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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

Practical Strategies for Agent-Based Negotiation in Complex Environments

by Colin Richard Williams

Agent-based negotiation, whereby the negotiation is automated by software programs,

can be applied to many different negotiation situations, including negotiations between

friends, businesses or countries. A key benefit of agent-based negotiation over human

negotiation is that it can be used to negotiate effectively in complex negotiation envi-

ronments, which consist of multiple negotiation issues, time constraints, and multiple

unknown opponents. While automated negotiation has been an active area of research

in the past twenty years, existing work has a number of limitations. Specifically, most of

the existing literature has considered time constraints in terms of the number of rounds

of negotiation that take place. In contrast, in this work we consider time constraints

which are based on the amount of time that has elapsed. This requires a different ap-

proach, since the time spent computing the next action has an effect on the utility of the

outcome, whereas the actual number of offers exchanged does not. In addition to these

time constraints, in the complex negotiation environments which we consider, there are

multiple negotiation issues, and we assume that the opponents’ preferences over these

issues and the behaviour of those opponents are unknown. Finally, in our environment

there can be concurrent negotiations between many participants.
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Against this background, in this thesis we present the design of a range of practical

negotiation strategies, the most advanced of which uses Gaussian process regression

to coordinate its concession against its various opponents, whilst considering the be-

haviour of those opponents and the time constraints. In more detail, the strategy uses

observations of the offers made by each opponent to predict the future concession of

that opponent. By considering the discounting factor, it predicts the future time which

maximises the utility of the offers, and we then use this in setting our rate of concession.

Furthermore, we evaluate the negotiation agents that we have developed, which use

our strategies, and show that, particularly in the more challenging scenarios, our most

advanced strategy outperforms other state-of-the-art agents from the Automated Nego-

tiating Agent Competition, which provides an international benchmark for this work.

In more detail, our results show that, in one-to-one negotiation, in the highly discounted

scenarios, our agent reaches outcomes which, on average, are 2.3% higher than those

of the next best agent. Furthermore, using empirical game theoretic analysis we show

the robustness of our strategy in a variety of tournament settings. This analysis shows

that, in the highly discounted scenarios, no agent can benefit by choosing a different

strategy (taken from the top four strategies in that setting) than ours. Finally, in the

many-to-many negotiations, we show how our strategy is particularly effective in highly

competitive scenarios, where it outperforms the state-of-the-art many-to-many negotia-

tion strategy by up to 45%.
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Chapter 1

Introduction

Negotiation is a process in which a range of negotiating parties, with different desires,

aim to reach agreement on a common set of issues. It is a task that has many practical

applications. For example, a group of people may negotiate in an attempt to choose a

restaurant to eat at. A client and supplier may negotiate in the sale of goods or services

and negotiations also take place when forming employment contracts. Negotiations

may even take place at the global scale, in the case of diplomatic negotiations between

countries. However, despite the frequency with which humans take part in some form

of negotiation, it is not an easy task for them to complete. It is often a time consuming

process, and it is difficult for humans to find efficient agreements (Bosse and Jonker,

2005), especially when they have little negotiation experience (Raiffa, 1982; Lin and

Kraus, 2010). Here, an efficient agreement is one where there is no other potential

agreement that would increase the benefit to one party without decreasing the benefit of

the other party. Therefore, there is considerable interest in automating the negotiation

process, by using software agents to assist in the negotiation. In this context, an agent

is a piece of software that acts on behalf of one of the negotiating parties and is able

to interact autonomously with other agents (or humans) in order to reach an agreement

(Wooldridge and Jennings, 1995). To this end, we provide the following motivating

scenario:

It is Thursday afternoon, and Bob is starting a new job on Monday. His job involves a

lot of travel, so he urgently needs to buy a car and is keen that the agreement to buy this

car should be made as soon as possible. He informs his automated buying agent that he

needs a small car which costs approximately £6,000. He is keen to limit his impact on

the environment, but drives long distances, so he desires a battery-powered car with a

high capacity battery. The colour of the car is not very important to Bob, but he prefers

dark coloured cars, with his favourite colour being blue. Since he will be using the car for

1
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work purposes, it is important that the car is in a good condition. The buying agent is

notified of these additional preferences, and also of the time constraints for completing

the deal.

The buying agent then contacts the selling agents of all of the local dealers, in order to

negotiate with them. As he lives in a large city, there are around 20 different dealers,

all competing for Bob’s business. During interactions with the selling agents, hundreds

of different offers may be made. In addition, Bob’s friend has offered his car for sale,

though it’s a rather inefficient car that Bob isn’t too keen on. After a short while, Bob’s

agent agrees to buy a small blue car from Alpha Cars, at a price of £4,950. The car

is in a good condition, but its battery capacity isn’t great. This is the best deal that the

agent has found, and negotiations don’t seem to be progressing any further. Bob will be

very pleased with this car at this price, and therefore the agent pays a non-refundable

deposit of £200 to secure the deal.

Just minutes later, the agent from Beta Motors makes a slightly better offer: a car which

is also in good condition, but this time in yellow and with a better battery capacity, at a

price of £5,050. The buying agent knows that Bob will prefer this car over the one that

he has placed a deposit on, but decides that it isn’t worth losing the deposit for.

A new agent, representing Delta Vehicles then enters the market, and Bob starts to ne-

gotiate with this new agent, whilst continuing negotiations with the other dealers’ agents.

Throughout the negotiations, other buying agents, each with their own requirements enter

and leave the market.

Following further negotiations, the Beta Motors agent proposes another car, similar to

the previous one, but this time in black, and at just £5,000. Even though the deposit

on the first car will be lost if the agent decides to change to this offer, the buying agent

makes the decision, on behalf of Bob, that it is worth it. The price difference of £50

plus the £200 deposit that has already been paid to Alpha Cars, along with a slightly less

preferred colour is far outweighed by the value that Bob places on securing a car with

such a good battery capacity.

The buying agent therefore reaches an agreement to purchase the black car from Beta

Motors. The deal is completed well within the time limits imposed by Bob’s situation,

and both parties are confident that they have got a good deal.

In addition to the retail application that we provide in our scenario, automated negoti-

ation can also be applied to areas as diverse as electricity markets (Brazier et al., 1998),

transportation scheduling (Fischer et al., 1995), and the trading of financial derivatives

(Bichler, 2000).
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In most negotiations similar to the one above (but without the use of automated agents),

human negotiators may expect to reach an agreement following a relatively small number

of interactions with their opponent. If the negotiation appears to be taking too long,

it is likely that one of the participants will simply walk away. Each interaction would

be likely to take many seconds or even minutes (Bosse and Jonker, 2005). In addition,

it is unlikely that a human negotiator could simultaneously negotiate with so many

opponents.

To overcome some of the limitations of human negotiation, we can use software agents.

These autonomous agents are usually self-interested, and their aim is to maximise the

value of the agreement from the point of view of the party that they represent. The

value of an agreement for a given participant is known as its utility. For any agreement,

this utility can be calculated according to the agent’s utility function, which is based

on the preferences of the participant. In an automated negotiation, it is possible for the

agents to exchange tens of thousands of offers with each other before reaching an agree-

ment. In addition, it is possible for them to use more complicated algorithms than a

human would use, since the agents have less restrictive memory and computational con-

straints (although, to remain practical, the agents must not require unlimited memory

or computational power).

For example, in a simple negotiation between two individuals, there may only be a single

issue that they are trying to agree the value of (such as a price). In a more complex

setting such as the one in our scenario, there are a range of different issues that are

being negotiated over (the price, the battery capacity, the condition and the colour).

This makes the negotiation much more difficult, as the seller is unlikely to know which

features the buyer is most interested in. Similarly, the buyer will be unlikely to know

which type of car the dealer would prefer to sell. By identifying the issues that are

important to each party, it is possible to reach a better agreement. Some of the issues,

such as price, have an ordering which is common to all negotiating parties. In contrast,

other issues, such as colour, do not have a known, common order. For example, one

party may prefer bright colours, whereas another may prefer warm colours. Although

the agent’s primary goal is to maximise the value of its agreements, in order to maximise

the chance of such agreements occurring, it should attempt to make offers that are

efficient. Such offers increase the probability of high value agreements being reached,

since, of all of the possible outcomes with a given value to one party, they are more likely

to be accepted by the other negotiating party. For example, in the car sales domain,

the dealer may consider the colour of the car to be of little importance compared to

the price, whereas for the buyer, the colour is much more important. Therefore, when

choosing between two cars, one in a colour that the buyer dislikes, and the other in the

buyer’s preferred colour, but at a slightly higher price, the dealer may well be better
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off offering the more expensive car. As a result, the dealer increases their utility (by

increasing the price) and at the same time, the buyer’s utility is also increased (as the

car is in the colour they prefer).

In addition to uncertainty regarding the preferences of the other party, each party is also

uncertain about the behaviour of the other. The dealer may be keen to make the sale to

one particular buyer, and will therefore be willing to offer a deal at a fairly low utility.

On the other hand, the dealer may have many other potential buyers, and is therefore

keen to reach an agreement with one of them, at a high value. Furthermore, in order to

find a suitable agreement, the seller may make offers in decreasing order of preference,

or he may simply make a variety of offers which he considers to be acceptable, but in

no particular order. The same can be said about the behaviour of the buyer.

As seen in our scenario, the negotiation is further complicated in a realistic environment

where there are more participants than just a single dealer and a single buyer. In such an

environment, each buyer is able to negotiate with a number of dealers, and each dealer

may have a number of customers. All of the parties can negotiate concurrently, but for

humans this would be highly challenging, as they would need to simultaneously manage

negotiations with a range of opponents. The dealer may find that, for a particular car,

one of the buyers (A) is willing to pay more than another buyer (B), and it would

therefore be wasteful to reach an agreement to sell this particular car to B.

Against this background, in this work, we consider an environment to be complex if it

contains at least two of the following features:

• The negotiation domain contains many issues, resulting in a large outcome

space.

• Each agent has uncertainty about many aspects of the other participants. This

includes uncertainty about their utility functions, how concessive they will be, and

even whether or not their behaviour will be rational.

• The environment imposes time constraints which affect the value of any agree-

ment that is reached. Moreover, these time constraints may be based on the

amount of real time that has elapsed.

• The environment allows concurrent negotiation between more than a single

pair of agents.

In more detail, in Chapters 3 and 4 we focus on negotiation scenarios which contain un-

certainty and time constraints, and in many cases, large outcome spaces. In Chapters 5

and 6, we consider negotiation scenarios which contain all of the above features.
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In the remainder of this chapter, we provide a summary of the automated negotiation

challenges that exist in the scenario that we introduced in this section. We then detail

the objectives of our work before briefly describing our contributions. We conclude this

chapter with an outline of the rest of this thesis.

1.1 Research Challenges of Complex Environments

In complex automated negotiations there are a number of challenges that need to be

solved. Specifically, we consider the following to be the key challenges which we aim to

address in our work:

1.1.1 Domains with a Large Outcome Space

Domains in which there are a large number of possible outcomes that could be agreed

upon are said to have a large outcome space. In negotiations over such domains, finding

a package that is acceptable to both parties becomes more of a challenge than in a

smaller domain, where it may be possible to propose a large proportion of the packages

during the negotiation. Domains which contain multiple issues, such as the one in our

scenario, contain a possible outcome for each combination that can be formed from the

values of each issue. Consequently, such domains may have a large outcome space. In

the car sales domain, the issues are the price, the colour, the battery capacity and the

car’s condition. If we assume that there are 10 possible colours, that price is discretised

into multiples of £50 in the range £4,500 to £5,500 (21 possible prices), and that there

are 5 possible values for both the battery capacity and the car’s condition, we obtain a

domain with 10 ∗ 21 ∗ 5 ∗ 5 = 5250 possible outcomes.

1.1.2 Uncertainty about the Opponents

Due to the competitive nature of automated negotiation, the negotiating parties will

typically be unwilling to disclose information about their preferences. Therefore, it is

often required for an agreement to be reached in an environment where there is uncer-

tainty about the preferences of the other parties and where there may be uncertainty

about any time constraints (see Section 1.1.3 for more details of the time constraints).

In more detail, in negotiations with multiple issues, there is the opportunity to reach

more efficient agreements by finding mutually agreeable trade-offs between issues, in or-

der to reach ‘win-win’ agreements. However, in a negotiation where there is uncertainty

about the preferences of the opponent, it is impossible for either party to know which
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agreements are more efficient. Therefore, a common approach is to approximate the

opponent’s preferences and constraints, thereby allowing the agent to estimate which

agreements are more efficient. In our scenario, there are multiple issues, and the car

dealers’ agents do not know how much the customer values each issue (such as the

battery capacity or price of the car). Now, if the dealers’ agents could estimate the

importance of each issue to the buyer, they would consider the battery capacity to be

more significant than the car’s price. This would allow them to make offers with a better

battery capacity but at a higher price, therefore increasing the value of the agreement

for both parties.

Even when considering just one of the negotiation issues, there may or may not be

a known, common ordering over the values of that issue. In the car sales domain,

an example of an issue with a common ordering is the car’s condition, for which both

agents consider the values to have the ordering: ‘excellent’, ‘very good’, ‘average’, ‘poor’,

‘bad’. Each agent’s utility function for the issue assigns similar utilities to nearby values.

Therefore, both agents are aware that a car which is in ‘excellent’ condition will have

a similar utility to one in ‘very good’ condition but quite different to one in a ‘bad’

condition. In contrast, colour is an example of an issue without a common ordering.

That is, one party may consider red and pink to be similar to each other, therefore

having similar utilities, whilst the other party may consider those two colours to be very

different to each other, and therefore have highly different utilities.

Furthermore, since any approximation of the opponent’s preferences only provides an

estimate of the true preferences, it is important that an agent does not rely entirely on

that estimate, as there is a chance that it may be incorrect. If the agent bases its offers

too heavily on a poor estimate of the opponent’s true preferences, it is possible that

many good potential offers would not be considered, therefore leading to a less efficient

agreement. Since there are many real-world domains in which there is uncertainty about

the opponent’s preferences and behaviour, the problem of dealing with uncertainty has

become a popular topic of research in automated negotiation, and we will review work

related to it in Chapter 2.

1.1.3 Time Constraints

When performing negotiation, it is often important that the negotiation is completed

within a limited amount of time. For example, in the car sales scenario, the buyer needs

to complete his purchase before a specific date. In order to encourage agreements to be

reached in a timely manner, time constraints are used.
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There are two key approaches to time constraints that are generally considered. These

different time constraints are known as a discounting factor and a deadline. The former

is a cost that is applied based on the duration of the negotiation. It has the effect that

any particular agreement that is reached at a given time is of higher value than that

same agreement at a later time. This causes agents that are slow to reach agreement to

be punished, as the value of the agreement will be reduced due to the time delay. The

deadline is a point in time before which an agreement needs to be made for it to be of

any value. A deadline imposes a limit on the maximum duration of negotiation, as there

is no value in an agent continuing to negotiate beyond the deadline.

In our work, we consider both of these types of time constraint, as both are relevant to

our scenario. The discounting factor represents the value that the buyer (or the dealer)

places on reaching an agreement sooner rather than later. The deadline exists as the

buyer needs to buy the car before starting his new job, and therefore their agreement

must be made before this time.

Due to the existence of these time constraints, it is necessary for the agent to negotiate

at an appropriate rate. That is, it is important that the agent does not ‘give in’ too

quickly to its opponent, unless the opponent is willing to make a similar compromise.

However, it is also important that the agent does not take an approach that is too tough,

as this could delay the negotiation unnecessarily, causing the value of an agreement to

be decreased. Furthermore, in domains with a deadline, an increased delay increases the

likelihood that the agents will fail to reach an agreement. It is therefore a challenge to

develop a negotiation strategy that will maximise the agent’s gains.

In order to simplify the negotiation protocol and strategy, time constraints can be applied

based on the discrete number of offers that are made during the negotiation (regardless

of the amount of elapsed time), and this approximation has been widely researched (Lai

et al., 2006; Yoshikawa et al., 2008; Yasumura et al., 2009; Fatima et al., 2001, 2002,

2004, 2006, 2007). Alternatively, the constraints can be applied based on the amount

of physical elapsed time rather than the number of interactions (Soh and Tsatsoulis,

2005). We consider that constraints based on elapsed time are more appropriate for

automated negotiation in the real world, as the cost of each interaction is likely to be

minimal compared to the cost of delaying the time of agreement.

Now, using constraints based on the amount of elapsed time makes it more difficult to

predict the utility of an offer that an agent might make in the future (other than during

the current step). This is due to the fact that the time at which any future offer will be

made by an agent depends on the time that its opponent spends in making its offers. For

the same reason, it is also impossible to know how many interactions will occur before
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the deadline is reached. Therefore, another party is able to influence an agent’s utility

by delaying the negotiation.

1.1.4 Concurrent Negotiations

In situations in which there are more than two parties, which is likely to be the case in

many real-world scenarios, such as in an extension of the scenario we provided where

there could be multiple customers negotiating concurrently with a number of car dealers,

there are significant additional challenges.

In order to reach efficient agreements in concurrent negotiations, it is necessary to con-

sider not only whether the outcome is efficient for a specific pair of agents, but also

whether a more efficient agreement can be formed with a different opponent. The most

efficient agreements that can be reached are those which are between pairs of agents

which have similar preferences.

Furthermore, in concurrent negotiations, since each opponent may be negotiating with

other parties, it is possible that an opponent will leave the negotiation before the dead-

line, since it has reached an agreement with one of the other parties. Therefore, the

negotiating agent cannot be sure how long an opponent will remain in the negotiation,

and the number of opponents can vary throughout the negotiation.

Additionally, the environment may allow either party to breach an agreement. This

decommitment represents a further challenge that is associated with concurrent negoti-

ation, since it requires the agent to consider when it is appropriate to breach an agree-

ment. It has been shown that, by allowing decommitment, more efficient agreements

can be reached, and therefore an environment which allows decommitment is desirable

(Andersson and Sandholm, 2001; Sandholm and Lesser, 2001; ’t Hoen and Poutré, 2004).

However, it is also important that a penalty is applied when an agent breaches an agree-

ment, otherwise unnecessary decommitment can occur, which damages the efficiency of

the agents (Ponka, 2009). This further adds to the challenge, since, depending on the

negotiation protocol, it may be necessary for the agent to set the penalties as part of

the negotiation process.

1.2 Research Requirements

Based on the challenges given in Section 1.1, the objectives of this research are to design

an autonomous agent that:
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1. works in a decentralised manner: The agent should not require a central en-

tity, which acts as a mediator, to assist with the negotiation. Each agent should

communicate directly with the other agents it is negotiating with.

2. is able to reach efficient agreements: Any agreement that is reached should be

efficient, in that it should ensure that little or no utility is wasted. In more detail,

an efficient agreement is one where it is not possible for one agent to increase its

utility without reducing the utility of any opponents.

3. is able to negotiate against unknown opponents: The agent should be designed

to perform well without knowledge of the preferences or behaviour of any other

party. It should be able to negotiate in a one-off negotiation with the opponent,

without needing to learn the opponent’s behaviour over a series of negotiations.

Furthermore, the agent should perform well if the opponent is using a similar (or

the same) behaviour to itself.

4. is able to negotiate over multiple issues: The agent should be able to negotiate

in domains with many issues, which may have hundreds of thousands of potential

outcomes.

5. is able to negotiate over discrete issues with an unknown ordering: The agent

should not require the issues to have a known, common ordering.

6. supports real-time constraints: Any time constraints will be based on the

amount of time taken to produce an offer rather than the number of negotia-

tion steps. In automated negotiation, the amount of time that has elapsed is more

important than the number of steps, and therefore, the number of steps is not

considered in this work.

7. uses a computationally tractable approach: The agent needs to use an approach

which is computationally tractable, in order to be able to propose each offer within

a limited finite time, in the order of a few seconds, using finite computational

resources.

8. is able to effectively coordinate multiple concurrent negotiations: The agent

should be designed to coordinate multiple concurrent negotiations with a range of

opponents in order to reach effective outcomes.

9. takes advantage of decommitment by optimising when to decommit: The agent

should decommit from agreements when it is beneficial for it to do so in order to

improve its utility, considering the benefit of the new agreement over the decom-

mitment penalty.
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1.3 Research Contributions

Against the requirements set out in Section 1.2, we have developed a range of negotiating

strategies and have implemented negotiating agents which use these strategies.

Specifically, our contributions to the state-of-the-art are as follows:

• We develop a novel strategy, which uses both a Gaussian process prediction and

the certainty of that prediction, to calculate the concession an agent should make

over time. This strategy is able to negotiate directly (Requirement 1) with an

unknown opponent (Requirement 3) and uses a principled approach, by firstly

predicting the opponent’s future behaviour and then adapting to the agent’s offers

in order to maximise the expected utility of agreement. Furthermore, the pro-

posed strategy is the first practical (Requirement 7) concession strategy which has

been designed to deal with real-time constraints (Requirement 6) in multi-issue

negotiation (Requirement 4). It reaches efficient agreements (Requirement 2) in

scenarios where the issues have an unknown ordering (Requirement 5).

• We extend our strategy to support the coordination of multiple, concurrent negoti-

ations (Requirement 8) in which each participant aims to reach a single agreement,

and decommitment of agreements is allowed, through payment of a penalty (Re-

quirement 9). Our strategy coordinates the concession rates for each opponent by

considering the observed behaviour of all of the opponents. We show that it out-

performs an existing state-of-the-art strategy for coordinating multiple negotiation

threads (Nguyen and Jennings, 2005), in a range of scenarios.

• We empirically evaluate our strategies against those of a number of other state-

of-the-art agents, developed for the international Automated Negotiating Agents

Competition. We thereby show that, in a negotiation tournament consisting of a

range of scenarios with significant discounting factors (Requirement 6), if all agents

use our strategy, there is no incentive for any single agent to deviate to a different

strategy used by one of the set of other state-of-the-art agents we consider.

The work that has been completed as part of this thesis has resulted in the develop-

ment of a number of different negotiating strategies, along with the implementation of

negotiation agents which use these strategies.

The first such agent, now known as IAMhaggler2010, finished in fourth place in the

first Automated Negotiating Agents Competition (ANAC 2010) which was held at the

9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2010). A paper describing this strategy was published as:
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• Williams, C. R., Robu, V., Gerding, E. H. and Jennings, N. R. (2010) IAMhaggler:

A Negotiation Agent for Complex Environments. In: New Trends in Agent-based

Complex Automated Negotiations, Series of Studies in Computational Intelligence,

Springer-Verlag 383 151-158.

Section 3.2.1 and Appendix B are based on the above paper.

We have also created a further negotiating agent, known as IAMhaggler2011, which

finished in third place in the second Automated Negotiating Agents Competition (ANAC

2011) which was held at the 10th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2011). Papers describing this strategy were published as:

• Williams, C. R., Robu, V., Gerding, E. H. and Jennings, N. R. (2012) IAMhag-

gler2011: A Gaussian Process Regression based Negotiation Agent. In: Complex

Automated Negotiations: Theories, Models, and Software Competitions, Series of

Studies in Computational Intelligence, Springer-Verlag 435 209-212.

• Williams, C. R., Robu, V., Gerding, E. H. and Jennings, N. R. (2011) Using

Gaussian Processes to Optimise Concession in Complex Negotiations against Un-

known Opponents. In: Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, AAAI Press 1 432-438.

Sections 3.2.2 and 4.7 are based on the above papers.

Furthermore, we have created a negotiation strategy for many-to-many negotiation. The

agent which uses this strategy is referred to as IAMconcurrentHaggler, and was presented

in:

• Williams, C. R., Robu, V., Gerding, E. H. and Jennings, N. R. (2012) Negotiating

Concurrently with Unknown Opponents in Complex, Real-Time Domains. In:

20th European Conference on Artificial Intelligence pp. 834-839.

Chapter 6 is based on the above paper.

Finally, parts of our empirical evaluation have been published in:

• Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K., Ito, T., Jennings, N. R.,

Jonker, C., Kraus, S., Lin, R., Robu, V. and Williams, C. R. (2012) Evaluat-

ing Practical Negotiating Agents: Results and Analysis of the 2011 International

Competition. In: Artificial Intelligence (in press).
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The work in Section 4.7 is an updated version of part of the above paper.

Although parts of the thesis are based on the above papers, the work presented in the

evaluation chapters (Chapters 4 and 6) has been updated by testing the performance

of our strategies against other recently developed state-of-the-art strategies for complex

real-time negotiation environments.

1.4 Report Outline

The remainder of the thesis is organised as follows:

• In Chapter 2, we review the related literature, considering both single-issue and

multi-issue negotiation. Additionally, we consider the literature relating to con-

current negotiation.

• In Chapter 3, we present the theory behind the strategy that we have developed for

one-to-one negotiation. This is split into two key parts, our strategy for negotiating

efficiently under uncertainty and our concession strategy.

• In Chapter 4, we evaluate our one-to-one negotiation strategy, using the domains

and strategies developed for the Automated Negotiating Agents Competition. We

show its performance in both a tournament and in self-play.

• In Chapter 5, we extend our one-to-one negotiation to develop a strategy for many-

to-many negotiations.

• In Chapter 6, we evaluate our many-to-many negotiation strategy, comparing it

with an existing state-of-the-art strategy for many-to-many negotiation, using the

strategies developed for the Automated Negotiating Agents Competition as oppo-

nents.

• In Chapter 7, we conclude, and present our ideas for future work.



Chapter 2

Background and Related Work

In this chapter we discuss previous work on automated negotiation. The chapter begins

with definitions of the basic terminology used in this field (see Section 2.1). In the

subsequent section (2.2), we consider the evaluation criteria and methodologies that are

used to evaluate solutions to negotiation problems. The chapter then reviews different

negotiation strategies, considering game theoretic approaches, heuristic approaches and

argumentation based negotiation (see Section 2.3). The chapter concludes with a review

of negotiation techniques when there are more than two parties (see Section 2.4). The

chapter is summarised in Section 2.5.

2.1 Terminology

2.1.1 Bi-Lateral Negotiation

Bi-lateral negotiation (bargaining) is a form of interaction in which two self-interested

parties aim to reach a mutual agreement in order to fulfil their goal. The two parties

negotiate over a set of issues (see Section 2.1.2), with their aim being to maximise their

utility (see Section 2.1.3) by reaching an agreement that suits their preferences. Fur-

thermore, there may be time constraints imposed in order to encourage an agreement

to be reached quickly (see Section 2.1.4). In many negotiations, the negotiation parties

may have incomplete information about various aspects of the opponent, including their

preferences (see Section 2.1.6). During the negotiation, each party must use a common

protocol (see Section 2.1.7), but they are able to choose their own strategy (see Sec-

tion 2.1.8). In some cases, the agent’s goal may not be to maximise their utility, but

instead, they aim to achieve a utility that is higher than that of their opponent (see

Section 2.1.9).

13
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2.1.2 Negotiation Issues

In a negotiation, the issues are the aspects that the parties need to reach agreement

on. For example, in the scenario given in Chapter 1, the issues are the price, battery

capacity, condition and colour of the car. Some simple negotiations may involve only

one issue (we refer to these as single-issue negotiations). If there is more than one issue

that is being negotiated over (such as in our scenario), we refer to this as multi-issue

negotiation.

A multi-issue negotiation takes place over a set of n issues, i ∈ I. We define an offer, o,

as a set of values, vi, one for each issue i in the domain. Formally:

o = 〈vi〉i∈{1..n} (2.1)

where vi ∈ Vi,∀i ∈ {1..n} and n is the number of issues. Vi is the set of values that issue

i can take.

Each issue can be classified as being either continuous or discrete, with discrete issues

being further classified by whether or not they have a common ordering.

• Continuous Issue: A continuous issue is one which can take any value in a

particular range. For example, the battery capacity may be defined to be a real

value which ranges between 5 and 20 kWh.

• Discrete Issue: A discrete issue can take a value which belongs to a finite set.

They may or may not have a known, common ordering.

– With a known, common ordering: For issues that have a common or-

dering, both negotiating parties are aware that for two nearby values, the

evaluation will be similar. As an example, quality may be defined as taking

values that belong to the set {excellent, very good, good, average, poor}. A

quality of excellent is similar to a quality of very good. Therefore, for each

agent, the evaluation of excellent will be closer to very good than any other

label. Issues which take an integer value can also be considered in the same

way. Even for an issue where the ordering is known, the direction of any op-

ponents’ preferences will be unknown. For example, it would not be known

whether an opponent’s evaluation of very good would be greater or smaller

than for good.

– Without a common ordering: In contrast, for an issue such as ‘colour’,

which may be defined as taking values that belong to the set {black, white,

silver, red, orange, yellow, green, blue, purple} there may not be a common
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ordering. That is, one party may consider red and orange to be similar to

each other, therefore having similar evaluations, whilst the other party may

consider those two colours to be very different to each other, and therefore

have highly different evaluations.

In a negotiation against unknown opponents, the lack of a common ordering for some

issues adds significant uncertainty to the negotiation, as it makes it difficult to identify

which offers are similar to one another. Such uncertainty is common in many negotia-

tions, such as the one introduced in our scenario in Chapter 1. Therefore, in this work,

we focus on this type of issue.

For any set of possible negotiation outcomes, each party will prefer some of those out-

comes over others. Their preferences can be defined formally using a utility function.

2.1.3 Utility Functions

A utility function describes an agent’s preferences, which allows negotiation outcomes

to be evaluated and compared. Utility functions may be cardinal or ordinal:

Cardinal utility: Cardinal utility functions map each possible outcome to a real

number. For example, outcome A could be valued at 0.5, outcome B at 0.6 and outcome

C at 0.7.

Ordinal utility: In contrast, ordinal utility functions provide only an ordering on

the negotiation outcomes. For example, an ordinal utility function could simply state

that outcome A is preferred over outcome B, and also that outcome C is preferred over

outcome B. This differs from cardinal utility in two ways. First, there is no measure

of how much outcome A is preferred over outcome B. Second, the ordering can be

incomplete. For example, it does not have to state which outcome is preferred between

outcome A and outcome C. Ordinal utility functions are considered to be important

in situations where a cardinal utility function is difficult to determine. Moreover, it is

often easier for humans to express ordinal functions, as it simply involves an ordering

over the values, rather than assigning a cardinal value to each one. However, it may be

difficult for them to provide a full ordering over all possible outcomes, and therefore in

some cases, an incomplete ordering is produced.

Despite the benefits to using ordinal utility functions, we take an approach that is

common in the negotiation literature, which is to use cardinal utility functions. The
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advantage to this is that cardinal utility functions make it possible to measure not only

whether or not outcome A is preferable to outcome B, but also by how much. In the

multi-issue case, this makes it much easier to identify a set of outcomes that have an

equal utility, allowing trade-offs to be made.

The formalisation of a cardinal utility function depends on whether or not the negotiation

issues are considered to be independent of each other, as we will now discuss.

Interdependent issues: In some negotiations, there may be issues that are interde-

pendent. Examples include issues that are complements or substitutes of each other. If

two issues take values (v1 and v2) which are complementary then:

Up(〈v1, v2〉) ≥ wp,1 · Up(〈v1,∅〉) + wp,2 · Up(〈∅, v2〉) (2.2)

where wp,i is the weight of issue i to agent p and Up is the utility function of agent p.

For example, in a car sales scenario, complementary issues include the quality of the car

stereo and the quality of the speakers. To a buyer who enjoys listening to music, the

utility for a car with both a good stereo and good speakers will be higher than the sum

of the utilities of the good stereo and the good speakers. On their own, the good stereo

or good speakers do not give much utility.

Alternatively, if two issues take values (v1 and v2) which are substitutes then:

Up(〈v1, v2〉) ≤ wp,1 · Up(〈v1,∅〉) + wp,2 · Up(〈∅, v2〉) (2.3)

where wp,i is the weight of issue i to agent p and Up is the utility function of agent p.

Using again the car sales scenario as an example, substitutes would be whether or not

the car has air conditioning and whether or not the car is a convertible. To a buyer who

likes to keep cool in the summer, the utility provided by those two issues will be lower

for a car which has both of them than the sum of the utilities of the air conditioning

and the convertible. Having both of these features gives little more utility than having

just one of them.

Independent issues: In contrast, if the issues are independent, the overall utility of

the offer is equal to the weighted sum of the utilities of the issues. We refer to such

utility functions as being additive, and they can be defined formally as:

Up(o) =
n∑
i=1

wp,i · Up,i(vi) (2.4)
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where n is the number of negotiation issues, wp,i is the weight of issue i to agent p and

Up,i(vi) is the utility to agent p of issue i for the value of vi. Utility functions that

contain interdependent issues cannot be expressed in this form.

The utility functions are typically normalised such that all possible outcomes have a

utility in the range [0, 1] and furthermore, for each party, there is an outcome with a

utility of 1. Formally:

∀o ∈ O,∀p ∈ P,Up(o) ∈ [0, 1] (2.5)

∃o ∈ O,∀p ∈ P,Up(o) = 1 (2.6)

In our work, in common with much of the negotiation literature, we consider only utility

functions that are additive, and normalised as described above.

So far in this section, we have discussed different ways to determine the utility of an

agreement. In any negotiation, there is a further outcome that is possible, which is the

lack of agreement. We refer to such lack of agreement as a conflict, which may offer a

utility to the participants.

Utility of conflict: In some negotiations, participants may obtain a utility from ne-

gotiations that do not result in agreement, which we refer to as the utility of conflict. In

the scenario presented in Chapter 1, Bob is able to buy his friend’s car, so the utility of

conflict would be the utility that he places on this outcome. If the utility of conflict is

non-zero, then there may be some agreements that are unfavourable, as the participants

can obtain a higher utility by refusing to accept an offer that is worth less than the

utility of conflict.

So far in this section, utility has been considered simply as a function of the outcome of

the negotiation. However, in some negotiations, the utility can also be affected by time

constraints. For example, if two parties negotiate over the sale of a perishable item, its

value is likely to decrease over time. Therefore, we now discuss a number of different

types of time constraint.

2.1.4 Time Constraints

Negotiation can be affected by time in a number of ways, as discussed by Livne (1979).

The effects of time that are commonly considered in the literature are:
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Deadlines represent a point in time by when the negotiation must be completed. When

the deadline is reached, the negotiation terminates, resulting in disagreement, with

each player achieving the utility of conflict.

Discounting represents the impatience of the participants. The more impatient the

player, the higher the discounting factor. It has the effect that an agreement that

is reached immediately will be preferred over a future agreement that offers the

same benefits. Formally, this is modelled using a discounting factor δ ≤ 1, where

the discounted utility is given by the formula:

D(u, t) = u · δt (2.7)

where u is the original (undiscounted) utility, and t is the time of agreement. (δt

is the discounting factor δ raised to the power t.) Note that if δ = 1, there is no

discounting and time has no effect on the utility.

Bargaining Costs represent the costs of negotiation itself. A bargaining cost is a fixed

cost of making an offer. An example would be a communication cost to each offer

that is made. The model that is used is:

D(u, t) = u− c · t (2.8)

where u is the original (undiscounted) utility, c is the cost of each offer and t is

the time of agreement.

In our work, we consider both deadlines and discounting factors (of the form given in

Equation 2.7). Without loss of generality, we scale the values of t such that, during the

negotiation, 0 ≤ t ≤ 1, and therefore in all negotiations, the deadline occurs at time 1.

In most of the existing literature, time is measured as the number of interactions that

have occurred (Coehoorn and Jennings, 2004; Fatima et al., 2001, 2006; Lai et al.,

2006; Nguyen and Jennings, 2003; Rubinstein, 1982; Yasumura et al., 2009; Yoshikawa

et al., 2008). Another way to consider time is to measure the amount of real time that

has elapsed, regardless of how many negotiation steps were made. Since automated

negotiation allows many offers to be made in a short period of time, the actual number

of offers that are made should not have a significant impact on the value of the result.

Consequently, the bargaining cost, c, is negligible. What is more significant is the amount

of real time that has elapsed, as this has an impact on the parties that the negotiating

agents represent. In our scenario, Bob is keen that an agreement is reached in a short

time, but it does not matter to him how many offers are exchanged. For this reason,

in our work, we choose to consider real-time constraints as these are more realistic
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and appropriate for real world automated negotiation. Furthermore, such constraints

represent an additional challenge for the design of a negotiating strategy, as the number

of negotiation steps is no longer fixed, and is dependent on the behaviour of both parties.

Additionally, there has been only limited research into this aspect of negotiation. For

example, Sandholm and Vulkan (1999) consider negotiation with real-time constraints,

but unlike in this work, they only consider single-issue negotiation.

2.1.5 Scenarios and Preference Profiles

Each participant in a negotiation has its own preference profile, Ξp, which is formed

from the participant’s utility function, Up, their discounting factor, δp and their utility

of conflict, Uα,p. It can be used by the participant to calculate the utility of an offer,

at any time during the negotiation. In the negotiations we consider, where any player’s

utility function can be written as an additive utility function (see Equation 2.4), their

preference profile can be defined as:

Ξp = 〈{Up,i}i∈{1..n}, {wp,i}i∈{1..n}, δp, Uα,p〉 (2.9)

where Up,i is player p’s utility function for issue i, wp,i is the weight of issue i to player

p, δp is player p’s discounting factor and Uα,p is player p’s utility of conflict. We will

discuss the forms that Up,i can take in Section 2.2.1.

Furthermore, a scenario, Ξ, consists of a preference profile for each participant in the

negotiation, formally defined as:

Ξ = {Ξp}p∈P (2.10)

2.1.6 Incomplete Information

In many negotiations, there may be information about the opponent which is unknown.

Specifically, the opponent’s utility function, negotiation strategy and time constraints

may be unknown, as the opponent may not be willing to reveal this information. In

contrast, in a negotiation where each agent has complete information about its opponent,

it is possible for either agent to determine which outcomes are high performing for

both parties (see Section 2.2 for more on performance criteria). Therefore it is easier

for the agents to find a good solution. By contrast, in a negotiation with incomplete

information, it is impossible for one agent to know exactly how its actions affect the

opponent, as this would depend on information that is unknown. In our work, we

consider negotiations where the opponent is unknown (Requirement 3) and therefore,
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the strategy that we develop needs to be able to negotiate without knowledge of the

opponent’s utility function or strategy.

2.1.7 Negotiation Protocol

The protocol defines the rules of the negotiation, including the types of participants,

the negotiation states, the actions that cause the negotiation state to change and the

actions that the participants can make in each state (Jennings et al., 2001).

Examples of common negotiation protocols are the simultaneous offers, monotonic con-

cession, ultimatum game, and alternating offers protocols. We discuss these in turn.

Simultaneous Offers: Using a simultaneous offers protocol, both parties make their

offers at the same time. The Nash demand game (Nash, 1953) is an example of a single-

shot simultaneous game, where the two parties simultaneously make a single offer. For

example, consider a negotiation in which the two parties negotiate over how to share

a single pie. Players p and q make a single offer each, op ∈ [0, 1] and oq ∈ [0, 1],

specifying how much of the pie they wish to take. If their offers are compatible, in this

case meaning that the total amount of pie the players specified in their offers did not

exceed one (op + oq ≤ 1) then an agreement is reached. However, it is possible that

such an agreement is not efficient, if some of the pie remains unallocated (op + oq < 1).

Otherwise, if the offers are incompatible (op + oq > 1), no agreement is reached, and the

negotiation ends in conflict. We discuss efficiency in more detail in Section 2.2.3.

Monotonic Concession Protocol: The monotonic concession protocol, as defined

by Rosenschein and Zlotkin (1994), is another example of a simultaneous offers protocol.

