A micromachined zipping variable capacitor
A micromachined zipping variable capacitor
Micro-electro-mechanical systems (MEMS) have become ubiquitous in recent years and are found in a wide range of consumer products. At present, MEMS technology for radio-frequency (RF) applications is maturing steadily, and significant improvements have been demonstrated over solid-state components.
A wide range of RF MEMS varactors have been fabricated in the last fifteen years. Despite demonstrating tuning ranges and quality factors that far surpass solid-state varactors, certain challenges remain. Firstly, it is difficult to scale up capacitance values while preserving a small device footprint. Secondly, many highly-tunable MEMS varactors include complex designs or process flows.
In this dissertation, a new micromachined zipping variable capacitor suitable for application at 0.1 to 5 GHz is reported. The varactor features a tapered cantilever that zips incrementally onto a dielectric surface when actuated electrostatically by a pulldown electrode. Shaping the cantilever using a width function allows stable actuation and continuous capacitance tuning. Compared to existing MEMS varactors, this device has a simple design that can be implemented using a straightforward process flow. In addition, the zipping varactor is particularly suited for incorporating a highpermittivity dielectric, allowing the capacitance values and tuning range to be scaled up. This is important for portable consumer electronics where a small device footprint is attractive.
Three different modelling approaches have been developed for zipping varactor design. A repeatable fabrication process has also been developed for varactors with a silicon dioxide dielectric. In proof-of-concept devices, the highest continuous tuning range is 400% (24 to 121 fF) and the measured quality factors are 123 and 69 (0.1 and 0.7 pF capacitance, respectively) at 2 GHz. The varactors have a compact design and fit within an area of 500 by 100 µm.
Pu, Suan-Hui
8b46b970-56fd-4a4e-8688-28668f648f43
April 2010
Pu, Suan-Hui
8b46b970-56fd-4a4e-8688-28668f648f43
Holmes, Andrew S.
be2dbd21-2b84-4fa6-b743-e3c23f9a6bdb
Yeatman, Eric M.
cfcf6b8a-a153-41a6-bdf4-dc5e5ff70b3b
Pu, Suan-Hui
(2010)
A micromachined zipping variable capacitor.
Imperial College London, Electrical and Electronic Engineering, Doctoral Thesis, 159pp.
Record type:
Thesis
(Doctoral)
Abstract
Micro-electro-mechanical systems (MEMS) have become ubiquitous in recent years and are found in a wide range of consumer products. At present, MEMS technology for radio-frequency (RF) applications is maturing steadily, and significant improvements have been demonstrated over solid-state components.
A wide range of RF MEMS varactors have been fabricated in the last fifteen years. Despite demonstrating tuning ranges and quality factors that far surpass solid-state varactors, certain challenges remain. Firstly, it is difficult to scale up capacitance values while preserving a small device footprint. Secondly, many highly-tunable MEMS varactors include complex designs or process flows.
In this dissertation, a new micromachined zipping variable capacitor suitable for application at 0.1 to 5 GHz is reported. The varactor features a tapered cantilever that zips incrementally onto a dielectric surface when actuated electrostatically by a pulldown electrode. Shaping the cantilever using a width function allows stable actuation and continuous capacitance tuning. Compared to existing MEMS varactors, this device has a simple design that can be implemented using a straightforward process flow. In addition, the zipping varactor is particularly suited for incorporating a highpermittivity dielectric, allowing the capacitance values and tuning range to be scaled up. This is important for portable consumer electronics where a small device footprint is attractive.
Three different modelling approaches have been developed for zipping varactor design. A repeatable fabrication process has also been developed for varactors with a silicon dioxide dielectric. In proof-of-concept devices, the highest continuous tuning range is 400% (24 to 121 fF) and the measured quality factors are 123 and 69 (0.1 and 0.7 pF capacitance, respectively) at 2 GHz. The varactors have a compact design and fit within an area of 500 by 100 µm.
Text
__userfiles.soton.ac.uk_Users_spd_mydesktop_SHP_PhD_Thesis(Final).pdf
- Version of Record
More information
Published date: April 2010
Organisations:
Electronics & Computer Science, Engineering Science Unit
Identifiers
Local EPrints ID: 347820
URI: http://eprints.soton.ac.uk/id/eprint/347820
PURE UUID: 5d0d590f-eb31-4ab0-ae10-4e1faeb4269f
Catalogue record
Date deposited: 30 Jan 2013 14:41
Last modified: 15 Mar 2024 04:02
Export record
Contributors
Thesis advisor:
Andrew S. Holmes
Thesis advisor:
Eric M. Yeatman
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics