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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES
SCHOOL OF CHEMISTRY

Doctor of Philosophy

PREDICTING THE LOCATION AND BINDING AFFINITY OF

SMALL MOLECULES IN PROTEIN BINDING SITES

by Michael Bodnarchuk

In this thesis, various methods for locating and scoring the binding affinity of wa-
ter molecules and molecular fragments in protein binding sites are described. The
primary aim of this work is to understand how different methodologies compare
to one another and how, by carefully choosing the correct method, they can be
used to extract information on how small molecules interact with proteins. Three
different methods are used to predict the location and affinity of water molecules;
Just Add Water Molecules (JAWS), Grand Canonical Monte Carlo (GCMC) and
double-decoupling. By applying the methods to the N9-Neuraminidase system,
it can be shown that all of the methods predict the same binding free energy of
the water molecules to within error. The JAWS method was shown to be advanta-
geous for the rapid prediction of the binding free energy of water molecules, whilst
GCMC was preferred for the prediction of hydration sites. The combination of the
methods were used on a variety of novel test cases, including hydrophobic cavities
and protein kinases. These test cases highlight how the methods can be used to
accurately predict hydration patterns as a function of the binding free energy in
GCMC simulations, and how these patterns can be used to dictate ligand design
in a drug discovery context. The approaches described are likely to be of interest
to the pharmaceutical industry. A JAWS based fragment based drug discovery
methodology is also described, which takes into account key features commonly
neglected by existing computational approaches such as fragment-solvent compe-
tition and fragment desolvation. This method is used upon the Kinesin Spindle
Protein and factor Xa, and demonstrates that the method is able to accurately lo-
cate the position of molecular fragments and water molecules compared to crys-
tallographic ligands.
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Chapter 1

Introduction

1.1 Introduction

In the past 20 years, computational methods have been widely adopted by both

academic and industrial researchers as a vital part of the drug development cycle.

Whether they are used to predict the correct pose of a drug in a binding pocket

[1], simulate the dynamics of a protein [2] or calculate the affinity between two

protein-ligand complexes [3], it is now commonplace to use computational meth-

ods alongside the more traditional wet chemistry approaches to aid the discovery

process.

For a computational method to be applicable in drug discovery it must fulfil

several criteria:

• It must be efficient, and capable of producing results rapidly

• The results must be consistent with experimental evidence

• Alternatively, the method should deliver results which experimental meth-

ods cannot easily achieve
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CHAPTER 1. INTRODUCTION

In recent years, there has been a trend towards bottom-up approaches in drug

discovery. Rather than trying to fit an entire molecule into a target binding site,

medicinal chemists attempt to piece together potential drug molecules from smaller

molecules.[4] The size of these small molecules vary significantly. At the bot-

tom end of the spectrum lie water molecules. It has long been recognised that

water molecules play a crucial role in protein-ligand complexes, with classical

thought proposing that the incorporation of water molecules into a protein-ligand

complex can provide a boost to the binding free energy.[5, 6, 7, 8] Alternatively

weakly bound water molecules can be displaced upon binding, providing an en-

tropic boost to the binding free energy.

At the other end of the spectrum lie approaches associated with Fragment-

Based Drug Discovery.[4, 9, 10] Compounds with molecular weights up to 300

Da are screened against a protein target to find both the location and affinity of

the fragment. With knowledge of the bound fragment, locations drug molecules

can be constructed around the fragment scaffolds, delivering compounds which

should be more potent and display improved Lipinski properties.[11]

Experimentally, locating water molecules and fragments is typically performed

using X-ray crystallography. Although the method gives direct evidence for bind-

ing, it is often limited by the resolution of the equipment and the ability to obtain a

high quality crystal.[12] Such drawbacks make the prediction of small molecules

in protein binding sites an appealing prospect for computational chemistry.

1.2 Thesis aims and outline

Various computational methods have been applied to predicting the location and

affinity of water molecules, although no study has ever critically appraised them

2



1.2. THESIS AIMS AND OUTLINE

in a comparative context. This provides one of the key aims of the project; to un-

derstand how different methodologies perform when applied to the same system.

This knowledge is important, since it allows the correct method to be used for

specific problems.

A second aim is to understand the role of apo hydration in the protein-ligand

binding process. For a ligand to bind to a protein, the ligand must either displace

or incorporate the apo waters. Understanding how the role of these unbound apo

waters influences ligand binding is of great interest, since it opens the possibil-

ity for rational drug design through exploiting strongly or weakly bound water

molecules in the protein binding site.

A final aim is to develop a computational approach to simulate fragments in

protein binding sites. For such a method to be of use, it should take into account

competition with water molecules - something which existing computational ap-

proaches typically neglect and plays a crucial role in the fragment binding process.

In addition, the predictions made by the approach should be able to be validated

against experimental data.

Chapter two of this thesis describes some of the key principles behind this

project, and how the Boltzmann distribution underlines the whole of computa-

tional chemistry. Chapters three and four provide an overview of the literature

concerning water molecules and fragment-based drug discovery respectively, and

highlight some of the current work in these fields. Chapter five describes the

development of the Just Add Water Molecules (JAWS) methodology [13], and

how this method has been used alongside the double-decoupling [14] and Grand

Canonical Monte Carlo (GCMC) [15, 16] to compare and contrast the methods on

the N9-Neuraminidase system. Chapter six takes the three methods and applies to

them to a number of different case studies, to help understand the role of active site

3



CHAPTER 1. INTRODUCTION

hydration in protein-ligand complexes. Chapter seven describes the development

of a JAWS-based Fragment-Based Drug Discovery method, and demonstrates its

use on two different test systems. Finally, chapter eight concludes this thesis and

evaluates the work performed herein.
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Chapter 2

Computational Methods

2.1 Introduction

With ever increasing computational power, it has now become possible to begin

to simulate complex processes such as protein folding [17] and membrane per-

meation [18], simulations which 20 years ago would never have been possible.

Such processes are typically modelled using Monte Carlo or Molecular Dynam-

ics techniques. The following chapter attempts to briefly explain some of the basic

principles behind molecular modelling. Considering the huge number of studies

and methods available in the literature, it is impossible to fully, or even partially,

explain some of the methods. As such, there are excellent introductionary sources

which go into some of the finer elements of the methods, such as Molecular Mod-

elling: Principles and applications by Leach [19] and Computer Simulation of

Liquids, by Allen and Tildesley.[20]
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CHAPTER 2. COMPUTATIONAL METHODS

2.2 Statistical Mechanics

Statistical mechanics is a method which allows the thermodynamic properties of

a system to be expressed using information from the microscopic level. The the-

ory is based upon the idea of entropy, and more specifically the second law of

thermodynamics. Statistical mechanics, using the laws set down by Boltzmann,

allows for a precise definition of entropy based upon the number and population

of microstates in the system.

2.2.1 The Boltzmann Distribution

The following derivation is taken from pages 510-511 of Physical Chemistry by

Atkins.[21]

The Boltzmann distribution can be derived by considering a system of N

non-interacting molecules. Each molecule, ni, can exist in a state of energy

ε0,ε1...where ε0 is the state with lowest energy. The instantaneous configuration

of the system fluctuates with time, yet some configurations are intrinsically more

likely others. Crucially, the total energy of each configuration must be the same.

For example, consider Figure 2.1. In this figure, each configuration has a total

energy of 7 units and 6 particles. The likelihood of any one of these states can be

expressed numerically as the configurational weight of the configuration:

W =
N !

n0!n1!n2!...
(2.1)

Using equation 2.1, it can be seen that there are 180 ways of achieving the first

configuration, 30 ways of the second but only 6 of achieving the third.

One question which might be posed is whether there is a dominant configura-

tion which is indicative of the system properties which are observed. To go about

6



2.2. STATISTICAL MECHANICS

Figure 2.1: 3 sample configurations satisfying the criteria of the same energy and
number of particles. The energy of each level, εn is denoted by n

answering this question, two constraints need to be applied:

∑
i

niεi = E (2.2)

∑
i

ni = N (2.3)

Equations 2.2 and 2.3 ensure that any configuration in the same system will

have the same total energy, E, as well as the same number of particles.

In order to find the most probable configuration, we need to differentiate W

with respect to all of the populations in the system subject to the constraints. This

is not an easy transformation however, and Lagrangian multipliers are required.

This gives the condition for the most likely configuration as:

∂ ln W

∂ni

+ α− βεi = 0 (2.4)

7



CHAPTER 2. COMPUTATIONAL METHODS

In equation 2.4, α and β are constants. The solution to this equation can be

estimated using Sterling’s approximation:

ln x! ≈ x ln x− x (2.5)

Combining this equation with equation 2.1 gives:

ln W = ln
N !

n0!n1!n2!...
(2.6)

ln W = ln N !−
∑

i

ln ni! (2.7)

ln W ≈ ln N !−
∑

i

(ni ln ni − ni) (2.8)

We can now estimate a solution to equation 2.4:

∂ ln W

∂ni

= − ∂

∂ni

(ni ln ni − ni) (2.9)

∂ ln W

∂ni

= − ln ni (2.10)

Putting this result into equation 2.4, we get:

− ln ni + α− βεi = 0 (2.11)

Hence, the most probable populaton of the state of energy εi is:

ni = eα−βεi (2.12)

8



2.2. STATISTICAL MECHANICS

Using constraint 2.3, we get:

N =
∑

i

ni = eα
∑

i

e−βεi (2.13)

Rearranging equations 2.12 and 2.13, we get the Boltzmann distribution:

ni = e−βεieα =
Ne−βεi∑

i e
−βεi

(2.14)

2.2.2 The Molecular Partition Function

The probability distribution, π, of the canonical ensemble is inexplicitly related to

equation 2.14 and the Boltzmann equation:

πNV T (i) =
1

QNV T

exp(−βεi) (2.15)

The denominator of equation 2.14 is known as the molecular partition func-

tion, Q, and plays the role of a normalisation constant in equation 2.15.

Q =
∑

i

e−βεi β = 1/kbT (2.16)

This equation contains all the information about the thermodynamics of a system

of non-interacting particles. Knowledge of the partition function allows the cal-

culation of all of the thermodynamics of the system. As a result, the partition

function is of critical importance. Such properties which can be calculated are the

Helmholtz energy, A and the pressure, p:

A = −kbT ln Q (2.17)

9



CHAPTER 2. COMPUTATIONAL METHODS

p = kbT

(
∂ ln Q

∂V

)
T

(2.18)

In equations 2.17 and 2.18 kb is the Boltzmann constant, equal to 1.38 x 10−23

J/K. T is the temperature of the system and V the volume of the system.

In the limit of a finite number of states, equation 2.16 can be used to define the

partition function. However, when dealing with a large number of states, equa-

tion 2.16 can be replaced by an integral which considers the 6 dimensional phase

space.

QNV T =
1

N !

1

h3N

∫ ∫
dpNdrNexp(−βE(pNrN)) (2.19)

In equation 2.19, pN and rN are the positions and momenta of the each of the

N particles. h is Planck’s constant, equal to 6.63 x 10−34 Js, and 1/N! is a term

which deals with indistinguishable particles.

The partition function can be generalised to introduce the idea of interacting

particles through the idea of ensembles. An ensemble can be thought of as a

large collection of system replicas, whereby each replica in the ensemble could be

representative of the true state of the system. One example of an ensemble is the

canonical ensemble. This ensemble can be thought of as a collection of identical

systems which are in thermal contact with each other, allowing the exchange of

energy between systems but keeping the temperature and number of molecules in

each system constant. Crucially however, the total energy across all of the systems

remains constant.

The reason for using ensembles is that it is extremely difficult to know the

exact state of a system at any moment, since the system is constantly exchanging

energy with its surroundings. Hence, it becomes preferable to collect a time av-

erage of the properties of the system which we want to observe. Recognising the

10



2.3. EMPIRICAL FORCE FIELDS

need for time averages, but also that they were unobtainable in the 19th century,

Gibbs invoked the ergodic hypothesis, whereby it is stated that the time average

of a system is equal to the average of an infinite number of replicas at a single

instant. The calculation of time averages can now be performed using Molecular

Dynamics simulations, discussed in section 2.4.

2.3 Empirical Force Fields

From looking at the partition function, it can be seen that the energy of the system

needs to be calculated. The way which this is commonly achieved is by split-

ting the energy contributions into two parts; the kinetic and potential energy. The

kinetic energy of the system can be found analytically from the masses and veloc-

ities of the particles, using equation 2.20.

Ek =
1

2
mv2 (2.20)

In equation 2.20, m is the mass of the particle and v the velocity of the particle.

The potential energy cannot be found in such a way. The way the potential

energy of the system is commonly found is via the use of molecular mechanics,

which typically finds the potential energy of the system as a function of the coor-

dinates of the system.

The total potential energy of a system can be thought of as a sum of all of the

intra- and inter-molecular contributions within the system:

Etotal = Ebond + Eangle + Edihedral + Ecoulombic + Edispersive (2.21)

11



CHAPTER 2. COMPUTATIONAL METHODS

Ebond and Eangle are described via a harmonic potential:

Ebond =
∑
bonds

k

2
(l − leq)

2 (2.22)

Eangle =
∑

angles

k

2
(θ − θeq)

2 (2.23)

where k is the force constant, l is the bond length, θ is the value of the angle and

leq and θeq are the equilibrium values of the bond length and angle respectively.

The dihedral energy is modelled with a cosine function:

Edihedral =
∑

dihedral

kn(1 + cos(nφ− δ)) (2.24)

Here, n is the multiplicity of the function (the number of minima in the function

as the bond is rotated through 360o). δ is the phase factor, which gives the point

where the dihedral energy is at its lowest value. φ is the rotation angle, whilst kn

is the amplitude of the cosine function and represents the force constant.

The inter-molecular contributions are made up of two parts; electrostatic (coulom-

bic potential) and dispersive and repulsive terms (Lennard-Jones potential):

Einter =
∑

i

∑
i>j

{
qiqj

4πεorij

+ 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]}

(2.25)

Here, i and j represent intermolecular atom pairs, with qi and qj the atomic partial

charges on atoms i and j. εij and σij are the Lennard-Jones well depth and collision

diameter for atoms i and j, with rij the inter-atomic distance.

The parameters used within force-fields can be derived differently, meaning

that the combination of different force-fields is rarely performed. The Generalised

Amber Force Field (GAFF) obtains its parameters through a combination of em-

12



2.4. SAMPLING THE PHASE SPACE

pirical and quantum mechanical means.[22] Partial charges are typically obtained

using a high level quantum theory such as Hartree-Fock calculations, whilst bond

lengths are typically obtained by a combination of experimental methods (such as

X-ray crystallography) and high level ab initio calculations. A similar procedure

is performed to obtain the parameters for the angle bending and torsional terms. In

comparison the GROMOS force-field is purely empirical, with non-bonded terms

parameterised to fit experimental properties such as the free enthalpy of hydration.

Bonded terms are parameterised purely against crystallographic and spectroscopic

data.[23]

2.4 Sampling the phase space

Empirical force fields allow us to calculate the relationship between atoms in a

system, but it does not allow us to sample the phase space of the system. There are

two major methods which are used to sample the phase space of systems; Monte

Carlo (MC) and Molecular Dynamics (MD). These methods are now explained.

2.4.1 Monte Carlo simulations

Monte Carlo simulations are an example of a stochastic technique which can be

used to sample properties of a system. Attempting to calculate the properties of a

system by averaging over every configuration is impossible, so a method for only

sampling states which make the biggest contribution to the partition function is

required. This can be achieved by generating a Markov chain of configurations,

whereby each new configuration is generated by a random change in the preceding

configuration. Such a change is typically made through making a change in the

Cartesian coordinates of one or more particles in the system. One problem with

13
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this method is that a huge fraction of the phase space does not make an important

contribution to the partition function. Hence, a method is required to sample the

states which contribute most to the partition function.

A method for sampling the most relevant states to the partition function was

developed by Metropolis.[24] The Metropolis algorithm is detailed below:

1. Start in state i and attempt a move to state j with probability pij

2. Accept this move with probability αij = min(1,χ), where χ is ratio of the

probability density, π, of the states j and i

3. If the move is accepted, then state i becomes state j. Else, i=i

4. Measure the property of interest, and return to 1

It is important in the Metropolis Monte Carlo algorithm that detailed balanced

is preserved. That is, the probability of moving from i to j, before weighting by

πi and πj is the same as the probability of moving from j to i.[25] When this is

obeyed, the acceptance test for the move from state i to j is:

πj

πi

=
exp(−βUj)/ZN

exp(−βUi)/ZN

(2.26)

In equation 2.26, Z is the configurational integral of the system, and is propor-

tional to the potential energy part of the partition function. Fortunately it can be

seen that the two configurational integrals in equation 2.26 cancel, since this pa-

rameter cannot be determined for large systems since it is a 6 dimensional integral.

This leaves the acceptance test as equation 2.27:

πj

πi

=
exp(−βUj)

exp(−βUi)
= exp(−β(Uj − Ui)) (2.27)

14



2.4. SAMPLING THE PHASE SPACE

In a simulation, when a move is performed the energy of the new configura-

tion is calculated and the move accepted or rejected according to the Metropolis

acceptance criterion, detailed below:

1. If the energy of the new configuration is lower than that of the preceding

configuration then the new state is automatically accepted.

2. If the energy of the new configuration is higher than that of the preced-

ing configuration, then a random number between 0 and 1 is chosen. The

Boltzmann factor of the two configurations is calculated and compared to

the random number. If the random number is less than the Boltzmann fac-

tor the new configuration is accepted, else the preceding configuration is

retained and counted again in the overall average.

Such a procedure ensures that only the configurations which make the largest

contribution to the partition function are included in the running average. Once

the simulation has finished, the properties of interest are found by averaging over

all accepted configurations using equation 2.28 below:

〈A〉 =
1

M

M∑
i=1

A
(
rN

)
(2.28)

In this equation, M is the number of configurations and rN the Cartesian coordi-

nates of that particular configuration. Monte Carlo simulations can be performed

in at least three different ensembles, each with their own acceptance tests:

• Canonical ensemble (NVT): constant temperature, number of particles and

volume. Equation 2.27 shows the acceptance test for this move.

• Isothermic-Isobaric ensemble (NPT): constant temperature, pressure and

number of particles. Equation 2.29 shows the acceptance test for this move.
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CHAPTER 2. COMPUTATIONAL METHODS

acc (A → B) = min

[
1, exp

(
−∆E + P (V n − V o)

kBT
+ N ln

V n

V o

)]
(2.29)

In equation 2.29, P is the pressure in the system, with Vn and Vo denoting

the new and original volumes of the system respectively. N is the number

of molecules within the system.

• Grand-Canonical ensemble (µVT): constant chemical potential, volume and

temperature. The acceptance tests for the Grand Canonical ensemble will

be discussed in a later section.

2.4.2 Molecular Dynamics

Whereas MC is a stochastic technique, MD is deterministic, meaning that the

preceding configurations can be found from the current configuration. In MD,

the n+1th configuration is found by integrating Newton’s laws of motion. A so-

called “trajectory“ is found during a MD simulation, which tracks the positions

and velocities of the particles as a function of time. This trajectory is based upon

Newton’s second law of motion, F = ma and the resultant differential equations:

d2xi

dt2
=

Fxi

mi

(2.30)

Given an initial starting configuration and velocities, all details relating to the

trajectory can be found at any point in space. Since the movement of one atom in

the system can affect the velocity and position of other atoms in the system, inte-

grators are used in MD to help to calculate the new positions and velocities. Al-

though these integrators are often extremely efficient they require a large number
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2.5. FREE ENERGY SIMULATIONS

of computations to be performed, meaning that running a MD simulation requires

significantly more computional power than a MC simulation due to the number

of forces which need to be calculated. Although this is one potential drawback to

MD, it also allows the efficient sampling of extremely large systems ( > 100000

atoms) to be performed, something which can be difficult for Monte Carlo simu-

lations to achieve, especially on polymeric systems.

2.5 Free Energy Simulations

For the canonical ensemble, the free energy is expressed as the Helmholtz func-

tion, A, as in equation 2.17. The importance of free energy cannot be understated,

since it is the driving force behind chemical processes. Thus it can be seen as

a highly desired quantity, but it is difficult to calculate for systems with a large

number of particles. As shown in equation 2.19 the partition function Q is a 6-

dimensional integral, and evaluating this integral for large systems becomes an in-

tractable task. Methods such as Monte Carlo or Molecular Dynamics only sample

the low energy regions of the space, and attempting to sample the large number of

degrees of freedom which contribute to Q becomes impossible. As such, methods

have been devised which allow the calculation of relative free energies between

two different systems; a calculation which is significantly easier to perform since

it can be calculated as the ensemble average of the Boltzmann exponent between

the two systems. Such approaches can be put into two categories; rigorous meth-

ods and approximate methods.
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2.5.1 Rigorous methods

Free Energy Perturbation

According to the Zwanzig equation,[26] the free energy difference between two

states, A and B, can be expressed as:

∆GA→B = −kBT ln

〈
exp

(
−∆E

kBT

)〉
A

(2.31)

In equation 2.31, <>A represents the ensemble average over system A and

∆ E represents the change in energy between states B and A. A is defined as the

reference state of the simulation, whilst B is the perturbed state. One potential

problem with this approach lies when states A and B do not overlap in phase

space. Such a scenario means that the simulation run with potential UA will not

sample sufficient configurations of UB and results in the values of ∆E becom-

ing large. Equation 2.31 demonstrates that this results in the exponent becoming

extremely small - resulting in small numbers being contributed to the overall aver-

age. Whenever the phase space of states A and B overlap the value of ∆E is much

smaller, causing a large contribution to the overall average. As such the overall

average converges very slowly, and generally results in the free energy being over-

estimated. A solution to this is to link states A and B in configurational space by

the use of a coupling parameter, λ, which introduces intermediate states. For the

above example, the reference state A would be defined to be the λ=0 state, whilst

the final state, B, would be defined as the λ=1 state.

In the free energy perturbation approach (FEP), the simulation is broken into

multiple λ windows between the two end states. Each window is defined a specific

λ value, and the free energy of that reference state is calculated. The energy

between each λ window is found, and then used in equation 2.32.
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∆G =
1∑

λ=0

−kBT ln

〈
−∆E

′

kBT

〉
λ

(2.32)

In equation 2.32, ∆E′ is the energy difference between the states λ+∆λ and

λ, where ∆λ is the interval between two successive λ windows.

Thermodynamic Integration

In the thermodynamic integration (TI) approach to calculating the free energy, the

rate of change in free energy with respect to λ is calculated across the λ trajectory.

The gradients are then integrated to give the relative free energy as in equation

2.33.

∆G =

∫ λ=1

λ=0

〈
∂G

∂λ

〉
λ

dλ (2.33)

The resultant integral is typically calculated numerically.

Finite Difference Thermodynamic Integration

In the finite difference thermodynamic integration approach (FDTI),[27] a com-

bination of FEP and TI is used. Instead of calculating the partial derivative of the

free energy gradient, the finite difference approximation is used to calculate the

free energy gradient.

∆G =

∫ λ=1

λ=0

〈
∆G

∆λ

〉
λ

dλ (2.34)

The simulation is broken up into multiple λ windows and, for each value of

λ, the free energy is computed over a small interval, typically λ+0.001, using

FEP. The total free energy change is then calculated numerically by integrating
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over the computed values. Conceptually, FDTI is very similar to FEP. In FEP, the

perturbed states are the neighbouring windows, whilst in FDTI the perturbed states

are ∆λ above and below each window. The calculation of a numerical free energy

gradient rather than an analytical gradient saves the need for a differentation step,

although this is not achievable for all potentials.

Replica Exchange Thermodynamic Integration

The replica exchange thermodynamic integration method (RETI) can be consid-

ered to be a combination of FDTI and the Hamiltonian replica exchange method.[28,

29] The λ coordinate scales the force field terms linearly, leading to a system

which has a different Hamiltonian at each λ value. In RETI, the coordinates be-

tween neighbouring λ values are periodically swapped according to the following

Metropolis test:

rand(0, 1) ≤ exp

[
1

kBT
(EB(j)− EB(i)− EA(j) + EA(i))

]
(2.35)

In equation 2.35, A and B are two different λ values and i and j are replicas

of the system at those λ values. RETI has been applied to the calculation of rel-

ative binding free energies of ligands to proteins, and has been shown to enhance

the sampling of the phase space. Since the configurations of different λ values

are passed across the λ coordinate, it has been observed that better free energy

convergence is obtained.[28, 29]
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2.5.2 Approximate free energy methods

Whereas rigorous free energy methods take into account the intermediate states

between λ = 0 and λ = 1, approximate methods typically take into account the

two end points of the simulation. As a result such simulations are typically signif-

icantly faster than their rigorous counterparts, although the accuracy of the meth-

ods are typically significantly poorer.[25] One of the most widely used approx-

imate methods is the Molecular Mechanics / Generalised Born (Poisson Boltz-

mann) Solvation Area (MM/GB(PB)SA) method.[30] In MM/GB(PB)SA the two

end points are simulated using either MD or MC, with the binding free energy

calculated as equation 2.36:

∆Gbind =< ∆Emm > +∆Gsolv − T∆S (2.36)

In equation 2.36 < ∆Emm > is the difference in the molecular mechanics en-

ergy between the complex and the isolated protein and ligand. ∆Gsolv is found as

the difference in the solvation free energy between the complex and the individual

components, although it is often challenging to calculate the non-polar contribu-

tion to the solvation free energy.[31] The method also requires an entropic term

to calculate the change in binding free energy, although this is often difficult to

estimate. This term is commonly ignored when structurally similar ligands are

compared, since it is assumed that the change in entropy between similar ligands

upon binding to the same receptor is extremely similar.[32] The results obtained

using the method are often significantly poorer than those found using rigorous

methods, although the methodology has found use in the rescoring of docking

poses.[32]

Another example of an end-point method is the Grand Canonical Monte Carlo
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approach.[15, 16] This will be discussed in depth in section ??.

2.6 Conclusions

In this chapter, a brief overview of statistical mechanics was presented. Since all

of the key quantities which we would like to know from a molecular simulation,

such as the free energy, can be calculated from the partition function, the target

for all computational methods is to try and calculate this property. Owing to the

complex nature of the partition function, however, direct calculation is impossi-

ble, so instead various methods have been devised to calculate the relative free

energy between two systems. A sampling method such as MD will allow us to

look at large systems since it is easily parallelised, although it is often limited in

its ability to perform novel sampling schemes, unlike MC. Using TI to look at the

relative binding free energy of two inhibitors is a rigorous and well-understood ap-

proach, although it is unlikely to be utilised by a pharmaceutical company which

desires to screen a large number of compounds in a short space of time due to the

computational expense of the method. The choice of the correct methodology to

the correct system is something which is often difficult to decide, and is a matter

which will be addressed in this study.
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Chapter 3

Water Molecules in Drug Design

3.1 Introduction

The following chapter reviews the different roles of water molecules in drug de-

sign, focussing upon their relevance in protein binding sites. The importance

of their interactions are assessed, before the different computational approaches

available for predicting the location and binding free energy of water molecules

are described. The known strengths and limitations of the methods are described,

followed by the identification of the need for the various techniques to be com-

pared on the same system. Such a comparison has never been described in the

chemical literature to our knowledge, and will help to understand the true poten-

tial of the various simulation methods.
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3.2 The importance of water molecules in drug de-

sign

3.2.1 Classical views and applications of water molecules in

protein binding sites

The importance of water molecules in drug design and protein structures has be-

come of considerable interest in the recent years.[33, 34, 35, 36, 37] Fuelled by

the early work of Poornima and Dean in 1995 [5, 6, 7], it has now commonplace

to take into account water molecules at all stages of the drug discovery process.

Broadly speaking, there are two major roles which water molecules play in ligand

binding. The first role is stabilising the complex via creating a hydrogen bonding

network, seen in systems such as N9-neuraminidase. The second role is when

a water molecule can be displaced upon ligand binding. This can lead to an in-

crease in the binding affinity of a ligand, since the release of a weakly bound water

molecule into the bulk carries an entropic boost to the binding free energy, cou-

pled with a enthalpic gain of strong protein-ligand interactions. Equally however,

the displacement of a water molecule can decrease the binding affinity of a lig-

and, showing that understanding the role of water molecules in drug design is of

upmost importance.

A number of studies have shown that incorporation of explicit water molecules

can considerably improve docking and virtual screening results.[38, 39] Since

bound water molecules can act as essentially part of the protein, neglecting them

in docking screens will inevitably lead to poor results. Also, as previously high-

lighted, water molecules can play a big role in the rational design of drug molecules,

meaning that knowledge of whether a water molecule is present or absent from a
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complex is highly desirable.

Work by Barillari [40] has helped to understand the nature of water molecules

which can be displaced and those which cannot. Utilising double-decoupling

simulations with replica exchange thermodynamic integration [28, 29], the pa-

per focussed on understanding whether the binding affinity of a water molecule

was related to the propensity of a water molecule to be displaced. The paper

demonstrated that, on average, water molecules which are more tightly bound are

less likely to be displaced than those which are more weakly bound. With this

knowledge the medicinal chemist can decide whether to target a particular wa-

ter molecule for displacement, or to try and design a ligand which is capable of

utilising the hydrogen bonding opportunities affording by the conserved water.

An alternative method for predicting whether a water will be displaced or

retained has been proposed by Ross et al.[41] Using a rapid docking method

termed WaterDock, a method using the freely available AutoDock Vina toolset,

they found that they could successfully predict whether a water molecule was dis-

placed at least 75 % using the Astex test set. The method locates the possible

hydration sites by attempting to dock water molecules into both apo and holo

structures, and found an encouraging 97 % of the waters when compared to the

native structures. Water molecule classifiers were identified which were used in

a data mining, heuristic and machine learning algorithm, and allowed for the pre-

diction of whether a water would be displaced or conserved when a ligand was

overlayed on a possible site. This method shows promise, although it is not capa-

ble of predicting the binding affinity of water molecules in a simulation context.
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3.2.2 Water : The active player in binding thermodynamics

More recent work has highlighted that the nature of water molecules in protein

binding sites goes considerably beyond the two roles previously mentioned. In

particular, numerous studies have explored the role which water performs in the

hydrophobic effect. It has been traditionally held that the binding of two hy-

drophobic solutes is primarily entropically driven, due to the release of config-

urationally restricted water into the bulk. This is also coupled with a favourable

increase in the enthalpy in the system due to the formation of new hydrogen bonds

in the bulk, providing a thermodynamic force for the solutes to bind together.

An excellent 2007 study by Homans [42] looked at the binding of ligands

to the Major Uninary Protein (MUP), a protein which is known to accept small,

hydrophobic ligands. In order to understand the subtle differences in the thermo-

dynamics of structurally similar ligands, Isothermal Thermal Calorimetry (ITC)

was used. ITC is an experimental technique which is capable of measuring the

binding affinity and enthalpy of interactions in the aqueous phase, allowing the

direct contribution from entropy and enthalpy to the binding free energy to be de-

termined. Two structurally similar ligands were examined in the study, differing

in the addition of a methylene linker in the scaffold of the ligand.

The study examined the contribution of solvent to the binding of the ligands,

and found some surprising results. First, it was found that the change in entropy

upon protein desolvation was practically zero. This would appear to be in vi-

olation of the hydrophobic effect, since the release of conformationally bound

water in a hydrophobic pocket should be favourable entropically. Secondly, it was

found that, for both ligands, the enthalpy of binding was extremely favourable.

The hydrophobic effect suggests that solute-solute dispersion terms should offer

a minor contribution to the free energy of binding, since they should, in principle,
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be offset by the loss of similar solvent-solute dispersion interactions prior to the

binding event. As such, the favourable enthalpy to the binding free energy was

unexpected.

