HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Towards a Practically Extensible Event-B Methodology

by

Issam Maamria

Thesis for the degree of Doctor of Philosophy

January 2013

mailto:im06r@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

TOWARDS A PRACTICALLY EXTENSIBLE EVENT-B METHODOLOGY

by Issam Maamria

Formal modelling is increasingly recognised as an important step in the development of
reliable computer software. Mathematics provide a solid theoretical foundation upon
which it is possible to specify and implement complex software systems. Event-B is a
formalism that uses typed set theory to model and reason about complex systems. Event-
B and its associated toolset, Rodin, provide a methodology that can be incorporated
into the development process of software and hardware. Refinement and mathematical
proof are key features of Event-B that can be exploited to rigorously specify and reason

about a variety of systems.

Successful and usable formal methodologies must possess certain attributes in order
to appeal to end-users. Expressiveness and extensibility, among other qualities, are of
major importance. In this thesis, we present techniques that enhance the extensibility
of: (1) the mathematical language of Event-B in order to enhance expressiveness of the
formalism, and (2) the proving infrastructure of the Rodin platform in order to cope

with an extensible mathematical language.

This thesis makes important contributions towards a more extensible Event-B methodol-
ogy. Firstly, we show how the mathematical language of Event-B can be made extensible
in a way that does not hinder the consistency of the underlying formalism. Secondly, we
describe an approach whereby the prover used for reasoning can be augmented with proof
rules without compromising the soundness of the framework. The theory component is
the placeholder for mathematical and proof extensions. The theoretical contribution
of this thesis is the study of rewriting in the presence of partiality. Finally, from a
practical viewpoint, proof obligations are used to ensure soundness of user-contributed

extensions.

mailto:im06r@ecs.soton.ac.uk

Contents

Declaration of Authorship

Acknowledgements

1 Introduction

1.1

1.2
1.3
14
1.5

Motivation
1.1.1 Motivation for Proof Extensions
1.1.2 Motivation for Mathematical Extensions
Objectives L
Scope of this Thesis
Publications
Outline e

2 Background

2.1

2.2

2.3

24

Formal Methods
2.1.1 Challenges e
2.1.2 Classification
Event-Bo
2.2.1 Discrete Systems Modelling
2.2.2 Event-B Modelling oo
2.22.1 Contexts e
2.2.2.2 Machineso
2.2.2.3 Machine Refinement
2.2.3 Event-B Pragmatics
The Rodin Platform o
2.3.1 Architecture
2.3.2 The Rodin Tooling Philosophy,
2.3.2.1 Editors
2.3.22 Tooling
2.3.2.3 Reactive Development
2.3.2.4 Proof Obligations
2.3.3 Event-B Mathematical Language
2.3.4 Proof Infrastructure
Reasoning in Event-Bo
2.4.1 First-order Predicate Calculus with Equality
2.4.2 Defining Partial Functions
2.4.3 The Well-Definedness Operator

xvii

xix

vi CONTENTS
2.4.4 Well-Definedness and Proof, 31
2.4.4.1 Well-Defined Sequents 33

2.4.4.2 WD-Preserving Inference Rules 34

2.4.5 ProofsinEvent-B 36

2.5 Other Formalisms. 37
2.5.1 Isabelle/HOL 38
2.5.1.1 The Language, 38

2.5.1.2 TheProver 39

2.5.2 PVS . . e 42
2.5.2.1 The Language, 42

2.5.2.2 TheProver 44

2.5.3 VDM . . . 46
2.5.3.1 The Language, 47

2532 TheProver 48

2.5.4 A Comparison: Event-B, Isabelle/HOL, PVS and VDM 48
255 AReflection. 48

2.6 The Logic of Event-Bo o 50
2.7 Summary e 51
3 Rewriting and Well-Definedness within a Proof System 53
3.1 Term Rewriting Systems 54
3.1.1 Positions 54
3.1.2 Substitutions 55
3.1.3 Conditional Rewriting 57
3.1.4 Confluence and Termination. 58

3.2 Rewriting and Well-Definedness 59
3.2.1 Well-Definedness and Substitutions 60
3.2.2 The Main Theorem 61

3.3 Rewritingasa Proof Step 64
3.3.1 Single Rule Application 64
3.3.1.1 Hypothesis Rewriting, 64

3.3.1.2 Goal Rewriting 65

3.3.2 Grouped Rule Application 66
3.3.2.1 Hypothesis Rewriting, 69

3.3.2.2 Goal Rewriting o 71

3.3.2.3 Unconditional Term Rewrite Rules 72

3.3.2.4 Case-complete Grouped Term Rewrite Rules 72

3.3.2.5 Strict Term Occurrence 73

3.4 Related Work oo 74
3.5 SUMMATY .« . . v v s e e e 75
4 A Practical Approach to Event-B Prover and Language Extensibility 77

4.1 The Existing Infrastructure 0oL 78
4.1.1 The Existing Constructs, 78
4.2 The Theory Construct 79
4.2.1 Soundness Preservation0 L. 80

4.2.2 Theory Deployment 81

CONTENTS vii

4.3 Event-B Mathematical Language 81
4.4 Rewriting 82
4.4.1 Defining Rewrite Rules 0oL 83
4.4.2 Validating Rewrite Rules 84
4.4.3 Applying Rewrite Rules 85
4.4.4 Examples of Rewrite Rules 86

4.5 Polymorphic Theorems oo 87
4.5.1 Defining Polymorphic Theorems 88
4.5.2 Validating Polymorphic Theorems 88
4.5.3 Using Polymorphic Theorems 89
4.5.4 Exampleso 89

4.6 Inference Rules 90
4.6.1 Defining Inference Rules oL 91
4.6.2 Using Inference Rules 92
4.6.3 Validating Inference Rules, 95

4.7 Polymorphic Operators oo 95
4.7.1 Example: The Sequence Operator 96
4.7.2 Operator Properties L. 98
4.72.1 Well-Definedness 98

4.7.2.2 Commutativity oo 99

4.7.2.3 Associativityo 100

4.8 Datatypes 100
4.8.1 A List Datatype 101

4.9 Related Worko 102
4.9.1 Module Systems in Specification Languages 102
4.9.2 Prover Extensibility o000 103
4.9.3 Language Extensibility 105
4.9.4 Datatypeso 105

4.10 Summary e e e e e e 106
5 Tool Support: Theory Plug-in 107
5.1 The Theory Plug-in 107
5.1.1 The Theory Construct 108
5.1.2 Theory Static Checking 110
5.1.3 Theory Proof Obligation Generation 114
5.1.4 Theory Deployment 114
5.1.5 Loading Extensions 115
5.1.6 Proof Support 116
5.1.6.1 Rewriting and Inference 116

5.1.6.2 Polymorphic Theorems 116

5.1.6.3 Other Useful Tactics 117

5.2 SUMMATY o e e e 117
6 Theory Development: Examples 119
6.1 Boolean Operators e 119
6.2 Sequences e 120

6.3 Relations L 123

viii CONTENTS
6.4 Fixpoint and Closure L 125
6.5 Inductive Lists 126
6.6 A Buffer Example 128
6.7 A Reflection e 130
6.8 Summary e 131

7 Future Work & Conclusion 133
7.1 Summary of Contributions 0oL 133
7.2 Tool Support e 135
7.3 Future Work 135
7.4 Concluding Remarks 136

A Chapter 3 Proofs 137
A.1 Proof of Proposition 3.1 137
A.2 Proof of The Instantiation Theorem 138
A.3 Proof of The Term WD-Preserving Rewriting Theorem 141
A4 Proof of Sequent 3.8 143

B Buffer Case Study 149

C Binary Trees Theory 153

References 155

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4

Anatomy of Event-B Models 13
Context DES_C e 14
Machine DES.M e 15
Rodin Tool Architecture 21
Rodin Tool-Chain for Event-B 22
The Rodin Tool o 23
Event-B Outer and Inner Syntax 25
The Proof Manager (PM) 26
Inference Rules of FoPCe [81] 32
Inference Rules of FoPCe,, [81] 34
Additional Well-Definedness Preserving Inference Rules [81, 82, 102] . . . 36
Truth Table for —in LPF 46
Truth Table for Vin LPF 47
Context Structure 78
Machine Structure 79
The Theory Construct 79
Extended Anatomy of Event-B Models 80
Rewrite Rule Definition 84
Inference Rule Definition 91
Operator Definition. 96
Creating a New Theory 109
Definition of Inductive Lists 110
Operator with a Direct Definition 111
Operator with a Primitive Recursive Definition 111
A Polymorphic Theorem 112
Meta-variables 112
A Rewrite Rule 112
An Inference Rule 113
Tool-Chain for Event-B Theories 114
The Deployment Wizard o oL 115
Using Polymorphic Theorems 116
Boolean Operators Theory 120
NOT Truth Table e 120
AND Truth Table 121
Sequences Theory e 121

ix

LIST OF FIGURES

6.5
6.6
6.7
6.8
6.9

Sequences Theory Cont. 122
Sequence Inference Rules 123
Relations Theory 124
Fixpoint and Closure Theory 125
Inductive Lists Theory Lo 126

6.10 Theory of Arrays [46] 128

Listings

2.1 Reasoner Protocol

4.1 Simple Taclet

xi

List of Tables

2.1 Comparison of Logics L
2.2 Comparison of Specification Languages
2.3 Comparison of Provers L

xiii

List of Definitions

2.1 Definition (Term) 28
2.2 Definition (Formula) L 28

3.1 Definition
3.2 Definition
3.3 Definition
3.4 Definition
3.5 Definition
3.6 Definition
3.7 Definition
3.8 Definition

Position) 54
Substitution) Lo 55
Idempotent Substitution) oo 56
Conditional Identity) 57
Valid Conditional Identity) 57
Conditional Term Rewrite Rule) 57
WD-Preserving Conditional Rewrite Rule) 99
Grouped Conditional Term Rewrite Rule) 66

e R N B N e R

3.9 Definition (Case-Completeness) 67
3.10 Definition (Strict Term Occurrence) 73
4.1 Definition (Event-B Rewrite Rule) 83
4.2 Definition (Sound Event-B Rewrite Rule) 84
4.3 Definition (Event-B Polymorphic Theorem) 88
4.4 Definition (Sound Event-B Polymorphic Theorem) 88
4.5 Definition (Type Substitution) 89
4.6 Definition (Event-B Inference Rule) 91
4.7 Definition (Forward-applicable Event-B Inference Rule) 94
4.8 Definition (Backward-applicable Event-B Inference Rule) 94
4.9 Definition (Derived Theorem) 95
4.10 Definition (Sound Inference Rule) 95

XV

Declaration of Authorship

I, Issam Maamria , declare that the thesis entitled Towards a Practically Extensible
Event-B Methodology and the work presented in the thesis are both my own, and have

been generated by me as the result of my own original research. I confirm that:

e this work was done wholly or mainly while in candidature for a research degree at

this University;

e where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

e where I have consulted the published work of others, this is always clearly at-
tributed;

e where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;
e I have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

e Jean-Raymond Abrial contributed the theories concerning relations, fixpoint and

closure in Chapter 6.

e parts of this work have been published as: [77], [78] and [46]

Xvii

mailto:im06r@ecs.soton.ac.uk

Acknowledgements

This work would not have been possible without the support and input from a number
of people. Firstly, I would like to thank my supervisor Prof. Michael Butler for his
remarkable patience and endless support throughout the four eventful years of my PhD.
Making a move to Event-B research was my best decision yet. I would also like to
thank Jean-Raymond Abrial, Andy Edmunds, Abdolbaghi Rezazadeh, Laurent Voisin,
Matthias Schmalz and Bernd Fischer for their invaluable and insightful input.

The following people have greatly contributed to making this long journey bearable:
Dr. Hamza Rouabah, Mourad Khelifa, Dr. Zak Mihoubi, Abdeldjalil Belouettar, Issam
Souilah, Bilel Remmache, Dr. Aissa Melouki, Ahmed Nouacer, Dr. Tarek Nechma and
Dr. Ahmed Maache.

This PhD would not have been possible without the support of my beloved parents,
Hafnaoui and Khadidja, and my very dear uncle, Lezhari. To all these people, I cannot

thank you enough for your support over the course of my PhD.

xix

Chapter 1

Introduction

Formal methods refer to the mathematical techniques employed for the specification,
development and verification of software and hardware systems. Formal methods can
be classified, on the basis of the used methodology, into two broad categories: wverifica-
tion methods and correct by construction methods. In the verification-based approach,
correctness is established post-facto, after the program in question is developed. In the
correct by construction approach, on the contrary, the development of the system is
carried out in an incremental fashion where each intermediate step is verified. In the
latter approach, the formal specification of the system provides the blueprint against

which its implementation is evaluated.

Event-B [11, 14] is a mathematical technique that can be incorporated into the devel-
opment process of hardware and software systems [9]. Event-B can be used to model
discrete systems and falls into the ‘correct by construction’ category. The formalism is
based on the B method [8], a method that already has good industrial strength [20].
Event-B modelling is carried out by means of two components (also called constructs):
contexts and machines. Contexts define the static aspects of a model; they may include
carrier sets and constants, as well as axioms and theorems describing the sets and con-
stants. Machines, on the other hand, describe the dynamics of a model; this includes
variables and invariants, as well as events (transitions). Event-B uses set theory built
around first-order logic as a vehicle for modelling. Proof obligations are generated from

models to verify their consistency with respect to some behavioural semantics [61].

The Rodin platform [31] provides a toolset to carry out specification, refinement and
proof in Event-B. Rodin proposes a reactive modelling environment that makes it easier
for the user to link models, proof obligations and their corresponding proofs. Since
proofs are important to the modelling activity, Rodin provides a proof infrastructure
that is extensible. External provers (e.g., Atelier-B provers [7]) can also be used in
conjunction with the Rodin internal prover. In this thesis, we explain our approach in

dealing with issues related to prover extensibility in the context of Event-B.

1

2 Chapter 1 Introduction

1.1 Motivation

The Rodin platform provides a reactive modelling environment where the modeller is
constantly informed about the effects of changes made to models. To achieve this ob-
jective, the tools that constitute Rodin need to work in a reactive manner [80]. This

means that, when a model is modified:

1. It is automatically checked for syntax and type errors.
2. Proof obligations are generated.

3. The status of its proofs are updated.

The proving activity is pivotal to modelling. The modeller may gain considerable insight
into his models by inspecting failed proofs; this may guide the modeller to modify the
model in such a way that proofs become easier to conduct. In some instances, however,
failed proofs may be attributed to limitations in the proving infrastructure, e.g., the

absence of certain proof rules.

Despite being optimised for proof reuse [82], the current Rodin architecture! has the

following limitations:

e in order to add a new proof rule, it is required to implement a rule schema in Java.
Therefore, a certain level of competence with the Java programming language as

well as knowledge of Rodin architecture are necessary;

e after a new rule is added, soundness of the prover augmented with the new rule
has to be established. Although Java verification tools, e.g., JML, can be useful
for this purpose, such validation has not been performed for any of the built-in

rules?.

The external provers integrated into the Rodin proving infrastructure, ML and PP [7], do
not provide sufficient information about how the proof of a sequent has been achieved.
Information such as the set of required hypotheses is important for proof reuse and
replay [82]. These properties of proofs are crucial for the efficient running of a reactive

modelling environment.

As well as prover extensibility, we aim to address issues related to language extensibility.
The mathematical language of Event-B is based on set theory as constructed in [11].
The abstract syntax tree representing formulae in Event-B cannot be extended with new

syntax (adding a new operator for instance). This presents a major issue that hinders

!The problem no longer exists in the current platform (v2.6) if the Theory plug-in is installed.
2As of July 29", 2012.

Chapter 1 Introduction 3

reusability in Event-B. Finally, language and prover extensibility are intrinsically linked
as the ability to effectively reason about language extensions is of paramount importance.

The following two examples provide concrete justifications for our motivation.

1.1.1 Motivation for Proof Extensions

The following formula is a valid polymorphic Event-B theorem:
Va,b, f-(a € P(A) Ab e P(B) A f € a+b) = (finite(a) = finite(f)) . (1.1)

Theorem (1.1) states that a partial function with a finite domain is also finite. Note
that A and B are type parameters, and as such the valid theorem is polymorphic on
both A and B.

Theorem (1.1) can be written as an inference rule as follows:

acP(A),beP(B),fca+b F finite(a)
a€P(A),beP(B),f€a+b F finite(f)

(1.2)

which states that to prove that a partial function is finite it is sufficient to prove that
its domain is a finite set. At the time of writing this thesis, the above rule was not
available as part of Rodin proof infrastructure. In order to add the rule to Rodin, it
is required to implement (in Java) a schema rule that incorporates pattern matching.
Soundness becomes a concern as soon as new rules are added. Furthermore, this process

of specifying new rules presents a challenge for end-users.

In this thesis, we show how it is possible to address both issues of extensibility and

soundness in an effective fashion.

1.1.2 Motivation for Mathematical Extensions

Sequences are ordered collection of objects, and can be modelled as functions with
finite integer contiguous domains. Sequences are part of the classical B [8] repertoire of
mathematical operators. In Event-B, however, the sequence operator is not available.
There are ways to overcome such limitation, by overloading the functionality of contexts

to define sequences axiomatically (see [99]).

Assuming the availability of a context with a carrier set A and a constant a such that

a C A, sequences can be defined as belonging to the set:

{finfel.n—=al f}.

The issue with the aforementioned definition is that sequences can only be used with

sets whose type depend on the carrier set. This is problematic, since in a model, one

4 Chapter 1 Introduction

might want to use sequences of different types according to the modeller’s needs. In this
thesis, we show how such operators can be defined in a polymorphic manner to overcome

the previous limitation.

1.2 Objectives

Our aim is to improve the overall extensibility of Event-B to enhance usability and effec-
tiveness of the methodology. We are primarily concerned with facilitating the addition
of new operators (i.e., language extensions) and new proof rules (i.e., prover extensions)
to suit end-users needs. It is essential to ensure that any technique that achieves the
aforementioned targets has to maintain practicality of use and ensure soundness preser-
vation. Practicality of use is important to relieve end-users from writing Java code.
Soundness preservation ensures that any extensions do not compromise the logical foun-
dations of the formalism. The logic of Event-B is extensively studied in [102] where a
clear definition of soundness is presented, and our work will build on that. A summary
of Schmalz’s work [102] including the soundness of Event-B proof calculus is presented

in Chapter 2. The following key points summarise the objectives of this work:

1. Provide a mechanism by which users can define operators and datatypes in a
familiar fashion (i.e., in line with existing practices of developing models in Rodin)
thereby allowing language extensions. The new mechanism needs to adhere to the

aforementioned requirements: practicality of use and soundness preservation.

2. Provide a mechanism by which the Rodin proving infrastructure can be augmented
with new proof rules. Any newly added rules will have to be validated so that the
soundness of the existing prover is not compromised. Rewrite and inference rules
are used in Rodin to discharge proof obligations. The following milestones are

important in order to achieve this objective:

(a) provide a unifying study of term rewriting and well-definedness. This is of
major importance since the Event-B logic deals with partial functions which
may give rise to potentially ill-defined terms. To illustrate the importance of

this particular contribution, we consider the following rewrite rule:

faf{e—yt(z) » z=2 :y

x#z :f(z)
Consider the following expression:

{1—=2,1— 3,24} < {1~ 5}(a)

Chapter 1 Introduction 5

where a is an integer. In the case where a # 1, the rewritten expression is
{1—2,1~ 3,2+ 4}(a)

which, in the logic of Event-B, is ill-defined since {1 — 2,1 — 3,2 — 4} is
not a function. The previous rewrite rule has been implemented in Rodin,
but was later found unsound as it does not satisfy the conditions singled out

in our study.

(b) study how term rewriting can be integrated as a proof step within the well-
definedness preserving sequent calculus [82, 81]. Mehta [81] presents a calcu-
lus for reasoning in the presence of partial functions. The calculus includes
a set of well-definedness preserving inference rules that can be used for de-
duction in Event-B proofs. Mehta’s work was the backbone of the proof
infrastructure in Rodin. Our work builds on [82, 81], and considers the ad-
dition of rewriting steps to the well-definedness preserving calculus. In par-
ticular, we study how conditional rewrite rules can be used alongside the
well-definedness preserving inference rules in order to enhance the proving

capabilities of Rodin.

3. Show how tool support is provided to achieve the first two objectives. We present
the Theory plug-in which addresses the extensibility issues of Event-B as discussed
in §1.1. We also show by means of several small case studies how our approach

can be incorporated into the modelling and proof activity using Event-B.

1.3 Scope of this Thesis

The work described in this thesis unifies three important fields:

e logic: Event-B uses a logic based on set theory which provides facilities for defining
and reasoning about partial functions. Suitably, reasoning in Event-B is carried
out using a sequent logic that accounts for potentially ill-defined terms [82, 81].
In this thesis, we study how rewriting can be integrated as a proof step within the

proof system of Event-B.

e formal methods: Usability and extensibility are important attributes of successful
formalisms. In this work, we explain our approach to deal with extensibility and
the resulting usability issues in the context of Event-B. Prover and language ex-
tensibility are important in terms of giving more power to the modeller. However,
it is also important to improve the usability of the formalism whilst maintaining

soundness and integrity.

Chapter 1 Introduction

e software engineering: The ideas presented in this thesis have been used to improve

1.4

1.5

the Event-B toolset. The enhancements made to Rodin allow modellers to define
and reason about mathematical extensions in a familiar manner. Mathematical
and prover extensions can be readily used in modelling once they are inspected and
checked for soundness. The effort required to switch between modelling and meta-
reasoning is minimised, since familiar techniques are used to enhance usability and

extensibility.

Publications

. Issam Maamria and Michael Butler. Rewriting and Well-Definedness within a

Proof System. In Ana Bove, Ekaterina Komendantskaya, and Milad Niqui, editors,
Partiality and Recursion in Interactive Theorem Provers PAR’10, volume 43 of
EPTCS, pages 49-64, 2010 [77].

. Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh.

On an Extensible Rule-Based Prover for Event-B. In Marc Frappier, Uwe Gléasser,
Sarfraz Khurshid, Rgine Laleau, and Steve Reeves, editors, Abstract State Ma-
chines, Alloy, B and Z, volume 5977 of Lecture Notes in Computer Science, pages
407-407. Springer Berlin / Heidelberg, 2010 [78].

Outline

This thesis makes important contributions to Event-B in general as described in §1.2.

Chapter 2 provides useful background to the reader. It puts this work in context by

concisely presenting the different concepts needed for the remainder of the thesis. Event-

B and the Rodin toolset are introduced and the limitations of the existing framework

are outlined. Moreover, the proof calculus used in Event-B is presented together with a

detailed overview of well-definedness and partial functions. The remaining chapters are

categorised as follows:

1.

Chapter 3: Rewriting and Well-Definedness within a Proof System This
chapter presents a contribution of a more theoretical nature. A unifying treatment
of rewriting and well-definedness is presented to provide the theoretical foundation
for the subsequent chapters. Finally, we describe how rewriting can be added as a

proof step within the sequent calculus used by Event-B.

Chapter 4: A Practical Approach to Event-B Prover and Language
Extensibility In this chapter, we present the theory component which will be
used as a vehicle for defining extensions in Event-B. A detailed description of

the approach employed to deal with prover extensibility is presented. We also

Chapter 1 Introduction 7

show how the theory component can be used to define new polymorphic oper-
ators and datatypes. Proof obligations that ensure soundness of extensions are
discussed. The Rule-based Prover and the Theory component provide a practical
yet soundness-preserving mechanism to address language and prover extensibility

issues in the Event-B methodology.

3. Chapter 5: Tool Support: Theory Plug-in In this chapter, we introduce the
Theory plug-in which embodies the different ideas presented in this thesis.

4. Chapter 6: Theory Development: Examples In this chapter, we present

several case studies that demonstrate the usefulness of the Theory plug-in.

Chapter 7 concludes the thesis and summarises its main contributions. Possible areas

for future work are outlined.

Chapter 2
Background

In this chapter, we set the general context of this thesis. Our aim is to provide a
comprehensive basis for the subsequent chapters. An overview of formal methods is
presented in the first section. This is followed by a detailed account of Event-B [11,
14] and its toolset, Rodin [12]. The main concepts of Event-B are described with a
particular emphasis on proof obligations. The Rodin platform is introduced in order to
provide the practical setting of the contributions of this thesis. Furthermore, the sequent
calculus used in Event-B reasoning is outlined together with the important notion of well-
definedness. Next, we introduce three widely used formalisms in Isabelle/HOL [94, 90],
PVS [91] and VDM [70, 69]. We conclude this chapter by conducting a brief comparative

study between Event-B and the aforementioned formal methodologies.

2.1 Formal Methods

Mathematical techniques have a long important presence in all mature engineering dis-
ciplines. However, they have not been used as heavily in computer engineering [29, 110].
In fact, the debate about their use and relevance is an interesting one that has attracted
considerable attention and is still doing so [74]. In [74], three schools of thought on this

debate are singled out:
e One school of thought claims that formal techniques provide remedial and complete
solutions to problems associated with system development.

e Another school of thought claims that formal methods have little use or benefit to

the development process.

e A final school of thought considers formal methods to be over-sold and under-used

according to [74].

10 Chapter 2 Background

We subscribe to the final school of thought without underplaying the importance of
formal methods. It is vital to recognise that the complexity of computer systems is
growing at a large rate, and as such there is an urgent need to have a systematic approach
that can be employed to achieve adequate levels of dependability and trust in those

systems.

Developing formal tools to reason about systems is indeed a challenging task. In [74],
an interesting view on formal methods is presented. It lists the different components of

which any formal method should consist:

e The semantic model is defined as the mathematical structure where terms, formu-
lae and the rules used, are given a specific meaning. The semantic model should

“reflect the underlying computational model of the intended application”.

e The specification language is the notation with which systems and their behaviour
are described. The specification language must “have a proper semantics within

the semantic model”.

o Verification systems/refinement calculi are the mathematically sound rules that
allow the verification of system properties and the stepping between specifications

and implementations.

e Supporting tools such as proof assistants and syntax and type checkers are impor-

tant for the formalism to be of any practical use.

According to [74], a formal method should have clear development guidelines to facilitate
its integration with development processes. The aim of this thesis is to enhance the
existing Event-B verification system (by means of proof extensions) and specification

language (by means of language extensions).

2.1.1 Challenges

Despite the availability of many formalisms and their supporting tools, there are many
difficulties facing the integration of formal methods into the development process of
computer systems. There are some real problems that stem from the very nature of
formal methods and computer engineering. Some of these obstacles are outlined below
and in [10]:

e Formal methods require computer engineers to think carefully about the system
in question before proceeding to the coding stage. This is not helped by the fact
that engineers “postpone any serious thinking” during the specification and design

phases [14], and accommodate a rather long and resource-hungry test phase.

Chapter 2 Background 11

e It is quite difficult to change current practices with respect to the development
process. Within the industry, managers are reluctant to change the traditional

way of approaching projects unless a clear value will be gained.

e Modelling is not a simple activity as it is often accompanied by reasoning [10].
Clear distinction between modelling and programming should be attained as the
initial model of a program specifies the properties against which the final program

will be evaluated.

e One of the main objectives of modelling is the ability to reason formally. Software

engineers are not accustomed to this practice.

e Finally, one of the main obstacles is the lack of appealing tool support to make
modelling and reasoning a seamless addition to the development process. This is

undoubtedly one of the main selling points of Event-B and Rodin [31, 12].

2.1.2 Classification

Despite the difficulties and misconceptions that surround formal methods, important
efforts were spent designing and implementing formal systems and tools to benefit from
the rigour that mathematics offer. In brief, these formalisms can be organised into five

categories [74]:

1. Model-based approach: a system is modelled using discrete mathematical struc-
tures to describe its properties. Operations describe the transitions between
different states. This approach does not explicitly represent concurrency. Non-
functional requirements (e.g., temporal requirements) can, in some cases, be ex-
pressed. Notable examples of this approach include Z [109], the B Method [8] and
VDM [70, 69].

2. Logic-based approach: logics are used to describe system properties including prob-
abilistic and temporal behaviour. The axiomatic system of the used logic can then
be employed to validate system properties. In some cases, the logic can be extended
with concrete programming constructs to provide an implementation-oriented lan-
guage. Notable examples of this approach include Modal Logic [56] and Temporal
Logic [51].

3. Algebraic approach: In this approach, an explicit definition of operations is given
by axiomatically linking the behaviour of different operations without defining
states. Algebraic formalisms, similarly to model-based formalisms, do not pro-
vide an explicit representation of concurrency. A notable example of algebraic
formalisms is OBJ [54].

12 Chapter 2 Background

4. Process Algebra approach: CSP [63] and CCS [86] are notable examples. The
m-calculus [87] is a formal approach to model mobility within concurrent systems.
Concurrent processes are formally represented, and system behaviours are de-
scribed as “constraints on all allowable observable communication between pro-

cesses” [87].

5. Net-based approaches: graphical notations with formal semantics are used to de-

scribe systems. Petri Nets [97] are a notable example.

Summary. In this section, we briefly discussed formal methods. We presented a number
of challenges facing the adoption of formal methods in the industry. We concluded
this section by outlining the different categories in which formal methodologies can be
classified. The aim of this discussion was to provide a general context for the Event-B

formalism and its toolset, Rodin.

2.2 Event-B

In this section, we give a brief account of Event-B. We start by describing what is meant

by discrete systems which are the subject matter of Event-B modelling.

2.2.1 Discrete Systems Modelling

Complex systems are made of many inter-related components that interact with an ex-
ternal environment. Although these systems often exhibit continuous behaviours, they
manifest discrete traits most of the time. This essentially means that they can be ab-
stracted using a discrete transition model. There could be many of these transitions, but

that does not change the very nature of such systems that are intrinsically discrete [14].

A discrete model consists of a state which can be represented as variables. The choice
of variables will depend on the level of abstraction of the model with regard to the real
system. Similarly to other applied sciences, there will be certain laws that should govern

the state of the model including its type. Such laws are referred to as invariants.

A discrete model can be subject to a number of transitions, which we may refer to as
events. Each of these events has a guard which is the condition under which the event
is allowed to take place. Furthermore, each event has an action associated with it. The

action describes the effect that the occurrence of the event has on the state of the model.

In the discrete modelling of complex systems, it is assumed that the execution of events
takes no time [14]. When no event is allowed to occur (guards of all events are false),

the execution of the model stops and is said to have deadlocked [14]. If many guards are

Chapter 2 Background 13

true, only one event is allowed to occur. The choice of the event to occur in the latter

case is non-deterministic.

2.2.2 Event-B Modelling

Event-B is a formalism for discrete system modelling based on the B method [8]. Event-
B modelling is carried out using first-order predicate logic with equality and set theory.
The approach provides facilities to reason about models using proof obligations. These
in turn implicitly represent the semantics of Event-B models [61]. In this subsection, we
give a brief descriptive account of Event-B modelling. For a more detailed and formal

description, see [11, 14].

An Event-B model consists of contexts and machines. Contexts represent the static
aspects of the model whereas machines describe its dynamic aspects. Figure 2.1 sum-

marises the anatomy of Event-B models.

Machine Context
Variaples Carrier Sets
Invariants SEES N
Variants > Constants

Events Axioms
A 7\
SEES
REFINES EXTENDS
SEES

Other Machines Other Contexts

Y

Figure 2.1: Anatomy of Event-B Models

2.2.2.1 Contexts

Contexts define static aspects of a model, and provide some of its axiomatic properties.
They may contain carrier sets, constants, azioms and theorems. Carrier sets are assumed
to be non-empty. Axioms are used to describe the properties of those sets and constants.
Theorems are derived properties that should logically follow from the existing axioms.
Proof obligations generated from contexts ensure that all axioms are well-defined and
that all theorems are provable (i.e., logically follow from axioms) and well-defined. An
axiom (or a theorem) is said to be well-defined if it does not contain ill-defined terms

such as 0. Finally, a context C'1 can extend another context C0 (see Figure 2.1); this

14 Chapter 2 Background

CONTEXT DESC
SETS
PERSON
CONSTANTS
age
minimumAge
AXIOMS
axml : age € PERSON — N
axm?2 : minimumAge = 18
END

Figure 2.2: Context DES_C

means that all carrier sets, constants, axioms and theorems defined in C0 are available
to use in the axioms and theorems of C'l. Figure 2.2 presents an Event-B context
which defines a carrier set PERSON and two constants age and minimumAge. The

following proof obligations are generated for contexts:

1. Well-definedness of axiom proof obligation to ensure that ill-defined terms are not

present in axioms.

2. Well-definedness of theorem proof obligation to ensure that ill-defined terms are

not present in theorems.

3. Validity of theorem to ensure that theorems are valid with respect to Event-B logic

and any preceding axioms.

2.2.2.2 Machines

Machines provide the behavioural properties of Event-B models. They may contain
variables, itnvariants, theorems, variants and events. Variables v define the state of a
machine. Invariants I(v) are constraints on variables v, and are similar to class invari-
ants [84] in object-oriented languages. Class invariants are used to constrain objects of
a particular class, and should not be violated by the execution of its methods. Similarly,
machine invariants should not be violated by the execution of the events of the machine.
Events describe possible state changes (i.e., transitions). Each event has a guard G(t,v)
and an action S(t,v), where ¢ are parameters of the event and v are the variables of the
machine. The guard states the condition under which the event may occur. The action
describes the effect of the occurrence of the event on the state of the machine. Contexts
provide an independent placeholder for axiomatic properties, and machines can have

access to these properties by means of a sees directive.

Chapter 2 Background 15

MACHINE DES.M
SEES DES.C
VARIABLES
members
in
INVARIANTS
invl : members C PERSONS
inv2: Vm-m € members = age(m) > minimumAge
inv3: in C members
EVENTS
Initialisation
begin
actl: members ;= @
act2: m =9
end
Event addMembership =
any
m
where
grdl : m & members
grd2 : age(m) > minimumAge
then

actl : members := members U {m}
end

Figure 2.3: Machine DES_M

An event evt can have one of the following three forms:

evt = Dbegin S(v) end (2.1)
evt = when G(v) then S(v) end (2.2)
evt = any t where G(t,v) then S(t,v) end . (2.3)

where v are the variables of the machine, ¢ are the parameters of the event,! G(v) and
G(t,v) are the guards, and S(v) and S(t,v) are the actions.