It differs from the Nash demand game in that if the pair of offers are not compatible,

the negotiations continue to another round. Agents are not allowed to make an offer

which provides a lower utility to the opponent than the utility of previous offers. That

is,

Uq(op,r+1) ≥ Uq(op,r) (2.11)

where Uq(op,r+1) is the utility to the opponent (player q) of the offer our agent (player

p) made at round r+ 1 and Uq(op,r) is the utility to the opponent of the offer our agent

made at round r.

In addition, if, in a particular round, neither agent concedes, the negotiation ends in

conflict. This ensures that the process is guaranteed to terminate, either by repeated

concession until an agreement is made, or through a conflict due to lack of concession by
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both parties. We will look at some of the problems with this approach when we discuss

concession strategies in Section 2.3.2.1.

In addition to negotiation protocols that involve the two parties making their offers

simultaneously, there are protocols which involve sequential actions, which we will now

introduce.

Ultimatum Game: The ultimatum game is a very simple negotiation protocol, in

which one party makes an offer and the other chooses to either accept or reject it. In

Section 2.3.1.2 we will discuss the limitations of such a simple protocol. A more complex

protocol which involves multiple negotiation rounds is the alternating offers protocol.

Alternating Offers: Under the alternating offers protocol, the parties take it in turns

to make offers and counter-offers. This continues until one of the parties accepts the

opponent’s offer or, alternatively, one of the parties chooses to end the negotiation

without agreement, or the negotiation deadline is reached. Compared to the ultimatum

game, the alternating offers protocol can allow more fair agreements to be reached, since

an agent can learn about its opponent’s behaviour through the repeated interaction

with it. Compared to the simultaneous offers protocol, the alternating offers protocol is

more appropriate for many automated negotiation situations, particularly where there is

incomplete information. This is since, using a simultaneous protocol, it would be difficult

to enforce that the offers of the two parties are compatible and Pareto-efficient without a

coordination signal. This coordination signal can be seen as a form of centralised control.

Therefore, in our work, we develop an agent which negotiates using the alternating offers

protocol.

2.1.8 Negotiation Strategy

A negotiation strategy dictates the approach to negotiation that should be taken by a

single agent. Specifically, it specifies the procedure that the agent should use in order

to decide what offers to make. This procedure may be based on a number of criteria,

including the set of issues being negotiated over, the agent’s utility function, the amount

of time that has elapsed and the observed behaviour of the opponent. We will discuss

specific negotiation strategies in more detail in Section 2.3. The aim of this work is to

develop a negotiation strategy that meets the requirements given in Section 1.2.
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2.1.9 Spiteful Behaviour

Commonly, the aim of a negotiation is to maximise the utility achieved. However, in

some situations, the aim may be to ‘win’ a negotiation, by achieving a higher utility

than its opponent. In such a situation, there is a risk involved in reaching lower utility

agreements, as they are more likely to result in other participants achieving a higher

utility than our own. As a result, an agent that aims to win a negotiation will need to

take a more spiteful approach.

In work on spiteful bidding in auctions (Brandt et al., 2007), the spiteful utility, Sp, of

agent p is given by:

Sp = (1− αp) · Up − αp ·
∑

q∈P, q 6=p
Uq (2.12)

where Up is the utility of agent p, Uq is the utility of opponent q, and αp ∈ [0, 1] is the

spitefulness coefficient, which affects the spitefulness of the strategy. If the spitefulness

coefficient, αp is 0, the agent will be self-interested, with its aim being to maximise the

raw utility. At the other extreme, if αp = 1, the agent’s goal will be to minimise the

opponent’s scores, regardless of the effect that has on their own score.

By introducing a spitefulness function, and designing an agent which maximises this

adjusted utility, it is possible to change the behaviour of the agent by adjusting the

spitefulness function. A more spiteful strategy would result in slower concession, as the

agent will regard lower utilities to be of even lower value than their true value.

2.2 Evaluation Criteria and Methodologies

Having introduced the basic notions that are used in this work, we now introduce the

methodologies that we use in our evaluation (in Chapters 4 and 6) in order to test our

negotiation strategies and the outcomes reached. We first introduce the Genius ne-

gotiation environment, which we use as a platform on which to evaluate our strategies

(Section 2.2.1), and the Automated Negotiating Agent Competition, which we use as a

source of other state-of-the-art negotiating strategies which our strategies can be com-

pared to (Section 2.2.2). We then introduce Pareto optimality (see Section 2.2.3) which

we use as a measure of efficiency (Requirement 2). Finally, we introduce the technique of

empirical game theory, which we use as a further evaluation method to demonstrate the

stability of our strategies in a wide variety of tournaments containing different mixtures

of strategies (Section 2.2.4).
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2.2.1 Genius Negotiation Environment

In this section, we briefly describe the Generic Environment for Negotiation with Intelli-

gent multi-purpose Usage Simulation (Genius) (Hindriks et al., 2009a), which provides

a framework for the development of negotiating agents. It facilitates the running of ne-

gotiation sessions, under different scenarios and protocols, with a variety of participating

agents. Under the alternating offers protocol (as described in Section 2.1.7) provided by

the framework, each negotiation session consists of a negotiation between two agents,

over a single scenario, which consists of a domain and a corresponding set of preferences.

In this context, a domain specifies the number and types of issues that are negotiated

over by the agents. The environment provides support for scenarios containing con-

tinuous issues and discrete issues, with and without a known, common ordering (see

Section 2.1.2).

In Section 2.1.5, we introduced the concept of a preference profile, Ξp, of the form:

Ξp = 〈{Up,i}i∈{1..n}, {wp,i}i∈{1..n}, δp, Uα,p〉 (2.13)

where Up,i is player p’s utility function for issue i, wp,i is the weight of issue i to player p,

δp is player p’s discounting factor and Uα,p is player p’s utility of conflict. In the Genius

environment, the types of utility functions for each individual issue (denoted Up,i) can

be classified as one of the following:

• Linear: The utility function is linear, and can either be increasing or decreasing

as the value of the issue increases. For increasing utility functions, the utility at

the lower limit is 0, and is 1 at the upper limit (see Figure 2.1(a)). For decreasing

utility functions, the utility at the lower limit is 1, and is 0 at the upper limit (see

Figure 2.1(b)).

• Triangular: The utility function is triangular, having a single peak. The function

is maximised at a particular value of the issue. At this maxima, the utility is 1.

On either side of the maxima, the utility decreases linearly to 0 at the upper and

lower limits (see Figure 2.1(c) for an example with a peak at 0.3).

• Discrete: For a discrete issue, the utility function is a mapping from each possible

value of the issue to a utility value. The utility value for each possible value is

normalised such that it lies in the range [0, 1] and there is value which gives a

utility value of 1.

The negotiation protocol that is used in the Genius environment is the alternating

offers protocol (as described in Section 2.1.7), with each offer representing a complete
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Figure 2.1: Utility functions used for continuous issues.

package, in that it specifies the values for all issues in the domain. For each session,

a deadline is imposed, which consists of a limit of three minutes of negotiation time.

In version 3.0 of the Genius environment, this was measured independently, per agent,

allowing each agent up to three minutes of time. From version 3.1 onwards, this is a

single limit, shared by the two agents. Our strategy is designed for use with a single,

shared limit, as this type of constraint is more common in negotiation, including in the

scenario we introduced in Chapter 1, where the two parties aim to reach agreement by

a specific point in time. In either case, if the agents reach their deadline without having

formed an agreement, the session ends and the agents receive their utility of conflict.

The environment does not impose a limit to the number of negotiation rounds that can

take place during the three minute negotiation period.

In addition to the three minute deadline, in order to encourage the agents to reach an

agreement in a timely fashion, a discounting factor is applied to the utility generated

by an outcome (see Section 2.1.4). The discounted utility, D(·, ·), used in the Genius

environment is given by:

D(up, tα) = up · δtαp (2.14)

where up is the original (undiscounted) utility of the outcome for agent p, tα is the

time at which the outcome was reached and δp is the discounting factor for agent p, as

specified by the preference profile.

In our work, we use Genius as an environment in which to test our agent, since the

framework it provides is suitable for the agent we have developed, in that it supports

negotiation sessions where the opponent’s behaviour and utility function are unknown,

and where the sessions have real-time constraints. Furthermore, by using a standard

framework, our agents can easily be compared against a range of other state-of-the-

art negotiation agents that have been implemented using the same framework. We
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now introduce the Automated Negotiating Agent Competition, which uses the Genius

negotiation environment and has therefore encouraged the development of such agents.

2.2.2 Automated Negotiating Agent Competition

The Automated Negotiating Agent Competition (ANAC)(Baarslag et al., 2010), was

initially set up jointly by the Delft University of Technology and Bar-Ilan University to

facilitate research into bilateral multi-issue closed negotiation. The competition was held

for the first time, as ANAC 2010 at the 9th International Conference on Autonomous

Agents and Multiagent Systems. As a result of the competition, a collection of state-of-

the-art negotiating agents, negotiation domains, and preference profiles has been made

available to the research community. These form a valuable resource in that they have

been developed independently, and represent a varied set of negotiation opponents and

settings, making them ideal for benchmarking our strategies against. ANAC 2010 used

version 3.0 of the Genius platform as its negotiation environment. In 2011, the compe-

tition ran again (as ANAC 2011), this time hosted by Nagoya Institute of Technology,

using version 3.1 of the Genius platform, which differs slightly from the earlier version,

as described in Section 2.2.1. In 2012, we were responsible for running the competi-

tion (as ANAC 2012), using version 3.2 of the Genius platform, and for the first time,

included non-zero utilities of conflict.

For the first competition, ANAC 2010, the organisers developed three negotiation sce-

narios. For the 2011 and 2012 competitions, further scenarios were developed. After

ANAC 2010, it was decided that, for ANAC 2011 and ANAC 2012, the scenarios would

be developed by the participants, with each participant entering both an agent, and

a scenario into the competition. In ANAC 2011, 18 scenarios were submitted to the

qualifying round, with only those belonging to the 8 finalists being used in the final. Of

all the competitions, ANAC 2012 used the most extensive set of scenarios. 17 scenarios

were submitted by the participants, which were combined with all (non-duplicate) sce-

narios from ANAC 2010 and ANAC 2011 (final round), to create a total of 24 scenarios.

The full set of scenarios were used in both the qualifying and final rounds. The utility

functions and outcome spaces of all 24 scenarios are presented in Appendix A.

In all three editions of the competition, for each scenario, a tournament was held, where

each agent negotiated against all other agents. The tournament score for an agent was

then calculated by taking the average utility that agent achieved in all of the negotiations

it took part in, across all scenarios. In each competition, the winning agent was the one

which achieved the highest tournament score.
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2.2.3 Pareto Optimality

In any negotiation, there are many different outcomes that can be reached. An outcome

is considered to be Pareto optimal (or Pareto efficient) if there is no other outcome

that would increase the utility of one participant without reducing the utility of another

participant (Raiffa, 1982). Such an outcome is efficient as no utility is ‘wasted’. Formally,

an outcome, o, is Pareto optimal if the following holds:

@o∗ ∈ O, (Up(o∗) ≥ Up(o) & Uq(o
∗) > Uq(o)) ‖ (Up(o

∗) > Up(o) & Uq(o
∗) ≥ Uq(o))

(2.15)

Alternatively, a Pareto optimal outcome can be seen as one for which there is no other

outcome that a single participant could select without another participant objecting

(Wooldridge, 2009).

In a single issue game, an outcome is considered to be Pareto optimal if it results in all of

the resource being allocated. For example, in a game where two participants negotiate

over the splitting of a pie of fixed size (Osborne and Rubinstein, 1990), the outcome is

Pareto optimal if and only if the whole pie is allocated (that is, if the sum of the shares

of the pie is equal to one).

We illustrate the concept of Pareto optimality in bilateral negotiation in Figure 2.2. The

axes represent the utilities of each participant. The dots represent the set of all possible

outcomes in a given scenario (which consists only of discrete values). The line is the

Pareto frontier, which connects all of the Pareto optimal agreements.

As part of our evaluation (in Section 4.5), in order to check that our strategies reach

efficient agreements (Requirement 2), we will measure the average distance from each

agreement point to the Pareto frontier.

2.2.4 Empirical Game Theoretic Analysis

A strategy which achieves a high tournament score is likely to be good at reaching

reasonable agreements with a wide range of other strategies. However, this does not

mean that the strategy is the best one to use in all tournaments. It is possible that

there is another strategy in the tournament, which achieved a lower tournament score,

but which would have performed much better in a tournament where the players used

a different mix of strategies.

Therefore, we now consider an analysis technique, known as empirical game theoretic

analysis, which can be used to evaluate large games (Reeves, 2005). The idea behind the
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Figure 2.2: The outcome space and Pareto frontier from the Itex vs Cypress scenario
(detailed in Section A.45). The dots represent the outcome space, and the line rep-
resents the Pareto frontier, which connects the Pareto optimal outcomes. The Pareto

frontier is not smooth as this is a discrete domain.

technique is to use empirical results to search for equilibria strategy profiles, in which

there is no incentive for any player to change its strategy.

Jordan et al. (2007) use this technique to analyse the results of the Trading Agent

Competition (TAC). They consider pure-strategy profiles, in which each agent chooses

a single strategy, which that agent uses in all negotiations. In a symmetric game with

N players and S strategies, there are
(
N+S−1

N

)
such profiles. In the case of the TAC

Supply Chain Management (SCM) competition, where N = 6 (and in Jordan et al.’s

analysis, S = 6), the total number of profiles is quite large (462). Therefore, they choose

to reduce the game, considering only 3 players. By considering all possible profiles in

this reduced game, they present a deviation analysis, which identifies where there is

an incentive for one agent to change strategy, and also shows the profiles which are in

equilibria. Furthermore, Shi et al. (2012) use a similar technique to search for equilibria

in double auction marketplaces. In our work (Section 4.7), we perform an empirical

game theoretic analysis of the results of a range of negotiation tournaments.
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2.3 Negotiation Strategies

Negotiation strategies can be broadly classified into game theoretic, heuristic and ar-

gumentation based approaches (Jennings et al., 2001). In this section we will discuss

each of these in detail, considering the appropriateness of various strategies against the

requirements we outlined in Section 1.2.

2.3.1 Game Theoretic Approaches

Game theory studies behaviour in strategic situations. It defines a game by its players,

actions and payoffs. Specifically, bi-lateral negotiation can be considered to be a game,

played by two parties. The actions are the offers that can be made (the exact detail of

what an offer consists of depends on the protocol in use). The payoffs are given by each

party’s utility function.

In addition, game theory defines the extensive-form of a game as a tree, in which the

nodes are the points at which decisions can be made (decision points), and the edges

indicate the decisions that can be made.

Furthermore, there are two game theoretic approaches to negotiation. These are coop-

erative and non-cooperative game theory.

2.3.1.1 Cooperative Game Theory

Cooperative game theory considers games in which it is possible for participants to form

coalitions, in order to achieve a greater joint utility than they would if they played the

game alone. It considers whether such coalitions are stable, in that there is no incentive

for a member of the coalition to leave. It also deals with how the profit from an outcome

should be distributed, if the game allows it. In this work, we consider that participants

cannot form coalitions, as this adds further complexity to the negotiating environment.

However, even in a negotiation environment where it is not possible to form coalitions,

it is possible to use cooperative game theory to characterise the solution space of negoti-

ation problems. We have already discussed Pareto optimality (see Section 2.2.3) which

was initially developed in the context of cooperative game theory approach, in order to

measure efficiency in such settings. In addition to considering the Pareto optimality of

an agreement, cooperative game theory also considers which outcomes are considered to

be fair ones. Fairness solution concepts include the utilitarian (Myerson, 1981), Nash
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bargaining (Nash, 1950a), Kalai-Smorodinsky (Kalai and Smorodinsky, 1975) and egali-

tarian (Kalai, 1977) ones. As part of our evaluation, we compare the self-play outcomes

with the utilitarian solution as a measure of efficiency (Section 4.4).

2.3.1.2 Non-Cooperative Game Theory

Non-cooperative game theory considers the strategies that can be used by the negotiation

participants (Binmore, 1992). It also considers the protocols that are used in negotiation,

such as simultaneous offers, the ultimatum game and the alternating offers protocol (see

Section 2.1.7). In addition, it defines solution concepts such as the Nash equilibrium and

the subgame perfect equilibrium.

Nash Equilibrium: A outcome is considered to be a Nash equilibrium, if neither

participant can benefit by choosing an alternative action, given that all other participants

do not change their action (Nash, 1950b).

Subgame Perfect Equilibrium: A subgame is a subset of a game (in extensive-form,

see Section 2.3.1) which starts with a single decision node and contains every successor

to this node. Another way to consider a subgame is that it is the part of the game that

remains at a given point in the game. Now, an outcome is said to be in subgame perfect

equilibrium if the outcome is a Nash equilibrium in all subgames of the game. This

equilibrium is a refinement of the standard Nash equilibrium, and is a stronger concept

(i.e. all subgame perfect equilibria are also Nash equilibria) (Binmore, 1992).

For example, in single-issue negotiation using the ultimatum game (see Section 2.1.7), a

subgame perfect equilibrium can be found by reasoning backwards, as follows. Player 2

has a choice of accepting or rejecting player 1’s offer. Assuming that the utility gained

from conflict is zero, player 2 will accept any offer which results in a utility greater

than zero. Therefore, player 1 can make an offer which gives player 2 a utility slightly

greater than zero, and player 2 should accept that offer. This game gives player 1 more

bargaining power, and therefore the outcome is not fair.

As another example, Rubinstein (1982) studied a game where two players negotiate over

the division of a pie of fixed size using the alternating offers protocol (see Section 2.1.7).

This is approached with two variations, the first with a fixed bargaining cost, the second

with a fixed discounting factor. In both cases, it is assumed that there is no deadline to

the negotiation. Rubinstein shows that, with a fixed bargaining cost, the solution which

is a subgame perfect equilibrium depends on the bargaining costs of the two players
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(Russell and Norvig, 2003). Specifically, if the bargaining cost for player p is cp, the

subgame perfect equilibrium is where player 1 (who makes the first offer) takes:
c2 if c1 > c2

x, c1 ≤ x ≤ 1 if c1 = c2

1 if c1 < c2

(2.16)

Player 2 takes the remainder of the pie.

In an environment where there is a discounting factor (of δp for player p) rather than a

bargaining cost, the subgame perfect equilibrium is where player 1 takes (1 − δ2)/(1 −
δ1 · δ2). Again, player 2 takes the remainder of the pie.

However, this model uses a time constraint which is based on the number of interactions

rather than the real-time duration of the negotiation, and it therefore does not meet

Requirement 6 (continuous time constraints).

In the work discussed so far in this section, only single-issue negotiation has been con-

sidered. When negotiating over multiple issues, there is additional complexity due to

the different procedures that can be used.

Procedures for Multi-Issue Negotiation: There are a range of negotiation pro-

cedures that define how the single-issue alternating offers protocol can be extended to

cover multi-issue negotiation. The procedures that are considered by Fatima et al. (2006)

are the package deal approach, the simultaneous approach and the sequential approach.

Using the package deal approach, all of the issues are negotiated in a single bundle.

With the simultaneous approach, all of the issues are settled simultaneously, but in-

dependently of one another. Finally, the sequential approach allows the issues to be

negotiated one at a time. It has been shown by Fatima et al. (2006) that, in a less com-

plex setting, in which time constraints are based on the number of interactions, of these

three approaches, only the package deal guarantees that equilibrium offers are Pareto

optimal. We use the package deal approach in our work, not only due to its Pareto op-

timality, but also since it is a commonly used approach (Hindriks and Tykhonov, 2008;

Lai et al., 2006; Nguyen and Jennings, 2003; Yasumura et al., 2009; Yoshikawa et al.,

2008).

Incomplete Information: Harsanyi and Selten (1972) introduce a bargaining model

in which there is incomplete information. In their work, uncertainty is modelled by

assuming that each participant is of a particular type. The type of the participant

represents its utility function, the resources available to it, the amount of information
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it has, and its beliefs. Each participant knows its own type but not that of its oppo-

nent. Rather, its opponent’s type is uncertain and given by a probability distribution.

Although this approach meets our efficiency requirement (Requirement 2), it does not

meet our requirement of being able to negotiate against unknown opponents (Require-

ment 3), since it requires the a priori probability distribution over the different types to

be known.

A further limitation of game theoretic approaches is that they tend to assume full ratio-

nality. One of the features of full rationality is that each party has the ability to make

whatever calculations are needed to discover the optimal action, however complicated

those calculations may be (Rubinstein, 1998). In the negotiation setting that we con-

sider, game theory is a useful tool. However, it is not sufficient in itself because, due

to this full rationality assumption, it would require unlimited computational power and

therefore would not be considered to be computationally tractable (Requirement 7). We

consider game theory to be important in the evaluation of the outcomes of negotiation,

and therefore we use Pareto optimality in our evaluation in Chapters 4 and 6. How-

ever, in order to find a strategy for which meets all of our requirements (specifically,

Requirements 3 (unknown opponents) and 7 (computational tractability)), we consider

heuristic approaches.

2.3.2 Heuristic Approaches

In this section we review heuristic approaches to negotiation. Heuristic approaches are

based on more realistic assumptions than game theoretic approaches. For example,

heuristic approaches do not make the assumption that the opponent is rational. This is

an important feature, since our work concerns opponents whose behaviour is unknown

(and may therefore be irrational). The aim of heuristic approaches is to produce good,

rather than optimal solutions. As such, they are particularly appropriate in complex

environments where fully optimal approaches may not be able to provide computable

solutions.

We discuss heuristic approaches that can be used to select the desired utility level in

Section 2.3.2.1 and then consider methods for learning the opponent’s preferences and

for predicting future behaviour in Section 2.3.2.2. In Section 2.3.2.3 we discuss methods

for making trade-offs between issues without learning the opponent’s preferences.
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2.3.2.1 Concession Strategies

When there are two agents which aim to divide a resource (consider the split the pie

game mentioned in Section 2.2.3), using a protocol that allows for repeated offers to be

made (such as the alternating offers protocol described in Section 2.3.1.2), the agents

need to choose the rate at which they move away from their preferred offer, towards one

which is preferred by their opponent. We refer to this movement as concession. In order

for the agents to reach an agreement within the required time frame, it is necessary

for them to find an appropriate concession strategy. The concession strategy should

ensure that each agent does not concede too quickly, as this results in them giving away

too much utility to their opponent. However, if neither agent concedes, they cannot

reach an agreement and so this behaviour is also undesirable. We now look at a number

of concession strategies that have been proposed in the literature, namely the Zeuthen

concession strategy, time dependent strategies and tit-for-tat strategies.

Zeuthen Concession Strategy: When negotiating under the monotonic concession

protocol (see Section 2.1.7), the agents need to take care not to stand still (where

neither agent concedes at a particular step), as this can result in a conflict even when

there exist agreements that are more efficient than conflict. On the other hand, it is

unstable for an agent to concede at every step. If it were the case that agent A conceded

at every step, and agent B was aware of this, agent B would simply stand still at every

step (Rosenschein and Zlotkin, 1994). Consequently, an approach in which both agents

concede cannot be a Nash equilibrium, as one of the parties can improve their value of

the outcome by changing their strategy.

Rosenschein and Zlotkin (1994) therefore propose the Zeuthen Concession Strategy as

an approach which can be used for negotiating using the monotonic concession protocol.

It uses the risk evaluation criteria proposed by Zeuthen (1930) to decide which party

should concede. In Zeuthen’s work, the risk to player p at time t is defined as:

Kt
p =


U(op,t)− U(oq,t)

U(op,t)
if U(op,t) 6= 0

1 otherwise

(2.17)

where U(op,t) is the utility of the offer op,t made by player p at time t. U(oq,t) is similarly

defined for player q.

The agent that should concede is the one which stands to lose the most from conflict,

and is therefore the one that is least willing to risk conflict (and has the lowest value

of Kt
p). A possible limitation of this approach is that it requires complete information
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about the opponent’s utility function, in order to determine which agent has the lowest

value of Kt
p. If an estimate is used, there is a chance that the agents could both consider

their value of Kt
p to be the highest, and therefore neither agent would concede, resulting

in a conflict.

We therefore consider other approaches which do not require the opponent’s utility

function to be known.

Time Dependent Concession Strategy: Using time dependent concession (Faratin

et al., 1998), the utility level is calculated as a function of time. Commonly, this function

is either polynomial, or exponential.

Using a polynomial function, which is a standard choice made in much of the negotiation

literature (Faratin et al., 1998; Fatima et al., 2001), the desired utility level U(t) at time

t is given by:

U(t) = U0 − (Umin − U0) · t1/β (2.18)

where U0 is the initial utility, Umin is the reservation utility (which the agent will not

concede beyond) and β is the parameter that affects the rate of concession. We can

partition the β value into three types:

• Boulware or Tough: (β < 1) Initially the agent concedes very little, but increases

the rate of concession as the game progresses.

• Linear: (β = 1) The agent concedes at a constant rate throughout the duration

of the negotiation, reaching its reservation utility at the deadline.

• Conceder or Weak: (β > 1) The agent concedes quickly at the start of the

negotiation, with the rate of concession slowing as the game progresses.

Figure 2.3 shows the utility levels U over time t for three different values of β, where

U0 = 0.95 and Umin = 0.5.

Using such a strategy, it is necessary to choose the value of β in order to concede at an

appropriate rate. Additionally, we need to find a way to set Umin. Alternatively, we can

use a tit-for-tat approach, which aims to concede at a similar rate to the opponent.

Tit-for-tat Concession Strategy: Under the tit-for-tat concession strategy, the

agent chooses its concession based on that of its opponent in the previous round (or

rounds). In this context, Faratin et al. (1998) propose a number of variations of a

tit-for-tat based approach.
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Figure 2.3: Utility levels according to various concession rates (β = {0.1, 1, 10}) with
initial utility U0 = 0.95 and reservation utility Umin = 0.5 (shown as a dashed line).

Using relative tit-for-tat, the agent concedes by the same percentage as its opponent

made σ rounds ago. In random absolute tit-for-tat, the agent concedes by the same

amount as its opponent made σ rounds ago (plus or minus a random amount in the

interval [0,M ]). The random behaviour is introduced to allow the agents to escape

from local minima. In averaged tit-for-tat, the agent uses the average concession of the

opponent’s σ previous offers to select its concession amount.

All of these tit-for-tat approaches consider the offers that have been made at a partic-

ular round (or set of rounds). Due to our requirement for continuous time constraints

(Requirement 6), the number of rounds that have elapsed should not be considered to

have an impact on the negotiation, as they do not affect the outcome. Therefore, if we

were to use any of these approaches, it would be necessary to adapt them for use with

continuous time.

None of the concession strategies that we have discussed take any discounting factor

into consideration. In our work, we use a concession strategy that is based on the time

dependent strategy, but in common with the tit-for-tat strategy, we consider our oppo-

nent’s offers. The aim is to reach an efficient agreement (Requirement 2) by optimising

our rate of concession as a best response, based on observations of the opponent’s offers,

and considering the discounting factor. In more detail, if our concession is too slow,

it will take longer to reach an agreement, and utility will be wasted due to the effect
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of discounting. Alternatively, if our concession is too fast, we will easily reach a quick

agreement, but with low utility.

2.3.2.2 Learning Techniques

In a negotiation where there is uncertainty about the behaviour or the preferences of

the opponents, it is often necessary to use a learning technique in order to estimate how

the opponent will behave in future and/or to estimate the preferences of the opponent.

There are a number of different techniques that can be used for this learning. Many of the

heuristic approaches to negotiation which we discuss in Section 2.3.2 use the techniques

which we introduce here. In this section, we briefly introduce the techniques of Bayesian

updating, kernel density estimation, least squares regression, Gaussian process regression

and reinforcement learning, giving examples of their use in automated negotiation.

Bayesian Updating Bayesian updating is the process of using Bayes’ theorem in

order to update the likelihood of a set of beliefs. Bayes’ rule is defined as follows:

P (A|B) =
P (B|A) · P (A)

P (B)
(2.19)

where P (A|B) is the posterior probability of A given B, P (B|A) is the likelihood (or

the conditional probability of B given A), P (A) is the prior probability of A and P (B)

is the prior probability of B.

In the context of automated negotiation, Bayesian updating has been proposed as a

suitable method to classify the type of behaviour of an agent, or its utility function

(Zeng and Sycara, 1998; Lin et al., 2006; Hindriks et al., 2009b). For example, Lin

et al. (2006) have developed an agent which uses Bayesian updating in order to learn

the type of the opponent during a single negotiation. To use Bayesian updating, the

agent must first choose the prior probability of each type. Specifically, they consider the

prior probability P (τ) of each type τ to be equal, that is ∀τ ∈ T, P (τ) = 1/|T | where T

is the set of possible types, and |T | is the size of that set. By Bayesian updating, the

posterior probability P (τ |ot) can be found as follows:

P (τ |ot) =
P (ot|τ) · P (τ)

P (ot)
(2.20)

where P (ot|τ) is the probability of offer ot given that the opponent is of type τ , P (τ) is

the prior probability of type τ and P (ot) is the probability of offer ot.

A limitation of this approach is it requires the agent to update the probabilities of a

large number of hypotheses (one for each possible type, and the number of possible types
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can be very large). As a result, it does not scale well in negotiation domains with a large

number of issues. In a negotiation consisting of n issues, each issue has one of m weights

and one of l possible evaluation functions, the number of types |T | would be (l ·m)n.

Bayesian Updating, Scalable in the Number of Issues In an attempt to produce

an approach which scales better in the number of issues, Hindriks and Tykhonov (2008)

develop an agent which is based on the work of Lin et al.. Rather than learning the

weights of each issue, they learn an ordering over the weights (as this reduces the number

of hypotheses compared to trying to learn the weights themselves), which they refer to

as the issue priorities. In addition, their approach treats the utility function for each

issue (Ui(vi)) and the issue priorities (wi) as being independent. Therefore the number

of hypotheses that need their probabilities updating is significantly reduced, making

their solution more computable in larger domains.

In order to estimate the weight of each issue, based on the issue priorities that have

been learnt, their agent considers all possible orderings of the issues as a set of weight

hypotheses Hw. From each ranking, the weight is calculated as follows:

whi = 2 · rhi
n · (n+ 1)

(2.21)

where rhi is the rank of issue i in hypothesis h ∈ Hw and n is the number of issues. The

set of weight hypotheses for a single issue i can then be denoted by hwi,z ∈ Hw
i .

In terms of the utility functions for each issue, it is assumed that these can be modelled

by taking a weighted average over a set of functions, with each function being linear

increasing, linear decreasing or triangular, as defined in Section 2.2.1. Consequently,

each of these functions are considered as a hypothesis, and the agent therefore considers

a set of hypotheses hei,z ∈ He
i for each issue i.

Their agent initially assumes that the probability distributions over each set of hypothe-

ses Hw
i and He

i are uniform (unless it has some additional knowledge). As part of the

strategies that we have developed, where necessary, we use this scalable approach to

Bayesian updating in order to learn our opponent’s utility function.

Kernel Density Estimation Kernel density estimation (KDE) is the process of es-

timating the distribution of a value, using an estimator of the form:

P (x) =
1

N

N∑
i=1

K(x, xi) (2.22)
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Figure 2.4: Kernel Density Estimation for four data points. The data points are
marked as crosses, the kernels as dashed lines and the overall estimation as a solid line.

where K(·, ·) is the kernel function, which has an integral of 1. Commonly this kernel

function is a Gaussian distribution. The aim of kernel density estimation is to build a

probability distribution over a set of values. This requires the kernel function’s parameter

to be chosen appropriately. For a Gaussian distribution kernel function, this is done by

adjusting the variance of the distribution. Figure 2.4 shows an example of kernel density

estimation performed on a set of data points, for a single variance.

Coehoorn and Jennings (2004) use the KDE approach in order to learn the opponent’s

preferences. This uses the negotiation history of the agent in a particular scenario, in

an attempt to learn the weights associated with each issue. During the negotiation, the

process for estimating these weights is a Fourier transform which can be performed in

O(n log n) time (with n being the sampling rate). However, their approach requires

the agent to use information from previous interactions, which we consider not to be

available as part of Requirement 3 (unknown opponents).

Least Squares Regression Least squares regression is the process of finding a curve

which best fits through a given set of points. The curve has a particular function which

takes a number of parameters. The quality of the fit is measured by the sum of the

squares of the offsets between the points and the solution curve. The solution curve is

therefore the one which minimises the squares of the offsets (Weisstein, 1999).
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Figure 2.5: Example regression techniques.

Figure 2.5(a) illustrates least squares regression over a set of data points, using first,

second and third degree polynomials. These polynomial functions are given by: y =

ax + b, y = ax2 + bx + c and y = ax3 + bx2 + cx + d respectively. As can be seen

in the figure, the prediction varies greatly according to the degree of the polynomial,

particularly for values of x that are far outside the range of x in the input data.

Gaussian Process Regression Gaussian process regression is more advanced than

least squares regression. The process is defined by the mean function and the covariance

function (Rasmussen and Williams, 2006). The mean function describes the expected

output, when no relevant input information is available, whilst the covariance function

describes how the output varies compared to nearby points.

For example, Figure 2.5(b) shows the Gaussian process regression over a set of data

points. The mean function in use is:

y = 0.5 (2.23)

whilst the covariance function is defined by a matrix.

A benefit of using a Gaussian process regression compared to a linear one is that the

output of the Gaussian process is both a mean prediction and measure of the confidence

in that prediction. Figure 2.5(b) shows how the confidence in the prediction is greater

at points close to the input data. The confidence information is particularly useful for

a spiteful strategy, which aims to make high utility agreements in order to get a higher
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score than its opponent, as it affects the expected spiteful utility. Specifically, an agent

using a spiteful strategy will prefer to wait for a later agreement with a similar mean

but a larger variance, as the larger variance indicates that the agent may achieve a very

high spiteful utility. We make use of Gaussian process regression in one of our strategies,

and we use the confidence information in its calculation of a best response to the learnt

concession of the opponent. This is discussed in more detail in Section 3.2.2.

When using Gaussian process regression techniques, it is necessary to choose an ap-

propriate covariance function. Examples include the Matérn and squared exponential

covariance functions (Rasmussen and Williams, 2006). Both of these functions are sta-

tionary, in that they are based only on the distance between two points. Specifically,

the Matérn covariance function is:

C(d) =
21−v

Γ(v)

(
2
√
vd

l

)v
Kv

(
2
√
vd

l

)
(2.24)

where d is the distance between the points, Γ(·) is the Gamma function (an extension

of the factorial function), v and l are parameters of the covariance function and Kv is

a modified Bessel function (Rasmussen and Williams, 2006). Furthermore, the squared

exponential function is:

C(d) = e−d
2/v (2.25)

where d is the distance between the points and v is a parameter of the covariance

function (Rasmussen and Williams, 2006). The squared exponential covariance function

is a special case of the Matérn covariance function and therefore we use the more flexible

Matérn covariance function in our work.

Reinforcement Learning Using reinforcement learning, the agent learns based on

the rewards it receives from performing a task. Yoshikawa et al. (2008) and Yasumura

et al. (2009) use a reinforcement learning approach in order to choose an appropriate

concession strategy. However, in order to perform this effectively, the agents are required

to conclude many prior negotiations with an opponent in order to learn the opponent’s

behaviour. Consequently their approach, and reinforcement learning in general, is not

appropriate for one-off negotiation with an unknown opponent (Requirement 3).

2.3.2.3 Making Trade-Offs

The approaches discussed above involve opponent modelling, however, it is not always

necessary to know the utility function of the opponent in order to make trade-offs.

Instead, the similarity between a pair of offers can be measured and used to determine
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the trade-offs that should be made. By this, we mean that the closeness between the

values of the offers are considered, regardless of the utility functions of any party. To

this end, there are a few different approaches that can be used by an agent to make

trade-offs between different issues without learning the preferences of the opponent.

Faratin et al. (2002) were the first to propose an algorithm for negotiating over multiple

issues which makes use of similarity-based reasoning, that is, it tries to find offers that

are similar to the opponent’s previous offer. They use a fuzzy similarity approach to

consider the closeness of offers. Their algorithm for trade-offs works as follows: The

process starts at the offer, oq,r−1, that was previously made by the opponent and by

altering the values of that offer, generates N new ‘child’ offers which each have a utility

E greater than the utility U(oq,r−1) of the opponent’s previous offer. Of these child

offers, the one which is most similar to oq,r−1 is selected to be the new parent. This

process is then repeated a number of times, until the utility of the selected offer matches

our desired utility. The number of times is chosen by setting E to be some fraction

(1/z, z ∈ Z) of the difference between U(oq,r−1) and our desired utility. Their approach

is designed for discrete issues.

The limitation of their approach is that it requires the criteria functions and the weights

of each criteria function for any issues that are used in the negotiation scenario to be

known. Due to Requirement 5 (unknown ordering), we require an approach which can

be used for issues which do not have a known, common ordering, and therefore where

such knowledge is unavailable.

To address this, Somefun et al. (2006) take a similar approach to the work of Faratin

et al., although they consider trade-offs between continuous issues. Specifically, they

present an algorithm for Pareto-search in an environment where there is no prior knowl-

edge of the opponent’s preferences, and they show that the algorithm reaches an agree-

ment that is approximately Pareto efficient. Their algorithm works as follows:

1. The agent first chooses the desired utility level, by referring to its concession

strategy.

2. The agent then builds a surface which represents all of the points with the desired

utility. We refer to this as an iso-utility surface.

3. The agent finds the point on that surface that is closest to the previous offer of

the opponent in terms of the Euclidean distance.

4. The agent makes the counter-offer that is represented by that point.

Figure 2.6 shows this process graphically in a scenario with two continuous issues which

are represented by the two axes. Here, the two curved lines are iso-utility curves of
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two agents, at a particular utility level, U({v1, v2}) = 0.82. Agent A has a preference

for low values of both issues (shown by the curve in the bottom left), and agent B

has a preference for high values of both issues (shown by the curve in the top right).

Furthermore, agent A considers issue 2 to be more important, whilst agent B considers

issue 1 to be more important. Specifically, agent A’s utility function is:

U({v1, v2}) =
1

3
v2

1 +
2

3
v2

2 (2.26)

whilst agent B’s utility function is:

U({v1, v2}) =
2

3
(1− v1)2 +

1

3
(1− v2)2 (2.27)

Figure 2.6 shows the offers that are exchanged by two agents that both use the orthogonal

search method. Agent A proposes offer 1 ({2, 4}), and agent B observes this offer. Agent

B finds the point on its iso-utility curve which is closest to that offer, and proposes the

counter-offer that is represented by that point, shown as offer 2 ({6.6, 6.41}). This

process is then repeated by agent A. As the agents concede, they will perform this

process with different iso-utility curves (since their desired utility level will change).

When both agents use this strategy, once they have both conceded enough that the

iso-utility curves of the two agents intersect each other, the offer will be made at the

intersection, and the other agent should accept the offer.

We base one of our strategies on this technique, since it meets our requirements for

use against unknown opponents (Requirement 3) and it is a computationally tractable

approach (Requirement 7). Its limitation is that it does not meet Requirement 5, since

it requires the discrete issues to have a known, common ordering. Therefore we extend

it to cover such issues.

So far, this section has considered both game theoretic and heuristic approaches to

negotiation. There remains a further approach to negotiation, known as argumentation,

which we briefly discuss below, for completeness, although it is not directly relevant to

the setting considered in this thesis.

