ is illustrated in

Fig. 5.

B. Triperiodic orbits: frequencies and separatrix

We now turn to consider generic bound motion in Kerr
geometry. Nonequatorial orbits possess a third frequency,
��, associated with the longitudinal motion. It is not im-
mediately obvious how the three fundamental frequencies
can be computed in practice, since the radial and longitu-
dinal motions are coupled in the usual BL-coordinate

representation [see Eqs. (19) and (20) below]. Schmidt
[6] was able to derive formal expressions for the funda-
mental frequencies using angle-action variables in the
Hamilton-Jacobi formalism, which circumvented the prob-
lem of coupling. Mino [18] observed that the radial and
longitudinal motions can, in fact, be decoupled using a
simple transformation of the time coordinate, and Fujita
and Hikida [10] (building on work by Drasco and Hughes
[7]) used this to obtain closed-form analytic formulas for
the three frequencies. We give their formulas below in a
slightly modified form. (Fujita and Hikida considered the
cases jaj � M and jaj ¼ M separately. For brevity, we
reproduce here only the nonextremal case; expressions
for jaj ¼ M can be found in Appendix B of Ref. [10].)
To establish some necessary notation, let us begin with

the r and � components of the geodesic equation of motion.
For bound (E < 1), nonequatorial (�min � �=2) orbits
around a rotating (a � 0) black hole, these can be written
in the form

0

0.2

0.4

0.6

0.8

1

0

FIG. 4 (color online). The ð�’; eÞ parameter space for bound
equatorial geodesic orbits in Kerr geometry with a ¼ 0:5M.
Compare with Fig. 1. The relevant features are as in the
Schwarzschild case, and the existence of isofrequency pairing
below the COD is similarly evident. We indicate a sample pair
with ðp; eÞ ¼ ð4:915656; 0:45Þ and (4.62288270, 0.26313140),
both having frequencies ð�’;�rÞ ¼ ð0:112675037;
0:01291945Þ. Labelled points on the horizontal axis correspond
to circular orbits of radii (left to right) rw ’ 3:8994M (whirl
radius of marginally bound marginally stable orbit; orbit of
highest azimuthal frequency), ri ’ 4:2330M (ISCO), rb ’
4:5039M (outermost orbit in an isofrequency pair), and rc ’
5:7628M (orbit of highest radial frequency, M�r ’ 0:03312).

TABLE I. Numerical values for rb, the BL radius of the out-
ermost circular orbit belonging to an isofrequency pair
(cf. Fig. 4). The frequency �min

’ of this orbit [given in

Eq. (17)] marks the lower end of the frequency range in which
synchronous pairing occurs. For comparison, the second column
displays the ISCO radius risco (elsewhere in this paper denoted
ri); it is given by [2] ~risco ¼ 3þ Z2 � signðaÞ½ð3� Z1Þ�
ð3þ Z1 þ 2Z2Þ�1=2, where Z1 :¼ 1þ ð1� ~a2Þ1=3 �
½ð1þ ~aÞ1=3 þ ð1� ~aÞ1=3� and Z2 :¼ ð3~a2 þ Z2

1Þ1=2. Numerical

values are truncated at the fifth decimal place, rounding up.

~a ~risco ~rb

0 6 6.38020

0.1 5.66930 6.02903

0.2 5.32944 5.66813

0.3 4.97862 5.29559

0.4 4.61434 4.90877

0.5 4.23300 4.50387

0.6 3.82907 4.07499

0.7 3.39313 3.61219

0.8 2.90664 3.09586

0.9 2.32088 2.47458

0.95 1.93724 2.06835

0.99 1.45450 1.56060

1 1 1.19441

�0:1 6.32289 6.72309

�0:2 6.63904 7.05292

�0:3 6.94927 7.38801

�0:4 7.25427 7.71208

�0:5 7.55458 8.03103

�0:6 7.85069 8.34549

�0:7 8.14297 8.65588

�0:8 8.43176 8.96255

�0:9 8.71735 9.26583

�1 9 9.56598
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�2 _r2 ¼ �ðr1 � rÞðr� r2Þðr� r3Þðr� r4Þ; (19)