Events of the form (2.1) do not have a guard, and as such can occur under all possible
states of the system. A specialised event of the form (2.1) is used as an initialisation
mechanism for state variables of the machine. Events of the form (2.2) have guards
which restrict the state of the machine under which they can occur. In the final form
(2.3), events have additional parameters, and their guards and actions are adjusted

accordingly.

!Parameters of an event can be thought of as local variables.

16 Chapter 2 Background

The action of an event is defined in terms of several generalised substitutions (i.e., as-

signments) that can take one of the following three forms:?

x = E(tv) 2.4
x € E(tv) 2.5
z | Qtv,a) (2.6)

where E(t,v) is an expression and Q(t,v,2’) is a predicate.?

Substitutions of the form (2.4) are deterministic. Substitutions of the other two forms
are nondeterministic. Substitution (2.5) assigns x to an element of a set, whereas substi-
tution (2.6) assigns x to a value satisfying the predicate Q(¢,v,z’). Figure 2.3 presents

an example Event-B machine.

The effect of each assignment can be described by means of a before-after predicate as

follows:

BA(x := E(t,v)) = 12’ = E(t,v) (2.7)
BA(x :€ E(t,v)) = 2’ € E(t,v) 2.8
BA(x :| Q(t,v,2")) = Q(t,v,z") (2.9)

The before-after predicate (BA(-)) describes the relationship between the state just
before an assignment has occurred (represented by unprimed variable names z) and the
state just after the assignment has occurred (represented by primed variable names /).
The assignment rule in Hoare logic [64] can be used to infer the weakest pre-condition
in the case of an assignment, whereas the before-after predicate merely links the state
of the machine before and after the execution of the event. Note that all assignments
of an action occur simultaneously, therefore, a before-after predicate A(t,v,z’) for all
assignments can be obtained by conjoining the before-after predicates of each individual
assignment [60]. The machine variables y not appearing on the left hand side of an
assignment remain unchanged. Finally, the before-after predicate of the action S(t,v)

can be written as follows:
BA(S(t,v)) = A(t,v, ')Ay =y (2.10)

Following the same convention as in [60], we represent the before-after predicate of an
action S(t,v) by the predicate S(t,v,v’).4

Proof obligations of machines are more involved than those of contexts, and serve to

verify important properties. We use sequents to represent proof obligations for the

2If the event is parameterless, ¢ can be removed from the left hand sides of the substitutions.
3Expressions and predicates are referred to as terms and formulae in some other literature.
“Note the bold faced S to differntiate the before-after predicate from the action S(t,v).

Chapter 2 Background 17

remainder of this thesis. Sequents take the form H + G where H is a set of hypotheses
and G is the goal of the sequent.

Let an event e be defined according to (2.3), then the proof obligations are:

1. Feasibility proof obligation which ensures that the guard is the enabling condition

of the event. Feasibility proof obligation is the following:

I(v),G(t,v) F (I - S(t,v,0"))

2. Invariant preservation proof obligation which ensures that invariants hold when-
ever machine state changes. Invariant preservation proof obligation is the follow-
ing:

I(v),G(t,v),S(t,v,v") + I(v))

2.2.2.3 Machine Refinement

Refining a machine makes the model more concrete. It is attained by refining both
its state and events. The resulting machine has a state that is related to the state of
the more abstract machine by a gluing invariant. The latter is expressed in terms of a
predicate J(v,w) linking the abstract state v and the refined state w. The refinement

of events can take two shapes: refining existing events and introducing new ones.

Let N be a machine that refines another machine M, and let aevt and cevt be events

in M and N respectively:

aevt = any t where G(t,v) then S(¢,v) end (2.11)
cevt = any u where H(u,w) then T'(u,w) end . (2.12)

Then, event cevt is said to refine event aevt if the following condition holds:
I(v), J(v,w), H(u,w), T(u,w,w') + Jt.(G(t,v) AT (S(t,v,v") AT w"))) (2.13)

where S(u,w,w’) and T (u, w,w’) are the before-after-predicates associated with aevt
and cevt respectively, I(v) is the invariant of machine M, and J(v,w) is the gluing
invariant. In simple terms, a concrete eventb cevt is said to refine an abstract event
aevt (1) when the guard of the former is stronger than the guard of the latter, and (2)

when the gluing invariant is preserved by the conjoined action of both events [12].

Machine refinement can also introduce new events. Let nevt be a new event in machine

N:

nevt = any u where H(u,w) then T'(u,w) end (2.14)

18 Chapter 2 Background

then the following three additional conditions must hold to ensure that machine N is a

valid refinement of machine M:

1. Event nevt must refine an implicit event in the abstraction M that does nothing

(skip). This leads to the following proof obligation:

I(v), J(v,w), H(u,w), T(u,w,w') + J(v,w) (2.15)

2. Event nevt must not diverge (run forever) since, otherwise, it would make previ-

ously enabled abstract events effectively disabled. Formally:
I(v), J(v,w), H(u,w), T(u,w,w') + V(w)<V(w) (2.16)

where V(w) and V(w') are expressions over the set of natural numbers®. V is
called a wvariant, and its value is decreased by each new event. The variant is an

expression that is supplied by the modeller as part of the machine (see Figure 2.1).

3. The concrete machine N must not deadlock before its abstraction M for, otherwise,

N might not achieve what M required. Formally:
I(v), J(v,w), (G1(v) V..V Gp(v)) F (Hi(w)V..VHp(w)) (2.17)

where G;(v) are the guards in the abstraction M, and H;(w) are the concrete

guards.

2.2.3 Event-B Pragmatics

The Event-B modelling notation has been designed to be “simple and easily teach-
able” [60]. It is targeted at modelling complex systems, and as such tool support is a
major aspect of its appeal. In what follows, we briefly outline some of the important

choices made when designing the Event-B notation as discussed by Hallerstede in [60]:

1. Modelling versus Programming: Important choices regarding modelling and pro-
gramming were made when conceiving the Event-B notation. Hallerstede claims
modelling and programming are seen as activities of different nature with varying
objectives. A program can be executed, whereas execution is not required for a
model. As such, many traits of programming languages have been omitted in or-
der to reduce the complexity of the notation and put more emphasis on reasoning.
However, this may increase the efforts needed to specify certain aspects of systems

including sequencing.

®Variants can be more elaborate, see [14].

Chapter 2 Background 19

e Sequential Composition: Sequential composition can complicate proof obli-
gations and make them difficult to comprehend, and as such Event-B does

not support them.

e Conditional Statements: These are not supported in Event-B. Conditional
statements pose a significant challenge when proving refinement proof obli-
gations, as it is not easy to work out which branches in the refinement cor-
respond to which branches in the abstraction. Instead, Event-B adopts an

approach whereby each branch corresponds to a separate event.

2. Undefinedness: Conditionally defined expressions are frequently used when de-
veloping models. This poses a major challenge when the underlying logic is the
two-valued first order logic. To deal with this issue, Event-B considers the well-
definedness of expressions at the level of type-checking. Type-checking works in
two passes. The first pass checks whether expression are correctly typed regard-
less of whether they are defined. The second pass of the type-checker creates
well-definedness proof obligations that must be discharged by proof [60]. For ex-
ample, the expression 1+ 0 is correctly typed, but is not well-defined as it cannot
be shown that 0 # 0.

3. Parameterisation: Models can depend on many parameters, e.g., number of com-
ponents in a structure. Event-B contexts are used to parameterise machines using
carrier sets and constants. These can be instantiated, and if they satisfy the axioms

of the context, the theorems derived from them can be readily used.

4. Openness: The Event-B modelling notation is not finalised, and is expected to
evolve according to the different needs and application domains. The formalism
is open to extensions and changes. Hallerstede emphasises, however, that care
should be taken to avoid complicating the existing theory, and concepts should be

interpreted in a simple and unambiguous way [60].

Summary. In this section, we presented a brief account of Event-B. We started by
providing an overview of discrete systems modelling. Next, contexts and machines were
discussed as well as their proof obligations. The important concept of machine refinement
is presented. We concluded this section by presenting an overview of the different choices

made when designing the Event-B modelling notation as discussed by Hallerstede in [60].

2.3 The Rodin Platform

The Rodin platform [12, 31] is an integrated modelling environment for Event-B. It
provides facilities and tools to develop and reason about models in a reactive manner
inspired by modern integrated development environments (IDEs) such as Eclipse [49].

When developing Java programs using Eclipse, the user is not required to initiate the

20 Chapter 2 Background

compilation process. Rather, the IDE reacts to changes in code in a seamless manner
which provides an effective feedback to the developer. Analogously, in Rodin, while
developing a model of a complex system, static checking, proof obligations generation
and management are carried out seamlessly to provide immediate feedback to the mod-
eller. The combination of static checking and proof obligation generation in Rodin can
be thought of as an extended static checker [44] for Event-B. More precisely, the Rodin

platform provides the capabilities to:

e develop models in Event-B by specifying contexts and machines,

e analyse models by means of static checking which includes syntax and type check-
ing,

e semantically analyse models by means of proof obligations generated as appropri-

ate,

e carry out mathematical proof in order to verify model consistency.

In order to strike a good balance between usability and effectiveness, Rodin is designed

to satisfy the following requirements [31]:

e “Design-Time Feedback”: the tool responds quickly to changes and provides feed-

back that can be easily related to models;

e “Distinct Proof Obligation Generation and Verification phases”: the tool decouples
modelling and proving while maintaining the link between the two activities (i.e.,

traceability) in case automatic proofs fail.

2.3.1 Architecture

Figure 2.4 shows a high-level view of the internal architecture of Rodin. The tool can

be divided into four distinct components which are described below:

1. The Rodin Core: contains the Rodin repository and the Rodin builder. The repos-
itory manages the persistence between data elements (Java objects, e.g., proof
obligations) and their storage in XML files (e.g,. proof obligation files). The
builder (analogous to the Java builder in the Eclipse Java IDE) schedules jobs

depending on changes to files in the repository.

2. The Event-B Library Packages: the syntax of the Event-B mathematical language
is specified by an attributed grammar implemented in the abstract syntaz tree
(AST) module. The sequent prover (SEQP) module provides the necessary infras-

tructure to carry out proofs.

Chapter 2 Background 21

| |
. |Event-B Event-B| Event-B |
L MUl PUI ul :
| |
i AR [2 ARNREEE 2 |
' |Event-B| [Event-B| |Event-B| Event-B :
TR D A R !
| |
| Event-B |
. SEQP !
e _—_:—+ E\'/ent-B :
|) . Library !
| Rodin ' | Event-B !
E Core ! AST |
. Rodin T | :
'Sy e Y e e ________ a
1 Platform : r
| Eclipse ! —> Import Dependency
|
: Platform !
| |
| |

Figure 2.4: Rodin Tool Architecture

3. The Event-B Core: contains the static checker (SC), the proof obligation genera-
tor (POG) and the proof obligation manager (POM). The static checker analyses
contexts and machines in terms of syntax as well as typing. The proof obligation
generator generates proof obligations from statically checked elements of the model
including axioms, theorems, invariants and events. Finally, the proof obligation

manager keeps track of proof obligations and their proofs.

4. The Event-B User Interface: contains the graphical interactivity model for Event-
B. It provides two distinct perspectives: the modelling user interface (MUI) and
the proving user interface (PUI).

Figure 2.5 describes the tool-chain for developing Event-B models using the Rodin plat-

form.

2.3.2 The Rodin Tooling Philosophy

Modelling is a complex activity, and is a hugely important step in developing complex
and reliable systems. Reasoning can significantly improve understanding of a particular
model. An effective tool support should provide a practical setting for creating models
and reasoning about them. It also should make the transition required between the

modelling and reasoning activities as seamless as possible.

22 Chapter 2 Background
Error
Messages

Event-B Event-B
SC POG

Event-B
POM

Y
Unchecked Well-formed Proof Proof Status
Elements Elements Obligations and Proofs

Figure 2.5: Rodin Tool-Chain for Event-B

Hallerstede [60] provides an overview of the different choices and decisions (some of
which are summarised in §2.2.3) made when conceiving the notation and the modelling
environment for Event-B. Moreover, the Event-B toolset (Figure 2.6) aims to satisfy the

following two requirements [12]:

1. “Design-Time Feedback”: The tool is very responsive and immediately provides
feedback related to the model. A further requirement is that the feedback should

easily relate to the model in question.

2. “Distinct Proof Obligation Generation and Verification Phase”: This is important
as it allows the user to distinguish between the modelling and proving activities.
This is particularly important when proofs fail, as it allows the origin of the proof

obligation to be traced more easily.

2.3.2.1 Editors

The Rodin platform provides editors for contexts and machines. The editors are designed
to mirror the structure of their respective files. Since context and machine files have an
XML structure, their respective editors have a tree look, and are form-based®. There
is a text-based editor for Rodin called Camille [4]. However, this editor suffers from

several bugs that hinder its usability.

2.3.2.2 Tooling

Tooling refers to the collection of tools that run on Rodin files. Figure 2.5 describes the
three tools available in the Rodin repertoire. The Rodin tool chain refers to the different

stages of tooling;:

5This particular design decision was taken to account for possible extensions to the Rodin database.

Chapter 2 Background 23

[R Event-B - Lists/lists.buc - Rodin Platform PEE
File Edit Navigate Search Project Run Theory Rename Event-B Window Help
(i a | Qv | A o ¢ g st I @ Proving | & EventB|
b Event-BExp & =80 lists % = 8|8 outli 2 =8
5 @ ¢&8 B Y| ® B CONTEXT lists //[Basic theory of lists S|+ axml a
|—‘ ° % axm2
% axm3
v B Lists < EXTENDS & axmla
b @ lists ® 4L & axmé
P @ pointers % axms
<~ SETS
b D revi . o0 % axm7 3
U
b D.rev2 % axmg
b Direv3 + @ |T| //[Generic Set % axml3
4
Direvd ' % @ |List T| //[Lists of type T % axm9
& MathExtensions i - + axmle
® ¢4
- % axmll
<> CONSTANTS % axml2 [
® o0 % axmé
% axml5
o @ |empt
pryl I # axmlé
o @ |NonEmpty| // Sl o thm2
I n Dl 8 thml
Pretty Print Edit| Synthesis Dependencies 8 thm3 =
[2/ Rodin Problems & . [Properties ¥ Tasks 2o ¥ = 0| V) symbols % =g
0 errors, 0 warnings, 0 infos (A)
Description A Resource Path Location H
w I B “
o® 0Oitems selected

Figure 2.6: The Rodin Tool

1. Static Checking. Event-B components (i.e., contexts and machines) are stati-
cally checked for syntax and typing errors. Each Rodin file has two versions: 1) an
unchecked version, and 2) a statically checked version. The unchecked file is the
version that can be edited by the user. Unchecked machines and contexts have file
extensions ‘bum’ (i.e., B unchecked machine) and ‘buc’ (i.e., B unchecked con-
text) respectively. Checked machines and contexts have file extensions ‘bem’ (i.e.,
B checked machine) and ‘bee’ (i.e., B checked context) respectively. The purpose
of the static checker is to create the static checked files (‘.bcm’ and ‘.bce’) from
their unchecked counterparts (‘.bum’ and ‘.buc’), and in the process eliminating
any ill-formed elements. The static checker goes through all the sub-elements of
the unchecked file, and generates their statically checked counterparts if all the re-
quired conditions are met by each element. The statically checked files are, then,

the subject of subsequent tooling.

2. Proof Obligation Generation. This refers to the generation of proof obligations
from the well-formed elements of contexts and machines. Obligation generation
runs on statically checked contexts and machines. The proof obligations generated

in Rodin are presented in §2.2.2, and are more elaborately justified in [60].

3. Proof Management. This refers to the management of the relationship between
proof obligations and their proofs. A proof obligation can be: 1) pending, 2)

discharged, or 3) reviewed. A proof obligation is reviewed if it has been inspected

24 Chapter 2 Background

by the user and is ear-marked to be discharged later. The state of a proof obligation
is determined by the state of its proof (i.e., complete or incomplete). The Rodin
prover alters the state of a proof by 1) applying proof rules, or 2) invoking external

provers (ML, PP [6] and more recently Event-B Isabelle prover [101]).

2.3.2.3 Reactive Development

The Rodin platform proposes a reactive modelling environment [80, 82] similar to modern
integrated development environments (IDE’s), hence the decision to implement Rodin
on top of the Eclipse IDE. The user working on a model is constantly updated on the
status of her/his proofs. To achieve this, the tools in Rodin repertoire run in a reactive

manner by:

1. checking models for syntax and type errors,
2. generating proof obligation where appropriate, and

3. updating the status of its proofs by calling automated provers, or reusing old proof
attempts [82].

The reactive nature of Rodin poses many challenges with respect to proofs. Mehta [82]
outlines the different issues and his approach to dealing with them (proof reuse and

re-engineering.

2.3.2.4 Proof Obligations

Proof obligations are central to Event-B modelling. The naming of proof obligations and
their structure is crucial to facilitating the modelling activity [60]. Proof obligations are
easily traceable to their corresponding element in contexts and machines, making the

transition between modelling and proof easier.

2.3.3 Event-B Mathematical Language

Figure 2.7 shows an example of a simple context. Context CO defines a constant
minimum. The first axiom asserts that constant minimum is a partial function from the
set of sets of naturals to the set of naturals. The second axiom ensures that minimum
associates non-empty sets of natural numbers with their least element using the usual
ordering < on natural numbers. The syntax used to write Event-B models can be de-

composed into two levels:

Chapter 2 Background 25

CONTEXT CO0
CONSTANTS

minimum

AXIOMS
axml : ’minimum e P(N) + N‘

axm? : ’Vs~(5 e P(N) As# @)= (Yn-n € s=minimum(s) < n)‘
END

Figure 2.7: Event-B Outer and Inner Syntax

1. Quter Syntax: this level of syntax corresponds to the unboxed parts of the context
definition in Figure 2.7. This syntax is used to specify the components of individual

contexts and machines.

2. Inner Syntax: this level of syntax corresponds to the boxed parts in Figure 2.7.
This syntax is used to specify the mathematical formulae corresponding to axioms,

invariants, guards and actions.

The inner syntax of Event-B is specified by means of an attributed grammar, and is
defined in the (AST) sub-module of Rodin, see §2.3.1. The outer syntax, on the other
hand, is specified by a database of elements whose relationships are specified by a graph.
Thanks to the Rodin database [12, 60], the outer syntax is easily extensible. This
facilitated the development of several useful plug-ins, e.g., the Modularisation plug-
in [66] and the Records plug-in [104].

The inner syntax, prior to Rodin version 2.0, was wired in the (AST) sub-module, and
could not be extended as easily as the outer syntax. However, Rodin 2.0 provided a
dynamic parser for the inner syntax which can be easily augmented with new syntax [3].
From hereon, we shall refer to the inner syntax as the mathematical language of Event-
B [83]. The mathematical language is the level of syntax whose extensibility is addressed
by the contributions of the thesis. In particular, two important aspects of extensions

are considered: practicality of use and soundness.

2.3.4 Proof Infrastructure

The proof obligation manager (POM), described in §2.3.1, manages the relationship
between proof obligations and their proofs. The proof manager (PM) is in charge of
handling and maintaining proofs, and provides important services to POM. For each
proof obligation, it constructs a proof tree whose root is the sequent of the obligation
itself. The proof manager works both automatically (without user intervention) and

interactively (with user intervention and possibly with input).

26 Chapter 2 Background

Proof Manager

[finite(a), f € a—b finite() |

\—O‘_) n f-fel..n a, fea—b
i
finite(f)
Proof Rule Av4 fea —> b, f0el ..n a
finite(a) = n,f-fel..n a Finite(ﬁ

=
n ffel..n b

fea— b, foel .. n aT

fea—b, f0el ..n a

e
Tactic uses proof rule ffel..n b

Tactic alters proof tree fca—b, fO€l ..n a
=

Proof tree child relationship T

Non-pending proof tree node

Discharged proof tree node

xxe| b

Pending proof tree node

Figure 2.8: The Proof Manager (PM)

A detailed description of Rodin’s prover architecture is described by Mehta in his the-

sis [82]. We summarise the key elements of the architecture:

e Proof Trees are recursive structures based on proof tree nodes. A proof tree node
represents a single node as well as the proof tree (or sub-tree) rooted at that node,
see Figure 2.8. Each proof tree node has a sequent. It may also have a justifying

proof rule and a list of child nodes. A proof tree node can be either:

1. pending, if its proof rule is null, consequently, the list of child nodes is null,

or,

2. non-pending, if it has a non-null proof rule, and the child nodes correspond

to the result of applying the proof rule to its sequent.

e Tuctics were introduced by Robin Milner in the early 1970 for the LCF theorem
prover [85]. They provide a uniform mechanism to manipulate proof trees. A
tactic could be a wrapper around a proof rule in which case it is called a basic
tactic. Tactical tactics, on the other hand, are more structured and can be used
to specify a proof strategy [82]. An example is a tactic that repeats another tactic

until it fails.

e Reasoners are concrete proof rule generators. An example proof rule is the follow-

ing well-documented conjunction-introduction rule:

H-FP HFQ

Nint
HF PAQ intro

Chapter 2 Background 27

Concrete proof rules can be generated by appropriately instantiating the meta-
variables H,”P and Q. Using a simple Java-like language, Listing 2.1 describes

the general interface reasoners obey [82]:

The apply method checks whether the proof rule is applicable to the given sequent
with the supplied input ®, and if so generates a concrete proof rule which will be
the justification for the proof step. If the rule is not applicable, no change occurs

in the proof tree.

interface Reasoner{
Rule apply(Sequent sequent, ReasonerInput input);
}

interface ReasonerInput{}

Listing 2.1: Reasoner Protocol

The proof manager can be extended with new reasoners and tactics. There is a well-
defined protocol for both extensions. Reasoners are also used to integrate external
provers. The idea is to encapsulate a call to the external prover as a reasoner applica-
tion. The call is successful if the external prover discharges the sequent, i.e., if it finds
a complete proof for the sequent. One limitation is that information about how the
external prover went about the proof (e.g., used hypotheses) is not always available to

the proof manager.

Two external provers that have been successfully integrated are:

1. The Predicate Prover (PP): this prover is built around a hierarchy of provers. It
contains a decision procedure for propositional logic and a semi-decision procedure
for first order logic. Another major component is the translator from set theory
to first order logic. It is built in accordance with the set-theoretic construction
outlined in the B Book [8].

2. The ML Prover (ML): is a rule-based prover used in the Logic Solver which is the
compiler-interpreter used for B. PP was originally developed to validate the many
proof rules of ML.. ML and PP are part of Atelier-B [6] which provides the proving

infrastructure for B.

Despite being optimised for proof reuse [82], the current architecture has the following

limitations:

e in order to add a new proof rule, it was required to implement a reasoner and a
wrapper tactic. Therefore, a certain level of competence with the Java program-

ming language as well as knowledge of Rodin architecture were necessarys;

"Note that H stands for a set of formulae (the set of hypotheses)
8Input could, for example, be a term to instantiate a universally quantified formula.

28 Chapter 2 Background

e after a new rule is added, soundness of the prover augmented with the new rule
has to be established. It is not clear how this can be achieved at the level of Java
code. The use of Java verification tools, e.g., JML [30] has not been adopted by

Rodin as of the time of writing this thesis.

Summary. The aim of this section was to provide the practical setting of the contri-
butions of this thesis. We presented an overview of the Rodin platform. The general
architecture of the toolset is discussed. A particular focus is placed on the tooling aspects
of Rodin including static checking, proof obligation generation and proof management.
We also provided a brief description of the Event-B mathematical language and proof

infrastructure.

2.4 Reasoning in Event-B

In this section, we define the mathematical logic that will be used in the proof system
of Event-B. We also discuss in detail the proof calculus employed in Event-B reason-
ing. The important notion of well-definedness is thoroughly studied, and its link to
partial functions is presented. The mathematical logic defined herein will also be used
in Chapter 3.

2.4.1 First-order Predicate Calculus with Equality

In the next two definitions, we introduce the syntax of the first-order predicate calculus
with equality. We use the language signature X defined by a set V' of variable symbols, a
set F' of function symbols and a set P of predicate symbols. In line with [8, 11, 25, 81, 82],

we distinguish between terms and formulae.

Definition 2.1 (Term). T¥, the set of ¥-terms, is inductively defined as follows:
e each variable of V' is a term;

o if f € F, arity(f) = n and each of ey, ..., e, is a term, then f(ey,...,e,) is a term.

Definition 2.2 (Formula). Fy;, the set of ¥-formulae is inductively defined as follows:
e p(ty,...,t) is a formula provided p € P, arity(p) = n and each of t1, ..., t, is a term;
e t1 =ty is a formula provided ¢ and ¢y are terms;

e | is a formula;

e p A1) is a formula if ¢ and ¢ are formulae;

e —p is a formula if ¢ is a formula;

e Vx.p is a formula if x € V and ¢ is a formula.

Chapter 2 Background 29

We also use other (standard) logical operators defined using the following syntactic

definitions:

T = -1
eVYy = a(np Ay)
p=¢% = -V
ey = (=) AW=9)

In the absence of potentially ill-defined terms, the previous first-order language can be
assigned a two-valued semantics. In this case, the sequent calculus LK [50] can be used

for conducting proofs.

2.4.2 Defining Partial Functions

In this section, we show how a partial function can be added as a definitional extension
by means of a conditional definition [15, 81]. A partial function symbol f is introduced

using the following conditional definition:

Jdef
CL - y=f@ & DL,

which can be added as an axiom to the proof theory of the previous first-order language,
provided [81]:

1. Variable y is not free in C;; ,

2. Formula Déy only contains the free variables from Z and y,

3. Formulae C%c and Dij’y only contain previously defined symbols,

4. The following theorems:

e Uniqueness: C’% - Vy,z-(Di:y/\Déz) = y=z
¢ Existence: C’% F dy- Di:y

must be provable from the existing theory and any previously introduced defini-

tions.

The above definition meets the two criteria of a definitional extension: Criterion of
Eliminability and Criterion of Non-creativity [15, 105]. The formula Cg is the well-
definedness condition of f which effectively defines its domain. For a total function
symbol, the well-definedness condition is T. In the case where C’JJ; holds, the conditional

definition fgey can be used to eliminate all occurrences of f in a term or formula by its

30 Chapter 2 Background

definition Dj_j. " As an example, we consider (conditionally) defining the infix division

function in a theory of real numbers:

y#0 F z=zrx+ysrx=2xy Tdef
This definitions allows ‘+’ to be unfolded when its second argument is not equal to 0.
The term 1 + 0 is syntactically acceptable, but is said to be ill-defined. In the classical
sense, the formula 1+ 0 = 1 = 0 can be shown to be valid on the basis of their logical
structure [81]. As such, the classical first-order sequent calculus (such as LK) is not a

suitable proof calculus as it does not account for ill-defined terms.

2.4.3 The Well-Definedness Operator

The well-definedness operator "D’ formally encodes what is meant by well-definedness.
D : (Fx UTy) — Fy is a syntactic operator that maps terms and formulae to their
well-definedness conditions (which are themselves formulae). We interpret the formula
D(F) as being valid if and only if F' is well-defined. For a detailed treatment of the D

operator, we refer to [15].

The well-definedness (WD) of terms is defined recursively as follows:
Dx) = T ifzeV (2.18)
n
D(f(tnta)) = ADE) A Ch, (2.19)
i=1
where C’ltf1 ...t effectively defines the domain of the function f. For this study, we assume

that predicate symbols are total. As a result, ill-definedness can only be introduced by

terms. Therefore, we have the following:

Dp(ts,...t.)) = J\D(t:) ifpeP (2.20)
=1
D(t1=tz) = D(t1) AD(t2) (2.21)

For the well-definedness of other formulae, we use the following expansions from [15]:

D(L) = T
D(~¢) = D(p)
(eAY) = (D) AD@)) V (D(p) A=p) V (D) A=)

(
(V- D(p)) V (Fz - D(p) A =)

IR

Do A 9)
D(Vz -)

S

Chapter 2 Background 31

Well-definedness conditions related to the derived logical operators can be easily ob-

tained, e.g.,

D(pVvy) <« (D) AD))V (D(p) Ae) V(D() Ap)

Intuitively, the above definitions enumerate all the possible conditions under which a

formula can be evaluated. In the case of disjunction, the formulae can be evaluated if:

1. both disjuncts are well-defined; or

2. either one of the disjuncts is well-defined and is evaluated to true.

Semantic treatment of the D operator can be found in [25, 16].

An important property of well-definedness conditions is that they are themselves well-
defined as shown in [81]; i.e.,
D(D(P)) & T (2:22)

For the remainder of this thesis, we mainly use the D operator. We may also refer
to another well-definedness operator £ [15]. Well-definedness conditions generated by
means of operator £ are smaller in size compared to their D counterparts. For this
particular reason, the Rodin platform employs £ as it makes proofs less tedious to
perform. For the different logical operators, we have the following L-generated well-

definedness conditions:

L(—p) = Lip) (2.23)
Lenp) = Lp)ANe=LEY)) (2.24)
LNz -p) = Va-L(p) (2.25)

The following property asserts that L is stronger than D:
L(p) = D(p) (2:26)

Property 2.26 can be shown by structural induction on ¢. It merely states that if a
formula is shown to be well-defined with respect to £, it will also be well-defined with
respect to D. This is particularly useful in Rodin as the use of £ greatly simplifies proofs
of well-definedness. There is, however, a compromise on completeness due to £ being

sensetive to the order of formulae.

2.4.4 Well-Definedness and Proof

In this section, we explain the approach taken in reasoning with Event-B when dealing

with ill-defined terms. The notion of well-definedness can be integrated into a classical

32 Chapter 2 Background

L ArQ ~ H-Qrl
HPFP"™’ HPFQ HFQ

_p _HEP h HEP HEQ
H1+rp " g-pro "’ "HFrPAQ

contr

Agoal

H,P,QF
))Q R /\hyp

A PAQFR H g p "90dl (@ nfin H)

ArE=£ 9

Hilp=EP _ HEP HPFQ
HE=FFz=rFp P HFQ

cut

H,[z:=EPFQ
HVz PFQ

Yhyp

Figure 2.9: Inference Rules of FoPCe [81]

first-order sequent calculus to obtain a proof calculus that is suitable for handling partial

functions.

The aim of Mehta’s work is to use the classical sequent calculus (see Figure 2.9) in
Event-B proofs, and as such, the notion of validity cannot be changed. Instead, a
pragmatic approach, in which validity and well-definedness are separated, is taken. To
avoid ill-defined proof obligations being discharged, both validity and well-definedness
are required to hold [81]. For example, the sequent - 1+ 0 = 1 + 0 is allowed to be
proven to be valid. However, it cannot be proved to be well-defined. When proving a

proof obligations H + G, we are obliged to prove two proof obligations:

(WD: +D(HFG) [Validity : HI- G|

The first proof obligation, WD, is the well-definedness proof obligation, and is expressed
using the well-definedness operator D that was introduced in §2.4.3, and is defined
for sequents in §2.4.4.1. The second proof obligation, Validity, is the validity proof
obligation. Note that both proof obligations, WD and Validity, can be proved using
FoPCe [81].

Proving well-definedness can be seen as filtering out formulae that contain ill-defined
terms. In the case of 1 +0 =1+ 0, we are also required to prove - 0 # 0A 0 # 0
as its WD (this proof obligation is obtained using the definition 2.21). Since this is not
provable, we have filtered out the sequent -1+ 0 = 1 + 0 as not being well-defined in
the same way we would have filtered out - 1 = {1} as not being well-typed [81]. Unlike

type-checking, well-definedness is undecidable, and requires mathematical proof.

When proving the validity of a sequent, it can be assumed to be well-defined (as there
is a separate proof obligation to ensure well-definendness). However, only the initial

sequent of Validity can be assumed to be well-defined. In order to take advantage of

Chapter 2 Background 33

the property of well-defined sequents across proofs, we can only use proof rules that
preserve well-definedness [81]. In §2.4.4.2, we present a proof calculus that preserves

well-definedness across proofs.

2.4.4.1 Well-Defined Sequents

The D operator can be extended for sequents as follows:
DHFG) = D(VE- \H=G) (2.27)

where the following conventions are used:

e H is a finite sequence of formulae,

e /\ H denotes the conjunction of all formulae present in H,

e V¥ denotes the universal quantification of all free variables occurring in H and G.
A sequent H I G is said to be well-defined if we can additionally assume that D(H F G)
is present in its hypotheses [81]. The syntactic sugar I, is used to denote well-defined

sequents:
H-,G = DHFG),HFG

Examples. Consider the following two sequents:

r=1 F
l,

r=1

1+-0=1

D

D

The previous two sequents are equivalent to:

Dx=1),z=1 F x=1
D(1+0) F 1+-0=1

Furthermore, the previous sequents can be simplified further to:

r=1 F =1
00 F 1+-0=1

Note that the sequent ‘z = 1 + x = 1’ is well-defined, since the well-definedness of
both the goal and the hypothesis evaluate to T, and hence implicitly present in the
hypotheses. Therefore, the two sequents ‘v = 1+ 2 =1 and ‘2 =1F, z =1
are equivalent. However, the two sequents -, 1 +0 =1"and ‘+ 1+ 0 = 1’ are not

equivalent.