2.3.3 Argumentation

In negotiation by argumentation, participants are able to communicate additional infor-

mation to the other participants. In addition to the offers and counter offers that are used

in the alternating offers protocol, critiques and explanations can also be sent. Critiques

are comments on which parts of the proposal the agent likes or dislikes. Explanations
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Figure 2.6: Demonstration of the Pareto-search algorithm, showing the iso-utility
curves of two agents. Agent A proposes offer 1 at {2, 4}. Agent B finds the point on
his curve that is closest to offer 1, and proposes the counter-offer represented by that
point, shown as offer 2 at {6.6, 6.41}. The process is then repeated by each agent in

turn.

are a way that agents can support their proposals, and may take the form of threats,

rewards or appeals (Parsons and Jennings, 1996; Jennings et al., 2001). The arguments

that are exchanged take the form of propositional logic statements, and each agent uses

logical proof to evaluate the set of arguments that it has received (Wooldridge, 2009).

Argumentation based negotiation has the benefit that it can achieve agreements that

other approaches could not, by using arguments to change the preferences of the oppo-

nent. However this is at the expense of significant overheads, due to the reasoning that

the agent needs to perform in order to evaluate the arguments. It is possible for agents to

make arguments that are not truthful, which further complicates the negotiation, since

the agent needs to evaluate each argument’s credibility (Jennings et al., 2001). Since

it would be difficult to evaluate the performance of an agent in an environment where

the preferences can be changed, we choose to focus on negotiation where each party’s

preferences are fixed. Therefore we do not consider negotiation by argumentation in the

remainder of this thesis.



Chapter 2 Background and Related Work 43

2.4 Negotiation with Many Parties

All of the literature that has been reviewed in this section has been focused on negotiation

between two parties, and therefore does not meet our requirement for coordination of

negotiation with a number of participants (Requirement 8).

To this end, in this section, we review negotiation involving more than two participants.

In some environments, the number of participants may not be fixed. For example,

in the scenario we gave in Chapter 1, buyers can enter and leave the negotiation at

any time. We begin this section by discussing the issues surrounding concurrent bi-

lateral negotiation in Section 2.4.1. Then, in Section 2.4.2 we discuss an additional

feature of some concurrent negotiation environments, including the one we consider

(Requirement 9), known as decommitment.

There are two ways in which negotiation with many parties can be carried out. In

sequential negotiation, each agent negotiates with one opponent at a time, taking it in

turns to negotiate with each opponent. In concurrent bi-lateral negotiation, the agents

negotiate concurrently with a number of opponents. The offers that are made are still

bi-lateral in that each offer is made by one party to another. Therefore, all offers and

agreements are made between exactly two negotiation partners. In time constrained

scenarios such as the one in our scenario, concurrent bi-lateral negotiation is considered

to be more appropriate than sequential negotiation, as sequential negotiation can lead

to ‘lengthy negotiation encounters’ (Nguyen and Jennings, 2003). Therefore the next

section focuses on concurrent bi-lateral negotiation.

2.4.1 Concurrent Bi-lateral Negotiation

One of the earlier approaches to task allocation amongst a large number of parties

is the contract net, proposed by Smith (1980). Here, the process begins with a task

announcement which specifies the requirements that a requester needs any bidders to

satisfy, along with a brief description of the task, and a specification of the information

that is required in a bid. In addition, the requester specifies a deadline by which bids

must be received. Upon receipt of a task announcement, each bidder evaluates the

requirements and the specification of the task, in order to decide whether or not to bid

on the task. When a bidder decides that it should work on a particular task, it sends a

bid for that task. The requester evaluates the bids that have been received, and if it has

one which it considers to be satisfactory, the bid is accepted and the task is awarded to

the bidder. A limitation of this approach is that when there are multiple requesters, the

bidders need to decide the order in which to bid on tasks, since they may not be able to
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complete some combinations of tasks, and therefore they may need wait to see if a bid

is accepted before making another bid.

In an extension to Smith’s work, Aknine et al. (2004) propose two phases of proposal

and allocation to allow an agent to concurrently manage several negotiation processes.

Specifically, the process is as follows: the requester makes an announcement (as before),

the bidders then respond with pre-bid messages. The requester can then send a pre-

accept message in response to one of the pre-bid messages in order to temporarily accept

the pre-bid. The requester sends pre-reject messages to all of the other bidders. At this

point, the bidder who received the pre-accept message is able to send a definitive-bid

which the requester is able to definitive-accept or definitive-reject. The bidders that were

sent pre-reject messages are able to send further pre-bid messages. Until the requester

has sent a definitive-accept or definitive-reject message, it is able to send further pre-

accept and pre-reject messages if it receives more favourable pre-bids. The benefit of this

approach over the earlier work of Smith is that it allows for more efficient negotiation in

a many to many case, for example, where there are multiple buyers and multiple sellers.

The alternating offers protocol used for two participants has also been extended to allow

participants to negotiate with more than one opponent at a time. To this end, Dang

and Huhns (2005) propose an alternating offers protocol which is based on the work of

Aknine et al. and has two-phase commitment and rejection. It differs from the contract

net approach by Aknine et al. (2004) in that the process begins with the alternating offers

protocol in which agents exchange offers and counter-offers with each other, rather than

a single task announcement being sent.

In another line of work, Nguyen and Jennings (2003) design an agent for concurrent

bi-lateral negotiation. In order to concurrently manage a number of negotiations, their

approach uses a coordinator, which manages a number of individual negotiation threads.

Each negotiation thread handles bi-lateral negotiation with a single opponent. The

coordinator is responsible for coordinating the negotiation threads and choosing their

strategies. Specifically, in terms of choosing a strategy, the agent attempts to learn

whether the opponent is a conceder or a non-conceder. If the opponent is believed to

be a conceder, the agent uses a tough strategy with probability P ct . On the other hand,

if the opponent is believed to be a non-conceder, the agent uses a conciliatory strategy

with probability Pnc . In addition, the classification of opponents into conceder or non-

conceder classes depends on concession by the opponent at every negotiation round. In

an environment where there are multiple issues and where our agent’s utility function

is unknown to the opponent, such perfect behaviour is unlikely to occur, as it relies on

the opponent being able to identify the Pareto-efficient offers. Therefore, their approach

would need to be considerably extended in order to meet our requirements for a strategy
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which works against unknown opponents (Requirement 3) and multiple issues. We use

their approach, with some fixed parameters, as a benchmark in the evaluation of our

many-to-many negotiation strategy in Chapter 6.

2.4.2 Decommitment

One of the additional features of concurrent negotiation environments, including the

ones considered in this work (Requirement 9), is the concept of decommitment. In a

concurrent negotiation, one of the parties may make an agreement with an opponent,

before finding an opportunity for a better agreement with another opponent. Decom-

mitment allows one of the parties to cancel an agreement that it has made, allowing it

to select the alternative agreement and therefore achieve it a greater utility. By allowing

decommitment, the strategies can be more flexible, allowing agreements with a higher

utility to be reached. However, due to the costs of preparing to perform a contract, any

unnecessary decommitment (where a party decommits in order to commit to another

contract which is only slightly better) could lead to a ‘decrease in the sum of utilities of

the parties’ (Ponka, 2009). It is therefore important that there is some form of penalty

for decommitment, in order to discourage unnecessary decommitment. In this section,

we consider two approaches to decommitment, namely contingency contracts and leveled

commitment contracts.

Contingency Contracts: Contingency contracts are contracts in which the existence

of the contract is tied to future events (Raiffa, 1982). A limitation of this approach is that

it requires all possible future events that can affect the contract need to be considered.

This may be an unrealistic assumption, as in automated negotiation it would require

the participants to express all such future events to the agent. In addition, if there are a

large number of possible events, it may not be possible to monitor all of them (Sandholm

and Lesser, 2001).

Leveled Commitment Contracts: The leveled commitment contract approach (Sand-

holm and Lesser, 2001) allows a party to decommit through the payment of a decom-

mitment fee. According to work by Andersson and Sandholm (2001), decommitment

fees used in this approach can be:

1. A fixed value which is decided prior to the negotiation.

2. A percentage of the contract price, with the percentage being decided prior

to the negotiation.



46 Chapter 2 Background and Related Work

3. A value decided at the time of contracting, as a percentage of the contract

price, with the percentage increasing as the time of contracting increases.

4. A value decided at the time of decommitment, as a percentage of the con-

tract price, with the percentage increasing as the time of the decommitment in-

creases.

Using the leveled commitment contract approach, Nguyen and Jennings (2005) develop

a strategy for use in an environment which allows decommitment through the payment

of a penalty. In their model, the decommitment fee ρ(t) at time t is calculated using the

fourth of the methods given by Andersson and Sandholm (2001), specifically:

ρ(t) = U(α, tα) · (ρ0 +
t− tα
1− tα

· (ρmax − ρ0)) (2.28)

where U(α, tα) is the utility of the agreement at time the contract was made tα, ρ0

is the penalty at contract time, ρmax is the penalty at the deadline. Their strategy is

designed for one-to-many negotiations with uncertainty about the opponents. However,

it only considers discrete time, makes strong assumptions about the opponents, and

requires considerable prior knowledge about these opponents. In particular, they assume

that there is a small number of different opponent types, all using a simple time-based

concession strategy. Furthermore, they assume that the probabilities of each type are

known, as well as the payoff that will be obtained when negotiating against each type. In

contrast, we consider an environment in which the agents do not have such knowledge.

We will use this form of decommitment fee in our concurrent negotiation environment

as, in many scenarios, it is the one which most closely represents the costs involved in

decommitment. Specifically, as time progresses from the point of agreement, the costs

incurred in fulfilling a contract are likely to increase. Furthermore, the opportunity

to find an alternative contract before a deadline (and the utility from it) decreases

(Andersson and Sandholm, 2001).

Finally, An et al. (2008; 2011) and An (2011) have developed an agent which negoti-

ates in an environment which contains concurrent negotiation with decommitment. In

common with much of the other negotiation literature, their work considers time con-

straints to be based on the number of negotiation rounds rather than the amount of

elapsed time. However, the environment they consider is multi-resource rather than

multi-issue. In such an environment, each resource can be negotiated independently,

creating a complete package by reaching agreement on each resource with a different

opponent. Furthermore, each opponent may offer only a subset of the resources. Their

strategy uses time-dependent concession to concede at a different rate for each resource,

depending on the relative scarcity of that resource. A related approach is taken by Shi
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and Sim (2008), who have also developed a further strategy for concurrent multi-resource

negotiation with decommitment. In contrast, in our work, the individual issues cannot

be split amongst negotiation partners. For example, when a buyer negotiates over the

sale of a car, it is not possible to reach agreement by negotiating a good price with one

seller whilst agreeing the colour with another.

For these reasons, the strategies developed by Shi and Sim and An et al. are not

suitable for the negotiation environment we consider due to the way in which each issue

(or resource) can be negotiated separately. Therefore we will use the strategy developed

by Nguyen and Jennings as a benchmark which we can compare our strategies against.

2.5 Summary

In this chapter we began by introducing the key notions within the automated negotia-

tion literature. In addition, we introduced a number of evaluation criteria and method-

ologies that can be used to measure the performance of a negotiation strategy. In doing

so, we introduced the efficiency concepts which form Requirement 2. Specifically, in our

evaluation in Chapters 4 and 6, we will use Genius as our test environment, and will

compare our strategies against those produced for the Automated Negotiating Agent

Competition. Furthermore, we will use empirical game theoretic techniques in our eval-

uation, in order to evaluate the performance of our strategy in tournaments where more

than one opponent uses a single strategy.

Subsequently, we reviewed the literature relating to negotiation strategies, considering

game theoretic, heuristic and argumentation based approaches. Furthermore, we high-

lighted the problems involved in using purely game theoretic approaches to meet our

requirements, and therefore demonstrated the need to use heuristic strategies for our

purpose, since they tend to be more computationally tractable (Requirement 7) even in

complex negotiations where the behaviour and preferences of the opponents are unknown

(Requirement 3) and multiple issues are present (Requirement 4). Finally, in order to

address our requirement for a solution that can coordinate multiple concurrent nego-

tiations (Requirement 8), we discussed existing work relating to negotiation situations

where there are more than two participants.

In Chapters 3 and 5, we will develop our own negotiation strategies, which build upon

some of the existing work that has been discussed in this chapter. Specifically, our

negotiation strategies use time dependent concession to set their desired utility at a

given time. As part of this concession strategy, they adapt their rate of concession as a

best response to the expected future behaviour of the opponent. Furthermore, in order
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to predict this future behaviour, they use either a simple least squares regression over

the observations of the opponent’s offers or a more advanced Gaussian process regression

technique which provides a measure of the confidence of the prediction, which can be

used to improve the choice of concession rate.



Chapter 3

Design of One-to-One Negotiation

Agents

In this chapter, we present the negotiation agents that we have developed for one-to-one

negotiation, and the strategies that are used by our agents. The purpose of developing

a range of strategies, rather than a single one, is to enable us to consider the benefits of

different approaches. Our overall aim is to use a suitable combination of these approaches

in order to develop a negotiation strategy which meets all of the requirements outlined

in Section 1.2.

In the remainder of this chapter, we provide an overview of our one-to-one negotiation

strategies (Section 3.1), before describing in detail each part of the strategies, in turn

(Sections 3.2 to 3.6). We then explain how our agents are formed from these strategies,

including implementation details (Section 3.7). We summarise the chapter in Section 3.8.

3.1 Overview

Our strategies are designed to participate in multi-issue, bi-lateral negotiation, in which

two parties negotiate over multiple issues in order to reach an agreement. The negotia-

tion protocol that is used is based on the alternating offers protocol, which we introduced

in Section 2.1.8. In more detail, each offer, o, represents a complete package, in that it

specifies a value for all issues. Formally, o = 〈v1, v2, . . . , vn〉, where vi is the value for is-

sue i and n is the number of issues. The possible actions under this protocol are Offer,

Accept and End. The negotiation begins with the agents exchanging Offer messages.

Sending an Offer message in response to an Offer from the opponent constitutes a

counteroffer and an implicit rejection of the previous offer. If an agent is satisfied with

49
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Figure 3.1: State diagram showing the negotiation protocol, from the perspective of
a single agent, p.

the most recent Offer it received, it can send an Accept message in order to form

an agreement, α ∈ O. If an agreement is formed before the deadline, each player, p

receives the utility of that agreement, according to their utility function, Up, the time of

agreement, t, and the discounting parameter, δp. Conversely, if no agreement is reached

by the negotiation deadline (or if the agent terminated the negotiation by sending an

End message at any time), the negotiation ends in conflict, with each player receiving

a utility calculated according to the utility of conflict, uα, the time of disagreement, t,

and the discounting parameter. Figure 3.1 is a state diagram from the perspective of a

single agent, showing the messages exchanged and the various states of the agent.

Each agent, p, is provided with its own utility function, Up(·, ·), which, at time t ∈ T
(where T is the range of time during which the negotiation takes place, from the start

to the deadline) maps all possible outcomes, ω in the outcome space O∪{α}, to a value

in the range [0, 1]. Formally:

Up : (O ∪ {α})× T → [0, 1] (3.1)

As is common in the literature, this utility function is modelled by separate components:

the function Up(·), which calculates the undiscounted utility of an outcome, and another,

D(·, ·), which discounts that utility depending on the time that the outcome was reached

and the discounting parameter. Formally:

Up(ω, t) = D(Up(ω), t) (3.2)
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Furthermore, the undiscounted utility of an outcome depends on whether the outcome

is an agreement, α, or conflict, α. In the case of agreements, we define the function Up(·)
as being additive over all of the negotiation issues. Therefore, the undiscounted utility

of agreement α ∈ O is given by:

Up(α) =
n∑
i=1

wp,i · Up,i(vi) (3.3)

where wp,i is the weight of issue i to agent p and Up,i(vi) is the utility to agent p of value

vi for issue i. Furthermore, without loss of generality, Up is normalised such that the

agent’s best outcome has a utility of 1. Formally:

∃α ∈ O,Up(α) = 1 (3.4)

On the other hand, the undiscounted utility of conflict is a constant, denoted Up(α),

which for convenience we denote as uα.

Having considered how undiscounted utility is calculated, we now formalise the second

component of our overall utility function, which considers time discounting. The time

constraints considered in this work are based on the amount of real-time which has

elapsed. For example, we consider negotiations which last 180 seconds (3 minutes).

We normalise our representation of time, such that t = 0 represents the start of the

negotiation and t = 1 represents the deadline at 180 seconds (which is the latest possible

time at which an agreement can be reached). The discounted utility of an outcome

(either agreement or conflict) with utility u at time t is then given by:

D(u, t) = δtp · u (3.5)

where δp is the discounting factor of agent p.

Having discussed the negotiation protocol and utility function used in the negotiations we

consider, we now introduce the strategies that we have developed. The overall procedure

used by all of the strategies discussed in this chapter can be described at a high level by

Algorithm 1. Here, the approach is split into two main parts, to reduce the complexity

of the task. The first is to develop a concession strategy to select the level of utility,

uτ , at which we generate offers at the current time, tc. This is represented by the

SetAspirationLevel function and we describe this part of the algorithm in more

detail in Section 3.2. In order to maximise the utility achieved, the aspiration level

must be set in a way that balances taking a tough strategy which may take a long time

to reach agreement and might even result in no agreement, and conceding too quickly,

giving the opponent an advantage.
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Furthermore, in a multi-issue negotiation, there may be a number of different offers

which have the same utility for a given agent but which offer a range of different utilities

to the other agent. Specifically, for a given level of our own utility, if several offers achieve

that utility, the one which maximises the utility for the opponent should be selected,

as it has the highest chance of acceptance. Such an agreement is also considered to

be more efficient, since neither party can unilaterally increase their utility by a large

amount. This part of our strategy is represented by the GenerateOffer function,

which selects one of the offers at our aspiration level, uτ . We discuss our approach to

this part of the problem in Section 3.3.

In addition to these two major components, some of the other functions in Algorithm 1

also form part of the agents’ strategies. Specifically, the ConflictBest function deter-

mines when it is appropriate for the agent to end a negotiation before the deadline, and

we discuss this aspect in Section 3.4. Furthermore, the AdjustUtilityPareto and

AdjustUtilityConflict functions are how the agent can impose a spiteful behaviour,

and we discuss these functions further in Section 3.5.

The rest of the functions included in Algorithm 1 are defined by the negotiation proto-

col (SendMessage, ReceiveMessage and GetOffer) or the agent’s utility function

(GetUtility). Specifically, the GetUtility function is equivalent to Up(oopp), as de-

fined in Equation 3.3, the AdjustUtilityPareto function is equivalent toD(S(uopp), tc),

as defined in Equations 3.5 and 3.24 and the AdjustUtilityConflict function is

equivalent to D(S(uα, uα), tc), as defined in Equations 3.5 and 3.22.

3.2 Setting the Aspiration Level

This section describes the novel concession strategy we have developed for setting our

aspiration level. This is defined as the utility level at which offers are generated at a

certain point in the negotiation. Furthermore, offers received from the opponent which

have a utility greater than this value will be accepted. Our approach for choosing this

level is to first learn the opponent’s concession strategy, and then use this information to

set our level as a best response to the opponent’s behaviour (by adjusting our behaviour

to maximise our utility given that the opponent’s behaviour is fixed).

In more detail, we need to try to predict how the utility (to our agent) of the opponent’s

offers will vary over the duration of the negotiation. Our agent can then use this predic-

tion to determine the best concession rate and therefore select a utility level at which

to propose offers at the current time.



Chapter 3 Design of One-to-One Negotiation Agents 53

The general approach used in this phase of our strategies is given in Algorithm 2. Fol-

lowing each offer, oopp, received from the opponent, the algorithm records relevant in-

formation about the offer. Then, if the input to the regression process has changed,

the regression is repeated, in order to update our estimate of the future concession of

the opponent. Finally, a target utility is calculated, as a best response to the learnt

information.

In the remainder of this section, we consider two different approaches to predicting the

opponent’s behaviour. The first is to use a relatively simple, least squares regression

approach, which is very fast and can therefore be repeated regularly as new offers from

the opponent are observed, as we will discuss in Section 3.2.1. However, it assumes that

the opponent’s concession function can be fitted to a power law curve and it provides

only a prediction of the opponent’s future concession, without a measure of confidence

in that prediction. The alternative, more advanced approach, which removes these

disadvantages, is to use Gaussian process regression (described in Section 3.2.2), since

this provides a confidence measure as part of its prediction. We now consider each of

our approaches in turn.

3.2.1 Using Least Squares Regression

We now describe, in detail, the way in which our strategy sets its aspiration level using

a least squares regression approach in order to predict the future concession of the

opponent. We do this by defining the functions used in Algorithm 2.

RecordOffer: We assume that the function we are trying to predict, which rep-

resents the utility of the opponent’s offers, according to our utility function, is non-

decreasing. The rationale for this assumption is as follows. We assume that our oppo-

nent is likely to accept any offer that it has previously made, if we were to propose that

offer again (since we know that any such offer gives a utility to the opponent which is

high enough, otherwise it would not have proposed it initially). Due to this assumption,

we record, after each offer, the current time, and the highest utility for our opponent

that has been observed until that point in the negotiation. The effect of this is that, if

the opponent makes an offer that is worse than an offer we have received before, this will

be viewed as a lack of concession, rather than an attempt by the opponent to decrease

the utility it offers to us.
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RegressionRequired: Since the least squares regression can be performed in con-

stant time, and it is also a fast approach, it is able to be repeated frequently. Therefore,

we repeat the regression each time we receive a new observation.

PerformRegression: In order to approximate the opponent’s concession at any fu-

ture point in time during the game, we use least squares regression and in doing so

assume that the observed points will roughly fit to a curve which is non-decreasing (due

to the assumption that we introduced as part of the RecordOffer function), passes

through the point (0, Up(oq,0)) (representing the initial offer made by the opponent),

and does not exceed Up(t) = 1 in the range t ∈ [0, 1] (since, according to Definition 3.1,

utility must be in the range [0, 1]). Furthermore, due to the approximate concavity of

the Pareto frontier in negotiations where additive utility functions are used (as in most

of the scenarios we consider), we expect the utility offered to increase more rapidly to-

wards the start of the negotiation. Therefore, we choose the power law curve, which

meets many of these requirements. Formally:

Up,opp(t) = Up(oq,0) + ea · tb (3.6)

where Up(oq,0) is the utility, to our agent, p, of the offer made by the opponent, q, at

time 0. The constants a and b are to be found by our regression approach, as discussed

below.

In order to prevent the function from exceeding U(t) = 1 in the range t ∈ [0, 1] (which

would be unrealistic, since the utility cannot exceed 1), we use a simple heuristic to

help to improve the prediction. Specifically, for each observation, we add an additional

point at (1, 0.95). The utility value (0.95) is close to, but below 1, in order to reduce

the likelihood that the function will exceed 1.

A common approach for finding the constants a and b (in Equation 3.6), which we use

as part of our strategy, is the least-squares curve fitting algorithm. The aim of this

algorithm is to minimise the sum of the squared offsets between the data points and the

fitted curve. In more detail, we find the coefficients a and b as follows (based on the

equations in Weisstein (1999)):

b =
n ·
∑n

i=1

(
ln(ti) · ln

(
Ui − U(oq,0)

))
−
∑n

i=1

(
ln(ti)

)
·
∑n

i=1

(
ln
(
Ui − U(oq,0)

))
n ·
∑n

i=1

(
ln(ti)2

)
−
∑n

i=1

(
ln(ti)

)2
(3.7)

a =

∑n
i=1

(
ln(Ui − u0)

)
− b ·

∑n
i=1

(
ln(ti)

)
n

(3.8)
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Figure 3.2: Estimated opponent concession. The points represent the best offers made
by the opponent at that point in the negotiation, and the additional fitting points at
[1, 0.95]. The curve is fitted through those points by minimising the sum of the squared

offsets (offsets are shown as vertical lines).

where n is the number of observations of the opponent’s offers, with Ui and ti being

the utility (to our agent) and time of the offer, respectively. Furthermore, U(oq,0) is the

utility of the offer received at time 0.

As an example, Figure 3.2 shows a number of observed points, and in addition shows the

fitted curve (in the form of Equation 3.6), with a and b being found by Equations 3.7

and 3.8 respectively.

Once the regression coefficients, a and b, have been found, we can use Equation 3.6 to

estimate the utility of the opponent’s offers at any time during the negotiation session.

We then have an approximation of our opponent’s concession in terms of our own utility

and can use this information to set our own rate of concession as a best response to this

approximation.

We perform this by firstly applying our discounting function (Equation 3.5) to our model

of the opponent’s concession function (Equation 3.6), to create a function which gives

us the discounted utility that we can expect from our opponent’s offers at any point in

the negotiation session. The discounted utility function is given by:

EUrec(t) = D (Up,opp(t), t) (3.9)
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GetTarget: In order to set our aspiration level as a best response to our opponent’s

concession, our aim is to obtain the highest discounted utility offered by the opponent

(in terms of our utility). To do this, we find the maximum on the discounted opponent

concession curve (given by Equation 3.9) within the time period when an agreement can

be reached. By this, we mean that we ignore the parts of the curve that represent times

in the past, or times which are beyond the negotiation deadline. Therefore, the next

step is to solve:

t∗ = arg max
tc≤t≤1

EUrec(t) (3.10)

where tc is the current time.

By solving Equation 3.10, our agent has identified the time t∗ at which the discounted

utility to our agent of our opponent’s offers is likely to be maximised. The aspiration

level, u∗ at that time that matches the estimated utility of the opponent’s offer (without

any discounting) can then be found as follows:

u∗ = Up,opp(t∗) (3.11)

We now have a point in time, t∗, at which we expect to reach agreement, and an

aspiration level, u∗, that we should use at that time. Our strategy does not simply delay

until t∗ before conceding. Instead, it uses the intervening time to try and get an even

better offer by setting the utility level above u∗, and then conceding towards u∗. Our

approach to this is to use a function which passes through [0, 1] (since the value of our

offer at time 0 is 1), and passes through the solution to Equation 3.10 (at [t∗, u∗]). For

an agent which aims to beat its opponent (by reaching an agreement in which it achieves

a higher utility than the opponent), it is important not to reach an agreement with a low

utility, as discussed in Section 2.1.9. In an attempt to avoid such agreements, we set a

lower limit to the concession function, which we refer to as our reservation utility, Umin.

We discuss how we set Umin in Section 3.6. Furthermore, the function should be non-

increasing. Consequently, we use Faratin et al.’s time dependent concession function,

which is a common approach (see Section 2.3.2.1) to finding a target utility, uτ at time

tc, defined formally as:

uτ = 1− (1− Umin) · t1/βc (3.12)

where Umin is our reservation utility and β is the concession parameter which we choose

such that the concession curve meets these constraints. Formally, β is calculated as

follows:

β =
log(t∗)

log

(
1− u∗

1− Umin

) (3.13)
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Figure 3.3: Example of setting our concession rate. The crosses represent the best
offers made by the opponent. The dashed blue line shows the estimated future con-
cession of the opponent (undiscounted). The dot-dashed green line shows the future

discounted concession. The solid red curve is our concession curve.

Figure 3.3 shows a graphical representation of this approach. The crosses represent the

best offers made by the opponent. The dashed line is a curve that is fitted through

those points in order to estimate the future concession of the opponent. By applying

time discounting, the dot-dashed line is produced. The maximum on the dot-dashed line

is indicated by the vertical line, which represents the time, t∗ at which the maximum

expected discounted utility of the opponent’s offers is expected to be reached. The

horizontal line represents the utility, u∗, we expect from the opponent’s offers at that

time. The solid curve is then our curve, which passes through [t∗, u∗].

Since we repeat this process following each offer, the value of β changes over time, unlike

in Faratin et al.’s work where β is a fixed value. However, a possible disadvantage of

this approach is that, at the beginning of the session, the curve fitting is performed

through a small number of points, and therefore the curve may not accurately reflect

the future concession of the opponent. If our agent learns a curve that is inaccurate, it

may set its concession parameter to be too extreme, resulting in either very concessive

or very tough behaviour. There are two ways in which we limit this problem. We use

β′ to denote the actual concession parameter that we use in selecting our target, uτ .

Firstly, we set upper and lower bounds on our actual concession parameter (β′) so that

the agent does not use a concession strategy that is too extreme, either by conceding

too quickly at the beginning of the session, therefore reaching agreement at a low utility

level, or by playing too tough and therefore conceding too late. Secondly, at the start
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of the game (0 ≤ tc < 0.1), whilst the number of observed offers is low, we use linear

concession. Following this (0.1 ≤ tc < 0.2) we gradually increase the effect of our learnt

β′, and beyond this time (0.2 ≤ tc < 1), we use the learnt value entirely. By combining

these two adjustments, our time dependent concession function becomes:

β′ = max (βmin,min (βmax, β)) (3.14)

uτ = U0 − (Umin − U0) ·


tc if 0 ≤ tc < 0.1(
tc(tc − 0.1) + t

1/β′
c (0.2− tc)

0.1

)
if 0.1 ≤ tc < 0.2

t
1/β′
c otherwise

(3.15)

where tc is the current time, βmin is the minimum value for β′ and βmax is the maximum

value for β′. In our agent, we set βmin = 0.01 and βmax = 2.0. The choice of these

particular values were somewhat arbitrary, although we wanted to ensure that they

were far enough apart to allow our strategy to be reasonably flexible, whilst avoiding the

extreme behaviour discussed above. We did not attempt to optimise these parameters.

3.2.2 Using Gaussian Process Regression

In this section, we describe a more sophisticated concession process, which uses Gaussian

process regression to estimate the future concession of our opponent. We use this regres-

sion technique as it provides both a prediction (of the opponent’s future behaviour) and

a measure of the level of confidence in that prediction. Our strategy uses this confidence

measure in calculating the expected utility of future offers from the opponent, and of the

offers made by our agent. If the confidence is low, it may be necessary for our strategy to

concede more in order for its offers to have a reasonably high probability of acceptance.

Again, we consider this approach in terms of the functions used in Algorithm 2.

RecordOffer: As input to the Gaussian process, we use the maximum value offered

by the opponent in a particular time window of duration twindow, and the time of that

window. The reason for using this windowed approach is twofold. Firstly, it reduces the

effect of noise on the Gaussian process. Since we measure the utility of the opponent’s

offers in terms of our agent’s utility function, it is possible that this value may vary

significantly in a given window. This is due to the offers consisting of multiple issues,

with the negotiation partners having different utility functions. In such an environment,

it is possible that a small change in utility for the opponent can be observed as a large

change by our agent. We use the maximum value in each time window, rather than

the average, as the maximum represents the best offer that we have observed, and can
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therefore expect to reach agreement at. Secondly, it reduces the amount of input data

for the Gaussian process. If all of the observed offers were used, there could be thousands

of data points, which could significantly slow down the regression process and therefore

delay the negotiation.

RegressionRequired: Since the input to the regression only changes at the end of

each time window, there is no benefit to repeating the regression within a single time

window. Therefore, using this strategy, the regression is only performed if the current

time window is different to that when the previous regression was performed.

PerformRegression: Our agent uses a Matérn covariance function and a linear mean

function (Rasmussen and Williams, 2006). The Matérn covariance function is a station-

ary function. That is, it is based only on the distance between two points. Furthermore

it is a decreasing function, such that the covariance between two points decreases as the

distance between them increases. Given that we have little other information about the

expected behaviour of the opponent, we consider the Matérn covariance function to be

the most appropriate for our work.1 We selected a linear mean function as we expect the

offers of the opponent to increase over time. Whilst this increase may be non-linear, the

linear mean is a simple approximation, which is much more appropriate than a constant

mean. Furthermore, by using a Matérn covariance function and a linear mean function,

the regression is fast enough to be computed in real time during the negotiation.

The output of the Gaussian process is a Gaussian probability density function, for each

time t, of the form:

f(u;µt, σt) =
1√

2πσ2
t

e
−
u− µt

2σ2
t (3.16)

where µt and σt are the mean and standard deviation, respectively. The mean, µt, gives

an indication of the expected value for u at time t, whilst the standard deviation, σt, is

an indication of how accurate the prediction of µt is likely to be.

We note that alternative regression techniques can be used in place of a Gaussian process,

such as Bayesian linear regression, providing their output contains both mean and stan-

dard deviation measures. However, in this work, we have only evaluated our approach

using a Gaussian process.

Figure 3.4 shows an example of the input to and output from the Gaussian process

performed at time tc = 0.25 during a negotiation with Agent K in the Itex vs Cypress

scenario (see Section 4.3 for more regarding the scenarios and opponents).

1Alternative stationary covariance functions include the exponential and squared exponential covari-
ance functions, both of which are special cases of the Matérn covariance function.
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Figure 3.4: Demonstration of the Gaussian process used in a negotiation with Agent
K in the Itex vs Cypress scenario (taken from ANAC2010, see Section 4.3 for further
details), at time tc = 0.25. The plus signs are the input data, based on the observed
offers. The crosses are based on future offers. The mean of the Gaussian output is
shown as a solid line, with the shaded area representing the 95% confidence interval.

As given by Definition 3.1, we assume that the utility of the opponent’s offers must lie

in the range [0, 1]. Therefore, we adjust the output of the Gaussian process, to create a

truncated normal distribution, constrained to fit in the utility range [0, 1], as follows:

p[0,1](u;µt, σt) =
p(u;µt, σt)

P (1;µt, σt)− P (0;µt, σt)
(3.17)

where the mean, µt, and variance, σt, are those given by the Gaussian process, p(u;µt, σt)

is as given in Equation 3.16 and P (u;µt, σt) is the cumulative distribution for p(u;µt, σt).

That is:

P (u;µt, σt) =

∫ u

0
p(x;µt, σt)dx (3.18)

Based on the prediction of the opponent’s future concession which was generated using

the regression technique, our strategy then aims to set its concession by optimising the

expected utility given that prediction.

GetTarget: Having introduced our use of Gaussian processes in predicting the future

concession of the opponent, we now discuss the main contribution of this work to the

literature, which is to show how the output of a Gaussian process can be used in setting

the concession rate. Specifically, our approach is the first practical concession strategy
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for multi-issue negotiation with real-time constraints to use both the mean, µ, and

standard deviation, σ, output by the Gaussian process in setting an optimal concession

rate. The aim of this stage of our strategy is to calculate the best time, t∗, and utility

value, u∗, at which to reach agreement. To reduce the complexity of this part of the

problem, we use a heuristic which first finds t∗ and then uses it to calculate u∗. We

therefore consider the best time, t∗, to be the point in future time (t ∈ [tc, 1]) at which

the expected utility of the opponent’s offers is maximised, using:

t∗ = arg max
t∈[tc,1]

EUrec(t) (3.19)

where tc is the current time and EUrec(t) is the expected utility, adjusted by the agent’s

spitefulness (which we introduced in Section 2.1.9) and discounting, of reaching an agree-

ment at time t, given by:

EUrec(t) =

∫ 1

0
p[0,1](u;µt, σt)D (S(u), t) du (3.20)

where D(·, ·) is the discounting function, given by Equation 3.5, S(·) is the spitefulness

function (which we will discuss in Section 3.5), and p[0,1](·) is the probability distribution

over the values of u, as determined by our regression process.

Having selected the time, t∗, at which the expected utility of the opponent’s offers is

maximised, our agent needs to choose a utility, u∗, to offer at that time. The approach

that our strategy takes here is to maximise the expected utility of making an offer of

utility u. We assume that an offer of utility u will be accepted at time t∗ if u ≤ ut∗ . Since

we have a probability distribution over ut∗ , we can calculate the probability that u ≤ ut∗
using the truncated cumulative distribution P[0,1](u;µt, σt). Therefore, the utility, u∗,

which should be offered at time t∗, is given by:

u∗ = arg max
u∈[0,1]

P[0,1](u;µt∗ , σt∗)D (S(u), t∗) (3.21)

whereD(·, ·) and S(·) are as before, and P[0,1](·) is the cumulative distribution for p[0,1](·).

Finally, having determined u∗ as the utility to offer at time t∗, our agent needs to choose

a utility to offer at the current time, tc. The approach used here is the same as in

Section 3.2.1 (Equations 3.13, 3.14 and 3.15).

Having shown our concession strategy, which considers the opponent’s concession, the

discounting factor, the deadline and our reservation utility, we now discuss the other

major aspect to our agent, which is the strategy it uses for choosing the value of each

individual issue.
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Figure 3.5: Outcome space for an example scenario. The set of offers which give
agent q a utility of 0.8± 0.025 are displayed in black. The Pareto frontier is displayed
as a solid line, and the Pareto-efficient offer with a utility to agent q of 0.78 is marked

with a cross.

3.3 Negotiating over Multiple Issues

In the previous section we showed how our agent can choose its aspiration level at any

point during the negotiation session. However, in a multi-issue negotiation, there are

likely to be a number of different offers at any given utility level. Our agent is indifferent

between this set of offers, since they all result in the same utility from its perspective.

However, the opponent is unlikely to be indifferent between the offers, since its utility

function is likely to be different to ours. Our aim and basis of our negotiation strategy

is to select the offer (from the set of offers over which our agent is indifferent) which

maximises the utility of the opponent. The reason for doing so is that the opponent

is more likely to accept offers with a higher utility. In addition, from a performance

perspective, such outcomes are closer to Pareto-efficient. To illustrate, Figure 3.5 shows

an outcome space in grey, with the set of offers with a utility for our agent of 0.8 displayed

in black. The Pareto frontier is displayed as a solid line, and the Pareto-efficient offer

with a utility to our agent of 0.8 is marked with a cross.

In the remainder of this section, we present our approach to selecting an offer at a given

utility level. Firstly, we discuss the basic random selection approach (Section 3.3.1),

before presenting an additional technique which can be used in conjunction with this

approach in order to enhance the opportunity for an agreement (Section 3.3.2).
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3.3.1 Random Selection

With software agents (which have fast reaction times in the order of milliseconds), under

real-time constraints, the goal is to reach an agreement within a short time period, but

not necessarily to limit the number of offers made. Therefore, if our agent can generate

an offer quickly (even if it does so at random), it can explore more of the outcome space

in the available time. A fast method for selecting a package is to do so at random.

Therefore, we begin by considering such an approach.

Ideally, the aim of our random selection strategy (and the other selection strategies

we discuss in this Section) is to select an offer with utility uτ . However, it may be

difficult, or in a discrete domain, impossible to find such an offer. Consequently, our

random selection strategy chooses an offer which has a utility close to the target, uτ ,

by generating a random offer with a utility in the range [uτ − 0.025, uτ + 0.025]. If

an offer cannot be found within this range, the range is expanded, until a solution is

found. To avoid selecting an offer that is lower than our initial lower limit where there

are potential offers that lie above our initial upper limit, the search range is firstly

incrementally expanded upwards, continuing to exclude offers with utilities lower than

uτ − 0.025. If an offer still cannot be found once the upper search limit has reached 1,

the range is then incrementally expanded downwards. While this approach to selecting

an offer is a simple one it has produced very good results. In particular, when combined

with a good regression method, the results are often better than for more advanced

approaches, as we will show in Chapter 4. Furthermore, random selection is a very good

benchmark strategy, which can be used to compare against more advanced strategies.2

3.3.2 Re-proposal of Best Offer

Using the random approach that we have just introduced, our strategy can propose a

large number of offers in a limited time period. However, in certain circumstances, there

may be an easily identified offer at a given utility level which is expected to be accepted

by the opponent. Therefore we now discuss an additional feature that can be used in

conjunction with this approach in order to improve the likelihood that our offers are

accepted, without reducing our aspiration level.

