
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Parallel Sparse Matrix Solution for

Direct Circuit Simulation on a Multiple

FPGA System

by

Tarek Nechma

A thesis submitted for the degree of

Doctor of Philosophy

December 2012

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:tn06r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

Parallel Sparse Matrix Solution for Direct Circuit Simulation on a Multiple

FPGA System

by Tarek Nechma

SPICE, from the University of California, at Berkeley, is the de facto world standard

for circuit simulation. SPICE is used to model the behaviour of electronic circuits prior

to manufacturing to decrease defects and hence reduce costs. However, accurate SPICE

simulations of today’s sub-micron circuits can often take days or weeks on conventional

processors. In a nutshell, a SPICE simulation is an iterative process that consists of

two phases per iteration, namely, model evaluation followed by a matrix solution. The

model evaluation phase has been found to be easily parallelisable unlike the subsequent

phase, which involves the solution of highly sparse and asymmetric matrices.

In this thesis, we present an FPGA implementation of a sparse matrix solver hard-

ware, geared towards matrices that arise in SPICE circuit simulations. As such, we

demonstrate how we extract parallelism at different granularities to accelerate the solu-

tion process. Our approach combines static pivoting with symbolic analysis to compute

an accurate task flow-graph which efficiently exploits parallelism at multiple granularities

and sustains high floating-point data rates. We also present a quantitative comparison

between the performance of our hardware protrotype and state-of-the-art software pack-

age running on a general purpose PC equipped with a 2.67 GHz six-core 12-thread Intel

Core Xeon X5650 microprocessor and 6 GB memory. We report average speedups of

9.65×, 11.83×, 17.21× against UMFPACK, KLU, and Kundert Sparse matrix packages

respectively. We also detail our approach to adapt our sparse LU hardware prototype

from a single-FPGA architecture to a multi-FPGA system to achieve higher acceleration

ratios up to 38× for certain circuit matrices.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:tn06r@ecs.soton.ac.uk

Contents

Abstract . iii

Table of Contents . v

List of Tables . ix

List of Figures . xi

List of Algorithms . xv

Abbreviations xv

Acknowledgements xix

1 Introduction 1

1.1 Accelerating SPICE Circuit Simulations 1

1.2 Research Scope and Objectives . 3

1.3 Thesis Overview and Contributions . 5

1.4 List of Publications . 7

2 Literature Review 8

2.1 The High-Performance Computing Landscape 8

2.2 Efficiency and Scalability of Parallel Systems 13

2.3 The FPGA Supercomputing Paradigm . 15

2.3.1 The FPGA Architecture . 15

2.3.2 The FPGA Technological Trends 18

2.4 FPGA Acceleration of LU Decomposition 20

v

vi CONTENTS

3 SPICE Circuit simulation 23

3.1 Overview of SPICE . 24

3.1.1 Modified Nodal Analysis . 26

3.1.2 The Newton−Raphson Method . 28

3.1.3 Solution of the Sparse Linear System 29

3.1.4 Example Circuit . 30

3.2 Characteristics of Circuit Matrices . 32

3.3 Sparsity and Optimal Reordering of Circuit Equations 34

3.4 SPICE Runtime Analysis . 38

3.4.1 Testing Methodology . 38

3.4.2 Total Runtime Analysis . 42

3.4.3 Runtime Scaling Trends . 45

3.4.4 Parallel Potential Analysis . 47

3.5 Parallel Circuit Simulation . 49

3.6 Summary . 51

4 Sparse Matrix Solution 53

4.1 Theory: Sparse LU Decomposition . 54

4.1.1 Dense LU Decomposition . 54

4.1.2 Sparse LU Decomposition . 56

4.1.2.1 Sparse LU Decomposition Issues 57

4.1.2.2 Sparse Matrices Data Structures 58

4.1.2.3 Elimination Graphs . 59

4.1.3 Fill-reducing Orderings . 61

4.1.3.1 Minimum Degree Ordering 63

4.1.3.2 Nested Dissection Ordering 63

4.1.4 Zero-free Diagonal Orderings . 64

4.2 Parallelising Sparse LU Decomposition . 65

4.2.1 Gilbert-Peierls’ Algorithm . 68

4.2.1.1 Symbolic Analysis . 69

CONTENTS vii

4.2.1.2 Numerical Factorisation 72

4.2.1.3 Symmetric Pruning . 73

4.3 Dependency-Aware Matrix Operations Scheduling 74

4.4 Empirical Analysis of LU Decomposition 87

4.5 Summary . 94

5 Single-FPGA Matrix Solution 97

5.1 FPGA Design Objective . 98

5.2 Parallel Sparse LU FPGA Architecture . 99

5.2.1 Resolving Dataflow Dependencies 100

5.2.2 Design Flow . 101

5.2.3 Top Level Design . 103

5.3 Experimental Setup . 107

5.3.1 FPGA Implementation . 107

5.3.2 Hardware Debugging . 109

5.4 Benchmark Baseline . 110

5.5 Performance Analysis . 113

5.5.1 Cost of the pre-processing stage . 119

5.5.2 Scalability . 121

5.6 Summary . 123

6 Multi-FPGA Matrix Solution 125

6.1 Objective . 126

6.2 Ordering for Coarse-grain Parallel Factorisation 127

6.3 Inter-FPGA Communication . 129

6.3.1 FPGA High Speed Serial Transceivers 130

6.3.2 The Xilinx Aurora Protocol . 131

6.3.3 Experimental Aurora Tests . 133

6.4 Multi-FPGA LU Factorisation . 136

6.4.1 System Architecture . 136

viii CONTENTS

6.4.2 Experimental Setup . 139

6.4.3 Performance Analysis . 140

6.5 Summary . 141

7 Conclusion and Future Works 144

7.1 Conclusion . 144

7.2 Future Work . 147

A Left-looking LU Factorisation 149

A.1 Solving Triangular Systems . 149

A.2 Gaussian Elimination . 150

A.3 Left-looking LU Decomposition . 153

B Xilinx XUPV5-LX110T Development Board 155

References 161

List of Tables

3.1 Characteristics of Circuit Matrices [97] . 33

3.2 Sample output of the spice3f5 rusage statistical function. 40

3.3 Circuit Simulation Benchmark Matrices 42

4.1 Unconstrained DAMOS Schedule for Matrix A. 81

4.2 Modified DAMOS Schedule for Matrix A with modulo 3. 82

4.3 Modified DAMOS Schedule for Matrix A with modulo 2. 83

4.4 DAMOS performance measurements with different moduli. 86

4.5 Predicted acceleration using DAMOS with different moduli 86

4.6 A selection of test matrices from the UFMC repository [97] 87

4.7 Impact of different ordering heuristics on the number of nonzeros in the

LU of some selected circuit matrices . 90

4.8 Floating-point operations count of Gilbert-Peierls LU Decomposition of

some selected circuit Matrices . 93

5.1 Sparse LU Hardware Prototype Resource Utilisation on Virtex-5 LX110T 108

5.2 Performance comparison of UMFPACK, Kundert Sparse, and KLU run-

times . 114

5.3 LU decomposition hardware acceleration achieved versus UMFPACK,

Kundert Sparse, and KLU . 116

5.4 Sparsity effect on the acceleration ratios of the LU hardware prototype . . 118

5.5 Cost of the symbolic analysis in KLU and DAMOS 120

5.6 Sparse LU FPGA accelerator performance scaling trends 121

ix

x LIST OF TABLES

5.7 Sparse LU Hardware Prototype Resource Utilisation on a Virtex-7 XC7V200T123

List of Figures

2.1 Moore’s Law Versus Performance [23] . 9

2.2 The Performance Gap [30] . 10

2.3 Worldwide Cost to Power and Cool Server Installed Base, 1998-2012 [34] . 11

2.4 Worldwide Power and Cooling Server Expense as a Percentage of New

Server Spend, 1996-2012 [34] . 11

2.5 Amdahl’s Law [53] . 14

2.6 The General Xilinx FPGA Architecture [61] 16

2.7 Slice Architecture in the Xiling Virtex 7 Series FPGAs [64] 17

2.8 Layout of 6-Input LUT within a Xiling Virtex 7 Slice [64] 17

2.9 Xilinx FPGA Technology Trends [68] . 19

2.10 Pivot and Sub-matrix Update Logic, as proposed by Johnson et al. [78] . 21

2.11 FPGA Dataflow Architecture for SPICE Sparse-Matrix Solve, proposed

by kapre et al. [80]. 22

2.12 Basic PE architecture used for spare LU decomposition acceleration, pro-

posed by Wu et al. [81] . 22

3.1 Basic configuration of a SPICE simulator [85] 25

3.2 SPICE Circuit Example . 30

3.3 Matrix Plots for Selected Circuit Matrices 35

3.4 Effect of ordering on the sparsity of the LU factors: A(:, p) permuted ma-

trix A with column permutation p, lu() denotes Matlab’s LU factorisation

function . 36

3.5 Passive half-wave rectifier. 39

xi

xii LIST OF FIGURES

3.6 Passive half-wave rectifier SPICE Netlist. 39

3.7 Performing the SPICE Simulation of ISCAS85/89 Benchmark Circuits

using iscas2spice software suite [111] . 41

3.8 SPICE total runtime scaling trends with ISCAS85/89 benchmark circuits 43

3.9 SPICE Runtime Breakdown . 43

3.10 Effect of Parasitics on SPICE Runtime [113] 44

3.11 Effect of Circuit Size on SPICE Runtime Distribution [113] 44

3.12 SPICE Runtime Scaling Trends Per Phase 45

3.13 SPICE Matrix Reodering Scaling Trends 46

3.14 The increase of MOSFET model parameters [117] 47

4.1 Right and left looking LU decomposition 56

4.2 (a) A matrix and its (b) elimination tree 60

4.3 The effect of ordering on fill-in during LU factorisation 61

4.4 A square symmetric matrix and its equivalent elimination graph 62

4.5 Elimination graph after the first elimination step 62

4.6 Minimum degree elimination steps . 63

4.7 Example of finding a zero-free diagonal matrix permutation via maximal

matching on a bipartite graph. 65

4.8 Gilbert-Peierls Algorithm Data Flow Pattern [181] 69

4.9 Nonzero pattern for a sparse triangular solve 70

4.10 Example of a symbolic analysis for a lower triangular sparse system [155] 71

4.11 Gilbert-Peierls Algorithm (A=LU) in the MATLAB notation 72

4.12 Pseudocode of the Sparse Triangular Solution (Lx=b) 72

4.13 Symmetric pruning example [183] . 73

4.14 Matrix A with an asymmetric nonzero pattern 75

4.15 Symbolic Gilbert-Peierls factorisation example: step 1. 75

4.16 Symbolic Gilbert-Peierls factorisation example: step 2 - step 4. 76

4.17 The predicted the nonzero pattern of the LU factors of matrix A. 77

4.18 Symbolic Gilbert-Peierls factorisation example: step 5 - step 9. 78

LIST OF FIGURES xiii

4.19 Unconstrained DAMOS Schedule Graph for Matrix A. 81

4.20 DAMOS Schedule Graph for Matrix A with modulo 3. 82

4.21 DAMOS Schedule Graph for Matrix A with modulo 2. 83

4.22 Overview of the Dependency-Aware Matrix Operations Scheduling (DAMOS)

Algorithm. 84

4.23 DAMOS Schedule Graph for Matrix A with modulo 1. 85

4.24 Zero-free Diagonal Circuit Matrices using a Maximum Traversal Permu-

tation . 89

4.25 Nonzero structure of “fpga dcop 01” prior to LU decomposition 91

4.26 Nonzero structure of “fpga dcop 01” after LU decomposition 91

4.27 The Effect of Matrix Ordering on the Column Flop Count of LU Decom-

position of the “fpga dcop 01” matrix . 95

4.28 The Effect of Matrix Ordering on the Column Flop Count of LU Decom-

position of the “oscil dcop 01” matrix . 95

4.29 The Effect of Matrix Ordering on the Column Flop Count of LU Decom-

position of Bomhof2 . 96

4.30 The Effect of Matrix Ordering on the Column Flop Count of LU Decom-

position of Rajat19 . 96

5.1 Example DAMOS Scheduling Graph with modulo 3. 99

5.2 Example of a Matrix A and it is corresponding DAMOS Scheduling Graph.100

5.3 Dataflow of a Gilbert-Peierls LU factorisation 102

5.4 Top Level Design for the LU Decomposition FPGA Hardware 104

5.5 State machine for the proposed LU decomposition hardware 104

5.6 PE at the sparse triangular solution phase 105

5.7 High-level schematic of LU hardware controller 106

5.8 ChipScope Pro System Block Diagram [193] 110

5.9 KLU sample code [102] . 112

5.10 LU decomposition FPGA acceleration achieved versus KLU, Kundert

Sparse, and UMFPACK . 117

xiv LIST OF FIGURES

5.11 The impact of matrix sparsity on the performance of the LU FPGA hard-

ware . 118

5.12 Sparse LU FPGA acceleration scaling trends in terms of PEs 122

6.1 Graph with four independent sub-matrices [201] 126

6.2 Factorisation steps of a matrix in the Bordered Diagonal Bock (DBD)

form [201] . 128

6.3 A Simplified Serial Communication Example 130

6.4 Functional view of the Aurora Protocol [216] 131

6.5 Aurora interfaces [216] . 132

6.6 Single FPGA Board Aurora Loopback Test 134

6.7 Two FPGA Boards Aurora Test . 134

6.8 Aurora Loopback Test ModelSim Waveforms 135

6.9 Aurora Loopback Test ChipScope Waveforms 135

6.10 Architecture of the multi-FPGA Sparse LU Accelerator 137

6.11 Architecture of the SATA TX Module . 138

6.12 Architecture of the SATA RX Module . 139

6.13 The Targeted BDB Matrix Form . 140

6.14 Multi-FPGA LU Decomposition Accelerator Performance Versus KLU . . 142

6.15 Multi-FPGA LU Decomposition Accelerator Performance Relative to a

16-PE single-FPGA Accelerator . 142

6.16 Two-level Nested BDB Form . 143

6.17 Two-level Nested BDB Processing Tree 143

A.1 Gaussian Elimination Data Access and Computation Pattern 153

B.1 XUPV5 Development Board Block Diagram 156

B.2 Detailed Description of XUPV5-LX110T Components: (Front) 157

B.3 Detailed Description of XUPV5-LX110T Components: (Back) 158

List of Algorithms

4.1 LU Decomposition Generic Pseudo Code 55

4.2 Gilbert-Peierls LU factorisation of a n-by-n asymmetric matrix A 68

4.3 Sparse forward substitution - Version 1 . 69

4.4 Sparse forward substitution - Version 2 . 70

A.1 Forward substitution . 150

A.2 Gaussian elimination . 152

xv

Abbreviations

AMD Approximate Minimum Degree

ASIC Application Specific Integrated Circuit

BCE Branch Constitutive Equations

BDB Bordered Diagonal Block

BLAS Basic Linear Algebra Subprograms

BRAM Block Random Access Memory

CCS Compressed Column Storage

CLB Configurable Logic Block

CRS Compressed Row Storage

COLAMD COLumn Approximate Minimum Degree

DBB Diagonal Bordered Block

DRAM Dynamic Random Access Memory

FLOPS FLoating point Operations Per Second

FPGA Field Progammable Gate Array

LUT Look-Up Table

MNA Modified Nodal Analysis

NNZ Number of Non Zeros

RAM Random Access Memory

SRAM Static Random Access Memory

UFMC University of Florida Matrix Collection

VLSI Very Large Scale Integration

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

xvi

Declaration of Authorship

I, Tarek Nechma, declare that the thesis entitled Parallel Sparse Matrix Solution for

Direct Circuit Simulation on a Multiple FPGA System, and the work presented in it are

my own, I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as listed in Section 1.4 of this thesis.

Signed:

Date :

xvii

Acknowledgements

I would like to thank all those who help me throughout my research. I am highly

thankful to my supervisors Prof. Mark Zwoliński and Dr. Jeff Reeve from the School of

Electronics and computer Science, University of Southampton, whose help, stimulating

suggestions, and encouragement helped me in all the time of research and writing of this

thesis. I am particularly indebted to Prof. Zwoliński for his unconditional counsel

and support throughout a turbulent chapter of my life. I am eternally grateful for his

invaluable advice and precious help.

I would also like to express my thanks to all involved in my academic career for

influencing me and helping me achieve my goals. I thank my teachers and professors

throughout my studies for their support and teaching. Likewise, I would like to thank,

in no particular order, Dr Imed Bouchrika, Dr Asma Ounnas, Jurga Puodžiukaitė, Ab-

deldjalil Belouettar, Dr Issam Maamria, Mohamed Al Tahs Al Salehi, Kheiredine Der-

ouiche, Dr Ahmed Maache, Nadjib Mammeri, Issam Souilah, and Mourad Khelifa, for

their emotional support throughout my PhD. I am particularly grateful to my mentors

Abdelwaheb and Youcef Djahel who introduced me to the world of electronics and com-

puter science, and without their guidance I would have not followed the path that led

me to write this thesis.

Finally, I would like dedicate this work to the memory of my grand parents who passed

away whilst writing this thesis. I also thank my family, especially my beloved parents

Abdelwaheb and Djahida; and my dear brothers Issam, Chemsedine, and Mohamed

Lamine, for their love, and for always supporting and encouraging me.

xix

To my parents and

the everlasting memory of

my grandparents...

xxi

Chapter 1

Introduction

1.1 Accelerating SPICE Circuit Simulations

The design of modern Very Large Scale Integration (VLSI) systems requires extensive

and exhaustive circuit simulations. A circuit simulator allows a design to be tested

and analysed thoroughly with respect to its behaviour and projected targets, prior to

committing it to expensive silicon. However, circuit simulation is a computationally

demanding task and its complexity grows faster than the number of nodes in the circuit

[1], as it will be demonstrated in Section 3.4. Consequently, simulations become dramat-

ically time-consuming and almost impractical with today’s multi-million transistor VSLI

circuits. Moreover, miniaturisation-induced variations increasingly impact the electrical

behaviour of a design. This is often tackled by performing Monte Carlo simulations,

resulting in a significant increase in the overall simulation [2]. This highlights further

the increasing need to accelerate the circuit simulation kernels.

Simulation Program with Integrated Circuit Emphasis (SPICE) is a widely used

circuit simulator that models the analogue behaviour of semiconductor circuits using

a non-linear differential equation solver. In essence, a SPICE algorithm is an iterative

process that consists of two phases per iteration, namely, model evaluation phase followed

by the matrix solution phase. In the first step, a set of non-linear differential equations is

1

2 Chapter 1 Introduction

generated, from the layout and the components of the underlying circuit, using modified

nodal analysis (MNA) [3]. The equations produced are then discretised and linearised

using implicit integration and Newton-Raphsons method respectively. The resulting

sparse system is solved, in the matrix solution phase, for the unknown nodal voltages

using sparse matrix techniques, such as LU decomposition. The SPICE algorithm will

be revisited in more detail in Chapter 3 whereas LU decomposition will be throughly

studied in Chapter 4.

SPICE simulations of large sub-micron circuits with can often take days or weeks of

runtime on current processors. SPICE simulations are typically infeasible for circuits

larger than 20,000 devices [4]. Moreover, SPICE is difficult to parallelise on conven-

tional processors due to its irregular and unpredictable compute structure, modest peak

floating-point capacities, and limited memory bandwidth. In effect, it has been observed

that less than 7% of the floating-point operations in SPICE are automatically vectoris-

able [1, 5]. As such, the SPICE algorithm is used in the SPEC92 benchmark collection,

which represents a set of challenging problems for microprocessors [6].

Over the past couple of decades, the Electronic Design Automation (EDA) commu-

nity has relied on on innovations in computer architecture and clock frequency increases

to speedup applications such as SPICE. However, the performance gains using these

traditional computer organisations have now hit the so-called “speed wall”, as it will be

explained in Section 2.1. This has led to the adoption of multi-core architectures as a

solution to sustain performance increases. This is a clear indication that further per-

formance improvements must be driven by parallelism harnessed at the hardware level.

This is further evidenced in the great interest that research community has recently

shown in taking advantage of parallel architectures devices, such as FPGA and GPUs,

to boost the performance of the current EDA tools [7, 8, 9, 10]. FPGAs also have the ad-

vantage of being reconfigurable devices, which enables the creation of custom datapaths

and controllers for the problem at hand with the promise of greater performance. On

the other hand, programming FPGAs requires specialist knowledge of hardware design

techniques and Hardware Description Languages (HDLs). As such, this thesis details

Chapter 1 Introduction 3

our approach to study the SPICE simulator runtime, identity algorithms that can ex-

tract parallelism at the software level, which can be then harnessed at the hardware-level

using a multiple Processing Element (PE) parallel architecture.

FPGA-based computing offers the potential for acceleration well beyond Moore’s

Law improvements in microprocessors. This has led to intensive research to accelerate

numerically-intensive algorithms in general and Computer-Aided Design (CAD) related

applications, such as the SPICE simulator more specifically [7, 10]. Given the recent

advances in FPGA densities and their built-in interconnect technology, a key question

to ask is whether a multiple FPGA system can be leveraged to accelerate large circuit

simulations. As such, this thesis explores potential ways to achieve the latter.

1.2 Research Scope and Objectives

The SPICE simulator components have varying degrees of inherent control and data

parallelism. Consequently, the overall execution time can be improved by parallelising

the numerically intensive parts of the simulation process. Therefore, one of the main

objectives of this project is to investigate a design methodology for an FPGA accelerator

that exploits the inherent parallelism in the SPICE simulator. This involves analysing

the SPICE algorithm to identify the key parts most suitable for FPGA implementation

in addition to the hardware design and algorithmic related decisions.

However, SPICE simulation runtime analysis shows that for large circuits the matrix

solver dominates the overall time [11]. Moreover, the model evaluation phase has been

found to be easily parallelisable unlike the matrix solution phase, which involves the

solution of a highly sparse, unstructured (i.e. do not follow a particular pattern), and

asymmetric matrix [12]. The SPICE runtime will be analysed thoroughly in Chapter 3

(Section 3.4). As such, this thesis will focus on demonstrating how a spatial imple-

mentation of the matrix solution phase of the SPICE circuit simulator, can be designed

and optimised to leverage the characteristics of circuit simulations matrices to harness

a greater degree of parallelism.

4 Chapter 1 Introduction

In order to sustain performance gains with the ever-increasing matrix sizes, we also

investigate algorithmic and hardware decisions that can improve the scalability of our

design. Nevertheless, a completely spatial implementation targeting large matrices can-

not fit on a single FPGA. Hence, another key objectives of this research project is to look

how to our design can span over several FPGAs whilst minimising the communication

overhead.

This thesis addresses the following research questions:

• What is the acceleration potential of the SPICE simulator?

• How could we parallelise the matrix solution phase of the SPICE simulator? What

are the different degrees of parallelism present in this phase?

• How do we leverage FPGA features to accelerate SPICE matrix solution phase ?

– How can we take advantage of the properties of circuit matrices at the software

and hardware level?

– How can we deal with the irregularity inherently present in sparse matrix

calculations?

– How can we exploit the parallelism present in SPICE matrix calculations at

different granularities?

– What are the algorithmic decisions or compromises that can be taken to

enhance the potential Speedup?

• Can FPGAs outperform modern multi-core processors for solving large matrices

that arise circuit simulations?

• Can off-the-shelf FPGA boards used to effectively create a high performance multi-

FPGA System?

• What are the scalability issues of a multi-FPGA design?

Chapter 1 Introduction 5

1.3 Thesis Overview and Contributions

The intent of this thesis is the study the parallelisation of the Matrix Solution phase

of a SPICE simulation on a multiple FPGA system, which has not been previously

reported. This thesis also surveys relevant literature to accelerating SPICE simulation.

Consequently, we propose a parallel implementation of a sparse matrix solver, which

optimally exploits matrix sparsity to harness parallelism at different granularities. Our

implementation is optimised for execution on a single FPGA node and can be also

used as a Processing Element (PE) within a larger multi-FPGA design. Therefore, we

investigate a methodology of how to partition huge matrices into almost independent

blocks that can be factorised in parallel over several FPGAs. We also provide empirical

data to demonstrate the merits of our design.

This thesis is structured as follows:

• Chapter 2: Literature Review

This chapter summarises the state of the art in high performance computing and

surveys efforts to parallelise sequential code. We look at attempts to use FPGAs

as acceleration engines.

• Chapter 3: Accelerating SPICE Circuit Simulations

This chapter gives an overview of the SPICE simulation process, explains the core

algorithms involved, and sheds light on the theory that underpins a typical SPICE

simulation. In this chapter, we also present our first key contribution by providing

an empirical analysis for the SPICE runtime and matrices that typically arise

in circuit simulations. As such, we highlight how the total SPICE execution time

copes with the ever-increasing element count of modern circuits. We also study the

scaling trends of the two key components of SPICE, i.e. the model evaluation and

matrix solution phases, in terms of complexity, execution time, and parallelism

potential. We also review the various studies and research projects that have

attempted to parallelise SPICE in the last couple of decades.

6 Chapter 1 Introduction

• Chapter 4: Sparse Matrix Solution

In this chapter, we cover sparse LU decomposition theory from the ground up. We

also show how matrices and graph theory are closely related, especially in the realm

of parallelism extraction. This chapter provides a critical review of prior research

relevant to the techniques employed to accelerate the LU factorisation process. It

also offer an analysis of the algorithms used in our experiments. We conclude the

chapter by providing details of our second key contribution, i.e., demonstrating

how we employ static pivoting and symbolic analysis to create an accurate task-

flow execution graph which efficiently exposes column-level parallelism.

• Chapter 5: Single-FPGA Matrix Solution

In this chapter, we present a novel parallel FPGA implementation for a sparse

matrix LU decomposition hardware optimised for execution on a single FPGA.

We show how our design realistically harnesses the parallelism inherently present

SPICE circuit matrices. This chapter also provides the benchmark results of

the prototype implementation using circuit matrices obtained from University of

Florida Matrix Collection. We evaluate the performance of our solver against some

of the state-of-the art sparse matrix packages, such UMFPACK, Kundert Sparse,

and KLU. We evaluate and gauge the operational performance of the Sparse LU

Hardware using a Xilinx Virtex-5 LX110T FPGA, but we also extrapolate our

results to the more recent XC7V200T Virtex 7 FPGA. We also study the effect

of matrix sparsity on the performance of our hardware design. We show that our

16-PE design configuration outperforms KLU running on a 2.67 GHz 6-core 12-

thread Intel Xeon X5650 microprocessor by an average of 9.65× using a Virtex 5

FPGA.

• Chapter 6: Multi-FPGA Matrix Solution

In this chapter, we explain how we adapt our sparse LU hardware prototype from a

single-FPGA architecture to a multi-FPGA system. As such, we demonstrate how

we leverage the FPGAs internal Multi-Gigabit Transceivers (MGTs) to link several

FPGA. We also show the design changes necessary to minimise the inter-FPGA

communication and ensure that acceleration scales accordingly. We conclude the

Chapter 1 Introduction 7

chapter by illustrating our prototype’s ability to accelerate certain circuit matrices

up to 38× when compared a commodity CPU solution and up to 2.8× when

compared to single-FPGA accelerator system. We also project the performance

gains that can be achieved using a greater number of FPGAs.

• Chapter 7: Conclusions and Future Work

The final chapter draws some conclusions by reviewing the key points and linking

them to the findings achieved. The chapter also discusses the shortcomings of our

prototype and suggests various enhancements. The chapter ends with some future

research directions.

1.4 List of Publications

So far the following papers have been published:

1 - Parallel Sparse Matrix Solver for Direct Circuit Simulations on FPGAs, Tarek

Nechma, Mark Zwolinski, Jeff Reeve, ISCAS, Paris, France 2010

2 - Sparse Matrix Solver for Direct Circuit Simulations on a Multiple FPGA System (to

be submitted), Tarek Nechma, Mark Zwolinski, Jeff Reeve, International Conference

on ReConFigurable Computing and FPGAs.

Chapter 2

Literature Review

2.1 The High-Performance Computing Landscape

In the last decade, a considerable amount of research has been conducted into new

ways to accelerate numerically intensive algorithms in general, and how to speed up the

solution of large scientific problems more specifically [13, 14, 15, 16, 17]. In effect, solving

such problems efficiently has been a great challenge to conventional computing platforms

as they perform poorly on several fronts. Firstly, most scientific calculations demand

floating-point arithmetic to achieve numerical stability and meet their large dynamic

range data requirements [18]. However, general-purpose microprocessors exhibit modest

peak floating-point performance, which limits the acceleration potential [19]. Secondly,

the memory hierarchy of a conventional computer is highly unsuitable for solving such

scientific problems as the irregularity in the data access pattern leads to a high rate of

cache misses, and thus increases latency [20, 21].

Nevertheless, improvements in scientific applications performance have historically

relied on Central Processing Unit (CPU) performance growth, which in turn relied on

exploiting ever larger numbers of transistors operating at higher frequencies [22]. This

trend has, however, dramatically slowed down in recent years due to physical limitations

associated with miniaturisation on one hand, and high power consumption associated

8

Chapter 2 Literature Review 9

with higher frequencies on the other [23]. In effect, whilst Moore’s law continues, three

other metrics impacting computer performance hit a peak in 2002, namely, clock speed,

power consumption, and number of FLoating point Operations Per Second (FLOPS),

as can be seen in Figure 2.1.

Figure 2.1: Moore’s Law Versus Performance [23]

To overcome this so-called “speed wall” and to sustain performance improvements,

the silicon industry has been moving away from single-core computer organisations to

multi-core microprocessor architectures [24]. Nonetheless, the parallelisation leverage

offered by multi-core machines, such as modern Graphical Processing Units (GPUs) and

CPUs, remains highly dependent on the software algorithms and implementation used

[25]. This is a clear indication that in order to achieve effective acceleration, parallelism

has to be exposed at software level using modified or carefully chosen algorithms. Only

then can the exposed parallelism be harnessed at the hardware level using some form of

a special architecture [26].

10 Chapter 2 Literature Review

Despite the significant advances in microprocessor technology, keeping up with the

ever-increasing demands for computational power remains a challenge for General Pur-

pose Processors (GPPs) [27]. This growing gap between performance of GPPs and the

growing algorithmic complexity of today’s applications is illustrated in Figure 2.2. High

Performance Computing (HPC) refers to the use of supercomputers and computer clus-

ters to tackle complex problems which are overwhelming for conventional GPPs. These

problems are typically data-intensive and computationally demanding. HPC systems

usually operate in the teraFLOPS region and exhibit high data throughputs. In the

most common form, a HPC system consists of a network of commodity processors (e.g

Intel, AMD) interconnected via high-speed links, as evidenced by the systems surveyed

in the TOP500 R© list [28]. This configuration enables software engineers to write code

that exploits any coarse-grain parallelism present in the problem at hand, and thus speed

up the overall solution process [29].

Figure 2.2: The Performance Gap [30]

HPCs have accomplished a great deal of success in solving computationally intensive

problems [31, 32, 33]. However, their high price and the recurring high maintenance costs

limited their accessibility to certain high-end applications only. According to research

Chapter 2 Literature Review 11

conducted by International Data Corporation (IDC), for every $1.00 spent on new data

centre hardware, at least an additional $0.50 is spent on power and cooling [34], as can

be seen in Figure 2.3. IDC also projects that the expense of power and cooling will reach

70% of new server spending by the end of 2012, as illustrated in Figure 2.4.

Figure 2.3: Worldwide Cost to Power and Cool Server Installed Base, 1998-2012 [34]

Figure 2.4: Worldwide Power and Cooling Server Expense as a Percentage of New
Server Spend, 1996-2012 [34]

The recent advances in hardware and software technologies, including low power

processors, solid state drives, and energy efficient management techniques have helped

12 Chapter 2 Literature Review

to alleviate the energy consumption issue to a certain degree [35, 36]. However, due

to the ever-increasing demand for computational power, the reduction in the energy

consumption remains one of the key focus areas when designing such systems [37]. Hence,

High Performance Reconfigurable Computers (HPRCs) have emerged as an alternative

solution [38]. Reconfigurable computing aims at coupling the flexibility of software

with the high performance of hardware through the use of Field Programmable Gate

Arrays (FPGAs). Hence, computing clusters have been augmented with built-in FPGA

accelerators in order to boost their computational performance while reducing the power

consumption significantly [39, 40, 41, 42].

In simplified terms, an FPGA is a semiconductor device that consists of an array of

programmable logic elements, configurable interconnect, and I/O (Input/Output) blocks

which can be user-configured to implement complex digital circuits [43]. This highly re-

programmable structure enables FPGAs to exploit parallelism at different granularities.

Moreover, FPGAs allow the execution of applications at near Application Specific In-

tegrated Circuit (ASIC) speeds whilst circumventing the high cost of creating custom

silicon [44, 45]. However, HPC applications are usually very large algorithms and cannot

be fitted onto a single FPGA. In effect, it has been observed from the literature surveyed

that there has been a recent trend towards using multi-FPGA systems to accommodate

ever-larger applications and to offer greater multilevel parallelism leverage [46, 47, 48].

The heterogeneous nature of HPRCs offers the ability to harness parallelism at differ-

ent granularities. However, parallelism has to be exposed at the software level before it

can be exploited by the underlying architecture. For instance, in order to harness coarse-

grain parallelism, HPC applications can be manually structured for parallel execution

across a cluster of processors using special compiler directives such as multi-threading,

Message Passing Interface (MPI), Open Multi-Processing (OpenMP), and so forth [49].

The finer-grained parallelism, in the case of general-purpose CPUs, can be extracted

automatically by a combination of complier optimisation techniques and specialised op-

erating system scheduling algorithms. In the case of FPGAs, fine-grained parallelism is

extracted via a combination of finely-tuned behavioural descriptions and a spatial/tem-

poral hardware synthesis process. CPUs usually have to use their own built-in functional

Chapter 2 Literature Review 13

units to perform computations, however, FPGA designs can be finely customised and

pipelined to a much higher degree, thanks to their reconfigurable architecture [50].

To sum up, reconfigurable computing architectures provide the capability for spatial

parallel computations (i.e. multiple processing elements), and hence can outperform

conventional computing systems in many scientific applications. While there is poten-

tial for enormous speedup using FPGA acceleration of HPC applications, achieving it

requires both selecting appropriate algorithms and specific design methods that ensure

parallelism is effectively harnessed.

2.2 Efficiency and Scalability of Parallel Systems

Current high performance computers boast a large number of Processing Elements (PEs)

that work in a parallel fashion to accelerate computationally intensive tasks [51]. Gen-

erally speaking, the cost of a parallel system with N identical processors is less than the

cost anN times faster single-core processor [25]. Hence, it is possible to use cheaper lower

performance processing elements to build higher performance parallel systems. Conse-

quently, a number of cheap Commercial Off-The-Shelf (COTS) FPGAs can be used to

build a higher performance hardware accelerator. However, potential bottlenecks such

as memory bandwidth and I/O bandwidth, if they do not scale with the number of

PEs, can hinder if not destroy the acceleration gain of adding PEs [52]. Hence, one of

the objectives of this research project is to look at how to design a hardware accelera-

tor that spans over several COTS FPGAs whilst minimising both the inter-FPGA and

intra-FPGA communication overhead.

Nonetheless, as discussed in the previous section, the parallelisation leverage, offered

by FPGAs and multi-core machines, highly depends on the software algorithms and im-

plementation used. In effect, the possible improvement gains are limited by the portion

of the software that can be parallelised to run simultaneously, as illustrated in Figure 2.5.

14 Chapter 2 Literature Review

This is known as Amdahls Law [53], which states that if P is the proportion of a soft-

ware that can parallelised, and (1 − P) is the proportion that is serial, i.e. cannot be

parallelised, then the maximum speedup that can be achieved by using N processors is:

S(N) =
1

(1− P) + P
N

(2.1)

For example, if only 90% of an algorithm can be parallelised, the theoretical maximum

acceleration that can be achieved is 10 times, as shown in Figure 2.5, regardless of the

number processors used.
01/10/2010 15:38AmdahlsLaw.svg

Page 1 of 1file:///Users/tarek/Desktop/AmdahlsLaw.svg

Figure 2.5: Amdahl’s Law [53]

A closely related performance measure to Amdahl’s law is “Parallelism Efficiency”

[54], which can be expressed as a ratio of the time that would take an algorithm to

execute on a single processor (i.e. T1) over the n times upscaled execution time of the

same algorithm on a n number of processors (i.e. Tn) :

Chapter 2 Literature Review 15

En =
T1
nTn

(2.2)

In general, acceleration and efficiency provide rough estimates of the performance

changes that can be expected in a parallel processing system by increasing the parallelism

degree N , e.g. by adding more processors. Therefore, in order to achieve high efficiency

with a parallel implementation of an algorithm, one must carefully tune the application

to ensure that there is an adequate number of PEs while minimising the parallelisation

overhead of increasing the number of PEs.

2.3 The FPGA Supercomputing Paradigm

For many years, FPGA use has been limited to applications such as ASIC prototyping

and verification. In the recent years, however, there has been a renewed interest to

utilise FPGAs to accelerate numerically-intensive scientific problems [55, 56, 57, 58].

This intense interest is mainly due to the fact that FPGA densities have grown to such

an extent that floating-point operations, which most scientific kernels rely on, can be

now easily accommodated [59]. Underwood [60] was among the first researchers to show

that the FPGAs floating-point computational ability exceeds general-purpose processor

performance in single-precision and double-precision floating-point operations. In this

section, we briefly review the FPGA architecture and highlight some of the key features

of an FPGA that make it well-suited to accelerate SPICE simulations. We also shed

light on the current technological trends of FPGAs.

2.3.1 The FPGA Architecture

A Field Programmable Gates Array (FPGA) is a semiconductor device with a massively-

parallel reprogrammable architecture. Modern FPGAs consist of up to hundreds of

thousands of Configurable Logic Blocks (CLBs), and interconnect wires that can be

configured at the bit- and wire-level to implement arbitrary logic functions. Xilinx and

16 Chapter 2 Literature Review

Altera are the current main FPGA vendors. Modern FPGAs also incorporate high per-

formance DSP blocks (e.g. binary multipliers), embedded memory blocks (BRAMs),

high speed programmable Input/Outut (IO) devices, and even fully functional micro-

processors into the reconfigurable fabric of certain high-end models [61]. Figure 2.6

shows the typical Xilinx FPGA architecture.

Figure 2.6: The General Xilinx FPGA Architecture [61]

CLB design varies between different FPGA vendors and FPGA families. They share,

however, the same basic components and architecture. A typical CLB contains: one or

more lookup tables (LUTs), routing fabric, and a flipflop that can be used to register data

synchronously. CLBs may also contain some enhancements, such as carry propagation

chains for faster distributed arithmetic [62, 63]. For instance, in the Xilinx Virtex 7

series FPGAs, CLBs are made up of two slices. Each slice consists of four six-input

LUT and eight registers, as shown in Figure 2.7. Figure 2.8 shows one LUT and its

associated two registers and omits the carry chain. In a full slice, there are four LUTs

and eight registers.

The inherently parallel architecture of an FPGA allows computations to be performed

in space rather than time by simultaneously evaluating independent operations in a fine-

grained fashion. For instance, in a single-core CPU, instructions stored in an instruction

memory are processed one at a time by the Arithmetic Logic Unit (ALU). Intermediate

results are stored in a data memory. On an FPGA, operations can be translated into

Chapter 2 Literature Review 17

2 www.xilinx.com WP405 (v1.0) March 6, 2012

Introduction

Introduction
The configurable logic block (CLB) is the core of the logic structure of Xilinx FPGAs.
Within a CLB reside slices that consist of look-up tables (LUTs), carry chains, and
registers. These slices can be configured to perform logical functions, arithmetic
functions, memory functions, and shift register functions. Over the years, the quantity
of resources within a CLB has evolved to continuously provide the optimum
capability at the right cost. The original Virtex® and Spartan®-II architectures, which
were introduced around the turn of the millennium, provided a CLB consisting of two
slices, where a slice contained two four-input LUTs and two registers. Since then, a
slice has changed significantly—in 7 series FPGAs, a slice consists of four six-input
LUTs (LUT6) and eight registers, as shown in Figure 1.
X-Ref Target - Figure 1

Figure 1: Slice Architecture in 7 Series FPGAs

WP405_01_100711

LUT

Slice

Figure 2.7: Slice Architecture in the Xiling Virtex 7 Series FPGAs [64]

Slice Architecture in 7 Series FPGAs

WP405 (v1.0) March 6, 2012 www.xilinx.com 3

Slice Architecture in 7 Series FPGAs
All 7 series FPGA families (Artix™-7, Kintex™-7, and Virtex-7 devices) use the same
logic architecture: CLBs consisting of two slices. Slices in the 7 series FPGA
architecture come in two varieties—those that are capable of implementing logical,
shift register, and memory functions in the LUT, called SLICEM, and those that can
only implement logical functions in the LUT, called SLICEL. Employing this strategy
of full feature SLICEM combined with reduced feature SLICEL enables the optimum
capability and performance while maintaining low cost and low power. The 7 series
FPGA slice architecture is based closely on the slice architecture introduced in the
Virtex-6 and Spartan-6 families. The similarity between the Virtex-6, Spartan-6, and
7 series FPGA slice architecture provides an easy migration path for existing designs
and IP into 7 series FPGAs; designers can migrate their designs to the latest features
and highest performance, lowest power devices with minimal redesign effort.
Additionally, using the same scalable, optimized architecture for all 7 series FPGAs
allows designs originally targeting one 7 series FPGA family to be ported easily to
another 7 series FPGA family.
Slices are combined in a CLB in pairs with either two SLICEL or one SLICEL with one
SLICEM. The 7 series FPGAs are built on the column-based ASMBL™ architecture,
which allows for the easy placement of resources where the designer needs them. In
this case, the memory-capable slices are most prevalent in proximity to the columns of
DSP slices, providing designers storage for coefficients close to where they are
required. Xilinx design tools have full knowledge of the relative placement of
resources and intelligently and automatically map a design to the resources in the
most efficient way while adhering to any constraints specified by the user.
Figure 2 shows how the LUT and registers are arranged in relation to one another.
Figure 2 only includes one LUT and its associated two registers and omits the carry
chain. In a full slice, there are four LUTs and eight registers.