�2 _z2 ¼ a2�ðz2� � z2Þðz2þ � z2Þ; (20)

where z :¼ cos �, � :¼ r2 þ a2z2, � :¼ 1� E2, and an
overdot denotes differentiation with respect to proper
time along the geodesic. The roots of the quartic expres-
sions on the right-hand sides are certain functions of E,Lz,
Q; the radial roots are ordered as r1 � r2 � r3 � r4, and
the roots �z�, �zþ satisfy jz�j � 1 and jzþj> 1. Bound
orbits have rp 	 r2 � r � r1 	 ra and jzj � z� 	
cos �min (the latter inequality corresponds to �min � � �
�� �min ). We may introduce the parametrization
fp; e; �min g, where p, e are defined from rp, ra as in

Eq. (2). The above roots are then most succinctly expressed
(using a ‘‘mixed’’ parametrization) as

z� ¼ cos�min ; zþ ¼
�
1þ L2

z

a2�sin 2�min

�
1=2

; (21)

r1 	 ra ¼ Mp

1� e
; r2 	 rp ¼ Mp

1þ e
; (22)

r3 ¼ 1

2
½�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4�

q
�; r4 ¼ �

r3
; (23)

where � :¼ 2M=�� ðra þ rpÞ and � :¼ a2Q=ð�rarpÞ.

Note that the r and � motions are coupled, due to the
factor �2ðr; �Þ on the left-hand sides of Eqs. (19) and (20).
This can be easily rectified by introducing a new time
parameter � (often referred to as Mino time in recent
literature), satisfying _� ¼ ��1. In terms of �, the r and �
motions decouple, and each becomes manifestly periodic,
with � frequencies �r and ��, respectively. One can also
define the azimuthal frequency �’ as the average of

d’=d� with respect to �, where, in general, the average
needs to be taken over an infinite time. The three � fre-
quencies are given explicitly (for jaj � M) by [10]

�r ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðra � r3Þðrp � r4Þ

q
2KðkrÞ ; (24)

�� ¼ �ða2�Þ1=2zþ
2Kðk�Þ ; (25)

�’¼Lz�ðz2�;k�Þ
Kðk�Þ þ a

rþ�r�

�
�
2MErþ�aLz

r3�rþ

�
1� Fþ

rp�rþ

�
�ðþ$�Þ

�
; (26)

where �ðx;yÞ :¼R�=2
0 d�ð1�xsin2�Þ�1ð1�ysin2�Þ�1=2 is

the complete elliptic integral of the third kind, r� :¼ M�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
, the arguments of the elliptic functions are

kr :¼
ra � rp
ra � r3

r3 � r4
rp � r4

; k� :¼ ðz�=zþÞ2; (27)

and hereafter we use ðþ $ �Þ to denote a term formed by
interchanging theþ and� subscripts in the previous terms
within the enclosing brackets. In Eq. (26), we have also
introduced

F A :¼ ðrp � r3Þ�ðhA; krÞ
KðkrÞ (28)

for A ¼ fr;þ;�g, with

h� ¼ ðra � rpÞðr3 � r�Þ
ðra � r3Þðrp � r�Þ ; hr ¼

ra � rp
ra � r3

: (29)

Finally, the t frequencies are obtained from the � fre-
quencies via [7]

�r ¼ �r

�
; �� ¼ ��

�
; �’ ¼ �’

�
; (30)

where � is the average of dt=d� with respect to �. The
latter is given explicitly (for jaj � M) by [10]

FIG. 5 (color online). Range of isofrequency pairing (shaded
area), as a function of the black hole spin, for orbits in the
equatorial plane. The large-spin portion of the plot is shown
separately in an inset for clarity. Isofrequency orbits are confined
to the strong-field frequency regime �’ >�min

’ . The frequency

�max
’ is the highest attainable by any bound orbit (at given M,

a), corresponding to the whirl frequency of the marginally
bound, marginally stable orbit with E ¼ 1 (which is also the
azimuthal frequency of the ‘‘unstable’’ circular orbit with that
energy).
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� ¼ 4M2E þ EQð1�G�Þ
�z2�

þ E
2
½r3ðra þ rp þ r3Þ � rarp þ ðra þ rp þ r3 þ r4ÞF r þ ðra � r3Þðrp � r4ÞGr�

þ 2MEðr3 þF rÞ þ 2M

rþ � r�

�ð4M2E � aLÞrþ � 2Ma2E
r3 � rþ

�
1� Fþ

rp � rþ

�
� ðþ $ �Þ

�
; (31)

where we have also introduced

GB :¼ EðkBÞ
KðkBÞ (32)

for B ¼ fr; �g, with EðxÞ :¼ R�=2
0 d�ð1� xsin 2�Þ1=2 being

the complete elliptic integral of the second kind.
Equation (30), with the necessary substitutions from

Eqs. (21)–(29), (31), and (32), gives closed-form expres-
sions for the fundamental frequencies �r, ��, and �’,

given the parameters fE;Lz;Qg as well as the correspond-
ing parameters fp; e; �min g. To complete the formulation,
one requires a link between the two sets of parameters.
Explicit expressions for fE;Lz;Qg in terms of fp; e; �min g
were derived by Schmidt in Appendix B of Ref. [6] (they
are reproduced in a somewhat more concise form in
Appendix A of Ref. [19]). With this link, Eq. (30) can be
used to compute the fundamental frequencies for a geo-
desic with given fp; e; �min g.

The separatrix between stable and unstable orbits is
given by the condition rp ¼ r3, which identifies the point

where the inner turning point of the bound orbit is lost
[recall Eq. (19)]. It can be checked that this condition
coincides with �r ¼ 0, as expected (note kr ¼ 1 ¼ hA
and F A ¼ 0 ¼ Gr along the separatrix). Using Eqs. (22)
and (23), with the link between fE;L;Qg and fp; e; �min g
from Refs. [6,19], the condition rp ¼ r3 translates to a

relation between p, e and �min , which can be solved
numerically for p to obtain the separatrix surface p ¼
psðe; �min Þ. We checked, using numerical examples, that
this procedure for identifying the separatrix is consistent
with the analytical method of Ref. [17] for equatorial orbits
and with the alternative numerical method of Sundararajan
[20] for generic orbits.

C. Isofrequency pairing in triperiodic orbits

We now seek to demonstrate the existence of isofre-
quency pairs of triperiodic orbits, i.e., ones sharing all
three fundamental frequencies f�r;��;�’g. Here, our

analysis will not be as complete as it was for biperiodic
orbits. Rather, we will content ourselves with demonstrat-
ing by way of numerical example that such pairing does
indeed occur.

To this end, it will suffice to inspect the contour map of
�r ¼ const curves in the ðe;��Þ plane, for some fixed
value of �’. For this, we need to be able to compute �r

given f��; e;�’g. To achieve this in practice, we take the

following steps. First, we numerically invert, for given e,
�min , the equation �’ðpÞ ¼ const (in the example

presented below, we take the constant to be 0:14M�1).
For this, we use a bisection method, taking as an initial
guess the value p ¼ psðe; �min Þ obtained using the method
described above. Once we have the trio fp; e; �min g, we
calculate the corresponding values of�� and�r using the
analytic expressions presented above. We repeat these two
steps for a great many values of e and �min , making sure to
achieve a good coverage of the parameter space, particu-
larly near the separatrix. The outcome of this procedure is a
list of f��; e;�rg values for many orbits, all with our fixed
value of �’. This data set can then be used to create a

contour map of �r ¼ const curves in the ðe;��Þ plane.
We remark that the analytic formulation by Fujita and

Hikida proves extremely useful for our purpose because
is can be readily implemented on a computer algebra
platform such as Mathematica, which allows for high-
precision floating-point arithmetic. In our procedure,
such high precision is crucial near the separatrix, and
it avoids the need to use asymptotic expansions as in
Eqs. (9) and (10).

