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Abstract

The concept of a weak factorization system has been studied extensively in homo-
topy theory and has recently found an application in one of the proofs of the celebrated
flat cover conjecture, categorical versions of which have been presented by a number of
authors including Rosický. One of the main aims of this paper is to draw attention to
this interesting concept and to initiate a study of these systems in relation to flatness
of S−acts and related concepts.
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1 Introduction

Let S be a monoid. A (right) S−act is a non-empty set A together with a function A×S →
A, (a, s) 7→ as such that a(st) = (as)t, a1 = a for all a ∈ A, s, t ∈ S. Throughout, unless
otherwise stated, all acts will be right S−acts. We refer the reader to [9] for basic results
and terminology in semigroups and monoids and to [4] and [11] for those concerning acts
over monoids. The object of this paper is in part to draw to the attention of the semigroup
community the concept of a weak factorization system, to recasts in terms of acts over
monoids some known results from category theory concerning weak factorization systems
and to introduce some new results and examples that are connected with the concepts of
covers of S−acts, flatness and related ideas.

After some introductory results and comments in section 1 we define the necessary concepts
related to weak factorization systems and prove some standard results, many of which are
already known to the category theory community. We give some examples of weak factor-
ization systems of S−acts in section 3 which have connections with covers and flatness of
S−acts. In section 4 we show that in some cases we can ‘generate’ weak factorization sys-
tems from certain sets of mappings and finish by giving a pointer to a possible application
relating to covers of centred S−acts.

Let S be a monoid and let X be a class of S−acts. We shall have occasion to consider
directed colimits of S−acts where the index set is regarded as an ordinal. For details of
directed colimits in general see [4], [5] or [11]. We shall (informally) consider a class as a
collection of sets, or viewed another way, a set is a class that is a member of another class.
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We shall consider an ordinal as a transitive set well-ordered by ∈. In particular, if α is an
ordinal then α = {β : β is an ordinal and β < α}. We refer the reader to [10] for a more
formal treatment of axiomatic set theory and ordinals and a more detailed discussion on the
differences between classes and sets.
Let λ be an infinite ordinal. By a λ−sequence we mean a directed system of S−acts and
S−maps (Aα, φα,β : Aα → Aβ)α≤β<λ with a directed colimit (Aλ, φα)α<λ and such that
for every limit ordinal γ ≤ λ, (Aγ , φα,γ)α<γ is the directed colimit of the directed system
(Aα, φα,β)α≤β<γ . Let C be a class of S−maps and let (Aα, φα,β) be a λ−sequence in which
for β < β + 1 < λ, φβ,β+1 ∈ C. Then the S−map φ0,λ : A0 → Aλ is called the transfinite
composition of the S−maps {φα,β |α ≤ β < λ}.

Let γ be a cardinal. An ordinal λ is said to be γ−filtered if it is a limit ordinal and if
A ⊆ λ and |A| ≤ γ then sup(A) < λ. For example, if γ is finite then ω is γ−filtered. As a
generalisation, notice that for a given infinite cardinal γ then γ+, the successor cardinal to
γ, is γ−filtered and so γ−filtered ordinals exist for each cardinal γ. To see that we require
λ = γ+ here rather than γ, consider the well-known example γ = ℵω and letA = {ℵn|n < ω}.
Then A ⊆ γ but sup(A) = γ.

The following rather technical result, which will be useful later, is effectively a ‘transfinite’
version of [5, Lemma 2.3]. It also follows from [1] on noting that A is γ+−presentable. We
have included a short proof, similar to that in [8], for the sake of those less familiar with
these concepts.

Lemma 1.1 Let S be a monoid and let A be an S-act. Let γ ≥ max{|S|, |A|} be an infinite
cardinal and let λ be a γ−filtered ordinal. Suppose that (Aα, φα,β) is a λ−sequence of S−acts
with a directed colimit (Aλ, φα)α<λ and let f : A → Aλ be an S−map. Then there exists
δ < λ and an S−map g : A→ Aδ such that f = φδg.

