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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

TOWARDS A PRACTICALLY EXTENSIBLE EVENT-B METHODOLOGY

by Issam Maamria

Formal modelling is increasingly recognised as an important step in the development of

reliable computer software. Mathematics provide a solid theoretical foundation upon

which it is possible to specify and implement complex software systems. Event-B is a

formalism that uses typed set theory to model and reason about complex systems. Event-

B and its associated toolset, Rodin, provide a methodology that can be incorporated

into the development process of software and hardware. Refinement and mathematical

proof are key features of Event-B that can be exploited to rigorously specify and reason

about a variety of systems.

Successful and usable formal methodologies must possess certain attributes in order

to appeal to end-users. Expressiveness and extensibility, among other qualities, are of

major importance. In this thesis, we present techniques that enhance the extensibility

of: (1) the mathematical language of Event-B in order to enhance expressiveness of the

formalism, and (2) the proving infrastructure of the Rodin platform in order to cope

with an extensible mathematical language.

This thesis makes important contributions towards a more extensible Event-B methodol-

ogy. Firstly, we show how the mathematical language of Event-B can be made extensible

in a way that does not hinder the consistency of the underlying formalism. Secondly, we

describe an approach whereby the prover used for reasoning can be augmented with proof

rules without compromising the soundness of the framework. The theory component is

the placeholder for mathematical and proof extensions. The theoretical contribution

of this thesis is the study of rewriting in the presence of partiality. Finally, from a

practical viewpoint, proof obligations are used to ensure soundness of user-contributed

extensions.

mailto:im06r@ecs.soton.ac.uk
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Chapter 1

Introduction

Formal methods refer to the mathematical techniques employed for the specification,

development and verification of software and hardware systems. Formal methods can

be classified, on the basis of the used methodology, into two broad categories: verifica-

tion methods and correct by construction methods. In the verification-based approach,

correctness is established post-facto, after the program in question is developed. In the

correct by construction approach, on the contrary, the development of the system is

carried out in an incremental fashion where each intermediate step is verified. In the

latter approach, the formal specification of the system provides the blueprint against

which its implementation is evaluated.

Event-B [11, 14] is a mathematical technique that can be incorporated into the devel-

opment process of hardware and software systems [9]. Event-B can be used to model

discrete systems and falls into the ‘correct by construction’ category. The formalism is

based on the B method [8], a method that already has good industrial strength [20].

Event-B modelling is carried out by means of two components (also called constructs):

contexts and machines. Contexts define the static aspects of a model; they may include

carrier sets and constants, as well as axioms and theorems describing the sets and con-

stants. Machines, on the other hand, describe the dynamics of a model; this includes

variables and invariants, as well as events (transitions). Event-B uses set theory built

around first-order logic as a vehicle for modelling. Proof obligations are generated from

models to verify their consistency with respect to some behavioural semantics [61].

The Rodin platform [31] provides a toolset to carry out specification, refinement and

proof in Event-B. Rodin proposes a reactive modelling environment that makes it easier

for the user to link models, proof obligations and their corresponding proofs. Since

proofs are important to the modelling activity, Rodin provides a proof infrastructure

that is extensible. External provers (e.g., Atelier-B provers [7]) can also be used in

conjunction with the Rodin internal prover. In this thesis, we explain our approach in

dealing with issues related to prover extensibility in the context of Event-B.

1
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1.1 Motivation

The Rodin platform provides a reactive modelling environment where the modeller is

constantly informed about the effects of changes made to models. To achieve this ob-

jective, the tools that constitute Rodin need to work in a reactive manner [80]. This

means that, when a model is modified:

1. It is automatically checked for syntax and type errors.

2. Proof obligations are generated.

3. The status of its proofs are updated.

The proving activity is pivotal to modelling. The modeller may gain considerable insight

into his models by inspecting failed proofs; this may guide the modeller to modify the

model in such a way that proofs become easier to conduct. In some instances, however,

failed proofs may be attributed to limitations in the proving infrastructure, e.g., the

absence of certain proof rules.

Despite being optimised for proof reuse [82], the current Rodin architecture1 has the

following limitations:

• in order to add a new proof rule, it is required to implement a rule schema in Java.

Therefore, a certain level of competence with the Java programming language as

well as knowledge of Rodin architecture are necessary;

• after a new rule is added, soundness of the prover augmented with the new rule

has to be established. Although Java verification tools, e.g., JML, can be useful

for this purpose, such validation has not been performed for any of the built-in

rules2.

The external provers integrated into the Rodin proving infrastructure, ML and PP [7], do

not provide sufficient information about how the proof of a sequent has been achieved.

Information such as the set of required hypotheses is important for proof reuse and

replay [82]. These properties of proofs are crucial for the efficient running of a reactive

modelling environment.

As well as prover extensibility, we aim to address issues related to language extensibility.

The mathematical language of Event-B is based on set theory as constructed in [11].

The abstract syntax tree representing formulae in Event-B cannot be extended with new

syntax (adding a new operator for instance). This presents a major issue that hinders

1The problem no longer exists in the current platform (v2.6) if the Theory plug-in is installed.
2As of July 29th, 2012.
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reusability in Event-B. Finally, language and prover extensibility are intrinsically linked

as the ability to effectively reason about language extensions is of paramount importance.

The following two examples provide concrete justifications for our motivation.

1.1.1 Motivation for Proof Extensions

The following formula is a valid polymorphic Event-B theorem:

∀a, b, f · (a ∈ P(A) ∧ b ∈ P(B) ∧ f ∈ a 7→ b)⇒ (finite(a)⇒ finite(f)) . (1.1)

Theorem (1.1) states that a partial function with a finite domain is also finite. Note

that A and B are type parameters, and as such the valid theorem is polymorphic on

both A and B.

Theorem (1.1) can be written as an inference rule as follows:

a ∈ P(A), b ∈ P(B), f ∈ a 7→ b ` finite(a)

a ∈ P(A), b ∈ P(B), f ∈ a 7→ b ` finite(f)
(1.2)

which states that to prove that a partial function is finite it is sufficient to prove that

its domain is a finite set. At the time of writing this thesis, the above rule was not

available as part of Rodin proof infrastructure. In order to add the rule to Rodin, it

is required to implement (in Java) a schema rule that incorporates pattern matching.

Soundness becomes a concern as soon as new rules are added. Furthermore, this process

of specifying new rules presents a challenge for end-users.

In this thesis, we show how it is possible to address both issues of extensibility and

soundness in an effective fashion.

1.1.2 Motivation for Mathematical Extensions

Sequences are ordered collection of objects, and can be modelled as functions with

finite integer contiguous domains. Sequences are part of the classical B [8] repertoire of

mathematical operators. In Event-B, however, the sequence operator is not available.

There are ways to overcome such limitation, by overloading the functionality of contexts

to define sequences axiomatically (see [99]).

Assuming the availability of a context with a carrier set A and a constant a such that

a ⊆ A, sequences can be defined as belonging to the set:

{f, n.f ∈ 1..n→ a | f} .

The issue with the aforementioned definition is that sequences can only be used with

sets whose type depend on the carrier set. This is problematic, since in a model, one
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might want to use sequences of different types according to the modeller’s needs. In this

thesis, we show how such operators can be defined in a polymorphic manner to overcome

the previous limitation.

1.2 Objectives

Our aim is to improve the overall extensibility of Event-B to enhance usability and effec-

tiveness of the methodology. We are primarily concerned with facilitating the addition

of new operators (i.e., language extensions) and new proof rules (i.e., prover extensions)

to suit end-users needs. It is essential to ensure that any technique that achieves the

aforementioned targets has to maintain practicality of use and ensure soundness preser-

vation. Practicality of use is important to relieve end-users from writing Java code.

Soundness preservation ensures that any extensions do not compromise the logical foun-

dations of the formalism. The logic of Event-B is extensively studied in [102] where a

clear definition of soundness is presented, and our work will build on that. A summary

of Schmalz’s work [102] including the soundness of Event-B proof calculus is presented

in Chapter 2. The following key points summarise the objectives of this work:

1. Provide a mechanism by which users can define operators and datatypes in a

familiar fashion (i.e., in line with existing practices of developing models in Rodin)

thereby allowing language extensions. The new mechanism needs to adhere to the

aforementioned requirements: practicality of use and soundness preservation.

2. Provide a mechanism by which the Rodin proving infrastructure can be augmented

with new proof rules. Any newly added rules will have to be validated so that the

soundness of the existing prover is not compromised. Rewrite and inference rules

are used in Rodin to discharge proof obligations. The following milestones are

important in order to achieve this objective:

(a) provide a unifying study of term rewriting and well-definedness. This is of

major importance since the Event-B logic deals with partial functions which

may give rise to potentially ill-defined terms. To illustrate the importance of

this particular contribution, we consider the following rewrite rule:

f C− {x 7→ y} (z) → x = z : y

x 6= z : f(z)

Consider the following expression:

{1 7→ 2, 1 7→ 3, 2 7→ 4}C− {1 7→ 5}(a)
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where a is an integer. In the case where a 6= 1, the rewritten expression is

{1 7→ 2, 1 7→ 3, 2 7→ 4}(a)

which, in the logic of Event-B, is ill-defined since {1 7→ 2, 1 7→ 3, 2 7→ 4} is

not a function. The previous rewrite rule has been implemented in Rodin,

but was later found unsound as it does not satisfy the conditions singled out

in our study.

(b) study how term rewriting can be integrated as a proof step within the well-

definedness preserving sequent calculus [82, 81]. Mehta [81] presents a calcu-

lus for reasoning in the presence of partial functions. The calculus includes

a set of well-definedness preserving inference rules that can be used for de-

duction in Event-B proofs. Mehta’s work was the backbone of the proof

infrastructure in Rodin. Our work builds on [82, 81], and considers the ad-

dition of rewriting steps to the well-definedness preserving calculus. In par-

ticular, we study how conditional rewrite rules can be used alongside the

well-definedness preserving inference rules in order to enhance the proving

capabilities of Rodin.

3. Show how tool support is provided to achieve the first two objectives. We present

the Theory plug-in which addresses the extensibility issues of Event-B as discussed

in §1.1. We also show by means of several small case studies how our approach

can be incorporated into the modelling and proof activity using Event-B.

1.3 Scope of this Thesis

The work described in this thesis unifies three important fields:

• logic: Event-B uses a logic based on set theory which provides facilities for defining

and reasoning about partial functions. Suitably, reasoning in Event-B is carried

out using a sequent logic that accounts for potentially ill-defined terms [82, 81].

In this thesis, we study how rewriting can be integrated as a proof step within the

proof system of Event-B.

• formal methods: Usability and extensibility are important attributes of successful

formalisms. In this work, we explain our approach to deal with extensibility and

the resulting usability issues in the context of Event-B. Prover and language ex-

tensibility are important in terms of giving more power to the modeller. However,

it is also important to improve the usability of the formalism whilst maintaining

soundness and integrity.
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• software engineering : The ideas presented in this thesis have been used to improve

the Event-B toolset. The enhancements made to Rodin allow modellers to define

and reason about mathematical extensions in a familiar manner. Mathematical

and prover extensions can be readily used in modelling once they are inspected and

checked for soundness. The effort required to switch between modelling and meta-

reasoning is minimised, since familiar techniques are used to enhance usability and

extensibility.

1.4 Publications

1. Issam Maamria and Michael Butler. Rewriting and Well-Definedness within a

Proof System. In Ana Bove, Ekaterina Komendantskaya, and Milad Niqui, editors,

Partiality and Recursion in Interactive Theorem Provers PAR’10, volume 43 of

EPTCS, pages 49-64, 2010 [77].

2. Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh.

On an Extensible Rule-Based Prover for Event-B. In Marc Frappier, Uwe Glässer,

Sarfraz Khurshid, Rgine Laleau, and Steve Reeves, editors, Abstract State Ma-

chines, Alloy, B and Z, volume 5977 of Lecture Notes in Computer Science, pages

407-407. Springer Berlin / Heidelberg, 2010 [78].

1.5 Outline

This thesis makes important contributions to Event-B in general as described in §1.2.

Chapter 2 provides useful background to the reader. It puts this work in context by

concisely presenting the different concepts needed for the remainder of the thesis. Event-

B and the Rodin toolset are introduced and the limitations of the existing framework

are outlined. Moreover, the proof calculus used in Event-B is presented together with a

detailed overview of well-definedness and partial functions. The remaining chapters are

categorised as follows:

1. Chapter 3: Rewriting and Well-Definedness within a Proof System This

chapter presents a contribution of a more theoretical nature. A unifying treatment

of rewriting and well-definedness is presented to provide the theoretical foundation

for the subsequent chapters. Finally, we describe how rewriting can be added as a

proof step within the sequent calculus used by Event-B.

2. Chapter 4: A Practical Approach to Event-B Prover and Language

Extensibility In this chapter, we present the theory component which will be

used as a vehicle for defining extensions in Event-B. A detailed description of

the approach employed to deal with prover extensibility is presented. We also
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show how the theory component can be used to define new polymorphic oper-

ators and datatypes. Proof obligations that ensure soundness of extensions are

discussed. The Rule-based Prover and the Theory component provide a practical

yet soundness-preserving mechanism to address language and prover extensibility

issues in the Event-B methodology.

3. Chapter 5: Tool Support: Theory Plug-in In this chapter, we introduce the

Theory plug-in which embodies the different ideas presented in this thesis.

4. Chapter 6: Theory Development: Examples In this chapter, we present

several case studies that demonstrate the usefulness of the Theory plug-in.

Chapter 7 concludes the thesis and summarises its main contributions. Possible areas

for future work are outlined.





Chapter 2

Background

In this chapter, we set the general context of this thesis. Our aim is to provide a

comprehensive basis for the subsequent chapters. An overview of formal methods is

presented in the first section. This is followed by a detailed account of Event-B [11,

14] and its toolset, Rodin [12]. The main concepts of Event-B are described with a

particular emphasis on proof obligations. The Rodin platform is introduced in order to

provide the practical setting of the contributions of this thesis. Furthermore, the sequent

calculus used in Event-B reasoning is outlined together with the important notion of well-

definedness. Next, we introduce three widely used formalisms in Isabelle/HOL [94, 90],

PVS [91] and VDM [70, 69]. We conclude this chapter by conducting a brief comparative

study between Event-B and the aforementioned formal methodologies.

2.1 Formal Methods

Mathematical techniques have a long important presence in all mature engineering dis-

ciplines. However, they have not been used as heavily in computer engineering [29, 110].

In fact, the debate about their use and relevance is an interesting one that has attracted

considerable attention and is still doing so [74]. In [74], three schools of thought on this

debate are singled out:

• One school of thought claims that formal techniques provide remedial and complete

solutions to problems associated with system development.

• Another school of thought claims that formal methods have little use or benefit to

the development process.

• A final school of thought considers formal methods to be over-sold and under-used

according to [74].

9
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We subscribe to the final school of thought without underplaying the importance of

formal methods. It is vital to recognise that the complexity of computer systems is

growing at a large rate, and as such there is an urgent need to have a systematic approach

that can be employed to achieve adequate levels of dependability and trust in those

systems.

Developing formal tools to reason about systems is indeed a challenging task. In [74],

an interesting view on formal methods is presented. It lists the different components of

which any formal method should consist:

• The semantic model is defined as the mathematical structure where terms, formu-

lae and the rules used, are given a specific meaning. The semantic model should

“reflect the underlying computational model of the intended application”.

• The specification language is the notation with which systems and their behaviour

are described. The specification language must “have a proper semantics within

the semantic model”.

• Verification systems/refinement calculi are the mathematically sound rules that

allow the verification of system properties and the stepping between specifications

and implementations.

• Supporting tools such as proof assistants and syntax and type checkers are impor-

tant for the formalism to be of any practical use.

According to [74], a formal method should have clear development guidelines to facilitate

its integration with development processes. The aim of this thesis is to enhance the

existing Event-B verification system (by means of proof extensions) and specification

language (by means of language extensions).

2.1.1 Challenges

Despite the availability of many formalisms and their supporting tools, there are many

difficulties facing the integration of formal methods into the development process of

computer systems. There are some real problems that stem from the very nature of

formal methods and computer engineering. Some of these obstacles are outlined below

and in [10]:

• Formal methods require computer engineers to think carefully about the system

in question before proceeding to the coding stage. This is not helped by the fact

that engineers “postpone any serious thinking” during the specification and design

phases [14], and accommodate a rather long and resource-hungry test phase.
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• It is quite difficult to change current practices with respect to the development

process. Within the industry, managers are reluctant to change the traditional

way of approaching projects unless a clear value will be gained.

• Modelling is not a simple activity as it is often accompanied by reasoning [10].

Clear distinction between modelling and programming should be attained as the

initial model of a program specifies the properties against which the final program

will be evaluated.

• One of the main objectives of modelling is the ability to reason formally. Software

engineers are not accustomed to this practice.

• Finally, one of the main obstacles is the lack of appealing tool support to make

modelling and reasoning a seamless addition to the development process. This is

undoubtedly one of the main selling points of Event-B and Rodin [31, 12].

2.1.2 Classification

Despite the difficulties and misconceptions that surround formal methods, important

efforts were spent designing and implementing formal systems and tools to benefit from

the rigour that mathematics offer. In brief, these formalisms can be organised into five

categories [74]:

1. Model-based approach: a system is modelled using discrete mathematical struc-

tures to describe its properties. Operations describe the transitions between

different states. This approach does not explicitly represent concurrency. Non-

functional requirements (e.g., temporal requirements) can, in some cases, be ex-

pressed. Notable examples of this approach include Z [109], the B Method [8] and

VDM [70, 69].

2. Logic-based approach: logics are used to describe system properties including prob-

abilistic and temporal behaviour. The axiomatic system of the used logic can then

be employed to validate system properties. In some cases, the logic can be extended

with concrete programming constructs to provide an implementation-oriented lan-

guage. Notable examples of this approach include Modal Logic [56] and Temporal

Logic [51].

3. Algebraic approach: In this approach, an explicit definition of operations is given

by axiomatically linking the behaviour of different operations without defining

states. Algebraic formalisms, similarly to model-based formalisms, do not pro-

vide an explicit representation of concurrency. A notable example of algebraic

formalisms is OBJ [54].



12 Chapter 2 Background

4. Process Algebra approach: CSP [63] and CCS [86] are notable examples. The

π-calculus [87] is a formal approach to model mobility within concurrent systems.

Concurrent processes are formally represented, and system behaviours are de-

scribed as “constraints on all allowable observable communication between pro-

cesses” [87].

5. Net-based approaches: graphical notations with formal semantics are used to de-

scribe systems. Petri Nets [97] are a notable example.

Summary. In this section, we briefly discussed formal methods. We presented a number

of challenges facing the adoption of formal methods in the industry. We concluded

this section by outlining the different categories in which formal methodologies can be

classified. The aim of this discussion was to provide a general context for the Event-B

formalism and its toolset, Rodin.

2.2 Event-B

In this section, we give a brief account of Event-B. We start by describing what is meant

by discrete systems which are the subject matter of Event-B modelling.

2.2.1 Discrete Systems Modelling

Complex systems are made of many inter-related components that interact with an ex-

ternal environment. Although these systems often exhibit continuous behaviours, they

manifest discrete traits most of the time. This essentially means that they can be ab-

stracted using a discrete transition model. There could be many of these transitions, but

that does not change the very nature of such systems that are intrinsically discrete [14].

A discrete model consists of a state which can be represented as variables. The choice

of variables will depend on the level of abstraction of the model with regard to the real

system. Similarly to other applied sciences, there will be certain laws that should govern

the state of the model including its type. Such laws are referred to as invariants.

A discrete model can be subject to a number of transitions, which we may refer to as

events. Each of these events has a guard which is the condition under which the event

is allowed to take place. Furthermore, each event has an action associated with it. The

action describes the effect that the occurrence of the event has on the state of the model.

In the discrete modelling of complex systems, it is assumed that the execution of events

takes no time [14]. When no event is allowed to occur (guards of all events are false),

the execution of the model stops and is said to have deadlocked [14]. If many guards are
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true, only one event is allowed to occur. The choice of the event to occur in the latter

case is non-deterministic.

2.2.2 Event-B Modelling

Event-B is a formalism for discrete system modelling based on the B method [8]. Event-

B modelling is carried out using first-order predicate logic with equality and set theory.

The approach provides facilities to reason about models using proof obligations. These

in turn implicitly represent the semantics of Event-B models [61]. In this subsection, we

give a brief descriptive account of Event-B modelling. For a more detailed and formal

description, see [11, 14].

An Event-B model consists of contexts and machines. Contexts represent the static

aspects of the model whereas machines describe its dynamic aspects. Figure 2.1 sum-

marises the anatomy of Event-B models.

Machine Context

Variables

Invariants

Variants

Events

Carrier Sets

Constants

Axioms

Other Machines Other Contexts

SEES

SEES

SEES

EXTENDSREFINES

Figure 2.1: Anatomy of Event-B Models

2.2.2.1 Contexts

Contexts define static aspects of a model, and provide some of its axiomatic properties.

They may contain carrier sets, constants, axioms and theorems. Carrier sets are assumed

to be non-empty. Axioms are used to describe the properties of those sets and constants.

Theorems are derived properties that should logically follow from the existing axioms.

Proof obligations generated from contexts ensure that all axioms are well-defined and

that all theorems are provable (i.e., logically follow from axioms) and well-defined. An

axiom (or a theorem) is said to be well-defined if it does not contain ill-defined terms

such as x÷0. Finally, a context C1 can extend another context C0 (see Figure 2.1); this
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CONTEXT DES C

SETS

PERSON

CONSTANTS

age

minimumAge

AXIOMS

axm1 : age ∈ PERSON → N
axm2 : minimumAge = 18

END

Figure 2.2: Context DES C

means that all carrier sets, constants, axioms and theorems defined in C0 are available

to use in the axioms and theorems of C1. Figure 2.2 presents an Event-B context

which defines a carrier set PERSON and two constants age and minimumAge. The

following proof obligations are generated for contexts:

1. Well-definedness of axiom proof obligation to ensure that ill-defined terms are not

present in axioms.

2. Well-definedness of theorem proof obligation to ensure that ill-defined terms are

not present in theorems.

3. Validity of theorem to ensure that theorems are valid with respect to Event-B logic

and any preceding axioms.

2.2.2.2 Machines

Machines provide the behavioural properties of Event-B models. They may contain

variables, invariants, theorems, variants and events. Variables v define the state of a

machine. Invariants I(v) are constraints on variables v, and are similar to class invari-

ants [84] in object-oriented languages. Class invariants are used to constrain objects of

a particular class, and should not be violated by the execution of its methods. Similarly,

machine invariants should not be violated by the execution of the events of the machine.

Events describe possible state changes (i.e., transitions). Each event has a guard G(t, v)

and an action S(t, v), where t are parameters of the event and v are the variables of the

machine. The guard states the condition under which the event may occur. The action

describes the effect of the occurrence of the event on the state of the machine. Contexts

provide an independent placeholder for axiomatic properties, and machines can have

access to these properties by means of a sees directive.
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MACHINE DES M

SEES DES C

VARIABLES

members

in

INVARIANTS

inv1 : members ⊆ PERSONS

inv2 : ∀m ·m ∈ members ⇒ age(m) ≥ minimumAge

inv3 : in ⊆ members

EVENTS

Initialisation

begin
act1 : members := ∅
act2 : in := ∅

end

Event addMembership =̂

any
m

where
grd1 : m /∈ members
grd2 : age(m) ≥ minimumAge

then
act1 : members := members ∪ {m}

end

Figure 2.3: Machine DES M

An event evt can have one of the following three forms:

evt =̂ begin S(v) end (2.1)

evt =̂ when G(v) then S(v) end (2.2)

evt =̂ any t where G(t, v) then S(t, v) end . (2.3)

where v are the variables of the machine, t are the parameters of the event,1 G(v) and

G(t, v) are the guards, and S(v) and S(t, v) are the actions.

Events of the form (2.1) do not have a guard, and as such can occur under all possible

states of the system. A specialised event of the form (2.1) is used as an initialisation

mechanism for state variables of the machine. Events of the form (2.2) have guards

which restrict the state of the machine under which they can occur. In the final form

(2.3), events have additional parameters, and their guards and actions are adjusted

accordingly.

1Parameters of an event can be thought of as local variables.
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The action of an event is defined in terms of several generalised substitutions (i.e., as-

signments) that can take one of the following three forms:2

x := E(t, v) (2.4)

x :∈ E(t, v) (2.5)

x :| Q(t, v, x′) (2.6)

where E(t, v) is an expression and Q(t, v, x′) is a predicate.3

Substitutions of the form (2.4) are deterministic. Substitutions of the other two forms

are nondeterministic. Substitution (2.5) assigns x to an element of a set, whereas substi-

tution (2.6) assigns x to a value satisfying the predicate Q(t, v, x′). Figure 2.3 presents

an example Event-B machine.

The effect of each assignment can be described by means of a before-after predicate as

follows:

BA(x := E(t, v)) =̂ x′ = E(t, v) (2.7)

BA(x :∈ E(t, v)) =̂ x′ ∈ E(t, v) (2.8)

BA(x :| Q(t, v, x′)) =̂ Q(t, v, x′) (2.9)

The before-after predicate (BA(·)) describes the relationship between the state just

before an assignment has occurred (represented by unprimed variable names x) and the

state just after the assignment has occurred (represented by primed variable names x′).

The assignment rule in Hoare logic [64] can be used to infer the weakest pre-condition

in the case of an assignment, whereas the before-after predicate merely links the state

of the machine before and after the execution of the event. Note that all assignments

of an action occur simultaneously, therefore, a before-after predicate A(t, v, x′) for all

assignments can be obtained by conjoining the before-after predicates of each individual

assignment [60]. The machine variables y not appearing on the left hand side of an

assignment remain unchanged. Finally, the before-after predicate of the action S(t, v)

can be written as follows:

BA(S(t, v)) =̂ A(t, v, x′) ∧ y′ = y (2.10)

Following the same convention as in [60], we represent the before-after predicate of an

action S(t, v) by the predicate S(t, v, v′).4

Proof obligations of machines are more involved than those of contexts, and serve to

verify important properties. We use sequents to represent proof obligations for the

2If the event is parameterless, t can be removed from the left hand sides of the substitutions.
3Expressions and predicates are referred to as terms and formulae in some other literature.
4Note the bold faced S to differntiate the before-after predicate from the action S(t, v).
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remainder of this thesis. Sequents take the form H ` G where H is a set of hypotheses

and G is the goal of the sequent.

Let an event e be defined according to (2.3), then the proof obligations are:

1. Feasibility proof obligation which ensures that the guard is the enabling condition

of the event. Feasibility proof obligation is the following:

I(v), G(t, v) ` (∃v′ · S(t, v, v′))

2. Invariant preservation proof obligation which ensures that invariants hold when-

ever machine state changes. Invariant preservation proof obligation is the follow-

ing:

I(v), G(t, v),S(t, v, v′) ` I(v′)

2.2.2.3 Machine Refinement

Refining a machine makes the model more concrete. It is attained by refining both

its state and events. The resulting machine has a state that is related to the state of

the more abstract machine by a gluing invariant. The latter is expressed in terms of a

predicate J(v, w) linking the abstract state v and the refined state w. The refinement

of events can take two shapes: refining existing events and introducing new ones.

Let N be a machine that refines another machine M, and let aevt and cevt be events

in M and N respectively:

aevt =̂ any t where G(t, v) then S(t, v) end (2.11)

cevt =̂ any u where H(u,w) then T (u,w) end . (2.12)

Then, event cevt is said to refine event aevt if the following condition holds:

I(v), J(v, w), H(u,w),T (u,w,w′) ` ∃t. (G(t, v) ∧ ∃v′. (S(t, v, v′) ∧ J(v′, w′))) (2.13)

where S(u,w,w′) and T (u,w,w′) are the before-after-predicates associated with aevt

and cevt respectively, I(v) is the invariant of machine M, and J(v, w) is the gluing

invariant. In simple terms, a concrete eventb cevt is said to refine an abstract event

aevt (1) when the guard of the former is stronger than the guard of the latter, and (2)

when the gluing invariant is preserved by the conjoined action of both events [12].

Machine refinement can also introduce new events. Let nevt be a new event in machine

N:

nevt =̂ any u where H(u,w) then T (u,w) end (2.14)
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then the following three additional conditions must hold to ensure that machine N is a

valid refinement of machine M:

1. Event nevt must refine an implicit event in the abstraction M that does nothing

(skip). This leads to the following proof obligation:

I(v), J(v, w), H(u,w),T (u,w,w′) ` J(v, w′) (2.15)

2. Event nevt must not diverge (run forever) since, otherwise, it would make previ-

ously enabled abstract events effectively disabled. Formally:

I(v), J(v, w), H(u,w),T (u,w,w′) ` V (w′) < V (w) (2.16)

where V (w) and V (w′) are expressions over the set of natural numbers5. V is

called a variant, and its value is decreased by each new event. The variant is an

expression that is supplied by the modeller as part of the machine (see Figure 2.1).

3. The concrete machine N must not deadlock before its abstraction M for, otherwise,

N might not achieve what M required. Formally:

I(v), J(v, w), (G1(v) ∨ ... ∨Gn(v)) ` (H1(w) ∨ ... ∨Hm(w)) (2.17)

where Gi(v) are the guards in the abstraction M, and Hj(w) are the concrete

guards.

2.2.3 Event-B Pragmatics

The Event-B modelling notation has been designed to be “simple and easily teach-

able” [60]. It is targeted at modelling complex systems, and as such tool support is a

major aspect of its appeal. In what follows, we briefly outline some of the important

choices made when designing the Event-B notation as discussed by Hallerstede in [60]:

1. Modelling versus Programming : Important choices regarding modelling and pro-

gramming were made when conceiving the Event-B notation. Hallerstede claims

modelling and programming are seen as activities of different nature with varying

objectives. A program can be executed, whereas execution is not required for a

model. As such, many traits of programming languages have been omitted in or-

der to reduce the complexity of the notation and put more emphasis on reasoning.

However, this may increase the efforts needed to specify certain aspects of systems

including sequencing.

5Variants can be more elaborate, see [14].
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• Sequential Composition: Sequential composition can complicate proof obli-

gations and make them difficult to comprehend, and as such Event-B does

not support them.

• Conditional Statements: These are not supported in Event-B. Conditional

statements pose a significant challenge when proving refinement proof obli-

gations, as it is not easy to work out which branches in the refinement cor-

respond to which branches in the abstraction. Instead, Event-B adopts an

approach whereby each branch corresponds to a separate event.

2. Undefinedness: Conditionally defined expressions are frequently used when de-

veloping models. This poses a major challenge when the underlying logic is the

two-valued first order logic. To deal with this issue, Event-B considers the well-

definedness of expressions at the level of type-checking. Type-checking works in

two passes. The first pass checks whether expression are correctly typed regard-

less of whether they are defined. The second pass of the type-checker creates

well-definedness proof obligations that must be discharged by proof [60]. For ex-

ample, the expression 1÷ 0 is correctly typed, but is not well-defined as it cannot

be shown that 0 6= 0.