This feature works as follows. If the aspiration level, uτ (as determined by one of

the strategies introduced in Section 3.2) drops below the highest utility offered by the

opponent so far during the negotiation, instead of proposing a random offer according

2A variant of this approach is weighted random selection, in which a range of possible offers are
generated, and evaluated according to an estimate of the opponent’s utility function. An offer is then
selected at random from this set, weighted by this estimate.
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to the strategy discussed earlier in the section, we propose the best offer (according to

our utility) that we have received from the opponent. The reason for proposing this

offer is as follows. Its utility is at least uτ , so from our agent’s perspective, it is no

worse than any other offer with utility uτ . If the opponent is using a non-increasing

time-dependent concession function (such as the one we introduce in Equation 3.12),

then the offer it proposed at time t will be accepted at any later time, t′ > t. Therefore,

assuming that the opponent is using such a concession function, we can be sure that the

offer will be accepted, whereas any other offer with utility uτ may not be. If the offer is

not accepted, we continue to make offers according to the approaches introduced earlier

in this section, (until the best offer has changed, when we will again consider proposing

it using this feature).

3.4 Handling Non-Zero Utility of Conflict

In negotiations where the utility of conflict is non-zero, it is necessary to consider the

possibility that the conflict outcome may be more desirable than some agreements. A

simple approach to address such situations is to avoid making or accepting offers which

have a utility lower than the utility of conflict. However, in a negotiation where time

discounting is also present, such an approach may not be sufficient. In more detail, time

discounting is applied according to the time at which the outcome (either agreement or

conflict) is reached. Therefore, there may be a benefit to ending a negotiation early, in

order to avoid the discounting factor having a significant effect.

The approach taken by our strategy is to compare the value of conflict (uα) at the

current time (tc), with the value of the best offer (u∗) expected to be available in the

future, at that time (t∗). If uα · δtc > u∗ · δt∗ , the agent will terminate the negotiation

(obtaining a utility of uα · δtc), otherwise, negotiations will continue.

In scenarios where there is no discounting (δ = 1) or where the utility of conflict is zero

(uα), the value of conflict at the deadline is equal to the value of conflict at any other

time during the negotiation. Therefore, in such scenarios, there is no benefit to breaking

off a negotiation prior to the deadline (note that if no agreement is reached by that time,

the default outcome is conflict).

3.5 Spitefulness

In some settings, such as in a tournament, the goal may not be for an agent to maximise

its own utility but, rather, to beat any opponents. That is, to obtain a utility higher than
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the opponent’s. In such a setting, the agent can no longer take a purely self-interested

approach, as it may be able to benefit from harming the performance of its opponent.

We refer to such behaviour as spitefulness, and we now discuss the spitefulness function,

S(u), in more detail. The aim of the spitefulness function is to encourage our strategy

to reach agreements in which our player, p, achieves a higher score than that of its

opponent, q.

We define a generic spitefulness function of the form

S(up, uq) = s+ (1− s) · up − s · uq (3.22)

where up and uq are the utilities of our player and its opponent, and 0 ≤ s ≤ 1 is

the spitefulness parameter. However, since the utility, uq, of our opponent cannot be

observed, we require a spitefulness function which does not depend on it.

To generate such a spitefulness function, we assume that an increase in our utility, up, is

likely to lead to a decrease in our opponent’s utility, uq. In a multi-issue negotiation with

an additive utility function (as in the negotiations we consider), the Pareto frontier is

convex. As a result, with the assumption that the offers being made are Pareto efficient,

a small decrease in up, for high values of up, results in a large increase in uq. At lower

values of up, a small decrease in Up has little effect on uq. We can therefore assume

that, at high values of up, the adjusted utility for a spiteful strategy should be higher,

but change more rapidly than for low values of up.

In order to estimate uq given up, we assume that the Pareto frontier can be approximated

by a curve, of the form:

ukp + ukq = 1 (3.23)

where k ≥ 1 is the competitiveness coefficient.

In order to estimate k, we first assume that the opponent concedes at the same rate as

our strategy. Under this assumption, the opponent’s utility, uq, of the offer made by the

opponent at a given time is equal to our utility, up, of the offer our strategy makes at

the same time. We then find the minimum value that k can take, such that all offers

made so far lie beneath the approximated Pareto frontier.

If we then consider the effect of concession, assuming that all offers made are Pareto

efficient, we find the spitefulness function, S(·) to be given by:

S(up) = s+ (1− s) · up − s · (1− ukp)1/k (3.24)

where k ≥ 1 is the competitiveness coefficient and 0 ≤ s ≤ 1 is the spitefulness parame-

ter.
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A spite level of zero (s = 0) represents non-spiteful behaviour, that is, the agent is only

interested in maximising its utility (and in this case, S(up) = up). In contrast, for spite

levels greater than zero (s > 0), the agent regards lower utility agreements with much

lower value than their true utility.

When combined with our Gaussian process regression, spitefulness has an important

effect on our strategy’s calculation of expected utility. In more detail, the effect of

the standard deviation, σt (in Equation 3.20) on a spiteful agent is as follows. If,

at two points in time, t1 and t2, the mean values are the same (µt1 = µt2), but the

standard deviation differs such that σt1 < σt2 , then a spiteful agent will consider the

expectation at time t2 to be greater than at time t1. That is, the spiteful agent is

prepared to wait for the less certain offer at time t2, as there is a higher chance that the

utility may significantly differ from the value of µt2 , than it would for µt1 . Of course,

that difference may be positive or negative, but, for a spiteful agent (where s > 0),

S(µ+x) +S(µ−x) > S(µ) +S(µ) (where x > 0 is the difference from the mean, µ). In

contrast, non-spiteful agents are indifferent between the two solutions (since, if s = 0,

S(µ+ x) + S(µ− x) = S(µ) + S(µ)).

3.6 Reservation Utility

In order to prevent the strategy from conceding too much, perhaps against a non-

concessive opponent, a reservation utility can be used. The reservation utility is the

minimum utility level that our strategy will concede to. Since our utility function is

normalised such that all outcomes have a utility in the range [0, 1], a simple approach

is to use a static reservation utility, with a value of Umin = 0.5.

A more advanced approach is to determine the reservation value as a function of the

scenario. The aim is to choose a value which is large enough that it reduces the risk of

our agent being exploited by a tough, non-concessive opponent, but at the same time is

small enough that it allows agreements to be reached. Our approach is to choose a value,

given the set of outcomes, O and our utility function Up. If we assume that opponent

q’s preferences are strictly opposed to those of our agent, p (that is, ∀o, o′ ∈ O,Up(o) >
Up(o

′)⇔ Uq(o) ≤ Uq(o′)) and that the opponent chooses its reservation value using the

same approach, then the highest reservation value which we can choose is equal to the

median value of Up(o). If either party chooses a higher value, it is possible that there

are no outcomes that are mutually acceptable.

In order to determine this median value, it is first necessary to calculate Up(o) for all

outcomes, o ∈ O. In a scenario with a large outcome space, this may require significant
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time and memory. Therefore, in practice we use an approximation of the median, by

taking a random sample of Up(o), gathering the utilities of as many outcomes as possible

within a short time period (2 seconds in our case) and taking the median of this value.

3.7 Our One-to-One Negotiation Agents

Having described the different parts of our strategies, we now introduce the agents that

we have developed, which use various combinations of these strategies. All of our agents

are implemented using the Java programming language, under the framework provided

by the Genius environment (introduced in Section 2.2.1). Through the use of a common

framework, our agents can be compared with each other and, furthermore, with other

agents developed under the same framework. We do this in the evaluations we carried

out as part of Chapter 4. Where appropriate, we have used library implementations of

common functions.

3.7.1 IAMhaggler2010

IAMhaggler2010 was one of our early agents, developed for the first Automated Nego-

tiating Agents Competition (ANAC 2010). (Note that it was initially submitted under

the name ‘IAMhaggler’.) It uses the least squares regression approach (described in

Section 3.2.1), with a fixed reservation utility, Umin = 0.5, combined with the Pareto-

search method. (The Pareto-search method is designed for negotiation over continuous

issues. We do not consider such issues in this thesis, but for completeness, the method

is described in Appendix B.) Furthermore, it uses the first approach to re-proposing the

opponent’s best offer (described in Section 3.3.2).

3.7.2 IAMhaggler2011

Following ANAC 2010, we found that by using the random selection method (described

in Section 3.3.1), our agent could make thousands of offers during a 3 minute negoti-

ation, and was therefore able to search a large outcome space and achieve high utility

agreements, without modelling the opponent’s preferences. We therefore chose to fo-

cus on improving our approach to learning the opponent’s concession, as this aspect

showed more scope for improvement. In doing so, IAMhaggler2011 was developed and

submitted to the second Automated Negotiating Agents Competition (ANAC 2011). It

uses the Gaussian process regression approach (described in 3.2.2), with a fixed reser-

vation utility, Umin = 0.5, combined with the random selection method (described in
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Section 3.3.1). The strategy’s behaviour was adjusted using a spitefulness function,

which was less sophisticated than the one described in Section 3.5. In more detail, the

function S(u) = us was used, with s = 1 (non-spiteful) in the qualifying round of the

competition, and s = 3 (spiteful) for the final round.3 Furthermore, it uses the second

approach to re-proposing the opponent’s best offer (described in Section 3.3.2).

This agent makes use of Commons-Math: The Apache Commons Mathematics Library4,

JAMA, A Java Matrix Package5 and the Gaussian Process Regression for Java library6.

3.7.3 IAMhaggler2012

To prepare for ANAC 2012, IAMhaggler2011 was developed further into IAMhaggler2012.

ANAC 2012 introduced non-zero utility of conflict, so in order to handle this, we used

the approach described in Section 3.4. Furthermore, the approach to spitefulness was

improved, using the approach described in Section 3.5. Following the competition, we

made some further improvements, and we now set our reservation utility, Umin depending

on the scenario, using the approach described in Section 3.6.

3.7.4 IAMcrazyHaggler

Whilst considering the design of agents which adapt to their opponent’s behaviour (such

as the IAMhaggler agents), we decided to investigate whether a simple but tough strat-

egy was capable of achieving high utility agreements against agents which are highly

adaptive to the behaviour of their opponents. Such a strategy can be considered to be

an interesting benchmark strategy against more complex opponents. Specifically, we

developed the IAMcrazyHaggler series of agents, which use a very simple strategy that

makes random offers which have a utility over a fixed offer threshold and accepts offers

made by the opponent if their utility is greater than a further fixed acceptance threshold.

The different versions of IAMcrazyHaggler differ only in their thresholds, as we will now

discuss:

3Note that spitefulness was referred to as risk aversion in the resulting publication, which appears in
the Proceedings of the 22nd International Joint Conference on Artificial Intelligence.

4http://commons.apache.org/math/
5http://math.nist.gov/javanumerics/jama/
6https://forge.ecs.soton.ac.uk/projects/gp4j/

http://commons.apache.org/math/
http://math.nist.gov/javanumerics/jama/
https://forge.ecs.soton.ac.uk/projects/gp4j/
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IAMcrazyHaggler2010 Our first version, now known as IAMcrazyHaggler20107,

uses a very high offer threshold (Up(op,t) > 0.95) and a slightly lower acceptance thresh-

old (Up(oq,t) > 0.90). If the scenario contains a discounting factor, the offer and ac-

ceptance thresholds are each reduced by 0.05 in an attempt to reach agreement more

quickly, and therefore reduce the loss due to discounting.

IAMcrazyHaggler2011 We found that, at ANAC 2010, IAMcrazyHaggler2010 failed

to reach agreement in many negotiation sessions, due to its extremely high thresh-

old. Therefore, for ANAC 2011 we developed IAMcrazyHaggler2011. It works in the

same way as IAMcrazyHaggler2010, but with much lower thresholds (Up(op,t) > 0.70,

Up(oq,t) > 0.65). Due to these lower thresholds, IAMcrazyHaggler2011 is able to propose

and accept offers from a much larger part of the outcome space. This should lead to

more agreements, although individually, they are likely to achieve a lower utility for the

agent. In contrast to IAMcrazyHaggler2010, this agent does not adjust its behaviour in

discounted scenarios, as its threshold is already rather low.

IAMcrazyHaggler2012 At ANAC 2011, IAMcrazyHaggler2011 reached agreement

in most negotiation sessions, due to it having a relatively low threshold. The scenarios

chosen for ANAC 2011 tended to be much less competitive than those included in ANAC

2010, in that it was often possible for agents to reach agreements which offered high

utility for both parties. As a result, IAMcrazyHaggler2011 reached agreements that were

considerably lower in value than the agreements formed by many of the more advanced

strategies. Therefore, for ANAC 2012, we created IAMcrazyHaggler2012 as a further

variant of the IAMcrazyHaggler series of agents, this time increasing the thresholds to

(Up(op,t) > 0.8, Up(oq,t) > 0.8).

As we will show in the evaluation of our one-to-one strategies (Chapter 4), the per-

formance of an agent with fixed thresholds is highly dependent on the value of those

thresholds.

3.8 Summary

In this chapter, we have described the negotiating agents that we have designed. We

detailed the two key parts of our strategies: the processes that our agents use to set their

aspiration levels, and the ways in which they select an offer with a given utility. In doing

so, we have combined and extended several existing approaches from the literature, and

designed two new adaptive strategies.

7The agent was entered into ANAC 2010, under the name IAMcrazyHaggler.
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Specifically, we have contributed the following to the literature on automated negotia-

tion:

• We have developed a novel strategy, which uses both a Gaussian process prediction

and the certainty of that prediction, to calculate the concession an agent should

make over time. This strategy is able to negotiate directly with an unknown

opponent and uses a principled approach, by firstly predicting the opponent’s

future behaviour and then adapting to the agent’s offers in order to maximise the

expected utility of agreement. Furthermore, the proposed strategy is designed to

deal with real-time constraints in multi-issue negotiation where the issues have an

unknown ordering.

Furthermore, against the requirements set out in Section 1.2, we have designed six agents

which:

• work in a decentralised manner, communicating directly with the other negotiating

agents (Requirement 1),

• are able to negotiate in an environment without knowledge of the preferences or

behaviour of any other party (Requirement 3),

• have been designed to negotiate in domains with multiple issues (Requirement 4),

• are able to negotiate over discrete issues without a known, common ordering (Re-

quirement 5), and

• support real-time constraints (Requirement 6).

However, none of these strategies are designed to coordinate concurrent negotiation

with more than two parties (Requirement 8) and therefore they also do not consider

decommitment (Requirement 9). We consider this aspect in Chapter 5.

In the following chapter, we will evaluate the performance of our agents, checking them

against the remaining two requirements of efficiency (Requirement 2) and computational

tractability (Requirement 7).
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Algorithm 1 Overview of our general negotiation process, which is common to all of
our strategies. Let uα represent the utility of conflict and let tc represent the current
time.

while tc ∈ [0, 1] do
m⇐ ReceiveMessage()
if m is not an Offer then

return
end if
oopp ⇐ GetOffer(m)
uτ ⇐ SetAspirationLevel(oopp, tc)
uopp ⇐ GetUtility(oopp)
u1 ⇐ AdjustUtilityConflict(uα, tc)
u2 ⇐ AdjustUtilityPareto(uopp, tc)
u3 ⇐ AdjustUtilityPareto(uτ , tc)
if ConflictBest(u1) then
SendMessage(End)
return

else if u2 ≥ u3 then
SendMessage(Accept(oopp))
return

else
oown ⇐ GenerateOffer(uτ )
SendMessage(Offer(oown))

end if
end while

Algorithm 2 Overview of our function for setting the aspiration level, following an
offer, oopp, from the opponent, at time tc.

Function SetAspirationLevel(oopp, tc)

Require: oopp, tc
RecordOffer(oopp, tc)
if RegressionRequired(tc) then
PerformRegression()

end if
return GetTarget(tc)





Chapter 4

Evaluation of One-to-One

Negotiation Agents

This chapter evaluates the performance of our one-to-one negotiation agents, using

the techniques and against the performance criteria that we discussed in Section 2.2.

Throughout this chapter, we analyse the results of negotiations from a variety of scenar-

ios. Each scenario consists of a domain and, for each player, an associated preference

profile. The domain specifies the set of issues that are being negotiated over, and the

range of values that each issue can take, and therefore determines the set of outcomes

that are possible. The preference profiles define each agent’s utility function. Formal

definitions of domains and preference profiles can be found in Section 2.2.1.

The remainder of this chapter is structured as follows. We begin by introducing the sce-

narios that we use in our evaluation (Section 4.1) before finding a suitable spitefulness

parameter for use in tournament settings (Section 4.2). We then provide a summary

of the performance of the agents in the Automated Negotiating Agents Competitions

(Section 4.3), before analysing the performance of each of the agents in self play (Sec-

tion 4.4). Next, we carry out a more extensive evaluation of their performance in tourna-

ments (Section 4.5) and we also evaluate the tractability of our strategies by considering

the offer rates achieved by all of the strategies (Section 4.6). Subsequently, we consider

tournaments in which more than one player uses a particular strategy, by performing

an empirical game theoretic analysis of the results (Section 4.7). We conclude with a

summary of the chapter (Section 4.8).

73
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4.1 Evaluation Scenarios

In this evaluation, we use the scenarios of the most recent Automated Negotiating Agents

Competition (ANAC 2012). The scenarios used in ANAC 2012 came from three sources,

as follows. Each of the 17 participants of ANAC 2012 submitted a scenario. To this, the

organisers added the scenarios of the ANAC 2011 final (excluding any that had been

resubmitted by the 2012 participants) and the scenarios of ANAC 2010 (excluding any

that had been resubmitted by the 2011 or 2012 participants) to produce a total of 24

scenarios. Appendix A provides full details of the utility functions used, along with plots

of the outcome spaces, for each of these scenarios.

In order to evaluate the performance of the agents in different types of scenario, we clas-

sify them according to a number of characteristics. Firstly, they are classified according

to the size of the outcome space of their domain, |O|. We partition the scenarios into

three size classes, with an equal number of scenarios in each class, as follows: small

(|O| < 200), medium (200 ≤ |O| < 3500) and large (3500 ≤ |O|).

Secondly, they are classified according to their competitiveness, C(O), defined as the

minimum distance from a point in the outcome space to the point which represents

complete satisfaction (that is, the point at which each agent achieves a utility of 1).1

We partition our scenarios into three competitiveness classes, with an equal number of

scenarios in each class, as follows: low (C(O) ≤ 0.22), medium (0.22 < C(O) ≤ 0.30),

high (0.30 < C(O)).

The domain sizes and competitiveness of the scenarios can be seen in Table 4.1. The

scenario with the smallest domain, NiceOrDie, has a single issue with just 3 possible

outcomes, whereas the one with the largest, Energy, has 8 issues and a total of 390625

possible outcomes. The least competitive scenario, ADG, has a competitive value of

0.092, whereas the most competitive, NiceOrDie, has a competitiveness value of 0.840.

The 2012 edition of the competition was the first to include non-zero utilities of conflict.

In order to evaluate the agents using a range of discounting factors and utilities of

conflict, we take the following approach: Three discounting factor parameters (δ ∈
{0.50, 0.75, 1.00}) and three utility of conflict parameters (uα ∈ {0.00, 0.25, 0.50}) are

chosen. Each of the 24 scenarios are tested with each value of δ and uα. Therefore, once

1Note that the definition of competitiveness introduced here differs from that used in the context of
auctions. In an auction, if there are more agents competing for the same resources, the competitiveness
increases (typically leading to higher prices). In contrast, this thesis considers competitiveness between
each pair of agents, which results from incompatibilities between their respective preferences. More
compatible preference profiles enable more satisfying (i.e. closer to a utility of 1 for both agents)
outcomes, and therefore a less competitive scenario.
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Name Year Domain Size Size Class
Competitiveness
Value Class

NiceOrDie 2011 3 small 0.840 high

Fifty fifty 2012 11 small 0.707 high

Laptop 2011 27 small 0.160 low

Flight Booking 2012 36 small 0.281 medium

Rental House 2012 60 small 0.327 high

Barter 2012 80 small 0.492 high

Outfit 2012 128 small 0.198 low

Itex vs Cypress 2010 180 small 0.431 high

Housekeeping 2012 384 medium 0.272 medium

IS BT Acquisition 2012 384 medium 0.117 low

Airport Site Selection 2012 420 medium 0.285 medium

England vs Zimbabwe 2012 576 medium 0.272 medium

Barbecue 2012 1440 medium 0.238 medium

Grocery 2011 1600 medium 0.191 low

Phone 2012 1600 medium 0.188 low

Amsterdam Party 2011 3024 medium 0.223 medium

Fitness 2012 3520 large 0.275 medium

Camera 2012 3600 large 0.218 low

Music Collection 2012 4320 large 0.150 low

ADG 2011 15625 large 0.092 low

Energy (small) 2012 15625 large 0.430 high

Supermarket 2012 98784 large 0.347 high

Travel 2010 188160 large 0.230 medium

Energy 2012 390625 large 0.525 high

Table 4.1: Scenario characteristics.

these parameters were considered to be part of the scenario, a total of 3 ∗ 3 ∗ 24 = 216

scenarios are used.

4.2 Spitefulness

We begin by carrying out experiments to determine the most suitable value for the

spitefulness parameter, s. For these experiments, in order to avoid tuning our strategy

to the scenarios used in the rest of our evaluation (presented in Section 4.1) we used a

different set of scenarios. As opponents, we used the agents from ANAC 2012.

Specifically, we created a set of variants of the IAMhaggler2012 agent, each with a

different value of s ∈ {0, 1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3}. For each of these variants, we ran negotiations

against all 7 opponents, in all scenarios and we calculated the tournament scores for

each agent.
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Figure 4.1: Average utilities achieved in 8-player tournaments, for different spiteful-
ness values, s. Meta-Agent is omitted from this plot as its utility was considerably lower
than that of the other agents, but showed a similar, decreasing trend to those of the

opponents.

Figure 4.1 shows these tournament scores. The results reveal that, as s increases (and so

our agent becomes more spiteful), the average utility of each of the opponents decreases.

However, the average utility of our agent also decreases, and at a much greater rate.

This is because, by being more spiteful, our agent achieves better agreements, but less

often, and each time it fails to reach an agreement, a significant loss of utility is incurred

by both negotiating parties. Our agent can obviously only affect the utility achieved

in negotiations that it participates in. In any tournament, our agent is obviously able

to have a huge effect on its score, but in a tournament setting with n players, it only

participates in 1
n−1 of the negotiations which affect any of its n − 1 opponents, and

therefore can only affect 1
n−1 of any individual opponent’s score. Therefore, by taking a

more spiteful approach and failing to reach as many agreements, our agent significantly

decreases its score whilst having relatively little effect on each opponent.

To confirm this, we consider the smallest possible ‘tournament’, with just 2 players.

In such a tournament, our agent participates in all negotiations, and is therefore able

to equally affect its score and that of its opponent. We create an opponent which

represents all 7 ANAC 2012 opponents by averaging over the scores of all of those agents

in negotiations against IAMhaggler2012. Figure 4.2 shows the result in this setting. In

common with the larger tournament, we see the utilities of both agents being reduced
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Figure 4.2: Average utilities achieved in 2-player tournaments, for different spiteful-
ness values, s.

by more spiteful agents. However, in contrast, we see that, in this 2 player tournament,

the utility of our opponent decreases more rapidly than for our agent. Therefore in this

setting, a more spiteful approach is more desirable as we attempt to maximise our score

relative to that of the opponents.

If we consider the scenarios with slight discounting (δ = 0.75) and a small utility of

conflict (uα = 0.25), we see that altering the spitefulness parameter can affect whether

or not our utility exceeds that of the opponent. In particular, Figure 4.3 shows that if

s < 1
4 our agent is slightly beaten by its opponent, but for s > 1

4 , our agent slightly

beats its opponent.

These results show that, against a single opponent, it is effective to take a spiteful ap-

proach in order to beat that opponent. However, in a tournament with many opponents,

it is detrimental to use such an approach. Therefore, in the remainder of this chapter

(where we consider negotiation tournaments with many players), we use a non-spiteful

version of our agent (with s = 0).

4.3 Results of the Automated Negotiating Agents Compe-

titions

In this section, we briefly present the results of the 2010 (Section 4.3.1), 2011 (Sec-

tion 4.3.2) and 2012 (Section 4.3.3) editions of the Automated Negotiating Agents Com-

petition, which the agents we developed participated in.
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Figure 4.3: Average utilities achieved in 2-player tournaments (with δ = 0.75 and
uα = 0.25), for different spitefulness values, s.

4.3.1 ANAC 2010

The first Automated Negotiating Agents Competition (ANAC 2010) was held at the

9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2010, Toronto, Canada). The competition consisted of a tournament between 7 agents

from 5 institutions (as listed in Table 4.2). The strategy described in Section 3.7.1

was entered under the name ‘IAMhaggler’, whilst the IAMcrazyHaggler2010 strategy

described in Section 3.7.4 was entered under the name ‘IAMcrazyHaggler’.

During the competition, negotiation sessions were run using the Genius environment

(see Section 2.2.1). These sessions were run between all two-party combinations of the 7

agents, excluding self-play. Each pair of agents negotiated using each preference profile

in the scenario, resulting in a total of 42 sessions per scenario.

Agent Name(s) Affiliation

Agent K
Nagoya Institute of Technology, Japan

Nozomi

Yushu University of Massachusetts Amherst, USA

IAMhaggler
University of Southampton, UK

IAMcrazyHaggler

FSEGA Babes Bolyai University, Romania

AgentSmith Delft University of Technology, Netherlands

Table 4.2: Participants in the Automated Negotiating Agents Competition 2010.
Source: Baarslag et al. (2010)
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Rank Agent Itex - Cypress England - Zimbabwe Travel Mean

1 Agent K 0.901 0.712 0.685 0.766

2 Yushu 0.662 1.000 0.250 0.637

3 Nozomi 0.929 0.351 0.516 0.599

4 IAMhaggler 0.668 0.551 0.500 0.573

5 FSEGA 0.722 0.406 0.000 0.376

6 IAMcrazyHaggler 0.097 0.397 0.431 0.308

7 Agent Smith 0.069 0.053 0.000 0.041

Table 4.3: Scores achieved in the Automated Negotiating Agents Competition 2010.
Source: Baarslag et al. (2010)

Table 4.3 shows the scores achieved by each agent that participated in the competi-

tion. The winner was Agent K, developed at the Nagoya Institute of Technology, which

achieved an average score of 0.766. Our agent, IAMhaggler2010, performed fairly con-

sistently across the scenarios, finishing in third place in the England vs Zimbabwe and

Travel scenarios, and in fourth place in the Itex vs Cypress scenario. Overall, it finished

in 4th place. Despite the simplicity of our additional agent, IAMcrazyHaggler2010, it

outperformed some of the other agents, particularly in the larger two scenarios, where

it finished in 4th and 5th place.

4.3.2 ANAC 2011

A total of 18 agents, from 7 institutions were entered into the second Automated Ne-

gotiating Agents Competition (ANAC 2011), which was held at the 10th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011, Taipei, Tai-

wan). Due to the large number of participants, the competition consisted of a qualifying

round, and a final containing the top 8 agents from the qualifying round. Our agent,

IAMhaggler2011, successfully reached the final and went on to finish in third place. Our

additional agent, IAMcrazyHaggler2011 did not qualify for the final, but finished in 16th

place. The results of the final round are given in Table 4.4. It should be noted that

there is little difference amongst the results of the agents which finished in 4th, 5th and

6th places.

4.3.3 ANAC 2012

A total of 17 agents, from 8 institutions were entered into the third Automated Ne-

gotiating Agents Competition (ANAC 2012), which was held at the 11th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012, Valencia,

Spain). In common with ANAC 2011, due to the large number of participants, the com-

petition again consisted of a qualifying round, and a final containing the top 8 agents
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Rank Agent Name Affiliation Score

1 HardHeaded TU Delft, Netherlands 0.743
2 Gahboninho Bar-Ilan University, Israel 0.728
3 IAMhaggler2011 University of Southampton, UK 0.683
4 BRAMAgent Ben-Gurion University of the Negev, Israel 0.675
5 AgentK Nagoya Institute of Technology, Japan 0.672
6 TheNegotiator Delft University of Technology, Netherlands 0.671
7 Nice Tit for Tat Agent Delft University of Technology, Netherlands 0.665
8 ValueModelAgent Bar-Ilan University, Israel 0.607

Table 4.4: Scores achieved in the final round of the Automated Negotiating Agents
Competition 2011.

Rank Agent Name Affiliation Score

1 CUHKAgent Chinese University of Hong Kong 0.626±0.001

2 AgentLG Bar-Ilan University, Israel 0.622±0.001

3-4 OMACagent Maastricht University, Netherlands 0.618±0.001

3-4 TheNegotiator Reloaded Delft University of Technology, Netherlands 0.617±0.001

5 BRAMAgent2 Ben-Gurion University of the Negev, Israel 0.593±0.001

6 Meta-Agent Ben-Gurion University of the Negev, Israel 0.586±0.001

7 IAMhaggler2012 University of Southampton, UK 0.535±0.000

8 AgentMR Nagoya Institute of Technology, Japan 0.328±0.001

Table 4.5: Scores achieved in the final round of the Automated Negotiating Agents
Competition 2012, including 95% confidence intervals.

from the qualifying round. Our agent, IAMhaggler20122, successfully reached the final

and went on to finish in seventh place. Our additional agent, IAMcrazyHaggler2012

also qualified for the final (in a lower position than IAMhaggler2012), but we chose to

withdraw it from the final. The results of the final round are given in Table 4.5. The

statistical significance of the results was calculated using Welch’s t-test (Welch, 1947)

to test for the null hypothesis, given the mean, variance and number of results in our

sample. Welch’s t-test is an extension of Student’s t-test (Student, 1908) for comparing

samples in which the variance may differ, as in the results we consider. Using this test, it

was found that the agents which finished in 3rd and 4th places had scores that were not

statistically significantly different from each other. Therefore both agents were awarded

a prize for finishing in joint third place. Differences between all other positions were

found to be statistically significant.

Having discussed the results of recent international negotiating agent competitions, our

evaluation now focuses on the results of our own experiments, firstly considering the

performance of agents in self play.

2In the competition, a preliminary version of IAMhaggler2012 was used, which did not set the reser-
vation value depending on the scenario, as described in Section 3.6.
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4.4 Self Play

Whilst our strategies are designed for negotiations against an unknown opponent, since

that opponent may be using a similar, or even the same strategy as our agent, it is

important that our strategy performs well even in self-play. Therefore, we begin our

evaluation by considering the performance of our strategy in negotiations where the

opponent uses the same strategy as our agent. In such a setting, it may be possible that

a ‘tough’ strategy, which does not concede at all, would fail to reach agreement with a

similar agent, even though it may perform well if enough of the other strategies concede

far enough to reach agreement with it. As an example, IAMcrazyHaggler2010 proposes

offers which have a utility greater than 0.95, and accepts those with a utility greater than

0.90. In many of the domains we consider, there are no outcomes that give one agent

a utility of above 0.95 while the other achieves more than 0.9. Consequently, in these

domains, IAMcrazyHaggler2010 will be unable to reach an agreement. By evaluating

the agents in self-play, we show the co-operativeness of various strategies.

For each agent, we run a single negotiation for each scenario and the mean score of the

two agents is then taken. This is repeated 3 times in order to increase the confidence

of the results. Table 4.6 shows these results, for all agents, averaged across all 216

scenarios. The 95% confidence intervals are also given.

Of all of the agents tested in this part of the evaluation, it was our agent, IAMhag-

gler2012 which achieved the highest score. Specifically, it reached a utility 87.0% of

the maximum possible.3 By analysing this further, we find that the raw utility (before

discounting) of the outcomes reached by IAMhaggler2012 was 94.4% of the maximum

possible. Only AgentLG performed significantly better under this measure, achieving

95.6% of the maximum possible. Not only does it reach highly efficient agreements, it

also does so in reasonable time. Specifically, the average time of agreement (or conflict)

of our agent was 0.50 (i.e. half way to the negotiation deadline). Compared to the

other agents, only the IAMcrazyHaggler2012 agents reached earlier agreements on av-

erage, with AgentLG’s average time of agreement being 0.76. Overall, in self-play, both

instances of IAMhaggler2012 are trying to concede as a best response to their oppo-

nent, and this feedback loop results in relatively fast concession which leads to an early

agreement which is also quite efficient.

In this evaluation, we included three variants of IAMcrazyHaggler2012, each with a

different threshold value, Umin ∈ {0.7, 0.8, 0.9}. The agent makes offers that lie above

its threshold value and accepts those that lie no lower than 2% below the threshold

3The maximum possible self-play utility is found by taking the average utility of the two parties in
the utilitarian solution to each scenario (i.e. the solution which maximises the sum of the utilities),
averaged over all scenarios. In the scenarios we consider, this value is 0.79.
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Agent Self-play Score % of maximum

Maximum 0 .793 ±0 .000 100 .0 ±0 .0

IAMhaggler2012 0.690 ±0.002 87.0 ±0.2

TheNegotiator Reloaded 0.656 ±0.010 82.7 ±1.2

Meta-Agent 0.649 ±0.012 81.8 ±1.5

IAMcrazyHaggler20120.7 0.645 ±0.013 81.3 ±1.6

AgentLG 0.618 ±0.002 77.8 ±0.2

CUHKAgent 0.603 ±0.009 76.0 ±1.1

OMACagent 0.575 ±0.006 72.4 ±0.7

BRAMAgent2 0.573 ±0.006 72.2 ±0.7

IAMcrazyHaggler20120.8 0.539 ±0.009 67.9 ±1.2

AgentMR 0.263 ±0.001 33.2 ±0.1

IAMcrazyHaggler20120.9 0.249 ±0.001 31.3 ±0.1

Table 4.6: Self-play scores, across all 216 scenarios, with 95% confidence intervals.

value. We found that its results varied considerably according to this parameter. With

a higher threshold, the agent is guaranteed to reach a high valued agreement, if such an

agreement is possible. In contrast, with a lower threshold, the agent is more likely to

reach an agreement, but potentially with lower value.

In more detail, of the 24 base scenarios (as listed in Table 4.1), only 2 of them have

possible outcomes which can be reached by a pair of IAMcrazyHaggler2012 agents with

Umin = 0.9. A further 11 have possible outcomes which can be reached if both agents

have Umin = 0.8, while a further 6 have possible outcomes which can be reached if both

agents have Umin = 0.7. The remaining 5 scenarios do not have outcomes which can

be reached by IAMcrazyHaggler2012 agents with thresholds of at least Umin = 0.7 This

is reflected in the results of IAMcrazyHaggler2012, with the 0.9, 0.8 and 0.7 variants

reaching agreement in 2, 13 and 19 scenarios, respectively.

All variants of IAMcrazyHaggler2012 are able to reach agreements very quickly, on

average, just 1.5% into the negotiation (within 2.7 seconds). A limitation of using such

a fixed strategy as the one used by IAMcrazyHaggler2012 is that its performance depends

highly on the competitiveness of the scenario. In a more competitive scenario, where

there is no outcome for which both agents can achieve a utility above the agent’s fixed

threshold, the self-play score is zero. In contrast, if the scenario is less competitive, the

agreements that are made may not be very efficient, since much of the outcome space

could be accessible above the thresholds of both agents.

One of the requirements of our work was to produce an agent that can perform well in

an environment where the behaviour of the opponent is unknown (Requirement 3). So

far, this evaluation has only considered negotiations in which the strategy used by the
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AgentLG 0.618 0.340 0.650 0.593 0.694 0.593 0.694 0.706
AgentMR 0.309 0.263 0.296 0.288 0.294 0.294 0.350 0.394

CUHKAgent 0.579 0.351 0.603 0.625 0.640 0.620 0.691 0.716
OMACagent 0.600 0.333 0.614 0.575 0.682 0.638 0.676 0.688

IAMhaggler2012 0.633 0.339 0.619 0.576 0.690 0.636 0.643 0.664
BRAMAgent2 0.609 0.345 0.606 0.527 0.646 0.573 0.640 0.657

Meta-Agent 0.601 0.341 0.530 0.539 0.685 0.614 0.649 0.662
TheNegotiator Reloaded 0.646 0.341 0.596 0.589 0.704 0.636 0.663 0.656

Table 4.7: Scores achieved in our experiments, averaged over all scenarios.

opponent is the same as the one used by our agent. Therefore, we now consider the

results of negotiations in which the strategies of the two players differ.

4.5 Extended Evaluation against other ANAC 2012 Agents

Our aim in this section is to evaluate the performance of our strategy against unknown

opponents in a range of scenarios. Specifically, the set of agents that we use in this

evaluation consists of the seven agents submitted by other institutions to ANAC 2012

(as listed in Table 4.5), plus the latest version of our IAMhaggler2012 agent (as described

in Section 3.7.3). The agents have been independently developed and represent the state-

of-the-art in practical strategies for automated negotiation in multi-issue scenarios. The

scenarios that we use are also taken from ANAC 2012, as listed in Table 4.1. These

scenarios vary considerably, in terms of size, competitiveness, discounting factor and

utility of conflict, ensuring that our analysis covers a wide variety of scenarios.

To measure the performance of the various strategies, we first carried out negotia-

tion sessions between all pairs of strategies, in each scenario, using the University of

Southampton’s ‘Iridis’ computing cluster. Each negotiation session ran on a single core

of a 6-core, 2.2 GHz processor, with 2 GB of RAM being allocated to the negotiation

session. Furthermore, in order to reduce the significance of any random behaviour, and

in doing so, create statistically significant results, we repeated each negotiation 3 times.

Therefore, in our experiments, each agent carried out a total of 24 negotiations per pref-

erence profile. To complete the experiment, with 8 agents and 216 scenarios, a total of

8 ∗ 8 ∗ 216 ∗ 3 = 41, 472 negotiation sessions were carried out. We present the score for

each pairing of agents, averaged across all scenarios, in Table 4.7.
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Rank Agent Score

1 AgentLG 0.610 ±0.000

2-3 OMACagent 0.605 ±0.000

2-3 CUHKAgent 0.603 ±0.002

4 TheNegotiator Reloaded 0.597 ±0.002

5 IAMhaggler2012 0.587 ±0.001

6 BRAMAgent2 0.576 ±0.002

7 Meta-Agent 0.567 ±0.003

8 AgentMR 0.318 ±0.001

Table 4.8: Scores across all scenarios, with 95% confidence intervals.

We can use these results to analyse the performance between any pair of agents. We

can also generate tournament results (using the same approach as using the ANAC

competitions) with any subset of the agents, in any individual scenario or set of scenarios.

Specifically, in a tournament, all players negotiate with all other players. Therefore, the

tournament score for player p is given by:∑
q∈P,p6=q U(p, q)

|P | − 1
(4.1)

where U(p, q) is the score that player p achieves when negotiating with player q, and |P |
is the number of players.

In the remainder of this section, we discuss the aggregated results of negotiation sessions

in each of the scenarios we introduced at the start of this chapter. We consider the results

from a range of different tournament settings to demonstrate the aggregated performance

of each agent against a range of state-of-the-art opponents.

4.5.1 Average Results

Table 4.8 shows the average scores achieved by each of the agents, averaged across

all 216 scenarios. This table shows that AgentLG achieved the highest score, with

IAMhaggler2012 finishing in 5th place. The scores of most of the agents are very similar,

with the top 7 scores all being within 0.05 of each other. IAMhaggler2012’s score is only

0.023 less than that of the winner.