34 Chapter 2 Background

- hpr M mon, M
H P, P H PF,Q HE,Q

contr.,

Hb, P H, P+, L

Hir, P H-pr,q " HF,-Pp 9%

Hb, P Hb,Q HP,Qr, R Hi, P
Ngoal, ———————— ANhyp, —————— Vgoal, (x nfin H)
Hi, PAQ ® HPAQr, R PP HE, Va P o (
Hb, [z =EP Ht, D) Hbn P HPHQ
HE=Fr,[z=FP Hr,Q P
Hb, D(E)| H,[z:=EP+,Q
Hr,E=EF 9% HYVz PF,Q Vhypo

Figure 2.10: Inference Rules of FoPCe,, [81]

In order to use the classical sequent calculus LK [50], a pragmatic approach of ‘separat-
ing the concern of validity from that of well-definedness’ [81] can be adopted. Therefore,

when proving a sequent H - G, two sequents need to be proved:

G

D

(WD, : F, D(HFG)| Validity, : H -

The WD,, proof obligation is equivalent to the original WD proof obligation since we
know from (2.22) that “D(D(H F G))< T . To get Validity,,, we add the extra hypothesis
‘D(H F G)’ to Validity using the cut rule whose first antecedent can be discharged using
the proof of WD [81].

The validity sequent ‘Validity,,” is shown, in [81], to be equivalent to:
D(H),D(G),H} G

where the D operator is the D operator extended for a finite set of formulae. This equiv-
alence asserts that when proving the validity of a well-defined sequent, its hypotheses

and goal can be assumed to be individually well-defined.

2.4.4.2 WD-Preserving Inference Rules

An inference rule is said to preserve well-definedness iff its consequent and antecedents
are all well-defined sequents. Figure 2.10 introduces the theory FoPCe,, (a collection of
WD-preserving inference rules) as developed in [81, 82]. The well-definedness preserving

proof rules are developed with a detour through the classical calculus, shown in Figure

Chapter 2 Background 35

2.9, and using the following (bridging) inference rule:

D(H),D(G),H+ G
Ht, G

5 equ

The double inference line means that the rule can be used in both directions. As such, the
bridging rule allows the passage between the classical and the well-definedness preserving

proof calculi, and vice versa.

Note the additional antecedents in the cases of cut,, and Yhyp,, rules compared to their
classical counterparts. This is necessary since both rules introduce a new formula (cut,,)
or a new term (VYhyp,), that may not be well-defined, into the proof. Note that other
inference rules concerning derived logical operators can be derived using the inference
rules of FoPCe,. Note the use of the non-freeness constraint (z nfin H denoting ‘z
is not free in H’), defined in the usual way, in the universal quantification introduction

rule Vgoal,,.

The following two proof rules can be derived with a detour through - sequents (classical

reasoning) [82]: PDQ) - Q
) D
PG goaly,

and
P D(P) -, Q

P, Q

hypy

To give the reader an intuition into how rules are derived, we show how to derive the
following rule:

T
AT 9o

by means of the following proof tree:

Lhyp

D(H),D(T),H, L+ L
contr

D(H),D(T),H+ T
Hb, T

5 equ

The following proof tree shows how goal,, , is derived:

D(P), D@, PrT "0 POQHQ
D(P),D(Q).P+D(D(@) ~~ D(P),D(@.P.DDQ)FQ "™

D(P),D(Q), P+ Q -
Pr,Q » €47

36 Chapter 2 Background

For the remainder of this thesis, we may also use the well-definedness preserving proof

rules shown in Figure 2.11.

—_ l 7|_D vV 1 7}_1) V 12
'_D goait., i '_D PVO goatl, 7 }_D PVO goal2,
HP+F, R HQF,R HPF,Q
’ D ’ D) D goalD

TPvar, kWP B, P=0

H-, P HQF, R H+,P=Q HF,Q=P

HP=QF, R "W Hb, PoQ Sgoals
HP=QF, R HQ=PFH R
HPoOF. R S
’ D
Hvy,D(E) Hr,[z:=E|P HPr,Q
Ht,3xz-P dgoals, H3r-PF,Q Shyp, (z nfin H U{Q})
PDQ F Q PDP)F, Q,
Pr, @ v Tpr_q Whwo

Figure 2.11: Additional Well-Definedness Preserving Inference Rules [81, 82,
102]

2.4.5 Proofs in Event-B

As mentioned in §2.4.4, when proving a sequent H F GG in Event-B, two sequents need

to be proved:

(WD, : b, DHFG)| Validity, : HF, G

The WD-preserving proof calculus (FoPCe,) can be used to prove both sequents:

e ‘WD’ for each proof obligation are factored out by proving that the source models
(i.e., from which the proof obligations are generated) are well-defined [25]. Proof
obligations generated from well-defined models are guaranteed to be well-defined.

This reduces the number of proofs that need to be carried out [81].
e “Validity ,” for each proof obligation can be discharged using the WD-preserving

proof calculus.

Example. Assuming a suitable theory of arithmetics, consider the case where the

modeller specifies the following theorem in a context:

Ve :Z-x+2x=1 (2.28)

Chapter 2 Background 37

Two proof obligations are generated to establish the validity of (2.28):

(WD,) FoV2:Z-2#0 (2.29)
(Validity) FpVe:Z-z+z=1 (2.30)
The Sequent (2.29) cannot be discharged since its negation is provable and the calculus

(FoPCe,) is shown to be sound in [102]. The negation of Sequent (2.29) is the following

sequent,
Fpdz:Z-x=0

which is shown to be provable by means of the following proof tree:

I -
FoT 9t =g

Fpde:Z-2=0

= goal,,

dgoal,,

However, the Sequent (2.30) can be discharged since we have the following proof tree:

Lh
Ir Vo Z-zro=1 "

Ve :Z-x#0F, T 0#0F, Vo :Z -z +o=1
Ve :Z-x#0F,Ve:Z-zc+x=1
Fp Vo :Z-x+2=1

Tgoal,

Vhyp,,

goal, ,

In summary, theorem (2.28) can be shown to be valid but not well-defined using the

well-definedness preserving calculus (FoPCe,).

Summary. In this section, we presented an overview of the proof calculus used to reason
in Event-B. We have shown how partial functions are added to a theory by means of a
conditional definition in §2.4.2. Moreover, we introduced the well-definedness operator
that generates well-definedness conditions for terms and formulae. We also presented
the work of Mehta [81, 110] regarding the well-definedness preserving proof calculus
(FoPCe,). We concluded this section by briefly discussing proofs in Event-B by means

of a simple example.

2.5 Other Formalisms

In this section, three formalisms are introduced: Isabelle/HOL [90, 94, 95], VDM [28, 70]
and PVS [91, 59]. The aim of this section is to highlight major differences between Event-
B and other established methodologies, and to investigate how these formalisms can
influence our approach to achieve the objectives outlined in §1.2. In the following three
subsections (§2.5.1, §2.5.3 and §2.5.2), we briefly describe Isabelle/HOL, VDM and PVS.

In §2.5.4, advanced features of the aforementioned formalisms will be discussed. The

38 Chapter 2 Background

choice of Isabelle/HOL, PVS and VDM is taken because these three formal techniques
are known as powerful modelling tools that have been used in non-trivial applications.
Furthermore, VDM uses the logic of partial functions that deals with ill-definedness.
PVS adopts a simpler approach to ill-definedness by generating type correctness condi-
tions (TCC’s) [91, 59]. Finally, Isabelle is an established theorem prover that has been

used to formalise many logics including a shallow embedding for Event-B [101].

2.5.1 Isabelle/HOL

Isabelle is a generic theorem prover developed by Paulson [93]. Isabelle is generic in
the sense that it offers a meta-logic in which many object logics can be formalised.
The meta-logic of Isabelle is intuitionistic higher-order logic with implication, universal

quantifiers and equality. Isabelle has been referred to as the next 700 provers [93].

Isabelle borrows many ideas from the earlier LCF (Logic of Computable Functions)
theorem prover developed by Milner [85]. The meta-language Standard ML [88] is used
to manipulate formulae. Theorems in the LCF system are propositions of a special
“theorem” abstract datatype. The ML type system ensures that theorems can only
be derived using the inference rules specified by the operations of the abstract type.
Proofs are carried out by means of tactics and tacticals written as functions in ML. LCF

represents the backward inference rule

A B
ANB

AL

as a function that maps theorems A and B to the new theorem A A B. In Isabelle,

however, the meta-logic is used to express such a rule as follows [93]:

NA-A\B- [Al= ([B]= [AArB]).

The brackets [] are used to enclose object-logic formulae, whereas meta-logic formulae
reside outside the brackets. Effectively, Isabelle/HOL is the Isabelle theorem prover
instantiation for higher-order logic. Note that, in Event-B, the programming language
Java is used to specify proof rules; as such it could be considered as a meta-language for

Event-B in the same way Standard ML is considered as a meta-language for LCF [85].

2.5.1.1 The Language

The specification language of Isabelle is inspired by functional programming languages.
A theory is a component that may contain Isabelle declarations, definitions and proofs.
The module system in Isabelle allows the importing of multiple theories. A theory in

Isabelle may define types, terms and formulae. The types found in theories are: (1) base

Chapter 2 Background 39

types, e.g., bool, (2) type variables, e.g., “a, (3) function types, and (4) type constructors,
e.g., 'a list. Terms are formed by applying functions to arguments. Note that, in Isabelle,

functions are total, and can be declared polymorphically [90].

Isabelle allows the definition of axiomatic type classes [108]. In a type class, polymorphic
declarations for functions are given. Moreover, additional properties of these functions
can be stated, and these can be used as axioms in the rest of the theory. The mod-
eller can instantiate type classes by providing appropriate bodies for the functions, and
proving that the properties hold. Overloading, in Isabelle, is only allowed in the case of

polymorphic functions with a single polymorphic type [59].

Inductive and co-inductive datatypes can be defined using Isabelle. Support for primi-
tive recursive functions is available. Furthermore, well-founded recursive functions can
be defined together with a measure function to show their termination [59]. Conve-
niently, Isabelle automatically generates induction principles for each user-defined re-

cursive datatype.

The syntax of Isabelle can easily be extended. The tool provides the user with the
facility to define infix and mixfix operators. The user can also specify priorities and
preferred syntax for new operators. For example, [1,2] can be made to represent the
cumbersome cons 1 (cons 2 nil). This is particularly crucial for Isabelle given that it

was conceived to be a generic theorem prover [93].

2.5.1.2 The Prover

Goals in Isabelle have the form [A1;...; A,,] = B where A; is the list of assumptions and
B is the conclusion. Resolution with higher-order unification is the main proof method
in Isabelle. Resolution works on the goal’s assumption, generating new assumptions.
Resolution yields both backward and forward proofs. Backward proof works by unifying
a goal with the conclusion of a rule, whose premises, then, become the new sub-goals.
Forward proof works by unifying theorems (or assumptions) with the premise of a rule,

deriving a new theorem (or assumption) [95, 93].

A tactic, in Isabelle, transforms a proof goal into several sub-goals, and provides a jus-
tification for the proof step. Isabelle is geared for backward proof by providing a large
collection of useful tactics [59]. An important mechanism for the working of tactics is
the instantiation of unknowns and variables in goals and assumptions. As the instan-
tiation mechanism may provide a number of instantiations, instantiations are tried one
after the other until one instantiation is satisfactory. An important component, in this
process, is the backtracking procedure, that is called upon in case an instantiation is not

satisfactory [59].

Tactics in Isabelle can be classified into several categories [59]:

40 Chapter 2 Background

e Basic tactics: this includes resolution, RS, and assume_tac. Resolution works by
unifying the conclusion of a theorem with the conclusion of the goal. If the unifi-
cation succeeds, a suitable substitution is provided. The resolution method, then,
creates a new set of sub-goals corresponding to the assumptions of the theorem
after applying the provided substitution. The basic tactic assume_tac works by

unifying the conclusion of the goal with one of its assumptions.

e Induction: the tactic induct_tac does resolution with an appropriate induction

rule.

e Simplification: this uses tactics for rewriting. For every created theory, a simplifi-
cation set can be built from theorems, axioms and definitions. The simplification
set can be used to rewrite a goal. Note that the Isabelle prover employs a special
strategy to deal with permutative rewrite rules, i.e., rewrites whose sides are equal
up to renaming of variables. A lexical order is observed, and a permutative rewrite
rule can only be applied if it decreases the term with respect to the defined lexical

order.

e (Classical reasoning: an example is blast_tac which uses a tableau prover coded
in ML [59].

e Bureaucratic tactics: an example is rotate_tac which can be used to change the
order of assumptions. Changing the order of assumptions may be necessary for

rewriting with a particular assumption.

Isabelle has a powerful tactical language. A tactical is a function that creates complex
tactics using the basic ones. The tactical then groups together two tactics and applies

them sequentially to the goal. The tactical language in Isabelle is Standard ML.

Example. The specification of a sequence is defined in the following theory. Datatype

and FunDef are the imported theories.

theory Sequence
imports Datatype FunDef
begin

The following line will create a sequence datatype using an inductive definition. When it
is analysed by Isabelle, some properties will be readily available regarding the datatype
itself.

datatype ’a sequence = Nil ("[]")

| Cons ’a"’a sequence" (infixr "#" 65)

Next, functions such as head (returns the topmost element of the sequence), size and tail
are defined. Note, in particular, the reliance of Isabelle/HOL on pattern matching; a

feature inherited from its implementation language ML. In particular, the size function

Chapter 2 Background 41

is defined recursively.

fun head :: "’a sequence = ’a set" where
"head [] = {}" | "head (x#xs) = {x}"
primrec size :: "’a sequence = nat" where

"size [] = 0"|"size (x#xs) = size xs + 1"
fun tail :: "’a sequence = ’a sequence" where
"tail [] = [1"|"tail (x#xs) = xs"

The following lemma formalises the logical relationship between the size and tail func-

tions. Its proof is straightforward. It inducts on the sequence xs using the tactic
induct_tac. Using the auto tactic completes the proof.

lemma tail size rel: "size (tail (x#xs)) = size(xs)"
apply(induct_tac xs)
apply(auto)
done

The following function is another way of describing the second constructor of the se-
quence datatype.

fun add :: "’a sequence = ’a =’a sequence" where
"add xs a = aitxs"

The append function is defined in a recursive fashion below.

primrec append :: "’a sequence = ’a sequence = ’a sequence" where

"append [] xs = xs"|"append (x#xs) ys = x#(append xs ys)"
A theorem relating the append and size functions is stated and defined.

theorem append_size rel: "size(append xs ys) = size xs + size ys"
apply(induct_tac xs)

apply (auto)

done

The interesting map function is defined and theorems relating it to other functions are
stated and proved.

primrec map :: "’a sequence = (’a = ’b) = ’b sequence" where
"map [] £ = [1"|"map (x#xs) f = (f x)#(map xs £)"
theorem map_size preservation: "size (map xs f) = size xs"

apply(induct_tac xs)
apply (auto)

done

42 Chapter 2 Background

theorem tail map.rel: ‘"map (tail xs) f = tail (map xs f)"
apply(induct xs)
apply (auto)

done

2.5.2 PVS

The Prototype Verification System [92, 91] was developed by SRI International Com-
puter Science Laboratory. Work on PVS started in 1990, and the first version was
released in 1993. PVS is written in the Lisp programming language, and is integrated

with the Emacs editor. Unlike Isabelle, PVS source code is not freely available.

PVS employs classical typed higher-order logic, extended with predicate subtypes and
dependent types [59]. PVS defines a number of built-in types including booleans, lists,
integers and reals. The usual operations on these types are hardcoded in PVS. Types
can also be constructed using type constructors, e.g., function types, product types,

records and recursive datatypes.

A predicate subtype, in PVS, is a type constructed by collecting elements of a particular
type that satisfy a given predicate. A notable example is the set of non-zero reals. The
set of non-zero reals is used to define the division operator. The authors of [59] argue
that the use of predicate subtypes improves the readability of specifications, and helps

with detecting semantic errors related to them.

In PVS, dependent types can be constructed using predicate subtypes. In [59], the

following example is provided:

Ex_Array([T: TYPE]: THEORY

BEGIN

Ex_Array: TYPE = [# length: nat, val: [below(length) -> T] #]
END Ex_Array

In this example, Ex_Array is a record type with two fields. The first field (1length)
denotes the length of the array. The second field (val) is the array of values stored at
each index. The domain of val is the predicate subtype below(length) of the natural
numbers less than length. As such, the type of val depends on its length.

2.5.2.1 The Language

PVS provides an integrated environment to create and reason about formal specifica-

tions. The specification language employed by PVS is based on higher order logic. It

Chapter 2 Background 43

has a strong type system that incorporates a rich built-in set of types, type constructors,
and predicate subtypes. Definitions and axioms are the building blocks of specifications

which are organised into theories and datatypes [92].

A specification written in PVS is made of theories. Each theory exhibits a signature
that describes the different types and constants it uses. It also contains the definitions,
axioms and theorems that govern the signature. A theory can be based on other theories,

for instance, a stack theory can be modelled by means of a sequence theory.

Another important characteristic of PVS theories is parametrisation. A specification in
PVS is usually divided into several theories, and each theory can be parametrised on
types and values. In the example of stacks, the defining theory can be parametric on
the type of the elements it stores. A theory can be imported, and all its parameters
have to be instantiated by the importing theory. The assuming clause in PVS can be
used to constrain its parameters. When a theory with an assuming clause is imported,
type correctness conditions (TCC’s) are generated to ensure that the assumptions of the

imported theory hold for the parameter instantiations.

Polymorphism is not available in PVS. However, it can be approximated by the use of
type parameters to parametrise theories. A polymorphic function can be defined in a
theory parametrised by the type variables of the said function. As pointed out in [59],
this approach may not always be convenient, because when a theory is imported all
its parameters must have a value, regardless of whether they are used by the required

function.

PVS allows operator overloading. This means that functions within the same theory
may have the same name as long as they differ in their types. Different theories can
define functions of the same name, even if they have the same type. The name of the

theory can be used as prefix to distinguish similarly named functions [91, 59].

Inductive datatypes and recursive functions can be defined in PVS. An induction prin-
ciple and a number of standard functions such as map and reduce are automatically
generated by the tool. All functions in PVS must be total, and as such, recursive func-
tions must be shown to terminate by providing a measure function, Type correctness

conditions are generated to ensure the measure function decreases with every recursive

call [92, 91, 59].

PVS has a much fixed syntax. The standard operators on the sets of reals, integers and
booleans are built-in to the language. As noted in [59], PVS, sometimes, uses uncommon

syntax for common operators, e.g., [A,B] for the Cartesian product of A and B.

44 Chapter 2 Background

2.5.2.2 The Prover

The sequent calculus is used to represent goals in PVS. Ay,..,A, F Bi,...,B,, is a
sequent where A; are the hypotheses and B; are the conclusions. This is equivalent to
Ay N...NA, = By V...V By,. The proof commands in PVS can be categorised into [59]:

e Creative proof commands: Examples of these commands include: induct to ini-
tiate a proof by induction, inst to instantiate a quantified predicate and case to

make a case distinction.

e Bureaucratic proof commands: Examples include flatten for disjunctive simplifi-
cation, expand to expand definitions, and hide to hide assumptions which have

become irrelevant.

e Powerful proof commands: These are intended to discharge trivial goals. Examples
include simplify for simplification. A more powerful command is assert which
uses the simplification command as well as the available decision procedure, e.g.,

arithmetic decision procedures.
PVS has a limited tactical language that includes sequencing, backtracking, branching
and recursion. Other proof strategies can be implemented in Lisp [59].

Example. PVS has a powerful datatype mechanism. In this example, we show how the
sequence structure can be defined in PVS. The following snippet will create the sequence

datatype with two constructors. Note that the datatype is parameterised on type S.

Seq[S:TYPE] : DATATYPE

BEGIN

Nil: Nil?

Cons(head:S, tail: Seq):NonNil?
END Seq

This will automatically create a theory that underlies the sequence datatype (saved in

a file Seq-adt.pvs). Here are some extracts from the resulting theory.

Seq_adt[S: TYPE]: THEORY

BEGIN
Seq: TYPE
Nil?, NonNil?: [Seq -> boolean]
Nil: (Nil?)
Cons: [[S, Seq]l -> (NonNil?)]
head: [(NonNil?) -> S]
tail: [(NonNil?) -> Seq]

Chapter 2 Background 45

In the previous snippet, a sequence type as well as two subtypes (Ni1?) and (NonNil?)
are declared. Furthermore, functions head, tail and Cons are defined by giving their
types. The following axiom defines the induction mechanism of sequences which is

expressible by quantifying over predicates.

Seq_induction: AXIOM
FORALL (p: [Seq -> boolean]):
(p(Nil) AND
(FORALL (Consl_var: S, Cons2_var: Seq):
p(Cons2_var) IMPLIES p(Cons(Consl_var, Cons2_var))))
IMPLIES (FORALL (Seq_var: Seq): p(Seq_var));

After defining the sequence datatype, we can import the resulting theory and use it for

modeling.

Sequence [S: TYPE]: THEORY
BEGIN

importing Seq_adt[S]

s, sl: VAR Seq

e:VAR S

n:VAR nat

The size functions is defined in terms of the function reduce nat. This functions along

many others were generated when the datatype is created.

size(s): nat = reduce_nat(0, lambda e,n :1+n) (s)

Two theorems relating head, tail and size are stated. Their proof is carried out using

a powerful PVS tactic called induct-and-rewrite!.

head_tail_rel: THEOREM
NonNil?(s) => Cons(head(s), tail(s)) = s
size_tail_rel: THEOREM

NonNil?(s) => size(s) = size(tail(s))+1

Finally, the appending function is recursively defined, and a theorem regarding its rela-
tionship with the size function is stated. The proof of the theorem is achieved by using

the tactic induct-and-rewrite.

append(s, sl1): recursive Seq =
(if Nil7?(s) then sl else

46 Chapter 2 Background

Cons(head(s), append(tail(s), s1)) endif)
measure (lambda s,sl:size(s)+size(sl))
append_size_rel: THEOREM
size(append(s,sl)) = size(s)+size(sl)

END Sequence

2.5.3 VDM

The Vienna Development Method (VDM) [28, 70] is a system modelling and develop-
ment method much like Event-B in its general objectives. It provides rules to verify the
different steps of system development including data reification and operation decom-
position. In this subsection, we will present a brief overview of VDM with a focus on its

specification language and the underlying logic.

LPF (Logic of Partial Functions) [33, 24, 32, 67| is used for reasoning about VDM
models. LPF is a three-valued first-order predicate logic designed for reasoning about
languages with partial functions. LPF gives non-classical interpretations to the logical
connectives and quantifiers. Atomic formulae that contain non-denoting terms may be
logically neither true nor false. The logical connectives and quantifiers are augmented in
order to handle operands that are neither true nor false. However, the classical truth and
falsehood conditions are retained as much as possible in order to minimise the deviation

from intuitive interpretations.

A typed version of LPF was introduced by Jones and Middelburg [68], and is the logic
used for reasoning about VDM models. In addition to the logical values true and
false, LPF admits undefined (also called non-denoting) terms, and uses the value Ly to
account for such terms. The truth tables for negation (see Figure 2.12) and disjunction
(see Figure 2.13) may be thought of as describing a ‘parallel lazy evaluation of the
operands’ [67].

true | false

false | true
1g 1g

Figure 2.12: Truth Table for = in LPF

An important feature of LPF is the absence of the law of excluded middle:

eV e |Excl-Mid]

Chapter 2 Background 47

V true false _gp

true | true true true
false | true false g
1lg | true p 1p

Figure 2.13: Truth Table for V in LPF

As a consequence, classical deduction cannot be used:
€1 H €92 .
= Deduction

The well-definedness operator ¢ is used in LPF to recover the power of two-valued

classical logic, and is defined as follows:
de = eV —e.

The deduction rule can, then, be rewritten to the valid rule:

ba_alo

2.5.3.1 The Language

VDM-SL (shorthand for VDM Specification Language) is used to create specifications
in a model-oriented approach. The data model of a specification written in VDM-SL
defines: (1) the abstraction of the data types that are needed by the system, (2) the
collection of operations that describe the required behaviour of the system in question.
In some cases, the system may be required to posses a state in which case a state type is
defined as part of the data model. The operations describing the behaviour of a system
define a relation between input and output values of defined types. In the presence of
system state, the operations may change the state as a side effect of maintaining the

relation between their input and output.

Abstraction is an important technique to address the complexity of systems. The data
model defined in a specification is an abstraction of the various data types that will
appear in the final implementation. Data reification techniques allow the specification
to evolve in a way that makes its data model more closely approximate the data types
of the implementation. Each refinement step is shown to maintain the requirements of

the more abstract specifications.

Mathematical structures, such as relations, are used to specify model operations. In the
final implementation, however, operations are turned into executable programs. Oper-
ation decomposition techniques facilitate the introduction of useful programming con-

structs in the definition of operations as the specification progressively evolves into a

48 Chapter 2 Background

concrete implementation. VDM-SL provides a collection of predefined operation combi-

nators that enable imperative-style operations specifications [28].

2.5.3.2 The Prover

A collection of tools are available for developing models in VDM. This includes: VDM-
Tools [2] and Overture [72]. However, currently there is no VDM-specific theorem prover.
An initiative to enable automated proof support for VDM is under way as part of the
Overture community project [106]. A semantic-preserving translator has been created; it

works by porting VDM proof obligations to be discharged by HOL [57] theorem prover.

2.5.4 A Comparison: Event-B, Isabelle/HOL, PVS and VDM

In this section, we provide a summary of the differences between Event-B, Isabelle/HOL,
PVS and VDM. In the comparison that follows, we consider the Event-B methodology
prior to our work. To enhance readability, the comparison is provided in tabular format
(see Table 2.1, 2.2 and 2.3), and is divided into three parts: the logic, the specification
language, and the prover. The following key points summarise the criteria against which

the three formalisms will be compared:

e Logic: the formalisms are compared with respect to the logic used, its expressive-

ness and how it handles partiality.

e Specification Language: the three formalisms are contrasted with regards to the

usability, expressiveness and extensibility of the specification language.

e Prover: the formalisms are compared in terms of prover effectiveness (i.e., how

powerful is the support for automatic proofs), extensibility and soundness.

Note that VDM relies on external provers to discharge proof obligations, as such, VDM
is not considered for the comparison of provers. In the comparison tables below, the use
‘N/A’ signifies that the feature is not supported, or that we cannot make a judgement

based on the available documentation.

2.5.5 A Reflection

In this section, we provided an overview of three widely used formalisms. We, briefly,
described their logics, specification languages and provers. In the context of the com-

parison in §2.5.4, we single out the following aspects of Event-B that we aim to improve:

Chapter 2 Background 49
| Event-B | Isabelle/HOL | PVS | VDM
The Logic Set theory Typed HOL | Typed HOL | LPF
Predicate Subtypes | N/A N/A ++ N/A
Dependent Types N/A N/A ++ N/A
Polymorphism N/A ++ - +
Abstract Datatypes | N/A ++/+ ++/+ N/A
Recursive Functions | N/A ++/+ ++/+ -
Table 2.1: Comparison of Logics

| Event-B | Isabelle/HOL | PVS VDM
Flexible Syntax | - ++ -
Module System | - + ++/+ +
Overloading N/A - ++ -
Libraries N/A + ++/+ +

Table 2.2: Comparison of Specification Languages

Event-B | Isabelle/HOL PVS

Automation + + +
Proof Management | ++ +/- ++
Tactical Language | - ++ -
Arithmetics - +/- ++
Soundness - ++ -

Table 2.3: Comparison of Provers

. Support for polymorphism: Event-B does not support user-defined polymorphic
operators. In this thesis, we show how user can contribute polymorphic operators
in a sound and usable way. We will show in Chapter 4 that our approach to address
this particular issue resembles the approach taken by Isabelle/HOL rather than
that taken by PVS.

. Abstract datatypes and recursive functions: a minor contribution of this thesis
(§4.8) is the provision of a mechanism to specify inductive datatypes and recur-
sive operators. The contribution in §4.8 is strongly influence by datatypes in

Isabelle/HOL.

. Syntax flexibility: in §4.7, we will show how to ensure that new syntax can be con-
tributed to the Event-B mathematical language without compromising the sound-

ness of the formalism.

. Proof management and soundness: in Chapter 4, we will show how the Event-B

prover can be augmented with new proof rules in a usable and sound fashion. The

50 Chapter 2 Background

work in Chapter 3 was motivated by the presence of unsound rewriting rules in
Rodin.

5. Module system: in §4.2, we show how to structure Event-B models in a way that

promotes reusability.

Chapter 5 describes the practical contribution by which we address the aforementioned
concerns. Chapter 6 showcases the use of the Theory plug-in by means of a few relatively

simple examples.

2.6 The Logic of Event-B

Schmalz defines the Event-B logic using a shallow embedding in Isabelle/HOL [90].?
A deep embedding of a logic in Isabelle requires (1) defining the syntax of the object
logic as a datatype, (2) providing semantics of the object logic, and (3) proving that
the axioms governing the syntax are sound with respect to the semantics. A shallow
embedding does not requires steps (1) and (2) [52]. As a result, shallow embedding can

be thought of as a syntactic translation.

Schmalz provides a comprehensive specification of the logic of Event-B in one docu-
ment [90]. He gives semantics, devises soundness preserving extension methods, develops
a proof calculus similar to [81], and proves its soundness. [90] presents a formal lan-
guage for expressing rules (including non-freeness conditions) and show how to reason

in Event-B about the soundness of rules.

The Event-B logic has a Hindler-Milner style type system [102] similar to Isabelle/HOL
and ML [88]. Type operators such as x and <> are defined by means of their Is-
abelle/HOL counterparts.!? Type substitutions are central to a logic that supports
polymorphism, and are also introduced. Binders, terms and formulae are introduced are
assigned Isabelle/HOL semantics by means of a number of higher-order logic constructs.
Note that Schmalz considers formulae (i.e., predicates) to have a boolean type B. Ways

of conservatively extending the Event-B logic are outlined (see Chapter 5 of [102]).

The proof system of Event-B is shown to be sound in [102]. We say that a rule is sound
if it is derived from the basic rules of the well-definedness preserving proof calculus with
or without detour through the classical proof calculus. For instance, we have shown in

§2.4.4.2 that the following two rules are sound:

PDQ @
Pr, @ 9w

9A deep embedding requires Event-B logic to be defined as an object logic in Isabelle. This is a highly
involved process, and may render useful proof procedure of Isabelle/HOL unusable.
107, is considered a type operator with a zero arity.

Chapter 2 Background 51

AroT Tgoal,

with detour through the classical proof calculus, i.e., I sequents. More generally, we say
that a proof extension, i.e., a rewrite or an inference rule, or a polymorphic theorem, is
sound if its application can be justified by a proof construction using the rules of the
well-definedness preserving proof calculus. In the case of language extensions, soundness
of an operator definition requires the satisfaction of the conditions stipulated in in [102]

regarding conservative extensions.

In Chapter 3, we will only use an untyped fragment of the Event-B logic. The work
in Chapter 3 can be considered as a complement to Mehta’s work in [81]. Suitably, it
was decided to use a similar fragment of the logic of Event-B. However, for the work
on language extensibility (polymorphic operators in particular), we base our discussion
and justify our development using the results presented by Schmalz in [102] regarding

conservative extensions.

2.7 Summary

In this chapter, we presented an overview of the different concepts that will come into
play in subsequent chapters. Firstly, formal methods were introduced to provide the
general context for this work. Next, the focus was placed on Event-B and the Rodin
platform which provides the practical setting for this thesis. The proof infrastructure of
Rodin was presented and its shortcomings identified. The proof system used in Event-
B is described. Next, a brief comparison was carried out between Event-B and three
other formalisms. Finally, we presented a brief overview of the logic of Event-B as
described in [102]. In the next chapter, we explore the integration of rewriting into
the well-definedness preserving proof system using an untyped fragment of the Event-B

syntax.

Chapter 3

Rewriting and Well-Definedness

within a Proof System

In this chapter, we provide a unifying study of term rewriting systems and the important
notion of well-definedness. The sequent calculus used in Event-B reasoning takes into
consideration partiality and its implications. The Event-B proof system is described
in details by Mehta [82, 81] and Schmalz [102]. Our aim is to show how rewriting
preserves equality /equivalence and well-definedness of terms and formulae in the logic
defined in §2.4. Important properties regarding well-definedness will be examined, and
the conditions under which rewriting can be performed in a sound way are singled out.

The results appearing in this chapter have been published in [77].

Rewriting is an important component of theorem proving. All major theorem provers
have mechanisms for incorporating rewriting with the employed proof system. Event-B
employs a well-definedness preserving proof system that is described by Mehta in his
thesis [82]. We present an approach that facilitates the integration of rewriting into
such a calculus. Our approach to rewriting aims to combine two important features: (1)
show how well-definedness can be preserved when rewriting, (2) provide a simple way

to apply rewrite rules.

This chapter is structured in the following way. We begin by presenting important
concepts of rewriting including positions and substitutions. We then show how well-
definedness propagates through positions and across substitutions. Next, the sufficient
conditions under which a rewrite rule preserves well-definedness are singled out, and
the results are summed up succinctly in Theorem 3.3. A large proof effort is carried
out in this chapter, and the reader may be advised to skip proofs at a first pass. We
also present two ways in which conditional rewrite rules can be used, and we show cases

where this can be simplified. We conclude by describing related work.

53

54 Chapter 3 Rewriting and Well-Definedness within a Proof System

3.1 Term Rewriting Systems

Term rewriting systems [19, 42, 96] are reduction systems where terms can be reduced
to other terms by application of rewrite rules. Term rewriting systems play a major
role in various disciplines including abstract datatype specifications, implementation of
functional programming languages and automated reasoning. The A-calculus [34], which
is a term rewriting system, played a major role in mathematical logic. In this section,
we briefly present some important term rewriting concepts. The notion of positions is
central to term rewriting, and provides a mechanism to uniquely identify subterms (or
subformulae). The important concept of a substitution will be introduced, and some

interesting properties will be described.

3.1.1 Positions

The structure of terms and formulae can be effectively described using a tree. Using a
standard numbering of nodes of the tree by strings of positive integers, it is straight-
forward to refer to positions in terms and formulae. For example, consider the formula
© A1p. The empty string e identifies the root position, and refers to ¢ A ¢). The position
1 refers to ¢, whereas 2 refers to 1. The following definition describes the concept of a

position more formally.