3. Parameterisation: Models can depend on many parameters, e.g., number of com-

ponents in a structure. Event-B contexts are used to parameterise machines using

carrier sets and constants. These can be instantiated, and if they satisfy the axioms

of the context, the theorems derived from them can be readily used.

4. Openness: The Event-B modelling notation is not finalised, and is expected to

evolve according to the different needs and application domains. The formalism

is open to extensions and changes. Hallerstede emphasises, however, that care

should be taken to avoid complicating the existing theory, and concepts should be

interpreted in a simple and unambiguous way [60].

Summary. In this section, we presented a brief account of Event-B. We started by

providing an overview of discrete systems modelling. Next, contexts and machines were

discussed as well as their proof obligations. The important concept of machine refinement

is presented. We concluded this section by presenting an overview of the different choices

made when designing the Event-B modelling notation as discussed by Hallerstede in [60].

2.3 The Rodin Platform

The Rodin platform [12, 31] is an integrated modelling environment for Event-B. It

provides facilities and tools to develop and reason about models in a reactive manner

inspired by modern integrated development environments (IDEs) such as Eclipse [49].

When developing Java programs using Eclipse, the user is not required to initiate the
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compilation process. Rather, the IDE reacts to changes in code in a seamless manner

which provides an effective feedback to the developer. Analogously, in Rodin, while

developing a model of a complex system, static checking, proof obligations generation

and management are carried out seamlessly to provide immediate feedback to the mod-

eller. The combination of static checking and proof obligation generation in Rodin can

be thought of as an extended static checker [44] for Event-B. More precisely, the Rodin

platform provides the capabilities to:

• develop models in Event-B by specifying contexts and machines,

• analyse models by means of static checking which includes syntax and type check-

ing,

• semantically analyse models by means of proof obligations generated as appropri-

ate,

• carry out mathematical proof in order to verify model consistency.

In order to strike a good balance between usability and effectiveness, Rodin is designed

to satisfy the following requirements [31]:

• “Design-Time Feedback”: the tool responds quickly to changes and provides feed-

back that can be easily related to models;

• “Distinct Proof Obligation Generation and Verification phases”: the tool decouples

modelling and proving while maintaining the link between the two activities (i.e.,

traceability) in case automatic proofs fail.

2.3.1 Architecture

Figure 2.4 shows a high-level view of the internal architecture of Rodin. The tool can

be divided into four distinct components which are described below:

1. The Rodin Core: contains the Rodin repository and the Rodin builder. The repos-

itory manages the persistence between data elements (Java objects, e.g., proof

obligations) and their storage in XML files (e.g,. proof obligation files). The

builder (analogous to the Java builder in the Eclipse Java IDE) schedules jobs

depending on changes to files in the repository.

2. The Event-B Library Packages: the syntax of the Event-B mathematical language

is specified by an attributed grammar implemented in the abstract syntax tree

(AST) module. The sequent prover (SEQP) module provides the necessary infras-

tructure to carry out proofs.
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Figure 2.4: Rodin Tool Architecture

3. The Event-B Core: contains the static checker (SC), the proof obligation genera-

tor (POG) and the proof obligation manager (POM). The static checker analyses

contexts and machines in terms of syntax as well as typing. The proof obligation

generator generates proof obligations from statically checked elements of the model

including axioms, theorems, invariants and events. Finally, the proof obligation

manager keeps track of proof obligations and their proofs.

4. The Event-B User Interface: contains the graphical interactivity model for Event-

B. It provides two distinct perspectives: the modelling user interface (MUI) and

the proving user interface (PUI).

Figure 2.5 describes the tool-chain for developing Event-B models using the Rodin plat-

form.

2.3.2 The Rodin Tooling Philosophy

Modelling is a complex activity, and is a hugely important step in developing complex

and reliable systems. Reasoning can significantly improve understanding of a particular

model. An effective tool support should provide a practical setting for creating models

and reasoning about them. It also should make the transition required between the

modelling and reasoning activities as seamless as possible.
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Hallerstede [60] provides an overview of the different choices and decisions (some of

which are summarised in §2.2.3) made when conceiving the notation and the modelling

environment for Event-B. Moreover, the Event-B toolset (Figure 2.6) aims to satisfy the

following two requirements [12]:

1. “Design-Time Feedback”: The tool is very responsive and immediately provides

feedback related to the model. A further requirement is that the feedback should

easily relate to the model in question.

2. “Distinct Proof Obligation Generation and Verification Phase”: This is important

as it allows the user to distinguish between the modelling and proving activities.

This is particularly important when proofs fail, as it allows the origin of the proof

obligation to be traced more easily.

2.3.2.1 Editors

The Rodin platform provides editors for contexts and machines. The editors are designed

to mirror the structure of their respective files. Since context and machine files have an

XML structure, their respective editors have a tree look, and are form-based6. There

is a text-based editor for Rodin called Camille [4]. However, this editor suffers from

several bugs that hinder its usability.

2.3.2.2 Tooling

Tooling refers to the collection of tools that run on Rodin files. Figure 2.5 describes the

three tools available in the Rodin repertoire. The Rodin tool chain refers to the different

stages of tooling:

6This particular design decision was taken to account for possible extensions to the Rodin database.
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Figure 2.6: The Rodin Tool

1. Static Checking. Event-B components (i.e., contexts and machines) are stati-

cally checked for syntax and typing errors. Each Rodin file has two versions: 1) an

unchecked version, and 2) a statically checked version. The unchecked file is the

version that can be edited by the user. Unchecked machines and contexts have file

extensions ‘.bum’ (i.e., B unchecked machine) and ‘.buc’ (i.e., B unchecked con-

text) respectively. Checked machines and contexts have file extensions ‘bcm’ (i.e.,

B checked machine) and ‘bcc’ (i.e., B checked context) respectively. The purpose

of the static checker is to create the static checked files (‘.bcm’ and ‘.bcc’) from

their unchecked counterparts (‘.bum’ and ‘.buc’), and in the process eliminating

any ill-formed elements. The static checker goes through all the sub-elements of

the unchecked file, and generates their statically checked counterparts if all the re-

quired conditions are met by each element. The statically checked files are, then,

the subject of subsequent tooling.

2. Proof Obligation Generation. This refers to the generation of proof obligations

from the well-formed elements of contexts and machines. Obligation generation

runs on statically checked contexts and machines. The proof obligations generated

in Rodin are presented in §2.2.2, and are more elaborately justified in [60].

3. Proof Management. This refers to the management of the relationship between

proof obligations and their proofs. A proof obligation can be: 1) pending, 2)

discharged, or 3) reviewed. A proof obligation is reviewed if it has been inspected
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by the user and is ear-marked to be discharged later. The state of a proof obligation

is determined by the state of its proof (i.e., complete or incomplete). The Rodin

prover alters the state of a proof by 1) applying proof rules, or 2) invoking external

provers (ML, PP [6] and more recently Event-B Isabelle prover [101]).

2.3.2.3 Reactive Development

The Rodin platform proposes a reactive modelling environment [80, 82] similar to modern

integrated development environments (IDE’s), hence the decision to implement Rodin

on top of the Eclipse IDE. The user working on a model is constantly updated on the

status of her/his proofs. To achieve this, the tools in Rodin repertoire run in a reactive

manner by:

1. checking models for syntax and type errors,

2. generating proof obligation where appropriate, and

3. updating the status of its proofs by calling automated provers, or reusing old proof

attempts [82].

The reactive nature of Rodin poses many challenges with respect to proofs. Mehta [82]

outlines the different issues and his approach to dealing with them (proof reuse and

re-engineering.

2.3.2.4 Proof Obligations

Proof obligations are central to Event-B modelling. The naming of proof obligations and

their structure is crucial to facilitating the modelling activity [60]. Proof obligations are

easily traceable to their corresponding element in contexts and machines, making the

transition between modelling and proof easier.

2.3.3 Event-B Mathematical Language

Figure 2.7 shows an example of a simple context. Context C0 defines a constant

minimum. The first axiom asserts that constant minimum is a partial function from the

set of sets of naturals to the set of naturals. The second axiom ensures that minimum

associates non-empty sets of natural numbers with their least element using the usual

ordering ≤ on natural numbers. The syntax used to write Event-B models can be de-

composed into two levels:
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CONTEXT C0

CONSTANTS

minimum

AXIOMS

axm1 : minimum ∈ P(N) 7→ N

axm2 : ∀s · (s ∈ P(N) ∧ s 6= ∅)⇒ (∀n · n ∈ s⇒minimum(s) ≤ n)

END

Figure 2.7: Event-B Outer and Inner Syntax

1. Outer Syntax : this level of syntax corresponds to the unboxed parts of the context

definition in Figure 2.7. This syntax is used to specify the components of individual

contexts and machines.

2. Inner Syntax : this level of syntax corresponds to the boxed parts in Figure 2.7.

This syntax is used to specify the mathematical formulae corresponding to axioms,

invariants, guards and actions.

The inner syntax of Event-B is specified by means of an attributed grammar, and is

defined in the (AST) sub-module of Rodin, see §2.3.1. The outer syntax, on the other

hand, is specified by a database of elements whose relationships are specified by a graph.

Thanks to the Rodin database [12, 60], the outer syntax is easily extensible. This

facilitated the development of several useful plug-ins, e.g., the Modularisation plug-

in [66] and the Records plug-in [104].

The inner syntax, prior to Rodin version 2.0, was wired in the (AST) sub-module, and

could not be extended as easily as the outer syntax. However, Rodin 2.0 provided a

dynamic parser for the inner syntax which can be easily augmented with new syntax [3].

From hereon, we shall refer to the inner syntax as the mathematical language of Event-

B [83]. The mathematical language is the level of syntax whose extensibility is addressed

by the contributions of the thesis. In particular, two important aspects of extensions

are considered: practicality of use and soundness.

2.3.4 Proof Infrastructure

The proof obligation manager (POM), described in §2.3.1, manages the relationship

between proof obligations and their proofs. The proof manager (PM) is in charge of

handling and maintaining proofs, and provides important services to POM. For each

proof obligation, it constructs a proof tree whose root is the sequent of the obligation

itself. The proof manager works both automatically (without user intervention) and

interactively (with user intervention and possibly with input).
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finite(a), f ∈ a→b ⊢ finite(f) 

��n, f · f∈1 ‥ n � 	a, f ∈ a→b
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⊢
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Figure 2.8: The Proof Manager (PM)

A detailed description of Rodin’s prover architecture is described by Mehta in his the-

sis [82]. We summarise the key elements of the architecture:

• Proof Trees are recursive structures based on proof tree nodes. A proof tree node

represents a single node as well as the proof tree (or sub-tree) rooted at that node,

see Figure 2.8. Each proof tree node has a sequent. It may also have a justifying

proof rule and a list of child nodes. A proof tree node can be either:

1. pending, if its proof rule is null, consequently, the list of child nodes is null,

or,

2. non-pending, if it has a non-null proof rule, and the child nodes correspond

to the result of applying the proof rule to its sequent.

• Tactics were introduced by Robin Milner in the early 1970 for the LCF theorem

prover [85]. They provide a uniform mechanism to manipulate proof trees. A

tactic could be a wrapper around a proof rule in which case it is called a basic

tactic. Tactical tactics, on the other hand, are more structured and can be used

to specify a proof strategy [82]. An example is a tactic that repeats another tactic

until it fails.

• Reasoners are concrete proof rule generators. An example proof rule is the follow-

ing well-documented conjunction-introduction rule:

H ` P H ` Q

H ` P ∧Q
∧ intro
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Concrete proof rules can be generated by appropriately instantiating the meta-

variables H, 7P and Q. Using a simple Java-like language, Listing 2.1 describes

the general interface reasoners obey [82]:

The apply method checks whether the proof rule is applicable to the given sequent

with the supplied input 8, and if so generates a concrete proof rule which will be

the justification for the proof step. If the rule is not applicable, no change occurs

in the proof tree.

interface Reasoner{

Rule apply(Sequent sequent , ReasonerInput input);

}

interface ReasonerInput {}

Listing 2.1: Reasoner Protocol

The proof manager can be extended with new reasoners and tactics. There is a well-

defined protocol for both extensions. Reasoners are also used to integrate external

provers. The idea is to encapsulate a call to the external prover as a reasoner applica-

tion. The call is successful if the external prover discharges the sequent, i.e., if it finds

a complete proof for the sequent. One limitation is that information about how the

external prover went about the proof (e.g., used hypotheses) is not always available to

the proof manager.

Two external provers that have been successfully integrated are:

1. The Predicate Prover (PP): this prover is built around a hierarchy of provers. It

contains a decision procedure for propositional logic and a semi-decision procedure

for first order logic. Another major component is the translator from set theory

to first order logic. It is built in accordance with the set-theoretic construction

outlined in the B Book [8].

2. The ML Prover (ML): is a rule-based prover used in the Logic Solver which is the

compiler-interpreter used for B. PP was originally developed to validate the many

proof rules of ML. ML and PP are part of Atelier-B [6] which provides the proving

infrastructure for B.

Despite being optimised for proof reuse [82], the current architecture has the following

limitations:

• in order to add a new proof rule, it was required to implement a reasoner and a

wrapper tactic. Therefore, a certain level of competence with the Java program-

ming language as well as knowledge of Rodin architecture were necessary;

7Note that H stands for a set of formulae (the set of hypotheses)
8Input could, for example, be a term to instantiate a universally quantified formula.
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• after a new rule is added, soundness of the prover augmented with the new rule

has to be established. It is not clear how this can be achieved at the level of Java

code. The use of Java verification tools, e.g., JML [30] has not been adopted by

Rodin as of the time of writing this thesis.

Summary. The aim of this section was to provide the practical setting of the contri-

butions of this thesis. We presented an overview of the Rodin platform. The general

architecture of the toolset is discussed. A particular focus is placed on the tooling aspects

of Rodin including static checking, proof obligation generation and proof management.

We also provided a brief description of the Event-B mathematical language and proof

infrastructure.

2.4 Reasoning in Event-B

In this section, we define the mathematical logic that will be used in the proof system

of Event-B. We also discuss in detail the proof calculus employed in Event-B reason-

ing. The important notion of well-definedness is thoroughly studied, and its link to

partial functions is presented. The mathematical logic defined herein will also be used

in Chapter 3.

2.4.1 First-order Predicate Calculus with Equality

In the next two definitions, we introduce the syntax of the first-order predicate calculus

with equality. We use the language signature Σ defined by a set V of variable symbols, a

set F of function symbols and a set P of predicate symbols. In line with [8, 11, 25, 81, 82],

we distinguish between terms and formulae.

Definition 2.1 (Term). TΣ, the set of Σ-terms, is inductively defined as follows:

• each variable of V is a term;

• if f ∈ F , arity(f) = n and each of e1, ..., en is a term, then f(e1, ..., en) is a term.

Definition 2.2 (Formula). FΣ, the set of Σ-formulae is inductively defined as follows:

• p(t1, ..., tn) is a formula provided p ∈ P , arity(p) = n and each of t1, ..., tn is a term;

• t1 = t2 is a formula provided t1 and t2 are terms;

• ⊥ is a formula;

• ϕ ∧ ψ is a formula if ϕ and ψ are formulae;

• ¬ϕ is a formula if ϕ is a formula;

• ∀x.ϕ is a formula if x ∈ V and ϕ is a formula.
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We also use other (standard) logical operators defined using the following syntactic

definitions:

> =̂ ¬⊥

ϕ ∨ ψ =̂ ¬(¬ϕ ∧ ¬ψ)

ϕ⇒ ψ =̂ ¬ϕ ∨ ψ

ϕ⇔ ψ =̂ (ϕ⇒ ψ) ∧ (ψ⇒ ϕ)

In the absence of potentially ill-defined terms, the previous first-order language can be

assigned a two-valued semantics. In this case, the sequent calculus LK [50] can be used

for conducting proofs.

2.4.2 Defining Partial Functions

In this section, we show how a partial function can be added as a definitional extension

by means of a conditional definition [15, 81]. A partial function symbol f is introduced

using the following conditional definition:

Cf~x ` y = f(~x) ⇔ Df
~x,y

fdef

which can be added as an axiom to the proof theory of the previous first-order language,

provided [81]:

1. Variable y is not free in Cf~x ,

2. Formula Df
~x,y only contains the free variables from ~x and y,

3. Formulae Cf~x and Df
~x,y only contain previously defined symbols,

4. The following theorems:

• Uniqueness: Cf~x ` ∀y, z · (D
f
~x,y ∧D

f
~x,z) ⇒ y = z

• Existence: Cf~x ` ∃y ·D
f
~x,y

must be provable from the existing theory and any previously introduced defini-

tions.

The above definition meets the two criteria of a definitional extension: Criterion of

Eliminability and Criterion of Non-creativity [15, 105]. The formula Cf~x is the well-

definedness condition of f which effectively defines its domain. For a total function

symbol, the well-definedness condition is >. In the case where Cf~x holds, the conditional

definition fdef can be used to eliminate all occurrences of f in a term or formula by its
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definition Df
~x,y. As an example, we consider (conditionally) defining the infix division

function in a theory of real numbers:

y 6= 0 ` z = x÷ y⇔ x = z × y
÷def

This definitions allows ‘÷’ to be unfolded when its second argument is not equal to 0.

The term 1÷ 0 is syntactically acceptable, but is said to be ill-defined. In the classical

sense, the formula 1 ÷ 0 = 1 ÷ 0 can be shown to be valid on the basis of their logical

structure [81]. As such, the classical first-order sequent calculus (such as LK) is not a

suitable proof calculus as it does not account for ill-defined terms.

2.4.3 The Well-Definedness Operator

The well-definedness operator ’D’ formally encodes what is meant by well-definedness.

D : (FΣ ∪ TΣ) → FΣ is a syntactic operator that maps terms and formulae to their

well-definedness conditions (which are themselves formulae). We interpret the formula

D(F ) as being valid if and only if F is well-defined. For a detailed treatment of the D
operator, we refer to [15].

The well-definedness (WD) of terms is defined recursively as follows:

D(x) =̂ > if x ∈ V (2.18)

D(f(t1, ..., tn)) =̂

n∧
i=1

D(ti) ∧ Cft1,...,tn (2.19)

where Cft1,...,tn effectively defines the domain of the function f . For this study, we assume

that predicate symbols are total. As a result, ill-definedness can only be introduced by

terms. Therefore, we have the following:

D(p(t1, ..., tn)) =̂

n∧
i=1

D(ti) if p ∈ P (2.20)

D(t1 = t2) =̂ D(t1) ∧ D(t2) (2.21)

For the well-definedness of other formulae, we use the following expansions from [15]:

D(⊥) =̂ >

D(¬ϕ) =̂ D(ϕ)

D(ϕ ∧ ψ) =̂ (D(ϕ) ∧ D(ψ)) ∨ (D(ϕ) ∧ ¬ϕ) ∨ (D(ψ) ∧ ¬ψ)

D(∀x · ϕ) =̂ (∀x · D(ϕ)) ∨ (∃x · D(ϕ) ∧ ¬ϕ)
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Well-definedness conditions related to the derived logical operators can be easily ob-

tained, e.g.,

D(ϕ ∨ ψ) ⇔ (D(ϕ) ∧ D(ψ)) ∨ (D(ϕ) ∧ ϕ) ∨ (D(ψ) ∧ ψ)

Intuitively, the above definitions enumerate all the possible conditions under which a

formula can be evaluated. In the case of disjunction, the formulae can be evaluated if:

1. both disjuncts are well-defined; or

2. either one of the disjuncts is well-defined and is evaluated to true.

Semantic treatment of the D operator can be found in [25, 16].

An important property of well-definedness conditions is that they are themselves well-

defined as shown in [81]; i.e.,

D(D(P )) ⇔ > (2.22)

For the remainder of this thesis, we mainly use the D operator. We may also refer

to another well-definedness operator L [15]. Well-definedness conditions generated by

means of operator L are smaller in size compared to their D counterparts. For this

particular reason, the Rodin platform employs L as it makes proofs less tedious to

perform. For the different logical operators, we have the following L-generated well-

definedness conditions:

L(¬ϕ) =̂ L(ϕ) (2.23)

L(ϕ ∧ ψ) =̂ L(ϕ) ∧ (ϕ⇒L(ψ)) (2.24)

L(∀x · ϕ) =̂ ∀x · L(ϕ) (2.25)

The following property asserts that L is stronger than D:

L(ϕ) ⇒ D(ϕ) (2.26)

Property 2.26 can be shown by structural induction on ϕ. It merely states that if a

formula is shown to be well-defined with respect to L, it will also be well-defined with

respect to D. This is particularly useful in Rodin as the use of L greatly simplifies proofs

of well-definedness. There is, however, a compromise on completeness due to L being

sensetive to the order of formulae.

2.4.4 Well-Definedness and Proof

In this section, we explain the approach taken in reasoning with Event-B when dealing

with ill-defined terms. The notion of well-definedness can be integrated into a classical
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H,P ` P hyp
H ` Q
H,P ` Q mon

H,¬Q ` ⊥
H ` Q contr

H,⊥ ` P ⊥hyp
H ` P

H,¬P ` Q ¬hyp
H ` P H ` Q
H ` P ∧Q ∧goal

H, P,Q ` R
H,P ∧Q ` R ∧hyp

H ` P
H ` ∀x · P ∀goal (x nfin H)

H ` E = E
= goal

H ` [x := E]P

H,E = F ` [x := F ]P
= hyp

H ` P H,P ` Q
H ` Q cut

H, [x := E]P ` Q
H,∀x · P ` Q ∀hyp

Figure 2.9: Inference Rules of FoPCe [81]

first-order sequent calculus to obtain a proof calculus that is suitable for handling partial

functions.

The aim of Mehta’s work is to use the classical sequent calculus (see Figure 2.9) in

Event-B proofs, and as such, the notion of validity cannot be changed. Instead, a

pragmatic approach, in which validity and well-definedness are separated, is taken. To

avoid ill-defined proof obligations being discharged, both validity and well-definedness

are required to hold [81]. For example, the sequent ` 1 ÷ 0 = 1 ÷ 0 is allowed to be

proven to be valid. However, it cannot be proved to be well-defined. When proving a

proof obligations H ` G, we are obliged to prove two proof obligations:

WD : ` D(H ` G) Validity : H ` G

The first proof obligation, WD, is the well-definedness proof obligation, and is expressed

using the well-definedness operator D that was introduced in §2.4.3, and is defined

for sequents in §2.4.4.1. The second proof obligation, Validity, is the validity proof

obligation. Note that both proof obligations, WD and Validity, can be proved using

FoPCe [81].

Proving well-definedness can be seen as filtering out formulae that contain ill-defined

terms. In the case of ` 1 ÷ 0 = 1 ÷ 0, we are also required to prove ` 0 6= 0 ∧ 0 6= 0

as its WD (this proof obligation is obtained using the definition 2.21). Since this is not

provable, we have filtered out the sequent ` 1 ÷ 0 = 1 ÷ 0 as not being well-defined in

the same way we would have filtered out ` 1 = {1} as not being well-typed [81]. Unlike

type-checking, well-definedness is undecidable, and requires mathematical proof.

When proving the validity of a sequent, it can be assumed to be well-defined (as there

is a separate proof obligation to ensure well-definendness). However, only the initial

sequent of Validity can be assumed to be well-defined. In order to take advantage of



Chapter 2 Background 33

the property of well-defined sequents across proofs, we can only use proof rules that

preserve well-definedness [81]. In §2.4.4.2, we present a proof calculus that preserves

well-definedness across proofs.

2.4.4.1 Well-Defined Sequents

The D operator can be extended for sequents as follows:

D(H ` G) =̂ D(∀~x ·
∧

H⇒G) (2.27)

where the following conventions are used:

• H is a finite sequence of formulae,

•
∧

H denotes the conjunction of all formulae present in H,

• ∀~x denotes the universal quantification of all free variables occurring in H and G.

A sequent H ` G is said to be well-defined if we can additionally assume that D(H ` G)

is present in its hypotheses [81]. The syntactic sugar `D is used to denote well-defined

sequents:

H `D G =̂ D(H ` G),H ` G

Examples. Consider the following two sequents:

x = 1 `D x = 1

`D 1÷ 0 = 1

The previous two sequents are equivalent to:

D(x = 1), x = 1 ` x = 1

D(1÷ 0) ` 1÷ 0 = 1

Furthermore, the previous sequents can be simplified further to:

x = 1 ` x = 1

0 6= 0 ` 1÷ 0 = 1

Note that the sequent ‘x = 1 ` x = 1’ is well-defined, since the well-definedness of

both the goal and the hypothesis evaluate to >, and hence implicitly present in the

hypotheses. Therefore, the two sequents ‘x = 1 ` x = 1’ and ‘x = 1 `D x = 1’

are equivalent. However, the two sequents ‘`D 1 ÷ 0 = 1’ and ‘` 1 ÷ 0 = 1’ are not

equivalent.
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H,P `D P
hypD

H `D Q

H,P `D Q
monD

H,¬Q `D ⊥
H `D Q

contrD

H,⊥ `D P
⊥hypD

H `D P

H,¬P `D Q
¬hypD

H,P `D ⊥
H `D ¬P

¬goalD

H `D P H `D Q

H `D P ∧Q ∧goalD
H,P,Q `D R

H,P ∧Q `D R
∧hypD

H `D P

H `D ∀x · P
∀goalD (x nfin H)

H `D [x := E]P

H,E = F `D [x := F ]P
= hypD

H `D D(P ) H `D P H,P `D Q

H `D Q
cutD

H `D E = E
= goalD

H `D D(E) H, [x := E]P `D Q

H,∀x · P `D Q
∀hypD

Figure 2.10: Inference Rules of FoPCeD [81]

In order to use the classical sequent calculus LK [50], a pragmatic approach of ‘separat-

ing the concern of validity from that of well-definedness’ [81] can be adopted. Therefore,

when proving a sequent H ` G, two sequents need to be proved:

WDD : `D D(H ` G) ValidityD : H `D G

The WDD proof obligation is equivalent to the original WD proof obligation since we

know from (2.22) that ‘D(D(H ` G))⇔>’. To get ValidityD , we add the extra hypothesis

‘D(H ` G)’ to Validity using the cut rule whose first antecedent can be discharged using

the proof of WD [81].

The validity sequent ‘ValidityD ’ is shown, in [81], to be equivalent to:

D̂(H),D(G),H ` G

where the D̂ operator is the D operator extended for a finite set of formulae. This equiv-

alence asserts that when proving the validity of a well-defined sequent, its hypotheses

and goal can be assumed to be individually well-defined.

2.4.4.2 WD-Preserving Inference Rules

An inference rule is said to preserve well-definedness iff its consequent and antecedents

are all well-defined sequents. Figure 2.10 introduces the theory FoPCeD (a collection of

WD-preserving inference rules) as developed in [81, 82]. The well-definedness preserving

proof rules are developed with a detour through the classical calculus, shown in Figure
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2.9, and using the following (bridging) inference rule:

D̂(H),D(G), H ` G
H `D G

`D eqv

The double inference line means that the rule can be used in both directions. As such, the

bridging rule allows the passage between the classical and the well-definedness preserving

proof calculi, and vice versa.

Note the additional antecedents in the cases of cutD and ∀hypD rules compared to their

classical counterparts. This is necessary since both rules introduce a new formula (cutD)

or a new term (∀hypD), that may not be well-defined, into the proof. Note that other

inference rules concerning derived logical operators can be derived using the inference

rules of FoPCeD . Note the use of the non-freeness constraint (x nfin H denoting ‘x

is not free in H’), defined in the usual way, in the universal quantification introduction

rule ∀goalD .

The following two proof rules can be derived with a detour through ` sequents (classical

reasoning) [82]:
P,D(Q) `D Q

P `D Q
goalWD

and
P,D(P ) `D Q

P `D Q
hypWD

To give the reader an intuition into how rules are derived, we show how to derive the

following rule:

H `D >
>goalD

by means of the following proof tree:

D̂(H),D(>), H,⊥ ` ⊥
⊥hyp

D̂(H),D(>), H ` >
contr

H `D >
`D eqv

The following proof tree shows how goalWD is derived:

D(P ),D(Q), P ` >
>goalD

D(P ),D(Q), P ` D(D(Q))
2.22

P,D(Q) `D Q

D(P ),D(Q), P,D(D(Q)) ` Q
`D eqv

D(P ),D(Q), P ` Q cut

P `D Q
`D eqv
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For the remainder of this thesis, we may also use the well-definedness preserving proof

rules shown in Figure 2.11.

H `D >
>goalD

H `D P

H `D P ∨Q ∨goal1D

H `D Q

H `D P ∨Q ∨goal2D

H,P `D R H,Q `D R

H,P ∨Q `D R
∨hypD

H,P `D Q

H `D P ⇒Q
⇒goalD

H `D P H,Q `D R

H,P ⇒Q `D R
⇒hypD

H `D P ⇒Q H `D Q⇒ P

H `D P ⇔Q
⇔goalD

H,P ⇒Q `D R H,Q⇒ P `D R

H,P ⇔Q `D R
⇔hypD

H `D D(E) H `D [x := E]P

H `D ∃x · P
∃goalD

H,P `D Q

H,∃x · P `D Q
∃hypD(x nfin H ∪ {Q})

P,D(Q) `D Q

P `D Q
goalWD

P,D(P ) `D Q

P `D Q
hypWD

Figure 2.11: Additional Well-Definedness Preserving Inference Rules [81, 82,
102]

2.4.5 Proofs in Event-B

As mentioned in §2.4.4, when proving a sequent H ` G in Event-B, two sequents need

to be proved:

WDD : `D D(H ` G) ValidityD : H `D G

The WD-preserving proof calculus (FoPCeD) can be used to prove both sequents:

• ‘WDD ’ for each proof obligation are factored out by proving that the source models

(i.e., from which the proof obligations are generated) are well-defined [25]. Proof

obligations generated from well-defined models are guaranteed to be well-defined.

This reduces the number of proofs that need to be carried out [81].

• ‘ValidityD ’ for each proof obligation can be discharged using the WD-preserving

proof calculus.

Example. Assuming a suitable theory of arithmetics, consider the case where the

modeller specifies the following theorem in a context:

∀x : Z · x÷ x = 1 (2.28)
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Two proof obligations are generated to establish the validity of (2.28):

(WDD) `D ∀x : Z · x 6= 0 (2.29)

(ValidityD) `D ∀x : Z · x÷ x = 1 (2.30)

The Sequent (2.29) cannot be discharged since its negation is provable and the calculus

(FoPCeD) is shown to be sound in [102]. The negation of Sequent (2.29) is the following

sequent,

`D ∃x : Z · x = 0

which is shown to be provable by means of the following proof tree:

`D >
>goalD `D 0 = 0

= goalD

`D ∃x : Z · x = 0
∃goalD

However, the Sequent (2.30) can be discharged since we have the following proof tree:

∀x : Z · x 6= 0 `D >
>goalD

⊥ `D ∀x : Z · x÷ x = 1
⊥hypD

0 6= 0 `D ∀x : Z · x÷ x = 1

∀x : Z · x 6= 0 `D ∀x : Z · x÷ x = 1
∀hypD

`D ∀x : Z · x÷ x = 1
goalWD

In summary, theorem (2.28) can be shown to be valid but not well-defined using the

well-definedness preserving calculus (FoPCeD).