Proof. Note that by [5, Theorem 2.2], for each a ∈ A there exists βa such that f(a) ∈
im(φβa). Then |{βa : a ∈ A}| ≤ |A| ≤ γ and so α = sup{βa : a ∈ A} < λ. Hence
im(f) ⊆ im(φα) and f will factor through a function g : A → Aα. Now again by [5,
Theorem 2.2] it follows that for each pair (a, s) ∈ A × S there exists α ≤ βa,s < λ such
that φα,βa,s(g(a)s) = φα,βa,s(g(as)). Let δ = sup{βa,s|(a, s) ∈ A × S}. Since |{βa,s|(a, s) ∈
A× S}| ≤ γ then δ < λ and f factors through an S−map A→ Aδ as required.

Let f : X → Y be an S−monomorphism and consider the right S−congruence τ on Y given
by τ = imf × imf ∪ 1Y . We denote the quotient S−act Y/τ by Y/X and call it the Rees
quotient S−act of Y by X. We denote the element yτ by y.

Lemma 1.2 ([13, Lemma 2.6]) Let S be a monoid and let f : X → Y and g : Y → Z be
S−monomorpisms. Then g : Y/X → Z/Y given by g(y) = g(y) is an S−monomorphism
and Z/X ∼= (Z/Y )/(Y/X).

Recall ([15]) that a S−map f : A→ B is said to be stable if for every left S−map g : X → Y ,
whenever b ⊗ g(x) = f(a) ⊗ y in B ⊗S Y then there exists a′ ∈ A, x′ ∈ X such that
b⊗g(x) = f(a′)⊗g(x′). Recall also that an S−act A is flat if for all left S−monomorphisms
g : X → Y the induced map A⊗S X → A⊗S Y is one to one.

Lemma 1.3 (Cf. [15, Lemma 2.1]) Let S be a monoid and let f : X → Y be an S−monomorphism.
If Y/X is flat then f is stable. If Y is flat and f is stable then Y/X is flat.

The following is easy to show

Lemma 1.4 Let S be a monoid and let X be a retract of a flat S−act Y . Then X is flat.
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Lemma 1.5 ([14, Lemma 1.2]) Let S be a monoid and let f : A→ B be an S−monomorphism
and let g : B → C be a stable monomorphism. Then g : B/A→ C/A is a stable monomor-
phism.

It is well-known that if

A C

B P

f g

v

u

is a pushout diagram then P ∼= (B∪̇C)/ρ where ρ = {(f(a), u(a)) : a ∈ A}] and v(b) =
bρ, g(c) = cρ. Notice then that if p ∈ P then either p ∈ im(v) or p ∈ im(g). Notice also that
if f is a monomorphism and if v(b) = v(b′) then either b = b′ or there exists a, a′ ∈ A such
that b = f(a), u(a) = u(a′), f(a′) = b. We shall make use of this fact later.

Let S be a monoid, let A be an S−act and let X be a class of S−acts closed under isomor-
phisms. By an X -precover of A we mean an S−map g : P → A for some P ∈ X such that
for every S−map g′ : P ′ → A, for P ′ ∈ X , there exists an S−map f : P ′ → P with g′ = gf .

P A

P ′

f
g′

g

If in addition the precover satisfies the condition that each S−map f : P → P with gf = g is
an isomorphism, then we shall call it an X−cover. We shall frequently identify the (pre)cover
with its domain. For more details of covers and precovers of acts we refer the reader to [5]
and [6].

2 Weak Factorization Systems

Much has been written in recent years on weak factorization systems, mostly in more general
categorical terms and some without explicit proof. As might be expected, notation and
terminology used seem to vary widely. For background on the ideas contained in this section
see for example [7], [8] and [16].
Let X be a class of S−acts closed under isomorphisms. Let f : A → B and g : C → D be
S−maps such that given any commutative square of S−maps

A C

B D

f g

v

u

there exists an S−map h : B → C such that hf = u and gh = v. In this case we say that g
has the right lifting property with respect to f and that f has the left lifting property with
respect to g. Let C be a class of S−maps and let

C� = {g|g has the right lifting property with respect to each f ∈ C}
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�C = {f |f has the left lifting property with respect to each g ∈ C}

The following basic result is well known and the proof is straightforward. See for example
the remarks following Definition 2.7 in [8].