Definition 3.1 (Position). Let s be a term, and ¢ be a formula.
1. The set of positions of the term s is the set Pos(s) of strings over the alphabet
of positive integers, which is inductively defined as follows:

o if s=x €V, then Pos(s) = {e}, where € denotes the empty string.
o if s= f(s1,...,8p), then

Pos(s) = {e} U U{lp | p € Pos(si)}
i=1

2. The set of positions of the formula ¢ is the set Pos(y) of strings over the alphabet

of positive integers, which is inductively defined as follows:
e if ¢ is of the form p(¢1,...,t,) where p € P, then
n
Pos(p) = {e} U|J{ip | p € Pos(t:)}
i=1
e if ¢ is of the form t; = 9, then

2
Pos(p) = {e}U U{lp | p € Pos(ti)}

i=1

Chapter 3 Rewriting and Well-Definedness within a Proof System 55

e if ¢ is of the form L, then
Pos(p) = {e}

e if ¢ is of the form ¢ A @9, then

2
Pos(p) = {e} U J{ip | p € Pos(:)}

i=1

e if ¢ is of the form —¢; or Vx - ¢1, then
Pos(p) ={e} U{lp | p € Pos(e1)}

We use the notation s|, where s is a term, to refer to the subterm of s at position
p € Pos(s). Similarly, we use the notation ¢, to refer to the subterm or subformula
of formula ¢ at position p. Moreover, the notation s[t], refers to the term obtained by
replacing the subterm s|, by ¢ in s. Analogously, ¢[w], such that w and ¢|, are both
formulae or both terms, refers to the formula obtained from ¢ by replacing ¢, by w.
For example, the notation (1 Aps)|1 denotes the subformula ;. Similarly, the notation
(1 A 2)|2 denotes the subformula . Finally, for the rest of this chapter, we assume
a syntactic operator
Var : (Fx UTxy) — P(V)

such that for a given term or formula ¢, Var(t) is the set of its free variables.

3.1.2 Substitutions

In the language signature ¥ defined in §2.4, a function with zero arity is called a con-
stant!. One of the major differences between constants and variables is that a variable
can be substituted for by a term. The following definition describes the notion of sub-

stitutions more formally.

Definition 3.2 (Substitution). A Tx-substitution, or simply substitution if the set of
terms is clear from the context, is a function ¢ : V' — T% such that o(z) # = for only
finitely many variables x’s. The finite set of variables that o does not map to themselves

is the domain of o, i.e.,
Dom(o) = {x eV |o(x)#a}

The range of a substitution ¢ is the set of terms which are the images of the variables

in the domain of the substitution o, and is formally defined as follows:

Ran(o) = {t€Tx |Ix-z € Dom(c) Nt =0(z)}

!This is different from Event-B constants defined as part of contexts.

56 Chapter 3 Rewriting and Well-Definedness within a Proof System

A substitution o is said to instantiate variable x if x € Dom(o). The application of
a substitution o to a term (or a formula) ¢ simultaneously replaces occurrences of all
variables in Var(q) N Dom(o) by their respective o-images. A substitution o can be

extended to a mapping 6 : Ty, — T% such that:

6(x) = o(x) ifzeV
o(f(s1,-,8n)) = [f(0(s1),,0(sn)) if fEF
The composition of two substitutions o and 7 is the substitution o7 such that o7 (z) =

o(7(x)). For the rest of this chapter, we use o to also stand for &, and restrict substi-

tutions according to the following definition:

Definition 3.3 (Idempotent Substitution). A substitution o is said to be idempotent
ifo = oo.

The repetitive application of an idempotent substitution yields the same result as a

single application. We have the following important corollary [19]:

Corollary 3.1. A substitution o is idempotent iff

[U Var@®]nDom(o) = @
teRan(o)

Corollary 3.1 states that the variables occurring in the terms of the substitution’s range
are completely independent from the variables of its domain. Intuitively, this means

that an idempotent substitution can be simulated by a syntactic replacement as follows:
o(l) = [x1:=0(x1)]...[zn = o(x,)]! (3.1)

such that [is a term and 1, ..., x,, are the free variables occurring in /. This is important
as it simplifies the study of the interaction between well-definedness and substitutions.
In his thesis [82], Mehta presents the following two properties about well-definedness

and syntactic replacement:
=
=

For the rest of this chapter, we may use the following simpler property about well-

definedness and idempotent substitutions.

Proposition 3.1. Lett be a X-term. If o is a substitution then

D)) & N\ Do) A a(D(1))

zeVar(t)

Chapter 3 Rewriting and Well-Definedness within a Proof System 57

The proof of Proposition 3.1 can be found in Appendix A. Idempotent substitutions
will be used for the rest of this chapter. Proposition 3.1 will be used to simplify well-

definedness formulae.

3.1.3 Conditional Rewriting

In this section, we define the important concept of rewrite rules, and outline their syn-
tactic properties. We will later deal with the semantics of such rules by following a
purely syntactic approach (i.e., proofs) within the proof system described in §2.4. The

following definitions describe what is meant by a conditional term rewrite rule.

Definition 3.4 (Conditional Identity). A Y¥-conditional identity (or simply conditional
identity) is a triplet (I,c,7) € Tx, X Fx, X Tx. In this case, [is called the left hand side,
r the right hand side, and c¢ the condition of the identity.

The following definition describes the validity of conditional identities.

Definition 3.5 (Valid Conditional Identity). A conditional identity (I, c,r) is valid iff

the following sequent is provable

A conditional identity describes an equality between two terms under a certain condition.
Note the use of -,. The definition of validity takes into account the presence of ill-defined

terms. However, rather counter-intuitively, the following is a valid conditional identity:

1+0=1F,1=0 (3.2)

To see why (3.2) is a valid conditional identity according to Definition 3.5, we expand
the definition of -, using the rule -, eqv described in §2.4.4.2:

0£0,1+0=1+1=0

However, despite the above observation, we will show later that this weak definition of
validity is sufficient for our development. A conditional identity can be turned into a

rewrite rule if it satisfies the syntactic restrictions presented in the following definition:
Definition 3.6 (Conditional Term Rewrite Rule). A conditional term rewrite rule is a
conditional identity (I, c,r) such that:

1. [is not a variable,

2. Var(c) C Var(l),

58 Chapter 3 Rewriting and Well-Definedness within a Proof System

3. Var(r) C Var(l).

In this case, we use the notation I < r instead of (I,c,7). A term rewriting system

(TRS) is a set of conditional term rewrite rules.

Definition 3.5 also applies to conditional rewrite rules, because they are essentially con-
ditional identities. The condition that the left hand side of a rewrite rule is not a
variable eliminates an obvious non-terminating case [41] (see §3.1.4). The other two
conditions ensure that matching can gather sufficient information in order to carry out
the rewriting. Matching is the process of matching a term against the left hand side of
a rule. It is a special case of unification [65, 98], and given a term ¢t and a left hand
side of a rewrite rule [, matching calculates an idempotent substitution o such that
t = o(l). Pattern matching is an important component of theorem proving infrastruc-
ture as it provides valuable facilities for equational reasoning. In practice, the matching
procedure recursively inspects a formula (considering all possible positions) to establish
whether a particular rewrite rule is applicable, and returns the set of positions at which
a match was found. For each position, a record of the appropriate idempotent substitu-
tion is stored. The precise way in which rewrite rules are applied will be presented and
justified in §3.3.

3.1.4 Confluence and Termination

Confluence and termination are important properties of rewrite systems. Confluence
describes the property of rewrite systems where terms can be rewritten in different
ways to yield the same result. For instance, the rewrite system containing the usual
arithmetic is confluent [19]. Termination describes the property of a rewrite system
where an infinite rewrite chain may not occur. Central to both concepts of termination

and confluence is the notion of term normal form [19].

In a rewriting system, a normal form of a term cannot be rewritten any further. A
rewrite system is defined by means of a reduction relation — between terms. Given a
term ¢, we write t — ¢/, if ¢ can be rewritten to t’ by a rule in the rewrite system. We
write t —* t’ to indicate that there exists a reduction sequence from ¢ to t’. A term ¢t is

in normal form if there is no term ' such that ¢ — ¢’ [42].

A term t is said to be confluent if for all terms 1, to such that ¢ —* ¢; and ¢t —* 9,
there exists a term ¢’ such that t; —* ¢’ and to —* t. A rewrite system is said to be
confluent if all terms are confluent. A rewrite system is terminating if there is no infinite
reduction sequence t — t; — to — A rewrite system is said to be convergent if it is

both confluent and terminating [42, 19].

Chapter 3 Rewriting and Well-Definedness within a Proof System 59

In this chapter, we do not consider confluence and termination of rewrite rules. Our
study is restricted to characterising the interaction between well-definedness and rewrit-
ing. This, however, does not hide the fact that termination and confluence are extremely
important properties of any rewrite system, including the one considered for Event-B.
The large body of research on these two subjects may, in the future, be considered for

implementation as part of the Theory plug-in rewriting capabilities (see Chapter 5) .

3.2 Rewriting and Well-Definedness

In the last section, we introduced important concepts in term rewriting. In this section,
we present a unifying treatment of well-definedness and rewriting. We show the necessary
conditions for a rewrite rule application to preserve well-definedness. The following

definition introduces the notion of WD-preserving conditional term rewrite rule.

Definition 3.7 (WD-Preserving Conditional Rewrite Rule). A conditional rewrite rule

1 5 ris said to be WD-preserving if the following sequent is provable:

D(l),c F, D(r)

Note the use of the well-definedness operator D (see §2.4.3). In simple terms, a rewrite
rule is WD-preserving if the well-definedness of its left hand side is stronger than the
well-definedness of its right hand side under the rule’s condition. Intuitively, the well-
definedness strength relationship corresponds to the directed way in which rewrite rules
are applied. In what follows, we describe the significance of WD-preservation in the
context of rewriting where undefinedness is an issue. We will show in §3.2.1 how instan-
tiations, i.e., a substitution, interact with well-definedness in the context of Definition
3.7.

Note. In the forthcoming (sub)sections, we carry out a significant proof effort. Tradi-
tionally, proofs are presented as trees in a similar fashion to inference rule as per the
treatment in §2.4.4.2. Given the complexity of the formulae involved in our proofs, we
opt for a clearer approach. We clearly show the sequent to prove. Then, we mention the
proof rule which is to be applied. Finally, we show the resulting sequents (if any) from

applying the proof rule on the sequent to prove. For example, the following proof step

Hv, P HF,Q
HF, PAQ

Ngoal

can be described as follows:

“ In order to show the provability of the sequent

H b, PAQ

60 Chapter 3 Rewriting and Well-Definedness within a Proof System

we proceed as follows. By applying the rule Agoal,, we obtain the following

two sequents

P

H +, @

3.2.1 Well-Definedness and Substitutions

Matching is central to the application of rewrite rules. Given a term ¢ and a left hand
side of a rewrite rule [, matching calculates an idempotent substitution ¢ such that
t = o(l). In practice, the matching procedure checks all positions within a formula ¢
for terms which can be matched against the left hand side of a rewrite rule [= r. For
a particular position p € Pos(¢), if a substitution ¢ is found such that ¢ | = o(I),
then rewriting can be executed by replacing ¢ |, by the instantiated (using the same

substitution) right hand side of the rule, i.e., o(r), within the formula ¢.

The following theorem formalises the interaction between well-definedness and substitu-
tions in the context of conditional rewrite rules. In the following theorems, we assume

the presence of a suitable theory, e.g., Peano axioms for arithmetics.

Theorem 3.1 (The Instantiation Theorem). Let I < r be a conditional term rewrite

rule, and o be an idempotent substitution.

1. If 1S 7 is valid, then the following sequent is provable:

o(c) F, a(l) =o(r) (3.3)

o(c),De(l)) Fp Dlo(r)) (3-4)

The proof of Theorem 3.1 can be found in Appendix A. The Instantiation Theorem
concisely describes the interaction of substitutions and well-definedness with respect to
conditional rewrite rules. We have shown that instances of the rewrite rule (i.e., with an
idempotent substitution) preserve the properties of the rule. This means that if a condi-
tional rewrite rule is valid and well-definedness preserving, then instances created using
an idempotent substitution are also valid and well-definedness preserving. The Instan-
tiation Theorem is a building block in our treatment of well-definedness and rewriting
since it provides a sound bridge between rewrite rules and their instances in the presence
of potentially ill-defined terms. The following theorem states that the application of a
valid and well-definedness preserving conditional term rewrite rule preserves equality
(A.15) and well-definedness (A.16) of terms.

Chapter 3 Rewriting and Well-Definedness within a Proof System 61

Theorem 3.2 (Term WD-Preserving Rewriting Theorem). Let | 5 r be a conditional
term rewrite rule, t be a term, p be a position within t, and o be an idempotent sub-
stitution. If 1 = r is valid and WD-preserving, then the following two sequents are

provable:

olc) Fp toD]p=to(r)ly (3.5)
D(tlo(D]p),o(c) Fp D(to(r)lp) (3.6)

The proof of Theorem 3.2 can be found in Appendic A. The Term WD-Preserving
Rewriting Theorem states that Definition 3.5 and Definition 3.7 are adequate for a
conditional term rewrite rule to preserve equality and well-definedness when applied to

a term.

3.2.2 The Main Theorem

In the previous section, we formally described the interaction between idempotent sub-
stitutions and well-definedness. The understanding of such interaction is of paramount
importance, since in almost all cases, instances of rewrite rules (rather than the actual
rewrite rule) occur in practice. Since instances of rewrite rules are obtained by applying
an idempotent substitution (i.e., avoiding clashes between rule variables and the actual
variables of the instance), it is significant that after applying substitutions, the instances
preserve the properties of the conditional rewrite rule. We have also shown that valid
and well-definedness preserving rewrite rules ensure valid and well-definiedess preserving

rewriting of terms.

We, now, can formulate the main theorem of this chapter. The main theorem asserts
that Definition 3.5 and Definition 3.7 are adequate for a conditional term rewrite rule

to preserve validity and well-definedness when applied to a formula.

Theorem 3.3 (The Main Theorem). Let | < r be a conditional term rewrite rule, f
be a formula, p be a position within f such that f|p is a term, and o be an idempotent
substitution. If | = r is valid and WD-preserving, then the following two sequents are

provable:

o(c) Fp flolp & flolr)ly (3.7)
D(fleDp);olc) Fp D(flo(r)lp) (3.8)

with the proviso that all free variables defined as
Var(o(c)) N Var(o(l))

do not become bound in flo(l)],.

62 Chapter 3 Rewriting and Well-Definedness within a Proof System

Proof.

1. Proof of Sequent 3.7: We proceed by induction on the structure of the formula f.

We show a sketch of the proof, and only cover three interesting cases.

(a) Base Case: f is of the shape s(t1,...,t,) such that s € P and ty,...,t, are
terms. In this case, position p can only be of the form i¢ for some position ¢
and 1 < ¢ < n since the root position is of a formula. Therefore, Sequent 3.7
becomes

o(c) Fp s(tr, ..., tn)[o()]p < s(tr, ... tn)[o(r)]p
where p = iq for some position ¢ and 1 < ¢ < n. This can be rewritten to
o(e) Fp s(t1,, tilo(D)]gs ey tn) < s(t1, ooy tilo(P)]gy -os tn)

This amounts to proving the following two sequents:

o(c), sty .., tilo(D]gs or tn) Fp Ss(t1, s ti[o(1)]gs o tn) (3.9)
o(c), sty .., ti[o(1)]g, - tn) Fp s(t1, .., tilo(@)]g, - tn) (3.10)

According to Theorem 3.2, we have the following provable sequent:

As such, it is easy to see that Sequent 3.9 and 3.10 are provable.

(b) Inductive Case: f is of the shape ¢ A 1 such that ¢ and v are formulae.
In this case, Sequent 3.7 becomes

a(c) Fp (P AD) o]y & (e AP)lo(r)]p (3.11)

Position p can only be of the form p = 1¢q or p = 2¢ for some position g. We

distinguish the two cases:

i. p = 1q: In this case, Sequent 3.11 becomes

oc) Fp (ploD]g A) & (elo(r)lg AY) (3.12)

To proceed, we assume the following inductive hypothesis
a(c) Fp (plo(D]g) < (plo(r)]y) (3.13)

and we show that Sequent 3.12 is provable. Sequent 3.12 can be reduced

to the following two sequents:

a(c), plo(Dlg;

Fp o plo(m)]g Ay
a(c), elo(r)lq, -

(0
(0 » ploD]g N

Chapter 3 Rewriting and Well-Definedness within a Proof System 63

which can, respectively, be reduced to the following two sequents:

a(c), plo(l)]
a(c), plo(r)]

¢ o elo(r)ly (3.14)

¢ o elo] (3.15)
It is easy to see that the provability of Sequent 3.14 and Sequent 3.15
follows immediately from the inductive hypothesis i.e., Sequent 3.13.

ii. p = 2q: follows by symmetry.

(c) Inductive Case: f is of the shape Vz - ¢ such that ¢ is a formula. In this
case, Sequent 3.7 becomes

ac) Fp (Vo-@)lo)]p = (V- @)lo(r)], (3.16)

Position p can only be of the form p = 1¢ for some position ¢q. Sequent 3.16
simplifies to
o(c) Fp (Vo plo(D)g) & (Vz - ¢lo(r)lg) (3.17)

To proceed, we assume that the following sequent is provable:
a(c) Fp (plo(Dlg) < (#lo(r)le) (3.18)

and we show that Sequent 3.17 is provable. Proving Sequent 3.17 amounts

to proving the following two sequents:

o(c),Ve-ploDly Fp Vo-plo(r)l (3.19)
o(c),Ve-plo(r)ly Fp Vo plo(l)g (3.20)

Proofs for Sequent 3.19 and Sequent 3.20 are similar, and we only show the
proof for Sequent 3.19. Firstly, note that the proviso of Theorem 3.3 ensures
that universal quantifier does not bind any variables in o (). This also means
x does not occur free elsewhere in Sequent 3.19 and 3.20 since we have the
following property that follows from the definition of a conditional rewrite

rule:
Var(o(c)) C Var(o(l))

Now, we can apply the rule Vgoal, on Sequent 3.19 knowing that its side

condition holds. We obtain the following sequent:
a(c),Ve-ploD]ly Fp @lo(r)lg (3.21)
Next, we apply rule Vgoal,, on Sequent 3.21, we get the following two sequents:

o(e),Ve - plo(l)ly Fp, D(z) (3.22)
o(c),plo(Dlg o elo(r)lg (3.23)

64 Chapter 3 Rewriting and Well-Definedness within a Proof System

Sequent 3.22 is provable since variables are well-defined. Sequent 3.23 prov-

ability follows from the inductive hypothesis.]

2. Proof of Sequent 3.8: is similar to the proof of Sequent 3.7, and is diferred to
Appendix A.

O]

Theorem 3.3 provides the sufficient conditions under which a conditional rewrite rule
preserves validity and well-definedness. Effectively, this section provides a basis for un-
derstanding the interaction between rewriting and well-definedness. In the next section,
we use the results from this section to show how rewriting can be performed on goal
or hypothesis whilst preserving validity and well-definedness. We aim to show how

rewriting can be interleaved with deduction in the proof calculus presented in §2.4.4.2.

3.3 Rewriting as a Proof Step

In this section, we show how rewriting can be used in proofs alongside the WD-preserving
sequent calculus. In §3.2, we discussed the necessary conditions under which rewriting
preserves well-definedness. In what follows, we show by means of proof derivations how
rewriting can be integrated into the WD-preserving proof calculus as a proof step. We

single out two ways of applying conditional rewrite rules.

3.3.1 Single Rule Application

Let | < r be a valid and WD-preserving conditional term rewrite rule, and ¢ be an
idempotent substitution. The following two subsections describe how rewriting can be

applied to hypotheses and the goal.

3.3.1.1 Hypothesis Rewriting
Assume the following sequent whose provability is to be established:
H,Plo(l)], -, G (3.24)

The hypothesis P[o(l)], has an occurrence of an instance of the left hand side of the

given rewrite rule. By applying the cut rule on Sequent 3.24 to introduce o(c), we get

Chapter 3 Rewriting and Well-Definedness within a Proof System 65

the following three sequents:

H, Plo(l)l, 5, D(o(o) (3.25)
H,Plo()], F, olc) (3.26)
H,Plo()),.0(c) F, G (3.27)

By applying the cut rule on Sequent 3.27, we get the following three sequents:

H,Plo(D)lp,o(c) t, D(Plo(r)]p) (3.28)
H,Plolpo(c) Fp Plol, (3.20)
H,Plo(l)]p,o(c),Plo(r)], Fp G (3.30)

Sequent 3.28 and Sequent 3.29 are provable thanks to the Main Theorem. Applying

hypothesis contraction (mon,) on Sequent 3.30, we get the following sequent

H,o(c),Plo(r)], F G

D

In summary, in order to prove Sequent 3.24, it is sufficient to prove the following three

sequents

H.Plo()], +, Dlo(c))
H.Plo()), Fn olo)

3.3.1.2 Goal Rewriting
Assume the following sequent whose provability is to be established:
H +, Glo)]p, (3.31)

The goal G[o(l)], has an occurrence of an instance of the left hand side of the given

rewrite rule. By applying the cut rule on Sequent 3.31, we get the following three

66 Chapter 3 Rewriting and Well-Definedness within a Proof System

sequents:
H t, Dlo(c)) (3.32)
H +, o(c) (3.33)
H,o(c) F, Glo)]p (3.34)

By applying the cut rule on Sequent 3.34, we get the following three sequents:

Ho(e) tp D(Glo()]y) (3.35)
H,o(c) F, Glo(r)p (3.36)
H,o(c),Glo(r)], Fp Glo(D)]p (3.37)

Sequent 3.35 and Sequent 3.37 are provable thanks to Theorem 3.3. In summary, in

order to prove Sequent 3.31, it is sufficient to prove the following three sequents

Therefore, we have the following proof step:

H +; D(o(c))

H +, o(c)

H,o(c) k5 Glo(r)lp
H by Glo(D)]p

3.3.2 Grouped Rule Application

In the previous subsection, we showed how a single rule can be applied to rewrite a hy-
pothesis or a goal of a sequent. In this subsection, we adopt a rather different approach.
We present a convenient mechanism to study rewrite rules in the context of proofs.
We consider grouping rewrite rules that have the same left hand side. The following

definition describes the notion of a grouped conditional term rewrite rule.

Definition 3.8 (Grouped Conditional Term Rewrite Rule). A grouped conditional term

rewrite rule is of the form

[— c1:7T1

Cpn Tp

Chapter 3 Rewriting and Well-Definedness within a Proof System 67

where each of [= 7, for 1 < i < n, is a conditional term rewrite rule. Moreover, the
grouped conditional rewrite rule is said to be valid and well-definedness preserving if

each of
l C—Z> r;

for 1 <4 < nis a valid and well-definedness preserving conditional rewrite rule. Finally,
the grouped conditional rewrite rule is homogeneously simple-conditioned if the following

two syntactic properties hold:

1. each of the conditions is a simple formula i.e.,

c = f(tl,...,tm)
for some predicate symbol f and terms t; (1 < k < m) for all i such that 1 <i < mn.

2. all conditions include exactly the same set of free variables i.e.,

Var(c1) = ... = Var(cy)

Homogeneously simple-conditioned grouped conditional rewrite rules have important
properties with respect to well-definedness. But, first, let us introduce an important

property of this class of grouped rewrite rules.

Definition 3.9 (Case-Completeness). A homogeneously simple-conditioned grouped

conditional term rewrite rule

l— c1:7m

Cp + Tp

is said to be case-complete if the following sequent is provable:

n

Intuitively, a homogeneously simple-conditioned grouped rewrite rule is case-complete if
its conditions cover, i.e., a disjunction of, all possible cases under which a rewrite can oc-
cur. An important property of homogeneously simple-conditioned grouped rewrite rules
is that the interaction between case-completeness and substitutions can be succinctly

formulated. The following proposition describes the said interaction.

68 Chapter 3 Rewriting and Well-Definedness within a Proof System

Proposition 3.2. Let o be an idempotent substitution. If the homogeneously simple-

conditioned grouped conditional term rewrite rule

[— Cl1:7T1

Cp + Tnp

s case-complete, then the following sequent is provable:
Fo \/O’(Ci) . (3.38)

Proof. Since the grouped rule is homogeneously simple-conditioned and case complete,

the following sequent is provable:
Fp Vi AD(e) =\ . (3.39)
i=1 i=1

To show the provability of Sequent 3.39, we proceed as follows. By applying rule Vgoal,,,

we get the following sequent
n n
Fo ADle) =\ .
i=1 i=1
Next, we apply rule =>goal,,, and we obtain the following sequent

/\ D(c;) Fp \/ ci

i=1 =1

Finally, applying hypothesis contraction on the previous sequent, we obtain the sequent

n
|—D \/ Ci ,
i=1
which is provable since the grouped rule is case-complete.

Since the rule is homogeneously simple conditioned, the well-definedness of each condi-
tion depends only on the well-definedness of the terms occurring in them. By definition,
all rule conditions refer to the same set of terms. Hence, the well-definedness of each

instantiated condition is the following:

D(o(c)) & N\ Do) (3.40)

x€Var(c;)

for each 7 such that 1 <17 <n.

Chapter 3 Rewriting and Well-Definedness within a Proof System 69

To show the provability of Sequent 3.38, we proceed as follows. Firstly, we use rule

goal,, , to add the well-definedness of the goal. We obtain the following sequent

AN D) - \ole)

xeVar(c;) =1

We apply the cut rule on the previous sequent to introduce the formula

=1 =1

We obtain the following three sequents

N\ Do) b, DvE- A\ D(e) = \/ (@) (3.41)

z€Var(c;) i=1 i=1

N\ Do), vE- \Dle) =\ (a) (3.42)
z€Var(c;) i=1 =1

N Dlo(@),vi- \ D)= \/(c) by \/ olc) (3.43)
z€Var(c;) i=1 =1 =1

The first two sequents are provable as it follows from our discussion above. Next, by

applying rule Yhyp,, on Sequent 3.43, we obtain the following two sequents

z€Var(c;) =1 =1 z€Var(c;)
AN Dlo@), \o(D(e) =\ olei) Fp \/ alci)
x€Var(c;) i=1 i=1 i=1
The rest of the proof is trivial. O

3.3.2.1 Hypothesis Rewriting

In this section, we show how grouped rewrite rules can be used to rewrite a hypothesis

within a sequent. Let

l— c1:7m

Cn : Tp

70 Chapter 3 Rewriting and Well-Definedness within a Proof System

be a valid and WD-preserving grouped conditional term rewrite rule. Consider the

sequent whose provability is to be established:
H,Plo(l)], -, G . (3.44)
By applying the cut rule on Sequent 3.44 to introduce the following formula
olc1)V..Vo(e,),

we obtain the following three sequents

H,Ploc(l)], F, D(o(cr)V...Vo(e)) (3.45)
H,Plo(l)], Fp olc)V..Vo(e) (3.46)
H,Plo(l)lp,0(c1)V..Vo(en) bp G. (3.47)

Next, we apply rule Vhyp, on Sequent 3.47, and we obtain the following n sequents

H,Plo(D)]p,0(c1) Fp, G

H,Plo(l)]p,o(cn) Fp G.

Next, for each sequent ¢ from the above set of sequents, we apply a single rewrite step

as discussed in §3.3.1. We get the following n sequents

H,Plo(r1)]p,o(c1) F, G

H, Plo(rn)lp,o(cn) tp G
In summary, the following grouped rule application can be added as a proof step:

H,Plo(l)], Fp D(o(c1) V...Vo(c))

H,Plo(l)], Fp olc1)V...Vo(ey)

H,o(c1),Plo(r)]p, Fp G ... H,o(cy),Plo(ra)lp Fp G
H,Plo(l)], Fp, G

— hyp,, (3.48)

under the proviso that all free variables of o(¢;) (for all ¢ such that 1 < ¢ < n) occur free
in Plo(l)],. This proof step allows the hypothesis P[o(l)], to be rewritten to several

cases according to the rewrite rule.

Chapter 3 Rewriting and Well-Definedness within a Proof System 71

3.3.2.2 Goal Rewriting

In this section, we show how grouped rewrite rules can be used to rewrite the goal of a

sequent. Let

[— Cl1:7T1

Cp + Tnp

be a valid and WD-preserving grouped conditional term rewrite rule. Consider the

sequent whose provability is to be established:
H F, Glo()], . (3.49)
By applying the cut rule on Sequent 3.49 to introduce the following formula
o(c1)V..Vao(e,),

we obtain the following three sequents

H t, D(o(c1)V..Vole)) (3.50)
H t, o(c1)V..Vo(e) (3.51)
H,o(c1)V..Vo(en) Fp Glo()]p . (3.52)

Next, we apply rule Vhyp,, on Sequent 3.52, and we obtain the following n sequents

Hoo(e1) Fp Glo(lp

Ho(cn) Fpo Glo()]p -

Next, for each sequent ¢ from the above set of sequents, we apply a single rewrite step

as discussed in §3.3.1. We get the following n sequents

H,o(c1) Fp Glo(r)lp

Ha U(Cn) '_’D G[O-(Tn)]P .
In summary, the following grouped rule application can be added as a proof step:

H F, D(o(c1)V...Vo(e))

H +, o(c1)V..Vo(en)

H,o(c1) Fp Glo(r)]p ... Hyo(en) Fp Glo(rn)p
H Fp Glo()lp

— goal., . (3.53)

72 Chapter 3 Rewriting and Well-Definedness within a Proof System

under the proviso that all free variables of o(¢;) (for all ¢ such that 1 < i < n) occur
free in G[o(1)]p. This proof step allows the goal G[o(1)], to be rewritten to several cases

according to the rewrite rule.

In the following subsections (§3.3.2.3, §3.3.2.4 and §3.3.2.5), we enumerate special cases

that occur often in proofs.

3.3.2.3 Unconditional Term Rewrite Rules

A conditional term rewrite rule I < r is called unconditional if ¢ = T. In this case,

proof steps (3.48) and (3.53) can be simplified as follows:

H,Plo(r)], F

D
.54
0P, Fp G P (359
H F, Glo(r)lp
L, . .
. Go), — ugoal (3.55)

3.3.2.4 Case-complete Grouped Term Rewrite Rules

If the grouped term rewrite rule

l— ca:nm

Cp T

is homogeneously simple-conditioned and case-complete, then proof steps (3.48) and

(3.53) can be simplified as follows:

{ H,Plo(l)], b, D(o(c1) V... Volcy))
H,o(c1),Plo(r)], Fp G ... H,o(cn),Plo(ry)], Fp G
H,Plo(l)], Fp G

— chyp, (3.56)

Chapter 3 Rewriting and Well-Definedness within a Proof System 73

3.3.2.5 Strict Term Occurrence

In this section, we present a special case where rewriting can be further simplified. An

operator is strict if its well-definedness requires the well-definedness of all its arguments.

Definition 3.10 (Strict Term Occurrence). Let t be a term, f be a formula, p be a

position within f. We say that ¢ has a strict occurrence p in f if f is either of the form

L. q(t1,...,tn)[t], where ¢ € P and ty,..., t, are terms, or;

2. (t1 = t2)[t], where t; and ty are terms.
If t has a strict occurrence in f, then it also has a strict occurrence in —f.

We have the following interesting property:

Proposition 3.3. If the term t has a strict occurrence in formula f, then the following
holds

F, D(f)=D(t) .

If we further constrain grouped conditional term rewrite rules such that we have

Proposition 3.3 can be used to simplify proofs. Let P[o(l)], be a formula such that o(l)
has a strict occurrence. Since the grouped term rewrite rule is valid and WD-preserving,

and using the previous proposition, we have the following
D(Ple(D)]p) = D(a(l))
= A D(o(c))
i=1

under the proviso that all free variables of o(¢;) (for all ¢ such that 1 < ¢ < n) occur free

in Plo(l)]p. In this particular case, the sequents

H,Plo(l)], Fp D(o(c1)V...Vo(en)),
H,P +, D(o(c1)V...Va(em))

in (3.48) and (3.53) respectively, are guaranteed to be discharged. As such, they could

be removed from the list of sub-goals that the modeller sees.

74 Chapter 3 Rewriting and Well-Definedness within a Proof System

3.4 Related Work

The interleaving between deduction and rewriting steps has gathered much interest
given its importance to automated reasoning. In this work, we identify the necessary
conditions under which rewriting can interleave with deduction in the proof calculus

defined in [81]. In other works, this interleaving is studied from different perspectives.

Theorem proving modulo [45] is an approach that removes computational steps from
proofs by reasoning modulo a congruence on propositions. The advantage of this tech-
nique is that it separates computation steps (i.e., rewriting) from deduction steps in a
clean way. In [45], a proof-theoretic account of the combination between computations
and deductions is presented in the shape of a sequent calculus modulo. The congruence
on propositions, on the other hand, is defined by rewrite rules and equational axioms.
From the author’s experience of the Rodin tool, rewriting represents a considerable con-
tributor to proof effort (on average two thirds of the proof steps are rewrites). This
makes rewriting an important component of the Event-B tootlset. In Chapter 4, we
show how the results of this chapter enabled the provision of an extensible mechanism

for defining, validating and using rewrite rules in Rodin.

The combination of rewriting and deduction makes properties of rewrite systems of
practical interest. Termination and confluence properties of term rewriting systems are
important, and have been studied extensively [19, 42]. When rewriting is interleaved
with deduction, it is critical that computation steps terminate. Term orderings, in which
any term that is syntactically simpler that another is smaller than the other, provides a

practical technique to assess the termination of rewrite systems.

In our work, we aim to unify the notions of well-definedness and rewrite systems. Our
objective is to characterise the interaction between deduction and rewriting when well-
definedness is taken into consideration. This is achieved by identifying the necessary
conditions under which computations can interleave with the deduction steps (i.e., proof
rules) in [81].