The 6-input LUTs are capable of implementing any Boolean logical function that is a
product of six input signals but can also be split into two five-input LUTs—as long as
the two functions share common inputs. Additionally, a LUT in a SLICEM can be
configured as 64 bits of Distributed RAM or up to 32-bit Shift Register Logic (SRL)
functions. For more information, see UG474, 7 Series FPGAs Configurable Logic Block
User Guide.

X-Ref Target - Figure 2

Figure 2: Layout of 6-Input LUT and Two Registers within a Slice

WP405_02_011912

6-Input
LUT

Register

O6

O5

D Q

CE

CLK

S/R

Register

D Q

CE

CLK

S/R

Figure 2.8: Layout of 6-Input LUT within a Xiling Virtex 7 Slice [64]

spatial circuits that implement the dependencies between operations physically using

pipelined wires. Additionally, certain operations, such as division, may require multiple

CPU cycles, whereas a custom pipelined FPGA design for those operations on can deliver

a much higher throughput [65].

FPGAs are not able to achieve comparable frequencies when implementing the same

18 Chapter 2 Literature Review

logic function on ASICs, due to the delay associated with reprogrammability [66, 67].

However, FPGAs have some clear advantages over ASICs. In effect, the implementation

of smaller memories on FPGAs is relatively straightforward as they contain embedded

BRAM blocks and a rich interconnect. Furthermore, pipelining on FPGAs bears no

additional costs as it can be achieved by using the built-in registers. These registers can

be also used to construct smaller memories, whereas in an AISC design the additional

data and address lines may have a significant impact on the design routing and size.

2.3.2 The FPGA Technological Trends

In terms of transistor densities, FPGAs closely follow the trend described by Moore’s

Law. Figure 2.9 plots the characteristics of all Xilinx Virtex FPGA family devices

since 2002. As can be seen from the graphs, FPGAs have continued to double in LUT

area density every 18 to 24 months. For example, the Xilinx largest Virtex 7 FPGA now

boasts more than one million LUT. To put the latter in context, one million LUTs would

be sufficient to synthesise over 800 minimally-configured soft the Xilinx MicroBlaze

processors in a single FPGA device [68]. Furthermore, the FPGAs’ built-in resources,

such as BRAMs, multipliers, and Multi-Gigabit Transceivers (MGTs), also continues

to grow. In effect, the largest FPGAs today provide enough on-chip memory (tens

of megabytes) to rival the capacity of todays state-of-the-art multicores caches whilst

offering an unprecedented increase in external I/O bandwidth. In fact, FPGA built-

in MGTs can now deliver speeds up to 28.05 Gbps per transceiver. Therefore, high-

end FPGAs, such as the Virtex-7 XT FPGAs, can provide up to 2,515.2 Gbps serial

bandwidth [69].

To sum up, the parallel architecture of the FPGA can be used to exploit algorithm

parallelism by performing computations spatially, rather than time-multiplexing them.

Meanwhile, FPGA capacities keep increasing at a much faster rater than CPU speeds,

around 4 times faster as reported by Betz et al. [70]. As such, FPGAs promise an

ever-increasing acceleration potential over conventional microprocessors. Moreover, the

built-in DSP and memory blocks can be leveraged to create high-performance pipelined

Chapter 2 Literature Review 19

0

200

400

600

800

1000

1200

1400

2001 2003 2005 2007 2009 2011 2013

KL
U

Ts

LUT Area Trends

Virtex-7

Virtex-6

Virtex-5 Virtex-4
Virtex-2p

Transition
to 6-input
LUTs

0

500

1000

1500

2000

2500

3000

3500

4000

2001 2003 2005 2007 2009 2011 2013

18
kb

it
Bl

oc
k

RA
M

s

18kbit BlockRAM Trends

Virtex-7

Virtex-6

Virtex-5

Virtex-4
Virtex-2p

0

200

400

600

800

1000

1200

1400

1600

2001 2003 2005 2007 2009 2011 2013

Gb
its

/s

I/O Bandwidth Trends

Virtex-7

Virtex-6

Virtex-5

Virtex-4 Virtex-2p

175GB/sec

0

500

1000

1500

2000

2500

3000

3500

4000

2001 2003 2005 2007 2009 2011 2013

DS
Ps

DSP Multiplier Trends

Virtex-7

Virtex-6

Virtex-5

Virtex-4 Virtex-2p

0

100

200

300

400

500

600

2001 2003 2005 2007 2009 2011 2013

LU
Ts

 p
er

 1
8k

bi
t B

RA
M

LUT to BlockRAM Ratio

avg=232

max=530

min=121

1.2MLUTs

3760 BRAMs

0

2

4

6

8

10

12

14

2001 2003 2005 2007 2009 2011 2013

Bl
oc

kR
AM

s p
er

 G
bi

t/
s

BlockRAM to I/O Ratio

Figure 6: Xilinx FPGA Technology Trends.

2.2 Why Compute With FPGAs?

Since 2005, processor designers have shifted their focus towards increasing core counts to

achieve performance commensurate with Moore’s Law. Moore’s Law, which has been a funda-

mental driver for technological innovations in the industry, projects that the number of components

in a single device will double every 18 to 24 months. The recent departure from classical scaling

laws [37] has placed Moore’s Law in jeopardy, and thus the expected scalability of future multicore

systems. Figure 7 shows the long-term expected trends in pin count, Vdd, and gate capacitance ac-

cording to the ITRS 2009 roadmap [57]. Although transistor densities are projected to double with

each major technology node, supply voltages are only expected to decrease by a very small amount

12

Figure 2.9: Xilinx FPGA Technology Trends [68]

floating-point operations, and thus accelerating the overall solutions even further. On the

other hand, the high-speed transceivers can be utilised to connect several medium-range

FPGAs to build a high-performance multi-FPGA hardware accelerator using the princi-

ples briefly discussed in Section 2.2. While FPGAs have been traditionally successful at

accelerating inherently parallel algorithms [46, 39, 42], the migration of applications with

irregular computational patterns, such as the SPICE circuit simulator [7], to FPGAs re-

mains a great challenging for hardware designers. Hence, one of the key objectives of

this thesis is to explore a methodology to migrate the computationally-intensive tasks

within SPICE to a multi-FPGA design.

20 Chapter 2 Literature Review

2.4 FPGA Acceleration of LU Decomposition

Extensive research has been conducted to accelerate sparse LU decomposition on general-

purpose PCs and HPCs [71, 72, 73, 74, 75]. With the advent of the FPGA supercom-

puting paradigm, a considerable number of researchers investigated FPGA acceleration

for LU decomposition. However, only a few FPGA implementations have been reported.

In fact, FPGA implementations of direct LU factorisation only began to surface in the

previous decade. Moreover, most of these implementations [76, 77, 78, 79] are gen-

erally tailored towards a specific scientific problem, where the matrix to be solved is

structurally symmetric and diagonally dominant. Such matrices are relatively easy to

solve and parallelise, compared to asymmetric ones. In [78], Johnson et al. presented

a right-looking (i.e. sub-matrix based) LU sparse matrix decomposition on FPGAs for

the symmetric Jacobian matrices that arise in power flow computations. Fine-grained

parallelism is achieved by the use of a special cache designed to improve the utilisation

of multiple floating-point units. The authors report an order of magnitude LU decompo-

sition speedup compared to matrix package UMFPACK running on a 3.2 GHz Pentium

4. Accelerating the front and back substitutions were not considered in their work. Fig-

ure 2.10 shows a detailed diagram of the pivot search logic and the sub-matrix update

logic used.

In [76, 77, 79], Wang et al. presented a parallel sparse LU decomposition that has

been implemented using an FPGA-based shared-memory multiprocessor architecture,

known as MPoPC. Each processing element (PE) consists of an Altera Nios proces-

sor attached to a single-precision floating-point unit. Coarse-grained parallelisation is

achieved using node tearing to partition sparse matrices into small diagonal subprob-

lems which can be solved in parallel. Such partitioning is known as the Doubly Bordered

Block Diagonal (DBBD) form. The authors also considered only diagonally-dominant

symmetric positive matrices that arise in power systems; thus, enabling them to use

static data structures as pivoting is not needed and fill-in can be easily predetermined

for such matrices. They report a considerable speedup for power flow analysis compared

Chapter 2 Literature Review 21

6 Jeremy Johnson, et al.

filter unit feeds the pivot column elements to the divide unit to be normalized.
The mer mem unit handles cache requests and schedules computation for row
updates by the merge unit(s). The result unit records the pivot element, pivot
row, and normalized pivot column as parts of the final L and U matrices.

Fig. 2. Pivot and Sub-matrix Update Logic

The merge unit performs three tasks in a streaming parallel fashion which
make up the bulk of computation. The first is calculating the product of the pivot
row and an element of the normalized pivot column. The second is a comparison
of the pivot row indices to the sub-matrix row indices to determine the non-zero
structure of the reduced row. Finally, the scaled pivot row and sub-matrix row
are merged into the new non-zero structure as operands to the floating point
addition unit. Additional parallelism is possible by increasing the bandwidth
to the cache and instantiating multiple merge units to allow row reductions in
parallel.

The use of a memory hierarchy consisting of one or more levels of cache has
been used for quite some time in order to address the growing disparity between
memory performance and the performance of high speed logic. The use of a cache
for our FPGA based Sparse LU Hardware is two fold. The first is to reduce the
latency of memory read operations and therefor idle cycles where computations
could occur. The second reason, and perhaps most important, is to supply the
merge unit with enough scalable read/write bandwidth for high performance.

A detailed diagram of the special purpose cache is depicted in Figure 3. The
cache design is single level and utilizes the embedded FPGA memory blocks for
cache data storage and tag data arrays. The cache policy is write-back with read
miss allocation and a modified First-In-First-Out (FIFO) replacement policy.

Figure 2.10: Pivot and Sub-matrix Update Logic, as proposed by Johnson et al. [78]

to a single Nios implementation. Their results, however, were not compared to exist-

ing FPGA or software implementation. Moreover, their comparison was not baselined

against modern and highly-optimised LU matrix kernels such as KLU and UMFPAK.

In [80], Kapre et al. proposed an FPGA accelerator geared towards parallelising the

sparse matrix solution phase of the spice35 open-source simulator. Using a 250 MHz

Xilinx Virtex-5 FPGA, the authors reported speedups of 1.2-64 times over KLU direct

solver running on an Intel Core i7 965 processor. The KLU direct solver reorganises

matrices into sub-blocks, using the Block Triangular Form (BTF) techniques, and then

factorise them using the Gilbert-Peierls Algorithm. KLU has been written to specifi-

cally targets SPICE circuit matrices that arise in the Newton-Raphson iteration. The

acceleration, reported by Kapre et al., is achieved by leveraging the standalone sym-

bolic analysis capabilities of the KLU solver, to generate a data flow of the fine-grained

floating-point operation required. The data flow graph is then mapped to a network

of PEs interconnected by a packet-switched Bidirectional Mesh routing network. Fig-

ure 2.11 depicts the FPGA design presented by Kapre et al.,. The architecture proposed,

however, focuses mainly on exploiting the fine-grained dataflow parallelism available in

22 Chapter 2 Literature Review

KLU, potentially overlooking the coarser-grained parallelism inherently present in sparse

matrices.

Incoming

Messages

Add

in

out

Outgoing

Messages

Control

Ports

Data

Mult Div

Operand B

Graph

Edge

Memory

Bypass

Dataflow
Logic

Self
EdgeSend

Logic

Operand A

Graph

Node

Memory

PE

PE

PE

PE

PE

PE

PE

PE

PE

DOR
switch

Fig. 5: FPGA Dataflow Architecture for SPICE
Sparse-Matrix Solve

C. Parallel FPGA Architecture

We organize our FPGA architecture in a Tagged-Token
Dataflow style [19] as a network of Processing Elements
(PEs) interconnected by a packet-switched routing network
(Figure 5). This architecture processes dataflow graphs by
explicitly passing tokens between dataflow graph nodes (over
the network) and making independent, local firing decisions
to process computation at each node. This allows us to exploit
fine-grained dataflow parallelism available in the application
that is difficult to exploit on conventional architectures. Each
PE processes one dataflow graph node at a time but manages
multiple nodes in the dataflow graph (virtualization) to handle
dataflow graphs much larger than the physical PE count.

A node in the dataflow graph is ready for processing when
it receives all its inputs. This is the dataflow firing rule. When

the condition is met, the floating-point computation at the node
is processed by the PE datapath. The results are then routed to
the destination nodes as specified in the dataflow graph over a
packet-switched network using 1-flit packets [24]. Each packet
contains destination address and the floating-point result.

An FPGA implementation of this computation enables
concurrent evaluation of high-throughput floating-point opera-
tions, control-oriented dataflow conditions as well as pipelined,
low-latency on-chip message routing using the same substrate.
The PE shown in Figure 5 supports double-precision floating-
point add, multiply and divide and is capable of issuing one
floating-point operation per cycle. The network interfaces are
streamlined to handle one message per cycle (non-blocking
input). We explicitly store the Matrix-Solve graph structure
(shown in Figure 3) in local FPGA on-chip memories. The
Dataflow Logic in the PE keeps track of ready nodes and
issues floating-point operations when the nodes have received
all inputs (dataflow firing rule). The Send Logic in the PE
inspects network busy state before injecting messages for
nodes that have already been processed. We map the Matrix-
Solve graphs to this architecture by assigning multiple nodes
to PEs so as to maximize locality and minimize network
traffic (see Section IV). We route packets between the PEs
in packet-switched manner over a Bidirectional Mesh network
using Dimension-Ordered Routing (DOR) [20]. Our network
is 84-bit wide to support 64-bit double-precision floating-point
numbers along with a 20-bit node address (a million nodes).
For large graphs, we may not be able to fit the entire graph
structure entirely on-chip. We can fit the graphs by partitioning
them and then loading the partitions one after another. This is
possible since the graph is completely feed forward (DAGs)
and we can identify the order of loads. We estimate such
loading times over a DDR2-500 memory interface.

IV. METHODOLOGY

We now explain the experimental framework used in our
study. We show the entire flow in Figure 6.

A. Sequential Baseline: Integration of KLU with spice3f5

We use the last official release of the Berkeley SPICE
simulator spice3f5 in our experiments. We replace the
default Sparse 1.3 matrix solver available in spice3f5 with
the newer, improved KLU solver for all transient iterations.
For simplicity, we currently retain Sparse 1.3 to produce
the DC operating point at the beginning of the simulation.
We quantify the performance benefits of using the higher-
performance solver by measuring the runtime of Matrix-Solve
phase of spice3f5 using both solvers across a collection of
benchmark circuits. We use the PAPI 3.6.2 [22] performance
counters to accurately measure runtimes of these sequential
solvers when using a single core of the Intel Core i7 965
processor.

B. Experimental Flow

For our parallel design, we first generate the dataflow graphs
for LU factorization as well as Front/Back solve steps from

Incoming

Messages

Add

in

out

Outgoing

Messages

Control

Ports

Data

Mult Div

Operand B

Graph

Edge

Memory

Bypass

Dataflow
Logic

Self
EdgeSend

Logic

Operand A

Graph

Node

Memory

PE

PE

PE

PE

PE

PE

PE

PE

PE

DOR
switch

Fig. 5: FPGA Dataflow Architecture for SPICE
Sparse-Matrix Solve

C. Parallel FPGA Architecture

We organize our FPGA architecture in a Tagged-Token
Dataflow style [19] as a network of Processing Elements
(PEs) interconnected by a packet-switched routing network
(Figure 5). This architecture processes dataflow graphs by
explicitly passing tokens between dataflow graph nodes (over
the network) and making independent, local firing decisions
to process computation at each node. This allows us to exploit
fine-grained dataflow parallelism available in the application
that is difficult to exploit on conventional architectures. Each
PE processes one dataflow graph node at a time but manages
multiple nodes in the dataflow graph (virtualization) to handle
dataflow graphs much larger than the physical PE count.

A node in the dataflow graph is ready for processing when
it receives all its inputs. This is the dataflow firing rule. When

the condition is met, the floating-point computation at the node
is processed by the PE datapath. The results are then routed to
the destination nodes as specified in the dataflow graph over a
packet-switched network using 1-flit packets [24]. Each packet
contains destination address and the floating-point result.

An FPGA implementation of this computation enables
concurrent evaluation of high-throughput floating-point opera-
tions, control-oriented dataflow conditions as well as pipelined,
low-latency on-chip message routing using the same substrate.
The PE shown in Figure 5 supports double-precision floating-
point add, multiply and divide and is capable of issuing one
floating-point operation per cycle. The network interfaces are
streamlined to handle one message per cycle (non-blocking
input). We explicitly store the Matrix-Solve graph structure
(shown in Figure 3) in local FPGA on-chip memories. The
Dataflow Logic in the PE keeps track of ready nodes and
issues floating-point operations when the nodes have received
all inputs (dataflow firing rule). The Send Logic in the PE
inspects network busy state before injecting messages for
nodes that have already been processed. We map the Matrix-
Solve graphs to this architecture by assigning multiple nodes
to PEs so as to maximize locality and minimize network
traffic (see Section IV). We route packets between the PEs
in packet-switched manner over a Bidirectional Mesh network
using Dimension-Ordered Routing (DOR) [20]. Our network
is 84-bit wide to support 64-bit double-precision floating-point
numbers along with a 20-bit node address (a million nodes).
For large graphs, we may not be able to fit the entire graph
structure entirely on-chip. We can fit the graphs by partitioning
them and then loading the partitions one after another. This is
possible since the graph is completely feed forward (DAGs)
and we can identify the order of loads. We estimate such
loading times over a DDR2-500 memory interface.

IV. METHODOLOGY

We now explain the experimental framework used in our
study. We show the entire flow in Figure 6.

A. Sequential Baseline: Integration of KLU with spice3f5

We use the last official release of the Berkeley SPICE
simulator spice3f5 in our experiments. We replace the
default Sparse 1.3 matrix solver available in spice3f5 with
the newer, improved KLU solver for all transient iterations.
For simplicity, we currently retain Sparse 1.3 to produce
the DC operating point at the beginning of the simulation.
We quantify the performance benefits of using the higher-
performance solver by measuring the runtime of Matrix-Solve
phase of spice3f5 using both solvers across a collection of
benchmark circuits. We use the PAPI 3.6.2 [22] performance
counters to accurately measure runtimes of these sequential
solvers when using a single core of the Intel Core i7 965
processor.

B. Experimental Flow

For our parallel design, we first generate the dataflow graphs
for LU factorization as well as Front/Back solve steps from

PE

Incoming

Messages

Add

in

out

Outgoing

Messages

Control

Ports

Data

Mult Div

Operand B

Graph

Edge

Memory

Bypass

Dataflow
Logic

Self
EdgeSend

Logic

Operand A

Graph

Node

Memory

PE

PE

PE

PE

PE

PE

PE

PE

PE

DOR
switch

Fig. 5: FPGA Dataflow Architecture for SPICE
Sparse-Matrix Solve

C. Parallel FPGA Architecture

We organize our FPGA architecture in a Tagged-Token
Dataflow style [19] as a network of Processing Elements
(PEs) interconnected by a packet-switched routing network
(Figure 5). This architecture processes dataflow graphs by
explicitly passing tokens between dataflow graph nodes (over
the network) and making independent, local firing decisions
to process computation at each node. This allows us to exploit
fine-grained dataflow parallelism available in the application
that is difficult to exploit on conventional architectures. Each
PE processes one dataflow graph node at a time but manages
multiple nodes in the dataflow graph (virtualization) to handle
dataflow graphs much larger than the physical PE count.

A node in the dataflow graph is ready for processing when
it receives all its inputs. This is the dataflow firing rule. When

the condition is met, the floating-point computation at the node
is processed by the PE datapath. The results are then routed to
the destination nodes as specified in the dataflow graph over a
packet-switched network using 1-flit packets [24]. Each packet
contains destination address and the floating-point result.

An FPGA implementation of this computation enables
concurrent evaluation of high-throughput floating-point opera-
tions, control-oriented dataflow conditions as well as pipelined,
low-latency on-chip message routing using the same substrate.
The PE shown in Figure 5 supports double-precision floating-
point add, multiply and divide and is capable of issuing one
floating-point operation per cycle. The network interfaces are
streamlined to handle one message per cycle (non-blocking
input). We explicitly store the Matrix-Solve graph structure
(shown in Figure 3) in local FPGA on-chip memories. The
Dataflow Logic in the PE keeps track of ready nodes and
issues floating-point operations when the nodes have received
all inputs (dataflow firing rule). The Send Logic in the PE
inspects network busy state before injecting messages for
nodes that have already been processed. We map the Matrix-
Solve graphs to this architecture by assigning multiple nodes
to PEs so as to maximize locality and minimize network
traffic (see Section IV). We route packets between the PEs
in packet-switched manner over a Bidirectional Mesh network
using Dimension-Ordered Routing (DOR) [20]. Our network
is 84-bit wide to support 64-bit double-precision floating-point
numbers along with a 20-bit node address (a million nodes).
For large graphs, we may not be able to fit the entire graph
structure entirely on-chip. We can fit the graphs by partitioning
them and then loading the partitions one after another. This is
possible since the graph is completely feed forward (DAGs)
and we can identify the order of loads. We estimate such
loading times over a DDR2-500 memory interface.

IV. METHODOLOGY

We now explain the experimental framework used in our
study. We show the entire flow in Figure 6.

A. Sequential Baseline: Integration of KLU with spice3f5

We use the last official release of the Berkeley SPICE
simulator spice3f5 in our experiments. We replace the
default Sparse 1.3 matrix solver available in spice3f5 with
the newer, improved KLU solver for all transient iterations.
For simplicity, we currently retain Sparse 1.3 to produce
the DC operating point at the beginning of the simulation.
We quantify the performance benefits of using the higher-
performance solver by measuring the runtime of Matrix-Solve
phase of spice3f5 using both solvers across a collection of
benchmark circuits. We use the PAPI 3.6.2 [22] performance
counters to accurately measure runtimes of these sequential
solvers when using a single core of the Intel Core i7 965
processor.

B. Experimental Flow

For our parallel design, we first generate the dataflow graphs
for LU factorization as well as Front/Back solve steps from

Figure 2.11: FPGA Dataflow Architecture for SPICE Sparse-Matrix Solve, proposed
by kapre et al. [80].

More recently, Wu et al. [81] presented a 16-PE FPGA implementation of the Gilbert-

Peierls Algorithm, on an Altera Stratix III EP3SL340. Fine-grained parallelism is har-

nessed via sharing the computation burden, to compute a given column, over a number

of PE. No other levels of parallelism were explicitly considered. The basic architecture

of the PE employed is shown in Figure 2.12. The reported speedups varied between

0.5-5.36X, when compared to KLU runtimes on an Intel i7 930 microprocessor. How-

ever, the benchmark matrices used are not only relatively small in terms of their size,

but also have a small number of nonzeros. The latter is the main factor that dedicate

the number of FLOPs needed to factorise a given matrix. Moreover results were not

compared to previous FPGA implementations.

310 W. Wu et al.

Firstly, the different column of the matrix can be processed simultaneously accord-
ing to the elimination tree[7] in the parallel hardware such as multi-core GPP and
FPGA. Secondly, to reduce the time on memory accessing and processing the dense
block of matrix with optimized algorithm, the supernode is proposed to accelerate the
processing. This approach is adopted in SuperLU[10] and PARDISO[14], but the su-
pernode is not suitable for circuit matrices because they are extremely sparse[13]. The
third parallelism is the fine-grained parallelism between the dataflow of every opera-
tions. N. Kapre et al. explored this parallelism in their FPGA architecture. However,
the generation and optimization of the dataflow is required before the factorization.

Therefore, we only pursue the first parallelism by implementing a group of PEs in
FPGA, while every PE process a column of the matrix independently.

Parallelized architecture
We introduce the module that factorizes a column in the sparse matrix in the former
subsection. In this subsection, that module is referred as a PE. To achieve parallel
processing, we implemented an architecture with several PEs. While processing a
column in the matrix, all the column of matrix ܮ might be accessed. Therefore, the
data of matrix ܮ are required to be shared to all PEs for accessing.

Our first attempt on the shared memory is an external DDR2 memory with an arbi-
trator to decide which PE holds the bus of the memory. That trial failed because the
memory bandwidth is always the bottleneck of the system. To increase the bandwidth,
we adopt a distributed shared memory to replace the original shared memory. The
multi-PE architecture with distributed shared memory is shown in Figure 7.

Fig. 7. Parallelized Architecture

In Figure 7, data are located at the cache distributed in every PE. To be easily real-
ized, all the PEs are connected to a switch to construct a on chip network, in which a
PE can access the data in its own cache directly and access the data stored in other
cache via a switch. Since data need to be prepared in caches before the factorization, a
Driver interface is also reserved on the switch for the loading matrix data from PC to
FPGA, corresponding to state I in Figure 6. By replacing a single shared memory to a
set of distributed shared memory, the peak bandwidth is increased by n times, in
which the n stands for the number of PEs, also the number of caches in the distributed
memory. In our prototype, we use 16 PEs. Under this configuration, the performance
of our hardware exceeds KLU on most circuit matrices.

 FPGA Accelerated Parallel Sparse Matrix Factorization for Circuit Simulations 309

Fig. 5. Architecture for Modified G/P Algorithm

constructed of three units, a subtracter, a multiplier, and a divider. The Caches are con-
struct of two parts, the inner part and the external part. Actually, the cache is imple-
mented by a Tri-Port RAM (TPRAM). In these three ports, one write port and one read
port are connected to local PE, while the rest read port is connected outwards for exter-
nal access. The inner cache can be a virtual memory mapped on the On chip cache.

In this architecture, before the factorization, data are loaded to cache from CPU.
When the factorization starts, the processing of every column in a matrix is performed
in three steps, under the control of Processing Controller according to the state
switching diagram in Figure 6.

Fig. 6. State Switching Diagram of Processing Controller

In Figure 6, the first step is to load the data from on chip cache and to map the po-
sition of every nnz in CCS format into CAM. The second step is to update this col-
umn by the former columns of ܮ, according to the nnz in current column of ܷ. The
third step is to normalize the entities in current column of ܮ and dump them back to
the on chip cache.

4.2 Parallelized Architecture

Potential parallelism
The architecture in the former subsection factorizes the matrix almost sequentially,
except a few cycle level parallelism between the arithmetic operations. It seems that
the G/P algorithm is a sequential algorithm because the processing of a column may
require the data of former columns. However, three parallelism strategies can still be
explored in this algorithm.

Figure 2.12: Basic PE architecture used for spare LU decomposition acceleration,
proposed by Wu et al. [81]

Chapter 3

SPICE Circuit simulation

“Failures are not something to be avoided. You want to have them happen

as quickly as you can so you can make progress rapidly.”

Gordon Moore, Intel Co-founder

Circuit simulation is one of the most critical and time-consuming computational tasks

in circuit design. State-of-the-art VLSI circuit design requires extensive and accurate

simulation under nominal conditions as well as a variety of operating conditions. More-

over, modern circuit simulators have to account for a wide range of variations that could

affect the manufacturing process and thus impact the quality and performance of the

end product. SPICE is the industry de facto standard for circuit simulations. In this

chapter, we review the fundamentals and theory that underpins a typical SPICE sim-

ulation. We review existing literature and and critique previous attempts to parallelise

SPICE. Using empirical data, we also shed light on the characteristics of the matrices

that arise in circuit simulations and how the SPICE runtime copes with various matrix

sizes.

23

24 Chapter 3 SPICE Circuit simulation

3.1 Overview of SPICE

SPICE is a general-purpose circuit simulation program that was initially developed by

the University of California, Berkeley in 1975 [82]. SPICE simulation is an essential

step in the design and verification of modern integrated circuits as it enables engineers

to check the integrity of their circuit designs and to predict their behaviour. SPICE

provides several types of circuit simulations for modern VLSI design, namely operating

point analysis, transient analysis, and AC analysis. More types of analysis, associated

with the previous three basic simulations, were added to subsequent SPICE versions.

These include but are not limited to sensitivity analysis, Fourier analysis, and Noise

Analysis. The latest version of the open-source SPICE simulator is spice3f5 [83].

The SPICE algorithm and its variants use a matrix representation of the circuit to

find the nodal voltages over a period of time using the following key steps:

1. Formulation of circuit equations using Modified Nodal Analysis (MNA) [3].

2. Evaluating the time-varying behaviour of the design using numerical integration tech-

niques applied to the nonlinear elements of the circuit.

3. Solving the nonlinear circuit model using Newton-Raphson (NR) based iterations.

4. Solving the resulting linear system of equations using sparse matrix techniques such

as “Sparse LU Decomposition”.

Figure 3.1 shows a basic flowchart of the SPICE transient simulation algorithm. First

of all, the circuit netlist, describing the interconnection of the electronic devices and their

respective parameters, is parsed by SPICE and the corresponding data structures are

generated. Secondly, the circuit matrix and its related data structures are set up. Then,

for every time step in the transient analysis, the model calculations for each device, such

as transistor, resistor, capacitor, and so on, are performed. The electrical parameters,

such as conductance and current for each instance, instantiated from the corresponding

device model, are computed and put into the matrix elements. Nonlinear elements are

then linearised using Newton-Raphson’s method [84].

Chapter 3 SPICE Circuit simulation 25

496 Int J Parallel Prog (2007) 35:493–505

Fig. 1 Basic configuration of
SPICE3 simulator

yesno

no

yes

Circuit netlist parsing

Circuit matrix setup

Converge ?

Increment time

Solve the linear system

M
O
S
3

M
O
S
6

B
J
T

C
A
P

V
S
R
C

End of time interval ?

Output

Device model
and instance
calculation

few loops are parallelizable, and their computational workload is very light. The most
time consuming loops are the matrix calculation and model and instance calculation
and these are not recognized as being parallelizable by the compiler.

In this work, we focus exclusively on parallelizing the model and instance calcu-
lation part, shown in Fig. 1. We refer to it as the device loading routine, because here
all the model parameters related to the device, and the parameters for the instantia-
tions of the device, are computed and loaded into the corresponding matrix elements.
Many devices, such as MOSFET, resistor, capacitor, diode, and bipolar transistor,
are supported by SPICE3. For each device, SPICE3 provides at least one model for
the instances corresponding to this device used in the circuit simulated. For example
MOS3 is one of the models for instances of the MOSFET device. Parameters such
as the conductance and current are calculated according to the model equations built
into the device loading routines. The conductance calculated will contribute to the
elements of the matrix used in the linear system for simulation, while the calculated
current will be entered into the right-hand-side of the linear system.

In this paper, we use an SRAM circuit as an example to demonstrate the SPICE3
simulation in its OpenMP implementation. A typical SRAM architecture is shown in
Fig. 2. The SRAM circuit has a data input bus (data_in), a data output bus (data_out),
an address bus (addr), and a write enable (wr_ena) pin. The data presented at data_in
will be stored in a word line specified by addr when wr_ena is asserted. The data,
stored in a word line and specified by addr, will be read and output to data_out if
wr_ena is disabled.

123

Figure 3.1: Basic configuration of a SPICE simulator [85]

26 Chapter 3 SPICE Circuit simulation

After the device model evaluation phase, all elements in the matrix represent a linear

system ready for the sparse matrix solver. The matrix calculations for the linear system,

such as the LU decomposition and forward/backward elimination in each iteration, are

carried out until convergence is obtained. This process continues until the final transient

time is reached. Finally, the simulation results for all the time steps simulated are output.

3.1.1 Modified Nodal Analysis

As previously explained, a circuit simulator usually starts by taking a netlist, describing

the circuit, as input. The netlist is then parsed and translated into a set of equations,

which model the circuit behaviour. The most widely used method of formulating circuit

equations is nodal analysis, which is based on the application of Kirchhoff’s current law

(KCL) and Kirchhoff ’s voltage law (KVL) [86] . However, voltage sources, current-

controlled elements, and the direct evaluation of branch currents cannot be handled

easily using nodal analysis. To tackle this, Ho et al. [3] extended nodal analysis to

Modified Nodal Analysis (MNA). The latter uses the element’s Branch Constitutive

Equations (BCEs) for voltage-defined elements to augment the current equations.

MNA represents an electrical circuit using a matrix containing devices’ conductances

and constraint equations. This matrix is built by summing the contribution of each

element in the circuit. Each contribution is called a “matrix stamp”, which is itself a

matrix containing nonzero elements only at positions occupied by the the corresponding

device. MNA applied to a circuit with passive elements, independent current and voltage

sources, and active elements results in a matrix equation of the form:

Ax = b (3.1)

For a circuit with N nodes and M independent voltage sources: The A matrix is

(N +M)× (N +M) in size, and consists only of known quantities. x is an (N +M)× 1

vector that holds the unknown quantities (node voltages and the currents through the

independent voltage sources), such that the top N elements are the N node voltages

Chapter 3 SPICE Circuit simulation 27

and the bottom M elements represent the currents through the M independent voltage

sources in the circuit. b is an (N + M) × 1 vector that holds only known quantities,

such that the top N elements are either zero or the sum and difference of independent

current sources in the circuit, and the bottom M elements represent the M independent

voltage sources in the circuit.

The A matrix can be described as the combination of 4 smaller matrices, G, B, C,

and D:

A =

G B

C D

 (3.2)

The smaller matrices are defined as follows:

• G is N×N is a reduced-form of the nodal matrix excluding the contributions from

voltage sources, current controlling elements, and so on.

• B is N ×M that contains partial derivatives of the Kirchhoff current equations

with respect to the additional current variables and thus contains ±1s for the

elements whose branch relations are introduced.

• C is M ×N and is determined by the connection of the voltage sources .

• D is M ×M and is zero if only independent sources are considered.

The branch constitutive relations, differentiated with respect to the unknown vector,

are represented by the matrices C and D. The zero-nonzero pattern of C is basically the

same as that of BT . This creates a great source of structurally symmetry in circuit

matrices, as will be illustrated in Section 3.2.

28 Chapter 3 SPICE Circuit simulation

3.1.2 The Newton−Raphson Method

SPICE uses the Newton-Raphson iterative algorithm to solve circuits with nonlinear

current/voltage (I/V) relationships [87]. The method relies on the fact that nonlinear

devices can be treated as linear elements over a small range. The method works by

finding successively better approximations to the zeros of a real-valued function. SPICE

begins by guessing the initial voltage for a given nonlinear element. The element is then

linearised using this guessed value using the derivative of I/V curve. The new solution

becomes the starting point of the next iteration of the Newton-Raphson algorithm and

the process continues until the difference in successive solutions becomes very small i.e.

convergence is reached.

Newton’s method can often converge remarkably quickly, provided that it begins

with a sufficiently close guess. Unfortunately, it can easily fail to converge if it starts far

from the desired root. Non-convergence has always been one of the biggest hurdles in

analogue simulation. This is generally a result of strong nonlinearity and discontinuity

in the equations that describe the analogue parts. The Newton-Raphson algorithm can

be mathematically described as follows: given a function f(x) and its derivative f ′(x),

we begin with a first guess x0. Provided that the function is reasonably well-behaved, a

better approximation x1 can be found as follows [88]:

x1 = x0 −
f(x0)

f ′(x0)
. (3.3)

The process is repeated until the desired accuracy is reached:

xn+1 = xn −
f(xn)

f ′(xn)
. (3.4)

To illustrate the process just outlined, we apply the Newton-Raphson method to the

following example f(x) = x2 − 5 = 0 (i.e.
√

5):

Chapter 3 SPICE Circuit simulation 29

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − 5

2xn
·

Taking x0 = 2 gives:

x0 = 2

x1 = 2.25

x2 = 2.236111111111111111111111111111111

x3 = 2.236067977915804002760524499654934

x4 = 2.236067977499789696447872828327110

x5 = 2.236067977499789696409173668731276

3.1.3 Solution of the Sparse Linear System

Once the system of linear equations describing a circuit is formulated and linearised, the

matrix solution phase follows. Intuitively, a system of the from Ax = b can be solved

by computing the inverse of A (i.e. x = A−1b), for n× n nonsingular matrix. However,

the matrix inversion process is not only a computationally demanding task, but also

destroys sparsity, and hence almost never done in practice [89, 90]. There are a number

of more efficient methods available for solving such systems and they can be broadly

grouped into two main approaches: direct and iterative.

The iterative approach starts with a guess, which is then refined over an indeterminate

sequence of solutions that may converge to a consistent result if rather strong conditions

on A are satisfied [91]. This method is usually very efficient in terms of computational

time and storage, however, very prone to numerical inaccuracies and convergence issues.

Jacobi [92], Gauss-Seidel [93] and Conjugate gradient [94] algorithms are examples of

such a technique.

Direct methods, on the other hand, are very robust and able to compute the exact

solution in a predictable amount of time and storage. In effect, they are able to solve the

system in a fixed and finite number of steps. One of the popular direct algorithms is LU

factorisation which is used in the open source spice3f5 simulator [83]. LU decomposition

30 Chapter 3 SPICE Circuit simulation

is the process whereby a matrix A is factored into two matrices: an upper triangular

matrix U and a lower triangular matrix L i.e. A = LU , as shown in Equation 3.5. Once

the elements in L and U are calculated, the unknown vector x can, in a system of the

form Ax = b, be computed by forward substitution and backward substitution using

the following two equations Ly = b and Ux = y respectively. LU factorisation will be

covered in more detail in Chapter 4.


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


l11 0 0

l21 l22 0

l31 l32 l33



u11 u12 u13

0 u22 u23

0 0 u33

 (3.5)

3.1.4 Example Circuit

In order to illustrate how the SPICE simulation process works, a simple circuit is used

as an example. Figure 3.2 shows a circuit that contains a current source, one resistor,

one capacitor, and a diode. The circuit equations are derived as follow:

Is

R1

C1

1 2

Figure 3.2: SPICE Circuit Example

We wish to find the voltages V1 and V2. 2. To do this, we write down equations that

sum the currents into each node. By Kirchhoff’s current law these must be zero:

At node 1:

Is − IR = 0 (3.6)

Chapter 3 SPICE Circuit simulation 31

At node 2:

IR − ID − IC = 0 (3.7)

Where IS , IR, ID, IC are the input current of the current source, the current of the

resistor, the diode current, and the capacitor current respectively.

IS = IR (3.8)

IR = (V1 − V2) ·
1

R1
(3.9)

The non-linear (diode) and time-varying (capacitor) devices can be represented by

their equivalent linearised models so that any circuit using them can be solved using

nodal analysis as described in the previous section [95]:

ID = Geq
D · V2 + IeqD (3.10)

IC = Geq
C · V2 + IeqC (3.11)

Where G refers to the electrical conductance of the different circuit elements. The circuit

equations can be then reorganised into the matrix form Ax = b as follows:

 GR −GR

−GR GR +Geq
D +Geq

D

V1
V2

 =

 Is

IeqD + IeqC

 (3.12)

In the model evaluation phase, SPICE calculates conductances and currents through

different circuit elements and updates their corresponding entries in the circuit matrix.

For the linear time-independent elements, such as resistors, computations are only per-

formed once at the start of the simulation. For non-linear elements, the simulator must

search for an operating-point using Newton-Raphson iterations which requires repeated

evaluation of the model equations multiple times per time-step, i.e. Equation 3.13.

For time-varying components, such as capacitors, the simulator must recalculate their

contributions at each time-step based on voltages at several previous time-steps, i.e.

32 Chapter 3 SPICE Circuit simulation

Equation 3.14. This also requires repeated re-evaluations of the device-model

ID = (
Ist
Vj
eV2/Vj) · V2 + Ist · (eV2/Vj − 1) (3.13)

IC = (
2 · C
δt

) · V2 − (
2 · C
δt
· V old

2 + IoldC) (3.14)

Where Ist is the Saturation current, Vj is the Junction potential, C is the capacitance,

and V2 i is the potential at node 2 of the circuit. In the matrix solution phase, SPICE

solves the resulting linear system using LU factorisation.