Summary. In this section, we presented an overview of the proof calculus used to reason

in Event-B. We have shown how partial functions are added to a theory by means of a

conditional definition in §2.4.2. Moreover, we introduced the well-definedness operator

that generates well-definedness conditions for terms and formulae. We also presented

the work of Mehta [81, 110] regarding the well-definedness preserving proof calculus

(FoPCeD). We concluded this section by briefly discussing proofs in Event-B by means

of a simple example.

2.5 Other Formalisms

In this section, three formalisms are introduced: Isabelle/HOL [90, 94, 95], VDM [28, 70]

and PVS [91, 59]. The aim of this section is to highlight major differences between Event-

B and other established methodologies, and to investigate how these formalisms can

influence our approach to achieve the objectives outlined in §1.2. In the following three

subsections (§2.5.1, §2.5.3 and §2.5.2), we briefly describe Isabelle/HOL, VDM and PVS.

In §2.5.4, advanced features of the aforementioned formalisms will be discussed. The
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choice of Isabelle/HOL, PVS and VDM is taken because these three formal techniques

are known as powerful modelling tools that have been used in non-trivial applications.

Furthermore, VDM uses the logic of partial functions that deals with ill-definedness.

PVS adopts a simpler approach to ill-definedness by generating type correctness condi-

tions (TCC’s) [91, 59]. Finally, Isabelle is an established theorem prover that has been

used to formalise many logics including a shallow embedding for Event-B [101].

2.5.1 Isabelle/HOL

Isabelle is a generic theorem prover developed by Paulson [93]. Isabelle is generic in

the sense that it offers a meta-logic in which many object logics can be formalised.

The meta-logic of Isabelle is intuitionistic higher-order logic with implication, universal

quantifiers and equality. Isabelle has been referred to as the next 700 provers [93].

Isabelle borrows many ideas from the earlier LCF (Logic of Computable Functions)

theorem prover developed by Milner [85]. The meta-language Standard ML [88] is used

to manipulate formulae. Theorems in the LCF system are propositions of a special

“theorem” abstract datatype. The ML type system ensures that theorems can only

be derived using the inference rules specified by the operations of the abstract type.

Proofs are carried out by means of tactics and tacticals written as functions in ML. LCF

represents the backward inference rule

A B
A ∧B ∧i

as a function that maps theorems A and B to the new theorem A ∧ B. In Isabelle,

however, the meta-logic is used to express such a rule as follows [93]:∧
A ·

∧
B · JAK⇒ (JBK⇒ JA ∧BK) .

The brackets J K are used to enclose object-logic formulae, whereas meta-logic formulae

reside outside the brackets. Effectively, Isabelle/HOL is the Isabelle theorem prover

instantiation for higher-order logic. Note that, in Event-B, the programming language

Java is used to specify proof rules; as such it could be considered as a meta-language for

Event-B in the same way Standard ML is considered as a meta-language for LCF [85].

2.5.1.1 The Language

The specification language of Isabelle is inspired by functional programming languages.

A theory is a component that may contain Isabelle declarations, definitions and proofs.

The module system in Isabelle allows the importing of multiple theories. A theory in

Isabelle may define types, terms and formulae. The types found in theories are: (1) base
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types, e.g., bool, (2) type variables, e.g., ’a, (3) function types, and (4) type constructors,

e.g., ’a list. Terms are formed by applying functions to arguments. Note that, in Isabelle,

functions are total, and can be declared polymorphically [90].

Isabelle allows the definition of axiomatic type classes [108]. In a type class, polymorphic

declarations for functions are given. Moreover, additional properties of these functions

can be stated, and these can be used as axioms in the rest of the theory. The mod-

eller can instantiate type classes by providing appropriate bodies for the functions, and

proving that the properties hold. Overloading, in Isabelle, is only allowed in the case of

polymorphic functions with a single polymorphic type [59].

Inductive and co-inductive datatypes can be defined using Isabelle. Support for primi-

tive recursive functions is available. Furthermore, well-founded recursive functions can

be defined together with a measure function to show their termination [59]. Conve-

niently, Isabelle automatically generates induction principles for each user-defined re-

cursive datatype.

The syntax of Isabelle can easily be extended. The tool provides the user with the

facility to define infix and mixfix operators. The user can also specify priorities and

preferred syntax for new operators. For example, [1,2] can be made to represent the

cumbersome cons 1 (cons 2 nil). This is particularly crucial for Isabelle given that it

was conceived to be a generic theorem prover [93].

2.5.1.2 The Prover

Goals in Isabelle have the form [A1; ...;An]⇒ B where Ai is the list of assumptions and

B is the conclusion. Resolution with higher-order unification is the main proof method

in Isabelle. Resolution works on the goal’s assumption, generating new assumptions.

Resolution yields both backward and forward proofs. Backward proof works by unifying

a goal with the conclusion of a rule, whose premises, then, become the new sub-goals.

Forward proof works by unifying theorems (or assumptions) with the premise of a rule,

deriving a new theorem (or assumption) [95, 93].

A tactic, in Isabelle, transforms a proof goal into several sub-goals, and provides a jus-

tification for the proof step. Isabelle is geared for backward proof by providing a large

collection of useful tactics [59]. An important mechanism for the working of tactics is

the instantiation of unknowns and variables in goals and assumptions. As the instan-

tiation mechanism may provide a number of instantiations, instantiations are tried one

after the other until one instantiation is satisfactory. An important component, in this

process, is the backtracking procedure, that is called upon in case an instantiation is not

satisfactory [59].

Tactics in Isabelle can be classified into several categories [59]:
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• Basic tactics: this includes resolution, RS, and assume tac. Resolution works by

unifying the conclusion of a theorem with the conclusion of the goal. If the unifi-

cation succeeds, a suitable substitution is provided. The resolution method, then,

creates a new set of sub-goals corresponding to the assumptions of the theorem

after applying the provided substitution. The basic tactic assume tac works by

unifying the conclusion of the goal with one of its assumptions.

• Induction: the tactic induct tac does resolution with an appropriate induction

rule.

• Simplification: this uses tactics for rewriting. For every created theory, a simplifi-

cation set can be built from theorems, axioms and definitions. The simplification

set can be used to rewrite a goal. Note that the Isabelle prover employs a special

strategy to deal with permutative rewrite rules, i.e., rewrites whose sides are equal

up to renaming of variables. A lexical order is observed, and a permutative rewrite

rule can only be applied if it decreases the term with respect to the defined lexical

order.

• Classical reasoning: an example is blast tac which uses a tableau prover coded

in ML [59].

• Bureaucratic tactics: an example is rotate tac which can be used to change the

order of assumptions. Changing the order of assumptions may be necessary for

rewriting with a particular assumption.

Isabelle has a powerful tactical language. A tactical is a function that creates complex

tactics using the basic ones. The tactical then groups together two tactics and applies

them sequentially to the goal. The tactical language in Isabelle is Standard ML.

Example. The specification of a sequence is defined in the following theory. Datatype

and FunDef are the imported theories.

theory Sequence

imports Datatype FunDef

begin

The following line will create a sequence datatype using an inductive definition. When it

is analysed by Isabelle, some properties will be readily available regarding the datatype

itself.

datatype ’a sequence = Nil ("[]")

| Cons ’a"’a sequence" (infixr "#" 65)

Next, functions such as head (returns the topmost element of the sequence), size and tail

are defined. Note, in particular, the reliance of Isabelle/HOL on pattern matching; a

feature inherited from its implementation language ML. In particular, the size function
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is defined recursively.

fun head :: "’a sequence ⇒ ’a set" where

"head [] = {}" | "head (x#xs) = {x}"
primrec size :: "’a sequence ⇒ nat" where

"size [] = 0"|"size (x#xs) = size xs + 1"

fun tail :: "’a sequence ⇒ ’a sequence" where

"tail [] = []"|"tail (x#xs) = xs"

The following lemma formalises the logical relationship between the size and tail func-

tions. Its proof is straightforward. It inducts on the sequence xs using the tactic

induct tac. Using the auto tactic completes the proof.

lemma tail size rel: "size (tail (x#xs)) = size(xs)"

apply(induct tac xs)

apply(auto)

done

The following function is another way of describing the second constructor of the se-

quence datatype.

fun add :: "’a sequence ⇒ ’a ⇒’a sequence" where

”add xs a = a#xs"

The append function is defined in a recursive fashion below.

primrec append :: "’a sequence ⇒ ’a sequence ⇒ ’a sequence" where

"append [] xs = xs"|"append (x#xs) ys = x#(append xs ys)"

A theorem relating the append and size functions is stated and defined.

theorem append size rel: "size(append xs ys) = size xs + size ys"

apply(induct tac xs)

apply(auto)

done

The interesting map function is defined and theorems relating it to other functions are

stated and proved.

primrec map :: "’a sequence ⇒ (’a ⇒ ’b) ⇒ ’b sequence" where

"map [] f = []"|"map (x#xs) f = (f x)#(map xs f)"

theorem map size preservation: "size (map xs f) = size xs"

apply(induct tac xs)

apply(auto)

done
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theorem tail map rel: "map (tail xs) f = tail (map xs f)"

apply(induct xs)

apply(auto)

done

2.5.2 PVS

The Prototype Verification System [92, 91] was developed by SRI International Com-

puter Science Laboratory. Work on PVS started in 1990, and the first version was

released in 1993. PVS is written in the Lisp programming language, and is integrated

with the Emacs editor. Unlike Isabelle, PVS source code is not freely available.

PVS employs classical typed higher-order logic, extended with predicate subtypes and

dependent types [59]. PVS defines a number of built-in types including booleans, lists,

integers and reals. The usual operations on these types are hardcoded in PVS. Types

can also be constructed using type constructors, e.g., function types, product types,

records and recursive datatypes.

A predicate subtype, in PVS, is a type constructed by collecting elements of a particular

type that satisfy a given predicate. A notable example is the set of non-zero reals. The

set of non-zero reals is used to define the division operator. The authors of [59] argue

that the use of predicate subtypes improves the readability of specifications, and helps

with detecting semantic errors related to them.

In PVS, dependent types can be constructed using predicate subtypes. In [59], the

following example is provided:

Ex_Array[T: TYPE]: THEORY

BEGIN

Ex_Array: TYPE = [# length: nat, val: [below(length) -> T] #]

END Ex_Array

In this example, Ex_Array is a record type with two fields. The first field (length)

denotes the length of the array. The second field (val) is the array of values stored at

each index. The domain of val is the predicate subtype below(length) of the natural

numbers less than length. As such, the type of val depends on its length.

2.5.2.1 The Language

PVS provides an integrated environment to create and reason about formal specifica-

tions. The specification language employed by PVS is based on higher order logic. It
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has a strong type system that incorporates a rich built-in set of types, type constructors,

and predicate subtypes. Definitions and axioms are the building blocks of specifications

which are organised into theories and datatypes [92].

A specification written in PVS is made of theories. Each theory exhibits a signature

that describes the different types and constants it uses. It also contains the definitions,

axioms and theorems that govern the signature. A theory can be based on other theories,

for instance, a stack theory can be modelled by means of a sequence theory.

Another important characteristic of PVS theories is parametrisation. A specification in

PVS is usually divided into several theories, and each theory can be parametrised on

types and values. In the example of stacks, the defining theory can be parametric on

the type of the elements it stores. A theory can be imported, and all its parameters

have to be instantiated by the importing theory. The assuming clause in PVS can be

used to constrain its parameters. When a theory with an assuming clause is imported,

type correctness conditions (TCC’s) are generated to ensure that the assumptions of the

imported theory hold for the parameter instantiations.

Polymorphism is not available in PVS. However, it can be approximated by the use of

type parameters to parametrise theories. A polymorphic function can be defined in a

theory parametrised by the type variables of the said function. As pointed out in [59],

this approach may not always be convenient, because when a theory is imported all

its parameters must have a value, regardless of whether they are used by the required

function.

PVS allows operator overloading. This means that functions within the same theory

may have the same name as long as they differ in their types. Different theories can

define functions of the same name, even if they have the same type. The name of the

theory can be used as prefix to distinguish similarly named functions [91, 59].

Inductive datatypes and recursive functions can be defined in PVS. An induction prin-

ciple and a number of standard functions such as map and reduce are automatically

generated by the tool. All functions in PVS must be total, and as such, recursive func-

tions must be shown to terminate by providing a measure function, Type correctness

conditions are generated to ensure the measure function decreases with every recursive

call [92, 91, 59].

PVS has a much fixed syntax. The standard operators on the sets of reals, integers and

booleans are built-in to the language. As noted in [59], PVS, sometimes, uses uncommon

syntax for common operators, e.g., [A,B] for the Cartesian product of A and B.
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2.5.2.2 The Prover

The sequent calculus is used to represent goals in PVS. A1, .., An ` B1, ..., Bm is a

sequent where Ai are the hypotheses and Bj are the conclusions. This is equivalent to

A1 ∧ ...∧An ⇒ B1 ∨ ...∨Bm. The proof commands in PVS can be categorised into [59]:

• Creative proof commands: Examples of these commands include: induct to ini-

tiate a proof by induction, inst to instantiate a quantified predicate and case to

make a case distinction.

• Bureaucratic proof commands: Examples include flatten for disjunctive simplifi-

cation, expand to expand definitions, and hide to hide assumptions which have

become irrelevant.

• Powerful proof commands: These are intended to discharge trivial goals. Examples

include simplify for simplification. A more powerful command is assert which

uses the simplification command as well as the available decision procedure, e.g.,

arithmetic decision procedures.

PVS has a limited tactical language that includes sequencing, backtracking, branching

and recursion. Other proof strategies can be implemented in Lisp [59].

Example. PVS has a powerful datatype mechanism. In this example, we show how the

sequence structure can be defined in PVS. The following snippet will create the sequence

datatype with two constructors. Note that the datatype is parameterised on type S.

Seq[S:TYPE] : DATATYPE

BEGIN

Nil: Nil?

Cons(head:S, tail: Seq):NonNil?

END Seq

This will automatically create a theory that underlies the sequence datatype (saved in

a file Seq adt.pvs). Here are some extracts from the resulting theory.

Seq_adt[S: TYPE]: THEORY

BEGIN

Seq: TYPE

Nil?, NonNil?: [Seq -> boolean]

Nil: (Nil?)

Cons: [[S, Seq] -> (NonNil?)]

head: [(NonNil?) -> S]

tail: [(NonNil?) -> Seq]
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In the previous snippet, a sequence type as well as two subtypes (Nil?) and (NonNil?)

are declared. Furthermore, functions head, tail and Cons are defined by giving their

types. The following axiom defines the induction mechanism of sequences which is

expressible by quantifying over predicates.

Seq_induction: AXIOM

FORALL (p: [Seq -> boolean]):

(p(Nil) AND

(FORALL (Cons1_var: S, Cons2_var: Seq):

p(Cons2_var) IMPLIES p(Cons(Cons1_var, Cons2_var))))

IMPLIES (FORALL (Seq_var: Seq): p(Seq_var));

After defining the sequence datatype, we can import the resulting theory and use it for

modeling.

Sequence [S: TYPE]: THEORY

BEGIN

importing Seq_adt[S]

s, s1: VAR Seq

e:VAR S

n:VAR nat

The size functions is defined in terms of the function reduce nat. This functions along

many others were generated when the datatype is created.

size(s): nat = reduce_nat(0, lambda e,n :1+n)(s)

Two theorems relating head, tail and size are stated. Their proof is carried out using

a powerful PVS tactic called induct-and-rewrite!.

head_tail_rel: THEOREM

NonNil?(s) => Cons(head(s), tail(s)) = s

size_tail_rel: THEOREM

NonNil?(s) => size(s) = size(tail(s))+1

Finally, the appending function is recursively defined, and a theorem regarding its rela-

tionship with the size function is stated. The proof of the theorem is achieved by using

the tactic induct-and-rewrite.

append(s, s1): recursive Seq =

(if Nil?(s) then s1 else
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Cons(head(s), append(tail(s), s1)) endif)

measure (lambda s,s1:size(s)+size(s1))

append_size_rel: THEOREM

size(append(s,s1)) = size(s)+size(s1)

END Sequence

2.5.3 VDM

The Vienna Development Method (VDM) [28, 70] is a system modelling and develop-

ment method much like Event-B in its general objectives. It provides rules to verify the

different steps of system development including data reification and operation decom-

position. In this subsection, we will present a brief overview of VDM with a focus on its

specification language and the underlying logic.

LPF (Logic of Partial Functions) [33, 24, 32, 67] is used for reasoning about VDM

models. LPF is a three-valued first-order predicate logic designed for reasoning about

languages with partial functions. LPF gives non-classical interpretations to the logical

connectives and quantifiers. Atomic formulae that contain non-denoting terms may be

logically neither true nor false. The logical connectives and quantifiers are augmented in

order to handle operands that are neither true nor false. However, the classical truth and

falsehood conditions are retained as much as possible in order to minimise the deviation

from intuitive interpretations.

A typed version of LPF was introduced by Jones and Middelburg [68], and is the logic

used for reasoning about VDM models. In addition to the logical values true and

false, LPF admits undefined (also called non-denoting) terms, and uses the value ⊥B to

account for such terms. The truth tables for negation (see Figure 2.12) and disjunction

(see Figure 2.13) may be thought of as describing a ‘parallel lazy evaluation of the

operands’ [67].

¬
true false

false true

⊥B ⊥B

Figure 2.12: Truth Table for ¬ in LPF

An important feature of LPF is the absence of the law of excluded middle:

e ∨ ¬e Excl-Mid
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∨ true false ⊥B
true true true true
false true false ⊥B
⊥B true ⊥B ⊥B

Figure 2.13: Truth Table for ∨ in LPF

As a consequence, classical deduction cannot be used:

e1 ` e2
e1⇒ e2

Deduction

The well-definedness operator δ is used in LPF to recover the power of two-valued

classical logic, and is defined as follows:

δe =̂ e ∨ ¬e .

The deduction rule can, then, be rewritten to the valid rule:

δe1 e1 ` e2
e1⇒ e2

⇒ I

2.5.3.1 The Language

VDM-SL (shorthand for VDM Specification Language) is used to create specifications

in a model-oriented approach. The data model of a specification written in VDM-SL

defines: (1) the abstraction of the data types that are needed by the system, (2) the

collection of operations that describe the required behaviour of the system in question.

In some cases, the system may be required to posses a state in which case a state type is

defined as part of the data model. The operations describing the behaviour of a system

define a relation between input and output values of defined types. In the presence of

system state, the operations may change the state as a side effect of maintaining the

relation between their input and output.

Abstraction is an important technique to address the complexity of systems. The data

model defined in a specification is an abstraction of the various data types that will

appear in the final implementation. Data reification techniques allow the specification

to evolve in a way that makes its data model more closely approximate the data types

of the implementation. Each refinement step is shown to maintain the requirements of

the more abstract specifications.

Mathematical structures, such as relations, are used to specify model operations. In the

final implementation, however, operations are turned into executable programs. Oper-

ation decomposition techniques facilitate the introduction of useful programming con-

structs in the definition of operations as the specification progressively evolves into a
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concrete implementation. VDM-SL provides a collection of predefined operation combi-

nators that enable imperative-style operations specifications [28].

2.5.3.2 The Prover

A collection of tools are available for developing models in VDM. This includes: VDM-

Tools [2] and Overture [72]. However, currently there is no VDM-specific theorem prover.

An initiative to enable automated proof support for VDM is under way as part of the

Overture community project [106]. A semantic-preserving translator has been created; it

works by porting VDM proof obligations to be discharged by HOL [57] theorem prover.

2.5.4 A Comparison: Event-B, Isabelle/HOL, PVS and VDM

In this section, we provide a summary of the differences between Event-B, Isabelle/HOL,

PVS and VDM. In the comparison that follows, we consider the Event-B methodology

prior to our work. To enhance readability, the comparison is provided in tabular format

(see Table 2.1, 2.2 and 2.3), and is divided into three parts: the logic, the specification

language, and the prover. The following key points summarise the criteria against which

the three formalisms will be compared:

• Logic: the formalisms are compared with respect to the logic used, its expressive-

ness and how it handles partiality.

• Specification Language: the three formalisms are contrasted with regards to the

usability, expressiveness and extensibility of the specification language.

• Prover: the formalisms are compared in terms of prover effectiveness (i.e., how

powerful is the support for automatic proofs), extensibility and soundness.

Note that VDM relies on external provers to discharge proof obligations, as such, VDM

is not considered for the comparison of provers. In the comparison tables below, the use

‘N/A’ signifies that the feature is not supported, or that we cannot make a judgement

based on the available documentation.

2.5.5 A Reflection

In this section, we provided an overview of three widely used formalisms. We, briefly,

described their logics, specification languages and provers. In the context of the com-

parison in §2.5.4, we single out the following aspects of Event-B that we aim to improve:
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Event-B Isabelle/HOL PVS VDM

The Logic Set theory Typed HOL Typed HOL LPF

Predicate Subtypes N/A N/A ++ N/A

Dependent Types N/A N/A ++ N/A

Polymorphism N/A ++ - +

Abstract Datatypes N/A ++/+ ++/+ N/A

Recursive Functions N/A ++/+ ++/+ -

Table 2.1: Comparison of Logics

Event-B Isabelle/HOL PVS VDM

Flexible Syntax - ++ - -

Module System - + ++/+ +

Overloading N/A - ++ -

Libraries N/A + ++/+ +

Table 2.2: Comparison of Specification Languages

Event-B Isabelle/HOL PVS

Automation + + +

Proof Management ++ +/- ++

Tactical Language - ++ -

Arithmetics - +/- ++

Soundness - ++ -

Table 2.3: Comparison of Provers

1. Support for polymorphism: Event-B does not support user-defined polymorphic

operators. In this thesis, we show how user can contribute polymorphic operators

in a sound and usable way. We will show in Chapter 4 that our approach to address

this particular issue resembles the approach taken by Isabelle/HOL rather than

that taken by PVS.

2. Abstract datatypes and recursive functions: a minor contribution of this thesis

(§4.8) is the provision of a mechanism to specify inductive datatypes and recur-

sive operators. The contribution in §4.8 is strongly influence by datatypes in

Isabelle/HOL.

3. Syntax flexibility: in §4.7, we will show how to ensure that new syntax can be con-

tributed to the Event-B mathematical language without compromising the sound-

ness of the formalism.

4. Proof management and soundness: in Chapter 4, we will show how the Event-B

prover can be augmented with new proof rules in a usable and sound fashion. The
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work in Chapter 3 was motivated by the presence of unsound rewriting rules in

Rodin.

5. Module system: in §4.2, we show how to structure Event-B models in a way that

promotes reusability.

Chapter 5 describes the practical contribution by which we address the aforementioned

concerns. Chapter 6 showcases the use of the Theory plug-in by means of a few relatively

simple examples.

2.6 The Logic of Event-B

Schmalz defines the Event-B logic using a shallow embedding in Isabelle/HOL [90].9

A deep embedding of a logic in Isabelle requires (1) defining the syntax of the object

logic as a datatype, (2) providing semantics of the object logic, and (3) proving that

the axioms governing the syntax are sound with respect to the semantics. A shallow

embedding does not requires steps (1) and (2) [52]. As a result, shallow embedding can

be thought of as a syntactic translation.

Schmalz provides a comprehensive specification of the logic of Event-B in one docu-

ment [90]. He gives semantics, devises soundness preserving extension methods, develops

a proof calculus similar to [81], and proves its soundness. [90] presents a formal lan-

guage for expressing rules (including non-freeness conditions) and show how to reason

in Event-B about the soundness of rules.

The Event-B logic has a Hindler-Milner style type system [102] similar to Isabelle/HOL

and ML [88]. Type operators such as × and ↔ are defined by means of their Is-

abelle/HOL counterparts.10 Type substitutions are central to a logic that supports

polymorphism, and are also introduced. Binders, terms and formulae are introduced are

assigned Isabelle/HOL semantics by means of a number of higher-order logic constructs.

Note that Schmalz considers formulae (i.e., predicates) to have a boolean type B. Ways

of conservatively extending the Event-B logic are outlined (see Chapter 5 of [102]).

The proof system of Event-B is shown to be sound in [102]. We say that a rule is sound

if it is derived from the basic rules of the well-definedness preserving proof calculus with

or without detour through the classical proof calculus. For instance, we have shown in

§2.4.4.2 that the following two rules are sound:

P,D(Q) `D Q

P `D Q
goalWD

9A deep embedding requires Event-B logic to be defined as an object logic in Isabelle. This is a highly
involved process, and may render useful proof procedure of Isabelle/HOL unusable.

10Z is considered a type operator with a zero arity.



Chapter 2 Background 51

H `D >
>goalD

with detour through the classical proof calculus, i.e., ` sequents. More generally, we say

that a proof extension, i.e., a rewrite or an inference rule, or a polymorphic theorem, is

sound if its application can be justified by a proof construction using the rules of the

well-definedness preserving proof calculus. In the case of language extensions, soundness

of an operator definition requires the satisfaction of the conditions stipulated in in [102]

regarding conservative extensions.

In Chapter 3, we will only use an untyped fragment of the Event-B logic. The work

in Chapter 3 can be considered as a complement to Mehta’s work in [81]. Suitably, it

was decided to use a similar fragment of the logic of Event-B. However, for the work

on language extensibility (polymorphic operators in particular), we base our discussion

and justify our development using the results presented by Schmalz in [102] regarding

conservative extensions.

2.7 Summary

In this chapter, we presented an overview of the different concepts that will come into

play in subsequent chapters. Firstly, formal methods were introduced to provide the

general context for this work. Next, the focus was placed on Event-B and the Rodin

platform which provides the practical setting for this thesis. The proof infrastructure of

Rodin was presented and its shortcomings identified. The proof system used in Event-

B is described. Next, a brief comparison was carried out between Event-B and three

other formalisms. Finally, we presented a brief overview of the logic of Event-B as

described in [102]. In the next chapter, we explore the integration of rewriting into

the well-definedness preserving proof system using an untyped fragment of the Event-B

syntax.





Chapter 3

Rewriting and Well-Definedness

within a Proof System

In this chapter, we provide a unifying study of term rewriting systems and the important

notion of well-definedness. The sequent calculus used in Event-B reasoning takes into

consideration partiality and its implications. The Event-B proof system is described

in details by Mehta [82, 81] and Schmalz [102]. Our aim is to show how rewriting

preserves equality/equivalence and well-definedness of terms and formulae in the logic

defined in §2.4. Important properties regarding well-definedness will be examined, and

the conditions under which rewriting can be performed in a sound way are singled out.

The results appearing in this chapter have been published in [77].

Rewriting is an important component of theorem proving. All major theorem provers

have mechanisms for incorporating rewriting with the employed proof system. Event-B

employs a well-definedness preserving proof system that is described by Mehta in his

thesis [82]. We present an approach that facilitates the integration of rewriting into

such a calculus. Our approach to rewriting aims to combine two important features: (1)

show how well-definedness can be preserved when rewriting, (2) provide a simple way

to apply rewrite rules.

This chapter is structured in the following way. We begin by presenting important

concepts of rewriting including positions and substitutions. We then show how well-

definedness propagates through positions and across substitutions. Next, the sufficient

conditions under which a rewrite rule preserves well-definedness are singled out, and

the results are summed up succinctly in Theorem 3.3. A large proof effort is carried

out in this chapter, and the reader may be advised to skip proofs at a first pass. We

also present two ways in which conditional rewrite rules can be used, and we show cases

where this can be simplified. We conclude by describing related work.

53



54 Chapter 3 Rewriting and Well-Definedness within a Proof System

3.1 Term Rewriting Systems

Term rewriting systems [19, 42, 96] are reduction systems where terms can be reduced

to other terms by application of rewrite rules. Term rewriting systems play a major

role in various disciplines including abstract datatype specifications, implementation of

functional programming languages and automated reasoning. The λ-calculus [34], which

is a term rewriting system, played a major role in mathematical logic. In this section,

we briefly present some important term rewriting concepts. The notion of positions is

central to term rewriting, and provides a mechanism to uniquely identify subterms (or

subformulae). The important concept of a substitution will be introduced, and some

interesting properties will be described.

3.1.1 Positions

The structure of terms and formulae can be effectively described using a tree. Using a

standard numbering of nodes of the tree by strings of positive integers, it is straight-

forward to refer to positions in terms and formulae. For example, consider the formula

ϕ∧ψ. The empty string ε identifies the root position, and refers to ϕ∧ψ. The position

1 refers to ϕ, whereas 2 refers to ψ. The following definition describes the concept of a

position more formally.

Definition 3.1 (Position). Let s be a term, and ϕ be a formula.

1. The set of positions of the term s is the set Pos(s) of strings over the alphabet

of positive integers, which is inductively defined as follows:

• if s = x ∈ V , then Pos(s) = {ε}, where ε denotes the empty string.

• if s = f(s1, ..., sn), then

Pos(s) = {ε} ∪
n⋃
i=1

{ip | p ∈ Pos(si)}

2. The set of positions of the formula ϕ is the set Pos(ϕ) of strings over the alphabet

of positive integers, which is inductively defined as follows:

• if ϕ is of the form p(t1, ..., tn) where p ∈ P , then

Pos(ϕ) = {ε} ∪
n⋃
i=1

{ip | p ∈ Pos(ti)}

• if ϕ is of the form t1 = t2, then

Pos(ϕ) = {ε} ∪
2⋃
i=1

{ip | p ∈ Pos(ti)}
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• if ϕ is of the form ⊥, then

Pos(ϕ) = {ε}

• if ϕ is of the form ϕ1 ∧ ϕ2, then

Pos(ϕ) = {ε} ∪
2⋃
i=1

{ip | p ∈ Pos(ϕi)}

• if ϕ is of the form ¬ϕ1 or ∀x · ϕ1, then

Pos(ϕ) = {ε} ∪ {1p | p ∈ Pos(ϕ1)}

We use the notation s|p where s is a term, to refer to the subterm of s at position

p ∈ Pos(s). Similarly, we use the notation ϕ|p to refer to the subterm or subformula

of formula ϕ at position p. Moreover, the notation s[t]p refers to the term obtained by

replacing the subterm s|p by t in s. Analogously, ϕ[w]p such that w and ϕ|p are both

formulae or both terms, refers to the formula obtained from ϕ by replacing ϕ|p by w.

For example, the notation (ϕ1∧ϕ2)|1 denotes the subformula ϕ1. Similarly, the notation

(ϕ1 ∧ ϕ2)|2 denotes the subformula ϕ2. Finally, for the rest of this chapter, we assume

a syntactic operator

Var : (FΣ ∪ TΣ)→ P(V )

such that for a given term or formula t, Var(t) is the set of its free variables.

3.1.2 Substitutions

In the language signature Σ defined in §2.4, a function with zero arity is called a con-

stant1. One of the major differences between constants and variables is that a variable

can be substituted for by a term. The following definition describes the notion of sub-

stitutions more formally.