Schmalz devised a foundation of ‘directed rewriting’ for logics supporting partial func-
tions [103]. His treatment starts with assuming a three-valued semantics logic, and uses
a shallow Isabelle/HOL embedding to reason about the various components of the logic.
He explains how conditional directed rewrite rules can be applied within proofs and
justifies the soundness of their application. Directed rewriting is unsafe in general, i.e.,
it may transform a provable statement into an unprovable one and thus lead a proof
attempt into a dead end. However, an approach to avoid this unsafety is also presented
in [103]. Furthermore, the author claims that directed rewriting significantly reduces
the number of well-definedness checks required during proofs. Schmalz approach reached
similar conclusions regarding the sufficient conditions for maintaining soundness when

rewriting is performed. In fact, the notion of directed rewriting is similar to the concept

Chapter 3 Rewriting and Well-Definedness within a Proof System 75

of well-definedness preserving rewriting where rewrite rules preserve well-definedness in
one direction, i.e., left to right. A major difference between our approach and [103] is
the fact that our approach is entirely syntactic as we do not depart from the syntactic

manipulation of proofs.

3.5 Summary

In this chapter, we defined the criteria for the validity and well-definedness preservation
of term rewrite rules when rewriting interleaves with the rules of the proof system
developed in [81]. We started our discussion by presenting term rewriting systems.
A cornerstone in our treatment is the notion of well-definedness preserving conditional
rewrite rules. We have shown that valid and well-definedness preserving rewrite rules can
soundly be used within the the well-definedness preserving proof system. We precisely
described and justified how individual and grouped rewrite rules can be used as well-
definedness preserving proof steps. This chapter is the main theoretical contribution
of this thesis, and includes a major proof effort to establish the necessary theorems.
The work in this chapter complements Mehta’s work in [81] to provide a proof system
that includes both deduction and computation steps. In the next chapter, we show
how the theoretical results presented in this chapter influenced our approach to prover

extensibility in Event-B.

Chapter 4

A Practical Approach to Event-B
Prover and Language

Extensibility

In the previous chapter, we presented the treatment of rewriting within a proof system
that admits potentially ill-defined terms. In this chapter, we present a contribution of
a more practical inclination. We discuss our approach in dealing with issues related to
prover (§2.3.4) and language (§2.3.3) extensibility in Event-B. This chapter is motivated
by the discussion in §1.1. Together with Chapter 5, it achieves objectives (1), (2b) and
(3) listed in §1.2, and sheds light on the practical contributions of this thesis. Chapter

3 provides the theoretical backbone to the work on rewriting in §4.4.

As mentioned in §1.2, an important requirement of such approach is the practicality of
use. More importantly, a mechanism must be in place to avoid compromising the sound-
ness of the formalism. Dealing with prover extensibility becomes a more pressing issue
when support for extending the Event-B mathematical language is in place. Specifying
new operators and datatypes requires the provision of a mechanism to reason about such
extensions when used in Event-B models. As such, we argue that support for language

extensibility goes hand in hand with support for prover extensibility.

This chapter is structured in the following way. We start our discussion by recalling the
limitations of the existing infrastructure that triggered the need for our work. Next,
we present the theory construct which is the vehicle we use to specify and reason about
extensions. Then, we outline the three possible mechanisms by which the prover can be
augmented. We present rewriting as a proof step in Rodin. We also discuss the addition
of polymorphic theorems and inference rules. Next, we present how new polymorphic
operators can be specified. Operator properties such as associativity and commutativity
are discussed. Next, datatype extensions are introduced in terms of the appropriate

syntactic restrictions placed on them. Then, we show how primitive recursive operators

T

78 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

can be defined on datatypes. We conclude this chapter by discussing the related work
that influenced our approach in dealing with prover and language extensibility. The

work presented in this chapter is a continuation of the effort described in [78].

4.1 The Existing Infrastructure

The Rodin platform provides a proof infrastructure that is highly optimised for proof
engineering and reuse. Mehta provides a succinct description of the said infrastructure in
his thesis [82]. However, prior to our work, the architecture had the limitations discussed
in §2.3.4.

External provers can be plugged into the proof infrastructure. Examples of such addi-
tions include ML and PP [7]. Other recent efforts include an SMT solver [5] and an
Isabelle/HOL translator/prover [101]. ML and PP do not provide sufficient information
about how the proof of a sequent has been achieved. ML and PP run as external pro-
cesses to Rodin, and only return a success or a failure status without providing a proof
trace to Rodin. Besides, information such as the set of needed hypotheses is important
for proof reuse and replay [82]. Those properties of proofs are crucial to an efficient

running of a reactive modelling environment.

4.1.1 The Existing Constructs

Modelling in Event-B is carried out by means of contexts and machines as discussed
in §2.2.2. Contexts are used to specify the static properties of the system to model.
Contexts have the general layout depicted in Figure 4.1. Modellers can specify theorems
as part of contexts to ensure that the axioms capture their intentions. Appropriate proof

obligations are generated to ensure theorems are well-defined and valid. Machines, on

context name
carrier sets S51,...,5,
{ (Constant)
| (Aziom)}

Figure 4.1: Context Structure

the other hand, are used to specify the dynamic properties of the system. Machines have
the general layout depicted in Figure 4.2. We argue that contexts and machines are not

suitable for defining prover and language extensions for the following two reasons:

1. Contexts and machines are modelling vehicles. They are intended for specifying
and reasoning about models of complex systems. As such, they should not be

overloaded to specify and meta-reason about mathematical and prover extensions.

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 79

machine name
{ (Refines Clause)
| (Sees Clause)
| (Variable)

| <Invamant>

| <

|«

Event)}

Figure 4.2: Machine Structure

2. Contexts have been used to define useful structures axiomatically, e.g., [99], and
to facilitate proof by supporting theorems. However, their intended use was to
parametrise machines [60]. As such, an objective of our work is to simplify the use
of contexts by providing a third construct independent from contexts and machines
in order to separate concerns, handle and meta-reason about extensions. The new
construct is called a theory. Using our approach, contexts act as a parametrisation

mechanism for machines, and theories act as a placeholder for extensions.

4.2 The Theory Construct

Theories [78] are Event-B constructs which are similar in their morphology to contexts
and machines. The name of the construct is based on a similar concept in the Isabelle
theorem prover [94]. Theories in Event-B, however, differ in purpose from Isabelle
theories. Isabelle theories can be used to specify mathematical theories as well as entire
logics such as higher-order logic. The notions of inner and outer syntax [94] refer to
the object logic and the meta-logic, respectively. A theory in Event-B, on the contrary,
is only used for meta-reasoning about the Event-B mathematical language. A theory
acts as a place-holder for mathematical and prover extensions. The following listing

describes the overall structure of Event-B theories.

theory name
imports tq,...,1,
type parameters Ti,...,7T),

{ (Datatype De finition)

| (Operator De finition)
(Polymorphic Theorem)
(Metavariables)
(Rewrite Rule)
(Inference Rule) }

Figure 4.3: The Theory Construct

An Event-B theory has a name which identifies it within the workspace. Hierarchies of

theories can be created by means of the import directive. ‘Theory A imports theory B’

80 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

indicates that all definitions and rules of theory B can be used in theory A. A theory
can have an arbitrary number of type parameters which are sets that are assumed to be
non-empty and pairwise distinct in which case the theory is said to be polymorphic on
its type parameters. A theory may also contain an arbitrary number of definitions and
rules. In the subsequent sections of this chapter, we describe proof rules and polymorphic
theorems and show how they can be specified and validated through the theory construct.
Figure 4.4 summarises the new anatomy of Event-B models (as opposed to the old

anatomy in Figure 2.1) as a result of the introduction of the new theory component.

Theory
Datatypes
Operators
Theorems
USES Proof Rules USES
Machine Context
Variables Carrier Sets
Invariants SEES
Variants Constants
Events Axioms
SEES
REFINES EXTENDS
Other Machines SEES Other Contexts

Figure 4.4: Extended Anatomy of Event-B Models

4.2.1 Soundness Preservation

In the process of defining new extensions (e.g., new operator or a new rewrite rule), it
is possible to introduce unsoundness to the prover. As such, it is imperative that the
ease of use of the theory component is complemented by an effective measure to discover
and eliminate any soundness-threatening extensions. Furthermore, we argue that such

measure should not hinder the usability of any provided tool support.

The use of proof obligations is widespread in many formal techniques not least in Event-
B. In the case of Event-B modelling, proof obligations provide simple semantics by which
it is possible to understand the system being modelled [61]. We argue that using proof

obligations to verify any user-defined extensions will ensure that potentially unsound

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 81

extensions are brought to the attention of the user. Moreover, since modellers are famil-
iar with the use of proof obligations in contexts and machines, this approach achieves
a good balance between effectiveness and usability. As such, the overhead of proofs in
theories can be similar to that of proofs in models. However, the polymorphic nature
of theories enables the reusability of proofs, e.g., defining and proving a polymorphic
theorem once in a theory and then using it multiple times in different models without
the need for reproving it. Throughout the rest of this chapter and subsequent chapters,
whenever a new extension is introduced, any required proof obligations are singled out

and their adequacy is justified.

4.2.2 Theory Deployment

We distinguish between two separate but intrinsically linked activities in the context of
Event-B theories. Theory development refers to the activity of defining and validating
theories. At this stage, extensions are defined and proof obligations are automatically
generated for each extension as required. This activity may follow an iterative pat-
tern since inspecting failed automatic proof attempts may reveal important information
about the soundness or otherwise of extensions. Performing interactive proofs provides
feedback and guides the modeller to change definitions if appropriate. Therefore, theory
development greatly benefits from the reactive nature of the Rodin platform[80, 12].

Theory deployment refers to the activity of making developed theories available for use
in modelling. A theory can be used by many models at the same time, thus promoting
reusability. Theory deployment ensures that proof obligations are at least inspected
by the user, and once deployed, any mathematical extensions and proof rules can be
used to specify Event-B contexts and machines. As an example, consider a theory
of boolean operators. The user may specify the usual operators (e.g., logical AND),
define some inference and rewrite rules, and attempt to discharge any generated proof
obligations. Once the user discharged all generated proof obligations, the theory can be
deployed and used within a model that specifies an electric circuit. The use of theory-
defined proof rules and polymorphic theorems enables the user to reason at the level
of mathematical extensions without detour through the existing Event-B mathematical

language by means of purpose-built proof tactics.

4.3 Event-B Mathematical Language

In the Event-B mathematical language [83] (Event-B inner syntax), terms (expressions)
and formulae (predicates) are separate syntactic categories. Terms are defined using
constants (e.g., 1), variables and operators (e.g., U). Term operators can have terms as
arguments. They can also have formulae as arguments e.g., (Az - P(x) | E(z)) where

P(z) is a formula and E(z) is a term.

82 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

Formulae, on the other hand, are built from basic formulae e.g., x € .5, logical connectives
and quantifiers. Basic formulae take terms as arguments e.g., * € S has z and S as

arguments.

Terms have a type which can be one of the following:

1. a basic set such as Z or a carrier set supplied by the modeller in contexts;
2. a power set of another type;

3. a cartesian product of two types.

Term operators have typing rules of the form:

type(z1) = aq ... type(z,) = ay,
type(op(z1, ..., n)) =

Arguments of a basic formula must satisfy its typing rule e.g., the typing rule for the
basic formula finite(R) is:
type(R) = P(a)

Alongside typing rules, term operators have well-definedness formulae. D(F) is used
to denote the well-definedness formula of term E. Proof obligations are generated (if
necessary) to establish the well-definedness of terms appearing in models. To illustrate,

we consider the term card(E) for which we have:

D(card(E)) < D(E) A finite(E)

Note. For the rest of this thesis, we use the term ‘mathematical language’ to refer to
Event-B inner syntax that is wired. The term ‘existing mathematical language’ refers to

the mathematical language augmented with any previously defined operator extensions.

4.4 Rewriting

The use of equations is central to mathematics. Rewriting provides a powerful mech-
anism for ‘dealing computationally with equations’ [43]. In this section, we show how
rewrite rules are defined in the theory construct. We also present the different proof
obligations that ensure soundness of defined rules. The theoretical results in Chapter 3
provide the justification for the proof obligations related to rewrite rule definitions. At

the end of this section, we provide some examples of rewrite rules.

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 83

4.4.1 Defining Rewrite Rules

In the Event-B mathematical language [11, 83], formulae and terms are distinguished as
two separate syntactic categories'. Furthermore, each term must have a type. We say
that two Event-B legal syntactic tokens are of the same syntactic class if they are both
terms or both formulae. The following definition describes the syntactic properties of

Event-B rewrite rules.

Note. Note the introduction of the typing constraint. Also note that rewrite rules left

hand sides may contain terms or basic formulae as long as the formulae is built up from

strict operators.?

Definition 4.1 (Event-B Rewrite Rule). An Event-B rewrite rule is of the form

lhs — C1:71hsy

C,, :rhs,

2. lhs is not a variable,

3. lhs and rhs; (for all ¢ such that 1 < i < n) are of the same syntactic class,

4. C; (for all i such that 1 < i < n) are formulae,

5. C; and rhs; (for all ¢ such that 1 < i < n) only contain free variables from lhs,

6. lhs and rhs; (for all i such that 1 <+ < n) have the same type if [hs is a term.

In the special case where n = 1 and C is syntactically equal to T, the rewrite rule
is called unconditional. An Event-B rewrite rule is said to be conditional if it is not
unconditional. Note that Event-B does not have the notion of sorts, and types in Event-
B are assumed to be maximal. For instance, Z is the type for integers, and the set of
natural numbers, N, is not a type since it is a subset of Z, and hence not maximal.
Given the absence of sorts in Event-B, sort-related properties are not relevant to our

discussion of rewriting.

A definition of a rewrite rule is completed by specifying whether the rule should be

applied automatically or interactively. In §4.4.4, we describe certain cases where an

n [83], terms are referred to as expressions, and formulae are referred to as predicates.

2Strict operators are operators whose well-definedness requires the well-definedness of all its argu-
ments. Hence, if an argument of a strict operator is not well-defined, the expression/predicate rooted
at that operator is also not well-defined. For example, equality in Event-B is a strict operator, whereas
the conjunction operator (A) is not.

84 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

automatic application should not be allowed. Figure 4.5 depicts the general layout

for a rewrite rule as part of the theory component, where P(x1,...,x,) provides typ-

rewrite name
[automatic| [interactive]| [case complete]
vars Ii, ..., In
condition P(z1,...,z,)
lhs lhs(zq, ..., xy)
rhs

Cy(x1,.ceyy) | Thsi(x1,...,xp)

Co(x1, ooy y) | Thsp(x1, ..y xy)

Figure 4.5: Rewrite Rule Definition

ing information for each of the variables x; occurring in the left hand side of the rule

lhs(x1,...,xy), and m is the number of rule right hand sides.

4.4.2 Validating Rewrite Rules

In the previous section, we defined the syntax of Event-B rewrite rules. In this sub-
section, we describe the different proof obligations that ensure soundness of defined
rewrite rules. We recall from §3.3.2 the notions of case-complete and homogeneously

stmple-conditioned rewrite rules.

Case-completeness is only really useful in the case of homogeneously simple-conditioned
rules (as reflected in Proposition 3.2 in Chapter 3). Note that case-completeness is not
a syntactic property, but one that requires mathematical proof in all cases except when
the rule is unconditional. The following definition defines soundness in the context of

Event-B rewrite rules.

Definition 4.2 (Sound Event-B Rewrite Rule). An Event-B rewrite rule

lhs - C1:rhsy

C,, i rhsy,
is said to be sound if the following sequents are provable:

1. H,D(lhs),C; F, D(rhs;) for all i such that 1 <1i <n,

2. (a) H,C; t, lhs =rhs; for all i such that 1 <4 < n if lhs is a term, or;
(b) H,C; F, lhs< rhs; for all ¢ such that 1 <1i <n if [hs is a formula,

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 85

3. (a) HF, \i,C;if the rule is case-complete and homogeneously simple condi-

tioned,

(b) H,D(lhs) -, D(C;) for all i such that 1 < ¢ < n if the rule is case-complete

and homogeneously simple-conditioned.

where H is a formula providing typing information for all free variables occurring in
lhs.3 If the rewrite rule is not case-complete, the proof obligations 3a and 3b in the

previous definition are not required.

4.4.3 Applying Rewrite Rules

Chapter 3 explored two ways for applying rewrite rules. Single rule application (§3.3.1)
describes how a single conditional rewrite rule can be applied to goals or hypotheses of
sequents. Grouped rule application (§3.3.2) describes how rules sharing the same left
hand side can be soundly applied to sequents. Soundness is not the only issue regarding
rule application. Termination of automatic rewriting is another potentially problematic
aspect of rule application. Whether to apply a rule automatically or interactively is a
serious question that requires pondering. In our approach, the decision whether to apply
a rule automatically or interactively rests with the specifier of the rule. Admittedly, this
could be a dangerous practise. However, we argue that the following guidelines may

help with deciding whether a rule should be considered for automatic application:

e The syntactic restriction on rules which states that a left hand side may not be
a variable eliminates a certain non-termination case. For instance, the following
rule is not allowed:

x—=T:2+0

e Rewrite rules that simplify formula and reduce their size should be considered for

automatic application.

e Rewrite rules that inflate formulae (e.g., the multiplication distribution over addi-
tion rewrite rule) should be considered for interactive application. Such rules are

more likely to lead to more complicated proofs.

e Care should be taken when defining rules for commutative operators such as +.

For example, the following rule
r+y— 1T y+zx

should not be applied automatically as it leads to a non-terminating rewriting.

3The typing information is provided by the user as part of rule specification in theories.

86 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

e Rewrite rules that are considered for automatic application may also be considered
for interactive application. This is particularly useful if the user of Rodin decided

to turn off automatic provers.

e Definitional rules (i.e., rules that define an operator e.g., the union operator)
should be considered for interactive application. Instead of expanding operator
definitions, reasoning about operators should be carried out using specially-written

proof rules.

4.4.4 Examples of Rewrite Rules

Example 1. Assuming two variables z and y of the same type Z, then the following

(x—1)(y—1)— z=1:0
y=1:0

is a rewrite rule which is sound but not case-complete. Since the rule has more than one

right hand side, it is conditional.

Example 2. Assuming two variables a and b of the same type Z, then the following

card(a..b) - a>b : 0
a<b :b—a+1

is a homogeneously simple-conditioned case-complete sound rewrite rule. Note that a..b

denotes the integer range defined as follows

a.b = {z-a<z<b}

Example 3. Assuming two type parameters A and B, consider the following conditional

rewrite rule:

(fa{y—z2h(@)— 2=y : 2

r#y : f(x)
where
f € A< B
r € A
y € A
z € B

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 87

Note that the symbol < signifies relational override (as defined in [11], p.328). The
aforementioned rule is a homogeneously simple-conditioned case-complete conditional
rewrite rule. However, the rule is not sound as it does not preserve well-definedness.
Functional application in Event-B requires the function to be functional on the entirety
of its domain. In the above rewrite rule, f < {y — z} may be functional, but f on
its own may not. Therefore, well-definedness is not preserved from the left hand side
(f < {y — z})(x) to the second right hand side f(x). To see that this is the case,

consider the following instantiations for f, z, y and z:

f = {1—2,1—3,2— 4}
z = 1
y = 1
z = 3

It can be seen that (f < {1~ 3})(1) is well-defined and is equals to 3, whereas f(1) is

not well-defined as f is not functional at 1.

Summary. In this section, we have shown how new rewrite rules are specified (§4.4.1)
in the theory construct. We also discussed the sufficient proof obligations to ensure that
soundness of the formalism is not compromised by the addition of new rewrite rules
(84.4.2). We outlined a few guidelines that are helpful in determining whether a rule is
suitable for automatic application (§4.4.3) given that termination of rewriting is a major

concern.

4.5 Polymorphic Theorems

In an Event-B context, a modeller can specify some static properties of the system in
question by means of carrier sets, constants and axioms. In order to ensure that these
static properties capture the intended understanding of the system, theorems can be
defined in contexts. Similarly, when specifying the dynamic aspects of a system in a
machine, certain invariants can be tagged as theorems to verify that the previously
added invariants sufficiently restrict the system. The theorems defined in such way are
model-specific and more importantly are not polymorphic. We propose the addition of

polymorphic theorems to the theory component to achieve the following two objectives:
1. package important and reusable properties of pre-defined operators in a succinct
and a verifiably sound way, and

2. verify that definitions of any newly introduced operator definitions (see §4.7) cap-

ture the intended understanding of the modeller.

88 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

Moreover, we describe a mechanism by which these polymorphic theorems can be in-
corporated in proofs which arise from models. We conclude this section by providing

concrete examples.

4.5.1 Defining Polymorphic Theorems

Polymorphic theorems are special Event-B formulae where all variables except type vari-
ables (i.e., type parameters) are bound. Intuitively, we envisage polymorphic theorems

to be used in proofs in the following way:
1. the modeller chooses the theorem to incorporate into his proof from a collection
of theorems,

2. the modeller provides type instantiations appropriate to the current sequent to
prove, and the theorem gets instantiated with said type instantiations and added

to the set of hypotheses of the sequent.
The following definition describes the syntactic properties satisfied by polymorphic the-
orems.

Definition 4.3 (Event-B Polymorphic Theorem). Let ay, ..., and a, be type parameters.

A formula P(ayq, ..., ap) is an Event-B polymorphic theorem if
Var(P(aq,...,on)) = {oa,...,on}

In this case, we say that the theorem P(aj, ..., ;) is polymorphic on each of the type

parameters aq, ..., and ay,.

In other words, an Event-B formula is a polymorphic theorem if its free variables are all

type parameters.

4.5.2 Validating Polymorphic Theorems

Definition 4.3 describes the syntactic properties of polymorphic theorems. The following

definition presents the notion of soundness in the context of polymorphic theorems.
Definition 4.4 (Sound Event-B Polymorphic Theorem). An Event-B polymorphic the-
orem P(ayq,...,ap) is said to be sound if the following sequents are provable:

1. F, D(P(ai,...,an))

2. F, Plag,...,an)

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 89

Definition 4.4 ensures that polymorphic theorems are well-defined and valid. Note the
similarity between the sequents in Definition 4.4 and the proof obligations related to
theorems in Event-B contexts, in §2.2.2.1 and [11]. The next sub-section provides a

justification for the previous definition.

4.5.3 Using Polymorphic Theorems

In §2.4.4.2, we described the inference rules used in Event-B proofs. The cut rule in

particular,

Hb,D(P) Hbp, P HPH,Q .
HF, Q P

can be extremely useful when conducting proofs as it imitates the general approach taken
when doing proofs in mathematics (i.e., using intermediate lemmas to guide proofs).
In what follows, we show how the cut rule can provide a sound platform for using
polymorphic theorems in Event-B proofs. Firstly, we introduce type substitutions which

are the cornerstone for using polymorphic theorems.

Definition 4.5 (Type Substitution). A type substitution oy consists of a sequence type
variables (parameters) mapped to a sequence (of the same length) of types. The domain

of o is the set of type variables mapped by the type substitution.

A formula P’ is said to be an instance of the polymorphic theorem P(ayq, ..., ay,) if there

exists a type substitution o; such that:
P = oy(P(ay, ..., an)) (4.1)

where o; provides a substitution for all type parameters occurring in P(aj, ..., a,). An

instance of a polymorphic theorem can be added as a hypothesis in a sequent as follows:

\H by D(oy(Plar, o)) | |H by o(Plan, o)) | Hool(Plan,.yan)) Fp Q
HroQ cut,,

If the polymorphic theorem P(a1, ..., ay,) is sound as per Definition 4.4, then the boxed

sequents can be removed and the polymorphic theorem can be used in proofs as follows:

H,oi(P(aq,....,an)) Fp Q thin,
H&,Q

4.5.4 Examples

Example 1. The following formula is a sound Event-B polymorphic theorem:

Ve:Z,y:Z -xxy=0=(x=0Vy=0)

90 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

as it can be shown that the following two sequents are provable; hence satisfying the

conditions stipulated in Definition 4.4.

by DNVz:Z,y:Z-zxy=0=(x=0Vy=0))
by Ve:Zyy:Z-xxy=0=(x=0Vy=0)

Example 2. Assuming type parameters A and B, the following formulae are sound

Event-B polymorphic theorems:

Va :P(A),b:P(A)-a C b= (finite(b) = finite(a))
Vf: A< Bya:P(A),b:P(B)- f €a-+b=(finite(a) = finite(f))

as it can be shown that the following four sequents are provable; hence satisfying the

conditions stipulated in Definition 4.4.

» DMa:P(A),b:P(A)-a C b= (finite(b) = finite(a)))

» Va:P(A),b:P(A)-a C b= (finite(b) = finite(a))

» DNf:A< B,a:P(A),b:P(B)- f€a-+b=(finite(a) = finite(f)))
p Vf:A< Ba:P(A),b:P(B)-fea-+b=(finite(a)= finite(f))

Summary. In this section, we have shown how polymorphic theorems can be specified.
We provided the sufficient proof obligations to ensure theorems are sound. We, also,
demonstrated how theorems can be used in proofs when a suitable type substitution is
provided. In §4.6, we show how certain polymorphic theorems can be used in a more

pragmatic way as inference rules.

4.6 Inference Rules

In this section, we show how a special subset of polymorphic theorems can be manip-
ulated in such a way that they can be used as inference rules. As mentioned earlier,
polymorphic theorems achieve a two-fold objective. They can be used to ensure op-
erator definitions capture the intended semantics. They can also be used in proofs as
demonstrated in §4.5.3. We show that a polymorphic theorem with a specific structure

can be used in a similar way to inference rules.

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 91

4.6.1 Defining Inference Rules

The following definition describes the syntactic properties satisfied by inference rules.
As we develop this section, we will provide justifications for the different syntactic re-
strictions on inference rules.

—

Definition 4.6 (Event-B Inference Rule). An Event-B inference rule is a pair (G, I)
where:
1. I is an Event-B formula that is syntactically distinct from T, called the infer clause,
2. G is a set of Event-B formulae, called the given clauses,

3. one of the following syntactic condition holds:

Var(I) C U Var(H)
HeG

U Var(H) C Var(I)

HeG

In the theory component, inference rules are defined according to Figure 4.6.

inference name
[automatic| [interactive]
vars i, ..., Tn
condition P(z1,...,z,)
given Gy, ...,Gp,
infer 1

Figure 4.6: Inference Rule Definition

The formula P(z1, ..., z,) provides typing information for each of the variables occurring
in the inference rule. The next subsection describes how an inference rule is validated

in the theory component.

Intuitively speaking, inference rules are intended to be used in the following way. The
infer clause of an inference rule may be matched against the goal of a sequent. If the
matching succeeds, a backward proof step is achieved by making the (the instantiated)
given clauses of the inference rule as the new sub-goals. Alternatively, the given clauses
of an inference rule may be matched against the hypotheses of a sequent. If a suitable
match is found for each given clause, a forward proof step is achieved by adding the (the

instantiated) infer clause of the inference rule as a hypothesis.

92 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

Note that the infer clause has to be different from T since otherwise the inference cannot
be of any use.* Moreover, the third condition in Definition 4.6 ensures that inference

rules are at least applicable in one direction.

4.6.2 Using Inference Rules

Inference rules can be used in a backward style as well a forward style. If used in
backward style, it discharges or splits the goal. If applied in a forward style, more
hypotheses get generated. Let the following formula

Vi -G=1 (4.2)

be a sound polymorphic theorem. Let o; be a type substitution. Let ¢ be a variable
substitution (as per §3.1.2) covering all the bound variables in Vi - G= I, ie., Z. This
is formally expressed as

Dom(o) = Var(G=1I)

The combination of substitutions o; and ¢ provides instantiations for types and variables

of the polymorphic theorem.

1. Forward Inference. Assume the following sequent whose provability is to be
established:
H,o(04(G)) F, P (4.3)

—

where o(0(G)) signifies a formula with a type and variable substitution applied
to it. By introducing a suitable instance of the polymorphic theorem (4.2) as per

rule thm,, we get the following sequent
H,0(04(G)),YZ - 04(G) = oy(I) +, P (4.4)
By applying rule Vhyp,, on Sequent 4.4, we obtain the following sequents

H.o(o1(G)), 0(00(G)) = o(ou(1)) P (4.5)

I_D
Ho(o(G) F, /\ Dlo(x)). (4.6)
xz€Dom(o)

By applying rule =hyp,, on Sequent 4.5, we obtain the following two sequents

H,o(o:(G))
H,0(04(G)),0(0u(1))

» o(0(d) (4.7)

l_
-, P (4.8)

4Other formulae that can be shown by proof to be equivalent to T, e.g., TV L, are allowed. It is not
always possible to perform syntactic checks to single out such formulae, so the liberty is left to the user
to avoid them.

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 93

Sequent 4.7 can be discharged using the rule hyp.,.

In summary, to prove the following sequent
H7U(Ut(é)) I_D P,
it suffices to show the provability of the following sequents

Ho(on(@) +, /\ Dlo)

z€Dom(o)
H,U(Jt(é)),U(Jt(I)) F, P

2. Backward Inference. Assume the following sequent whose provability is to be
established:
H +, o(o(1)), (4.9)

where o(0¢(I)) signifies a formula with a type and variable substitution applied
to it. By introducing a suitable instance of the polymorphic theorem (4.2) as per

rule thm,, we get the following sequent
HNZ-0,(G) = ou(I) by o(oy(I)) . (4.10)

By applying rule Vhyp,, on Sequent 4.10, we obtain the following sequents

H,O’(O’t(é))id(dt(l)) Fp o o(o(])) (4.11)
H +, /\ D). (4.12)
x€Dom(o)

By applying rule =hyp,, on Sequent 4.11, we obtain the following two sequents

H +, o(0(G)) (4.13)
H,o(o¢(I)) tF, o(oe()) . (4.14)

Sequent 4.14 can be discharged using the rule hyp,,.

In summary, to prove the following sequent
H Fp o(oi(l))
it suffices to show the provability of the following sequents

H H, /\ D)

z€Dom/(o)

H +, o(0:(G)) .

94 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

The previous development (forward and backward inference) is carried out by importing
and appropriately instantiating a theorem. However, the use of theorems as inference
rules can be automated to a certain degree. This is where condition (3) of Definition
4.6 comes into play. We have the following two definitions with regard to inference rule

applicability.

Definition 4.7 (Forward-applicable Event-B Inference Rule). An Event-B inference
rule (é, I) is said to be forward-applicable if the following condition holds:

Var(I) C U Var(H)
HeG

The intuition behind Definition 4.7 is that an inference rule can be applied in a forward
fashion if its given clauses contains all variables of the inference rule. This means one-
way matching can be used to find a binding that unifies some hypotheses with the given
clauses. Since the binding will have mappings for all variables, the infer clause can be

instantiated using that same binding.

Definition 4.8 (Backward-applicable Event-B Inference Rule). An Event-B inference
rule (é, I) is said to be backward-applicable if the following condition holds:

U Var(H) C Var(I)
Hed

The intuition behind Definition 4.8 is that an inference rule can be applied in a backward
fashion if its infer clause contains all variables of the inference rule. This means matching
can be used to find a binding that unifies the goal with the infer clause. Since the binding
will have mappings for all variables, all given clauses can be instantiated using that same

binding.

We, now, summarise the two possible ways in which inference rules can be applied.
Consider the sound Event-B inference rule (é, I). 1If the rule is forward-applicable, it

can be applied according to the following proof tree

U(Ut(é» l_D /\:peDom(g) D(U(x)) H, U(Ut(é))ﬂ U(Ut(I)) l_D P
H,0(04(G)) by, P

forlnf,

where o; and o are suitable substitutions. If the rule is backward-applicable, it can be

applied according to the following proof tree

HE, N

x€Dom(o)

H

D(o(x)) H by o(ou(d))
}_

R0 backInf,

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 95

where o; and o are suitable substitutions.

4.6.3 Validating Inference Rules

As mentioned in the previous section, inference rules as defined above are a special
case of implicative polymorphic theorems. For each inference rule, we can derive the

appropriate polymorphic theorem.

Definition 4.9 (Derived Theorem). The following formula is called the derived theorem
of the Event-B inference rule (8, I):

—

V¥ -G=1

where 7 are the free variables in all of G and I.

The following definition describes the sufficient conditions under which an inference rule

is considered valid.

Definition 4.10 (Sound Inference Rule). An inference rule (G, 1) is said to be sound

if its derived polymorphic theorem is sound.

Summary. In this section, we have demonstrated a pragmatic approach to using poly-
morphic theorems. Inference rules are intended to relieve the user from explicitly provid-
ing instantiations for type and ordinary variables of a polymorphic theorem. We have
shown how inference rules can be used in backward proof, by splitting the goal, and
forward proof, by generating new hypotheses. We concluded our discussion by outlining

the proof obligations to ensure soundness of user-defined inference rules.

4.7 Polymorphic Operators

A new Event-B polymorphic operator can be defined in a theory by providing the fol-

lowing information:

1. Parser Information: this includes the syntax, the notation (infix or prefix), and the
syntactic class (term or formula). The precedence of the operator is not provided

by the user.

2. Type Checker Information: this includes the types of the child arguments, and the

resultant type if the operator is a term operator.

3. Prover Information: this includes the well-definedness of the operator as well as

its definition which may be used to reason about it.

96

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

operator syntar [commutative] [associative]

(prefix | infix)

args r1 € Ty, ...,xn €Ty,
condition P(zq,...,z,)
definition Q(z1, ..., 2,)

Figure 4.7: Operator Definition

Figure 4.7 describes the general structure of a new operator definition, where:

. ‘syntax’: defines the syntax of the new operator. It has be distinct from previ-

ously used operator syntaxes as our approach does not allow operator overloading.

. ‘prefix’ or ‘infix’: defines the type of the notation that will be used for this

operator either infix (e.g., a op b) or prefix (e.g., op(a,b)). At the time of writing

this thesis, postfix operators were not supported.

. ‘commutative’: indicates whether the operator is commutative. This particular

property of operators triggers the generation of a proof obligation.

. ‘associative’: indicates whether the operator is associative. This particular prop-

erty of operators triggers the generation of a proof obligation.

. ‘args’: defines the arguments of the operator. Each argument must have a name

and a type. Names of the arguments are pairwise distinct.

. ‘condition’: provides the well-definedness condition to be generated for this op-

erator. We will show later how concrete well-definedness conditions are correctly

generated from the above definition.