3.2 Characteristics of Circuit Matrices

As already discussed, the SPICE simulator employs the MNA technique to organise

circuit equations into matrix A. These circuit matrices typically exhibit high sparsity as

each node in the underlying circuit has only few devices connected to it. In other words,

the MNA circuit matrix with O(N2) entries is generally highly sparse with O(N) nonzero

entries. This means that approximately 99% of matrix A entries are zeros [96]. The

underlying nonzero structure of the matrix is dictated by the topology of the circuit and

thus remains unchanged throughout the duration of the simulation. In each iteration,

only the numerical values of the nonzero locations are updated in the Model Evaluation

phase of SPICE with contributions from the non-linear element, as was illustrated in

Section 3.1.4. Table 3.1 shows the characteristics of a number of circuit matrices taken at

some Newton-Raphson step during a transient simulation of a circuit. The matrices are

publicly available from the University of Florida Matrix collections [97]. The matrices

were plot using Matlab’s spy(A) sparse matrix plotting function, where A is the matrix

to be plotted. The “blue” dots represent the nonzero element of the matrices [98].

Chapter 3 SPICE Circuit simulation 33

Table 3.1: Characteristics of Circuit Matrices [97]

Matrix Matrix # Zeros Structural Numerical

Name Order NNZ∗ (%) Symmetry∗∗ Symmetry∗∗∗

fpga dcop 01 1813 5892 99.82% 65% 1.6%

bomhof1 2624 35823 99.47% 100% 21 %

bomhof2 4510 21199 99.89% 81% 41 %

bomhof3 12127 48137 99.96% 77% 30 %

bomhof4 80209 307604 99.99% 83% 36 %

rajat19 1157 3699 99.72% 91% 92%

rajat01 6833 43520 99.99% 99% 99%

rajat20 86916 604299 99.99% 99% 11%

* Number of nonzero elements.
** Numerical Symmetry is the fraction of nonzeros matched by equal values in symmetric locations.
*** Structural Symmetry is the fraction of nonzeros matched by nonzeros in symmetric locations.

Definition 1. Structural symmetry of a matrix A is defined as the number of matched

off-diagonal nonzero elements, divided by the total number of off-diagonal nonzero ele-

ments. A matrix element aij is matched if aji is also a nonzero element. They need not

be numerically equal.

Definition 2. Numerical symmetry of a matrix is defined as the fraction of nonzero

elements matched by equal values in symmetric locations.

As can be seen from the matrix plots in Figure 3.3, and Table 3.1, circuit matrices are

highly sparse and unstructured (i.e. do not follow a particular pattern). Nevertheless,

the matrix structure is mostly symmetric with the asymmetry arises from the presence

of independent sources (e.g. input voltage source) and inductors which produce an

asymmetric MNA matrix stamp [99]. Circuit matrices also exhibit high sparsity as

each node has only few devices connected to it, typically 2 to 4 elements. This makes

them unsuitable for dense matrix kernels such as the Basic Linear Algebra Subprograms

(BLAS)[100]. Sparse LU algorithms such as supernodal and multifrontal methods have

been developed to group rows or columns with similar nonzero pattern in the factors

into supernodes [101]. BLAS can be then applied on these supernodes. However, circuit

matrices typically do not have large supernodes since the interconnection among nodes

34 Chapter 3 SPICE Circuit simulation

is not similar across all the nodes in the circuit [102]. The matrices also have a zero-

free diagonal unless voltage sources are present in which case a permutation such as

maximum transversal [103, 104] can be used to ensure a zero-free diagonal, as will be

explained in Section 4.1.4.

3.3 Sparsity and Optimal Reordering of Circuit Equations

Nonlinear circuit analysis in the time domain requires typically several thousand re-

peated solutions of the linear system at different iterations and time-steps. Moreover,

Newton-Raphson’s method typically needs three to four iterations to produce the solu-

tion of each system of nonlinear equations [105]. Thus, the efficient solution of the linear

equations plays a critical role in the total computation time. In this section, we briefly

discuss how the circuit matrix properties, studied in Section 3.2, impact the performance

of the linear solver. In fact, the efficiency of the equation solution can be improved by

exploiting certain properties of circuit matrices.

In effect, the high sparsity peculiar to circuit matrices permits the implementation

of considerably faster solvers, which only operate on the nonzero entries of matrices.

Therefore, the number of operations required may be dramatically reduced to be ap-

proximately proportional to the number of equations N , i.e. O(N), rather than O(N3)

for dense matrices. However, the sparsity may be severely reduced during the solution

process as a result of a phenomenon known as “fill-in”. Fill-in occurs when a previously

zero entry becomes a non-zero during the solution process. This results in a change in

the matrix structure as well as an increase on the amount of computation and storage

required.

Chapter 3 SPICE Circuit simulation 35

(a) bohomf1 (b) bohomf2

(c) bohomf3 (d) bohomf4

(e) rajat19 (f) rajat01

(g) fpga dcop 01 (h) rajat20

Figure 3.3: Matrix Plots for Selected Circuit Matrices

36 Chapter 3 SPICE Circuit simulation

Figure 3.4: Effect of ordering on the sparsity of the LU factors: A(:, p) permuted

matrix A with column permutation p, lu() denotes Matlab’s LU factorisation function

In order to limit the amount of fill-in that occurs and to preserve sparsity, the nonzero

structure of the sparse matrix can be altered by reordering, i.e., permuting the rows or

columns of the matrix prior to the linear solution process. Figure 3.4 illustrates the

effect of reordering on the sparsity of an LU factorised matrix. We can see that fill-in

caused the number of nonzeros element to increase by almost 3×, and hence reducing the

sparsity of the resulting matrix. Fill-in will be discussed in more detail in Section 4.1.3.

However, for certain systems and algorithms, complete pivoting may be required to

achieve an acceptable accuracy. Complete pivoting is more computationally demanding

as it considers all entries in the whole matrix, interchanging rows and columns to achieve

Chapter 3 SPICE Circuit simulation 37

the highest accuracy. In circuit simulation, the pivot is normally limited to diagonal ele-

ments due to the fact that the circuit matrices often exhibit strong diagonal dominance,

which can be exploited [106]. Moreover, any round-off errors that may arise can be

generally tolerated and compensated for by the Newton-Rapshon iterative method.

Finally, finding the optimal ordering, which ensures numerical stability whilst pre-

serving sparsity, is an NP-complete problem [107]. This means that the number of

operations needed to find the optimum ordering rises exponentially with the matrix

size. Nonetheless, while the numerical values of the nonzero entries change during the

solution process, the matrix structure, i.e., the pattern of the nonzeros remains the same

as it only depends on the topological structure of the network. Therefore, there is no

need for the reordering to be performed every time the linear system is re-evaluated.

Instead, the reordering can be performed symbolically, based on the predicted matrix

structure, not its numerical values. It is clear that accuracy cannot be taken into ac-

count if reordering is done symbolically, unless the computationally expensive dynamic

reordering is used during the course of the solution [99].

38 Chapter 3 SPICE Circuit simulation

3.4 SPICE Runtime Analysis

In this section, we study the performance of the SPICE simulator and analyse its scaling

ability with ever-increasing circuit sizes. We use the open-source spice3f5 package [83]

to simulate a wide range of circuits on a morden general-purpose PC.

3.4.1 Testing Methodology

We first explain our testing strategy using the spice3f5 simulator with a range of bench-

mark circuits ob a six-core 12-thread Intel Core Xeon X5650 microprocessor. We use

“Rusage [resource]” spice3f5 built-in function [108] to gather usage and performance

statistics per circuit and per simulation run. Some of the valid resources are:

• all Displays all resources.

• time Total Analysis Time.

• totiter Total iterations.

• loadtime Time spent loading the circuit matrix and RHS (Right Hand Side).

• reordertime Matrix reordering time.

• lutime LU decomposition time.

• solvetime Matrix solve time.

For instance, running “Rusage lutime” would give the LU decomposition time taken

on a particular SPICE circuit, and so on. We illustrate this functionality by simulating

the “passive half-wave rectifier” example circuit shown Figure 3.5. The corresponding

SPICE netlist description is shown in Figure 3.6. Table 3.2 shows some of the output

results of “rusage all” for the same circuit.

Chapter 3 SPICE Circuit simulation 39

Vin CL RL

1 2

Figure 3.5: Passive half-wave rectifier.

Passive half-wave rectifier

* Lines starting with * are comments

**** SEMICONDUCTOR MODELS

.model 1N4148 D (IS=0.1PA, RS=16 CJO=2PF TT=12N BV=100 IBV=1nA)

**** CIRCUIT TOPOLOGY DEFINITION SECTION

RL 2 0 10K

CL 2 0 100n

D1 1 2 1N4148

Vin 1 0 DC 0 SIN(0.0V 10V 2kHz)

**** COMMANDS SECTION

* Insert interactive commands into the source using:

.control

echo "Processing..."

* Run a .TRAN analysis and print the name of the active plot

tran 10us 2000ms 1ms 10us

echo " $curplot: transient analysis"

* End interactive commands with:

echo "Done."

.endc

* The last line in the file must always be:

.END

Figure 3.6: Passive half-wave rectifier SPICE Netlist.

We gauge the performance of the spice3f5 simulator with the ISCAS85/89 benchmark

circuits [109]. These benchmark circuits are a group of well-defined, gate-level netlist

and functions based on common building blocks. They are widely used by the research

community for IC design verification, test generation, clock distribution, power con-

sumption and timing analysis [110]. However, the benchmark files provided just specify

logic-level connections and do not provide any circuit-level information. Therefore, a

considerable amount of work must be completed before we can use these circuits for our

40 Chapter 3 SPICE Circuit simulation

Table 3.2: Sample output of the spice3f5 rusage statistical function.

Metric Value

Total CPU time (s) 2.043

Nominal temperature (◦) 27

Operating temperature (◦) 27

Total iterations 1042327

Circuit Equations 5

Transient timepoints 411455

Total Analysis Time (s) 1.9

Transient time (s) 1.899

Matrix reordering time (s) 0.009

LU decomposition time (s) 0.17

Matrix solve time (s) 0.134

Load time (s) 0.61

testing purposes. In effect, our final aim is to perform the SPICE simulation for the

ISCAS85/89 benchmark circuits. Therefore, we have to translate the gate-level netlists

to the final SPICE netlists. The latter must be extracted once the real circuit layout

is completed, so that the real impact of interconnect length, coupling issues as well as

the parasitic parameters can be extracted and incorporated into the final SPICE sim-

ulation. We use iscas2spice software suite [111] to translate ISCAS85/89 benchmark

circuits into SPICE netlists. The iscas2spice package also contains a 130nm standard

cell library consisting of NAND, NOR, AND, OR gates with up to four inputs and some

other usual gates such as INV and XOR. The main steps performed using iscas2spice

software suite are as follows:

1. Match the components of the ISCAS85 benchmark circuits with the standard cells.

2. Translate the ISCAS85 “.bench” files into the input files for the existing placer and

do the placement.

3. Translate the output file of the placer to the format of the input file of the router and

performing routing using the global router

Chapter 3 SPICE Circuit simulation 41

4. Extract the routing information from the router output file and translate the original

benchmark circuits into the SPICE netlist using the standard cell library models.

5. Run a transient simulation for the extracted SPICE netlist and collect the “rusage”

information.

The overall procedure is illustrated in Figure 3.7, however, detailed steps can be found

in [111]. The tests results from the spice3f5 built-in “rusage” function are summarised

in Table 3.3.

Figure 3.7: Performing the SPICE Simulation of ISCAS85/89 Benchmark Circuits
using iscas2spice software suite [111]

42 Chapter 3 SPICE Circuit simulation

Table 3.3: Circuit Simulation Benchmark Matrices

Circuit Matrix Zeros Circuit Load Total Analysis LU Reordering LU Decomp. LU Solution LU Total Mod. Eval

Name Size (%) Time (ms) Time* (ms) Time* (ms) Time* (ms) Time* (ms) Time* (ms) Time* (ms)

s27 189 99.56 13 0.05 0.00 0.03 0.00 0.03 0.01

s208 1296 99.47 49 0.82 0.04 0.32 0.08 0.44 0.38

s298 1801 99.60 120 1.93 0.06 0.36 0.18 0.60 1.33

s344 1992 99.65 138 2.04 0.09 0.40 0.14 0.63 1.41

s349 2017 99.65 176 2.45 0.13 0.36 0.19 0.68 1.77

s382 2219 99.68 167 2.28 0.13 0.40 0.11 0.64 1.64

s444 2409 99.70 132 1.57 0.10 0.78 0.11 0.99 0.58

s386 2487 99.71 198 2.35 0.16 0.29 0.13 0.58 1.77

s510 2621 99.69 145 1.52 0.11 0.68 0.18 0.98 0.54

s526n 3154 99.76 171 1.74 0.16 1.01 0.22 1.38 0.36

s526 3159 99.76 185 1.84 0.16 0.57 0.42 1.15 0.69

s641 3740 99.80 259 2.48 0.25 1.66 0.28 2.19 0.29

s713 4040 99.81 314 2.77 0.27 1.25 0.73 2.26 0.52

s820 4625 99.82 407 3.58 0.38 1.79 0.71 2.87 0.71

s832 4715 99.83 548 4.81 0.50 2.10 1.19 3.80 1.01

s953 4872 99.84 731 6.06 0.75 1.14 0.68 2.57 3.49

s1196 6604 99.81 941 7.31 0.98 3.11 1.51 5.59 1.71

s1238 6899 99.86 999 7.60 1.09 2.74 1.57 5.41 2.19

s1423 9304 99.92 1105 8.11 1.38 3.23 1.20 5.81 2.30

s1488 9849 99.92 1834 13.23 2.21 5.16 1.90 9.26 3.97

s1494 9919 99.92 2285 15.19 2.73 5.07 2.61 10.40 4.79

* Per Iteration

3.4.2 Total Runtime Analysis

Figure 3.8 illustrates how the circuit size impacts the SPICE simulation runtime. We

can see that the runtime scales as O(N1.3) as the circuit size increases, as shown by

the trend line in the graph. This means that the SPICE sequential runtime will get

increasingly slower as we pack more devices into same silicon die area, in accordance

with Moore’s Law. To shed more light on the SPICE runtime, we examine, in Figure 3.9,

the SPICE runtime breakdown per its two main phases, namely, model evaluation and

matrix solution phases. Generally speaking, we can see that the model evaluation phase

dominates the runtime for smaller circuits whereas the matrix solution phase dominates

for bigger circuits [112].

However, the runtime may fluctuate depending on the makeup of the underlying

circuit. In effect, the model evaluation phase tends to dominate the SPICE runtime

for circuits that are mostly composed of non-linear transistor elements. On the other

hand, the matrix solution execution time dictates the runtime for circuits with large

parasitic components (e.g. capacitors, resistors) where the non-linear devices are a

Chapter 3 SPICE Circuit simulation 43

small portion of total circuit size. Similar conclusions have been drawn by Kapre et al.

[113]. Figure 3.10 and Figure 3.11 show the effects of parasitics on the overall SPICE

simulation runtime as well as the time taken by SPICE’s two main phases respectively.

We can see that the inclusion of parasitics not only affecst the SPICE runtime adversely

but also cause the runtime distribution to swing in favour the Matrix Solution Phase.

y"="6E&05x1.3291"
R²"="0.94245"

0.010$

0.100$

1.000$

10.000$

150$ 1500$ 15000$

To
ta
l"T
im

e"
Pe

r"I
te
ra
=o

n"
(m

s)
"

Circuit"Size"
Total$+me$per$Itera+on$ Power$trendline$

Figure 3.8: SPICE total runtime scaling trends with ISCAS85/89 benchmark circuits

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

0# 2000# 4000# 6000# 8000# 10000# 12000#

Pe
rc
en

ta
ge
)o
f)S

PI
CE

)R
un

2u
m
e)
(%

))

Circuit)Size)
)%#Model#Eva# %#Matrix#Solu;on# 2#per.#Mov.#Avg.#(%#Model#Eva)# 2#per.#Mov.#Avg.#(%#Matrix#Solu;on)#

Figure 3.9: SPICE Runtime Breakdown

44 Chapter 3 SPICE Circuit simulation

Figure 3.10: Effect of Parasitics on SPICE Runtime [113]

Figure 3.11: Effect of Circuit Size on SPICE Runtime Distribution [113]

Chapter 3 SPICE Circuit simulation 45

3.4.3 Runtime Scaling Trends

As explained earlier, a SPICE simulation is an iterative process that consists of two

phases per iteration, namely, model evaluation phase followed by a matrix solution phase.

In this section, we examine how the execution time of these two phases scales with the

ever-increasing circuit sizes. In Figure 3.12, we graph the runtime per SPICE simulation

phase as a function of the circuit size. From the trend lines in graph, we can see the model

evaluation phase scales as O(N1.1) as the circuit size increases, compared to O(N1.4) for

the matrix solution phase. From that, we can conclude that for extremely large circuits,

the matrix solution will most certainly dominate the overall SPICE simulation runtime.

These results are in line with similar findings in previous works [112, 114, 115].

y"="1E&05x1.4717"
R²"="0.96663"

y"="9E&05x1.1496"
R²"="0.64063"

0.01$

0.10$

1.00$

10.00$

100$ 1000$ 10000$

SP
IC
E"
Ru

n8
m
e"
Pe

r"I
te
ra
8o

n"
(m

s)
"

Circuit"Size"

Matrix$Solu/on$ ModEva Power$(Matrix$Solu/on)$ Power$(Mod$Eva)$

Figure 3.12: SPICE Runtime Scaling Trends Per Phase

In the matrix solution phase, there are 3 main steps: matrix reeordering, LU de-

composition, and LU matrix solution. In fact, matrix reordering refers to the fact that

46 Chapter 3 SPICE Circuit simulation

SPICE performs dynamic pivoting during the LU decomposition process in order to

maintain numerical stability. Looking more closely at the runtime of each these 3 steps,

we can see that matrix reordering time scales at a rate of O(N1.74) compared to O(N1.35)

for the LU decomposition time, as depicted in Figure 3.13. This means that in order to

speed the matrix solution phase, one cannot ignore the effect of dynamic reordering on

matrix solver runtime. In the next chapter, we will explore ways to eliminate the need

of dynamic pivoting and hence improve the runtime without compromising accuracy.

y"="2E&05x1.3545"
R²"="0.93602"

y"="2E&07x1.7411"
R²"="0.95905"

0.00#

0.01#

0.10#

1.00#

10.00#

100# 1000# 10000#

SP
IC
E"
Ru

n9
m
e"
Pe

r"I
te
ra
9o

n"
(m

s)
"

Circuit"Size"

#LU#Time# LU#Reodering#Time# Power#(#LU#Time)# Power#(LU#Reodering#Time)#

Figure 3.13: SPICE Matrix Reodering Scaling Trends

Moreover, following Moore’s Law device miniaturisation trend, the underlying device

models are becoming larger and more complex in order to account for physical effects

that may arise [116]. Figure 3.14 highlights the increasing complexity of Metal-Oxide-

Semiconductor Field-Effect Transistor (MOSFET) model. Scaling down device sizes also

increases the impact of tighter coupling and interference between the circuit elements.

This requires more rigorous modelling of parasitic elements (e.g. capacitors, resistors)

and thus increasing the size of the SPICE circuit matrix, which in turn increases the time

Chapter 3 SPICE Circuit simulation 47

spent in the matrix solution phase. The increase in the SPICE runtime per iteration

due to inclusion of parasitic effects is shown in Figure 3.10.

Design

Verification

Optimization

Process
Development

Device
Design

Design house Foundry

model

Fig. 1. MOSFET model acts as a bridge between
designers and chip foundry

103

Year of introduction

N
um

be
r o

f p
ar

am
et

er
s

1

102

10

1965 1980 1990 2000

Level 1

Level 2

Level 3

BSIM1

BSIM2
BSIM3v3

BSIM4

Fig. 2. The increase of MOSFET model parameters

Fig. 3. Finite charge thickness in MOSFET

Fig. 4. C-V after including charge thickness model

Fig. 5. Gate tunneling current components

Fig. 6. Result of the gate tunneling current model

4

Depth (Å)

El
ec

tro
n

D
en

si
ty

 (x
10

19
cm

-3
)

0

2

-40 0 20 40-20

Phys.
tox

Poly-Si
depletion

Charge thickness

20

VGS (V)

 C
gg

 (x
10

 p
F)

4

12

-4 0 2 4-2

Simple model

Poly depletion
and QM

Poly depletion
BSIM3v3.1

16

8
Data

Hole

Electron
tunneling

Valence-band
Electron tunneling

Figure 3.14: The increase of MOSFET model parameters [117]

Moreover, the runtime of the matrix solver does not scale well with the number of

processing elements used as was demonstrated in [118, 119]. This is, in effect, another

clear indication that in order to successfully speedup the SPICE runtime, the matrix

solution phases has be effectively parallelised in a scalable fashion in accordance with

Amdhal’s Law (as it was explained in Section 2.2). The work presented in this thesis

is based on parallelising the matrix solution phase. As such, we aim to investigate how

to build a scalable low-latency multi-FPGA accelerator with a processing architecture

capable of efficiently harnessing parallelism available within the matrix solution phase

of the SPICE simulator.

3.4.4 Parallel Potential Analysis

We have so far established that the SPICE simulation has two computationally-intensive

phases that can be parallelised. The first phase is the device model evaluation, in

which non-linear device models are evaluated (e.g. diodes, transistors). The other

phase is the matrix solution phase, in which a linear system of the form Ax = b is

solved for the unknown vector x. In the model evaluation phase, the non-linear device

computations are inherently independent from each other, and hence each device can be

48 Chapter 3 SPICE Circuit simulation

evaluated concurrently, in a data-independent fashion, on different processes. Therefore,

the amount of parallelism is proportional to the number of non-linear devices in the

circuit. This not only makes this phase vastly parallelisable but also highly scalable

[113, 120].

In the matrix solution phase, fine-grained parallelism can be extracted at the scalar-

level by concurrently performing independent floating-point computations within a par-

ticular matrix operation, such as column normalisation, column multiplication, column

updates, and so on. However, spreading sparse matrix computations over a number of

processing elements introduces a number of constraints. In effect, the SPICE matrix

solver employs the Markowitz algorithm [121] to carry out dynamic pivoting during the

matrix factorisation process. Pivoting is more complex in parallel implementations be-

cause the permutation of rows or columns requires global synchronisation between all

processing elements (PEs). This has two key implications. Firstly, the reduction of

the amount of pivoting required during the factorisation process enable a more effec-

tive matrix partitioning and hence will increase the parallelism potential. Similarly, it

may be also more desirable to use a static data distribution scheme which would elimi-

nate the need of performing dynamic pivoting, as it will be shown in the next Chapter.

Secondly, performing sparse calculations in a distributed manner requires an adequate

inter-PE communication mechanism that scales well with the number of PEs in terms of

bandwidth. Otherwise, any acceleration gains will be destroyed by the communication

overhead.

Fill-in is another phenomenon that could undermine efficiency of sparse matrix de-

composition as it it could lead to more operations and memory requirements. The

stability and sparsity requirements for pivot selection are often contradictory and most

strategies involve some sort of a compromise and the generalised Markowitz strategy is

an example of that. Selecting pivots for parallelism add a third constraint. Therefore,

one of the key contribution of this thesis is to identify to a reordering or a precondition-

ing strategy that offers the best compromise in terms of maintaining numerical stability

and preserving sparsity whilst increasing the parallelism potential. This will be explored

in more detail in the next chapter. We follow Liu’s [120] template in identifying three

Chapter 3 SPICE Circuit simulation 49

potential levels of granularity that we aim to exploit in using a parallel implementation

of matrix factorisation process:

• Fine-grain parallelism: concurrently evaluating independent scalar operations (e.g.

multiplication, addition, division, etc).

• Medium-grain parallelism: concurrently evaluating independent columns.

• Large-grain parallelism: concurrently evaluating of groups of columns or sub-

matrices.

3.5 Parallel Circuit Simulation

Transistor-level circuit simulation is a fundamental computer-aided design technique

that enables the design and verification of an extremely broad range of integrated cir-

cuits. In effect, circuit simulation enables the prediction of circuit performance and thus

makes it possible to disqualify a failing design before the start of the expensive chip

fabrication process. Therefore, it is not surprising that parallel circuit simulation is not

a new concept. In fact, as early as 1982, researchers have attempted to develop parallel

simulation capabilities on a variety of computer architectures such as vector machines

[112, 122], multi-processors [123, 124, 125, 126], and supercomputers [114, 127]. With

the proliferation of multi- and many- core processor technology [128, 129, 130, 131],

general purpose PCs now offer an amount of computing power that rivals the processing

muscle of expensive supercomputers from a couple of decades ago.

This architectural shift sparked a renewed interest to parallelise CAD simulations on

commodity PCs. More importantly, it has reinvigorate active development of modern

commercial parallel circuit simulators from all major EDA tool vendors and stimulated

research in parallel circuit simulation [132]. In effect, several parallel simulators of

electronic circuits have been developed recently, such as Xyce [133], TITAN [134], and

SEAMS [135]. FineSim Spice [136] is a commercial circuit simulator for mixed-signal

SoCs that can run over distributed networks or multi-CPU workstations. Commercial

50 Chapter 3 SPICE Circuit simulation

SPICE simulators such as HSPICE [137] and Virtuoso Accelerated Parallel Simulator

[138] use multithreading simulation capabilities to exploit multicore processors to simu-

late of large post-layout designs.

Moreover, the emergence of modern commodity heterogeneous platforms, compris-

ing homogenous multicore microprocessors with attached accelerators such as GPUs

and FPGAs, has brought new opportunities for accelerating circuit simulations using

domain-specific partitioning. In effect, impressive speedups may be achieved if the task

at hand is optimally partitioned, and the resulting subtasks are efficiently mapped to

either the CPU or the hardware accelerator depending on subtasks characteristics [139].

Additionally, programming model for these heterogeneous systems are also becoming

more user-friendly [140, 141, 142, 143, 144, 145, 146]. As such, a diverse array of parallel

hardware platforms exists today, ranging from heterogeneous processors and hardware

accelerators (GPUs and FPGAs) to computer clusters and supercomputers, which the

research community can leverage towards the ongoing efforts to accelerate large-scale

circuit simulation.

A variety of parallel simulation approaches for SPICE exist. Algorithmic-based ap-

proaches aim to harness parallelism available within the underlying algorithms of the

SPICE simulator. As such, parallelism can be explored at the levels of device eval-

uation [4, 11, 113], matrix solution [147, 148, 149, 150], or the nonlinear equations

[151, 152]. Parallelism can be also explored via concurrently evaluating individual sub-

circuits [150, 152]. One of the first published algorithms for circuit-level partitioning is

“Node Tearing” [153]. This algorithm starts from an input voltage source and gathers

adjacent elements until it reaches a specified partition size. If there are several possibil-

ities for the selection of an adjacent element, the algorithm takes the node with fewer

connections. In the signal domain, parallelism is explored along the time or frequency

axis. For instance, computations used to find the circuit responses at different time

points may be processed in parallel [114, 154].

Chapter 3 SPICE Circuit simulation 51

3.6 Summary

In this chapter, we have established that model evaluation phase of a SPICE simulator

is rather straightforward to parallelise as the model evaluations are independent of each

other. The parallelisation of the matrix solution phase, however, is more complicated

because of the dependency relationships that exist within the matrix solution process.

In circuit simulation, the use of pivoting, or matrix reordering, during the computation

is usually avoided. In fact, in most circuit simulation programs, pivoting for accuracy

is not performed during the transient analysis unless a zero (or a value close to zero) is

encountered on the diagonal. This is acceptable in practical terms as the linear equation

solution is used as part of Newton-Raphson’s method and an occasional small error

during the iterative process does not affect the integrity of the final solution, although

it may have some influence on convergence.

In addition, circuit matrices are often diagonally dominant. Thus, matrix reordering

is usually only performed to preserve sparsity and to enhance parallelism. This tends to

increase parallelisation potential of the SPICE matrix solution, when compared to the

most general case of the parallel sparse linear problem [114]. In direct circuit simulation,

the linear equation solution is usually performed using LU factorisation followed by

forward elimination and backward substitution. There are a variety of different methods

for LU decomposition which will be covered in Chapter 4. The forms of parallelism

available in LU decomposition can be categorised as follows:

• Fine-grain parallelism associated with element-level update operations

• Medium-grain parallelism associated with independent colums/pivots

• Coarse-grain parallelism associated with independent sub-blocks.

The extent to which these three forms of parallelism can be exploited depends on the

structure and sparsity of the circuit matrix and the particular method of LU factorisation

used. Matrix reordering schemes that balance increasing parallelism against minimising

fill-in (that is, maintaining sparsity) are clearly important in the development of an

52 Chapter 3 SPICE Circuit simulation

efficient parallel circuit matrix solver and therefore will be covered in more detail in the

next chapter.

Chapter 4

Sparse Matrix Solution

In the previous chapter, we have empirically shown that the speed of the linear solution

becomes crucial in large-scale simulations, as the computational complexity of the linear

solution grows faster than the size of the circuit. We have also established that the linear

solver becomes a main problem in parallelisation of circuit simulators, due to the fact

Matrix Solution phase has inherently much lower parallelism than the other parts of a

circuit simulator (e.g. data-parallelism in model device evaluations). In circuit simula-

tions, direct methods, namely the sparse Lower/Upper triangular (LU) decompositions,

are preferred over iterative methods which suffer from convergence issues. Thus, this

chapter provides the conceptual grounding and theory that underpin sparse LU decom-

position. It also defines the key terminology and the algorithms used in subsequent

chapters. Finally, we demonstrate how we leverage the graph representation of a ma-

trix to create a dependency-driven task model schedule that maximises the parallelism

potential for the matrix solution phase.

53

54 Chapter 4 Sparse Matrix Solution

4.1 Theory: Sparse LU Decomposition

4.1.1 Dense LU Decomposition

LU decomposition is the process whereby a matrix, A, is factored into two matrices:

an upper triangular matrix U and a lower triangular matrix, L, i.e. A = LU . Once

the elements in L and U are calculated, the unknown vector x, in a system of the form

Ax = b, can be computed by forward substitution and backward substitution using the

following two equations Ly = b and Ux = y respectively. For example, for a 3-by-3

matrix A, its LU decomposition looks like this:


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


l11 0 0

l21 l22 0

l31 l32 l33



u11 u12 u13

0 u22 u23

0 0 u33

 (4.1)

LU decomposition is particularly attractive when solving the same left hand-side Ax

for many different right hand sides i.e. b. In effect, the decomposition effort will be

a one-off overheard and then x will be solved repeatedly for different b using forward

and back substitutions. The total time, C, required by the LU decomposition solver is

approximately:

C ≈ T ×

 n3

3︸︷︷︸
LU

+ i (
n2

2
+
n2

2
)︸ ︷︷ ︸

FS+BS

 (4.2)

where T is the time needed to execute a multiply-divide floating-point operation

(flop), i is the number of iterations for the same coefficient matrix A; and LU , FS,

and BS stand for LU factorisation, forward and back substitutions respectively. From

Equation 4.2, it is clear that for i � n, the time needed for the LU factorisation be-

comes negligible and hence giving an overall complexity of O(n2) compared to O(n3) for

Gaussian elimination [155]. Over the years, a great deal of research has been conducted

Chapter 4 Sparse Matrix Solution 55

to find efficient ways to perform LU decomposition. Although many algorithms exist,

the generic algorithm can be written as three nested loops as follows:

Algorithm 4.1 LU Decomposition Generic Pseudo Code

1: for ———– do
2: for ———– do
3: for ———– do
4: aij = aij − (aik × akj) /akk
5: end for
6: end for
7: end for

The loop indices have variable names i, k, and j, but have different ranges and as

such were left empty in Algorithm 4.1. The organisation of these neested loops imply

that six possible permutations are possible of i, k, and j in the nested loops. In [156],

Dongarra et al. studied the performance impact of each permutation for dense LU

decomposition algorithm on vector pipeline machines. The division operation is usually

performed outside the inner loop, leaving a multiply and a subtract in the innermost

loop. The selection a particular loop permutation does not affect of the outcome of

LU decomposition or the number of floating-point operations required, provided that

pivoting is not employed.

In effect, selecting a different permutation changes the data and computation pat-

tern of the method utilised and may result in a significant performance impact of the

computing platform used. The six permutations can be broken down into two groups,

namely column-based factorisation and row-based factorisation. The difference between

these two groups consists in the role of column and row during the LU decomposition

process. Historically, column-based algorithms have been favoured, due to influence of

scientific programming languages, such as FORTRAN [157].

Two popular methods of the 6 variants of LU decomposition are right-looking LU

and left-looking LU. In right-looking methods, columns below and to the right of the

kth pivot of A as accessed and subsequently modified, as shown in Figure 4.1(a). A left-

looking LU factorisation, however, computes L and U one column at a time. At the kth

56 Chapter 4 Sparse Matrix Solution

step, it accesses columns 1 to (k−1) of L and column k of A, as shown in Figure 4.1(b).

A left-looking LU decomposition is advantageous if the matrix is stored column-wise.

(a) Right-looking LU (b) Left-looking LU

Figure 4.1: Right and left looking LU decomposition

4.1.2 Sparse LU Decomposition

Sparse matrices are ubiquitous in scientific calculations when modelling systems with

a large number of variables with limited coupling. A sparse matrix is a matrix with

enough zeros that it pays to take advantage of them as was defined by Wilkinson [158].

In other words, a sparse matrix is defined as one that has few nonzeros in it, typically

O(n) entries, where n is the order of the matrix. Ideally, sparse matrices can benefit

from algorithms which exploit their sparsity to reduce the number of operations needed

(e.g. avoid operations on zero entires) whilst minimising overall storage requirements

(e.g. optimised data structures). As such, the aim of sparse LU algorithms is to solve

equations of the form Ax = b in time and space proportional to O(n) + O(nnz), for a

matrix A of order n with nnz nonzeros [106]. Furthermore, the loose-coupling between

elements within sparse matrices enables us to reorder and partition them into almost

independent sub-matrices, hence requiring minimal communication and increasing the

parallelisation potential.

Chapter 4 Sparse Matrix Solution 57

4.1.2.1 Sparse LU Decomposition Issues

Adapting the numerical methods from the dense LU decomposition to the sparse case,

however, introduces extra constraints. One of main issue for sparse LU factorisation is

the presence of small or zero values on the main diagonal. To ensure a zero-free diagonal

and to maintain numerical stability, pivoting is usually applied. Pivoting is more complex

in parallel implementations because the permutation of rows or columns requires global

synchronisation between all Processing Elements (PEs). Furthermore, pivoting may

cause load imbalance among PEs. Fill-in could undermine efficiency of sparse matrix

decomposition. Nonetheless, there are special ordering techniques that can be used

to minimise the occurrence of fill-in, as will be discussed in in Section 4.1.3. On the

other hands, static symbolic LU factorisation at the preconditioning stage can determine

in advance all possible fill-ins. Symbolic LU factorisation algorithms reply only the

graph representation of the matrix at hand, which makes them cheaper computationally

speaking when compared to the actual numerical factorisation. Symbolic factorisation

will be covered in detail in section Section 4.2.1.

Furthermore, sparse LU methods suffer from irregular computation patterns that are

dependent on the nonzero structure of the matrix, which in turn depends on the fill-

in properties of the matrix and the pivot choices. Nevertheless, symbolic analysis can

be used to predetermine the nonzero structure before the numerical factorisation takes

place. The symbolic analysis typically requires computations that only depend on the

nonzero pattern of the underlying matrix, not the numerical values. This allows the

numerical factorisation to be repeated for a sequence of matrices with identical nonzero

pattern. If pivoting is employed, however, symbolic analysis has to precede every step of

the factorisation process, as it is impossible to predict the nonzero entries without prior

knowledge of which matrix elements will be chosen as pivots. As such, static pivoting

technique is more suitable for parallel LU factorisation, as it permits a priori identifi-

cation of pivots, effectively decoupling symbolic and numerical factorisations [159]. In

Section 4.3, will show how to leverage static pivoting along with symbolic factorisation

to create a task schedule more suitable for a parallel processing.

58 Chapter 4 Sparse Matrix Solution

4.1.2.2 Sparse Matrices Data Structures

Dense matrices are typically represented by a two dimensional array. To save storage,

sparse matrices can be represented with more compact data structure such as linked

lists, a collection of sparse vectors, or using a coordinate scheme. Each technique has its

advantages and disadvantages depending on the application and architecture targeted, as

discussed by Duff et al. [106]. The Compressed Row Storage (CRS) and the Compressed

Column Storage (CCS) formats are the most general as they make no assumptions about

the sparsity structure of the matrix and do not store any unnecessary elements. Storing

the nonzero elements of a sparse matrix is performed by traversing each column (in the

case of CCS) or each row (in the case of CRS), and writing the nonzero elements to an

array in the order they appear.

CCS (also called the Harwell-Boeing sparse matrix format) [160] consists of three

arrays: val, row ind and column ptr. The val array stores the values of the nonzero

elements of the matrix A as they are traversed in a column-wise fashion. The row ind

array stores the row indices of each nonzero. The col ptr array stores the index of the

elements in val which start a column of A. By convention, col ptr has a length of

(nnz + 1) where col ptr[nnz + 1] = nnz. Thus, the elements of kth column are held in

val [col ptr[k]] through val [col ptr[k]] and their corresponding row indices are stored in

the same locations in row ind.

The CRS format is identical to the CCS format except that A is traversed a row-

wise fashion. In other words, the CRS format is the CCS format for AT . To illustrate

the two formats, consider matrix A in Equation 4.3 and its equivalent CCS and CRS

formats. CRS and CCS are very economical in terms of memory for sparse matrices as

they need only (2nnz + n+ 1) storage locations as opposed to
(
n2
)

for the dense matrix

representation [106]. On the other hand, they require an indirect addressing step for

every single scalar operation [106].

Chapter 4 Sparse Matrix Solution 59

A =



3 0 4 0 2 0

0 0 1 3 0 0

5 7 0 0 4 0

9 0 0 8 0 0

0 4 0 0 3 1


(4.3)

The CCS format for matrix 4.3 is specified by the arrays val, row ind, col ptr as

follows:

val = [3, 5, 9, 7, 4, 4, 1, 3, 8, 2, 4, 3, 1]

row ind = [0, 2, 3, 2, 4, 0, 1, 1, 3, 0, 2, 4, 4]

col ptr = [0, 3, 5, 7, 9, 12, 13]

And its equivalent CRS format for is specified by the arrays val, col ind, row ptr as

follows:

val = [3, 4, 2, 1, 3, 5, 7, 4, 9, 8, 4, 3, 1]

col ind = [0, 2, 4, 2, 3, 0, 1, 4, 0, 3, 1, 4, 5]

row ptr = [0, 3, 5, 8, 10]

4.1.2.3 Elimination Graphs

As mentioned earlier, symbolic LU factorisation is a technique whereby the graph repre-

sentation of the matrix at hand is used to predetermine fill-ins they may appear during

the actual numerical step. Symbolic analysis for symmetric matrices is a well understood

topic and can be efficiently performed using a pruned version of the undirected graph

associated with the matrix, known as “the elimination tree” [161]. The elimination tree

is used to precompute the all possible positions of fill-ins as well as to identify column

dependencies for parallelism. The elimination tree is defined for any sparse matrix whose

sparsity pattern is symmetric. For a sparse matrix of order n, the elimination tree is a

60 Chapter 4 Sparse Matrix Solution

tree on n nodes such that node j is the father of node i if entry (i, j), j > i is the first

entry below the diagonal in column i of the triangular factors. Figure 4.2(a) shows a

matrix and its corresponding elimination tree. For instance, columns 1 and 2 can be

processed in parallel as they do not have any dependencies (i.e. no offsprings). However,

column 4 cannot be processed unless column 2 have been already processed. Smilarly,

columns 3 and 4 can be processed in parallel once their column offsprings (i.e. columns

1 and 2 respectively) have been evaluated.

An analogous graph for asymmetric sparse matrices is the elimination Directed Acyclic

Graph (elimination DAG) [162], which was introduced by Gilbert and Liu [162]. The

main property that we can exploit in these elimination graphs is that computations

corresponding to nodes that are not ancestors or descendants of each other are indepen-

dent [163]. Thus, the elimination graph can be used to exploit parallelism. In effect,

the dependency in terms column-level updates order is determined by the elimination

graph. If each node is associated with a column, a column can only be modified by

columns corresponding to nodes that are descendants of the corresponding node in the

elimination graph. Elimination DAGs will be used extensively in Section 4.3, as part of

our work to develop a dependency-driven scheduling algorithm for parallel sparse matrix

factorisation.