We now analyse the results in more detail by considering sub-tournaments which contain

only a subset of the scenarios. Specifically, we use the classifications introduced in

Section 4.1, which partition the scenarios according to their discounting factor, utility of

conflict, competitiveness and domain size. We now analyse each of these classifications

in turn in Sections 4.5.2 to 4.5.5.
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Agent
Score (Rank)

mean δ = 0.50 δ = 0.75 δ = 1.00

AgentLG 0.610 (1) 0.518 (3-4) 0.605 (1) 0.707 (2-3)
OMACagent 0.605 (2-3) 0.510 (5-6) 0.599 (2-3) 0.705 (2-3)
CUHKAgent 0.603 (2-3) 0.526 (2) 0.597 (2-3) 0.686 (4)

TheNegotiator Reloaded 0.597 (4) 0.513 (3-4) 0.550 (7) 0.726 (1)
IAMhaggler2012 0.587 (5) 0.538 (1) 0.569 (5) 0.655 (5-6)
BRAMAgent2 0.576 (6) 0.508 (5-6) 0.593 (4) 0.627 (7)
Meta-Agent 0.567 (7) 0.496 (7) 0.561 (6) 0.645 (5-6)
AgentMR 0.318 (8) 0.337 (8) 0.369 (8) 0.247 (8)

Table 4.9: Scores and ranks across all scenarios, grouped by discounting factor, with
winning scores marked in bold.

4.5.2 Effect of Discounting Factor

In this section, we isolate the effect of the discounting factor on the performance of the

agents by averaging over the results of the scenarios with the same discounting factor.

As mentioned in Section 4.1, the scenarios use discount factors δ ∈ {0.50, 0.75, 1.00}.

Table 4.9 shows the results for each value of δ. A decrease in δ increases the effect of

the discounting and, therefore, the average score of each agent decreases as δ decreases

(except in the case of AgentMR). For all values of δ ∈ {0.50, 0.75, 1.00}, AgentMR finishes

in 8th place, and therefore all other agents achieve a higher score. Furthermore, AgentLG

and CUHKAgent always achieve a higher score than Meta-Agent and BRAMAgent2.

Finally, OMACagent always achieves a higher score than Meta-Agent.

Our agent is the winner of the tournament with the most severe discounting factor (δ =

0.50), achieving a score 2.3% higher than that of the second place agent (CUHKAgent).

For larger (less severe) discounting factors, our agent is less successful, finishing in

5th or 6th place, with scores 6% and 10% below those of the winning agent. Three

different agents (AgentLG, TheNegotiator Reloaded and IAMhaggler2012) each win the

tournament for one of the discounting factor values used.

The reason for our strong performance in such scenarios is that, when discounting is

severe, there are considerable benefits to reaching an early agreement (or in cases where

the utility of conflict is high, early conflict). By considering the effect of discounting

on the value of future offers, IAMhaggler2012 generally concedes more quickly in highly

discounted scenarios, thereby reaching early agreements with a relatively high discounted

utility. On the other hand, in less severely discounted scenarios (including those with no

discounting), due to its adaptiveness to the behaviour of the opponents, IAMhaggler2012

takes an approach which is more concessive than necessary, therefore it is outperformed

by a number of other strategies.
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Agent
Score (Rank)

mean uα = 0.00 uα = 0.25 uα = 0.50

AgentLG 0.610 (1) 0.594 (1) 0.610 (1) 0.626 (1-3)
OMACagent 0.605 (2-3) 0.585 (2-3) 0.602 (2-3) 0.627 (1-3)
CUHKAgent 0.603 (2-3) 0.585 (2-3) 0.601 (2-3) 0.623 (1-4)

TheNegotiator Reloaded 0.597 (4) 0.575 (4-5) 0.595 (4) 0.620 (3-4)
IAMhaggler2012 0.587 (5) 0.575 (4-5) 0.578 (5-6) 0.609 (5)
BRAMAgent2 0.576 (6) 0.560 (6) 0.575 (5-6) 0.593 (7)
Meta-Agent 0.567 (7) 0.540 (7) 0.563 (7) 0.599 (6)
AgentMR 0.318 (8) 0.192 (8) 0.317 (8) 0.444 (8)

Table 4.10: Scores and ranks across all scenarios, grouped by utility of conflict, with
winning scores marked in bold.

4.5.3 Effect of Utility of Conflict

We now consider the effect of the utility of conflict on the agents, using the same tech-

nique as used for the discounting factor. Our scenarios have utility of conflict values

uα ∈ {0.00, 0.25, 0.50} and the results for each of these values are shown in Table 4.10.

Unsurprisingly, the scores achieved by all agents tend to increase as the utility of conflict

increases.

For all values of uα ∈ {0.00, 0.25, 0.50}, our agent finished between 4th and 6th place,

with similar performance being observed regardless of the utility of conflict. The top

agent overall (AgentLG) won the tournament regardless of the utility of conflict value,

with the agents which finished in joint 2nd place overall (CUHKAgent and OMACagent)

also achieving joint first place in the tournament with the highest utility of conflict

(uα = 0.50).

In Table 4.11, we consider the proportion of negotiations which ended with a specific

agent sending an End message to terminate the negotiation before the deadline4. Only 5

of the 8 agents were observed to send End messages. Specifically these were OMACagent,

TheNegotiator Reloaded, IAMhaggler2012, BRAMAgent2 and Meta-Agent. As expected,

for each agent, the number of End messages did not decrease as uα increased and no

agents sent End messages (except as noted in footnote 4).

4.5.4 Effect of Competitiveness

Table 4.12 shows the results of the agents in scenarios from each competitiveness class.

As can be seen, more competitive domains result in lower average scores. Furthermore,

the top three agents overall (AgentLG, CUHKAgent and OMACagent) each win in at

4Note that here we only consider End messages which were sent at least 1 second before the deadline.
Some agents were found to send End messages in the final second when the discounting factor and utility
of conflict parameters made it irrational to do so.
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Agent

Percentage of scenarios ending
in conflict

uα = 0.00 uα = 0.25 uα = 0.50

AgentLG 0 0 0
OMACagent 0 0 1.2%
CUHKAgent 0 0 0

TheNegotiator Reloaded 0 0 5.2%
IAMhaggler2012 0 6.3% 26.5%
BRAMAgent2 0 0 2.4%
Meta-Agent 0 0.5% 6.6%
AgentMR 0 0 0

Table 4.11: End messages sent across all scenarios, grouped by utility of conflict.

Agent
Score (Rank)

mean C(O) ≤ 0.22
0.22 < C(O)

0.30 < C(O)
C(O) ≤ 0.30

AgentLG 0.610 (1) 0.723 (3) 0.631 (1-2) 0.476 (2)
OMACagent 0.605 (2-3) 0.708 (4-5) 0.621 (2-4) 0.484 (1)
CUHKAgent 0.603 (2-3) 0.735 (1) 0.626 (1-4) 0.449 (4)

TheNegotiator Reloaded 0.597 (4) 0.732 (2) 0.625 (2-4) 0.432 (6)
IAMhaggler2012 0.587 (5) 0.704 (4-5) 0.599 (5) 0.458 (3)
BRAMAgent2 0.576 (6) 0.696 (6-7) 0.589 (6-7) 0.443 (5)
Meta-Agent 0.567 (7) 0.695 (6-7) 0.588 (6-7) 0.419 (7)
AgentMR 0.318 (8) 0.416 (8) 0.290 (8) 0.246 (8)

Table 4.12: Scores and ranks across all scenarios, grouped by competitiveness, with
winning scores marked in bold.

least one competitiveness class. Our agent’s best performance is in the highly competi-

tive class, where it finishes in 3rd place. In highly competitive scenarios, it is essential

for the participants to concede enough in order to reach an agreement. Due to the adap-

tiveness of IAMhaggler2012 towards its opponent’s behaviour, it is very good at ensuring

that it concedes enough so as to reach an agreement. However, in less competitive sce-

narios it may concede too quickly, or too far than is necessary to reach an agreeement,

since it fails to consider the effect that its behaviour can have on an adaptive opponent.

Specifically, if the opponent is adaptive (as many of them are), IAMhaggler2012 could

benefit from taking a less concessive approach than it currently does. This benefit would

be particularly noticeable in less competitive scenarios.

4.5.5 Effect of Domain Size

We now consider the performance of the agents depending on the size of the scenario’s

outcome space. Table 4.13 shows the results of the agents in scenarios from each size

class. The top four agents overall (AgentLG, CUHKAgent, OMACagent and TheNego-

tiator Reloaded) each win in at least one size class. Our agent’s best performance is in

the scenarios with the smallest outcome spaces, where it finishes in joint 2nd place.
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Agent
Score (Rank)

mean |O| ≤ 200
200 < |O|

3500 < |0||O| ≤ 3500

AgentLG 0.610 (1) 0.534 (2-4) 0.668 (1-3) 0.627 (1)
OMACagent 0.605 (2-3) 0.547 (1) 0.659 (4) 0.608 (2-3)
CUHKAgent 0.603 (2-3) 0.538 (2-4) 0.670 (1-3) 0.602 (3-4)

TheNegotiator Reloaded 0.597 (4) 0.517 (6) 0.669 (1-3) 0.604 (2-4)
IAMhaggler2012 0.587 (5) 0.535 (2-4) 0.640 (5-6) 0.586 (5)
BRAMAgent2 0.576 (6) 0.526 (5) 0.632 (6-7) 0.570 (6)
Meta-Agent 0.567 (7) 0.512 (7) 0.634 (5-7) 0.556 (7)
AgentMR 0.318 (8) 0.326 (8) 0.338 (8) 0.289 (8)

Table 4.13: Scores and ranks across all scenarios, grouped by size, with winning scores
marked in bold.

By considering the performance of the agents in sub-tournaments consisting of various

classes of scenario, we observe that, due to the way in which it adapts to the discount-

ing factor and the behaviour of the opponents, our agent is particularly well suited to

scenarios which are significantly affected by time discounting, as well as those which are

highly competitive. These represent the more challenging scenario classes, since, in time

discounted domains, it is desirable to reach agreements without unnecessary delay, and

furthermore, in highly competitive domains there is a careful balance to be had between

not conceding enough, risking conflict and conceding too much, reaching an agreement

with low utility.

4.5.6 Pareto Efficiency of Agreements

In order to evaluate the efficiency of the strategies (Requirement 2), we consider the

Pareto efficiency of the agreements reached by the agents. This is determined by mea-

suring the shortest Euclidean distance from the agreement point to the Pareto frontier.

As described in Section 2.2.3, the Pareto frontier is a line connecting all Pareto efficient

outcomes. Table 4.14 shows that the average distance to the Pareto frontier for all

agents is quite similar, ranging from 0.015 to 0.022, with our agent’s agreements being,

on average, a Euclidean distance of 0.018 from the Pareto frontier. However, in terms of

the agreements that were furthest from the Pareto frontier, this measure varies amongst

the different agents. Specifically, all of the agents have least efficient agreements between

0.164 and 0.536 from the Pareto frontier, but in this respect, our agent was one of the

better performers, with its least efficient agreement being just 0.214 from the Pareto

frontier. Furthermore, in total, 14.1% of agreements were on the Pareto frontier and

for negotiations containing our agent, this figure was slightly higher at 14.9%. This

shows that, despite using a random approach to selecting offers at a given utility level

(rather than by modelling the opponent’s utility function) our agent is still able to reach

agreements that are of similar efficiency to those of the other agents.
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Agent Mean distance Worst distance Percentage at frontier

AgentLG 0.016 0.330 14.8%

OMACagent 0.017 0.223 17.0%

CUHKAgent 0.018 0.449 15.9%

TheNegotiator Reloaded 0.019 0.329 11.2%

IAMhaggler2012 0.017 0.214 14.9%

BRAMAgent2 0.022 0.203 15.0%

Meta-Agent 0.019 0.536 13.1%

AgentMR 0.015 0.164 10.8%

Table 4.14: Pareto efficiency of agreements.

In summary, our agent performs well in a wide variety of scenarios. It reaches agree-

ments which are generally close to Pareto efficient, and its average utility is 96% of that

of the overall winner, AgentLG. In contrast, the agent with the worst overall utility,

AgentMR only achieves an average utility which is 52% of that of the overall winner.

In a number of subtournaments, where the scenarios exhibit specific characteristics, our

agent outperforms many of its opponents. Specifically, this is the case when the sce-

nario is highly discounted (δ = 0.5), and, to a lesser extent, when the scenario is small

|O| < 200 or is highly competitive (C(O) > 0.30).

4.6 Offer Rate

In order to measure the tractability of our strategy (Requirement 7), we also consider

the number of offers made per second by each agent. This gives an indication of the

amount of time taken to compute an offer, and can be easily be compared across different

agents and domains. We calculate this value for negotiations where the opponent used

the same strategy, thereby ensuring that this measure is not biased by the offer rate of

the opponent.

In our experiments, we imposed a minimum amount of time between each offer. Specifi-

cally, we set this to 10ms, therefore limiting the number of offers per second to 100. The

reason for this restriction is twofold. Firstly, it attempts to bring the conditions of our

experiments more in line with those used in ANAC 2010 and ANAC 2011. Specifically,

during these earlier competitions, the Genius platform was used in a standard mode

which displays the negotiation trace of the agents as the negotiation progresses. The

updating of this graphical element caused a delay in the exchange of offers, which, in a

scenario with a deadline (as in all of the scenarios we consider) can have a significant

effect on the outcome. In contrast, during our experiments, to enable the negotiations

to be carried out on the computing cluster, we used a modified version of the Genius

platform, which lacked the graphical element, and therefore lacked this delay. Without
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Figure 4.4: Offer rates (in offers per second) achieved by each agent, for scenarios
with varying sizes of outcome spaces.

adding in the restriction, some of the agents are capable of making thousands of offers

per second. Secondly, having such a delay is a natural model for many practical settings

in which automated negotiation is likely to be used. For example, agents which negotiate

over the internet will be restricted by the communication delay between them.

In more detail, Figure 4.4 shows the offer rate of each agent depending on the size of

the scenario’s outcome space. It shows that our agent has a considerably lower offer

rate than that of the other agents. Specifically, the offer rate of our agent is between 14

and 49 offers per second, across all scenarios. In contrast, all of the other agents achieve

offer rates in excess of 80 offers per second across many of the scenarios, and particularly

those with smaller domains. Despite our agent being the slowest to produce offers, it is

still able to produce many offers per second, even in the largest of the scenarios that we

consider, thereby demonstrating that the approach it uses is computationally tractable.

4.7 Empirical Game Theoretic Analysis

A limitation of the tournament analysis that we performed as part of Section 4.5 is that

it only considers the performance in a fixed set of tournaments. To demonstrate the

stability of our strategies in a wide variety of tournaments, it is necessary to consider

further tournaments in which the mix of strategies is different. We can then evaluate
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A B C

A 0.9 0.3 0.5

B 0.1 0.2 0.3

C 0.2 0.4 0.5

Table 4.15: Payoff matrix in an example game. The rows represent the different
strategies an agent can take, whilst the columns represent the different strategies the

opponent can take.

whether our strategy wins in such tournaments, and also identify whether any of the

agents in those tournaments have an incentive to switch to a different strategy. To this

end, we perform an empirical game theoretic analysis of the tournament results, using

the technique introduced in Section 2.2.4. As already stated, empirical game theoretic

analysis uses techniques from game theory in order to analyse empirical games, i.e.

games in which the payoffs are determined by observations of the game (Wellman, 2006)

rather than being part of the definition of the game. In this section, we first describe

the methodology that we use in our empirical game theoretic analysis (Section 4.7.1),

before presenting the results of that analysis (Section 4.7.2).

4.7.1 Methodology

In common with the approach developed by Jordan et al. (2007), we consider single-

agent deviations, i.e. where there is an incentive for one agent to change its strategy,

assuming that all other agents maintain their current strategy. We use this technique

to search for Nash equilibria, which are defined as a combination of strategies such that

there is no incentive for any of the players to change their strategy, given the strategies

of the other players.

As an example, consider a tournament which consists of a two-player game between all

pairs of players, as in the standard setup used in the Automated Negotiating Agent

Competitions. Each player chooses the same strategy in all games in the tournament.

Suppose that there is a choice of three known strategies, labelled A, B and C. Fur-

thermore, suppose that the payoffs of a single game between two players is given by

Table 4.15. In practice, each cell in this table is computed according to the average over

the empirical outcomes of a number of negotiation sessions between a pair of agents

which use the strategies corresponding to that cell.

Using the example, in a tournament of 5 players, if all players adopt strategy B, they

will all achieve the score of 0.8 (0.2∗4). In contrast, if four of the players choose strategy

B, but one of them chooses strategy C, the one choosing C will achieve a score of 1.6

(0.4 ∗ 4), whilst those choosing B will achieve a score of 0.9 (0.2 ∗ 3 + 0.3 ∗ 1). This
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shows that there is an incentive, in a tournament where all players use strategy B, for

one of the players to switch to C. By repeating this process it is possible to identify all

single-player deviations, and consequently, Nash equilibria.

We present the deviations in our example game in Figure 4.5. Each node represents a

possible mixture of the three strategies in a tournament. The vertices of the triangle

represent strategy mixtures in which all agents play the same strategy. Furthermore,

each arrow indicates that if a single agent deviates from the source mixture to the

target mixture, then the additional payoff to that agent deviating will be positive, and

statistically significantly different from zero. From any source mixture we only show

the deviation (or deviations) which offer the highest such additional payoff. Therefore,

we refer to these deviations as statistically significant single-agent best deviations. To

measure the statistical significance of a deviation, we use Welch’s t-test. Furthermore,

the shaded strategy at each node represents the strategy which achieves the highest

score and the Nash equilibria are the nodes which have no outgoing arrow. Our example

in Figure 4.5 shows two Nash equilibria, in which all agents use strategy A or in which

all agents use strategy C.

As well as looking at the deviations between different combinations of strategies, we can

also consider the robustness of a Nash equilibrium by measuring the size of the basin

of attraction. By this, we mean the number of strategy combinations that have a path

of deviations leading to a specific Nash equilibrium. When doing so, it is necessary to

consider that the strategy mixtures in Figure 4.5 are unevenly represented. Specifically,

if all of the players were to choose a strategy at random (with equal probability), not all

of the combinations would occur with equal probability. For example, there is only one

way in which all six players could choose A, which we denote AAAAAA. In contrast,

there are six ways that one of them can choose B, with the remaining four choosing A,

which we could denote BAAAAA,ABAAAA, ..., AAAAAB. When calculating the size

of the basin of attraction, we take this unevenness into account. In general, the relative

measure of a node’s contribution to this size is given by n!
a!b!c! where n is the number of

agents in the tournament and a, b and c are the number of agents which use strategies

A, B and C, respectively.

In the example given in Figure 4.5, 21 of the nodes have their only path of deviations

leading to the Nash equilibria at AAAAA. These 21 nodes represent 665 of the 729,

or 91% of the possible combinations. Therefore, the AAAAA equilibria has a basin of

attraction which is 91% of the total space. A further Nash equilibria exists, at CCCCC,

however this only represents 1 (or 0.13%) of the possible combinations. The remaining

63 (or 8.6%) of the possible combinations contain paths of deviation leading to both

Nash equilibria. Since the AAAAA equilibria has the larger basin of attraction, it is
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Figure 4.5: Deviation in example game, according to the payoff matrix in Table 4.15.
Each node represents a combination of strategies in use in a tournament. Each node is
a table, which displays, on the second row, the number of agents which use the strategy
indicated on the first row. Each arrow is a single-player deviation which improves the
score of the deviating player. The shaded strategies at each node indicate the strategy

that achieves the highest score in that tournament.

considered to be the stronger of the two equilibria, indicating that strategy A is a strong

choice. Furthermore, from Figure 4.5, we can also observe that if any player chooses

strategy A, all agents should choose this strategy.

4.7.2 Results

To highlight some interesting effects which occur for certain sub-tournaments, we now

perform a similar deviation analysis for the top three strategies, according to their

average score across all scenarios. Therefore, we consider AgentLG (L), OMACagent (O)

and CUHKAgent (C). Figure 4.6 shows the deviation analysis for this set of strategies.

It shows that, from every 8-player tournament in which each agent selects one of the top

three strategies, there exists a path of statistically significant deviations which lead to

a single Nash equilibrium. This equilibrium is one in which all agents use the AgentLG

strategy.

We also perform a similar analysis for each of the sub-tournaments of scenarios classified

by discounting factor, utility of conflict, competitiveness and size, again considering the
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Figure 4.6: Deviation in the overall tournament (over all scenarios) for the strategies
of AgentLG (denoted L), OMACagent (denoted O) and CUHKAgent (denoted C). The

shaded strategies are the ones which achieve the highest scores.

top three agents in the respective sub-tournament. Our discussion focuses on the sub-

tournaments which show more interesting results under this analysis. Specifically, we

consider the sub-tournaments which contain scenarios with the following characteristics:

1. high discounting (δ = 0.50) (IAMhaggler2012, CUHKAgent, AgentLG/TheNegotiator

Reloaded)

2. low discounting (δ = 0.75) (AgentLG, OMACagent, CUHKAgent)

3. no discounting (δ = 1.00) (TheNegotiator Reloaded, AgentLG, OMACagent)

4. highly uncompetitive (C(O) ≤ 0.22)5 (CUHKAgent, TheNegotiator Reloaded, AgentLG)

5. highly competitive (0.3 < C(O)) (OMACagent, AgentLG, IAMhaggler2012)

Since the results in these sub-tournaments are generated as averages over a smaller

set of scenarios, the values have a greater variance. Consequently, it is likely that a

number of deviations will not provide a statistically significant change in utility for the

deviating player. To ensure that our analysis continues to identify equilibria in these

5C(O) is the competitiveness of the scenario, as defined in Section 4.1
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circumstances, we include these deviations, but identify them in our figures using a

dashed line rather than a solid one.

In scenarios with high discounting (δ = 0.50), there are two agents (AgentLG and

TheNegotiator Reloaded) which achieve joint 3rd place. Therefore, for each of these

strategies, we perform a separate analysis (Figures 4.7(a) and 4.7(b)). In each case we

find two Nash equilibria, in which all agents use the IAMhaggler2012 strategy, or in

which all agents use the CUHKAgent strategy. Furthermore, if we perform the analysis

with the top four strategies, the set of Nash equilibria is the same. Since we have

multiple equilibria, we can consider the size of the basin of attraction of each equilibria.

With either AgentLG or TheNegotiator Reloaded present, IAMhaggler has the largest

basin of attraction. When AgentLG is present, the IAMhaggler2012 equilibrium’s basin

of attraction represents 92% of the possible tournaments. When TheNegotiator Reloaded

is present instead, this figure is reduced to 53%. In either case, from any tournament

in which at least 3 of the 8 agents use IAMhaggler2012’s strategy, the only path of best

single-agent deviations leads to the Nash equilibrium containing only that strategy.

With low discounting (δ = 0.75), we find a single Nash equilibrium (Figure 4.7(c)) in

which all agents use the AgentLG strategy. With no discounting (δ = 1.00), we again find

a single Nash equilibrium (Figure 4.7(d)), in which half of the agents use TheNegotiator

Reloaded’s strategy and the other half use AgentLG’s strategy.

In the highly uncompetitive scenarios (C(O) ≤ 0.22), we find a single Nash equilibrium

(Figure 4.7(e)) in which all three strategies are present, with 4 agents using TheNego-

tiator Reloaded’s strategy, 3 using AgentLG’s and 1 using CUHKAgent’s. In the highly

competitive scenarios (0.3 < C(O)), we find two Nash equilibria (Figure 4.7(f)), each

with a mixture of strategies. The one with a basin of attraction of 80% of the tourna-

ments consists of 6 agents using the IAMhaggler2012 strategy, while the remaining 2 use

AgentLG’s. The other equilibrium consists of 5 agents using AgentLG’s strategy, whilst

the remaining 3 use OMACagent’s.

Overall, our empirical game theoretic analysis shows that, whilst in some sub-tournaments,

there exists an equilibrium in which all agents use the strategy with the highest tour-

nament score, there are others where such an equilibrium does not exist. Instead, in

these sub-tournaments, we find equilibria consisting of multiple different strategies. The

analysis also highlights the strength of IAMhaggler2012 in highly discounted scenarios

in that the equilibrium containing only our strategy also have a large basin of attrac-

tion. Specifically, provided at least 3 out of the 8 participants in the tournament use

our strategy, the rest of them also have an incentive to use that strategy.
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(a) δ = 0.50, IAMhaggler2012 (I), CUHKAgent (C) and AgentLG (L)
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(b) δ = 0.50, IAMhaggler2012 (I), CUHKAgent (C) and TheNegotiator Reloaded (N)
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(c) δ = 0.75, AgentLG (L), OMACagent (O) and CUHKAgent (C)

Figure 4.7: Deviation in a range of tournaments (with different subsets of scenarios)
for the top three strategies in the respective tournament. The shaded strategies are the

ones which achieve the highest scores.
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(d) δ = 1.00, TheNegotiator Reloaded (N), AgentLG (L) and OMACagent (O)
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Figure 4.7: Deviation in a range of tournaments (with different subsets of scenarios)
for the top three strategies in the respective tournament. The shaded strategies are the

ones which achieve the highest scores. (continued)



98 Chapter 4 Evaluation of One-to-One Negotiation Agents

4.8 Summary

In this chapter we have shown the performance of our agent against a number of other

state-of-the-art agents across a wide range of scenarios. Specifically, in Section 4.1, we

introduced the scenarios that are used throughout our evaluation. Then, in Section 4.2

we determined how to set our spitefulness parameter, showing the benefits of being

spiteful in negotiation tournaments with only 2 players, but also showing how spiteful

behaviour is detrimental in larger tournaments. Next, in Section 4.3 we briefly presented

the results of the Automated Negotiating Agents Competitions, showing that IAMhag-

gler2012 finished in fifth place in the most recent competition. Then, in Section 4.4,

by considering the behaviour of the strategies in self-play, we have demonstrated the

extreme sensitivity of our fixed strategy (IAMcrazyHaggler) to its acceptance threshold.

Furthermore, we have shown that our adaptive strategy, IAMhaggler2012, outperforms

the other strategies in self-play in many of the domains. In Section 4.5, we considered

the results in negotiations against a range of state-of-the-art agents from the earlier

competition, in order to demonstrate the performance of our agents against unknown

opponents (Requirement 3). In terms of the average utility levels achieved by the agents,

our agent generally performed well by adopting a concession strategy that adapts to the

behaviour of the opponent. In particular, in scenarios where discounting had a signif-

icant effect, its average utility in a tournament setting was shown to be 2.3% higher

than the agent with the second highest average utility. Furthermore, we have shown

that all of the agents, including our own, tend to reach agreements that are Pareto

efficient, and therefore meet Requirement 2. We also show that IAMcrazyHaggler and

IAMhaggler2012 fully meet our requirement for reaching agreements in domains where

the ordering of each issue is unknown (Requirement 5). In Section 4.6, we showed that,

in all of the scenarios that we tested, our agent was able to make a reasonable number

of offers, and its offer rate was not significantly reduced in the scenarios with larger

outcome spaces, showing that its approach is computationally tractable and therefore

meets Requirement 7. By presenting an empirical game theoretic analysis of the top

strategies from a number of different sub-tournaments, in Section 4.7 we have shown

how, in a tournament setting consisting of scenarios where discounting has a significant

effect, where all agents can choose one of the top three strategies in that tournament,

there is a strong incentive for all agents to use our strategy. This result suggests that,

for certain types of scenario, (in particular those with significant discounting) even when

the negotiation environment contains other high performing agents, it is still appropriate

to use the one we have developed.



Chapter 5

Design of Many-to-Many

Negotiation Agents

In the previous two chapters, we have presented the design (Chapter 3) and evalua-

tion (Chapter 4) of our one-to-one negotiation agents. In this chapter, we extend that

work to consider negotiation environments which contain more than two parties. Such

environments contain additional challenges over those present in the two-party ones.

Specifically, each agent needs to carefully coordinate their behaviour against each op-

ponent (Requirement 8). The opponents may vary, in terms of either their preferences

or their behaviour. Furthermore, in some concurrent negotiation settings, it may be

possible for one party to decommit from an existing agreement, subject to payment of

a penalty (Requirement 9).

In the remainder of this chapter, we introduce the problem of concurrent negotiation

that we consider in this work (Section 5.1). We then discuss the approach that we have

developed for coordinating concurrent negotiation with a range of opponents, which

we divide into two major components (Sections 5.2 and 5.3). Then, we discuss how

to handle decommitment (Section 5.4). Finally, we describe the concurrent negotiation

agent that we have formed from these strategies (Section 5.5). We summarise the chapter

in Section 5.6.

5.1 Overview

Many-to-many negotiation, in which a set of parties negotiate with each other is more

complex than a one-to-one negotiation. Specifically, a more advanced negotiation proto-

col is required in order to control the actions of the various parties. The many-to-many
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Figure 5.1: State diagram showing the concurrent negotiation protocol, from the
perspective of a single negotiation thread of agent p.

negotiation protocol we consider in this work is similar to the ones described in An et al.

(2009) and in Nguyen and Jennings (2005). Furthermore, as in Nguyen and Jennings

(2005) we allow for decommitment, subject to a penalty, to allow for more flexibility and

a fair comparison with the benchmark strategy.

In more detail, the negotiation considered in this chapter takes place in multiple, con-

current threads, between pairs of agents. In each of these threads, the agents use an

alternating offers protocol, similar to the one used in the one-to-one negotiations in

Chapter 3. As before, each offer represents a complete package, specifying the values for

all negotiable issues, but with in our concurrent protocol, additional actions are possible.

Specifically, the possible actions are Offer, Accept, Confirm, End and Decommit.

The negotiation begins with the agents exchanging Offer messages. Sending an Of-

fer message in response to an Offer from the opponent constitutes a counteroffer and

implicitly a rejection of the previous offer. If an agent is satisfied with the most recent

Offer it received, it can send an Accept message in order to indicate that it wishes to

form an agreement. Following an Accept message being sent in a negotiation thread,

no further Offer messages can be sent. Figure 5.1 is a state diagram from the per-

spective of a single negotiation thread, showing the messages exchanged and the various

states of the thread.
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In the standard alternating offers protocol, used in Chapter 3, the Accept message

resulted in the formation of an agreement, and marked the end of the negotiation.

In contrast, under the protocol used in this chapter, the Accept message does not

necessarily result in an agreement. Instead, the negotiation moves into a new phase, in

which the only messages allowed are Confirm and End. The Confirm message is used

to indicate that the agent confirms that a binding agreement has been formed, whereas

the End message will abort the negotiation thread.

The reason for including a Confirm message is as follows. Under this protocol, an

agent is allowed to send offers to multiple opponents at once. Therefore, it may find

that, while waiting for a response from them, more than one of these offers are accepted.

If the Accept messages were to form a binding agreement at this point, the agent

may inadvertently reach more than one agreement, and it would need to decommit

from all but one of them, thereby incurring decommitment penalties. In this case, the

Confirm and End messages can be used to select only one of them. Note that an agent

could use this strategically by delaying sending the Confirm message. However, the

agent is expected to confirm the acceptance within a short period of time (at most few

seconds, depending on communication delays), otherwise it becomes invalid. Moreover,

the opponent who sent the acceptance is still free to abort the agreement without penalty

by using the End message. Provided that an agent does not Accept an opponent’s offer

whilst it is waiting for another agent to Confirm an acceptance (or End a negotiation),

the agent can avoid reaching multiple agreements.

In a negotiation where there are multiple opponents, it is possible that, after a binding

agreement is reached, one of the remaining opponents makes (or accepts) an offer that

has a greater utility than that of the existing agreement. In such a situation, it may be

beneficial to accept the new offer, and, at the same time, Decommit from the existing

agreement. In order to discourage the agents from decommiting unnecessarily, we intro-

duce a decommitment penalty, which is paid by the agent that chooses to decommit from

a binding agreement. Without such a penalty, all agreements would essentially become

non-binding, leading to a potentially unstable system. Note that, before a Confirm

message has been sent within a thread, the agreement is not yet binding and so it is

possible for either agent to send an End message to retract the offer without penalty.

In common with the work presented in the previous chapters, in our many-to-many

negotiation scenarios, we also use a deadline and a discounting factor, which are both

common to and known by all agents. As before, they are both measured in real time.

Figure 5.2 shows an example negotiation trace with three agents, where agent a nego-

tiates concurrently with agents b and c. After a sends an offer to b, agent b accepts a’s

offer. Agent a then confirms and an agreement is reached. Agents a and c continue to
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Accepta→b
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Confirma→b
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Confirma→c

Offerc→a
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Agreement 1

Agreement 2

Decommita→b

Figure 5.2: Sequence diagram showing a simplified negotiation trace between three
agents, including two agreements and a decommitment.

negotiate, aiming to find an agreement that is better than the existing one (taking into

account the decommitment penalty). After a total of five offers have been exchanged,

agent c accepts a’s offer. Agent a then confirms this agreement, and simultaneously

decommits from the worse agreement with agent b. In practice, negotiation traces are

likely to be considerably longer.

Having defined a protocol for concurrent negotiation, we now describe the strategy that

we have developed for negotiating under such a protocol. Our strategy can broadly be

split into two major components: the negotiation thread managers which handle the

negotiation with a single opponent (Section 5.2) and the coordinator, which coordinates

the behaviour of the set of negotiation thread managers (Section 5.3), which we now

discuss in turn.

5.2 The Negotiation Thread Managers

The strategy of each negotiation thread manager is an extension of the one-to-one nego-

tiation strategy detailed in Section 3.2.2. In more detail, each thread manager performs

Gaussian process regression in order to predict the future concession of its opponent, i.

The prediction is based on the offers received so far by this opponent, and is updated as

more offers are received. The Gaussian process enables the prediction to be captured in

the form of a probability distribution over the utility, p(u;µi,t, σi,t), for all future time

points, t ∈ [tc, 1] (here, as before, time is normalised such that t = 0 represents the start

of the negotiation and t = 1 represents the deadline). These probability distributions

are then passed on to the coordinator, which uses them (along with those from other
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thread managers) to determine, for each opponent i, the best time, t∗i , at which to reach

an agreement, and the best utility, u∗i , at which the thread manager should aim to reach

the agreement. The way in which the coordinator calculates these values forms a core

part of the negotiation strategy, and is discussed in detail in Section 5.3. For now, we

will simply take these two values as given.

Given its target time, t∗i , and target utility, u∗i , a negotiation thread manager needs to: i)

determine the target utility at which to generate offers and to accept incoming offers right

now and, ii) generate multi-issue offers at the current target utility. Now, to determine

the target utility, uτ , at the current time, tc, each thread manager uses polynomial time-

dependent concession, where the concession rate is set such that the target utility level

reaches u∗i at time t∗i . The time-dependent concession function taken by our many-to-

many negotiation strategy mirrors the one used by our one-to-one negotiation strategies

(described fully in Section 3.2.1). In summary, the target utility is given by:

uτ = U0 − (Umin − U0) ·


tc if 0 ≤ tc < 0.1(
tc(tc − 0.1) + t

1/β′
c (0.2− tc)

0.1

)
if 0.1 ≤ tc < 0.2

t
1/β′
c otherwise

(5.1)

where U0 is the utility of the initial offer, Umin is the agent’s reservation utility (deter-

mined depending on the scenario using the approach described in Section 3.6) and tc is

the current time. β′ is the constrained value of β, given by:

β′ = max (βmin,min (βmax, β)) (5.2)

where βmin and βmax are respectively the minimum and maximum values for β′. In

our agent, we set βmin = 0.01 and βmax = 2.0. The reasons for constraining β in this

way, and for the choice of βmin and βmax are the same as in Section 3.2.1. That is, the

choice of the values themselves are somewhat arbitrary, but the aim is to avoid extreme

behaviour whilst allowing flexibility. Finally, β is given by:

β =
log(t∗i )

log

(
1− u∗i

1− Umin

) (5.3)

where u∗i and t∗i are the target time and utility provided to the negotiation thread

manager.

Finally, since we are concerned with multi-issue negotiation, it is necessary to generate

a multi-issue offer, o, such that U(o) ≈ uτ . To do so, we use the approach described in

Section 3.3.1 which is to generate random offers until one is found which has a utility,
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U(o) ∈ [uτ−0.025, uτ +0.025]. If an offer cannot be found within this range, the range is

expanded, until a solution is found. Furthermore, if the target drops below the highest

value of the offers made by the opponent, we instead propose the package with that

utility that was offered by the opponent, as described in Section 3.3.2. This is since we

assume that, for a set of possible offers with utility greater than uτ , the one which is

most likely to be accepted is the one which has previously been offered by the opponent.

It may be possible to improve the selection of offers by modelling the preferences of

the opponents (specifically, their utility functions over the multiple negotiation issues).

However, due to the real-time aspect to the negotiations we consider, we found that

using this simple, fast approach to selecting an offer produced very good results.

5.3 The Coordinator

The role of the coordinator is to calculate the best time, t∗i , and utility value, u∗i , at

that time, for each thread manager. To do so, it uses the probability distributions re-

ceived from the individual thread managers, which predict future utilities offered by the

opponents. In the following, we use P (u;µi,t, σi,t) to denote the cumulative probability

distribution function, which is the (predicted) probability that the utility of an offer by

opponent i will be at least u at time t, and p(u;µi,t, σi,t) is the corresponding density

function. In addition, recall that the negotiations are many-to-many, and so the op-

ponents may exit the negotiations prematurely if they reach an agreement elsewhere.

Since these values cannot be learned during a single negotiation (but can be learned by

experimentation from repeated negotiations), we assume that the coordinator has prior

knowledge of Pc,i(t, tc), which denotes the probability that opponent i will still be in the

negotiation at time t > tc, given that it is in the negotiation at the current time, tc .

Our approach is based on the one described in Section 3.2.2, but here it has been

extended for negotiations with more than one opponent. In more detail, to find the

optimal strategy, we begin by computing the best time to reach agreement, and then

consider the best utility (or utilities), to offer at that time. We do the first part by

computing the expected utility of an agreement at a given time, and choose the time

with the highest expected utility. Although the protocol allows for decommitment,

when we compute the expected utility, we simplify the equations by implicitly assuming

that we terminate all other threads once an agreement is reached.1 As a result, a single

1In practice, we do continue to negotiate (as explained in Section 5.4) but this is not captured by the
expected utility. In principle, the equations can be extended to include the additional expected utility
from decommitment, but this can become computationally intensive to compute, and we leave this for
future work.
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best time, t∗ ∈ [tc, 1], is computed for all negotiation threads, as follows:

t∗ = argmaxt∈[tc,1]EUrec(t) (5.4)

where EUrec(t) is the expected utility when reaching an agreement at time t, given by:

EUrec(t) =
1

|A|
∑
i∈A

Pc,i(t, tc)

∫ 1

0
p[0,1](u;µi,t, σi,t)D(u, t)du (5.5)

where A is the set of remaining negotiation threads (i.e. those that have not terminated),

and Pc,i(t, tc) is as defined above. Note that the expected utility is computed as the

average expected utility for each thread. This is because, since we implicitly assume no

decommitment, the expected utility assumes we are committed to the first thread that

gives us an agreement. Thus, if multiple opponents were to reach agreements at roughly

the same time, there is an equal probability that any one of those agreements will be

reached.

Given the target agreement time, t∗, we would like to find the optimal utility level for

each thread at which to produce offers. By varying the level in each thread, it is possi-

ble for an agent to concede more towards a specific opponent with which an agreement

seems likely, whilst taking a less concessive approach against other opponents in the

hope that an agreement with a higher utility may be achieved. To this end, we first

specify the expected utility for a given vector of utility levels, one for each (remain-

ing) opponent. We calculate this by assuming that the probability distributions from

the various threads are independently sampled2. Furthermore, as before, we implicitly

assume that no decommitment is allowed.