The explanation for both phenomena was found in the solvation of the protein

in the uncomplexed state. Molecular Dynamics simulations were performed upon

the protein and found that the pocket was sub-optimally hydrated, with the pocket

only filled with approximately 20 % density of bulk water. As such, the enthalpic

binding signature can now be fully explained. The disordered and poorly hydrated

binding pocket does not experience a large entropic loss upon solvent removal,

since the pocket is already largely empty. Indeed, it was reported that the pocket is

actually entropically favourable to be sub-optimally hydrated rather than have the

solvent in the bulk. The lack of solvent in the pocket allows a large contribution

to the binding free energy by solute-solute dispersion interactions, since these

are not offset by the opposing solvent-solute interactions. As such, this offers an

explanation for why the larger compound with an additional methylene linker has

a more favourable binding free energy.

The discovery that not all proteins are fully hydrated has important conse-

quences for drug design. Targetting sub-optimally hydrated proteins with ligands

which optimise solute-solute dispersion interactions through shape complimenta-

rity is likely to lead to potent inhibitors, since these interactions will not be offset

by the solvent-solute interactions in the unbound state. In addition, targetting spe-

cific, poorly hydrated, regions of binding sites with strong solute-solute dispersion

interactions is likely to be successful. The obvious barrier to such an approach lies

in the identification of such regions within protein binding sites; something which

is highlighted by Homans.[42]

Following on from Homans work, a number of other groups have started to
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concern themselves with the idea of solvent-based thermodynamic signatures to

binding events. A study by Setny looked at the binding thermodynamics of a

model hydrophobic receptor-ligand system, using explicit MD simulations to de-

rive a PMF for the receptor-ligand interaction.[43] The model hydrophobic recep-

tor was made out of a hexagonal closed packed lattice of Lennard-Jones spheres,

with the ligand treated as a neutral Lennard-Jones sphere. The TIP4P model was

used to model the water molecules.[44] It was found that for this model system

the overall free energy for complete hydration of the pocket was zero, with the

surprising result that the removal of water from the pocket was entropically un-

favourable - suggesting that water in this model system is highly mobile. It was

recognised in the study that the solvation of the cavity was due to expansions and

retractions of the bulk phase. The entropy was calculated by observing the tem-

perature dependence of the free energy based on 5 MD simulations performed at

different temperatures.

Interestingly this increase in entropy is offset by the gain of enthalpy in the

bulk through solvent-solvent interactions, resulting in the net free energy change

of zero for protein desolvation. The driving force for the binding of receptor

and ligand in this study was found to be predominantly due to the strong gain in

solvent-solvent enthalpy upon desolvation and receptor-ligand binding, with the

receptor-ligand dispersion terms playing a much smaller role.

It can be seen that the conclusions drawn from this study appear to be in con-

tradiction to the work performed by Homans. Whilst both studies agree that hy-

drophobic association can be enthalpy driven, Homans attributes the driving force

to strong protein-ligand interactions which are stronger than the protein-water in-

teractions in the hydrated protein. In comparison, the work by Setny concluded

that the driving force is the formation of strong water-water interactions in the
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bulk upon desolvation, rather than protein-ligand association. It should be noted,

however, that the Setny system which was studied has several key differences to

the MUP system. Firstly the receptor used was a model system, built up of a close-

packed grid Lennard-Jones spheres, rather than a true protein-ligand system. Such

an approach is likely to underestimate the interactions which would normally be

made between protein, ligand and water, and as such is not necessarily indicative

of reality. Secondly the receptor was solvent accessible, whilst the binding site

of MUP is shielded from the bulk solvent. As such it is difficult to compare the

studies on an equal footing.

The hydrophobic interaction study used by Setny was used as a basis for a

second study looking at the role of water in cavity-ligand recognition.[45] A series

of different model systems were used, looking at 7 different combinations of the

charge states of the cavity and ligand. As with the previous study, Lennard-Jones

spheres were used to describe the cavity and the ligand. For each combination,

the different thermodynamic signatures to the binding event was examined. It was

found that the thermodynamic signature of water was responsible for the binding

(or non-binding) of the ligand to the cavity for each model system, with other

effects playing a much more minor role. A possible explanation for this is the

over-simplification of the system, since only the water molecules were modelled

in explicit detail. Whilst also providing enthalpic and entropic contributions to

the binding thermodynamics, it was also found that water plays an electrostatic

screening role in the attraction of two oppositely charged species.

Whilst looking at individual water molecules is of great interest in lead dis-

covery and development, wherein specific water molecules are often targetted and

exploited, the role of water networks is beginning to be recognised as of equal im-

portance. A recent communication by Hummer highlights the fact that seemingly
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subtle changes in the hydrogen bonding network of water molecules can have pro-

found effects upon the binding free energy of ligands.[46] As such, considering

water networks alongside individual waters is an idea which is beginning to be in-

corporated. Indeed, a 2011 paper by Barillari looked at the apo hydration patterns

of different kinases, finding qualitative differences in the water networks between

different, yet sequentially similar, kinases.[37]

3.2.3 Locating water molecules experimentally

It is therefore apparent that the role of water in protein-ligand interactions is much

more than just as solvent [47], and it plays an active role in the binding events. As

such, knowledge of where water molecules like to reside in protein binding sites

is of paramount importance. The traditional way of identifying water molecules

is through X-ray crystallography, although this approach is often limited. A 1999

paper by Carugo [12] suggested that protein resolution is typically a limiting factor

in determining the number of water molecules in a protein structure. Looking at

873 known crystal structures, the paper indicated that, on average, a protein struc-

ture with a resolution of 2 Å had one water molecule per residue resolved, whilst

at a resolution of 1.0 Å around 1.6-1.7 waters are resolved. The same behaviour

has been noted by Abel in a recent 2011 paper observing the hydration of the apo

structure of thrombin.[48] Another issue with relying on crystallographic methods

to predict waters lies in the role of the crystallographer. It has been demonstrated

that two indepedently resolved structures of the transforming growth factor-β2

were found to have a different number of crystallographic waters with varying

temperature factors [49], suggesting that the addition of water molecules into a

crystal structure can be problematic.

Since crystallographic approaches will not necessarily give a true picture of
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the hydration patterns within a protein binding site, computational methods have

been used to try and locate the position of water molecules. The following sub-

sections review some of these approaches, and highlight the advantages and dis-

advantages of the methods.

3.3 Grand Canonical Monte Carlo

Formulated by Adams in 1974 [15, 16], the Grand Canonical Monte Carlo (GCMC)

technique is one which is capable of predicting the location of molecules in both

biological and inorganic systems. Unlike traditional MC and MD simulations,

GCMC utilises the µVT ensemble which allows the number of molecules in the

system to fluctuate as a function of the applied chemical potential. As such,

the methodology is ideally suited to looking at systems where the number of

molecules in a system is unknown, such as an apo protein binding site.

In a GCMC simulation the moves associated with the canonical ensemble are

permitted, alongside three unique moves associated with the µVT ensemble. The

first type of move is a particle creation move, whereby the number of molecules

in the system increases by one. The second type of move is a particle deletion,

whereby the number of molecules in the system is decreased by one. The final

type of move is a localised translational move, whereby inserted molecules are

allowed to translate around the system. The acceptance tests for these moves are

shown in equations ??, ?? and ??.

Pin = min

[
1,

exp(B)

N + 1
exp

(
−∆E

kbT

)]
(3.1)

Pdel = min

[
1, Nexp(−B)exp

(
−∆E

kbT

)]
(3.2)
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Pdis = min

[
1, exp

(
−∆E

kBT

)]
(3.3)

In the above equations, N is the number of particles in the simulation and

B is the Adams parameter (B = µ′/kBT + ln n̄). n̄ is the expected number of

particles in the system given the volume of the simulation region and is equal to

p̄v, where p̄ is the number density of the particle and v the simulation volume.[50]

µ′ is the excess chemical potential, kB is the Boltzmann constant and ∆E the

change in energy between the new and old states. Historically, B has been used

in simulations instead of µ, for computational simplicity.[51] No explanation has

been found for this parameter, but one possible explanation is that it allows the

simulation results to be compared to the expected number of molecules in the

bulk, n̄. Since B and µ′ differ by a constant, performing a simulation at constant

B is equivalent to performing a simulation at constant chemical potential, µ′.

One problem which arises from using the Grand Canonical ensemble is the

acceptance rate of insertions. If an insertion is attempted into a dense system

then it is extremely likely that the move will be rejected due to repulsive van

der Waals interactions. Acceptance rates of less than 1 % have been reported in

the literature,[13, 50] meaning that adequate sampling of the chemical space can

be a problem. In order to try and increase the efficiency of GCMC simulations,

strategies have been devised to increase the acceptance rate of insertion moves.

3.3.1 Increasing the acceptance rates of GCMC simulations

The first method developed to attempt to increase the rate of GCMC insertions was

to employ cavity bias in the simulation procedure.[51, 52] Rather than randomly

inserting a molecule into the system, a preliminary test is made to look for regions

where the test particle will fit into the system without overlapping with existing
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particles. Typically the van der Waals radius of the test particle is used to look for

suitable gaps in the system. Once the potential sites for insertion are identified,

an insertion attempt is performed on a random chosen cavity site. If the move is

accepted then the cavity positions are recalculated, whilst if the move is rejected

the grid is not updated. Equally, if a deletion move is accepted then the cavity

positions are recalculated. Since the cavity searching procedure biases insertions

into particular points in space, a biasing term needs to be introduced into the

Metropolis tests for insertions and deletions, shown in equations ?? and ??.

Pin = min

[
1,

exp(B)Pcav

N + 1
exp

(
−∆E

kbT

)]
(3.4)

Pdel = min

[
1,

Nexp(−B)

Pcav

exp

(
−∆E

kbT

)]
(3.5)

In equations ?? and ??, Pcav is the probability of finding a cavity of radius

Rc or larger. This is found by generating a number of uniformly distributed test

points and calculating the fraction which have a cavity of size Rc or greater. If no

potential insertion points are found then an insertion attempt is made randomly

into the system utilising the standard GCMC acceptance tests.

Even with cavity bias schemes the acceptance rates for GCMC are still not

optimal. In order to further increase the efficiency of GCMC simulations, Shel-

ley and Patey utilised a configurational bias scheme to increase the acceptance

rate.[53] Since calulating the entire system energy for insertions can be expensive,

the authors utilised the fact that calculating the van der Waal’s energy is consid-

erably faster than calculating the electrostatic energy. A scheme can therefore be

developed which is, in theory, more efficient than standard GCMC:

1. Select an insertion point which satisfies the cavity bias pre-screen.
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2. Calculate the van der Waals energy of the new molecule in this position. If

the energy of this position is less than zero then move onto the next stage. If

the energy of the position is greater than zero then reject with the probability

1-αLJ
ij

, where:

αLJ
ij

= 1 if ∆E LJ
ij
≤ 0, = e

−β∆E
LJ
ij if ∆E LJ

ij
> 0 (3.6)

In equation ??, α is the rejection criterion for the position j, β is 1 / kbT,

and ∆E is the change in van der Waals energy upon an insertion attempt. If

the value of ∆E is negative then the position is accepted for the next step,

else the Boltzmann factor is calculated to determine the acceptance of the

position.

3. Trial n orientations of the water molecule and weight towards the one with

the lowest potential energy.

4. Accept or reject the move according to a modified Metropolis test.

Application of the configurational bias algorithm was found to remove 48 % of

potential insertion attempts within a water box at minimal CPU cost, demonstrat-

ing the effectiveness of the method. Despite the apparent merits of the technique

there has not been a widespread adoption of the method in the chemical literature.

3.3.2 Use of GCMC in biological systems

Despite the wealth of literature relating to the use of GCMC, there are relatively

few examples where the method has been used to predict the location of waters

in biological systems. The first paper describing such an application involved the

hydration of the major and minor grooves of DNA.[54] In order to attempt to
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understand the hydration patterns, the authors developed a technique known as

simulated annealing of chemical potential.

The method works by starting the simulation at a high value of B. From look-

ing at equation ?? it can be seen that a high B should increase the likelihood of

insertion attempts being accepted, resulting in the simulation box being flooded

with water molecules. As the chemical potential is gradually lowered the more

weakly bound water molecules begin to leave the simulation box, whilst those

which are strongly bound remain. This process continues until all of the water

molecules have evacuated the system. Since the chemical potential of the system

is known at all stages of the simulation a quantitative estimate of the water binding

free energy at relevant hydration sites can be calculated.

The application of the method to DNA demonstrated proof of concept in the

simulated annealing approach, in that as the chemical potential was lowered the

number of molecules in the system decreased. Despite this, the study lacked sev-

eral aspects of physical realism, primarily that the DNA in the system was held

rigid throughout when it is widely held that this is not the case in biology. By not

allowing flexibility the system will not sample the entire configurational space,

meaning that the results are not necessarily realistic. The authors noted that the

waters binding in the major groove were more weakly bound than those in the

minor groove, yet it is possible that if such a scenario were to happen in nature the

DNA would change conformation to accommodate the change in hydration state.

Another study by Mezei and Resat looked at applying the GCMC routine to the

hydration of a cavity in the sodium salt of hyaluronic acid.[55] An isolated cavity

within the crystal was chosen and GCMC insertions performed within this region.

The molecules were restrained with a hardwall potential to prevent them from

leaving the region of interest. Rather than employing simulated annealing, the
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authors simply ran the simulation at a range of B values to record the number of

waters in the subunit. The simulation corroborated experimental evidence relating

to the optimum occupancy of the cavity, although as with the previous example

the polymer was kept rigid throughout the simulation.

A study by Pan et al. looked at using GCMC to assist lead optimisation.[56]

Looking at the HIV-1 Tat system, the authors tried to rationalise changes in lig-

and binding affinity by looking at the hydration sites near to the ligand. A lead

compound was chosen and subjected to a GCMC simulation within the binding

pocket, using a chemical potential which matched experimental conditions. 5 po-

tential hydration sites were identified, with one site identified as displacable by

ligand substitution. Derivatives of the lead compound were then simulated which

attempted to displace this site. For each compound, the number of water deletions

in the vicinity of the ligand was recorded. Those compounds which displaced the

water most efficiently were claimed to experience the fewest number of deletions

and were then tested in an experimental assay, indicating that these were more

potent than the lead compound.

Despite the apparent success of the method in identifying potential sites for

lead optimisation there are several issues arising from the study. Although tech-

niques such as cavity-bias [51] were employed, the acceptance rate for insertions

is still likely to be less than 1 %. As such, monitoring the number of deletions is

not likely to be a statistically significant way of assessing the propensity of water

displacement. Indeed it would be expected that the compound which displaced the

water most effectively would experience the most number of successful deletions,

since this would suggest the water is not present for the majority of the time. This

assertion is backed up by looking at the data supplied in the paper, whereby the

compound which was found to have the lowest EC50 did not have the fewest num-
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ber of deletions. In addition the number of MC moves performed in the study was

not mentioned, giving no indication of the efficiency of the method. A better mea-

sure would be to monitor the number of successful insertions and deletions into

the region, which would allow a probability of the site occupancy to be obtained.

A 2004 paper by Woo et al. looked at utilising the grand canonical ensem-

ble to help in using dual solvation approaches.[50] Rather than simulating an

entire system using explicit solvation, the approach allows the region of inter-

est to be simulating using explicit solvent whilst the remainder is simulated with

implicit solvent. This approach, known as the generalised solvent boundary po-

tential (GSBP),[57] requires waters to be able to cross over the boundary which is

governed by allowing GCMC moves set at the chemical potential of water. Such

a solvation set-up has two major advantages. First it allows the solvent to sample

deeply buried cavities within the protein, something which often results in long

timescales if simulated by MD. Second, the system is considerably quicker to

simulate if not all of is treated explicitly. In order to achieve adequate sampling

in the explicit phase, the authors utilised similar schemes to the cavity bias and

configurational bias approaches described previously.

The methodology was tested on two different systems to determine the effi-

ciency of the process. First a pure implicit-explicit water system was tested, with

the methodology predicting the expected number of waters in the system given the

correct chemical potential. Second the KcsA potassium channel was tested as an

example of a system where water passage between the bulk and the interior cav-

ity is typically problematic using standard MD. By utilising the GSBP approach

equilibration within the pore was achieved, with an average GCMC acceptance

rate of 0.81 %.

A later study by Deng and Roux looked at applying the GSBP/GCMC tech-
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nique to the binding of camphor in cytochrome P450cam.[58] The binding of

camphor occurs into a deeply buried pocket in the protein, resulting in the ex-

plusion of seven water molecules into the bulk. Standard FEP simulations with a

fixed number of waters to calculate the absolute binding energy can suffer from

energy convergence issues, making the system ideal for the GSBP/GCMC. To

calculate the absolute binding energy the FEP simulation was performed in three

stages. First, the solute repulsion terms in the pocket are gradually turned on. The

solute attraction terms are then included, before the solute electrostatic terms are

switched on. By allowing the number of water molecules to fluctuate within the

pocket, the calculated binding free energy was found to be within 0.50 kcal/mol of

the experimental result compared to an error of > 6 kcal/mol when a fixed number

of waters are used.

A more novel use of a Grand Canonical approach has been used by Collins

et al.[59] Studying at the hydrophobic T4-lysozyme cavity, they looked at the

thermodynamics of filling the cavity with a different number of water molecules.

A MD simulation was performed, where the number of water molecules within the

cavity was varied between 0 and 5. The canonical average of the Boltzmann factor

of the potential-energy change ∆U = UN+1 - UN was calculated for the process of

inserting a water molecule into the cavity already occupied by N waters, with this

related back to the chemical potential and number density of bulk water to arrive

at an occupancy probability for each number of molecules within the cavity. The

results from the study were verified by X-ray crystallography. This system will be

further described in section ??.
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3.4 Just Add Water Molecules

The Just Add Water Molecules (JAWS) methodology was developed by Michel et

al. as a tool to help predict the water content with protein binding sites.[13] As

previously mentioned, this is typically a problem for solvent inaccessible binding

pockets since the timescales required for waters to diffuse in and out of such pock-

ets are typically too long to simulate. Although the GCMC method is capable of

locating the waters within such pockets, it requires prior knowledge of the chemi-

cal potential which matches experimental conditions. This is typically non trivial,

and requires several additional simulations if the desired conditions are not known

a priori. In addition, the acceptance rates for GCMC insertions are typically < 1

%, meaning that adequate sampling of the cavity can be problematic.[50]

The JAWS methodology was designed as a method which is capable of both

locating the position of waters within a protein binding and also providing an es-

timate for the binding affinity of these waters compared to the bulk. Based upon

λ-dynamics [60], the approach works by simulating so called “θ-water” molecules

which can appear and disappear across a grid located on the binding site. θ is an

energy scaling parameter which controls the interaction energy between each θi

water and the rest of the molecules in the system. If the value of θi is 0 then the

molecule acts like a ghost particle and does not interact with the system. Equally,

if θi = 1 then the molecule interacts fully with the system. The potential energy

function, E(r), that describes N water molecules with scaling parameters θi inter-

acting within a protein binding site is shown in equation ??:

E(r,
N∑

i=1

θi) = E0(r) +
N∑

i=1

θiEinter(r, water i) (3.7)

, where Einter is the intermolecular energy of θ-water molecule i and E0 con-
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tains the other energy terms.

A MC simulation is performed whereby the θ-water molecules are allowed

to sample the binding site grid whilst also sampling the value of θ. N θ water

molecules are distributed across the binding site, so that 1 water molecule per 30

Å3 is added randomly onto a 3D grid, corresponding to approximately the number

density of bulk water. The θ-water molecules are allowed to freely sample the

grid, and attempted MC moves consist of rigid body translations, rotations and,

for 50% of the moves, a random variation in θ. If the value of θi is greater than

a predefined threshold, typically 0.95, then a counter is increased by one on the

nearest grid point.

The MC simulation is carried out for typically 5-15 M moves, and results in a

probability density of water occupancies over the grid. These occupancies are then

converted into an integer number of hydration sites using a clustering algorithm.

There are two potential problems with performing such an approach:

• The number of hydration sites is not always known

• Clustering the information gives no indication of whether the potential sites

are correlated.

Having identified the potential sites, an estimate of the binding free energy

is sought. In order to achieve this, statistics need to be collected whereby the

molecule experiences both the θ > 0.95 and θ < 0.05 states. Since the free energy

barrier between the two states is typically large, a biasing potential is applied to

each of the θi to enable such transitions. This biasing potential is based upon the

hydration free energy of water and can be seen in equation ??.

V (θi) = (−∆Ghyd + ∆Gconstr(ideal, site i))θi (3.8)
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In equation ??, ∆Gconstr is the free energy for constraining an ideal particle in

a volume of Vconstr instead of the bulk, V0.

∆Gconstr = −kBT ln
V constr

V o
(3.9)

Each water molecule is constrained to occupy a volume of 27 Å3, based on the

water locations derived after clustering the first set of simulations, and a new MC

simulation is performed with the biasing potential added onto the potential energy

function for each θi water. Since the biasing potential is based upon the hydration

free energy of water, the biasing term penalizes the high θi states by an amount

that accounts for the desolvation of the water from bulk at the localised site i. As

such, tracking the θ > 0.95 and θ < 0.05 states can allow an estimation of the

binding free energy using equation ??.

∆Gbind(water, site i) = −kBT ln

(
P (θi → 1)

P (θi → 0)

)
(3.10)

At the end of the JAWS simulation, water molecules with negative binding

free energies are retained. One drawback of the technique is that strongly bound

water molecules often cannot have their binding free energy estimates found since

the biasing potential is not sufficient to sample the θ < 0.05 state.

3.4.1 Applications of JAWS

The original test system for JAWS was the zanamivir bound N9-neuraminidase

complex. The binding pocket of N9-neuraminidase is isolated from the bulk sol-

vent and crystallographic evidence resolves 6 water molecules within the site.

The JAWS algorithm was trialled upon the system and located 7 potential hydra-

tion sites. 6 of these sites closely matched the crystallographic positions, whilst

41



CHAPTER 3. WATER MOLECULES IN DRUG DESIGN

another additional site was found towards the top of the pocket. These 7 sites were

studied using JAWS stage 2, with the resultant binding free energies suggesting

that the extra site had a positive binding free energy. Of the 6 crystallographic

sites, only one did not experience a transition to the θ < 0.05 state and hence this

binding free energy was not converged. The results were validated using double-

decoupling MC, with the results in good qualitative agreement.

Michel et al. have used the JAWS methodology to assist in free energy calculations.[61]

Looking at test systems where water molecules are known to be displaced, the

JAWS methodology was used to assess the energetic consequences of such dis-

placements. The scytalone dehydratase system was chosen, whereby upon the

substitution of a triazine moiety to a cyano diazine group there is a 30-fold in-

crease in Ki. This transformation involves the displacement of a water molecule,

bridging the triazine ring to two tyrosine residues. Another ligand in the series

has just the diazine ring with no cyano group, but the occupancy of water for this

ligand is ambiguous with a JAWS free energy of -1 kcal/mol. These ligands can

be seen in Figure 3.1.

Figure 3.1: Ligands 1-3 in the scytalone dehydratase system

Since performing free energy simulations which involve both a ligand pertur-

bation and water introduction/deletion typically require the use of GCMC, free

energy cycles were employed in the study. Two different scenarios were imag-

ined; one where the water was present for the routes 1-3, 1-2 and 2-3 and another
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where the water was not present for the perturbations. It was found that for both

setups the perturbation 1-2 was not in agreement with the experimental result,

indicating that changes in hydration state need to be accounted for. In addition

the free energy cycle which retained the water at all stages displayed poor closure

(> 4 kcal/mol), suggesting that the free energy for unphysical hydration states is

unrealistic.

Utilising the hydration analysis from JAWS, new free energy pathways were

devised whereby each ligand had its correct water occupancy. When this was

applied, the relative free energy for the free energy perturbations was in much

better agreement with experiment compared to standard ’fixed’ hydration states.

This highlights the importance of taking into account the potential changes in

hydration during a perturbation calculation, something which can be rationalised

using JAWS. The study also looked at analagous ligands in the EGFR and p38α

MAP kinases and found similar behaviour.

A similar 2010 study by Luccarelli looked at the effect of JAWS water place-

ment upon the binding affinity of p38α MAP kinase inhibitors.[62] 18 different

ligands were examined, with the relative binding affinity of each calculated com-

pared to a base ligand. When a standard solvent setup was utilised around the

binding site the predictive index of the calculated ∆∆G values was found to be

0.41.

The predictive index is a measure of ability of a method to correctly rank

a series of inhibitors.[63] The method looks at the experimental and predicted

binding free energies, and considers pairs of compounds one at a time. The form

of the index means that large differences in binding free energies of compounds i

and j will have a large weighting to the index and successfully predicting which of

the two compounds is the more potent will provide a large positive contribution to
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the final score. Equally, if i and j are similar in affinity then an incorrect prediction

will have a minor impact. A method which perfectly predicts the ranking will have

a value of +1, a model which always predicts incorrectly has a value if -1, whilst

a value of 0 arises from predictions which are random.[3]

A JAWS simulation was then performed to obtain a more realistic solvent

distribution and the relative binding affinities recalculated. This increased the

predictive index to 0.62, indicating that the more realistic solvent distribution from

JAWS gives better predictive power.

3.5 WaterMap

The WaterMap software is a commercial package developed by Schrödinger de-

signed for locating and scoring waters in protein binding sites. The methodology

utilises Inhomogeneous Fluid Solvation Theory (IFST), a method developed by

Lazaridis which applies integral equations to assess the solvation properties of the

system.[64, 65] IFST decomposes the solvation free energy into four terms; the

solute-solvent energy, solute-solvent entropy, solvent reorganisation energy and

the solvent reorganisation entropy.[66] The solute-solvent energy is found in the

method as the the difference in energy between the system with the water molecule

present and the system without the water molecule.[67] Each one of the entropy

terms can be found at any position in the system by solving integrals relating to the

solute-solvent and solvent-solvent correlation functions. The solute-solvent cor-

relation function is zero over the region occupied by the solute, meaning that any

contribution to the solvation energy and entropy arise from the regions occupied

by the solvent.

Such an approach means the method can be used to look at specific regions of
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a system and assess the various contributions to the solvation free energy specifi-

cally. Where there are several water molecules which bind to a system, IFST can

break down the contribution of each to the entropy and enthalpy allowing an esti-

mate of the binding affinity of each water to the system.[67] The entropy of each

water is found as the first order correlation function between itself and the solute -

crucially water-water entropy is neglected in the calculation. The binding affinity

which is found by IFST is not the same as the binding free energy calculated via

FEP/TI since the process does not simulate the removal of a solute water; rather

it performs a decomposition of the free energy of the system and assigns a certain

value to each water molecule.[66] It has not been clearly explained in the litera-

ture as to what this free energy calculated by IFST represents, since no reference

state has been provided.

The first work utilising IFST within the WaterMap software was performed

by Young et al. in 2007.[67] The work looked at understanding the differences

in phase behaviour and thermodynamic properties of water in enclosed protein

regions compared to the bulk. The major focus of the study looked at the binding

site of streptavidin, a protein with a hydrophobic binding cavity which binds to

biotin extremely strongly. A MD study was performed upon the system, with the

positions of water molecules recorded across > 10 ns of simulation time. These

water positions were then clustered to arrive at an integer number of hydration

sites, with these sites then subjected to IFST.

The simulation found that a 5 membered ring of water molecules is found

within the binding cavity, something which is highly unusual in nature due to the

high entropic penalty of ordering molecules in such a way. The IFST analysis

indicated that these sites are indeed highly ordered and carry a high entropic cost,

but this cost is outweighed by the enthalpic benefit of the molecules binding to
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each other. This is facilitated by an ideal arrangement of hydrogen bonding motifs

within the cavity, allowing the formation of a 5 membered ring. Release of the 5

waters into the bulk carries an entropic boost of 7 kcal/mol, suggesting one reason

why the binding of streptavidin to biotin is so favourable.

Studies by Abel et al. have looked at using WaterMap to help derive a scheme

for calculating relative binding free energies ,∆∆G values, between sets of inhibitors.[68]

The studies make the assumption that in order for a ligand to bind to a protein, an

equal sized cavity needs to be created in the active site of the protein. A further as-

sumption states that any waters in the binding site are always displaced by a heavy

atom from the ligand. Based upon these principles, a scoring scheme was devel-

oped which calculates an approximate binding free energy for a ligand based upon

the system interaction energy and the entropy of the waters which are displaced.

The scoring scheme does not take into account the strength of the ligand-protein

interaction, nor does it take into account the entropic changes in the protein and

ligand upon binding. As such, it was only used for ligands which are structurally

similar.

The study by Abel used the scoring function to look at similar inhibitors of

factor Xa. The calculated ∆∆G values compared to the experimental activities

were in good agreement (R2 = 0.81) compared to the same calculations using

MM-GBSA (R2 = 0.29). The same functional was then used to look at more

diverse ligands, whereby the R2 value dropped to 0.48. This indicates that the use

of such a scoring scheme is limited to similar ligands.

Recognising that one of the major limitations in the standard technique is the

influence of ligand-protein interaction and reorganisation, Guimarães and Math-

iowetz combined the method with MM-GBSA.[31] One typical problem with

MM-GBSA is the poor estimation of protein desolvation, something which the
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authors attempt to rectify with the WaterMap method. Rather than calculating the

term using the GB model, the protein desolvation energy was instead calculated as

the sum of the binding energies of the waters within the pocket. As such, combin-

ing the two should give a method which is more accurate that the two individual

parts. Two different systems were examined; factor Xa and CDK2, with the re-

sults showing that the predicted R2 values between the two individual methods

and the combined method were extremely similar. The authors state that the rea-

son for the lack of improvement is due to the fact that a model with 30 points can,

at best, have an R2 value of 0.80 considering the span of the experimental data.

A 2010 paper by Wang et al. introduced a new term into the WaterMap scor-

ing function.[69] Whilst most protein binding sites are well hydrated, there are

also those which have regions which are poorly hydrated or even not at all. For

such systems the WaterMap scoring function will ignore the ligand heavy atom

contribution in these areas, since there is no water to displace in these regions.As

a result, the calculated energy will not be accurate. It is important to attempt to in-

clude these dry regions in the calculation, since the ligand will often gain affinity

by binding in these regions since there is no desolvation penalty to pay. In order to

correct for this the authors introduced a ’cavity correction’ term, whereby ligand

heavy atoms which bind into dry regions gain a binding affinity related to the size

of the cavity and the solvation free energy of methane. Upon utilising the cavity

correction term in conjunction with the standard Watermap scoring function, a

qualitative improvement in the ∆∆G values of MUP inhibitors was observed. No

improvement in the values of R2 was given, whilst the results themselves are still

an order of magnitude away from experimental activities.

In a 2010 paper by Robinson et al. the WaterMap method was used to at-

tempt to rationalise the binding affinities of kinase inhibitors.[70] The binding
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site of kinases are common across a large percentage of known structures, mean-

ing that designing ligands which display selectivity towards a certain kinase can

be challenging. The position of water molecules was determined across a MD

run, followed by an energetic analysis using IFST. Structurally similar ligands

were studied for 4 different kinase systems, and the resultant WaterMap method

used to rationalise why certain ligands perform better than others for a particular

system. From looking at the energies of the water molecules and the position of

the ligands in the active site the method was able to suggest reasons why one lig-

and is more potent than another, something which was usually attributed to the

displacement of a nearby water.

Whilst the results which have been obtained using the WaterMap method show

promise, there are several key issues relating to the scoring schemes and method-

ology which have not been satisfactorily explained in the literature.

1. Assuming that a ligand will displace any bound water in the system -

Whilst the form of the scoring function ensures that strongly bound waters

do not contribute to the binding free energy of the ligand as much as a

weakly bound molecule might, the assumption is made that all molecules

in the system will be displaced. Work by Barillari has shown that this is not

the case, since water molecules can and will form complexes between the

protein and the ligand under the right circumstances.[40] Coupled with the

semi-empirical nature of the scoring function this suggests that any values

obtained from the function should be treated with great care, especially if

there is the possibility for the formation of a ligand-water complex.

2. Ignoring water-water entropy - For systems where WaterMap predicts

several water molecules bound to each other and the protein, only the water-
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solute terms are used to derive the entropy term. The justification for ignor-

ing the water-water entropy term lies in the assumption that the entropy

which a water molecule will exhibit in a well hydrated binding pocket is

similar to that which it will experience in the bulk. Although this assump-

tion is fair in cases where the binding site is mobile and solvent accessible,

for poorly hydrated binding sites this term is likely to be a potential source

of error. Considering that recent studies have highlighted the critical role of

water networks in protein binding sites, alongside the possibility of the wa-

ter molecules being more entropically favourable within the pocket rather

than the bulk [42, 43], it is perhaps surprising that this term is neglected in

the calculation.

3. Clustering water positions from a MD simulation loses orientational in-

formation - Whilst observing the positions of water molecules during a MD

simulation will give information on the most favourable positions within the

system, any correlation between different molecules is lost once this infor-

mation is clustered. As such, when molecules are placed upon the potential

hydration sites there is no guarantee that this is a realistic representation

of the solvent packing. If the chosen sites are incorrect then the estimated

energy and entropy of the site will also not be correct.

4. Are water free energies additive? - In the WaterMap scoring function it

is assumed that the free energy of liberation of a binding site will be equal

to the sum of the individual energy and entropic terms across of waters in

the presence of each other. This assumption will only hold true if all of the

water molecules leave the binding site at the same time. This is unlikely to

be the case, since the more weakly bound waters in the system are likely to
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be displaced before the stronger binders. If these water molecules are re-

moved from the system, then it is likely that the energetics of the remaining

waters will change - something for which WaterMap is not able to account.

This is particular important when WaterMap predicts a hydration site with

a positive free energy, as in a Src kinase study.[70] This site was included

in the analysis, although the presence of a highly unfavourable molecule

in the system is unlikely. It is reasonable to assume that such a molecule

would rather be in the bulk, and that including it in the analysis is likely to

lead to erroneous results. However, in order to fully justify this criticism, a

thorough understanding of the WaterMap free energies needs to be sought.

The WaterMap method retains unfavourable water molecules in the analy-

sis since it is claimed that the cost of creating of a vacuum at physiological

conditions is extremely high in the condensed phase [69], although it can

be argued that the driving force for a water molecule to reside in the protein

is solely down to the binding free energy of the water - something which

WaterMap does not calculate.

3.6 SZMAP

The SZMAP method is a tool developed by OpenEye to determine the position of

water molecules within a protein binding site. Unlike other methods it uses a semi-

continuum model, whereby an explicit water is used to probe the protein binding

site whilst surrounded by an implicit continuum solvation model, modelled with a

dielectric constant, ε. The water probe is moved around a grid, where at each grid

point the energy of the water orientation and position is calculated. This is then

used to determine favourable hydration sites. Two different types of probe can
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be used; a traditional charged water probe and uncharged water probe, designed

to represent hydrophobicity. The energetic difference at the same position using

the two probes can then be used to determine whether this water is likely to be

displaced by a polar or hydrophobic group on a ligand.

Although the SZMAP methodology has been presented at a number of con-

ferences, there are no publications relating to the method. As such, it will not be

considered for full comparison in this thesis.

3.7 Double decoupling method

The double decoupling method states that the absolute binding free energy of a

substrate, S, to a receptor, R, can be found by performing two separate simulations.[14]

The first of these involves decoupling the substrate from the bulk solvent, whilst

the second of these decouples the substrate from the receptor. This can be visu-

alised in a thermodynamic cycle, as in Figure ??.

Ssol → Sgas ∆Ghyd

RSsol → Sgas + Rsol ∆Gdec

Rsol + Ssol → RSsol ∆Gabs = ∆Ghyd −∆Gdec (3.11)

For the decoupling of water molecules from a protein binding site, the first

term in Figure ?? refers to the simulation where a water molecule, S, is decoupled

from the bulk, and is equal to the hydration free energy of water, ∆Ghyd. The

second term requires the water molecule to be decoupled from the complex, R,

and is equal to the decoupling free energy, ∆Gdec.
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The process for decoupling a water molecule from the protein receptor is de-

pendent upon the standard state of the system. For water, the standard state is

known to be 55.56 M. As such, the value of ∆Gdec derived from the simulation

needs to be corrected to arrive at the correct free energy. The overall expression

for the decoupling of a water molecule from the protein can be expressed as equa-

tion ??.[14]

∆Gdec = ∆Gcomp + ∆Grest −RTln
σRS

σRσS

+ P 0(VR − VRS) (3.12)

In equation ??, ∆Gcomp is the computed free energy for the decoupling the

water molecule from the protein. This computed free energy is equal to the

sum of decoupling the electrostatic terms of the molecule and decoupling the

Lennard-Jones terms. ∆Grest is the free energy of the restraint applied to the

water molecule during the decoupling simulation. Such a restraint is required to

guarantee reversibility since, if such a restraint is not applied, the molecule could

leave its original position and drift away from the simulation region.

Several different types of restraints have been used in the literature to look

at the binding free energies of water molecules. For example, studies by Zhang

[71] and Olano [72] have applied a harmonic potential on the water molecule

in question, whilst a study by Barillari [40] utilised a hardwall potential. It has

been demonstrated that the calculated free energy is independent of the applied

restraint/constraint.[8]

The third term in equation ?? is a symmetry related term. σRS is the symmetry

number of the complex, σR is the symmetry number of the protein and σS is the

symmetry number of water. Water has a symmetry number of 2 and, since the
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other two terms have a symmetry of 1, the term can be found to be - 0.4 kcal/mol.

The final term in equation ?? is taken to be negligible under standard pressures

since the change in pressure can be taken to be miniscule.

3.7.1 Applications of the double-decoupling method

Being a well established and rigorous technique, there have been numerous studies

where the authors have used the double-decoupling methodology. Early studies

by Roux [73] and Helms [74] used a statistical thermodynamics approach simi-

lar to the double-decoupling method, but the first true application of the double-

decoupling for the calculation of water-protein binding free energies was per-

formed by Hamelberg.[75] In this study, the authors looked at the binding of a

water molecule in the binding pocket of trypsin and HIV-1 protease. It was found

that in both cases the binding was favourable, and it was suggested that the re-

lease of these water molecules into the bulk could be favourable. In addition, the

effect of the harmonic potential upon the restraint term was examined. The study

showed that the best results are obtained with a weaker restraining potential, pro-

viding that the correct region of configurational space of the water is sampled.

A study by Olano [72] used the double-decoupling method to look at the hy-

dration of two different cavities; the bovine pancreatic trypsin inhibitor (BPTI)

and barnase. These two systems are very different, in that one of them is polar,

whilst the other cavity is more hydrophobic. The study found that the cavity in

BPTI is likely to be hydrated (∆Gbind = -4.7 kcal/mol), whilst the barnase cavity

is likely to be empty (∆Gbind = +4.7 kcal/mol). The observed results were in good

agreement with earlier simulations performed by Hermans [71], which suggested

that water molecules in non-polar cavities are likely to have positive binding free

energies.
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As previously mentioned, a key study by Barillari looked at a wide vari-

ety of water molecules in protein-ligand complexes to ascertain their propensity

to be displaced.[40] 6 protein-ligand systems were examined, totalling 54 wa-

ter molecules, with these waters having their hydration free energies found by

double-decoupling. Based upon the results obtained, two different types of wa-

ter molecules were identified; those conserved and not displaced by ligands, and

those which are displaced. A Bayesian statistics approach was applied on the

system, finding that, on average, those molecules which are more tightly bound

are less likely to be displaced. A statistical model was also used to predict the

probability of a water molecule being displaced by a ligand, given its binding free

energy.

A 2011 paper by Fadda and Woods looked at using the double-decoupling

method to the role of a conserved water molecule in Concanavalin A.[36] Using

three different water models (TIP3P, TIP4P and TIP5P), they looked at the bind-

ing free energy of the water molecule in the apo protein and two different ligands.

Surprisingly, they found a large dependence on the water model for predicting

whether the molecule was conserved or displaced. Indeed variances in the bind-

ing free energy by 5 kcal/mol were observed, which were attributed to a shift in

the Lennard-Jones decoupling stage. These variances are not however consistent;

TIP5P sometimes appears to be the outlier in the data set, whilst in other sim-

ulations it is TIP4P which appears to the outlier. No firm energetic rationale is

given for these changes. It is signficant to note that the wrong standard state and

harmonic correction term was used in the study, which will result in a equal shift

in the binding free energy for all the waters in this study.
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3.8 Evaluation of currently available methods

In the previous sections, four major techniques for identifying and scoring water

molecules have been described; GCMC, JAWS, WaterMap and double-decoupling.

All of the methods have delivered results which are in good agreement with ex-

periment, although they all have their drawbacks. Although theoretically rigor-

ous, the double-decoupling method requires significantly more simulations to be

performed than the other methods, since it requires a full examination of the ther-

modynamic pathway. The method also requires prior information on where the

water molecule is, before the simulation is performed. As previously mentioned,

the resolution of the crystal structure is often a limiting factor in locating waters

in protein binding sites, meaning that the environment for the water may not be

correctly defined. As such, the calculated free energy could be incorrect if the

system is not fully and accurately defined.

The GCMC method, although having been around for 40 years, has not yet

been fully exploited in terms of locating and scoring water molecules. Although

the method has been used to account for fluctuating numbers of molecules across

a boundary, such in the GSBP scheme, no studies have been performed where the

binding free energy of a single water molecule is determined. In theory this should

be possible, since the chemical potential of the system can be directly linked to

the decoupling free energy and, therefore, to the binding free energy of a water

molecule. One major drawback of the method is the poor acceptance rate, which

is likely to introduce an error into the calculations.

Being a much more recent method than GCMC, the JAWS methodology has

significantly fewer citations in the literature than the GCMC approach. As such,

there has not yet been a full study assessing the limitations of the technique. Al-
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though the method has shown great promise in both locating and scoring water

molecules, it is incapable of calculating the binding free energy of strongly bound

waters since the biasing potential is not sufficient to induce enough low θ sam-

pling. In addition, the current method of using a clustering algorithm to locate

waters is likely to be problematic in cases where water molecules can adopt a

wide number of configurations.

Finally, the WaterMap methodology has been extensively covered in the lit-

erature as a strategy for locating water molecules in protein systems, as well as

providing an estimate for their enthalpy and entropy. Although the results have

been encouraging in qualitatively identifying ligand trends, the method has several

drawbacks, being the use of clustering to locate waters, assuming that a ligand will

displace bound waters and that the free energies of waters in a cluster are additive.

3.9 Conclusions

This chapter has looked at the importance of water molecules in protein bind-

ing sites, and the major computational methods available for locating and scoring

them. Water molecules have been traditionally thought to play two major roles

in the binding site, namely stablising the structure by forming a hydrogen bond-

ing network, and being displaced by a ligand to provide an entropic boost to the

binding free energy of the ligand. More recent studies have highlighted a plethora

of roles which water plays in protein-ligand binding; whether it be sub-optimally

hydrating the binding pocket to allow for enthalpic-based binding events, provid-

ing subtle electrostatic screening between protein and ligand, or forming part of

a network which dictates ligand affinity. Regardless of the effect in which the

medicinal chemist is interested in, the fundamental axiom is that water plays an
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active role in biomolecular recognition and should be correctly treated to obtain

high quality predictions.

The currently available methods have all shown promise in locating water

molecules in protein binding sites, yet not all of them have been exploited fully.

In particular, the GCMC and JAWS methods have not yet been fully tested and

applied to novel systems. Another factor which has never been addressed is the

consistency of the methods. For example, will the water locations predicted by

JAWS be the same as the predictions given by GCMC? Equally, will the binding

free energy calculations given by double-decoupling be the same as for GCMC?

From what has been previously discussed, it has emerged that there is cur-

rently no freely available computational method which has been proven to predict

both the location of water molecules, and also providing a reliable free energy

estimate, regardless of the binding free energy of the water molecule. In addition,

no study has been performed which critically compares and contrasts the different

methodologies to see if they give consistent results.

Based upon this, 4 initial aims were formulated regarding the placement and

scoring of water molecules:

1. To adapt the JAWS methodology to calculate the binding free energy of

strongly bound water molecules.

2. To determine whether JAWS, GCMC and double-decoupling all predict the

same location and binding free energy of different water molecules.

3. To review the three methods to determine which is better for a particular

problem.

4. To apply the methods to novel systems to further explore the strengths and

limitations of each method.
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Chapter ?? describes the work which has performed to achieve these aims.
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Chapter 4

Fragment-Based Drug Discovery

4.1 Introduction

The following chapter describes the basic theory behind Fragment-Based Drug

Discovery (FBDD), and how it is performed experimentally with examples drawn

from the literature. An overview of the different computational methods available

for performing FBDD is then presented, with the relative merits and drawbacks of

each method assessed. The Grand Canonical Monte Carlo method for performing

FBDD is then described, highlighting its differences with the other available meth-

ods. Finally, a critical review of all of the approaches is presented, highlighting

the need for a new direction to be taken.

4.2 Why use FBDD?

A widely used approach in drug discovery is High-Throughput Screening (HTS),

where a large range of molecules are screened against a particular drug target.

One problem which has been identified with HTS is the poor hit rate. Since the
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molecules which are typically screened in a HTS array are large (> 300 Da), the

chances of a good match between the chemical groups on the ligand and receptor

is low, leading to hit rates of the order of around 1 %. Another consequence

of screening such large compounds is that the optimisation of the hits typically

involves an increase in both molecular weight and lipophilicity. This means that

the hits typically will violate some of Lipinski’s rules of 5 [11] and will provide a

barrier to getting a drug to the market.[76]

One strategy to get around the HTS problem lies in FBDD. In FBDD, low

molecular weight compounds ( typically < 250 Da) are screened against the pro-

tein target. Since the compounds are smaller than those screened in HTS, they

tend to bind to the protein target more weakly. In order to detect the binding of

the fragments, sensitive biophysical techniques such as NMR, surface plasmon

resonance (SPR) and X-ray crystallography are used.[4] The resultant hits from

FBDD can then be modified into suitable lead compounds.

Broadly speaking, there are three major advantages for utilising FBDD over

standard HTS. The first advantage lies in the ability of FBDD to probe the chemi-

cal space more efficiently. It has been reported that the number of drug molecules

with 30 or more heavy atoms is 1060.[9] As such, attempting to sample this region

of chemical space with HTS is both a challenge and inefficient. In comparison,

the number of base fragments which make up the larger compounds is thought to

be 107. It therefore becomes more efficient to screen the fragment chemical space

than a standard HTS process. A recent review conducted by scientists from Astex

demonstrated that, for a study on HSP90, 1600 fragments were used to probe the

chemical space, with an average molecule weight of 170 Da.[77]

The second advantage is that, since fragments are usually significantly smaller

and less complex, the probability of finding a successful hit is much larger in
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FBDD compared to HTS.[78] For a binding event to occur the fragment must

overcome a significant entropic barrier, with this barrier shown to be independent

of the size of the fragment. As such, for a fragment to bind to the protein, the in-

teractions formed between the fragment and the protein need to be of sufficiently

high quality. The binding events which occur in FBDD are typically weaker than

HTS, but the binding affinity per heavy atom is generally larger compared to HTS.

For fragment hits to be of use in lead development, it is hoped that the interac-

tions formed between the fragment and the protein are maintained when the lead

compound is developed. Studies by Astex have shown that, for 39 fragment-lead

campaigns, 80 % of the starting fragment interactions were retained in the lead

compound.[77]

The ratio of binding affinity per heavy atom, expressed as the ligand efficiency,

is the third major advantage of FBDD. Ligand efficiency allows fragments of dif-

ferent molecular weights to be easily compared, making it easier for the medicinal

chemist to choose the optimum fragment. Careful development, and attempting

to maximise the ligand efficiency, should give a lead which is more likely to obey

Lipinski’s rules and displays improved potency and, potentially, specificity.[4]

Alongside ligand efficiency Astex have developed a ligand lipophilicity efficiency

(LLE) measure, which allows the tracking of the lipophilicity through compound

development. This measure is defined as the pIC50 - LogP of the compound. Start-

ing from a fragment which has a high LLE gives the medicinal chemist control

over the ClogP during development, with evidence showing that fragment-derived

compounds typically have a ClogP of one unit less compared to HTS compounds.

This is advantageous, since it has been shown that drugs which are more lipophilic

are typically more promiscuous and more likely to display toxicity than those

which are less lipophilic.[79] If the fragment hits are carefully optimised in the
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drug discovery process, the resulting lead compounds will be both smaller and

less lipophilic than drug molecules found through HTS.[77, 80]

4.3 Experimental FBDD

As previously mentioned, the three major biophysical techniques used to detect

fragment binding are NMR, SPR and X-ray crystallography. A brief review of

these techniques is now presented.

4.3.1 NMR spectroscopy

This technique works by one of two strategies.[81] The first involves looking at the

chemical shifts of the target both prior to and during screening. If a binding event

is present, then a shift in δ is observed. The second strategy involves looking at the

rates of translation and rotation of the free ligand during binding. Upon binding,

these rates will be reduced, since there is a decrease in the degrees of freedom of

both the protein and ligand. NMR fragment screening has been used by Wang et

al. [82] to look at fragment binding to BACE-1, a protein target which is believed

to be associated with the onset of Alzheimer’s disease. 2D 15N-HSQC NMR was

utilised, with positive hits identified through a large change in the chemical shift

of near aspartic acid residues. Fragment NMR spectroscopy has also been used

by Murray et al. [83], where the development of Hsp90 inhibitors was described.

The hit to lead project created a lead compound with a 106-fold increase in potency

from the initial hit, with the addition of only 6 heavy atoms.
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4.3.2 X-ray crystallography

Fragment detection with X-ray crystallography works by soaking cocktails of

fragments at high concentration, and then observing the position of the fragment

in the target using X-ray crystallography.[84] One advantage of this method is

that it is able to distinguish between different ligands, increasing throughput in

the assay. In addition, it provides direct evidence for binding between fragment

and the target.[85] One drawback in the method, however, lies in the fact that it is

not capable of screening as many fragments as NMR.[10] X-ray crystallography

is commonly seen as a gold standard in corroborating fragment hits, and as such

is used in the vast majority of fragment studies. Recent studies such as the previ-

ously described work by Murray [83], the development of PDK1 inhibitors [86],

and the discovery of allosteric inhibitors of farnesyl pyrophosphate synthase [87]

all show the effectiveness of the method.

4.3.3 Surface Plasmon Resonance

SPR biosensors identifies fragment binding by looking at changes in optical re-

fraction. Upon a fragment binding to a protein target, a change in the refractive

index (RI) of the system is observed. A measure of the binding strength between

the fragment and the protein is achieved by looking at the times to record the max-

imum RI and the subsequent relaxation back to the original RI as the fragment

is removed from the protein by a flow system. Since the method does not give

as much information as X-ray crystallography and NMR, there are significantly

fewer studies where this method has been published. However, a 2010 study by de

Kloe et al. used the approach to look at the binding of fragments to acetylcholine

binding proteins, allowing the identification of hot spots in the protein.[88]
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A study performed by Evotec demonstrated that all three methods are capable

of identifying fragments in the same ligand efficiency range, suggesting that the

rationale for choosing one method over another lies in the information desired or

cost, rather than identifying more potent fragments.[80]

The wide number of examples in the literature relating to FBDD highlight how

important it has become to drug discovery. Despite this, the timescales required

for FBDD are much higher than standard HTS, since the fragment hits are often

non discriminating and require significant effort to turn the fragment into both

lead and final compounds. In addition, the experiments required to run the assays

are typically expensive, meaning that it is important to ensure that the correct

fragments are screened. Such a procedure could be performed computationally,

performing the dual role of screening more fragments virtually and screening the

optimal fragments experimentally.

4.4 Computational approaches to FBDD

Given the cost of performing FBDD experimentally, computational approaches

are ideally suited to enhancing FBDD. Indeed researchers at Evotec have advo-

cated using computational methods to study fragment binding to GPCRs, owing

to the cost and complexity of obtaining high quality crystal structures.[89] A wide

range of techniques have been reported in the literature, a selection of which are

now reviewed.

4.4.1 Docking

Whilst traditionally performed for larger, lead-like molecules, docking has also

been performed upon fragments.[90] In one study, the docking program Glide [91]

64



4.4. COMPUTATIONAL APPROACHES TO FBDD

was used to dock fragments to two systems; prostaglandin D synthase (PGDS)

and ligase. For the ligase study a 20K generic fragment library was used, with

794 actives present in the library with IC50 ≤ 1 mM. Various different restraints

were applied upon the hydrogen bonding to see if any improvement in docking

accuracy was observed. The enrichment factor at 1% of the database was 3.3

when no restraints were applied, and application of various restraints resulted in

an average enrichment factor of ∼3.1. This shows that there was no significant

improvement in performance when restraints were applied in this case.

For both ligase and PGDS, use of the GlideSP protocol gave enrichment of

actives over random sampling. Indeed, the enrichment rates of ligase were within

the ranges which might be obtained for lead molecules. [90] This suggests that,

in principle, fragment screening using docking methods should be possible. How-

ever, the authors note that such protocols have yet to be fully optimised, primarily

due to limitations in the scoring functions used.[92] A similar conclusion was

reached by Verdonk et al. in a docking study comparing the differences in dock-

ing performance between fragments and drug-like compounds.[93] It was found

that the performance of the fragments and drug-like compounds was equally poor,

but for different reasons. Whilst the performance of drug-like compounds can

be attributed to poor protein sampling,[94] the inefficiency of scoring functions

to describe fragments with low ligand efficiencies was identified as a reason for

the poor fragment performance. It was noted that better performance was obtained

when fragments with higher ligand efficiencies were studied, due to higher quality

protein-ligand interactions.

65



CHAPTER 4. FRAGMENT-BASED DRUG DISCOVERY

4.4.2 The Multi-Copy Simultaneous Search Methodology

The Multi-Copy Simultaneous Search (MCSS) methodology [95] has proved to

be a useful tool for probing targets with known structure.[96] The technique is

primarily used to locate energetically favourable positions of fragments in the

pre-defined binding site of the target. The methodology works by randomly dis-

tributing replicas of a fragment, typically around 5000-10000, in the binding site

of the target. These fragments are not allowed to see each other, yet each one is al-

lowed to fully interact with the target receptor. The fragments are then minimised

simultaneously by conjugate gradient minimisation. Fragment replicas which be-

gin to converge to the same position with a RMSD of less than 0.2 Å are removed

to leave one replica in that site. The MCSS methodology typically picks up a

large number of energy minima, which makes it ideal for finding favourable bind-

ing positions for that particular fragment. However, a consequence of this is that

it is difficult to assess which minima are significant, a feature which is important

in ’hot-spot’ determination.[97]

Once minimisation has finished, the resulting fragment-protein minima are ex-

amined. The first stage of this post-processing is to remove minima with energy

above a certain threshold. This threshold is usually based upon the solvation en-

thalpy of the functional group, which takes into account that the fragments within

the binding site need to be desolvated.[96] In theory, this effect can be included by

performing the minimisation process in implicit solvent. Original studies showed

that errors could occur using this strategy, since the electrostatic interactions are

often overstated.[98] However, a more recent study has demonstrated that rescor-

ing the MCSS poses with MM-GBSA can lead to good agreement with X-ray

crystallography.[99]

The MCSS method suffers from a few technical limitations. The first arises
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when the fragment size is increased to around 20-30 atoms. If such a fragment has

rotatable bonds, then finding the energy minima becomes complex for different

conformations. Enough replicas must be included in the simulation to sample all

of the different possible conformations, or undersampling can occur.[96]

The second limitation is the reliable incorporation of protein flexibility. Many

proteins do not exist solely as a rigid structure, and hence to accurately describe

the system it is desirable to take account of this flexibility. One method of at-

tempting to include flexibility is by having multiple protein input structures, each

one with a different conformation. Integration of the fragment maps for each

protein conformation can then provide a method for accounting for the protein

flexibility.[96] However this method is inherently limited by the number of pro-

tein structures available. In addition, for particularly flexible proteins, the question

of how many structures are required to sample the entire structure ensemble arises.

A final limitation in the methodology is that the methodology does not consider

the role of water competing with the fragments.

4.4.3 FTMAP

FTMAP is a probe-based interaction energy technique which has been specific de-

signed to look for ’hot spots’ on the target.[97, 100] The method exploits Fourier

transformations, which allows billions of probe positions to be positioned on ro-

tational and translational grids. Simple energy expressions are then calculated to

establish whether the site has a favourable interaction energy with the protein.

The algorithm can be broken down into 5 steps, detailed below:

1. Fragment-docking. 16 different fragments are chosen and are tested on the

grids. Both the fragments and the protein are treated as rigid. The 2000 most
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energetically favourable poses for each fragment are then taken forward to

the next stage.

2. Minimisation. The interaction energy of each of the protein-fragment com-

plexes are then minimised. In the FTMAP software, the CHARMM poten-

tial is used, with electrostatics treated using a Poisson-Boltzmann approach.

Minimisation is performed, allowing the fragment to move whilst the pro-

tein is fixed. The fragments which have been docked in this stage and the

previous stage can then be used as the building blocks for further fragment

studies.

3. Clustering. For each fragment, the lowest energy conformer is chosen.

Fragment conformers within 3 Å of this minimum are then clustered. The

next lowest energy conformer is then chosen, and the clustering algorithm

is again applied. This process continues until all of the fragments have been

clustered. Clusters with fewer than 10 fragments are then removed, with the

remaining clusters ranked on the average energy of the cluster.

4. Determination of consensus sites. A consensus site is a position in the

protein where there is overlap of different fragment types. The cluster with

the most fragments is chosen as the initial site, and all clusters within 5 Å

of it are joined together to form the first consensus site. These are then

removed from consideration. The cluster with the next most fragments in it

is then chosen as the second consensus site, and clustering is then applied.

This is repeated until all fragment clusters have been assigned.

5. Binding site characterisation. The first consensus site is generally the

site which is the most important hot-spot in the protein.[100] All consensus
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sites within 7 Å of the first consensus site are then used to describe the

binding pocket of the protein. A second clustering is then applied, so that

any consensus sites within 7 Å of a consensus site already in the binding

pocket are included. This process continues until no further expansion is

possible. This then forms the hot-spot of the protein binding site.

The FTMAP algorithm has been compared alongside the experimental Multi-

ple Solvent Crystal Structure (MSCS) technique [84] to see if the same results

are obtained. For the the glucocerebrosidase protein, a therapeutic target for

Gaucher’s disease, the two methods corroborated the same binding hot spot. In

addition, other potential binding sites were identified using the FTMAP method.

One drawback of the technique is that since the protein is kept rigid throughout

the simulation, there is conformational dependence upon the results obtained. In

a 2010 study by Ivetac and McCammon [101], the authors looked at mapping

the allosteric space of GPCRs. Recognising that the system is extremely mobile,

an ensemble of 15 input structures were generated via a MD simulation. These

structures were then run through the FTMAP server, with the results analysed by

looking at the interactions between a probe and a set residue and then building a

probability map. One other drawback of the FTMAP method is that it does not

take into account the role of water solvent in binding competition.

4.4.4 Site Identification by Ligand Competitive Saturation

Site Identification by Ligand Competitive Saturation (SILCS) [102] is an explicit

solvent all-atom molecular dynamics method which has been designed to over-

come some of the issues associated with computational fragment-based methods.

Methods such as MCSS [96] and FTMAP [97, 100] are limited in their calculation
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of fragment-protein affinities since protein flexibility and solvation is generally ig-

nored or approximated. SILCS works by computationally immersing a protein in

an aqueous solution and a collection of different fragments all at a concentration

of ∼1 M. The protein, water and fragment system is then subjected to multiple

MD simulations, which enables competitive binding to take place. The resulting

snapshots are combined to form fragment probability maps which reveal where

particular fragments prefer to bind.

Since the snapshots are generated from MD simulations, the SILCS output

takes into account protein flexibility. The fragment maps which are generated

give a Boltzmann distribution of conformations and have atomic-level solvation

effects. As a result the fragment maps represent rigorous free energy distributions,

something which is typically not observed in fragment-based approaches. These

maps can either then be used as qualitative tools to assemble potential inhibitors

or used for docking applications. The method has been used upon the oncoprotein

BCL-6 and has been shown to reproduce the crystallographic binding modes of

the SMRT and BCOR peptides.

A more recent application of the method looked at using the method on 7 dif-

ferent protein systems and attempted to create a more quantitative analysis.[103]

MD simulations on the protein systems were performed, with benzene and propane

used as probes alongside water. At the end of the simulation, a grid-based prob-

ability distribution of the fragment heavy atom positions is generated, termed a

’fragmap’. A grid free-energy term is then calculated, based upon the probability

of finding the fragment at a particular site in the simulation and the probability

of finding the fragment in a bulk system of water. A free energy comparsion is

then made by summing up the grid free energies over the volume which a ligand

occupies in the protein and comparing it to the experimental value of ∆G.
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The observed results showed that the fragmaps correctly predicted the bind-

ing locations of functional groups in the examined ligands. However the grid free

energy comparison was less successful, with the correlation between the experi-

mental values and the grid terms modest at best. This is likely to be due to the fact

that only simple fragments were used in the study.

There are two major limitations of the SILCS approach. Firstly, although the

method allows solvent competition in the binding site, it does not take into account

the desolvation of the fragments. As such, the method can only predict where

fragments will bind in the system, and not predict whether they will actually be

able to leave the bulk. Second, the method requires the fragments to physically

pass by each other in the binding site. This is likely to be inefficient, especially

in the presence of bulk water, and will inevitably lead to sampling issues and

inefficiency.

4.4.5 3D-RISM

The 3D-RISM method is one which utilises integral equations to predict the lo-

cation of molecules around a large macromolecule, such as a protein.[104] The

method generates distribution functions of the species of interest by looking at the

solute-solvent interaction potentials, based upon standard forcefields. By looking

at these functions in three dimensions, the variance from the bulk solvent den-

sity can be found, giving an indication of whether or not that site is likely to be

hydrated.[105]

The application of 3D-RISM to FBDD has recently been reported [104], whereby

the fragments are examined simultaneously alongside water. By solving the in-

tegral equations for the species, the positions of fragments around the protein

surface can be easily found, whilst including the effects of solvent competition.
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The method was initially used upon the binding of isopropanol and acetone to

thermolysin, with the results highlighting both the correct binding modes of the

fragments and also cooperative water effects.

The 3D-RISM is theoretically rigorous, although it does have a few draw-

backs. The method cannot take into account protein flexibility, so an ensemble of

structures is required if the protein undergoes significant movement upon ligand

binding. Second, no indication of the relative binding strength of each fragment is

found in the method, meaning that it is predominantly a qualitative tool. Finally,

as with many other computational fragment-based approaches, no estimate of the

fragment desolvation cost is included in the method.

4.5 Calculation of binding free energies of fragments

using GCMC

The use of GCMC in calculating the binding free energy of fragments is appeal-

ing, since in theory it should provide information on both the strength and pose of

binding. Despite this, there have been relatively few publications detailing meth-

ods for observing protein-fragment GCMC binding. The first example [106] in-

volved looking at the binding of fragments to T4-lysozome and thermolysin using

the simulated annealing approach of Mezei.[54]

For the T4-lysozome case, the study looked at the binding of benzene deriva-

tives to T4-lysozome. The authors adopted the cavity-bias methodology [51] to

increase the probability of accepting insertions. Simulations were started at a

value of B = -15, and the value of B was annealed stepwise in increments of 1B

until all of the ligands left the system. 4 million GCMC steps were carried out

for convergence, with a further 1 million steps carried out for data collection. A
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similar set-up was used for thermolysin, except in this case acetone derivatives

were explored.

In the T4-lysozome case, at high values of B, a high concentration of ligands

were observed around the protein, resulting from attractive interactions between

the ligands in the bulk. As the value of B was gradually reduced, the weaker

binding fragments left the system. A point was reached where the average number

of ligands in total was less than 0.1; at this point the simulation was terminated.

The point immediately prior to the disappearance of the ligand was determined

as the free energy of binding for the molecule. In the study, it was necessary to

correct for the solvation energy of the ligand by calculating the GB/SA solvation

energy. From this, a solvation corrected binding free energy was obtained. For

benzene, the binding free energy was determined as -9.6 kcal/mol, against a value

obtained using FEP [107] of -7 to -9 kcal/mol. The authors used a different force-

field to the FEP methodology, which could account for the difference in estimated

binding free energy.

In the thermolysin cases, the observed ligand poses from the GCMC method

were compared to an analogous experiment which had been performed previously

using the MCSS method. It was found that the poses which were observed using

the GCMC method were consistent with those using the MCSS.

The second use of GCMC to calculate the binding free energies of fragments

focuses solely upon the T4-lysozome test case using benzene [108]. Whereas

previously the simulated annealing approach was used [106], here two different

techniques are used, both of which are faster and are more rigorous.
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4.5.1 Non-Interacting Particle Method

The first method involves flooding the system with ligand molecules which are

not allowed to interact with each other, allowing them to ’ghost’ past each other.

This is carried out at a number of different chemical potentials. By calculating

the concentration of ligand molecules, [Lsimulation−cell], around the protein, the

binding free energy is found using equation ??, below:

∆G = −kBT ln

(
[Lsimulation−cell]

[Lideal]

)
(4.1)

[Lideal] is found is by noting that, for an ideal gas at equilibrium, the following

relationship holds true:

Ni

V
=

N0

V0

exp(B) (4.2)

Equation ?? shows that the concentration at a set value of B depends on the

standard concentration, N0/V0, of species i and the perturbing B value. As such,

the ideal reference can be easily found for any value of B, allowing the free energy

to be found using equation ??. Since the free energy of the system can be directly

found from the concentration of the reservoir and the simulation, the free energy

can now be found from a single simulation run whereas for the simulated anneal-

ing approach several simulations were required. In addition, the free energy for

any smaller region in the entire simulation can be found by simply looking at the

number of ligands in that region.

In that work, the free energy of benzene in the binding pocket was observed.

This technique was performed at several different values of B, and the same bind-

ing free energy was found at each level. However it was also found that this

technique works most efficiently at lower reference concentrations, correspond-
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ing to a lower value of B, since equilibration times increase with the number of

ligands in the system. The binding free energy was found to be -9.9 kcal/mol,

consistent with the earlier study [106]. One drawback of this method is that it is

only suitable for small and well-defined binding pockets. If the aim is to look over

the entire protein for binding hot spots, or to find other binding poses in the active

site, then the equilibration times are often not practical.

4.5.2 Interacting Particle Method

The second method involves allowing the ligand molecules to see each other dur-

ing the simulation. Only ligand-ligand repulsion is allowed in this study; attraction

terms are switched off. Unlike the other method, the number of ligands observed

in the binding pocket is greatly reduced, since they exclude each others’ volume.

In this study, the maximum number of ligands observed was one. The value of

B is scanned to identify simulations where the average population in the binding

pocket is less than 1 but also statistically significant. One drawback of this method

is that is if a high affinity pose is accepted, then subsequent removal attempts are

likely to be rejected. This prevents potential poses of equal or lower energy from

being sampled, meaning that the system will not reach true equilibrium. When a

different value of B is simulated, all of the ligands are cleared from the system to

minimise this error from the equilibration. Using equation ?? the authors found

that the same result was found using the other method (-9.9 kcal/mol) once the

average population in the binding pocket became sparse. In addition, the equili-

bration times were often far shorter due to far fewer ligands in the system.

As with the initial paper [106], the solvation energies of the fragments in the

second study are found using a GB/SA model. The authors state that the calcula-

tion of these solvation energies are a potential source of error in the calculations;

75



CHAPTER 4. FRAGMENT-BASED DRUG DISCOVERY

for benzene the difference between the experimental and GB/SA solvation ener-

gies is 0.80 kcal/mol. Despite this, the method gives reasonable results compared

to FEP methods.

4.5.3 Limitations of GCMC

Although the GCMC methodology has been shown to be effective for locating

and calculating the affinity of fragment poses, there are a number of drawbacks to

the method. The described method runs the simulation in the gas phase, meaning

that the resultant gas phase free energies need to be post-processed.[109] Similar-

ily, the fact that the simulations are run in the gas phase means that there is no

solvent competition during the simulation. Protein flexibility is prohibited during

the simulation, meaning that ensemble-style methods are required. Although this

is achievable, questions such as the number of structures required to adequately

sample the chemical space arise. As previously mentioned, one of the major lim-

itations in GCMC lies in the poor acceptance rate. Since a typical fragment is

significantly larger than a water molecule, this will serve only to exacerbate the

problem.

4.6 Critical appraisal of computational methods

The previous sections have described the current computational methods avail-

able. Whilst all of the methods are capable of delivering results that are consistent

with experiment, most of them suffer from at least one major limitation. Table ??

briefly summarises the advantages and disadvanatges of the methods.

Table ?? shows that most of the methods suffer from a lack of protein flexi-

bility and a correct treatment of solvation. The lack of protein flexibility is par-
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Method Advantages Disadvantages
Docking High throughput Fragments and protein are

rigid. Scoring functions
are not sufficiently accurate
enough. No solvent compe-
tition. No fragment competi-
tion

MCSS Fast. Well documented tech-
nique.

Fragments and protein are
rigid. No solvent competi-
tion. No fragment competi-
tion.

FTMAP Extremely fast. Can be run on
online server.

Fragments and protein are
rigid. No solvent competi-
tion. No fragment competi-
tion.

SILCS Fragments can compete with
each other and water. MD
approach ensures that protein
conformations are sampled.

No desolvation estimation.
Method requires fragments to
pass by each other in solvent.

3D-RISM Includes atomic level solva-
tion effects. Fast.

No protein flexibility. No
estimate of fragment binding
affinity. No desolvation esti-
mation.

GCMC Well documented. Can rank
fragments based on binding
free energy

No protein flexibility. No
solvent competition. Accep-
tance rates are poor for large
fragments.

Table 4.1: The advantages and disadvantages of the currently available computa-
tional FBDD methods

ticularly limiting, since it is well recognised that proteins can undergo conforma-

tional change upon ligand binding.[77] A 2012 study by Astex found that 50 %

of fragments induced a 5 Å RMSD shift in the protein backbone in a sample of

25 targets, highlighting that it is vital such effects can be incorporated. Only a

few of the methods are capable of incorporating fragment and water competition,

something which occurs implicitly in most fragment assays. From looking at the
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limitations of the current methods, for an approach to be truly effective in FBDD

it must have the following characteristics:

1. The method should locate and rank fragments based on their binding free

energy;

2. The method should use accurate energy functions, based on a simulation

approach;

3. The method must allow competition between different fragments, and criti-

cally, water;

4. The method should include an estimate for the desolvation of fragments;

5. The method should allow protein and fragment flexibility;

6. The method should be reliable and efficient.

From looking at the above list, it is apparent that none of the methods ful-

fil more than four of the above criteria, clearly emphasising the need for new

methodology. An approach which attempts to incorporate all of the criteria will

be described in a later chapter.

4.7 Conclusions

In this chapter, the theory behind FBDD was discussed. Since FBDD uses signfi-

cantly smaller sized compounds than HTS, the chemical space explored in FBDD

is larger, meaning that the method is much more efficient. In addition, since the

compounds are much smaller, the probability of finding a good match between

the fragment and the protein is greater, meaning that the hit rate is much improved
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for FBDD.[78] As such, most pharmaceutical companies employ FBDD as part

of their drug discovery programs.

Experimental methods such as NMR, X-ray crystallography and SPR are com-

monly used to detect fragment binding in assays. Although these methods can

give high quality results they are often expensive to run, meaning that it would

be desirable to have a method to pre-scan possible fragments. Such a method is

ideally suited to computational approaches, since they are typically much faster

and cheaper than their experimental counterparts.

All of the existing computational approaches suffer from at least two key draw-

backs; commonly the lack of protein flexibility and a reliable incorporation of

solvation. Since these factors directly influence the free energy of a fragment

binding to a protein, it is imperative that they are included in a computational

FBDD method. Six key criteria have been identified for a computational method

to best mimic that of experiment and to provide high-quality, yet rapid, predic-

tions. The application of the JAWS algorithm in this context will be discussed in

a later chapter.
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Chapter 5

Predicting the location and binding

affinity of water molecules

5.1 Introduction

The following section details the work performed on comparing and contrasting

three of the previously defined methods for locating water molecules and calcu-

lating their binding affinity; double-decoupling Monte Carlo, JAWS and GCMC.

The development of the JAWS algorithm to predict the binding affinity of strongly

bound water molecules is initially described, with this methodology applied to the

N9-Neuraminidase test system. Drawbacks of each of the three methods are then

highlighted via a series of examples based upon cavities in the bovine pancreatic

trypsin inhibitor system. Finally conclusions are drawn between the three methods

to identify the optimal approach for a particular problem.
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5.2 N9-Neuraminidase

5.2.1 Biological Relevance

N9-Neuraminidase is an enzyme which is actively targetted in the treatment of in-

fluenza. Influenza viruses bind to the surface of healthy cells via hemagglutinin, a

substance which has a high affinity for sialic acid which is present in mammalian

cells.[110] The neuraminidase enzyme, present upon the surface of the viral in-

fluenza, is involved in the cleavage of sialic acid. Once the virus has infected the

host cell, viral neuraminidase cleaves the sialic acid link between the virus and

the host, allowing the virus to spread to other, unaffected cells through the release

of progeny viruses.

Two major drugs have been developed in the treatment of influenza; oseltamivir

(tradename Tamiflu) and zanamivir (tradename Relenza). Both target neuraminidase

by displacing the sialic acid from the neuraminidase active site, and hence prevent

the release of the virus from infected cells.[111] Whilst both drugs have proven

to be successful in the treatment of influenza, new mutations, notably the H274Y

mutation in N1-neuraminidase, have proven to be resistant to oseltamivir.[112]

As a result there is a need to develop new influenza drugs, something which is of

great interest to the pharmaceutical industry.

5.2.2 System Setup

The crystal structure chosen for the simulations was 1nnc [113] (resolution = 1.80

Å). Polar hydrogens were added onto the structure using whatif [114], with non-

polar hydrogens added using LEaP. The zanamivir ligand was parameterised using

the antechamber module in AMBER, with the partial charges assigned using the
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AM1-BCC [115] model. To reduce the computational cost, only protein residues

that have a heavy atom within 15 Å of zanamivir were retained. Crystallographic

waters within this region were retained, except for those in the region of interest.

The complex was solvated by a sphere of TIP4P [44] water molecules of 23 Å

radius centred upon zanamivir. The resulting complex was then equilibrated for 10

million moves in the NVT ensemble to remove bad contacts. For the forthcoming

methods, the amber99 forcefield [116] was used, with a temperature of 25 oC and

a non-bonded cutoff of 10 Å. Any ligands used in the studies were modelled using

the GAFF forcefield.[22]

JAWS protocols

The JAWS stage 1 simulation was performed upon the entire binding site, encom-

passing a region of 1100 Å3. 48 TIP4P [44] JAWS waters were added to to the

simulation region, with these molecules allowed to move freely around the grid

region for one million moves whilst turned off. Unless stated otherwise, the θ

threshold applied for water molecules being classed as ’on’ was 0.95. Statistics

were then collected on the grid region for 40 million MC moves using a grid spac-

ing of 1 Å, in line with the original JAWS study.[13] The resulting data was anal-

ysed using AstexViewer, and each grid point normalised according to the number

density of the most frequently observed grid coordinate.[117] During the simu-

lation, the JAWS waters were allowed to move and sample θ, with full sampling

of the ligand angles and dihedral and bulk solvent performed. The bond angles

and torsions for the side chains of residues within 10 Å of any heavy atom of

zanamivir were also sampled, with the protein backbone restrained throughout

the simulation. For the JAWS stage 1 simulations, solvent moves were attempted

with a probability of 23 %, protein side-chain moves with a probability of 3.6 %
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and solute moves with a probability of 0.4 %. Variations in θi were attempted with

a probability of 50 %, in line with the original JAWS study [13], with translations

and rotations of the JAWS waters attempted with a probability of 23 %.

The JAWS stage 1 simulation identified 7 hydration sites which were then used

as starting points for the free energy methods.

JAWS stage 2 simulations were performed by placing a 3x3x3 Å3 grid over

the water molecule of interest. The biasing potential, as described in equations ??

and ??, was turned on, and statistics on the value of θ collected for 40 million MC

moves. The hydration free energy of water used in the biasing potential, ∆Ghyd,

was taken to be +6.4 kcal/mol in line with previous studies.[13, 40] A binding

free energy for the water molecule was found from the ratio of probabilities of

observing a θ-water at high (θ > 0.95) and low (θ < 0.05) θ values, using equation

??.

∆Gbind(water, site i) = −kBT ln

(
P (θi → 1)

P (θi → 0)

)
(5.1)

In equation ??, kB is the Boltzmann constant and T is the temperature of the

simulation. The θ thresholds for the high and low θ states are arbitrary, and are in

line with the original JAWS study.[13]

For the JAWS stage 2 simulations, solvent moves were attempted with a prob-

ability of 23 %, protein side-chain moves with a probability of 3.6 % and solute

moves with a probability of 0.4 %. Variations in θi were attempted with a prob-

ability of 50 %, in line with the original JAWS study [13], with translations and

rotations of the isolated JAWS water attempted with a probability of 23 %.

84



5.2. N9-NEURAMINIDASE

Double-decoupling protocol

Double-decoupling [14] simulations were performed using RETI [28, 29] and the

coordinates found from the JAWS stage 1 simulation. The binding free energy of

a water molecule was found in two stages; firstly the electrostatic terms between

the water molecule and its environment were perturbed to zero, followed by a

gradual linear reduction in the Lennard-Jones terms on the oxygen atom to perturb

it to zero. The water molecules were restrained by a hardwall potential of radius

1.8 Å to allow direct comparison with the JAWS hardwall. The hardwall was

applied to only the water in question and forbids it from leaving this spherical

region. Furthermore, other water molecules, solute atoms and protein atoms were

not permitted to diffuse into this excluded region. As shown in equation ?? the

volume of this spherical hardwall, Veff , can be calculated to be 24.43 Å3, which

is of similar size to the cubic 27 Å3 hardwall used in JAWS stage 2 simulations.

∆Grest = RTln
V eff

V o
(5.2)

In equation ??, R is the gas constant, T is the temperature of the simulation,

Veff the volume occupied by the hardwall and V0 the standard state volume of

water, 29.89 Å3 at 55.56 M. From this the correction term of the hardwall, ∆Grest

for double decoupling simulations can be found to be -0.12 kcal/mol.

For both the electrostatic and Lennard-Jones decoupling simulations, 16 equally

spaced λ windows were used with a value of ∆λ of 0.001. The annihilation of

both the electrostatic and Lennard-Jones interactions was performed in 40 million

MC steps divided into 400 blocks of 100K steps each. Data was collected and

averaged over the last 30 million steps for both sets of simulations. At the end of

the simulation, the computed free energies for the decoupling of the electrostatic
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terms of the molecule and decoupling the Lennard-Jones terms were summed,

to give a value for ∆Gcomp. The free energy of hydration used to calculate the

absolute water binding free energy, ∆Ghyd, was taken to be +6.4 kcal/mol.

Having calculated the values of ∆Gcomp and ∆Grest, the binding free energy

of a water molecule, ∆Gabs, was found using equations ?? and ??.

Ssol → Sgas ∆Ghyd

RSsol → Sgas + Rsol ∆Gdec

Rsol + Ssol → RSsol ∆Gabs = ∆Ghyd −∆Gdec (5.3)

∆Gdec = ∆Gcomp + ∆Grest −RTln
σRS

σRσS

+ P 0(VR − VRS) (5.4)

As previously described, the third term in equation ?? is a symmetry related

term. R is the gas constant, T is the temperature, σRS is the symmetry number of

the complex, σR is the symmetry number of the protein and σS is the symmetry

number of water. Water has a symmetry number of 2 and, since the other two

terms have a symmetry of 1, the term can be found to be - 0.4 kcal/mol. The final

term in equation ?? is taken to be negligible under standard pressures since the

change in pressure can be taken to be miniscule.

For the double-decoupling simulations, solvent moves were attempted with a

probability of 85.7 %, protein side-chain moves with a probability of 12.9 % and

solute moves with a probability of 1.4 %. As with the JAWS simulations, only the

bond angles and torsions for the side chains of residues within 10 Å of any heavy

atom of zanamivir were sampled.

Unless otherwise stated, error estimates from the double-decoupling simula-
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tions were obtained as the standard error across at least three independent simula-

tions.

GCMC protocol - Interacting Particle Method

The GCMC simulations for the individual water molecules were initially per-

formed using the interacting particle method.[108] Unlike the original study, both

attractive and repulsive terms were turned on throughout the simulations. Inser-

tion and deletion attempts were accepted using the following Metropolis tests.

Pin = min

[
1,

exp(B)

N + 1
exp

(
−∆E

kbT

)]
(5.5)

Pdel = min

[
1, Nexp(−B)exp

(
−∆E

kbT

)]
(5.6)

In the above equations, N is the number of particles in the simulation and B is

the Adams parameter (B = µ′/kBT + ln n̄). n̄ is the expected number of particles

in the system given the volume of the simulation region and is equal to p̄v, where

p̄ is the number density of the particle and v the simulation volume.[50] µ′ is the

excess chemical potential, kB is the Boltzmann constant and ∆E the change in

energy between the new and old states.

Unlike the double-decoupling and JAWS simulations, no formal hardwall re-

gion is applied in a GCMC simulation. Although other water molecules are pro-

hibited from entering the defined region, solute and protein atoms are allowed to

occupy the same region as the GCMC simulation. As a result a smaller 2x2x2 Å3

grid was defined around each water molecule to obtain sufficient sampling of the

localised water occupancy, since it was observed that in some cases the volume

occupied by the water molecule was filled with a solute atom. Each B value was

simulated for 40 million MC moves, divided into 800 blocks of 50K steps each.
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At the end of each simulation the average population across the entire simulation

was recorded. The decoupling free energy of the water was found using equation

??.

∆Gdec = −kBT ln

(
[Lsim]

[Lideal]

)
(5.7)

In equation ??, [Lsim] is found by initially recording the population at a set B

value. This population is converted into a localised concentration by dividing by

the simulation volume, and then converting this into a molar concentration using

Avogadro’s number. [Lideal], as shown in equation ??, is related to the B value of

the simulation and is found using equation ??.

[Lideal] = 55.56M × exp(B − ln n̄) (5.8)

In equation ??, n̄ is the expected number of particles in the system given the

volume of the simulation region and is equal to p̄v, where p̄ is the number density

of the particle and v the simulation volume.[50]

Having calculated ∆Gdec, the binding free energy of the water was found using

equation ??.

∆Gbind = ∆Gdec + ∆Ghyd (5.9)

For each water molecule, at least 5 B values were simulated to allow for a

reliable estimate of the binding free energy, found as the average of the binding

free energies across the range of B values. The free energy of hydration, ∆Ghyd,

was taken to be +6.4 kcal/mol.

For the GCMC simulations, solvent moves were attempted with a probability

of 44 %, protein side-chain moves with a probability of 5.8 % and solute moves
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with a probability of 1.8 %. Insertion and deletions were attempted with an equal

probability of 2.2 %, with translations and rotations of the isolated GCMC water

attempted with a probability of 44 %.

Using the interacting particle approach, an estimate of the binding free energy

of a water can be found as standard error of the binding free energy across a

number of different B values.

GCMC protocol - Simulated Annealing Method

An alternative method for calculating the binding free energy of a water molecule

through GCMC lies in the simulated annealing approach.[54] Rather than con-

verting populations into localised concentrations, the populations obtained from

simulating at a range of B values are instead used to make a free energy titration

plot. The value of B can be related to the binding free energy using equation ??.

∆Gbind = ∆Ghyd + kBT (B − ln n̄) (5.10)

In equation ??, the hydration free energy of water, ∆Ghyd, is taken to +6.4

kcal/mol, kB is the Boltzmann constant, T the temperature of the simulation and

n̄ is the expected number of particles in the system given the volume of the simu-

lation region.

By plotting the average population occupancy of the water molecule as a func-

tion of the binding free energy, found using B, the value of ∆Gbind can be found

at the equivalence point of the graph i.e. extrapolating at a population of 0.50.

Using the simulated annealing approach, an estimate of the binding free en-

ergy of a water can be found as the difference between two consecutive B values;

equal to ± 0.60 kcal/mol.
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The simulation protocol for the simulated annealing approach is the same as

for the interacting particle method.

Unless stated otherwise, the above protocols were used for all of the subse-

quent studies. The JAWS and GCMC protocols were coded into the in-house

Monte Carlo software, ProtoMS [118], which was used to perform all of the sim-

ulations in this thesis unless otherwise stated. Approximately 2000 lines of For-

tran77 code were written to implement the methods.

5.2.3 JAWS placement

A JAWS stage one simulation was performed upon N9-neuraminidase, incorpo-

rating a volume of approximately 1000 Å3. The simulation identified 7 possible

hydration sites, shown in Figure ??, in good agreement with both the crystal-

lographic data and the original simulations performed by Michel et al.[13] The

native crystal structure contains six crystallographic waters [113], with the addi-

tional site, Wat7, found by the JAWS simulations.

Attempts were made to calculate the binding affinity of each of the waters us-

ing the JAWS stage 2 algorithm. It was found, however, that the majority of water

molecules did not experience sufficient θ < 0.05 transitions during the simulation

timeframe. As a result, the binding free energies calculated by the method were

either poorly converged or unobtainable. An example of this is shown in Figure

??, where the standard biasing term does not induce any θ < 0.05 transitions for

Wat 5 in N9 neuraminidase.

It has been previously recognised that one the major drawbacks of the JAWS

algorithm is that it cannot calculate the binding affinities of strongly bound waters.[41]
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Figure 5.1: The 7 possible hydration sites identified by JAWS in N9 neu-
raminidase. The non-crystallographic site, Wat7, is highlighted in green

In order to calculate the binding free energies of strongly bound water molecules,

modifications to the JAWS biasing term are required. These modifications are now

discussed.

5.3 Development of the JAWS algorithm to calcu-

late strongly bound waters

The calculation of the binding free energy of a water molecule is captured by

equation ??, where P(θi → 1) and P(θi → 0) is the probability of a water molecule

being observed at a θ value of > 0.95 and < 0.05 respectively.
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Figure 5.2: θ sampling for Wat5 in N9 neuraminidase using a biasing potential of
6.4 kcal/mol

∆Gbind = −kBT ln

(
P (θi → 1)

P (θi → 0)

)
(5.11)

For weakly bound water molecules the biasing potential applied in the second

stage of the JAWS algorithm is sufficient to ensure that the θ water molecule can

sample both the on and off states, ensuring that enough statistical sampling is

performed to obtain a reliable free energy estimate. However for strongly bound

water molecules the standard bias potential of +6.4 kcal/mol is not sufficient to

induce transitions to the off state, resulting in either poor or no sampling and an

unreliable estimate of the binding free energy.

One way of ensuring that enough sampling is performed at both end states is

by changing the biasing potential applied in the second stage of the algorithm.

Rather than basing this upon the hydration free energy of water, the applied bias
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can be changed to one which induces sufficient transitions between the two states.

The resulting free energies obtained are indicative of the new biasing potential and

hence must be corrected to take the standard hydration free energy of water into

account, as shown in equation ?? where ∆Gbias is the value of the bias applied in

the second stage of the algorithm. The free energies obtained by this method are

broadly independent of the applied bias, with an example of this shown in Figure

??.

∆Gbind(θi) = −kBT ln

(
P (θi → 1)

P (θi → 0)

)
+ 6.4kcal/mol −∆Gbias (5.12)

Figure 5.3: Effect of the applied biasing potential upon the JAWS stage 2 binding
free energy of Wat5 in N9 neuraminidase

The error estimates observed in Figure ?? arrive from the fact that the biasing

term is not completely assigned to both the on and off states, since the thresholds
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for the end states are taken to be 0.95 and 0.05 respectively rather than 1 and 0.

Assuming that the population distribution of θ across 0.95-1.00 and 0.05-0.00 is

uniform, equation ?? can be modified to equations ?? and ??. In these equations,

the on and off states are approximated by the average of the threshold and the

ideal end point:

∆Gcorr = 0.975 ∗∆Gbias − 0.025 ∗∆Gbias (5.13)

∆Gbind(θi) = −kBT ln

(
P (θi → 1)

P (θi → 0)

)
+ 6.4−∆Gcorr (5.14)

There is also an error associated with the choice of θ threshold. For example,

the threshold for an ’on’ state could either be θ > 0.95 or θ > 0.98. To estimate

this error, the binding free energy of a water molecule in N9-neuraminidase was

calculated using different thresholds. The calculated results can be found in Figure

??, with the error associated with the choice of θ estimated to be± 0.30 kcal/mol.

The need for changing the applied bias can be seen in Figure ??, whereby tran-

sitions between the on and off state can be induced by increasing the applied bias.

At a biasing potential of 10 kcal/mol the water molecule experiences most of the

simulation time in the on state, with no transitions to the off state being observed,

meaning that a reliable free energy estimate cannot be obtained. However, upon

a switch to 17 kcal/mol, the water molecule can sample both end states, allowing

for a reliable free energy estimate.

5.3.1 Choice of biasing potential

Since the binding free energy is broadly independent of the applied bias, as demon-

strated in Figure ??, a JAWS stage 2 simulation needs to be run at only one value
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Figure 5.4: JAWS stage 2 binding free energy of Wat5 in N9 neuraminidase as a
function of the θ threshold

of the bias to extract the binding free energy. The ideal bias should induce an

equal number of on and off states, meaning that the binding free energy becomes

the difference between the standard hydration free energy of water and the applied

bias. An equal number of on and off states means that the water is, on average,

present 50 % of the time and should give the most reliable estimate of the binding

free energy. To achieve this, a simplex-style minimisation procedure is applied.

A short JAWS stage 2 simulation, typically one million MC moves, is per-

formed and an estimation of the binding free energy found. The biasing potential

is then iteratively changed to obtain a value of the bias which yields an equal

number of on and off states. An example of this process is shown in Table ??.

In table ??, the iterative minimisation is trying to obtain a value of ∆Gbias

which induces an equal number of on and states. As shown in equation ??, an

equal number of on and off states should result in a ln term approaching zero. At
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Figure 5.5: θ sampling as a function of the applied bias potential for Wat3 in N9
neuraminidase

Iteration ∆Gbias

(kcal/mol)
Ln(On/Off) Iteration ∆Gbias

(kcal/mol)
Ln(On/Off)

1 15 12 6 17.5 -1
2 15.5 10 7 17 11
3 16 11 8 17.5 3
4 16.5 4 9 18 -2
5 17 3 10 17.5 0

Table 5.1: Simplex minimisation for Wat3 in N9 neuraminidase

the end of each simulation, the ln ratio of on and off states is calculated. If the

value is positive, suggesting more on states than off, then the value of ∆Gbias is

increased by 0.5 kcal/mol for the next iteration. If the value is negative, suggesting

more off states than on, then the value of ∆Gbias is decreased by 0.5 kcal/mol. At

the end of the process the value of ∆Gbias which gives a ln term of zero is chosen

for the main simulation. In this example, the value of ∆Gbias was taken to be 17.5
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kcal/mol.

5.3.2 Error calculation

For all of the subsequent studies, the error in the calculated JAWS stage 2 binding

free energy is found as the sum of two possible sources. The first source of error

is in the choice of θ threshold, estimated in Figure ?? to be ± 0.30 kcal/mol.The

second source arrives from the fact that the biasing term is not completely assigned

to both the on and off states, since the thresholds for the end states are taken to be

0.95 and 0.05 respectively rather than 1 and 0. This error is dependent upon the

choice of ∆Gbias, and is found using equation ??.

∆Gerror = ∆Gbias − (0.975 ∗∆Gbias − 0.025 ∗∆Gbias) (5.15)

5.4 Binding Free Energy Calculations

5.4.1 JAWS vs RETI

Using the new modifications, a JAWS stage 2 simulation was performed upon

each hydration site as identified in Figure ??, with each site also studied using

double-decoupling. The binding free energy for JAWS stage two simulations was

found using equation ??. The free energy comparison between the two methods

can be seen in Figure ??.

Figure ?? clearly demonstrates that the two methods give excellent agreement

with each other. Both strongly and weakly bound water molecules are picked up

by the two methods, showing that the modification to the JAWS algorithm has
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Figure 5.6: Binding free energies for the 7 hydration sites in N9 neuraminidase,
found using JAWS stage 2 and RETI double-decoupling

been successful in predicting the binding free energy of water molecules which

previously were incalculable. The biasing potentials used to calculate the JAWS

free energies in Figure ?? can be seen in Table ??.

Water Molecule JAWS ∆Gbind

(kcal/mol)
RETI ∆Gbind

(kcal/mol)
JAWS Bias
(kcal/mol)

1 -4.69 (0.70) -4.51 (0.25) 14
2 -6.93 (0.60) -7.60 (0.30) 12
3 -10.87 (0.85) -10.86 (0.14) 17.5
4 -6.32 (0.70) -6.14 (0.09) 14
5 -12.39 (1.00) -13.21 (0.06) 20
6 -9.91 (0.95) -9.76 (0.10) 19
7 7.04 (0.10) 7.13 (0.30) 2

Table 5.2: Binding free energies for the 7 water molecules in N9 neuraminidase,
found using JAWS stage 2 and RETI double-decoupling. Errors are shown in
parenthesis

The convergence for the JAWS stage 2 simulations can be seen in Figure ??. It
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can be seen that all of the simulations are well converged after ca. 10 million MC

moves, demonstrating further that the biasing potentials used yield precise results.

Figure 5.7: Convergence of the binding free energies in the JAWS stage 2 simula-
tions

5.4.2 GCMC vs. RETI

Using the hydration sites identified by the JAWS stage 1 simulations, the free en-

ergy of binding of each site was calculated using the interacting particle method

of Clark et al.[108], described previously in section ??. Equation ?? yields the

decoupling energy of the water molecule from the protein, and can be corrected

with the hydration free energy of water to arrive at a binding free energy using
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equation ??. Figure ?? shows the predicted binding affinity of the 7 molecules

using the two methods and shows an excellent correlation. Initial tests were made

to apply the non-interacting particle method, but these proved to be unsuccessful.

Since sidechain movement is allowed during the GCMC simulation, the high con-

centration of water molecules localised on one site allowed nearby sidechains to

migrate towards the binding region. The end point of such a simulation is not the

same as the other methods, and as such it cannot be reliably compared.

Figure 5.8: Binding free energies for the 7 hydration sites in N9 neuraminidase,
found using GCMC and RETI double-decoupling

The reported GCMC binding free energies were calculated as the average of

the binding free energy across a range of B values. An example of this for the

Wat7 site, the weakest binder in the series, can be seen in Table ??. The table

shows that the binding free energy is consistent at around 7 kcal/mol once the av-

erage population drops below 0.60. This behaviour is similar to that demonstrated

by Clark et al. in the calculation of benzene-T4 lysozyme binding free energies.
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[106, 108] The maximum occupancy for the water site is one, meaning statisti-

cally significant occupancies of less than one need to be obtained to get a reliable

estimate of the binding free energy.

B Average
population

[Lsim] (M) [Lref ] (M) ∆Gdec (kcal/mol) ∆Gbind

(kcal/mol)
4 0.9725 202 11400 2.39 8.79
3 0.9325 194 4120 1.82 8.22
2 0.7275 151 1540 1.37 7.77
1 0.570 118 565 0.926 7.33
0 0.368 76.3 208 0.593 6.99
-1 0.148 30.6 76.5 0.542 6.94
-2 0.04 7.78 28.1 0.761 7.16

Table 5.3: Calculated free energies for Wat7 in N9 neuraminidase, found at dif-
ferent B levels

Using the data for B values less than 2 in table ??, the binding free energy can

be found as 7.24 ± 0.17 kcal/mol.

