Improving the process of making rapid prototyping models from medical ultrasound images
Improving the process of making rapid prototyping models from medical ultrasound images
Purpose:
Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging systems, as images are not layered and are of lower quality as compared to those of computerized tomography (CT) and magnetic resonance imaging (MRI), the process for making physical models requires a series of intermediate processes and it is a challenge to fabricate a model using ultrasound images due to the inherent limitations of the ultrasound imaging process. The purpose of this paper is to make high quality, physical models from medical ultrasound images by combining modern image processing methods and RP technology.
Design/methodology/approach:
A novel and effective semi-automatic method was developed to improve the quality of 2D image segmentation process. In this new method, a partial histogram of 2D images was used and ideal boundaries were obtained. A 3D model was achieved using the exact boundaries and then the 3D model was converted into the stereolithography (STL) format, suitable for RP fabrication. As a case study, the foetus was chosen for this application since ultrasonic imaging is commonly used for foetus imaging so as not to harm the baby. Finally, the 3D Printing (3DP) and PolyJet processes, two types of RP technique, were used to fabricate the 3D physical models.
Findings:
The physical models made in this way proved to have sufficient quality and shortened the process time considerably.
Originality/value:
It is still a challenge to fabricate an exact physical model using ultrasound images. Current commercial histogram-based segmentation method is time-consuming and results in a less than optimum 3D model quality. In this research work, a novel and effective semi-automatic method was developed to select the threshold optimum value easily.
287-298
Vaezi, Mohammad
828e14c1-3236-4153-8f69-3837233f48ed
Chua, Chee Kai
c18f7791-75be-42f8-99cb-6ec71d2184c4
Chou, Siaw Meng
8e1a5545-fe23-4b18-92d4-e429679fd48b
22 June 2012
Vaezi, Mohammad
828e14c1-3236-4153-8f69-3837233f48ed
Chua, Chee Kai
c18f7791-75be-42f8-99cb-6ec71d2184c4
Chou, Siaw Meng
8e1a5545-fe23-4b18-92d4-e429679fd48b
Vaezi, Mohammad, Chua, Chee Kai and Chou, Siaw Meng
(2012)
Improving the process of making rapid prototyping models from medical ultrasound images.
Rapid Prototyping Journal, 18 (4), .
(doi:10.1108/13552541211231716).
Abstract
Purpose:
Today, medical models can be made by the use of medical imaging systems through modern image processing methods and rapid prototyping (RP) technology. In ultrasound imaging systems, as images are not layered and are of lower quality as compared to those of computerized tomography (CT) and magnetic resonance imaging (MRI), the process for making physical models requires a series of intermediate processes and it is a challenge to fabricate a model using ultrasound images due to the inherent limitations of the ultrasound imaging process. The purpose of this paper is to make high quality, physical models from medical ultrasound images by combining modern image processing methods and RP technology.
Design/methodology/approach:
A novel and effective semi-automatic method was developed to improve the quality of 2D image segmentation process. In this new method, a partial histogram of 2D images was used and ideal boundaries were obtained. A 3D model was achieved using the exact boundaries and then the 3D model was converted into the stereolithography (STL) format, suitable for RP fabrication. As a case study, the foetus was chosen for this application since ultrasonic imaging is commonly used for foetus imaging so as not to harm the baby. Finally, the 3D Printing (3DP) and PolyJet processes, two types of RP technique, were used to fabricate the 3D physical models.
Findings:
The physical models made in this way proved to have sufficient quality and shortened the process time considerably.
Originality/value:
It is still a challenge to fabricate an exact physical model using ultrasound images. Current commercial histogram-based segmentation method is time-consuming and results in a less than optimum 3D model quality. In this research work, a novel and effective semi-automatic method was developed to select the threshold optimum value easily.
This record has no associated files available for download.
More information
Published date: 22 June 2012
Organisations:
Faculty of Engineering and the Environment
Identifiers
Local EPrints ID: 348236
URI: http://eprints.soton.ac.uk/id/eprint/348236
ISSN: 1355-2546
PURE UUID: e5261611-3c15-4de1-85b2-8fab80a8f8b9
Catalogue record
Date deposited: 11 Feb 2013 10:02
Last modified: 14 Mar 2024 12:56
Export record
Altmetrics
Contributors
Author:
Mohammad Vaezi
Author:
Chee Kai Chua
Author:
Siaw Meng Chou
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics