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UNIVERSITY OF SOUTHAMPTON 
 

ABSTRACT 
 

FACULTY OF LAW, ARTS & SOCIAL SCIENCE 

SCHOOL OF MANAGEMENT 

Doctor of Philosophy 

Portfolio based VaR model: A Combination of Extreme Value Theory (EVT) and 

Dynamic Conditional Correlation (DCC) model  
 

JO-YU WANG 
 

This thesis fills a gap in the risk management literature and expands the understanding of the 

portfolio value at risk (VaR) by providing a theoretical market risk measurement of a portfolio 

(called “GEV-DCC model”), which combines the tail dynamic conditional correlation (tail-DCC) 

and extreme value theory. According to the spirit of VaR, the tail distribution is more important 

than the entire distribution, as well as the correlation in the tail area between various assets. The 

main advantage of this approach is the increase of accuracy in the parameter estimation of the tail 

distribution and more consistent correlation measurement for VaR. The results from this method 

are compared with four other conventional VaR approaches; GARCH model, RiskMetrics, 

stochastic volatility, and historical simulation. Furthermore, three quality measures are applied to 

evaluate the suitability, conservativeness, and magnitude of loss of the forecasted VaR, which 

offer more information from the forecasted VaR pattern.  

Applying 16 major equity index returns from developed and emerging markets, this study finds 

that the GEV-DCC model offers a more accurate coverage across the blocks in the three 

hypothetical portfolios (the developed equity markets, Asian and Latin American equity markets) 

compared with the four competing models. The uncovered rates of the GEV-DCC model with the 

5-day block approach are generally close to the given probability () set in the VaR calculation. 

These consistent results can also be found in the robustness test with the shorter forecasting period. 

In the quality checks, the GEV-DCC presents a relatively stable pattern in the daily and 10-day 

VaR results. In addition, the GEV-DCC model also provides satisfactory results in the 

conservativeness and potential loss tests although no direct evidence indicates that it delivers the 

best result in these two checks. We also find significant differences between the original DCC and 

the tail-DCC. This evidence shows that the correlations between equity markets in the left tail are 

significantly higher than the ones in the right tail, and there are significant changes (generally 

rising) in the tail-DCC patterns around the period of financial crisis in the third quarter of 2008. 

The results from this study could potentially provide a critical reference for investors in measuring 

or managing the market risk. 
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1 Chapter 1 Introduction 

 

1.1. Motivation and Aim 

Over the last three decades, both the importance of risk measurement and the efficiency of 

risk management tools have increased dramatically. Following the havoc to international 

equity markets in 1987, the concept of risk management or risk control has become widely 

spread across the markets. In recent years, there has been a rapid increase of uncertainty 

around the world economy; international financial markets have been seriously afflicted with 

various crises, and investors and financial institutions have frequently suffered huge losses. In 

1988 the Basel Committee on Banking Supervision raised the profile of risk management in 

the banking sector by finalizing the Basel Capital Accord, and then in 1996 they included a 

capital requirement for market risk in an amended Basel Accord. A well-known investment 

bank, J.P. Morgan, publicised their techniques and strategies for risk management in 1995. 

Following these early beginnings there was an explosion of various risk models proposed 

based on a wide variety of different assumptions and aspects. The Value at Risk (VaR) model 

was derived under this context, and primarily used for measuring market risk, defined as a 

decrease in the value of a position due to the changes in the financial market prices. However, 

in the last decade or so, several financial crises have still had serious impacts on the financial 

markets despite these risk measures being in place, implying that there might still be 

something lacking in the current system of risk management. In addition, due to increasing 

globalization of the financial markets and significant advances in trading system technology, 
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the impact of a certain financial crisis anywhere can spread very rapidly around the world and 

have significant consequences that would not have been conceivable ten or twenty years ago. 

Thus, the inadequacy of existing risk management system offers plenty of scope for academic 

discussion, research and development. 

The difficulties of risk measurement and management in the financial markets have spawned 

voluminous research. Most of the research in the risk-modelling field focuses on the 

distribution of financial returns. Some emphasize a parametric method by assuming that the 

financial returns follow a specific distribution, for example the normal distribution, although 

this popular assumption does not actually hold true in real financial markets (J.P.Morgan 

(1996), Christoffersen and Diebold (2000), Pafka and Kondor (2001), and Bauwens and 

Laurent (2005)). Alternatively, some apply non-parametric techniques to avoid the issue of the 

distribution assumption in parametric approach (Beder (1995), Hendricks (1996), 

Barone-Adesi et al. (1998), Barone-Adesi et al. (2002), and Boudoukh, Richardson, and 

Whitelaw (1998)). Yet the two methods mentioned above still have significant weaknesses 

when measuring market risk. A group of researchers suggest that for risk management the 

estimation of return distributions should only focus on the estimation of tail distribution by 

applying extreme value theory (EVT)
1
, which increases the accuracy of the parameters 

estimation (McNeil (1999), Lauridsen (2000), and McNeil and Frey (2000))  This is the 

major inspiration for this research. McNeil (1999) is one of the pioneers in the studies using 

EVT for measuring market risk. He compared VaR model based on EVT to other popular 

measures and suggested that EVT models provides the best results in measuring market risk 

of DAX index. In the wake of the uncertainty over the global stock market we face today, the 

correlation forecast of financial assets for risk management is a new issue, and yet paramount 

to portfolio management. In this thesis, the practical risk measurement of a portfolio is 

                                                      
1
 In extreme value theory, the tail-distribution is called generalized extreme value distribution (GEV). The 

details of this distribution and its derivatives will be discussed in Chapter 2.  
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reconsidered, based on the major characteristics of financial returns such as the information 

from extreme returns and their dynamic correlation
2
. Before providing such a portfolio VaR 

measure, several critical issues need to be discussed and accounted for. Firstly, although the 

concept and the model of VaR have been researched and developed over the last twenty years, 

most previous research focused on modelling univariate VaR rather than the VaR of a 

portfolio because of the complexity of multivariate analysis. However, financial institutions 

normally hold portfolios including a large number of assets; there is thus a strong need for a 

comprehensive portfolio VaR model for measuring (or managing) market risks and managing 

the portfolio.  

Secondly, it is widely known that the correlation between financial assets plays a critical role 

in portfolio management. However, the question of how to appropriately measure the 

correlation of the individual assets in the portfolio for risk modelling is still inconclusive. 

Although a group of scholars have proposed different type of dynamic conditional correlation 

(DCC) models since Engle’s (2002) seminal work, it is still unclear if the DCC model and its 

derivatives are suitable for risk modelling. Thus, a new approach for measuring dynamic 

correlations for portfolio VaR needs to be discussed. In this new approach of correlation, two 

critical concepts (called “seriality” and “correlation with seriality”) emphasizing the 

importance of order in the time series are introduced and applied in the estimation of dynamic 

correlations. Thirdly, the methods of VaR evaluation in previous research mainly concentrated 

on the number of violated VaRs, and non-violated VaRs were entirely ignored. In this thesis, 

we suggest that VaR models should be tested from two aspects: the characteristics of violated 

and non-violated VaRs. Thus, we can have a comprehensive understanding of the VaR model. 

To illustrate the application of the portfolio VaR model suggested in this study, an empirical 

study with the daily returns of sixteen equity indices over a sample time period spanning from 

                                                      
2
 In this study, the method for accounting extreme return and dynamic conditional correlation is proposed and 

symbolized by GEV-DCC. The DCC here indicates the concept of dynamic conditional correlation. 
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January 1990 to April 2010 is also provided. The dataset comprises six developed equity 

indices, six Asian equity indices, and four Latin American equity indices.  

The results show that compared with other approaches the GEV-DCC model is generally the 

best portfolio VaR measurement in the coverage tests, and also provides satisfactory patterns 

in the quality checks. In the univariate analysis, the coverage test results of the GEV models 

(with different blocks), as well as historical simulation and the GARCH model, provide 

accurate daily-VaR forecasts although the GEV model is not satisfactory in the developed 

markets. In the correlation analysis, the results of the tail-DCC show that there are some 

imbalance phenomena and changeable patterns within the conditional correlations between 

the left and the right tails, which is consistent with previous research in this area. These 

results imply that the relationships between the equity markets tend to co-move in the 

downturn period rather than in the upturn period.  