One major drawback associated with the GCMC method lies in the acceptance

rate of insertion and deletion moves. For an insertion to be accepted it is important

that the orientation of the water molecule is correct, since otherwise it is likely

that the intermolecular interactions between the water and its environment will be

unfavourable.[53] As a result insertion rates as low as 0.1 % are seen in GCMC

simulations, which in turn leads to poor sampling. It is this poor sampling which

could potentially lead to an increase in the uncertainty in the free energies of

GCMC simulations compared to both double-decoupling and JAWS, although no

evidence of this has been seen in this study,

Since the interacting particle method can generate populations as a function

of B, this information can also be used to derive free energies via the simulated

annealing approach.[54] As previously described, the method can be considered

to be analogous to a chemical titration whereby the decoupling free energy of the
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water molecule is the equivalence point at which the average population is 0.50.

The data from Table ?? has been used to generate such a titration profile, seen in

Figure ??.

Figure 5.9: Free energy titration plot for Wat7 in N9 neuraminidase, found using
the GCMC simulated annealing approach

Figure ?? shows that the estimated binding free energy of Wat7 is approxi-

mately 7.4 kcal/mol at the 0.50 equivalence point, in good agreement with the

value calculated by the interacting particle method. Since either method can be

used to derive the same result to within error, the question arises as to which of

the GCMC methods is advantageous to calculate binding free energies. Whilst

the simulated annealing approach gives information regarding the behaviour of

the system as a function of the B, the interacting particle approach is significantly

faster since it only requires the simulation to be performed at one value of B.

However, the correct B to choose is not always known a priori, meaning that it

can require several different simulations to arrive at statistically significant B val-
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ues. It therefore appears to be more advantageous to use the simulated annealing

approach. Utilisation of the simulated annealing approach to look at the influence

of B upon the position and binding affinity of hydration sites will be discussed

further in the subsequent sections.

5.4.3 Preliminary conclusions

The N9-neuraminidase system was chosen as a test for the different methodolo-

gies since there are a large number of different studies utilising the system in free

energy calculations.[13, 40] The fact that all three free-energy methods give near

identical results is clearly encouraging and lends itself to the question over which

method is best suited to a particular problem. Whilst RETI double-decoupling

is the most rigorous method of the three it is also the most computationally ex-

pensive. A typical simulation requires in excess of 300 CPU hours, whilst both

GCMC and JAWS require an order of magnitude less time. As a result it is sug-

gested that double decoupling is used in cases where precise free energies are

required or in ambiguous cases.

One drawback of the double-decoupling approach is that it requires prior

knowledge of the water binding positions; something which is found dynami-

cally in both JAWS and GCMC. As such, if novel systems are studied then ei-

ther JAWS, GCMC or both methods should be employed to identify potential

hydration sites. Employing JAWS in free energy studies has already been utilised,

whereby changes in hydration as a function of ligand perturbations are accounted

for.[61, 62] Since both JAWS and GCMC take similar times to calculate the bind-

ing free energy, there is little reason to favour one method over the other. One

possible advantage in the JAWS approach is that once the optimal biasing poten-

tial is found no further simulations need to be run, whilst the GCMC approach
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requires several simulations run at different potentials to arrive at the binding free

energy. This in itself, however, highlights one of the advantages in the GCMC

approach; that it can give information on the binding of molecules as a function

of the chemical potential.

One potential problem with the JAWS approach to calculate binding free en-

ergies is how to deal with the intermediate θ states. Since only the end points

are considered when calculating the binding free energy, it is unclear whether or

not the intermediate data should be considered. Such data incorporates a higher

proportion of the recorded θ chemical space, highlighted in Figure ??.

Figure 5.10: Normalised probabilities for the on, off and intermediate states as a
function of the applied biasing potential for Wat 5 in N9 neuraminidase. The on
state was defined as θ > 0.95, the off state defined as θ < 0.05 and the intermediate
state was the remaining θ values

Based upon the excellent agreement between JAWS, GCMC and double-decoupling,

it seems that ignoring the intermediate states is acceptable. This is, however,
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a waste of potentially useful data, although it is unclear how the data could be

analysed. In order to understand whether this data is significant, the profiles

of strongly and weakly bound water molecules could be compared to examine

whether there is a relationship between the binding affinity and the population of

intermediate states.

5.5 Bovine Pancreatic Trypsin Inhibitor

5.5.1 Biological Relevance

The Bovine Pancreatic Trypsin Inhibitor (BPTI) is a small protein (58 residues)

[119] which inhibits trypsin, a serine protease found in the digestive system. Inhi-

bition of trypsin has been found to reduce bleeding, and as such the drug aprotinin

was developed for use during surgery [120] before complications saw the drug re-

moved from general usage. Within the structure of BPTI, two water cavities have

been identified. The first, singly occupied by Wat122, finds the water stabilised

by 4 hydrogen bonds within the protein cavity. The second cavity, occupied by

Wat111, Wat112 and Wat113, finds the three molecules bound to both each other

and the protein cavity.

5.5.2 System Preparation

The protein structure 5PTI (resolution 1 Å) [121] was used for the following simu-

lations. The same protein preparation as for N9 neuraminidase, detailed in section

??, was followed. For the JAWS stage one simulations, 6 JAWS θ molecules were

used to simulate the Wat111 cavity, using the same simulation length and protocol

as described previously.
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5.5.3 Wat122

A schematic representation of the Wat122 cavity can be seen in Figure ??. The

water molecule was studied with JAWS stage 2, double-decoupling and the in-

teracting particle GCMC method, with the results shown in table ??. A biasing

potential of 14 kcal/mol was used for the JAWS stage 2 calculations, using the

modified protocol described in section ??.

Figure 5.11: The binding pocket of Wat122 in 5PTI

Water Molecule ∆Gbind-JAWS
(kcal/mol)

∆Gbind-GCMC
(kcal/mol)

∆Gbind-RETI
(kcal/mol)

122 -6.75 ± 0.80 -6.81 ± 0.80 -6.84 ± 0.40

Table 5.4: The calculated binding free energy for Wat122 in 5PTI, found using
JAWS, GCMC and RETI double-decoupling

The error estimates in table ?? from GCMC and RETI arrive from the calcu-

lated standard error across a number of simulations, whilst the JAWS error proto-

col is described in section ??.

As with the water molecules in the N9-neuraminidase system, the binding

free energy is extremely similar for all of the three methods used. The result
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is also consistent with a previous study, with the energy calculated to be -7.08

kcal/mol.[8]

5.5.4 Wat111 cavity

Figure ?? shows the three molecules in the Wat111 cavity. The cavity was sub-

jected to a JAWS stage 1 simulation, which identified the three molecules in close

agreement with the crystallographic data. A volume of 245 Å3 was simulated

using 8 θ waters. Snapshots of the population density obtained from the JAWS

stage 1 simulation can be seen in Figure ??, and show that the three water sites

are clearly identified.

Figure 5.12: The binding pocket of Wat111, Wat112 and Wat113 in 5PTI

A JAWS stage 2 binding free energy calculation was performed upon each of

the three located water sites in turn, with the results compared to those obtained by

double-decoupling. Table ?? shows that the two methods give excellent agreement

with each other.
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Figure 5.13: JAWS stage 1 clustering density for the Wat111 cavity. From left to
right: Top 10 % of data, top 40 %, 70 %, 100 %

Water Molecule ∆Gbind-JAWS
(kcal/mol)

Bias Potential
(kcal/mol)

∆Gbind-RETI
(kcal/mol)

111 -12.07 ± 1.20 20 -12.70 ± 0.40
112 -15.60 ± 1.30 21 -15.77 ± 0.40
113 -15.70 ± 1.40 22 -15.86 ± 0.40

Table 5.5: JAWS and double-decoupling binding free energies for the three water
molecules in the Wat111 cluster

The error estimates in table ?? from GCMC and RETI arrive from the calcu-

lated standard error across a number of simulations, whilst the JAWS error proto-

col is described in section ??.

It can be seen from Figure ?? that the water molecules in this cavity are all

hydrogen bonded to both the protein and each other. A GCMC simulation, an-
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nealing the value of B from high to low, was performed upon the entire cavity to

see whether the method could accurately predict both the occupancy and binding

free energy of the water molecules. It was found that the method predicts an oc-

cupancy of 3 at high values of B, however as the chemical potential was dropped

the prediction changed.

As the chemical potential is lowered to -14.6 kcal/mol (corresponding to a

binding free energy of -8.2 kcal/mol), Wat111 leaves the system. This is an un-

expected result, since both the JAWS stage 2 and double-decoupling simulations

suggest that the binding free energy of Wat111 should be around -12 kcal/mol.

When Wat111 leaves the system Wat112, seen as the middle water in Figure ??,

moves slightly and occupies an intermediate site between itself and Wat111 - pre-

venting Wat111 from reinserting back into the cavity. As a result of this reorgani-

sation effect the average occupancy of the cluster is predicted to be 2 at this value

of the binding free energy, compared to the crystallographic and JAWS evidence

suggesting it should be 3. Once the intermediate water is observed the average

cavity population is never subsequently observed to be 3. Consequently, the reor-

ganisation effect on the system results in a different prediction of the binding free

energy being obtained when GCMC is used. The calculated free energies of the

other waters using the GCMC method will now be indicative of the new interme-

diate positions, instead of the original positions. A snapshot of this behaviour can

be seen in Figure ??.

It is important to test whether the same behaviour is observed going from high

to low chemical potential as it is going from low to high. If this is not the case,

then it suggests that the method does not display reversibility. Figure ?? shows

the effects of forward and backward annealing on the occupancy of the cavity, and

demonstrates that no considerable hysteresis is observed.
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Figure 5.14: The intermediate position of Wat112 in 5PTI. The waters in blue
show the original positions, with the intermediate positions in red and white

This result highlights an interesting feature of the GCMC simulated anneal-

ing approach. The method is capable of highlighting effects upon the system as

the binding free energy changes and in this instance it suggests that if a bound

water molecule is removed from the cavity, the system reorientates itself to ac-

commodate the change. JAWS stage 2 and double-decoupling simulations cannot

simulate this process, since a hardwall potential is applied to the water molecules

during the calculations. The GCMC method is capable of looking at the free

energy of the entire cluster, whilst both JAWS stage 2 simulations and double-

decoupling simulations look at a water molecule in a particular environment. The

information obtained from GCMC cannot be obtained easily from a JAWS stage

1 simulation if the entire pocket is studied, since the method will always predict

the optimum packing within the cavity.
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Figure 5.15: Forward and backward occupancies for the Wat111 cavity as a fucn-
tion of the binding free energy

5.6 Conclusions

In this chapter the development of the modified JAWS algorithm was discussed,

and this method used alongside double-decoupling Monte Carlo and GCMC to

initially locate and calculate the binding affinity of water molecules in N9-neuraminidase.

The calculations were consistent with each other and also prior studies, indicating

that all three methods can be utilised to calculate the binding free energy of water

molecules.

The application of the three methods to two seperate cavities in BPTI was

then described, with the methods showing that for a cavity consisting of one water

molecule the methods all give the same results. Different behaviour was observed
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for the cavity containing three molecules, whereby it was found that the GCMC

method can predict hydration changes in the cavity as a function of the binding

free energy. This is something which will be exploited in the following chapter,

and cannot be obtained from JAWS or double-decoupling simulations which im-

pose a hardwall around waters of interest and look at water molecules in isolation.

The clear indication from these test systems is that although all three methods

generally give extremely similar binding free energies, there are definitely cases

where certain methods should be used. The double-decoupling method can be

viewed as the ’gold standard’ of free energy methods, although it is by far the

most computationally intensive. As such, it is recommended that this method is

used in cases where rigorous free energies are required. Since JAWS stage two

simulations require less simulation time than GCMC to calculate binding free en-

ergies, this method should be used to initially calculate the binding free energies

of waters. Since they can be tuned to specific binding free energies, GCMC sim-

ulations should be employed when information on how multiple water molecules

behave as a function of the binding free energy of the network. The resultant water

locations could then be scored using JAWS or double-decoupling.

112



Chapter 6

Predicting the location and binding

affinity of water molecules - II.

Applications

6.1 Introduction

Having established the relative merits of double-decoupling, GCMC and JAWS,

the methods can now be applied to novel and more demanding systems. The

previous chapter highlighted some of the limitations of the approaches, although

the relatively straightforward test systems do not allow a rigorous examination of

the methodologies. In this chapter, two different types of problem are examined;

the hydration of hydrophobic cavities and the application of the methods to three

different kinases. Whilst the hydrophobic cavities have been explored in the lit-

erature, the hydration of the kinase systems is a much more novel case. Through

careful examination of the apo hydration patterns, strategies for novel ligand de-

sign are proposed. The three methods are then used upon the Chk-1 kinase system,
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where the role of water network stabilisation upon ligand binding affinity is ex-

plained - something which has not been reported in the chemical literature before.

6.2 Hydrophobic cavities

6.2.1 Biological Relevance

The formation of a non-polar core is something which has been established as

playing a key role in protein folding and stability.[122] Although significant effort

has been made towards understanding the nature of protein folding, methods for

determining the hydrophobicity of protein interiors is something which is still of

great debate. Some proteins, such as cytochrome P450 [123], require the presence

of water in their hydrophobic interior to function, suggesting that the relationship

between the nature of hydrophobicity within the protein and its function is still

unclear.

A 1998 paper by Hummer et al. [122] looked at the relationship between pres-

sure and protein unfolding. Upon the application of pressures > 100 MPa, pro-

teins can undergo denaturation and unfolding. Such behaviour appears to contra-

dict the hydrophobic effect, since the presence of non-polar residues in an aqeuous

environment is unfavourable. Hummer instead considered the transfer of water

from the bulk into the protein interior, finding that an increase in pressure forces

water molecules into the protein interior. This in turn can fill the non-polar core

and break apart the protein interior structure, leading to unfolding.

As a case study, Collins looked at the pressure induced filling of the L99A mu-

tant of T4-lysozyme.[59] This cavity is known to be empty under ambient condi-

tions, hence providing an interesting test case to observe the changes in hydration
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as the pressure is changed. High pressure crystallography was used alongside a

novel free energy approach based upon a grand canonical partition function. MD

runs of the system were performed at different pressures and with different num-

bers of water molecules within the non-polar core. The occupancy probabilities

were then calculated using the potential energy change of increasing the number

of molecules in the cavity by one, together with the excess chemical potential of

water at the desired pressure.

The free-energy results indicated that under ambient conditions the cavity is

empty whilst at 200 MPa the cavity can stabily accommodate four water molecules,

results supported by the crystallographic electron density. The change in occu-

pancy was attributed to a change in the bulk chemical potential of water rather

than a change in the protein interior structure. In this system the 4 water molecules

provided a stabilisation effect on the system at higher pressure, suggesting that in-

termediate states between the folded and unfolded forms might be stabilised by

water interactions.

The observed change in chemical potential (∆µ = 0.84 kcal/mol) between

ambient conditions and 200 MPa is relatively small, yet it is sufficient to induce

filling of the cavity. As such, understanding how water interacts within protein

interiors is of great interest. If a small change in the solvent conditions can affect

the presence of water within a protein interior, and hence the protein activity,

then possible strategies could be designed to directly influence the performance

of proteins such as enzymes. The JAWS and GCMC methodologies have already

shown to be ideally suited for looking at the behaviour of water within enclosed

cavities, and hence lend themselves to be utilised in understanding the behaviour

of waters within protein interiors.
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6.3 T4-Lysozyme

6.3.1 System Preparation

The same protein preparation and simulation protocols as for N9-neuraminidase

were followed, using the pdb structure 2B6T (resolution = 2.10 Å).[124]

6.3.2 Simulations

In order to investigate the occupancy of the hydrophobic cavity, a JAWS stage 1

simulation was performed upon the 210 Å3 cavity. A threshold of θ > 0.995 was

employed, with the top 60 % of density shown in Figure ??. A θ threshold of

0.995 was chosen since it was found by another researcher that the predictions

made using this threshold were in better agreement with those made by GCMC

for more solvent accessible pockets compared to a 0.95 threshold.[125]

Figure ?? shows that there are 5 possible density regions observed in the sim-

ulation. The study performed by Collins et al. [59] indicated that the maximum

stable occupancy within the cavity at higher pressures was 4, which appears to

be in disagreement with the JAWS stage 1 result. The crystal structure deposited

from this study however only contained three water molecules, likely to be due

to difficulties in accurately resolving the electron density within the cavity. In-

deed, the paper acknowledges that the crystallographic evidence alone points to

an occupancy between 2 and 4.

The convoluted experimental number density suggests that the waters in this

system are likely to be mobile, and can adopt different positions in the cavity.

As such the JAWS evidence could be indicating 5 possible positions instead of 5

absolute positions. This highlights one of the pitfalls in the JAWS placement of
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Figure 6.1: Calculated JAWS stage 1 density for the T4-lysozyme cavity. The top
60 % of data is displayed in blue, with crystallographic waters in green

waters; that it cannot identify cooperativity between possible water sites. During a

GCMC simulation a water molecule can only be on or off, meaning that identify-

ing cooperativity can be achieved by visual inspection of the simulation output. In

comparison, water molecules can adopt θ values between the on and off states in a

JAWS stage 1 simulation. This allows water molecules to be stabilised by nearby

waters with intermediate θ values, making the assignment of accurate hydration

sites a challenge.

In order to learn more about the relationship between waters in this system,

GCMC simulated annealing was performed at different values of B. As the value

of B is changed, the occupancy of the waters within the cavity should change and

highlight the effect of water cooperativity.
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Figure ?? shows the effect upon the occupancy as the value of B (plotted as the

binding free energy) is changed. Average occupancies above 4 were not observed

at any of the B levels suggesting that an occupancy of 5 is extremely disfavoured,

corroborating the previous work by Collins.

Figure 6.2: Average occupancy of the T4-lysozyme cavity as a function of the
estimated binding free energy, found using GCMC

Since both the GCMC simulations and previous work by Collins suggest an

occupancy of 4 water molecules, the oxygen-water coordinates from the B = -1

simulation (corresponding to a binding free energy of + 4.65 kcal/mol) were used

to create a density map. A representative snapshot from the simulation was then

sought which best matched the density plot and had four water molecules. This

matching process was done by visual inspection across the simulation snapshots,

and allows JAWS stage 2 simulations to be performed. The outcome of this is

shown in Figure ??.

Figure ?? shows that three of the observed water molecules are in good agree-
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Figure 6.3: Left: Density plot for the T4-lysozyme cavity obtained using a B
value of -1, corresponding to a binding free energy of + 4.65 kcal/mol. Shown in
green are the three crystallographic waters. Right: Chosen snapshot locations for
the waters

ment with the crystallographic sites. It is interesting to note that the middle crys-

tallographic water sits in a large cloud of density compared to the other two sites,

which could explain the presence of the 5th region of density found in both GCMC

and JAWS. As expected, this water molecule exhibits the highest temperature fac-

tor of the 3.

Having placed the waters, each water was then subjected to a JAWS stage 2

simulation. The same biasing potential was used for all of the simulations, being

10 kcal/mol. The calculated binding free energies can be seen below in Figure ??.

Water ∆Gbind (kcal/mol)
A +0.70
B -2.23
C +1.36
D +1.09

Figure 6.4: JAWS binding free energies for the water molecules found at B = -1,
corresponding to a binding free energy of + 4.65 kcal/mol
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The calculated free energies show that 3 of the water sites are unfavourable,

whilst one exhibits a negative binding free energy. It is interesting to note that this

molecule, Wat B, is the one which closely matches the crystallographic water with

the highest temperature factor. This suggests that there could be an entropic con-

tribution to the binding free energy, in addition to the hydrogen bonding between

the water molecules. Since the binding free energy of Wat B is supported by three

water molecules with positive binding free energies under these simulation con-

ditions, it is important to understand the effect of removing the positively bound

water molecules. It is assumed in this work that water molecules with positive

binding free energies will prefer to exist in the bulk rather than the protein cavity,

providing a justification for the removal of the waters.

When the binding free energy of Wat B is calculated in the absence of the

other 3, the binding free energy changes to +1.92 kcal/mol, suggesting that its oc-

cupancy depends solely upon the presence of other 3 molecules. Based upon this

it is apparent that the occupancy of the cluster under standard conditions should be

zero, corroborating the previous results obtained by Collins. This is also in agree-

ment with the titration plot obtained by GCMC, as shown in Figure ??, where the

number of water molecules at a binding free energy of 0 kcal/mol is expected to

be zero.

As previously discussed, the filling of the cavity under higher pressures is

thought to be due to a shift in the chemical potential of bulk water, as opposed to a

change in the protein structure. Since JAWS stage 2 simulations are performed in

the canonical ensemble, changes in pressure cannot be accounted for directly. As

a result, a correction term needs to be applied which implicitly takes into account

the change in the bulk chemical potential. This was achieved by running double

decoupling simulations at 2000 bar to see the effect upon the hydration free energy
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of water in bulk water, and observing if this matched the change observed by

Collins (∆µ = 0.84 kcal/mol).

A water molecule was decoupled from a box of bulk water in two stages; ini-

tially decoupling the electrostatic terms and then perturbing the Lennard-Jones

terms on the oxygen atom of the water molecule to zero. The NPT ensemble was

used to perform the simulations, with the simulations performed at the two dif-

ferent pressures. The same number of MC moves and λ windows as described in

the N9 neuraminidase double-decoupling simulations were used. Solvent moves

were attempted with a probability of 99 %, solute moves with a probability of 0.9

% and volume moves with a probability of 0.1 %.

The PMF profiles for the water decoupling at 1 bar and 2000 bar can be seen

in Figure ??.

The calculated hydration free energy is 5.84 ± 0.4 kcal/mol; a change of 0.56

kcal/mol compared to the standard hydration free energy at 1 bar. This is in good

agreement with the value calculated by Collins.

Figure 6.5: PMF profiles for the decoupling of the electrostatic (left) and Lennard-
Jones (right) terms for a water molecule at 1 and 2000 bar

The JAWS stage 2 binding free energies for the four waters, corrected for the

difference in hydration free energy at 2000 bar, -0.56 kcal/mol, can be seen in table
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??. It can be seen that all of the free energies become more favourable, with waters

A, C and D all displaying hydration free energies which are indicative of waters

which are expected to be intermittently present under standard conditions. The

work by Collins showed that, although a cluster of four waters is stable at 2000

bar, it is still not as favourable as having no waters in the cavity. The modified

JAWS stage 2 results support this assertion, and provides evidence for the possible

existence of water within the T4-lysozyme cavity at elevated pressures.

Water ∆Gbind (kcal/mol)
A +0.14
B -2.79
C +0.80
D +0.53

Table 6.1: Modified JAWS binding free energies for the water molecules found in
the T4-lysozyme cavity

6.3.3 Conclusions

The T4-lysozyme system provides more evidence for the critical role which wa-

ters play in a network. As demonstrated through the JAWS stage 2 binding free

energies at 1 bar, although a water molecule might have a favourable binding free

energy it does not mean that it will be present under standard conditions if its

occupancy is supported by nearby, unfavourable waters. As such, the entire net-

work needs to be taken into account - something which can potentially be time

consuming for JAWS stage 2 simulations. The GCMC methodology achieves this

since it looks at the free energy of the cavity, rather than each individual water

molecule. In this system, the method clearly correctly predicts that the occupancy

of the cavity is zero under standard conditions.
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6.4 Interleukin 1 β

6.4.1 Biological relevance and motivation

The interleukin 1 β protein (IL1β) is a cytokine which is released to coordinate

responses to immune challenges.[126] Similar to T4-lysozyme, it contains a hy-

drophobic cavity with a volume of around 80 Å3. Early crystallographic studies

indicated that the cavity was empty under ambient pressures, however later NMR

studies indicated that the cavity could accommodate water, citing the fact that

the disordered nature of waters within the cavity masked their presence by X-ray

crystallography.[127] A similar debate has arisen when simulation methods have

been applied to the system. Original studies by Zhang and Hermans [71] con-

cluded that the cavity was empty, whilst a more recent paper by Somani [128] has

suggested that the cavity can accomodate 4 water molecules. As such, the nature

of the pocket is unclear.

A later study by Yin utilised the grand-canonical approach used for T4-lysozyme

and concluded that the cavity was empty under ambient conditions.[126] In addi-

tion, the study noted that the assumptions used by Somani were incorrect; namely

that the free energy of the addition of a water molecule into the cavity from 0 to 1

to 2 is sequential. Considering that the JAWS/GCMC methodology was success-

ful in predicting the occupancy of T4-lysozyme, the IL1β system should provide

another test case for the methodology. A 2005 study by Adamek looked at intro-

ducing mutations into the hydrophobic cavity and noted the changes in stability

and hydration.[129] It was found that 11 different mutations destabilised the sys-

tem, whilst none of the cavities were found to contain water molecules when stud-

ied by X-ray crystallography. The mutations observed did not result in significant

structural changes to the protein, suggesting a subtle change in the system dynam-
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ics. It is possible that some of the mutations could induce a weak and disordered

water network within the cavity causing the protein destabilisation, something

which lends itself to be studied by GCMC and JAWS.

6.4.2 System preparation

The same protein preparation and simulation protocols as for N9-neuraminidase

were followed for the crystal structure 6L1B.pdb.[130] For the JAWS stage 1 and

GCMC simulations, a 166 Å3 binding site region was defined to locate and score

the waters.

6.4.3 Wild type simulations

As with the T4-lysozyme system, GCMC simulations were performed at a range

of different B values, alongside the standard JAWS stage 1 simulation. At a B

value of +15, corresponding to a water binding free energy of 14.26 kcal/mol, a

network of 4 water molecules was observed. The observed network matches that

described by both Somani and Yin in their MD studies and also the JAWS stage

1 simulation. Upon visual inspection, the network was found to be present across

the majority of simulation snapshots, and was chosen to be a good match to the

JAWS stage one density. The correlation between the JAWS stage 1 density and

the water network can be seen in Figure ??.

As the B value was decreased to lower potentials the average occupancy dropped

dramatically, indicating that under standard conditions of temperature and pres-

sure the occupancy is zero. This initial evidence supports the results obtained

by Yin that the occupancy of the cavity under ambient conditions is zero. The

population graphs for each B value can be seen in Figure ??.
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Figure 6.6: Observed water network for IL1β compared to the JAWS stage 1
number density

Using the water network found at B = +15, corresponding to a water binding

free energy of 14.26 kcal/mol, each water was then analysed during a JAWS stage

2 simulation. The calculated free energies are shown in table ??.

Water ∆Gbind (kcal/mol)
A +1.50
B +1.78
C -1.60
D +3.62

Table 6.2: JAWS binding free energies for the water molecules found at B = +15

Table ?? shows that three of the water molecules in the system display pos-

itive binding free energies, whilst another is weakly bound in the system. The

positively bound waters suggest unfavourable sites and are hence unlikely to exist

in the system. Removal of Wat A, Wat B and Wat D from the system increases

the binding free energy of Wat C to +2.18 kcal/mol, suggesting that the water

molecule is not stable by itself and hence that the cavity is likely to be empty

under standard conditions. This agrees with the population data obtained using
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Figure 6.7: GCMC population plots for the IL1β cavity. From left to right: B =
+15, B = -5, B = -10, B = -15. These B values correspond to a binding free energy
of +14.26 kcal/mol, 2.42 kcal/mol, -0.53 kcal/mol and -3.50 kcal/mol respectively.
The value of B can be seen in the legend of each graph

GCMC simulations, shown as the bottom left graph in Figure ??, where the oc-

cupancy of the cavity at a binding free energy of -0.53 kcal/mol is predicted to be

approximately zero.

6.4.4 Mutant simulations

Two different mutations studied by Adamek were considered [129]; the F146Y

mutation and the WWW mutation, whereby the phenylalanine residues at posi-

tions 42, 101 and 146 in the amino acid chain were mutated to tryptophan. GCMC
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simulations were performed at three different potentials to assess whether any wa-

ter molecules observed were positively bound, weakly bound or strongly bound.

The same size of binding cavity was identified to allow easy comparison with

the wildtype simulations. The average occupancy for these simulations for both

mutations in comparison to the wildtype can be seen in table ??.

B F146Y WWW Wildtype
-5 2.01 1.98 1.87
-10 0.08 0.12 0.02
-15 0.00 0.00 0.00

Table 6.3: GCMC populations for the F146 and WWW mutations as a function of
the applied B value, alongside the respective wildtype simulations

Table ?? shows that there is no significant difference between the two mu-

tant structures and the wildtype. As such, the clear indication is that the mutant

structures are likely to be empty under ambient conditions. If this is the case,

then the destabilising effect which has been observed experimentally is unlikely

to be due to water penetrating the hydrophobic cavity of the protein. Although

the JAWS and GCMC methods suggest that the cavity is empty, the mutations

might be causing subtle polarisation changes within the cavity which cannot be

described adequately using a standard MM forcefield. If this is the case then it is

of little surprise that the results obtained between the mutant and wildtype struc-

tures are extremely similar. One way of testing the polarisation hypothesis is by

incorporating the polarisation effects into the water model; effectively tuning the

coulombic and Lennard-Jones parameters to account for polarisation.[131]
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6.4.5 Conclusions

The studies on the interleukin 1 β protein again highlight the importance of net-

work cooperativity. As with the T4-lysozyme example, the use of JAWS stage 2

on the single water molecules within the cavity suggests that one of the molecules

within the cavity has a favourable binding free energy and would be expected to be

present under ambient conditions. However the binding free energy of this water

molecule is supported by the presence of other water molecules with unfavourable

binding free energies and, upon removal of these waters, the previously favourable

water is no longer expected to be present. The use of GCMC simulations at dif-

ferent binding free energies reveals that the occupancy at favourable binding free

energies is expected to be zero; corroborating the experimental evidence and the

modified JAWS stage 2 simulations.

6.5 CDK2 kinase

6.5.1 Biological Relevance

In the human body there are over 500 different kinases [132], with each respon-

sible for a different role. Cyclin Dependent Kinases such as CDK2 are involved

in cell cycle regulation, with CDK2 responsible for cell proliferation.[133] When

CDK2 is bound to cyclin E an activated form of the kinase is produced, which in

turn promotes cell reproduction. Human cancers typically have an overexpression

of cyclin E, leading to an abundance of activated CDK2 and hence promotion of

tumour development.[133] Targetting CDK2 via drug therapy should render the

active conformation inactive, meaning that the cell proliferation pathway fails and

tumour growth supressed.
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One problem with kinase therapy lies in the fact that 60 % of kinases are se-

quentially similar.[70, 134] As a result careful control of inhibitor is required for

each individual cancer, otherwise undesirable side effects could occur whereby

other kinases are also affected. Such a problem is ideally suited to computational

approaches, since simulating inhibitor effects in silico is advantageous compared

to performing expensive in vivo experiments. Ligand binding studies have been

performed upon CDK2 previously, but the similarity in ligand activities meant that

reliable predictions were not achievable.[3] It has been noted that kinase protein-

ligand complexes typically contain an unusual interaction; an aromatic CH-O hy-

drogen bond. This interaction is typically thought to be weak, yet it is found in

most structures.[135]

Understanding such an interaction could help to elucidate how inhibitors bind

to kinases. In order to look at this problem, JAWS and GCMC simulations were

performed to see whether the hydration patterns in the apo form of CDK2 control

the binding in the holo form. A range of kinases have been studied by Robinson et

al. [70], where the WaterMap methodology was used to attempt to rationalise se-

lectivity trends. Although their obtained results helped in justifying certain trends

between different ligands, they failed to explain atomistic cooperativity between

water molecules and the protein, which is of great interest in this study.

Figure ?? shows the structure of the CDK2 pocket. Of key interest in this study

is the nature of the hydration patterns around the binding site. There are three key

regions of interest in the pocket; the hinge region, the mouth of the pocket and the

activation loop. The positions of water molecules in the pocket will be referred

back to these broad positions in the subsequent analysis.
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Figure 6.8: Structure of CDK2 kinase, PDB 2WEV, highlighting the key regions
around the binding site; The hinge region, mouth of the binding site, and the
activation loop.

6.5.2 System Preparation

A previously prepared protein structure of CDK2 was used for this study, which

included only protein residues that have a heavy atom within 15 Å of the crystal-

lographic ligand.[3] The same protocols as used for the N9 neuraminidase were

followed for the simulations.

6.5.3 Simulations

A JAWS stage 1 simulation was performed upon the CDK2 binding pocket using

a θ-threshold of 0.995. The population density, seen in Figure ?? shows that

the density spreads across the entire pocket. As a result, three crucial pieces of
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information cannot be determined:

1. How many water molecules should be placed in the pocket?

2. Where should these water molecules be placed?

3. Should these water molecules be correlated with each other?

Figure 6.9: JAWS density contours for the CDK2 pocket. The top 90 % of data is
displayed, alongside the critical backbone residues E62 and L64

Whilst clustering the JAWS density can allow us to place water molecules on

the highest regions of density, it still does not help to answer the first and third

questions posed previously. As a result, another approach needs to be applied.

As discussed in section ??, the GCMC method is capable of predicting hydration

patterns as a function of the chemical potential. In addition, unlike JAWS, GCMC

reveals correlation between water molecules implicitly, since the water molecules

can only ever be on or off. As a result, the CDK2 system lends itself to being
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studied by GCMC. If the correct chemical potential is chosen then the hydration

pattern within the cavity can be easily identified, with the resulting molecules be-

ing studied by JAWS stage 2 to ascertain their hydration free energies seperately.

GCMC simulations were performed at six different chemical potentials to under-

stand the hydration effects as a function of the applied potential. The normalised

number density plots, based upon the oxygen-water coordinates in the simulation

snapshots and using a 1 Å grid spacing, can be seen in Figure ??, with table ??

showing the relationship between the value of B and the estimated binding free

energy, alongside the average population collected over 40 M MC moves.

B ∆Gbind (kcal/mol) < N>
-6 +0.28 16.93
-8 -0.90 13.06
-10 -2.09 10.73
-12 -3.27 6.70
-14 -4.45 5.39
-16 -5.64 3.37

Table 6.4: Average populations within the CDK2 binding pocket as a function of
the applied B value

From looking at Figure ??, several patterns can be easily observed. Firstly,

the middle of the pocket region is empty at all values of the chemical potential,

indicating that hydration in this region is extremely unfavourable since no density

is observed. As the chemical potential is lowered to observe more favourable wa-

ters the density around the hinge region decreases, with two major water-binding

regions observed. The first, found near the mouth of the pocket, is characterised

by a high concentration of acidic residues, whilst a second region is found near

the thiazoline moiety of the ligand, close to the catalytic lysine of the protein.

Two important chemical potentials studied were those at B = -6 and B = -

8. These chemical potentials represent a minimum binding free energy of 0.28
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Figure 6.10: Number density plots within the CDK2 pocket as a function of the
applied B value. From left to right: B = -6, B = -8, B = -10, B = -12, B = -14, B =
-16. The binding free energy associated with these B values can be seen in table
??. A contouring level of 0.1 is used for all of the plots

kcal/mol and -0.90 kcal/mol respectively, and show the effect upon the system at a

slightly positive and negative water binding free energy. By simulating at a slighty
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positive binding free energy it can be seen if the cavity accommodates bulk-style

waters, whilst simulating at a slightly negative binding free energy should identify

water molecules which are expected to be present under standard temperature and

pressure conditions.

Having obtained a number density profile, this needs to be matched to a rep-

resentative snapshot. A clustering based approach is unlikely to be suitable for

two major reasons. Firstly, there is a chance that the placed waters could be too

close to each other. Secondly, it is important that the waters are in a realistic con-

figuration; something which cannot be guaranteed from clustering. As such each

simulation snapshot was examined with respect to the density contours, with the

most suitable snapshot chosen for further examination - as performed previously

in the T4-lysozyme and interleukin 1 β systems.

Figure ?? shows the placements for the simulations run at B = -6 and B = -8,

alongside the population in the pocket as a function of the number of MC moves

in the simulation. It is important to note the high degree of variation in the number

of molecules throughout the simulations. This is indicative of fluctional behaviour

inside the pocket, and suggests that the networks which are formed are likely to be

dynamic. Crucially, each water network is a valid representation at the chemical

potential at which it is run. As such, it becomes impossible to definitively assign

a static network in the system; instead the most we can achieve is examining the

network which corresponds best to the density peaks.

Figure ?? shows that running the simulation at a B value of -6 results in an av-

erage of 17 molecules in the system, whilst at B = -8 results in 13 water molecules

being predicted in the cavity. From Figure ?? it is interesting to note that at more

negative, favourable, chemical potentials water molecules tend to be located near

the mouth of the pocket, whilst at higher potentials the pocket is more evenly hy-
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Figure 6.11: Population graphs and representative water locations for B = -6, top,
and B = -8, bottom. A contouring level of 0.1 is used for the plots

drated. Crucially, water molecules interacting with L64 and E62 and along the

hinge region are identified in the simulations at B values greater than B = -12,

corresponding to a binding free energy of -3.27 kcal/mol. Such hydrogen bonding

behaviour is found in the vast majority of kinase complexes.[136] The water inter-

acting with L64 acts as an acceptor to a NH interaction from the leucine backbone,

whilst the second acts as a donor to the carbonyl oxygen on the glutamate back-

bone. The latter interaction mimics one which is found in the standard inhibitor,

whereby a CH-O hydrogen bond is found between the ligand and the protein.[135]

Such an interaction is typically weak, yet it is found in most ligand-kinase com-
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plexes. In order to attempt to understand the hydration patterns observed in CDK2,

JAWS stage 2 simulations were performed on the example water configurations

found at B = -6 and B = -8. All simulations were run at the same biasing potential

of 10 kcal/mol. The results for the B = -6 set can be seen in Figure ??, whilst

those for B = -8 can be seen in Figure ??.

Water ∆G (kcal/mol) Water ∆G (kcal/mol Water ∆G (kcal/mol)
A -2.71 G -0.81 M -5.86
B -7.97 H -2.01 N -1.77
C -1.73 I -3.91 O -1.84
D -2.59 J -2.62 P -1.48
E -1.55 K -3.71 Q -6.81
F -5.54 L -1.48

Figure 6.12: JAWS binding free energies for the water molecules found at B = -6
for CDK2. The error for these binding free energies is ± 0.80 kcal/mol

From comparing the two sets of JAWS stage 2 binding free energies, a clear

destabilisation across the hinge waters can be observed as the binding free en-

ergy at which the simulation is performed is reduced. The binding free energy

of waters M and Q in the B = -6 set are considerably more favourable than the

corresponding waters D and I in the B = -8 set, which can be attributed to the sta-

bilisation presence of waters G and K. It is significant to note that the water sites

M and Q are not present at a B value of -12 in the GCMC simulations, despite the
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Water ∆G (kcal/mol) Water ∆G (kcal/mol Water ∆G (kcal/mol)
A -3.48 E -5.05 I -2.69
B UNCALC F -3.88 J -4.70
C -1.84 G UNCALC K 0.27
D -2.35 H -3.19 L -1.83

Figure 6.13: JAWS binding free energies for the water molecules found at B =
-8 for CDK2. UNCALC signifies waters for which free energy estimates cannot
be obtained at a biasing potential of 10 kcal/mol due to insufficient θ < 0.05
transitions. The error for these binding free energies is ± 0.80 kcal/mol

energies of waters in the B = -6 GCMC simulations suggesting that they should be

strongly bound to the protein. This suggests that there is a stabilisation effect in

the JAWS stage 2 simulations which is not present during the GCMC simulations

at different potentials.

It is interesting to note that Wat K exhibits a binding free energy of -3.71

kcal/mol in the B = -6 set, posing the question as to why it is not present in the

B = -8 set. In order to understand this, the marginal binder Wat G was identified

as a critical water. The binding free energy of -0.81 kcal/mol is indicative of a

water with marginal occupancy, and it is probable that this water is not always

present under standard conditions. As such the effects of removing this water was

investigated, and the binding free energy of Wat K recalculated. This resulted in a

drop in the binding free energy of Wat K to -1.27 kcal/mol; suggesting that, in the

137



CHAPTER 6. PREDICTING THE LOCATION AND BINDING AFFINITY
OF WATER MOLECULES - II. APPLICATIONS

absence of Wat G, Wat K is expected to also exhibit marginal occupancy under

standard conditions. The removal of waters G and K from the system leaves a

configuration of waters around the hinge which is consistent with the B = -8 set

and explains why waters M and Q are not present at B values less than -12 in the

GCMC simulations.

The destablisation in the network through the removal of a weakly bound wa-

ter has important consequences for rational drug design. If weakly bound water

molecules can be targetted, then the surrounding molecules can be potentially

destabilised to such an extent that these too are now easily displacable. As such

the removal of one weakly bound water reduces the desolvation cost of many wa-

ter molecules in the site, meaning that these waters can be easily displaced by

hydrogen bonding groups in the ligand. This could potentially lead to improved

potency since there is a minimised entropic and enthalpic loss upon displacing

such waters in the pocket, allowing strong gains to the binding affinity through

protein-ligand interactions.[42]

The change in the binding free energies of the water molecules as a function

of the applied chemical potential is also highly significant. A single simulation

might give the impression a particular water is not displacable, whilst on further

examination this site could be easily displaced due to the presence of weakly

bound supporting neighbours. This demonstrates a potential flaw in methods such

as WaterMap which employ only a single simulation, and hence the free ener-

gies which are obtained from the method are not necessarily going to mirror true

biological conditions.

From further analysis of the B = -8 set, the nature of the inhibitor binding

mode can be easily understood. As mentioned previously, the majority of kinase

inhibitors exhibit a weak CH-O interaction. It can be seen that Wat D directly
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mimics this interaction of the inhibitor, suggesting that for a binding event to

occur the water interaction must be replaced by the inhibitor. The binding free

energy of Wat D is relatively low at -2.35 kcal/mol, which explains why a stronger

protein-ligand interaction is not required to displace the water molecule.

It is important to note that all of the JAWS stage 2 simulations were performed

at the same biasing potential of 10 kcal/mol. This value was chosen so that the

changes upon removing waters could be easily observed. For most of the water

molecules this biasing potential induced more θ > 0.95 states than θ < 0.05

states. This ensured that adjacent water molecules did not drift away during the

simulation, which was observed when higher values of the biasing potential were

utilised. If the hydrogen bonding network is allowed to break apart throughout the

simulation then the calculated free energy is not indicative of the original starting

configuration, and as such the end points between different sets of simulations are

not the same. Such behaviour was observed in analogous RETI double-decoupling

simulations, whereby adjacent water molecules to the solute water whose binding

free energy was being calculated were observed to drift away as the electrostatic

and Lennard-Jones terms were decoupled since the stabilising effect of the water

keeping them in place was lost.

6.5.4 Corroborating the results

As mentioned earlier, one drawback of the current placement scheme is that it

relies upon visual inspection of the simulation snapshots. For longer simulations

this is clearly an intractable task, and other methods need to be sought. One

possibility lies in the generic site calculation scheme proposed by Mezei.[137]

This approach identifies n generic solvation sites, and then iteratively loops over

all of the simulation frames to find the snapshot which best represents the solvation
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sites.

The MMC program [138] was used to run the generic solvation site calcula-

tions upon the output generated from the B = -6 simulations. The placed waters

compared to the visual inspection can be seen in Figure ??.

Figure 6.14: Placed waters from the MMC generic site algorithm (red) against a
visual snapshot inspection (cyan)

Figure ?? shows that the MMC generic site algorithm predicts a similar hydra-

tion pattern to the visual inspection. There are however a few subtle differences.

First, only three molecules are found in the upper hinge region in the MMC out-

put, compared to the quartet found in the visual inspection. Second, the position

of the waters around the mouth of the binding pocket differ between the methods.

In order to understand whether similar binding free energies are obtained between

the patterns, JAWS stage 2 simulations were performed upon the MMC-placed

waters.

The lack of a fourth water molecule in the hinge region results in a destabil-

isation in the Wat Q position. Indeed, the binding free energy of waters A and F
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Water ∆G (kcal/mol) Water ∆G (kcal/mol Water ∆G (kcal/mol)
A -3.58 G -2.67 M -7.41
B -0.75 H -1.40 N -6.65
C -0.78 I -0.30 O -1.11
D -1.93 J -3.84 P -2.59
E -1.69 K -4.72 Q -2.31
F -1.82 L -2.42

Figure 6.15: JAWS stage 2 binding free energies for the MMC generic site water
molecules

are now similar to the corresponding waters D and I found in the B = -8 set of

molecules. For the vast majority of water molecules, the binding free energies

are broadly consistent between the two sets, suggesting that the MMC methodol-

ogy is a valid method of placing water molecules alongside the visual inspection

approach.

As another comparison, and to check that the observed results are realistic, a

MD study was performed upon the protein. The simulation was performed using

gromacs 4.5.1 [139] using the amber99SB forcefield [140] to allow an accurate

comparison with the JAWS and GCMC results. The protein was protonated using

the pdb2gmx tool in gromacs.
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MD protocol

The MD simulation was performed with cubic periodic boundary conditions, a

particle mesh Ewald treatment of electrostatics (with an interpolation order of 4),

a 2 fs time step, and a 10 Å cutoff. All bonds were constrained to equilibrium

lengths using the LINCS algorithm. The simulation was performed in the NPT

ensemble using the V-rescale thermostat and the Berendsen barostat, and run using

a temperature of 300 K at a pressure of 1 bar. Water molecules were modelled

using the TIP3P model.[44] Three Cl- ions were added to neutralise the system.

A 15 ns simulation was performed with data collected for the last 5 ns. The

resulting oxygen coordinates of waters in the region of interest were then analysed

in the same method as the GCMC/JAWS simulations. The contoured results can

be seen below in Figure ??.

Figure ?? shows that, like the GCMC simulations in Figure ??, the major

hydration sites are identified in and around the hinge region. It can be seen that the

same four membered ring observed in the GCMC simulations, seen in Figure ??,

around the glutamate and leucine hinge residues is observed in MD, indicating that

this is a key motif in the hydrogen bonding network. In addition, density is found

near D103 and Wat B, indicating that this is likely to be a region of favourable

hydration. The similiarity between the GCMC simulations and the MD result is

highly encouraging, and serves to show the effectiveness of the GCMC method.

Whilst performing a simulation at a set value of B for 40 M MC moves takes

approximately 8 CPU hours, collecting the data from a MD simulation takes 3

orders of magnitude longer, requiring 1700 CPU hours. Since a MD simulation

does not give any energetic analysis, a GCMC simulation appears to be vastly

superior if the hydration of cavities is to be studied. In addition, an MD simulation

does not give any information upon the correlation between sites if the data is
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Figure 6.16: Contoured MD positions for a 5 ns simulation of the apo CDK2
cavity. From left to right: Top 10 % of data, top 30 %, top 50 %, top 70 %, top 80
%, top 90 %. The critical hinge residues, E62 and L64, are shown in bold
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clustered. Clustering complex data such as the bottom right window in Figure

?? is likely to lead to an erroneous water network, since neither the position or

number of waters is known.

Comparison with Src kinase

The kinase study performed by Robinson [70] utilised the WaterMap methodol-

ogy to look at the hydration in Src kinase. The methodology identified a quar-

tet of waters around the hinge region, analogous to the quartet of waters found

when the CDK2 system was simulated at B = -6. Interestingly all of these waters

were defined as unstable in the WaterMap methodology, with the unfavourable

free energies assigned to both enthalpic and entropic considerations. In compari-

son, the GCMC/JAWS method suggested that two of the molecules are extremely

favourable in a quartet, with the other two, Waters G and K, unlikely to be present

under standard conditions.

This clearly identifies a difference between the GCMC/JAWS method and Wa-

terMap. In the GCMC/JAWS method unfavourable waters are removed from the

system, since it is assumed that these waters will not be present under ambient

biological conditions. In comparison, WaterMap retains the unfavourable waters

in their calculations. This poses the question as to which method is more reli-

able. The WaterMap methodology retains unfavourable waters since it is claimed

the energetic cost of creating a vacuum is greater than the free energy gain for

displacing the unfavourable water molecules. The GCMC/JAWS approach cal-

culates absolute binding free energies, whilst the free energies calculated by the

WaterMap method do not have a similar reference state. As such, it becomes

challenging to reliably compare the two methods.
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6.6 Pim-1 kinase

6.6.1 Biological Relevance

Like CDK2, Pim-1 is a kinase which has been implicated in a wide variety of

different cancers, mainly oral and prostate cancers.[136] The normal role of Pim-

1 is in prosurvival; the protein binds to the pro-apoptotic protein Bad, causing

phosphorylation of Bad on S122 and rendering Bad inactive.[141] As a result the

Bad protein is not able to cooperate in the apoptotic cycle, leading to the survival

of the cell. Over expression of Pim-1 in cancers means that the cancerous cells are

less prone to apoptosis, leading to tumour growth. As a result Pim-1 has started

to become an accepted drug target, with inhibitors now being described in the

chemical literature.[136]

The Pim-1 kinases have a unique hinge region sequence which seperates them

from other kinases. As previously discussed, inhibitors of CDK2 rely on hydro-

gen bonding interactions with the hinge residues. The unique sequence of Pim-1

kinases places a proline residue along the hinge region. This induces a twist in the

hinge region, preventing the formation of hydrogen bonds along the hinge.[136]

As a result, inhibitors of Pim-1 typically target the region occupied by the catalytic

lysine and acidic residues and experience no interactions with the hinge.

The marked change in hydrogen bonding patterns compared to CDK2 provides

an intriguing case for the GCMC/JAWS methodology to predict the water network

for a different kinase system. Since the protein structure for Pim-1 is significantly

different to that of CDK2, it is hoped that the methodology should pick up the

new water network and highlight the lack of hydrogen bonding along the hinge.
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6.6.2 System Preparation

The protein structure used for this study was 3DCV. The same protein preparation

and simulation protocol as the N9-Neuraminidase system was followed. A pocket

of 640 Å3 was identified for the GCMC simulations. The binding pocket was

defined as the region in which the native ligand is situated, with an angstrom

added in all directions. The binding pocket of Pim-1 highlighting the key binding

regions can be seen in Figure ??.

Figure 6.17: Structure of Pim-1 kinase, PDB 3DCV, highlighting the key regions
around the binding site; The hinge region, mouth of the binding site, and the
beginning of the catalytic loop.
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6.6.3 Simulations

Since the JAWS simulation performed upon CDK2 lead to difficulties in analysing

the resulting populations, GCMC simulations were preferred for the Pim-1 sys-

tem. As with CDK2, a range of different chemical potentials were employed upon

the system to understand the water network as a function of the applied potential.

Table ?? shows the relationship between the value of B and the estimated binding

free energy for the different simulations using this B value. The GCMC density

plot for 3DCV taken from the GCMC simulations can be seen in Figure ??. This

density plot was based upon the oxygen-water coordinates in the simulation snap-

shots, using a 1 Å grid spacing.

B ∆Gbind (kcal/mol)
-6 1.03
-10 -1.33
-12 -2.52
-16 -4.88
-18 -6.07
-20 -7.25

Table 6.5: Relationship between the binding free energy and B for the 3DCV
Pim-1 system

In the GCMC simulations, the B = -10 simulation corresponded to a binding

free energy of approximately -1.30 kcal/mol, meaning that any waters observed

at this potential should be, at least, weakly bound to the system. The average

population across the simulation for 3DCV was found to be 10.85, with a standard

deviation of 1.5. A frequency plots showing the number of molecules at B = -10

can be seen in Figure ??.

Based upon the frequency plot and the ease of fitting a representative snapshot

to the number density, 10 molecules were chosen to represent the B = -10 density.
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Figure 6.18: GCMC density plots for 3DCV at different B values. From left to
right: B = -6, B = -10, B = -12, B = -16, B = -18, B = -20. The binding free
energies for these B values can be found in table ??

The same contouring and placement scheme as used for CDK2 was applied, with

the water positions for each system shown in Figure ?? alongside their population

graphs.

Qualitative analysis of the water network shows that the majority of the water
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Figure 6.19: Frequency plots for 3DCV at B = -10

Figure 6.20: Population graphs and placed water locations using the B = -10 simu-
lations for 3DCV. Although a distinct water contour is found close to the hydroxyl
group of the ligand, no snapshot was found which adequately described the den-
sity of the system and also this site

molecules can be found in three different regions; the eastern region of the ligand

close to the catalytic lysine, close to the beginning of the catalytic loop, and at the

mouth of the pocket near to the β6 sheet and the αD helix.[136] Crucially, when
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analysed alongside Figure ?? it can be seen that no significant water density is

found at the hinge region - showing that the method has successfully predicted a

different hydration pattern to CDK2. Each of the water sites was subjected to a

JAWS stage 2 simulation using a biasing potential of 10 kcal/mol, with the results

analysed in the following sections.

JAWS stage 2 results

The calculated free energies for the water molecules in 3DCV, alongside a ligand

representation is shown in Figure ??.

Water ∆G (kcal/mol) Water ∆G (kcal/mol
A -6.55 F -8.18
B -2.67 G -3.85
C -7.14 H -3.59
D -8.23 I -1.69
E -6.59 J -2.37

Figure 6.21: JAWS binding free energies for the water molecules found at B =
-10 using protein structure 3DCV. The error for these binding free energies is
approximately ± 0.80 kcal/mol

Figure ?? shows that all of the binding free energies calculated are negative,

meaning that no recalculations are required to take into account marginal binders.

A study by Qian [136] highlighted the importance of ligand binding to the cat-

alytic lysine in Pim-1. The strong binding free energy of Wat C mimics this in-
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teraction, suggesting that the interaction between the ligand carboxyl group and

the lysine must be extremely strong to displace the water. Indeed, the Qian study

showed that inhibitors which do not have the carboxyl group, or a strong electro-

static interaction, are essentially inactive. Wat D forms part of a strongly bound

network between waters A, C and E, and also the sidechain aromatic ring of F18.

Waters E, F, G and H are all found close to the catalytic loop / αD helix network

of aspartate and glutamate residues, explaining their strongly bound nature. In-

deed, Wat H is found in close proximity to W1009 in the crystal structure. Figure

?? shows the locations of the water molecules with respect to the protein, and

highlights the key elements of the network.

Figure 6.22: The location of the waters in the 3DCV B = -10 network viewed
alongside the native ligand and the nearby protein residues. Wat 1009, a crystal-
lographic water, is shown in yellow

Although the JAWS stage 2 energies make intuitive sense and agree qualita-
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tively with the GCMC plots, they do not match with the expected average GCMC

binding free energies. For example the binding free energy of Wat D is anticipated

to be -8.23 kcal/mol by JAWS stage 2, yet a water contour, as seen in Figure ??,

is not observed at a binding free energy of -6.07 kcal/mol in the GCMC simula-

tions. As such, this is suggesting network stabilisation in the system, although

this network is stronger than that observed in the CDK2 study. In order to prove

this hypothesis Wat B, the weakest binder in the major network of waters, was re-

moved from the calculations and the JAWS stage 2 simulations rerun. The effects

this caused on the binding free energies of the nearby waters can be seen below in

table ??.

Water Old ∆Gbind (kcal/mol) Run without water(s) New ∆Gbind (kcal/mol)
A -6.55 B -2.95
C -7.14 B -5.33
C -7.14 A, B -5.41
D -8.23 B -6.79
D -8.23 A, B -3.97

Table 6.6: Destabilisation effects upon the 3DCV water quartet

From looking at the recalculated free energies in Table ??, the GCMC results

are now in excellent agreement with the revised JAWS stage 2 binding free ener-

gies. When Wat B is eliminated from the system, the knock-on effect is to reduce

the binding free energy of Wat A to a comparable figure. As such, it can be de-

duced that the removal of Wat B from the system will also result in the removal of

Wat A. In the absence of Waters A and B, the binding free energies of Waters C

and D are now -5.41 and -3.97 kcal/mol respectively, explaining why these waters

are not found at GCMC simulations where the binding free energy of the system

is -6.07 kcal/mol or less.

It is interesting to note that the binding free energy of Wat H is -3.59 kcal/mol,
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yet a contour spot is found at a GCMC binding free energy of -7.25 kcal/mol. In

order to explain this, Wat I, a weaker binder with a binding free energy of -1.69

kcal/mol, was removed from the system and the JAWS stage 2 binding free energy

of Wat H recalculated. This resulted in the binding free energy of Wat H chang-

ing to -6.29 kcal/mol, suggesting that the removal of a nearby water molecule can

allow other molecules to adopt more favourable locations. The other major con-

tour in the GCMC plots corresponds to the site occupied by Wat F, with a JAWS

binding free energy of -8.23 kcal/mol and characterised by a strong interaction

between D97 and the backbone oxygen of E140.

6.7 Using apo hydration site analysis to predict wa-

ter displacement

Through analysis of the CDK2 and Pim-1 water networks, it can be seen that the

observed water networks which correspond to weakly bound or unbound waters

generally mirror the location of hydrogen bonded atoms of the crystallographic

ligand. Qualitatively this offers a route for shape-based rational ligand design,

following a routine analagous to that proposed by Homans in the design of hy-

drophobic ligands.[42] However, one caveat to this approach is assuming that the

waters will be displaced by the ligand. In order to use the hydration patterns to

quantitatively decide whether a water is displaced or retained, the effect of the

network must be considered.

As exemplified by the CDK2 water network, the binding free energies of wa-

ter molecules can change as the local environment is changed. When a weakly

interacting network is allowed to influence the binding free energies, it can be

seen that the two waters appear to be favourable, and display characteristics sim-
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ilar to conserved waters.[40] However when the nearby waters are removed from

the system, as would be expected under biological conditions upon ligand entry

to the binding pocket, the binding free energies of the hinge waters are reduced,

suggesting that they are now displacable. It is this shift in the binding free energy,

herein referred to as ∆, which gives information regarding how water molecules

in networks can be treated in ligand design. ∆ can be estimated as the binding free

energy before network displacement minus the binding free energy after network

displacement.

Through a combination of GCMC simulations and JAWS-2 binding free ener-

gies obtained on a network of waters which are weakly bound to the system, the

medicinal chemist can gain valuable knowledge of how to treat water networks.

Using the CDK2 example, it can be seen that the two hinge waters display a ∆

value of approximately 4 kcal/mol upon the removal of the nearby waters - indicat-

ing that they are destabilised upon network displacment. This suggests that, upon

the removal of the weakly bound waters, the desolvation cost of the hinge waters

is significantly reduced. In order to recoup ∆ through a binding event the medic-

inal chemist can choose to either replace these waters through hydrogen bonding

with the hinge, or choose to incorporate the waters into the ligand design, but in

such a way that the ∆ is recouped through interactions with the ligand. In this

instance it becomes more advantageous to displace the waters through a protein-

ligand interaction, since the interaction energy between the ligand and the protein

can easily outweigh the interactions formed between the water molecules on the

protein backbone - an interaction which has been shown to be typically weak

through the analysis of WaterMap-derived free energies.[142]

In order to incorporate waters into ligand design a priori, two features need

to be identified. Firstly, the water molecule must be stable in its original net-
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work and display a binding free energy indicative of being retained upon ligand

binding. Secondly the magnitude of ∆ must either be small, suggesting that the

water is part of a strong and stable network, and/or the binding free energy of the

destabilised state must be sufficiently stabilised by the ligand. In the case of the

CDK2 waters, the two hinge waters fail this criterion. The only sites in the CDK2

which are candidates for water retention are the ones close to the mouth of the

pocket and at the back of the pocket, since these sites are not affected by network

destabilisation.

Using these rules, the nature of the Pim-1 ligands can be easily explained.

The network of waters A, C and D in the 3DCV structure are all stabilised in the

presence of the weak binder Wat B, and exhibit ∆ values of > 1.7 kcal/mol when

the water network is disrupted. The resultant free energies when the network is

destabilised are all less than 7 kcal/mol, highlighting that these waters can be dis-

placed by a strong protein-ligand interaction. This is achieved in Pim-1 inhibitors

through the use of a ligand carbonyl group, targetting the catalytic lysine. The

waters along the catalytic loop and the β6 sheet are all stable in the absence of

other waters due to strong interactions with the nearby acidic residues, and hence

exhibit low ∆ values with favourable binding free energies. These waters are com-

monly exploited in Pim-1 ligand design, and incorporation into a protein-ligand

complex will help to stabilise these water molecules further.

One question which can arise is since GCMC gives information about water

network stability, do we need to worry about the JAWS-2 energies? GCMC simu-

lations at different potentials highlight the favourable regions in the protein pocket

as a function of the binding free energy, and therefore allow quick identification of

stable hydration sites. Hence, should this be enough of a guide to dictate whether

we incorporate waters or not? Although this information is highly useful, it does
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not give us an idea about how much particular waters are (de)stabilised, something

revealed through ∆. For example, the amount of stabilisation which waters M and

Q exhibit in the B = -6 CDK2 network cannot be estimated through GCMC, and

relies on the calculation of JAWS waters.

A future, and potentially revealing, application of the GCMC and JAWS meth-

ods would be to use the methods on both the apo and holo forms of the same pro-

tein. Such a calculation would enable the identification of water locations both pre

and post binding. The approach would allow a ∆ difference map to be constructed,

based on the GCMC simulations, to help identify sites which are affected by the

binding process. Such an approach could identify regions where water molecules

are stabilised or destabilised upon ligand binding, and will provide opportunities

to target these waters in lead development. Similarily to the idea of ∆ as a func-

tion of the network disruption in the apo phase, ∆ could be used to guide whether

waters are conserved or displaced during the binding process.

6.8 Understanding the role of water in inhibitor bind-

ing to Chk-1 kinase

6.8.1 Biological Relevance

Checkpoint kinase 1 (Chk-1) is a serine/threonine kinase involved in mediating

the response to DNA damage in cells.[143] Upon DNA damage Chk-1 is acti-

vated and phosphorylates Cdc25C, which then inactivates CDK1. Inactivation of

CDK1 results in cell cycle arrest, allowing the cell to repair damaged DNA prior to

entering mitosis. In healthy cells the p53 pathway is the major route for inducing

DNA-damaged cell apoptosis, however 50 % of cancerous cells contain mutations
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in the p53 gene making this pathway unavailable.[144] In such cells only the G2

pathway is able to prevent the replication of damaged DNA, providing a route for

targetting cancerous cells over healthy cells. Inhibition of Chk-1, alongside ra-

diotherapy, results in cancerous cells entering the mitosis cycle prematurely with

damaged DNA and cell death.

6.8.2 Simulations

Two protein-ligand complexes provided by Vernalis were used as the basis for this

study. The same protein preparation procedure and simulation protocols as for N9-

Neuraminidase were followed. The first complex 5BT.pdb, exhibits a ligand IC50

of 0.07 µM, whilst the second complex 5CH.pdb exhibits a ligand IC50 of 0.01

µM. Figure ?? shows the high degree of similarity between the ligands, varying

by the switch of the connectivity in the amide group.

Figure 6.23: Comparison of the two Chk-1 ligands. Left: 5BT.pdb. Right:
5CH.pdb

Based upon a visual inspection of the protein-ligand complexes the change

in affinity is unexpected, since the protein-ligand interactions in both cases are

extremely similar, as highlighted in Figure ??. In order to gain some idea into

the reason for the difference in binding affinity, dual topology simulations [145]
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were performed between the two ligands, using both crystal structures as reference

structures.