. ‘definition’: provides the direct definition of the operator in terms of the existing

mathematical language. The syntactic class of the operator is inferred from the
syntactic class of Q(x1,...,zy). If Q(x1,...,x,) is a term, then the resultant type
of the operator is the type of Q(x1,...,x,).

4.7.1 Example: The Sequence Operator

A sequence is an ordered list of objects where the same object can occur multiple times

at different positions. It is, therefore, easy to see that a sequence can be defined as

a polymorphic operator. The following snippet provides a definition of a sequence in
Event-B.

theory SeqThy

type parameters S

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 97

operator Seq
(prefix)
args a € P(95)
condition T
definition {f,n-fe€l.n —a| f}

In the above snippet, 1..n denotes a contiguous integer range. The previous definition
describes the set of all sequences of the set a; each sequence is defined as a total function
from an integer range to the set a. The following typing rule® is generated for the

operator Seq:
type(a) =P(S

type(Seq(a)) = P(P(

~—

N

x S))

In the following snippet, the formula operator EmptySeq takes a sequence, and ‘returns’

whether the sequence is empty. The term operators HeadSeq and TailSeq calculate the

head and the tail of a non-empty sequence respectively.

operator EmptySeq
(prefix)
args s € P(Z x S)
condition s € Seq(S5)
definition card(s) =0

operator HeadSeq
(prefix)
args s € P(Z x S)
condition —EmptySeq(s)
definition s(1)

operator TuilSeq
(prefix)
args s € P(Z x S)
condition —EmptySeq(s)
definition {i-i € 1..(card(s) — 1) | i— s(i + 1)}

The following typing rule is generated for the EmptySeq formula operator:

type(s) =P(Z x S)

®Note that the type of an individual sequence is P(Z x S), i.e., a set of pairs. Therefore, the type of
a set of sequences is P(P(Z x S))

98 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

The following typing rules are generated for the head and tail operators:

type(s) =P(Z x S)
type(HeadSeq(s)) = S
type(s) =P(Z x S)
type(T'ailSeq(s)) =P(Z x 5)

4.7.2 Operator Properties

In this section, we describe the different aspects of a new operator definition. More

specifically, we focus on well-definedness, associativity and commutativity.

4.7.2.1 Well-Definedness

An important aspect of defining an operator is the well-definedness condition to be used.
A simple strategy may use the well-definedness of the operator’s direct definition. An ad-
vantage of a user-supplied condition is the possibility of strengthening well-definedness
conditions to simplify proofs. In order to ensure that a supplied condition is in fact
stronger than the default (i.e., the one inferred from the direct definition), proof obliga-

tions are generated.

As discussed in §2.4.3, an important property of well-definedness conditions is that they

are themselves well-defined, i.e.,:
D(D(P)) & T for any formula or term P

There is a possibility that the supplied well-definedness condition may not, in some cases,
be well-defined (e.g., HeadSeq well-definedness condition). Therefore, the complete well-

definedness condition of an operator is the following:
D(P(x1,...,zpn)) N P(x1, ..., xx)

As an example, the default well-definedness condition of the HeadSeq (and, coincidently,
TailSeq) operator is
s € Seq(S) N ~EmptySeq(s)

To ensure that the supplied well-definedness condition is stronger than the default one,

the following proof obligation is generated:

Fo Va1 € Tay, ooy @n € Ta, - (D(P(21, .oy @) A P21, ...) = D(Q(a1, ...,xn))\

The well-definedness strength proof obligation is justified in §5.1 of [102].

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 99

As an example, the following proof obligations are generated for EmptySeq and HeadSeq,

respectively:

F, Vs € P(Z x S)-s € Seq(S) = finite(s)
Fp, Vs € P(Z x S)- (s € Seq(S) N—EmptySeq(s)) = (s € Z+ SN1¢edom(s))

using the following expansions:

D(card(s)) = finite(s)
D(s(1)) = se€Z-+SN1edom(s)

4.7.2.2 Commutativity

An operator is said to be commutative if it is a binary operator whose arguments are of

the same type, and the following formula is valid:

Q(x1,22) = Q(z2,21) if the operator is a term operator, or

Q(x1,22) < Q(z2,z1) if the operator is a formula operator.

Example. Consider the definition of the AN D boolean operator:

operator AND commutative associative
(infix)
args by € BOOL, b, € BOOL
condition T
definition bool(by = TRUE Nby = TRUE)

Note that BOOL is a built-in type in Event-B; it contains the values TRUFE and
FALSE. The operator bool is a built-in operator that takes a predicate as an argu-
ment; its resultant type is BOOL. In this case, the following formula describes the
condition which asserts that the AN D operator is commutative:

Vb, € BOOL,by € BOOL - bool(by = TRUE Nby = TRUE) = bool(by = TRUE ANby = TRUE)

More generally, if an operator is defined by the user to be commutative, then

1. if the operator is a term operator, the following proof obligation is generated

’l—D Va:l S T,Z‘g eT- Q(1‘1,Z‘2) = Q(.I‘Q,Jil) ‘

2. if the operator is a formula operator, the following proof obligation is generated

’l—D V.Jil S T, To € T- Q(l‘l,xg) = Q(Qfg,xl) ‘

100 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

4.7.2.3 Associativity

A term operator is said to be associative if:

e it is a binary operator whose arguments are of the same type,
e the resultant type of the operator is the same as that of the arguments,

e the following formula is valid:
Q(Q(zla IQ), Z) = Q(xlv Q(I27 Z)) .

If a term operator is defined by the user to be associative, the following proof obligation is

generated:

Fo Vo, €T zg €T,z €T Q(Q(z1,22), 2) = Q(z1, Q(22, 2)) ‘

Summary. In this section, we have shown how polymorphic operators can be defined in the the-
ory construct. We discussed important aspects of operators, including syntax, well-definedness,
commutativity and associativity. We also provided the different proof obligations that are nec-

essary to validate user-defined polymorphic operators.

4.8 Datatypes

Datatypes are important ingredients of many formalisms and programming languages [107, 75].
In this section, we will show by means of simple examples how the theory component can be
used to define new datatypes. In our discussion, we do not provide a rigorous treatment of the
subject, nor do we claim that the development has reached a mature stage. However, as pointed
out in §5 [102], datatypes can be added on top of the logic of Event-B as defined by Schmalz.
The syntactic restrictions placed on datatypes resemble those placed on Isabelle/HOL datatypes
as developed in [27].

In this brief treatment, we will be concerned by datatypes which are generated from a number
of constructors. Each element of the type can be written as a constructor term. Moreover, the
datatypes are freely generated which requires the constructors to be distinct and injective. This
ensures that every element of the newly-defined datatype is denoted by a unique constructor
term, and consequently, a structural induction theorem holds for such datatype. The structural

induction theorem enables the definition of operators by primitive recursion [27, 107].

A new datatype is introduced by providing the following:

1. A type constructor operator,
2. A number of element constructors one of which must be a base constructor,

3. Extensionality axioms to ensure constructed elements are uniquely determined by their

constituents,

4. Disjointness axioms ensuring that distinct constructors yield distinct elements,

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility 101

5. An induction axiom.

Generally speaking, a datatype specification in the theory construct has the following form:
tan, .y o) = Ci(at,.,m™) | oo | Cr(rp,..,mh)

where a1,..., a,, are type parameters, C1,..., Cy are the constructors of the new datatype, and
each of 7rf is a type that may only refer to the type parameters of the datatype. Constructor
names must be distinct. Types in Event-B are assumed to be non-empty, and this must hold for
datatypes. As such, each newly defined datatype must have a base constructor, i.e., a constructor
that does not refer to the datatype being defined. Furthermore, the admissibility check discussed
in [27] has to be enforced to avoid a major issue with nesting of datatype definitions. If the

admissibility check is dropped, the datatype cannot be constructed [27].

In the context of Event-B, the admissibility check rules out the following datatype definition
ta) == Cp | Ca(P(t))

since there is no injective function of type P(t) — ¢ by Cantor’s theorem.

4.8.1 A List Datatype

As an example, we consider the definition of a list datatype using the following syntactic sugar:
List(a) = nil| cons(a, List(a))
where « is a type parameter. In this case, we have the following:

1. type constructor operator: List(a),
2. element constructors: nil and cons,

3. extensionality axioms:

Vo, 2’ 1,1 - cons(x,1) = cons(x’ Iy =z =a" Nl =1

4. disjointness axioms:

Va,l - cons(x,l) # nil
5. induction axiom:

P(nil) A (Va,l - P(l) = P(cons(z,1))) = (VI- P(1))

The theory component allows the definition and use of datatype accessors. The list datatype

definition can be more succinctly written as:

List(a) == nil
| cons(head : «, tail : List(a)) .

102 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

The previous definition introduces the a number of expressions to the Event-B mathematical
language. List(a) is a type expression as well as a set expression. nil is an expression of type
List(a).cons(x,1) is an expression of type List(«). head is a partial operator of type List(a) -+ «,
and tail is a partial operator of type List(«) - List(«). The head and tail are operators whose

well-definedness conditions are the following:

I

D(head(l))
D(tail(l))

x, 1o - 1 = cons(z,ly)

I

x,lg - 1 = cons(z,ly)

Pattern-based recursive operators can be specified by providing definitions corresponding to each
constructor of the concerned datatype. The size of a list can be defined by means of the following

operator:

operator listSize
(prefix)
args | € List(T)
definition
case [
listSize(nil) = 0
listSize(cons(xo,lo)) = 1+ listSize(l)

Prior to wour work, only built-in types and carrier sets can be used in models. Datatypes can be
constructed axiomatically in contexts by defining a carrier set (corresponding to the datatype)
and a number of injective functions to specify the datatype constructors. However, this approach
has two drawbacks. Firstly, the datatype is not polymorphic as it uses carrier sets. Secondly, it
uses contexts for a purpose for which they were not initially intended as discussed in §4.1.1. We

argue that datatypes in the theory construct address the aforementioned drawbacks.

Summary. In this section, we briefly presented how datatypes are specified in the theory
construct. The particular issue of datatype admissibility is highlighted. The objective of this
section was to provide a cursory overview of datatypes in theories. The work on datatypes in
the logic of Event-B is not complete, and it could further be complemented by adding facilities

for mutually recursive datatypes.

4.9 Related Work

The related work is divided into four sub-sections corresponding to the different contributions

of this chapter.

4.9.1 Module Systems in Specification Languages

Modularity is an important concern in specification and programming languages. Modern pro-
gramming languages such as Java and C++ incorporate difference constructs to provide a modu-

lar approach to software development, e.g., classes and inheritance. Maude is a reflective language

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility — 103

and system supporting both equational and rewriting logic specification and programming for
a wide range of applications [35, 36]. Rewriting logic is a logic of concurrent change that can
naturally deal with state and with concurrent computations [79]. Maude provides a modular
system for specifying rewrite theories. Each module provides sorts, kinds and operators, and
can have equations, memberships and rules [35]. The theory construct is similar to a module in
Maude given the facilities provided for specifying operators, types and rewrite rules. However,
theory development is secondary to model development, i.e., contexts and machines, in Event-
B. Theories should not be considered as modelling elements in a specification. Rather, their
role remains as a meta-reasoning vehicle for the logic of Event-B rather than the specification
language of Event-B, i.e., outer syntax. A similar comparison can be drawn between Event-B
theories and OBJ3 [55] modules.

Extended ML is a framework for specification and formal development of Standard ML (SML)
programs. Developing a program in Extended ML means writing a specification of a generic
SML module and then refining this specification in a top-down fashion by means of a number of
refinement steps until an SML program is obtained [100, 71]. The counterpart of an Extended
ML module is in fact a machine. However, parallels can be drawn between a module and a
theory. A theory can be used to specify operators, types and proof rules in a modular fashion.
Hierarchies of theories exist to specify a collection of related mathematical structures. However,
a key difference between theories and modules in Extended ML is that code generation is not a
requirement for theories. In fact, code generation is more pressing in the case of contexts and
machines. As such, we conclude that more parallels can be drawn between Event-B models and
Extended ML modules than between Event-B theories and Extended ML modules.

Isabelle [89] and PVS [92] theories are similar to Event-B theories, but are wider in scope.
Theories in Isabelle and PVS can be used to carry significant modelling and reasoning activities.
We argue that combining modelling and theory development in Event-B provides a comparable
level of sophistication to that of Isabelle and PVS theories. Event-B modelling uses set theory
which can provide powerful expressive power that is close to higher order logic [13]. The addition
of the theory component ensures that polymorphism can be exploited to enhance the expressive

power of the Event-B mathematical language.

4.9.2 Prover Extensibility

The architecture of proof tools continues to stir up much heated debate. One of the main talking
points is how to strike a reasonable balance between three important attributes of the prover:
efficiency, extensibility and soundness. In [62], Harrison outlines three options to achieve prover

extensibility:
1. If a new rule is considered to be useful, simply extend the basic primitives of the prover

to include it.

2. Use a full programming language to specify new rules using the basic primitives. The new

rules ultimately decompose to these primitives.

3. Incorporate the reflection principle, so that the user can add and verify new rules within

the existing infrastructure.

104 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

Many theorem provers including Isabelle [89] and HOL [58] employ the LCF approach. The
functional language ML [88] is used to implement these systems, and acts as their meta-language.
The approach taken by such systems is to use ML to define data types corresponding to logical
entities such as terms and theorems. A number of ML functions are provided that can generate
theorems; these functions implement the basic inference rules of the logic. The ML type system
ensures that theorems are only constructed by the aforementioned functions. Therefore, the LCF
approach offers both “reliability” and “controllability” of a low level proof checker combined
with the power and flexibility of a sophisticated prover [62]. On the flip side, however, a major
drawback for this approach is that each newly developed proof procedure must decompose into
the basic inference rules. There are cases where this may not be possible or indeed an efficient

solution e.g., the truth table method for propositional logic [40].

The PVS [92] system follows a similar approach to LCF with more liberal support for adding
external provers. This liberality comes at a risk of encountering soundness bugs. It, however,
presents the user with several choices of automated provers which may ease the proving expe-
rience. A comparison between Isabelle/HOL and PVS from a user’s point of view is presented
in [59]. Interestingly, it mentions that “soundness bugs are hardly ever unintentionally explored”
during proof, and that “most mistakes in a system to be verified are detected in the process of
making a formal specification”. A similar experience is reported when using the Rodin plat-
form [82].

The Mural formal development system [73] consists of a VDM support tool and a proof assistant.
However, in essence, it provides support for many-sorted predicate calculi which are expressible
in natural deduction style. The Mural system allows adding internally proved rules i.e., rules
that follow directly from existing rules. This results in the exclusion of a large class of rules
that could be proved by employing a “more sophisticated meta-reasoning”. Adding new rules in

Mural can be achieved through extending existing theories providing a verifiably “open system”.

Programming tools such as JML [30], ESC/Java [38], Boogie [22] (Spec# [23] program verifier)
and VCC [37] provide capabilities to verify computer programs. Verification conditions are
generated, and passed on to external provers, e.g., SMT solvers. Since theorem proving is not an
integrated component in these tools, prover extensibility is not an immediate concern. However,
the choice of highly configurable and customisable tools is readily available, e.g., Isabelle and
SMT solvers. Note that a similar approach is adopted by VDM [70].

The KIV [21] theorem prover is a tool for formal development and interactive verification. KIV
provides proof support for all elements of the specification language based on sequent calcu-
lus, rewriting and symbolic execution of programs. This theorem prover follows a tactic-based
approach to proof, and provides a number of proof heuristics that can only be modified or aug-
mented by the system developer. Facilities are not provided for specifying new proof procedures
by system users. This particular limitation of KIV is similar to the limitations of the Event-B

toolset prior to our work.

The KeY System [17, 18] is a formal software development toolset which proposes the integra-
tion of design, implementation, formal specification, and formal verification of object-oriented
software as seamlessly as possible. Taclets [53] provide a mechanism by which proof rules can

be defined for the KeY System. For example, a very simple taclet could be written as follows

Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility — 105

find(b -> ¢ ==>) if (b ==>) replacewith (c ==>) heuristics(simplify)

Listing 4.1: Simple Taclet

This taclet indicates that an implication b= ¢ should be replaced by formula c if b can be found
in the left hand side of sequent (i.e., hypotheses). The aforementioned taclet is part of proof
heuristics called ‘simplify’. Even though, we do not explicitly support proof directives (such as
‘find’), there is a limited implicit support for such constructs as exemplified in single conditional

rewrite rule application and inference rules.

Our approach does not necessarily subdue the old mechanism of extending the prover. As such,
the new prover architecture resembles that of PVS. It still allows the liberality of integrating
external decision procedures (e.g., for arithmetic) while providing a collection of sound rules.
On the other hand, verifying the soundness of added rules using proof obligations enables meta-
reasoning within the same platform. This can be viewed as a limited incorporation of the
reflection principle within Rodin. The limitations of our approach, however, are similar to the
limitations of the Mural architecture, since sophisticated meta-reasoning is not possible at the

moment.%

4.9.3 Language Extensibility

Language extensibility is a major concern in formal methodologies. Isabelle/HOL achieves a good
level of extensibility through polymorphism. It also benefits from the availability of a meta-logic
that can be used to specify operators with good control over syntactic representations [93]. The
generic nature of Isabelle enables the specification of many logics, and, suitably, there is an

attempt to encode Event-B in Isabelle.

Language extensibility is a real concern in PVS as discussed in [76]. PVS allows the use of
parametrised theories which offers some of the benefits of language extensibility such as reusabil-
ity. Both PVS and Isabelle/HOL provide facilities to define and use datatypes and recursive
definitions. In both formalisms, when a new datatype is defined, a simple theory containing at

least an induction principle is provided.

4.9.4 Datatypes

Datatypes are an important ingredient in specification and programming languages. Abstract
datatypes play a major role in programming language such as Java, C++ and the functional
language ML. Algebraic datatypes describe the theory behind the creation of types and the
operations that manipulate and create elements of the said types. Note that abstract datatypes
can be modelled using contexts and machines , as is carried out in [99]. However, such models of
datatypes do not make the specified datatype available as a type for the subsequent specifications.
This is in contrast with the specification languages Maude [35] and OBJ3 [55], where most types

5Predicate variables have been added to the mathematical language since Rodin 2.0. However, meta-
reasoning in Rodin can be substantially enhanced by adding support for the well-definedness operator
as a syntactic extension to the mathematical language.

106 Chapter 4 A Practical Approach to Event-B Prover and Language Extensibility

are constructed algebraically, and made available for reuse as types. The objective of datatypes
in theories is to provide further types (beside the built-in types and carrier sets) that can be

used in modelling, e.g., for data refinement.

Datatypes can be defined in Isabelle/HOL [89] and PVS [92]; in both formalism, a theory
is readily available to reason about the created datatype. In particular, [27, 107] provide an
overview of the construction of datatypes in Isabelle/HOL. And as pointed out by Schmalz [102],
the construction of datatypes could follow a similar path in the logic of Event-B. Note that this
construction is absent in this thesis, as datatypes in the theory construct is a case of ‘practice
preceding theory’. Nonetheless, it provides a starting point for further research on the logic of

Event-B and its possible extensions.

4.10 Summary

In this chapter, we presented an approach that improves the extensibility of the Event-B lan-
guage and prover. The theory construct is used to define and validate rewrite rules as well as
polymorphic theorems. Proof obligations are generated to ensure that soundness is maintained.
We have shown how the theory construct can be used to specify rewrite rules in order to enhance
the rewriting capabilities of Rodin. The justification for the work on rewriting in Event-B is pre-
sented in Chapter 3. Next, we introduced polymorphic theorems and presented how they can
be incorporated in proofs. Inference rules provide a convenient mechanism by which user can
apply certain polymorphic theorems. Furthermore, we addressed language extensibility issues
by describing how polymorphic operators can be specified in the theory construct. The logical
foundation behind support for polymorphic operators can be found in [102]. A minor contribu-
tion of our work is the addition of support for datatypes in the Event-B mathematical language.
In summary, the work in this chapter has its theoretical foundation in Chapter 3 and [102], and
resulted in providing effective tool support for extending the Rodin proving infrastructure as will
be shown in Chapter 5 and 6.

Chapter 5

Tool Support: Theory Plug-in

It is widely accepted that formal methods are becoming more essential to software develop-
ment [10, 31, 110]. There exist several cases that show the applicability and usefulness of for-
mal techniques in software engineering [39]. An important component of any successful formal
methodology is tool support. Effective tool support facilitates the integration of formal methods
into the development process of computer systems [9]. It can be even argued that tool support

is the most important factor in determining the success or otherwise of any formal method.

Isabelle [95] boasts an effective set-up that combines soundness and usability. It also provides a
powerful mechanism for embedding logics. One of the most attractive attributes that contributed
to the success of Isabelle is the LCF architecture as discussed in §4.9. PVS [91] provides a theorem
prover consisting of a variety of primitive inference procedures. PVS employs Gnu or X Emacs to
provide an integrated environment for its language and prover. One of the many strengths of PVS
is the possibility of integrating external decision procedures (e.g., for arithmetic). The Rodin
platform provides an extensible toolset for developing and reasoning about Event-B models.
Rodin includes a collection of tools that are necessary for a reactive development environment.

In this chapter, we shed some light on some of the important features of Rodin.

This chapter is structured in the following way. The theory component is introduced together
with the appropriate tooling. Theory deployment is described in practical terms. We conclude
by describing how the different mathematical and prover extensions can be used in models and
proofs. Our aim in this chapter is to show how the different ideas presented in Chapter 4 have
been implemented with the objective of addressing the extensibility issues outlined in §1.1. We
undertook the development of the Theory plug-in as part of our research; it started as a proof

of concept, and evolved to a solid platform for reasoning about Event-B extensions.

5.1 The Theory Plug-in

The Theory plug-in embodies many of the ideas presented in this thesis. It is our solution to
the different extensibility issues described in §1.1. The Theory plug-in benefits from the highly
configurable and extensible nature of the Rodin platform in the following aspects:

107

108 Chapter 5 Tool Support: Theory Plug-in

1. The Rodin Database. The Theory plug-in contributes the theory component as a Rodin
file.

2. Rodin Tooling. The Theory plug-in provides a static checker and proof obligation gen-

erator for theory files.

3. Dynamic AST. The Theory plug-in provides a front-end to the Rodin dynamic parser

for the mathematical language.

4. Reasoners and Tactics. The Theory plug-in dynamically creates reasoners and tactics

as wrappers around user-specified proof rules.
The Theory plug-in follows the Rodin philosophy by:

1. adopting the familiar approach of reactive development, and

2. using proof obligations to ensure soundness preservation.

5.1.1 The Theory Construct

The theory construct (component) is a Rodin file acting as a place holder for mathematical and

proof extensions. The theory construct can be used to specify:

1. mathematical extensions including datatypes and operators with direct or primitive re-

cursive definitions, and

2. proof extensions including polymorphic theorems, rewrite and inference rules.

Theories have the structure described in Figure 4.3. A theory is parametrised by means of a
number of type parameters. All extensions are polymorphic on the type parameters to which

they refer.
A new theory can be created by specifying its name and its hosting project as per Figure 5.1.

Event-B theories can include a number of the following elements:

1. Theory Imports. This specifies a directed relationship between the parent theory (the
importer) and the referenced theory (the importee). The importer theory can refer and
use any of the extensions defined in the importee theory. The import relationship enables
the importing theory to use all mathematical and proof extensions defined in the imported
theory. The import directive enables the creation of theory hierarchies. For instance, two
separate theories can be created to define sequences and inductive lists, and a third theory
importing the previous two theories can be created to specify an isomorphism between
sequences and inductive lists. In effect, the import directive establishes a partial order on
the collection of theories within a project. The imported theories need not be instantiated

with type parameters a la PVS [91].

2. Type Parameters. This defines the types on which theory extensions may be poly-
morphic. Type parameters are similar to carrier sets in contexts; the only assumption

regarding type parameters is non-emptiness.

Chapter 5 Tool Support: Theory Plug-in 109

i R New Theory: <
New Event-B Theory

This wizard creates a new theory file with .but extension.

Project: \MathExtensions \ \ Browse...

Theory Name: [Tol]

@ Cancel \ ‘ Finish

Figure 5.1: Creating a New Theory

3. Datatypes. Datatypes are defined by providing the following information:

(a) the type expression syntax e.g., List,
(b) the type parameters of the datatype e.g., a single type parameter T for List,
(¢) a number of element constructors e.g., nil and cons for List. Each constructor may

have a number of destructors (accessors) e.g., head and tail accessors for cons.

Figure 5.2 shows a definition of inductive lists.

4. Operators. Operators are defined by providing the following information:

(a) the syntax symbol of the operator,
(b) the syntactic class (i.e., predicate or expression),

the notation (only prefix and infix are currently supported),

(c
(

d) the list of arguments and their types,

)
)
)
)
(e) the condition under which the operator is to be used,

(f) a definition which can be 1) direct, or 2) primitive recursive.

Figure 5.3 illustrates a direct definition for the sequence operator. Figure 5.4, on the other

hand, illustrates a primitive recursive definition for the list size operator.

5. Theorems. A polymorphic theorem can be added by specifying its name (i.e., its identi-

fier) and its formula. Figure 5.5 shows an simple theorem about the finiteness of sequences.

6. Proof Rules. Two types of proof rules can be defined: rewrite and inference rules. Meta-
variables are used as variable patterns in rules to facilitate 1) pattern matching, and 2)

type inference and checking. A meta-variable (as shown in Figure 5.6) has a name and a

type.

(a) Rewrite Rules. A rewrite rule can be defined by providing the following informa-

tion:

110 Chapter 5 Tool Support: Theory Plug-in

< DATATYPES
® ¢ &

< O @ |List| //

< Type Arguments
@ ¢ 4
l:::l ° T j
® ¢ &
< Constructors
® ¢ &
D@ @ |nil| //
v @ @ |cons| [/

< Destructors
® ¢ &
© @ |head| Type:[T| //

© @ |tail| Type: List(T)| //
@ ¢ 0
® ¢ 0

® ¢ &

Figure 5.2: Definition of Inductive Lists

i. the left hand side to be rewritten,
ii. the applicability of the rule (i.e., automatic, interactive or both),
iii. the description of the rule for user interface purposes, and
iv. the right hand sides to which the left hand side can be rewritten; each right
hand side is guarded by a condition.
Figure 5.7 shows a simple rewrite rule.
(b) Inference Rules. An inference rule can be defined by providing the following
information:
i. the applicability of the rule (i.e., automatic, interactive or both),
ii. the description of the rule for user interface purposes,
iii. the given clauses of the inference rule, and

iv. the infer clause of the inference rule.

Figure 5.8 shows an example inference rule.

5.1.2 Theory Static Checking

Event-B theories are subject to static checking. The theory static checker inspects unchecked

theory files (with file extension ‘.tuf’), and produces checked theory files (with file extension

Chapter 5 Tool Support: Theory Plug-in

111

<> OPERATORS
L JRT R
<O @ [seq : |expression

< arguments

PREFIX | v

Associativity: not applicable | v

Commutativity: |not commutative | v

1

L JRTaR
o @ |a| [P(A) 1
[IET IR
<~ well-definedness condition
L JRTaR
<direct definition
L R
© @ Formula: {n»f | neN A f e l.n—a} //

L R
< recursive definition
[IET IR

Figure 5.3: Operator with a Direct Definition

<> OPERATORS
® ¢ 0

< O @ |listSize|: m
< arguments
® 0

(= - A

L JRT D

List(T)

<~ well-definedness condition
® ¢ O
< direct definition
® ¢ 0
< recursive definition
® oL
v @ @ csell v | //
< cases
L JRTaR D)
® @ il
® @ |cons(x, 10)
® oL
® 0

Figure 5.4: Operator with a Primitive Recursive Definition

PREFIX | v

Associativity: not applicable | v

Formula: |©

Formula: [1+listSize(10)

"

Commutativity: \not commutative \ v \ /!

"
"

“.tcf’). The following non-exhaustive list enumerates the checks implemented in the Theory

plug-in:

1. Import Checks.

o Non-circularity of import relationship,

e Redundancy of import relationship: in case a theory is imported more than once;

this is particularly useful if a theory is imported directly (using an import directive)

and indirectly (by virtue of the transitivity of the import directive).

2. Datatype Checks.

o Syntax symbols clash: for the type expression as well as constructors and accessors,

112 Chapter 5 Tool Support: Theory Plug-in

<> THEOREMS
® ¢ 0
O @ |[segsIsFinite |: ¥ n,f, a - a c A A nef € seq(a) = finite(f)| //
Figure 5.5: A Polymorphic Theorem
< Metavariables
® ¢ &
0 @ |s| Type:P(T)| //
o @ |t Type: P(T)| //
® ¢ &4
Figure 5.6: Meta-variables
<~ Metavariables

® ¢
0 @ |s| Type:P(T)| //
® ¢

< Rewrite Rules
® ¢

<~ 0 @ |rewl|: Formula:s U & case-complete| Applicability: |both v | Description: |simplify union| //
< rewrites
® ¢ 0
® @ |rhsl|: |11 Formula: /s //
® ¢ O
® ¢

Figure 5.7: A Rewrite Rule

e Presence of a base constructor: each datatype definition must include a base con-

structor, and

o Admissibility check: see §4.8 for more on this check.
3. Operator Checks.

o Syntax symbols clash: for the operator syntax symbol,

e Parsing and typing of operator arguments,

e Parsing and type checking of well-definedness conditions,

e Parsing and type checking of direct definitions,

o Uniqueness of definition: only one definition is allowed for each operator,
e Constructor coverage: for primitive recursive definitions,

e Operator properties checks: for example, an operator with a single argument cannot
be tagged associative or commutative.

4. Theorem Checks.

e Parsing and type checking of the formula,

Chapter 5 Tool Support: Theory Plug-in 113

< Metavariables

+ T;F J?L
0 @ |s Type: P(T) //
o0 @ |t Type: P(T)| //
+ T;F J?L

< Rewrite Rules

® ¢ O

< Inference Rules

® o0
<~ 0O @ |infl| : Applicability: |interactive | v | Description: finiteness of subsets //

< Given
® o0
@ @ ffinite(t)] J/
@ e sct /
® o0
< Infer
® o0
® @ finite(s)| //
® o0
® o0

® ¢ O

Figure 5.8: An Inference Rule

e Variables check: this ensures that the only free variables of the theorem are type

parameters.
5. Rewrite Rule Checks.

e Parsing and type checking of the left hand side,
e Left hand side is not a variable check,
e Presence of at least one right hand side,

o Variables check: this ensures that the right hand side only refers to variables occur-

ring in the left hand side,

e Syntactic class check: this ensures that right hand sides are of the same syntactic
class of the left hand side.

e Sides type check: this ensures that both side of the rule have the same Event-B type.
6. Inference Rule Checks.

e Presence of infer clause: each inference rule must have an infer which is syntactically
different from L.
e Parsing and type checking of clauses,

e Applicability check: to ensure that the inference rule is applicable in at least one

direction.

114 Chapter 5 Tool Support: Theory Plug-in
Error
Messages

Theory Theory Event-B
POG POM

Unchecked
Elements

Proof Status
and Proofs

Well-formed Proof
Elements Obligations

Figure 5.9: Tool-Chain for Event-B Theories

5.1.3 Theory Proof Obligation Generation

Event-B theories are subject to proof obligation generation. The theory proof obligation gen-
erator inspects the statically checked theory files (with file extension ‘.tcf’), and generates the
appropriate proof obligation for each inspected element. The generated proof obligations are
described in Chapter 4. In summary, the tooling provided for theories follows the same approach

of Rodin (see Figure 2.5), and is described in Figure 5.9.

5.1.4 Theory Deployment

Theory development is carried out separately from modelling. This is driven by the different
natures of modelling and meta-reasoning. In a typical development, theories are created and
organised in hierarchies. Ideally, each theory should define one major mathematical structure,
e.g., a sequence, and any supporting operators and proof rules. If a cross-structure theory is
required, a different theory can be created for such purpose, and the import directive enables
such theory to refer to any required theories. Proof obligations generated from theories should

be discharged by the user to ensure soundness preservation'.

Theory deployment is the process by which theories become available for modelling. By ‘availabil-
ity for modelling’, we mean that mathematical and proof extensions can be used when developing
models and performing proofs related to them. This is a seamless process; no further actions
are required from the end-user. Technically speaking, theory deployment creates the deployed

theory file (with file extension *.dtf’) which is an exact copy of the statically checked theory file?.

In contrast with static checking and proof obligation generation, theory deployment is a process

initiated by the user. Dependencies between theories (by means of the import directive) are

1This, however, is not enforced by the tool. At an early stage of the plug-in lifetime, the enforcement
of such requirement may have hindered tool flexibility as far as the user is concerned. Future releases of
the Theory plug-in may enforce this particular good practise.

2The reader may wonder about the need for another file if it is just an exact copy. The motivation
behind this design decision is to keep modelling and meta-reasoning as separate activities. The statically
checked theory file is used for meta-reasoning, and the deployed theory file is used for modelling.

Chapter 5 Tool Support: Theory Plug-in 115

automatically observed by the deployment process. The deployment process of a theory ensures
that its imported theories are also deployed, thus creating a hierarchy of deployed theories that

mirrors the statically checked theory hierarchy. Theory deployment achieves the following two
objectives:

1. it allows the end-user to inspect theories for soundness issues by observing the status of
proof obligations, and
2. it decouples modelling and meta-reasoning. Deployed theories are the only theories avail-
able for use in models.
Figure 5.10 shows the deployment wizard in action.

K Deploy Theories
Deploy Theories

Deploy Event-B theories to their project. Dependencies will be automatically deployed.

Project | MathExtensions

<

Theories
W
T Boolops
(T chainp
T FixPoint
@ List
T N_Tree
(T Relations

)

Next> || cancel |

Figure 5.10: The Deployment Wizard

5.1.5 Loading Extensions

Mathematical and proof extensions are loaded from deployed theories. Theories can have one of
the following two scopes:

1. Global Scope. Also known as ‘workspace scope’. This refers to theories which are part
of a designated global project®. Mathematical and proof extensions in the global theories
are available for all projects.