Given this, the expected utility of proposing offers at utility levels ~u at time t can be

expressed as:

EUoffer(~u, t) =
∑

A′∈P(A)

f(~u,A′)
∏
i∈A′

P (ui;µi,t, σi,t)
∏

i∈A\A′
(1− P (ui;µi,t, σi,t))

 (5.6)

where A is the set of remaining opponents, ui is the utility of the offer made to opponent

i, P(A) is the powerset of A, P (ui;µi,t, σi,t) is the probability that opponent i will

accept an offer of utility ui at time t. Note that the right part of the equation denotes

the probability of reaching an agreement with exactly the agents in the set A′ at time

t. Then, f(~u,A′) is the utility obtained if this occurs. For the same reasons as given

above, since we implicitly assume no decommitment, the utility of this event is given

2Note that this is a simplifying assumption and applies to settings where the opponents have widely
different strategies and/or preferences. In domains where opponents are similar, these distributions tend
to be more correlated.



106 Chapter 5 Design of Many-to-Many Negotiation Agents

by the average of each ui, i ∈ A′ (since, given that all opponents in A′ will accept the

offer, the order in which the opponents accept them is equally likely) written formally

as f(~u,A′) =
∑

i∈A′
ui
|A′| .

Given this, we find the set of best values, ~u∗, to offer to the opponents by maximising

the expected utility. Formally:

~u∗ = argmax~u∈[0,1]|A|EUoffer(~u, t
∗) (5.7)

Since the EUoffer function is nonlinear, we use a nonlinear optimisation package (specif-

ically, the Ipopt interior point optimizer (Wächter and Biegler, 2006), using the HSL

mathematical library (HSL, 2011)) to find the solution to Equation 5.7.

5.4 Handling Decommitment

The scenario that we introduced in Chapter 1 allowed a negotiating party to decommit

from an agreement that they have previously formed, by paying a decommitment penalty.

Therefore, our agent needs a method to decide when to decommit from such agreements.

In order for the agent to benefit from a decommitment, the value of the new agreement

needs to be greater than that of the currently held agreement, plus the decommitment

penalty. Formally:

unew > uexisting + ρ (5.8)

where unew is the utility of the new agreement, uexisting is the utility of the existing

agreement, and ρ is the decommitment penalty.

The benefit b can then be defined as:

b = unew − uexisting − ρ (5.9)

However, if the benefit obtained by accepting the new offer over the existing agreement

is very small, it may not be rational for the agent to accept it. In more detail, the

acceptance of an offer from an opponent leads to the termination of agreements with

that opponent. Therefore, the number of negotiation partners is reduced by one, and

a potential opportunity to reach an even better agreement is lost. Consequently, our

agent will only accept a subsequent agreement if the benefit b is reasonably large.
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Specifically, our agent only accepts subsequent agreements if:

b > (uexisting + ρ) · ι (5.10)

where ι > 0 is a factor which affects the size of the desired benefit. The value of ι should

be small enough such that there can be offers which satisfy the above equation. For

example, if ι = 0.2, ρ = 0.1 and there is an existing agreement with utility uexisting = 0.8,

the agent will only accept subsequent agreements if they have a utility greater than 1.08

(which of course, is not possible). Therefore, if ι is set to a value which is too large, there

may be no possible subsequent agreements, and consequently, no decommitment would

occur. We set ι = 0.1 such that our agent has a desired benefit of at least 10% of the

value of the existing offer plus the decommitment penalty. This means that only when

uexisting > 0.81 (and ρ = 0.1) will our agent no longer be able to accept any subsequent

agreements.3

5.5 Our Many-to-Many Negotiation Agent

We have developed a negotiating agent for use in concurrent negotiation settings, using

the strategies described in Sections 5.2 to 5.4. We refer to this strategy as IAMconcur-

rentHaggler.

In common with our one-to-one negotiation agents, IAMconcurrentHaggler is imple-

mented using the Java programming language, under the framework provided by the

Genius platform. It extends the IAMhaggler2012 agent and therefore uses Commons-

Math: The Apache Commons Mathematics Library4, JAMA, A Java Matrix Package5

and the Gaussian Process Regression for Java library6. Furthermore, as a solver, it uses

the Ipopt interior point optimizer (Wächter and Biegler, 2006), using the HSL mathe-

matical library (HSL, 2011).

5.6 Summary

In this chapter, we have described the negotiating agent that we have designed for use

in concurrent negotiation environments.

3Note that the actual value of ι = 0.1 is somewhat arbitrary and other similar values do not signifi-
cantly affect the performance from our agent.

4http://commons.apache.org/math/
5http://math.nist.gov/javanumerics/jama/
6https://forge.ecs.soton.ac.uk/projects/gp4j/

http://commons.apache.org/math/
http://math.nist.gov/javanumerics/jama/
https://forge.ecs.soton.ac.uk/projects/gp4j/
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Specifically, we have contributed the following to the literature on automated negotia-

tion:

• We have extended our one-to-one negotiation strategy to support the coordination

of multiple, concurrent negotiations (Requirement 8) in which each participant

aims to reach a single agreement, and decommitment of agreements is allowed,

through payment of a penalty (Requirement 9).

Furthermore, against the requirements set out in Section 1.2, we have designed an agent

which, in addition to meeting the same requirements as the agents detailed in Chapter 3,

also:

• is able to effectively coordinate multiple concurrent negotiations with a range of

opponents in order to reach effective outcomes. (Requirement 8)

• will decommit from agreements when it is beneficial for them to do so in order

to improve their utility, considering the benefit of the new agreement over the

decommitment penalty. (Requirement 9)

In the following chapter, we will evaluate the performance of our agent in order to

show that it outperforms an existing state-of-the-art strategy for coordinating multiple

negotiation threads (Nguyen and Jennings, 2005), in a range of scenarios.



Chapter 6

Evaluation of Many-to-Many

Negotiation Agents

This chapter evaluates the performance of our many-to-many negotiation agent, which

is designed to coordinate multiple concurrent negotiations (Requirement 8) in settings

where decommitment is allowed (Requirement 9). We begin by introducing the scenarios

(Section 6.1) and strategies (Section 6.2) that we consider in the evaluation. In a many-

to-many negotiation, each party can have a different preference profile and use a different

strategy. In order to reduce the amount of computation required to complete the eval-

uation, whilst continuing to evaluate a variety of settings, we analyse negotiations in

which all opponents have the same preferences but use different strategies (Section 6.3)

and then we analyse negotiations in which each opponent has different preferences but

uses the same strategy (Section 6.4). Finally, we summarise the chapter (Section 6.5).

6.1 Evaluation Scenarios

In a many-to-many negotiation between |A| parties, a scenario consists of |A| preference

profiles, each of which may be different. Furthermore, in the many-to-many negotiations

that we consider, each party belongs to one of two classes, with each party aiming to

reach an agreement with one member of the other class. For example, in the car sales

scenario introduced in Chapter 1, the two classes represent the buyers and the sellers.

The buyers are able to negotiate with all of the sellers, and vice-versa, but no agent

negotiates with another agent of the same class.

Due to the many-to-many nature of these negotiation environments, to fully simulate

them in our experiments requires considerable computation. In more detail, if there are

109
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a total of |A| parties, with half of them in each class, there will be a total of |A|2 agents,

each negotiating with |A|
2 opponents, leading to

(
|A|
2

)2
negotiation pairs. However, to

complete our analysis, we only require the utility of one of the |A| negotiation parties.

Therefore, we use the following approach in order to reduce the amount of computation

required, without significantly changing the nature of the negotiation environment.

In our experiments, rather than simulating the competitors (i.e. those agents which

belong to the same class) of our agent (or the alternatives that we introduce in Sec-

tion 6.2.1), we represent them by a break-off function which affects our opponents.

Taking this approach removes the need to simulate agents which do not have a direct

effect on the performance of the agents we wish to compare. In more detail, if we are

testing the performance of agent p which is in class 1, the only agents that it negotiates

with are its opponents in class 2. The most significant effect that the competitors (who

are in class 1 and do not negotiate directly with agent p) can have on agent p is to

reach agreement with one of the opponents, thereby causing the opponent to leave the

negotiation. From the perspective of agent p, this can be approximated by introducing

a break-off function to the opponents in class 2, representing the agreement between

an opponent and a competitor. In more detail, we model the probability of break-off

using a time-invariant function. That is, at any time in the negotiation, the break-off

probability during a future time period is given by a function which depends only on the

length of that future period. We achieve this by using an exponential function to calcu-

late the probability that an opponent continues to negotiate. Furthermore, we assume

that all opponents have the same probability. Specifically, the continuation probability

for a given period is given by:

∀i ∈ Q,Pc,i(ta, tb) = αtb−ta (6.1)

where ta, tb > ta are respectively the start and end of the period, and α is a constant

which determines the rate of break-off. In our experiments, we set α = 1/|Q|, where |Q|
is the total number of opponents. This ensures that, on average, there will be one agent

remaining in the negotiation by the deadline, and is representative of an environment in

which the number of negotiation parties in each class is equal.

By using the above approach to reduce the number of negotiation parties which need to

be simulated, our negotiations contain |Q| + 1 agents which need to be simulated and

therefore require preference profiles. Since one-to-one negotiations contain only 2 parties

(and therefore 2 preference profiles), the scenarios used in Section 4.1 are unsuitable for

a full evaluation of many-to-many negotiations. Therefore, we propose some additional

scenarios, as follows.
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Name
Number of

issues
Number of values

for each issue
Number of

potential outcomes

Camera 6 3,3,4,4,5,5 3,600

ADG 6 5,5,5,5,5,5 15,625

Travel 7 4,4,5,6,7,7,8 188,160

Table 6.1: Characteristics of different scenario types.

Many of these scenarios used for one-to-one negotiation are not very competitive, and it

is often easy for the agents to reach agreements with a high utility (for both sides), even

when using a very simple strategy. In a many-to-many negotiation setting, reaching

agreements with a high utility becomes even easier since, with a range of opponents,

it only takes one weak (concessive) opponent to allow any strategy to reach a good

agreement. As a result, such scenarios fail to offer sufficient challenge in a concurrent

negotiation setting. To address this shortcoming, we generate a range of strictly opposing

preference profiles. That is, the utility functions of any pair of negotiating agents, a and

b (where a and b come from different classes), are such that:

∀i ∈ I, ∀vi,x, vi,y ∈ Vi, Ua,i(vi,x) ≤ Ua,i(vi,y)⇔ Ub,i(vi,x) ≥ Ub,i(vi,y) (6.2)

where vi,x and vi,y are a pair of values allowed for issue i, Ua,i(·) is agent a’s utility

function for issue i, and Ub,i(·) is agent b’s utility function for issue i.

To generate a variety of scenarios, we choose the values for each issue by sampling

from a uniform distribution, and sort them such that the strict opposition constraint in

Equation 6.2 is satisfied. We then normalise the values by dividing each one by the value

of the greatest value, such that the greatest value is normalised to 1. Furthermore, the

weights for each issue are also sampled from a uniform distribution, normalised such that

they sum to one. Since we can generate any number of scenarios using this approach, we

refer to the underlying characteristics (the number of issues and the number of values

taken by those issues) as the scenario type. We consider three scenario types with large

outcome spaces, based on those used in the competition. Specifically they are based on

the Camera, ADG and Travel scenarios. The details of the scenario types are given in

Table 6.1.

To ensure that we tested with a range of preference profile pairs with different levels of

competitiveness, for each scenario type, we generated a single profile for one class and

over 100 profiles for the opposing class. We then ranked these profile pairs according to

their competitiveness, and we selected 7 pairs spread evenly throughout this sequence

of profile pairs.

The competitiveness of each of these pairings, including the plots of their outcome spaces

are shown in Table 6.2. The Camera scenario type is the least competitive, due to it
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having the lowest number of values for each issue, combined with the approach we

use to generate the utility functions. Specifically, if issue 1 takes one of 3 values, and

Ua,1(v1,x) = 1, on average Ub,1(v1,x) = 1
3 . In contrast, if issue 1 takes one of 8 values,

Ua,1(v1,x) = 1, on average Ub,1(v1,x) = 1
8 , resulting in a much more competitive outcome

space. At the other end of the scale, the ADG scenario type is the most competitive

(but only slightly more so than the Travel scenario type).

Finally, in order to ensure that decommitment is a viable option for the participants,

but is not completely free, we set D = 0.1. Moreover, as in the one-to-one negotiations

we have considered in previous chapters, in each negotiation, there is a deadline of 3

minutes, which is common to all participants.

6.2 Evaluation Strategies

We now consider the strategies that are used in our experiments, in addition to our own

strategy, IAMconcurrentHaggler2012. In Section 6.2.1 we detail two alternative strate-

gies that can be used in place of ours. We use these two strategies as benchmarks, and

therefore we compare their performance against the performance of IAMconcurrentHag-

gler2012. In our experiments, from the perspective of an agent using one of those three

strategies, each of their opponents use one of the strategies detailed in Section 6.2.2.

6.2.1 Benchmark Strategies

We test our agent by comparing it against a state-of-the-art agent, designed for multiple

concurrent negotiations (described in Section 6.2.1.1) and a very simple agent (described

in Section 6.2.1.2) as benchmarks.

6.2.1.1 NguyenAgent

As the state-of-the-art benchmark agent, we use the strategy developed by Nguyen and

Jennings (2005), which we introduced in Section 2.4.1. A limitation of this strategy,

which we refer to as NguyenAgent, is that it requires prior knowledge about the payoffs

of various strategies against different opponent classes (i.e., tough, linear, and conceder).

To determine these values in a principled manner, we used the results from a set of nego-

tiations between simple time-dependent strategies, in a bi-lateral negotiation setting. In

more detail, we ran one-to-one negotiations between variants of a simple time-dependent

conceder agent (either, tough (β = 0.5), linear (β = 1.0) or conceder (β = 2.0)), in all

ANAC2011 scenarios, averaging the results across those scenarios in order to produce



Chapter 6 Evaluation of Many-to-Many Negotiation Agents 113

Camera ADG Travel
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Table 6.2: Competitiveness, C(O) of different pairs of preference profile for each
scenario, ordered from least to most competitive, showing outcome spaces. C(O) is
defined as the minimum distance from a point in the outcome space, O, to the point
which represents complete satisfaction (that is, the point at which each agent achieves

a utility of 1). The Pareto frontier of each profile pair is displayed as a solid line.
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β
Opponent

Conceder Non-conceder

2.0 0.366 0.130

1.0 0.510 0.120

0.5 0.525 0.111

Table 6.3: Payoff matrix used by NguyenAgent against 7 opponents, including effect
of break-off.

the payoff matrices required by Nguyen’s strategy. Specifically, the payoff matrix shows

the utility that NguyenAgent will expect to achieve against a specific opponent if it

chooses a tough, linear or conceder approach, depending on whether that opponent is

a conceder or a non-conceder. Included in the payoff matrix is the effect of break-off,

and therefore a matrix is produced for each different number of opponents (given that

this number affects the average time of break-off and therefore the expected payoff).

Table 6.3 shows the payoff matrix for NguyenAgent against a single opponent when the

negotiation consists of a total of 7 opponents. Unsurprisingly, it shows that the expected

utility is likely to be considerably higher if the opponent is a conceder than if it is a

non-conceder. In terms of the response that NguyenAgent should take, it shows that the

best response to a conceder is to use the tough (β = 0.5) approach, whereas against a

non-conceder, the best response is to use the conceder (β = 2.0) approach.

We use the ‘greedy’ version of Nguyen’s strategy, which, once an agreement has been

reached, forms subsequent agreements which lead to an increase in the utility after

considering the decommitment penalty. That is:

unew > uexisting + ρ (6.3)

where unew is the utility of the new agreement, uexisting is the utility of the existing

agreement, and ρ is the decommitment penalty.

6.2.1.2 RandomAgent

As an additional benchmark, we developed a simple agent, which we refer to as Ran-

domAgent. This agent makes random offers above a fixed threshold which is chosen

randomly from a uniform distribution over the range [0, 1] in each negotiation session.

After an agreement has been reached, this threshold is increased to the value of that

agreement, plus the decommitment penalty. This ensures that any subsequent agree-

ments lead to an improvement in the utility after considering the decommitment penalty.

Having introduced the agents which we compare our agent to, we now consider the

strategies that their negotiation opponents use.
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6.2.2 Opponent Strategies

As introduced in Section 6.1, in our experiments, we do not simulate the competitors

(i.e. those agents which belong to the same class) of our agent (or the alternatives that

we introduce in Section 6.2.1), but rather, we represent those competitors by a break-off

function which affects our opponents. The main reason for this is as an approxima-

tion, in order to reduce the amount of computation required to perform the evaluation.

However, it also provides us with a further advantage, as follows. Since the opponents

negotiate with only one strategy, we can generate opponent strategies by making some

minor adaptations to each of the large set of state-of-the-art, independently developed

negotiation agents designed for one-to-one negotiation (as used in our evaluation in

Chapter 4).

Specifically, in order to adapt these existing agents for the many-to-many protocol, they

need to be capable of sending Confirm messages, and they need to represent agreement

with a competitor through break-off. Since the only rational reason not to confirm an

acceptance is if the agent has already reached another agreement, it is straightforward

to add Confirm message functionality to the existing agents. Furthermore, the break-

off is modelled by setting a time of break-off according to the probability of break-off

function in Equation 6.1. Specifically, the time of break-off, tb, is set as:

tb =
log(x)

log
(

1
|Q|

) (6.4)

where x is a random variable drawn from a uniform distribution, U(0, 1) over the range

[0, 1], and |Q| is the number of opponents.

Therefore, in this evaluation, we use all of the strategies in Section 4.5 (excluding our

own) as opponent strategies, adapting them for our many-to-many setting by adding

the break-off and confirmation of agreement features discussed above.

6.3 All Opponents have the Same Preferences

In this section, we consider negotiations in which all opponents have the same preference

profile, but with each opponent using a different strategy (from the set of opponent

strategies used in Chapter 4). We repeat the negotiations for each of the seven preference

profile pairs in each scenario.

For each of the three agents (IAMconcurrentHaggler, NguyenAgent, and RandomAgent),

we run experiments with different numbers of opponents. Each experiment consists
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Figure 6.1: Average utility of the concurrent negotiation strategies in negotiations
where each opponent uses the same preferences, but a different strategy, according to
the number of opponents, averaged over all scenario types. Error bars show the 95%

confidence intervals.

of up to 35 different negotiations per scenario type. In each negotiation, any opponent

strategy from the ANAC competition appears at most once. At the same time, we select

the set of opponent strategies in a particular negotiation such that each combination

is equally represented within the experiment. For example, since we have 7 different

opponents, if |Q| = 4, there are 35 different combinations, each run 4 times (in order

to obtain statistically significant results). If |Q| = 7, then each opponent appears in all

negotiations, and we repeat the negotiation 84 times.

The results of these experiments are shown in Figure 6.1, averaged over all scenarios.

It shows that, for |Q| ∈ {4, 5}, IAMconcurrentHaggler2012 significantly outperforms

NguyenAgent, and for |Q| ∈ {6, 7} the performance of the two agents are not signifi-

cantly different to each other. Overall, on average IAMconcurrentHaggler2012 outper-

forms NguyenAgent by 2.8%. Furthermore, for all values of |Q| ∈ {4, 5, 6, 7}, IAMcon-

currentHaggler2012 significantly outperforms the random benchmark (by an average of

11%).

We now consider each individual scenario type: Camera, ADG and Travel. In the small-

est, and least competitive scenario type (Camera) (Figure 6.2(a)), we observe that, in

general, the performances of NguyenAgent and IAMconcurrentHaggler2012 are so similar

that the difference between them is not statistically significant, although they both sig-

nificantly outperform RandomAgent (each by 15%). The reason that the performance

of the two more advanced strategies is so similar is that, in such an uncompetitive

scenario type, it is easy for any well designed agent to reach good agreements. In

the most competitive scenario type (ADG) (Figure 6.2(b)), IAMconcurrentHaggler2012

significantly outperforms NguyenAgent, achieving an average utility 29% higher. In the

largest scenario type (Travel) (Figure 6.2(c)), IAMconcurrentHaggler2012 is significantly
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(a) Camera scenario type.
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(b) ADG scenario type.
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(c) Travel scenario type.

Figure 6.2: Average utility of the concurrent negotiation strategies in negotiations
where each opponent uses the same preferences but a different strategy, according to the
number of opponents, in individual scenario types. Error bars show the 95% confidence

intervals.
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outperformed by NguyenAgent, which achieves an average utility 7% higher, with the

difference being greatest for larger values of |Q|. It should be noted that, as the number

of opponents increases, there is more opportunity for agreement, particularly when those

opponents are all using a different strategy (as is the case in these experiments). In more

detail, each agent is only aiming to reach agreement with a single opponent, and if just

one of those opponents is particularly concessive it is very easy for an agent to obtain a

high utility. If the opponents are all using different strategies, the more opponents there

are, the higher the probability of encountering such a concessive opponent and therefore,

it becomes easier to obtain a higher utility. NguyenAgent takes more of an advantage of

this (compared to IAMconcurrentHaggler2012) by using a less concessive strategy.

6.4 Each Opponent has Different Preferences

In this section, we consider negotiations in which each opponent has a different preference

profile, but each opponent uses the same strategy. Therefore, we repeat the negotiations

for each of the 7 opponent strategies.

For each of the three agents (IAMconcurrentHaggler2012, NguyenAgent, and Rando-

mAgent), we run experiments with different numbers of opponents. Each experiment

consists of up to 35 different negotiations per scenario type. In each negotiation, only

one of the opponent strategies from the ANAC competition appears. At the same time,

we select the set of preference profiles in a particular negotiation such that each com-

bination is equally represented within the experiment. For example, since we have 7

different profiles, if |Q| = 4, there are 35 different combinations, each run 4 times (in

order to obtain statistically significant results). If |Q| = 7, then each profile appears in

all negotiations, and we repeat the negotiation 84 times.

The results of these experiments are shown in Figure 6.3, averaged over all scenarios.

It shows that, for |Q| ∈ {4, 5}, IAMconcurrentHaggler2012 significantly outperforms

NguyenAgent, and for |Q| ∈ {6, 7} the performance of the two agents are not signifi-

cantly different to each other. As the number of opponents increases, the probability of

an individual opponent breaking off the negotiation increases and therefore IAMconcur-

rentHagger2012 tends to become more concessive against each opponent. Overall, on

average IAMconcurrentHaggler2012 outperforms NguyenAgent by 6.6%. Furthermore,

for all values of |Q| ∈ {4, 5, 6, 7}, IAMconcurrentHaggler2012 significantly outperforms

the random benchmark (by an average of 6.5%).

We now consider each individual scenario type: Camera, ADG and Travel. In the small-

est, and least competitive scenario type (Camera) (Figure 6.2(a)), we see that, in general
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Figure 6.3: Average utility of the concurrent negotiation strategies in negotiations
where each opponent uses different preferences, but the same strategy, according to
the number of opponents, averaged over all scenario types. Error bars show the 95%

confidence intervals.

NguyenAgent achieves a higher average utility than that of IAMconcurrentHaggler (by

13%). In the most competitive scenario type (ADG) (Figure 6.2(b)), IAMconcurren-

tHaggler2012 significantly outperforms NguyenAgent, for all values of |Q|, achieving an

average utility 45% higher. In the largest scenario type (Travel) (Figure 6.2(c)), IAM-

concurrentHaggler2012 also significantly outperforms NguyenAgent, for all values of |Q|,
achieving an average utility 30% higher. Increasing the number of opponents causes the

expected break-off time for a single opponent to be earlier. As a result, IAMconcur-

rentHaggler2012 takes a more concessive approach. Although the preferences differed in

these experiments, the difference between them was relatively small. Since the strate-

gies used by the opponents were identical, it is likely that similar behaviour would have

been observed despite the difference in preferences. Therefore, our agent has conceded

more than necessary, as |Q| increases, resulting in a slight decreasing trend in the utility

achieved, where an increasing one would otherwise have been expected.

6.5 Summary

In this chapter we have shown the performance of our many-to-many negotiation agent

compared to that of two benchmark strategies. Specifically, we have shown that our

strategy is effective at coordinating multiple concurrent negotiations (Requirement 8)

in settings where decommitment is allowed (Requirement 9), outperforming the state-

of-the-art benchmark across a range of different scenario types (on average, by 4.7%).

It is a particularly strong strategy for highly competitive scenario types, such as the

ADG and Travel types, where, in some cases (ADG scenario type with 4 opponents each
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(a) Camera scenario type.
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(b) ADG scenario type.
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(c) Travel scenario type.

Figure 6.4: Average utility of the concurrent negotiation strategies in negotiations
where each opponent uses different preferences, but the same strategy, according to the
number of opponents, in individual scenario types. Error bars show the 95% confidence

intervals.
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having a different profile), it outperforms NguyenAgent by as much as 61%. In other

cases, it is not much better, or even may be worse than the state-of-the-art benchmark.





Chapter 7

Conclusions and Future Work

This thesis begins by introducing the challenges associated with automated negotiation

in complex environments (in Chapter 1) along with related work (in Chapter 2). It then

describes (in Chapter 3) the negotiating agents that we have developed, which address

some of the limitations of the existing approaches, and meet the research requirements

that we set out in Chapter 1. Specifically, the agents use a decentralised approach

(Requirement 1) to negotiate over multiple issues (Requirement 4) with an unknown

ordering (Requirement 5). Furthermore, in our environment, negotiation occurs in real

time (Requirement 6), with a real-time deadline and discounting factor, as opposed to

much of the literature on bilateral negotiation, where the time constraints depend on the

number of interactions, not the actual elapsed time, and therefore any deliberation time

by the agent is not taken into account. In terms of performance, the main challenge was

to design a strategy that could achieve a high utility in negotiations where the preferences

and the behaviour of the opponents are unknown (Requirement 3). Furthermore, the

strategy that we designed needed to reach efficient agreements (Requirement 2), and be

computationally tractable (Requirement 7). To this end, we developed two concession

strategies as follows. The first uses a fast, least squares regression approach to predict

the future concession of the opponent, which can be repeated after each offer. The

second, more advanced strategy uses a slower, Gaussian process regression technique,

which, in addition to the prediction, also provides a measure of the confidence in that

prediction. It then uses this information in order to set its concession as a best response

to the opponent’s behaviour.

As part of our evaluation (Chapter 4), we have compared the performance of our agents

against the performance of those used in the Automated Negotiation Agent Competitions

(ANAC). Furthermore, we also use the scenarios from ANAC 2012 in our evaluation.

These scenarios and agents are a good representation of the state-of-the-art, and they
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form an independently developed, varied set of opponents and settings which are ideal

for benchmarking our strategies against. Overall, in a tournament consisting of the top

8 strategies from ANAC 2012, taking the scores averaged over all scenarios, our most

advanced one-to-one negotiation agent, IAMhaggler2012 finishes in 5th place. Despite

this relatively low ranking, the utility it achieves is still very close to that of the winning

agent. Specifically, its utility is 96% of that of the winning agent, AgentLG, whereas

the lowest scoring agent, AgentMR only achieves 52%. However, there are a number of

situations in which IAMhaggler2012 outperforms all of the other strategies. In more de-

tail, in the largest scenario, with discounting, its average utility in a tournament setting

was 33% higher than the agent with the second highest average utility. Furthermore,

IAMhaggler2012 achieves the highest self-play utility (that is, when both parties use

the same strategy). We have also shown that the agreements which are reached are ap-

proximately Pareto efficient (Requirement 2), and that our strategy is computationally

tractable (Requirement 7). Additionally, we have applied an empirical game theoretic

technique to analyse the results of a set of negotiation tournaments. By using this tech-

nique, we have shown that, in certain scenarios (particularly those in which are highly

discounted (δ = 0.5)), for the best performing subset of the strategies of the agents

present in the ANAC 2012 final, there is no incentive for any of the agents to switch

from using our IAMhaggler2012 strategy, to using another of those strategies.

Furthermore, in order to address our requirements for a strategy which can coordinate

multiple concurrent negotiations with a range of opponents (Requirement 8) in an envi-

ronment where decommitment is allowed (Requirement 9), we develop a further strategy

(Chapter 5). Specifically, this agent, IAMconcurrentHaggler2012, uses Gaussian process

regression to predict the future concession of each opponent. It uses these predictions

to coordinate the concession against all of its opponents. Once an agreement has been

reached, the agent continues negotiating in an attempt to reach a better agreement (after

payment of a decommitment penalty) with a different opponent.

Finally, in our evaluation of IAMconcurrentHaggler (Chapter 6), we have shown how, in

negotiations with only a small number of opponents (4 or 5), our agent achieves, on av-

erage, higher utilities than both the state-of-the-art and random benchmarks. Although

in the least competitive scenario type, IAMconcurrentHaggler is slightly outperformed

by the state-of-the-art benchmark, in the highly competitive scenario types, our strategy

achieves a substantially higher average utility than both the state-of-the-art (by up to

45%) and random (by up to 29%) benchmarks.

Overall, the work in this thesis advances the state-of-the-art by proposing a novel, prin-

cipled approach to concession in complex one-to-one negotiations. Whilst the strategy
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does not outperform all of the other strategies in all scenarios, it shows strong perfor-

mance in highly discounted scenarios, in which it is desirable to reach outcomes without

significant delay. Our extended strategy for many-to-many negotiation is one of the first

to coordinate concession against a range of opponents, in such a complex environment.

Our evaluation of this strategy shows that it outperforms an existing state-of-the-art

many-to-many negotiation strategy in the most competitive scenarios. Furthermore,

our evaluation shows how empirical game theoretic analysis can be used to consider the

robustness of a strategy in a tournament setting, against a range of different opponents.

7.1 Future Work

While we have advanced the state-of-the-art in the development of our negotiation strat-

egy, there are a number of ways in which this work could be extended. Therefore we now

introduce some ideas for future work, beginning with a set of possible improvements to

our model and concluding with more general ideas which address the interaction between

negotiation agents and humans.

Consider Influence on Adaptive Opponents: In all of our strategies, the approach

that our agent takes is to optimise its response to the behaviour of any opponents,

assuming that those opponents use a fixed strategy which does not respond to our own

behaviour. In practice this may not always be the case, since many of the strategies

(including our own) adapt to the behaviour of the opponent. If our strategy can be

extended to consider the effect that it can have on an opponent which adapts to our

offers, then it can potentially be less adaptive, instead relying on the adaptiveness of its

opponents, in order to reduce its concession and achieve a greater utility.

Consider Dependency between Similar Points in Time: Once our agent has

determined the time, t∗, at which it expects the discounted utility of the opponent to be

maximised, it aims to maximise its expected utility by considering only agreements that

can be made at that time. In order to produce a computationally tractable approach,

this possibility of reaching an agreement at times other than t∗ is not included in our

current model. However, in practice, if the agent fails to reach an agreement at that

time, it will continue to negotiate and is still likely to be able to reach some form of

agreement. Consequently, our strategy may be taking a more concessionary approach

than necessary as it focuses on the need to reach agreement at t∗. In terms of addressing

this limitation, it would be necessary to consider that the discounting factor will have

a greater effect on any later agreement. Furthermore, the probability of acceptance at



126 Chapter 7 Conclusions and Future Work

time t+ ε is very similar to the probability of acceptance at time t, and this correlation

would also need to be considered in an enhanced model. As part of this enhancement,

the rate of offers need to be considered, as this rate gives an indication of the number

of remaining offers before the deadline and therefore the number of opportunities for

agreement.

Consider Dependency between Behaviour of Opponents in Many-to-Many

Negotiations: Another assumption which is implicit in the design of our many-to-

many negotiation strategy is that the behaviour of each opponent is independent of

each other. However, if any of the opponents use similar strategies or preferences (as

is the case in the negotiations we consider in Chapter 6), then there is likely to be

a correlation between the behaviour observed from those opponents, which should be

considered in order to more accurately predict the future concession of the opponents.

Applying Our Strategies to Negotiations against Humans: Another direction

which could be taken in order to extend this work is to consider how our strategy could

be adapted for use in negotiations where some of the opponents are human. In such

a setting, any agreement with these human opponents would need to be made after

much fewer rounds than is common in a set of negotiations where all participants are

represented by agents. Furthermore, due to this limitation on the number of rounds,

caused by to the increased time taken by a human opponent, the agent may also benefit

by spending more time in computing each offer. Currently, our strategies take advantage

of the high number of offers which can be made in an agent-only negotiation environment.

As the number of offers becomes more limited, it becomes more important, at a given

utility level, for the agent to propose the offers that are most likely to be accepted by

the opponent. One way in which our strategy could be adapted to achieve this is to

use a technique based on the one proposed by Hindriks and Tykhonov (2008), which

uses Bayesian learning in order to model the utility functions of the opponents, and uses

this model to search for Pareto-optimal offers. Lin and Kraus (2010) review a range

of agents specifically designed for negotiations involving agents and humans, and their

work provides important insights into the considerations necessary for such negotiation.

Communication between Agents and the Humans they Represent: Even in

a negotiation environment where all of the negotiators are represented by agents, there

are still a number of aspects to be considered regarding the interaction between each

agent and the human it represents. These include the need for humans to express their

preferences in the form of a utility function. Pommeranz et al. (2008) evaluate a range

of different techniques for elicitation of preferences for use with automated negotiation.
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It may also be desirable for the agent to provide feedback to the human to indicate why

it behaves in a particular way, and to provide assurances that the agent is performing

the best it can.





Appendix A

Scenarios

This appendix details all of the scenarios that were used in the evaluation sections.

These scenarios were gathered from the 2010, 2011 and 2012 editions of the Automated

Negotiating Agents Competition. In 2010, the scenarios were selected by the organisers.

In 2011 and 2012, the scenarios were designed by the participants.
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A.1 Airport Site Selection Scenario

Domain Profile 1 Profile 2

Issue 1: Cost w1,1 = 0.5 w2,1 = 0.25

V1,1 = GreaterThanOrEqual5.2bn U1,1(V1,1) = 0.1 U2,1(V1,1) = 0.111

V1,2 = 5.0bn U1,1(V1,2) = 0.2 U2,1(V1,2) = 1

V1,3 = 4.8bn U1,1(V1,3) = 0.3 U2,1(V1,3) = 0.889

V1,4 = 4.6bn U1,1(V1,4) = 0.4 U2,1(V1,4) = 0.778

V1,5 = 4.4bn U1,1(V1,5) = 0.5 U2,1(V1,5) = 0.667

V1,6 = 4.2bn U1,1(V1,6) = 0.6 U2,1(V1,6) = 0.556

V1,7 = 4.0bn U1,1(V1,7) = 0.7 U2,1(V1,7) = 0.444

V1,8 = 3.8bn U1,1(V1,8) = 0.8 U2,1(V1,8) = 0.333

V1,9 = 3.6bn U1,1(V1,9) = 0.9 U2,1(V1,9) = 0.222

V1,10 = LessThanOrEqual3.4bn U1,1(V1,10) = 1 U2,1(V1,10) = 0.111

Issue 2: Noise w1,2 = 0.25 w2,2 = 0.25

V2,1 = LessThan10000 U1,2(V2,1) = 0.286 U2,2(V2,1) = 1

V2,2 = 10000 U1,2(V2,2) = 0.429 U2,2(V2,2) = 0.857

V2,3 = 20000 U1,2(V2,3) = 0.571 U2,2(V2,3) = 0.714

V2,4 = 30000 U1,2(V2,4) = 1 U2,2(V2,4) = 0.571

V2,5 = 40000 U1,2(V2,5) = 0.571 U2,2(V2,5) = 0.429

V2,6 = 50000 U1,2(V2,6) = 0.429 U2,2(V2,6) = 0.286

V2,7 = GreaterThan50000 U1,2(V2,7) = 0.286 U2,2(V2,7) = 0.143

Issue 3: AccidentLevelPerMillionPassengerMiles w1,3 = 0.25 w2,3 = 0.5

V3,1 = GreaterThanOrEqual0.1 U1,3(V3,1) = 0 U2,3(V3,1) = 0

V3,2 = 0.08 U1,3(V3,2) = 0.2 U2,3(V3,2) = 0.2

V3,3 = 0.06 U1,3(V3,3) = 0.4 U2,3(V3,3) = 0.4

V3,4 = 0.04 U1,3(V3,4) = 0.6 U2,3(V3,4) = 0.6

V3,5 = 0.02 U1,3(V3,5) = 0.8 U2,3(V3,5) = 0.8

V3,6 = LessThan0.02 U1,3(V3,6) = 1 U2,3(V3,6) = 1

Table A.1: Airport Site Selection scenario specification.
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Rank Agent Score

1-2 TheNegotiator Reloaded 0.623 ±0.002

2-4 IAMhaggler2012 0.617 ±0.002

2-4 OMACagent 0.617 ±0.003

1-6 CUHKAgent 0.613 ±0.013

4-5 AgentLG 0.604 ±0.005

5-6 Meta-Agent 0.593 ±0.007

7 BRAMAgent2 0.572 ±0.009

8 AgentMR 0.388 ±0.002

Table A.2: Scores in the Airport Site Selection scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.1: Airport Site Selection scenario outcome space.
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A.2 Barbecue Scenario

Domain Profile 1 Profile 2

Issue 1: Meat w1,1 = 0.3 w2,1 = 0.3

V1,1 = Burgers and chicken U1,1(V1,1) = 0.6 U2,1(V1,1) = 0.01

V1,2 = Fish U1,1(V1,2) = 0.5 U2,1(V1,2) = 0.8

V1,3 = Luxury meats U1,1(V1,3) = 1 U2,1(V1,3) = 0.3

V1,4 = Biological U1,1(V1,4) = 0.7 U2,1(V1,4) = 0.5

V1,5 = Vegetarian U1,1(V1,5) = 0.1 U2,1(V1,5) = 1

V1,6 = None U1,1(V1,6) = 0.01 U2,1(V1,6) = 1

Issue 2: Drinks w1,2 = 0.25 w2,2 = 0.1

V2,1 = Non-Alcoholic U1,2(V2,1) = 0.1 U2,2(V2,1) = 0.6

V2,2 = Beer plus U1,2(V2,2) = 0.7 U2,2(V2,2) = 0.7

V2,3 = Bio-beer U1,2(V2,3) = 0.1 U2,2(V2,3) = 1

V2,4 = Luxury alcoholic U1,2(V2,4) = 1 U2,2(V2,4) = 0.9

Issue 3: Location w1,3 = 0.25 w2,3 = 0.2

V3,1 = Balcony U1,3(V3,1) = 0.3 U2,3(V3,1) = 0.3

V3,2 = Woods U1,3(V3,2) = 0.5 U2,3(V3,2) = 1

V3,3 = Park U1,3(V3,3) = 0.7 U2,3(V3,3) = 0.4

V3,4 = Beach U1,3(V3,4) = 1 U2,3(V3,4) = 0.7

Issue 4: Vegetables w1,4 = 0.1 w2,4 = 0.3

V4,1 = None U1,4(V4,1) = 0.8 U2,4(V4,1) = 0.01

V4,2 = Cheap veggies U1,4(V4,2) = 1 U2,4(V4,2) = 0.2

V4,3 = Good veggies U1,4(V4,3) = 0.4 U2,4(V4,3) = 0.7

V4,4 = Prepared veggies U1,4(V4,4) = 0.6 U2,4(V4,4) = 0.6

V4,5 = Superveggies U1,4(V4,5) = 0.7 U2,4(V4,5) = 1

Issue 5: BBQ type w1,5 = 0.1 w2,5 = 0.1

V5,1 = Disposable U1,5(V5,1) = 0.9 U2,5(V5,1) = 0.1

V5,2 = Normal U1,5(V5,2) = 1 U2,5(V5,2) = 0.6

V5,3 = Gas U1,5(V5,3) = 0.8 U2,5(V5,3) = 1

Table A.3: Barbecue scenario specification.
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Rank Agent Score