In the portfolio VaR analysis, we find that the GEV-DCC model not only offers the most 

accurate coverage but also has the most reasonable quality VaR patterns. For robustness, using 

a shorter estimation period GEV-DCC model provides consistent results and VaR patterns, 

indicating that the GEV-DCC model is a stable VaR measure. In the VaR quality checks, from 

all observations in each VaR series we find the GEV-DCC offers the smallest variation VaR 

patterns, and historical simulation performs the worst. From the non-violated (D) observation 

check, the GEV-DCC model tends to be lightly conservative and the GARCH model 

(historical simulation) offers the best (worst) results in this test. On the other hand, in the 

check of violated (Q) VaR observations the GEV-DCC, as well as the GARCH model, has 

equivalently small potential losses exceeding VaR.  
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1.2. Research questions and thesis structure 

The following perspectives are the critical research questions we try to answer in this thesis.  

1. How is extreme value theory (EVT) applied in measuring univariate VaR and what is the 

advantage in using this approach?  

2. How do we measure the time-varying correlation, suitable for application in risk 

management of the extreme returns selected from various financial return sequences? And 

what is the difference between this correlation and the conventional one?  

3. How do we apply the bottom-up procedure to measure the VaR of a portfolio by using the 

time-varying correlation model to aggregate the individual VaRs as a whole? 

4. How do we use the VaR patterns and their corresponding return sequences to 

comprehensively evaluate the overall performance of VaR models? (i.e. the coverage, 

stability, conservativeness, and potential losses of VaR models.) 

5. How do we apply this portfolio VaR model to real datasets?  

 

To set out the details regarding the objectives and research questions aforementioned, the rest 

of this thesis is organized as follows. In chapter 2, the fundamental theory of market risk 

measurement is introduced. The first section shows the context and the introduction of risk 

management policies in international financial markets. In addition, the distinct concept and 

the basic calculation of VaR, and the debate in related literature are also explicated in this 

chapter. Moreover, three types of application for value at risk in practice are explained. In the 

remaining two sections, the use of extreme value theory for measuring market risk and the 

advantages of this are set out in detail. In the final section, two crucial concepts (seriality and 

correlation with seriality) are defined and the importance of them in the correlation analysis is 

introduced in detail. A simple and explicit mathematical process for the portfolio VaR formula 
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is also shown in this section.  

Chapter 3 reviews critical literature in this field. In general, the methods of VaR modelling are 

separated into three categories: parametric model, non-parametric approach, and 

semi-parametric model, according to their assumption of the distributions of financial returns. 

The results in current literature are quite contrary due to the diverseness of the model 

assumptions and the datasets used within their research. In addition, we also provide an 

example to explain the importance of order in correlation calculations. In the last section, 

current evaluation methods of VaR model are reviewed.  

Chapter 4 mainly covers the methodology and the datasets used in this thesis. The first section 

introduces some basic econometric functions, which are used to test the properties of time 

series data. The following sections describe the estimation of the model suggested by this 

thesis, and present four competing models which are very common in the literature. In section 

4.5, two quantitative approaches widely used for backtesting the credibility of the VaR models 

are introduced. Furthermore, three benchmarks are suggested here to examine the quality of 

the VaR model as regards to stability, conservativeness, and the magnitude of violation.  

The results and findings are shown in Chapter 5. The first part answers the first research 

question and presents the results of the univariate VaR measured by GEV and four competing 

models. Overall, the GARCH model, historical simulation and the model based on extreme 

value theory perform equally well in the two types of backtesting. The correlation analysis 

provides direct and significant evidence of fatness and asymmetry in the distributions of the 

index returns based on the method of tail-DCC. In the portfolio VaR analysis, we provide the 

comprehensive evidence that the GEV-DCC model suggested in this thesis is the best 

portfolio VaR measurement compared with the competing models. In addition, for robustness, 

a portfolio VaR analysis based on 10-day return sequences and a different period of sample 

sets are shown in the end of this chapter. Thus, all the evidence in this thesis shows that 
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extreme value theory could be applied for measuring market risk more accurately for both 

univariate and portfolio conditions. Chapter 6 marks the conclusion of the thesis, including a 

comprehensive summary, the potential contribution of the thesis, research limitations, and 

suggestions for future research in this line. 
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2 Chapter 2 Theory of Market Risk 

Measurement 
 

 

 

 

 

 

2.1 Introduction  

This chapter aims to set out the theoretical foundations of the well-known market risk 

measure, Value at Risk (VaR), and to explain its application in various financial institutions. It 

commences with a review on the background of VaR, the fundamental theory behind VaR, and 

the methods of VaR evaluation, in Section 2.2. We also present the important debate started by 

Artzner et al. (1999) of VaR modelling and regulatory measurement of market risk. In Section 

2.3, a basic VaR formula will be exhibited, and the critical part of this formula, conditional 

volatility, will be discussed for the univariate and multivariate cases. This section shows the 

roles of Engle’s (1982) volatility model and its derivatives in the VaR model. In section 2.4, 

we introduce three main applications of VaR. Two of these applications have been used in 

financial institutions for years, but the third is new to practice. Compared with the ex post 

nature of the previous two applications, the third application emphasizes the ex-ante 

application of VaR tools, which uses the VaR to evaluate the marginal risk-based performance 

of the new investment or diversification before they are made. In the last two decades, many 

institutional investors have suffered huge losses in a series of serious financial market 

collapses. Thus, we look at whether it is helpful for financial institutions to apply extreme 

value theory in measuring VaR during international financial market events. Therefore, in 

Section 2.5, the nature and philosophy of extreme value theory will be discussed in detail. We 

will also show the mathematical process of VaR modelling with this EVT. The final section of 

this chapter is the conclusion.  
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2.2 The Value at Risk (VaR) Framework 

2.2.1 Background 

When it comes to the history of risk management and value-at-risk, it is evident that 

some events have evolved indirectly as a forerunner of the system of risk management 

nowadays, for example the Herstatt event and the Basel Committee accord. In June 

1974, the German regulators withdrew the licence of the Bank of Herstatt, a midsize 

private bank, due to its lack of liquidity and over-indebtedness in its foreign exchange 

position. Because of different time-zones between Herstatt and its counterparts, a 

number of banks in New York had sent their payment in Deutsch Marks to exchange for 

U.S. Dollars in the previous trading day. However, with Herstatt’s suspension, they did 

not then receive their payment in U.S. Dollars and lost the full amount that they had 

sent. This event let each central bank to realize the need for an international 

organization to coordinate global transactions. Responding to the Herstatt crisis, the 

Basel Committee on Banking Supervision (BCBS), under the Bank for International 

Settlement (BIS), was formed by the G-10 countries in 1975 and designed to oversee 

the regulation of cross-jurisdictional situations and capital requirements. 

 

In July of 1988, the Basel Committee announced a minimum requirement of capital 

standard (hereafter, the 1988 Basel Accord), which mainly required commercial banks 

to maintain enough capital, say 8% of its risky asset, against credit risk. According to 

the 1988 Basel Accord, bank capital is divided into two areas: core capital and 

supplementary capital. Under the 1988 Basel Accord, all the bank’s assets are assigned a 

risk weight according to the credit quality of the corresponding counterparty. Roughly 
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speaking, this weighting is from zero for cash or claims on OECD
3
 central governments 

up to 100% for the private sector. After the deregulation of financial markets in the 

1990s, commercial banks now actually not only take credit risk but also market risk. 

Therefore, the Basel Committee published an amended version of the Basel Accord in 

1996 (the 1996 Basel Accord) to incorporate market risk into the requirement of 

minimum capital. The main feature of the 1996 Basel Accord is to allow banks to use 

internal models for measuring market risk, with the exception of the standardised 

measurement method. Since then, the term, value-at-risk, formally became a substantial 

concept in these fields
4
. The announcement of the 1996 Basel Accord fanned the wave 

of research in VaR and its derivatives, and since then the use of VaR in the banking 

sector has remained strong for many years. For instance, the investment bank, J.P. 

Morgan
5
, was one of the earliest financial institutions to start using the VaR model in 

measuring market risk of their daily trading positions. Uptake was encouraged even 

further following the announcement by the U.S. Securities and Exchange Commission 

(Commission) of a new rule (Securities Act Release No. 7368) in January of 1997 that 

required publicly traded firms to have to do quantitative and qualitative disclosures of 

their market risk in their annual report. 

Under Basel II, published in 2004 and effected in 2007, the internal model is permitted 

to measure credit risk via external rating agents or internal rating models. Nowadays, 

the concept and technique of value at risk have been widely applied to other categories 

of risk measurement (Crouhy, Galai and Mark (2000) and Gordy (2000)). Jorion (2002) 

                                                      
3
 Organisation for Economic Co-operation and Development (OECD) is an international organisation whose 

main mission is to stabilize the economies of its members. 
4
 In fact, J.P. Morgan had done some research similar to this concept during the late eighties, which can be 

referred to in Guldimann (2000). 
5
 Actually, J.P. Morgan can be viewed as the creator of the concept of value at risk. In the earlier stages, they had 

serious discussions about the importance of fluctuation in the value of a trading position and its earnings. As an 

investment bank, they were more concerned with the variation of price than earnings. Thus, “value” at risk set 

the tone of their risk management. 
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investigated the use of VaR and information quality in the top-twelve largest 

commercial banks in the U.S., according to their trading positions from 1995 to 1999, 

and found that the VaR disclosures of these commercial banks were insubstantial and 

relatively uninformative. However, VaR still plays a significant role in risk management 

within the banking sector and lately, VaR applications have extensively spread to all the 

financial industries. Another comprehensive survey of the disclosures of the top 50 

banks in the world can be referred to in Pérignon and Smith (2010).  

 

2.2.2 The General Concept of Value at Risk 

The concept and model of value-at-risk was first proposed by J.P Morgan in 1994 and 

became a standard method to measure the risk of a risk position (Alexander, 2005). It 

describes the worst loss of a risk factor over a particular horizon with a given level of 

confidence (1-) if the market is hit by a certain shock (Jorion, 2007). In other words, 

value at risk offers a simple single number to summarise the maximum potential loss 

with a given likelihood if the market in the next trading day is bad. Therefore, the value 

at risk for a long position at the  percentile can be simply defined as 

              (2.1) 

where rt 
 and 1- denote the asset return and confidence levels respectively, for 

example 95% or 99%. Eq. (2.1) could be rewritten as 

 

                   
      

  
  (2.2) 

Where Fr and f(rt) are the cumulative distribution function (CDF) and probability 

distribution function (PDF) of a return, rt. Under the original normal distribution 

assumption to asset return, value at risk may be calculated by the following formula. 

 

              (2.3) 



Chapter 2 Theory of Market Risk Measurement                                              

13 
 

where r and r indicate the mean and standard deviation of the asset return, 

respectively. Eq. (2.3) statistically describes the value at risk for a long position as equal 

to the mean of the financial return plus the critical value (Z) with a given probability () 

times the volatility of the financial return. For simplicity, one might assume that the 

density of financial returns follows a normal distribution. Consequently, if the given 

probability is =0.01, then Z <0 and the value at risk happens in the left area of the 

distribution of financial returns, indicating the downside risk of the long position. In 

contrast, the value at risk of a short position presents in the right area of the 

corresponding distribution. Alternatively, the concept of value-at-risk for a long position 

can be shown in Figure 2.1. Geometrically, the value at risk of an asset return is the 

point corresponding to the critical value based on a given probability () in the left tail 

and the probability density function, f(r), as shown in Eq. (2.3) and Figure 2.1. It is 

obvious that the value at risk of a single asset is affected by at least three key factors: 

the probability (); the volatility of the financial return (r); and the probability density 

function, f(r). According to the Basel regulation, commercial banks should be tested for 

performance at the 1% level of their internal risk model for local supervision. Engle 

(1982) and Bollerslev (1986) lift the curtain on the research of conditional volatility, 

demonstrating that the volatility of financial returns varies with previous information. In 

recent research, the assumption of the distribution to financial returns has been modified 

according to several major properties in practice, for example, fatness and skewness. In 

addition, the correlation between individual assets also plays a crucial role in calculating 

value at risk, especially for portfolio value at risk. 
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Figure 2.1 The concept of Value at Risk (VaR) 

 

 
Nowadays, value at risk has become a standard and widespread risk measure. This can 

be attributed to several reasons. First of all, from the perspective of authority, the 

amendment of the Basel Accord in 1997 allowed banks to use internal market risk 

management models in order to fulfil the requirements for capital adequacy. This 

amendment sparked a surge of research around value-at-risk as a so-called internal 

model, which could then be used by the financial institutions. As a result, banks can 

now use their own VaR models as the basis for determining the required capital to hold 

against market risk. Since internal models are seen as requiring less risk capital than 

the Basel’s standard method, most financial intermediaries and their managers who use 

VaR benefit from both a lower capital requirement and overall better performance. It is 

therefore not surprising that VaR has been promoted officially as a good risk measure 

in practice. Financial institutions have now taken one step further in this direction by 

applying the same concept to credit risk and operational risk. Saunders and Allen 

(2002) offers a comprehensive discussion and application for applying the VaR model 

to credit risk measurement and operational risk.  

f(r) 

 

VaR 
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Secondly, the simple and clear content of VaR and the convenient calculation 

procedures make it more attractive for financial institutions to adopt as their 

management practice compared to many other traditional ones. A well-designed VaR 

system could offer management level an explicit profile that shows how each 

individual asset in the portfolio affects the performance. In addition, Stulz (1996) 

suggested that companies could stand to benefit from better risk management in 

general, for example in improving capital structure and the reduction of taxes or 

avoiding the costs of bankruptcy.  

In practical implementation, computation of value at risk involves choosing: a proper 

; a time horizon; the frequency of the data; the cumulative distribution function of the 

asset return of a particular financial position; and the amount of the financial position. 

Assume , the time horizon, frequency of asset returns, and financial position are 

given, one might find that the calculation of value at risk would be strongly affected 

by the assumption of the distribution of the asset return. In previous research, most 

studies assumed that asset returns distributed normally, however, this is not the case 

and would mislead the distribution of financial assets. The earliest paper to my 

knowledge, Fama (1965), suggested that the Gaussian or normal distribution is not an 

adequate representation of financial assets. Besides, the existing literature on interest 

rates, exchange rates, and stock returns provides strong evidence that the distribution 

of price change in these financial assets has a fat tail and is significantly non-Gaussian 

distributed. Lau et al. (1990) also showed evidence of asymmetry to stock price 

changes. For the long position (short), since VaR presents a particular value to the left- 

(right-) tail of the distribution given a confident level, the actual distribution of the tail 

should be at the core of the VaR calculation. Several tail-related studies indicated that 

most financial time series are fat-tailed (Danielsson and De Vries, 1997, Loretan and 
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Phillips, 1994, Hols and De Vries, 1991)
6
. These studies provide strong evidence that 

the original normality assumption of the financial asset return should be modified to a 

distribution which is closer to the reality.  

 

 

2.2.3 The VaR Debate   

Various VaR methods have been applied in many different financial institutions 

(Pérignon and Smith, 2010), however, there is still some debate and criticism at a 

theoretical level about its actual value and use. Overall, these comments cannot 

obscure the virtues of VaR, especially for practitioners. Artzner et al. (1999) suggested 

that a coherent risk measure, , should have to satisfy four properties
7
: translation 

invariance; subadditivity; positive homogeneity; and monotonicity.  

Artzner et al. (1999) showed that VaR is not a coherent risk measure due to its lack of 

the subadditivity property, with the exception of the linear combination portfolio. 

Furthermore, they proposed an extension of VaR, called tail conditional expectation 

(Tail-VaR or TCE), which is the expected value of the value exceeding VaR. For a 

financial return, r, the TCE of a long position with probability, , can be defined as  

                      (2.4) 

where r() is the lower quantile of return distribution. If we set r() equal to VaR, then 

TCE can be presented as an expected value of returns smaller than VaR. 

                    (2.5) 

                                                      
6
 This area of research starts with Mandelbrot (1963). 

7
 The four characters can be displayed in the following equations.  

(1)Translation invariance:               

(2)Monotonous: for all assets, X and Y, with    , then           
(3)Positively homogeneous: for    ,              

(4)Subadditivity: for all   and  ,                  
More details of these four properties can be found in Frittelli and Gianin (2002). 
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The TCE in Eq. (2.5) reflects the mean loss exceeding the quantile of VaR. 

Specifically, TCE of a long position can be rearranged as a direct formula
8
. 

                         
    (2.6) 

 

Similar concepts of risk measure are discussed in the literature, for instance, 

conditional value at risk (CVaR), expected shortfall (ES), and worst conditional 

expectation (WCE). A detailed survey of these is provided by Acerbi and Tasche 

(2002). The major concept of subadditivity is that the diversification effect could 

reduce the total risk of a portfolio. In other words, the risk of a merged portfolio is 

never larger than the sum of the risk of the stand-alone portfolio. In response to this 

criticism of VaR, Danelsson et al. (2005) offered an explicit demonstration indicating 

that VaR does satisfy subadditivity in the tail area with a fat-tail distribution, although 

VaR does lack this feature across the entire distribution. Since the key point of the 

fatness property of financial returns and the calculation of VaR are both focused on the 

tail area, the problem of a lack of overall subadditivity might not really be that serious. 

Moreover, Dhaene, Goovaerts and Kaas (2003) suggested that risk measures should 

reflect the economic elements used to measure risk. They also provided some 

illustrations to explain that the four features of coherence might lead the risk measure 

to be too restrictive to be actually usable in any given economic situation. Dhaene et al. 

(2008) investigated the use of risk measures for the aspect of setting solvency capital 

requirements. They concluded that coherent risk measures in solvency capital 

requirements could be too subadditive and might lead to an increase of risk in the case 

of a merger. In addition, they suggested that VaR satisfies the regulators’ conditions, 

                                                      
8
The TCE in Eq. (2.6) can be re-written as a risk measure of a short position, TCE(1-), where  is a probability 

in the right tail, and (1-) is a cumulative probability. Thus, TCE of a short position is 
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and is the most efficient capital requirement in its cost bracket. In summary, the debate 

around the lack of subadditivity is still an open issue. To date, VaR is the most popular 

risk measure in the field due to its intuition and efficiency in calculating.   

 
2.2.4 Regulatory market risk measurement and evaluation 

The earliest rule concerning market risk was introduced by the Basel Committee on 

Banking Supervision (BCBS) in 1995, requiring that commercial banks should, at 

least, hold a certain minimal amount of capital
9
 against their potential losses from any 

transactions in the trading book
10

. Obviously, the Basel regulation emphasizes that 

capital charge should be associated with the bank’s risky assets, and the first step of 

this is to verify the quantity of market risk in the trading book. According to the Basel 

Committee on Banking Supervision (1996b, 2005), two methods (the Standardized 

Method and the Internal-Models Approach) are allowed to be applied when measuring 

market risks. 

The Standardized Measurement Method 

The Standardized Method is a bottom-up approach, composed of calculating the 

market risks from four risk factors (interest rate, equity position, foreign exchange and 

commodities risk) based on specific guidelines. Then the whole market risk is 

accessed via the summation of all of these individual risks. Thus, it can be expressed 

as the following formula.  

        
 
    (2.7) 

where TMR means total market risk, and MR is individual market risk, including 

interest rate risk, equity position risk, foreign exchange risk, and commodities risk. 

                                                      
9
 According to the 1988 Basel Accord, the principal form of eligible capital to cover market risks consists of 

shareholders’ equity and retained earnings (tier 1 capital) and supplementary capital (tier 2 capital). 
10

 The definition of the trading book is the account of security positions mainly for trading purposes.  
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The risk weight and capital change of each instrument are associated with their 

individual characteristics, as referred to in the Basel Committee on Banking 

Supervision (1996b). 

 

The Internal-Models Methodology 

BCBS (1995) allows the banks to measure their capital charge of market risk based on 

a daily VaR at 99% confidence interval (i.e. =0.01), with at least one year of 

historical observations. In the calculation, a 10-day VaR of price movement must be 

used to display the bank’s market risk. In other words, the minimum “holding period” 

will be ten trading days. Banks could use VaR numbers calculated according to shorter 

holding periods (for example, daily frequency) scaled up to ten days by the square root 

of time. The capital charge of market risk to this method can be displayed as  

                   
 

  
       
  
                 (2.8) 

In Eq. (2.8), k
11

 means a multiplication factor set by individual supervisory authorities 

on the evaluation of the quality of the VaR model, subject to an absolute minimum of 3. 

The last term of Eq. (2.8), SRC, is the specific risk charge associated with interest rate 

related instruments and equity securities as defined in the standardised approach that 

are not measured in the internal model.  

 

The Basel rules in backtesting the internal-model 

Although the internal model is allowed to be used for market risk measurement, BCBS 

also require a method of backtesting at the same time. According to BCBS (1996a), 

the backtesting programme generally consists of a periodic comparison of the daily 

                                                      
11

 The minimum of k is 3. Its increases are displayed in Table 2.1. 
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forecasted VaR with the daily actual return of the portfolio. Ideally, in a long (short) 

position, the forecasted VaRs tend to be smaller (larger) than 99% of the corresponding 

actual returns of the portfolio if the confidence level of the VaR model is equal to 0.01. 

The main point of backtesting is to examine if the bank’s 99
th

 quantile VaR covers 

99% of the actual returns. Those actual returns uncovered by the forecasted VaRs are 

regarded as exceptions or violations. Based on using the most recent 12 months of data 

(about 250 historical observations) in the backtesting procedure, the result is then 

divided into three zones by counting the number of exceptions. As shown in Table 2.1, 

the number of exceptions in the green zone goes up to 4, and the increase of k remains 

at zero. The result of backtesting in this zone indicates that the VaR model is accurate. 

In the yellow zone, the number of exceptions go from 5 to 9 and the k spans 0.40 to 

0.75, suggesting that the VaR model is more likely to be inaccurate rather than 

accurate. The VaR model is extremely unlikely to be an accurate model if the 

backtesting result falls in the red zone. 

 

Table 2.1 Three zones of exception in regulatory backtesting 

Zone 
Number of 

exceptions 

Increase in 

scaling factor (k) 

Cumulative 

probability 

Green zone 

0 0.00 8.11% 

1 0.00 28.58% 

2 0.00 54.32% 

3 0.00 75.81% 

4 0.00 89.22% 

Yellow zone 

5 0.40 95.88% 

6 0.50 98.63% 

7 0.65 99.60% 

8 0.75 99.89% 

9 0.85 99.97% 

Red zone 10 or more 1.00 99.99% 
Source: BCBS (1996a), table 2. 

   
 
2.2.5 VaR in other Risk measures  

This sub-section reviews applications of VaR in the different types of risk 
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measurements such as credit risk and operational risk. Liquidity risk will not be 

discussed here since the liquidity risk will be reflected within the market risk and 

credit risk according to the types of financial assets (Muranaga and Ohsawa, 1997, 

Bessis, 2010). There are four main credit risk models widely discussed in the literature: 

J.P. Morgan’s CreditMetrics, Moody’s KMV model
12

, the CreditRisk+ proposed by 

Credit Suisse Financial Products (CSFP), and McKinsey’s CreditPortfolioView model. 

Credit risk is usually measured once a year because rating information is only 

available once a year. Compared to the VaR in market risk, the VaR model of credit 

risk tries to answers the following question: “If next year is a bad year, how much will 

I lose on my loans and loan portfolio?” CreditMetrics is a VaR framework introduced 

in 1997 by J.P. Morgan, measuring the risk of non-tradable assets and private bonds, 

and it is calculated based on four factors: (1) borrower’s credit rating, (2) borrower’s 

rating transition matrix, (3) recovery rates on a defaulted loan, and (4) credit spreads 

and yields in the bond or loan market. Credit VaR is the difference between the 

expectation of discounted value of a loan based on the yields in the loan market and 

the expected recovery value of a loan according to J.P. Morgan’s credit migration 

matrix. The other three credit risk models are default only models, i.e. credit migration 

is not considered. KMV derives the actual probability of default, the Expected Default 

Frequency (EDF), for each borrower based on a Merton’s (1974) type model of the 

firm and the firm’s capital structure, the return volatility and asset value. CreditRisk+ 

assumes that a borrower’s default process is a binominal process, and the probability 

of default in a given period is the same for any other month. Moreover, it assumes the 

default events are independent with each other. Both KMV and CreditRisk+ are 

firm-specific credit risk models, McKinsey’s CreditPortfolioView model is a 

                                                      
12

 KMV is the trademark of the KMV corporation found by Stephen Kealhofer, John McQuown and Oldrich 

Vasicek in 1989. KMV was acquired by Moody’s Analytics in 2002. 
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multi-factor model which considers the default probability according to the market 

conditions and credit cycles, i.e., the macroeconomic factors. Specifically, the default 

probability is modelled as a logistic function based on current or lagged 

macroeconomic variables, as well as the firm or industrial level variables.  