Definition 3.2 (Substitution). A TΣ-substitution, or simply substitution if the set of

terms is clear from the context, is a function σ : V → TΣ such that σ(x) 6= x for only

finitely many variables x’s. The finite set of variables that σ does not map to themselves

is the domain of σ, i.e.,

Dom(σ) = {x ∈ V | σ(x) 6= x}

The range of a substitution σ is the set of terms which are the images of the variables

in the domain of the substitution σ, and is formally defined as follows:

Ran(σ) = {t ∈ TΣ | ∃x · x ∈ Dom(σ) ∧ t = σ(x)}
1This is different from Event-B constants defined as part of contexts.
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A substitution σ is said to instantiate variable x if x ∈ Dom(σ). The application of

a substitution σ to a term (or a formula) q simultaneously replaces occurrences of all

variables in Var(q) ∩ Dom(σ) by their respective σ-images. A substitution σ can be

extended to a mapping σ̂ : TΣ → TΣ such that:

σ̂(x) = σ(x) if x ∈ V

σ̂(f(s1, ..., sn)) = f(σ̂(s1), ..., σ̂(sn)) if f ∈ F

The composition of two substitutions σ and τ is the substitution στ such that στ(x) =

σ̂(τ(x)). For the rest of this chapter, we use σ to also stand for σ̂, and restrict substi-

tutions according to the following definition:

Definition 3.3 (Idempotent Substitution). A substitution σ is said to be idempotent

if σ = σσ.

The repetitive application of an idempotent substitution yields the same result as a

single application. We have the following important corollary [19]:

Corollary 3.1. A substitution σ is idempotent iff

[
⋃

t∈Ran(σ)

Var(t)] ∩ Dom(σ) = ∅

Corollary 3.1 states that the variables occurring in the terms of the substitution’s range

are completely independent from the variables of its domain. Intuitively, this means

that an idempotent substitution can be simulated by a syntactic replacement as follows:

σ(l) =̂ [x1 := σ(x1)]...[xn := σ(xn)]l (3.1)

such that l is a term and x1, ..., xn are the free variables occurring in l. This is important

as it simplifies the study of the interaction between well-definedness and substitutions.

In his thesis [82], Mehta presents the following two properties about well-definedness

and syntactic replacement:

D([x := t]ϕ) ⇒ [x := t]D(ϕ)

[x := t]D(ϕ) ∧ D(t) ⇒ D([x := t]ϕ)

For the rest of this chapter, we may use the following simpler property about well-

definedness and idempotent substitutions.

Proposition 3.1. Let t be a Σ-term. If σ is a substitution then

D(σ(t)) ⇔
∧

x∈Var(t)

D(σ(x)) ∧ σ(D(t))
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The proof of Proposition 3.1 can be found in Appendix A. Idempotent substitutions

will be used for the rest of this chapter. Proposition 3.1 will be used to simplify well-

definedness formulae.

3.1.3 Conditional Rewriting

In this section, we define the important concept of rewrite rules, and outline their syn-

tactic properties. We will later deal with the semantics of such rules by following a

purely syntactic approach (i.e., proofs) within the proof system described in §2.4. The

following definitions describe what is meant by a conditional term rewrite rule.

Definition 3.4 (Conditional Identity). A Σ-conditional identity (or simply conditional

identity) is a triplet (l, c, r) ∈ TΣ × FΣ × TΣ. In this case, l is called the left hand side,

r the right hand side, and c the condition of the identity.

The following definition describes the validity of conditional identities.

Definition 3.5 (Valid Conditional Identity). A conditional identity (l, c, r) is valid iff

the following sequent is provable

c `D l = r

A conditional identity describes an equality between two terms under a certain condition.

Note the use of `D . The definition of validity takes into account the presence of ill-defined

terms. However, rather counter-intuitively, the following is a valid conditional identity:

1÷ 0 = 1 `D 1 = 0 (3.2)

To see why (3.2) is a valid conditional identity according to Definition 3.5, we expand

the definition of `D using the rule `D eqv described in §2.4.4.2:

0 6= 0, 1÷ 0 = 1 ` 1 = 0

However, despite the above observation, we will show later that this weak definition of

validity is sufficient for our development. A conditional identity can be turned into a

rewrite rule if it satisfies the syntactic restrictions presented in the following definition:

Definition 3.6 (Conditional Term Rewrite Rule). A conditional term rewrite rule is a

conditional identity (l, c, r) such that:

1. l is not a variable,

2. Var(c) ⊆ Var(l),
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3. Var(r) ⊆ Var(l).

In this case, we use the notation l
c−→ r instead of (l, c, r). A term rewriting system

(TRS) is a set of conditional term rewrite rules.

Definition 3.5 also applies to conditional rewrite rules, because they are essentially con-

ditional identities. The condition that the left hand side of a rewrite rule is not a

variable eliminates an obvious non-terminating case [41] (see §3.1.4). The other two

conditions ensure that matching can gather sufficient information in order to carry out

the rewriting. Matching is the process of matching a term against the left hand side of

a rule. It is a special case of unification [65, 98], and given a term t and a left hand

side of a rewrite rule l, matching calculates an idempotent substitution σ such that

t = σ(l). Pattern matching is an important component of theorem proving infrastruc-

ture as it provides valuable facilities for equational reasoning. In practice, the matching

procedure recursively inspects a formula (considering all possible positions) to establish

whether a particular rewrite rule is applicable, and returns the set of positions at which

a match was found. For each position, a record of the appropriate idempotent substitu-

tion is stored. The precise way in which rewrite rules are applied will be presented and

justified in §3.3.

3.1.4 Confluence and Termination

Confluence and termination are important properties of rewrite systems. Confluence

describes the property of rewrite systems where terms can be rewritten in different

ways to yield the same result. For instance, the rewrite system containing the usual

arithmetic is confluent [19]. Termination describes the property of a rewrite system

where an infinite rewrite chain may not occur. Central to both concepts of termination

and confluence is the notion of term normal form [19].

In a rewriting system, a normal form of a term cannot be rewritten any further. A

rewrite system is defined by means of a reduction relation → between terms. Given a

term t, we write t → t′, if t can be rewritten to t′ by a rule in the rewrite system. We

write t→∗ t′ to indicate that there exists a reduction sequence from t to t′. A term t is

in normal form if there is no term t′ such that t→ t′ [42].

A term t is said to be confluent if for all terms t1, t2 such that t →∗ t1 and t →∗ t2,

there exists a term t′ such that t1 →∗ t′ and t2 →∗ t′. A rewrite system is said to be

confluent if all terms are confluent. A rewrite system is terminating if there is no infinite

reduction sequence t→ t1 → t2 → .... A rewrite system is said to be convergent if it is

both confluent and terminating [42, 19].
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In this chapter, we do not consider confluence and termination of rewrite rules. Our

study is restricted to characterising the interaction between well-definedness and rewrit-

ing. This, however, does not hide the fact that termination and confluence are extremely

important properties of any rewrite system, including the one considered for Event-B.

The large body of research on these two subjects may, in the future, be considered for

implementation as part of the Theory plug-in rewriting capabilities (see Chapter 5) .

3.2 Rewriting and Well-Definedness

In the last section, we introduced important concepts in term rewriting. In this section,

we present a unifying treatment of well-definedness and rewriting. We show the necessary

conditions for a rewrite rule application to preserve well-definedness. The following

definition introduces the notion of WD-preserving conditional term rewrite rule.

Definition 3.7 (WD-Preserving Conditional Rewrite Rule). A conditional rewrite rule

l
c−→ r is said to be WD-preserving if the following sequent is provable:

D(l), c `D D(r)

Note the use of the well-definedness operator D (see §2.4.3). In simple terms, a rewrite

rule is WD-preserving if the well-definedness of its left hand side is stronger than the

well-definedness of its right hand side under the rule’s condition. Intuitively, the well-

definedness strength relationship corresponds to the directed way in which rewrite rules

are applied. In what follows, we describe the significance of WD-preservation in the

context of rewriting where undefinedness is an issue. We will show in §3.2.1 how instan-

tiations, i.e., a substitution, interact with well-definedness in the context of Definition

3.7.

Note. In the forthcoming (sub)sections, we carry out a significant proof effort. Tradi-

tionally, proofs are presented as trees in a similar fashion to inference rule as per the

treatment in §2.4.4.2. Given the complexity of the formulae involved in our proofs, we

opt for a clearer approach. We clearly show the sequent to prove. Then, we mention the

proof rule which is to be applied. Finally, we show the resulting sequents (if any) from

applying the proof rule on the sequent to prove. For example, the following proof step

H `D P H `D Q

H `D P ∧Q ∧goalD

can be described as follows:

“ In order to show the provability of the sequent

H `D P ∧Q
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we proceed as follows. By applying the rule ∧goalD , we obtain the following

two sequents

H `D P

H `D Q”

3.2.1 Well-Definedness and Substitutions

Matching is central to the application of rewrite rules. Given a term t and a left hand

side of a rewrite rule l, matching calculates an idempotent substitution σ such that

t = σ(l). In practice, the matching procedure checks all positions within a formula φ

for terms which can be matched against the left hand side of a rewrite rule l
c−→ r. For

a particular position p ∈ Pos(φ), if a substitution σ is found such that φ |p= σ(l),

then rewriting can be executed by replacing φ |p by the instantiated (using the same

substitution) right hand side of the rule, i.e., σ(r), within the formula φ.

The following theorem formalises the interaction between well-definedness and substitu-

tions in the context of conditional rewrite rules. In the following theorems, we assume

the presence of a suitable theory, e.g., Peano axioms for arithmetics.

Theorem 3.1 (The Instantiation Theorem). Let l
c−→ r be a conditional term rewrite

rule, and σ be an idempotent substitution.

1. If l
c−→ r is valid, then the following sequent is provable:

σ(c) `D σ(l) = σ(r) (3.3)

2. If l
c−→ r is WD-preserving, then the following sequent is provable:

σ(c),D(σ(l)) `D D(σ(r)) (3.4)

The proof of Theorem 3.1 can be found in Appendix A. The Instantiation Theorem

concisely describes the interaction of substitutions and well-definedness with respect to

conditional rewrite rules. We have shown that instances of the rewrite rule (i.e., with an

idempotent substitution) preserve the properties of the rule. This means that if a condi-

tional rewrite rule is valid and well-definedness preserving, then instances created using

an idempotent substitution are also valid and well-definedness preserving. The Instan-

tiation Theorem is a building block in our treatment of well-definedness and rewriting

since it provides a sound bridge between rewrite rules and their instances in the presence

of potentially ill-defined terms. The following theorem states that the application of a

valid and well-definedness preserving conditional term rewrite rule preserves equality

(A.15) and well-definedness (A.16) of terms.
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Theorem 3.2 (Term WD-Preserving Rewriting Theorem). Let l
c−→ r be a conditional

term rewrite rule, t be a term, p be a position within t, and σ be an idempotent sub-

stitution. If l
c−→ r is valid and WD-preserving, then the following two sequents are

provable:

σ(c) `D t[σ(l)]p = t[σ(r)]p (3.5)

D(t[σ(l)]p), σ(c) `D D(t[σ(r)]p) (3.6)

The proof of Theorem 3.2 can be found in Appendic A. The Term WD-Preserving

Rewriting Theorem states that Definition 3.5 and Definition 3.7 are adequate for a

conditional term rewrite rule to preserve equality and well-definedness when applied to

a term.

3.2.2 The Main Theorem

In the previous section, we formally described the interaction between idempotent sub-

stitutions and well-definedness. The understanding of such interaction is of paramount

importance, since in almost all cases, instances of rewrite rules (rather than the actual

rewrite rule) occur in practice. Since instances of rewrite rules are obtained by applying

an idempotent substitution (i.e., avoiding clashes between rule variables and the actual

variables of the instance), it is significant that after applying substitutions, the instances

preserve the properties of the conditional rewrite rule. We have also shown that valid

and well-definedness preserving rewrite rules ensure valid and well-definiedess preserving

rewriting of terms.

We, now, can formulate the main theorem of this chapter. The main theorem asserts

that Definition 3.5 and Definition 3.7 are adequate for a conditional term rewrite rule

to preserve validity and well-definedness when applied to a formula.

Theorem 3.3 (The Main Theorem). Let l
c−→ r be a conditional term rewrite rule, f

be a formula, p be a position within f such that f |P is a term, and σ be an idempotent

substitution. If l
c−→ r is valid and WD-preserving, then the following two sequents are

provable:

σ(c) `D f [σ(l)]p⇔ f [σ(r)]p , (3.7)

D(f [σ(l)]p), σ(c) `D D(f [σ(r)]p) (3.8)

with the proviso that all free variables defined as

Var(σ(c)) ∩ Var(σ(l))

do not become bound in f [σ(l)]p.
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Proof.

1. Proof of Sequent 3.7: We proceed by induction on the structure of the formula f .

We show a sketch of the proof, and only cover three interesting cases.

(a) Base Case: f is of the shape s(t1, ..., tn) such that s ∈ P and t1, ..., tn are

terms. In this case, position p can only be of the form iq for some position q

and 1 ≤ i ≤ n since the root position is of a formula. Therefore, Sequent 3.7

becomes

σ(c) `D s(t1, ..., tn)[σ(l)]p⇔ s(t1, ..., tn)[σ(r)]p

where p = iq for some position q and 1 ≤ i ≤ n. This can be rewritten to

σ(c) `D s(t1, ..., ti[σ(l)]q, ..., tn)⇔ s(t1, ..., ti[σ(r)]q, ..., tn)

This amounts to proving the following two sequents:

σ(c), s(t1, ..., ti[σ(l)]q, ..., tn) `D s(t1, ..., ti[σ(r)]q, ..., tn) (3.9)

σ(c), s(t1, ..., ti[σ(r)]q, ..., tn) `D s(t1, ..., ti[σ(l)]q, ..., tn) (3.10)

According to Theorem 3.2, we have the following provable sequent:

σ(c) `D ti[σ(l)]q = ti[σ(r)]q .

As such, it is easy to see that Sequent 3.9 and 3.10 are provable.

(b) Inductive Case: f is of the shape ϕ ∧ ψ such that ϕ and ψ are formulae.

In this case, Sequent 3.7 becomes

σ(c) `D (ϕ ∧ ψ)[σ(l)]p⇔ (ϕ ∧ ψ)[σ(r)]p (3.11)

Position p can only be of the form p = 1q or p = 2q for some position q. We

distinguish the two cases:

i. p = 1q: In this case, Sequent 3.11 becomes

σ(c) `D (ϕ[σ(l)]q ∧ ψ)⇔ (ϕ[σ(r)]q ∧ ψ) (3.12)

To proceed, we assume the following inductive hypothesis

σ(c) `D (ϕ[σ(l)]q)⇔ (ϕ[σ(r)]q) (3.13)

and we show that Sequent 3.12 is provable. Sequent 3.12 can be reduced

to the following two sequents:

σ(c), ϕ[σ(l)]q, ψ `D ϕ[σ(r)]q ∧ ψ

σ(c), ϕ[σ(r)]q, ψ `D ϕ[σ(l)]q ∧ ψ



Chapter 3 Rewriting and Well-Definedness within a Proof System 63

which can, respectively, be reduced to the following two sequents:

σ(c), ϕ[σ(l)]q `D ϕ[σ(r)]q (3.14)

σ(c), ϕ[σ(r)]q `D ϕ[σ(l)]q (3.15)

It is easy to see that the provability of Sequent 3.14 and Sequent 3.15

follows immediately from the inductive hypothesis i.e., Sequent 3.13.

ii. p = 2q: follows by symmetry.

(c) Inductive Case: f is of the shape ∀x · ϕ such that ϕ is a formula. In this

case, Sequent 3.7 becomes

σ(c) `D (∀x · ϕ)[σ(l)]p⇔ (∀x · ϕ)[σ(r)]p (3.16)

Position p can only be of the form p = 1q for some position q. Sequent 3.16

simplifies to

σ(c) `D (∀x · ϕ[σ(l)]q)⇔ (∀x · ϕ[σ(r)]q) (3.17)

To proceed, we assume that the following sequent is provable:

σ(c) `D (ϕ[σ(l)]q)⇔ (ϕ[σ(r)]q) (3.18)

and we show that Sequent 3.17 is provable. Proving Sequent 3.17 amounts

to proving the following two sequents:

σ(c),∀x · ϕ[σ(l)]q `D ∀x · ϕ[σ(r)]q (3.19)

σ(c),∀x · ϕ[σ(r)]q `D ∀x · ϕ[σ(l)]q (3.20)

Proofs for Sequent 3.19 and Sequent 3.20 are similar, and we only show the

proof for Sequent 3.19. Firstly, note that the proviso of Theorem 3.3 ensures

that universal quantifier does not bind any variables in σ(l). This also means

x does not occur free elsewhere in Sequent 3.19 and 3.20 since we have the

following property that follows from the definition of a conditional rewrite

rule:

Var(σ(c)) ⊆ Var(σ(l))

Now, we can apply the rule ∀goalD on Sequent 3.19 knowing that its side

condition holds. We obtain the following sequent:

σ(c), ∀x · ϕ[σ(l)]q `D ϕ[σ(r)]q (3.21)

Next, we apply rule ∀goalD on Sequent 3.21, we get the following two sequents:

σ(c), ∀x · ϕ[σ(l)]q `D D(x) (3.22)

σ(c), ϕ[σ(l)]q `D ϕ[σ(r)]q (3.23)
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Sequent 3.22 is provable since variables are well-defined. Sequent 3.23 prov-

ability follows from the inductive hypothesis.

2. Proof of Sequent 3.8: is similar to the proof of Sequent 3.7, and is diferred to

Appendix A.

Theorem 3.3 provides the sufficient conditions under which a conditional rewrite rule

preserves validity and well-definedness. Effectively, this section provides a basis for un-

derstanding the interaction between rewriting and well-definedness. In the next section,

we use the results from this section to show how rewriting can be performed on goal

or hypothesis whilst preserving validity and well-definedness. We aim to show how

rewriting can be interleaved with deduction in the proof calculus presented in §2.4.4.2.

3.3 Rewriting as a Proof Step

In this section, we show how rewriting can be used in proofs alongside the WD-preserving

sequent calculus. In §3.2, we discussed the necessary conditions under which rewriting

preserves well-definedness. In what follows, we show by means of proof derivations how

rewriting can be integrated into the WD-preserving proof calculus as a proof step. We

single out two ways of applying conditional rewrite rules.

3.3.1 Single Rule Application

Let l
c−→ r be a valid and WD-preserving conditional term rewrite rule, and σ be an

idempotent substitution. The following two subsections describe how rewriting can be

applied to hypotheses and the goal.

3.3.1.1 Hypothesis Rewriting

Assume the following sequent whose provability is to be established:

H,P [σ(l)]p `D G (3.24)

The hypothesis P [σ(l)]p has an occurrence of an instance of the left hand side of the

given rewrite rule. By applying the cut rule on Sequent 3.24 to introduce σ(c), we get
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the following three sequents:

H,P [σ(l)]p `D D(σ(c)) (3.25)

H,P [σ(l)]p `D σ(c) (3.26)

H,P [σ(l)]p, σ(c) `D G (3.27)

By applying the cut rule on Sequent 3.27, we get the following three sequents:

H,P [σ(l)]p, σ(c) `D D(P [σ(r)]p) (3.28)

H,P [σ(l)]p, σ(c) `D P [σ(r)]p (3.29)

H,P [σ(l)]p, σ(c), P [σ(r)]p `D G (3.30)

Sequent 3.28 and Sequent 3.29 are provable thanks to the Main Theorem. Applying

hypothesis contraction (monD) on Sequent 3.30, we get the following sequent

H,σ(c), P [σ(r)]p `D G

In summary, in order to prove Sequent 3.24, it is sufficient to prove the following three

sequents

H,P [σ(l)]p `D D(σ(c))

H,P [σ(l)]p `D σ(c)

H,σ(c), P [σ(r)]p `D G

Therefore, we have the following proof step:
H,P [σ(l)]p `D D(σ(c))

H,P [σ(l)]p `D σ(c)

H,σ(c), P [σ(r)]p `D G

H,P [σ(l)]p `D G

3.3.1.2 Goal Rewriting

Assume the following sequent whose provability is to be established:

H `D G[σ(l)]p , (3.31)

The goal G[σ(l)]p has an occurrence of an instance of the left hand side of the given

rewrite rule. By applying the cut rule on Sequent 3.31, we get the following three



66 Chapter 3 Rewriting and Well-Definedness within a Proof System

sequents:

H `D D(σ(c)) (3.32)

H `D σ(c) (3.33)

H,σ(c) `D G[σ(l)]p (3.34)

By applying the cut rule on Sequent 3.34, we get the following three sequents:

H,σ(c) `D D(G[σ(r)]p) (3.35)

H,σ(c) `D G[σ(r)]p (3.36)

H,σ(c), G[σ(r)]p `D G[σ(l)]p (3.37)

Sequent 3.35 and Sequent 3.37 are provable thanks to Theorem 3.3. In summary, in

order to prove Sequent 3.31, it is sufficient to prove the following three sequents

H `D D(σ(c))

H `D σ(c)

H,σ(c) `D G[σ(r)]p

Therefore, we have the following proof step:
H `D D(σ(c))

H `D σ(c)

H,σ(c) `D G[σ(r)]p

H `D G[σ(l)]p

3.3.2 Grouped Rule Application

In the previous subsection, we showed how a single rule can be applied to rewrite a hy-

pothesis or a goal of a sequent. In this subsection, we adopt a rather different approach.

We present a convenient mechanism to study rewrite rules in the context of proofs.

We consider grouping rewrite rules that have the same left hand side. The following

definition describes the notion of a grouped conditional term rewrite rule.

Definition 3.8 (Grouped Conditional Term Rewrite Rule). A grouped conditional term

rewrite rule is of the form

l→ c1 : r1

...

cn : rn
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where each of l
ci−→ ri, for 1 ≤ i ≤ n, is a conditional term rewrite rule. Moreover, the

grouped conditional rewrite rule is said to be valid and well-definedness preserving if

each of

l
ci−→ ri

for 1 ≤ i ≤ n is a valid and well-definedness preserving conditional rewrite rule. Finally,

the grouped conditional rewrite rule is homogeneously simple-conditioned if the following

two syntactic properties hold:

1. each of the conditions is a simple formula i.e.,

ci =̂ f(t1, ..., tm)

for some predicate symbol f and terms tk (1 ≤ k ≤ m) for all i such that 1 ≤ i ≤ n.

2. all conditions include exactly the same set of free variables i.e.,

Var(c1) = ... = Var(cn)

Homogeneously simple-conditioned grouped conditional rewrite rules have important

properties with respect to well-definedness. But, first, let us introduce an important

property of this class of grouped rewrite rules.

Definition 3.9 (Case-Completeness). A homogeneously simple-conditioned grouped

conditional term rewrite rule

l→ c1 : r1

...

cn : rn

is said to be case-complete if the following sequent is provable:

`D

n∨
i=1

ci

Intuitively, a homogeneously simple-conditioned grouped rewrite rule is case-complete if

its conditions cover, i.e., a disjunction of, all possible cases under which a rewrite can oc-

cur. An important property of homogeneously simple-conditioned grouped rewrite rules

is that the interaction between case-completeness and substitutions can be succinctly

formulated. The following proposition describes the said interaction.
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Proposition 3.2. Let σ be an idempotent substitution. If the homogeneously simple-

conditioned grouped conditional term rewrite rule

l→ c1 : r1

...

cn : rn

is case-complete, then the following sequent is provable:

`D

n∨
i=1

σ(ci) . (3.38)

Proof. Since the grouped rule is homogeneously simple-conditioned and case complete,

the following sequent is provable:

`D ∀~x ·
n∧
i=1

D(ci)⇒
n∨
i=1

ci . (3.39)

To show the provability of Sequent 3.39, we proceed as follows. By applying rule ∀goalD ,

we get the following sequent

`D

n∧
i=1

D(ci)⇒
n∨
i=1

ci .

Next, we apply rule ⇒goalD , and we obtain the following sequent

n∧
i=1

D(ci) `D

n∨
i=1

ci .

Finally, applying hypothesis contraction on the previous sequent, we obtain the sequent

`D

n∨
i=1

ci ,

which is provable since the grouped rule is case-complete.

Since the rule is homogeneously simple conditioned, the well-definedness of each condi-

tion depends only on the well-definedness of the terms occurring in them. By definition,

all rule conditions refer to the same set of terms. Hence, the well-definedness of each

instantiated condition is the following:

D(σ(ci)) ⇔
∧

x∈Var(ci)

D(σ(x)) (3.40)

for each i such that 1 ≤ i ≤ n.
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To show the provability of Sequent 3.38, we proceed as follows. Firstly, we use rule

goalWD to add the well-definedness of the goal. We obtain the following sequent

∧
x∈Var(ci)

D(σ(x)) `D

n∨
i=1

σ(ci)

We apply the cut rule on the previous sequent to introduce the formula

∀~x ·
n∧
i=1

D(ci)⇒
n∨
i=1

ci

We obtain the following three sequents

∧
x∈Var(ci)

D(σ(x)) `D D(∀~x ·
n∧
i=1

D(ci)⇒
n∨
i=1

(ci)) (3.41)

∧
x∈Var(ci)

D(σ(x)) `D ∀~x ·
n∧
i=1

D(ci)⇒
n∨
i=1

(ci) (3.42)

∧
x∈Var(ci)

D(σ(x)), ∀~x ·
n∧
i=1

D(ci)⇒
n∨
i=1

(ci) `D

n∨
i=1

σ(ci) (3.43)

The first two sequents are provable as it follows from our discussion above. Next, by

applying rule ∀hypD on Sequent 3.43, we obtain the following two sequents

∧
x∈Var(ci)

D(σ(x)), ∀~x ·
n∧
i=1

D(ci)⇒
n∨
i=1

(ci) `D

∧
x∈Var(ci)

D(σ(x))

∧
x∈Var(ci)

D(σ(x)),
n∧
i=1

σ(D(ci))⇒
n∨
i=1

σ(ci) `D

n∨
i=1

σ(ci)

The rest of the proof is trivial.

3.3.2.1 Hypothesis Rewriting

In this section, we show how grouped rewrite rules can be used to rewrite a hypothesis

within a sequent. Let

l→ c1 : r1

...

cn : rn
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be a valid and WD-preserving grouped conditional term rewrite rule. Consider the

sequent whose provability is to be established:

H,P [σ(l)]p `D G . (3.44)

By applying the cut rule on Sequent 3.44 to introduce the following formula

σ(c1) ∨ ... ∨ σ(cn) ,

we obtain the following three sequents

H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn)) (3.45)

H,P [σ(l)]p `D σ(c1) ∨ ... ∨ σ(cn) (3.46)

H,P [σ(l)]p, σ(c1) ∨ ... ∨ σ(cn) `D G . (3.47)

Next, we apply rule ∨hypD on Sequent 3.47, and we obtain the following n sequents

H,P [σ(l)]p, σ(c1) `D G

...

H, P [σ(l)]p, σ(cn) `D G .

Next, for each sequent i from the above set of sequents, we apply a single rewrite step

as discussed in §3.3.1. We get the following n sequents

H,P [σ(r1)]p, σ(c1) `D G

...

H, P [σ(rn)]p, σ(cn) `D G .

In summary, the following grouped rule application can be added as a proof step:
H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn))

H,P [σ(l)]p `D σ(c1) ∨ ... ∨ σ(cn)

H,σ(c1), P [σ(r1)]p `D G ... H, σ(cn), P [σ(rn)]p `D G

H,P [σ(l)]p `D G
→ hypD (3.48)

under the proviso that all free variables of σ(ci) (for all i such that 1 ≤ i ≤ n) occur free

in P [σ(l)]p. This proof step allows the hypothesis P [σ(l)]p to be rewritten to several

cases according to the rewrite rule.
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3.3.2.2 Goal Rewriting

In this section, we show how grouped rewrite rules can be used to rewrite the goal of a

sequent. Let

l→ c1 : r1

...

cn : rn

be a valid and WD-preserving grouped conditional term rewrite rule. Consider the

sequent whose provability is to be established:

H `D G[σ(l)]p . (3.49)

By applying the cut rule on Sequent 3.49 to introduce the following formula

σ(c1) ∨ ... ∨ σ(cn) ,

we obtain the following three sequents

H `D D(σ(c1) ∨ ... ∨ σ(cn)) (3.50)

H `D σ(c1) ∨ ... ∨ σ(cn) (3.51)

H,σ(c1) ∨ ... ∨ σ(cn) `D G[σ(l)]p . (3.52)

Next, we apply rule ∨hypD on Sequent 3.52, and we obtain the following n sequents

H,σ(c1) `D G[σ(l)]p

...

H, σ(cn) `D G[σ(l)]p .

Next, for each sequent i from the above set of sequents, we apply a single rewrite step

as discussed in §3.3.1. We get the following n sequents

H,σ(c1) `D G[σ(r1)]p

...

H, σ(cn) `D G[σ(rn)]p .

In summary, the following grouped rule application can be added as a proof step:
H `D D(σ(c1) ∨ ... ∨ σ(cn))

H `D σ(c1) ∨ ... ∨ σ(cn)

H,σ(c1) `D G[σ(r1)]p ... H, σ(cn) `D G[σ(rn)]p

H `D G[σ(l)]p
→ goalD . (3.53)
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under the proviso that all free variables of σ(ci) (for all i such that 1 ≤ i ≤ n) occur

free in G[σ(l)]p. This proof step allows the goal G[σ(l)]p to be rewritten to several cases

according to the rewrite rule.

In the following subsections (§3.3.2.3, §3.3.2.4 and §3.3.2.5), we enumerate special cases

that occur often in proofs.

3.3.2.3 Unconditional Term Rewrite Rules

A conditional term rewrite rule l
c−→ r is called unconditional if c =̂ >. In this case,

proof steps (3.48) and (3.53) can be simplified as follows:

H,P [σ(r)]p `D G

H,P [σ(l)]p `D G
→ uhypD (3.54)

H `D G[σ(r)]p
H `D G[σ(l)]p

→ ugoalD . (3.55)

3.3.2.4 Case-complete Grouped Term Rewrite Rules

If the grouped term rewrite rule

l→ c1 : r1

...

cn : rn

is homogeneously simple-conditioned and case-complete, then proof steps (3.48) and

(3.53) can be simplified as follows:{
H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn))

H,σ(c1), P [σ(r1)]p `D G ... H, σ(cn), P [σ(rn)]p `D G

H,P [σ(l)]p `D G
→ chypD (3.56)

{
H `D D(σ(c1) ∨ ... ∨ σ(cn))

H,σ(c1) `D G[σ(r1)]p ... H, σ(cn) `D G[σ(rn)]p

H `D G[σ(l)]p
→ cgoalD . (3.57)
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3.3.2.5 Strict Term Occurrence

In this section, we present a special case where rewriting can be further simplified. An

operator is strict if its well-definedness requires the well-definedness of all its arguments.