1 AgentLG 0.644 ±0.004

2 OMACagent 0.636 ±0.004

3-4 TheNegotiator Reloaded 0.626 ±0.004

3-4 CUHKAgent 0.622 ±0.003

5-7 IAMhaggler2012 0.596 ±0.008

5-7 BRAMAgent2 0.593 ±0.008

5-7 Meta-Agent 0.593 ±0.010

8 AgentMR 0.188 ±0.000

Table A.4: Scores in the Barbecue scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.2: Barbecue scenario outcome space.
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A.3 Barter Scenario

Domain Profile 1 Profile 2

Issue 1: price w1,1 = 0.36 w2,1 = 0.4

V1,1 = 3gm U1,1(V1,1) = 1 U2,1(V1,1) = 0.25

V1,2 = 4gm U1,1(V1,2) = 0.75 U2,1(V1,2) = 0.5

V1,3 = 5gm U1,1(V1,3) = 0.5 U2,1(V1,3) = 0.75

V1,4 = 6gm U1,1(V1,4) = 0.25 U2,1(V1,4) = 1

Issue 2: CookingOil w1,2 = 0.32 w2,2 = 0.4

V2,1 = 4ml U1,2(V2,1) = 1 U2,2(V2,1) = 0.2

V2,2 = 5ml U1,2(V2,2) = 0.8 U2,2(V2,2) = 0.4

V2,3 = 6ml U1,2(V2,3) = 0.6 U2,2(V2,3) = 0.6

V2,4 = 7ml U1,2(V2,4) = 0.4 U2,2(V2,4) = 0.8

V2,5 = 8ml U1,2(V2,5) = 0.2 U2,2(V2,5) = 1

Issue 3: Sugar w1,3 = 0.32 w2,3 = 0.2

V3,1 = 4gm U1,3(V3,1) = 1 U2,3(V3,1) = 0.25

V3,2 = 6gm U1,3(V3,2) = 0.75 U2,3(V3,2) = 0.5

V3,3 = 8gm U1,3(V3,3) = 0.5 U2,3(V3,3) = 0.75

V3,4 = 10gm U1,3(V3,4) = 0.25 U2,3(V3,4) = 1

Table A.5: Barter scenario specification.
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Rank Agent Score

1-2 OMACagent 0.503 ±0.009

1-2 AgentLG 0.492 ±0.004

3 IAMhaggler2012 0.483 ±0.006

4-5 BRAMAgent2 0.471 ±0.004

4-5 CUHKAgent 0.468 ±0.001

6-7 TheNegotiator Reloaded 0.429 ±0.001

6-7 Meta-Agent 0.426 ±0.006

8 AgentMR 0.300 ±0.001

Table A.6: Scores in the Barter scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.3: Barter scenario outcome space.
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A.4 Camera (2012) Scenario

Domain Profile 1 Profile 2

Issue 1: Maker w1,1 = 0.34 w2,1 = 0.08

V1,1 = Canon U1,1(V1,1) = 1 U2,1(V1,1) = 0.01

V1,2 = Nikon U1,1(V1,2) = 0.938 U2,1(V1,2) = 0.14

V1,3 = Pentax U1,1(V1,3) = 0.031 U2,1(V1,3) = 1

V1,4 = Sony U1,1(V1,4) = 0.078 U2,1(V1,4) = 0.6

V1,5 = Panasonic U1,1(V1,5) = 0.094 U2,1(V1,5) = 0.04

Issue 2: Body w1,2 = 0.06 w2,2 = 0.09

V2,1 = Full size U1,2(V2,1) = 1 U2,2(V2,1) = 0.095

V2,2 = APS-C U1,2(V2,2) = 0.333 U2,2(V2,2) = 1

V2,3 = Micro Four Thirds U1,2(V2,3) = 0.133 U2,2(V2,3) = 0.381

V2,4 = compact U1,2(V2,4) = 0.067 U2,2(V2,4) = 0.032

Issue 3: Lens w1,3 = 0.13 w2,3 = 0.34

V3,1 = High end model U1,3(V3,1) = 1 U2,3(V3,1) = 1

V3,2 = Middle range model U1,3(V3,2) = 0.286 U2,3(V3,2) = 0.5

V3,3 = Entry model U1,3(V3,3) = 0.086 U2,3(V3,3) = 0.04

Issue 4: Tripod w1,4 = 0.09 w2,4 = 0.26

V4,1 = GITZO U1,4(V4,1) = 1 U2,4(V4,1) = 0.313

V4,2 = Manfrotto U1,4(V4,2) = 0.476 U2,4(V4,2) = 1

V4,3 = Induro U1,4(V4,3) = 0.048 U2,4(V4,3) = 0.125

Issue 5: Bag w1,5 = 0.11 w2,5 = 0.17

V5,1 = Domke U1,5(V5,1) = 1 U2,5(V5,1) = 0.2

V5,2 = Lowepro U1,5(V5,2) = 0.162 U2,5(V5,2) = 1

V5,3 = Tamrac U1,5(V5,3) = 0.103 U2,5(V5,3) = 0.1

V5,4 = National Geographic U1,5(V5,4) = 0.132 U2,5(V5,4) = 0.3

V5,5 = Artizan&Artist U1,5(V5,5) = 0.044 U2,5(V5,5) = 0.4

Issue 6: Accessory w1,6 = 0.26 w2,6 = 0.07

V6,1 = Electronic Flash U1,6(V6,1) = 0.182 U2,6(V6,1) = 1

V6,2 = Battery Grip U1,6(V6,2) = 1 U2,6(V6,2) = 0.429

V6,3 = Memory U1,6(V6,3) = 0.045 U2,6(V6,3) = 0.571

V6,4 = Strap U1,6(V6,4) = 0.023 U2,6(V6,4) = 0.143

Table A.7: Camera (2012) scenario specification.
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Rank Agent Score

1-2 AgentLG 0.704 ±0.003

1-3 TheNegotiator Reloaded 0.694 ±0.007

2-3 CUHKAgent 0.690 ±0.002

4 OMACagent 0.680 ±0.003

5 Meta-Agent 0.661 ±0.004

6-7 IAMhaggler2012 0.643 ±0.005

6-7 BRAMAgent2 0.640 ±0.011

8 AgentMR 0.444 ±0.005

Table A.8: Scores in the Travel scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.4: Camera (2012) scenario outcome space.
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A.5 Energy (2012 small) Scenario

Domain Profile 1 Profile 2

Issue 1: 0000-0400 w1,1 = 0.264 w2,1 = 0.046

V1,1 = 0 kW U1,1(V1,1) = 1 U2,1(V1,1) = 0

V1,2 = 25 kW U1,1(V1,2) = 0.814 U2,1(V1,2) = 0.014

V1,3 = 50 kW U1,1(V1,3) = 0.777 U2,1(V1,3) = 0.277

V1,4 = 75 kW U1,1(V1,4) = 0.185 U2,1(V1,4) = 0.883

V1,5 = 100 kW U1,1(V1,5) = 0 U2,1(V1,5) = 1

Issue 2: 0400-0800 w1,2 = 0.163 w2,2 = 0.253

V2,1 = 0 kW U1,2(V2,1) = 1 U2,2(V2,1) = 0

V2,2 = 25 kW U1,2(V2,2) = 0.959 U2,2(V2,2) = 0.019

V2,3 = 50 kW U1,2(V2,3) = 0.947 U2,2(V2,3) = 0.344

V2,4 = 75 kW U1,2(V2,4) = 0.084 U2,2(V2,4) = 0.895

V2,5 = 100 kW U1,2(V2,5) = 0 U2,2(V2,5) = 1

Issue 3: 0800-1200 w1,3 = 0.176 w2,3 = 0.273

V3,1 = 0 kW U1,3(V3,1) = 1 U2,3(V3,1) = 0

V3,2 = 25 kW U1,3(V3,2) = 0.839 U2,3(V3,2) = 0.243

V3,3 = 50 kW U1,3(V3,3) = 0.55 U2,3(V3,3) = 0.413

V3,4 = 75 kW U1,3(V3,4) = 0.482 U2,3(V3,4) = 0.713

V3,5 = 100 kW U1,3(V3,5) = 0 U2,3(V3,5) = 1

Issue 4: 1200-1600 w1,4 = 0.051 w2,4 = 0.215

V4,1 = 0 kW U1,4(V4,1) = 1 U2,4(V4,1) = 0

V4,2 = 25 kW U1,4(V4,2) = 0.905 U2,4(V4,2) = 0.354

V4,3 = 50 kW U1,4(V4,3) = 0.386 U2,4(V4,3) = 0.51

V4,4 = 75 kW U1,4(V4,4) = 0.265 U2,4(V4,4) = 0.555

V4,5 = 100 kW U1,4(V4,5) = 0 U2,4(V4,5) = 1

Issue 5: 1600-2000 w1,5 = 0.322 w2,5 = 0.155

V5,1 = 0 kW U1,5(V5,1) = 1 U2,5(V5,1) = 0

V5,2 = 25 kW U1,5(V5,2) = 0.659 U2,5(V5,2) = 0.022

V5,3 = 50 kW U1,5(V5,3) = 0.394 U2,5(V5,3) = 0.107

V5,4 = 75 kW U1,5(V5,4) = 0.192 U2,5(V5,4) = 0.749

V5,5 = 100 kW U1,5(V5,5) = 0 U2,5(V5,5) = 1

Issue 6: 2000-0000 w1,6 = 0.025 w2,6 = 0.059

V6,1 = 0 kW U1,6(V6,1) = 1 U2,6(V6,1) = 0

V6,2 = 25 kW U1,6(V6,2) = 0.714 U2,6(V6,2) = 0.671

V6,3 = 50 kW U1,6(V6,3) = 0.675 U2,6(V6,3) = 0.741

V6,4 = 75 kW U1,6(V6,4) = 0.527 U2,6(V6,4) = 0.807

V6,5 = 100 kW U1,6(V6,5) = 0 U2,6(V6,5) = 1

Table A.9: Energy (2012 small) scenario specification.
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Rank Agent Score

1 OMACagent 0.512 ±0.006

2-3 AgentLG 0.486 ±0.004

2-3 TheNegotiator Reloaded 0.480 ±0.005

4-6 IAMhaggler2012 0.451 ±0.006

4-6 CUHKAgent 0.446 ±0.006

6-7 BRAMAgent2 0.425 ±0.011

4-7 Meta-Agent 0.424 ±0.017

8 AgentMR 0.188 ±0.000

Table A.10: Scores in the Energy (2012 small) scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.5: Energy (2012 small) scenario outcome space.
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A.6 Energy (2012) Scenario

Domain Profile 1 Profile 2

Issue 1: 0000-0300 w1,1 = 0.16 w2,1 = 0.21

V1,1 = 0 kW U1,1(V1,1) = 1 U2,1(V1,1) = 0

V1,2 = 25 kW U1,1(V1,2) = 0.861 U2,1(V1,2) = 0.173

V1,3 = 50 kW U1,1(V1,3) = 0.824 U2,1(V1,3) = 0.388

V1,4 = 75 kW U1,1(V1,4) = 0.044 U2,1(V1,4) = 0.63

V1,5 = 100 kW U1,1(V1,5) = 0 U2,1(V1,5) = 1

Issue 2: 0300-0600 w1,2 = 0.154 w2,2 = 0.144

V2,1 = 0 kW U1,2(V2,1) = 1 U2,2(V2,1) = 0

V2,2 = 25 kW U1,2(V2,2) = 0.443 U2,2(V2,2) = 0.064

V2,3 = 50 kW U1,2(V2,3) = 0.414 U2,2(V2,3) = 0.291

V2,4 = 75 kW U1,2(V2,4) = 0.248 U2,2(V2,4) = 0.592

V2,5 = 100 kW U1,2(V2,5) = 0 U2,2(V2,5) = 1

Issue 3: 0600-0900 w1,3 = 0.097 w2,3 = 0.054

V3,1 = 0 kW U1,3(V3,1) = 1 U2,3(V3,1) = 0

V3,2 = 25 kW U1,3(V3,2) = 0.854 U2,3(V3,2) = 0.262

V3,3 = 50 kW U1,3(V3,3) = 0.604 U2,3(V3,3) = 0.277

V3,4 = 75 kW U1,3(V3,4) = 0.41 U2,3(V3,4) = 0.822

V3,5 = 100 kW U1,3(V3,5) = 0 U2,3(V3,5) = 1

Issue 4: 0900-1200 w1,4 = 0.114 w2,4 = 0.113

V4,1 = 0 kW U1,4(V4,1) = 1 U2,4(V4,1) = 0

V4,2 = 25 kW U1,4(V4,2) = 0.749 U2,4(V4,2) = 0.461

V4,3 = 50 kW U1,4(V4,3) = 0.447 U2,4(V4,3) = 0.476

V4,4 = 75 kW U1,4(V4,4) = 0.056 U2,4(V4,4) = 0.537

V4,5 = 100 kW U1,4(V4,5) = 0 U2,4(V4,5) = 1

Issue 5: 1200-1500 w1,5 = 0.104 w2,5 = 0.111

V5,1 = 0 kW U1,5(V5,1) = 1 U2,5(V5,1) = 0

V5,2 = 25 kW U1,5(V5,2) = 0.914 U2,5(V5,2) = 0.34

V5,3 = 50 kW U1,5(V5,3) = 0.66 U2,5(V5,3) = 0.359

V5,4 = 75 kW U1,5(V5,4) = 0.285 U2,5(V5,4) = 0.461

V5,5 = 100 kW U1,5(V5,5) = 0 U2,5(V5,5) = 1

Issue 6: 1500-1800 w1,6 = 0.068 w2,6 = 0.139

V6,1 = 0 kW U1,6(V6,1) = 1 U2,6(V6,1) = 0

V6,2 = 25 kW U1,6(V6,2) = 0.67 U2,6(V6,2) = 0.392

V6,3 = 50 kW U1,6(V6,3) = 0.507 U2,6(V6,3) = 0.797

V6,4 = 75 kW U1,6(V6,4) = 0.147 U2,6(V6,4) = 0.93

V6,5 = 100 kW U1,6(V6,5) = 0 U2,6(V6,5) = 1

Issue 7: 1800-2100 w1,7 = 0.126 w2,7 = 0.188

V7,1 = 0 kW U1,7(V7,1) = 1 U2,7(V7,1) = 0

V7,2 = 25 kW U1,7(V7,2) = 0.505 U2,7(V7,2) = 0.16

V7,3 = 50 kW U1,7(V7,3) = 0.223 U2,7(V7,3) = 0.527

V7,4 = 75 kW U1,7(V7,4) = 0.188 U2,7(V7,4) = 0.972

V7,5 = 100 kW U1,7(V7,5) = 0 U2,7(V7,5) = 1

Issue 8: 2100-0000 w1,8 = 0.176 w2,8 = 0.041

V8,1 = 0 kW U1,8(V8,1) = 1 U2,8(V8,1) = 0

V8,2 = 25 kW U1,8(V8,2) = 0.942 U2,8(V8,2) = 0.232

V8,3 = 50 kW U1,8(V8,3) = 0.471 U2,8(V8,3) = 0.289

V8,4 = 75 kW U1,8(V8,4) = 0.33 U2,8(V8,4) = 0.846

V8,5 = 100 kW U1,8(V8,5) = 0 U2,8(V8,5) = 1

Table A.11: Energy (2012) scenario specification.
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Rank Agent Score

1 OMACagent 0.457 ±0.003

2 AgentLG 0.435 ±0.008

3-4 BRAMAgent2 0.411 ±0.005

3-4 IAMhaggler2012 0.409 ±0.004

5-6 CUHKAgent 0.389 ±0.006

5-7 TheNegotiator Reloaded 0.378 ±0.013

6-7 Meta-Agent 0.361 ±0.002

8 AgentMR 0.221 ±0.002

Table A.12: Scores in the Energy (2012) scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.6: Energy (2012) scenario outcome space.
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A.7 England vs Zimbabwe (2012) Scenario

Domain Profile 1 Profile 2

Issue 1: Size of Fund w1,1 = 0.303 w2,1 = 0.197

V1,1 = $100 Billion U1,1(V1,1) = 0.556 U2,1(V1,1) = 1

V1,2 = $50 Billion U1,1(V1,2) = 0.778 U2,1(V1,2) = 0.778

V1,3 = $10 billion U1,1(V1,3) = 1 U2,1(V1,3) = 0.556

V1,4 = No agreement U1,1(V1,4) = 0.111 U2,1(V1,4) = 0.111

Issue 2: Impact on Other Aid w1,2 = 0.303 w2,2 = 0.201

V2,1 = No reduction U1,2(V2,1) = 0.375 U2,2(V2,1) = 1

V2,2 = Reduction equal to half of fund size U1,2(V2,2) = 0.75 U2,2(V2,2) = 0.625

V2,3 = Reduction equal to fund size U1,2(V2,3) = 1 U2,2(V2,3) = 0.375

V2,4 = No agreement U1,2(V2,4) = 0.125 U2,2(V2,4) = 0.125

Issue 3: Zimbabwe Trade Policy w1,3 = 0.049 w2,3 = 0.154

V3,1 = Zimbabwe will reduce tariffs on imports U1,3(V3,1) = 1 U2,3(V3,1) = 0.111

V3,2 = Zimbabwe will increase tariffs on imports U1,3(V3,2) = 0.083 U2,3(V3,2) = 1

V3,3 = No agreement U1,3(V3,3) = 0.583 U2,3(V3,3) = 0.556

Issue 4: England Trade Policy w1,4 = 0.049 w2,4 = 0.154

V4,1 = England will reduce imports U1,4(V4,1) = 1 U2,4(V4,1) = 0.053

V4,2 = England will increase imports U1,4(V4,2) = 0.1 U2,4(V4,2) = 1

V4,3 = No agreement U1,4(V4,3) = 0.6 U2,4(V4,3) = 0.474

Issue 5: Forum on Other Health Issues w1,5 = 0.295 w2,5 = 0.293

V5,1 = Creation of fund U1,5(V5,1) = 0.7 U2,5(V5,1) = 1

V5,2 = Creation of committee to discuss creation of fund U1,5(V5,2) = 1 U2,5(V5,2) = 0.818

V5,3 = Creation of committee to develop agenda U1,5(V5,3) = 0.4 U2,5(V5,3) = 0.636

V5,4 = No U1,5(V5,4) = 0.1 U2,5(V5,4) = 0.091

Table A.13: England vs Zimbabwe (2012) scenario specification.
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Rank Agent Score

1-2 AgentLG 0.664 ±0.004

1-4 CUHKAgent 0.650 ±0.008

2-4 TheNegotiator Reloaded 0.648 ±0.005

2-4 OMACagent 0.647 ±0.001

5-6 IAMhaggler2012 0.624 ±0.005

5-6 Meta-Agent 0.616 ±0.006

7 BRAMAgent2 0.600 ±0.005

8 AgentMR 0.410 ±0.006

Table A.14: Scores in the England vs Zimbabwe (2012) scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.7: England vs Zimbabwe (2012) scenario outcome space.
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A.8 Fifty fifty Scenario

Domain Profile 1 Profile 2

Issue 1: Fifty Fifty w1,1 = 1 w2,1 = 1

V1,1 = 100 0 U1,1(V1,1) = 1 U2,1(V1,1) = 0

V1,2 = 90 10 U1,1(V1,2) = 0.9 U2,1(V1,2) = 0.1

V1,3 = 80 20 U1,1(V1,3) = 0.8 U2,1(V1,3) = 0.2

V1,4 = 70 30 U1,1(V1,4) = 0.7 U2,1(V1,4) = 0.3

V1,5 = 60 40 U1,1(V1,5) = 0.6 U2,1(V1,5) = 0.4

V1,6 = 50 50 U1,1(V1,6) = 0.5 U2,1(V1,6) = 0.5

V1,7 = 40 60 U1,1(V1,7) = 0.4 U2,1(V1,7) = 0.6

V1,8 = 30 70 U1,1(V1,8) = 0.3 U2,1(V1,8) = 0.7

V1,9 = 20 80 U1,1(V1,9) = 0.2 U2,1(V1,9) = 0.8

V1,10 = 10 90 U1,1(V1,10) = 0.1 U2,1(V1,10) = 0.9

V1,11 = 0 100 U1,1(V1,11) = 0 U2,1(V1,11) = 1

Table A.15: Fifty fifty scenario specification.
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Rank Agent Score

1-3 IAMhaggler2012 0.376 ±0.018

1-2 CUHKAgent 0.371 ±0.005

2-3 OMACagent 0.361 ±0.006

4-6 AgentLG 0.343 ±0.012

4-6 BRAMAgent2 0.341 ±0.008

4-7 TheNegotiator Reloaded 0.329 ±0.008

6-7 Meta-Agent 0.318 ±0.013

8 AgentMR 0.235 ±0.007

Table A.16: Scores in the Fifty fifty scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.8: Fifty fifty scenario outcome space.
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A.9 Fitness Scenario

Domain Profile 1 Profile 2

Issue 1: kind of fitness w1,1 = 0.154 w2,1 = 0.304

V1,1 = swimming U1,1(V1,1) = 0.6 U2,1(V1,1) = 1

V1,2 = yoga U1,1(V1,2) = 0.8 U2,1(V1,2) = 0.6

V1,3 = aerobics U1,1(V1,3) = 0.4 U2,1(V1,3) = 0.4

V1,4 = running U1,1(V1,4) = 0.2 U2,1(V1,4) = 0.2

V1,5 = tennis U1,1(V1,5) = 1 U2,1(V1,5) = 0.8

Issue 2: time to do w1,2 = 0.045 w2,2 = 0.098

V2,1 = 30minutes U1,2(V2,1) = 0.75 U2,2(V2,1) = 0.25

V2,2 = 1hour U1,2(V2,2) = 1 U2,2(V2,2) = 0.75

V2,3 = 3hour U1,2(V2,3) = 0.5 U2,2(V2,3) = 1

V2,4 = 5hour U1,2(V2,4) = 0.25 U2,2(V2,4) = 0.5

Issue 3: distance w1,3 = 0.298 w2,3 = 0.201

V3,1 = 0km U1,3(V3,1) = 0.75 U2,3(V3,1) = 1

V3,2 = 1km U1,3(V3,2) = 1 U2,3(V3,2) = 0.75

V3,3 = 40km U1,3(V3,3) = 0.5 U2,3(V3,3) = 0.5

V3,4 = 80km U1,3(V3,4) = 0.25 U2,3(V3,4) = 0.25

Issue 4: intensity w1,4 = 0.299 w2,4 = 0.098

V4,1 = light U1,4(V4,1) = 0.5 U2,4(V4,1) = 1

V4,2 = moderate U1,4(V4,2) = 0.75 U2,4(V4,2) = 0.75

V4,3 = as training U1,4(V4,3) = 1 U2,4(V4,3) = 0.5

V4,4 = as boot-camp U1,4(V4,4) = 0.25 U2,4(V4,4) = 0.25

Issue 5: Price($) w1,5 = 0.204 w2,5 = 0.299

V5,1 = 0 U1,5(V5,1) = 1 U2,5(V5,1) = 0

V5,2 = 1 U1,5(V5,2) = 0.9 U2,5(V5,2) = 0.1

V5,3 = 2 U1,5(V5,3) = 0.8 U2,5(V5,3) = 0.2

V5,4 = 3 U1,5(V5,4) = 0.7 U2,5(V5,4) = 0.3

V5,5 = 4 U1,5(V5,5) = 0.6 U2,5(V5,5) = 0.4

V5,6 = 5 U1,5(V5,6) = 0.5 U2,5(V5,6) = 0.5

V5,7 = 6 U1,5(V5,7) = 0.4 U2,5(V5,7) = 0.6

V5,8 = 7 U1,5(V5,8) = 0.3 U2,5(V5,8) = 0.7

V5,9 = 8 U1,5(V5,9) = 0.2 U2,5(V5,9) = 0.8

V5,10 = 9 U1,5(V5,10) = 0.1 U2,5(V5,10) = 0.9

V5,11 = 10 U1,5(V5,11) = 0 U2,5(V5,11) = 1

Table A.17: Fitness scenario specification.
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Rank Agent Score

1 AgentLG 0.654 ±0.006

2-3 TheNegotiator Reloaded 0.623 ±0.004

2-4 CUHKAgent 0.620 ±0.006

3-5 OMACagent 0.611 ±0.002

4-6 IAMhaggler2012 0.591 ±0.015

5-6 Meta-Agent 0.578 ±0.008

7 BRAMAgent2 0.562 ±0.010

8 AgentMR 0.284 ±0.009

Table A.18: Scores in the Fitness scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.9: Fitness scenario outcome space.
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A.10 Flight Booking Scenario

Domain Profile 1 Profile 2

Issue 1: price w1,1 = 0.35 w2,1 = 0.7

V1,1 = 150000yen U1,1(V1,1) = 0.25 U2,1(V1,1) = 1

V1,2 = 200000yen U1,1(V1,2) = 0.5 U2,1(V1,2) = 0.75

V1,3 = 250000yen U1,1(V1,3) = 0.75 U2,1(V1,3) = 0.5

V1,4 = 300000yen U1,1(V1,4) = 1 U2,1(V1,4) = 0.25

Issue 2: DepartureAirPort w1,2 = 0.35 w2,2 = 0.15

V2,1 = CentrAir U1,2(V2,1) = 0.667 U2,2(V2,1) = 0.333

V2,2 = Narita U1,2(V2,2) = 1 U2,2(V2,2) = 0.667

V2,3 = Kansai U1,2(V2,3) = 0.333 U2,2(V2,3) = 1

Issue 3: DepartureDate w1,3 = 0.3 w2,3 = 0.15

V3,1 = Sep2 2011 U1,3(V3,1) = 0.333 U2,3(V3,1) = 1

V3,2 = Sep3 2011 U1,3(V3,2) = 1 U2,3(V3,2) = 0.667

V3,3 = Sep4 2011 U1,3(V3,3) = 0.667 U2,3(V3,3) = 0.333

Table A.19: Flight Booking scenario specification.
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Rank Agent Score

1-4 CUHKAgent 0.625 ±0.006

1-3 TheNegotiator Reloaded 0.622 ±0.001

1-4 BRAMAgent2 0.620 ±0.003

2-4 OMACagent 0.617 ±0.003

5 Meta-Agent 0.605 ±0.000

6 IAMhaggler2012 0.599 ±0.000

7 AgentLG 0.581 ±0.003

8 AgentMR 0.412 ±0.001

Table A.20: Scores in the Flight Booking scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.10: Flight Booking scenario outcome space.
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A.11 Housekeeping Scenario

Domain Profile 1 Profile 2

Issue 1: Floor Mopping w1,1 = 0.3 w2,1 = 0.1

V1,1 = Husband U1,1(V1,1) = 0.1 U2,1(V1,1) = 1

V1,2 = Wife U1,1(V1,2) = 1 U2,1(V1,2) = 0.5

V1,3 = Both U1,1(V1,3) = 0.3 U2,1(V1,3) = 0.8

V1,4 = Maid U1,1(V1,4) = 0.7 U2,1(V1,4) = 0.3

Issue 2: Dishes Cleaning w1,2 = 0.1 w2,2 = 0.4

V2,1 = Husband U1,2(V2,1) = 0.4 U2,2(V2,1) = 1

V2,2 = Wife U1,2(V2,2) = 1 U2,2(V2,2) = 0.1

V2,3 = Both U1,2(V2,3) = 0.85 U2,2(V2,3) = 0.3

Issue 3: Laundry w1,3 = 0.2 w2,3 = 0.2

V3,1 = Husband U1,3(V3,1) = 0.5 U2,3(V3,1) = 1

V3,2 = Wife U1,3(V3,2) = 1 U2,3(V3,2) = 0.6

Issue 4: Cooking w1,4 = 0.2 w2,4 = 0.15

V4,1 = Husband U1,4(V4,1) = 0.1 U2,4(V4,1) = 0.8

V4,2 = Wife U1,4(V4,2) = 0.7 U2,4(V4,2) = 0.7

V4,3 = Both U1,4(V4,3) = 0.4 U2,4(V4,3) = 1

V4,4 = Take-away food U1,4(V4,4) = 1 U2,4(V4,4) = 0.4

Issue 5: Gardening w1,5 = 0.2 w2,5 = 0.15

V5,1 = Husband U1,5(V5,1) = 0.5 U2,5(V5,1) = 1

V5,2 = Wife U1,5(V5,2) = 0.7 U2,5(V5,2) = 0.1

V5,3 = Both U1,5(V5,3) = 1 U2,5(V5,3) = 0.4

V5,4 = Gardener U1,5(V5,4) = 0.1 U2,5(V5,4) = 0.9

Table A.21: Housekeeping scenario specification.
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Rank Agent Score

1-3 AgentLG 0.615 ±0.008

1-3 TheNegotiator Reloaded 0.613 ±0.005

1-4 OMACagent 0.613 ±0.007

3-5 CUHKAgent 0.603 ±0.006

4-5 BRAMAgent2 0.595 ±0.004

6 IAMhaggler2012 0.586 ±0.004

7 Meta-Agent 0.576 ±0.005

8 AgentMR 0.201 ±0.000

Table A.22: Scores in the Housekeeping scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.11: Housekeeping scenario outcome space.
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A.12 IS BT Acquisition (2012) Scenario

Domain Profile 1 Profile 2

Issue 1: Price w1,1 = 0.3 w2,1 = 0.5

V1,1 = 1 million $ U1,1(V1,1) = 1 U2,1(V1,1) = 0.8

V1,2 = 2.5 million $ U1,1(V1,2) = 0.9 U2,1(V1,2) = 0.8

V1,3 = 5 million $ U1,1(V1,3) = 0.8 U2,1(V1,3) = 0.9

V1,4 = 8 million $ U1,1(V1,4) = 0.8 U2,1(V1,4) = 1

Issue 2: IP w1,2 = 0.3 w2,2 = 0.04

V2,1 = IS receives all of the IP U1,2(V2,1) = 1 U2,2(V2,1) = 0.6

V2,2 = IS receives most of the IP U1,2(V2,2) = 0.4 U2,2(V2,2) = 0.7

V2,3 = BI-Tech founders maintain all IP U1,2(V2,3) = 0.9 U2,2(V2,3) = 1

Issue 3: Stocks w1,3 = 0.15 w2,3 = 0.2

V3,1 = BI-Tech founders get 2% U1,3(V3,1) = 0.5 U2,3(V3,1) = 0.5

V3,2 = BI-Tech founders get 2% + jobs at IS U1,3(V3,2) = 1 U2,3(V3,2) = 0.9

V3,3 = BI-Tech founders get 5% U1,3(V3,3) = 0.4 U2,3(V3,3) = 0.6

V3,4 = BI-Tech founders get 5% + jobs U1,3(V3,4) = 0.7 U2,3(V3,4) = 1

Issue 4: EmployeeAgreements w1,4 = 0.05 w2,4 = 0.06

V4,1 = salary raise of 15% U1,4(V4,1) = 0.857 U2,4(V4,1) = 1

V4,2 = same conditions U1,4(V4,2) = 0.857 U2,4(V4,2) = 0.778

V4,3 = private contracts U1,4(V4,3) = 1 U2,4(V4,3) = 0.889

V4,4 = half fired and half private contracts U1,4(V4,4) = 0.429 U2,4(V4,4) = 0.444

Issue 5: Legal Liability w1,5 = 0.2 w2,5 = 0.2

V5,1 = past activities remains with Bi-Tech U1,5(V5,1) = 1 U2,5(V5,1) = 0.7

V5,2 = IS liable for all activities U1,5(V5,2) = 0.7 U2,5(V5,2) = 1

Table A.23: IS BT Acquisition (2012) scenario specification.
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Rank Agent Score

1-2 TheNegotiator Reloaded 0.786 ±0.000

1-3 CUHKAgent 0.776 ±0.011

2-3 AgentLG 0.772 ±0.007

4-6 IAMhaggler2012 0.758 ±0.007

4-7 OMACagent 0.749 ±0.003

4-7 BRAMAgent2 0.744 ±0.016

5-7 Meta-Agent 0.733 ±0.014

8 AgentMR 0.529 ±0.017

Table A.24: Scores in the IS BT Acquisition (2012) scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.12: IS BT Acquisition (2012) scenario outcome space.
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A.13 Music Collection Scenario

Domain Profile 1 Profile 2

Issue 1: Classical w1,1 = 0.055 w2,1 = 0.299

V1,1 = Bach U1,1(V1,1) = 0.25 U2,1(V1,1) = 1

V1,2 = Mozart U1,1(V1,2) = 0.75 U2,1(V1,2) = 0.5

V1,3 = Beethoven U1,1(V1,3) = 0.5 U2,1(V1,3) = 0.25

V1,4 = Prokofiev U1,1(V1,4) = 1 U2,1(V1,4) = 0.75

Issue 2: Rock w1,2 = 0.204 w2,2 = 0.233

V2,1 = Chuck Berry U1,2(V2,1) = 0.4 U2,2(V2,1) = 1

V2,2 = The Beatles U1,2(V2,2) = 0.2 U2,2(V2,2) = 0.2

V2,3 = The Doors U1,2(V2,3) = 0.6 U2,2(V2,3) = 0.6

V2,4 = Camel U1,2(V2,4) = 1 U2,2(V2,4) = 0.8

V2,5 = Nirvana U1,2(V2,5) = 0.4 U2,2(V2,5) = 0.4

Issue 3: Jazz w1,3 = 0.352 w2,3 = 0.085

V3,1 = Louie Armstrong U1,3(V3,1) = 0.833 U2,3(V3,1) = 1

V3,2 = Charlie Parker U1,3(V3,2) = 1 U2,3(V3,2) = 0.833

V3,3 = Miles Davis U1,3(V3,3) = 0.5 U2,3(V3,3) = 0.667

V3,4 = John Coltrane U1,3(V3,4) = 0.333 U2,3(V3,4) = 0.5

V3,5 = Herbie Hancock U1,3(V3,5) = 0.167 U2,3(V3,5) = 0.167

V3,6 = Cal Tjader U1,3(V3,6) = 0.667 U2,3(V3,6) = 0.333

Issue 4: Pop w1,4 = 0.065 w2,4 = 0.173

V4,1 = Michael Jackson U1,4(V4,1) = 0.333 U2,4(V4,1) = 0.333

V4,2 = Madonna U1,4(V4,2) = 1 U2,4(V4,2) = 0.667

V4,3 = Elton John U1,4(V4,3) = 0.667 U2,4(V4,3) = 1

Issue 5: Brazil w1,5 = 0.124 w2,5 = 0.109

V5,1 = Gilberto Gil U1,5(V5,1) = 0.333 U2,5(V5,1) = 0.667

V5,2 = Antonio Carlos Jobim U1,5(V5,2) = 1 U2,5(V5,2) = 1

V5,3 = Astrud Gilberto U1,5(V5,3) = 0.667 U2,5(V5,3) = 0.333

Issue 6: Latin w1,6 = 0.2 w2,6 = 0.1

V6,1 = Eddie Palmieri U1,6(V6,1) = 1 U2,6(V6,1) = 0.25

V6,2 = Maraca U1,6(V6,2) = 0.75 U2,6(V6,2) = 0.5

V6,3 = Gypsy Kings U1,6(V6,3) = 0.25 U2,6(V6,3) = 1

V6,4 = Tito Puente U1,6(V6,4) = 0.5 U2,6(V6,4) = 0.75

Table A.25: Music Collection scenario specification.
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Rank Agent Score

1 CUHKAgent 0.767 ±0.004

2-3 AgentLG 0.759 ±0.004

2-3 TheNegotiator Reloaded 0.756 ±0.003

4 OMACagent 0.745 ±0.004

5 IAMhaggler2012 0.735 ±0.002

6 BRAMAgent2 0.725 ±0.002

7 Meta-Agent 0.701 ±0.006

8 AgentMR 0.511 ±0.002

Table A.26: Scores in the Music Collection scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.13: Music Collection scenario outcome space.
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A.14 Outfit Scenario

Domain Profile 1 Profile 2

Issue 1: shirts w1,1 = 0.147 w2,1 = 0.379

V1,1 = T-shirt U1,1(V1,1) = 0.2 U2,1(V1,1) = 1

V1,2 = Blouse U1,1(V1,2) = 1 U2,1(V1,2) = 0.2

V1,3 = Polo shirt U1,1(V1,3) = 0.4 U2,1(V1,3) = 0.6

V1,4 = sweaters U1,1(V1,4) = 0.6 U2,1(V1,4) = 0.8

Issue 2: pants w1,2 = 0.204 w2,2 = 0.318

V2,1 = Denim U1,2(V2,1) = 0.3 U2,2(V2,1) = 1

V2,2 = leather pants U1,2(V2,2) = 1 U2,2(V2,2) = 0.1

V2,3 = classic pants U1,2(V2,3) = 0.6 U2,2(V2,3) = 0.8

V2,4 = bermuda shorts U1,2(V2,4) = 0.4 U2,2(V2,4) = 0.5

Issue 3: shoes w1,3 = 0.55 w2,3 = 0.102

V3,1 = sneakers U1,3(V3,1) = 1 U2,3(V3,1) = 1

V3,2 = boots U1,3(V3,2) = 0.5 U2,3(V3,2) = 0.833

V3,3 = slippers U1,3(V3,3) = 0.033 U2,3(V3,3) = 0.333

V3,4 = sandals U1,3(V3,4) = 0.667 U2,3(V3,4) = 0.667

Issue 4: accessories w1,4 = 0.099 w2,4 = 0.201

V4,1 = hat U1,4(V4,1) = 0.5 U2,4(V4,1) = 0.125

V4,2 = sunglasses U1,4(V4,2) = 1 U2,4(V4,2) = 1

Table A.27: Outfit scenario specification.
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Rank Agent Score

1-2 TheNegotiator Reloaded 0.668 ±0.004

1-2 CUHKAgent 0.668 ±0.005

3-4 OMACagent 0.651 ±0.007

3-7 IAMhaggler2012 0.643 ±0.007

4-7 AgentLG 0.641 ±0.004

4-7 Meta-Agent 0.635 ±0.003

4-7 BRAMAgent2 0.634 ±0.004

8 AgentMR 0.327 ±0.003

Table A.28: Scores in the Outfit scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.14: Outfit scenario outcome space.
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A.15 Phone Scenario