5

6

4’

5’

6’

3’ 3

7’ 7

3

2

1’

5

4

67

4

2

1

2’

7

6

2

43

1

5

1

5 64321

1’

3’

2’

4’

5’

6’

7’

7

(a) (b)

Figure 4.2: (a) A matrix and its (b) elimination tree

Chapter 4 Sparse Matrix Solution 61

4.1.3 Fill-reducing Orderings

Fill-in during sparse LU decomposition is caused by the nonzero structure of the matrix

prior to and during the LU decomposition process. In order to limit the amount of fill-in

that occurs, the nonzero structure of the sparse matrix can be altered by reordering the

rows or columns of the matrix prior to LU decomposition. Figure 4.3 shows the effect

of reordering on the amount of fill-in generated during the the factorisation process,

where the blue and red boxes represent the the initial nonzero and fill-ins respectively.

Reordering only affects the order of the variables in the system of equations, or the order

in which the equations are eliminated during LU decomposition.

(a) Before ordering

(b) After ordering

Figure 4.3: The effect of ordering on fill-in during LU factorisation

Mathematically speaking, the fill-in minimisation problem consists in finding a row

and column permutation P and Q such that the number of nonzeros in the factorisation

of PAQ, or the amount of work required to compute it, are minimised. However, Rose

and Tarjan [164] have proved that finding the best ordering for symmetric matrices which

results in minimum fill-in is an NP-complete problem. Yannakakis [107] proved the same

for asymmetric matrices. In effect, allowing fill-in may be computationally cheaper than

finding such an ordering. Therefore, heuristics that attempt to reduce fill-in are used

instead. Ordering schemes typically take into account only the matrix structure, without

considering the numerical values of its elements. Partial pivoting during factorisation

62 Chapter 4 Sparse Matrix Solution

changes the row permutation P and hence could potentially increase fill-in, compared

to the estimate produced by the ordering scheme prior to factorisation process.

Ordering heuristics are essentially graph-based algorithms. In fact, any symmetric

matrix corresponds to an undirected graph called the elimination graph. To construct

such a graph, a vertex is associated with each row and edge from i to j exists if aij is

nonzero, as shown in Figure 4.4. Graphically, fill-ins are equivalent to the new edges

introduced to the nodes connected to the node to be eliminated when removed. Fig-

ure 4.5(a) shows the matrix A of Figure 4.4 after the first elimination step (i.e. A1),

where X denotes an initial nonzero elements and F is the incurred fill-in. Figure 4.5(b)

shows the elimination graph associated with A1, where the dashed lines represent the

fill-ins (i.e. new edges) introduced where the first node was removed.


X X 0 X X
X X 0 0 X
0 0 0 X 0
X 0 X X 0
X X 0 0 X


(a) symmetric matrix

1

2

3

45

(b) elimination graph G(A)

Figure 4.4: A square symmetric matrix and its equivalent elimination graph


X X 0 X X
X X 0 F X
0 0 0 X 0
X F X X F
X X 0 F X


(a) A1

2

3

45

(b) elimination graph G(A1)

Figure 4.5: Elimination graph after the first elimination step

Although finding the optimal ordering is NP-complete [164], in practice there are

several efficient fill-in reducing heuristics. They can be grouped into two classes; local

and global heuristics. The first class uses local greedy heuristics to reduce the number

of fill-ins at each step of factorisation. One of the representative heuristics is the mini-

mum degree algorithm. The second class is based on global heuristics that uses graph

partitioning, such as nested dissection, to restrict the fill to only specific blocks of the

permuted matrix.

Chapter 4 Sparse Matrix Solution 63

4.1.3.1 Minimum Degree Ordering

The minimum degree algorithm [165] is a widely used heuristic for finding a permutation

P such that PAP T has fewer nonzeros in its factorisation. The key idea of the minimum

degree algorithm is to select the node which has the the least number of edges connected

to it (i.e. minimum degree) as the next elimination node. Figure 4.6 shows the elim-

ination step of the matrix shown in Figure 4.4, following a minimum degree fashion

incurring no fill-ins. If the input matrix A is asymmetric, then the permutation of the

matrix A + AT can be used. This is know as symmetrisation. Approximate Minimum

Degree (AMD) [166] improves the conventional minimum degree algorithm, in terms of

time and memory usage. Another variant specifically created for asymmetric matrices is

known as Column Approximate Minimum Degree (COLAMD) [167]. COLAMD orders

the matrix AAT without forming it explicitly.

1

2 45

(a) Step 1: A1

1

25

(b) Step 2: A2

25

(c) Step 3: A3

5

(d) Step 4: A4

Figure 4.6: Minimum degree elimination steps

4.1.3.2 Nested Dissection Ordering

Nested dissection [168] uses a divide and conquer strategy on the graph of a sparse

symmetric matrix to find an elimination ordering. The key concept is the computation

of a vertex separator, that splits the matrix into new roughly equal-sized subgraphs on

which LU factorisation may be performed separately. The variables corresponding to

the first part are ordered, followed by those of the second part, and finally by those of

64 Chapter 4 Sparse Matrix Solution

the separator. The disconnected parts can be themselves further divided by the com-

putation of new separators, with the recursion continuing to any depth. The results for

the two parts may then be combined to find the solution of the entire graph. The main

advantage of this partitioning is that the resulting form of the matrix is suitable for par-

allel execution. State-of-the-art nested dissection algorithms use multilevel partitioning.

A widely used nested dissection routine is “METIS NodeND” from the METIS graph

partitioning package [169].

It has been observed in practice that minimum degree is better at reducing the fill for

smaller problems, while nested dissection works better for larger problems. This obser-

vation has lead to the development of hybrid heuristics that consist in applying several

steps of nested dissection, followed by the usage of a variant of the minimum degree al-

gorithm on local blocks [170]. For asymmetric matrices, the algorithms discussed above

use the graph associated with the symmetrised matrix A + AT or ATA. The approach

of symmetrising the input matrix works well in practice when the matrix is almost sym-

metric. However, when the matrix is very asymmetric, the information related to the

asymmetry of the matrix is not exploited, as too many “false” dependencies are created

[106].

4.1.4 Zero-free Diagonal Orderings

As previously discussed in Section 3.2, circuit matrices are mostly diagonally-dominant

and enjoy a largely zero-free diagonal. However, they can be permuted, by Duff’s

maximum transversal algorithm [103, 171], to ensure a zero-free diagonal. The algorithm

works by determining the maximum possible transversal of the underlying matrix. A

transversal is defined as a set of nonzeros on the diagonal of the permuted matrix. A

transversal of maximum length is the maximum transversal. Duff’s algorithm attempts

to find the maximum transversal on a graph, in which each vertex corresponds to a row

in the matrix at hand. An edge ik → ik+1 exists in the graph if A(ik, jk+1) is a nonzero

and A(ik + 1, jk+1) is an element in the transversal set. Duff’s maximum transversal

transversal algorithm has a worst case time complexity of O(nT) where T is the number

Chapter 4 Sparse Matrix Solution 65

of nonzeros in the matrix and n is the order of the matrix. However, in practice, the

time complexity is closer to O(n+ T) [172].

The maximum transversal problem can also be interpreted as a maximal matching

problem on bipartite graphs [173], as illustrated by the example problem in Figure 4.7.

In most of our experiments, we use the HSL MC64 ordering subroutine [174] to ensure

that our test matrices have a zero-free diagonal. The subroutine attempts to find row and

column permutations such that the permuted matrix has n entries on its diagonal, where

n is the order of the matrix. If the matrix is structurally nonsingular, the subroutine

can also compute a row and column permutation of the matrix so that the sum of the

diagonal entries of the permuted matrix is maximised. This helps to put big nonzeros

values on the diagonal and thus increases numerical stability during the LU factorisation

process.

r1

r2

r3

r4

r5

r6

c1

c2

c3

c4

c5

c6

1 2 3 4 5 6
r1

r2

r3

r4

r5

r6

c1

c2

c3

c4

c5

c6

2 6 3 4 5 1

Figure 4.7: Example of finding a zero-free diagonal matrix permutation via maximal
matching on a bipartite graph.

4.2 Parallelising Sparse LU Decomposition

One of the most important aspects of designing any parallel algorithm is identifying of the

appropriate level of granularity, which can be then adequately mapped to the targeted

processing architecture [175]. For instance, fine-grain parallelism (i.e. at the level of

individual floating point operations) is available in either the dense or sparse linear

systems. It can be exploited effectively by using a streaming-like processing architecture

such as a vector processor or a systolic array. Medium-grain parallelism arises from

66 Chapter 4 Sparse Matrix Solution

the fact that many column operations can be computed concurrently across a number of

processing elements. An elimination tree-like graph can be used to characterise this type

of parallelism such that columns in the same graph level can be evaluated in parallel.

This level of granularity is an extremely important source of parallelism for sparse matrix

factorisation, as sparsity increase the the number of columns that can be operated on

in parallel. This may, however, cause a load imbalance in the the case where an entire

column operation only requires a few floating point operations.

Large-grain parallelism for space matrices can be also identified by the means of a

tree-like elimination graph. Therefore, if Ti and Tj are disjoint sections of the elimination

graph, then all of the columns corresponding to nodes in Ti can be computed completely

independently of the columns corresponding to nodes in Tj , and vice versa. Thus,

these computations can be done concurrently on separate processing elements with no

communication between them. In the dense case, however, operations must be performed

sequentially as there is never more than one leaf node at any given time. It should be

also noted that structure of the elimination graph is highly dependant on the fill-in

properties of the matrix, which is in turn depends on the ordering heuristics used.

Roughly speaking, sparsity and parallelism are largely compatible, since the large-grain

parallelism is due to sparsity in the first place. As such, an ordering that increases

sparsity can also increase the parallelism potential.

Many parallel sparse system solvers employ a technique called the “the multifrontal

scheme” [101] to parallelise computations by rewriting the original problem into a col-

lection of “frontal matrices” . In effect, multifrontal solvers [104, 176] rely on a directed

acyclic graph, called an assembly DAG, to extract and organise the parallel work. Each

node (i.e. frontal matrix) of the DAG represents a given computation. This may in-

clude pivot eliminations, normalisation, and handling data from the offsprings. All leaf

nodes of the DAG (i.e nodes without an offspring) can be evaluated in parallel, while

internal nodes can only be computed once their children have been computed. A pool

of the available work, that is, the nodes in the tree that are available for computation,

is maintained in shared memory. This multifrontal approach, if organised correctly, can

provide large and medium grain parallelism. However, the method is best suited for

Chapter 4 Sparse Matrix Solution 67

matrices with near-symmetric patterns and where the pivot sequence is constrained.

Moreover, this method involves relatively significant amounts of data exchanges be-

tween the tree nodes, requiring a considerable communication bandwidth. Therefore,

multifrontal solvers work best in shared memory environments.

Another approach to parallel sparse solvers revolves around evaluating many pivots

in parallel [177, 178]. At each stage of the the factorisation, these algorithms maintain

a list of pivots that can be applied in parallel and perform the corresponding updates.

These solvers typically concentrate on the medium and fine grain parallelism, and tend

to be most efficient on a moderate number of processors with fairly tight synchronisation

[179]. An important part of any sparse solver is the algorithm controlling the amount

of fill-in that is generated during the solution process. other aspect of pivot selection is

the maintenance of stability. Typically, this is done by choosing a pivot element that is

within a specified multiple of the largest element in the pivot row or pivot column or

the active part of the matrix depending on the efficiency of these tests given the data

structures assumed.

The stability and sparsity requirements for pivot selection are often contradictory and

most strategies involve some sort of a compromise. Selecting pivots for parallelism add

a third constraint. For the medium and fine grain algorithms mentioned above, these

three constraints can be considered in a reasonably straightforward way, potentially

with respect to the entire active portion of the matrix. The exploitation of larger grain

parallelism, however, often imposes a static decomposition on the structure of the matrix

which further constrains pivot selection. The effect of these constraints, for asymmetric

problems, can be seen by considering tearing techniques or nested bisection. These

techniques have proposed to expose large-grain structure, suitable for parallel execution,

by reordering the matrix into a form such as the Bordered Diagonal Block (BDB) form

[180], as will be demonstrated in Chapter 5.

68 Chapter 4 Sparse Matrix Solution

4.2.1 Gilbert-Peierls’ Algorithm

In Section 4.1.2, we mentioned that the aim of a sparse LU algorithm is to solve the

linear system Ax = b in time and space proportional to O(n) + O(nnz), for a matrix

A of order n with nnz nonzeros [106]. In practice, this is much harder to achieve as

the underlying nonzero structure of the matrix may dramatically change in course of

factorisation. To tackle this issue, Gilbert and Peierls [181] proposed a left-looking

sparse LU algorithm that achieves an LU decomposition with partial pivoting, in time

proportional to the floating-point operations performed i.e. O(flops(LU)). It is called

a left-looking algorithm because it computes kth column of L and U only by using the

already computed columns 1 to (k−1). In other words, to compute kth column of L and

U , the algorithm needs only to look at the already computed columns that are to the

left of the current column, as shown by the shaded portion of the matrix in Figure 4.8.

Appendix A details how a left-looking decomposition can be mathematically derived

from the general Gaussian Elimination algorithm [182].

The core of the Gilbert-Peierls factorisation algorithm is solving a lower triangular

system Lx = b, where L is a spare lower triangular matrix, x and b are sparse vectors

[102]. It consists of a symbolic step to determine the nonzero pattern of x and a numer-

ical step to compute the values of x. This lower triangular solution is repeated n times

during the entire factorisation (where n is the size of the matrix) and each solution step

computes a column of the L and U factors. The entire left-looking algorithm is described

in Algorithm 4.2. The lower triangular solution (i.e. line 3) is the most expensive portion

of the Gilbert-Peierls algorithm and includes a symbolic and a numeric factorisation step.

Algorithm 4.2 Gilbert-Peierls LU factorisation of a n-by-n asymmetric matrix A

1: L = I
2: for k = 1 to n do
3: solve the lower triangular system Lx = A(: k)
4: do partial pivoting on x
5: U(1 : k, k) = x(1 : k)
6: L(k : n, k) = x(k : n)/U(k, k)
7: end for

Chapter 4 Sparse Matrix Solution 69

A

N1

Lk+1:N

U1:k

Curent Column k

U

A

N1 k

i

Ji

U

L L

-
-

-
x x

x

Curent Column

Gilbert-Peierls Algorithm Sparse Triangular Solution

Figure 4.8: Gilbert-Peierls Algorithm Data Flow Pattern [181]

4.2.1.1 Symbolic Analysis

As mentioned in the previous paragraph, Gilbert-Peierls Algorithm revolves around the

efficient solution of Lkx = b in order to compute the kth column, where Lk is a unit

diagonal representing the already computed (k − 1) columns and the column vector

b is sparse. By avoiding unnecessary operations on zero entries, the general forward

substitution Algorithm can be described as follows:

Algorithm 4.3 Sparse forward substitution - Version 1

1: x = b
2: for j = 1 to n do
3: if xj 6= 0 then
4: for each i > j for which lij 6= 0 do
5: xi = xi − lijxj
6: end for
7: end if
8: end for

If Algorithm 4.3 is implemented, the time taken would be O(n + nnz + f) where

nnz is the number of nonzeros and f is the number of floating operations performed.

Since typically, f > nnz, the overall time approximates O(n+ f). However, the process

is repeated n times in order to compute all the columns of the LU factors leading to

a O(n2) factorisation time. Algorithm 4.3 can be optimised further if we can replace

the outer loop (i.e. line 2) with a smaller list X of j indices for which we know xj will

70 Chapter 4 Sparse Matrix Solution

a be nonzero, X = {j | xj 6= 0}, in ascending order. In effect, this would reduce the

computation time to O(f). The refined algorithm is shown in Algorithm 4.4.

Algorithm 4.4 Sparse forward substitution - Version 2

1: x = b
2: for each j ∈ X do
3: for each i > j for which lij 6= 0 do
4: xi = xi − lijxj
5: end for
6: end for

Symbolic analysis is the process whereby the set X is defined. From the pseudo

code in Algorithm 4.4, it can be seen that entries in x can become nonzero in only two

places, namely, the first and the fourth lines. If numerical cancellation is ignored, these

two statements can be written as two logical implications 4.4 and 4.5 respectively.

line 1 : [bi 6= 0 =⇒ xi 6= 0] (4.4)

line 4 : [xj 6= 0 ∧ ∃i(lij 6= 0) =⇒ xi 6= 0] (4.5)

These two implications can be expressed as a graph traversal problem. Let GLk
be

the directed graph of Lk such that GLk
= (V,E) with nodes V = {1 . . . n} and edges

E = {(j, i) | lij 6= 0}. Thus, statement 4.4 is equivalent to marking all the nodes of

GLk
that are nonzeros in the vector b, whereas statement 4.5 implies that if a node j is

marked and it has an edge to a node i, then the latter must be also marked. Figure 4.9

graphically highlights these two relationships.

Figure 4.9: Nonzero pattern for a sparse triangular solve

Chapter 4 Sparse Matrix Solution 71

Therefore, if we have a set B = {i | bi 6= 0} that denotes the nonzeros of b, the

nonzero pattern X can be computed by the determining the vertices that are reachable

from the vertices of the set B i.e. X = ReachGL
(B). The reachability problem can be

solved using a classical depth-first search in GLk
from the vertices of the set B. The

depth-first search takes time proportional to the number of vertices examined plus the

number of edges traversed. The depth-first search does not sort the set X , however,

it computes its topological order. This topological ordering is useful to maintain the

precedence relationship in the eliminating process of the numerical factorisation step.

The computation of X and x both take time proportional to the floating-point operation

count [155].

To illustrate the overall process, consider the solutions of the sparse linear system

Lx = b for sparse x, using the sparse lower triangular matrix L and the sparse vector b

shown in Figure 4.10. Vector b has two nonzero elements are at indices {4, 6}. Therefore,

we perform the reachability function using the following set, B = {4, 6}. Then starting

a depth-first search at node 4 gives Reach(4) = {4, 9, 12, 13, 14} in topological order.

Next, Reach(6) = {6, 9, 10, 11, 12, 13, 14}, but some of these nodes are already marked.

So the final set X = {6, 10, 11, 4, 9, 12, 13, 14}, which is also in topological order. The

forward solve traverses the columns of L in this order.

Figure 4.10: Example of a symbolic analysis for a lower triangular sparse system [155]

72 Chapter 4 Sparse Matrix Solution

4.2.1.2 Numerical Factorisation

Normally, this step consists of numerically performing the sparse triangular solution for

each column k of L and U in the the increasing order of the row index, as shown in

Figure 4.8. The nonzero pattern computed by the symbolic analysis is, however, in a

topological order. Sorting the indices would increase the time needed for the solutions.

Nevertheless, topological order is sufficient as it gives the order in which elements of the

current column are dependent on each other. For instance, the depth first search would

have finished traversing vertex i before it finishes traversing vertices j. Therefore, in

the topological order j would appear before i. The entire left-looking algorithm can be

summarised in MATLAB notation in Figure 4.11, where x = L\b denotes the solution

of a sparse lower triangular system.

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Gilbert−Peierls Algorithm (A=LU)
3 % input: sparse matrix A
4 % output: L and U factors
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 L = I % I is the identity matrix
7 for k = 1 : n
8 b = A(: , k); % kth column of A
9 x = L \ b; % the backslash \ is MATLABs Lx=b solve function

10 U(1:k,k) = x(1 : k);
11 L(1+k : n) = x(k+1 : n) / U(k, k);
12 end;

Figure 4.11: Gilbert-Peierls Algorithm (A=LU) in the MATLAB notation

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Sparse Triangular Solution (Lx=b)
3 % input: Matrix L (1: k−1)
4 % output: kth column of L
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 x = b;
7 for i = 1 : k−1 where x(i) !=0
8 for j = i+1 : N where L(j,i) != 0
9 x(j) = x(j) − L(j,i) ∗ x(i);

10 end;
11 end;

Figure 4.12: Pseudocode of the Sparse Triangular Solution (Lx=b)

Chapter 4 Sparse Matrix Solution 73

4.2.1.3 Symmetric Pruning

Symmetric pruning is technique whereby structural symmetry in matrices is exploited

to reduce the time taken by the symbolic analysis [183]. The basic idea of the technique

revolves around decreasing the time taken by the depth-first search by pruning unnec-

essary edges in the graph of a matrix (i.e. G). In effect, G can be replaced by a reduced

graph H that has fewer edges but preserves the path structure. In fact, any graph H

can be used in lieu of G if it preserves the paths between vertices of the original graph.

In other words, if an edge i→ j exist in G, it should also exist in H.

Figure 4.13 illustrates how symmetric pruning works. As demonstrated in the exam-

ple, an edge r → s is removed (i.e. pruned) by setting lsr = 0, provided that ljr 6= 0 and

urj 6= 0. The justification behind this is that for any ark, ask will still fill-in from column

r. The just computed column j of L is used to prune earlier columns. This means that

any future depth-first search from vertex i will not visit vertex s, since s would have

been already visited via vertex j. In the the context of LU factorisation, the graph of

L, (GL) can be pruned by leveraging the symmetry in the structure of the factors L and

U . In our work, will use symmetric pruning to speed up the depth-first search in the

symbolic factorisation stage of the Gilbert-Peierls Algorithm, covered in Section 4.2.1.1.

Symmetric pruning:
Set lsr=0 if ljr ≠ 0 and urj ≠ 0

Justification:
ask will still fill in

r!

r! j!

j!

s!

k!

= fill

= pruned

= nonzero

Figure 4.13: Symmetric pruning example [183]

74 Chapter 4 Sparse Matrix Solution

4.3 Dependency-Aware Matrix Operations Scheduling

In this section, we explain one of the main contributions of this thesis, which revolves

around the construction of a deterministic and accurate task model for parallel LU fac-

torisation. As such, we present our Dependency-Aware Matrix Operations Scheduling

(DAMOS) algorithm. DAMOS is a scheduling algorithm that leverages the graph rep-

resentation of a matrix, computed using symbolic factorisation, to create an operations

schedule that takes into account column-level dependencies. The generated static sched-

uled can be then used to parallelise and control the dataflow of LU matrix operations

on the FPGA. The main steps of the algorithm are as follows:

1. Preorder matrix A to minimise fill-in (e.g. minimum degree) and to ensure a zero-free

diagonal (e.g. maximum traversal).

2. Perform symbolic factorisation and determine the structure of the lower triangular

matrix L and upper triangular matrix U .

3. Determine column dependencies using the structure of upper triangular matrix U .

4. Building a Directed Acyclic Graph (DAG) that represents the computed column-

level dependencies.

5. Annotate nodes of the Column-Dependency DAG (CD-DAG) with their correspond-

ing level of parallelism.

6. Derive the ASAP (As Soon As Possible) schedule for the column operations required.

7. Refine the ASAP schedule using modulo i scheduling, where i is the maximum num-

ber of columns that can reside at any level of the CD-DAG.

To illustrate how our DAMOS algorithm works, consider the matrix A shown in

Figure 4.14. For the sake of simplicity, it is assumed that the matrix has a zero-free

diagonal and it has been already pre-ordered with some fill-in minimising heuristic.

First of all, we need to carry out the Gilbert-Peierls factorisation symbolically, using the

principles studied in Section 4.2.1, to work out the pattern of the LU factors.

Chapter 4 Sparse Matrix Solution 75

Figure 4.14: Matrix A with an asymmetric nonzero pattern

We compute the nonzero structure of the LU matrix column by column starting

from the left, following the left-looking LU factorisation pattern of the Gilbert-Peierls

algorithm. Therefore, in order to compute the kthcolumn, we first need to construct

a Direct Acyclic Graph (DAG) of Lk−1 (i.e. GLk−1
), where Lk−1 is the unit lower

triangular matrix of the columns that has been computed so far (i.e 1 to (k-1) columns).

The graph GLk−1
has an edge j → i if lij 6= 0. Then the nonzero pattern of the

kth column is given by the reach of nonzero elements of column k in GLk−1
. In other

words, if we have a set B = {i | bi 6= 0} that denotes the existing nonzeros of the

kth column, the new nonzero pattern can be computed by the determining the vertices

that are reachable from the vertices of the set B i.e. ReachGLk−1
(B). In practice, the

reachability problem is solved using a Depth-First Search (DFS) algorithm, as it was

demonstrated inSection 4.2.1.1. For the sake of simplicity, we will visually identity of

the reachable vertices in our subsequent examples.

7

1
3

2 5

7

1
3

7

1
3

2 5

2 5

4 9

7

1
3

Figure 4.15: Symbolic Gilbert-Peierls factorisation example: step 1.

76 Chapter 4 Sparse Matrix Solution

For instance, to compute the nonzero pattern of column 2, we need to construct the

graph of the lower components of columns to its left (i.e Column 1 in Figure 4.15). The

columns required at any step of the factorisation process are represented by the shaded

portion of the matrix in all the subsequent figures of this section. In column 2, there

are two nonzeros at indices {2, 4}. Therefore, Reach(2) = {2}, Reach(4) = {2} and

hence Reach(2, 4) = {2, 4}. We can see that the reachability function has returned the

input set itself. This implies that column 2 structure remains unchanged and it will not

suffer from any fill-in during the actual numerical factorisation process. The structure of

columns 3, 4, 5 also remains unchanged, as can be seen from the symbolic factorisation

steps illustrated in Figure 4.16.

7

1
3

2 5

7

1
3

2 5

2 5

4 9

7

1
3

Step 2:
Column 3

Step 3:
Column 4

Step 4:
Column 5

Reach(3,7) = {3,7}

Reach(2,4,5,9) =
{2,4,5,9}

Reach(5,6) = {5, 6}

Figure 4.16: Symbolic Gilbert-Peierls factorisation example: step 2 - step 4.

Chapter 4 Sparse Matrix Solution 77

Starting from step 5, however, we start to see the impact of fill-in on the nonzero

structure of the matrix. In effect, column 6 has four nonzero elements at indices {3, 4, 6,

7}. The new nonzero pattern of column 6, including fill-ins, is given by Equation 4.6-4.8:

Reach(3, 4, 6, 7) = Reach(3) ∪Reach(4) ∪Reach(6) ∪Reach(7) (4.6)

= {3, 7} ∪ {4, 5, 6, 9} ∪ {6} ∪ {7} (4.7)

= {3, 7, 4, 5, 6, 9} (4.8)

Fillin(Col6) = Reach(3, 4, 6, 7)− {3, 4, 6, 7} (4.9)

= {3, 7, 4, 5, 6, 9} − {3, 4, 6, 7} (4.10)

= {5, 9} (4.11)

From Equation 4.9-4.11, on the other hand, we can see that we can also expect the

appearance of two fill-in elements at indices {5, 9} in the new nonzero structure of

the column 6. Fillin(Colk) is a function that returns the row indices of the new fill-

ins in column k. Figure 4.18 shows the remaining steps of the symbolic factorisation.

Figure 4.17 shows the resulting matrix structure once all the steps of the symbolic

factorisation are performed.

1 23 5

10

7

4

6

98

Level 3

Level 1

Level 2

Level 4

1 23 5

10

7

4

6

98

Level 3

Level 1

Level 2

Level 4

1 23 5

10

7

4

6

98

Level 3

Level 1

Level 2

Level 4

Figure 4.17: The predicted the nonzero pattern of the LU factors of matrix A.

78 Chapter 4 Sparse Matrix Solution

Figure 4.18: Symbolic Gilbert-Peierls factorisation example: step 5 - step 9.

Chapter 4 Sparse Matrix Solution 79

Now that we have computed the nonzero pattern of resulting LU factors, we need to

determine the columns dependencies that may arise during the numerical factorisation

process. In Gilbert-Peierls’ algorithm, the flow of computation follows two steps, which

are repeated sequentially until the entire matrix is processed. The first step is “the sparse

triangular solution”, in which the elements of the current column are factorised by the

means of solving Lx = b for x, where L represents the triangular matrix of leftmost

columns factorised so far, b is the current column to be decomposed, and x is the

decomposed column. In the next step, the computed column is normalised by dividing

all its lower off-diagonal elements over the pivot. As the column normalisation operation

is self-contained (i.e. does not require any other column), it is clear that any column

dependencies in the overall Gilbert-Peierls algorithm only arise from the underlying

dependencies in the “the sparse triangular solution” step. However, when computing a

column k using the sparse triangular solution algorithm, not all the columns to its left

are needed, as it was illustrated in Section 4.2.1.1. In effect, the factorisation of column

k only depends on the columns that satisfy the following criteria:

Dependency(Colk) = {j|ajk 6= 0, j < k} (4.12)

In other words, column-level dependency information can be derived by just analysing

structure of U matrix, which is computed in the symbolic factorisation phase. Applying

this principle to our example factored matrix A (i.e LU), gives the following:

Dependency(Col1) = {} (4.13)

Dependency(Col2) = {} (4.14)

Dependency(Col3) = {} (4.15)

Dependency(Col4) = {2} (4.16)

Dependency(Col5) = {} (4.17)

Dependency(Col6) = {3, 4, 5} (4.18)

Dependency(Col7) = {} (4.19)

Dependency(Col8) = {1, 3, 5, 6, 7} (4.20)

Dependency(Col9) = {4, 5, 6, 7} (4.21)

Dependency(Col10) = {} (4.22)

80 Chapter 4 Sparse Matrix Solution

Information conveyed by Equation 4.13-4.22 can be graphically presented with the

aid of Directed Acyclic Graph (DAG), such that if column k depends on column i, then

a directed edge exist from node i to node k (i.e. i→ k). We call such graph a DAMOS

Scheduling Graph. In the latter, leaf nodes are eliminated first, then their parents, and

processing carries on upwardly until all nodes are eliminated. This implies that a parent

node cannot be eliminated unless all its children have been processed. Two columns

are said to be independent if they belong to two different subgraphs/trees. Moreover,

all nodes at the same level can be evaluated in parallel. Orphan nodes in the DAG, if

they exist, denote columns which do not contribute to the factorisation process of other

columns and thus can be included at any level of the DAMOS graph.

Definition 3. We define a DAMOS graph as a Direct Acyclic Graph (DAG) such that

if column k depends on column i, then a directed edge exist from node i to node k (i.e.

i→ k) where i < k.

Definition 4. We define the following type of nodes. A “leaf node” is a node that has

no incoming edges. In contract, a “parent node” is a node that has incoming edges. if a

parent node has no outgoing edges, it is then called a “a root node”. An “orphan node”

is a node that has no incoming or outgoing edges.

Definition 5. We define the DAMOS level of each node as the length of the longest

critical path from any “leaf node” to the node itself. In our implementation of the

DOMS algorithm, we use Liao and Wong’s algorithm [184] to find the longest path.

Figure 4.19 illustrates, by the means of a DAMOS graph, the column dependencies

that will arise arise during the LU factorisation of our example matrix A. The DAMOS

graph was computed using the predicted nonzero structure of matrix U only. All the

nodes at same DAMOS level can be computed independently. For instance, columns 1,

2, 3, 4, 5, 7 can be evaluated in parallel, however, column 9 cannot be processed until

columns 4, 5, 6 are computed first. Column 10 is represented by an orphan node, which

implies that it can be placed at any given DAMOS level. Generally speaking, the sparser

the matrix is, the fewer dependencies there are, and hence the node count per level

also increases. Thus, pre-ordering a matrix for sparsity can dramatically increase the

Chapter 4 Sparse Matrix Solution 81

parallelism potential, as it will be empirically demonstrated in Section 4.4. Although our

DAMOS algorithm efficiently derives a list of columns that can be evaluated in parallel

within a given time-slot, it assumes that the same time is taken to compute each column.

In reality, however, columns have different nonzero structures and thus the number of

floating-point operations per column will also differ, ultimately impacting the column

computation time. In Section 4.4, we will explore ways to distribute the computational

efforts more evenly across the columns of a given matrix.

7 23 5

10

1

4

6

98

Level 3

Level 1

Level 2

Level 4

Figure 4.19: Unconstrained DAMOS Schedule Graph for Matrix A.

DAMOS level Columns

Level 1 1, 2, 3 5, 7

Level 2 4, 10

Level 3 6

Level 4 8, 9

Table 4.1: Unconstrained DAMOS Schedule for Matrix A.

Assuming it takes roughly the same time to compute all the columns, the DAMOS

schedule, shown in Table 4.1, is actually equivalent to the unconstrained As Soon As

Possible (ASAP) schedule for the LU column operations [185]. The ASAP schedule

unrealistically assumes that there will always be enough computational resources to

concurrently process all columns within the same level. Therefore, in our DAMOS algo-

rithm, we introduce a resource-constrained scheduling algorithm we refer to as “modulo

i scheduling”, where i refers to maximum number of nodes that can reside within any

82 Chapter 4 Sparse Matrix Solution

given DAMOS level. For instance, a modulo 3 schedule assumes that there are only 3

computational units, each capable of independently processing a column, and thus it

limits the number of nodes per DAMOS level to a maximum 3. Figure 4.20 and Ta-

ble 4.3 define “the modulo 3 schedule” derived from the unconstrained DAMOS graph

depicted in Figure 4.19. “modulo i scheduling” is particularly attractive if it is mapped

to a pipelined FPGA architecture, where area is traded off for latency, such that it takes

advantage of elongated schedule defined by Figure 4.21 and Table 4.3. In effect, LU fac-

torisation can be computed using 2 computational units (i.e. less area) at the expense

of increasing the DAMOS schedule by one level (i.e. increasing latency).

7

23 5

10

1
4

6

98

Level 3

Level 1

Level 2

Level 4

Figure 4.20: DAMOS Schedule Graph for Matrix A with modulo 3.

DAMOS level Columns

Level 1 2, 3, 5

Level 2 1, 4, 7

Level 3 6, 10

Level 4 8, 9

Table 4.2: Modified DAMOS Schedule for Matrix A with modulo 3.

Chapter 4 Sparse Matrix Solution 83

7

2

3 5

10

1

4

6

9

8

Level 3

Level 1

Level 2

Level 4

Level 6

Level 5

Figure 4.21: DAMOS Schedule Graph for Matrix A with modulo 2.

DAMOS level Columns

Level 1 3, 5

Level 2 1, 7

Level 3 2, 10

Level 4 4

Level 5 6

Level 6 8, 9

Table 4.3: Modified DAMOS Schedule for Matrix A with modulo 2.

Figure 4.22 shows the overall generic DAMOS algorithm and the key constituents of

its two main phases, namely, the symbolic factorisation and the scheduling phase. The

algorithm was implemented using SuiteSparse Matrix [186], which is a suite of sparse

matrix libraries. In our implementation, matrix pre-ordering is achieved by using the

HSL MC64 routine [174], which ensures matrices are diagonally dominant, to eliminate

the need of dynamic pivoting. We also employ the AMD reordering algorithm at the

pre-processing stage to minimise fill-in since it offers the best results for circuit matrices,

as it will be discussed in the Section 4.4.

84 Chapter 4 Sparse Matrix Solution

Matrix in CCS
format

Nonzero pattern of
the LU factors is

computed

Modulo i

Symbolic Factorisation Phase Setup the matrix
data structure

Perform Depth-First
search on G(k-1)

using vector x

Update the matrix
data structure with
new fill-in positions

Fill-in?

Build the DAG L
elements of columns
1 to (k-1), i.e. G(k-1)

Building a vector x
with the nonzeros of

column k

Build the graphs needed to compute the nonzero structure of column k

All columns
processed?

Build the column-
dependancy DAG using

the pattern of U

Determine the DAMOS
level for all node using
longest path analysis

Build ASAP schedule
using the DAG and

computed DAMOS levels

Refine schedule using
modulo i scheduling.

Final Modulo i
schedule

Scheduling Phase

Yes

Yes

No

No

Pre-order to minimise
fill-in and to ensure a

zero-free diagonal

Figure 4.22: Overview of the Dependency-Aware Matrix Operations Scheduling
(DAMOS) Algorithm.

Chapter 4 Sparse Matrix Solution 85

Our DAMOS implementation was subsequently tested using a variety of circuit ma-

trices from the University of Florida Matrix Repository [97]. Also, a number of moduli

were applied to the same test matrices. The results of the tests are tabulated in Table 4.4.

In our DAMOS implementation, a modulo 1 input gives a schedule constrained to one

computational unit. In other words, modulo 1 effectively represents the schedule of the

sequential LU factorisation algorithm. The sequential schedule has the same length as

the number of matrix columns, as illustrated by the example schedule in Figure 4.23.

Table 4.5 shows the predicted speedup that can be achieved for each test matrix, if

identical computational units are used. We reiterate that the assumption here is that

a computational unit is responsible for independently factorising a given column within

a predetermined time-slot.

1

2

3

5

10

7

4

6

9

8

Level 3

Level 1

Level 2

Level 4

Level 6

Level 5

Level 7

Level 8

Level 9

Level 10

Figure 4.23: DAMOS Schedule Graph for Matrix A with modulo 1.

86 Chapter 4 Sparse Matrix Solution

Matrix Number of levels in the schedule

Name Size (n) Modulo 1 Modulo 2 Modulo 4 Modulo 6 Modulo 8

rajat19 1157 1157 891 550 384 312

oscil dcop 01 1813 1813 1089 706 491 407

fpga dcop 01 1813 1813 1010 593 493 375

Hamm add20 2395 2395 1497 923 628 511

bomhof1 2624 2624 1670 1083 788 596

Grund/meg1 2904 2904 2757 2652 2641 2511

bomhof2 4510 4510 2282 1504 1152 1095

Hamm/add32 4960 4960 3699 2016 1436 1312

Grund/meg4 5860 5860 3551 1810 1260 1136

rajat01 6833 6833 4180 2585 1753 1067

bomhof3 12127 12127 6866 3816 2884 2265

Hamm/memplus 17758 17758 12257 6970 5725 4475

bomhof4 80209 80209 40558 28060 24307 21741

rajat27 86916 86916 44870 23091 16981 13517

Table 4.4: DAMOS performance measurements with different moduli.

Matrix Speedup (× compared to Modulo 1)

Name Size (n) Modulo 2 Modulo 4 Modulo 6 Modulo 8

rajat19 1157 1.30 2.10 3.01 3.71

oscil dcop 01 1813 1.66 2.57 3.70 4.46

fpga dcop 01 1813 1.79 3.06 3.68 4.84

Hamm add20 2395 1.60 2.60 3.81 4.69

bomhof1 2624 1.57 2.42 3.33 4.40

Grund/meg1 2904 1.05 1.09 1.10 1.16

bomhof2 4510 1.98 3.00 3.91 4.12

Hamm/add32 4960 1.34 2.46 3.45 3.78

Grund/meg4 5860 1.65 3.24 4.65 5.16

rajat01 6833 1.63 2.64 3.90 6.40

bomhof3 12127 1.77 3.18 4.21 5.35

Hamm/memplus 17758 1.45 2.55 3.10 3.97

bomhof4 80209 1.98 2.86 3.30 3.69

rajat27 86916 1.94 3.76 5.12 6.43

Average 1.62 2.68 3.59 4.44

Table 4.5: Predicted acceleration using DAMOS with different moduli

Chapter 4 Sparse Matrix Solution 87

4.4 Empirical Analysis of LU Decomposition

In order to design (an) application specific hardware that capitalises on the features

of the Gilbert-Peierls factorisation algorithm while optimally harnessing the parallelism

exposed by our DAMOS scheduling algorithm, empirical analysis is necessary. In effect,

sparse matrices in many domains, including SPICE simulations, do not share identical

nonzero patterns. Moreover, the computation pattern during sparse LU decomposition

is dependent on the nonzero structure of the matrix, which is in turn is dependent on the

pre-orderings used. As such, empirical testing was conducted to identify what ordering

techniques and algorithms can be used to reduce the computational effort needed to

factorise circuit matrices. We also attempt to identify a pre-ordering strategy that

spreads the computational effort more uniformly across the columns of the matrix at

hand. This is particularly advantageous when used in conjunction with our DAMOS

scheduling algorithm, which assumes that the same effort is needed to evaluate different

columns. A summary of the key features of the benchmark circuit simulation matrices

used in our test is provided in Table 4.6.

Matrix Matrix NNZ Zeros Pattern Numeric

Name Order Count (%) Symmetry Symmetry

fpga dcop 01 1813 5892 99.82% 65% 1.6%

bomhof1 2624 35823 99.47% 100% 21 %

bomhof2 4510 21199 99.89% 81% 41 %

bomhof3 12127 48137 99.96% 77% 30 %

bomhof4 80209 307604 99.99% 83% 36 %

rajat19 1157 3699 99.72% 91% 92%

rajat01 6833 43520 99.99% 99% 99%

rajat20 86916 604299 99.99% 99% 11%

Table 4.6: A selection of test matrices from the UFMC repository [97]

In our tests, we preorder our benchmark matrices using a variety of fill-in minimising

heuristic. We then perform sparse LU decomposition function using MATLAB’s built-

in (i.e. [L,U,P] = lu(A,thresh)). By default, MALTLAB’s LU function employs

88 Chapter 4 Sparse Matrix Solution

the Gilbert-Peierls’ algorithm to perform a left-looking sparse LU decomposition with

pivoting. However, pivoting can be restricted to diagonal elements using the thresh

input. The latter is a two-element vector that defaults to [0.1, 0.001]. In effect, for

matrices with a mostly symmetric structure and mostly nonzero diagonal, MATLAB

ensures that the diagonal elements meet the following criterion:

A(i,j) ≥ thresh(2) ∗ max(abs(A(j:m,j))) (4.23)

If a diagonal entry fails this test, MATLAB then selects a pivot entry from below the

diagonal, using thresh(1) instead of thresh(2):

A(i,j) ≥ thresh(1) ∗ max(abs(A(j:m,j))) (4.24)

For all other type matrices (e.g. asymmetric pattern matrices) MATLAB only performs

the inequality test of Equation 4.24. Therefore, in order to restrict pivoting to diagonal

elements, we set both values of the threshold vector to artificially low values. Addion-

ally, we use the HSL MC64 subroutine [174] to pre-condition our matrices. The HSL

MC64 subroutine ensures that matrices are diagonally dominant by computing a matrix

permutation that maximises the sum of the diagonal entires, effectively eliminating the

need for dynamic pivoting [159]. Moreover, it ensures that there are no zero values on

the diagonal, as can be seen in Figure 4.24. Once pivoting is restricted to the diagonal,

the number of nonzeros in the LU factors, generated by MATLAB, will be identical to

the results of the symbolic analysis conducted by the DAMOS algorithm, since it also

does not consider pivoting during LU decomposition.

As previously mentioned, matrix ordering heuristics alter the nonzero structure of a

sparse matrix with the aim to reduce the number of fill-in elements that may arise during

the course of a matrix factorisation. This also has the effect of reducing the number of

computations required and the amount of data storage necessary to perform the sparse

LU decomposition. Therefore, we study the effect of different ordering techniques on the

LU decomposition of circuit matrices. Various minimum degree orderings such as AMD

and COLAMD function; and the Nested Dissection ND routine from METIS [169], were

Chapter 4 Sparse Matrix Solution 89

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 3699

Rajat19

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 3699

Rajat19(:,p)

0 500 1000

0

200

400

600

800

1000

1200

nz = 5892

fpga_dcop_01

0 500 1000

0

200

400

600

800

1000

1200

nz = 5892

fpga_dcop_01(:,p)

Figure 4.24: Zero-free Diagonal Circuit Matrices using a Maximum Traversal Permu-
tation

used to order the test matrices prior to LU decomposition. These orderings were applied

symmetrically (i.e. rows and columns) to the matrices in order to preserve the zero-free

diagonal. A quantitative comparison of these orderings’ performances is summarised in

Table 4.7. The latter reports the number of nonzeros in the lower and upper triangular

factors (L + U) after various orderings have applied symmetrically to the benchmark

sparse matrices. The results indicate that the AMD ordering algorithm produces the

best results on circuit matrices. This result is consistent with a previous study [105] that

reported that the minimum degree-based ordering methods provide the best orderings

for sparse LU decomposition of circuit simulation matrices. Moreover, AMD assumes no

90 Chapter 4 Sparse Matrix Solution

numerical pivoting and therefore is suitable for a static pivoting strategy. As such, in our

subsequent experiments and for designing the hardware prototype, the AMD ordering

method was used. Figure 4.25 illustrates the nonzero structure of the “fpga dcop 01”

matrix with different orderings, prior to LU decomposition. Figure 4.26 shows the

resulting nonzero structure of the same matrix after LU decomposition applied on the

different ordering permutations.

Table 4.7: Impact of different ordering heuristics on the number of nonzeros in the
LU of some selected circuit matrices

Input Matrix Number of nonzeros in LU factors

Name Initial NNZ No ordering AMD COLAMD METIS

oscil dcop 01 1544 11540 2320 2931 2484

fpga dcop 01 5892 55433 7697 10579 7367

bomhof1 35832 41353 43443 773096 42598

bomhof2 21199 124674 37088 164341 43585

bomhof3 48137 150206 72853 110589 90738

bomhof4 307604 468882 422532 8028555 442633

rajat19 3699 6128 3974 4546 4939

rajat01 43250 1340727 49597 152543 67286

rajat27 97353 21599231 144214 1051066 8207645

The number of nonzeros in the lower and upper triangular factors impacts the min-

imum memory size required to store the results of the factorisation. The amount of

storage required is proportional to the number of bits used to store the indices and val-

ues in the matrix. For example the number of nonzeros in the L+U factors of the largest

test matrix, i.e. bomhof4, using the AMD ordering applied symmetrically is 422,532.

For each nonzero there will be an entry in the matrix storage. The matrix representation

contains an index and a floating point value. Using 32 bits to represent the indices and

single precision 32-bit values for the matrix nonzero entries requires 422,532 × 64 bits (

≈ 26 Mbits) of data storage minimum to complete the sparse LU decomposition. This

amount of data exceeds the embedded memory resources available on today’s FPGAs

(e.g. ≈ 6.5 Mbits of block and distributed RAM on a Viretx 5 LX110T). As such, an

Chapter 4 Sparse Matrix Solution 91

Figure 4.25: Nonzero structure of “fpga dcop 01” prior to LU decomposition

Figure 4.26: Nonzero structure of “fpga dcop 01” after LU decomposition

92 Chapter 4 Sparse Matrix Solution

external storage device with a high data density is required for matrices that have more

than 85,000 nonzero elements if a Viretx 5 LX110T is used. The embedded memory

block can be then used to buffer portions of the matrix to be factored and hence hide

the latency associated with the external memory transfers.

Generally speaking, the number of floating-point operations required for sparse left-

looking LU decomposition with no pivoting is proportional to the number of operations

required to multiply the resulting factors (i.e. L and U), as it was demonstrated in

Section 4.2. In the normalisation step, a floating-point division is required for every

element below the diagonal in the pivot column. In the sparse triangular solution step,

a floating point multiply-subtract operation is required for every element in the pivot

column and all the elements in the update columns involved in the “sparse triangular

solution”. The update columns are defined as the children columns of the current pivot

column in DAMOS graph, as shown in Figure 4.1. Table 4.8 summarises the number of

FLoating-point OPerations (FLOPs) performed during the sparse LU decomposition of

benchmark matrices.

This number of floating-point operations was acquired via profiling a purposely writ-

ten MATLAB script that performs left-looking LU decomposition with no pivoting. All

the input matrices were initially permuted using maximum traversal to ensure a zero-

free diagonal, and then ordered using the AMD algorithm. The script also accounts for

numerical cancellations that may occur during the factorisation process. These cancella-

tions, even though very rare, lead the appearance of zeros on the diagonal and ultimately

halt the factorisation algorithm during the normalisation phase (i.e. division over zero).

As can be seen from Table 4.8, the number of floating point operations required to up-

date the pivot columns (i.e. sparse triangular solution step) clearly dominates the total

number of floating point operations, that is on average 90% of the total FLOPs required

to compute the LU factors. Therefore, in order to accelerate the overall Gilbert-Peierls

algorithm, the sparse triangular solution has to be parallelised efficiently in accordance

with Amdahl’s Law.

Chapter 4 Sparse Matrix Solution 93

Table 4.8: Floating-point operations count of Gilbert-Peierls LU Decomposition of
some selected circuit Matrices

PPPPPPPPMatrix
FLOP Division Add Multiply Multiply-Add Total

Count (%)∗ Count (%∗ Count (%)∗ Count (%)∗ FLOPs

oscil dcop 01 960 17 2419 42 5798 42 4838 83 5798

fpga dcop 01 2632 13 8560 43 19752 43 17120 87 19752

bomhof1 20381 2 444043 49 908467 49 888086 98 908467

bomhof2 14688 2 295102 49 604892 49 590204 98 604892

bomhof3 28817 9 144475 45 317767 45 288950 91 317767

rajat01 21702 9 110795 46 243292 46 221590 91 243292

rajat19 1206 22 2086 39 5378 39 4172 78 5378

rajat27 61222 6 471579 47 1004380 47 943158 94 1004380

Avg** 10 Avg∗∗ 45 Avg∗∗ 45 Avg∗∗ 90

* % of Total FLOPs ** Arithmetic Average

To put the FLOP count figures into context, we need to refer back to the assumption

we made earlier as part of developing our DAMOS scheduling algorithm. In effect, the

DAMOS algorithm assumes it takes roughly the same time to evaluate independent

columns. In practice, however, columns have different nonzero structures and thus the

number of floating-point operations per column will also differ, ultimately impacting

the column computation time. So far, we have empirically established that the AMD

ordering heuristic offers the best results in terms of efficiently reducing fill-in for circuit

matrices, which in turn reduces the number of FLOPs required. Nonetheless, this finding

lends itself to the following question: what does the distribution of the FLOPs required

over the columns of the matrix looks like?

In order to answer this question, we empirically collected the FLOP count required

to factor each column of our benchmark matrices, before and after the AMD ordering

is applied. Figure 4.27 to Figure 4.30 plot the FLOP count per column associated with

the Gilbert-Peierls factorisation for the following matrices: fpga dcop 01, oscil dcop 01,

Bomhof2, and Rajat19, before and after the AMD algorithm is applied. We can see that

using the AMD ordering not only reduces the number of fill-in elements but also results

in much sparser LU factors, and thus produces a more balanced workload across the

columns. This is particularly attractive in a distributed computing architecture, where

94 Chapter 4 Sparse Matrix Solution

the columns are spread over many processing elements. Furthermore, a lower FLOP

count per column reduces the amount of resources required to compute a given column

in parallel. For instance, in Figure 4.28, the highest column FLOP count recorded

prior to ordering was just under 250,000 floating-point operations and then decreased

to under 300 floating-point operations after the AMD ordering was applied. It is clear

now that pre-ordering matrices for sparsity not only reduces the overall FLOP count

but also distributes the computational efforts more evenly between columns of a given

matrix. This, in turn, increases the degree of the parallelism that can be exploited using

specialised algorithms, such as DAMOS.

4.5 Summary

In this chapter, we have demonstrated how we can leverage the graph representation of

the original matrix to predict the nonzero structure of resulting LU factors. We have

also shown how the Gilbert-Peirels (G/P) symbolic analysis, in conjunction with pre-

dicted nonzero pattern, can be used to create a column-dependency driven task graph

that maximises the parallelism potential for the LU matrix factorisation. As such, we

have introduced our Dependency-Aware Matrix Operations Scheduling (DAMOS) pre-

processing stage, which we employ to generate a parallel operations schedule. The latter

can be then used to parallelise and control the dataflow of G/P LU matrix operations on

the FPGA, as will be illustrated in the next chapter. Our DAMOS algorithm assumes

it takes roughly the same time to evaluate independent columns. In practice, however,

columns have different nonzero structures and thus the number of floating-point oper-

ations per column will also differ, ultimately impacting the column computation time.

Nonetheless, our empirical testing showed that pre-ordering matrices for sparsity not

only reduces the overall FLOP count but also distributes the computational effort more

evenly between columns of a given matrix.

Chapter 4 Sparse Matrix Solution 95

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5
x 10

4 Before AMD

Column Index

F
lo

p
 C

o
u
n
t

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300
after AMD

Column Index

F
lo

p
 C

o
u
n
t

Figure 4.27: The Effect of Matrix Ordering on the Column Flop Count of LU De-
composition of the “fpga dcop 01” matrix

0 50 100 150 200 250 300 350 400 450
0

1000

2000

3000

4000

5000
Before AMD

Column Index

F
lo

p
 C

o
u
n
t

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250
after AMD

Column Index

F
lo

p
 C

o
u
n
t

Figure 4.28: The Effect of Matrix Ordering on the Column Flop Count of LU De-
composition of the “oscil dcop 01” matrix

96 Chapter 4 Sparse Matrix Solution

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12
x 10

4 Before AMD

Column Index

F
lo

p
 C

o
u
n
t

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

4 after AMD

Column Index

F
lo

p
 C

o
u
n
t

Figure 4.29: The Effect of Matrix Ordering on the Column Flop Count of LU De-
composition of Bomhof2

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

Before AMD

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

after AMD

Figure 4.30: The Effect of Matrix Ordering on the Column Flop Count of LU De-
composition of Rajat19

Chapter 5

Single-FPGA Matrix Solution

In Chapter 3, we have empirically shown that the speed of the linear solution phase

becomes crucial in large-scale circuit simulations. We have also established this phase

is more challenging to parallelise than the Model Evaluation phase, due to the seem-

ingly inherent data-dependencies that exist within the course of the LU factorisation

of a matrix. Nonetheless, in Chapter 4 (Section 4.3), we have introduced our DAMOS

scheduling algorithm, which is able to leverage the sparsity of the matrix at hand to

identify columns that can be evaluated in parallel (i.e. medium-grained parallelism). In

this chapter, we demonstrate how to create an FPGA design that is able to harness the

medium-grained parallelism exposed by DAMOS, without neglecting the finer-grained

parallelism presented within the operations relating to column updates (i.e. sparse tri-

angular solution, and column normalisation).

97

98 Chapter 5 Single-FPGA Matrix Solution

5.1 FPGA Design Objective

The main objective in designing today’s high performance sparse LU decomposition

software is to employ algorithms that maximise the number of Basic Linear Algebra

Subprogram(s) (BLAS) operations performed, while minimising the number of scalar

computations required [187, 188]. This is mainly due to the fact that modern micropro-

cessors rely on fast integrated multi-level caches as well as complex memory hierarchies

to keep the computation pipeline optimally utilised, and hence sustain high throughputs.

Therefore, BLAS operations are tailored to enhance cache data locality and to provide

a sustained stream of arithmetic operations.

However, LU factorisation on highly sparse circuit matrices fails to effectively exploit

data locality and regularity, resulting in frequent cache misses and thus degrading the

overall performance [189]. Moreover, Sparse LU algorithms, such as supernodal methods,

attempt to group rows or columns with similar nonzero pattern into “supernodes” [190],

on which BLAS operation can be performed. However, circuit matrices typically do not

have large supernodes since the interconnection among nodes is not similar across all

the nodes in the circuit. The overall performance of BLAS is further degraded by the

growing discrepancy between the CPU speed and the memory latency [191].

The inability of modern sparse matrix LU solvers to maintain a high utilisation of

the processor’s floating-point units, suggests that designing a more efficient application

specific hardware may lead to a significant improvement in performance. In effect, rather

than adapting the problem to the general purpose hardware, the design of a hardware

that specifically capitalises on the features of sparse LU decomposition is proposed as

an alternative solution. As such, we aim to use the column-level dependencies, exposed

by our DAMOS algorithm, to generate a dataflow and an operations’ schedule that

maximises the busy time of a multiple-PE architecture on an FPGA. In this distributed

architecture, independent columns can be mapped to different PEs and thus minimising

the communication overhead. Column-level updates can also take advantage of pipelined

floating-point operations to achieve a higher throughput.

Chapter 5 Single-FPGA Matrix Solution 99

5.2 Parallel Sparse LU FPGA Architecture

In Section 4.3, we demonstrated that that the seemingly sequential flow of the Gilbert-

Peierls LU factorisation algorithm can be effectively parallelised by explicitly exposing

column-level concurrency, by the means of a DAMOS scheduling graph. This graph only

depends on the nonzero structure of the circuit matrix. The nonzero pattern of a circuit

matrix reflects the couplings and the connections that exist in the underlying circuit,

which does not change during the course of a SPICE simulation. This means that the

matrix to be solved retains the same nonzero pattern over the SPICE transient itera-

tions, and it only undergoes changes in numerical values. Hence, the symbolic analysis

cost is justifiable and can be easily amortised over a number of iterations. Therefore,

the column-level dependency graph can be cheaply computed offline (see Section 5.5.1)

before the actual numerical factorisation takes place on the FPGA accelerator.

3

21 4

8

7
5

6

910

Level 3

Level 1

Level 2

Level 4

Figure 5.1: Example DAMOS Scheduling Graph with modulo 3.

The column-level dependency graph can be then loaded onto the FPGA and used

to dictate a parallel execution flow of LU column operations. However, it may not

be possible to fit the entire graph for a large matrix onto the FPGA, in which case,

the column-dependency information can be also used to pre-compute a column loading

order. The latter can be then used to dynamically load columns to the FPGA such that

computations and memory loads are overlapped, effectively hiding the latency associated

with the external memory interface. To illustrate this concept, consider the DAMOS

graph shown in Figure 5.1 as an example. For instance, columns 1, 2, 3, 4, 5, 7 can be

100 Chapter 5 Single-FPGA Matrix Solution

loaded to the FPGA first. In the second stage, columns 6, 8 can be loaded in lieu of

column 1, 2, 4 while columns 3, 5, 7 are being normalised. In last stage, columns 9, 10

are loaded to replace columns 3, 7 while columns 6, 8 are being normalised.

5.2.1 Resolving Dataflow Dependencies

So far, we have established that Gilbert-Peierls sequential column factorisation pro-

cess can be altered to expose column-level parallelism. Despite this exposed column-

evaluation concurrency, dataflow dependencies may still exist within column-level up-

dates themselves. In order to illustrate this, consider Figure 5.3, in which we show all

the dataflow dependencies and operations needed to computed the LU factorisation of

the example matrix A, depicted in Figure 5.2, according to its unconstrained DAMOS

Schedule. We note two types of dataflow dependencies: inter-column and intra-column

data dependencies.

7 23 5

10

1

4

6

98

Level 3

Level 1

Level 2

Level 4

1 23 5

10

7

4

6

98

Level 3

Level 1

Level 2

Level 4

1 23 5

10

7

4

6

98

Level 3

Level 1

Level 2

Level 4

1 23 5

10

7

4

6

98

Level 3

Level 1

Level 2

Level 4

Figure 5.2: Example of a Matrix A and it is corresponding DAMOS Scheduling Graph.

The inter-column data dependencies represent the inherent column-level dependen-

cies that exist in the Gilbert-Peierls algorithm. This type of dependency can be natu-

rally resolved by simply following the execution order determined by the corresponding

DAMOS schedule, factorising columns in level 1 first, then columns in level 2, and so

forth. The intra-column dependencies relate to the order at which the current column

element updates, in the sparse triangular solution, should be calculated. Nevertheless,

Chapter 5 Single-FPGA Matrix Solution 101

in Section 4.2.1.1, we have established that Gilbert-Peierls’ symbolic analysis of a par-

ticular column effectively computes a topological order that maintains the precedence

relationship in the numerical factorisation step. In effect, this computed topological or-

der can be used to sustain a dataflow stream to the pipelined floating-point operations

on the FPGA. Studying the dataflow graph more closely, we can also see that division

operations associated with the column normalisation stage (e.g. columns 1, 2, 3, and

5) can be performed concurrently, creating another source of parallelism that can be

exploited at the hardware level.

5.2.2 Design Flow

Our work implements the Gilbert-Peierls LU factorisation (i.e. algorithm shown in

Figure 4.11), in conjunction with the static pivoting algorithm introduced by Li and

Demmel in [159], which they showed to be as accurate as partial pivoting algorithms for a

number of problems including circuit simulations. The main advantage of static pivoting

is that it permits a priori optimisation of static data structures and the communication

pattern, effectively decoupling symbolic and numerical factorisations steps. This makes

sparse LU factorisation more scalable on a distributed memory architecture. The overall

algorithm implemented can be summarised as follows:

1 First, we find diagonal matrices Dr, Dc and a row permutation Pr such that PrDrADc

is more diagonally dominant to decrease the probability of encountering small pivots

during the LU factorisation. To achieve this, we use the HSL MC64 routine [174] with

option 4. The latter computes a permutation of the matrix so that the sum of the

diagonal entries of the permuted matrix is maximised.

2 We find a permutation Pc such that the resulting matrix in step (1) incurs less fill-in

in the course of the LU factorisation. We can use many heuristics such as nested

dissection or minimum degree on the graph of A+AT or AAT . However, we shall use

the approximate minimum degree (AMD) as it produces the best results for circuit

matrices, as we have empirically shown in Section 4.4. In order to preserve the diagonal

computed in step (1), any ordering used should be applied symmetrically.

102 Chapter 5 Single-FPGA Matrix Solution

Column 8

X

5, 86, 5

-

6, 8

6, 8

10,
8

/

10,
8

8, 8 X

6, 87, 6

-

7, 8

7, 8

X

6, 89, 6

-

9, 8

9, 8

/

9, 8

8, 8

X

3, 87, 3

-

7, 8

7, 8

X

1, 83, 1

-

3, 8

3, 8

Column 6

X

3, 67, 3

-

7, 6

7, 6

/

6, 6

7, 6

X

4, 65, 4

-

5, 6

5, 6

X

4, 69, 4

-

9, 6

9, 6

/

6, 6

9, 6

X

5, 6

-

6, 6

6, 6

6, 5

Column 9

X

4, 95, 4

-

5, 9

5, 9

X

4, 99, 4

-

9, 9

9, 9

X

5, 96, 5

-

6, 9

6, 9

10,
9

/

10,
9

9, 9

X

6, 96, 7

-

7, 9

7, 9

X

6, 99, 6

-

9, 9

9, 9

Column 2

/

2, 25, 2

Column 5

/

5, 56, 5

6, 5

Column 3

/

3, 37, 3

7, 3

Column 1

/

1, 13, 1

/

1, 17, 1

3, 1 7, 1

Column 4

X

2, 45, 2

-

5, 4

5, 4

/

4, 4

5, 4

9, 4

/

4, 4

9, 4

Level 1

Level 2

Level 3

5, 2

Level 4

LEGEND

Floating-point operation
Fill-in Updates
Pivot Element
Data Dependency
No update

Column Updates

Figure 5.3: Dataflow of a Gilbert-Peierls LU factorisation

Chapter 5 Single-FPGA Matrix Solution 103

3 We perform symbolic analysis to identify the locations of the nonzero entries of L and

U . In this step, we also compute task-flow graph by performing the LU decomposition

symbolically, i.e. only using the resulting structure.

4 In this step, we perform left-looking LU factorisation on the FPGA and replace any

tiny pivots (i.e |aii| <
√
ε.‖A‖) by

√
ε.‖A‖, where ε is machine precision (e.g. 2−24,

2−53 for single and double precision IEEE 754 formats respectively), and ‖A‖ is the

matrix norm. This is acceptable in practical terms as the SPICE linear equation

solution is used as part of Newton-Raphsons method, and an occasional small error

during the iterative process does not affect the integrity of the final solution [159]. We

calculate the matrix norm at the symbolic factorisation phase, using the SuiteSparse

API [186]. The use of the HSL MC64 routine in step (1) decreases the likelihood

of encountering tiny pivots. Furthermore, selecting the diagonal as the pivot entry

ensures the fill-reducing ordering from the symbolic phase is maintained.

Step 1 to step 3 form the “matrix preconditioning phase”, and they are conducted

as part of our DAMOS Scheduling Algorithm implementation, as detailed in Chapter 4

(Section 4.3). DAMOS takes a sparse matrix as input, applies the AMD ordering, and

then symbolically generates the column-level dependencies as well as the nonzero pattern

of the LU factors. For step 4, we implement the parallelised version of the Gilbert-Peierls

factorisation algorithm on the FPGA, using a multi-PE distributed architecture. Since

we do not consider dynamic pivoting in our design, all possible fill-ins as well as column

and dataflow dependencies are determined at the matrix preconditioning phase.

5.2.3 Top Level Design

Our parallel FPGA architecture features multiple PEs interconnected by a switch net-

work. Figure 5.4 shows the top level diagram of the our sparse LU hardware implemen-

tation. Essentially, our design consists of a controller connected to n PEs. In each PE,

there is a multiplier, a subtractor, a divider, and a local Block Random Access Memory

(BRAM) with a reconfigurable datapath. An approximate schematic for a processing

104 Chapter 5 Single-FPGA Matrix Solution

element is shown in Figure 5.6. The maximum number of PEs, and their local mem-

ory size are limited by the available resources of the FPGA. We use the information

gathered from symbolic analysis to instantiate PEs accordingly. The PEs are intercon-

nected by high speed switches to minimise the communication overhead while increasing

concurrency.

Time-multiplexed Switched Network

PE 1 PE 2 PE 3 PE 4 PE n

ControllerCol_mapCol_buffer

Data Bus

Control Bus
Memmory
Controller

FPGA

Figure 5.4: Top Level Design for the LU Decomposition FPGA Hardware

The controller implements a four stage pipeline, as shown in Figure 5.5. Stage 1

consists in loading the matrix data from the off-chip DRAM to the PEs on-chip BRAM.

The PEs’ local BRAMs can be also preloaded with matrix data at the FPGA program-

ming phase such that the matrix data is included in the “bitstream”. Stage 2 performs

a triangular sparse solve on the current column of A to compute the current columns

of L and U . Stage 3 normalises the component of L with the diagonal entry. Stages 2

and 3 are executed iteratively until all columns are evaluated. At any given time, PEs

collectively perform either the sparse triangular solve or the column normalisation.

Figure 5.5: State machine for the proposed LU decomposition hardware

In the sparse solve phase, the “Col map” unit first performs a burst read across all

PEs to form a column-wise representation of the pivot column and saves it to the column

buffer. Then, elements of the column buffer are broadcast to the PEs one at a time to

perform the bulk computation of the sparse triangular solution (i.e. line 9 in Algorithm

Chapter 5 Single-FPGA Matrix Solution 105

4.11). Figure 5.6 depicts an approximate datapath of the PE during the column sparse

solve phase (i.e line 9 of algorithm in Figure 4.12).

In the normalisation phase, the controller fetches the pivot entry from its corre-

sponding PE and broadcasts it to all PEs to perform all the divisions in parallel. To fill

the deep pipelines of our floating-point units, the controller uses the column-dependency

graph as a task flow-graph. Data are streamed from the memory, through the arithmetic

units for computation, and stored back to the memory in each stage.

X

-

BRAM

PE Controller

UjkLij

Aik

Aik

Figure 5.6: PE at the sparse triangular solution phase

The controller’s main objective is to maintain optimal usage of the computation

pipeline optimally utilised while following a deterministic task execution flow. Figure 5.7

shows the main constituents of the “Controller”. The Control unit implements the state

machine described in Section 5.2.3. The Status Logic Unit registers the different status

signals from other functional units, monitors their functionality, and generates state

triggering signals for the Control Unit. The “Address Map” unit stores the column

dependency information computed in the symbolic analysis. The “Address Map” can

be either initially preloaded when the FPGA is programmed or can be re-initialised at

the “Matrix Input” stage via the Memory Controller.

106 Chapter 5 Single-FPGA Matrix Solution

Address Map

Sequencer

Control Unit

Arbitrator

To PEs

To colmap

From
 D

D
R

From colmap

From PEs

From DDR

 Col_Buff

St
at

us
 L

og
ic

U

ni
t

Figure 5.7: High-level schematic of LU hardware controller

The “Sequencer” utilises the column dependency information, stored in the “Address

Map”, to implement a look-up table that generates the correct memory addresses for

the column indices to be processed. The “Sequencer” unit then broadcasts the addresses

generated to their respective PEs, while maintaining a record of the columns processed.

The “Arbitrator” unit maintains the interconnection between the PEs, the “Col Buffer”,

and the “Control” unit. In other words, it acts as a datapath controller for the the

reconfigurable interconnect linking the different functional units of the LU decomposition

hardware.

At the start of “the triangular sparse solution” stage, the “Control” unit instructs

the “Sequencer” to fetch the addresses of all the elements involved in computing the

current column. The Sequencer, in turn, instructs the “Col map” unit to read the

current column into the “Col buffer”. Meanwhile, the “Sequencer” also instructs the

“Address Map” to generate the addresses for the update columns elements associated

with the current column (i.e. the column being read into the column buffer). Next,

the Arbitrator maintains a stream connection between the “Col buffer” and the PEs,

broadcasting every element of the current column, stored in the buffer, one at a time to

all PEs. Once the column buffer is drained, the “Control” unit is notified, prompting it

Chapter 5 Single-FPGA Matrix Solution 107

to move to the next stage, i.e. the normalisation stage, provided that all the the states

triggering signals, from the “Status Logic” unit, allow it to do so.

In the “column normalisation” stage, the “Control” unit instructs the “Sequencer” to

perform the column normalisation. As such the “Sequencer”, via the “Address Map”,

generates the addresses for the elements below the current pivot and sends them to

their respective PEs. At the same time, the column buffer broadcasts to all PEs so

that all divisions can proceed in parallel. Once the column divisions are performed, the

“Control” unit promoting to move to process the next column. The “Sequencer” acts as

program counter keeping track of the columns that have been processed. The “Control”

unit alternates between “the triangular sparse solution” and “column normalisation”

stages until the “Sequencer” has processed all the columns.

5.3 Experimental Setup

In this section, we explain the experimental setup used to build and test our LU decom-

position FPGA hardware prototype.

5.3.1 FPGA Implementation

To implement a prototype for our design, we target the Xilinx XUPV5-LX110T devel-

opment board (Appendix B), which features a Virtex 5 LX110T FPGA. As mentioned

in Section 5.2.3, the controller of our design utilises the column-dependency graph of a

matrix as a task flow-graph to stream data from the memory, through the arithmetic

units for computation, and stores the results back to the memory in each stage. As

such, the relative placement between the memory blocks and the computational blocks

is important and can significantly impact performance. The targeted Virtex-5 FPGA

benefits from the physical proximity of these blocks as they are arranged close to each

other in special lanes within the fabric (i.e. BRAM and DSP48 blocks).

Therefore, in our implementation, we use the floating-point subtract, multiply/divide

(DSP48 blocks), and compare units from the Xilinx Floating-Point library. The latter

108 Chapter 5 Single-FPGA Matrix Solution

Table 5.1: Sparse LU Hardware Prototype Resource Utilisation on Virtex-5 LX110T

% of 69120 LUTs Latency BRAM DSP48 Clocks (MHz)

Precision SP DP SP DP SP DP SP DP SP DP

Adder 245 734 11 14 0 0 2 3 410 355

Multiplier 89 309(1%) 8 16 0 0 3 11 493 410

Divider 769 3206(4%) 28 57 0 0 0 0 438 410

2 PEs 2822 (7%) 16% - - 10 18 6 22 150 150

4 PEs 6232 (14%) 40% - - 20 46 12 33 150 150

8 PEs 14493 (32%) 88% - - 40 - 24 - 150 150

16 PEs (71%) - - - 64 - 48 - 150 -

is readily available from Xilinx’s CoreGen [192]. These units can be customised with

regards to their wordlength, latency and resource utilisation. We also use Xilinx’s FIFO

Generator to implement the “Col buffer”, which works in concert with the “Col Map”

unit. We use Synplify Pro 9 and Xilinx ISE 10.1 to implement our prototype on a Xilinx

Virtex-5 LX100T FPGA. We limit our implementations to fit on a single FPGA and use

off-chip DRAM memory resources for storing the matrix date before it is loaded onto

the on-chip BRAM for processing.

Table 5.1 gives the resource cost for different blocks present in our multiple PE

design. We can only fit a system of 8 double-precision PEs on a Virtex-5 LX110T

with 88% of logic resources being used, whereas 16 single-precision PEs can be easily

accommodated. We also notice that as the number of PEs increases beyond 16, the

frequency of the system decreases impacting performance. This can be possibly due to a

longer critical path. Therefore, we anticipate using an implementation on a bigger FPGA

or multiple FPGAs would resolve the issue. Latency is not shown for the multiple-PE

design configurations as it greatly depends on the matrix input, as will be illustrated in

Section 5.5.

Chapter 5 Single-FPGA Matrix Solution 109

5.3.2 Hardware Debugging

Debugging hardware design on FPGAs requires the design or the insertion of additional

logic to monitor and record data outputs during the hardware’s operation. In order to

debug and verify the behaviour of our implementation, we integrate Xilix’s ChipScope

cores into our design. ChipScope Pro [193] is an embedded software-based logic analyser,

which provides several IP cores, namely, the Integrated Controller (ICON) and the

Integrated Logic Analyzer (ILA), Virtual Input/Output (VIO) cores:

The ILA core can be embedded in an FPGA design to collect data when trigger con-

ditions are satisfied. The data size, target signals, and basic trigger conditions can

be easily customised during the design phase. ILA can acquire samples from up to

256 nodes, support up to 64 internal trigger and one external trigger signal, and

has one clock input. The ILA core uses internal block RAM to store data samples

collected.

VIO core is a customisable core that can both monitor and drive internal FPGA signals

in real time. Unlike the ILA, no on- or off-chip RAM is required. Two different

kinds of inputs (virtual buttons) and two different kinds of outputs (virtual LEDs)

are available, both of which are customisable in size to interface with the FPGA

design.

The ICON core is embedded in an FPGA design to control up to 15 ILA/VIO cores.

This ICON core controls each ILA/VIO core and handles the communication with

the ChipScope Logic Analyser software running on a PC over the JTAG Boundary

Scan interface.

By inserting the ICON and ILA/VIO cores into a design and connecting them prop-

erly, we are able monitor the important signals in the design. In effect, ChipScope also

provides the user with a convenient software-based interface (i.e. ChipScope Pro Ana-

lyzer) for controlling the ILA/VIO core via setting the triggering options and viewing

the waveforms. When a trigger signal becomes active, data is saved onto the BRAMs

110 Chapter 5 Single-FPGA Matrix Solution

before being streamed to the end computer through RS232 or parallel cable for viewing.

ILA is customisable in terms of the number of samples it fetches and also the number

of triggers it responds to. Figure 5.8 illustrates a simple ChipScope design example

showing the interaction of the mentioned cores with an FPGA design.

ChipScope Pro Software and Cores User Guide www.xilinx.com 21
UG029 (v9.1.01) January 10, 2007

ChipScope Pro Tools Description
R

Figure 1-1 shows a block diagram of a ChipScope Pro system. Users can place the ICON,
ILA, VIO, and ATC2 cores (collectively called the ChipScope Pro cores) into their design by
generating the cores with the ChipScope Pro Core Generator and instantiating them into
the HDL source code. You can also insert the ICON, ILA, and ATC2 cores directly into the
synthesized design netlist using the ChipScope Pro Core Inserter tool. The design is then
placed and routed using the Xilinx ISE 9.1i implementation tools. Next, the user
downloads the bitstream into the device under test and analyzes the design with the
ChipScope Pro Analyzer software.

Figure 1-1: ChipScope Pro System Block Diagram

Board-Under-Test

Host Computer with
ChipScope Pro Software

JTAG
Connections

cs_pro_sys_blk_diag

ChipScope
Pro

Target Device Under Test

User
Function

User
Function

User
Function

ILA Pro

ICON Pro

ILA Pro

ILA Pro

Parallel
Cable

Figure 5.8: ChipScope Pro System Block Diagram [193]

5.4 Benchmark Baseline

Prior to evaluating the performance of our hardware design, the performance of three

sparse LU factorisation packages (i.e. UMFPACK 5.4, KLU 1.2, and Kundert Sparse

1.3) is measured in terms of their LU decomposition execution times. We intend to

use these runtimes as a baseline to measure the hardware acceleration achieved against

each of these off-the-shelf packages. To highlight the algorithmic differences between the

packages used, we briefly describe them:

Chapter 5 Single-FPGA Matrix Solution 111

UMFPACK [194] implements a right-looking multifrontal algorithm tuned for asym-

metric matrices that makes extensive use of BLAS kernels. In our tests, we used

UMFPACK’s default parameters. In this mode, UMFPACK evaluates the sym-

metry of the nonzero pattern and selects either the AMD ordering on A+AT and

a strong diagonal preference if the matrix at hand is highly symmetric , otherwise

it uses the COLAMD ordering with no preference for the diagonal.

Kundert Sparse [195], implements a right-looking LU factorisation algorithm that

preforms dynamic pivoting on the active sub-matrix using the Markowitz ordering

algorithm. It is also the sparse solver used in spice3f5, the latest version of the

open-source SPICE simulator. Kundert Sparse does not assume matrix symmetry,

and hence treats symmetric and asymmetric matrices indifferently. In other words,

it does not implement algorithms that take advantage of the structural symmetry

of the underlying matrix.

KLU [102] is an LU matrix solver written in C that employs the left-looking Gilbert-

Peierls LU factorisation algorithm. KLU has been written specifically to target

circuit simulations. A sample KLU code is shown in Figure 5.9. As such, in

the first iteration, KLU performs a one-off partial pivoting numerical factorisation

(i.e. klu factor() function) to determine the nonzero structure of the LU factors.

In subsequent iterations, KLU reuses the previously-computed nonzero pattern to

reduce the factorisation runtimes (i.e. klu refactor() function). The KLU solver

uses matrix preordering algorithms, such as BTF and COLAMD, to minimise fill-in

during the initial factorisation phase.

The LU factorisation runtimes for the UFMC benchmark matrices used are reported

in Table 5.2. The same pre-ordering (i.e. AMD) was applied to the test matrices prior

to factorisation. The tests were performed on a general-purpose linux PC equipped with

a 2.67 GHz six-core 12-thread Intel Core Xeon X5650 microprocessor and 6 GB memory.

As can be seen from the results, Kundert Sparse offers comparable factorisation runtimes

to UMFPACK and KLU for small matrices, outperforming both on several occasions (e.g.

Rajat11, Rajat14, Rajat04, fpga trans 01, fpga trans 02). However, as the matrix size

112 Chapter 5 Single-FPGA Matrix Solution

1 /∗ klu simple: a simple KLU demo ∗/
2

3 #include <stdio.h>
4 #include ”klu.h”
5

6 int n = 5 ;
7 int Ap [] = {0, 2, 5, 9, 10, 12} ;
8 int Ai [] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ;
9 double Ax1 [] = {2., 3., 3., −1., 4., 4., −3., 1., 2., 2., 6., 1.} ;

10 double Ax2 [] = {1., 4., 3., −2., 6., 4., −5., 1., 2., 2., 6., 1.} ;
11

12 int main (void)
13 {
14 klu symbolic ∗Symbolic ;
15 klu numeric ∗Numeric ;
16 klu common Common ;
17 int i ;
18 klu defaults (&Common) ;
19 Symbolic = klu analyze (n, Ap, Ai, &Common) ;
20 Numeric = klu factor (Ap, Ai, Ax, Symbolic, &Common) ;
21

22 // The nonzero patten computed for Ax1 using klu factor function can be reused by
23 // klu refactor function for matrices (i.e. Ax2) with same pattern
24 // but with different nonzero values
25 klu refactor (Ap, Ai, Ax2, Symbolic, Numeric, &Common) ;
26

27 klu free symbolic (&Symbolic, &Common) ;
28 klu free numeric (&Numeric, &Common) ;
29 return (0) ;
30 }

Figure 5.9: KLU sample code [102]

increases, the performance of Kundert Sparse deteriorates considerably. This is due to

fact that at every step of the factorisation, the Markowitz product for all the off-diagonal

elements (of the current column and row) has to computed in order to determine the

next pivot. Consequently, the Markowitz product computations take longer on bigger

matrices, and hence slow down the overall runtime.

Smilarly, we note that UMFPACK outperforms Kundert Sparse for large matrices.

In effect, UMFPACK, in contrast to Kundert Sparse, has a higher-level view of the

factorisation process as it organises the different computations in a tree structure, thus

Chapter 5 Single-FPGA Matrix Solution 113

enhancing data locality. The latter enables UMFPACK to better utilise the compu-

tational resources in the case of high fill-in rates. UMFPACK remains, however, on

average about 40% slower than KLU for matrices larger than 1813× 1813. This reflects

the UMFPACK’s inability to effectively reorganise the highly sparse circuit matrices into

multiple “frontal” denser matrices, on which BLAS operations can be then applied, as

it was discussed in Section 3.2. Overall, KLU demonstrated the shortest LU factorisa-

tion runtimes across most of our benchmark matrices, outperforming UMFPACK, and

Kundert Sparse by an average of 20% and 80% respectively.

5.5 Performance Analysis

In this section, we present the performance results of the hardware prototype designed.

As such, we detail the testing set-up used to evaluate and gauge the operational per-

formance of our sparse LU hardware. We also study the effect of matrix sparsity on

the performance of our hardware design. In order to evaluate the performance of our

hardware design, we test our parallel architecture with circuit simulation matrices from

the University of Florida Sparse Matrix Collection (UFMC). The performance mea-

surements are then compared to the state-of-the-art UMFPACK, KLU, and Kundert

sparse LU decomposition matrix packages. In our performance evaluation, we use the

CPU time reported by UMFPACK 5.4, Kundert Sparse 1.3, and KLU 1.2 on a 64-bit

Linux system running on a 6-core Intel Xeon 2.6 GHz processor with 6 GB RAM, as a

benchmark.

To gauge the time taken by our FPGA-based LU decomposition architecture, we use

Xilinx’s ChipScope Integrated Logic Analyser (ILA) to count the number of clock cycles

required to perform the LU decomposition. The ILA is triggered and stopped by two

handshaking signals, namely a start and a done signal, we added to our design for this

purpose. We used the same the pre-ordering (i.e. AMD) for LU matrix packages and

our Sparse LU Hardware. Table 5.2 contains the relevant properties of the test matrices

used and the corresponding LU decomposition runtimes reported by UMFPACK, KLU,

and Kundert Sparse. Table 5.3 shows the execution time of LU FPGA hardware as

114 Chapter 5 Single-FPGA Matrix Solution

Table 5.2: Performance comparison of UMFPACK, Kundert Sparse, and KLU run-
times

Matrix properties CPU runtimes for

Matrix Order NNZ * Sparsity (%) Str Sym** Num Sym*** UMFPACK (ms) Kundert Sparse (ms) KLU (ms)

Rajat11 135 665 3.600 89.10% 63% 0.003 0.002 0.019

Rajat14 180 1,475 0.040 100% 2% 0.020 0.011 0.029

oscil dcop 11 430 1544 0.800 97.60% 69.80% 0.583 0.793 0.329

circuit204 1020 5883 5.600 43.80% 37.30% 0.243 0.909 0.482

Rajat04 1,041 8725 0.800 100% 4% 0.035 0.021 0.033

Rajat19 1157 3699 0.298 91% 92% 0.217 0.333 0.202

fpga dcop 50 1220 5892 0.400 81.80% 33.20% 1.093 1.200 0.685

fpga trans 01 1,220 7,382 0.500 100% 21% 0.030 0.011 0.043

fpga trans 02 1,220 7,382 0.500 100% 21% 0.032 0.010 0.051

fpga dcop 01 1813 5892 0.179 65% 1.60% 0.547 1.087 0.511

init adder1 1813 11156 0.300 65.40% 1.60% 0.567 1.035 0.480

adder dcop 57 1813 11246 0.300 64.80% 0.80% 0.464 1.464 0.363

adder trans 01 1,814 14,579 0.440 100% 3% 0.024 0.044 0.039

adder trans 02 1,814 14,579 0.440 100% 3% 0.023 0.048 0.041

Rajat12 1,879 12,818 0.360 100% 45% 0.119 0.121 0.118

Rajat02 1960 11,187 0.300 100% 100% 1.034 1.028 0.921

add20 2,395 13,151 0.230 100% 53% 0.861 1.021 0.460

bomhof1 2624 35823 0.520 100% 21% 4.550 7.181 2.675

bomhof2 4510 21,199 0.104 81% 41% 3.944 5.974 1.950

add32 4,960 19,848 0.080 100% 31% 1.740 3.088 1.412

meg4 5,860 25,258 0.070 100% 100% 0.723 0.923 0.514

hamrle2 5952 22162 0.600 0.10% 0% 0.693 2.075 0.551

Rajat01 6833 43520 0.093 99.60% 99% 1.910 1.981 1.181

Rajat13 7,598 48,762 0.080 100% 30% 1.941 3.150 1.014

Rajat03 7,602 32,653 0.060 100% 40% 1.096 2.113 0.935

Rajat06 10,922 46,983 0.040 100% 100% 1.096 1.246 0.972

bomhof3 12127 48137 0.300 77% 30% 5.428 7.764 3.306

* Number of nonzero elements.
** Numerical Symmetry is the fraction of nonzeros matched by equal values in symmetric locations.
*** Structural Symmetry is the fraction of nonzeros matched by nonzeros in symmetric locations.

Chapter 5 Single-FPGA Matrix Solution 115

reported by ChipScope, and the FPGA acceleration achieved using 16 single-precision

PEs running at 150 MHz. The acceleration is calculated as a ratio of the CPU time

taken by a given LU matrix package over the time spent by the sparse LU hardware on

the same circuit matrix:

Speedup =
TCPU

TFPGA
=

TCPU

FPGAcycles × (1/frequency)
(5.1)

where TCPU is the LU factorisation time taken by the software package, TFPGA is the

LU factorisation time taken by the hardware prototype, FPGAcycles is the number of

clock cycles taken by the hardware prototype to compute the LU factorisation of given

matrix, and frequency is the overall clock frequency of the hardware design.

The speedup results tabulated in Table 5.3 are also illustrated graphically in Fig-

ure 5.10. For the test matrices used, we can clearly see that our 16-PE LU hardware

outperforms KLU, UMFPACK, and Kundert Sparse on average by factors of 9.65, 11.83,

17.21, respectively. Furthermore, we note a correlation between the matrix sparsity and

speedup ratio of our design. We also remark that the best acceleration results were

achieved when the matrix is very sparse and has a symmetric or near-symmetric pat-

tern (e.g. rajat13, add32, meg4). In effect, high sparsity implies that less column-level

dependencies will exist during the course of Gilbert-Peierls LU factorisation, and thus

increases the parallelism potential as shown in Section 4.3. On the other hand, higher

structural symmetry implies a more balanced elimination graph, which translates into a

more balanced workload which minimises the idle time of the different PEs, leading to

a busier computational pipeline.

To illustrate the correlation observed between the hardware acceleration ratios achieved

and matrix sparsity, we isolate the effect of matrix sparsity by selecting test matrices

that have symmetric nonzero patterns with varying sparsities, as shown in Table 5.4.

Then, we plot the acceleration achieved by our LU hardware as a function of the matrix

sparsity, as depicted in in Figure 5.11. We can see that as the nonzero density decreases,

the acceleration ratio also increase. In other words, the sparse LU hardware performance

116 Chapter 5 Single-FPGA Matrix Solution

increases as sparsity increases and vice versa. In effect, the sparser the matrix, the wider

the column elimination graph and hence more columns can be processed in parallel.

Table 5.3: LU decomposition hardware acceleration achieved versus UMFPACK,
Kundert Sparse, and KLU

Matrix FPGA FPGA speedup*** (×) achieved versus

Name Latency* (Cycles) Time** (ms) UMFPACK KLU Kundert Sparse

Rajat11 249 0.002 2.05 11.14 1.44

Rajat14 370 0.002 8.10 11.75 4.53

oscil dcop 11 3,397 0.023 25.74 14.54 35.02

circuit204 9,103 0.061 4.00 7.94 14.97

Rajat04 1,049 0.007 5.00 4.72 2.97

Rajat19 3,047 0.020 10.68 9.96 16.41

fpga dcop 50 9,960 0.066 16.47 10.31 18.07

fpga trans 01 1,100 0.007 4.09 5.86 1.46

fpga trans 02 1,007 0.007 4.76 7.59 1.56

fpga dcop 01 7,055 0.047 11.62 10.87 23.11

init adder1 5,479 0.037 15.52 13.13 28.33

adder dcop 57 7,981 0.053 8.71 6.82 27.51

adder trans 01 1,221 0.008 2.95 4.79 5.40

adder trans 02 1,116 0.007 3.09 5.51 6.45

Rajat12 2,023 0.013 8.82 8.77 8.97

Rajat02 17,866 0.119 8.68 7.74 8.63

add20 9,710 0.065 13.30 7.11 15.77

bomhof1 68,651 0.458 9.94 5.84 15.69

bomhof2 37,081 0.247 15.95 7.89 24.17

add32 13,320 0.089 19.59 15.90 34.77

meg4 3,694 0.025 29.35 20.85 37.48

hamrle2 16,670 0.111 6.23 4.96 18.67

Rajat01 10,219 0.068 28.04 17.34 29.08

Rajat13 15,126 0.101 19.25 10.05 31.24

Rajat03 20,405 0.136 8.06 6.87 15.53

Rajat06 10,344 0.069 15.89 14.10 18.06

bomhof3 60,266 0.402 13.51 8.23 19.33

Average - - 11.83 9.65 17.21

* Number of the FPGA clock cycles taken to compute the LU factorisation.
** Time taken to complete the LU factorisation on an FPGA accelerator running at 150 MHz.
*** Using 16 single-precision PEs running at 150 MHz.

Chapter 5 Single-FPGA Matrix Solution 117

0.00# 5.00# 10.00# 15.00# 20.00# 25.00# 30.00# 35.00# 40.00#

Rajat11#

Rajat14#

oscil_dcop_11#

circuit204#

Rajat04#

Rajat19##

fpga_dcop_50#

fpga_trans_01#

fpga_trans_02#

fpga_dcop_01#

init_adder1#

adder_#dcop_57#

adder_trans_01#

adder_trans#�_02#

Rajat12#

Rajat02#

add20#

bomhof1#

bomhof2#

add32#

meg4#

hamrle2#

Rajat01#

Rajat13#

Rajat03#

Rajat06#

bomhof3#

Speedup#versus#Kundert#Sparse# Speedup#versus#KLU# Speedup#versus#UMFPACK#

Figure 5.10: LU decomposition FPGA acceleration achieved versus KLU, Kundert
Sparse, and UMFPACK

118 Chapter 5 Single-FPGA Matrix Solution

Table 5.4: Sparsity effect on the acceleration ratios of the LU hardware prototype

Speedup** achieved versus

Matrix Sparsity (%) Str Sym* (%) UMFPACK (×) KLU (×) Kundert Sparse (×)

Rajat04 0.800 100 5.00 4.72 2.97

bomhof1 0.520 100 9.94 5.84 15.69

fpga trans 01 0.500 100 4.09 5.86 1.46

fpga trans 02 0.500 100 4.76 7.59 1.56

adder trans 01 0.440 100 2.95 4.79 5.40

adder trans 02 0.440 100 3.09 5.51 6.45

Rajat12 0.360 100 8.82 8.77 8.97

Rajat02 0.300 100 8.68 7.74 8.63

add20 0.230 100 13.30 7.11 15.77

add32 0.080 100 19.59 15.90 34.77

Rajat13 0.080 100 19.25 10.05 31.24

meg4 0.070 100 29.35 20.85 37.48

Rajat03 0.060 100 8.06 6.87 15.53

Rajat14 0.040 100 8.10 11.75 4.53

Rajat06 0.040 100 15.89 14.10 18.06

* Structural Symmetry is the fraction of nonzeros matched by nonzeros in symmetric locations.
** Using 16 single-precision PEs running150 MHz.

Figure 5.11: The impact of matrix sparsity on the performance of the LU FPGA
hardware

Chapter 5 Single-FPGA Matrix Solution 119

5.5.1 Cost of the pre-processing stage

As we mentioned earlier, KLU and our FPGA design rely on information computed in

the symbolic stage to speedup subsequent factorisations. In effect, during the symbolic

stage, KLU performs a one-off partial pivoting numerical factorisation to determine

the nonzero structure of the LU factors. In the subsequent iterations, KLU reuses the

previously-computed nonzero pattern to reduce the factorisation runtimes. In our work,

we use the pre-processing steps described in Section 4.3 to perform symbolic analysis

and to compute the DAMOS scheduling graph. The latter is used to parallelise the

actual numerical factorisation on the FPGA. Therefore, we demonstrate how the cost

of this symbolic stage can be amortised over a number of iterations such as the SPICE

iterations. Table 5.5 tabulates the CPU runtimes for the symbolic stage of KLU as well

the time taken by our pre-processing stage (i.e. DAMOS). From the reported runtime

figures, we note that our pre-processing stage is on average 20% faster than KLU’s

symbolic analysis stage. This reflects the fact that KLU performs a one-time numerical

factorisation during this stage, whereas in our symbolic analysis step we only rely on the

graph representation of the underlying matrix. We can also see that the time taken by

the KLU symbolic stage is on average 5.1× the KLU factorisation runtime on a CPU.

On the other hand, the time taken by our DAMOS pre-processing stage is on average

36× the factorisation time on the FPGA. However, this symbolic overhead is a one-off

effort, which can be easily amortised over a number of iterations, as demonstrated by

the following equation:

Overheadsymbolic =
Tsymbolic

Tfactorisation
=

36× TFPGA

i× TFPGA
=

36

i
(5.2)

where Tsymbolic is the time taken by our DAMOS pre-preprocessing step on a 6-core

Intel Xeon microprocessor, Tfactorisation is the time taken by our FPGA LU decom-

position hardware, and i is the number of SPICE iterations. For instance, if a given

simulation requires 10,000 iterations, then symbolic analysis overhead will only account

for 0.36% of the overall LU factorisation runtime.

120 Chapter 5 Single-FPGA Matrix Solution

Table 5.5: Cost of the symbolic analysis in KLU and DAMOS

KLU FPGA

Matrix Symbolic stage (ms) LU (ms) Symbolic stage (ms) LU (ms)

Rajat11 0.081 0.019 0.089 0.002

Rajat14 0.103 0.029 0.124 0.002

oscil dcop 11 1.542 0.329 1.314 0.023

circuit204 1.562 0.482 1.125 0.061

Rajat04 0.158 0.033 0.147 0.007

Rajat19 1.070 0.202 0.747 0.020

fpga dcop 50 2.425 0.685 2.724 0.066

fpga trans 01 0.209 0.043 0.170 0.007

fpga trans 02 0.255 0.051 0.192 0.007

fpga dcop 01 2.559 0.511 2.150 0.047

init adder1 2.586 0.480 1.725 0.037

adder dcop 57 4.642 0.363 1.376 0.053

adder trans 01 0.212 0.039 0.150 0.008

adder trans 02 0.190 0.041 0.161 0.007

Rajat12 0.559 0.118 0.446 0.013

Rajat02 4.275 0.921 4.018 0.119

add20 2.332 0.460 1.937 0.065

bomhof1 16.193 2.675 9.979 0.458

bomhof2 9.685 1.950 7.881 0.247

add32 7.475 1.412 5.945 0.089

meg4 2.515 0.514 0.860 0.025

hamrle2 2.983 0.551 2.419 0.111

Rajat01 5.493 1.181 4.611 0.068

Rajat13 5.098 1.014 3.918 0.101

Rajat03 4.222 0.935 3.782 0.136

Rajat06 5.745 0.972 4.027 0.069

bomhof3 24.180 3.306 12.914 0.402

* Number of the FPGA clock cycles taken to compute the LU factorisation.
** Time taken to complete the LU factorisation on a accelerator running at 150 MHz.
*** Using 16 single-precision PEs running150 MHz.

Chapter 5 Single-FPGA Matrix Solution 121

5.5.2 Scalability

In order to study the scalability trends of our design, we gauge the performance of our

design with 2, 4, 8, and 16 PEs configurations. We use the KLU runtimes, reported in

Table 5.2, as a benchmark to calculate the speedups achieved per design configuration

using Equation 5.1. The FPGA LU factorisation runtimes per PE count and their corre-

sponding speedups are reported in Table 5.6. We then plot the acceleration achieved for

the benchmark matrices as a function of the number of PEs, as illustrated in Figure 5.12.

We can see that the acceleration grows almost linearly with the number of PEs, with

an average 60% acceleration boost as we double the PE count. This suggests that if we

employ higher PE configurations on a larger FPGA (i.e more than 16 PEs), we may

able to attain higher speedups ratios, provided that the observed acceleration trend is

maintained (e.g. Equation 5.3).

Table 5.6: Sparse LU FPGA accelerator performance scaling trends

2 PEs* 4 PEs* 8 PEs* 16 PEs*

Matrix LU Time** (ms) Speedup*** (×) LU Time** (ms) Speedup (×) LU Time** (ms) Speedup*** (×) LU Time** (ms) Speedup*** (×)

Rajat11 0.005 3.46 0.003 6.14 0.002 9.20 0.002 11.14

Rajat14 0.016 1.80 0.009 3.21 0.005 5.88 0.002 11.75

oscil dcop 11 0.126 2.62 0.069 4.77 0.037 8.98 0.023 14.54

circuit204 0.379 1.27 0.257 1.88 0.113 4.26 0.061 7.94

Rajat04 0.030 1.09 0.024 1.40 0.016 2.06 0.007 4.72

Rajat19 0.120 1.68 0.063 3.22 0.045 4.46 0.020 9.96

fpga dcop 50 0.326 2.10 0.194 3.53 0.117 5.84 0.066 10.31

fpga trans 01 0.035 1.21 0.026 1.64 0.015 2.96 0.007 5.86

fpga trans 02 0.032 1.60 0.024 2.12 0.011 4.75 0.007 7.59

fpga dcop 01 0.333 1.54 0.179 2.86 0.082 6.24 0.047 10.87

init adder1 0.132 3.65 0.079 6.06 0.043 11.19 0.037 13.13

adder dcop 57 0.255 1.42 0.175 2.07 0.115 3.15 0.053 6.82

adder trans 01 0.032 1.22 0.028 1.41 0.015 2.58 0.008 4.79

adder trans 02 0.037 1.10 0.024 1.74 0.013 3.26 0.007 5.51

Rajat12 0.098 1.21 0.054 2.20 0.019 6.30 0.013 8.77

Rajat02 0.801 1.15 0.604 1.52 0.251 3.68 0.119 7.74

add20 0.381 1.21 0.238 1.93 0.080 5.73 0.065 7.11

bomhof1 1.851 1.45 1.631 1.64 0.985 2.72 0.458 5.84

bomhof2 1.464 1.33 1.281 1.52 0.596 3.27 0.247 7.89

add32 0.723 1.95 0.338 4.18 0.146 9.69 0.089 15.90

meg4 0.079 6.49 0.043 11.96 0.029 17.79 0.025 20.85

hamrle2 0.509 1.08 0.322 1.71 0.157 3.52 0.111 4.96

Rajat01 0.527 2.24 0.292 4.05 0.152 7.74 0.068 17.34

Rajat13 0.583 1.74 0.331 3.07 0.128 7.91 0.101 10.05

Rajat03 0.676 1.38 0.490 1.91 0.248 3.77 0.136 6.87

Rajat06 0.516 1.89 0.238 4.08 0.128 7.57 0.069 14.10

bomhof3 2.794 1.18 1.758 1.88 0.927 3.57 0.402 8.23

Arithmetic Average - 1.85 - 3.10 - 5.85 - 9.65

Geometric mean - 1.66 - 2.63 - 5.10 - 8.90

* Single-precision PEs running150 MHz.
** Time taken to complete the LU factorisation on the FPGA accelerator running at 150 MHz.
*** Speedup verus KLU runtimes on a 6-core Intel Xeon microprocessor reported in Table 5.2.

122 Chapter 5 Single-FPGA Matrix Solution

0.00#

5.00#

10.00#

15.00#

20.00#

16#PEs#8#PEs#4##PEs#2#PEs#

Ac
ce
le
ra
3o

n#
Ac

hi
ev
ed

#(X
)#

Number#of#Processing#Elements#(PEs)#

Rajat11#

Rajat14#

oscil_dcop_11#

circuit204#

Rajat04#

Rajat19##

fpga_dcop_50#

fpga_trans_01#

fpga_trans_02#

fpga_dcop_01#

init_adder1#

adder_#dcop_57#

adder_trans_01#

adder_trans#�_02#

Rajat12#

Rajat02#

add20#

bomhof1#

bomhof2#

add32#

meg4#

hamrle2#

Rajat01#

Rajat13#

Rajat03#

Rajat06#

bomhof3#

Arithme3c#Average#

Geometric#mean#

Figure 5.12: Sparse LU FPGA acceleration scaling trends in terms of PEs

The acceleration potential of our design can be further improved by increasing the

frequency of the overall design clock. Referring to Equation 5.1, we can see that if we

manage, for instance, to double the design’s frequency, we will be effectively cutting

down the FPGA LU time to half, and thus doubling the acceleration ratios achieved so

far. The frequency of our design is primarily limited by two things: the frequency &

latency of the CoreGen floating-point operators and the inter-PE fully connected switch.

The frequency & latency of the CoreGen floating-point operators greatly depend on the

Xilinx FPGA family used and the degree to which the physical DSP48 blocks are used

(i.e. none, full, maximum). Table 5.7 shows the resource utilisation of our design if a

Virtex-7 XC7V200T is used. As we can see, Xilinx ISE 14 synthesis results indicate that

the overall design frequency has increased from 150 MHz to 250MHz. This is mainly due

to customising the CoreGen floating-point divider latency to 1 clock cycle as compared to

28 cycles for the same operator on the Virtex 5. This higher overall frequency indicates

that we can now expect that our acceleration ratios on the Virtex 7 to increase at same

rate (i.e 1.6×), as illustrated by Equation 5.4. In other words, changing the target

Chapter 5 Single-FPGA Matrix Solution 123

FPGA from Virtex 5 to Virtex 7 improves the average 16 PEs speedup ratio from 9.65×

15.44× (i.e 9.65 ×1.6). The overall predicted speedup that can be achieved by using a

32-PE configuration on the more modern Viretx 7 is shown in Equation 5.5.

Speedup32PEs = Speedup16PEs · (1.6) (5.3)

Speedup32PEs
viretx7 =

frequencyviretx7
frequencyviretx5

· Speedup32PEs
viretx5 (5.4)

Speedup32PEs
viretx7 =

frequencyviretx7
frequencyviretx5

· Speedup16PEs
viretx5 · (1.6) (5.5)

Table 5.7: Sparse LU Hardware Prototype Resource Utilisation on a Virtex-7

XC7V200T

Usage of 1,954,560 LUTs Latency BRAM DSP48 Clocks (MHz)

Precision SP* DP** SP DP SP DP SP DP SP DP

Adder 407 794 8 8 0 0 0 0 472 436

Multiplier 103 279 6 16 0 0 3 11 463 403

Divider 1,106 3,412 1 1 0 0 0 0 482 375

1 PEs 4,931 16,080 - - 5 10 3 11 250 250

16 PEs 17,2121 (8%) 590,576 (30%) - - 64 136 48 176 250 250

32 PEs 467,342 (24%) 1,456,950 (74%) - - 142 283 96 352 250 250

*Single-precision **Double-precision

5.6 Summary

In this chapter, we showed an FPGA implementation of the “Sparse LU Factorisation”,

key computational kernel to the SPICE matrix solution phase, that harnesses the paral-

lelism exposed at the pre-precessing stage of circuit matrices using specialised techniques.

Using benchmark matrices from the UFMC repository, we empirically demonstrated that

our 16-PE LU Virtex 5 implementation outperforms modern LU matrix software pack-

ages, running on a 6-core 12-thread Intel Xeon X5650 microprocessor, by many times.

124 Chapter 5 Single-FPGA Matrix Solution

In effect, we showed that our LU FPGA implementation is on average 9.65×, 11.83×,

17.21× faster than KLU, UMFPACK, and Kundert Sparse matrix packages respectively.

We have also extrapolated our acceleration result to the more modern Virtex 7 FPGA

family and we predict that acceleration results to be 1.6× faster than the same PE

configuration on the Virtex 5 due to the improved overall design frequency. In the next

chapter, in line with the principles covered in Section 2.2, we study the feasibility of

creating a multiple FPGA system using cheaper medium-range Virtex 5 COTS board

able to outperform the more modern and more expensive Virtex 7 boards.

Chapter 6

Multi-FPGA Matrix Solution

In the previous chapter, we evaluated the performance our single-FPGA LU decomposi-

tion prototype and we demonstrated that it can outperform modern software packages

by many times. Scaling trends of our design also suggest that doubling the number of

PEs can on average lead to a 60% performance increase. However, as a design increases

in size and area, the critical path also increases and the circuit’s frequency of operation

gets reduced as a result. Nonetheless, empirical results from Chapter 5 (Section 5.5.2)

show that utilising a larger FPGA improves the design’s operating frequency leading

to higher acceleration ratios. To achieve even higher speedup ratios, the sparse matrix

at hand can be partitioned into smaller pseudo-independent entities that can be spread

over a number of FPGA for processing. In this chapter, we explore how our single-FPGA

design can be adapted to a multi-FPGA LU factorisation system able to harness the

coarse-grain parallelism present within circuit matrices.

125

126 Chapter 6 Multi-FPGA Matrix Solution

6.1 Objective

In addition to the fill-in reducing orderings covered in Chapter 4, the nonzero pattern of

sparse matrices can be reorganised into specialised forms that expose data parallelism,

which can be then harnessed by a Single Instruction Multiple Data (SIMD) [196] pro-

cessing architecture. Such orderings exploit the sparsity of a given matrix to reorder it

into sub-matrices with can be solved concurrently. As such, one of our main objectives

in this chapter is to demonstrate a methodology to effectively partition sparse circuit

matrices into almost independent smaller sparse matrices interconnected by an interface

matrix (i.e. coupling equations), as shown in Figure 6.1. The resulting sub-matrices

can be then factorised concurrently using a multiple FPGA system in a SIMD fashion,

where each FPGA node will responsible for independently factorising a sub-matrix us-

ing the single-FPGA design we proposed in previous chapter. The interface problem is

factorised last, once the factorisation of all the sub-matrices is complete. One of most

widely used partitioning schemes is to reorder a sparse matrix into the Bordered Di-

agonal Block (BDB) form [197, 198, 199, 200] using the node tearing technique [153],

nested dissection [168], or similar heuristics. In this next section, we discuss the the

advantages of the BDB matrix form in the realm of parallelising the LU factorisation of

sparse matrices.

SUBMATRIX 1

SUBMATRIX 2

SUBMATRIX 4

SUBMATRIX 3

COUPLING EQUATIONS

SUPERNODESN
SN5

SN1 SN2 SN3 SN4

COUPLING
EQUATIONSTREE ROOT

ELIMINATION

ELIMINATION
TREE LEAVES

SUBMATRICES

LEGEND

Figure 6.1: Graph with four independent sub-matrices [201]

Chapter 6 Multi-FPGA Matrix Solution 127

6.2 Ordering for Coarse-grain Parallel Factorisation

As mentioned earlier, to achieve coarse-grained parallelism, sparse matrices can be pre-

ordered into the BDB matrix form. The latter exposes data parallelism inherently

present within sparse matrices by reordering them into the form shown in Equation 6.1.

Ain and Anj , Ann, are known as “the right border”, “the bottom border”, and “the di-

agonal blocks” respectively, where A is n × n sparse matrix. The blocks Ann, Ain and

Anj are said to form a “3-block group” (e.g. [A11, A1n, An1]). All other off-diagonal

blocks contain only zeros, and hence no fill-in elements will appear in these blocks. The

factorisation of the last block Ann requires the data produced in the right and bottom

border blocks. Therefore, all other 3-block groups can be processed in parallel and the

last diagonal block, Ann, is factorised last. The factorised BDB matrix retains the BDB

structure and hence data parallelism can be also harassed at the forward reduction and

back substitution stages of the matrix solution. Once a BDB ordering is obtained, local

fill-in reducing heuristics can be applied to sub-matrices.



A11 A1n

A22 A2n

. . .
...

An−1n−1 An−1n

An1 An2 . . . Ann−1 Ann


(6.1)

Assuming that no pivoting is required or restricted within diagonal blocks, the LU

factorisation of the BDB sparse matrix involves four steps:

• Factorisation of the independent 3-block group sub-matrices.

• Multiplication of the right and bottom border blocks to generate the partial sums.

• The accumulation of the partial results for the last diagonal block.

• Factorisation of the last diagonal block using the accumulated partial sums.

128 Chapter 6 Multi-FPGA Matrix Solution

The computation of the last diagonal block cannot begin until all the contributions

from the diagonal block are accumulated. Figure 6.2 illustrates how a matrix in the

BDB form can be mapped to four processing elements (i.e. P1, P2, P3, and P4) for

parallel factorisation. For the method to work well in a parallel environment, the order

of the interface problem (i.e. the last diagonal block) should be small compared with

the size of the original matrix so that the cost of factorising the interface problem is

significantly less than that of factorising the blocks on the diagonal [202]. In effect, the

smaller the interface block Ann gets, less the communication overhead will be. However,

as Ann gets smaller, it also gets denser.

Σ

LAST
BLOCK

(2) UPDATE LAST BLOCK USING
DATA FROM THE BORDERS

(3) FACTOR

P1

P2

P3

P1

P2

P3

P4

Σ Σ Σ Σ
ACCUMULATE

P4

0
0

0

0

0

0

(a) Factorization Steps

P1 P2 P3 P4

P1

P2

P3

P4

(1
) F

O
R

W
AR

D
 R

ED
U

C
TI

O
N

P1

P2

P3

P1

P2

P3

P4

Σ Σ Σ
ACCUMULATE

BR
O

AD
C

AS
T

(2
) B

AC
KW

AR
D

 S
U

BS
TI

TU
TI

O
N

P4

0
0

0
0

0

0

(b) Reduction/Substitution Steps

P1 P2 P3 P4

P4

P3

P2

P1

(1) FACTOR DIAGONAL BLOCKS

Figure 6.2: Factorisation steps of a matrix in the Bordered Diagonal Bock (DBD)
form [201]

Several algorithm can be used to re-organise a sparse matrix into the BDB form

[203, 204, 205, 206, 207, 208, 209]. However, the most widely used technique to generate

the BDB form is recursive partitioning of the graph associated with the matrix at hand

using dissection algorithms [168]. These algorithms attempt to split the matrix graph

into equal partitions. The resulting partitions are connected by a set of node referred to

as the “node separators”. The edges which have to be cut as a result of removing the the

Chapter 6 Multi-FPGA Matrix Solution 129

node separators is referred to as the “edge cut”. In the context of a BDB structure, each

graph partition represent a sub-matrix whereas the node separators reflect the coupling

equations (i.e. the interface matrix). Graph dissection can be applied recessively to the

resulting leading to the nested BDB illustrated in Figure 6.16.

State-of-the-art nested dissection algorithms use “multilevel graph partitioning”. A

widely used nested dissection routine is “METIS NodeND” from the METIS graph

partitioning package [207]. Multilevel schemes aim to balance the time required to

determine a partition and its quality. These methods are called multilevel because

they operate by repeatedly simplifying the original graph and using the resulting graph

to generate the partitions. The basic steps in a multilevel scheme are: coarsening,

partitioning, and refinement. During coarsening, the original graph is simplified by

collapsing the edges and the vertices to create a smaller simpler graph. In the next phase,

the simplified graph is partitioned into two roughly equal-sized parts, while maintaining

a small edge-cut. In the refinement step, the bisected simplified graph is transformed

back into the original graph. The latter has now more freedom in selecting nodes,

which can be used to refine further the coarse bisections. For asymmetric matrices,

the algorithms discussed above use the graph associated with the symmetrised matrix

A+AT or ATA.

6.3 Inter-FPGA Communication

High-Speed communication is a crucial and an integral part of digital systems and their

performance. However, nowadays, systems interconnect is considered to be the primary

bottleneck at all communication levels; intra-chip, inter-chip or board-to-board [210].

Parallel I/O remains one of the most popular interconnect technology to date. It usually

employs a central arbiter (i.e. Master) that allows sharing a common bus between

several clients (i.e slaves). However, the obvious limitation of such buses is the restricted

scalability due to the limited bandwidth, which in turn limits the capabilities of the

clients. Moreover, as clock speeds continue to grow, signal skews grow dramatically

causing communicating partners to go out of phase [211]. High clock speeds also cause

130 Chapter 6 Multi-FPGA Matrix Solution

Figure 6.3: A Simplified Serial Communication Example

more interference and cross talk undermining the signal integrity. To remedy these

pitfalls, complex and expensive synchronisation logic is used which increases the design

costs. Additionally, this technology puts more strain on PCB engineers due the huge

number of traces to deal with. Therefore, designers opt for multilayer PCBs which in

turn increase the overall costs.

6.3.1 FPGA High Speed Serial Transceivers

As part of overcoming the issues discussed earlier, the silicon industry has been shifting

focus to multi-gigabit serial I/O [212]. This trend has been reflected in the offerings of

leading FPGA manufacturers such as Altera and Xilinx. In effect, they have incorpo-

rated MGTs into some of their high-end devices. MGTs effectively eliminate clock-to-

data skew through the use of Clock and Data Recovery (CDR) [213]. CDR consists in

sending high speed serial data streams without an embedded clock. At the receiving

end, an approximate clock is generated from a known reference point. The clock is then

phase-aligned to the transitions in the data stream with a Phase-Locked Loop (PLL) as

shown in Figure 6.3. But in order for this scheme to work, a data stream must tran-

sition frequently enough to ensure that any drift in the PLL’s oscillator is corrected.

8B/10B encoding is commonly used to produce a DC-balanced and transition-rich data

stream [214]. This technology also reduces the number of traces running across boards

significantly and hence decreases the number of PCB layers needed considerably. Serial

Chapter 6 Multi-FPGA Matrix Solution 131

communication has also many other obvious advantages, namely, the reduction of power

consumption and pin number usage [215].

6.3.2 The Xilinx Aurora Protocol

In our work, we make use of the Xilinx Aurora protocol [216] for serial communication

through Serial-ATA (SATA). Aurora is a scalable and lightweight point-to-point protocol

that provides a simplified interface to the FPGA MGTs. Figure 6.4 shows how Aurora

can be used to connect two user applications in two different FPGAs. As illustrated in

the diagram, each connection between MGTs is called a lane. Any number of lanes can

be bonded to create an Aurora channel. Randomised idle sequences are injected into

a channel whilst it is not used. Aurora uses 8B/10B encoding for DC balance, error

detection, and to allow control characters in the data stream.

Figure 6.4: Functional view of the Aurora Protocol [216]

Figure 6.5 depict the top-level interfaces available in Aurora. The LocalLink interface

is the primary interface for the communication of raw data. When a data packet is

passed to it on the sending ports, Aurora encapsulates it in 8B/10B control characters

as necessary to be correctly interpreted by the MGT core. Upon reception, the control

characters are stripped and data is presented to the LocalLink interface receiving ports

[216]. Aurora supports two modes of operation: framing mode and streaming mode. The

framing interface comprises signals necessary for transmitting and receiving framed user

data. Conversely, the streaming interface allows users to send data without any special

132 Chapter 6 Multi-FPGA Matrix Solution

Figure 6.5: Aurora interfaces [216]

frame delimiters, allowing the Aurora channel to be used as a pipe. Words written

into the TX side of the channel are delivered to the RX side after some latency. The

streaming interface is simple to operate and uses fewer resources than framing. Two

optional flow control interfaces can be associated with the framing interface. Native

flow control (NFC) is used for regulating the data transmission rate to prevent FIFO

overflows. User flow control (UFC) is used to exchange high priority messages between

application partners. Additionally, Aurora cores can be configured as full-duplex or

simplex modules. Full-duplex modules provide high-speed TX and RX links whereas

simplex modules provide a link in only one direction.

All data transferred via Aurora is sent in 2-byte code groups which naturally fit

Xilinx’s 16-bit MGTs interface. The 8B/10B encoding allows the Aurora core to detect

Chapter 6 Multi-FPGA Matrix Solution 133

all single bit errors and most multi-bit errors that occur in the channel. Aurora resets

itself upon detecting a hard error. The Aurora protocol has an average latency depends

on the customisation options the user choses. However, The Aurora protocol has a

constant throughput and thus the data to be sent can be sampled every clock cycles and

the data on the receiving end has to be consumed instantly, otherwise it gets destroyed

by the following word in the next clock cycle.

6.3.3 Experimental Aurora Tests

For our research, we conducted a number of tests using the Aurora protocol. All the tests

were performed using the Xilinx XUPV5-LX110T development board (see Appendix B),

which features a Virtex 5 LX110T FPGA. The latter has 16 built-in MGTs, however,

only 2 of these are terminated at SATA connectors. The MGTs are equipped with a

high-quality variable differential clock source, which is independent of the board’s system

clock. This differential clock source can be set to 75MHz or 156.25 MHz to deliver Aurora

speeds of 1.5 Gbps or 3.125 Gbps respectively. This clock source separation enables the

data receive/send Aurora logic to be decoupled from the user logic. The board ships

with a Xilinx SATA crossover cable, which we use to perform two tests: a loopback

connection between the two SATA connectors on the same FPGA (i.e. Figure 6.6) and

a two-board test by connecting two MGT transceivers on different XUPV5 boards (i.e.

Figure 6.7).

In the first test, we generate a number sequence using a 16-bit counter, which we then

send from one MGT to another MGT on the same FPGA using a full duplex Aurora

channel. We then check the data received is in the expected order. If the number

received does not match the expected number, we increase the error counter by one. We

added ChipsScope ILA cores to our Aurora designs to monitor the send and receive data.

Figure 6.8 shows the ModelSim simulation waveforms obtained using the VHDL Aurora

simulation model provided by Xilinx. Figure 6.9 shows the FPGA Aurora waveforms

collected using Xilinx’s ChipScope LogicAnalyzer. We can see that Aurora channel has

a latency of 38 clock cycles (difference between the X and O cursors in Figure 6.9) with

134 Chapter 6 Multi-FPGA Matrix Solution

a constant throughput of 16 bit per clock cycle. Clock synchronisation did not occur

as both MGTs are operated using the same clock. Clock synchronisation refers to the

periodic transmission of special characters to prevent errors due to small clock frequency

differences between the connected Aurora cores.

For the second test, a clock compensation module was required to prevent any po-

tential clock differences as the channel partners sit on different boards and hence do

not use the same clock source. Each Aurora core is accompanied by an optional clock

compensation which can be enabled when required. management module. The counting

sequence has been observed on both ends using ChipScope. The waveform extracted

looked identical to the previous test, except from the fact the communication was inter-

rupted by the clock compensation module for 2 clock cycles every 5000 clock cycle to

send synchronisation characters.

MGTAuroa
Module

RX

TXCounter

Error Check

SATA Host

MGTAuroa
Module

RX

TXCounter

Error Check

SATA Target

XUPV5-LX110T FPGA Board

Figure 6.6: Single FPGA Board Aurora Loopback Test

MGTAuroa
Module

RX

TXCounter

Error Check

SATA Host

MGTAuroa
Module

RX

TXCounter

Error Check

SATA Target

XUPV5-LX110T FPGA Board

XUPV5-LX110T FPGA Board

Figure 6.7: Two FPGA Boards Aurora Test

Chapter 6 Multi-FPGA Matrix Solution 135

Figure 6.8: Aurora Loopback Test ModelSim Waveforms

Figure 6.9: Aurora Loopback Test ChipScope Waveforms

136 Chapter 6 Multi-FPGA Matrix Solution

6.4 Multi-FPGA LU Factorisation

In this section, we explain how the LU factorisation of a sparse matrix in the BDB

form can be mapped to a multiple FPGA system. We also illustrate how we adapt our

single-FPGA accelerator to a multi-FPGA system that performs LU factorisation in a

SIMD fashion.

6.4.1 System Architecture

In order to have an SIMD-like architecture, all FPGAs should ideally perform the same

computations on different datasets. Figure 6.10 shows the proposed multi-FPGA ar-

chitecture that can used to capitalise on the features of the BDB form. In effect, the

BDB sub-matrices are factorised using the FPGA nodes and their contributions are then

sent to the root FPGA. The latter sums the node’s contributions before it factorises the

interface matrix. However, the parallel LU factorisation of circuit matrices in the BDB

form involves irregular computation patterns and blocks of various sizes, as a result of

the physical characteristics of the underlying circuit [79]. The higher the variance in

block sizes, the larger will be the resulting FPGA idle times as the factorisation of in-

terface matrix cannot proceed unless all other blocks have been already processed. To

reduce the FPGAs idle time, we aim to overlap the intra-FPGA computations and the

inter-FPGA communication such that contributions from the independent sub-matrices

are sent back to the interface matrix as soon as they are computed. Additionally, we use

lightweight multi-gigabit serial connections to minimise the inter-FPFA communication

overheard.

The BDB sub-matrices can be factorised using the single FPGA sparse LU hardware

we proposed in Chapter 5. The BDB form ensures that there is no communication

between the sub-matrices, except when the output data needs to be sent back to the

root FPGA to factorise the last block (i.e. interface matrix). Adapting our sparse LU

hardware prototype to accommodate the coarse-grained parallelism exposed by the BDB

form is straightforward. The distribution of the BDB matrix elements involves only the

Chapter 6 Multi-FPGA Matrix Solution 137

Auroa RX
Module

SATA RX
Module

16 PE
Accelerator

Auroa TX
Module

SATA TX
Module

8 PE
Accelerator

SATA
3.125 Gbps

Root FPGA

FPG
A N

odeWrite
FIFO

Auroa TX
Module

SATA TX
Module

8 PE
Accelerator

SATA
3.125 Gbps

FPG
A N

odeWrite
FIFO

Read
FIFO

Auroa RX
Module

SATA RX
Module

Read
FIFO

M
U
X

Figure 6.10: Architecture of the multi-FPGA Sparse LU Accelerator

distribution of data to their corresponding FPGAs processing nodes. The summation

of contributions from the different FPGA nodes is accomplished using the accumulators

already present within our single FPGA sparse LU hardware.

Each FPGA node hosts an 8-PE sparse LU accelerator, which is responsible for fac-

torising a BDB sub-matrix. The root FPGA contains a sparse LU accelerator with 16

PEs to compensate for the fact that the last diagonal block gets denser as a result of

summing of contributions from the FPGA nodes. Inter-FPGA communication is han-

dled through Xilinx’s Aurora protocol, which interfaces with FPGAs’ internal MGTs.

The FPGAs are interconnected via SATA links running at 3.125 Gbps (2.5 Gbps ef-

fective rate because of the 8b/10b encoding). The sparse LU hardware accelerators

communicates with the Aurora interfaces through the our custom SATA Receive (RX)

and Transmit (TX) modules, as illustrated in Figure 6.10. In effect, to increase concur-

rency, the Col buffer and the Col map units of the node accelerators have been altered to

commit columns as they are computed to the 64-bit wide “Write FIFOs”, as illustrated

in Figure 6.11. On the other hand, the Col buffer and the Col map units of the root

FPGA accelerator have been configured to read data from 64-bit wide “Read FIFOs”,

as illustrated in Figure 6.12. The Col buffer contains the “current” factorised column

while the Col map unit contains the corresponding matrix indices.