An example with ~�’ ¼ 0:14 is shown in Fig. 6. We

observe that the essential features of the contour map are
just as in Figs. 1 and 4. In particular, there are vertical (�� ¼
const) lines that cross single �r ¼ const contours twice.
Each pair of intersections represents a pair of isofrequency

0.11590.11600.11610.11620.11630.11640.1165
0.00

0.05

0.10

0.15

0.20

0.25

0.30

FIG. 6 (color online). Illustration of isofrequency pairing in
triperiodic orbits. Thin solid (blue) lines are contours of constant
�r in the ðe;��Þ plane, for inclined eccentric orbits with fixed
~�’ ¼ 0:14. Here, a ¼ 0:7M. (The ‘‘empty’’ lower-right corner

of the diagram lies outside the parameter space of bound orbits).
Dashed vertical lines are sample �� ¼ const contours, along
each of which we indicate a pair of isofrequency orbits. The
parameters of these three pairs are given in Table II (sample pairs
1, 2 and 3, from right to left). All essential features are as in
Figs. 1 and 4. Similar contour maps can be obtained for other
values of ~�’ and a.
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orbits sharing all three frequencies f�r;��;�’g. The ex-
istence of isofrequency pairing in triperiodic orbits is thus
established. Continuity suggests that there should be a
certain volume in the 3-dimensional parameter space in
which isofrequency orbits reside, but here we will not
endeavor to identify the boundaries of this volume.

We have indicated in Fig. 6 three sample pairs of triperi-
odic isofrequency orbits, the parameters of which we give
in Table II. The third sample pair is visualized in real space
in Figs. 7 and 8, we illustrate the synchronized evolutions of

TABLE II. Sample pairs of triperiodic isofrequency orbits for a ¼ 0:7M (cf. Fig. 6). The high precision of the parameter values
presented is necessary for the orbital frequencies to match to within the 13 significant figures displayed. This level of precision is
required because, near the separatrix, small changes in the orbital parameters can result in comparatively large changes in the
frequencies.

Orbit 1 Orbit 2 Fundamental frequencies

Sample pair 1

p 3.615857065600587178089905 3.4855158540000000000000 ~�r ¼ 0:009040307723329
e 0.068206017767752935160626 0.01201000000000000000000 ~�� ¼ 0:1162029753375

�min 1.953894865146840010777339 1.8378366992075975844562 ~�’ ¼ 0:1400000000000

Sample pair 2

p 3.572207717388546694585166 4.3523435765502772064368261758 ~�r ¼ 0:006051252001160
e 0.0388932801825514054684027 0.27300090000000000000000000000 ~�� ¼ 0:1162584817374

�min 1.943740959072074359824863 2.3444136677413832042020276247 ~�’ ¼ 0:1400000000000

Sample pair 3

p 3.80671950837597698109947211 4.477551959004760003175297459526 ~�r ¼ 0:005364669707792
e 0.105336584613486946768869507 0.300000000000000000000000000000 ~�� ¼ 0:1163492371285

�min 2.11092907046831122994268532 2.395463898362217344327765579750 ~�’ ¼ 0:1400000000000

FIG. 7 (color online). A sample pair of triperiodic isofre-
quency orbits for a ¼ 0:7M. The orbits depicted correspond to
sample pair 3 from Table II (also the leftmost pair in Fig. 6), with
orbit 1 shown on the left and orbit 2 shown on the right. The top
row shows the motion in the ðx; yÞ plane, and the bottom row
shows the motion in the ðx; zÞ plane, where x ¼ r cos’ sin�=M,
y ¼ r sin’ sin �=M, and z ¼ r cos�=M. The black hole is
shown to scale. In both orbits, the motion begins at t ¼ 0 ¼ �
at periastron, with ’ ¼ 0 and � ¼ �=2. In integrating the
geodesic equations, we used the method of Drasco and Hughes
[7], which avoids numerical difficulties near the orbital turning
points. We show the portion of the orbits between � ¼ 0 and
� ¼ 30M�1.