Lemma 2.1 Let S be a monoid and let C ⊆ D be classes of S−maps. Then

1. C ⊆
(
�C

)�
and C ⊆ �

(
C�

)
,

2. �D ⊆ �C and D� ⊆ C�,

3. �C = �
((

�C
)�)

and C� =
(
�
(
C�

))�
.

Let C be a class of S−maps. The S−maps in fib(C) =
(
�C

)�
are called the fibrations

of C whilst the S−maps in cof(C) = �
(
C�

)
are called the cofibrations of C (see [8]).

From Lemma 2.1 we see that C� = cof(C)� and �C = �fib(C) and so cof(cof(C)) =
cof(C),fib(fib(C)) = fib(C). In addition, if C ⊆ D then cof(C) ⊆ cof(D).
If f : A → B, g : A → C are S−maps such that there exist S−maps α : C → B and
β : B → C with βα = 1C , αg = f and βf = g then we say that g is a retract of f . In
categorical terms, g is a retract of f in the coslice-category (A ↓ C).
The following important result appears to be well-known. The proof is of a more general
categorical nature and is omitted for brevity.

Lemma 2.2 (Cf. [8, Lemma 2.1.11]) Let S be a monoid and let C be any class of S−maps.
Then

1. pushouts of S−maps in C are in cof(C),

2. cof(C) is closed under transfinite compositions,

3. cof(C) is closed under retracts.

Since S−acts are, by definition, non-empty then pullbacks of S−acts do not always exist.
We do however have a partial dual of the previous result, the proof of which is omitted.

Lemma 2.3 Let S be a monoid and let C be a class of S−maps. Then

1. pullbacks of epimorphisms in C are in fib(C),

2. fib(C) is closed under composites,

3. fib(C) is closed under retracts.

The following would appear to be well-known (see for example [16, Remark 2.4]) and the
proof is almost identical to that for Lemma 2.2.

Lemma 2.4 Let S be a monoid and let C be any class of S−maps. Then �C and C� contain
all isomorphisms and

1. pushouts of S−maps in �C are in �C,

2. �C is closed under transfinite compositions,

3. �C is closed under retracts.
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Let C be a class of S−maps. Denote by ret(C) the class of all S−maps that are retracts of
transfinite compositions of pushouts of S−maps in C. It follows immediately from Lemma 2.2
that C ⊆ ret(C) ⊆ cof(C) and from Lemma 2.4 that ret(�C) = �C. If C is a class of S−maps
such that C = ret(C) then we shall say that C is saturated.

A weak factorization system (L,R) consists of two classes L and R of S−maps satisfying

1. R = L� and L = �R,

2. any S−map h has a factorization h = gf with f ∈ L and g ∈ R.

Notice that the ‘lifting’ S−map involved in property (1) need not be unique. If it is always
unique then we refer to the system as a factorization system. The following result appears
to be well-known [2, Remark III.4] and provides a more practical way to check whether the
system (L,R) forms a weak factorization system.

Proposition 2.5 Let S be a monoid. Then (L,R) is a weak factorization system if and
only if

1. any S−map h has a factorization h = gf with f ∈ L and g ∈ R,

2. for all f ∈ L, g ∈ R, f has the left lifting property with respect to g,

3. if f : A → B and f ′ : X → Y are such that there exist S−maps α : B → Y and
β : A→ X then

(a) if αf ∈ L and if α is a split monomorphism then f ∈ L,

(b) if f ′β ∈ R and if β is a split epimorphism then f ′ ∈ R.

Proof. Suppose that (L,R) is a weak factorization system. Then clearly properties (1)
and (2) hold and so let f, f ′, α, β be as in the statement of property (3) and suppose that
γ : X → A is the splitting S−map, i.e. βγ = 1X . Suppose that we have a commutative
square

C X

D Y

g f ′

v

u

in which g ∈ L. Then we have a commutative diagram

C A

D Y

g f ′β

v

γu

and so there exists h : D → A with hg = γu and f ′βh = v. Consequently βh : D → X is
such that (βh)g = u and f ′(βh) = v and f ′ ∈ R. A similar argument applies to the other
case.
Conversely, suppose conditions (1), (2), (3a) and (3b) are satisfied. Then by property (2)
we see that R ⊆ L� and L ⊆ �R. Suppose that f : A → B ∈ �R. Notice first that
properties (1) and (3) mean that 1X ∈ L ∩ R for all S−acts X. Now by (1) f = αf ′ with
f ′ ∈ L, α ∈ R. By property (2), α splits with splitting S−map γ such that f ′ = γf and so
by property (3a) f ∈ L and L = �R. In a similar way, R = L�.
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Notice that in 3(a) above, f is a retract of αf and that all retracts can be written this way.
So this result is simply saying that L is closed under retracts. Similarly 3(b) is equivalent to
R being closed under retracts. Notice also that by the remarks after Lemma 2.4 it follows
that if (L,R) is a weak factorization system then L is saturated.

3 Weak factorization systems and covers of S−acts

In this section we provide a number of examples of weak factorization systems, some of
which are related to the existence of covers of S−acts, and refer the reader to [5] and [15]
for more details of some of the concepts and results used.

We say that an S−monomorphism f : X → Y is unitary if y ∈ im(f) whenever ys ∈ im(f)
and s ∈ S. Clearly this is equivalent to saying that either f is an isomorphism or Y =
im(f)∪̇(Y \ im(f)), the coproduct of im(f) and its complement, or in other words, im(f) is
a direct summand of Y . Given a unitary S−monomorphism f : X → Y then on putting
Z = Y \ im(f) it is clear that the S−map X → X∪̇Z given by x 7→ x is also a unitary
S−monomorphism. In this case and in what follows, when we write f : X → X∪̇Z is a
unitary S−monomorphism, then we implicitly mean that f(x) = x and that Z may be
empty.

Theorem 3.1 ([17, Theorem 2.7]) Let S be a monoid and let U be the class of all unitary
S−monomorphisms and ES be the class of all split S−epimorphisms. Then (U , ES) is a weak
factorization system.

Now suppose that L is a class of S−maps that contain the unitary S−maps and suppose that
(L,R) is a weak factorization system. Let g : C → D ∈ R and consider the commutative
diagram

C C

C∪̇D D

f g

g

1C

where f(c) = c and where g|C = g, g|D = 1D. Then there exists h : C∪̇D → C such that
g = gh and 1C = hf . Hence gh|D = g|D = 1D and so g is a split epimorphism and it follows
that R ⊆ ES .

Let f : A→ B be an S−map. We say that an S−act P is projective with respect to f if for
any S−map g : P → B there exists an S−map h : P → A such that fh = g. Then P is
called projective if it is projective with respect to every S−epimorphism. For example, it is
well-known that free acts are projective.

Lemma 3.2 Let S be a monoid and suppose that P is projective with respect to the S−map
f : A→ B and suppose that Q is a retract of P . Then Q is projective with respect to f .

Proof. Suppose that α : Q → P, β : P → Q are such that βα = 1Q and suppose that
g : Q → B is an S−map. Then gβ : P → B is an S−map and so there exists h : P → A
such that fh = gβ. Then hα : Q→ A is such that fhα = gβα = g as required.

Lemma 3.3 Let S be a monoid and let A be a retract of the S−act X.

1. If B is a retract of A then B is a retract of X.

2. If B is a retract of an S−act Y then A∪̇B is a retract of the S−act X∪̇Y .
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3. If B is a direct summand of A then B is a retract of a direct summand of X.

Proof.1 and 2. These are straightforward.

3. Let α : A→ X and β : X → A be such that βα = 1A and let Y = {x ∈ X|β(x) ∈ B}.
Then Y is a direct summand of X and im(α|B) ⊆ Y . Hence β|Y : Y → B and B is a
retract of Y .

Now let C be a class of S−maps and define 4C to be the class of S−acts which are projective
with respect to each S−map in C. Notice that by Lemma 3.2, 4C is closed under retracts.
The following appears to be well-known and can be deduced in a manner similar to [4,
Theorem 4.1.4(2)]. We have omitted the details.

Proposition 3.4 Let S be a monoid and let C be a class of S−epimorphisms closed under
pullbacks. Then D ∈ 4C if and only if every C → D ∈ C splits.