Since the loans are not publicly traded, the market value of the loans and their 

volatility cannot be observed. Most credit risk models have similar weaknesses such as 

parameterisation by judgment and data blanks (Jackson and Perraudin, 2000). In 

addition, the results of credit risk models cannot be compared with each other due to 

the lack of accessibility of data. 

Lately, the concept of VaR has been applied in the modelling of operational risk, 

defined as the risk of direct or indirect loss resulting from inadequate or failed internal 

processes, human error and errors from external events. Normally, modelling 

operational risk requires the setting classification of the operational risk events in the 

first step, and gives each of these events an occurrence probability according to 

modelling, historical records, and expert experience in the second step. The third step 

is to assess the expected financial impact of each operational risk event. However, the 

events of operational risk and their occurrence probabilities would shift according to 

changes in the system, staff and/or procedures. Similar to credit risk modelling, it is 

difficult to make comparisons of different operational risk models due to the different 

assumptions in the parameterisation.  

 

2.3 Foundation of VaR calculations 

According to Eq. (2.3), it is clear that the calculation of VaR should be stressed on the 

standard deviation of the asset return, r, usually called volatility. As mentioned in the 
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previous section, volatility is an indicator of risk. Thus, a large number of volatility 

models have been employed as part of VaR measurement. The main line behind VaR 

calculations assumes that the financial returns follow a particular process or 

distribution. Following this hypothesis, the parameters of the distribution would be 

estimated and then VaR would be derived. In this section, this simplistic method of 

VaR calculation will be reviewed.  

 

2.3.1 VaR calculation with univariate Conditional volatility 

In the classic portfolio theory proposed by Markowitz (1952), standard deviation of 

returns (or volatility) is used to represent the risk of a particular asset, and investors 

should look to choose the most efficient frontier to be part of their portfolio. In other 

words, market participants prefer to settle their portfolio either in the area of minimum 

risk given expected return or maximum expected return within a sticking level of risk. 

After this, standard deviation was regarded as a major indicator of risk and was used 

as such across various fields.  

Fama et al. (1969) initiated the event study method focusing on investors’ behaviour in 

response to particular events. In their research, they provided explicit evidence 

suggesting that investors’ behaviour would significantly respond to past events, which 

implies that market participants would refer to past information before their actual 

action. In the aspect of volatility, with the same concept as Fama et al. (1969), a 

time-varying variance model which took into account previous information was 

proposed by Engle (1982), named autoregressive conditional heteroscedasticity 

(ARCH). In his seminal paper, he modified Granger and Andersen’s (1978) work so 

that 

       

 

  (2.9) 
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  (2.10) 

where t is white noise with zero mean and unit variance, and ht represents conditional 

variance depending on past information. Under the assumption of normality of returns, 

                , the model of conditional variance can be straightforwardly 

displayed as 

             
 
    (2.11) 

where if p=1, then              is called ARCH(1). 

From Markowitz (1952) through Fama et al. (1969) to Engle (1982), this line of 

research has developed gradually into a vital area which incorporates conditional 

volatility into the calculation of VaR. However, several features found in the reality of 

financial markets are not entirely captured by Engle’s (1982) model, and this has 

attracted numerous attention and a lot of critical models
13

. Engle et al. (1987) extended 

the simple ARCH technique of measuring conditional variance to the ARCH in mean 

(ARCH-M) model, suggesting that the conditional variance is a determinant of the 

current risk premium.  

In general, rational investors would correct their behaviour from any previous forecast 

error before carrying out their next move. Accordingly, a generalized ARCH (GARCH) 

model was proposed by Bollerslev (1986), which incorporates an error-correction 

mechanism to the ARCH model. He endowed the ARCH model with a more flexible 

structure, which enabled it to not only include the lagged conditional variance but also 

to consider previous error terms. Assuming a random variable, rt , is formed by 

            
       (2.12) 

                                                      
13

 A comprehensive survey and discussion can be found in Bollerslev, Engle and Nelson (1994), and Laurent, 

Bauwens and Rombouts (2006). 
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Where the error term,               
  , the conditional variance, GARCH (p,q) can 

be expressed as 

            
 
           

  
    (2.13) 

where the lagged parameters, p and q are non-negative integers (i.e.      ). When 

q=0, then the GARCH model reduces to its original ARCH model. In the simplest case 

of Eq. (2.13) we assume that the conditional variance at time t, ht, is only affected by 

the information one period ahead, denoted as GARCH(1,1)  

                  
   (2.14) 

Bollerslev’s (1986) model includes a critical economic meaning by implying that 

investors might correct their investment based on their forecasting error in the last 

period. This arrangement is significantly more pertinent to market reality than the 

ARCH model, and theoretically offers a better performance in conditional variance 

forecasting.  

Engle (2001) and Tsay (2005) provided a distinct explanation for applying the 

generalized ARCH model to the VaR calculation. The most well-known application of 

the GARCH model to the VaR model is the RiskMetrics model proposed by JP 

Morgan (1996). Assuming that the random variable                            , 

RiskMetrics can be shown as a normal Integrated GARCH(1,1) model where the 

autoregressive parameter is set from their large-scale survey. Thus, the RiskMetrics 

model can be clearly expressed as 

                  
   (2.15) 

where  is the decay factor and equal to 0.94 and 0.97 for the daily and monthly data 

sets, respectively. Thus, a simple daily volatility process can be easily formed as 
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  (2.16) 

It goes without saying that the GARCH model captures some critical characteristics of 

financial returns, for example, serial correlation, volatility clustering, and fatter tails. 

However, other substantial properties in the reality of financial markets can end up 

omitted. In the past twenty years, a large number of models have been proposed by 

econometricians looking at alternative aspects of the financial markets. Nelson (1991) 

(hereafter EGARCH) suggested that conditional volatility responds asymmetrically to 

positive and negative error terms and thus might be more suitable in the real world. 

With the same view point, Glosten et al. (1993) (hereafter the GJR model) proposed a 

similar model which emphasized the impact of previous forecast errors. In other words, 

most of these asymmetric GARCH models stressed that conditional volatility would 

respond more strongly to negative news than to positive news.  

Since the major feature of conditional variance was not fully encompassed by GARCH 

models with the assumption of normality, some researchers started looking to relax 

this restriction. For instance, Bollerslev (1986) mentioned that the GARCH model 

could be fitted under other conditional densities. As was already known, previous 

models based on the assumption of normality might not adequately account for 

leptokurtosis or the fatness of the tail. In this case, the standardized residuals from the 

estimated models often present as leptokurtic, and thus might cause an 

underestimation in the VaR estimation and forecast with the assumption of normality. 

Bollerslev (1987) provided a direct example by applying the GARCH model with the 

standard student t distribution to fit the returns of the stock index and exchange rate. 

He also concluded that the relatively simple GARCH(1,1) model with student t 

distribution fits the data series well, despite not knowing the real distribution of 
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residuals. Nelson (1991) also used alternative densities
14

 to fit conditional variance. 

Mittnik and Paolella (2000) demonstrated that related GARCH models with 

asymmetric generalized t distribution (t ) yield a significantly better in-sample fit. 

Furthermore, they suggested that the asymmetric power GARCH model with t  

considerably outperforms its simpler counterparts. 