FIG. 8 (color online). Evolution of rðtÞ, ’ðtÞ ��’t, and
cos ½�1ðtÞ� � cos ½�2ðtÞ� for sample pair 3 of Table II and
Fig. 7. Both orbits begin at t ¼ 0 at periastron with ’ ¼ 0
and � ¼ �=2. Triperiodic isofrequency orbits are synchronized
only in a long-time average sense. Periastra are reached only
approximately at the same time (as a closer inspection of the
upper panel would reveal), but the time differences should
average to zero over a long time. The same applies to the average
azimuthal motion (middle panel, where a close inspection
reveals that the azimuthal phases of the two orbits are not in
precise agreement at the periastra) and to the motion in � (lower
panel). In the latter case, we show the difference between the two
longitudinal phases, which remains quasiperiodic. It would have
not remained quasiperiodic had the two orbits not been in an
isofrequency pair.
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rðtÞ, �ðtÞ, and ’ðtÞ for this pair. We note that in the case of
triperiodic orbits, the synchronization is not exact (because
the r and �motions are not separately periodic). Rather, the
isofrequency orbits are synchronized only in a long-time
average sense. For example, if the two orbits pass their
respective periastra at t ¼ 0, they may pass subsequent
periastra at slightly different times, but the discrepancy
should average to zero over a long time. Oneway to identify
such behavior is by inspecting the difference between the
orbital phases of the two orbits: the difference will remain
quasiperiodic only if the two are isofrequency. The lower
panel of Fig. 8 exemplifies this for the � phase.

Before concluding, let us comment on the validity of our
numerical algorithm, which, as already mentioned, in-
volves delicate high-precision computation of the orbital
frequencies. To establish confidence in our results, we
tested our code in a number of ways. First, we checked
that our code reproduces all the double-precision-accurate
results for fE;Lz;Qg (given fp; e; �min g) tabulated in
Ref. [19]. We also verified, to over one hundred significant
figures, that the results of Fujita and Hikida’s orbital fre-
quency formulas (in the form given above) agree with the
results of Schmidt’s less explicit formulas [6]. We further
validated our equations using a direct numerical integra-
tion of the �-time geodesic equations in a few test cases.
We were able to reproduce the analytically calculated �
frequencies �r and �� to within 25 significant figures.
(The quantities �’ and � involve infinite time averages

and are therefore less easily tested in this manner).

IV. CONCLUDING REMARKS

In this article, we have shown that the three fundamental
frequencies of bound geodesics in Kerr geometry do not
constitute a good parametrization of the orbits in the
strong-field regime. We identified a mapping between pairs
of physically distinct orbits that possess the same set of
orbital frequencies. A pair of isofrequency orbits are syn-
chronous in that they exhibit the same periastron and
Lense-Thirring precession rates. All orbits in isofrequency
pairs are confined to the very strong-field regime near the
innermost stable orbit—cf. Table I and Fig. 5. (Some orbits
in isofrequency pairs have very large eccentricities and
apastra at arbitrarily large radii, but their periastra are in
the very strong field). Our numerical experiments suggest
that all members of isofrequency pairs are of zoom-whirl
type, but this has yet to be checked more thoroughly in the
case of triperiodic orbits and across all spin values.

The first practical lesson from our analysis is a
cautionary note for colleagues studying the data-analysis
problem for gravitational-wave detectors, in particular,
the problem of parameter extraction for systems of
extreme-mass-ratio inspirals. The fundamental frequencies
extracted from a ‘‘snapshot’’ of an extreme-mass-ratio
inspiral waveform, on their own, as a matter of principle,
do not necessarily provide enough information from which

to extract the system’s intrinsic physical parameters E, Lz,
Q (or p, e, �min ). If the system is sufficiently close to the
innermost stable orbit, a measurement of the instantaneous
frequencies could, at most, narrow down to two possible
sets of system parameters. This ‘‘degeneracy,’’ however,
can be removed in any one of the following ways:
(1) by examining the power spectrum of the waveform

(the power distribution among the various harmon-
ics of the fundamental frequencies will be different
for the two orbits);

(2) by inspecting the waveform snippet in the time
domain (the shape of the waveform is strongly
dependent upon the eccentricity, for instance);

(3) by accounting for radiation-reaction evolution
effects (two orbits which are instantaneously isofre-
quency will evolve radiatively in different ways).