2. Project Scope. Also know as ‘local scope’. This refers to theories which are part of
projects other than the global project. Mathematical and proof extensions in local theories

are only available for models in their corresponding project.

Loading extensions is a process initiated by the tool. However, the user can exercise control
over what gets loaded by editing/modifying theories. The rational behind scoping theories is the

3In the current version of the Theory plug-in (1.3.1), the global project is called ‘MathExtensions’.
This, however, may change in future releases.

116 Chapter 5 Tool Support: Theory Plug-in

following. Some theories are general enough to be provided as part of a library e.g., sequence,
lists and order. These theories should have a global scope. Other theories may be project specific,
and as such should have a local scope.

5.1.6 Proof Support

The Theory plug-in provides a mechanism for applying rules and using polymorphic theorems.
The Rule-based Prover [78] (known as RbP in the tool) is a contribution to the proof infras-
tructure of Rodin, and provides a number of reasoners and tactics. An important component of
the Rule-based Prover is the pattern matching engine. A particularly interesting aspect of this
engine is the associative and associative commutative (AC) matching routine which is inspired
by works in [26, 47, 48].4

5.1.6.1 Rewriting and Inference

Rewrite and inference rules specified in theories are usable in the same way as existing rewrite

and inference rules®.

5.1.6.2 Polymorphic Theorems

In order to use a polymorphic theorem, an appropriate type instantiation is required. By ‘appro-
priate’, we mean that the type instantiation should only refer to types recognised in the sequent
to prove (i.e., recognised carrier sets or any of the built-in types BOOL and Z). Figure 5.11

shows the wizard used to select and instantiate a polymorphic theorem.

R Selecttheorem ¥4 Instantiate theorem)
Select theorem Instantiate theorem
Select polymorphic theorem to instantiate @ instantiation must be provided for all type parameters

Project: | MathExtensions <) Instantiations:

S
Theory: | Seq ol

‘ Name Theorem

@ |
&

Concel @ concet]

(a) Select a theorem (b) Instantiate a theorem

Figure 5.11: Using Polymorphic Theorems

The selected and instantiated theorem becomes a visible hypothesis in the current sequent.

4A full AC matching procedure is implemented as part of RbP.
®This usually is achieved through a hyperlink or a drop-down menu next to the goal or hypothesis
predicate.

Chapter 5 Tool Support: Theory Plug-in 117

5.1.6.3 Other Useful Tactics

It is, in some cases, useful to expand the definitions (i.e., rewrite to definition) of all operators
used in a sequent. A tactic is provided for this purpose. It attempts to rewrite as much as possible
any theory operators with the exception of recursively defined operators and datatype-related

expressions (e.g., constructors).

5.2 Summary

In this chapter, we provided an extended overview of the Theory plug-in. We described the
theory component which acts as a place holder for the different extensions. Static checking
and proof obligation generation are extended to check and validate theories. Deployment makes
theories immediately usable in models and proofs. The Theory plug-in implements the ideas
presented in this thesis, and it can also be used for other purposes such as code generation [46].
The Theory plug-in was developed as part of the tooling package of the Deploy project [1] which
aims to facilitate deployment of formal methods in the industry. The tooling package focused en

enhancing the tool support for Event-B by means of Rodin and other useful plug-ins.

Chapter 6

Theory Development: Examples

Chapter 5 provided an extended overview of the Theory plug-in. In this chapter, we provide
concrete examples of theories developed using the plug-in. The theories presented in this chapter
have been developed to demonstrate the expressiveness of the theory component. Some of the
mathematical extensions defined in the forthcoming theories correspond to general mathematics,
and are described, in a different way, in the B book [8]. The development of theories presented

in this chapter has been a joint effort with Jean-Raymond Abrial.

This chapter is structured in the following way. We present several theories describing useful
mathematical structures. We aim to demonstrate by means of examples the different types of
extensions (mathematical or proof) that can be expressed. Inductive datatypes and primitive

recursive operators are presented for lists.

6.1 Boolean Operators

Expressions and predicates are separate syntactic categories in the Event-B mathematical lan-
guage. Unlike expressions, predicates do not have a type. However, Event-B provides a boolean
type BOOL which has two elements:

BOOL = {TRUE,FALSE} .

BOOL, TRUE and FALSE are all expressions. In this section, we introduce a theory BooleanOps
(Figure 6.1) that defines the different logical connectives A, V and — on boolean types'. Note
that Event-B also provides an operator bool that takes a predicate argument and produces a

boolean-typed value according to the truth of the predicate argument.

Theory BooleanOps does not introduce type parameters as none is needed to define the required
extensions. The theory defines three operators AN D, OR and NOT on boolean arguments. The
operator definitions are all direct using the bool operator. Note that AND and OR are both

tagged as associative commutative. This triggers the generation of proof obligations to validate

! As opposed to predicates.

119

120 Chapter 6 Theory Development: Examples

theory BooleanOps
operator AND
(infix) (commutative) (associative)
args a € BOOL,b € BOOL
definition bool(a = TRUE Nb=TRUE)
operator OR
(infix) (commutative) (associative)
args a € BOOL,b e BOOL
definition bool(a = TRUE Vb= TRUE)
operator NOT
(prefix)
args a € BOOL
definition bool(a # TRUFE)

Figure 6.1: Boolean Operators Theory

the user’s claim. Note that operator overloading is not supported in the AST. As such existing

syntax symbols (i.e., A, V and — in this case) cannot be used.

The truth table for the new boolean operators can be defined by means of rewrite rules. We illus-
trate this for the case of the NOT and AN D operator (Figure 6.2 and Figure 6.3 respectively).

rewrite NotTruthTablel
(automatic) (case complete)
lhs NOT TRUE
rhs

| T [FALSE |
rewrite NotTruthTable?
(automatic) (case complete)

lhs NOT FALSE

rhs

Figure 6.2: NOT Truth Table

Theory BooleanOps can be used to create models for electronic circuits.

6.2 Sequences

Sequences are important mathematical structures. The sequence operator is part of classical B
modelling repertoire. However, it is not pre-built in the Event-B mathematical language. Theory
Sequences (Figure 6.4) introduces the sequence operator together with some useful operators,

polymorphic theorems and rules.

Chapter 6 Theory Development: Examples

121

rewrite AndTruthTablel
(automatic) (case complete)
lhs TRUE AND TRUFE
rhs
rewrite AndTruthTable2
(automatic) (case complete)
lhs TRUE AND FALSFE
rhs
| T [FALSE |
rewrite AndTruthTable3
(automatic) (case complete)
lhs FALSE AND TRUE
rhs
| T | FALSE |
rewrite AndTruthTables
(automatic) (case complete)
lhs FALSE AND FALSE
rhs
| T | FALSE |

Figure 6.3: AND Truth Table

theory Sequences
type parameters T'
operator seq
(prefix)
args a € P(T)
definition {n, f- f € l.n—a| f}

Figure 6.4: Sequences Theory

The sequences theory is parametrised by a single type parameter T'. The definition of the operator

seq includes all the total functions to the argument a from contiguous domains of natural numbers

starting from 1. Figure 6.5 introduces useful sequence operators and polymorphic theorems. The

sequence head and tail are defined for non-empty sequences. Adding elements to a sequence can

be achieved by means of the two operators seqAppend and seqPrepend. The theorems ensure

that the different definitions capture the intuitive understanding of sequences e.g., empty set is

a sequence and all sequences are finite.

122 Chapter 6 Theory Development: Examples

operator seql
(prefix)
args a € P(T)
definition seg(a)\@
operator emptySeq
(prefix)
definition @ : Z < T
operator isSeqEmpty
(prefix)
args s€ Z T
condition s € seq(T)
definition s = emptySeq
operator seqSize
(prefix)
args s€ Z < T
condition s € seq(T)
definition card(s)
operator seqHead
(prefix)
args s€ Z < T
condition s € seq(T) A s # emptySeq
definition s(1)
operator seqTail
(prefix)
args s € Z T
condition s € seq(T) A s # emptySeq
definition \i-i € 1..(seqSize(s) — 1) | s(i+ 1)
operator seqPrepend
(prefix)
args s€ Z+T,ecT
condition s € seq(T)
definition {1 — e} U (Xi-i € 2..(seqSize(s) + 1) | s(i — 1))
operator seqAppend
(prefix)
args s€ Z+T,ecT
condition s € seq(T)
definition s U {(seqSize(s) + 1) — e}
theorem
Vs,a-a CT As € seq(a) = finite(s)
Vs,a,b-a CT ANa CbAs € seq(a) = s € seq(b)
Vs,a-a CT A s € seq(a) N isSeqEmpty(s) = seqTail(s) € seq(a)
Vs,a,e-a CT As € seq(a) = seqPrepend(s,e) € seq(a U {e})
Vs,a,e-a CT A s € seq(a) = seqAppend(s,e) € seq(a U {e})

Figure 6.5: Sequences Theory Cont.

Chapter 6 Theory Development: Examples 123

The theorems defined in the sequences theory can be turned into inference rules. The following

two theorems:

Vs,a-a CT As € seqla) = finite(s)
Vs,a-a CT As € seq(a) A —isSeqgEmpty(s) = seqTail(s) € seq(a)

can be turned into the two inference rules described in Figure 6.6.

metavariables
seEZ+T, acP(T)

inference seqlsFinite
(interactive)
given s € seq(a)
infer finite(s)

inference taillsSeq
(interactive)
given s € seq(a), —isSeqEmpty(s)
infer seqTail(s) € seq(a)

Figure 6.6: Sequence Inference Rules

6.3 Relations

Theory Relations (Figure 6.7) defines a number of useful operators in the context of order and

equivalence relations. The theory defines the following predicate operators:

o symmetric, asymmetric and antisymmetric,
e reflerive and irreflerive,

e transitive,

partial_order and well_order,
e cquivalence,

linear and total_order.

It is easy to see that the following two theorems hold in theory Relations:

partial_order({a—b | aCSAbCSAaCb})
Vf-feS—T = equivalence(f; ™).

124 Chapter 6 Theory Development: Examples

theory Relations
type parameters S, T
operator symmetric
(prefix)
argsre S+ S
definition r = r~
operator asymmetric
(prefix)
argsr € S« S
definition rNr~! =@
operator antisymmetric
(prefix)
argsre€ S+ S
definition r N r~! Cid
operator reflexive
(prefix)
argsre€ S+ S
definition dom(r) <id C r
operator irreflexive
(prefix)
argsre€ S+ S
definition r Nid = @
operator transitive
(prefix)
argsre S+ S
definition r;r C r
operator partial_order
(prefix)
argsr € S« S
definition reflexive(r) A antisymmetric(r) A transitive(r)
operator well_order
(prefix)
argsre€ S+ S
definition partial_order(r) A (Vs s # @ As Cdom(r)= (Jy-y € sAs Cr[{y}]))
operator equivalence
(prefix)
argsre€ S+ S
definition reflexive(r) A symmetric(r) A transitive(r)
operator linear
(prefix)
argsre€ S+ S
definition S x S C r U r—1
operator total_order
(prefix)
argsre€ S+ S
definition partial_order(r) A linear(r)

1

Figure 6.7: Relations Theory

Chapter 6 Theory Development: Examples 125

6.4 Fixpoint and Closure

In the B book [8], Abrial presents a definition for the fixpoint of a set function (also known as a
set transformer). Theory FizpointClosure (Figure 6.8) defines two operators: fix and cls. Note
that in the following theory, the symbol ; denotes forward composition, whereas the symbol o

denotes backward composition. The theorems defined in the theory have been shown to be valid

theory FixzpointClosure

type parameters S

operator fix
(prefix)
args [€ P(S) = P(5)
definition inter({s | f(s) C s})

operator cls
(prefix)
argsre S+ S
definition fiz(As-s € P(S x S) |r U (s;7))

theorem
Vf,s- feP(S) = P(S) A f(s) Cs= fix(f) s
Viv-fePS)=PS)A (Vs f(s) Cs=vCs)=vC fix(f)
VE - f € B(S) 5 B(S) A (Va,b-a C b f(a) € £(8) = f(fiz(f)) = fiz(f)
V- feP(S) = P(S)= (Vi-t = f(t) = fiz(f) S t)
Vr-reP(S xS)=cls(r)=rU (cs(r);r)

) =
Vr-reP(S xS)=rCcls(r)
Vr-r e P(S x S)=cls(r);r C cls(r)
Vr,s-r € P(Sx S)AseP(SxS)ArCsAs;rCs=cls(r) Cs
Vr,x-r € P(S x S)Ar[z] Cx=cls(r)z] Cx
Vr-r e P(S x8)=cls(r);cls(r) C cls(r)
Vr-r e P(S x 8)=r;cls(r) Ccls(r)
Vror € P(S x S) = cls(r=t) = (cls(r)) !

Figure 6.8: Fixpoint and Closure Theory

using the plug-in.

The following theories have also been defined using the Theory plug-in:

1. Bags: a theory of bags.

2. Well_Foundation: a theory of well-founded sets.

3. Connectivity: a theory of strong connectivity.

4. fchains: a theory of finite chains.

5. chainp: a theory of infinite chains.

6. BinaryTree: a theory of inductive binary trees, see Appendix C.

7. N-Tree: a theory of inductive n-ary trees.

126 Chapter 6 Theory Development: Examples

6.5 Inductive Lists

Theory Lists defines the list datatype together with some useful operators. Figure 6.9 shows the
definition of the list datatype.

theory Lists
type parameters S, T
datatype List
type argument T
constructors
nal
cons(head : T, tail : List(T))

Figure 6.9: Inductive Lists Theory

The size of lists can be specified using the following operator:

operator listSize
(prefix)
args [€ List(T)
definition
case [
listSize(nil) = 0
listSize(cons(xg,lp)) = 1+ listSize(lp)

Appending to a list can be defined as follows:

operator append

(prefix)
args | € List(T), e T
definition
case [
append(nil,e) = cons(e,nil)
append(cons(xo,lo),e) = cons(xg, append(ly,e))

Reversing a list can be achieved using the following operator:

operator rev
(prefix)
args | € List(T)
definition
case [
rev(nil) = nil
rev(cons(xo,lo)) = append(rev(ly), o)

Applying a total function to elements of a list to produce another list can be achieved using the

following operator:

Chapter 6 Theory Development: Examples 127

operator comp
(prefix)
args l € List(T), feT+ S
condition f € T — S
definition
case [
comp(nil, f) = nil : List(S)

comp(cons(zo,lo), f) = cons(f(xo), comp(lo, f))

Concatenating two lists can be specified using the following operator:

operator conc
(infix) (associative)
args 1 € List(T), ly € List(T)

definition
case [1
nil conc ly = g
cons(xg,lo) conc ly = cons(xg,conc(ly,l2))

Flattening a list of lists can be achieved using the following operator:

operator flatten
(infix) (associative)
args | € List(List(T))
definition
case [
flatten(nil) = nil : List(T)
flatten(cons(lo,lly)) = conc(ly, flatten(lly))

The following theorems can be discharged from the above primitive recursive definitions:

comp(append(l,), f) = append(comp(l, f), f(x))
rev(append(l, z)) = cons(x,rev(l))

rev(rev(l)) =1

rev(conc(l1,12)) = conc(rev(12),rev(l1)))
flatten(append(ll,1)) = conc(flatten(ll),1) .

Vi,fe-le List(T)YNfeT—>SANzeT
Vix-le List(T)Nx €T

V-1 € List(T)

VI1-11 € List(T) = (VI2 - 12 € List(T)
Vil 1- 1l € List(List(T)) Al € List(T)

R

Proof by induction (in the Theory plug-in) is used to prove the aforementioned theorems.

128 Chapter 6 Theory Development: Examples

6.6 A Buffer Example

This example is presented in [46]. A theory of arrays is defined in Figure 6.10. The model
describes a simple buffer. The model is initially specified using machine b0. Machine b1l is a

refinement of machine b0, and uses the theory of arrays in Figure 6.10.

theory Array
type parameters T'
operator array
(prefix)
args s € P(T)
definition {n, f -n e NA f€0.(n—1)—s| f}
operator arrayN
(prefix)
argsn € Z,s € P(T)
condition n € N A finite(s)
definition {a | a € array(s) A card(s) =n}
operator lookup
(prefix)
argsac Z<T, 1 €Z
condition a € array(T) Ni € 0..(card(a) — 1)
definition a(i7)
operator update
(prefix)
argsacZ T, 1 €Z,xeT
condition a € array(T) Ni € 0..(card(a) — 1)
definition a < {i — z}
operator newArray
(prefix)
argsn € Z,x €T
condition n € N
definition (0..(n — 1)) x {z}

Figure 6.10: Theory of Arrays [46]

The theory of arrays is used in a data refinement step. In machine b0, the variable abuf is
defined to be a sequence of integers. The invariants in b0 state that abuf must be a sequence

of a particular length. The variable abuf is initialised to the empty sequence (2).

VARIABLES

abuf
INVARIANTS

invl: abuf € seq(Z)

inv2: seqSize(abuf) < maxbuf

The refinement in machine b1 introduces the variable cbuf as a data refinement for the abstract

variable abuf. The concrete variable is specified using the polymorphic operator arrayN.

Chapter 6 Theory Development: Examples 129

VARIABLES
cbuf
a
b
INVARIANTS
invl: cbuf € arrayN(maxbuf,Z)

inv6: Vi-i € (0 .. seqSize(abuf)) = prj2(abuf)(i) = cbuf((a + i) mod maxbuf)

The concrete variable is initialised using the operator newArray.

Initialisation
begin
actl: cbuf := newArray(maxbuf,0)
act2: a:=0
act3: b:=0

end

The polymorphic operators lookup and update are used to specify the events Get and Put in

machine m1.

Event Put =

refines Put

any
X
where
grdl: x€Z
grd2: b > a=b — a < maxbuf
then

actl: b:= (b+ 1)mod(maxbuf + 1)
act2: cbuf := update(cbuf,b mod maxbuf, x)
end
Event Get =

refines Get

any
y
where
grdl: a#b
grd3: yeZ
grd2: y = lookup(cbuf, a)
then

actl: a:= (a+ 1) mod maxbuf

end

130 Chapter 6 Theory Development: Examples

6.7 A Reflection

Prior to our work, axiomatic definitions in contexts were the only possible mechanism by which
non-polymorphic functions can be introduced in models. Structure such as sequences, bags
and stacks are very useful and common modelling elements, but they are absent from the core
syntax of Event-B. Furthermore, from our experience of using the Rodin tool, if a new proof
rule is required, a bureaucratic process has to be initiated where resources have to be allocated
depending on the urgency of the request.

Despite the lack of quantitative data regarding the usage the Theory plug-in, we argue that the

practical contributions of this thesis:

1. complement the Event-B methodology and make it a more rounded formalism,

2. provide an appealing platform to end users because it has facilities for meta-reasoning to

complement reasoning and modelling in Event-B,

3. reduce the dependency on the Java programming language and specialised knowledge of

Rodin architecture,

4. together with the core Event-B formalism, provide an expressive language that is compa-

rable to higher-order logic as discussed in [13].

Significant effort is required to develop sound theories. Theory hierarchies are a useful structuring
mechanism to create operator taxonomies as is the practice in Isabelle/HOL [90]. The effort

required to create and validate theories can be decomposed into two large phases:

1. Theory specification phase: new datatypes, operators and proof rules are specified. In
this phase, particular attention should be paid to specifying any auxiliary operators that
facilitate the use of the main newly introduced structures. In the case of the sequence
theory, the seq operator is the main structure of the theory, and a number of auxiliary

operators, e.g., emptySeq, seqHead and seqTail, are also defined.

2. Theory validation phase: in this phase, proof obligations are considered and discharged
by the user. This phase helps with uncovering errors in the specification of operators and
proof rules, in the same way that interactive proof can reveal errors in models. Therefore,

theory development is an iterative process.

It is a recurring observation that developing sound theories may take at least the same amount
of effort as when developing consistent models. However, the major advantage of using theories
is the reusability of definitions thanks to their polymorphic nature. The Theory plug-in provides
an obvious upgrade on the process of writing Java code to extend the Event-B language and
prover. Finally, the familiarity of our approach to users (reactive development, the use of proof
obligations and the use of the existing Rodin user interface for specifying and validating theories)
ensures that the Theory plug-in is the tool of choice to extend the Event-B language and proof

infrastructure.

Chapter 6 Theory Development: Examples 131

6.8 Summary

In this chapter, we presented several theories to illustrate the effectiveness of the Theory plug-in.
We demonstrated the use of primitive recursion to define simple operators for inductive lists.
Development of theories is an ongoing process, and a sizeable effort is required to create useful
and sound libraries that enrich the Event-B mathematical language and proof infrastructure.

The Theory plug-in provides a platform to define and validate user-defined libraries.

Chapter 7

Future Work & Conclusion

In this chapter, we bring this thesis to a conclusion by summarising its main contributions. We
started this thesis by describing the general setting and context of our work. Chapter 3 presented
the theoretical contribution of the thesis in the shape of a study unifying well-definedness and
rewriting. Chapter 4 described the approach adopted to enhance the extensibility of Event-B’s
proof infrastructure, andpresented the technicalities of adding support for user-defined operators
and datatypes. Chapter 5 provided an overview of the Theory plug-in which implements the ideas
described in this thesis. Finally, Chapter 6 presented several examples of theory development

using the Theory plug-in.

This chapter is structured in the following way. We start by summarising the main contributions
of this thesis. The contributions are of both practical and theoretical nature. Next, we summarise
the key aspects of the Theory plug-in which encapsulates our solutions to the extensibility issues
outlined in §1.1. Then, we show the areas in which extensions and additions are feasible. Finally,

we present a few concluding remarks.

7.1 Summary of Contributions

As described in §1.3, the scope of this thesis unifies formal methods, logic and software en-
gineering. Our work aims at providing a practically usable mechanism by which the formal
methodology Event-B toolset can be soundly extended. More succinctly, this thesis makes the

following contributions:

1. It has shown how extensibility and configurability of Rodin can be exploited to add useful
feature to the Event-B toolset. The Rodin platform and the Event-B modelling notation
was conceived with extensibility and adaptability in mind [12, 60]. We argue that these
aspects of the Rodin architecture have helped a great deal in realising the ideas presented
in this thesis. The use of a dynamic parser as the backbone for the Event-B abstract
syntax tree (AST) enabled the mechanism of adding new operators and datatypes. The
ease by which tooling (e.g., the static checking tool) can be specified is largely due to
the high configurability of the Rodin platform. Other aspects of the architecture of the

133

134

Chapter 7 Future Work & Conclusion

Event-B toolset that enabled our work are described in Chapter 5. This contribution is
described in Chapter 4 and 5.

. It has shown how the existing paradigm used in Event-B developments can be used for

meta-reasoning. Event-B development is carried out by means of contexts and machines.
Proof obligations are generated to verify the consistency of the system with respect to
a certain behavioural semantics. Meta-reasoning can be carried out using the theory
component to specify language and proof extensions. Proof obligations are then used to
ensure extensions are conservative with respect to the logic underpinning the Event-B
mathematical language. We argue that the familiarity of our approach can be seen as an
important aspect of the usability of our tool. This contribution is described in Chapter 5
and 6.

It has shown how the use of proof obligations can be lifted to meta-reasoning about
extensions to ensure soundness. For each proof and mathematical extension, certain static
checks are performed. Soundness checks are carried out by means of proof obligation
generation. The adequacy of the generated proof obligations is justified in this thesis as
well as in the work of Schmalz [102]. Note that the meta-reasoning available in Rodin
thanks to the Theory plug-in does not equate a provision of a meta-model for Event-B.
Such effort is carried out as a shallow embedding of Event-B using Isabelle/HOL [102].
This contribution is described in Chapter 4.

It has shown how new polymorphic operators can be defined within the theory component.
Predicate (i.e., formula) and expression (i.e., term) operators can be specified as part of the
theory component. Operators with direct definitions can be specified and their properties
validated by means of proof obligations. The proof obligations related to newly introduced
operators are justified in this thesis as well as [102]. This contribution is described in
Chapter 4.

. It provided a characterisation of the interaction between rewriting and deduction in a proof

system that accounts for potentially ill-defined terms. This is the theoretical contributions
of this thesis. It shows how rewriting and deduction can be interleaved in a sound fashion
that takes into consideration well-definedness. The notion of well-definedness preservation
for rewrites is introduced, and a simple approach of integrating rewriting and inference
within the well-definedness preserving sequent calculus used in Event-B is thoroughly
justified. This contribution is described in Chapter 3.

It provided a basis for reasoning about proof rules by means of proof obligations. The
theory component can be used to specify polymorphic theorems and proof rules. Poly-
morphic theorems are formulae in Event-B that can be used in proofs provided that a
suitable type instantiation is supplied. Proof obligations related to theorems ensure they
are valid and well-defined. Proof obligations related to rewrite rules ensure they are valid
and well-definedness preserving. Proof obligations related to inference rules ensure they
are valid and well-defined. The adequacy of the different proof obligations related to proof
extensions are justified in Chapter 3 and Chapter 4.

It has shown how to achieve prover extensibility without compromising its soundness. The
use of proof obligations is paramount to ensuring soundness is preserved. This is evident

from the results of Chapter 4.

Chapter 7 Future Work & Conclusion 135

Overall, this thesis has contributed a reusable approach to language and prover extensibility of

Event-B that maintains the following important requirements:

1.

‘FEase of Use’: the tool support which resulted from this thesis provides an effective
and practically usable mechanism to specify and reason about extensions. The adopted
approach enables the reuse of definitions, and reduces proof effort across multiple devel-

opments.

‘Soundness Preservation’: the use of proof obligations to reason about extensions ensures

that the user is aware of any potentially unsound extensions.

7.2 'Tool Support

The ideas presented in this thesis provided the basis for a Rodin plug-in that offers facilities to

extend the mathematical language and the prover. The Theory plug-in (Chapter 5 and [78]) is

an Eclipse-based extension that contributes the following capabilities:

. Tt enables the specification of new polymorphic operators (both term and formula opera-

tors). It statically checks any such extensions, and automatically generates proof obliga-
tions to verify operator properties including: well-definedness strength, associativity and

commutativity.

. It enables the specification of new datatypes. Inductive and enumerated datatypes are

supported. Primitive recursive operators can also be defined on any previously defined
datatype. The usual checks on datatypes are performed statically and do not require

proofs. As such, no proof obligations are generated for datatypes.

It provides facilities to specify and validate proof rules and polymorphic theorems. Again,
proof obligations ensure soundness of any contributed extensions. Note that rewrite rules

generated from operator definitions do not have associated proof obligations.

It implements the notion of theory deployment. Once deployed, a theory can readily be
used in Event-B models. This ensures that theories are inspected for soundness before

they are used in models.

. It provides a mechanism to manage collections of related theories. The IMPORT directive

aims to facilitate the creation of theory hierarchies. Theory hierarchies are discussed in
84.2.

It enables an effective meta-reasoning where language and proof extensions are defined
within the same component since the two types of extensions are intrinsically linked.
Proof extensions serve another important purpose. They facilitate reasoning about new

operators and datatypes without detour through their definition.

7.3 Future Work

The following items describe the areas in which further research can be carried out as an extension

to our work. The items are prioritised according to their immediate importance.

136 Chapter 7 Future Work & Conclusion

1. Creation of a Theory Library. Established formalisms such as Isabelle have a rich
set of libraries ranging from simple set theory to complex continuous mathematics. The
creation of a library can provide a standard collection of theories that can be used to
enrich the modelling activity. Careful consideration should be given to ensure theories are

defined in some well-understood hierarchies to facilitate maintenance.

2. Validating the Rule-based Prover. The crucial component of the Rule-based Prover
includes the pattern matching engine. A Java-based verification of this particular com-
ponent can be carried out to increase confidence in the tool. An Event-B specification
of certain aspects of the prover, e.g., pattern matching and rule application, is also con-
ceivable. The Rule-based Prover can also be improved by employing some optimisation

techniques such as rewrite rule selection by introducing priorities.

3. Enhancing Support for Datatypes. Currently, the Theory plug-in only supports enu-
merated and simple datatype definitions. However, mutually recursive datatype definitions
could also be supported in future releases. Furthermore, a fundamental study of datatypes

in the logic of Event-B could provide the foundation for further work on the subject.

4. Support for Axiomatic Definitions. In some cases, a desirable type cannot be defined
using the existing type constructors or datatypes. This is certainly the case for the type of
real numbers. The real numbers type R can be defined as an ordered ring with the addition
and multiplication operations. An axiomatic type definition can be used to characterise
this particular type.

5. Support for Binder Definitions. The mathematical language of Event-B includes
several binders, notably V and 3. The possibility of adding binders can be explored. The
theoretical foundations for such extension are described by Schmalz [102]. However, the

existing AST infrastructure does not yet support binder extensions.

7.4 Concluding Remarks

In this thesis, we demonstrated an effective approach to achieve prover and language extensibility
in Event-B whilst maintaining the soundness of the formalism. The use of proof obligations
when defining extensions ensures that theory developers benefit from the reactive approach
underpinning the Rodin philosophy. Possible areas of future work including adding support for
mutually recursive datatype definitions and binders have been identified. The tool support can
further be improved with respect to performance. The Theory plug-in can provide a strong basis

for other potential meta-reasoning activities such as code generation [46].

Appendix A

Chapter 3 Proofs

A.1 Proof of Proposition 3.1

Proposition A.1. Lett be a X-term. If o is a substitution then

D)) & N Do) A o(D(1))

zeVar(t)
Proof. We proceed by induction on the structure of the term ¢.

e Base Case: t =y such that y € V. In this case, we have to show the following:

D) e [\ Do) A o(Dly) (A1)

z€Var(y)

Since y is a variable and by expanding the definition of D (see [15, 82] and §2.4.3), the
following holds:

Dy) = T
Var(y) = {y}
o(T) = T

Consequently, (A.1) can be rewritten to:

D(o(y)) < D(a(y))

which trivially holds.

o Inductive Case: t = f(s1,...,5,) such that f € F and s1,.. and s, are all ¥-terms. In

this case, we have to show the following:

D(o(f (51, 5n))) & A D(o(z)) N a(D(f(s1,-+5n))) (A.2)

zeVar(f(s1,..,8n))

137

138 Appendix A Chapter 3 Proofs

with the assumption that for all the terms s; (1 <i < n):

D(o(si)) &\ Dlo(z)) A o(D(si))

z€Var(s;)

Firstly, we have the following properties:

D(f(s1, .y 80)) = /\ D(s;)) A CL ., [see §2.4.3] (A.3)
Var(f(s1, ., 8n)) = U Var(s;) (A4)
o(f(s1,.80)) = flo(s1),...0(8,)) [see (3.1.2)] (A.5)

Using the previous properties, we get the following:

]

O'(f(sla ceey S’ﬂ)))

< D(f(o(s1),...,0(s1))) [definition]

—~

D(o(s;)) A CF

o(81)y..,0(8n)

¢
=

[see §2.4.3]
1

.
Il

& /\(/\ D(o(z)) AN o(D(si))) A 05(51),4..,0(%) [induction hypothesis]

=1 z€Var(s;)

A /\ D(o(z)) A </\ o(D(s;)) A C[{(sl)’,,,}g(s,,L)) [by (A.4)]
zeVar(f(si,...,8n)) =1
& A D(o(x)) Ao (D(f(s1,...,5:))) [see §2.4.3]

zeVar(f(si,....8n))

Therefore, we have shown that:

D(o(f(s1,---,5n))) & /\ D(o(z)) N a(D(f(s1,---,5n)))

zeVar(f(s1,..-,8n))

A.2 Proof of The Instantiation Theorem

Theorem A.1 (The Instantiation Theorem). Let | 5 7 be a conditional term rewrite rule, and

o be an idempotent substitution.

1. If 1S r is valid, then the following sequent is provable:
ole) F, o) =0o(r) (A.6)

2. If 1 S r is WD-preserving, then the following sequent is provable:

Appendix A Chapter 3 Proofs

Proof.

1. Proof of Sequent (3.3):

139

Since the conditional rewrite rule | < 7 is valid, the following
sequent is provable:

ck, l=r

Furthermore, the following sequent is also provable

Fp YZ- (D) AD() AD(r)Ae)=1l=r

where & are the free variables of [, since we have the following proof tree

1=
Vgoal
ryAe)=1=r] gott

is well-defined! which means that the following sequent is also provable

-, D(VZ - (D(I) AD(c) AD(r)

ANe)=l=r)
Using the cut rule, we get the following proof tree
o(c) Fp YZ- (D) AD(c) AD(r)ANc)=1l=Tr
o(c) Fp DVE- (D) AD(c) AD(r) Ae) =1 =)
’O‘(C),V.’I_f (DO AD)AD(r)ANe)=1l=7r b, o) =0(r) ‘ .
o(c) Fp o(l) = o(r) e

From the above tree, the following two sequents are provable (as per the discussion above)

ole) F, VZ-(DUO)ADE)ADF)ANe)=1l=r

» DWNZ-(D(I)AD(c) AD(r)Ae) =1

Note that by Proposition 3.1, we have the following

/\xewr(l) D(o(x)),0(c),YZ- (D) AD(c) AD(r)ANe)=1l=r tF, o(l)=0(r)
o(e),VZ- (D) AD()AD(r)Ae)=1l=1r F

!Consider the simple case D(¢) A ¢, we have

D(D(¢) A ¢) < (D(D(8)) AD($)) V (...) V (-..))
The first disjunct is equivalent to T by (2.22). Therefore, D(¢$) A ¢ is well-defined

=goal,; ANhyp,; mon,

oD =o(r) 90k o

140 Appendix A Chapter 3 Proofs

To prove the remaining (boxed) sequent, we proceed as follows. By applying the rules

Yhyp,, goal,, ,, and =hyp,, on the sequent

/\ D(o(x)),0(c),YZ- (D) AD(c) AD(r)ANe)=1l=r +, o(l)=0o(r)
xzeVar(l)

we get the following sequents:

N Dl@)ol) F, N\ Do)

x€Var(l) z€Var(l)

N D). o(c), o) =a(r) Fp oll)=o(r)
z€Var(l)

N Dlo(z).0(c). Do) F, o(D()
z€Var(l)

N DPlo@),0(c), Dio(e) Fn o(D(c)
z€Var(l)

A Dlo@),0(c), Do(r)) Fp o(D(r))
z€Var(l)

AN Dlo@),o(e) Fyp ole)

z€Var(l)

The first, second and sixth sequent of the previous set are provable using rule hyp,. The

third, fourth and fifth sequents can be discharged using Proposition 3.1.