Furthermore, our SATA TX and SATA RX modules contain a TX and RX FIFOs

respectively. The RX and TX FIFOs create a buffered link between the read/write FIFOs

138 Chapter 6 Multi-FPGA Matrix Solution

and the Aurora core. This buffered link is necessary because the hardware accelerator

clock and the MGTs clock are independent on the XUPV5 board. The accelerator clocks

data in and out of the read/write FIFOs at 150MHz (250MHz on Virtex 7) while the

user logic clocks data in and out of the Aurora core at156.25 MHz (can be also set to

75 MHz). For this reason, we use RX and TX FIFOs with independent read and write

clock inputs.

The TX and RX FIFOs are connected to the Aurora core through a multiplexer and

demultiplexer respectively. The FIFOs have a width of 64 bits to utilise the complete

Col buffer/Col map data width. We use an Aurora core with a 16 bit wide interface

because the MGTs are optimised for a width of 2 words, that is 16/20 bits using 8B/10B

encoding. The MUX and DEMUX are needed to connect the 64 bit FIFO interface to

the 16 bit Aurora core interface. The MUX converts each 64 bit word from the TX

FIFO into groups of 16 bits spread over 4 clock cycles. The DEMUX buffers 4 x 16 bit

words from the Aurora core into one 64 bit entry to the RX FIFO. This configuration

allows us to make full use of the hardware accelerator throughtput.

Auroa
Local Link
Interface

TX

State
Machine

64-bit Data

16-bit Data

Col_Buffer
32-bit Data

TX FIFO

Col_Map
32-bit Data

Auroa Local Link control and status singals

SATA TX
Module

MUX

Write FIFO

Figure 6.11: Architecture of the SATA TX Module

Chapter 6 Multi-FPGA Matrix Solution 139

Auroa
Local Link
Interface

RX

State
Machine

64-bit Data

16-bit Data

Col_Buffer
32-bit Data

RX FIFO

Col_Map
32-bit Data

Auroa Local Link control and status singals

SATA RX
Module

DEMUX

Read FIFO

Figure 6.12: Architecture of the SATA RX Module

6.4.2 Experimental Setup

We build a prototype of our multi-FPGA accelerator using three Xilinx XUPV5 develop-

ment boards (Appendix B) interconnected by Xilinx’s SATA crossover cables according

to the topology depicted in Figure 6.10. We use Xilinx’s FIFO Generator [217] to imple-

ment TX, RX, Read, and Write FIFOs. We also use the Xilinx’s CoreGen to instantiate

the required Aurora modules. We use Synplify Pro 9 and Xilinx ISE 10.1 to synthe-

sis and implement the different components of our multi-FPGA prototype. We set the

MGT clocks to 156.25 MHz in order to deliver inter-FPGA link speeds of 3.125 Gbps.

We use the MESHPART toolbox [218], which in turn uses METIS graph-partitioning

packages [207] to partition our test matrices. The toolbox contains several graph and

mesh partitioning routines to generate recursive multiway partitions, vertex separators,

and nested dissection orderings. Using MESHPART’s nested dissection routine (i.e.

metisnd), we partition our test matrices into almost two equal-sized partitions with the

view to organise them in the BDB form shown in Figure 6.13. We assign the resulting

two 3-block groups (i.e. [A3, A11, A13] and [A32, A22, A23]) to the node FPGAs, while

the interface matrix (i.e. A33) is assigned to the root FPGA.

140 Chapter 6 Multi-FPGA Matrix Solution

VZ&

%$2-%/<-$4& -"&#/-:/0& -:$& 4/.3"0.(& 5("<B2I& &72& $.<:& "=& -:$& 4/.3"0.(& 5("<B2& /2& <"*+,-$4N&

,+4.-$2& .%$& *.4$& -"& -:$& =/0.(& 4/.3"0.(& 5("<B& -:.-& /2& .(2"& .& +.%-& "=& -:$& 5"%4$%I& & 9:$&

<"*+,-.-/"0& "=& -:$& =/0.(& 5("<B& /0& -:$& 2+.%2$& *.-%/?& <.0b-& 5$3/0& ,0-/(& .((& "=& -:$&

<"0-%/5,-/"02&=%"*&-:$&4/.3"0.(&5("<B2&:.@$&5$$0&.<<,*,(.-$4I&

&

&

A11

A22

A12

A21

A13

A23

A33A32A31
&

7$0HF"+A_B+C&'F$T+$)+33!+7(F1+

&

&

&

K0& 3%.+:& -:$"%$-/<& -$%*2N& .&*.-%/?& /0& RR>& ="%*& /2& .& <"(($<-/"0& "=& /04$+$04$0-& 2,5^

*.-%/<$2& /0-$%<"00$<-$4& 58& .& 2$-& "=& <",+(/03& $C,.-/"02I& & 9:$& 2$-& "=& 0"4$2& /0& -:$&

/04$+$04$0-& 2,5^*.-%/<$2& %$+%$2$0-& -:$& /04/<$2&"=& -:$&4/.3"0.(&5("<B2&.04& -:$&0"4$2& /0&

-:$&<",+(/03&$C,.-/"02&%$+%$2$0-&-:$&/04/<$2&"=&-:$&5"%4$%&"=&-:$&RR>&*.-%/?I&&Q%4$%/03&.&

.-%/?&/0-"&.&RR>&="%&/0@"(@$2&5.(.0</03&-:$&.*",0-&"=&#"%B&%$C,/%$4&/0&$.<:&"=&-:$&

Figure 6.13: The Targeted BDB Matrix Form

6.4.3 Performance Analysis

In this section, we compare the acceleration ratios achieved using our multi-FPGA ac-

celerator prototype with speedup ratios obtained using a 16-PE single-FPGA system

and reported in Table 5.3. To gauge the time taken by each node of our multi-FPGA

system, we use Xilinx’s ChipScope ILA cores to count the number of clock cycles taken

by each FPGA. We calculate the overall LU factorisation time as follows:

TF (A) = max
i=1

TF (Aii) + max
i=1

Ttx(Bii) + TF (A33) (6.2)

Where TF (A) is the total factorisation time for matrix the A, TF (Aii) is the time taken

to factorise the diagonal block Aii, Ttx(Bii) is the time taken to send the border contri-

butions (associated with the diagonal block Aii) back to the main FPGA, and TF (A33) is

the time taken to factorise the interface matrix including the time taken to sum contribu-

tions from FPGA nodes. We compare the LU factorisation time achieved with the KLU

runtimes reported in Table 5.2. The speedups achieved are illustrated in Figure 6.14.

We can see that our multi-FPGA prototype achieves acceleration ratios between 3.5-38×

(17× on average). Figure 6.15 shows the relatives speed achieved using our 3-FPGA

system compared to the speedups reported in Table 5.3 for our 16-PE single-FPGA

system over KLU. We note that our 3-FPGA system is on average 1.9× faster than the

single-FPGA system. However, the mutli-FPGA system under-performed on a couple

Chapter 6 Multi-FPGA Matrix Solution 141

of occasion (i.e. fpga dcop 50 and fpga trans 01). This mainly due to the fact that

the time needed to send back the contributions from BDB sub-matrices of these two

matrices is relatively high when compared with the time needed to factorise them.

From Figure 6.2, it is also clear that in order to reduce the parallel factorisation time

for a BBD matrix, one would like to reduce the size of the diagonal blocks as well as the

border (as it impacts the size of the interface matrix). Such requirements are conflicting

as reducing the size of the diagonal blocks, thereby increasing their number, may cause

a corresponding increase in the size of the border. To achieve an effective trade-off

between these two conflicting requirements, a nested BDB form is often employed as

shown in Figure 6.16 and Figure 6.17. Such processing tree can be easily mapped to a

multiple FPGA system following the same topology.

6.5 Summary

In this chapter, we have demonstrated the strategy we followed to partition sparse

matrices into smaller pseudo-independent entities that can be spread over a number of

FPGA for a coarse-grain parallel LU factorisation. We have also provided details of how

our single-FPGA design can be adapted to a multi-FPGA LU factorisation system to

harness the coarse-grain parallelism exposed by the BDB form. We have empirically

illustrated our prototype’s ability to accelerate certain circuit matrices up to 38 times

over KLU running on a 6-core Intel Xeon 2.6 GHz processor with 6 GB RAM.

142 Chapter 6 Multi-FPGA Matrix Solution

0.00#

5.00#

10.00#

15.00#

20.00#

25.00#

30.00#

35.00#

40.00#

45.00#

Ra
jat
19
##

fpg
a_
dc
op
_5
0#

fpg
a_
tra
ns
_0
1#

fpg
a_
tra
ns
_0
2#

fpg
a_
dc
op
_0
1#

ini
t_a
dd
er1
#

ad
de
r_#
dc
op
_5
7#

ad
de
r_t
ran
s_0
1#

ad
de
r_t
ran
s#�_
02
#

Ra
jat
12
#

Ra
jat
02
#

ad
d2
0#

bo
mh
of1
#

bo
mh
of2
#

ad
d3
2#

me
g4
#

ha
mr
le2
#

Ra
jat
01
#

Ra
jat
13
#

Ra
jat
03
#

Ra
jat
06
#

bo
mh
of3
#

SP
ee
du

p#
Ac

hi
ev
ed

#V
er
su
s#K

LU
#(X

)#

Figure 6.14: Multi-FPGA LU Decomposition Accelerator Performance Versus KLU

0.00#

0.50#

1.00#

1.50#

2.00#

2.50#

3.00#

Ra
jat
19
''

fpg
a_
dc
op
_5
0'

fpg
a_
tra
ns
_0
1'

fpg
a_
tra
ns
_0
2'

fpg
a_
dc
op
_0
1'

ini
t_a
dd
er1
'

ad
de
r_'
dc
op
_5
7'

ad
de
r_t
ran
s_0
1'

ad
de
r_t
ran
s'�_
02
'

Ra
jat
12
'

Ra
jat
02
'

ad
d2
0'

bo
mh
of1
'

bo
mh
of2
'

ad
d3
2'

me
g4
'

ha
mr
le2
'

Ra
jat
01
'

Ra
jat
13
'

Ra
jat
03
'

Ra
jat
06
'

bo
mh
of3
'

Re
la
@v

e'
Sp
ee
up

'A
ch
ie
ve
d'
(X
)'

Figure 6.15: Multi-FPGA LU Decomposition Accelerator Performance Relative to a
16-PE single-FPGA Accelerator

Chapter 6 Multi-FPGA Matrix Solution 143

!"#$

A1

A2

A1

A2

B1A2A1

A3

A4

A3

A4

B3A4A3

A1

A1 C1

A2

A2

B1

B1

A3

A4

B3

B3A4A3
$

!"#$%&'()*''+,-'.&/&0'1&2$%3"/&04'56%7"7"-8&9'::;'<=6%3&'>67%"?'

$

$

$

Figure 6.16: Two-level Nested BDB Form

!"#$

A1 A1

A1

A2 A2

A2B1 B2

A1

B1

A1 B1 C1

A2

B2

A2 B2 C2

A3 A3

A3

A3

A3

A4 A4

A4 B4

A4

B4

A4 B4 C4

B12 B12

B12 C12

B3 B3

B3 C3

B34 B34

B34 C34

C12

34

+ +

+

$

!"#$%&'()*''+%&&',%&-./012'03'4&5$%6"7&89':-%;";"02&/',,<'=>-%6&'?-;%"@'

$

$

$

%&$&'($&)*$+(,(+$)-$&'($&.(($/++01&.2&(3$/4$5/60.($78$-).$&'($92&./:$/++01&.2&(3$/4$5/60.($7;$

&'(.($2.($-)0.$3/26)42+$<+)=>1?$ $@/&'$A$+(,(+1$)-$10<B3/,/1/)4$&'(.($C/++$<($D
A
$3/26)42+$

<+)=>1$243$A$(36($1(*2.2&).1$-).$(2='$<+)=>?$$E4$&'($/++01&.2&/)4F$&'($+(&&(.1$%F$GF243H$

.(-(.$ &)$ &'($ +(,(+$ 211)=/2&(3$C/&'$ &'($ <+)=>?$ $ I'($ 409<(.$.(-(.1$ &)$ &'($ *.)=(11/46$ 04/&$

.(1*)41/<+($ -).$ &'2&$ <+)=>?$ $ H+(2.$ <+)=>1$ /43/=2&($ 2$ <+)=>$ &'2&$ /1$ /4/&/2++J$ (9*&J?$$

52=&)./K2&/)4$)-$&'($3/26)42+$<+)=>$%!$.(10+&1$/4$9)3/-/=2&/)4$)-$<+)=>1$+2<(+(3$G!243

H!$ 30($ &)$ &'($ (36($ 1(*2.2&).1$ 211)=/2&(3$ C/&'$ <+)=>$ %!?$ $ %-&(.$ 3(=)9*)1/&/)4$)-$ &'($

+(,(+B%$3/26)42+$ <+)=>1$ /1$ =)9*+(&(F$ &'($ =)4&./<0&/)41$ &)$ &'($ (36($ 1(*2.2&).$ <+)=>1$ 2.($

1099(3$-).$&'($4(:&$+(,(+$)-$&'($&.((?$$E4$&'($4(:&$+(,(+F$3/26)42+$<+)=>1$G!D243G"L$2.($

3(=)9*)1(3$243$&'(/.$=)4&./<0&/)41$&)$&'($-/42+$<+)=>$H!D"L$2.($1099(3?$$%&$&'($&)*$)-$

&'($&.((F$<+)=>$H!D"L$/1$3(=)9*)1(3$243$&'($-/42+$1)+0&/)4$/1$=)9*+(&(?$

Figure 6.17: Two-level Nested BDB Processing Tree

Chapter 7

Conclusion and Future Works

This thesis provided a proof of concept that FPGAs, in conjunction with the appropriate

algorithms, can be leveraged to implement a tailored hardware solution able to accelerate

the LU decomposition of circuit matrices by many times. In this chapter, we reflect on

the achieved objectives and findings. We then conclude with possible follow-up work

and further research directions.

7.1 Conclusion

In this thesis, we covered the parallelisation of circuit matrices’ LU factorisation on

FPGAs using a bottom-up methodology. First, we demonstrated the importance of ac-

celerating matrix calculations for SPICE simulations, in order to keep up with increasing

VLSI circuit densities. We also established that general-purpose PCs are inadequately

designed and ill-equipped to cope with the irregularity of computations associated with

the LU factorisation of the highly sparse circuit matrices. Moreover, we argued that

current parallel programming tools, based on the conventional multi-threading model,

are inherently inefficient as they were historically developed for sequential machines.

144

Chapter 7 Conclusion and Future Works 145

Secondly, we empirically analysed the properties of circuit matrices in order to iden-

tify the features that may facilitate or complicate the design of the application-specific

hardware accelerator. We found that circuit matrices are highly sparse and roughly

structurally symmetric. A hardware design can benefit from sparsity by avoiding per-

forming computing on the zero elements and hence speedup the solution process. How-

ever, we identified two phenomenon, namely pivoting and fill-in, that adversely affect

sparsity and thus degrade performance.

Subsequently, we studied several algorithms that can be used to derive LU factorisa-

tion and explored their impact on the computations and data access patterns. Moreover,

we investigated the different ordering techniques that can be used to maintain sparsity

and enhance parallelism. For sparse LU decomposition, the choices of the particular

algorithm used, e.g. right-looking or left-looking, matrix ordering, and matrix data

representation scheme, can significantly impact the hardware design.

We finally presented a prototype implementation of the sparse matrix solver hardware

we designed and optimised for execution on a single FPGA node. The hardware was

designed such that it is able to evaluate independent columns (i.e. medium-grained par-

allelism) without overlooking the finer-grained parallelism when performing scalar oper-

ations within a particular column. Therefore, we demonstrated how static pivoting and

symbolic analysis can be utilised to create an accurate task-flow execution graph, which

efficiently exploits parallelism at multiple granularities and sustains high floating-point

data rates. Experimental results showed average speedups of 9.65×, 11.83×, 17.21×

against UMFPACK, KLU, and Kundert Sparse matrix packages respectively. We also

detailed the approach we used to adapt our sparse LU hardware prototype from a single-

FPGA architecture to a multi-FPGA system to achieve higher acceleration ratios, up to

38× for certain circuit matrices.

To summarise, in this thesis, we presented the following key contributions:

• We presented an empirical analysis for the SPICE runtime and the type of matrices

that typically arise in circuit simulations. We studied the total SPICE execution

time and we demonstrated that the runtime scales as O(N1.3) as the circuit size

146 Chapter 7 Conclusion and Future Works

increases. We also studied the scaling trends of the two key components of SPICE,

i.e. the model evaluation and matrix solution phases, in terms of complexity,

execution time, and parallelism potential. We found that the model evaluation

phase scales as O(N1.1) as the circuit size increases, compared to O(N1.4) for the

matrix solution phase. We have also detailed our methodology to evaluate circuit

matrices and algorithm properties useful in the design of an FPGA hardware

accelerator

• We illustrated how we leveraged the Gilbert-Peirels (G/P) symbolic analysis, in

conjunction with predicted nonzero pattern, to create a column-dependency driven

task graph that maximises the parallelism potential for the LU matrix factorisation

of sparse matrices. As such, we have introduced our Dependency-Aware Matrix

Operations Scheduling (DAMOS) pre-processing stage. We employed the latter to

generate parallel operations schedule used to parallelise and control the dataflow

of G/P LU matrix operations on the FPGA.

• We provided detailed analysis of the algorithms used in our experiments and we

empirically demonstrated that pre-ordering matrices for sparsity not only reduces

the overall FLOP count but also distributes the computational efforts more evenly

between columns of a given matrix, making more suitable for a distributed com-

puting architecture.

• We presented an implementation of a sparse direct LU decomposition hardware

on FPGAs geared towards matrices that arise in SPICE circuit simulations and

optimised for execution on a single FPGA. We evaluated the performance of our

design against some of the stat-of-the-art sparse matrix packages such as UMF-

PACK, Kundert Sparse, and KLU. We gauged the operational performance of

the Sparse LU Hardware using a Xilinx Virtex 5 LX110T FPGA and we then

extrapolated the results to the more recent XC7V200T Virtex 7 FPGA. We also

studied the effect of matrix sparsity on the performance of our hardware design.

We showed that our 16-PE design configuration outperforms KLU running on a

2.67 GHz 6-core 12-thread Intel Xeon X5650 microprocessor by an average of 9.65

times using a Virtex 5 FPGA.

Chapter 7 Conclusion and Future Works 147

• We demonstrated how we adapt our sparse LU hardware prototype from a single-

FPGA architecture to a multi-FPGA system. As such, we illustrated how we

leverage the FPGAs internal Multi-Gigabit Transceivers (MGTs) to link several

FPGAs. Therefore, we showed the design changes necessary to minimise the inter-

FPGA communication and ensure that acceleration scales accordingly. The multi-

FPGA system accelerated certain circuit matrices up to 38 times when compared

a commodity CPU solution.

• We illustrated how we extract parallelism at different granularities to accelerate

the matrix solution process: fine-grained parallelism at the scalar level using a

dataflow graph, medium-grained parallelism with the aid of a tree-like execution

flow graph to evaluate independent columns, and coarse-grained parallelism using

nested dissection.

7.2 Future Work

In relation to the topics covered in this thesis, there are a number of points that can be

further researched:

Algorithms: As previously mentioned, we rely on the multi-level graph partitioning

from METIS to produce the BDB structures used in our work. METIS employs a

divide and conquer approach to recursively bisect the symmetrised graph of the in-

put matrix. This works well in practice as circuit matrices are roughly structurally

symmetric and thus symmetrisation doesn’t create too many false connections

(i.e. dependencies). However, to optimise the design further, we propose to use

Hypergraph-based Unsymmetric Nested Dissection ordering algorithm (HUND)

[209] to produce the nested BDB form. The major advantage of HUND over pre-

vious methods is that it produces orderings of consistently high quality using the

structure of the original matrix without the need of symmetrisation. The HUND

Algorithm itself can be run in parallel, significantly reducing the time required

for the pre-conditioning phase of a matrix and currently work is in progress to

148 Chapter 7 Conclusion and Future Works

include parallel implementation of HUND in the Zoltan parallel applications pack-

age [219]. Hypergaph partitioning has been shown to reduce communication by

30% to 38% over conventional graph partitioning and to provide a more accurate

communication model [208].

Hardware: In the development boards we used for this research, there are three perfor-

mance limiting factors: the inter-FPGA communication bandwidth, the embedded

memory size, and the speed of the external memory. In effect, the Virtex 5 FPGA

used features 16 MGTs, each able to achieve a speed of 3 Gbps (over 10 Gpbs in

the newer FPGA offerings). A number MGTs can be aggregated together using

the Aurora protocol to form a faster communication channel. However, only two of

MGTs present in the FPGA are brought forward to SATA connectors, hence liming

the benefits of using MGTs in a multi-FPGA system context. Furthermore, great

portions of the FPGA’s embedded memory is utilised to buffer data from external

memory in order to hide the relatively longer latencies associated with accessing

data in the external DRAM. These limitations can be over overcome by designing

a custom multi-FPGA board with rich SATA/MGT ports to enable a variety of

topologies, and multiple external memory banks to enable the optimisation of the

data layout for concurrency.

Integration: Finally, the design we proposed can be integrated with a software solu-

tion to streamline and automate the overall solution process. Provided that a fast

memory exist, a driver can be written to memory map the internal BRAMs of the

PEs to the external DRAM accordingly and hence provide a seamless integration

between the software and the hardware accelerator.

Appendix A

Left-looking LU Factorisation

A.1 Solving Triangular Systems

A triangular matrix is a matrix where all the entries either below or above the main

diagonal are zero. If all the elements above its main diagonal are zeros, the matrix is

called a “lower triangular matrix” and it is usually denoted by L. Conversely, an “upper

triangular matrix” is a matrix where all the elements below the main diagonal are zeros

and it usually denoted by U. A template for L and U is shown in A.1.

L =



l11 0 0 . . . 0

l21 l22 0 . . . 0

l31 l32
. . .

. . . 0
...

...
. . .

. . . 0

ln1 ln2 . . . lnn−1 lnn


, U =



u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0
. . .

. . .
...

0
...

. . .
. . . un−1n

0 . . . 0 0 unn


(A.1)

Solving a matrix equation in the form Ly = b or Ux = b is relatively straightforward

as it does not require inverting the matrix. In effect, it is done by the means of an

iterative process known as “forward substitution” for lower triangular matrices and as

“back substitution” for upper triangular matrices. In forward substitution, (x1 = b1/l11)

149

150 Appendix A Left-looking LU Factorisation

is computed first, then the answer is substituted forward into the next equation to solve

for x2, which in turn is substituted forward into the equation of x3 and so forth until xn is

solved. Forward substitution can be summarised in Algorithm A.1. In back substitution,

a similar process is followed with the minor difference that yn is computed first and then

substituted back into the previous equation to solve for yn−1, and so on until y1 is

calculated.

Algorithm A.1 Forward substitution

1: x = b
2: for j = 1 to n do
3: xj = xj/ljj
4: for each i > j for which lij 6= 0 do
5: xi = xi − lijxj
6: end for
7: end for

A.2 Gaussian Elimination

Gaussian Elimination (GE) is a process, named after the German mathematician Carl

Friedrich Gauss [182], that capitalises on the ease of solving triangular linear systems.

GE solves a nonsingular system of linear equations in two steps. Firstly, using a sequence

of elementary row operations, a matrix is reduced to an upper triangular matrix and it

is known as the “forward elimination” step. The second step consists in solving the new

triangularised matrix by the means of “back substitution”.

To illustrate the process just described, consider solving the following nonsingular

linear system of n equations for n unknowns :



a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

an1x1 + an2x2 + an3x3 + · · ·+ annxn = bn

(A.2)

Appendix A Left-looking LU Factorisation 151

The set of equations in A.2 can written more elegantly in the matrix form Ax = b as

follows:



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 a3n · · · ann





x1

x2

x3
...

xn


=



b1

b2

b3
...

bn


(A.3)

In the first step of gaussian elimination, the first row of A.3 is multiplied by −a21
a11

and added to the second equation to eliminate x1 from it. Then, the first row is again

multiplied by −a31
a11

and added to the third row. The same process repeated for the

remaining equations. Hence, once step one finishes, x1 is eliminated from the second

through the nth equations and thus A.3 becomes:



a11 a12 a13 · · · a1n

0 a
(1)
22 a

(1)
23 · · · a

(1)
2n

0 a
(1)
32 a33(1) · · · a

(1)
3n

...
...

...
. . .

...

0 a
(1)
n2 a

(1)
3n · · · a

(1)
nn





x1

x2

x3
...

xn


=



b1

b
(1)
2

b
(1)
3

...

b
(1)
n


(A.4)

where a
(1)
22 = a22 − a21

a11
× a12, a(1)32 = a32 − a32

a11
× a12, · · · , a(1)n2 = an2 − an1

a11
× a12 and

so forth. Variables x2, x3, . . . , and xn−1 are eliminated in the same fashion as x1. The

superscripts here denote the step of the elimination. Therefore, after (n−1) elimination

steps, the matrix A is transformed to an upper triangular matrix, as shown in A.5, which

easily solvable by the means of back substitution.

152 Appendix A Left-looking LU Factorisation



a11 a12 a13 · · · a1n

0 a
(1)
22 a

(1)
23 · · · a

(1)
2n

0 0 a33(2) · · · a
(2)
3n

...
...

...
. . .

...

0 0 0 · · · a
(n−1)
nn





x1

x2

x3
...

xn


=



b1

b
(1)
2

b
(2)
3

...

b
(n−1)
n


(A.5)

Since the multipliers are chosen so that entries below the main diagonal are calculated

to be zero, those entries should be assigned to zeros rather than computed. This would

save (n−k) subtractions at every kth elimination step. The Gaussian elimination process

just described can be summarised in Algorithm A.2.

Algorithm A.2 Gaussian elimination

1: for k = 1 to n− 1 do
2: for i = k + 1 to n do
3: mik = aik/akk
4: aik = 0
5: for j = k + 1 to n do
6: aij = aij − (mik × akj)
7: end for
8: end for
9: end for

It is clear that Algorithm A.2 will halt if it encounters a diagonal element (e.g akk)

that is a zero. It should be also noted that GE is prone to numerical inaccuracies if

elements on the diagonal are very small as it will cause the multipliers (e.g. mik) to

grow towards infinity or amplify round-off errors. To remedy this pitfall, rows can be

interchanged at every elimination step to ensure that the element on the main diagonal

is bigger than the elements below it. The process of switching rows is known as partial

pivoting. Generally speaking, gaussian elimination with partial pivoting (GEPP) is

considered to be numerically stable, even though there are examples for which it is

unstable [220].

In terms of numerical effort, Gaussian elimination factorises a system of n equations

for n unknowns in roughly
(
2
3n

3
)

operations, and consequently has a complexity of

O(n3). Back substituation requires (n2) operations and hence has a complexity of O(n2).

Appendix A Left-looking LU Factorisation 153

Figure A.1 shows the data access pattern for the Gaussian elimination algorithm at

the kth step in which nonzero subdiagonal elements in column k are eliminated by

subtracting appropriate multiples of the kth (pivot) row.

Pivot row

Values already computed

Values yet to be computed
0

i

i
Element to be zeroed

Figure A.1: Gaussian Elimination Data Access and Computation Pattern

A.3 Left-looking LU Decomposition

Gaussian elimination is called a right-looking (or submatrix-based) algorithm as in the

kth computation step, the columns below and to the right of the kth column of A as

accessed and subsequently modified, as shown in Figure A.1. These algorithms are un-

suitable if the matrix A is stored column-wise. A left-looking LU factorisation algorithm,

however, computes L and U one column at a time. At the kth step, it accesses columns

1 to (k− 1) of L and column k of A. Thus, this category is also known as column-based

methods. For illustrative purposes consider A.6 where the matrix L is assumed to have

a unit diagonal.

154 Appendix A Left-looking LU Factorisation


L11

l21 1

L31 l23 L33



U11 u12 U13

u22 u23

U33

 =


A11 a12 A13

a21 a22 a23

A31 a23 A33

 (A.6)

The following set of equation can be derived from A.6:

L11u12 = a12 (A.7)

l21u12 + u22 = a22 (A.8)

L31u12 + l32u22 = a32 (A.9)

However, assuming we have already computed L11 , l21 and L31, equations A.7, A.8

and A.9 can be written in the form of Lx = b as follows:


L11

l21 1

L31 0 I



x1

x2

x3

 =


a11

a21

a31

 (A.10)

The solution to this system gives u12 = x1, u22 = x2, and l32 = x3/u22 and hence

effectively computing the second column of L and U using only columns to the left of

current pivot column. This mechanism of computing column k of L and U by solving a

lower triangular system Lx = b is the key step in a left-looking factorisation algorithm.

The algorithm just described does not take sparsity or pivoting into account.

Appendix B

Xilinx XUPV5-LX110T

Development Board

The XUPV5-LX110T development board provides an advanced hardware platform that

consists of a high performance Virtex-5 LX110T FPGA surrounded by a comprehensive

collection of peripheral components, as shown in Figure B.1. The various peripherals

inlcude a 256MB DDR2 memory, SATA connectors, RS232 port. The board also features

SMA and SATA connectors which can be linked to the FPGA’s internal Multi-Gigabit

Transceivers (MGTs). These connectors can be then used to connect multiple boards,

either as part of processing chain or to be aggregated into a “super FPGA” tackling a

particular task.

The featured FPGA has, but not limited to, 110,952 logic cells, 64 DSP48E slices, and

148 of 36Kb Block Rams. The FPGA also has 16 MGTs but only of 5 of these are brought

out to physical connectors. Only 2 of these are terminated at SATA connectors whilst

the the the other three terminate at user-supplied Sub-Miniature A (SMA) connectors.

The MGTs are equipped with a high-quality variable differential clock source (75 or 150

MHz) which is independent of the system clock. This enables the data receive/send

logic to be decoupled from the user logic.

155

156 Appendix B Xilinx XUPV5-LX110T Development Board

14 www.xilinx.com ML505/ML506/ML507 Evaluation Platform
UG347 (v3.1.1) October 7, 2009

Chapter 1: ML505/ML506/ML507 Evaluation Platform
R

Block Diagram
Figure 1-1 shows a block diagram of the ML50x Evaluation Platform (board).

Related Xilinx Documents
Prior to using the ML50x Evaluation Platform, users should be familiar with Xilinx
resources. See Appendix C, “References” for direct links to Xilinx documentation. See the
following locations for additional documentation on Xilinx tools and solutions:

EDK: www.xilinx.com/edk

ISE: www.xilinx.com/ise

Answer Browser: www.xilinx.com/support

Intellectual Property: www.xilinx.com/ipcenter

Figure 1-1: Virtex-5 FPGA ML50x Evaluation Platform Block Diagram

Virtex-5
LXT/SXT/FXT

FPGA

UG347_03_110807

GPIO
(Button/LED/DIP Switch)

PLL Clock Generator
Plus User Oscillator

System Monitor

SMA
(Differential In/Out Clocks)

Dual PS/2

GTP: PCIe 1x

Flash

Sync
SRAM

Platform FlashSPI

System ACE
Controller

CPLD
Misc. Glue Logic

S
el

ec
tM

ap

S
P

I C
fg

B
P

I F
la

sh
 C

fg

S
la

ve
 S

er
ia

l

JT
A

G
JT

A
G

JT
A

G
JT

A
G

M
as

te
r

S
er

ia
l

XGI Header

USB
Controller

10/100/1000
Ethernet PHY

AC97
Audio CODEC

Battery and
Fan Header

CF PC4

RS-232 XCVR

VGA Input
Codec

16 X 32
Character LCD

IIC EEPROM

RJ-45

Line Out /
Headphone

Digital Audio

Mic In / Line In

Serial

Piezo/Speaker

Host
Peripheral
Peripheral

16

32

16

32
3216

User IIC Bus

DDR2
SO-DIMM

DVI-I Video Out
DVI Output

Codec

GTP: 2 Serial ATA

GTP: 4 SFP

GTP: 4 SMA

Figure B.1: XUPV5 Development Board Block Diagram

SATA can also be used as a convenient and low cost medium for connecting 2 or

more FPGA development boards. The SATA physical interface can carry signals up to

3 Gb/s for general-purpose usage. The board ships with a special Xilinx SATA crossover

cable that is used as a loopback connection between the two SATA host connectors for

loopback testing and bit error rate testing (BERT). The SATA crossover cable can also

be used to connect to two boards or more.

1 Virtex-5 FPGA LX110T

2 256 MB SODIMM DDR2 SODIMM

3 Differential Clock Input and Output with SMA Connectors

Appendix B Xilinx XUPV5-LX110T Development Board 157

ML505/ML506/ML507 Evaluation Platform www.xilinx.com 15
UG347 (v3.1.2) May 16, 2011

Detailed Description
R

Detailed Description
The ML505 Evaluation Platform is shown in Figure 1-2 (front) and Figure 1-3, page 16
(back). The numbered sections on the pages following the figures contain details on each
feature.

Figure 1-2: Detailed Description of Virtex-5 FPGA ML505 Components (Front)

1

4

39

34

UG347_01_102907

8

5

28
29

10

13

6

7

11

26

27

9

40

30

12

45

15
2136

16
31

24

22

25

32
3

35 44

38

37

System ACE Reset

3 Diff Input Pair

41

Diff Output Pair

Mouse

Keybd

Figure B.2: Detailed Description of XUPV5-LX110T Components: (Front)

158 Appendix B Xilinx XUPV5-LX110T Development Board

16 www.xilinx.com ML505/ML506/ML507 Evaluation Platform
UG347 (v3.1.2) May 16, 2011

Chapter 1: ML505/ML506/ML507 Evaluation Platform
R

Note: The label on the CompactFlash (CF) card shipped with your board might differ from the one
shown.

Figure 1-3: Detailed Description of Virtex-5 FPGA ML505 Components (Back)

UG347_02_112906

17

2

14
33

23

43

Figure B.3: Detailed Description of XUPV5-LX110T Components: (Back)

Appendix B Xilinx XUPV5-LX110T Development Board 159

4 Oscillators

5 LCD Brightness and Contrast Adjustment

6 GPIO DIP Switches (Active-High)

7 User and Error LEDs (Active-High)

8 User Pushbuttons (Active-High)

9 CPU Reset Button (Active-Low)

10 XGI Expansion Headers

11 Stereo AC97 Audio Codec

12 RS-232 Serial Port

13 16-Character x 2-Line LCD

14 IIC Bus with 8-Kb EEPROM

15 DVI Connector

16 PS/2 Mouse and Keyboard Ports

17 System ACE and CompactFlash Connector

18 ZBT Synchronous SRAM

19 Linear Flash Chips

20 Xilinx XC95144XL CPLD

21 10/100/1000 Tri-Speed Ethernet PHY

22 USB Controller with Host and Peripheral Ports

23 Xilinx XCF32P Platform Flash PROM Configuration Storage Devices

24 JTAG Configuration Port

25 Onboard Power Supplies

26 AC Adapter and Input Power SwitchJack

27 Power Indicator LE The PWR Good LED lights when the 5V supply is applied

28 DONE LED lighted when the FPGA is successfully configured

29 INIT LED: lights upon power-up to indicate that the FPGA has successfully powered up and

completed its internal power-on process

160 Appendix B Xilinx XUPV5-LX110T Development Board

30 Program Switch: This switch grounds the FPGA’s Prog pin when pressed. This action clears

the FPGA

31 Configuration Address and Mode DIP Switches

32 Encryption Key Battery used to hold the encryption key for the FPGA.

33 SPI Flash can be used for FPGA configuration or to hold user data.

34 IIC Fan Controller and Temperature/Voltage Monitor

35 A piezo audio transducer

36 VGA Input Video Codec

37 JTAG Trace/Debug

38 Rotary Encoder

39 Differential GTP/GTX Input and Output with SMA Connectors

40 PCI Express Interface

41 Serial-ATA Host Connectors

42 SFP Connector

43 GTP/GTX Clocking Circuitry

44 Soft Touch Landing Pad

45 System Monitor

References

[1] M. Rewienski, “A perspective on fast-spice simulation technology,” Simulation and Veri-

fication of Electronic and Biological Systems, p. 23, 2011.

[2] M. Merrett, P. Asenov, Y. Wang, M. Zwolinski, D. Reid, C. Millar, S. Roy, Z. Liu,

S. Furber, and A. Asenov, “Modelling circuit performance variations due to statistical

variability: Monte carlo static timing analysis,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2011, pp. 1–4, IEEE, 2011.

[3] C. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to network analysis,”

Circuits and Systems, IEEE Transactions on, vol. 22, no. 6, pp. 504–509, 1975.

[4] K. Gulati, J. Croix, S. Khatr, and R. Shastry, “Fast circuit simulation on graphics pro-

cessing units,” in Proceedings of the 2009 Asia and South Pacific Design Automation

Conference, pp. 403–408, IEEE Press, 2009.

[5] N. Kapre, SPICE 2–A Spatial Parallel Architecture for Accelerating the SPICE Circuit

Simulator. PhD thesis, California Institute of Technology, 2010.

[6] K. Dixit, “Overview of the spec benchmarks,” The Benchmark Handbook, pp. 489–521,

1993.

[7] K. Gulati and S. Khatri, Hardware Acceleration of EDA Algorithms: Custom ICs, FPGAs

and GPUs. Springer Verlag, 2010.

[8] M. Edahiro, “Parallelizing fundamental algorithms such as sorting on multi-core processors

for eda acceleration,” in Proceedings of the 2009 Asia and South Pacific Design Automation

Conference, pp. 230–233, IEEE Press, 2009.

[9] Y. Deng, B. Wang, and S. Mu, “Taming irregular eda applications on gpus,” in Computer-

Aided Design-Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International

Conference on, pp. 539–546, IEEE, 2009.

161

162 REFERENCES

[10] H. Qian, Y. Deng, B. Wang, and S. Mu, “Towards accelerating irregular eda applications

with gpus,” Integration, the VLSI Journal, 2011.

[11] A. Bayoumi and Y. Hanafy, “Massive parallelization of spice device model evaluation on

gpu-based simd architectures,” in Proceedings of the 1st international forum on Next-

generation multicore/manycore technologies, p. 12, ACM, 2008.

[12] P. Li, “Parallel circuit simulation: A historical perspective and recent developments,”

Foundations and Trends R© in Electronic Design Automation, vol. 5, no. 4, pp. 211–318,

2011.

[13] J. Michalakes and M. Vachharajani, “Gpu acceleration of numerical weather prediction,”

in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium

on, pp. 1–7, IEEE, 2008.

[14] L. de P Veronese and R. Krohling, “Swarm’s flight: accelerating the particles using c-

cuda,” in Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pp. 3264–3270,

IEEE, 2009.

[15] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,

and S. Tomov, “Accelerating scientific computations with mixed precision algorithms,”

Computer Physics Communications, vol. 180, no. 12, pp. 2526–2533, 2009.

[16] G. Dasika, A. Sethia, T. Mudge, and S. Mahlke, “Pepsc: A power-efficient processor for

scientific computing,” in Parallel Architectures and Compilation Techniques (PACT), 2011

International Conference on, pp. 101–110, IEEE, 2011.

[17] F. Lu, J. Song, X. Cao, and X. Zhu, “Cpu/gpu computing for long-wave radiation physics

on large gpu clusters,” Computers & Geosciences, 2011.

[18] D. Bailey, “High-precision floating-point arithmetic in scientific computation,” Computing

in science & engineering, vol. 7, no. 3, pp. 54–61, 2005.

[19] J. Johnson, P. Vachranukunkiet, S. Tiwari, P. Nagvajara, and C. Nwankpa, “Performance

analysis of loadflow computation using fpga,” in Proc. of 15th Power Systems Computation

Conference, 2005.

[20] J. Hennessy and D. Patterson, Computer architecture: a quantitative approach. Morgan

Kaufmann Pub, 2011.

REFERENCES 163

[21] C. Edwards, “game on for acceleration,” Engineering & Technology, vol. 3, no. 11, pp. 36–

38, 2008.

[22] G. Moore, “Cramming more components onto integrated circuits,” Proceedings of the

IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[23] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue, vol. 3, no. 7,

pp. 26–29, 2005.

[24] J. Held, J. Bautista, and S. Koehl, “From a few cores to many: A tera-scale computing

research overview,” Intel, 2006.

[25] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” Computer, vol. 41, no. 7,

pp. 33–38, 2008.

[26] A. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh, “Parallelism via

multithreaded and multicore cpus,” Computer, vol. 43, no. 3, pp. 24–32, 2010.

[27] V. Kindratenko and P. Trancoso, “Trends in high-performance computing,” Computing in

Science & Engineering, vol. 13, no. 3, pp. 92–95, 2011.