Figure 6.24: Crystal structure overlay of the two complexes. Critical residues
and hydrogen bonds are identified by the slashed black lines, with the position of
crystallographic waters shown in red

Dual Topology Simulations

Two different sets of RETI simulations were performed upon the bound state.[28,

29] The first set went from the 5CH crystal structure to the 5BT ligand, with the

second going from the 5BT crystal structure to the 5CH ligand. Equally, transfor-

mations going from the 5BT-5CH and 5CH-5BT ligands were performed in bulk

solvent. For the bound simulations, 16 equally spaced λ windows were used with

data collected in 600 blocks of 100 K moves following 5 M MC moves of prior

equilibration. In the bound leg, solvent moves were attempted with a probability

of 85.7 %, protein side-chain and backbone moves with a probability of 12.9 %

and solute moves with a probability of 1.4 %. The bond angles and torsions for

the side chains and backbone of residues within 10 Å of any heavy atom of the

ligands were sampled.
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The same number of moves and λ windows were used for the free simula-

tions. In the free leg, solvent moves were attempted with a probability of 98.7

% and solute moves with a probability of 1.3 %. A coulombic softening parame-

ter of 2 and a Lennard-Jones softening parameter of 1.5 were used for the bound

transformations, with a coulombic softening parameter of 1 and a Lennard-Jones

softening parameter of 1.5 used for the free transformations. The form of the

soft-core equations can be seen in equations ?? and ??.

ULJ = 4εij

[(
σ12

ij

(λδσij + r2
ij)

6

)
−

(
σ6

ij

(λδσij + r2
ij)

3

)]
(6.1)

Ucoul =
(1− λ)nqiqj

4πε0

√
(λ + r2

ij)
(6.2)

In equations ?? and ??, δ is the Lennard-Jones scaling parameter whilst n is

the coulombic scaling factor. qi and qj are the atomic partial charges on atoms

i and j. εij and σij are the Lennard-Jones well depth and collision diameter for

atom pair i and j, with rij the inter-atomic distance.

Table ?? shows the calculated free energy changes for the transformations.

5CH-5BT ∆G (kcal/mol) 5BT-5CH ∆G (kcal/mol)
Bound 1.81 ± 0.48 -1.71 ± 0.55
Free -0.24 ± 0.17 0.23 ± 0.18
∆∆G 2.04 ± 0.65 -1.94 ± 0.73

Table 6.7: Relative binding free energy values between the 5CH and 5BT crystal
structures. Standard errors across at least 6 independent simulations are reported

Table ?? shows that the bound and free legs for the two different transforma-

tions are the opposite of each perturbation, suggesting that the protein structure is

not a factor in calculating the relative binding free energy of the inhibitors. It is

encouraging to note that the free energy change of approximately (±) 2 kcal/mol
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is in good agreement with the experimental change of (±) 1.16 kcal/mol. In order

to understand the reason for the change in free energy, an enthalpic breakdown of

the individual energy terms in the bound legs was performed for each perturbation.

5BT COU LJ SUM 5CH COU LJ SUM % Diff
Sol-Pro -40 -49 -89(2) Sol-Pro -39 -52 -91(1) 1.3
Svn-Pro -3020 -117 -3137(42) Svn-Pro -3036 -122 -3158(45) 0.6
Svn-Sol -14 -8 -23(2) Svn-Sol -17 -9 -27(2) 14

Table 6.8: Average energy contributions in the 5BT-5CH transformation. Key:
Sol-Pro = Solute-Protein energy, Svn-Pro = Solvent-Protein energy, Svn-Sol =
Solvent-Solute energy. All values in kcal/mol, with associated errors, found as
the block average of the first and last 30 M MC moves, shown in parenthesis.

5CH COU LJ SUM 5BT COU LJ SUM % Diff
Sol-Pro -38 -52 -89(1) Sol-Pro -40 -51 -92(2) 1.3
Svn-Pro -3125 -92 -3216(97) Svn-Pro -3021 -86 -3107(45) 0.6
Svn-Sol -21 -10 -30(1) Svn-Sol -16 -8 -24(1) -20.9

Table 6.9: Average energy contributions in the 5CH-5BT transformation. Key:
Sol-Pro = Solute-Protein energy, Svn-Pro = Solvent-Protein energy, Svn-Sol =
Solvent-Solute energy. All values in kcal/mol, with associated errors, found as
the block average of the first and last 30 M MC moves, shown in parenthesis.

Tables ?? and ?? show that the 5CH and 5BT endpoints display extremely

similar values to within error, highlighting that the choice of reference crystal

structure is not a factor in the change in activity. From comparing the λ0 and λ1

values from within the same simulation it can be seen that the solute-protein and

solvent-protein energies are similar to within error, suggesting that there is not a

change in these energetic contributions as the ligand is changed. This is demon-

strated by the low % difference between the two end points. In comparison, a

large % difference is seen between the different λ states for the solvent-solute

terms, with the 5CH endpoints showing a larger energetic contribution to the sys-

tem than the 5BT endpoints. This data suggests that, upon a change in the ligand,
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the interaction energy between the solute and solvent is affected. This offers a

possible explanation for the observed free energy change in the dual topology

simulations, although other or additional effects cannot be discounted.

JAWS simulations

Based upon prior discussions with Vernalis, the mostly likely explanation for the

apparent change in the solute-solvent interaction energy lied in a cluster of three

crystallographic water molecules in the top of the pocket. These waters are in

close proximity to the V68 gatekeeper residue and form a network back to the

carbonyl amide oxygen of the ligand. Figure ?? shows the position of these waters

in the presence of 5BT.

Figure 6.25: Waters A, B and C in the 5BT protein-ligand complex

In order to determine whether the binding free energy of these water molecules

is affected by the change in the amide connectivity in the ligand, JAWS stage 2

simulations were performed upon the three waters in turn, using the coordinates

previously extracted from the dual topology simulations. The same simulation
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protocol as detailed for N9 neuraminidase as used. The results for this can be

seen in tables ?? and ??.

λ0 ∆Gbind λ1 ∆Gbind

Wat A -5.24 -10.96
Wat B UNCALC -10.70
Wat C -6.93 -7.41

Table 6.10: JAWS stage 2 binding free energies in the 5BT-5CH transformation.
All values in kcal/mol, using a JAWS biasing potential 10 kcal/mol. UNCALC
signifies waters for which free energy estimates cannot be obtained at a biasing
potential of 10 kcal/mol due to insufficient θ < 0.05 transitions. The error for
these binding free energies approximately is ± 0.80

λ0 ∆Gbind λ1 ∆Gbind

Wat A -11.29 -5.41
Wat B UNCALC -12.43
Wat C -6.70 -7.26

Table 6.11: JAWS stage 2 binding free energies in the 5CH-5BT transformation.
All values in kcal/mol, using a JAWS biasing potential 10 kcal/mol. UNCALC
signifies waters for which free energy estimates cannot be obtained at a biasing
potential of 10 kcal/mol due to insufficient θ < 0.05 transitions. The error for
these binding free energies is approximately ± 0.80

From looking at tables ?? and ??, it can be seen that in both sets of simulations

Wat A is stabilised when in the presence of ligand 5CH compared to ligand 5BT.

This is an unexpected result, since Wat A is the water molecule which is most

distal from the ligand modification. As such this could suggest that the change

in the ligand connectivity directly affects the network of the three waters, causing

a change in the binding affinity of the ligand. In order to establish whether the

network is destabilised by a change in the ligand connectivity, GCMC simula-

tions were performed using the simulated annealing method on the entire network

region. This method allows the number of water molecules to be tracked as a func-
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tion of the applied chemical potential, and is able to help identify changes in cav-

ity occupancy, and hence network stability within the cavity. As with the JAWS

stage two simulations, initial coordinates were obtained from the dual topology

simulations.

Figure 6.26: GCMC simulated annealing titration plots for the two different Chk-1
ligands, showing the relationship between the average occupancy and the binding
free energy. The bold letters in the labels signifies the ligand studied, whilst the
first letters in the labels signifies the native protein-ligand crystal structure used

Figure ?? shows that each ligand displays a similar profile in the presence of

the two different crystal structures, again highlighting that protein conformation

effects are unlikely to be the cause of the change in ligand binding affinity. As

expected, and suggested by the JAWS stage 2 binding free energies, the networks

which are in the presence of the 5CH ligand are stabilised by approximately 2.3

kcal/mol. Despite showing the expected trend, there are however a few discrep-

ancies in the data. Assuming that the equivalence point at an occupancy of 2.5 is

equal to the binding free energy of the weakest bound water, it can be seen that

Wat A drops out of the system approximately 2 kcal/mol before the JAWS stage
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2 binding free energy would suggest in the 5BT simulations (approximately -5.2

kcal/mol). A similar story is found for the 5CH simulations, where a water drops

out of the system at a binding free energy of approximately 5.2 kcal/mol, with

the JAWS stage 2 binding free energy suggesting that this should not be the case

(approximately -11 kcal/mol).

Visual inspection of the 5CH GCMC simulations confirmed that the water

which dropped out of the system first was Wat A, suggesting that there are effects

occuring in the simulations which are not consistent between the JAWS stage

2 and GCMC methods. It was noted in the GCMC simulations that when Wat A

drops out of the simulations, a nearby phenylalanine residue is able to migrate into

the pocket and occupy the nearby space previously occupied by Wat A. As a result

the probability of a successful insertion back into the cavity becomes minimal, and

the two remaining waters reorganise to satisfy the remaining hydrogen-bonding

oppotunities. Snapshots of this behaviour can be seen in Figure ??, taking from a

simulation with 5BT bound in the 5CH crystal structure.

The crucial difference between the JAWS stage 2 and GCMC methodologies

in this system is the role of a hardwall potential around the area of interest. The

isolated JAWS stage 2 simulations apply a hardwall which applies to every atom

in the simulation, and prohibits any other atom from entering the region of in-

terest. In comparison, the GCMC simulations allows protein atoms and residues

to migrate according to the unconstrained potential energy function. As a result,

in this instance the end points of the GCMC and JAWS simulations are not the

same, qualitatively explaining the difference in the binding free energies between

the methods.

In order to validate the GCMC binding free energies of Wat A, double-decoupling

was used to estimate the binding free energy of Wat A in the presence of the two
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Figure 6.27: Original and modified positions of Waters A, B and C as a function
of the relocation of the nearby phenylalanine residue. The original position of the
residue is shown in red

ligands. Whereas a hardwall potential was previously used in the N9-neuraminidase,

in this case a harmonic potential of 5 kcal/mol/Å2 was applied to the water of inter-

est. The correction term for this harmonic restraint, ∆Grest is shown in equation

?? and is equal to -2.47 kcal/mol.

∆Grest =
3

2
RTln (2πRT/kharm)−RTlnV o (6.3)

In equation ??, R is the gas constant, T is the temperature of the simulation,

kharm is the force constant of the harmonic restraint and V0 is the standard state

volume. This correction term is then used to calculate the binding free energy of

the water molecule using equations ?? and ??.

In order to allow the phenylalanine residue to occupy the space left by the

water during the LJ decoupling stage a LJ soft-core parameter of 1 was used.
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The result of these decouplings for the 5CH-5BT and 5BT-5CH simulations can

be seen in Figures ?? and ?? respectively, and show that the harmonic double

decoupling simulations are now in excellent agreement with the GCMC titration

curves.

Figure 6.28: GCMC simulated annealing titration plots for the two different Chk-1
ligands, alongside the double decoupling binding free energy calculation, shown
as vertical lines, for Wat A based on the 5CH crystal structure. The associated
standard error for the double decoupling result is ± 0.40 kcal/mol

In order to prove that the most likely explanation for the change in affinity

is the role of the water network, Waters A and C, the two weakest binders in the

system, were removed from the simulation setup and the dual topology ligand per-

turbation simulations rerun. When this was performed the ∆∆Gbind free energy

leg for the CH-BT transformation was -0.332 ± 0.18 kcal/mol and the ∆∆Gbound

free energy leg for the BT-CH transformation was 0.244 ± 0.41 kcal/mol, sug-

gesting that there is a neglible change in the relative binding free energy between

the inhibitors when the two waters are removed.

166



6.8. UNDERSTANDING THE ROLE OF WATER IN INHIBITOR BINDING
TO CHK-1 KINASE

Figure 6.29: GCMC simulated annealing titration plots for the two different Chk-1
ligands, alongside the double decoupling binding free energy calculation, shown
as vertical lines, for Wat A based on the 5BT crystal structure. The associated
standard error for the double decoupling result is ± 0.40 kcal/mol

In order to prove that the free energies which have been calculated are correct,

a free energy cycle was constructed. The change in binding free energy between

the inhibitors should, in principle, be equal to the change in the binding free ener-

gies of Waters A and C in the presence of the two different ligands. Starting from

the decoupled state of Wat A, with the phenylalanine residue in the vicinity of

the pocket, the binding free energy of Wat C in the absence of Wat A was found,

again using a soft-core LJ parameter of 1 and a harmonic restraint of 5 kcal/mol

based on the oxygen atom of interest. The calculated free energies for Waters A

and C using the 5CH and 5BT crystal structures are shown below in tables ?? and

??, with the free energy cycles shown in Figures ?? and ??.

Figures ?? and ?? clearly demonstrates that the free energy cycles close satis-

factorily to 0.25 and 0.26 kcal/mol respectively, highlighting that the most proba-
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Lam0 - 5CH Elec LJ ∆Gbind Lam1 - 5BT Elec LJ ∆Gbind

Wat A 14.006 0.017 -5.753 Wat A 9.945 1.190 -3.065
Wat C 9.360 1.306 -2.396 Wat C 9.997 1.559 -3.286

Table 6.12: Binding free energies (in kcal/mol) for waters A and C using double-
decoupling with a 5 kcal/mol harmonic restraint using the 5CH crystal structure.
The table headers denote the free energy for decoupling the electrostatic terms,
Elec, the free energy for decoupling the Lennard-Jones terms, LJ, and the cor-
rected binding free energy, ∆Gbind

Lam0 - 5BT Elec LJ ∆Gbind Lam1 - 5CH Elec LJ ∆Gbind

Wat A 12.458 -0.349 -3.839 Wat A 14.529 0.710 -5.519
Wat C 10.356 0.251 -2.337 Wat C 11.131 -0.518 -2.343

Table 6.13: Binding free energies (in kcal/mol) for waters A and C using double-
decoupling with a 5 kcal/mol harmonic restraint using the 5BT crystal structure.
The table headers denote the free energy for decoupling the electrostatic terms,
Elec, the free energy for decoupling the Lennard-Jones terms, LJ, and the cor-
rected binding free energy, ∆Gbind

Figure 6.30: Relative binding free energies for the 5CH-5BT transformation in the
presence or absence of Waters A and C. Standard errors are shown in parenthesis
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Figure 6.31: Relative binding free energies for the 5BT-5CH transformation in the
presence or absence of Waters A and C. Standard errors are shown in parenthesis

ble explanation for the change in ligand affinity is the role of the water network.

Crucially the results clearly demonstrate that a change in the ligand scaffold can

affect a distal water molecule in a network, which in turn affects the binding

affinity of the ligand. As such, it provides evidence to the key role which water

molecules play in the stabilisation of protein-ligand complexes. Examination of

the individual water molecules in the network identifies that the most distal wa-

ter is affected by the change in ligand scaffold, but the JAWS stage two energies

seemingly overestimate the binding affinity of the water molecules, similar to the

BPTI cavity in section ??. This is due to the presence of the hardwall in the

JAWS stage 2 binding free energy calculations, which prohibits the pocket from

reorganising. As in the previous examples, this highlights that the binding free

energy of water molecules in a network are not necessarily additive, and the net-

work should be treated as a whole rather than the individual elements. This, once
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again, suggests that GCMC simulations should be used for water networks, since

they are able to observe changes and reorganisation in the pocket according to the

unconstrained potential energy function.

One question which has not yet been addressed is why Wat A is the water

which is destabilised. Could this be identified purely from a single simulation,

rather than relying on a rigorous free energy approach? In order to address this

question a hydrogen bond analysis was performed for the three waters in the net-

work, using the end points from the 5CH-5BT dual topology simulations. Figure

?? shows the H-bond positions for the three waters in the presence of the 5CH

ligand and demonstrates that Wat A only forms 3/4 H-bonds, whilst the other two

waters form 4. It was noted that the same configuration is found for the 5BT

ligand. Purely based on this count it would be expected that Wat A would be the

weakest link in the network, but it does not give indication for why the 5BT ligand

destabilises the network.

Water Number of H-bonds
A 3
B 4
C 4

Figure 6.32: Hydrogen bond analysis for the three waters in the presence of the
5CH ligand. These hydrogen bonds were consistently found across the entire
simulation

A H-bond distance analysis was performed on the Wat A H-bonds to observe

whether there is a considerable difference in the bond lengths between the two

ligands. Figure ?? shows that the three H-bond lengths formed by Wat A are not
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considerably different between the two ligands, although there is a slight elon-

gation in the presence of the 5BT ligand. Although this could indicate that the

interactions formed between Wat A and its local environment are slightly weaker,

it does not indicate the large change in affinity which is observed both experimen-

tally and through these simulations. Indeed, the two sets of hydorgen bond lengths

are within error of each other. This analysis highlights that the effect of changing

the ligand scaffold is extremely subtle, and how rigorous simulations can help to

rationalise SAR which are not immediantely obvious to the medicinal chemist.

Bond 5CH /Å 5BT /Å
Blue 1.84 (0.16) 1.90 (0.21)

Green 1.82 (0.16) 1.84 (0.18)
Red 1.81 (0.16 1.84 (0.15)

Figure 6.33: Average H-bond distances for the three Wat A contacts in the pres-
ence of 5CH (left) and 5BT (right). The block average over the first 300 and last
300 frames is shown in parenthesis

6.9 Conclusions

In this chapter the application of JAWS simulations and GCMC to novel problems

was discussed. In the T4-lysozyme system, the combination of JAWS stage 2 and

GCMC was able to corroborate previous studies and prove that the cavity is empty

under ambient conditions. Previous experimental and computational studies have
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shown that, upon the application of high pressures, the cavity is capable of hosting

4 water molecules.[59] Since JAWS simulations and GCMC are based upon the

canonical and Grand Canonical ensemble respectively, they cannot directly simu-

late changes in pressure. By changing the JAWS stage 2 reference state, however,

the effect can be approximated. The results showed that the complex of 4 water

molecules becomes more stable at higher pressures, however, in order to fully un-

derstand such a change in the system, a more complex methodology should be

employed.[59, 126]

The study upon IL1β corroborated previous work performed by Yin in proving

that the cavity is empty under standard conditions. Mutation studies performed

by Adamek [129] had previously highlighted destabilisation effects in the cavity;

something which could be associated with the presence of water in the cavities.

The utilisation of JAWS stage 2 and GCMC appears to refute this study, although

it is possible that subtle polarisation effects which are not captured by standard

forcefields could change the conclusions.

A study on two kinase structures was then performed; CDK2 and Pim-1.

These kinases have a different protein sequence around the hinge region and were

expected to have a different hydration pattern to each other. The use of GCMC

simulations at different chemical potentials was able to elucidate the hydration

patterns and locate the strongly bound water molecules for each system. By cal-

culating the binding free energies of the water molecules in CDK2 using JAWS

stage 2, it was found that the hydration free energies of waters are not necessarily

additive. This has important consequences for drug design - by targetted a loosely

bound water molecule the surrounding water network can collapse, significantly

reducing the desolvation cost of the pocket. This allows a large contribution to the

binding free energy of the ligand through entropic destabilisation of the waters
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and strong enthalpic protein-ligand gains. The idea of ∆ as a measure of water

stability in a water was also introduced; waters which have low values of ∆ are

likely to be stable in a network and are candidates for water retention, whilst wa-

ters with high ∆ values are part of weak networks and are likely to be displaceable

by a ligand.

Finally, the lessons learnt from the previous studies were used upon the Chk-

1 system. Through the use of dual topology simulations and JAWS stage 2 free

energy estimates it was found that, upon a change in the ligand structure, a dis-

tal water in a network is destabilised. This destabilisation was identified as a

likely explanation for the change in ligand affinity, although the magnitude of the

difference in the binding affinity of the waters did not match that of the ligands

using this methodology. Through treating the network as a whole it was found

that the difference in the network stability was consistent with the dual topology

simulations, highlighting again that the binding free energies of water molecules

in networks are not additive and should be treated as a whole using GCMC. In

order to prove definitively that the water network is responsible for the change in

affinity, the two weak waters were removed from the dual topology simulations

and the simulation repeated. This yielded a relative free energy change of approx-

imately 0 kcal/mol between the two ligands, highlighting that the water molecules

are responsible for the change in ligand affinity. Closed free energy cycles were

obtained for both crystal structures by including the binding free energues of the

displaced waters, demonstrating the internal consistency in the methodologies.
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Chapter 7

Application of JAWS to

Fragment-Based Drug Design

7.1 Introduction

The following chapter describes the application of the JAWS algorithm to FBDD.

Since the existing methodologies available to FBDD have several deficiencies, the

rationale for choosing the JAWS methodology over other methods is initially de-

scribed. Two different test cases are then described; the anti-cancer target Kinesin

Spindle Protein and the coagulant factor Xa. The observed results are compared

to existing assay and crystallographic data, highlighting the ability of the JAWS

method to predict key structural motifs and highlight oppotunities for lead de-

sign. The deficiencies of the method are then described, highlighting the need

for extensive testing against real-life assay data which is currently not publically

available.
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7.2 Choice of method

As described previously, existing computational tools for performing FBDD are

all deficient in a few aspects. Amongst other things, the methods typically do not

allow for solvent competition, protein flexibility, and are incapable of accurately

ranking fragments based upon their free energies. There are six major criteria

which need to be addressed for a computational approach to be effective:

1. The method should locate and rank fragments based on their binding free

energy;

2. The method should use accurate energy functions, based on a simulation

approach;

3. The method must allow competition between different fragments, and criti-

cally, water;

4. The method should include an estimate for the desolvation of fragments;

5. The method should allow protein and fragment flexibility;

6. The method should be reliable and efficient.

One possible approach to creating such a method would be to utilise the

GCMC methodology. Currently the method does not allow explicit solvation,

instead using a post-processing stage where an implicit solvent is used to correct

for the binding free energy. An approach can be envisaged where water molecules

are allowed to compete against fragments in the same binding site, hence allowing

explicit water solvation. However, even with the use of schemes such as cavity-

bias [51] and configurational-bias [53], the acceptance rates for such a system

setup are likely to be extremely low. Running a GCMC simulation with flexible
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sidechains has already been performed for water-based systems, so this is unlikely

to be a drawback. However, one other drawback of the method is that there is no

easy way to account for fragment desolvation in the process.

As demonstrated in the previous two chapters, the JAWS methodology per-

forms similarly to GCMC in terms of its abilities to both rank molecules accord-

ing to their free energies, and also to predict the location of molecules in systems.

Like GCMC it is capable of allowing protein flexibility, yet the acceptance rates

are far higher since the molecules can have θ values which can vary between 0

and 1. In addition, the method should be able to simulate competition between

different fragments, as well as including a desolvation term through an modified

potential energy term as a function of θ. As such, the JAWS algorithm was chosen

as the preferred method for modelling fragments.

7.3 Development of the JAWS algorithm

Whilst employing the JAWS algorithm for water molecules is relatively straight-

forward and well defined, the application of the algorithm to fragment molecules

warrants consideration. Three major issues have been identified in the application

of JAWS to fragments:

1. Adequate sampling of chemical space;

2. Incorporation of a desolvation penalty to fragments;

3. Dealing with different standard states.

Approaches to dealing with these issues are now discussed.
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7.3.1 Adequate sampling of chemical space

In the original JAWS protocol there is only one type of JAWS solute, being water.

Since each water molecule can be essentially thought to be identical to any other

JAWS solute in the system we do not need to worry about whether ’Water A’ or

’Water B’ occupies a specific site in space. However, once different solutes are

allowed to explore the binding site this now becomes an issue. If a larger solute

than water, such as benzene, needs to pass by other solutes then the likelihood

of this occuring is small, since the repulsive van der Waals interactions will pro-

hibit the acceptance of the move. Even though a fragment might have a θ value

approaching zero, it will still have a finite coulombic and Lennard-Jones contribu-

tion which will drastically affect the acceptance rate for translational moves. As

a result, fragments could essentially be trapped in particular regions of chemical

space, prohibiting them from exploring other regions of the site and other solutes

from sampling that region.

In order to allow fragments to pass by each other and sample the chemical

space more effectively, a soft-core potential was incorporated into the JAWS po-

tential energy expression.[94, 146] By including soft-core parameters the coulom-

bic and Lennard-Jones are softened, so that at low θ values the fragments will ex-

perience considerably less interaction with the surroundings than previously. This

should improve the acceptance rate of fragments passing by each other, and hence

improve the sampling of available chemical space. The soft-core equations used

can be seen in equations ?? and ??.

ULJ,θ = (θ)4εij

[(
σ12

ij

((1− θ)δσij + r2
ij)

6

)
−

(
σ6

ij

((1− θ)δσij + r2
ij)

3

)]
(7.1)
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Ucoul,θ =
(θ)nqiqj

4πε0

√
((1− θ) + r2

ij)
(7.2)

In equations ?? and ??, δ is the Lennard-Jones scaling parameter whilst n is

the coulombic scaling factor. These were chosen to match the parameters used

to decouple the fragments from a box of water, discussed in the next subsection

??. qi and qj are the atomic partial charges on atoms i and j. εij and σij are the

Lennard-Jones well depth and collision diameter for atoms i and j, with rij the

inter-atomic distance.

7.3.2 Incorporation of a desolvation penalty to fragments

It is important to account for solvent competition in fragment based drug discov-

ery, since in the body drug molecules need to compete within an aqeuous environ-

ment. Whilst simulating fragments with water gives information about whether a

fragment is capable of outcompeting water in the binding site, it does not account

for whether the fragment would, in reality, actually be in the binding site. Al-

though the interactions between the fragment and the protein might be favourable,

the interactions which the fragment makes with the solvent bulk might be greater.

In this instance the fragment would remain in the bulk instead of residing in the

binding site.

In the standard JAWS algorithm the desolvation cost is accounted for in the

second stage, whereby the biasing potential is typically set to the hydration free

energy of water.[13] Performing such a simulation for fragments poses one major

issue, namely what to surround the fragment solute in question with during the

JAWS stage 2 simulation. During the JAWS stage 1 simulation, a mixture of

fragments is simulated; each with a set of θ values. As described previously in the

study of water molecules, it can be difficult to determine the accurate locations of
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JAWS solutes if the resultant density map is convoluted and hard to interpret. Such

a problem can be exacerbated for a mixture of fragments, and reliably scoring the

position of a fragment in the second stage of the JAWS protocol is likely to be

challenging if the correct environment cannot be defined. As a result, a different

approach needs to be applied.

Rather than accounting for the desolvation cost in the second stage of the al-

gorithm, the approach which has been utilised incorporates it into the first stage of

the algorithm. Whenever a θ move is attempted an additional term is added onto

the potential energy function, which takes into account the corresponding change

in intermolcular potential in the bulk. In principle there are two different methods

for performing such a procedure. The first is a Gibbs ensemble approach,[147]

whereby each fragment in the binding site is simulated in parallel with the corre-

sponding fragment in a water box. Whenever the fragment experiences a θ move

in the binding site, the equivalent θ move is performed in the water box. The

change in the interaction energies in each box are then totalled. This is then used

in the Boltzmann expression to determine whether or not the move is accepted.

Whilst this method is rigorous and should allow for an accurate estimate of the

fragment desolvation cost, it is also computationally expensive. If a large number

of fragments are chosen then each fragment needs to be linked to its own wa-

ter box, causing a combinatorial expansion of the number of simulations being

performed at one time. As a result, another method was sought.

The chosen method relies on generating a PMF profile for each fragment prior

to the JAWS simulation, whereby the fragment is decoupled from a water box at a

pressure of 1 bar in the NPT ensemble. A dual topology simulation is performed

with the fragment gradually perturbed to a dummy atom, assisted by the use of

soft-core parameters to prevent repulsive van der Waals’ interactions as the frag-
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ment is decoupled. 16 equally spaced λ windows were used with data collected

in 600 blocks of 100 K moves following 5 M MC moves of prior equilibration.

Solvent moves were attempted with a probability of 99 % ,solute moves with a

probability of 0.9 % and volume moves with a probability of 0.9 %.

Once the PMF was obtained the profile was fitted to a polynomial expansion,

allowing the value of the PMF to be calculated from any value of θ. The JAWS

simulation is then performed, with the fragment PMF profile used to account for

desolvation as part of the acceptance test. This can be seen in Figure ??, where

the sampled MC move attempts to change the value of θ from 0.6 to 0.8. The

values of the PMF at θ = 0.6 and θ = 0.8 are extrapolated, shown in red and green

respectively. The difference between these values is then calculated as ∆Gdes (θi).

For this attempted move, attempting to increase the intermolecular interactions for

θi in the simulation would require a loss of favourable interactions in the bulk, and

thus the move is penalised by ∆Gdes (θi) in the Metropolis test.

∆Gdes = ∆Go −∆Gn(7.3)

Figure 7.1: Sample calculation for the desolvation correction term in the modified
JAWS algorithm, for the θ move from 0.6 to 0.8

In equation ??, ∆Gdes (θi) is the PMF correction term added onto the potential

energy function, with ∆Gn and ∆Go the new and old values of the PMF respec-

tively. Whilst this approach is not as rigorous as the Gibbs ensemble approach it is
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significantly faster and easier to implement. The soft-core parameters chosen for

the dual topology simulations were varied to see which gave both the smoothest

gradient profile and the closest match to the experimental result. In the proceding

work four different fragment types were used; water, benzene, pyrazole and ace-

tone. It was found that a coulombic scaling factor of 1 and a Lennard-Jones factor

of 1.5 gave close agreement with the experimental result for these fragments.[148]

These factors were used in equations ?? and ??. The PMF plots along with the

experimental values are shown in Figure ??.

Figure 7.2: PMF profiles for the common fragments in JAWS fragment simula-
tions. The expt value shown in the profiles correspond to the experimental free
energy of hydration

The calculated free energies shown in Figure ?? display good agreement with
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the experimental results. No data could be found for pyrazole, however the calcu-

lated free energy is not unreasonable considering the hydrogen bonding nature of

the fragment.

7.3.3 Dealing with different standard states

One final feature which needs to be considered when simulating fragment-water

mixtures is the difference in their standard states. Water, by definition, has a stan-

dard state concentration of 55 M. In comparison, experimental assays typically

screen fragments in the 50 µM range, meaning that this needs to be accounted

for in the simulation process. One possible way of simulating this is to have sig-

nificantly more water molecules in the simulation, although this causes sampling

difficulties due to the highly likelihood of condensed water phases forming within

the simulation due to the number of waters in the system. Such phases, coupled

with the numerical advantage of water molecules, will prevent the adequate sam-

pling of fragments, even with soft-core potentials switched on. In order to account

for the fact that water binding to the protein should be preferred for concentration

(and hence entropic) reasons, whilst allowing adequate sampling of the fragment

chemical space, a volume correction term has been developed. This volume cor-

rection term is added onto each fragment θi move, and ensures that favourable θ

moves for water are preferred to the analogous fragment move. The form of this

correction is shown in equation ??.

∆Gcorr(θi) = −kT ln

(
V sim

V 0

)
θi (7.4)

In equation ??, Vsim is the simulation volume and V0 is the standard state of

the fragment.[14] In line with existing fragment based approaches, the volume of
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any fragment other than water was taken to be 1 M.

7.3.4 JAWS fragment Metropolis test

Given the corrections made to the JAWS methodology, the acceptance test used

for θ moves is as follows:

acc (θi → θj) = min

[
1, exp

(−∆E + ∆Edes,i−j + ∆Ecorr(θi−j)

kBT

]
(7.5)

In equation ??, ∆E represents the change in energy between states j and i as a

function of θ. ∆Edes,i−j is the desolvation correction between states j and i, whilst

∆Ecorr(θi−j) is the volume correction term applied between states j and i.

7.4 Kinesin Spindle Protein

7.4.1 Biological Relevance

The kinesin spindle protein (KSP) is a motor protein which is involved in mitosis.