Definition 3.10 (Strict Term Occurrence). Let t be a term, f be a formula, p be a

position within f . We say that t has a strict occurrence p in f if f is either of the form

1. q(t1, ..., tn)[t]p where q ∈ P and t1,..., tn are terms, or;

2. (t1 = t2)[t]p where t1 and t2 are terms.

If t has a strict occurrence in f , then it also has a strict occurrence in ¬f .

We have the following interesting property:

Proposition 3.3. If the term t has a strict occurrence in formula f , then the following

holds

`D D(f)⇒ D(t) .

If we further constrain grouped conditional term rewrite rules such that we have

`D D(l)⇒
n∧
i=1

D(ci) ,

Proposition 3.3 can be used to simplify proofs. Let P [σ(l)]p be a formula such that σ(l)

has a strict occurrence. Since the grouped term rewrite rule is valid and WD-preserving,

and using the previous proposition, we have the following

D(P [σ(l)]p) ⇒ D(σ(l))

⇒
n∧
i=1

D(σ(ci))

under the proviso that all free variables of σ(ci) (for all i such that 1 ≤ i ≤ n) occur free

in P [σ(l)]p. In this particular case, the sequents

H,P [σ(l)]p `D D(σ(c1) ∨ ... ∨ σ(cn)) ,

H, P `D D(σ(c1) ∨ ... ∨ σ(cn))

in (3.48) and (3.53) respectively, are guaranteed to be discharged. As such, they could

be removed from the list of sub-goals that the modeller sees.
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3.4 Related Work

The interleaving between deduction and rewriting steps has gathered much interest

given its importance to automated reasoning. In this work, we identify the necessary

conditions under which rewriting can interleave with deduction in the proof calculus

defined in [81]. In other works, this interleaving is studied from different perspectives.

Theorem proving modulo [45] is an approach that removes computational steps from

proofs by reasoning modulo a congruence on propositions. The advantage of this tech-

nique is that it separates computation steps (i.e., rewriting) from deduction steps in a

clean way. In [45], a proof-theoretic account of the combination between computations

and deductions is presented in the shape of a sequent calculus modulo. The congruence

on propositions, on the other hand, is defined by rewrite rules and equational axioms.

From the author’s experience of the Rodin tool, rewriting represents a considerable con-

tributor to proof effort (on average two thirds of the proof steps are rewrites). This

makes rewriting an important component of the Event-B tootlset. In Chapter 4, we

show how the results of this chapter enabled the provision of an extensible mechanism

for defining, validating and using rewrite rules in Rodin.

The combination of rewriting and deduction makes properties of rewrite systems of

practical interest. Termination and confluence properties of term rewriting systems are

important, and have been studied extensively [19, 42]. When rewriting is interleaved

with deduction, it is critical that computation steps terminate. Term orderings, in which

any term that is syntactically simpler that another is smaller than the other, provides a

practical technique to assess the termination of rewrite systems.

In our work, we aim to unify the notions of well-definedness and rewrite systems. Our

objective is to characterise the interaction between deduction and rewriting when well-

definedness is taken into consideration. This is achieved by identifying the necessary

conditions under which computations can interleave with the deduction steps (i.e., proof

rules) in [81].

Schmalz devised a foundation of ‘directed rewriting’ for logics supporting partial func-

tions [103]. His treatment starts with assuming a three-valued semantics logic, and uses

a shallow Isabelle/HOL embedding to reason about the various components of the logic.

He explains how conditional directed rewrite rules can be applied within proofs and

justifies the soundness of their application. Directed rewriting is unsafe in general, i.e.,

it may transform a provable statement into an unprovable one and thus lead a proof

attempt into a dead end. However, an approach to avoid this unsafety is also presented

in [103]. Furthermore, the author claims that directed rewriting significantly reduces

the number of well-definedness checks required during proofs. Schmalz approach reached

similar conclusions regarding the sufficient conditions for maintaining soundness when

rewriting is performed. In fact, the notion of directed rewriting is similar to the concept
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of well-definedness preserving rewriting where rewrite rules preserve well-definedness in

one direction, i.e., left to right. A major difference between our approach and [103] is

the fact that our approach is entirely syntactic as we do not depart from the syntactic

manipulation of proofs.

3.5 Summary

In this chapter, we defined the criteria for the validity and well-definedness preservation

of term rewrite rules when rewriting interleaves with the rules of the proof system

developed in [81]. We started our discussion by presenting term rewriting systems.

A cornerstone in our treatment is the notion of well-definedness preserving conditional

rewrite rules. We have shown that valid and well-definedness preserving rewrite rules can

soundly be used within the the well-definedness preserving proof system. We precisely

described and justified how individual and grouped rewrite rules can be used as well-

definedness preserving proof steps. This chapter is the main theoretical contribution

of this thesis, and includes a major proof effort to establish the necessary theorems.

The work in this chapter complements Mehta’s work in [81] to provide a proof system

that includes both deduction and computation steps. In the next chapter, we show

how the theoretical results presented in this chapter influenced our approach to prover

extensibility in Event-B.





Chapter 4

A Practical Approach to Event-B

Prover and Language

Extensibility

In the previous chapter, we presented the treatment of rewriting within a proof system

that admits potentially ill-defined terms. In this chapter, we present a contribution of

a more practical inclination. We discuss our approach in dealing with issues related to

prover (§2.3.4) and language (§2.3.3) extensibility in Event-B. This chapter is motivated

by the discussion in §1.1. Together with Chapter 5, it achieves objectives (1), (2b) and

(3) listed in §1.2, and sheds light on the practical contributions of this thesis. Chapter

3 provides the theoretical backbone to the work on rewriting in §4.4.

As mentioned in §1.2, an important requirement of such approach is the practicality of

use. More importantly, a mechanism must be in place to avoid compromising the sound-

ness of the formalism. Dealing with prover extensibility becomes a more pressing issue

when support for extending the Event-B mathematical language is in place. Specifying

new operators and datatypes requires the provision of a mechanism to reason about such

extensions when used in Event-B models. As such, we argue that support for language

extensibility goes hand in hand with support for prover extensibility.

This chapter is structured in the following way. We start our discussion by recalling the

limitations of the existing infrastructure that triggered the need for our work. Next,

we present the theory construct which is the vehicle we use to specify and reason about

extensions. Then, we outline the three possible mechanisms by which the prover can be

augmented. We present rewriting as a proof step in Rodin. We also discuss the addition

of polymorphic theorems and inference rules. Next, we present how new polymorphic

operators can be specified. Operator properties such as associativity and commutativity

are discussed. Next, datatype extensions are introduced in terms of the appropriate

syntactic restrictions placed on them. Then, we show how primitive recursive operators

77
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can be defined on datatypes. We conclude this chapter by discussing the related work

that influenced our approach in dealing with prover and language extensibility. The

work presented in this chapter is a continuation of the effort described in [78].

4.1 The Existing Infrastructure

The Rodin platform provides a proof infrastructure that is highly optimised for proof

engineering and reuse. Mehta provides a succinct description of the said infrastructure in

his thesis [82]. However, prior to our work, the architecture had the limitations discussed

in §2.3.4.

External provers can be plugged into the proof infrastructure. Examples of such addi-

tions include ML and PP [7]. Other recent efforts include an SMT solver [5] and an

Isabelle/HOL translator/prover [101]. ML and PP do not provide sufficient information

about how the proof of a sequent has been achieved. ML and PP run as external pro-

cesses to Rodin, and only return a success or a failure status without providing a proof

trace to Rodin. Besides, information such as the set of needed hypotheses is important

for proof reuse and replay [82]. Those properties of proofs are crucial to an efficient

running of a reactive modelling environment.

4.1.1 The Existing Constructs

Modelling in Event-B is carried out by means of contexts and machines as discussed

in §2.2.2. Contexts are used to specify the static properties of the system to model.

Contexts have the general layout depicted in Figure 4.1. Modellers can specify theorems

as part of contexts to ensure that the axioms capture their intentions. Appropriate proof

obligations are generated to ensure theorems are well-defined and valid. Machines, on

context name
carrier sets S1, ..., Sn

{ 〈Constant〉
| 〈Axiom〉}

Figure 4.1: Context Structure

the other hand, are used to specify the dynamic properties of the system. Machines have

the general layout depicted in Figure 4.2. We argue that contexts and machines are not

suitable for defining prover and language extensions for the following two reasons:

1. Contexts and machines are modelling vehicles. They are intended for specifying

and reasoning about models of complex systems. As such, they should not be

overloaded to specify and meta-reason about mathematical and prover extensions.
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machine name
{ 〈Refines Clause〉
| 〈Sees Clause〉
| 〈V ariable〉
| 〈Invariant〉
| 〈V ariant〉
| 〈Event〉}

Figure 4.2: Machine Structure

2. Contexts have been used to define useful structures axiomatically, e.g., [99], and

to facilitate proof by supporting theorems. However, their intended use was to

parametrise machines [60]. As such, an objective of our work is to simplify the use

of contexts by providing a third construct independent from contexts and machines

in order to separate concerns, handle and meta-reason about extensions. The new

construct is called a theory. Using our approach, contexts act as a parametrisation

mechanism for machines, and theories act as a placeholder for extensions.

4.2 The Theory Construct

Theories [78] are Event-B constructs which are similar in their morphology to contexts

and machines. The name of the construct is based on a similar concept in the Isabelle

theorem prover [94]. Theories in Event-B, however, differ in purpose from Isabelle

theories. Isabelle theories can be used to specify mathematical theories as well as entire

logics such as higher-order logic. The notions of inner and outer syntax [94] refer to

the object logic and the meta-logic, respectively. A theory in Event-B, on the contrary,

is only used for meta-reasoning about the Event-B mathematical language. A theory

acts as a place-holder for mathematical and prover extensions. The following listing

describes the overall structure of Event-B theories.

theory name
imports t1, ..., tn
type parameters T1, ..., Tn

{ 〈Datatype Definition〉
| 〈Operator Definition〉
| 〈Polymorphic Theorem〉
| 〈Metavariables〉
| 〈Rewrite Rule〉
| 〈Inference Rule〉 }

Figure 4.3: The Theory Construct

An Event-B theory has a name which identifies it within the workspace. Hierarchies of

theories can be created by means of the import directive. ‘Theory A imports theory B ’
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indicates that all definitions and rules of theory B can be used in theory A. A theory

can have an arbitrary number of type parameters which are sets that are assumed to be

non-empty and pairwise distinct in which case the theory is said to be polymorphic on

its type parameters. A theory may also contain an arbitrary number of definitions and

rules. In the subsequent sections of this chapter, we describe proof rules and polymorphic

theorems and show how they can be specified and validated through the theory construct.

Figure 4.4 summarises the new anatomy of Event-B models (as opposed to the old

anatomy in Figure 2.1) as a result of the introduction of the new theory component.

Machine Context

Variables

Invariants

Variants

Events

Carrier Sets

Constants

Axioms

Other Machines Other Contexts

SEES

SEES

SEES

EXTENDSREFINES

Theory

Datatypes
Operators

Proof Rules
Theorems

USESUSES

Figure 4.4: Extended Anatomy of Event-B Models

4.2.1 Soundness Preservation

In the process of defining new extensions (e.g., new operator or a new rewrite rule), it

is possible to introduce unsoundness to the prover. As such, it is imperative that the

ease of use of the theory component is complemented by an effective measure to discover

and eliminate any soundness-threatening extensions. Furthermore, we argue that such

measure should not hinder the usability of any provided tool support.

The use of proof obligations is widespread in many formal techniques not least in Event-

B. In the case of Event-B modelling, proof obligations provide simple semantics by which

it is possible to understand the system being modelled [61]. We argue that using proof

obligations to verify any user-defined extensions will ensure that potentially unsound



Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 81

extensions are brought to the attention of the user. Moreover, since modellers are famil-

iar with the use of proof obligations in contexts and machines, this approach achieves

a good balance between effectiveness and usability. As such, the overhead of proofs in

theories can be similar to that of proofs in models. However, the polymorphic nature

of theories enables the reusability of proofs, e.g., defining and proving a polymorphic

theorem once in a theory and then using it multiple times in different models without

the need for reproving it. Throughout the rest of this chapter and subsequent chapters,

whenever a new extension is introduced, any required proof obligations are singled out

and their adequacy is justified.

4.2.2 Theory Deployment

We distinguish between two separate but intrinsically linked activities in the context of

Event-B theories. Theory development refers to the activity of defining and validating

theories. At this stage, extensions are defined and proof obligations are automatically

generated for each extension as required. This activity may follow an iterative pat-

tern since inspecting failed automatic proof attempts may reveal important information

about the soundness or otherwise of extensions. Performing interactive proofs provides

feedback and guides the modeller to change definitions if appropriate. Therefore, theory

development greatly benefits from the reactive nature of the Rodin platform[80, 12].

Theory deployment refers to the activity of making developed theories available for use

in modelling. A theory can be used by many models at the same time, thus promoting

reusability. Theory deployment ensures that proof obligations are at least inspected

by the user, and once deployed, any mathematical extensions and proof rules can be

used to specify Event-B contexts and machines. As an example, consider a theory

of boolean operators. The user may specify the usual operators (e.g., logical AND),

define some inference and rewrite rules, and attempt to discharge any generated proof

obligations. Once the user discharged all generated proof obligations, the theory can be

deployed and used within a model that specifies an electric circuit. The use of theory-

defined proof rules and polymorphic theorems enables the user to reason at the level

of mathematical extensions without detour through the existing Event-B mathematical

language by means of purpose-built proof tactics.

4.3 Event-B Mathematical Language

In the Event-B mathematical language [83] (Event-B inner syntax), terms (expressions)

and formulae (predicates) are separate syntactic categories. Terms are defined using

constants (e.g., 1), variables and operators (e.g., ∪). Term operators can have terms as

arguments. They can also have formulae as arguments e.g., (λx · P (x) | E(x)) where

P (x) is a formula and E(x) is a term.
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Formulae, on the other hand, are built from basic formulae e.g., x ∈ S, logical connectives

and quantifiers. Basic formulae take terms as arguments e.g., x ∈ S has x and S as

arguments.

Terms have a type which can be one of the following:

1. a basic set such as Z or a carrier set supplied by the modeller in contexts;

2. a power set of another type;

3. a cartesian product of two types.

Term operators have typing rules of the form:

type(x1) = α1 ... type(xn) = αn
type(op(x1, ..., xn)) = α

Arguments of a basic formula must satisfy its typing rule e.g., the typing rule for the

basic formula finite(R) is:

type(R) = P(α)

Alongside typing rules, term operators have well-definedness formulae. D(E) is used

to denote the well-definedness formula of term E. Proof obligations are generated (if

necessary) to establish the well-definedness of terms appearing in models. To illustrate,

we consider the term card(E) for which we have:

D(card(E)) ⇔ D(E) ∧ finite(E)

Note. For the rest of this thesis, we use the term ‘mathematical language’ to refer to

Event-B inner syntax that is wired. The term ‘existing mathematical language’ refers to

the mathematical language augmented with any previously defined operator extensions.

4.4 Rewriting

The use of equations is central to mathematics. Rewriting provides a powerful mech-

anism for ‘dealing computationally with equations’ [43]. In this section, we show how

rewrite rules are defined in the theory construct. We also present the different proof

obligations that ensure soundness of defined rules. The theoretical results in Chapter 3

provide the justification for the proof obligations related to rewrite rule definitions. At

the end of this section, we provide some examples of rewrite rules.
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4.4.1 Defining Rewrite Rules

In the Event-B mathematical language [11, 83], formulae and terms are distinguished as

two separate syntactic categories1. Furthermore, each term must have a type. We say

that two Event-B legal syntactic tokens are of the same syntactic class if they are both

terms or both formulae. The following definition describes the syntactic properties of

Event-B rewrite rules.

Note. Note the introduction of the typing constraint. Also note that rewrite rules left

hand sides may contain terms or basic formulae as long as the formulae is built up from

strict operators.2

Definition 4.1 (Event-B Rewrite Rule). An Event-B rewrite rule is of the form

lhs→ C1 : rhs1

...

Cn : rhsn

where:

1. n ≥ 1,

2. lhs is not a variable,

3. lhs and rhsi (for all i such that 1 ≤ i ≤ n) are of the same syntactic class,

4. Ci (for all i such that 1 ≤ i ≤ n) are formulae,

5. Ci and rhsi (for all i such that 1 ≤ i ≤ n) only contain free variables from lhs,

6. lhs and rhsi (for all i such that 1 ≤ i ≤ n) have the same type if lhs is a term.

In the special case where n = 1 and C1 is syntactically equal to >, the rewrite rule

is called unconditional. An Event-B rewrite rule is said to be conditional if it is not

unconditional. Note that Event-B does not have the notion of sorts, and types in Event-

B are assumed to be maximal. For instance, Z is the type for integers, and the set of

natural numbers, N, is not a type since it is a subset of Z, and hence not maximal.

Given the absence of sorts in Event-B, sort-related properties are not relevant to our

discussion of rewriting.

A definition of a rewrite rule is completed by specifying whether the rule should be

applied automatically or interactively. In §4.4.4, we describe certain cases where an

1In [83], terms are referred to as expressions, and formulae are referred to as predicates.
2Strict operators are operators whose well-definedness requires the well-definedness of all its argu-

ments. Hence, if an argument of a strict operator is not well-defined, the expression/predicate rooted
at that operator is also not well-defined. For example, equality in Event-B is a strict operator, whereas
the conjunction operator (∧) is not.
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automatic application should not be allowed. Figure 4.5 depicts the general layout

for a rewrite rule as part of the theory component, where P (x1, ..., xn) provides typ-

rewrite name
[automatic] [interactive] [case complete]
vars x1, ..., xn
condition P (x1, ..., xn)
lhs lhs(x1, ..., xn)
rhs

C1(x1, ..., xn) rhs1(x1, ..., xn)

... ...

Cm(x1, ..., xn) rhsm(x1, ..., xn)

Figure 4.5: Rewrite Rule Definition

ing information for each of the variables xi occurring in the left hand side of the rule

lhs(x1, ..., xn), and m is the number of rule right hand sides.

4.4.2 Validating Rewrite Rules

In the previous section, we defined the syntax of Event-B rewrite rules. In this sub-

section, we describe the different proof obligations that ensure soundness of defined

rewrite rules. We recall from §3.3.2 the notions of case-complete and homogeneously

simple-conditioned rewrite rules.

Case-completeness is only really useful in the case of homogeneously simple-conditioned

rules (as reflected in Proposition 3.2 in Chapter 3). Note that case-completeness is not

a syntactic property, but one that requires mathematical proof in all cases except when

the rule is unconditional. The following definition defines soundness in the context of

Event-B rewrite rules.

Definition 4.2 (Sound Event-B Rewrite Rule). An Event-B rewrite rule

lhs→ C1 : rhs1

...

Cn : rhsn

is said to be sound if the following sequents are provable:

1. H,D(lhs), Ci `D D(rhsi) for all i such that 1 ≤ i ≤ n,

2. (a) H,Ci `D lhs = rhsi for all i such that 1 ≤ i ≤ n if lhs is a term, or;

(b) H,Ci `D lhs⇔ rhsi for all i such that 1 ≤ i ≤ n if lhs is a formula,
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3. (a) H `D

∨n
i=1Ci if the rule is case-complete and homogeneously simple condi-

tioned,

(b) H,D(lhs) `D D(Ci) for all i such that 1 ≤ i ≤ n if the rule is case-complete

and homogeneously simple-conditioned.

where H is a formula providing typing information for all free variables occurring in

lhs.3 If the rewrite rule is not case-complete, the proof obligations 3a and 3b in the

previous definition are not required.

4.4.3 Applying Rewrite Rules

Chapter 3 explored two ways for applying rewrite rules. Single rule application (§3.3.1)

describes how a single conditional rewrite rule can be applied to goals or hypotheses of

sequents. Grouped rule application (§3.3.2) describes how rules sharing the same left

hand side can be soundly applied to sequents. Soundness is not the only issue regarding

rule application. Termination of automatic rewriting is another potentially problematic

aspect of rule application. Whether to apply a rule automatically or interactively is a

serious question that requires pondering. In our approach, the decision whether to apply

a rule automatically or interactively rests with the specifier of the rule. Admittedly, this

could be a dangerous practise. However, we argue that the following guidelines may

help with deciding whether a rule should be considered for automatic application:

• The syntactic restriction on rules which states that a left hand side may not be

a variable eliminates a certain non-termination case. For instance, the following

rule is not allowed:

x→ > : x+ 0

• Rewrite rules that simplify formula and reduce their size should be considered for

automatic application.

• Rewrite rules that inflate formulae (e.g., the multiplication distribution over addi-

tion rewrite rule) should be considered for interactive application. Such rules are

more likely to lead to more complicated proofs.

• Care should be taken when defining rules for commutative operators such as +.

For example, the following rule

x+ y → > : y + x

should not be applied automatically as it leads to a non-terminating rewriting.

3The typing information is provided by the user as part of rule specification in theories.
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• Rewrite rules that are considered for automatic application may also be considered

for interactive application. This is particularly useful if the user of Rodin decided

to turn off automatic provers.

• Definitional rules (i.e., rules that define an operator e.g., the union operator)

should be considered for interactive application. Instead of expanding operator

definitions, reasoning about operators should be carried out using specially-written

proof rules.

4.4.4 Examples of Rewrite Rules

Example 1. Assuming two variables x and y of the same type Z, then the following

(x− 1)(y − 1)→ x = 1 : 0

y = 1 : 0

is a rewrite rule which is sound but not case-complete. Since the rule has more than one

right hand side, it is conditional.

Example 2. Assuming two variables a and b of the same type Z, then the following

card(a..b)→ a > b : 0

a ≤ b : b− a+ 1

is a homogeneously simple-conditioned case-complete sound rewrite rule. Note that a..b

denotes the integer range defined as follows

a..b =̂ {x · a ≤ x ≤ b}

Example 3. Assuming two type parameters A and B, consider the following conditional

rewrite rule:

(f C− {y 7→ z})(x)→ x = y : z

x 6= y : f(x)

where

f ∈ A↔B

x ∈ A

y ∈ A

z ∈ B
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Note that the symbol C− signifies relational override (as defined in [11], p.328). The

aforementioned rule is a homogeneously simple-conditioned case-complete conditional

rewrite rule. However, the rule is not sound as it does not preserve well-definedness.

Functional application in Event-B requires the function to be functional on the entirety

of its domain. In the above rewrite rule, f C− {y 7→ z} may be functional, but f on

its own may not. Therefore, well-definedness is not preserved from the left hand side

(f C− {y 7→ z})(x) to the second right hand side f(x). To see that this is the case,

consider the following instantiations for f , x, y and z:

f = {1 7→ 2, 1 7→ 3, 2 7→ 4}

x = 1

y = 1

z = 3

It can be seen that (f C− {1 7→ 3})(1) is well-defined and is equals to 3, whereas f(1) is

not well-defined as f is not functional at 1.

Summary. In this section, we have shown how new rewrite rules are specified (§4.4.1)

in the theory construct. We also discussed the sufficient proof obligations to ensure that

soundness of the formalism is not compromised by the addition of new rewrite rules

(§4.4.2). We outlined a few guidelines that are helpful in determining whether a rule is

suitable for automatic application (§4.4.3) given that termination of rewriting is a major

concern.

4.5 Polymorphic Theorems

In an Event-B context, a modeller can specify some static properties of the system in

question by means of carrier sets, constants and axioms. In order to ensure that these

static properties capture the intended understanding of the system, theorems can be

defined in contexts. Similarly, when specifying the dynamic aspects of a system in a

machine, certain invariants can be tagged as theorems to verify that the previously

added invariants sufficiently restrict the system. The theorems defined in such way are

model-specific and more importantly are not polymorphic. We propose the addition of

polymorphic theorems to the theory component to achieve the following two objectives:

1. package important and reusable properties of pre-defined operators in a succinct

and a verifiably sound way, and

2. verify that definitions of any newly introduced operator definitions (see §4.7) cap-

ture the intended understanding of the modeller.
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Moreover, we describe a mechanism by which these polymorphic theorems can be in-

corporated in proofs which arise from models. We conclude this section by providing

concrete examples.

4.5.1 Defining Polymorphic Theorems

Polymorphic theorems are special Event-B formulae where all variables except type vari-

ables (i.e., type parameters) are bound. Intuitively, we envisage polymorphic theorems

to be used in proofs in the following way:

1. the modeller chooses the theorem to incorporate into his proof from a collection

of theorems,

2. the modeller provides type instantiations appropriate to the current sequent to

prove, and the theorem gets instantiated with said type instantiations and added

to the set of hypotheses of the sequent.

The following definition describes the syntactic properties satisfied by polymorphic the-

orems.

Definition 4.3 (Event-B Polymorphic Theorem). Let α1, ..., and αn be type parameters.

A formula P (α1, ..., αn) is an Event-B polymorphic theorem if

Var(P (α1, ..., αn)) = {α1, ..., αn}

In this case, we say that the theorem P (α1, ..., αn) is polymorphic on each of the type

parameters α1, ..., and αn.

In other words, an Event-B formula is a polymorphic theorem if its free variables are all

type parameters.

4.5.2 Validating Polymorphic Theorems

Definition 4.3 describes the syntactic properties of polymorphic theorems. The following

definition presents the notion of soundness in the context of polymorphic theorems.

Definition 4.4 (Sound Event-B Polymorphic Theorem). An Event-B polymorphic the-

orem P (α1, ..., αn) is said to be sound if the following sequents are provable:

1. `D D(P (α1, ..., αn))

2. `D P (α1, ..., αn)
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Definition 4.4 ensures that polymorphic theorems are well-defined and valid. Note the

similarity between the sequents in Definition 4.4 and the proof obligations related to

theorems in Event-B contexts, in §2.2.2.1 and [11]. The next sub-section provides a

justification for the previous definition.

4.5.3 Using Polymorphic Theorems

In §2.4.4.2, we described the inference rules used in Event-B proofs. The cut rule in

particular,
H `D D(P ) H `D P H,P `D Q

H `D Q
cutD

can be extremely useful when conducting proofs as it imitates the general approach taken

when doing proofs in mathematics (i.e., using intermediate lemmas to guide proofs).

In what follows, we show how the cut rule can provide a sound platform for using

polymorphic theorems in Event-B proofs. Firstly, we introduce type substitutions which

are the cornerstone for using polymorphic theorems.

Definition 4.5 (Type Substitution). A type substitution σt consists of a sequence type

variables (parameters) mapped to a sequence (of the same length) of types. The domain

of σt is the set of type variables mapped by the type substitution.

A formula P ′ is said to be an instance of the polymorphic theorem P (α1, ..., αn) if there

exists a type substitution σt such that:

P ′ =̂ σt(P (α1, ..., αn)) (4.1)

where σt provides a substitution for all type parameters occurring in P (α1, ..., αn). An

instance of a polymorphic theorem can be added as a hypothesis in a sequent as follows:

H `D D(σt(P (α1, ..., αn))) H `D σt(P (α1, ..., αn)) H,σt(P (α1, ..., αn)) `D Q

H `D Q
cutD

If the polymorphic theorem P (α1, ..., αn) is sound as per Definition 4.4, then the boxed

sequents can be removed and the polymorphic theorem can be used in proofs as follows:

H,σt(P (α1, ..., αn)) `D Q

H `D Q
thmD

4.5.4 Examples

Example 1. The following formula is a sound Event-B polymorphic theorem:

∀x : Z, y : Z · x ∗ y = 0⇒ (x = 0 ∨ y = 0)
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as it can be shown that the following two sequents are provable; hence satisfying the

conditions stipulated in Definition 4.4.

`D D(∀x : Z, y : Z · x ∗ y = 0⇒ (x = 0 ∨ y = 0))

`D ∀x : Z, y : Z · x ∗ y = 0⇒ (x = 0 ∨ y = 0)

Example 2. Assuming type parameters A and B, the following formulae are sound

Event-B polymorphic theorems:

∀a : P(A), b : P(A) · a ⊆ b⇒ (finite(b)⇒ finite(a))

∀f : A↔B, a : P(A), b : P(B) · f ∈ a 7→ b⇒ (finite(a)⇒ finite(f))

as it can be shown that the following four sequents are provable; hence satisfying the

conditions stipulated in Definition 4.4.

`D D(∀a : P(A), b : P(A) · a ⊆ b⇒ (finite(b)⇒ finite(a)))

`D ∀a : P(A), b : P(A) · a ⊆ b⇒ (finite(b)⇒ finite(a))

`D D(∀f : A↔B, a : P(A), b : P(B) · f ∈ a 7→ b⇒ (finite(a)⇒ finite(f)))

`D ∀f : A↔B, a : P(A), b : P(B) · f ∈ a 7→ b⇒ (finite(a)⇒ finite(f))

Summary. In this section, we have shown how polymorphic theorems can be specified.

We provided the sufficient proof obligations to ensure theorems are sound. We, also,

demonstrated how theorems can be used in proofs when a suitable type substitution is

provided. In §4.6, we show how certain polymorphic theorems can be used in a more

pragmatic way as inference rules.

4.6 Inference Rules

In this section, we show how a special subset of polymorphic theorems can be manip-

ulated in such a way that they can be used as inference rules. As mentioned earlier,

polymorphic theorems achieve a two-fold objective. They can be used to ensure op-

erator definitions capture the intended semantics. They can also be used in proofs as

demonstrated in §4.5.3. We show that a polymorphic theorem with a specific structure

can be used in a similar way to inference rules.
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4.6.1 Defining Inference Rules

The following definition describes the syntactic properties satisfied by inference rules.

As we develop this section, we will provide justifications for the different syntactic re-

strictions on inference rules.

Definition 4.6 (Event-B Inference Rule). An Event-B inference rule is a pair (~G, I)

where:

1. I is an Event-B formula that is syntactically distinct from >, called the infer clause,

2. ~G is a set of Event-B formulae, called the given clauses,

3. one of the following syntactic condition holds:

Var(I) ⊆
⋃
H∈ ~G

Var(H)

⋃
H∈ ~G

Var(H) ⊆ Var(I)

In the theory component, inference rules are defined according to Figure 4.6.

inference name
[automatic] [interactive]
vars x1, ..., xn
condition P (x1, ..., xn)
given G1, ..., Gm
infer I

Figure 4.6: Inference Rule Definition

The formula P (x1, ..., xn) provides typing information for each of the variables occurring

in the inference rule. The next subsection describes how an inference rule is validated

in the theory component.

Intuitively speaking, inference rules are intended to be used in the following way. The

infer clause of an inference rule may be matched against the goal of a sequent. If the

matching succeeds, a backward proof step is achieved by making the (the instantiated)

given clauses of the inference rule as the new sub-goals. Alternatively, the given clauses

of an inference rule may be matched against the hypotheses of a sequent. If a suitable

match is found for each given clause, a forward proof step is achieved by adding the (the

instantiated) infer clause of the inference rule as a hypothesis.
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Note that the infer clause has to be different from > since otherwise the inference cannot

be of any use.4 Moreover, the third condition in Definition 4.6 ensures that inference

rules are at least applicable in one direction.

4.6.2 Using Inference Rules

Inference rules can be used in a backward style as well a forward style. If used in

backward style, it discharges or splits the goal. If applied in a forward style, more

hypotheses get generated. Let the following formula

∀~x · ~G⇒ I (4.2)

be a sound polymorphic theorem. Let σt be a type substitution. Let σ be a variable

substitution (as per §3.1.2) covering all the bound variables in ∀~x · ~G⇒ I, i.e., ~x. This

is formally expressed as

Dom(σ) = Var(~G⇒ I)

The combination of substitutions σt and σ provides instantiations for types and variables

of the polymorphic theorem.

1. Forward Inference. Assume the following sequent whose provability is to be

established:

H,σ(σt(~G)) `D P (4.3)

where σ(σt(~G)) signifies a formula with a type and variable substitution applied

to it. By introducing a suitable instance of the polymorphic theorem (4.2) as per

rule thmD , we get the following sequent

H,σ(σt(~G)),∀~x · σt(~G)⇒ σt(I) `D P (4.4)

By applying rule ∀hypD on Sequent 4.4, we obtain the following sequents

H,σ(σt(~G)), σ(σt(~G))⇒ σ(σt(I)) `D P (4.5)

H,σ(σt(~G)) `D

∧
x∈Dom(σ)

D(σ(x)) . (4.6)

By applying rule ⇒hypD on Sequent 4.5, we obtain the following two sequents

H,σ(σt(~G)) `D σ(σt(~G)) (4.7)

H,σ(σt(~G)), σ(σt(I)) `D P (4.8)

4Other formulae that can be shown by proof to be equivalent to >, e.g., >∨⊥, are allowed. It is not
always possible to perform syntactic checks to single out such formulae, so the liberty is left to the user
to avoid them.
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Sequent 4.7 can be discharged using the rule hypD .

In summary, to prove the following sequent

H,σ(σt(~G)) `D P,

it suffices to show the provability of the following sequents

H,σ(σt(~G)) `D

∧
x∈Dom(σ)

D(σ(x))

H,σ(σt(~G)), σ(σt(I)) `D P

2. Backward Inference. Assume the following sequent whose provability is to be

established:

H `D σ(σt(I)) , (4.9)

where σ(σt(I)) signifies a formula with a type and variable substitution applied

to it. By introducing a suitable instance of the polymorphic theorem (4.2) as per

rule thmD , we get the following sequent

H,∀~x · σt(~G)⇒ σt(I) `D σ(σt(I)) . (4.10)

By applying rule ∀hypD on Sequent 4.10, we obtain the following sequents

H,σ(σt(~G))⇒ σ(σt(I)) `D σ(σt(I)) (4.11)

H `D

∧
x∈Dom(σ)

D(σ(x)) . (4.12)

By applying rule ⇒hypD on Sequent 4.11, we obtain the following two sequents

H `D σ(σt(~G)) (4.13)

H,σ(σt(I)) `D σ(σt(I)) . (4.14)

Sequent 4.14 can be discharged using the rule hypD .

In summary, to prove the following sequent

H `D σ(σt(I)) ,

it suffices to show the provability of the following sequents

H `D

∧
x∈Dom(σ)

D(σ(x))

H `D σ(σt(~G)) .
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The previous development (forward and backward inference) is carried out by importing

and appropriately instantiating a theorem. However, the use of theorems as inference

rules can be automated to a certain degree. This is where condition (3) of Definition

4.6 comes into play. We have the following two definitions with regard to inference rule

applicability.

Definition 4.7 (Forward-applicable Event-B Inference Rule). An Event-B inference

rule (~G, I) is said to be forward-applicable if the following condition holds:

Var(I) ⊆
⋃
H∈ ~G

Var(H)

The intuition behind Definition 4.7 is that an inference rule can be applied in a forward

fashion if its given clauses contains all variables of the inference rule. This means one-

way matching can be used to find a binding that unifies some hypotheses with the given

clauses. Since the binding will have mappings for all variables, the infer clause can be

instantiated using that same binding.

Definition 4.8 (Backward-applicable Event-B Inference Rule). An Event-B inference

rule (~G, I) is said to be backward-applicable if the following condition holds:⋃
H∈ ~G

Var(H) ⊆ Var(I)

The intuition behind Definition 4.8 is that an inference rule can be applied in a backward

fashion if its infer clause contains all variables of the inference rule. This means matching

can be used to find a binding that unifies the goal with the infer clause. Since the binding

will have mappings for all variables, all given clauses can be instantiated using that same

binding.

We, now, summarise the two possible ways in which inference rules can be applied.

Consider the sound Event-B inference rule (~G, I). If the rule is forward-applicable, it

can be applied according to the following proof tree

H,σ(σt(~G)) `D

∧
x∈Dom(σ)D(σ(x)) H,σ(σt(~G)), σ(σt(I)) `D P

H, σ(σt(~G)) `D P
forInfD

where σt and σ are suitable substitutions. If the rule is backward-applicable, it can be

applied according to the following proof tree

H `D

∧
x∈Dom(σ)D(σ(x)) H `D σ(σt(~G))

H `D σ(σt(I))
backInfD
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where σt and σ are suitable substitutions.

4.6.3 Validating Inference Rules

As mentioned in the previous section, inference rules as defined above are a special

case of implicative polymorphic theorems. For each inference rule, we can derive the

appropriate polymorphic theorem.

Definition 4.9 (Derived Theorem). The following formula is called the derived theorem

of the Event-B inference rule (
−→
G, I):

∀~x · ~G⇒ I

where ~x are the free variables in all of ~G and I.

The following definition describes the sufficient conditions under which an inference rule

is considered valid.

Definition 4.10 (Sound Inference Rule). An inference rule (~G, I) is said to be sound

if its derived polymorphic theorem is sound.

Summary. In this section, we have demonstrated a pragmatic approach to using poly-

morphic theorems. Inference rules are intended to relieve the user from explicitly provid-

ing instantiations for type and ordinary variables of a polymorphic theorem. We have

shown how inference rules can be used in backward proof, by splitting the goal, and

forward proof, by generating new hypotheses. We concluded our discussion by outlining

the proof obligations to ensure soundness of user-defined inference rules.

4.7 Polymorphic Operators

A new Event-B polymorphic operator can be defined in a theory by providing the fol-

lowing information:

1. Parser Information: this includes the syntax, the notation (infix or prefix), and the

syntactic class (term or formula). The precedence of the operator is not provided

by the user.

2. Type Checker Information: this includes the types of the child arguments, and the

resultant type if the operator is a term operator.

3. Prover Information: this includes the well-definedness of the operator as well as

its definition which may be used to reason about it.
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operator syntax [commutative] [associative]
(prefix | infix)
args x1 ∈ Tx1 , ..., xn ∈ Txn
condition P (x1, ..., xn)
definition Q(x1, ..., xn)

Figure 4.7: Operator Definition

Figure 4.7 describes the general structure of a new operator definition, where:

1. ‘syntax’ : defines the syntax of the new operator. It has be distinct from previ-

ously used operator syntaxes as our approach does not allow operator overloading.

2. ‘prefix’ or ‘infix’: defines the type of the notation that will be used for this

operator either infix (e.g., a op b) or prefix (e.g., op(a, b)). At the time of writing

this thesis, postfix operators were not supported.

3. ‘commutative’: indicates whether the operator is commutative. This particular

property of operators triggers the generation of a proof obligation.

4. ‘associative’: indicates whether the operator is associative. This particular prop-

erty of operators triggers the generation of a proof obligation.

5. ‘args’: defines the arguments of the operator. Each argument must have a name

and a type. Names of the arguments are pairwise distinct.

6. ‘condition’: provides the well-definedness condition to be generated for this op-

erator. We will show later how concrete well-definedness conditions are correctly

generated from the above definition.

7. ‘definition’: provides the direct definition of the operator in terms of the existing

mathematical language. The syntactic class of the operator is inferred from the

syntactic class of Q(x1, ..., xn). If Q(x1, ..., xn) is a term, then the resultant type

of the operator is the type of Q(x1, ..., xn).

4.7.1 Example: The Sequence Operator

A sequence is an ordered list of objects where the same object can occur multiple times

at different positions. It is, therefore, easy to see that a sequence can be defined as

a polymorphic operator. The following snippet provides a definition of a sequence in

Event-B.

theory SeqThy

type parameters S
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operator Seq

(prefix)

args a ∈ P(S)

condition >
definition {f, n · f ∈ 1..n→ a | f}

In the above snippet, 1..n denotes a contiguous integer range. The previous definition

describes the set of all sequences of the set a; each sequence is defined as a total function

from an integer range to the set a. The following typing rule5 is generated for the

operator Seq:
type(a) = P(S)

type(Seq(a)) = P(P(Z× S))
.

In the following snippet, the formula operator EmptySeq takes a sequence, and ‘returns’

whether the sequence is empty. The term operators HeadSeq and TailSeq calculate the

head and the tail of a non-empty sequence respectively.

operator EmptySeq

(prefix)

args s ∈ P(Z× S)

condition s ∈ Seq(S)

definition card(s) = 0

operator HeadSeq

(prefix)

args s ∈ P(Z× S)

condition ¬EmptySeq(s)
definition s(1)

operator TailSeq

(prefix)

args s ∈ P(Z× S)

condition ¬EmptySeq(s)
definition {i · i ∈ 1..(card(s)− 1) | i 7→ s(i+ 1)}

The following typing rule is generated for the EmptySeq formula operator:

type(s) = P(Z× S)

5Note that the type of an individual sequence is P(Z× S), i.e., a set of pairs. Therefore, the type of
a set of sequences is P(P(Z× S))
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The following typing rules are generated for the head and tail operators:

type(s) = P(Z× S)

type(HeadSeq(s)) = S

type(s) = P(Z× S)

type(TailSeq(s)) = P(Z× S)

4.7.2 Operator Properties

In this section, we describe the different aspects of a new operator definition. More

specifically, we focus on well-definedness, associativity and commutativity.

4.7.2.1 Well-Definedness

An important aspect of defining an operator is the well-definedness condition to be used.

A simple strategy may use the well-definedness of the operator’s direct definition. An ad-

vantage of a user-supplied condition is the possibility of strengthening well-definedness

conditions to simplify proofs. In order to ensure that a supplied condition is in fact

stronger than the default (i.e., the one inferred from the direct definition), proof obliga-

tions are generated.

As discussed in §2.4.3, an important property of well-definedness conditions is that they

are themselves well-defined, i.e.,:

D(D(P )) ⇔ > for any formula or term P

There is a possibility that the supplied well-definedness condition may not, in some cases,

be well-defined (e.g., HeadSeq well-definedness condition). Therefore, the complete well-

definedness condition of an operator is the following:

D(P (x1, ..., xn)) ∧ P (x1, ..., xn)

As an example, the default well-definedness condition of the HeadSeq (and, coincidently,

TailSeq) operator is

s ∈ Seq(S) ∧ ¬EmptySeq(s)

To ensure that the supplied well-definedness condition is stronger than the default one,

the following proof obligation is generated:

`D ∀x1 ∈ Tx1 , ..., xn ∈ Txn · (D(P (x1, ..., xn)) ∧ P (x1, ..., xn))⇒D(Q(x1, ..., xn))

The well-definedness strength proof obligation is justified in §5.1 of [102].



Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 99

As an example, the following proof obligations are generated for EmptySeq andHeadSeq,

respectively:

`D ∀s ∈ P(Z× S) · s ∈ Seq(S)⇒ finite(s)

`D ∀s ∈ P(Z× S) · (s ∈ Seq(S) ∧ ¬EmptySeq(s))⇒ (s ∈ Z 7→ S ∧ 1 ∈ dom(s))

using the following expansions:

D(card(s)) =̂ finite(s)

D(s(1)) =̂ s ∈ Z 7→ S ∧ 1 ∈ dom(s)

4.7.2.2 Commutativity

An operator is said to be commutative if it is a binary operator whose arguments are of

the same type, and the following formula is valid:

Q(x1, x2) = Q(x2, x1) if the operator is a term operator, or

Q(x1, x2) ⇔ Q(x2, x1) if the operator is a formula operator.

Example. Consider the definition of the AND boolean operator:

operator AND commutative associative

(infix)

args b1 ∈ BOOL, b2 ∈ BOOL
condition >
definition bool(b1 = TRUE ∧ b2 = TRUE)

Note that BOOL is a built-in type in Event-B; it contains the values TRUE and

FALSE. The operator bool is a built-in operator that takes a predicate as an argu-

ment; its resultant type is BOOL. In this case, the following formula describes the

condition which asserts that the AND operator is commutative:

∀b1 ∈ BOOL, b2 ∈ BOOL · bool(b1 = TRUE ∧ b2 = TRUE) = bool(b2 = TRUE ∧ b1 = TRUE)

More generally, if an operator is defined by the user to be commutative, then

1. if the operator is a term operator, the following proof obligation is generated

`D ∀x1 ∈ T, x2 ∈ T ·Q(x1, x2) = Q(x2, x1)

2. if the operator is a formula operator, the following proof obligation is generated

`D ∀x1 ∈ T, x2 ∈ T ·Q(x1, x2)⇔Q(x2, x1)



100 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

4.7.2.3 Associativity

A term operator is said to be associative if:

• it is a binary operator whose arguments are of the same type,

• the resultant type of the operator is the same as that of the arguments,

• the following formula is valid:

Q(Q(x1, x2), z) = Q(x1, Q(x2, z)) .

If a term operator is defined by the user to be associative, the following proof obligation is

generated:

`D ∀x1 ∈ T, x2 ∈ T, z ∈ T ·Q(Q(x1, x2), z) = Q(x1, Q(x2, z))

Summary. In this section, we have shown how polymorphic operators can be defined in the the-

ory construct. We discussed important aspects of operators, including syntax, well-definedness,

commutativity and associativity. We also provided the different proof obligations that are nec-

essary to validate user-defined polymorphic operators.

4.8 Datatypes

Datatypes are important ingredients of many formalisms and programming languages [107, 75].

In this section, we will show by means of simple examples how the theory component can be

used to define new datatypes. In our discussion, we do not provide a rigorous treatment of the

subject, nor do we claim that the development has reached a mature stage. However, as pointed

out in §5 [102], datatypes can be added on top of the logic of Event-B as defined by Schmalz.

The syntactic restrictions placed on datatypes resemble those placed on Isabelle/HOL datatypes

as developed in [27].

In this brief treatment, we will be concerned by datatypes which are generated from a number

of constructors. Each element of the type can be written as a constructor term. Moreover, the

datatypes are freely generated which requires the constructors to be distinct and injective. This

ensures that every element of the newly-defined datatype is denoted by a unique constructor

term, and consequently, a structural induction theorem holds for such datatype. The structural

induction theorem enables the definition of operators by primitive recursion [27, 107].

A new datatype is introduced by providing the following:

1. A type constructor operator,

2. A number of element constructors one of which must be a base constructor,

3. Extensionality axioms to ensure constructed elements are uniquely determined by their

constituents,

4. Disjointness axioms ensuring that distinct constructors yield distinct elements,
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5. An induction axiom.

Generally speaking, a datatype specification in the theory construct has the following form:

t(α1, ..., αn) ::= C1(π1
1 , ..., π

m
1 ) | ... | Ck(π1

k, ..., π
l
k)

where α1,..., αn are type parameters, C1,..., Ck are the constructors of the new datatype, and

each of πji is a type that may only refer to the type parameters of the datatype. Constructor

names must be distinct. Types in Event-B are assumed to be non-empty, and this must hold for

datatypes. As such, each newly defined datatype must have a base constructor, i.e., a constructor

that does not refer to the datatype being defined. Furthermore, the admissibility check discussed

in [27] has to be enforced to avoid a major issue with nesting of datatype definitions. If the

admissibility check is dropped, the datatype cannot be constructed [27].

In the context of Event-B, the admissibility check rules out the following datatype definition

t(α) ::= C1 | C2(P(t))

since there is no injective function of type P(t)→ t by Cantor’s theorem.

4.8.1 A List Datatype

As an example, we consider the definition of a list datatype using the following syntactic sugar:

List(α) ::= nil| cons(α, List(α))

where α is a type parameter. In this case, we have the following:

1. type constructor operator: List(α),

2. element constructors: nil and cons,

3. extensionality axioms:

∀x, x′, l, l′ · cons(x, l) = cons(x′, l′)⇒ x = x′ ∧ l = l′

4. disjointness axioms:

∀x, l · cons(x, l) 6= nil

5. induction axiom:

P (nil) ∧ (∀x, l · P (l)⇒ P (cons(x, l)))⇒ (∀l · P (l))

The theory component allows the definition and use of datatype accessors. The list datatype

definition can be more succinctly written as:

List(α) ::= nil

| cons(head : α, tail : List(α)) .
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The previous definition introduces the a number of expressions to the Event-B mathematical

language. List(α) is a type expression as well as a set expression. nil is an expression of type

List(α).cons(x, l) is an expression of type List(α). head is a partial operator of type List(α) 7→α,

and tail is a partial operator of type List(α) 7→List(α). The head and tail are operators whose

well-definedness conditions are the following:

D(head(l)) =̂ ∃x, l0 · l = cons(x, l0)

D(tail(l)) =̂ ∃x, l0 · l = cons(x, l0)

Pattern-based recursive operators can be specified by providing definitions corresponding to each

constructor of the concerned datatype. The size of a list can be defined by means of the following

operator:

operator listSize

(prefix)

args l ∈ List(T )

definition

case l

listSize(nil) = 0

listSize(cons(x0, l0)) = 1 + listSize(l0)

Prior to wour work, only built-in types and carrier sets can be used in models. Datatypes can be

constructed axiomatically in contexts by defining a carrier set (corresponding to the datatype)

and a number of injective functions to specify the datatype constructors. However, this approach

has two drawbacks. Firstly, the datatype is not polymorphic as it uses carrier sets. Secondly, it

uses contexts for a purpose for which they were not initially intended as discussed in §4.1.1. We

argue that datatypes in the theory construct address the aforementioned drawbacks.

Summary. In this section, we briefly presented how datatypes are specified in the theory

construct. The particular issue of datatype admissibility is highlighted. The objective of this

section was to provide a cursory overview of datatypes in theories. The work on datatypes in

the logic of Event-B is not complete, and it could further be complemented by adding facilities

for mutually recursive datatypes.

4.9 Related Work

The related work is divided into four sub-sections corresponding to the different contributions

of this chapter.

4.9.1 Module Systems in Specification Languages

Modularity is an important concern in specification and programming languages. Modern pro-

gramming languages such as Java and C++ incorporate difference constructs to provide a modu-

lar approach to software development, e.g., classes and inheritance. Maude is a reflective language
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and system supporting both equational and rewriting logic specification and programming for

a wide range of applications [35, 36]. Rewriting logic is a logic of concurrent change that can

naturally deal with state and with concurrent computations [79]. Maude provides a modular

system for specifying rewrite theories. Each module provides sorts, kinds and operators, and

can have equations, memberships and rules [35]. The theory construct is similar to a module in

Maude given the facilities provided for specifying operators, types and rewrite rules. However,

theory development is secondary to model development, i.e., contexts and machines, in Event-

B. Theories should not be considered as modelling elements in a specification. Rather, their

role remains as a meta-reasoning vehicle for the logic of Event-B rather than the specification

language of Event-B, i.e., outer syntax. A similar comparison can be drawn between Event-B

theories and OBJ3 [55] modules.

Extended ML is a framework for specification and formal development of Standard ML (SML)

programs. Developing a program in Extended ML means writing a specification of a generic

SML module and then refining this specification in a top-down fashion by means of a number of

refinement steps until an SML program is obtained [100, 71]. The counterpart of an Extended

ML module is in fact a machine. However, parallels can be drawn between a module and a

theory. A theory can be used to specify operators, types and proof rules in a modular fashion.

Hierarchies of theories exist to specify a collection of related mathematical structures. However,

a key difference between theories and modules in Extended ML is that code generation is not a

requirement for theories. In fact, code generation is more pressing in the case of contexts and

machines. As such, we conclude that more parallels can be drawn between Event-B models and

Extended ML modules than between Event-B theories and Extended ML modules.

Isabelle [89] and PVS [92] theories are similar to Event-B theories, but are wider in scope.

Theories in Isabelle and PVS can be used to carry significant modelling and reasoning activities.

We argue that combining modelling and theory development in Event-B provides a comparable

level of sophistication to that of Isabelle and PVS theories. Event-B modelling uses set theory

which can provide powerful expressive power that is close to higher order logic [13]. The addition

of the theory component ensures that polymorphism can be exploited to enhance the expressive

power of the Event-B mathematical language.

4.9.2 Prover Extensibility

The architecture of proof tools continues to stir up much heated debate. One of the main talking

points is how to strike a reasonable balance between three important attributes of the prover:

efficiency, extensibility and soundness. In [62], Harrison outlines three options to achieve prover

extensibility:

1. If a new rule is considered to be useful, simply extend the basic primitives of the prover

to include it.

2. Use a full programming language to specify new rules using the basic primitives. The new

rules ultimately decompose to these primitives.

3. Incorporate the reflection principle, so that the user can add and verify new rules within

the existing infrastructure.
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Many theorem provers including Isabelle [89] and HOL [58] employ the LCF approach. The

functional language ML [88] is used to implement these systems, and acts as their meta-language.

The approach taken by such systems is to use ML to define data types corresponding to logical

entities such as terms and theorems. A number of ML functions are provided that can generate

theorems; these functions implement the basic inference rules of the logic. The ML type system

ensures that theorems are only constructed by the aforementioned functions. Therefore, the LCF

approach offers both “reliability” and “controllability” of a low level proof checker combined

with the power and flexibility of a sophisticated prover [62]. On the flip side, however, a major

drawback for this approach is that each newly developed proof procedure must decompose into

the basic inference rules. There are cases where this may not be possible or indeed an efficient

solution e.g., the truth table method for propositional logic [40].

The PVS [92] system follows a similar approach to LCF with more liberal support for adding

external provers. This liberality comes at a risk of encountering soundness bugs. It, however,

presents the user with several choices of automated provers which may ease the proving expe-

rience. A comparison between Isabelle/HOL and PVS from a user’s point of view is presented

in [59]. Interestingly, it mentions that “soundness bugs are hardly ever unintentionally explored”

during proof, and that “most mistakes in a system to be verified are detected in the process of

making a formal specification”. A similar experience is reported when using the Rodin plat-

form [82].

The Mural formal development system [73] consists of a VDM support tool and a proof assistant.

However, in essence, it provides support for many-sorted predicate calculi which are expressible

in natural deduction style. The Mural system allows adding internally proved rules i.e., rules

that follow directly from existing rules. This results in the exclusion of a large class of rules

that could be proved by employing a “more sophisticated meta-reasoning”. Adding new rules in

Mural can be achieved through extending existing theories providing a verifiably “open system”.

Programming tools such as JML [30], ESC/Java [38], Boogie [22] (Spec# [23] program verifier)

and VCC [37] provide capabilities to verify computer programs. Verification conditions are

generated, and passed on to external provers, e.g., SMT solvers. Since theorem proving is not an

integrated component in these tools, prover extensibility is not an immediate concern. However,

the choice of highly configurable and customisable tools is readily available, e.g., Isabelle and

SMT solvers. Note that a similar approach is adopted by VDM [70].

The KIV [21] theorem prover is a tool for formal development and interactive verification. KIV

provides proof support for all elements of the specification language based on sequent calcu-

lus, rewriting and symbolic execution of programs. This theorem prover follows a tactic-based

approach to proof, and provides a number of proof heuristics that can only be modified or aug-

mented by the system developer. Facilities are not provided for specifying new proof procedures

by system users. This particular limitation of KIV is similar to the limitations of the Event-B

toolset prior to our work.

The KeY System [17, 18] is a formal software development toolset which proposes the integra-

tion of design, implementation, formal specification, and formal verification of object-oriented

software as seamlessly as possible. Taclets [53] provide a mechanism by which proof rules can

be defined for the KeY System. For example, a very simple taclet could be written as follows
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find(b -> c ==>) if (b ==>) replacewith (c ==>) heuristics(simplify)

Listing 4.1: Simple Taclet

This taclet indicates that an implication b⇒ c should be replaced by formula c if b can be found

in the left hand side of sequent (i.e., hypotheses). The aforementioned taclet is part of proof

heuristics called ‘simplify’. Even though, we do not explicitly support proof directives (such as

‘find’), there is a limited implicit support for such constructs as exemplified in single conditional

rewrite rule application and inference rules.

Our approach does not necessarily subdue the old mechanism of extending the prover. As such,

the new prover architecture resembles that of PVS. It still allows the liberality of integrating

external decision procedures (e.g., for arithmetic) while providing a collection of sound rules.

On the other hand, verifying the soundness of added rules using proof obligations enables meta-

reasoning within the same platform. This can be viewed as a limited incorporation of the

reflection principle within Rodin. The limitations of our approach, however, are similar to the

limitations of the Mural architecture, since sophisticated meta-reasoning is not possible at the

moment.6

4.9.3 Language Extensibility

Language extensibility is a major concern in formal methodologies. Isabelle/HOL achieves a good

level of extensibility through polymorphism. It also benefits from the availability of a meta-logic

that can be used to specify operators with good control over syntactic representations [93]. The

generic nature of Isabelle enables the specification of many logics, and, suitably, there is an

attempt to encode Event-B in Isabelle.

Language extensibility is a real concern in PVS as discussed in [76]. PVS allows the use of

parametrised theories which offers some of the benefits of language extensibility such as reusabil-

ity. Both PVS and Isabelle/HOL provide facilities to define and use datatypes and recursive

definitions. In both formalisms, when a new datatype is defined, a simple theory containing at

least an induction principle is provided.

4.9.4 Datatypes

Datatypes are an important ingredient in specification and programming languages. Abstract

datatypes play a major role in programming language such as Java, C++ and the functional

language ML. Algebraic datatypes describe the theory behind the creation of types and the

operations that manipulate and create elements of the said types. Note that abstract datatypes

can be modelled using contexts and machines , as is carried out in [99]. However, such models of

datatypes do not make the specified datatype available as a type for the subsequent specifications.

This is in contrast with the specification languages Maude [35] and OBJ3 [55], where most types

6Predicate variables have been added to the mathematical language since Rodin 2.0. However, meta-
reasoning in Rodin can be substantially enhanced by adding support for the well-definedness operator
as a syntactic extension to the mathematical language.



106 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

are constructed algebraically, and made available for reuse as types. The objective of datatypes

in theories is to provide further types (beside the built-in types and carrier sets) that can be

used in modelling, e.g., for data refinement.

Datatypes can be defined in Isabelle/HOL [89] and PVS [92]; in both formalism, a theory

is readily available to reason about the created datatype. In particular, [27, 107] provide an

overview of the construction of datatypes in Isabelle/HOL. And as pointed out by Schmalz [102],

the construction of datatypes could follow a similar path in the logic of Event-B. Note that this

construction is absent in this thesis, as datatypes in the theory construct is a case of ‘practice

preceding theory’. Nonetheless, it provides a starting point for further research on the logic of

Event-B and its possible extensions.

4.10 Summary

In this chapter, we presented an approach that improves the extensibility of the Event-B lan-

guage and prover. The theory construct is used to define and validate rewrite rules as well as

polymorphic theorems. Proof obligations are generated to ensure that soundness is maintained.

We have shown how the theory construct can be used to specify rewrite rules in order to enhance

the rewriting capabilities of Rodin. The justification for the work on rewriting in Event-B is pre-

sented in Chapter 3. Next, we introduced polymorphic theorems and presented how they can

be incorporated in proofs. Inference rules provide a convenient mechanism by which user can

apply certain polymorphic theorems. Furthermore, we addressed language extensibility issues

by describing how polymorphic operators can be specified in the theory construct. The logical

foundation behind support for polymorphic operators can be found in [102]. A minor contribu-

tion of our work is the addition of support for datatypes in the Event-B mathematical language.

In summary, the work in this chapter has its theoretical foundation in Chapter 3 and [102], and

resulted in providing effective tool support for extending the Rodin proving infrastructure as will

be shown in Chapter 5 and 6.
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Tool Support: Theory Plug-in

It is widely accepted that formal methods are becoming more essential to software develop-

ment [10, 31, 110]. There exist several cases that show the applicability and usefulness of for-

mal techniques in software engineering [39]. An important component of any successful formal

methodology is tool support. Effective tool support facilitates the integration of formal methods

into the development process of computer systems [9]. It can be even argued that tool support

is the most important factor in determining the success or otherwise of any formal method.

Isabelle [95] boasts an effective set-up that combines soundness and usability. It also provides a

powerful mechanism for embedding logics. One of the most attractive attributes that contributed

to the success of Isabelle is the LCF architecture as discussed in §4.9. PVS [91] provides a theorem

prover consisting of a variety of primitive inference procedures. PVS employs Gnu or X Emacs to

provide an integrated environment for its language and prover. One of the many strengths of PVS

is the possibility of integrating external decision procedures (e.g., for arithmetic). The Rodin

platform provides an extensible toolset for developing and reasoning about Event-B models.

Rodin includes a collection of tools that are necessary for a reactive development environment.

In this chapter, we shed some light on some of the important features of Rodin.

This chapter is structured in the following way. The theory component is introduced together

with the appropriate tooling. Theory deployment is described in practical terms. We conclude

by describing how the different mathematical and prover extensions can be used in models and

proofs. Our aim in this chapter is to show how the different ideas presented in Chapter 4 have

been implemented with the objective of addressing the extensibility issues outlined in §1.1. We

undertook the development of the Theory plug-in as part of our research; it started as a proof

of concept, and evolved to a solid platform for reasoning about Event-B extensions.

5.1 The Theory Plug-in

The Theory plug-in embodies many of the ideas presented in this thesis. It is our solution to

the different extensibility issues described in §1.1. The Theory plug-in benefits from the highly

configurable and extensible nature of the Rodin platform in the following aspects:

107
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1. The Rodin Database. The Theory plug-in contributes the theory component as a Rodin

file.

2. Rodin Tooling. The Theory plug-in provides a static checker and proof obligation gen-

erator for theory files.

3. Dynamic AST. The Theory plug-in provides a front-end to the Rodin dynamic parser

for the mathematical language.

4. Reasoners and Tactics. The Theory plug-in dynamically creates reasoners and tactics

as wrappers around user-specified proof rules.

The Theory plug-in follows the Rodin philosophy by:

1. adopting the familiar approach of reactive development, and

2. using proof obligations to ensure soundness preservation.

5.1.1 The Theory Construct

The theory construct (component) is a Rodin file acting as a place holder for mathematical and

proof extensions. The theory construct can be used to specify:

1. mathematical extensions including datatypes and operators with direct or primitive re-

cursive definitions, and

2. proof extensions including polymorphic theorems, rewrite and inference rules.

Theories have the structure described in Figure 4.3. A theory is parametrised by means of a

number of type parameters. All extensions are polymorphic on the type parameters to which

they refer.

A new theory can be created by specifying its name and its hosting project as per Figure 5.1.

Event-B theories can include a number of the following elements:

1. Theory Imports. This specifies a directed relationship between the parent theory (the

importer) and the referenced theory (the importee). The importer theory can refer and

use any of the extensions defined in the importee theory. The import relationship enables

the importing theory to use all mathematical and proof extensions defined in the imported

theory. The import directive enables the creation of theory hierarchies. For instance, two

separate theories can be created to define sequences and inductive lists, and a third theory

importing the previous two theories can be created to specify an isomorphism between

sequences and inductive lists. In effect, the import directive establishes a partial order on

the collection of theories within a project. The imported theories need not be instantiated

with type parameters a la PVS [91].

2. Type Parameters. This defines the types on which theory extensions may be poly-

morphic. Type parameters are similar to carrier sets in contexts; the only assumption

regarding type parameters is non-emptiness.
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Figure 5.1: Creating a New Theory

3. Datatypes. Datatypes are defined by providing the following information:

(a) the type expression syntax e.g., List,

(b) the type parameters of the datatype e.g., a single type parameter T for List,

(c) a number of element constructors e.g., nil and cons for List. Each constructor may

have a number of destructors (accessors) e.g., head and tail accessors for cons.

Figure 5.2 shows a definition of inductive lists.

4. Operators. Operators are defined by providing the following information:

(a) the syntax symbol of the operator,

(b) the syntactic class (i.e., predicate or expression),

(c) the notation (only prefix and infix are currently supported),

(d) the list of arguments and their types,

(e) the condition under which the operator is to be used,

(f) a definition which can be 1) direct, or 2) primitive recursive.

Figure 5.3 illustrates a direct definition for the sequence operator. Figure 5.4, on the other

hand, illustrates a primitive recursive definition for the list size operator.

5. Theorems. A polymorphic theorem can be added by specifying its name (i.e., its identi-

fier) and its formula. Figure 5.5 shows an simple theorem about the finiteness of sequences.

6. Proof Rules. Two types of proof rules can be defined: rewrite and inference rules. Meta-

variables are used as variable patterns in rules to facilitate 1) pattern matching, and 2)

type inference and checking. A meta-variable (as shown in Figure 5.6) has a name and a

type.

(a) Rewrite Rules. A rewrite rule can be defined by providing the following informa-

tion:
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Figure 5.2: Definition of Inductive Lists

i. the left hand side to be rewritten,

ii. the applicability of the rule (i.e., automatic, interactive or both),

iii. the description of the rule for user interface purposes, and

iv. the right hand sides to which the left hand side can be rewritten; each right

hand side is guarded by a condition.

Figure 5.7 shows a simple rewrite rule.

(b) Inference Rules. An inference rule can be defined by providing the following

information:

i. the applicability of the rule (i.e., automatic, interactive or both),

ii. the description of the rule for user interface purposes,

iii. the given clauses of the inference rule, and

iv. the infer clause of the inference rule.

Figure 5.8 shows an example inference rule.

5.1.2 Theory Static Checking

Event-B theories are subject to static checking. The theory static checker inspects unchecked

theory files (with file extension ‘.tuf’), and produces checked theory files (with file extension
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Figure 5.3: Operator with a Direct Definition

Figure 5.4: Operator with a Primitive Recursive Definition

‘.tcf’). The following non-exhaustive list enumerates the checks implemented in the Theory

plug-in:

1. Import Checks.

• Non-circularity of import relationship,

• Redundancy of import relationship: in case a theory is imported more than once;

this is particularly useful if a theory is imported directly (using an import directive)

and indirectly (by virtue of the transitivity of the import directive).

2. Datatype Checks.

• Syntax symbols clash: for the type expression as well as constructors and accessors,
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Figure 5.5: A Polymorphic Theorem

Figure 5.6: Meta-variables

Figure 5.7: A Rewrite Rule

• Presence of a base constructor : each datatype definition must include a base con-

structor, and

• Admissibility check : see §4.8 for more on this check.

3. Operator Checks.

• Syntax symbols clash: for the operator syntax symbol,

• Parsing and typing of operator arguments,

• Parsing and type checking of well-definedness conditions,

• Parsing and type checking of direct definitions,

• Uniqueness of definition: only one definition is allowed for each operator,

• Constructor coverage: for primitive recursive definitions,

• Operator properties checks: for example, an operator with a single argument cannot

be tagged associative or commutative.

4. Theorem Checks.

• Parsing and type checking of the formula,
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Figure 5.8: An Inference Rule

• Variables check : this ensures that the only free variables of the theorem are type

parameters.

5. Rewrite Rule Checks.

• Parsing and type checking of the left hand side,

• Left hand side is not a variable check,

• Presence of at least one right hand side,

• Variables check : this ensures that the right hand side only refers to variables occur-

ring in the left hand side,

• Syntactic class check : this ensures that right hand sides are of the same syntactic

class of the left hand side.

• Sides type check : this ensures that both side of the rule have the same Event-B type.

6. Inference Rule Checks.

• Presence of infer clause: each inference rule must have an infer which is syntactically

different from ⊥.

• Parsing and type checking of clauses,

• Applicability check : to ensure that the inference rule is applicable in at least one

direction.
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Figure 5.9: Tool-Chain for Event-B Theories

5.1.3 Theory Proof Obligation Generation

Event-B theories are subject to proof obligation generation. The theory proof obligation gen-

erator inspects the statically checked theory files (with file extension ‘.tcf’), and generates the

appropriate proof obligation for each inspected element. The generated proof obligations are

described in Chapter 4. In summary, the tooling provided for theories follows the same approach

of Rodin (see Figure 2.5), and is described in Figure 5.9.

5.1.4 Theory Deployment

Theory development is carried out separately from modelling. This is driven by the different

natures of modelling and meta-reasoning. In a typical development, theories are created and

organised in hierarchies. Ideally, each theory should define one major mathematical structure,

e.g., a sequence, and any supporting operators and proof rules. If a cross-structure theory is

required, a different theory can be created for such purpose, and the import directive enables

such theory to refer to any required theories. Proof obligations generated from theories should

be discharged by the user to ensure soundness preservation1.

Theory deployment is the process by which theories become available for modelling. By ‘availabil-

ity for modelling’, we mean that mathematical and proof extensions can be used when developing

models and performing proofs related to them. This is a seamless process; no further actions

are required from the end-user. Technically speaking, theory deployment creates the deployed

theory file (with file extension ‘.dtf’) which is an exact copy of the statically checked theory file2.

In contrast with static checking and proof obligation generation, theory deployment is a process

initiated by the user. Dependencies between theories (by means of the import directive) are

1This, however, is not enforced by the tool. At an early stage of the plug-in lifetime, the enforcement
of such requirement may have hindered tool flexibility as far as the user is concerned. Future releases of
the Theory plug-in may enforce this particular good practise.

2The reader may wonder about the need for another file if it is just an exact copy. The motivation
behind this design decision is to keep modelling and meta-reasoning as separate activities. The statically
checked theory file is used for meta-reasoning, and the deployed theory file is used for modelling.
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automatically observed by the deployment process. The deployment process of a theory ensures

that its imported theories are also deployed, thus creating a hierarchy of deployed theories that

mirrors the statically checked theory hierarchy. Theory deployment achieves the following two

objectives:

1. it allows the end-user to inspect theories for soundness issues by observing the status of

proof obligations, and

2. it decouples modelling and meta-reasoning. Deployed theories are the only theories avail-

able for use in models.

Figure 5.10 shows the deployment wizard in action.

Figure 5.10: The Deployment Wizard

5.1.5 Loading Extensions

Mathematical and proof extensions are loaded from deployed theories. Theories can have one of

the following two scopes:

1. Global Scope. Also known as ‘workspace scope’. This refers to theories which are part

of a designated global project3. Mathematical and proof extensions in the global theories

are available for all projects.

2. Project Scope. Also know as ‘local scope’. This refers to theories which are part of

projects other than the global project. Mathematical and proof extensions in local theories

are only available for models in their corresponding project.

Loading extensions is a process initiated by the tool. However, the user can exercise control

over what gets loaded by editing/modifying theories. The rational behind scoping theories is the

3In the current version of the Theory plug-in (1.3.1), the global project is called ‘MathExtensions’.
This, however, may change in future releases.
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following. Some theories are general enough to be provided as part of a library e.g., sequence,

lists and order. These theories should have a global scope. Other theories may be project specific,

and as such should have a local scope.

5.1.6 Proof Support

The Theory plug-in provides a mechanism for applying rules and using polymorphic theorems.

The Rule-based Prover [78] (known as RbP in the tool) is a contribution to the proof infras-

tructure of Rodin, and provides a number of reasoners and tactics. An important component of

the Rule-based Prover is the pattern matching engine. A particularly interesting aspect of this

engine is the associative and associative commutative (AC) matching routine which is inspired

by works in [26, 47, 48].4

5.1.6.1 Rewriting and Inference

Rewrite and inference rules specified in theories are usable in the same way as existing rewrite

and inference rules5.

5.1.6.2 Polymorphic Theorems

In order to use a polymorphic theorem, an appropriate type instantiation is required. By ‘appro-

priate’, we mean that the type instantiation should only refer to types recognised in the sequent

to prove (i.e., recognised carrier sets or any of the built-in types BOOL and Z). Figure 5.11

shows the wizard used to select and instantiate a polymorphic theorem.

(a) Select a theorem (b) Instantiate a theorem

Figure 5.11: Using Polymorphic Theorems

The selected and instantiated theorem becomes a visible hypothesis in the current sequent.

4A full AC matching procedure is implemented as part of RbP.
5This usually is achieved through a hyperlink or a drop-down menu next to the goal or hypothesis

predicate.
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5.1.6.3 Other Useful Tactics

It is, in some cases, useful to expand the definitions (i.e., rewrite to definition) of all operators

used in a sequent. A tactic is provided for this purpose. It attempts to rewrite as much as possible

any theory operators with the exception of recursively defined operators and datatype-related

expressions (e.g., constructors).

5.2 Summary

In this chapter, we provided an extended overview of the Theory plug-in. We described the

theory component which acts as a place holder for the different extensions. Static checking

and proof obligation generation are extended to check and validate theories. Deployment makes

theories immediately usable in models and proofs. The Theory plug-in implements the ideas

presented in this thesis, and it can also be used for other purposes such as code generation [46].

The Theory plug-in was developed as part of the tooling package of the Deploy project [1] which

aims to facilitate deployment of formal methods in the industry. The tooling package focused en

enhancing the tool support for Event-B by means of Rodin and other useful plug-ins.





Chapter 6

Theory Development: Examples

Chapter 5 provided an extended overview of the Theory plug-in. In this chapter, we provide

concrete examples of theories developed using the plug-in. The theories presented in this chapter

have been developed to demonstrate the expressiveness of the theory component. Some of the

mathematical extensions defined in the forthcoming theories correspond to general mathematics,

and are described, in a different way, in the B book [8]. The development of theories presented

in this chapter has been a joint effort with Jean-Raymond Abrial.

This chapter is structured in the following way. We present several theories describing useful

mathematical structures. We aim to demonstrate by means of examples the different types of

extensions (mathematical or proof) that can be expressed. Inductive datatypes and primitive

recursive operators are presented for lists.

6.1 Boolean Operators

Expressions and predicates are separate syntactic categories in the Event-B mathematical lan-

guage. Unlike expressions, predicates do not have a type. However, Event-B provides a boolean

type BOOL which has two elements:

BOOL = {TRUE,FALSE} .

BOOL, TRUE and FALSE are all expressions. In this section, we introduce a theory BooleanOps

(Figure 6.1) that defines the different logical connectives ∧, ∨ and ¬ on boolean types1. Note

that Event-B also provides an operator bool that takes a predicate argument and produces a

boolean-typed value according to the truth of the predicate argument.

Theory BooleanOps does not introduce type parameters as none is needed to define the required

extensions. The theory defines three operators AND, OR and NOT on boolean arguments. The

operator definitions are all direct using the bool operator. Note that AND and OR are both

tagged as associative commutative. This triggers the generation of proof obligations to validate

1As opposed to predicates.
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theory BooleanOps
operator AND

(infix) (commutative) (associative)
args a ∈ BOOL, b ∈ BOOL
definition bool(a = TRUE ∧ b = TRUE)

operator OR
(infix) (commutative) (associative)
args a ∈ BOOL, b ∈ BOOL
definition bool(a = TRUE ∨ b = TRUE)

operator NOT
(prefix)
args a ∈ BOOL
definition bool(a 6= TRUE)

Figure 6.1: Boolean Operators Theory

the user’s claim. Note that operator overloading is not supported in the AST. As such existing

syntax symbols (i.e., ∧, ∨ and ¬ in this case) cannot be used.

The truth table for the new boolean operators can be defined by means of rewrite rules. We illus-

trate this for the case of the NOT and AND operator (Figure 6.2 and Figure 6.3 respectively).

rewrite NotTruthTable1
(automatic) (case complete)
lhs NOT TRUE
rhs

> FALSE
rewrite NotTruthTable2

(automatic) (case complete)
lhs NOT FALSE
rhs

> TRUE

Figure 6.2: NOT Truth Table

Theory BooleanOps can be used to create models for electronic circuits.

6.2 Sequences

Sequences are important mathematical structures. The sequence operator is part of classical B

modelling repertoire. However, it is not pre-built in the Event-B mathematical language. Theory

Sequences (Figure 6.4) introduces the sequence operator together with some useful operators,

polymorphic theorems and rules.
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rewrite AndTruthTable1
(automatic) (case complete)
lhs TRUE AND TRUE
rhs

> TRUE
rewrite AndTruthTable2

(automatic) (case complete)
lhs TRUE AND FALSE
rhs

> FALSE
rewrite AndTruthTable3

(automatic) (case complete)
lhs FALSE AND TRUE
rhs

> FALSE
rewrite AndTruthTable4

(automatic) (case complete)
lhs FALSE AND FALSE
rhs

> FALSE

Figure 6.3: AND Truth Table

theory Sequences
type parameters T
operator seq

(prefix)
args a ∈ P(T )
definition {n, f · f ∈ 1..n→ a | f}

Figure 6.4: Sequences Theory

The sequences theory is parametrised by a single type parameter T . The definition of the operator

seq includes all the total functions to the argument a from contiguous domains of natural numbers

starting from 1. Figure 6.5 introduces useful sequence operators and polymorphic theorems. The

sequence head and tail are defined for non-empty sequences. Adding elements to a sequence can

be achieved by means of the two operators seqAppend and seqPrepend. The theorems ensure

that the different definitions capture the intuitive understanding of sequences e.g., empty set is

a sequence and all sequences are finite.
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operator seq1
(prefix)
args a ∈ P(T )
definition seq(a)\∅

operator emptySeq
(prefix)
definition ∅ : Z↔ T

operator isSeqEmpty
(prefix)
args s ∈ Z↔ T
condition s ∈ seq(T )
definition s = emptySeq

operator seqSize
(prefix)
args s ∈ Z↔ T
condition s ∈ seq(T )
definition card(s)

operator seqHead
(prefix)
args s ∈ Z↔ T
condition s ∈ seq(T ) ∧ s 6= emptySeq
definition s(1)

operator seqTail
(prefix)
args s ∈ Z↔ T
condition s ∈ seq(T ) ∧ s 6= emptySeq
definition λi · i ∈ 1..(seqSize(s)− 1) | s(i+ 1)

operator seqPrepend
(prefix)
args s ∈ Z↔ T, e ∈ T
condition s ∈ seq(T )
definition {1 7→ e} ∪ (λi · i ∈ 2..(seqSize(s) + 1) | s(i− 1))

operator seqAppend
(prefix)
args s ∈ Z↔ T, e ∈ T
condition s ∈ seq(T )
definition s ∪ {(seqSize(s) + 1) 7→ e}

theorem
∀s, a · a ⊆ T ∧ s ∈ seq(a)⇒ finite(s)
∀s, a, b · a ⊆ T ∧ a ⊆ b ∧ s ∈ seq(a)⇒ s ∈ seq(b)
∀s, a · a ⊆ T ∧ s ∈ seq(a) ∧ ¬isSeqEmpty(s)⇒ seqTail(s) ∈ seq(a)
∀s, a, e · a ⊆ T ∧ s ∈ seq(a)⇒ seqPrepend(s, e) ∈ seq(a ∪ {e})
∀s, a, e · a ⊆ T ∧ s ∈ seq(a)⇒ seqAppend(s, e) ∈ seq(a ∪ {e})

Figure 6.5: Sequences Theory Cont.
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The theorems defined in the sequences theory can be turned into inference rules. The following

two theorems:

∀s, a · a ⊆ T ∧ s ∈ seq(a) ⇒ finite(s)

∀s, a · a ⊆ T ∧ s ∈ seq(a) ∧ ¬isSeqEmpty(s) ⇒ seqTail(s) ∈ seq(a)

can be turned into the two inference rules described in Figure 6.6.

metavariables
s ∈ Z↔ T, a ∈ P(T )

inference seqIsFinite
(interactive)
given s ∈ seq(a)
infer finite(s)

inference tailIsSeq
(interactive)
given s ∈ seq(a), ¬isSeqEmpty(s)
infer seqTail(s) ∈ seq(a)

Figure 6.6: Sequence Inference Rules

6.3 Relations

Theory Relations (Figure 6.7) defines a number of useful operators in the context of order and

equivalence relations. The theory defines the following predicate operators:

• symmetric, asymmetric and antisymmetric,

• reflexive and irreflexive,

• transitive,

• partial order and well order,

• equivalence,

• linear and total order.

It is easy to see that the following two theorems hold in theory Relations:

partial order({a 7→ b | a ⊆ S ∧ b ⊆ S ∧ a ⊆ b})

∀f · f ∈ S→ T ⇒ equivalence(f ; f−1) .
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theory Relations
type parameters S, T
operator symmetric

(prefix)
args r ∈ S↔ S
definition r = r−1

operator asymmetric
(prefix)
args r ∈ S↔ S
definition r ∩ r−1 = ∅

operator antisymmetric
(prefix)
args r ∈ S↔ S
definition r ∩ r−1 ⊆ id

operator reflexive
(prefix)
args r ∈ S↔ S
definition dom(r) C id ⊆ r

operator irreflexive
(prefix)
args r ∈ S↔ S
definition r ∩ id = ∅

operator transitive
(prefix)
args r ∈ S↔ S
definition r; r ⊆ r

operator partial order
(prefix)
args r ∈ S↔ S
definition reflexive(r) ∧ antisymmetric(r) ∧ transitive(r)

operator well order
(prefix)
args r ∈ S↔ S
definition partial order(r)∧ (∀s · s 6= ∅∧ s ⊆ dom(r)⇒ (∃y · y ∈ s∧ s ⊆ r[{y}]))

operator equivalence
(prefix)
args r ∈ S↔ S
definition reflexive(r) ∧ symmetric(r) ∧ transitive(r)

operator linear
(prefix)
args r ∈ S↔ S
definition S × S ⊆ r ∪ r−1

operator total order
(prefix)
args r ∈ S↔ S
definition partial order(r) ∧ linear(r)

Figure 6.7: Relations Theory
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6.4 Fixpoint and Closure

In the B book [8], Abrial presents a definition for the fixpoint of a set function (also known as a

set transformer). Theory FixpointClosure (Figure 6.8) defines two operators: fix and cls. Note

that in the following theory, the symbol ; denotes forward composition, whereas the symbol ◦
denotes backward composition. The theorems defined in the theory have been shown to be valid

theory FixpointClosure
type parameters S
operator fix

(prefix)
args f ∈ P(S)→ P(S)
definition inter({s | f(s) ⊆ s})

operator cls
(prefix)
args r ∈ S↔ S
definition fix(λs · s ∈ P(S × S) | r ∪ (s; r))

theorem
∀f, s · f ∈ P(S)→ P(S) ∧ f(s) ⊆ s⇒ fix(f) ⊆ s
∀f, v · f ∈ P(S)→ P(S) ∧ (∀s · f(s) ⊆ s⇒ v ⊆ s)⇒ v ⊆ fix(f)
∀f · f ∈ P(S)→ P(S) ∧ (∀a, b · a ⊆ b⇒ f(a) ⊆ f(b))⇒ f(fix(f)) = fix(f)
∀f · f ∈ P(S)→ P(S)⇒ (∀t · t = f(t)⇒ fix(f) ⊆ t)
∀r · r ∈ P(S × S)⇒ cls(r) = r ∪ (cls(r); r)
∀r · r ∈ P(S × S)⇒ r ⊆ cls(r)
∀r · r ∈ P(S × S)⇒ cls(r); r ⊆ cls(r)
∀r, s · r ∈ P(S × S) ∧ s ∈ P(S × S) ∧ r ⊆ s ∧ s; r ⊆ s⇒ cls(r) ⊆ s
∀r, x · r ∈ P(S × S) ∧ r[x] ⊆ x⇒ cls(r)[x] ⊆ x
∀r · r ∈ P(S × S)⇒ cls(r); cls(r) ⊆ cls(r)
∀r · r ∈ P(S × S)⇒ r; cls(r) ⊆ cls(r)
∀r · r ∈ P(S × S)⇒ cls(r−1) = (cls(r))−1

Figure 6.8: Fixpoint and Closure Theory

using the plug-in.

The following theories have also been defined using the Theory plug-in:

1. Bags: a theory of bags.

2. Well Foundation: a theory of well-founded sets.

3. Connectivity : a theory of strong connectivity.

4. fchains: a theory of finite chains.

5. chainp: a theory of infinite chains.

6. BinaryTree: a theory of inductive binary trees, see Appendix C.

7. N-Tree: a theory of inductive n-ary trees.
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6.5 Inductive Lists

Theory Lists defines the list datatype together with some useful operators. Figure 6.9 shows the

definition of the list datatype.

theory Lists
type parameters S, T
datatype List

type argument T
constructors

nil
cons(head : T, tail : List(T ))

Figure 6.9: Inductive Lists Theory

The size of lists can be specified using the following operator:

operator listSize

(prefix)

args l ∈ List(T )

definition

case l

listSize(nil) = 0

listSize(cons(x0, l0)) = 1 + listSize(l0)

Appending to a list can be defined as follows:

operator append

(prefix)

args l ∈ List(T ), e ∈ T
definition

case l

append(nil, e) = cons(e, nil)

append(cons(x0, l0), e) = cons(x0, append(l0, e))

Reversing a list can be achieved using the following operator:

operator rev

(prefix)

args l ∈ List(T )

definition

case l

rev(nil) = nil

rev(cons(x0, l0)) = append(rev(l0), x0)

Applying a total function to elements of a list to produce another list can be achieved using the

following operator:
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operator comp

(prefix)

args l ∈ List(T ), f ∈ T ↔ S

condition f ∈ T → S

definition

case l

comp(nil, f) = nil : List(S)

comp(cons(x0, l0), f) = cons(f(x0), comp(l0, f))

Concatenating two lists can be specified using the following operator:

operator conc

(infix) (associative)

args l1 ∈ List(T ), l2 ∈ List(T )

definition

case l1

nil conc l2 = l2

cons(x0, l0) conc l2 = cons(x0, conc(l0, l2))

Flattening a list of lists can be achieved using the following operator:

operator flatten

(infix) (associative)

args l ∈ List(List(T ))

definition

case l

f latten(nil) = nil : List(T )

flatten(cons(l0, ll0)) = conc(l0, f latten(ll0))

The following theorems can be discharged from the above primitive recursive definitions:

∀l, f, x · l ∈ List(T ) ∧ f ∈ T → S ∧ x ∈ T ⇒ comp(append(l, x), f) = append(comp(l, f), f(x))

∀l, x · l ∈ List(T ) ∧ x ∈ T ⇒ rev(append(l, x)) = cons(x, rev(l))

∀l · l ∈ List(T ) ⇒ rev(rev(l)) = l

∀l1 · l1 ∈ List(T )⇒ (∀l2 · l2 ∈ List(T ) ⇒ rev(conc(l1, l2)) = conc(rev(l2), rev(l1)))

∀ll, l · ll ∈ List(List(T )) ∧ l ∈ List(T ) ⇒ flatten(append(ll, l)) = conc(flatten(ll), l) .

Proof by induction (in the Theory plug-in) is used to prove the aforementioned theorems.
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6.6 A Buffer Example

This example is presented in [46]. A theory of arrays is defined in Figure 6.10. The model

describes a simple buffer. The model is initially specified using machine b0. Machine b1 is a

refinement of machine b0, and uses the theory of arrays in Figure 6.10.

theory Array
type parameters T
operator array

(prefix)
args s ∈ P(T )
definition {n, f · n ∈ N ∧ f ∈ 0..(n− 1)→ s | f}

operator arrayN
(prefix)
args n ∈ Z, s ∈ P(T )
condition n ∈ N ∧ finite(s)
definition {a | a ∈ array(s) ∧ card(s) = n}

operator lookup
(prefix)
args a ∈ Z↔ T, i ∈ Z
condition a ∈ array(T ) ∧ i ∈ 0..(card(a)− 1)
definition a(i)

operator update
(prefix)
args a ∈ Z↔ T, i ∈ Z, x ∈ T
condition a ∈ array(T ) ∧ i ∈ 0..(card(a)− 1)
definition aC− {i 7→ x}

operator newArray
(prefix)
args n ∈ Z, x ∈ T
condition n ∈ N
definition (0..(n− 1))× {x}

Figure 6.10: Theory of Arrays [46]

The theory of arrays is used in a data refinement step. In machine b0, the variable abuf is

defined to be a sequence of integers. The invariants in b0 state that abuf must be a sequence

of a particular length. The variable abuf is initialised to the empty sequence (∅).

VARIABLES

abuf

INVARIANTS

inv1 : abuf ∈ seq(Z)

inv2 : seqSize(abuf) ≤ maxbuf

The refinement in machine b1 introduces the variable cbuf as a data refinement for the abstract

variable abuf . The concrete variable is specified using the polymorphic operator arrayN .
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VARIABLES

cbuf

a

b

INVARIANTS

inv1 : cbuf ∈ arrayN(maxbuf,Z)

...

inv6 : ∀i·i ∈ (0 .. seqSize(abuf))⇒ prj2(abuf)(i) = cbuf((a + i) mod maxbuf)

The concrete variable is initialised using the operator newArray.

Initialisation

begin

act1 : cbuf := newArray(maxbuf, 0)

act2 : a := 0

act3 : b := 0

end

The polymorphic operators lookup and update are used to specify the events Get and Put in

machine m1.

Event Put =̂

refines Put

any

x

where

grd1 : x ∈ Z
grd2 : b ≥ a⇒ b− a < maxbuf

then

act1 : b := (b + 1)mod(maxbuf + 1)

act2 : cbuf := update(cbuf, b mod maxbuf, x)

end

Event Get =̂

refines Get

any

y

where

grd1 : a 6= b

grd3 : y ∈ Z
grd2 : y = lookup(cbuf, a)

then

act1 : a := (a + 1) mod maxbuf

end
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6.7 A Reflection

Prior to our work, axiomatic definitions in contexts were the only possible mechanism by which

non-polymorphic functions can be introduced in models. Structure such as sequences, bags

and stacks are very useful and common modelling elements, but they are absent from the core

syntax of Event-B. Furthermore, from our experience of using the Rodin tool, if a new proof

rule is required, a bureaucratic process has to be initiated where resources have to be allocated

depending on the urgency of the request.

Despite the lack of quantitative data regarding the usage the Theory plug-in, we argue that the

practical contributions of this thesis:

1. complement the Event-B methodology and make it a more rounded formalism,

2. provide an appealing platform to end users because it has facilities for meta-reasoning to

complement reasoning and modelling in Event-B,

3. reduce the dependency on the Java programming language and specialised knowledge of

Rodin architecture,

4. together with the core Event-B formalism, provide an expressive language that is compa-

rable to higher-order logic as discussed in [13].

Significant effort is required to develop sound theories. Theory hierarchies are a useful structuring

mechanism to create operator taxonomies as is the practice in Isabelle/HOL [90]. The effort

required to create and validate theories can be decomposed into two large phases:

1. Theory specification phase: new datatypes, operators and proof rules are specified. In

this phase, particular attention should be paid to specifying any auxiliary operators that

facilitate the use of the main newly introduced structures. In the case of the sequence

theory, the seq operator is the main structure of the theory, and a number of auxiliary

operators, e.g., emptySeq, seqHead and seqTail, are also defined.

2. Theory validation phase: in this phase, proof obligations are considered and discharged

by the user. This phase helps with uncovering errors in the specification of operators and

proof rules, in the same way that interactive proof can reveal errors in models. Therefore,

theory development is an iterative process.

It is a recurring observation that developing sound theories may take at least the same amount

of effort as when developing consistent models. However, the major advantage of using theories

is the reusability of definitions thanks to their polymorphic nature. The Theory plug-in provides

an obvious upgrade on the process of writing Java code to extend the Event-B language and

prover. Finally, the familiarity of our approach to users (reactive development, the use of proof

obligations and the use of the existing Rodin user interface for specifying and validating theories)

ensures that the Theory plug-in is the tool of choice to extend the Event-B language and proof

infrastructure.
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6.8 Summary

In this chapter, we presented several theories to illustrate the effectiveness of the Theory plug-in.

We demonstrated the use of primitive recursion to define simple operators for inductive lists.

Development of theories is an ongoing process, and a sizeable effort is required to create useful

and sound libraries that enrich the Event-B mathematical language and proof infrastructure.

The Theory plug-in provides a platform to define and validate user-defined libraries.





Chapter 7

Future Work & Conclusion

In this chapter, we bring this thesis to a conclusion by summarising its main contributions. We

started this thesis by describing the general setting and context of our work. Chapter 3 presented

the theoretical contribution of the thesis in the shape of a study unifying well-definedness and

rewriting. Chapter 4 described the approach adopted to enhance the extensibility of Event-B’s

proof infrastructure, andpresented the technicalities of adding support for user-defined operators

and datatypes. Chapter 5 provided an overview of the Theory plug-in which implements the ideas

described in this thesis. Finally, Chapter 6 presented several examples of theory development

using the Theory plug-in.

This chapter is structured in the following way. We start by summarising the main contributions

of this thesis. The contributions are of both practical and theoretical nature. Next, we summarise

the key aspects of the Theory plug-in which encapsulates our solutions to the extensibility issues

outlined in §1.1. Then, we show the areas in which extensions and additions are feasible. Finally,

we present a few concluding remarks.

7.1 Summary of Contributions

As described in §1.3, the scope of this thesis unifies formal methods, logic and software en-

gineering. Our work aims at providing a practically usable mechanism by which the formal

methodology Event-B toolset can be soundly extended. More succinctly, this thesis makes the

following contributions:

1. It has shown how extensibility and configurability of Rodin can be exploited to add useful

feature to the Event-B toolset. The Rodin platform and the Event-B modelling notation

was conceived with extensibility and adaptability in mind [12, 60]. We argue that these

aspects of the Rodin architecture have helped a great deal in realising the ideas presented

in this thesis. The use of a dynamic parser as the backbone for the Event-B abstract

syntax tree (AST) enabled the mechanism of adding new operators and datatypes. The

ease by which tooling (e.g., the static checking tool) can be specified is largely due to

the high configurability of the Rodin platform. Other aspects of the architecture of the

133
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Event-B toolset that enabled our work are described in Chapter 5. This contribution is

described in Chapter 4 and 5.