2. Proof of sequent (3.4): The following sequent
F, VZ-[(D(c) AD() Ac) = D(r)] (A.8)
is provable (& are the free variables of 1) is provable if the sequent
D(l),c F, D(r)

is provable since we have the following proof tree:

D(),c F, D(r)
Fo, (D(c) AD()Ae)=D(r)
F, VZ-[(D(c) AD(l) Ac) = D(r)]

=goal ,; Nhyp,; mon,,

Ygoal,,
We observe that the sequent
F, DVZ-[(D(c) AD() Ac)=D(r)]) (A.9)
is provable because the formula
V& - [(D(c) AD() A c) = D(r)]
is well-defined. Using the cut rule and Proposition 3.1 on the sequent

a(c),D(e(l)) Fp D(a(r))

Appendix A Chapter 3 Proofs

141

we get three sequents to discharge. The following two sequents which are immediately

provable (as per the discussion above):

Fp, YZ-[(D(c) AD() A c) = D(r)]
F, DNZ-[(D(c) AD() Ac) = D(r)])

The third sequent is the following:

o(c),o(P), N\ Dlo(2),D(o(1))

z€Var(l)
VZ - [(D(c) AD(I) A c) = D(r)]

D(o(r))

To prove the previous sequent, we proceed as follows. By applying the rules Vhyp, and

=hyp,, (see [82]) on the previous sequent, we get the following sequents:

o(c),0(D(1), N\ Do), D) b,
z€Var(l)

a(c),a(D(D), /\ Dlo()), D) Fyp
xeVar(l)

a(c),a(D(D), /\ Dlo()), D) Fyp
x€Var(l)

a(c),a(D(), /\ Dlo(x)),D(o(D),o(D(r)) Iy

z€Var(l)

(A.10)
(A.11)
(A.12)

(A.13)

It is easy to see that the first three sequents are provable. Regarding sequent A.13, observe

the following:
Var(r) C Var(l)

since | 5 r is a rewrite rule. It follows that sequent A.13 is provable if the sequent

N Dlo()),o(D(r)) by Dlo(r))

zeVar(r)

is provable which clearly is the case thanks to Proposition 3.1.

(A.14)

A.3 Proof of The Term WD-Preserving Rewriting Theo-

rem

Theorem A.2 (Term WD-Preserving Rewriting Theorem). Let | < r be a conditional term

rewrite rule, t be a term, p be a position within t, and o be an idempotent substitution. If | = r

142 Appendix A Chapter 3 Proofs

is valid and WD-preserving, then the following two sequents are provable:

Proof.

1. Proof of sequent (A.15): We proceed by induction on the structure of the term ¢.

(a) Base Case: t is a variable, t = x. In this case (A.15) becomes
o(c) bp z[o()]e = zlo(r)]e
since variables have only one position (e the root position). This simplifies to
o(e) F, o(l)=0o(r)

which is a provable sequent according to Theorem 3.1.

(b) Inductive Case: t is a function, t = f(t1,...,t,). We distinguish the cases p = ¢

and p = iq for 1 <7 < n and some position q.
i. Case p = e: this case is similar to the base case.

ii. Case p = iq: we assume the following inductive hypothesis (in this case a

provable sequent)

and we show that

o(e) Fp flt1, - tilo(D]g, s tn) = flt1, s ti[o(T)]gs oy)

is a provable sequent where iq = p. We proceed as follows:

ole) by ti =t ... ’0(0) Fo tilo(D]g = tilo ()], \ e 0(C) byt = tn
o(c) Fp t1=t1 A AtJo(D]g = Gilo(m)]g Ao Aty =1,
o(c) Fp fltr, o tiloD)]gs s tn) = f(t1, s ti[0(F)] s omr tn)

Agoal ,,

The boxed sequent is provable since it corresponds to the inductive hypothesis.

O
2. Proof of sequent (A.16): We proceed by induction on the structure of the term ¢.

(a) Base Case: t is a variable, t = x. In this case (A.16) becomes
D(zlo(D)e),o(c) Fp D(z[o(r)le)
since variables only have the root position e. This simplifies to
D(o(1)),o(c) Fp D(a(r))

which is a provable sequent according to Theorem 3.1.

Appendix A Chapter 3 Proofs 143

(b) Inductive Case: ¢ is a function, t = f(¢1,...,t,). We distinguish the cases p = €
and p = iq for 1 <7 < n and some position q.
i. Case p = e: this case is similar to the base case.
ii. Case p = iq: We assume the following inductive hypothesis (in the shape of a

provable sequent)
D(ti[o(Dlg),o(c) Fp D(tilo(r)]g)
and we show that
D(f(tr, oo ti[0(Dgs s tn))s () Fo D(f(try oo ti[o ()] gy oo tn)) (A7)

is a provable sequent where i¢ = p. Sequent A.17 can be reduced to the

following two sequents:

D(tilo(D)]q),o(c) 5 D(tilo(r)lg) (A.18)
thl ti[o(W)]qr-, to0(c) Fp thl

Sequent A.18 is provable since it is the inductive hypothesis. Sequent A.19 is

provable using the first sequent of this theorem, i.e.,

A.4 Proof of Sequent 3.8

D(floDp)so(e) Fp D(flo(r)lp)

Proof. 1. Base Case: f is of the shape s(t1,...,t,) such that s € P and ¢y, ...,t, are terms.
In this case, position p can only be of the form ¢g for some position ¢ and 1 < i < n since

the root position is of a formula. Therefore, (3.8) becomes

D(s(t1, ..., tn)[c(D]p),0(c) Fp D(s(t1, ..., tn)[0(r)]p)

where p = iq for some position ¢ and 1 < i <n. This can be rewritten as
D(s(t1, ..., tilo(D]g, -.stn)yo(c) Fp D(s(ti, ..., tilo(r)]g, s tn)) (A.20)

Sequent A.20 can be simplified to the following sequent

D(tilo(D]g);0(c) Fp D(tilo(r)ly)

whose provability follows immediately from Theorem 3.2.

2. Inductive Case: f is of the shape ¢ A ¢ such that ¢ and i are formulae. In this case,
(3.8) becomes

D((e A)le(Dlp),o(c) Fp D@ AY)]o(r)]p) (A.21)

144 Appendix A Chapter 3 Proofs

Position p can only be of the form p = 1¢q or p = 2¢ for some position q. We distinguish

the two cases:

(a) p=1¢: In this case, Sequent A.21 becomes
D((elo(D)]lqg A)),0(c) Fp D((plo(r)]g Ab)) (A.22)

To proceed, we assume that the following sequent is provable:

D((¢le(D)]q)),o(c) Fp D((plo(r)]q)) (A.23)
and we show that Sequent A.22 is provable. Recall from §2.4.3, we have the following:
D(e A1) = (D) AD()) V (D(@) A=) V (D() A)

By applying the previous expansion on Sequent A.22, we obtain the following sequent:
(D(ele(Dlg) AD()) V (D(plo(D)]g) A =ploD)]q) V (D) A 1)), 0(c)

|7D
(D(plo(r)]qg) A D)) vV (Dlplo(r)lg) A —pla(r)lg) V(D) A=)

Next, we apply rule Vhyp, (i.e., case split), we obtain the following three sequents:

D(plo(D]q), D(¢), 0(c)
l_D
(Dlelo(r)]q) A D)) V (D(plo(r)lg) A —pla(r)lg) V (D() A=)

D(elo(Dlg), ~elo(D]g, o(c)
l_D
(D(plo(r)lg) AD@)) V (D(plo(r)]g) A —plo(r)]lg) V (D() A=)

D(¢)7 -, O‘(C)
Fo
(D(plo(r)lg) AD@)) V (D(plo(r)lg) A —plo(r)]e) V (D) A=)

By applying the analogous rules Vgoall, and Vgoal2, on the previous three se-

quents, we obtain the following three sequents:

D(plo(D]q), D(¥),0(c) Fp (D(pla(r)lg) AD(Y)) (A.24)
D(plo(D]q), ~plo(Dlg,0(c) Fp (Dlpla(r)lg) A—plo(r)ly) (A.25)
D(¢), ~,0(c) Fp (D(P) A1) (A.26)

It can easily be seen that Sequent A.26 is provable. We, now, establish the provability
of Sequent A.24 and A.25. By applying rule Agoal,, on Sequent A.24, we obtain the

Appendix A Chapter 3 Proofs 145

following two sequents:

D(elo(r))q) (A.27)

I_D
F» D) (A.28)

Sequent A.28 is immediately provable thanks to rule hyp,, (i.e., goal is in the hypothe-
ses). Sequent A.27 provability follows immediately from the inductive hypothesis.

Concerning Sequent A.25, we proceed as follows. By applying rule Agoal,,, we obtain

the following two sequents:

» Dela(r)ly (A.29)
D(plo(D]g), ~plo(Dlg,0(c) ko —plo(r)]g (A.30)

Sequent A.29 follows from the inductive hypothesis. Sequent A.30 can be shown to
be provable thanks to the first part of the theorem (i.e., Sequent 3.7).

(b) p = 2q: analogous to the previous case.

3. Inductive Case: f is of the shape Vz - ¢ such that ¢ is a formula. In this case, (3.8)

becomes
D((Vz - p)[o(D)]p),0(c) Fp D((Vz - p)[o(r)]p) (A.31)

In this case, position p can only be of the form 1q for some position ¢ since the root

position is of a formula. As such, Sequent A.31 can be rewritten to
D(Va - plo(Dlg),0(c) Fp Dz - plo(r)ly) (A.32)
To proceed, we assume the provability of the following sequent
D(plo(Dg),0(c) Fp Dlplo(r)ly) (A.33)
and we show the provability of Sequent A.32. Recall from §2.4.3, we have the following:
D(¥z-¢) = (Y2 D(¢)) V (Fz - D(¢) A)
By applying the previous expansion on Sequent A.32, we get the following sequent:

(Vz - D(plo(Dg)) V (3 - D(plo(D]g) A —~plo (D)), o(c)
l_

D

(Vo - D(plo(r)lg)) v Bz - D(plo(r)lg) A —¢lo(r)ly)

146

Appendix A Chapter 3 Proofs

By applying rule Vhyp,, (i.e., case split) on the previous sequent, we obtain the following

two sequents:
Va - D(plo(l)lg), o(c)
}_D
(Ve - D(plo(r)lg)) v Gz - D(plo(r)lg) A —plo(r)]q)

3z - (Dlelo(Dlg) A —elo(D)]g), o(c)
}_’D

(Vz - D(pla(r)ly)) v Bz - D(plo(r)lg) A —¢la(r)ly)

By applying the analogous rules Vgoall, and Vgoal2, on the previous two sequents, we

obtain the following two sequents:

Vo - D(plo(D]g)o(c) Fp Va-D(plo(r)ly) (A.34)
Az - D(plo(D)]g) A ~plo(Dg,o(c) Fp o Fz-D(plo(r)]g) A-plo(r)ly (A.35)

Firstly, we show the provability of Sequent A.34. By applying rule Vgoal, (note that the

side condition holds thanks to the proviso of the theorem), we obtain the following

Vo - D(plo(D)]y),o(c) Fp D(plo(r)]y)

Next, by applying the rule Vhyp, on the previous sequent, we get the following two

sequents:

D(z) (A.36)
D(plo(r)lq) (A.37)

9

',
',

9

The provability of Sequent A.36 follows from the fact that variables are well-defined. The
provability of Sequent A.37 follows from the inductive hypothesis.

Secondly, we show the provability of Sequent A.35. By applying the rule 3hyp, (note that

the side condition holds thanks to the proviso of the theorem), we obtain the following
D(plo(D]a)s ~eloDlg,o(e) Fp 3z -Dlplo(r)]g) A —elo(r)lg (A.38)
Next, by applying rule Jgoal,, on Sequent A.38, we obtain the following two sequents

D(x) (A.39)
o Dlplo(r)le) A —elo(r)g (A.40)

9

}_
}_

The provability of Sequent A.39 follows from the fact that variables are well-defined. We
conclude this proof by showing the provability of Sequent A.40. We proceed as follows.

By applying rule Agoal,, we obtain the following two sequents

» Dlplo(r)]y) (A.41)

}7
Fo o —plo(r)lg (A.42)

Appendix A Chapter 3 Proofs 147

which can, respectively, be simplified to

D(elo(r)ly) (A.43)
—plo(r)lg (A.44)

D(plo(Dg),o(c) Fp
~plo(D]g o) Fp

Sequent A.43 is provable since it corresponds to the inductive hypothesis. Sequent A.44
is provable thanks to the first part of this theorem (i.e., Sequent 3.7).

Appendix B

Buffer Case Study

This appendix provides listing of contexts and machines in the case study appearing in Chapter

6. The following listing describes the context used in the model.

CONTEXT ¢0
CONSTANTS
maxbuf
AXIOMS
axml : maxbuf € N
axm2 : maxbuf = 20

END

The following listing describes the first abstraction of the buffer using sequences.

MACHINE b0
SEES c0
VARIABLES

abuf
INVARIANTS
invl: abuf € seq(Z)
inv2: seqSize(abuf) < maxbuf

EVENTS

Initialisation
extended
begin
actl: abuf := empty

end
Event Put =

any

149

150 Appendix B Buffer Case Study
where
grdl: x€Z
grd2 : seqSize(abuf) < maxbuf
then
actl: abuf := seqgAppend(abuf, x)
end
Event Get =
any
y
where
grdl: —seqIlsEmpty(abuf)
grd2: y = seqHead(abuf)
then
actl: abuf := seqTail(abuf)
end
END

The following listing describes the first refinement of the machine b0 using arrays. Note that

the operator mod refers to the arithmetic modulo operator.

MACHINE bl

REFINES b0
SEES ¢0
VARIABLES
cbuf
a
b
INVARIANTS
invl: cbuf € arrayN(maxbuf,Z)
inv2: a€Z
inv3: be Z

inv4d : a € 0..maxbuf — 1

inv5: b € 0..maxbuf

inv6: Vi-i € (0..seqSize(abuf)) = prj2(abuf)(i) = cbuf((a + i) mod maxbuf)

EVENTS

Initialisation

begin

actl:
act2:
act3:

end

Event Put =

refines Put

cbuf := newArray(maxbuf, 0)

a:=0
b:=0

Appendix B Buffer Case Study 151

any
X
where
grdl: x€Z
grd2: b > a=b — a < maxbuf
then
actl: b:= (b+ 1)mod(maxbuf + 1)
act2: cbuf := update(cbuf,b mod maxbuf, x)
end
Event Get =
refines Get
any
y
where
grdl: a#b
grd3: yeZ
grd2: y = lookup(cbuf, a)
then
actl: a:= (a+ 1) mod maxbuf
end

END

Appendix C

Binary Trees Theory

This appendix lists a simple theory of binary trees that was developed in collaboration with

Jean-Raymond Abrial.

theory BinaryTree
type parameters T
datatype Tree
type argument T’
constructors
empty
tree(left : Tree(T),val : T,right : Tree(T))
operator treeDepth
(prefix)
args t € Tree(T)
definition
case |
treeDepth(empty) = 0
treeDepth(tree(l,z,r)) = 1+ max{treeDepth(l),treeDepth(r)}
operator mirror
(prefix)
args t € Tree(T)
definition
case |
marror(empty) = empty
marror(tree(l,x,r)) = tree(mirror(r),z, mirror(l))
theorem
Vt.t € Tree(T) = mirror(mirror(t)) =t

153

References

[

Deploy: Industrial deployment of system engineering methods providing high dependability
and productivity, February 2008. http://www.deploy-project.eu/html/about_deploy_
project.html.

VDMTools: advances in support for formal modeling in VDM. SIGPLAN Not., 43:3-11,
February 2008.

Rodin 2.0 Release Notes. Systerel, France, 2010. http://wiki.event-b.org/index.php/
Rodin_Platform_2.0_Release_Notes.

Camille Editor, 2011. http://wiki.event-b.org/index.php/Camille_Editor.

SMT Solvers Plug-in. Systerel, France, 2011. http://wiki.event-b.org/index.php/
SMT_Solvers_Plug-in.

Atelier B, the industrial tool to efficiently deploy the B Method. Clearsy, France, 2012.
http://www.atelierb.eu/en/.

Jean R. Abrial and Dominique Cansell. Click'n Prove: Interactive Proofs within Set
Theory. In Lecture Notes in Computer Science : Theorem Proving in Higher Order Logics,
pages 1-24, 2003.

Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

Jean-Raymond Abrial. A System Development Process with Event-B and the Rodin Plat-
form. In Michael Butler, Michael Hinchey, and Mara Larrondo-Petrie, editors, Formal
Methods and Software Engineering, volume 4789 of Lecture Notes in Computer Science,

pages 1-3. Springer Berlin / Heidelberg, 2007.

Jean-Raymond Abrial. Formal Methods: Theory Becoming Practice. Journal of Universal
Computer Science, 13(5):619-628, May 2007.

Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering (1st ed.).
Cambridge University Press, New York, NY, USA, 2010.

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An open
extensible tool environment for Event-B. In ICFEM 2006, LNCS, pages 588-605. Springer,
2006.

155

http://www.deploy-project.eu/html/about_deploy_project.html
http://www.deploy-project.eu/html/about_deploy_project.html
http://wiki.event-b.org/index.php/Rodin_Platform_2.0_Release_Notes
http://wiki.event-b.org/index.php/Rodin_Platform_2.0_Release_Notes
http://wiki.event-b.org/index.php/Camille_Editor
http://wiki.event-b.org/index.php/SMT_Solvers_Plug-in
http://wiki.event-b.org/index.php/SMT_Solvers_Plug-in
http://www.atelierb.eu/en/

156

REFERENCES

[13]

[17]

[19]

[20]

[23]

[24]

[25]

Jean-Raymond Abrial, Dominique Cansell, and Guy Laffitte. “Higher-Order” Mathematics
in B. In Proceedings of the 2nd International Conference of B and Z Users on Formal
Specification and Development in Z and B, ZB 02, pages 370-393. Springer-Verlag, 2002.

Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and Instanti-
ation of Discrete Models: Application to Event-B. Fundam. Inf., 77:1-28, January 2007.

Jean-Raymond Abrial and Louis Mussat. On Using Conditional Definitions in Formal
Theories. In ZB ’02: Proceedings of the 2nd International Conference of B and Z Users on
Formal Specification and Development in Z and B, pages 242—269. Springer-Verlag, 2002.

Adédm Darvas, Farhad Mehta, and Arsenii Rudich. Efficient Well-Definedness Checking. In
IJCAR ’08: Proceedings of the 4th international joint conference on Automated Reasoning,
pages 100-115. Springer-Verlag, 2008.

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner
Hahnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager, and Pe-
ter H. Schmitt. The KeY tool. Software and System Modeling, 4:32-54, 2005.

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar Habermalz,
Reiner Hahnle, Wolfram Menzel, and Peter H. Schmitt. The KeY Approach: Integrating
Object Oriented Design and Formal Verification, 2000.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, New York, NY, USA, 1998.

Frédéric Badeau and Arnaud Amelot. Using B as a high level programming language in
an industrial project: Roissy VAL. In Proceedings of the 4th international conference on
Formal Specification and Development in Z and B, ZB’05, pages 334—354. Springer-Verlag,
2005.

Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, and Andreas Thums.
Formal system development with KIV. In Fundamental Approaches to Software Engineer-
ing, Number 1783 In LNCS, pages 363—-366. Springer, 2000.

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In FMCO,
pages 364-387, 2005.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming
System: an overview. In Proceedings of the 2004 international conference on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices, CASSIS’04, pages 49-69.
Springer-Verlag, 2005.

H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undefinedness in program
proofs. Acta Informatica, 21:251-269, 1984. 10.1007/BF00264250.

Patrick Behm, Lilian Burdy, and Jean-Marc Meynadier. Well Defined B. In B ’98: Pro-
ceedings of the Second International B Conference on Recent Advances in the Development
and Use of the B Method, pages 29-45. Springer-Verlag, 1998.

Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of matching problems.
J. Symb. Comput., 3(1-2):203-216, February 1987.

REFERENCES 157

[27]

[28]

[34]

[35]

[36]

[38]

Stefan Berghofer and Markus Wenzel. Inductive Datatypes in HOL - Lessons Learned in
Formal-Logic Engineering. In Proceedings of the 12th International Conference on Theorem
Proving in Higher Order Logics, TPHOLs 99, pages 19-36. Springer-Verlag, 1999.

Juan C. Bicarregui, John S. Fitzgerald, Peter A. Lindsay, Richard Moore, and Brian
Ritchie. Proof in VDM: a practitioner’s guide. Springer-Verlag New York, Inc., New York,
NY, USA, 1994.

J.P. Bowen and M.G. Hinchey. Ten commandments of formal methods. Computer,
28(4):56-63, apr 1995.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.
Int. J. Softw. Tools Technol. Transf., 7(3):212-232, June 2005.

Michael Butler and Stefan Hallerstede. The Rodin Formal Modelling Tool. BCS-FACS
Christmas 2007 Meeting - Formal Methods In Industry, London., December 2007.

J. H. Cheng. A Logic for Partial Functions. PhD Thesis, University of Manchester, 1986.

J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions.
In C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement Workshop, pages 51-69.
Springer-Verlag, 1991.

Alonzo Church. A Formulation of the Simple Theory of Types. J. Symb. Log., 5(2):56-68,
1940.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and José F. Quesada. Maude: Specification and Programming in Rewriting
Logic. Theoretical Computer Science, 2001.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Carolyn Talcott. The Maude 2.0 System. In Robert Nieuwenhuis, editor,
Rewriting Techniques and Applications (RTA 2003), number 2706 in Lecture Notes in
Computer Science, pages 76—87. Springer-Verlag, June 2003.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, MichalMoskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A Practical System for
Verifying Concurrent C. In Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, TPHOLSs ’09, pages 23-42. Springer-Verlag, 2009.

David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In Gilles
Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, International
Workshop, CASSIS 2004, Marseille, France, March 10-14, 2004, Revised Selected Papers,
volume 3362 of Lecture Notes in Computer Science, pages 108-128. Springer, 2004.

D. Craigen, S. Gerhart, and T. Ralston. Formal methods reality check: industrial usage.
Software Engineering, IEEE Transactions on, 21(2):90 —98, Feb 1995.

158 REFERENCES
[40] Istituto Trentino Di Cultura, Alessandro Armando, Alessandro Armando, Alessandro
Cimatti, and Alessandro Cimatti. Building and executing proof strategies in a formal
metatheory. In Advances in Artifical Intelligence: Proceedings of the Third Congress of
the Italian Association for Artificial Intelligence, IA*AI’93, Volume 728 of Lecture Notes

in Computer Science, pages 11-22. Springer-Verlag, 1993.

[41] Nachum Dershowitz. Termination of rewriting. J. Symb. Comput., 3:69-115, February
1987.

[42] Nachum Dershowitz. Term Rewriting Systems by (Marc Bezem, Jan Willem Klop, and
Roel de Vrijer, eds.), Cambridge University Press, Cambridge Tracts in Theoretical Com-
puter Science 55, 2003, hard cover: ISBN 0-521-39115-6, xxii+884 pages. Theory and
Practice of Logic Programming, 5:395-399, 2005.

[43] Nachum Dershowitz and David A. Plaisted. Rewriting. In Handbook of Automated Rea-
soning, pages 535-610. 2001.

[44] David L. Detlefs. An overview of the extended static checking system. In Proceedings of
the First Workshop on Formal Methods in Software Practice, pages 1-9, 1995.

[45] Gilles Dowek, Thérese Hardin, and Claude Kirchner. Theorem Proving Modulo. Journal
of Automated Reasoning 31(1), pages 33-72, 2003.

[46] Andrew Edmunds, Michael Butler, Issam Maamria, Renato Silva, and Chris Lovell. Event-
B Code Generation: Type Extension with Theories. In ABZ’2012, 2012 (In Press).

[47] Steven Eker. Associative-Commutative Matching Via Bipartite Graph Matching. Comput.
J. 38(5), pages 381-399, 1995.

[48] Steven Eker. Associative-Commutative Rewriting on Large Terms. In Proceedings of
the 14th International Conference on Rewriting Techniques and Applications (RTA 2003),
Lecture Notes in Computer Science, pages 14-29. Springer, June 2003.

[49] Eclipse Foundation. Eclipse Platform. http://www.eclipse.org/, 2011.

[50] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving.
Harper & Row Publishers, Inc., New York, NY, USA, 1985.

[51] Antony Galton. Temporal logic and computer science: an overview, pages 1-52. Academic
Press Professional, Inc., San Diego, CA, USA, 1987.

[52] Frangois Garillot and Benjamin Werner. Simple Types in Type Theory: Deep and Shallow
Encodings. In TPHOLSs, pages 368-382, 2007.

[53] Martin Giese. Taclets and the KeY Prover. Electron. Notes Theor. Comput. Sci., 103:67—
79, November 2004.

[54] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre

Jouannaud. Introducing OBJ. In Software Engineering with OBJ: Algebraic Specification
in Action. Kluwer, 2000.

http://www.eclipse.org/

REFERENCES 159

[55]

[61]

[62]

[66]

Joseph A. Goguen, Claude Kirchner, Hlne Kirchner, Aristide Mgrelis, Jos Meseguer, and
Timothy C. Winkler. An Introduction to OBJ 3. In Stphane Kaplan and Jean-Pierre
Jouannaud, editors, Conditional Term Rewriting Systems, 1st International Workshop,
Orsay, France, July 8-10, 1987, Proceedings, volume 308 of Lecture Notes in Computer
Science, pages 2568-263. Springer, 1987.

Robert Goldblatt. Mathematical Modal Logic: A View of Its Evolution. Journal of Applied
Logic, 1(5-6):309-392, 2003.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.
Mike Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic, 1985.

David Griffioen and Marieke Huisman. A comparison of PVS and Isabelle/HOL. In
Theorem Proving in Higher Order Logics, number 1479 in Lect. Notes Comp. Sci, pages
123-142. Springer, 1998.

Stefan Hallerstede. Justifications for the Event-B Modelling Notation. In Jacques Jul-
liand and Olga Kouchnarenko, editors, B 2007: Formal Specification and Development
in B, volume 4355 of Lecture Notes in Computer Science, pages 49-63. Springer Berlin /
Heidelberg, 2006.

Stefan Hallerstede. On the Purpose of Event-B Proof Obligations. In ABZ ’08: Proceedings
of the 1st international conference on Abstract State Machines, B and Z, pages 125-138.
Springer-Verlag, 2008.

John Harrison. Metatheory and Reflection in Theorem Proving: A Survey and Critique.
Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995. Available
on the Web as http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21:666—677, August
1978.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 26(1):53—
56, January 1983.

Krystof Hoder and Andrei Voronkov. Comparing unification algorithms in first-order the-
orem proving. In Proceedings of the 32nd annual German conference on Advances in
artificial intelligence, KI'09, pages 435-443. Springer-Verlag, 2009.

Alexei Iliasov, Elena Troubitsyna, Linas Laibinis, Alexander Romanovsky, Kimmo
Varpaaniemi, Dubravka Ilic, and Timo Latvala. Supporting Reuse in Event B Devel-
opment: Modularisation Approach. In Marc Frappier, Uwe Gléasser, Sarfraz Khurshid,
Rgine Laleau, and Steve Reeves, editors, Abstract State Machines, Alloy, B and Z, Sec-
ond International Conference, ABZ 2010, Orford, QC, Canada, February 22-25, 2010.
Proceedings, volume 5977 of Lecture Notes in Computer Science, pages 174-188. Springer,
2010.

C. B. Jones. Reasoning About Partial Functions in the Formal Development of Programs.
Electron. Notes Theor. Comput. Sci., 145:3-25, January 2006.

160

REFERENCES

[68]

[69]

C. B. Jones and C. A. Middelburg. A Typed Logic of Partial Functions Reconstructed
Classically. ACTA INFORMATICA, 31:399-430, 1994.

CIliff B. Jones. Software Development: A Rigorous Approach. Prentice Hall, Upper Saddle
River, NJ, USA, 1980.

Cliff B. Jones. Systematic software development using VDM (2nd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1990.

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended ML: A
gentle introduction. Theoretical Computer Science, 173:445-484, 1997.

Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl, and
Marcel Verhoef. The overture initiative integrating tools for VDM. SIGSOFT Softw. Eng.
Notes, 35:1-6, January 2010.

P. A. Lindsay, C. B. Jones, K. D. Jones, and R. D. Moore. Mural: A Formal Development
Support System. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1991.

X. Liu, Z. Chen, H. Yang, H. Zedan, and William C. Chu. A Design Framework for
System Re-engineering. In Proceedings of Asia Pacific and International Computer Science
Conference, pages 324-352, 1997.

Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of abstract data types.
Wiley, 1996.

Gerald Luettgen, Cesar Munoz, Ricky Butler, Ben D Vito, and P. Miner. Towards a
customizable PVS. Technical report, 2000.

Issam Maamria and Michael Butler. Rewriting and Well-Definedness within a Proof Sys-
tem. In Ana Bove, Ekaterina Komendantskaya, and Milad Niqui, editors, PAR, volume 43
of EPTCS, pages 49-64, 2010.

Issam Maamria, Michael Butler, Andrew Edmunds, and Abdolbaghi Rezazadeh. On an
Extensible Rule-Based Prover for Event-B. In Marc Frappier, Uwe Glsser, Sarfraz Khur-
shid, Rgine Laleau, and Steve Reeves, editors, Abstract State Machines, Alloy, B and
Z, volume 5977 of Lecture Notes in Computer Science, pages 407-407. Springer Berlin /
Heidelberg, 2010.

Narciso Marti-Oliet and José Meseguer. Rewriting logic as a logical and semantic frame-
work. In J. Meseguer, editor, Electronic Notes in Theoretical Computer Science, volume 4.
Elsevier Science Publishers, 2000.

Farhad Mehta. Supporting Proof in a Reactive Development Environment. International
Conference on Software Engineering and Formal Methods, 0:103-112, 2007.

Farhad Mehta. A Practical Approach to Partiality - A Proof Based Approach. In ICFEM,
pages 238-257, 2008.

Farhad Mehta. Proofs for the Working Engineer. PhD Thesis, ETH Zurich, 2008.

Christophe Métayer and Laurent Voisin. The Event-B Mathematical Language (Version
2), March 20009.

REFERENCES 161

[84]

[85]

[94]

[95]

[100]

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1st edition, 1988.

Robin Milner. Logic for computable functions: description of a machine implementation.
Technical report, Stanford, CA, USA, 1972.

Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1989.

Robin Milner. Communicating and mobile systems: the w-calculus. Cambridge University
Press, New York, NY, USA, 1999.

Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1990.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle Logics: HOL, 2000.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In Deepak
Kapur, editor, 11th International Conference on Automated Deduction (CADE), volume
607 of Lecture Notes in Artificial Intelligence, pages 748-752. Springer-Verlag, 1992.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-calvert. PVS Language Refer-
ence, 2001.

Lawrence C. Paulson. Isabelle: The next seven hundred theorem provers. In Proceedings of
the 9th International Conference on Automated Deduction, pages 772-773. Springer-Verlag,
1988.

Lawrence C. Paulson. The foundation of a generic theorem prover. J. Autom. Reason.,
5:363-397, September 1989.

Lawrence C. Paulson, Tobias Nipkow, and Markus Wenzel. The Isabelle Reference Manual,
2007.

David A. Plaisted. Equational Reasoning and Term Rewriting Systems. Oxford University
Press, Inc., New York, NY, USA, 1993.

Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag New York, Inc., New York,
NY, USA, 1985.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,
12:23-41, January 1965.

Ken Robinson. Reconciling Axiomatic and Model-Based Specifications Reprised. In Egon
Borger, Michael J. Butler, Jonathan P. Bowen, and Paul Boca, editors, ABZ, volume 5238
of Lecture Notes in Computer Science, pages 223-236. Springer, 2008.

Donald Sannella. Formal program development in Extended ML for the working program-
mer. In Proc. 3rd BCS/FACS Workshop on Refinement, Workshops in Computing, pages
99-130. Springer, 1991.

162

REFERENCES

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Matthias Schmalz. Export to Isabelle. ETH Zurich, Switzerland, 2009. http://wiki.
event-b.org/index.php/Export_to_Isabelle.

Matthias Schmalz. The Logic of Event-B. Technical Report 698, ETH Zurich, Switzerland,
2010. http://www.inf.ethz.ch/research/disstechreps/techreports.

Matthias Schmalz. Term rewriting in logics of partial functions. In Proceedings of the 15th
international conference on Formal methods and software engineering, ICFEM’11, pages
633-650. Springer-Verlag, 2011.

Colin Snook. Event-B Records Extension. University of Southampton, UK, 2009. http:

//wiki.event-b.org/index.php/Records_Extension.
Patrick Suppes. Introduction to Logic. Dover, 1999.

Sander D. Vermolen, Jozef Hooman, and Peter Gorm Larsen. Proving consistency of VDM
models using HOL. In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC 10, pages 2503-2510. ACM, 2010.

N. Volker. On the Representation of Datatypes in Isabelle/HOL. Technical report, First
Isabelle Users Workshop, 1995.

Markus Wenzel. Type Classes and Overloading in Higher-Order Logic. In TPHOLSs, pages
307-322, 1997.

Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal meth-
ods: Practice and experience. ACM Comput. Surv., 41(4):19:1-19:36, October 2009.

http://wiki.event-b.org/index.php/Export_to_Isabelle
http://wiki.event-b.org/index.php/Export_to_Isabelle
http://www.inf.ethz.ch/research/disstechreps/techreports
http://wiki.event-b.org/index.php/Records_Extension
http://wiki.event-b.org/index.php/Records_Extension