KSP slides apart microtubules, allowing for spindle assembly which is essential

for chromosome seperation.[149] Until recently a common strategy in anti-cancer

drugs was to target microtubules and, in particular, tubulin. Whilst this has proved

a successful strategy, there is a high risk of side effects in targetting tubulin, in

particular neurotoxic effects. The discovery of monasterol by Mayer et al. has

helped to provide a new strategy in anti-cancer drugs.[150]

Monasterol has been found to be an inhibitor of KSP, preventing the motor

protein from releasing ADP during mitosis and inducing apoptosis. The drug

binds to an allosteric pocket of KSP, and has been found to cause distal changes
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in the ATP binding site, allowing KSP to bind to ATP but preventing the release

of ADP. One advantage of targetting KSP is that it is typically overly expressed in

human cancers, meaning that targetting KSP is a much safer strategy than standard

tubulin therapy. As a result several drugs are now in advanced clinical testing, one

example being ispinesib, shown in Figure ??.

Figure 7.3: The KSP inhibitor, ispinesib

7.4.2 System Preparation

A 22 Å scoop was prepared using the 1YRS pdb, using the same protein protocol

in the N9-neuraminidase system. Since the binding site of interest is allosteric, a

larger scoop was prepared to include a Mg2+ ion and an ADP molecule. A 30 Å

watercap was used, and a 594 Å3 allosteric binding pocket defined. Unless stated

otherwise, 8 water molecules were used for the simulations, with 4 replicas of each

fragment used. Relatively few water molecules were used for the simulations; this

was to prevent the aggregation of the water molecules to form a condensed phase

during the simulation. It was found that these ratios gave satisfactory results, al-

though no detailed sensitivity analysis into the ratios of fragments was conducted

in this study.
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7.4.3 Simulation protocol

The JAWS stage 1 simulation was performed upon the entire binding site, encom-

passing a region of 594 Å3. The JAWS solutes were allowed to move freely around

the grid region for one million moves whilst turned off. Unless stated otherwise,

the θ threshold applied for solutes being classed as ’on’ was 0.95. Statistics were

then collected on the grid region for 40 million MC moves using a grid spacing of

1 Å, in line with the original JAWS study.[13] The resulting data was analysed us-

ing AstexViewer, and each fragment position normalised according to the number

density of the most frequently observed fragment.[117] During the simulation, the

JAWS solutes were allowed to move and sample θ, with sampling of bulk solvent

performed. The bond angles and torsions for the side chains of residues within

12 Å of any heavy atom of the binding site were also sampled, with the protein

backbone restrained throughout the simulation. For the JAWS stage 1 simulations,

solvent moves were attempted with a probability of 23 % and protein side-chain

moves with a probability of 3.5 %. Small variations in θi, chosen randomly be-

tween -0.15 and 0.15, were attempted with a probability of 50 %, in line with

the original JAWS study [13], with translations and rotations of the JAWS waters

attempted with a probability of 23.5 %.

Soft-core parameters were switched on for all of the JAWS solutes.

7.4.4 Simulations

JAWS simulations were performed upon the KSP binding pocket as a test of the

JAWS methodology. Four different fragments were simultaneously simulated;

acetone, benzene, pyrazole and water. Benzene and pyrazole were used as ex-

amples of an apolar and polar aromatic fragment respectively, whilst acetone was
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chosen as an example of a hydrogen bonding acceptor to compete against water.

5 independent simulations were performed upon the 594 Å3 binding pocket, with

the collated results shown in Figure ??.

Figure 7.4: JAWS clustering density for the KSP system. The top data percentage
for each image is shown in the top left. Key: pyrazole, benzene, water, acetone
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Figure ?? shows that the major binding fragment in this system is pyrazole.

In particular, three major pyrazole binding regions are observed; two sit on the

aromatic rings of the native crystal ligand whilst another is found mimicking the

acetyl group of the ligand. These predictions can be rationalised by examining the

experimental assay data for the system.[151] An example of this is shown in table

??, where modifications to the eastern ring are made.

R1 R2 Activity (nM)
2-F H 3600
2-Br H 23,300
2-Me H 46,200
2-F 5-F 94

Figure 7.5: Structure-activity relationships for modifications made on the native
ligand

Table ?? clearly shows that there is a strong preference for polar substituents

on the right side of the ligand, and hence it is not particularly surprising that pyra-

zole displays a strong preference to benzene in this region. Whilst there is no par-

ticular evidence for why pyrazole outcompetes benzene in the left ring, the JAWS

results suggests that there is a large preference for the fragment. One interesting

position which is identified in the simulation is the pyrazole ring which mimics

the acetyl ring. Experimental assays have shown that exchanging the methyl sub-

stituent of the carbonyl to a NH-cyclopropane group increases the affinity of the

inhibitor from 4000 nM to 2.0 nM,[152] clearly demonstrating that the incorpora-

tion of a slightly more bulky and hydrogen-bonding donor group in this location is

hugely advantageous. The fact that JAWS identifies this position is clearly highly
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encouraging and helps to validate the methodology.

The dominance for pyrazole is clearly evident since the top 70 % of all data

needs to be displayed before any other fragment types are observed. It is interest-

ing to note that water is not observed in the system until the top 99 % of data is

visualised. This suggests two things:

• Other fragments outcompete water in the binding pocket, and

• Any water which is observed in the system is likely to have a low binding

free energy.

Acetone is observed in right side of the ligand, where the carbonyl group is

typically found pointing along the same plane as the halogen on the pyrazole ring.

As more and more data is incorporated in to the plots, it can be seen that pyrazole

is also found in the linking position between the two aromatic rings. When a high

proportion of the data is visualised, it can be seen that a water molecule is found in

close proximity to the crystallographic hydroxyl group of the ligand. Experimen-

tal assays show that incorporation of the hydroxyl group in this position increases

the activity of the ligand by an order of magnitude,[151] hence it is perhaps sur-

prising that this is not observed more regularly. The most likely reason for this

is the nearby presence of pyrazole, which itself is capable of making hydrogen

bonds whilst also fulfilling the aromaticity of the pocket. Benzene is not found

until the top 99 % of data is included, clearly demonstrating that it is outcompeted

by the other fragments in this system. However, once it is located, the contours lie

on top of the aromatic ligand rings.

Whilst the JAWS output clearly gives results which are in qualitative agree-

ment with the experimental assay data and crystal structures, forming quantitative

conclusions is considerably more difficult. Although the fragment populations
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are assumed to be indicative of their binding free energy, it would be desirable

to acquire more evidence to support this assumption. As previously described in

section ??, JAWS stage 2 simulations cannot be performed on the system since it

is impossible to know what to flood the rest of the system with during the binding

free energy estimation calculation. Another problem with the JAWS output is the

lack of information regarding cooperativity between fragment contours. The lack

of correlation occurs since in order to obtain enough data to create the fragment

maps several independent different simulations are required. For example Figure

?? shows that an acetone contour is found extremely close to pyrazole, when the

existence of both at the same time is an impossibility. When different simulations

were analysed independently, it was observed that the position of different frag-

ments can vary significantly, likely to be due to insufficient sampling within the

pocket. In order to test the reproducibility of the results, longer simulations need

to be performed to assess the convergence of the predictions.

The lack of true correlation between fragment is clearly a drawback to the

technique, although there are possible ways around it. One such method would be

utilising the assumption that the fragment which appears the most is the one with

the most favourable free energy. This assumption has been proved to be the case

for water molecules in N9 neuraminidase, demonstrated in Figure ??.

Figure ?? shows that there is a strong correlation between the JAWS stage 1

normalised density and the calculated JAWS stage 2 binding free energies. This

suggests that using the number density as a proxy for the ranking of binding

free energies within the same system is a fair assumption in the case of water

molecules, and is assumed to hold true for fragment molecules. It should be noted,

however, that weakly bound water molecules typically have extremely low JAWS

stage one densities, and attempting to estimate the binding free energy for these
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Figure 7.6: Correlation plot between the normalised JAWS stage 1 density for
water molecules in N9-neuraminidase and the calculated JAWS stage 2 binding
free energy for each site

waters is likely to be unsuccessful.

This fragment could then be restrained in space whilst the other molecules

are allowed to sample the chemical space around the restrained fragment. The

resulting maps would then give the correlation between the restrained fragments

and the rest of the system, although several simulations would still be required to

obtain sufficient data to analyse.

Such a procedure was performed for this system. The pyrazole contour located

on the western ring was identified as the major site, and hence a pyrazole molecule

was placed in this region. This molecule was restrained with a harmonic potential

of 5 kcal/mol centred on the geometric centre of the ligand to prevent it from

191



CHAPTER 7. APPLICATION OF JAWS TO FRAGMENT-BASED DRUG
DESIGN

drifting away during the simulation. A JAWS simulation was then performed on

the system, with the results shown in Figure ??.

Figure 7.7: JAWS clustering density for the KSP system, using a restrained pyra-
zole fragment. The top data percentage for each image is shown in the top left.
Key: pyrazole, benzene, water, acetone

Figure ?? shows that the major fragment site which is identified is that near the
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acetyl group, corroborating the evidence from the other simulation that this is a

highly favourable site for pyrazole. As with the standard JAWS run, both acetone

and pyrazole are found near the right aromatic ring, whilst a pyrazole contour is

now clearly found on the middle linker ring. A slightly higher concentration of

water is also found in the pocket, with it occupying a position near the back of

the right ring. This site is close to both E162 and R221, and hence its appearance

here is not hugely surprising. Overall it can be seen that a similar picture is found

when a pyrazole molecule is restrained, identifying the other two major pyrazole

sites as occupying the right ring position and the acetyl group.

7.5 Factor Xa

7.5.1 Biological Relevance

fXa is a serine protease which is involved in the blood coagulation pathway. The

protein converts prothrombin into thrombin, which in turn promotes the aggrega-

tion of platelets. A small amount of fXa produces a large amount of thrombin,

and as a result is a more desirable target in the treatment of thrombosis rather

than thrombin itself.[153] In addition, targetting fXa should target coagulation

specifically, compared to thrombin inhibitiors which have been shown to affect

hemostatis.[154] Existing therapies involving warfarin require careful monitoring

of blood plasma levels and carry the risk of unfavourable metabolism and drug-

drug interactions, and hence demonstrate the need for new drugs.[155]

Crystal structures of FXa show that inhibitors typically bind in an extended

’T’ or ’L’ shaped conformation, with key binding interactions in the ionic S1

pocket and hydrophobic S4 pocket of FXa. The ionic S1 pocket has been shown
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to be capable of hosting a water molecule [153], although inhibitors have re-

cently been developed which displace this water molecule by exploiting Cl-π

interactions.[156] Such inhibitors do not have the electrostatic interaction with

D189 like the original set of inhibitors. Further studies have shown that the S1

pocket is selective towards aryl-chloride containing inhibitors compared to aryl-

bromides,aryl-florides and benzyls.[157]

7.5.2 System Preparation

A 15 Å scoop around the crystallographic ligand was prepared for the protein

structure 2W3K using the same preparation as for N9-neuraminidase. A large

binding site was identified around the crystallographic ligand of 3762 Å3. 12

water molecules were used for the simulations, along with 8 fragment replicas.

7.5.3 JAWS simulations

JAWS simulations were performed upon the entire fXa binding pocket to exam-

ine the nature of the pocket, using the same protocol as for KSP. Three different

fragments were used; water, benzene and pyrazole. Benzene was chosen since

it is typical of a non-polar aromatic fragment, whilst pyrazole is a much more

polar aromatic molecule. Water was chosen to compete with the other two frag-

ments, allowing for hydration effects within the pocket. By comparing the relative

populations of the three fragments, three objectives could be achieved:

1. Probing the FXa pocket to locate the polar and non-polar parts of the pocket;

2. Testing to see whether the methodology can predict the existence of polar

moeities in the S1 pocket over less polar fragments;
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3. Examining the possibility of hydration within the S1 pocket.

The collated JAWS results across 4 independent runs can be seen in Figure ??.

It can be seen that the major contour across the three fragments is found for pyra-

zole binding in the S4 pocket, mimicking the pyridone group in the native ligand.

The key interaction in this region is a slipped π-π interaction, and it is not surpris-

ing that a polar heterocyclic ring is found in this region compared to benzene. As

the contouring level is reduced to the top 75 % of data, pyrazole occupies the S1

pocket, as well as locating itself near to the other aromatic moieties in the native

ligand. It is interesting to note that benzene is not present at either this contouring

level or the next level down, suggesting that pyrazole outcompetes the fragment

to a large extent.

As the contouring level is lowered to include the top 90 % of data, it can be

seen that both water and benzene are now observed. Benzene is observed in the

S1 pocket, as well as two of the other aromatic regions in the native ligand. It

is not however seen in the S4 pocket, which still displays a strong preference

for the pyrazole fragment. At the base of the S1 pocket a crystallographic water

molecule is found, bridging an interaction between D189 and Y228. The JAWS

simulation clearly identifies this site. Analysis of further fXa structures show that

this molecule is constantly found across fXa structures in the PDB, as well as in

related thrombin structures. As the top 92 % of data is observed, another crystal-

lographic water is observed, this time one bridging the interaction between D189

and Y225. This water molecule is not found in all fXa and thrombin structures,

and is ligand dependent.

From analysing the JAWS results, it can be seen that no water density is found

in the bottom of the S1 pocket. This result corroborates previous work on fXa,

whereby neutral substituents are found in the S1 pocket and promote the exclusion
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Figure 7.8: JAWS clustering density for the fXa system. The top data percentage
for each image is shown on the left. Key: pyrazole, benzene, water

of water.[153, 154]. Since the S1 pocket is known to prefer polar aromatic groups

it is perhaps not surprising that this result was obtained. However, if the pocket

was challenged with only benzene and water, it is possible that water might out-

compete the benzene and be observed in the base of the pocket. In order to inves-

tigate this possbility a further simulation was performed, challenging the pocket

with benzene and water. The observed results can be seen in Figure ??.

Figure ?? shows that, despite the pocket being challenged with a less polar

fragment, water is still not observed in the base of the S1 pocket. The explana-

tion for this is that volume of the benzene ring excludes the possibility of water.

This suggests that the expulsion of water from the S1 pocket is clearly favourable
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Figure 7.9: JAWS clustering density for the fXa system.The top data percentage
for each image is shown on the left. Key: benzene, water
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Figure 7.10: JAWS clustering density for the benzene-chlorobenzene simulation.
Left : Top 50 % of data. Right : Top 60 % of data. Key: benzene, chlorobenzene

whenever an aromatic group is allowed to penetrate the entire pocket, and water is

only able to coexist in the pocket when a charged electrostatic interaction is made

between the ligand and D189.

7.5.4 Aryl Selectivity

As previously mentioned, the S1 pocket of fXa is selective towards aryl-chlorides

compared to other aryl-halogens and benzene. In order to see whether the JAWS

methodology is capable of identifying this selectivity trend, a series of simulations

were performed which focussed solely on the S1 pocket. Only chlorobenzene and

benzene was simulated; no water molecules were included. The Lennard-Jones

softcore term was increased to 2 for this simulation to accurately describe the

chlorobenzene desolvation term, an effect which did not significantly change the

behaviour of the benzene desolvation profile. 2 replicas of each fragment were

simulated. Four independent simulations were performed, with the results shown

in Figure ??.

Figure ?? shows that benzene only appears once the top 60 % of data is in-

198



7.6. LIMITATIONS OF THE JAWS APPROACH

cluded in the analysis, suggesting that chlorobenzene is outcompeting benzene

in this pocket. Although the result is clearly encouraging, it is also important to

recognise that standard MM forcefields do not describe halogens satisfactorily.[158]

As such, the observed results could be fortuitous. Indeed, upon visual inspection

it was found that the chloro moiety was pointing into the bulk rather than towards

the tyrosine sidechain. This could suggest one of several things:

• The interaction between the chlorine atom and the bulk solvent is more

favourable than the interaction between the atom and the sidechain. In the

absence of a scaffold to anchor the chlorobenzene in position, this could

promote the unexpected behaviour;

• The forcefield fails to adequately describe the halogen-π interaction.

In order to corroborate the result, the system could be simulated using a po-

larisable forcefield or a QM/MM approach.[159] This should elucidate whether

the observed behaviour is indicative of a forcefield artifact or is, actually, correct.

However such approaches typically require significantly more simulation time,

and were beyond the timeframe of this thesis.

7.6 Limitations of the JAWS approach

Although the fragment based JAWS methodology has displayed great promise

in identifying and ranking favourable binding poses for fragments, there are a

number of potential drawbacks to the method. These are now highlighted and

assessed.

1. Lack of correlation between the sites Since the JAWS output generates

fragment maps which are collected over several independent simulations,
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it is impossible to understand the correlation between different fragments.

For example, fragment binding at one position in the system could be facil-

itated by another, more weakly bound, fragment. An averaged density map

will not highlight this, and, if the correlated molecule occurs more rarely,

the correlation may be masked by another fragment. Although restraining

strongly bound fragments, as in the KSP system, will help to elucidate co-

operativity, it is still not ideal and it would be desirable to have a method

which can track cooperativity throughout the simulation.

2. Lack of orientation in contours During a JAWS simulation, information

on the closest grid point to the centre of mass of a fragment is tracked.

Whilst this is a relatively minor problem for a small molecule such as wa-

ter, it becomes much more of an issue for larger fragments such as benzene.

If the method is to be applied to more complex fragments where there is less

symmetry, then strategies need to be devised to track and map the orienta-

tion of each fragment contour. Currently this can be achieved by manually

looking through the PDB outputs and averaging the positions, but this is a

time consuming and inefficient task.

3. Assuming that density maxima correlates with binding free energy Al-

though Figure ?? has highlighted that, for water molecules in N9-neuraminidase,

the density maxima can be taken to be a good approximation for the binding

free energy, this does not necessarily mean it will hold true for fragments.

Since the JAWS fragments are heterogeneous, it is important to establish a

relationship between the density and the free energy. The major difficulty

with this task lies in the calculation of a reliable free energy. As previously

discussed in respect to JAWS stage 2 simulations, it is difficult what to sur-
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round the resultant space with if one fragment has been docked. If the cor-

relation and orientation of neighbouring fragments could be reliably found,

then JAWS stage 2 and double-decoupling simulations could be performed

to calculate the binding free energy. This would then allow the fragments

to be ranked reliably due to their calculated free energy, rather than relying

upon an approximation.

4. How many molecules can be simulated simultaneously? Although the

JAWS methodology has been tested on mixtures of 4 fragments, there is

the possibility that more fragments could be simulated simultaneously. One

potential drawback lies in the sampling of the chemical space, since more

fragments will induce more competition in the system. This will prohibit re-

gions of the chemical space being sampled by other fragments if a favourable

pose is accepted. Even with the inclusion of soft-core terms, it is possible

that a more favourable pose will not be accepted if it cannot adequately

sample the configurational space.

One other factor which has not yet been addressed is the overall effectiveness

of the method in replicating real life FBDD results. During a fragment-based

assay, a large quantity of data is collected. Some of this data will correspond to

successful fragment-protein hits, whilst some of the data will correspond to unsuc-

cessful fragment hits. The current method has highlighted cases where fragment

contours overlap with known crystallographic ligand positions, but it has not yet

been tested upon real life fragment-protein crystal structures.

Ideally, the method should be tested upon systems with knowledge of where

certain fragments bind and do not bind. This would allow the robustness of the

method to be assessed, and to see whether it is capable of predicting both the
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location, pose and binding affinity of fragment-protein hits. This is something

which is often a problem for docking approaches, since the force-fields used are

often inaccurate and/or not sophisticated enough to discriminate between different

binding modes. The ability of the method to discriminate between binders and

non-binders would also be assessed through such a test.

In order to truly establish whether the method is capable of distinguishing

between binders and non-binders, the method should be used in a blind test. In

such a test the method would be tried on a system where 20 fragments are given,

some of which are hits and some are decoys, with the knowledge of the binding

characteristics of the fragments withheld. This would give information on the

effectiveness of the method, and allow for further modifications to the algorithm

if required.

Despite the current limitations and work to be done with the fragment-based

JAWS algorithm, it is also important to reflect upon the success of the method.

Unlike other FBDD approaches, the method is capable of calculating the posi-

tions of fragments in protein structures in competition with bulk water, whilst also

allowing for an estimate of the desolvation cost of the fragment. This gives in-

formation on not only where the fragment binds in the system, but also whether

it will leave the bulk aqueous phase to bind there. The method is based on a well

described technique, gives rapid results, and is also capable of allowing sidechain

motion. These features set it apart from existing computational tools and, by ad-

dressing the points above, the method is likely to be become more accurate and

useful.
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7.7 Conclusions

This chapter described the development of the JAWS methodology to FBDD, and

subsequent application to two different case systems in factor Xa and KSP. The

JAWS methodology was favoured over the GCMC method for a number of rea-

sons, mainly in that the method is capable of competiting water against fragments

during a simulation, and also in that the method displays improved acceptance

rates. Since the JAWS method was designed for water molecules, three key fac-

tors needed to be considered:

• Dealing with the difference in standard states between a fragment and water;

• Incorporation of a PMF-based fragment decoupling term;

• Introduction of a soft-core potential to enhance sampling.

Having addressed these issues, the methodology was initially trialled upon

the KSP system. The methodology predicted the aromatic binding regions of

the pocket, identifying that they are likely to favour pyrazole binding over ben-

zene. An additional site was also discovered around the binding pocket. SAR of

various ligands suggests that nitrogen based linkers in this region are extremely

favourable, corroborating the JAWS evidence of pyrazole binding in this region.

The method was then used upon the factor Xa system. The method identified

the four aromatic regions in the system, suggesting a strong preference for pyra-

zole fragments throughout the system. This is consistent with experimental as-

says, whereby polar moieties are especially preferred in the S1 pocket. A slipped

π-π interaction is found within the simulations in the S4 pocket, as well as two

crystallographic water sites. The issue of water being present in the base of the

S1 pocket was then explored, by challenging the pocket with benzene and water
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only. The results showed that water was not observed, suggesting that the pres-

ence of water is disfavoured if benzene is allowed to penetrate the entire pocket.

Finally, the issue of aryl-halide selectivity was addressed, with the results proving

that chlorobenzene is favoured in the pocket over benzene.

The limitations of the JAWS methodology were then analysed. Although the

method has delivered promising results for the two test systems, the method is

not capable of predicting correlation between fragments. The method also cannot

identify the orientational dependence of fragment binding, something which is

important to achieve if the method is to be used for larger and more complex frag-

ments than those currently used. An accurate way of determining the binding free

energies of the fragments also needs to be developed, since the existing method of

relying upon the fragment density needs to be validated. Mostly important, how-

ever, the method needs to be trialled upon real experimental data, which contains

information of both successful and unsuccessful binders. The ability to differen-

tiate between hits and decoys is something which would be highly desired, and

ultimately the truest test of the method.
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Chapter 8

Concluding remarks

The original proposal of this thesis was solely to explore the role of molecular

fragments in inhibitor design - the roles of water molecules in protein binding

sites was not originally considered. However, as the project progressed, it quickly

became apparent that to ignore the role of water molecules would be foolish. In-

deed, towards the end of the research, it was water molecules which became the

primary focus of the study. This highlights the ever evolving nature of not only a

PhD but research in itself, and how a scientist should always be ready to adapt to

new challenges in the field.

In chapter two, a brief introduction to the importance of statistical mechan-

ics in computational chemistry was given. Obviously providing full exposure to

such a topic is beyond the scope of a thesis, but none the less it is important to

provide some context. Computational chemistry has its roots in the Boltzmann

distribution, and through a consideration of the partition function, all of the key

thermodynamic properties of the system can be extracted. The potential energy

of a system is found through the use of a molecular mechanics based force-field,

which allows for the calculation of the intra- and intermolecular energy terms. The
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ensemble phase space is typically sampled using either Monte Carlo or Molecular

Dynamics simulations, whereby the evolution of the system is observed. Depend-

ing on the choice of ensemble, the key thermodynamic properties can then be

easily analysed and calculated.

Chapter three describes the critical role of water molecules in protein binding

sites, and how the ideas have been exploited in computational studies. From the

original work by Poornima and Dean, the thinking behind water molecules has

expanded significantly in recent years. It is now well recognised that water is far

from a passive player in protein binding sites, and as such the incorporation of

water molecules in molecular simulations is now beginning to be of significant

concern. Indeed there is beginning to be a focus on the role of multiple water

molecules in protein binding sites, with evidence showing that groups of waters

can dictate protein-ligand specificity.

The four major computational methods for locating and scoring the binding

affinity of water molecules were described; Grand Canonical Monte Carlo, Just

Add Water Molecules, WaterMap and double-decoupling. Some applications of

each method were analysed, alongside the relative merits and drawbacks of each

of the methods. It was identified that no study had ever critically appraised and

evaluated the methods on the same system; something which is of clear impor-

tance. Based upon this, and the availability of the methods, GCMC, JAWS and

double-decoupling were chosen for the comparative study. The GCMC and JAWS

method were incorporated into the in-house Monte Carlo code, ProtoMS, and con-

tributed approximately 2000 lines of code.

Chapter four describes the fundamental features behind Fragment-Based Drug

Discovery, and how it differs from the traditional High Throughput Screening

approach. FBDD offers a route for the medicinal chemist to build molecules from
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a small fragment, allowing the key physiological parameters such as molecular

weight and lipophilicity to be controlled in the fragment to lead development.

Experimental FBDD carries considerable financial cost, providing an incentive

for computational approaches. The existing in silico methods all suffer several

drawbacks; in most methods this is due to a poor treatment of solvation in the

binding site and the lack of protein flexibility. The key features for an ideal FBDD

computational method were identified, in preparation for these to be incorporated

into the JAWS algorithm.

Chapter five details the key developments made to the JAWS algorithm and

how, by modifying the applied potential bias, the binding free energy of strongly

bound waters can be calculated. The application of the 3 methods to N9-Neuraminidase

was described, and demonstrated that all three methods give excellent agreement

in the calculation of binding free energies. Both GCMC methods; simulated an-

nealing and the interacting particle method, were also shown to be consistent in

the calculations. Based upon the N9-Neuraminidase results, the relative merits

and drawbacks of each method was assessed. The double-decoupling method is,

by far, the most rigorous method for the scoring waters, although the computa-

tional time is of an order of magnitude slower than the other two methods. Both

GCMC and JAWS deliver an estimate of the binding free energy in a rapid, yet

accurate, manner, and are also capable of locating water molecules - something

of which double-decoupling is not capable. One important application of GCMC

was highlighted in the BPTI study, where it was found that the method predicts

changes in hydration patterns as a function of the chemical potential. The idea of

network reorganisation and stabilisation as a function of the chemical potential is

something which forms the basis of the chapter 5.

Chapter six details the application of the three methods to a range of different
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case studies and scenarios. The use of the methods to the hydration of hydropho-

bic cavities was firstly described, looking at the T4-lysozyme and Interleukin 1β

systems. It was found that, for both systems, the cavities were dry, in agree-

ment with experimental evidence. The GCMC methodology was found to be

advantageous for the location of water sites in comparison to JAWS, owing to

the ease of identifying cooperativity between water molecules. A general scheme

was adopted; using GCMC to locate the water sites, then applying JAWS stage 2

simulations to calculate the binding free energy.

The hydration of two different protein kinases was then studied; CDK2 and

Pim-1. The two kinases have different sequences along the hinge region, pro-

viding a good test of the methods to predict different hydration patterns. GCMC

simulations were performed at a range of different chemical potentials to observe

the changes in the water locations, with the configurations of waters scored using

JAWS-2. It was found that, when weakly unbound waters are allowed to occupy

the CDK2 pocket, the binding free energy of two waters along the hinge are sta-

bilised by approximately 4 kcal/mol. This network stabilisation was identified as

being highly significant for drug design, since targetting the weakly unbound wa-

ters in the network is likely to reduce the desolvation penalty of the protein upon

ligand binding. A similar scenario was found near to the critical catalytic lysine

residue in Pim-1, where weakly bound waters stabilise the network.

The idea of water network destabilisation can be used to determine how the

apo network influences ligand binding. For a ligand to bind to a target, the water

molecules in the protein must either be displaced or conserved and incorporated

into the protein-ligand complex. Several criteria have been identified for deciding

the best strategy for dealing with the water molecules. For a water molecule to

be conserved in the complex it must have a binding free energy indicative of a
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bound water, and be stable in the absence or partial absence of the network. The

magnitude of destabilisation can be expressed as ∆ ; waters with high values of

∆ are destabilised when the network is disrupted, and are likely to be displaced

upon ligand binding. Thus, waters which have low values of ∆ are sufficiently

stable in the absence of the network and offer opportunities to incorporate them

into a protein-ligand complex.

One final application of the methods was used to study the Chk-1 kinase sys-

tem. Two different ligands, 5CH and 5BT, were studied, varying only in the con-

nectivity of an amide group. This change causes a change in the binding free

energy of 1.2 kcal/mol in favour of the 5CH ligand ; a shift which is unexpected

since the protein-ligand interactions appear to be extremely similar. Dual topol-

ogy simulations were performed on the protein-ligand structures, finding that the

5CH ligand is indeed more stable. Energetic analysis suggested that the major

change between the ligands is the solvent-ligand energy, with a cluster of three

waters identified as the primary cause. JAWS-2 simulations were performed on

the different ligand systems, finding that a distal water is stabilised in the 5CH

structure compared to the 5BT structure.

When viewed alongside GCMC simulations, it was found that the network

stabilisation in the 5CH ligand was in good qualitative agreement with the dual

topology simulations. Double decoupling simulations were used to calculate the

binding free energies of the weakly bound waters and, by completing a free energy

cycle, it provided compelling evidence that the role of the water cluster is respon-

sible for the change in ligand affinity. Such an effect has not been described in the

chemical literature, and provides clear evidence for the active role which water

molecules perform upon protein-ligand association. Crucially, it is a distal water

which provides the key change in the binding affinity, highlighting that molecular
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association is far from a straightforward and understood process.

Chapter seven describes the modifications made to the JAWS algorithm to al-

low for the simulation of fragments. Three different features were added to the al-

gorithm. Firstly a desolvation penalty was applied to fragments, capturing the fact

that for a fragment to bind it must move out the bulk and lose its solvation shell.

This penalty was incorporated through running dual-topology simulations prior to

the JAWS process, and then using the PMF profile to correct for the penalty as a

function of θ. The second modification was the incorporation of a standard state

volume correction, which corrects for the difference between simulating water at

55 M and fragments at 1 M. Finally soft-core potentials were incorporated into

the code, to allow for adequate sampling of the chemical space.

Two different protein systems were investigated; the mitotic cancer target KSP

and factor Xa. Both systems demonstrated that the method is capable of predict-

ing where different fragments prefer to locate, with the results validated against

known protein-ligand structural data. Crucially the method is capable of locating

where specific water molecules locate whilst also allowing fragment competition,

with these locations in excellent agreement with crystallographic data. It is impor-

tant to recognise that, although the results obtained are encouraging, the method

requires much more validation. The optimisation of the protocol against real data

provides an excellent route for method validation, and efforts have begun to obtain

realistic protein systems to test the JAWS methodology upon.

One of the original aims of the thesis was to explore the nature of fragments in

drug design, and it can be said that this has been achieved. Although much more

validation is required, a method has been developed which takes into account

many of the major deficiencies in existing FBDD computational approaches. Per-

haps the biggest achievement in this thesis has been the work performed on the
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role of water molecules in protein binding sites. Significant lessons have been

learnt about how water molecules behave in proteins, and how they can dictate

ligand binding and affinity. The idea of using a ∆ parameter to gain information

on the destabilisation of waters shows great promise, and is something which is

likely to be of considerable interest in the field of drug design and development.

Efforts have already begun to further understand and validate the idea of the ∆

parameter looking at the N9 neuraminidase and Scylatone Dehydratase binding

sites, and suggest that waters can be significantly stabilised upon the introduction

of a ligand compared to the apo binding free energies.
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