2. It has shown how the existing paradigm used in Event-B developments can be used for

meta-reasoning. Event-B development is carried out by means of contexts and machines.

Proof obligations are generated to verify the consistency of the system with respect to

a certain behavioural semantics. Meta-reasoning can be carried out using the theory

component to specify language and proof extensions. Proof obligations are then used to

ensure extensions are conservative with respect to the logic underpinning the Event-B

mathematical language. We argue that the familiarity of our approach can be seen as an

important aspect of the usability of our tool. This contribution is described in Chapter 5

and 6.

3. It has shown how the use of proof obligations can be lifted to meta-reasoning about

extensions to ensure soundness. For each proof and mathematical extension, certain static

checks are performed. Soundness checks are carried out by means of proof obligation

generation. The adequacy of the generated proof obligations is justified in this thesis as

well as in the work of Schmalz [102]. Note that the meta-reasoning available in Rodin

thanks to the Theory plug-in does not equate a provision of a meta-model for Event-B.

Such effort is carried out as a shallow embedding of Event-B using Isabelle/HOL [102].

This contribution is described in Chapter 4.

4. It has shown how new polymorphic operators can be defined within the theory component.

Predicate (i.e., formula) and expression (i.e., term) operators can be specified as part of the

theory component. Operators with direct definitions can be specified and their properties

validated by means of proof obligations. The proof obligations related to newly introduced

operators are justified in this thesis as well as [102]. This contribution is described in

Chapter 4.

5. It provided a characterisation of the interaction between rewriting and deduction in a proof

system that accounts for potentially ill-defined terms. This is the theoretical contributions

of this thesis. It shows how rewriting and deduction can be interleaved in a sound fashion

that takes into consideration well-definedness. The notion of well-definedness preservation

for rewrites is introduced, and a simple approach of integrating rewriting and inference

within the well-definedness preserving sequent calculus used in Event-B is thoroughly

justified. This contribution is described in Chapter 3.

6. It provided a basis for reasoning about proof rules by means of proof obligations. The

theory component can be used to specify polymorphic theorems and proof rules. Poly-

morphic theorems are formulae in Event-B that can be used in proofs provided that a

suitable type instantiation is supplied. Proof obligations related to theorems ensure they

are valid and well-defined. Proof obligations related to rewrite rules ensure they are valid

and well-definedness preserving. Proof obligations related to inference rules ensure they

are valid and well-defined. The adequacy of the different proof obligations related to proof

extensions are justified in Chapter 3 and Chapter 4.

7. It has shown how to achieve prover extensibility without compromising its soundness. The

use of proof obligations is paramount to ensuring soundness is preserved. This is evident

from the results of Chapter 4.
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Overall, this thesis has contributed a reusable approach to language and prover extensibility of

Event-B that maintains the following important requirements:

1. ‘Ease of Use’ : the tool support which resulted from this thesis provides an effective

and practically usable mechanism to specify and reason about extensions. The adopted

approach enables the reuse of definitions, and reduces proof effort across multiple devel-

opments.

2. ‘Soundness Preservation’ : the use of proof obligations to reason about extensions ensures

that the user is aware of any potentially unsound extensions.

7.2 Tool Support

The ideas presented in this thesis provided the basis for a Rodin plug-in that offers facilities to

extend the mathematical language and the prover. The Theory plug-in (Chapter 5 and [78]) is

an Eclipse-based extension that contributes the following capabilities:

1. It enables the specification of new polymorphic operators (both term and formula opera-

tors). It statically checks any such extensions, and automatically generates proof obliga-

tions to verify operator properties including: well-definedness strength, associativity and

commutativity.

2. It enables the specification of new datatypes. Inductive and enumerated datatypes are

supported. Primitive recursive operators can also be defined on any previously defined

datatype. The usual checks on datatypes are performed statically and do not require

proofs. As such, no proof obligations are generated for datatypes.

3. It provides facilities to specify and validate proof rules and polymorphic theorems. Again,

proof obligations ensure soundness of any contributed extensions. Note that rewrite rules

generated from operator definitions do not have associated proof obligations.

4. It implements the notion of theory deployment. Once deployed, a theory can readily be

used in Event-B models. This ensures that theories are inspected for soundness before

they are used in models.

5. It provides a mechanism to manage collections of related theories. The IMPORT directive

aims to facilitate the creation of theory hierarchies. Theory hierarchies are discussed in

§4.2.

6. It enables an effective meta-reasoning where language and proof extensions are defined

within the same component since the two types of extensions are intrinsically linked.

Proof extensions serve another important purpose. They facilitate reasoning about new

operators and datatypes without detour through their definition.

7.3 Future Work

The following items describe the areas in which further research can be carried out as an extension

to our work. The items are prioritised according to their immediate importance.



136 Chapter 7 Future Work & Conclusion

1. Creation of a Theory Library. Established formalisms such as Isabelle have a rich

set of libraries ranging from simple set theory to complex continuous mathematics. The

creation of a library can provide a standard collection of theories that can be used to

enrich the modelling activity. Careful consideration should be given to ensure theories are

defined in some well-understood hierarchies to facilitate maintenance.

2. Validating the Rule-based Prover. The crucial component of the Rule-based Prover

includes the pattern matching engine. A Java-based verification of this particular com-

ponent can be carried out to increase confidence in the tool. An Event-B specification

of certain aspects of the prover, e.g., pattern matching and rule application, is also con-

ceivable. The Rule-based Prover can also be improved by employing some optimisation

techniques such as rewrite rule selection by introducing priorities.

3. Enhancing Support for Datatypes. Currently, the Theory plug-in only supports enu-

merated and simple datatype definitions. However, mutually recursive datatype definitions

could also be supported in future releases. Furthermore, a fundamental study of datatypes

in the logic of Event-B could provide the foundation for further work on the subject.

4. Support for Axiomatic Definitions. In some cases, a desirable type cannot be defined

using the existing type constructors or datatypes. This is certainly the case for the type of

real numbers. The real numbers type R can be defined as an ordered ring with the addition

and multiplication operations. An axiomatic type definition can be used to characterise

this particular type.

5. Support for Binder Definitions. The mathematical language of Event-B includes

several binders, notably ∀ and ∃. The possibility of adding binders can be explored. The

theoretical foundations for such extension are described by Schmalz [102]. However, the

existing AST infrastructure does not yet support binder extensions.

7.4 Concluding Remarks

In this thesis, we demonstrated an effective approach to achieve prover and language extensibility

in Event-B whilst maintaining the soundness of the formalism. The use of proof obligations

when defining extensions ensures that theory developers benefit from the reactive approach

underpinning the Rodin philosophy. Possible areas of future work including adding support for

mutually recursive datatype definitions and binders have been identified. The tool support can

further be improved with respect to performance. The Theory plug-in can provide a strong basis

for other potential meta-reasoning activities such as code generation [46].
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Chapter 3 Proofs

A.1 Proof of Proposition 3.1

Proposition A.1. Let t be a Σ-term. If σ is a substitution then

D(σ(t)) ⇔
∧

x∈Var(t)

D(σ(x)) ∧ σ(D(t))

Proof. We proceed by induction on the structure of the term t.

• Base Case: t = y such that y ∈ V . In this case, we have to show the following:

D(σ(y))⇔
∧

x∈Var(y)

D(σ(x)) ∧ σ(D(y)) (A.1)

Since y is a variable and by expanding the definition of D (see [15, 82] and §2.4.3), the

following holds:

D(y) =̂ >

Var(y) =̂ {y}

σ(>) =̂ >

Consequently, (A.1) can be rewritten to:

D(σ(y))⇔D(σ(y))

which trivially holds.

• Inductive Case: t = f(s1, ..., sn) such that f ∈ F and s1, .. and sn are all Σ-terms. In

this case, we have to show the following:

D(σ(f(s1, ..., sn)))⇔
∧

x∈Var(f(s1,...,sn))

D(σ(x)) ∧ σ(D(f(s1, ..., sn))) (A.2)

137
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with the assumption that for all the terms si (1 ≤ i ≤ n):

D(σ(si))⇔
∧

x∈Var(si)

D(σ(x)) ∧ σ(D(si))

Firstly, we have the following properties:

D(f(s1, ..., sn)) =̂

n∧
i=1

D(si) ∧ Cfs1,...,sn [see §2.4.3] (A.3)

Var(f(s1, ..., sn)) =̂

n⋃
i=1

Var(si) (A.4)

σ(f(s1, ..., sn)) =̂ f(σ(s1), ..., σ(sn)) [see (3.1.2)] (A.5)

Using the previous properties, we get the following:

D(σ(f(s1, ..., sn)))

⇔ D(f(σ(s1), ..., σ(sn))) [definition]

⇔
n∧
i=1

D(σ(si)) ∧ Cfσ(s1),...,σ(sn) [see §2.4.3]

⇔
n∧
i=1

〈
∧

x∈Var(si)

D(σ(x)) ∧ σ(D(si))〉 ∧ Cfσ(s1),...,σ(sn) [induction hypothesis]

⇔
∧

x∈Var(f(s1,...,sn))

D(σ(x)) ∧ 〈
n∧
i=1

σ(D(si)) ∧ Cfσ(s1),...,σ(sn)〉 [by (A.4)]

⇔
∧

x∈Var(f(s1,...,sn))

D(σ(x)) ∧ σ(D(f(s1, ..., si))) [see §2.4.3]

Therefore, we have shown that:

D(σ(f(s1, ..., sn)))⇔
∧

x∈Var(f(s1,...,sn))

D(σ(x)) ∧ σ(D(f(s1, ..., sn)))

A.2 Proof of The Instantiation Theorem

Theorem A.1 (The Instantiation Theorem). Let l
c−→ r be a conditional term rewrite rule, and

σ be an idempotent substitution.

1. If l
c−→ r is valid, then the following sequent is provable:

σ(c) `D σ(l) = σ(r) (A.6)

2. If l
c−→ r is WD-preserving, then the following sequent is provable:

σ(c),D(σ(l)) `D D(σ(r)) (A.7)
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Proof.

1. Proof of Sequent (3.3): Since the conditional rewrite rule l
c−→ r is valid, the following

sequent is provable:

c `D l = r

Furthermore, the following sequent is also provable:

`D ∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r

where ~x are the free variables of l, since we have the following proof tree:

c `D l = r

`D (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r
⇒goalD ;∧hypD ;monD

`D ∀~x · [(D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r]
∀goalD

Observe that the formula

∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r

is well-defined1 which means that the following sequent is also provable:

`D D(∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r)

Using the cut rule, we get the following proof tree:


σ(c) `D ∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r

σ(c) `D D(∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r)

σ(c),∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r `D σ(l) = σ(r)

σ(c) `D σ(l) = σ(r)
cutD

From the above tree, the following two sequents are provable (as per the discussion above):

σ(c) `D ∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r

σ(c) `D D(∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r)

Note that by Proposition 3.1, we have the following:∧
x∈Var(l)D(σ(x)), σ(c),∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r `D σ(l) = σ(r)

σ(c),∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r `D σ(l) = σ(r)
goal

WD

1Consider the simple case D(φ) ∧ φ, we have

D(D(φ) ∧ φ)⇔ ((D(D(φ)) ∧ D(φ)) ∨ (...) ∨ (...))

The first disjunct is equivalent to > by (2.22). Therefore, D(φ) ∧ φ is well-defined.
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To prove the remaining (boxed) sequent, we proceed as follows. By applying the rules

∀hypD , goal
WD

, and ⇒hypD on the sequent∧
x∈Var(l)

D(σ(x)), σ(c),∀~x · (D(l) ∧ D(c) ∧ D(r) ∧ c)⇒ l = r `D σ(l) = σ(r)

we get the following sequents: ∧
x∈Var(l)

D(σ(x)), σ(c) `D

∧
x∈Var(l)

D(σ(x))

∧
x∈Var(l)

D(σ(x)), σ(c), σ(l) = σ(r) `D σ(l) = σ(r)

∧
x∈Var(l)

D(σ(x)), σ(c),D(σ(l)) `D σ(D(l))

∧
x∈Var(l)

D(σ(x)), σ(c),D(σ(c)) `D σ(D(c))

∧
x∈Var(l)

D(σ(x)), σ(c),D(σ(r)) `D σ(D(r))

∧
x∈Var(l)

D(σ(x)), σ(c) `D σ(c)

The first, second and sixth sequent of the previous set are provable using rule hypD . The

third, fourth and fifth sequents can be discharged using Proposition 3.1.

2. Proof of sequent (3.4): The following sequent

`D ∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)] (A.8)

is provable (~x are the free variables of l) is provable if the sequent

D(l), c `D D(r)

is provable since we have the following proof tree:

D(l), c `D D(r)

`D (D(c) ∧ D(l) ∧ c)⇒D(r)
⇒goalD ;∧hypD ;monD

`D ∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)]
∀goalD

We observe that the sequent

`D D(∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)]) (A.9)

is provable because the formula

∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)]

is well-defined. Using the cut rule and Proposition 3.1 on the sequent

σ(c),D(σ(l)) `D D(σ(r))
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we get three sequents to discharge. The following two sequents which are immediately

provable (as per the discussion above):

`D ∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)]

`D D(∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)])

The third sequent is the following:

σ(c), σ(D(l)),
∧

x∈Var(l)

D(σ(x)),D(σ(l))

∀~x · [(D(c) ∧ D(l) ∧ c)⇒D(r)]

`D

D(σ(r))

To prove the previous sequent, we proceed as follows. By applying the rules ∀hypD and

⇒hypD (see [82]) on the previous sequent, we get the following sequents:

σ(c), σ(D(l)),
∧

x∈Var(l)

D(σ(x)),D(σ(l)) `D σ(D(c)) (A.10)

σ(c), σ(D(l)),
∧

x∈Var(l)

D(σ(x)),D(σ(l)) `D σ(D(l)) (A.11)

σ(c), σ(D(l)),
∧

x∈Var(l)

D(σ(x)),D(σ(l)) `D σ(c) (A.12)

σ(c), σ(D(l)),
∧

x∈Var(l)

D(σ(x)),D(σ(l)), σ(D(r)) `D D(σ(r)) (A.13)

It is easy to see that the first three sequents are provable. Regarding sequent A.13, observe

the following:

Var(r) ⊂ Var(l)

since l
c−→ r is a rewrite rule. It follows that sequent A.13 is provable if the sequent∧

x∈Var(r)

D(σ(x)), σ(D(r)) `D D(σ(r)) (A.14)

is provable which clearly is the case thanks to Proposition 3.1.

A.3 Proof of The Term WD-Preserving Rewriting Theo-

rem

Theorem A.2 (Term WD-Preserving Rewriting Theorem). Let l
c−→ r be a conditional term

rewrite rule, t be a term, p be a position within t, and σ be an idempotent substitution. If l
c−→ r
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is valid and WD-preserving, then the following two sequents are provable:

σ(c) `D t[σ(l)]p = t[σ(r)]p (A.15)

D(t[σ(l)]p), σ(c) `D D(t[σ(r)]p) (A.16)

Proof.

1. Proof of sequent (A.15): We proceed by induction on the structure of the term t.

(a) Base Case: t is a variable, t = x. In this case (A.15) becomes

σ(c) `D x[σ(l)]ε = x[σ(r)]ε

since variables have only one position (ε the root position). This simplifies to

σ(c) `D σ(l) = σ(r)

which is a provable sequent according to Theorem 3.1.

(b) Inductive Case: t is a function, t = f(t1, ..., tn). We distinguish the cases p = ε

and p = iq for 1 ≤ i ≤ n and some position q.

i. Case p = ε: this case is similar to the base case.

ii. Case p = iq: we assume the following inductive hypothesis (in this case a

provable sequent)

σ(c) `D ti[σ(l)]q = ti[σ(r)]q

and we show that

σ(c) `D f(t1, ..., ti[σ(l)]q, ..., tn) = f(t1, ..., ti[σ(r)]q, ..., tn)

is a provable sequent where iq = p. We proceed as follows:

σ(c) `D t1 = t1 ... σ(c) `D ti[σ(l)]q = ti[σ(r)]q ... σ(c) `D tn = tn

σ(c) `D t1 = t1 ∧ ... ∧ ti[σ(l)]q = ti[σ(r)]q ∧ ... ∧ tn = tn
∧goalD

σ(c) `D f(t1, ..., ti[σ(l)]q, ..., tn) = f(t1, ..., ti[σ(r)]q, ..., tn)

The boxed sequent is provable since it corresponds to the inductive hypothesis.

2. Proof of sequent (A.16): We proceed by induction on the structure of the term t.

(a) Base Case: t is a variable, t = x. In this case (A.16) becomes

D(x[σ(l)]ε), σ(c) `D D(x[σ(r)]ε)

since variables only have the root position ε. This simplifies to

D(σ(l)), σ(c) `D D(σ(r))

which is a provable sequent according to Theorem 3.1.



Appendix A Chapter 3 Proofs 143

(b) Inductive Case: t is a function, t = f(t1, ..., tn). We distinguish the cases p = ε

and p = iq for 1 ≤ i ≤ n and some position q.

i. Case p = ε: this case is similar to the base case.

ii. Case p = iq: We assume the following inductive hypothesis (in the shape of a

provable sequent)

D(ti[σ(l)]q), σ(c) `D D(ti[σ(r)]q)

and we show that

D(f(t1, ..., ti[σ(l)]q, ..., tn)), σ(c) `D D(f(t1, ..., ti[σ(r)]q, ..., tn)) (A.17)

is a provable sequent where iq = p. Sequent A.17 can be reduced to the

following two sequents:

D(ti[σ(l)]q), σ(c) `D D(ti[σ(r)]q) (A.18)

Cft1,...,ti[σ(l)]q,...,tn , σ(c) `D Cft1,...,ti[σ(r)]q,...,tn (A.19)

Sequent A.18 is provable since it is the inductive hypothesis. Sequent A.19 is

provable using the first sequent of this theorem, i.e.,

σ(c) `D t[σ(l)]p = t[σ(r)]p

A.4 Proof of Sequent 3.8

D(f [σ(l)]p), σ(c) `D D(f [σ(r)]p)

Proof. 1. Base Case: f is of the shape s(t1, ..., tn) such that s ∈ P and t1, ..., tn are terms.

In this case, position p can only be of the form iq for some position q and 1 ≤ i ≤ n since

the root position is of a formula. Therefore, (3.8) becomes

D(s(t1, ..., tn)[σ(l)]p), σ(c) `D D(s(t1, ..., tn)[σ(r)]p)

where p = iq for some position q and 1 ≤ i ≤ n. This can be rewritten as

D(s(t1, ..., ti[σ(l)]q, ..., tn), σ(c) `D D(s(t1, ..., ti[σ(r)]q, ..., tn)) (A.20)

Sequent A.20 can be simplified to the following sequent

D(ti[σ(l)]q), σ(c) `D D(ti[σ(r)]q)

whose provability follows immediately from Theorem 3.2.

2. Inductive Case: f is of the shape ϕ ∧ ψ such that ϕ and ψ are formulae. In this case,

(3.8) becomes

D((ϕ ∧ ψ)[σ(l)]p), σ(c) `D D((ϕ ∧ ψ)[σ(r)]p) (A.21)
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Position p can only be of the form p = 1q or p = 2q for some position q. We distinguish

the two cases:

(a) p = 1q: In this case, Sequent A.21 becomes

D((ϕ[σ(l)]q ∧ ψ)), σ(c) `D D((ϕ[σ(r)]q ∧ ψ)) (A.22)

To proceed, we assume that the following sequent is provable:

D((ϕ[σ(l)]q)), σ(c) `D D((ϕ[σ(r)]q)) (A.23)

and we show that Sequent A.22 is provable. Recall from §2.4.3, we have the following:

D(ϕ ∧ ψ) =̂ (D(ϕ) ∧ D(ψ)) ∨ (D(ϕ) ∧ ¬ϕ) ∨ (D(ψ) ∧ ¬ψ)

By applying the previous expansion on Sequent A.22, we obtain the following sequent:

(D(ϕ[σ(l)]q) ∧ D(ψ)) ∨ (D(ϕ[σ(l)]q) ∧ ¬ϕ[σ(l)]q) ∨ (D(ψ) ∧ ¬ψ), σ(c)

`D

(D(ϕ[σ(r)]q) ∧ D(ψ)) ∨ (D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q) ∨ (D(ψ) ∧ ¬ψ)

Next, we apply rule ∨hypD (i.e., case split), we obtain the following three sequents:

D(ϕ[σ(l)]q),D(ψ), σ(c)

`D

(D(ϕ[σ(r)]q) ∧ D(ψ)) ∨ (D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q) ∨ (D(ψ) ∧ ¬ψ)

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c)

`D

(D(ϕ[σ(r)]q) ∧ D(ψ)) ∨ (D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q) ∨ (D(ψ) ∧ ¬ψ)

D(ψ),¬ψ, σ(c)

`D

(D(ϕ[σ(r)]q) ∧ D(ψ)) ∨ (D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q) ∨ (D(ψ) ∧ ¬ψ)

By applying the analogous rules ∨goal1D and ∨goal2D on the previous three se-

quents, we obtain the following three sequents:

D(ϕ[σ(l)]q),D(ψ), σ(c) `D (D(ϕ[σ(r)]q) ∧ D(ψ)) (A.24)

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D ((D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q) (A.25)

D(ψ),¬ψ, σ(c) `D (D(ψ) ∧ ¬ψ) (A.26)

It can easily be seen that Sequent A.26 is provable. We, now, establish the provability

of Sequent A.24 and A.25. By applying rule ∧goalD on Sequent A.24, we obtain the
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following two sequents:

D(ϕ[σ(l)]q),D(ψ), σ(c) `D D(ϕ[σ(r)]q) (A.27)

D(ϕ[σ(l)]q),D(ψ), σ(c) `D D(ψ) (A.28)

Sequent A.28 is immediately provable thanks to rule hypD (i.e., goal is in the hypothe-

ses). Sequent A.27 provability follows immediately from the inductive hypothesis.

Concerning Sequent A.25, we proceed as follows. By applying rule ∧goalD , we obtain

the following two sequents:

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D Dϕ[σ(r)]q (A.29)

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D ¬ϕ[σ(r)]q (A.30)

Sequent A.29 follows from the inductive hypothesis. Sequent A.30 can be shown to

be provable thanks to the first part of the theorem (i.e., Sequent 3.7).

(b) p = 2q: analogous to the previous case.

3. Inductive Case: f is of the shape ∀x · ϕ such that ϕ is a formula. In this case, (3.8)

becomes

D((∀x · ϕ)[σ(l)]p), σ(c) `D D((∀x · ϕ)[σ(r)]p) (A.31)

In this case, position p can only be of the form 1q for some position q since the root

position is of a formula. As such, Sequent A.31 can be rewritten to

D(∀x · ϕ[σ(l)]q), σ(c) `D D(∀x · ϕ[σ(r)]q) (A.32)

To proceed, we assume the provability of the following sequent

D(ϕ[σ(l)]q), σ(c) `D D(ϕ[σ(r)]q) (A.33)

and we show the provability of Sequent A.32. Recall from §2.4.3, we have the following:

D(∀x · ϕ) =̂ (∀x · D(ϕ)) ∨ (∃x · D(ϕ) ∧ ¬ϕ)

By applying the previous expansion on Sequent A.32, we get the following sequent:

(∀x · D(ϕ[σ(l)]q)) ∨ (∃x · D(ϕ[σ(l)]q) ∧ ¬ϕ[σ(l)]q), σ(c)

`D

(∀x · D(ϕ[σ(r)]q)) ∨ (∃x · D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q)
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By applying rule ∨hypD (i.e., case split) on the previous sequent, we obtain the following

two sequents:

∀x · D(ϕ[σ(l)]q), σ(c)

`D

(∀x · D(ϕ[σ(r)]q)) ∨ (∃x · D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q)

∃x · (D(ϕ[σ(l)]q) ∧ ¬ϕ[σ(l)]q), σ(c)

`D

(∀x · D(ϕ[σ(r)]q)) ∨ (∃x · D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q)

By applying the analogous rules ∨goal1D and ∨goal2D on the previous two sequents, we

obtain the following two sequents:

∀x · D(ϕ[σ(l)]q), σ(c) `D ∀x · D(ϕ[σ(r)]q) (A.34)

∃x · D(ϕ[σ(l)]q) ∧ ¬ϕ[σ(l)]q, σ(c) `D ∃x · D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q (A.35)

Firstly, we show the provability of Sequent A.34. By applying rule ∀goalD (note that the

side condition holds thanks to the proviso of the theorem), we obtain the following

∀x · D(ϕ[σ(l)]q), σ(c) `D D(ϕ[σ(r)]q)

Next, by applying the rule ∀hypD on the previous sequent, we get the following two

sequents:

∀x · D(ϕ[σ(l)]q), σ(c) `D D(x) (A.36)

D(ϕ[σ(l)]q), σ(c) `D D(ϕ[σ(r)]q) (A.37)

The provability of Sequent A.36 follows from the fact that variables are well-defined. The

provability of Sequent A.37 follows from the inductive hypothesis.

Secondly, we show the provability of Sequent A.35. By applying the rule ∃hypD (note that

the side condition holds thanks to the proviso of the theorem), we obtain the following

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D ∃x · D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q (A.38)

Next, by applying rule ∃goalD on Sequent A.38, we obtain the following two sequents

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D D(x) (A.39)

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D D(ϕ[σ(r)]q) ∧ ¬ϕ[σ(r)]q (A.40)

The provability of Sequent A.39 follows from the fact that variables are well-defined. We

conclude this proof by showing the provability of Sequent A.40. We proceed as follows.

By applying rule ∧goalD , we obtain the following two sequents

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D D(ϕ[σ(r)]q) (A.41)

D(ϕ[σ(l)]q),¬ϕ[σ(l)]q, σ(c) `D ¬ϕ[σ(r)]q (A.42)
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which can, respectively, be simplified to

D(ϕ[σ(l)]q), σ(c) `D D(ϕ[σ(r)]q) (A.43)

¬ϕ[σ(l)]q, σ(c) `D ¬ϕ[σ(r)]q (A.44)

Sequent A.43 is provable since it corresponds to the inductive hypothesis. Sequent A.44

is provable thanks to the first part of this theorem (i.e., Sequent 3.7).
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Buffer Case Study

This appendix provides listing of contexts and machines in the case study appearing in Chapter

6. The following listing describes the context used in the model.

CONTEXT c0

CONSTANTS

maxbuf

AXIOMS

axm1 : maxbuf ∈ N
axm2 : maxbuf = 20

END

The following listing describes the first abstraction of the buffer using sequences.

MACHINE b0

SEES c0

VARIABLES

abuf

INVARIANTS

inv1 : abuf ∈ seq(Z)

inv2 : seqSize(abuf) ≤ maxbuf

EVENTS

Initialisation

extended

begin

act1 : abuf := empty

end

Event Put =̂

any

x

149
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where

grd1 : x ∈ Z
grd2 : seqSize(abuf) < maxbuf

then

act1 : abuf := seqAppend(abuf, x)

end

Event Get =̂

any

y

where

grd1 : ¬seqIsEmpty(abuf)

grd2 : y = seqHead(abuf)

then

act1 : abuf := seqTail(abuf)

end

END

The following listing describes the first refinement of the machine b0 using arrays. Note that

the operator mod refers to the arithmetic modulo operator.

MACHINE b1

REFINES b0

SEES c0

VARIABLES

cbuf

a

b

INVARIANTS

inv1 : cbuf ∈ arrayN(maxbuf,Z)

inv2 : a ∈ Z
inv3 : b ∈ Z
inv4 : a ∈ 0 .. maxbuf− 1

inv5 : b ∈ 0 .. maxbuf

inv6 : ∀i·i ∈ (0 .. seqSize(abuf))⇒ prj2(abuf)(i) = cbuf((a + i) mod maxbuf)

EVENTS

Initialisation

begin

act1 : cbuf := newArray(maxbuf, 0)

act2 : a := 0

act3 : b := 0

end

Event Put =̂

refines Put
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any

x

where

grd1 : x ∈ Z
grd2 : b ≥ a⇒ b− a < maxbuf

then

act1 : b := (b + 1)mod(maxbuf + 1)

act2 : cbuf := update(cbuf, b mod maxbuf, x)

end

Event Get =̂

refines Get

any

y

where

grd1 : a 6= b

grd3 : y ∈ Z
grd2 : y = lookup(cbuf, a)

then

act1 : a := (a + 1) mod maxbuf

end

END





Appendix C

Binary Trees Theory

This appendix lists a simple theory of binary trees that was developed in collaboration with

Jean-Raymond Abrial.

theory BinaryTree

type parameters T

datatype Tree

type argument T

constructors

empty

tree(left : Tree(T ), val : T, right : Tree(T ))

operator treeDepth

(prefix)

args t ∈ Tree(T )

definition

case l

treeDepth(empty) = 0

treeDepth(tree(l, x, r)) = 1 +max{treeDepth(l), treeDepth(r)}
operator mirror

(prefix)

args t ∈ Tree(T )

definition

case l

mirror(empty) = empty

mirror(tree(l, x, r)) = tree(mirror(r), x,mirror(l))

theorem

∀t.t ∈ Tree(T )⇒mirror(mirror(t)) = t
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[54] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre

Jouannaud. Introducing OBJ. In Software Engineering with OBJ: Algebraic Specification

in Action. Kluwer, 2000.

http://www.eclipse.org/


REFERENCES 159

[55] Joseph A. Goguen, Claude Kirchner, Hlne Kirchner, Aristide Mgrelis, Jos Meseguer, and

Timothy C. Winkler. An Introduction to OBJ 3. In Stphane Kaplan and Jean-Pierre

Jouannaud, editors, Conditional Term Rewriting Systems, 1st International Workshop,

Orsay, France, July 8-10, 1987, Proceedings, volume 308 of Lecture Notes in Computer

Science, pages 258–263. Springer, 1987.

[56] Robert Goldblatt. Mathematical Modal Logic: A View of Its Evolution. Journal of Applied

Logic, 1(5-6):309–392, 2003.

[57] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.

[58] Mike Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic, 1985.

[59] David Griffioen and Marieke Huisman. A comparison of PVS and Isabelle/HOL. In

Theorem Proving in Higher Order Logics, number 1479 in Lect. Notes Comp. Sci, pages

123–142. Springer, 1998.

[60] Stefan Hallerstede. Justifications for the Event-B Modelling Notation. In Jacques Jul-

liand and Olga Kouchnarenko, editors, B 2007: Formal Specification and Development

in B, volume 4355 of Lecture Notes in Computer Science, pages 49–63. Springer Berlin /

Heidelberg, 2006.

[61] Stefan Hallerstede. On the Purpose of Event-B Proof Obligations. In ABZ ’08: Proceedings

of the 1st international conference on Abstract State Machines, B and Z, pages 125–138.

Springer-Verlag, 2008.

[62] John Harrison. Metatheory and Reflection in Theorem Proving: A Survey and Critique.

Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995. Available

on the Web as http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz.

[63] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666–677, August

1978.

[64] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 26(1):53–

56, January 1983.
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