Domain Profile 1 Profile 2

Issue 1: Brand w1,1 = 0.302 w2,1 = 0.198

V1,1 = HP U1,1(V1,1) = 1 U2,1(V1,1) = 1

V1,2 = Motorola U1,1(V1,2) = 0.2 U2,1(V1,2) = 0.5

V1,3 = Nokia U1,1(V1,3) = 0.1 U2,1(V1,3) = 0.2

V1,4 = Apple U1,1(V1,4) = 0.5 U2,1(V1,4) = 0.1

Issue 2: Color w1,2 = 0.204 w2,2 = 0.046

V2,1 = White U1,2(V2,1) = 0.1 U2,2(V2,1) = 1

V2,2 = Grey U1,2(V2,2) = 0.5 U2,2(V2,2) = 0.3

V2,3 = Black U1,2(V2,3) = 0.3 U2,2(V2,3) = 0.1

V2,4 = Silver U1,2(V2,4) = 0.3 U2,2(V2,4) = 0.2

V2,5 = Red U1,2(V2,5) = 1 U2,2(V2,5) = 0.5

Issue 3: Operating System w1,3 = 0.053 w2,3 = 0.497

V3,1 = Windows Mobile U1,3(V3,1) = 0.1 U2,3(V3,1) = 0.2

V3,2 = Android U1,3(V3,2) = 0.2 U2,3(V3,2) = 1

V3,3 = Apple U1,3(V3,3) = 0.5 U2,3(V3,3) = 0.1

V3,4 = BlackBerry U1,3(V3,4) = 1 U2,3(V3,4) = 0.5

Issue 4: Memory w1,4 = 0.153 w2,4 = 0.152

V4,1 = 510M U1,4(V4,1) = 0.1 U2,4(V4,1) = 0.1

V4,2 = 1G U1,4(V4,2) = 0.2 U2,4(V4,2) = 1

V4,3 = 2G U1,4(V4,3) = 1 U2,4(V4,3) = 0.2

V4,4 = 4G U1,4(V4,4) = 0.5 U2,4(V4,4) = 0.5

Issue 5: Screen Resolution w1,5 = 0.3 w2,5 = 0.1

V5,1 = 240*400 U1,5(V5,1) = 0.1 U2,5(V5,1) = 0.1

V5,2 = 480*800 U1,5(V5,2) = 0.2 U2,5(V5,2) = 0.3

V5,3 = 600*1024 U1,5(V5,3) = 0.5 U2,5(V5,3) = 0.5

V5,4 = 800*1280 U1,5(V5,4) = 0.3 U2,5(V5,4) = 1

V5,5 = 1280*1280 U1,5(V5,5) = 1 U2,5(V5,5) = 0.2

Table A.29: Phone scenario specification.
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Rank Agent Score

1 CUHKAgent 0.717 ±0.002

2 TheNegotiator Reloaded 0.704 ±0.003

3-5 AgentLG 0.689 ±0.004

3-5 OMACagent 0.688 ±0.000

3-5 IAMhaggler2012 0.683 ±0.004

6 Meta-Agent 0.674 ±0.002

7 BRAMAgent2 0.663 ±0.004

8 AgentMR 0.341 ±0.002

Table A.30: Scores in the Phone scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.15: Phone scenario outcome space.
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A.16 Rental House Scenario

Domain Profile 1 Profile 2

Issue 1: price w1,1 = 0.25 w2,1 = 0.4

V1,1 = 40000yen U1,1(V1,1) = 0.2 U2,1(V1,1) = 1

V1,2 = 45000yen U1,1(V1,2) = 0.4 U2,1(V1,2) = 0.8

V1,3 = 50000yen U1,1(V1,3) = 0.6 U2,1(V1,3) = 0.6

V1,4 = 55000yen U1,1(V1,4) = 0.8 U2,1(V1,4) = 0.4

V1,5 = 60000yen U1,1(V1,5) = 1 U2,1(V1,5) = 0.2

Issue 2: Style w1,2 = 0.25 w2,2 = 0.25

V2,1 = Japanese U1,2(V2,1) = 1 U2,2(V2,1) = 0.5

V2,2 = Western U1,2(V2,2) = 0.5 U2,2(V2,2) = 1

Issue 3: AcceptableLocations w1,3 = 0.25 w2,3 = 0.25

V3,1 = Near To Fukiage Station U1,3(V3,1) = 0.333 U2,3(V3,1) = 1

V3,2 = Near To Tsrumai Station U1,3(V3,2) = 1 U2,3(V3,2) = 0.667

V3,3 = Near To Gokiso Station U1,3(V3,3) = 0.667 U2,3(V3,3) = 0.333

Issue 4: WaterHeaterType w1,4 = 0.25 w2,4 = 0.1

V4,1 = Electric U1,4(V4,1) = 1 U2,4(V4,1) = 0.5

V4,2 = Gas U1,4(V4,2) = 0.5 U2,4(V4,2) = 1

Table A.31: Rental House scenario specification.
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Rank Agent Score

1-2 AgentLG 0.581 ±0.006

1-3 OMACagent 0.575 ±0.003

2-3 Meta-Agent 0.572 ±0.005

4-5 TheNegotiator Reloaded 0.564 ±0.001

4-7 CUHKAgent 0.557 ±0.005

5-7 IAMhaggler2012 0.552 ±0.001

5-7 BRAMAgent2 0.551 ±0.004

8 AgentMR 0.343 ±0.001

Table A.32: Scores in the Rental House scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.16: Rental House scenario outcome space.
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A.17 Supermarket Scenario

Domain Profile 1 Profile 2

Issue 1: Bread type w1,1 = 0.3 w2,1 = 0.25

V1,1 = Baguette U1,1(V1,1) = 1 U2,1(V1,1) = 0.5

V1,2 = Crackers U1,1(V1,2) = 0.2 U2,1(V1,2) = 0.1

V1,3 = Croissants U1,1(V1,3) = 0.1 U2,1(V1,3) = 0.2

V1,4 = Plain bread U1,1(V1,4) = 0.5 U2,1(V1,4) = 1

Issue 2: Fruit w1,2 = 0.2 w2,2 = 0.2

V2,1 = Apples U1,2(V2,1) = 0.1 U2,2(V2,1) = 1

V2,2 = Bananas U1,2(V2,2) = 0.5 U2,2(V2,2) = 0.3

V2,3 = Cherries U1,2(V2,3) = 0.3 U2,2(V2,3) = 0.3

V2,4 = Grapes U1,2(V2,4) = 0.3 U2,2(V2,4) = 0.5

V2,5 = Oranges U1,2(V2,5) = 0.3 U2,2(V2,5) = 0.4

V2,6 = Melons U1,2(V2,6) = 0.8 U2,2(V2,6) = 0.4

V2,7 = Strawberries U1,2(V2,7) = 0.9 U2,2(V2,7) = 0.7

Issue 3: Snacks w1,3 = 0.05 w2,3 = 0.05

V3,1 = Chocolate bars U1,3(V3,1) = 0.1 U2,3(V3,1) = 1

V3,2 = Doughnuts U1,3(V3,2) = 0.2 U2,3(V3,2) = 0.5

V3,3 = Nachos U1,3(V3,3) = 0.5 U2,3(V3,3) = 0.2

V3,4 = Popcorn U1,3(V3,4) = 1 U2,3(V3,4) = 0.1

V3,5 = Potato Chips U1,3(V3,5) = 0.1 U2,3(V3,5) = 0.7

V3,6 = Candy U1,3(V3,6) = 0.7 U2,3(V3,6) = 0.3

V3,7 = Cookies U1,3(V3,7) = 0.5 U2,3(V3,7) = 0.4

Issue 4: Spreads w1,4 = 0.15 w2,4 = 0.15

V4,1 = Cheese U1,4(V4,1) = 0.1 U2,4(V4,1) = 0.5

V4,2 = Jam U1,4(V4,2) = 0.2 U2,4(V4,2) = 1

V4,3 = Peanut butter U1,4(V4,3) = 1 U2,4(V4,3) = 0.2

V4,4 = Sandwich spread U1,4(V4,4) = 0.5 U2,4(V4,4) = 0.1

V4,5 = Chocolate U1,4(V4,5) = 0.8 U2,4(V4,5) = 0.3

V4,6 = Ham U1,4(V4,6) = 0.9 U2,4(V4,6) = 0.5

V4,7 = Salami U1,4(V4,7) = 0.6 U2,4(V4,7) = 0.7

V4,8 = Egg Salad U1,4(V4,8) = 0.8 U2,4(V4,8) = 0.6

Issue 5: Vegetables w1,5 = 0.25 w2,5 = 0.25

V5,1 = Beans U1,5(V5,1) = 0.1 U2,5(V5,1) = 1

V5,2 = Broccoli U1,5(V5,2) = 0.2 U2,5(V5,2) = 0.3

V5,3 = Leek U1,5(V5,3) = 0.5 U2,5(V5,3) = 0.5

V5,4 = Potatoes U1,5(V5,4) = 0.3 U2,5(V5,4) = 0.2

V5,5 = Spinach U1,5(V5,5) = 1 U2,5(V5,5) = 0.1

V5,6 = Carrots U1,5(V5,6) = 0.3 U2,5(V5,6) = 0.5

V5,7 = Tomatoes U1,5(V5,7) = 0.8 U2,5(V5,7) = 0.7

Issue 6: Drinks w1,6 = 0.05 w2,6 = 0.1

V6,1 = Energy Drinks U1,6(V6,1) = 1 U2,6(V6,1) = 1

V6,2 = Milk U1,6(V6,2) = 0.7 U2,6(V6,2) = 0.3

V6,3 = Tea U1,6(V6,3) = 0.2 U2,6(V6,3) = 0.5

V6,4 = Coffee U1,6(V6,4) = 0.4 U2,6(V6,4) = 0.2

V6,5 = Juice U1,6(V6,5) = 0.7 U2,6(V6,5) = 0.1

V6,6 = Coca Cola U1,6(V6,6) = 0.8 U2,6(V6,6) = 0.6

V6,7 = Fanta U1,6(V6,7) = 0.7 U2,6(V6,7) = 0.8

V6,8 = Beer U1,6(V6,8) = 0.7 U2,6(V6,8) = 0.7

V6,9 = Wine U1,6(V6,9) = 0.5 U2,6(V6,9) = 0.5

Table A.33: Supermarket scenario specification.
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Rank Agent Score

1 AgentLG 0.565 ±0.007

2 OMACagent 0.550 ±0.003

3-4 IAMhaggler2012 0.528 ±0.004

3-4 TheNegotiator Reloaded 0.527 ±0.002

5 CUHKAgent 0.519 ±0.004

6-7 BRAMAgent2 0.472 ±0.010

6-7 Meta-Agent 0.460 ±0.013

8 AgentMR 0.223 ±0.004

Table A.34: Scores in the Supermarket scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.17: Supermarket scenario outcome space.



164 Appendix A Scenarios

A.18 ADG Scenario

Domain Profile 1 Profile 2

Issue 1: CD player w1,1 = 0.16 w2,1 = 0.36

V1,1 = good U1,1(V1,1) = 1 U2,1(V1,1) = 0

V1,2 = fairly good U1,1(V1,2) = 0.98 U2,1(V1,2) = 0.85

V1,3 = standard U1,1(V1,3) = 0.92 U2,1(V1,3) = 0.91

V1,4 = meagre U1,1(V1,4) = 0.75 U2,1(V1,4) = 0.98

V1,5 = none U1,1(V1,5) = 0 U2,1(V1,5) = 1

Issue 2: Extra speakers w1,2 = 0.16 w2,2 = 0.2

V2,1 = good U1,2(V2,1) = 1 U2,2(V2,1) = 0

V2,2 = fairly good U1,2(V2,2) = 0.99 U2,2(V2,2) = 0.8

V2,3 = standard U1,2(V2,3) = 0.93 U2,2(V2,3) = 0.96

V2,4 = meagre U1,2(V2,4) = 0.8 U2,2(V2,4) = 0.93

V2,5 = none U1,2(V2,5) = 0 U2,2(V2,5) = 1

Issue 3: Air conditioning w1,3 = 0.17 w2,3 = 0.2

V3,1 = good U1,3(V3,1) = 1 U2,3(V3,1) = 0

V3,2 = fairly good U1,3(V3,2) = 0.99 U2,3(V3,2) = 0.8

V3,3 = standard U1,3(V3,3) = 0.96 U2,3(V3,3) = 0.91

V3,4 = meagre U1,3(V3,4) = 0.83 U2,3(V3,4) = 0.99

V3,5 = none U1,3(V3,5) = 0 U2,3(V3,5) = 1

Issue 4: Tow hedge w1,4 = 0.17 w2,4 = 0.2

V4,1 = good U1,4(V4,1) = 1 U2,4(V4,1) = 0

V4,2 = fairly good U1,4(V4,2) = 0.99 U2,4(V4,2) = 0.8

V4,3 = standard U1,4(V4,3) = 0.93 U2,4(V4,3) = 0.9

V4,4 = meagre U1,4(V4,4) = 0.85 U2,4(V4,4) = 0.98

V4,5 = none U1,4(V4,5) = 0 U2,4(V4,5) = 1

Issue 5: Tow hedge2 w1,5 = 0.17 w2,5 = 0.02

V5,1 = good U1,5(V5,1) = 1 U2,5(V5,1) = 0

V5,2 = fairly good U1,5(V5,2) = 0.99 U2,5(V5,2) = 0.8

V5,3 = standard U1,5(V5,3) = 0.95 U2,5(V5,3) = 0.9

V5,4 = meagre U1,5(V5,4) = 0.8 U2,5(V5,4) = 0.95

V5,5 = none U1,5(V5,5) = 0 U2,5(V5,5) = 1

Issue 6: Tow hedge3 w1,6 = 0.17 w2,6 = 0.02

V6,1 = good U1,6(V6,1) = 1 U2,6(V6,1) = 0

V6,2 = fairly good U1,6(V6,2) = 0.99 U2,6(V6,2) = 0.8

V6,3 = standard U1,6(V6,3) = 0.95 U2,6(V6,3) = 0.9

V6,4 = meagre U1,6(V6,4) = 0.8 U2,6(V6,4) = 0.95

V6,5 = none U1,6(V6,5) = 0 U2,6(V6,5) = 1

Table A.35: ADG scenario specification.
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Rank Agent Score

1 AgentLG 0.775 ±0.002

2-3 CUHKAgent 0.764 ±0.006

2-3 TheNegotiator Reloaded 0.759 ±0.003

4 BRAMAgent2 0.751 ±0.002

5 IAMhaggler2012 0.733 ±0.003

6 Meta-Agent 0.721 ±0.002

7 OMACagent 0.710 ±0.005

8 AgentMR 0.188 ±0.000

Table A.36: Scores in the ADG scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.18: ADG scenario outcome space.
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A.19 Amsterdam Party Scenario

Domain Profile 1 Profile 2

Issue 1: Venue w1,1 = 0.18 w2,1 = 0.15

V1,1 = Shopping U1,1(V1,1) = 0.5 U2,1(V1,1) = 1

V1,2 = Museum U1,1(V1,2) = 1 U2,1(V1,2) = 0.25

V1,3 = Dancing U1,1(V1,3) = 0.5 U2,1(V1,3) = 0.5

V1,4 = Diner U1,1(V1,4) = 0.25 U2,1(V1,4) = 0.75

Issue 2: Time of arrival w1,2 = 0.22 w2,2 = 0.12

V2,1 = Morning U1,2(V2,1) = 0.333 U2,2(V2,1) = 0.333

V2,2 = Afternoon U1,2(V2,2) = 1 U2,2(V2,2) = 0.667

V2,3 = Evening U1,2(V2,3) = 0.333 U2,2(V2,3) = 1

Issue 3: Day of the week w1,3 = 0.13 w2,3 = 0.21

V3,1 = Monday U1,3(V3,1) = 1 U2,3(V3,1) = 0.167

V3,2 = Tuesday U1,3(V3,2) = 0.5 U2,3(V3,2) = 0.333

V3,3 = Wednesday U1,3(V3,3) = 0.667 U2,3(V3,3) = 0.5

V3,4 = Thursday U1,3(V3,4) = 0.833 U2,3(V3,4) = 0.667

V3,5 = Friday U1,3(V3,5) = 0.167 U2,3(V3,5) = 0.667

V3,6 = Saturday U1,3(V3,6) = 0.167 U2,3(V3,6) = 1

V3,7 = Sunday U1,3(V3,7) = 1 U2,3(V3,7) = 1

Issue 4: Duration w1,4 = 0.12 w2,4 = 0.32

V4,1 = One day U1,4(V4,1) = 1 U2,4(V4,1) = 0.333

V4,2 = One night U1,4(V4,2) = 0.667 U2,4(V4,2) = 0.667

V4,3 = One week U1,4(V4,3) = 0.333 U2,4(V4,3) = 1

Issue 5: Transportation w1,5 = 0.23 w2,5 = 0.13

V5,1 = Public transport U1,5(V5,1) = 1 U2,5(V5,1) = 0.333

V5,2 = Car U1,5(V5,2) = 0.333 U2,5(V5,2) = 1

V5,3 = Combination U1,5(V5,3) = 0.667 U2,5(V5,3) = 0.667

Issue 6: Souvenirs w1,6 = 0.12 w2,6 = 0.07

V6,1 = None U1,6(V6,1) = 0.75 U2,6(V6,1) = 0.25

V6,2 = Tulips U1,6(V6,2) = 1 U2,6(V6,2) = 0.75

V6,3 = Cheese U1,6(V6,3) = 0.25 U2,6(V6,3) = 0

V6,4 = Waterpipe U1,6(V6,4) = 0.25 U2,6(V6,4) = 1

Table A.37: Amsterdam Party scenario specification.
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Rank Agent Score

1 CUHKAgent 0.654 ±0.002

2-3 AgentLG 0.643 ±0.002

2-4 TheNegotiator Reloaded 0.631 ±0.009

3-4 OMACagent 0.628 ±0.003

5-6 BRAMAgent2 0.600 ±0.002

5-6 Meta-Agent 0.599 ±0.004

7 IAMhaggler2012 0.577 ±0.004

8 AgentMR 0.188 ±0.000

Table A.38: Scores in the Amsterdam Party scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.19: Amsterdam Party scenario outcome space.
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A.20 Grocery Scenario

Domain Profile 1 Profile 2

Issue 1: Bread type w1,1 = 0.3 w2,1 = 0.2

V1,1 = Baguette U1,1(V1,1) = 1 U2,1(V1,1) = 1

V1,2 = Crackers U1,1(V1,2) = 0.2 U2,1(V1,2) = 0.5

V1,3 = Croissants U1,1(V1,3) = 0.1 U2,1(V1,3) = 0.2

V1,4 = Plain bread U1,1(V1,4) = 0.5 U2,1(V1,4) = 0.1

Issue 2: Fruit w1,2 = 0.2 w2,2 = 0.05

V2,1 = Apples U1,2(V2,1) = 0.1 U2,2(V2,1) = 1

V2,2 = Bananas U1,2(V2,2) = 0.5 U2,2(V2,2) = 0.3

V2,3 = Cherries U1,2(V2,3) = 0.3 U2,2(V2,3) = 0.1

V2,4 = Grapes U1,2(V2,4) = 0.3 U2,2(V2,4) = 0.2

V2,5 = Pears U1,2(V2,5) = 1 U2,2(V2,5) = 0.5

Issue 3: Snacks w1,3 = 0.05 w2,3 = 0.5

V3,1 = Chocolate bars U1,3(V3,1) = 0.1 U2,3(V3,1) = 0.2

V3,2 = Doughnuts U1,3(V3,2) = 0.2 U2,3(V3,2) = 1

V3,3 = Nachos U1,3(V3,3) = 0.5 U2,3(V3,3) = 0.1

V3,4 = Popcorn U1,3(V3,4) = 1 U2,3(V3,4) = 0.5

Issue 4: Spreads w1,4 = 0.15 w2,4 = 0.15

V4,1 = Cheese U1,4(V4,1) = 0.1 U2,4(V4,1) = 0.1

V4,2 = Jam U1,4(V4,2) = 0.2 U2,4(V4,2) = 1

V4,3 = Peanut butter U1,4(V4,3) = 1 U2,4(V4,3) = 0.2

V4,4 = Sandwich spread U1,4(V4,4) = 0.5 U2,4(V4,4) = 0.5

Issue 5: Vegetables w1,5 = 0.3 w2,5 = 0.1

V5,1 = Beans U1,5(V5,1) = 0.1 U2,5(V5,1) = 0.1

V5,2 = Broccoli U1,5(V5,2) = 0.2 U2,5(V5,2) = 0.3

V5,3 = Leek U1,5(V5,3) = 0.5 U2,5(V5,3) = 0.5

V5,4 = Potatoes U1,5(V5,4) = 0.3 U2,5(V5,4) = 1

V5,5 = Spinach U1,5(V5,5) = 1 U2,5(V5,5) = 0.2

Table A.39: Grocery scenario specification.
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Rank Agent Score

1-2 CUHKAgent 0.723 ±0.002

1-3 TheNegotiator Reloaded 0.720 ±0.006

2-3 AgentLG 0.712 ±0.007

4-6 OMACagent 0.692 ±0.006

4-7 BRAMAgent2 0.690 ±0.004

4-7 Meta-Agent 0.685 ±0.006

5-7 IAMhaggler2012 0.679 ±0.008

8 AgentMR 0.458 ±0.002

Table A.40: Scores in the Grocery scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.20: Grocery scenario outcome space.
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A.21 Laptop Scenario

Domain Profile 1 Profile 2

Issue 1: Laptop w1,1 = 0.445 w2,1 = 0.378

V1,1 = Dell U1,1(V1,1) = 0.4 U2,1(V1,1) = 0.4

V1,2 = Macintosh U1,1(V1,2) = 0.667 U2,1(V1,2) = 1

V1,3 = HP U1,1(V1,3) = 1 U2,1(V1,3) = 0.667

Issue 2: Harddisk w1,2 = 0.378 w2,2 = 0.177

V2,1 = 60 Gb U1,2(V2,1) = 1 U2,2(V2,1) = 0.667

V2,2 = 80 Gb U1,2(V2,2) = 0.667 U2,2(V2,2) = 1

V2,3 = 120 Gb U1,2(V2,3) = 0.3 U2,2(V2,3) = 0.3

Issue 3: External Monitor w1,3 = 0.177 w2,3 = 0.445

V3,1 = 19 LCD U1,3(V3,1) = 1 U2,3(V3,1) = 1

V3,2 = 20 LCD U1,3(V3,2) = 0.333 U2,3(V3,2) = 0.667

V3,3 = 23 LCD U1,3(V3,3) = 0.667 U2,3(V3,3) = 0.333

Table A.41: Laptop scenario specification.
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Rank Agent Score

1-2 CUHKAgent 0.775 ±0.007

1-2 TheNegotiator Reloaded 0.773 ±0.001

3-4 IAMhaggler2012 0.760 ±0.008

3-5 Meta-Agent 0.751 ±0.002

4-5 OMACagent 0.749 ±0.004

6 AgentLG 0.732 ±0.001

7 BRAMAgent2 0.720 ±0.002

8 AgentMR 0.532 ±0.005

Table A.42: Scores in the Laptop scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.21: Laptop scenario outcome space.
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A.22 NiceOrDie Scenario

Domain Profile 1 Profile 2

Issue 1: NiceOrDie w1,1 = 1 w2,1 = 1

V1,1 = 100 16 U1,1(V1,1) = 1 U2,1(V1,1) = 0.16

V1,2 = 16 100 U1,1(V1,2) = 0.16 U2,1(V1,2) = 1

V1,3 = 29 29 U1,1(V1,3) = 0.299 U2,1(V1,3) = 0.299

Table A.43: NiceOrDie scenario specification.
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Rank Agent Score

1-3 BRAMAgent2 0.398 ±0.000

1-3 OMACagent 0.396 ±0.006

1-4 AgentLG 0.391 ±0.006

3-4 IAMhaggler2012 0.386 ±0.000

5 CUHKAgent 0.364 ±0.006

6 Meta-Agent 0.315 ±0.000

7 TheNegotiator Reloaded 0.264 ±0.000

8 AgentMR 0.157 ±0.000

Table A.44: Scores in the NiceOrDie scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.22: NiceOrDie scenario outcome space.
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A.23 Itex vs Cypress Scenario

Domain Profile 1 Profile 2

Issue 1: Price w1,1 = 0.288 w2,1 = 0.47

V1,1 = $4.37 U1,1(V1,1) = 1 U2,1(V1,1) = 0.025

V1,2 = $4.12 U1,1(V1,2) = 0.667 U2,1(V1,2) = 0.25

V1,3 = $3.98 U1,1(V1,3) = 0.333 U2,1(V1,3) = 0.625

V1,4 = $3.71 U1,1(V1,4) = 0.167 U2,1(V1,4) = 0.825

V1,5 = $3.47 U1,1(V1,5) = 0.033 U2,1(V1,5) = 1

Issue 2: Delivery w1,2 = 0.192 w2,2 = 0.122

V2,1 = 60 days U1,2(V2,1) = 0.05 U2,2(V2,1) = 0.04

V2,2 = 45 days U1,2(V2,2) = 1 U2,2(V2,2) = 0.4

V2,3 = 30 days U1,2(V2,3) = 0.5 U2,2(V2,3) = 0.76

V2,4 = 20 days U1,2(V2,4) = 0.25 U2,2(V2,4) = 1

Issue 3: Payment w1,3 = 0.242 w2,3 = 0.177

V3,1 = Upon delivery U1,3(V3,1) = 0.4 U2,3(V3,1) = 1

V3,2 = 30 days after delivery U1,3(V3,2) = 1 U2,3(V3,2) = 0.4

V3,3 = 60 days after delivery U1,3(V3,3) = 0.04 U2,3(V3,3) = 0.067

Issue 4: Returns w1,4 = 0.278 w2,4 = 0.231

V4,1 = Full price U1,4(V4,1) = 0.033 U2,4(V4,1) = 1

V4,2 = 5% spoilage allowed U1,4(V4,2) = 1 U2,4(V4,2) = 0.35

V4,3 = 10% spoilage allowed U1,4(V4,3) = 0.167 U2,4(V4,3) = 0.05

Table A.45: Itex vs Cypress scenario specification.
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Rank Agent Score

1 OMACagent 0.521 ±0.002

2 AgentLG 0.515 ±0.004

3 TheNegotiator Reloaded 0.486 ±0.002

4-5 IAMhaggler2012 0.481 ±0.003

4-7 CUHKAgent 0.475 ±0.006

5-7 BRAMAgent2 0.473 ±0.004

5-7 Meta-Agent 0.471 ±0.002

8 AgentMR 0.306 ±0.003

Table A.46: Scores in the Itex vs Cypress scenario (averaged over δ ∈
{0.50, 0.75, 1.00}, uα ∈ {0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.23: Itex vs Cypress scenario outcome space.
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A.24 Travel Scenario

Domain Profile 1 Profile 2

Issue 1: Atmosphere w1,1 = 0.37 w2,1 = 0.212

V1,1 = Cultural heritage U1,1(V1,1) = 0.111 U2,1(V1,1) = 0.109

V1,2 = Local traditions U1,1(V1,2) = 0.089 U2,1(V1,2) = 0.109

V1,3 = Political stability U1,1(V1,3) = 0.576 U2,1(V1,3) = 0.088

V1,4 = Security (personal) U1,1(V1,4) = 0.708 U2,1(V1,4) = 0.088

V1,5 = Liveliness U1,1(V1,5) = 0.122 U2,1(V1,5) = 0.121

V1,6 = Touristic activities U1,1(V1,6) = 0.1 U2,1(V1,6) = 1

V1,7 = Hospitality U1,1(V1,7) = 1 U2,1(V1,7) = 0.577

Issue 2: Amusement w1,2 = 0.043 w2,2 = 0.037

V2,1 = Nightlife and entertainment U1,2(V2,1) = 1 U2,2(V2,1) = 1

V2,2 = Nightclubs U1,2(V2,2) = 0.089 U2,2(V2,2) = 0.576

V2,3 = Excursion U1,2(V2,3) = 0.1 U2,2(V2,3) = 0.087

V2,4 = Casinos U1,2(V2,4) = 0.122 U2,2(V2,4) = 0.098

V2,5 = Zoo U1,2(V2,5) = 0.708 U2,2(V2,5) = 0.111

V2,6 = Festivals U1,2(V2,6) = 0.111 U2,2(V2,6) = 0.576

V2,7 = Amusement park U1,2(V2,7) = 0.576 U2,2(V2,7) = 0.121

Issue 3: Culinary w1,3 = 0.208 w2,3 = 0.261

V3,1 = Local cuisine U1,3(V3,1) = 1 U2,3(V3,1) = 0.708

V3,2 = Lunch facilities U1,3(V3,2) = 0.138 U2,3(V3,2) = 1

V3,3 = International cuisine U1,3(V3,3) = 0.709 U2,3(V3,3) = 1

V3,4 = Cooking workshops U1,3(V3,4) = 0.122 U2,3(V3,4) = 0.119

Issue 4: Shopping w1,4 = 0.043 w2,4 = 0.043

V4,1 = Shopping malls U1,4(V4,1) = 0.12 U2,4(V4,1) = 0.709

V4,2 = Markets U1,4(V4,2) = 0.138 U2,4(V4,2) = 1

V4,3 = Streets U1,4(V4,3) = 0.709 U2,4(V4,3) = 0.12

V4,4 = Small boutiques U1,4(V4,4) = 1 U2,4(V4,4) = 0.138

Issue 5: Culture w1,5 = 0.047 w2,5 = 0.047

V5,1 = Museum U1,5(V5,1) = 0.709 U2,5(V5,1) = 0.12

V5,2 = Music hall U1,5(V5,2) = 0.12 U2,5(V5,2) = 0.709

V5,3 = Theater U1,5(V5,3) = 1 U2,5(V5,3) = 0.11

V5,4 = Art gallery U1,5(V5,4) = 0.099 U2,5(V5,4) = 0.579

V5,5 = Cinema U1,5(V5,5) = 0.579 U2,5(V5,5) = 1

V5,6 = Congress center U1,5(V5,6) = 0.11 U2,5(V5,6) = 0.099

Issue 6: Sport w1,6 = 0.033 w2,6 = 0.028

V6,1 = Bike tours U1,6(V6,1) = 1 U2,6(V6,1) = 1

V6,2 = Hiking U1,6(V6,2) = 0.709 U2,6(V6,2) = 0.11

V6,3 = Indoor activities U1,6(V6,3) = 0.11 U2,6(V6,3) = 0.137

V6,4 = Outdoor activities U1,6(V6,4) = 0.121 U2,6(V6,4) = 0.709

V6,5 = Adventure U1,6(V6,5) = 0.137 U2,6(V6,5) = 0.121

Issue 7: Environment w1,7 = 0.255 w2,7 = 0.371

V7,1 = Parks and Gardens U1,7(V7,1) = 0.5 U2,7(V7,1) = 0.098

V7,2 = Square U1,7(V7,2) = 0.089 U2,7(V7,2) = 1

V7,3 = Historical places U1,7(V7,3) = 0.098 U2,7(V7,3) = 0.708

V7,4 = See, river, etc. U1,7(V7,4) = 0.082 U2,7(V7,4) = 0.576

V7,5 = Monuments U1,7(V7,5) = 1 U2,7(V7,5) = 0.708

V7,6 = Special streets U1,7(V7,6) = 0.576 U2,7(V7,6) = 0.083

V7,7 = Palace U1,7(V7,7) = 0.709 U2,7(V7,7) = 0.11

V7,8 = Landscape and nature U1,7(V7,8) = 0.111 U2,7(V7,8) = 0.5

Table A.47: Travel scenario specification.
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Rank Agent Score

1 AgentLG 0.642 ±0.011

2-3 CUHKAgent 0.618 ±0.007

2-4 TheNegotiator Reloaded 0.613 ±0.008

3-5 OMACagent 0.601 ±0.009

4-5 IAMhaggler2012 0.600 ±0.006

6 BRAMAgent2 0.570 ±0.013

7 Meta-Agent 0.545 ±0.006

8 AgentMR 0.254 ±0.009

Table A.48: Scores in the Travel scenario (averaged over δ ∈ {0.50, 0.75, 1.00}, uα ∈
{0.00, 0.25, 0.50}), with 95% confidence intervals.
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Figure A.24: Travel scenario outcome space.





Appendix B

Pareto-Search Selection

In this appendix, we discuss an additional approach for selecting a multi-issue offer with

a given utility (other such approaches are described in Section 3.3). This particular

approach was designed for use in scenarios which contain issues with and without a

known, common ordering. Since this thesis focuses on issues which do not have a known,

common ordering, we omit this strategy from the body of the thesis.

The approach, known as Pareto-search, is to search for the offer with a given utility

that we consider to be closest to the best offer that we have seen from our opponents.

The rationale for this approach is that, if we can select an offer close to the best offer

(according to our utility function) seen from the opponent (rather than any of its other

offers) it can aid the opponent in learning our preferences. If the opponent uses a similar

search method, the agreement that is reached should be Pareto efficient. In what follows,

we begin by considering only scenarios where the issue values take a known, common

ordering (including continuous issues), before extending the approach to deal with issues

where the values do not have a known, common ordering.

B.1 Issues with a known, common ordering

In order to search for an offer, we consider our agent’s utility function to be a mapping

from a multi-dimensional space (in which there is a dimension representing each issue

with a known, common ordering, including continuous issues) to a real value which

represents the utility of the outcome. Our strategy treats integer based issues in the

same way as continuous issues, except when generating an offer, where it must round

the values for each integer based issue, to ensure that their values remain as integers in

the offer.

179
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Domain Profile 1 Profile 2

Issue 1: Price w1,1 = 0.3 w2,1 = 0.8
v1 ∈ Z, 5000 ≤ v1 ≤ 15000 U1,1(v1) = −0.0001 · v1+1.5 U2,1(v1) = 0.0001 · v1−0.5

Issue 2: Batt.Cap. w1,2 = 0.7 w2,2 = 0.2

v2 ∈ R, 5 ≤ v2 ≤ 20 U1,2(v2) =


0.1 · v2
−0.5 if v2 ≤ 15
−0.2 · v2

+4.0 otherwise

U2,2(v2) =


0.2 · v2
−1.0 if v2 ≤ 10
−0.1 · v2

+2.0 otherwise

Table B.1: Agent’s utilities for the ‘Price’ and ‘Battery Capacity’ issues in a modified
version of the car sales domain. wp,i is the weight of issue i to agent p and Up,i(vi) is

the utility to agent p of value vi for issue i.

Figure B.1: Multi-dimensional space representing the utility of outcomes in the mod-
ified car sales domain, with one continuous issue and one integer issue (as described in
Table B.1). Values v1 and v2 are the values of the two issues. U({v1, v2}) is the utility

of the offer represented by those values.

For example, for a modified version of the car sales domain (introduced in Chapter 1),

which consists of only two issues (one continuous, the other integer), as described in

Table B.1, this multi-dimensional utility space (the space of all possible outcomes) is

shown graphically in Figure B.1.

Here, the values v1 and v2 for the two issues are shown on the two horizontal axes. The

vertical axis represents the utility U({v1, v2}) of each possible offer.

Now, by taking a cross-section of the utility space, we can construct an iso-utility space,

which is a multi-dimensional space, with the number of dimensions equal to the number

of continuous or integer issues. This space consists of outcomes which result in the same

utility for our agent. To this end, Figure B.2 shows a number of iso-utility spaces in the
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Figure B.2: Iso-utility contours in a domain with one continuous issue and one integer
issue (as described in Table B.1). Values v1 and v2 are the values of the two issues.

The darker contours represent the higher utility values.

modified car sales domain. Each iso-utility space is shown as a contour line (the contour

lines are displayed at utility intervals of 0.1).

Moreover, the iso-utility space that is chosen at a particular time is the one which

represents our current desired utility level (as decided by our concession strategy, which

we detailed in Section 3.2). Furthermore, for a given desired utility level (in the following

example we choose a utility of 0.8), we can view the iso-utility space as in Figure B.3.

Based on the work of Somefun et al. (described in Section 2.3.2.3), we use projection

to find the point on our iso-utility space which is closest to the best offer received from

our opponent. We extend their work to deal with issues in which there is not a known,

common ordering, in Section B.2.

Specifically, in terms of closeness between two offers {v1, v2, ..., vn} and {v′1, v′2, ..., v′n},
we use the Euclidean distance, that is:√√√√ n∑

i=1

(
vi − v′i
rangei

)2

(B.1)

where rangei is the range of values allowed for issue i. The reason that we divide by

the range is to ensure that the scale of the issue’s values does not affect the distance

measurement. By performing this division, the value of each issue is normalised by its

range, to give it the same weight as all other issues. If this division was not performed,
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Figure B.3: Projection of a point representing an opponent’s offer ({11800, 8.24},
marked with a cross) onto an iso-utility space (at a utility of 0.8) for a domain with
two continuous issues (as described in Table B.1). The shaded region represents the

space in which the utility is greater than 0.8.

the issue with the larger range would contribute significantly more to the distance calcu-

lation. For example, in the modified car sales domain presented in Table B.1, the price

issue (with a range of 10000) would have a larger effect than the battery capacity (with

a range of 15).

B.2 Issues without a known, common ordering

The approach we have just introduced does not consider domains with discrete issues

which do not have a known, common ordering. In order to meet our requirement for

a strategy which can negotiate in domains with such issues (Requirement 5), we need

to make some modifications to our strategy. In particular, since they do not have a

common ordering, we cannot treat them as further dimensions in our space. To address

this problem, we first of all continue to create an iso-utility space to represent the issues

with a known, common ordering (including continuous issues). However, to handle the

additional complexity of discrete issues without a known, common ordering, we create

an iso-utility space for each combination of the values of the discrete issues without a

known, common ordering. As an example, consider the domain we used earlier, but add

a discrete issue Colour, as described in Table B.2 (we also reduce the weights of the

Price issue by 0.1, that is w1,1 = 0.2 and w2,1 = 0.8).
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Domain Profile 1 Profile 2

Issue 3: Colour w1,3 = 0.1 w2,3 = 0.1
V3 = { V3,Red = 1 U1,3(V3,Red) = 3 U2,3(V3,Red) = ,
V3,Green = 2 U1,3(V3,Green) = 2 U2,3(V3,Green) = ,
V3,Blue = 3 U1,3(V3,Blue) = 1 U2,3(V3,Blue) = }

Table B.2: Agent’s utilities for the ‘Colour’ issue.
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Figure B.4: Projection of a point representing an opponent’s offer (at {13500, 7, v3},
marked with a cross) onto an iso-utility space (at a utility of 0.8) for a domain with
two continuous issues and a discrete issue (as described in Tables B.1 and B.2). The
projections are shown for each of the three combinations of values for the issues without

a common ordering.

For each combination of the values for the issues without a common ordering, we cre-

ate a multi-dimensional space, and use the iso-utility projection method (described in

Section 3.3) to find a solution (where possible) for each of these combinations. We

demonstrate this projection in Figure B.4, where the opponent’s offer {13500, 7, v3}
(we write v3 to represent the value of issue 3, since it does not affect the projection)

is projected to give the solutions {11667, 15.0000,Red}, {12514, 14.7659,Green} and

{12572, 14.3063,Blue}. For some combinations, the maximum overall utility available

from the package with the best values for the other issues may be lower than our current

utility level. In this case, there will not be a solution which contains this combination

of values for the issues without a common ordering.

Once a solution has been found for each combination of the values, it is necessary for

our agent to choose one of these solutions as its offer. Our agent is indifferent between

each of these solutions, as they all belong to the same iso-utility space, resulting in them
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having an identical utility. However, their utility to the opponent may vary, and in order

to negotiate efficiently, we should choose the one which offers the highest utility to the

opponent.

Now, since we assume that the opponent’s utility function is unknown (Requirement 3),

we need a way to estimate it. This can be done using the approach taken by Hindriks and

Tykhonov (2008) and as described in Section 3.3, using Bayesian updating to learn the

preferences of the opponent. The agent then evaluates the solution for each combination

of values using our model of the opponent’s utility function, in order to obtain an

estimate of the utility of the offer to the opponent. The overall solution that is chosen

is then the one which maximises the opponent’s utility according to our model of its

utility function.

In order to ensure that this approach remains computationally tractable (Requirement 7)

even in domains with large outcome spaces, it may be necessary to limit the number of

combinations of values that we perform the iso-utility projection method for. A solution

to this is to choose a number of combinations (several hundred), by identifying those

which maximise the sum of our utility and our opponent’s utility (according to our model

of the opponent’s utility function).
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