Let X be a class of S−acts closed under coproducts, direct summands and retracts. Let
RX denote the class of S−maps with respect to which each S−act in X is projective and
let UX denote the class of unitary S−monomorphisms f : X → Y such that Y \ im(f) ∈ X .
Note that RX contains all S−isomorphisms and that X ⊆ 4RX . Consider the commutative
diagram

A C

A∪̇B D

u

v

gf

where f ∈ UX , g ∈ RX . Let h : B → C be given by the projective property so that gh = v|B
and let k : A∪̇B → C be given by k|A = u, k|B = h. Then f has the left lifting property
with respect to g.
Now let f, f ′, α, β be as in Proposition 2.5 with R = RX and L = UX . Let P ∈ X and
v : P → Y be an S−map. Then since f ′β ∈ RX there exists an S−map h : P → A such that
f ′βh = v and so βh : P → X is such that f ′(βh) = v and f ′ ∈ RX . If αf : A→ Y ∈ UX then
Y = im(αf)∪̇P for some P ∈ X and, as we have seen previously in the proof of Theorem 3.1,
f ∈ U . HenceB = im(f)∪̇Q for some S−actQ. Let P ′ = {p ∈ P |δ(p) ∈ Q} where δ : Y → B
is the splitting S−map such that δα = 1B and note that as in Lemma 3.3(3), α|Q ⊆ P and
P ′ is a direct summand of P and so P ′ ∈ X . Consequently α|Q : Q→ P ′ splits and so Q is
a retract of P ′ and therefore Q ∈ X . This means that f ∈ UX .

Suppose now that every S−act has an X−precover. Let f : A → B be an S−map and
let X → B be an X−precover for B. Then the factorization A → A∪̇X → B shows that
(UX ,RX ) is a weak factorization system.

Conversely, suppose that (UX ,RX ) as defined above is a weak factorization system and let
X be an S−act. Suppose that there exists A ∈ X and an S−map h : A → X. Then h
factorizes as gf where f : A → A∪̇Y ∈ UX and g : A∪̇Y → X ∈ RX . Notice then that
Y ∈ X . Let B ∈ X be an S−act and suppose that u : B → X is an S−map. Consider the
commutative diagram

A A∪̇Y

A∪̇B X

f

v

gι
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where v|A = h and v|B = u. By the lifting property there exists k : A∪̇B → A∪̇Y such that
gk = v. Then gk|B = u and g : A∪̇Y → X is an X−precover.
Consequently we have shown

Theorem 3.5 Let S be a monoid and let X be a class of S−acts closed under coproducts,
direct summands and retracts and define UX and RX as above. Then every S−act has an
X−precover if and only if (UX ,RX ) is a weak factorization system and for all S−acts X
there exists Y ∈ X such that hom(Y,X) 6= Ø.

It can be shown that the previous result also follows from [3, Proposition 1.6].

Now let P be the class of projective S−acts and let E denote the class of all S−epimorphisms.
By definition, every projective S−act is projective with respect to every S−epimorphism. It
is also well known that P is closed with respect to coproducts and direct summands. That
retracts of projective S−acts are projective follows from Lemma 3.2. From [5, Proposition
5.8] we see that every S−act has a P−precover and consequently we deduce

Corollary 3.6 (UP , E) is a weak factorization system.

Since retracts of free S−acts are not necessarily free then it is clear that we cannot necessarily
replace projective by free in the above proposition. Also, if FR denotes the class of free
S−acts then FR ( 4RFR = P. It also follows by a similar argument to that outlined
previously that if (L,R) is a weak factorization system in which UP ⊆ L then R ⊆ E .

Let ψ : X → Y be an S−epimorphism. We say that ψ is a pure epimorphism if for every
finitely presented S−act M and every S−map f : M → Y there exists g : M → X such
that f = ψg. For more details of pure epimorphisms and their connection with covers of
acts see [5]. Now Let FP be the set of finitely presented acts, IFP the class of acts whose
indecomposable components are in FP (in other words all coproducts of acts in FP) and
let RIFP be the class of all retracts of acts in IFP.
Let UFP be the class of unitary S−monomorphisms f : X → Y , where Y \ im(f) ∈ RIFP,
and let PE be the class of pure S−epimorphisms. From [5] we easily see that acts in IFP
are projective with respect to pure S−epimorphisms and therefore by Lemma 3.2 so are acts
in RIFP. Therefore RIFP = PE . From Lemma 3.3 we can easily deduce that RIFP is
closed under retracts, coproducts and direct summands.
We use [5, Corollary 4.14 and Proposition 4.3] to deduce that every act has an epimorphic
IFP−precover. Specifically, note that IFP is closed under coproducts and direct sum-
mands, and IFP contains the generator S and so for every S−actA, hom(S,A) 6= Ø. Finally
every indecomposable IFP−act (that is, an FP−act) is bounded in size by max{ℵ0, |S|}.
Consequently every act has an epimorphic IFP−precover and so an RIFP−precover.