To bring the models closer to the market reality, various conditional densities to 

innovations have been adopted to fit different time series models. Some previous 

research focused on the feature of the fat-tail, whilst others emphasized the feature of 

skewness or asymmetry. Using the related GARCH models one can capture some 

particular properties of financial data, for example, thick tail, serial correlation, and 

asymmetric effect. According to the VaR calculation shown in Eq. (2.3), conditional 

volatility indeed plays a crucial role in VaR forecasting. Being able to use 

time-varying volatility gives financial institutions a more dynamic risk management 

mechanism.  

 

 

2.3.2 Multivariate Conditional volatility and Correlation 

The discussion in the previous subsection focused on the univariate VaR calculation 

based on GARCH related models. However, there is still a need for a multivariate version 

since portfolios include a range of financial assets. Consequently, it is necessary to clarify 

the relationship among the financial assets in a portfolio for the purpose of diversification, 

asset allocation, and risk management. The process of a random return vector with N   

dimension, rt, can be expressed as 

                                                      
14

 Nelson (1991) assumed the variable is an i.i.d sequence drawn from generalized error distribution (GED).  
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                 (2.17) 

where t is an     white noise vector and Ht is an     covariance matrix. Then the 

VaR formula of a multivariate case can be analogized from Eq. (2.3) as 

                                (2.18) 

where  is an N1 weight vector of assets in the portfolio, and    means the covariance 

matrix.  

Bollerslev, Engle and Wooldridge (1988)
15

 proposed the first multivariate conditional 

volatility model, applying a stacking operator and the feature of symmetry in the 

covariance matrix to transfer it as a vector with          elements. Since then, the 

conditional covariance matrix has been formed as 

                            
                 

 
    

 
       (2.19) 

where        ,           , and         indicates the column stacking operator of 

the lower portion of a symmetric matrix. The main contribution of the VECH model is to 

describe the process of variance not only based on the previous term, but also the 

previous covariance. However, the major difficulty to this model is the number of 

parameters. Although the number of parameters in the VECH model is reduced by the 

symmetry of the covariance matrix, it still has 
 

 
                        

parameters in Eq. 2.19) which need to be estimated. Take for example a GARCH(1,1), let 

rt be a tri-variable matrix (i.e. N=3), then the total number of parameters that need to be 

estimated is 78, rising to 210 as N=4. However, even when the question of parameters 

was addressed through Engle and Kroner (1995) suggesting a diagonal representation 

                                                      
15

 There are two different abbreviations to this model. Tsay (2005) used VEC to denote this model, and Brooks 

(2008) applied VECH as a symbol for this model. In this thesis, I follow Brooks’ (2008) notation. 
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(DVECH) model to reduce the number of parameters to (N+1)
2
, there remained another 

significant instability with the model. Specifically, the main weakness of the VECH 

model is that it could not guarantee a positive definite covariance matrix
16

. Thus, 

statistical tests for each parameter might not be carried out. In practice, it is difficult to 

check if the parameterization of Ht is positive definite for all values of   . To overcome 

this drawback, Engle and Kroner (1995) provided a BEKK
17

 model which can be 

expressed as  

     
       

         
   

 
       

       
 
          (2.20) 

Compared with Eq.  2.19), one might find that the BEKK model skilfully decomposes 

each of the parameter matrices as a product of two of the same matrices in order to obtain 

a positive definite covariance matrix. The BEKK model is a critical milestone in the 

multivariate GARCH modelling because of its positive definiteness. The multivariate 

GARCH model has been widely applied and extended in literature. Bollerslev, Engle and 

Nelson (1994), Laurent, Bauwens and Rombouts (2006), and Silvennoinen and Terasvirta 

(2008) provide more detail on the related models. Higgs and Worthington (2004) applied 

the BEKK model in volatility transmission. Ledoit, Santa-Clara and Wolf (2003) offered 

alternative estimations in various covariance matrix models by estimating the diagonal 

and off-diagonal coefficients separately. Lopez and Walter (2001) evaluated the 

performance of several covariance matrix forecasts and concluded that implied 

covariance from option price outperforms the BEKK and the diagonal VECH models. 

There might be a possible bias to this, attributed to the normality assumption. Bauwens 

                                                      
16

 In linear algebra, an nn matrix, A, is regarded as positive definite if        for all non-zero vector z. 

More details of the definition can be referred to in section 14.2 of Harville (2008). The importance of 

positive definiteness to a covariance matrix is to enable the square root of the covariance matrix to exist, 

which is a critical part in the inference procedure. 
17

 This model is referred to by the acronym of the original authors in earlier versions as proposed in Baba et al. 

(1991). 
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and Laurent (2005) adopted a multivariate skew-student distribution to measure VaR, 

however, they suggested the performance was not significantly different to other models. 

One possible reason for this is that some extreme values in the sample could have 

influenced the accuracy of the estimation. Accordingly, one potential answer to this issue 

might be to refer to extreme value theory, which will be discussed in section 2.5. 

 

2.3.3 Conditional correlation 

Provoked by the development of multivariate conditional volatility models, some 

researchers went further into its derivative, looking at conditional correlation. Bollerslev 

(1990) argued a constant conditional correlation model (CCC) as follows, assuming the 

conditional correlation matrix, , is constant through time  

                             (2.21) 

where               
 
           

 
    and  is the constant conditional correlation matrix. 

The two main advantages of this model are to reduce the unknown parameters and to link 

correlation with the conditional covariance matrix. Even though the assumption of 

constant conditional correlation is frequently criticized for being far from reality, it is still 

reasonable to use this to describe the relationship of financial assets in the short-term. Tse 

(2000) and Bera and Kim (2002) applied several major equity market returns to examine 

the constancy of correlation, and some significant evidence was found against the 

assumption of constant correlation. Engle (2002), Tse and Tsui (2002)
18

, and 

Christodoulakis and Satchell (2002) offered similar models describing time-varying 

conditional correlation. The process of the covariance matrix in the first two models can 

                                                      
18

 In Tse and Tsui (2002), they assume the conditional correlation matrix is generated from a recursive pattern, 

                            , where 1 and 2 are scalar parameters, and      indicates a 

functional form depending on the standardized residuals.  
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be modified as          , and the process of dynamic conditional covariance can be 

expressed as 

                       
          (2.22) 

where  and  are scalar parameters, and    is the unconditional correlation matrix. Then, 

the dynamic conditional correlation (DCC) would be obtained via 

      
     

            

  (2.23) 

Or in the matrix case 

             (2.24) 

where          
    

  
          

  
    is an inverse matrix of Dt. 

Based on Engle and Kroner’s (1995) BEKK model and Engle’s (2002) DCC model, 

numerous extensions and modifications have been proposed. Hafner and Franses (2003) 

offered a generalized DCC model, which guaranteed the positive definiteness of the 

covariance matrix by squaring the values of all correlation parameters. Cappiello, Engle 

and Sheppard (2006) suggested an asymmetric generalized DCC (AGDCC) according to 

investors’ expectation  

                            

           
                      

   (2.25) 

where A, B, G are NN parameter matrices, and              , I() is a k1 

indicator function which is equal to 1 if the investors’ expectation is true and 0 otherwise 

(the operator “ ◦ ” means the Hadamard product). Similarly, Cajigas and Urga (2005) also 

suggested an AGDCC model with an asymmetric multivariate Laplace distribution 

(AML). Billio et al. (2006) proposed a flexible DCC (FDCC) model to release the 
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constant dynamics of the covariance process from Engle’s (2002) scalar version.  

Apart from GARCH-related conditional correlation, Bodurtha and Shen (1999) offered an 

alternative approach to calculate time-varying correlation, called implied correlation. 

However, implied correlation is not appropriate to be applied in the calculation of VaR 

since implied correlation describes the relationship between a financial instrument and its 

derivative.   

2.3.4 Correlation and dependence 

In the previous sections, the issues focused on were around risk management in a 

univariate situation (i.e. in a single asset case). Risk measurement of a portfolio 

involves more complicated issues and the modelling of the correlation, or dependence 

structure, of a multivariate case. Since Markowitz (1952) showed that optimal 

portfolio selection was impacted by the concept of correlation, correlation has played a 

central role in financial theory and the measure of correlation has garnered a lot of 

attention. However, the application of, and limitations to, correlation and dependence 

are still unclear and debatable. There are three main approaches to measure the 

relationship between different financial assets: conventional Pearson’s linear 

correlation; the tail dependence parameter; and rank correlation (particularly, 

Spearman's rank correlation). However, the rank correlation coefficient is only used 

for measuring the relationship between two ordinal variables, and thus is not 

appropriate for risk management. Accordingly, the first two will be discussed in this 

section due to their popularity in the literature and their potential suitability for risk 

management.  