[28] H. Meuer, “The top500 project,” URL: http://www. top500. org/, 2011.

[29] R. González, C. Zato, R. Benito, M. Hernández, J. Hernández, and J. De Paz, “Samasgc:

Sequencing analysis with a multiagent system and grid computing,” in 6th International

Conference on Practical Applications of Computational Biology & Bioinformatics, pp. 209–

216, Springer, 2012.

[30] G. Hawkes, “Dsp: Designing for optimal results. high-performance dsp using virtex-4

fpgas,” 2005.

[31] N. Gourdain, M. Montagnac, F. Wlassow, and M. Gazaix, “High-performance computing

to simulate large-scale industrial flows in multistage compressors,” International Journal

of High Performance Computing Applications, vol. 24, no. 4, pp. 429–443, 2010.

[32] A. Hunter, F. Saied, C. Le, and M. Koslowski, “Large-scale 3d phase field dislocation

dynamics simulations on high-performance architectures,” International Journal of High

Performance Computing Applications, vol. 25, no. 2, pp. 223–235, 2011.

[33] S. Swaminarayan, T. Germann, K. Kadau, and G. Fossum, “369 tflop/s molecular dynam-

ics simulations on the roadrunner general-purpose heterogeneous supercomputer,” in High

164 REFERENCES

Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International

Conference for, pp. 1–10, IEEE, 2008.

[34] V. Turner, C. Ingle, and R. Bigliani, “Reducing greenhouse gases through intense use of

information and communication technology,” in IDC White Paper, IDC, 2009.

[35] A. Beloglazov, R. Buyya, Y. Lee, A. Zomaya, et al., “A taxonomy and survey of energy-

efficient data centers and cloud computing systems,” Advances in Computers, vol. 82,

pp. 47–111, 2011.

[36] J. Baliga, R. Ayre, K. Hinton, and R. Tucker, “Green cloud computing: Balancing energy

in processing, storage, and transport,” Proceedings of the IEEE, vol. 99, no. 1, pp. 149–167,

2011.

[37] G. Valentini, W. Lassonde, S. Khan, N. Min-Allah, S. Madani, J. Li, L. Zhang, L. Wang,

N. Ghani, J. Kolodziej, et al., “An overview of energy efficiency techniques in cluster

computing systems,” Cluster Computing, pp. 1–13, 2011.

[38] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D. Buell, “The

promise of high-performance reconfigurable computing,” Computer, vol. 41, no. 2, pp. 69–

76, 2008.

[39] C. Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk, and R. Korn,

“An energy efficient fpga accelerator for monte carlo option pricing with the heston model,”

in Reconfigurable Computing and FPGAs (ReConFig), 2011 International Conference on,

pp. 468–474, IEEE, 2011.

[40] M. Lin, I. Lebedev, and J. Wawrzynek, “Openrcl: low-power high-performance computing

with reconfigurable devices,” in Field Programmable Logic and Applications (FPL), 2010

International Conference on, pp. 458–463, IEEE, 2010.

[41] H. Lange, F. Stock, A. Koch, and D. Hildenbrand, “Acceleration and energy efficiency

of a geometric algebra computation using reconfigurable computers and gpus,” in Field

Programmable Custom Computing Machines, 2009. FCCM’09. 17th IEEE Symposium on,

pp. 255–258, IEEE, 2009.

[42] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, and X. Tian, “High performance biological

pairwise sequence alignment: Fpga versus gpu versus cell be versus gpp,” International

Journal of Reconfigurable Computing, vol. 2012, 2012.

REFERENCES 165

[43] M. Zwolinski, Digital System Design with SystemVerilog. Prentice Hall Press, 2009.

[44] V. Chandrasetty, VLSI Design: A Practical Guide for FPGA and ASIC Implementations.

Springer Verlag, 2011.

[45] C. Valderrama, L. Jojczyk, P. DaCunha Possa, and J. Dondo Gazzano, “Fpga and asic

convergence,” in Programmable Logic (SPL), 2011 VII Southern Conference on, pp. 269–

274, IEEE, 2011.

[46] S. Yang and T. McGinnity, “A biologically plausible real-time spiking neuron simulation

environment based on a multiple-fpga platform,” ACM SIGARCH Computer Architecture

News, vol. 39, no. 4, pp. 78–81, 2011.

[47] D. Yong, C. Lei, W. Yucheng, Y. Min, Q. Xiameng, H. Shaoyang, and J. Yunde, “A

real-time system for 3d recovery of dynamic scene with multiple rgbd imagers,” in Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society

Conference on, pp. 1–8, IEEE, 2011.

[48] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker, T. Roewer, P. Saha,

T. Takken, and J. Tierno, “A cycle-accurate, cycle-reproducible multi-fpga system for

accelerating multi-core processor simulation,” in Proceedings of the ACM/SIGDA interna-

tional symposium on Field Programmable Gate Arrays, pp. 153–162, ACM, 2012.

[49] H. Jin, D. Jespersen, P. Mehrotra, and R. Biswas, “High performance computing using

mpi and openmp on multi-core parallel systems,” Parallel Computing, 2011.

[50] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with flopoco,”

IEEE Design & Test, vol. 28, no. 4, pp. 18–27, 2011.

[51] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,

D. Patterson, K. Sen, J. Wawrzynek, et al., “A view of the parallel computing landscape,”

Communications of the ACM, vol. 52, no. 10, pp. 56–67, 2009.

[52] P. Jogalekar and M. Woodside, “Evaluating the scalability of distributed systems,” Parallel

and Distributed Systems, IEEE Transactions on, vol. 11, no. 6, pp. 589–603, 2000.

[53] G. Amdahl, “Validity of the single processor approach to achieving large scale computing

capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer conference,

pp. 483–485, ACM, 1967.

166 REFERENCES

[54] D. Eager, J. Zahorjan, and E. Lazowska, “Speedup versus efficiency in parallel systems,”

Computers, IEEE Transactions on, vol. 38, no. 3, pp. 408–423, 1989.

[55] N. Woods and T. VanCourt, “Fpga acceleration of quasi-monte carlo in finance,” in

Field Programmable Logic and Applications, 2008. FPL 2008. International Conference

on, pp. 335–340, IEEE, 2008.

[56] H. Guo, L. Su, Y. Wang, and Z. Long, “Fpga-accelerated molecular dynamics simulations

system,” in Scalable Computing and Communications; Eighth International Conference on

Embedded Computing, 2009. SCALCOM-EMBEDDEDCOM’09. International Conference

on, pp. 360–365, IEEE, 2009.

[57] G. Morris, D. Thomas, and W. Luk, “Fpga accelerated low-latency market data feed

processing,” in High Performance Interconnects, 2009. HOTI 2009. 17th IEEE Symposium

on, pp. 83–89, IEEE, 2009.

[58] J. Chen, J. Cong, M. Yan, and Y. Zou, “Fpga-accelerated 3d reconstruction using com-

pressive sensing,” in Proceedings of the ACM/SIGDA international symposium on Field

Programmable Gate Arrays, pp. 163–166, ACM, 2012.

[59] F. de Dinechin, J. Detrey, O. Cret, and R. Tudoran, “When fpgas are better at floating-

point than microprocessors,” in Proceedings of the 16th international ACM/SIGDA sym-

posium on Field programmable gate arrays, pp. 260–260, ACM, 2008.

[60] K. Underwood, “Fpgas vs. cpus: trends in peak floating-point performance,” in Proceed-

ings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate

arrays, pp. 171–180, ACM, 2004.

[61] D. Buell, T. El-Ghazawi, K. Gaj, and V. Kindratenko, “Guest editor’s introduction: High-

performance reconfigurable computing,” Computer, pp. 23–27, 2007.

[62] T. Preußer, M. Zabel, and R. Spallek, “Accelerating computations on fpga carry chains by

operand compaction,” in 2011 20th IEEE Symposium on Computer Arithmetic, pp. 95–102,

IEEE, 2011.

[63] S. Hauck, M. Hosler, and T. Fry, “High-performance carry chains for fpga’s,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 8, no. 2, pp. 138–147, 2000.

[64] N. Mehta, “Xilinx 7 series fpgas: The logical advantage,” Xilinx White Paper: 7 Series

FPGAs, 2012.

REFERENCES 167

[65] S. Banescu, F. De Dinechin, B. Pasca, and R. Tudoran, “Multipliers for floating-point

double precision and beyond on fpgas,” ACM SIGARCH Computer Architecture News,

vol. 38, no. 4, pp. 73–79, 2011.

[66] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 2, pp. 203–215, 2007.

[67] I. Kuon and J. Rose, “Exploring area and delay tradeoffs in fpgas with architecture and

automated transistor design,” Very Large Scale Integration (VLSI) Systems, IEEE Trans-

actions on, vol. 19, no. 1, pp. 71–84, 2011.

[68] E. Chung, J. Hoe, and K. Mai, “Coram: an in-fabric memory architecture for fpga-based

computing,” in Proceedings of the 19th ACM/SIGDA international symposium on Field

programmable gate arrays, pp. 97–106, ACM, 2011.

[69] Xilinx, “Virtex 7 product table.” ”http://www.xilinx.com/publications/prod-

mktg/Virtex7-Product-Table.pdf”, 2012.

[70] V. Betz and S. Brown, “Fpga challenges and opportunities at 40nm and beyond,” in Field

Programmable Logic and Applications, 2009. FPL 2009. International Conference on, p. 4,

IEEE, 2009.

[71] A. Heinecke and M. Bader, “Towards many-core implementation of lu decomposition using

peano curves,” in Proceedings of the combined workshops on UnConventional high perfor-

mance computing workshop plus memory access workshop, pp. 21–30, ACM, 2009.

[72] I. Venetis and G. Gao, “Mapping the lu decomposition on a many-core architecture: chal-

lenges and solutions,” in Proceedings of the 6th ACM conference on Computing frontiers,

pp. 71–80, ACM, 2009.

[73] D. Maurer and C. Wieners, “A parallel block lu decomposition method for distributed

finite element matrices,” Parallel Computing, 2011.

[74] J. Dongarra, “Performance of various computers using standard linear equations software,”

Rapport technique, Computer Science Department, University of Tennessee, Knoxville,

Tennessee, 2011.

[75] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-optimal parallel

and sequential qr and lu factorizations,” SIAM Journal on Scientific Computing, vol. 34,

p. A206, 2012.

168 REFERENCES

[76] X. Wang and S. Ziavras, “Parallel lu factorization of sparse matrices on fpga-based con-

figurable computing engines,” Concurrency and Computation: Practice and Experience,

vol. 16, no. 4, pp. 319–343, 2004.

[77] X. Wang and N. J. I. of Technology, Design and Resource Management of Reconfigurable

Multiprocessors for Data-parallel Applications. PhD thesis, New Jersey Institute of Tech-

nology, 2006.

[78] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and C. Nwankpa, “Sparse

lu decomposition using fpga,” in International Workshop on State-of-the-Art in Scientific

and Parallel Computing (PARA), 2008.

[79] X. Wang, S. Ziavras, C. Nwankpa, J. Johnson, and P. Nagvajara, “Parallel solution of

newton’s power flow equations on configurable chips,” International Journal of Electrical

Power & Energy Systems, vol. 29, no. 5, pp. 422–431, 2007.

[80] N. Kapre and A. DeHon, “Parallelizing sparse matrix solve for spice circuit simulation using

fpgas,” in Field-Programmable Technology, 2009. FPT 2009. International Conference on,

pp. 190–198, IEEE, 2009.

[81] W. Wu, Y. Shan, X. Chen, Y. Wang, and H. Yang, “Fpga accelerated parallel sparse matrix

factorization for circuit simulations,” in Proceedings of the 7th international conference on

Reconfigurable computing: architectures, tools and applications, pp. 302–315, Springer-

Verlag, Springer, 2011.

[82] L. Nagel, “Spice2: A computer program to simulate semiconductor circuits,” Univ. Cali-

fornia, 1975.

[83] T. Quarles, “Spice3f5 users’ guide,” tech. rep., Technical report, University of California-

Berkeley, Berkeley, California, 1994.

[84] T. Ypma, “Historical development of the newton-raphson method,” SIAM review, pp. 531–

551, 1995.

[85] T. Weng, R. Perng, and B. Chapman, “Openmp implementation of spice3 circuit simula-

tor,” OpenMP Shared Memory Parallel Programming, pp. 361–371, 2008.

[86] C. Desoer and E. Kuh, Basic circuit theory. Tata McGraw-Hill Education, 1984.

[87] W. Gautschi, Numerical analysis. Birkhauser, 2011.

REFERENCES 169

[88] S. Venkata et al., “Computational methods for electric power systems [book reviews],”

Power and Energy Magazine, IEEE, vol. 9, no. 2, pp. 78–80, 2011.

[89] H. Niessner and K. Reichert, “On computing the inverse of a sparse matrix,” International

journal for numerical methods in engineering, vol. 19, no. 10, pp. 1513–1526, 1983.

[90] P. Amestoy, I. Duff, Y. Robert, F. Rouet, and B. Uçar, “On computing inverse entries of

a sparse matrix in an out-of-core environment,” SIAM J. Sci. Comput., to appear, 2010.

[91] R. Varga, Matrix iterative analysis, vol. 27. Springer, 2010.

[92] H. Rutishauser, “The jacobi method for real symmetric matrices,” Numerische Mathe-

matik, vol. 9, no. 1, pp. 1–10, 1966.

[93] W. Kahan, Gauss-Seidel methods of solving large systems of linear equations. PhD thesis,

University of Toronto, 1958.

[94] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,”

Journal Of Research Of The National Bureau Of Standards, vol. 49, no. 6, pp. 409–436,

1952.

[95] Catena Software Ltd, Technical Note: How SPICE Works, July 2003.

[96] F. Najm, Circuit Simulation. Wiley-IEEE Press, 2010.

[97] T. Davis and Y. Hu, “The university of florida sparse matrix collection,” ACM Transactions

on Mathematical Software (TOMS), vol. 38, no. 1, p. 1, 2011.

[98] T. Davis, MATLAB Primer. CRC Press, Inc., 2010.

[99] V. Litovski and M. Zwolinski, VLSI circuit simulation and optimization. Springer, 1997.

[100] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A set of level 3 basic linear alge-

bra subprograms,” ACM Transactions on Mathematical Software (TOMS), vol. 16, no. 1,

pp. 1–17, 1990.

[101] J. Liu, “The multifrontal method for sparse matrix solution: Theory and practice,” Siam

Review, pp. 82–109, 1992.

[102] T. Davis and E. Natarajan, “Algorithm 8xx: Klu, a direct sparse solver for circuit simu-

lation problems,” ACM Trans. MS, vol. 5, no. 1, pp. 1–14, 2009.

170 REFERENCES

[103] I. Duff, “On algorithms for obtaining a maximum transversal,” ACM Transactions on

Mathematical Software (TOMS), vol. 7, no. 3, pp. 315–330, 1981.

[104] I. Duff, “Parallel implementation of multifrontal schemes,” Parallel computing, vol. 3, no. 3,

pp. 193–204, 1986.

[105] I. Naumann and H. Dirks, “Efficient reordering for direct methods in analog circuit sim-

ulation,” Electrical Engineering (Archiv fur Elektrotechnik), vol. 89, no. 4, pp. 333–337,

2007.

[106] I. Duff, A. Erisman, and J. Reid, Direct methods for sparse matrices. Clarendon Press

Oxford, 1986.

[107] M. Yannakakis, “Computing the minimum fill-in is np-complete,” SIAM Journal on Alge-

braic and Discrete Methods, vol. 2, no. 1, pp. 77–79, 1981.

[108] T. Quarles, A. Newton, D. Peterson, and A. Vincentelli, “Spice3f5 user’s manual,” Uni-

versity of California, Berkeley, 1994.

[109] D. Bryan, “The iscas’85 benchmark circuits and netlist format,” North-Carolina State

University, 1985.

[110] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the iscas-85 benchmarks: A case study in

reverse engineering,” Design & Test of Computers, IEEE, vol. 16, no. 3, pp. 72–80, 1999.

[111] J. Xu, “Perform the spice simulation of iscas85 benchmark circuits for research.”

http://www.ece.uic.edu/ masud/iscas2spice.htm, 2008.

[112] P. Cox, R. Burch, D. Hocevar, P. Yang, and B. Epler, “Direct circuit simulation algorithms

for parallel processing [vlsi],” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 10, no. 6, pp. 714–725, 1991.

[113] N. Kapre and A. DeHon, “Accelerating spice model-evaluation using fpgas,” in Field Pro-

grammable Custom Computing Machines, 2009. FCCM’09. 17th IEEE Symposium on,

pp. 37–44, IEEE, 2009.

[114] R. Saleh, K. Gallivan, M. Chang, I. Hajj, D. Smart, and T. Trick, “Parallel circuit simu-

lation on supercomputers,” Proceedings of the IEEE, vol. 77, no. 12, pp. 1915–1931, 1989.

[115] P. Lee, S. Ito, T. Hashimoto, J. Sato, T. Touma, and G. Yokomizo, “A parallel and

accelerated circuit simulator with precise accuracy,” in Design Automation Conference,

REFERENCES 171

2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th International

Conference on VLSI Design. Proceedings., pp. 213–218, IEEE, 2002.

[116] B. Murmann, P. Nikaeen, D. Connelly, and R. Dutton, “Impact of scaling on analog

performance and associated modeling needs,” Electron Devices, IEEE Transactions on,

vol. 53, no. 9, pp. 2160–2167, 2006.

[117] M. Chan and C. Hu, “The engineering of bsim for the nano-technology era and beyond,”

Modeling and Simulation Microsistem, pp. 662–665, 2002.

[118] S. Markus, S. Kim, K. Pantazopoulos, A. Ocken, E. Houstis, P. Wu, S. Weerawarana,

and D. Maharry, “Performance evaluation of mpi implementations and mpi based parallel

ellpack solvers,” in MPI Developer’s Conference, 1996. Proceedings., Second, pp. 162–169,

IEEE, 1996.

[119] H. Kotakemori, H. Hasegawa, and A. Nishida, “Performance evaluation of a parallel it-

erative method library using openmp,” in High-Performance Computing in Asia-Pacific

Region, 2005. Proceedings. Eighth International Conference on, pp. 5–pp, IEEE, 2005.

[120] A. Maache, A prototype parallel multi-FPGA accelerator for SPICE CMOS model evalua-

tion. PhD thesis, University of Southampton, 2011.

[121] H. Markowitz, “The elimination form of the inverse and its application to linear program-

ming,” Management Science, vol. 3, no. 3, pp. 255–269, 1957.

[122] A. Vladimirescu, LSI circuit simulation on vector computers. PhD thesis, University of

California, Berkeley, 1982.

[123] J. Deutsch and A. Newton, “A multiprocessor implementation of relaxation-based electrical

circuit simulation,” in Proceedings of the 21st Design Automation Conference, pp. 350–357,

IEEE Press, 1984.

[124] G. Jacob, A. Newton, and D. Pederson, “An empirical analysis of the performance of

a multiprocessor-based circuit simulator,” in Proceedings of the 23rd ACM/IEEE Design

Automation Conference, pp. 588–593, IEEE Press, 1986.

[125] C. Yuan, R. Lucas, P. Chan, and R. Dutton, “Parallel electronic circuit simulation on the

ipsc system,” in Custom Integrated Circuits Conference, 1988., Proceedings of the IEEE

1988, pp. 6–5, IEEE, 1988.

172 REFERENCES

[126] M. Chang and I. Hajj, “ipride: A parallel integrated circuit simulator using direct method,”

in Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers., IEEE Interna-

tional Conference on, pp. 304–307, IEEE, 1988.

[127] J. White and A. Sangiovanni-Vincentelli, Relaxation techniques for the simulation of VLSI

circuits. Kluwer Academic Publishers, 1987.

[128] W. Knight, “Two heads are better than one [dual-core processors],” IEE Review, vol. 51,

no. 9, pp. 32–35, 2005.

[129] R. Ramanathan, “Intel R© multi-core processors,” Making the Move to Quad-Core and

Beyond, 2006.

[130] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza, S. Mey-

ers, E. Fang, and R. Kumar, “An integrated quad-core opteron processor,” in Solid-State

Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International,

pp. 102–103, Ieee, 2007.

[131] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of the 44th

annual Design Automation Conference, pp. 746–749, ACM, 2007.

[132] S. Sapatnekar, E. Haritan, K. Keutzer, A. Devgan, D. Kirkpatrick, S. Meier, D. Pryor,

and T. Spyrou, “Reinventing eda with manycore processors,” in Proceedings of the 45th

annual Design Automation Conference, pp. 126–127, ACM, 2008.

[133] S. Hutchinson, E. Keiter, R. Hoekstra, H. Watts, A. Waters, R. Schells, and S. Wix,

“The xyce parallel electronic simulator-an overview,” in IEEE International Symposium

on Circuits and Systems, Sydney (AU), 2000.

[134] N. Frohlich, V. Glockel, and J. Fleischmann, “A new partitioning method for parallel

simulation of vlsi circuits on transistor level,” in Design, Automation and Test in Europe

Conference and Exhibition 2000. Proceedings, pp. 679–684, IEEE, 2000.

[135] D. Martin, R. Radhakrishnan, D. Rao, M. Chetlur, K. Subramani, and P. Wilsey, “Anal-

ysis and simulation of mixed-technology vlsi systems,” Journal of parallel and distributed

computing, vol. 62, no. 3, pp. 468–493, 2002.

[136] A. Devgan, “Accelerated design of analog, mixed-signal circuits with finesimTM and

titanTM,” in SoC Design Conference (ISOCC), 2009 International, pp. 282–286, IEEE,

2009.

REFERENCES 173

[137] R. Daniels, H. Sosen, and H. Elhak, “Accelerating analog simulation with hspice precision

parallel technology,” tech. rep., Synopsys, Tech. Rep, 2010.

[138] Cadence, “Virtuoso accelerated parallel simulator,” http://www.cadence.com, 2009.

[139] F. Lu, J. Song, F. Yin, and X. Zhu, “Performance evaluation of hybrid programming

patterns for large cpu/gpu heterogeneous clusters,” Computer Physics Communications,

vol. 183, no. 6, pp. 1172–1181, 2012.

[140] J. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for hetero-

geneous computing systems,” Computing in science & engineering, vol. 12, no. 3, p. 66,

2010.

[141] F. Jacob, D. Whittaker, S. Thapaliya, P. Bangalore, M. Mernik, and J. Gray, “Cudacl: A

tool for cuda and opencl programmers,” in High Performance Computing (HiPC), 2010

International Conference on, pp. 1–11, IEEE, 2010.

[142] M. Saldana, D. Nunes, E. Ramalho, and P. Chow, “Configuration and programming of

heterogeneous multiprocessors on a multi-fpga system using tmd-mpi,” in Reconfigurable

Computing and FPGA’s, 2006. ReConFig 2006. IEEE International Conference on, pp. 1–

10, IEEE, 2006.

[143] A. Anderson, G. Morris, and K. Abed, “Achieving true parallelism on a high performance

heterogeneous computer via a threaded programming model,” in Southeastcon, 2011 Pro-

ceedings of IEEE, pp. 283–286, IEEE, 2011.

[144] V. Aggarwal, G. Stitt, A. George, and C. Yoon, “Scf: A framework for task-level coor-

dination in reconfigurable, heterogeneous systems,” ACM Transactions on Reconfigurable

Technology and Systems (TRETS), vol. 5, no. 2, p. 7, 2012.

[145] Y. Corre, J. Diguet, D. Heller, and L. Lagadec, “A framework for high-level synthesis of

heterogeneous mp-soc,” in Proceedings of the great lakes symposium on VLSI, pp. 283–286,

ACM, 2012.

[146] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “Snucl: an opencl framework for

heterogeneous cpu/gpu clusters,” in Proceedings of the 26th ACM international conference

on Supercomputing, pp. 341–352, ACM, 2012.

[147] A. Gupta, “Recent advances in direct methods for solving unsymmetric sparse systems of

linear equations,” ACM Transactions on Mathematical Software (TOMS), vol. 28, no. 3,

pp. 301–324, 2002.

174 REFERENCES

[148] M. Heath, E. Ng, and B. Peyton, “Parallel algorithms for sparse linear systems,” SIAM

review, pp. 420–460, 1991.

[149] W. Dong and P. Li, “A parallel harmonic-balance approach to steady-state and envelope-

following simulation of driven and autonomous circuits,” Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, vol. 28, no. 4, pp. 490–501, 2009.

[150] H. Thornquist, E. Keiter, R. Hoekstra, D. Day, and E. Boman, “A parallel precondition-

ing strategy for efficient transistor-level circuit simulation,” in Computer-Aided Design-

Digest of Technical Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on,

pp. 410–417, IEEE, 2009.

[151] D. Webber and A. Sangiovanni-Vincentelli, “Circuit simulation on the connection ma-

chine,” in Proceedings of the 24th ACM/IEEE Design Automation Conference, pp. 108–

113, ACM, 1987.

[152] U. Wever and Q. Zheng, “Parallel transient analysis for circuit simulation,” in System

Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference on,,

vol. 1, pp. 442–447, IEEE, 1996.

[153] A. Sangiovanni-Vincentelli, L. Chen, and L. Chua, “An efficient heuristic cluster algorithm

for tearing large-scale networks,” Circuits and Systems, IEEE Transactions on, vol. 24,

no. 12, pp. 709–717, 1977.

[154] W. Dong, P. Li, and X. Ye, “Wavepipe: parallel transient simulation of analog and digital

circuits on multi-core shared-memory machines,” in Proceedings of the 45th annual Design

Automation Conference, pp. 238–243, ACM, 2008.

[155] T. Davis, Direct methods for sparse linear systems, vol. 2. Society for Industrial Mathe-

matics, 2006.

[156] J. Dongarra, F. Gustavson, and A. Karp, “Implementing linear algebra algorithms for

dense matrices on a vector pipeline machine,” Siam Review, pp. 91–112, 1984.

[157] W. Press, Numerical recipes in FORTRAN: the art of scientific computing, vol. 1. Cam-

bridge Univ Pr, 1992.

[158] C. Moler and R. Schreiber, “Sparse matrices in matlab: Design and implementation,”

1998.

REFERENCES 175

[159] X. Li and J. Demmel, “Making sparse gaussian elimination scalable by static pivoting,” in

Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), pp. 1–17,

IEEE Computer Society, 1998.

[160] I. Duff, R. Grimes, and J. Lewis, “Sparse matrix test problems,” ACM Transactions on

Mathematical Software (TOMS), vol. 15, no. 1, pp. 1–14, 1989.

[161] J. Liu, “The role of elimination trees in sparse factorization,” SIAM Journal on Matrix

Analysis and Applications, vol. 11, p. 134, 1990.

[162] J. Gilbert and J. Liu, “Elimination structures for unsymmetric sparse lu factors,” SIAM

Journal on Matrix Analysis and Applications, vol. 14, pp. 334–334, 1993.

[163] I. Duff and H. Van Der Vorst, “Developments and trends in the parallel solution of linear

systems,” Parallel Computing, vol. 25, no. 13-14, pp. 1931–1970, 1999.

[164] D. Rose and R. Tarjan, “Algorithmic aspects of vertex elimination on directed graphs,”

SIAM J. Appl. Math., vol. 34, pp. 176–197, 1978.

[165] A. George and W. Liu, “The evolution of the minimum degree ordering algorithm,” SIAM

Review, vol. 31, no. 1, pp. 1–19, 1989.

[166] P. Amestoy, T. Davis, and I. Duff, “An approximate minimum degree ordering algorithm,”

SIAM J. Matrix Analysis & Applic, vol. 17, no. 4, pp. 886–905, 1996.

[167] T. Davis, J. Gilbert, S. Larimore, and E. Ng, “A column approximate minimum degree

ordering algorithm,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 3,

pp. 353–376, 2004.

[168] A. George, “Nested dissection of a regular finite element mesh,” SIAM Journal on Numer-

ical Analysis, vol. 10, no. 2, pp. 345–363, 1973.

[169] G. Karypis and V. Kumar, “Analysis of multilevel graph partitioning,” in Proceedings of

the 1995 ACM/IEEE conference on Supercomputing, p. 29, ACM, 1995.

[170] B. Hendrickson and T. Kolda, “Graph partitioning models for parallel computing,” Parallel

computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[171] I. Duff, “Algorithm 575: Permutations for a zero-free diagonal [f1],” ACM Transactions

on Mathematical Software (TOMS), vol. 7, no. 3, pp. 387–390, 1981.

176 REFERENCES

[172] E. Palamadai Natarajan, KLU-a high performance sparse linear system solver for circuit

simulation problems. PhD thesis, MS Thesis, CISE Department, University of Florida,

2005.

[173] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,” ACM Computing

Surveys (CSUR), vol. 18, no. 1, pp. 23–38, 1986.

[174] A. HSL, “collection of fortran codes for large-scale scientific computation,” See http://www.

hsl. rl. ac. uk, 2007.

[175] C. Fu and T. Yang, “Sparse lu factorization with partial pivoting on distributed memory

machines,” in Supercomputing, 1996. Proceedings of the 1996 ACM/IEEE Conference on,

pp. 31–31, IEEE, 1996.

[176] I. Duff and J. Reid, “The multifrontal solution of indefinite sparse symmetric linear,” ACM

Transactions on Mathematical Software (TOMS), vol. 9, no. 3, pp. 302–325, 1983.

[177] G. Alaghband and H. Jordan, “Sparse gaussian elimination with controlled fill-in on

a shared memory multiprocessor,” Computers, IEEE Transactions on, vol. 38, no. 11,

pp. 1539–1557, 1989.

[178] T. Davis, “A parallel algorithm for sparse unsymmetric lu factorization,” tech. rep., Illinois

Univ., Urbana, IL (USA), 1989.

[179] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, H. Simon, and P. Bjørstad, “Progress in

sparse matrix methods for large linear systems on vector supercomputers,” International

Journal of High Performance Computing Applications, vol. 1, no. 4, pp. 10–30, 1987.

[180] A. Erisman, R. Grimes, J. Lewis, W. Poole Jr, and H. Simon, “Evaluation of orderings

for unsymmetric sparse matrices,” SIAM journal on scientific and statistical computing,

vol. 8, p. 600, 1987.

[181] J. Gilbert and T. Peierls, “Sparse spatial pivoting in time proportional to arithmetic

operations,” SIAM journal on scientific and statistical computing, vol. 9, no. 5, pp. 862–

874, 1988.

[182] C. Gauss, Theory of the motion of the heavenly bodies moving about the sun in conic

sections: a translation of Carl Frdr. Gauss” Theoria motus”: With an appendix. By Ch.

H. Davis. Little, Brown and Comp., 1857.

REFERENCES 177

[183] S. Eisenstat and J. Liu, “Exploiting structural symmetry in a sparse partial pivoting code,”

SIAM Journal on Scientific Computing, vol. 14, p. 253, 1993.

[184] Y. Liao and C. Wong, “An algorithm to compact a vlsi symbolic layout with mixed con-

straints,” in Proceedings of the 20th Design Automation Conference, pp. 107–112, IEEE

Press, 1983.

[185] G. Micheli, Synthesis and optimization of digital circuits. McGraw-Hill Higher Education,

1994.

[186] T. Davis, I. Duff, P. Amestoy, J. Gilbert, S. Larimore, E. Natarajan, Y. Chen, W. Hager,

and S. Rajamanickam, “Suite sparse: a suite of sparse matrix packages.”

[187] I. Duff, M. Heroux, and R. Pozo, “An overview of the sparse basic linear algebra subpro-

grams: The new standard from the blas technical forum,” ACM Transactions on Mathe-

matical Software (TOMS), vol. 28, no. 2, pp. 239–267, 2002.

[188] H. Avron, G. Shklarski, and S. Toledo, “Parallel unsymmetric-pattern multifrontal sparse

lu with column preordering,” ACM Transactions on Mathematical Software (TOMS),

vol. 34, no. 2, p. 8, 2008.

[189] P. Vachranukunkiet, J. Johnson, P. Nagvajara, S. Tiwari, and C. Nwankpa, “Performance

analysis of load flow on fpga,” in 15th Power Systems Computational Conference August,

vol. 22, 2005.

[190] S. Toledo and A. Uchitel, “A supernodal out-of-core sparse gaussian-elimination method,”

Parallel Processing and Applied Mathematics, pp. 728–737, 2008.

[191] S. McKee, “Reflections on the memory wall,” in Proceedings of the 1st conference on

Computing frontiers, p. 162, ACM, 2004.

[192] Xilinx, Xilinx Core Generator Floating-Point Operator v4.0, 2010.

[193] Xilinx, Chipscope Pro Software and Cores User Guide. Xilinx, 2007.

[194] T. Davis, “Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method,”

ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2, pp. 196–199, 2004.

[195] K. Kundert and A. Sangiovanni-Vincentelli, “Sparse user’s guide–a sparse linear equation

solver version 1.3 a,” University of California, Berkeley, 1988.

178 REFERENCES

[196] D. Patterson and J. Hennessy, Computer organization and design: the hardware/software

interface. Morgan Kaufmann, 2009.

[197] R. Borndörfer, C. Ferreira, and A. Martin, “Decomposing matrices into blocks,” SIAM

Journal on Optimization, vol. 9, p. 236, 1998.

[198] W. ZHAO, M. LIU, and N. MIAO, “A decomposition algorithm for multi-area reactive-

power optimization based on the block bordered diagonal model [j],” Automation of Electric

Power Systems, vol. 4, 2008.

[199] J. Rommes, P. Lenaers, and W. Schilders, “Reduction of large resistor networks,” Scientific

Computing in Electrical Engineering SCEE 2008, pp. 555–562, 2010.

[200] A. Grothey, “Massively parallel asset and liability management,” in Euro-Par 2010 Parallel

Processing Workshops, pp. 423–430, Springer, 2011.

[201] D. Koester, S. Ranka, and G. Fox, “Parallel block-diagonal-bordered sparse linear solvers

for electrical power system applications,” in Scalable Parallel Libraries Conference, 1993.,

Proceedings of the, pp. 195–203, IEEE, 1993.

[202] I. Duff and J. Scott, “Stabilized bordered block diagonal forms for parallel sparse solvers,”

Parallel Computing, vol. 31, no. 3, pp. 275–289, 2005.

[203] B. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell

System Technical Journal, vol. 49, no. 2, pp. 291–307, 1970.

[204] R. Lucas, T. Blank, and J. Tiemann, “A parallel solution method for large sparse systems

of equations,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, vol. 6, no. 6, pp. 981–991, 1987.

[205] M. Khaira, G. Miller, and T. Sheffler, “Nested dissection: A survey and comparison of

various nested dissection algorithms,” tech. rep., CMU-CS-92-106R, Computer Science

Department, Carnegie Mellon University, 1992.

[206] A. Zecevic and D. Siljak, “Balanced decompositions of sparse systems for multilevel par-

allel processing,” Circuits and Systems I: Fundamental Theory and Applications, IEEE

Transactions on, vol. 41, no. 3, pp. 220–233, 1994.

[207] G. Karypis and V. Kumar, METIS-Unstructured Graph Partitioning and Sparse Matrix

Ordering System, 2011.

REFERENCES 179

[208] C. Aykanat, A. Pinar, and Ü. Çatalyürek, “Permuting sparse rectangular matrices into

block-diagonal form,” SIAM Journal on Scientific Computing, vol. 25, no. 6, pp. 1860–

1879, 2004.

[209] L. Grigori, E. Boman, S. Donfack, and T. Davis, “Hypergraph-based unsymmetric nested

dissection ordering for sparse lu factorization*,” SIAM Journal on Scientific Computing,

vol. 32, no. 6, 2010.

[210] S. Pasricha, “Exploring serial vertical interconnects for 3d ics,” in Design Automation

Conference, 2009. DAC’09. 46th ACM/IEEE, pp. 581–586, IEEE, 2009.

[211] C. Lenzen, T. Locher, P. Sommer, and R. Wattenhofer, “Clock synchronization: Open

problems in theory and practice,” SOFSEM 2010: Theory and Practice of Computer Sci-

ence, pp. 61–70, 2010.

[212] B. Von Herzen, “Use rocket i/o multi-gigabit transceivers to double your fpga bandwidth,”

Xcell Journal, Spring, 2002.

[213] B. Razavi, Phase-locking in high-performance systems: from devices to architectures. John

Wiley & Sons, Inc., 2003.

[214] A. Widmer and P. Franaszek, “A dc-balanced, partitioned-block, 8b/10b transmission

code,” IBM Journal of research and development, vol. 27, no. 5, pp. 440–451, 1983.

[215] R. Dobkin, A. Morgenshtein, A. Kolodny, and R. Ginosar, “Parallel vs. serial on-chip

communication,” in Proceedings of the 2008 international workshop on System level inter-

connect prediction, pp. 43–50, ACM, 2008.

[216] I. LogiCore, “Xilinx ug353 logicore ip aurora 8b/10b v5.2 user guide.”

http://www.xilinx.com/, 2010.

[217] I. LogiCORE, “Fifo generator v5. 3,” 2009.

[218] J. Gilbert and S. Teng, “Meshpart: Matlab mesh partitioning and graph separator tool-

box.” http://www.cerfacs.fr/algor/Softs/MESHPART/, 2010.

[219] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, “Zoltan data man-

agement services for parallel dynamic applications,” Computing in Science & Engineering,

vol. 4, no. 2, pp. 90–96, 2002.

[220] W. Cheney and D. Kincaid, Linear Algebra: Theory and Applications. Jones & Bartlett

Publishers, 2011.

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abbreviations
	Acknowledgements
	1 Introduction
	1.1 Accelerating SPICE Circuit Simulations
	1.2 Research Scope and Objectives
	1.3 Thesis Overview and Contributions
	1.4 List of Publications

	2 Literature Review
	2.1 The High-Performance Computing Landscape
	2.2 Efficiency and Scalability of Parallel Systems
	2.3 The FPGA Supercomputing Paradigm
	2.3.1 The FPGA Architecture
	2.3.2 The FPGA Technological Trends

	2.4 FPGA Acceleration of LU Decomposition

	3 SPICE Circuit simulation
	3.1 Overview of SPICE
	3.1.1 Modified Nodal Analysis
	3.1.2 The Newton-Raphson Method
	3.1.3 Solution of the Sparse Linear System
	3.1.4 Example Circuit

	3.2 Characteristics of Circuit Matrices
	3.3 Sparsity and Optimal Reordering of Circuit Equations
	3.4 SPICE Runtime Analysis
	3.4.1 Testing Methodology
	3.4.2 Total Runtime Analysis
	3.4.3 Runtime Scaling Trends
	3.4.4 Parallel Potential Analysis

	3.5 Parallel Circuit Simulation
	3.6 Summary

	4 Sparse Matrix Solution
	4.1 Theory: Sparse LU Decomposition
	4.1.1 Dense LU Decomposition
	4.1.2 Sparse LU Decomposition
	4.1.2.1 Sparse LU Decomposition Issues
	4.1.2.2 Sparse Matrices Data Structures
	4.1.2.3 Elimination Graphs

	4.1.3 Fill-reducing Orderings
	4.1.3.1 Minimum Degree Ordering
	4.1.3.2 Nested Dissection Ordering

	4.1.4 Zero-free Diagonal Orderings

	4.2 Parallelising Sparse LU Decomposition
	4.2.1 Gilbert-Peierls' Algorithm
	4.2.1.1 Symbolic Analysis
	4.2.1.2 Numerical Factorisation
	4.2.1.3 Symmetric Pruning

	4.3 Dependency-Aware Matrix Operations Scheduling
	4.4 Empirical Analysis of LU Decomposition
	4.5 Summary

	5 Single-FPGA Matrix Solution
	5.1 FPGA Design Objective
	5.2 Parallel Sparse LU FPGA Architecture
	5.2.1 Resolving Dataflow Dependencies
	5.2.2 Design Flow
	5.2.3 Top Level Design

	5.3 Experimental Setup
	5.3.1 FPGA Implementation
	5.3.2 Hardware Debugging

	5.4 Benchmark Baseline
	5.5 Performance Analysis
	5.5.1 Cost of the pre-processing stage
	5.5.2 Scalability

	5.6 Summary

	6 Multi-FPGA Matrix Solution
	6.1 Objective
	6.2 Ordering for Coarse-grain Parallel Factorisation
	6.3 Inter-FPGA Communication
	6.3.1 FPGA High Speed Serial Transceivers
	6.3.2 The Xilinx Aurora Protocol
	6.3.3 Experimental Aurora Tests

	6.4 Multi-FPGA LU Factorisation
	6.4.1 System Architecture
	6.4.2 Experimental Setup
	6.4.3 Performance Analysis

	6.5 Summary

	7 Conclusion and Future Works
	7.1 Conclusion
	7.2 Future Work

	A Left-looking LU Factorisation
	A.1 Solving Triangular Systems
	A.2 Gaussian Elimination
	A.3 Left-looking LU Decomposition

	B Xilinx XUPV5-LX110T Development Board
	References