We can therefore deduce

Corollary 3.7 (UFP ,PE) is a weak factorization system.

We may wish to ask, for which classes of S−monomorphism L is it true that R ⊆ E? We
can supply a partial answer in the case of monoids with a left zero by observing the following
connection with the concept of injectivity.
Recall that we say that an S−act X is injective if for all S−monomorphisms f : A → B
and all S−maps g : A→ X there exists an S−map h : B → X such that hf = g. It is well
known (see [4] or [11]) that X is injective if and only if every S−monomorphism with X as
domain, splits. Now let C be a class of S−maps and define C4 to be the class of S−acts
injective to C. In other words

C4 = {C ∈ Act− S : C → 1 ∈ C�}
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where 1 is the 1-element S−act. The proof of the following result is similar to that of
Proposition 3.4.

Proposition 3.8 Let S be a monoid and let C be a class of S−monomorphisms closed under
pushouts. Then C ∈ C4 if and only if every C → D ∈ C splits.

If S is a monoid with a left zero element z, then every S−act A contains at least 1 fixed
point since for all a ∈ A, s ∈ S, (az)s = az. Denote the set of fixed points of an act A by
Fix(A). Given an S−map g : C → D and d ∈ Fix(D) let Kd = {c ∈ C|g(c) = d}. Then Kd

is either empty or an S−subact of C.

Lemma 3.9 Let S be a monoid with a left zero z and let C be a class of S−maps containing
the inclusion {z} → S. If g : C → D ∈ C� then Kd ∈ C4 for all d ∈ Fix(D) with Kd 6= Ø.
Moreover g is an S−epimorphism if and only if Fix(D) ⊆ im(g).

Proof. Let g : C → D ∈ C� and let d ∈ Fix(D) with ι : Kd → C the inclusion. Let 1 be
the 1-element S−act and consider the commutative diagram

A Kd

C

D

B 1

f

u

ι

g

0d

where f ∈ C and where 0d(b) = d for all b ∈ B. Since g ∈ C� then there exists h : B → C
with gh = 0d and hf = ιu and so since gh = 0d there exists h′ : B → Kd with ιh′ = h.
Consequently ιh′f = hf = ιu and so h′f = u and Kd ∈ C4.

Now suppose that Fix(D) ⊆ im(g) and let d ∈ D and define p : S → D by p(s) = ds. Let
c ∈ C be such that g(c) = dz and define {z} → C by z 7→ c. Since {z} → S ∈ C then there
exists h : S → C such that gh = p. Hence d = p(1) = gh(1) and so g is an S−epimorphism.

If X is a class of S−acts then we shall denote by X −mono the class of S−monomorphisms
f : X → Y such that the Rees quotient Y/X ∈ X . We now deduce from Lemma 3.9

Proposition 3.10 Let S be a monoid with a left zero and suppose that X is a class of
S−acts that contain S. If (L,R) is a weak factorization system such that X −mono ⊆ L
then R ⊆ E if and only if for every g : C → D ∈ R,Fix(D) ⊆ im(g).

Let F denote the class of flat S−acts. We cannot at this stage determine whether or not
there is a class R such that (F −mono,R) is a weak factorization system. However we do
have

Theorem 3.11 F −mono is saturated.

Proof. We prove this in three steps
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1. Consider the pushout diagram

A C

B P

u

v

gf

where f ∈ F−mono. Since pushouts of S−monomorphisms are S−monomorphisms
then we can define h : B/A → P/C by h(b) = v(b). Then h is a well-defined S−map
since if b = b′ then either b = b′, in which case v(b) = v(b′), or b = f(a), b′ = f(a′) for
some a, a′ ∈ A. In this case, v(b) = gu(a) = gu(a′) = v(b′) as required.

In a similar way, if v(b) = v(b′) then either v(b) = v(b′) or v(b) = g(c), v(b′) = g(c′)
for some c, c′ ∈ C. In the latter case, since P is a pushout there exists a, a′ ∈ A such
that b = f(a), b′ = f(a′) and so b = b′ in B/A. In the former case, from the comments
on pushouts at the end of Section 1 it follows that either b = b′, in which case b = b′,
or b = f(a), b′ = f(a′) for some a, a′ ∈ A. In this case, b = f(a) = f(a′) = b′.
Consequently we see that h is a S−monomorphism.

Finally if p ∈ P then either p = v(b) or p = g(c) for some b ∈ B, c ∈ C. In the first
case p = v(b) = h(b). In the second case, for any a ∈ A we have p = g(c) = gu(a) =
vf(a) = h(f(a)) and h is an S−isomorphism.

It therefore follows that g ∈ F−mono.

2. It follows immediately from Lemmas 1.3 and 1.5 that the composite of two S−maps
in F−mono is in F−mono. Now suppose that λ is a limit ordinal and that for all
i ≤ j < λ, fij : Ai → Aj are such that fij ∈ F−mono and that if j is a limit
ordinal then fij is a colimit. Let (Aλ, fiλ) be the directed colimit and note from [12,
Corollary 3.6] that fiλ is a S−monomorphism. Let fij : Ai/A0 → Aj/A0 be given by

fij(ai) = fij(ai). By [13, Lemma 3.6] we can deduce that (Aλ/A0, fiλ) is the direct
limit of (Ai/A0, fij) and so by [13, Corollary 3.5] we deduce that Aλ/A0 is flat as
required.

3. Suppose that f : A→ B ∈ F−mono and g : A→ C are such that there exist S−maps
α : C → B and β : B → C with βα = 1C , αg = f and βf = g. It is clear that retracts
of S−monomorphisms are S−monomorphisms. Consider the following commutative
diagram

A

B C

B/A C/A

f g

α

β

α

β

where α(c) = α(c) and β(b) = β(b). It is easy to see that α and β are well defined
S−maps and that βα = 1C/A. Hence from Lemma 1.4 we see that C/A is flat and so
g ∈ F−mono.
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4 Cofibrantly generated systems

Finding classes of acts that form a weak factorization system seems to be quite a difficult
task. However, in certain cases we can ‘generate’ such a system from a given class of
S−maps. In particular, if (L,R) is a weak factorization system such that there exists a set
C of S−maps with L = cof(C) then we say that the system is cofibrantly generated by C.
Let C be a class of S−maps and let L = �C and R = L�. Then it is easy to see from
Lemma 2.1(3) that L = �R and R = L�.

Theorem 4.1 (Cf. [7, Proposition 1.3]) Let S be a monoid and let C be a set of S−maps
and let R = C�,L = �R. Then (L,R) is a weak factorization system.

Proof. That the pair (L,R) satisfy L = �R and R = L� follows from Lemma 2.1(3).
Notice also that C ⊆ L.
The following is a modified version of that found in [7] but also contains ideas found in [8].
Let g : X → Y be an S−map and consider the following construction (P (g), θ(g), φ(g)). Let
S be the set of all commutative squares

A X

B Y

u

v

gf

with f ∈ C. If S = Ø then we have a factorization of g as X
1X→ X

g→ Y and by Lemma 2.4,
1X ∈ L. It easily follows in that case that g ∈ R as required.
Assume now that S 6= Ø. Let f̄ : AS → BS be the coproduct of all these S−maps, let
AS → X be the natural S−map induced by the coproduct and consider the pushout diagram

AS X

BS P (g)

θ(g)f̄

By the pushout property, there exists a unique S−map φ(g) : P (g) → Y such that the
diagram

AS X

BS P (g)

Y

g

φ(g)

θ(g)f̄

commutes. So g can be factorized as g = φ(g)θ(g). For notational convenience let P0(g) =
P (g), φ0(g) = φ(g), θ0(g) = θ(g).
By way of transfinite induction suppose that for all ordinals α < ε we have an S−act
Pα(g) and S−maps θα(g) : X → Pα(g) and φα(g) : Pα(g) → Y such that g = φα(g)θα(g)
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and suppose also that for all ordinals β < γ < δ < ε there are S−maps ψβ,γ : Pβ(g) →
Pγ(g), ψγ,δ : Pγ(g) → Pδ(g), ψβ,δ : Pβ(g) → Pδ(g) such that ψγ,δψβ,γ = ψβ,δ. If ε = α + 1
then we let Pα+1(g) = P (φα(g)), θα+1(g) = θ(φα(g))θα(g) and φα+1(g) = φ(φα(g)) and we
define ψβ,α+1 = θα+1(g)ψβ,α for all β ≤ α.
If ε is a limit ordinal we construct (Pε(g), θε(g), φε(g)) by directed colimits. Specifically we
have a directed system of S−acts (Pα(g), ψα,β) with directed colimit (Pε(g), ψα,ε)

Pα(g) Pβ(g)

Pε(g)

Y

φα(g) φβ(g)

φε(g)

ψα,β

ψα,ε ψβ,ε

Let θε(g) = ψ0,εθ0(g) : X → Pε(g) and φε(g) : Pε(g)→ Y be as above.
Let γ be a cardinal such that γ = sup{|dom(f)||S| : f ∈ C} and let κ be a γ−filtered ordinal.
Now consider the factorization g = φκ(g)θκ(g) : X → Pκ(g) → Y with κ as above. From
Lemma 2.2 we see that θκ(g) ∈ cof(C) = L. Suppose now that

A Pκ(g)

B Y

u

v

φκ(g)f

is a commutative diagram with f ∈ C.
By Lemma 1.1, there exists δ < κ and u′ : A → Pδ(g) such that u = ψδ,κu

′. But then by
construction there exists v′ : B → Pδ+1(g) and

A Pκ(g)

B Y

ψδ+1,κv
′

u

v

φκ(g)f

the required ‘lifting’ diagram so that φκ(g) ∈ R.

Notice that in the preceding proposition, L = cof(C) and R = (cof(C))�.

Corollary 4.2 (Cf. [7, Proposition 1.3]) Let S be a monoid and let C be a set of
S−maps. Then cof(C) = ret(C) and (ret(C), C�) is a weak factorization system cofibrantly
generated by C.

Proof. One way round follows immediately from Lemma 2.2. Suppose then that f : A→
B ∈ cof(C). By (the proof of) Proposition 4.1 it follows that f = gf ′ with f ′ a transfinite

composition of pushouts of S−maps in C and g : C → B ∈ (cof(C))�. We then have a
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diagram

A C

B B

h

f ′

1B

gf

and so f is a retract of f ′ as required.

5 Centred S−acts

Suppose that S is now a monoid with a zero and that all acts are centred, that is to say they
contain a unique fixed point. Let the 1-element S−act here be denoted by 0.
Suppose in addition that X is a given class of centred S−acts and (L,R) is a weak factor-
ization system for the category of centred S−acts with the property that 0 → X ∈ L if
and only if X ∈ X . Then given a centred S−act A the unique S−map 0 → A factorises
as 0 → A∗ → A with 0 → A∗ ∈ L and A∗ → A ∈ R. It follows by our assumptions that
A∗ ∈ X .
Suppose then that X ∈ X is a centred right S−act and suppose that X → A is an S−map.
Then we can construct the commutative diagram

0 A∗

X A

where the diagonal S−map comes from the weak factorization system. This demonstrates
that every centred S−act has an X−precover in the class of centred S−acts.

It is easy to demonstrate that 0 → X ∈ F − mono if and only if X is flat and that
UP ⊆ F −mono and so fib(F −mono) ⊆ E . However so far we have been unable to show
that F −mono is not only saturated but also cofibrantly generated.

In the case of modules over a unitary ring, it can indeed be shown that F−mono is cofibrantly
generated but the proof seems to depend on the additive structure of the category of modules.
We would however like to conjecture that this result is also true for the category of centred
acts over a monoid with zero. Little however has been written on the homological aspects
of the category of centred S−acts.
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