At a more fundamental level, our analysis identifies a
new feature in the strong-field dynamics of compact-object
binaries in general relativity. The fundamental frequencies
in a bound binary (of any mass ratio) are important invari-
ant characteristics of the ‘‘conservative’’ sector of the
dynamics. As such, they have long been studied in the
context of post-Newtonian (PN) theory. The instantaneous
frequencies in a binary of inspiralling black holes can even,
nowadays, be extracted from high-precision fully nonlin-
ear simulations in numerical relativity (NR)—see, for ex-
ample, Ref. [21]. Our analysis here revealed the occurrence
of isofrequency pairing in the test-particle limit (i.e., the
limit of vanishing mass ratio), but it is not unreasonable to
speculate that the phenomenon is a general feature of the
dynamics in strongly gravitating binaries, and would reveal
itself also when the mass ratio is finite. It is not clear if
available PN theory can predict isofrequency pairing—this
would be interesting to check. When new, higher-order PN
terms are calculated in the future, it would again be inter-
esting to check if they reveal the phenomenon, as a way of
assessing the faithfulness of the PN expressions in the
strong-field regime. It would also be interesting to examine
whether the phenomenon manifests itself in NR simula-
tions of inspiralling black holes of comparable masses near
the innermost stable orbit.
Because the fundamental frequencies are invariant char-

acteristics of the conservative dynamics, they are useful as
reference points for comparing the predictions of different
approaches to the relativistic two-body problem. Recent
examples of such ‘‘cross-cultural’’ comparisons include
(i) calculations of the ISCO frequency in the self-force
(SF), PN, and effective-one-body (EOB) approaches
[22–24] and (ii) calculations of the periastron advance
in slightly eccentric orbits in SF, PN, EOB, and NR
[21,23,25]. In both examples (which involve two nonrotat-
ing black holes), relations between the two invariant fre-
quencies associated with infinitesimally perturbed circular
orbits were utilized as benchmarks for comparison. The
singular curve/surface identified in our current work is an
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invariant structure in the parameter space [26], which
provides yet another, independent, comparison point in
the strong field, this time utilizing eccentric orbits.

As a first example, one could consider the function
�’ð�rÞ along the singular curve in the parameter space

of nonrotating binaries (Fig. 1 shows this curve in the test-
particle limit). In principle, one could compute this function
in the SF approximation (i.e., order by order in the mass
ratio) and perhaps also in fully nonlinear NR, making for an
interesting comparison. There may be a way of using the
results of such a calculation to calibrate the potentials of
EOB theory in the strong field, although how this could be
done in practice is yet unclear [27]. Comparison with ex-
isting PN expressions could test the performance of the PN
expansion in the strong field. A more constructive synergy
could be achieved within the recent ‘‘phenomenological’’
approach to PN calculations, whereby high-order terms in
the PN expansion are determined by fitting to numerical
data from SF or NR calculations [28,29]. A faithful phe-
nomenological PN model would need to be able to recover
the singular curve in the strong field, perhaps through the
inclusion of suitable ‘‘poles’’ in PN expressions.

Finally, let us mention the intriguing possibility that
isofrequency pairing in astrophysical black holes (e.g.,
between clumps of accreting matter) could have observa-

tional implications. The question is worth asking because
we are in an era in which astronomical observations in a
range of electromagnetic wavelengths routinely peer into
processes deep in the strong-field potentials of accreting
black holes. Quasiperiodic oscillations in x-rays from
accreting black-hole systems probe the innermost regions
of accretion disks [30], and (to a lesser extent) so do x-ray
flares from the Galactic center [31]. Could the peculiar
strong-gravity phenomenon of isofrequency pairing have a
dynamical effect on matter orbiting the black hole, perhaps
through resonant interaction? Although admittedly far-
fetched, this possibility deserves exploration.
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