According to the calculation in Eq. (2.18), linear correlation
19

 measures the product of 

the distance to their means of two random variables scaled by their standard deviations. 

                                                      
19

 Specifically, the linear correlation means Pearson’s linear correlation. 
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It can be expressed by using a discrete form 

 

    
        

    
 

                
  
   

  
   

    
   (2.26) 

where xy takes the values in [-1,+1]. The Pearson’s linear correlation is criticized 

from two main perspectives. According to its definition, linear correlation measures 

the linear relationship between two random variables. However, there could be a 

non-linear relationship in financial markets. Specifically, it does not guarantee that two 

random variables are entirely independent when their linear correlation is zero. 

Moreover, on the aspect of risk management, it is well known that the estimation of 

tail distribution is definitely more important than looking at the entire distribution as a 

whole. The estimation of linear correlation with the whole sample set would not be 

appropriate for measuring correlation (Embrechts et al. (2002)). In the context, 

Lhabitant (2002) and Kat (2003) mentioned that a method for conditional correlation 

could be applied to measure the extremal correlation in that particular tail area. In 

terms of dynamic conditional correlation, the so-called DCC-related model, measuring 

the dynamic correlation conditioned on past information, is another method to 

overcome the non-linear correlation problem.  

Another widespread method to measure correlation is the parameter of tail dependence 

deriving from copula
20

. Over the past decade, copula has been extensively applied to 

various fields, especially in biostatistics and risk management. Copula offers a 

reasonable avenue to overcome the difficulties in multivariate distribution. Let 

         be a bivariate joint distribution function with margins F1 and F2. Then there 

exists a copula C, such that for all real numbers x1 and x2, it has the equality 

                                                      
20

 The concept of copula was initially proposed by Sklar (1973).  
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                                           (2.27) 

                                         (2.28) 

where        is a cumulative marginal distribution,           , and f(xi) is a 

marginal distribution function,            i=1,2. Accordingly, a copula (c) is used 

to unite two different uniform variables into one dimension, and describes the degree 

of dependence of the two variables. As shown in Eq. (2.28), a two dimensional joint 

distribution function can be decomposed into its margins and a copula, which 

completely describes the dependence between the two variables. In addition, the 

components in Eq. (2.28),        and       , can be seen as two variables with 

uniform distribution. In most cases, the multivariate distribution is too complicated to 

obtain or too difficult to calculate, however a description of the margins,    and   , 

is relatively easy to acquire. 

The most popular copula function is the Gaussian copula, which uses a mild 

assumption of normality and can be expressed as 

               
        

         (2.29) 

Its probability density function (pdf), by definition of normal distribution, is displayed 

as  

           
 

       
     

 

 
              (2.30) 

where             
       

 
, and the correlation matrix in this case is a 22 

dimension, which is a dependence structure describing the dependency between X1 

and X2. In a similar fashion, the student t distribution and other distributions can be 

applied in a copula function. The details of the general copula family can be referred 

to in Joe (1997) and Nelsen (2006). Recently, the copula function has been applied to 
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measure the market linkage via alternative aspects. Some application of the copula 

family to the dependence structure in exchange rates can be found in Patton (2006a), 

Patton (2006b), and Bartram et al. (2007); for the equity market refer to Longin and 

Solnik (2001), Hartmann et al. (2004), Poon et al. (2004), and Jondeau and Rockinger 

(2006). Most empirical research suggests that the dependence of financial markets 

tends to be much stronger in a downturn market than in an upturn period. Moreover, 

an asymmetric dependence structure can be found in both the left and right tail (Patton, 

2006b). 

From the viewpoint of risk management based on the tail area, one might consider the 

relationship of the extremes to the assets in the portfolio. Thus, Coles et al. (1999) 

suggested a coefficient of tail dependence conditioned on a certain threshold 

                       (2.31) 

where    is the upper limit of the support of the common marginal distribution. The 

inspiration in Eq. (2.31) is consistent with the multivariate case of extreme value 

theory based on the method of peak over threshold. In other words,   measures the 

probability of one variable falling in the extremal area given that another one is 

extreme as well. 

Although the copula structure offers a reasonable approach to attain the dependence 

structure of different variables, it still has some drawbacks. Firstly, the class of copula 

functions is now very vast. Accordingly, it is often difficult to select the best one to fit 

the data (see Panchenko (2005) and Jondeau et al. (2007)). Although, various 

approaches to identify appropriate goodness-of-fit tests have been carried out, there is 

still no conclusive answer to this issue. More details and various goodness-of fit tests 

are explored by Genest et al. (2009). Secondly, the result of the dependence structure 

might statistically explain the relationship between two financial risk factors, however, 
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in economics it is often difficult to interpret the connection between different markets. 

The main reason for this is that the foundation of the copula is constructed on 

probability theory without the feature of sequence or time-order as mentioned in the 

preceding section. For example, Eq. (2.31) measures the extremal dependence based 

on the probability of Y > z given X > z. Under these circumstances, it could also cause 

the same dependence structure with a different time horizon. Take for instance the 

extremal dependence between the bond and equity markets, how could one explain if 

the coefficient of tail dependence came out at 0.4, which according to this model 

roughly means the probability of the two markets crashing at the same time is about 

0.4. However, we know that the two markets tend towards a trade-off relationship 

rather than a consistency one. By relying only on the risk management models, a 

hedge strategy might be overly biased towards this condition and thus be ineffective. 

 

2.4 Application of VaR 

In this section, some applications of VaR are reviewed. I follow Jorion’s (2007) 

suggestion that there are three stages of application to the VaR measurement and concept. 

In the early stages, financial institutions were relatively passive in their use of VaR, with 

it merely being used to reveal their risk in the annual report. As it became more familiar 

and more widespread, some of them started using VaR as a tool to defend market risk for 

portfolio optimization. In recent years, VaR has been widely applied in company-wide 

risk management and performance measurements.  
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2.4.1 Passive application: Risk reporting 

Following the Basel Accord announcement in 1996
21

, commercial banks have developed 

their own internal models for measuring market risk and generally VaR is the most 

popular one, even though the methodologies are diverse. Since VaR summaries the risk 

of the banks’ portfolio into a simple value accessible to management level and 

shareholders, it can be used as a foundation to evaluate the risk of financial institutions. 

Regulators take risk disclosure very seriously after the 1988 Basel Accord, especially 

within the banking sector. To echo the Basel Accord, the International Accounting 

Standards Committee (IASC) published the International Accounting Standard NO.32 

(IAS.32) in 1995, suggesting rules on qualitative and quantitative disclosures of risk 

associated with financial instruments. Various sources of risk are included in IAS32, 

such as credit, market, interest, and liquidity risk. The spirit of IAS32, then, led the 

International Accounting Standards Board (IASB)
22

 to announce the rules of financial 

instrument disclosure in the draft of the International Financial Reporting Standard NO.7 

(IFRS.7) on 22
nd

 July 2004, which came into effect on 1
st
 January 2007. In November 

2009, IFRS 9 was issued as a replacement for IAS39, focusing on the classification and 

measurement of financial instruments, it will come into effect on 1
st
 January 2013. 

Moreover, the Securities and Exchange Commission of the U.S. (Commission) aligned 

their national standards, GAAP, toward IFRS in 2007. Thus, risk disclosure in financial 

statements has become a requirement for nearly all financial institutions. To date, more 

than one hundred countries have adopted IFRS as the foundation of their regulation. In 

other words, risk evaluation and disclosure is a standard requirement in the financial 

statement and regulated by local and international authorities. 

                                                      
21

 See BCBS (1996a). 
22

 The International Accounting Standards Board (IASB) succeeded the International Accounting Standards 

Committee (IASC) on 1
st
 April 2001. 
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Another requirement for risk disclosure often comes from the shareholders. After the 

economic crisis in the 1980s, shareholders have increasingly asked for transparency in 

financial statements, particularly with regards to the complicated financial instrument 

transactions made in many financial institutions. Besides controlling risk taking, 

management can set the boundary of risk taking in their line of business for the treasury 

department. Thus, traders are restricted to only making transactions within this boundary. 

A well-known case of risk reporting to management is found at J.P. Morgan, who require 

the managers of every business line to report the risk of their position at 4:15 p.m. every 

day. Then the management level can assess how risky their portfolio is under this 

mechanism. In other words, the board can straightforwardly understand how much money 

they might lose if the market was bad the following day. 

As mentioned above, risk disclosure is required by regulators and shareholders. The VaR 

technique is the most popular one used by financial institutions. Table 2.2 shows an 

example of a typical risk disclosure at J.P. Morgan Chase. They used various risk 

measures, both statistical and non-statistical, to estimate the risk-taking for their portfolio. 

The VaR results displayed in Table 2.2 are estimated by historical simulation. It not only 

shows the firm-wide VaR, but also the individual VaR of each financial instrument. Using 

the VaR of market risk, the diversification effect can be found, showing the difference 

between the firm-wide market risk at the end of 2009 ($129), the sum of the market risk 

to the four segments ($228) is $99. The main advantage to risk disclosure is that it offers 

comprehensive information to management and shareholders about how risky their 

position is and how much money they might lose in the next trading period. A similar 

VaR-based risk disclosure can also be found in the 2009 annual reports of other financial 

institutions, for instance the Bank of America (p.94), the Royal Bank of Scotland (p.163), 

the Deutsche Bank (p.84), and the Accounts and Report of Lloyds TSB bank. Nowadays, 
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VaR measure is the mainstream for risk disclosure, although each financial institution 

modifies the technique slightly for their own particular needs, the details of which are not 

generally available.  
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Table 2.2 99% confidence-level VaR 

Investment Bank trading VaR by risk type and credit portfolio VaR 

source: JP Morgan Chase & Co. 2009 annual report, p.127. 
As of or for the year 

end, Dec. 31,a in 

millions 

2009  2008 At Dec. 31, 

average min max average min max 2009 2008 

By risk type:         

Fixed income $ 221 $ 112 $ 289 $ 181 $ 99 $ 409 $ 123 $ 253 

Foreign exchange 30 10 67 34 13 90 18 70 

Equity 75 13 248 57 19 187 64 69 

Commodities 32 16 58 32 24 53 23 26 

Diversification (131)b NMc NMc (108)b NMc NMc (99)b (152) b 

Trading VaR $ 227 $ 103 $ 357 $ 196 $ 96 $ 420 $ 129 266 

Credit portfolio 101 30 221 69 20 218 37 171 

Diversification (80)b NMc NMc (63)b NMc NMc (20) b (120) b 

Total trading and 

credit portfolio VaR 
$ 248 $ 132 $ 397 $ 202 $ 96 $ 449 $ 146 317 

a. The results for the year end, December 31, 2008, include five months of heritage JPMorgan Chase & Co. only results and seven months 

of combined JPMorgan Chase & Co. and Bear Stearns results. 

b. Average and period-end VaRs were less than the sum of the VaRs of its market risk components, which is due to risk offsets resulting 

from portfolio diversification. The diversification effect reflects the fact that the risks were not perfectly correlated. The risk of a 

portfolio of positions is therefore usually less than the sum of the risks of the positions themselves 

c. Designated as not meaningful (“NM”) because the minimum and maximum may occur on different days for different risk components, 

and hence it is not meaningful to compute a portfolio diversification effect. 

 

 

 

2.4.2 Active application: Performance measurement and management 

Performance management plays a crucial role in business management, particularly in 

selecting the method of measurement. In the early stages, practitioners and researchers 

put their focus for performance measurement on the return-side, such as the return on 

equity/capital (ROE, ROC) or the return on investment (ROI). However, performance 

assessment only based on the return-side is insufficient to meet the needs of 

contemporary business and market conditions. Take the banking sector as an example, 

banks exchange various risk takings for returns. Over the past twenty years, the banks 

have received huge losses in market collapses, yet even in everyday situations they take 

some risks and losses as well. Thus, for performance measurement in related industries, 

not only the return-side has to be considered but also the aspect of risk. From the 

firm-wide level, capital is used as a buffer to risk (Berger, Herring and Szego (1995), 
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Copeland and Weston (1992), and Lucas (2001)). If the losses from various risks are vast, 

banks have to recover these losses via their capital if they do not have enough retained 

earnings. Theoretically, higher risk businesses or activities need more capital to absorb 

potential losses. Consequently, when using the term “capital” in performance measures, 

such as “return of capital”, it might be more appropriate to employ risk-adjusted-capital 

(Mittnik, Paolella and Rachev, 2000) rather than the book value of capital. In addition, 

return on capital can be extended to be a “return on risk-adjusted capital” (RORAC). 

Other similar concepts based on risk-taking are the risk adjusted return on capital 

(RAROC) and the economic value added (EVA)
23

 or economic profit (EP), or the 

shareholder value added (SVA). Generally speaking, the formula of RAROC and EVA 

can be expressed as 

 

      
                 

                     
  (2.32) 

                                               (2.33) 

The focus of this section is on the capital aspect, since the other items in Eq. (2.32) and 

(2.33) are not really discussed in this thesis. For the firm-wide level, I have looked at 

capital allocation as the critical issue. However, performance management needs to be 

broken down to business level or segments at least. Thus, the formulas should be 

rearranged as 

 

       
                 

                      
  (2.34) 

                                                           (2.35) 

                                                      
23

 EVA is a trademark of the consulting firm, Stern Stewart & Co. 
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As mentioned above, riskier businesses and operations need more capital than the ones 

with lower risk. Thus, a high-risk segment would be allocated more capital. There are 

several methods for looking at capital allocation, however there is not the scope to cover 

all this here. More details can be found in Albrecht (2004), Urban et al. (2004) and 

Stoughton and Zechner (2007). In Urban et al.’s (2004) research, they concluded that 

capital allocation is more affected by risk measure than the method of allocation. Briefly, 

there are two steps in the procedure of calculating capital allocation. The first step is to 

select the risk measure. Stoughton and Zechner (2007) suggested the minimal level of 

allocated capital to each segment should be the amount of VaR for each segment. 

However, the sum of VaR for each segment might exceed the actual firm-wide total due 

to the effect of diversification. Then, the second step is to set the method of allocation 

based on the VaR obtained from step one. To date, the best-practice method of capital 

allocation is still inconclusive, but the general concept behind all the various approaches 

is consistent with RORAC or EVA. In summary, according to the foundation of financial 

theory, the segment with more risk tends to be allocated more capital.  

The role of VaR in risk-based performance management is critical, especially when 

linked with the compensation system. For example, if the compensation package is 

positively associated with the performance measure, EVA, the managers will try to either 

improve operating profit or to reduce allocated capital. Since the business or segment 

with higher risk will be allocated more capital, the manager’s bonus will be indirectly 

affected by this mechanism, as shown in Eq. (2.35). With rational behaviour, the 

managers of each segment will thus consider carefully the trade-off between risk and 

return for every project or investment, even those which are routine. Moreover, 

risk-based performance management can prevent situations where managers might pursue 
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the personal short-run performance and ignore the long-run profit of the firm. As 

described by James (1996), the RAROC system developed by the Bank of America has 

now been implemented to each segment level and has become a critical performance 

measurement. Moreover, risk-based capital allocation is broken down to various 

dimensions, for example, the level of individual products, transactions, and customer 

relationships. Accordingly, it is obvious that VaR’s active role in performance evaluation 

systems is getting more important. 

 

 

2.4.3 Diversification tool 

In the previous two sections, the VaR function in risk reporting, controlling, and its role 

in performance management are merely a lagging indicator, visible ex post. However, 

management might not be satisfied with this, since it does not help some losses still being 

unavoidable in the future. Although active application in risk based performance 

management could fill this gap in ex ante warning of risk, using the compensation system 

would still take several years. Several mechanisms using derivatives of VaR could 

provide management with an ex ante vision in decision-making. For example, application 

of VaR implemented before investment could help management to reduce the total risk 

via diversification. In other words, it could make it clear that how the new investment 

could affect the increment of the total VaR. For example, the incremental VaR (also called 

marginal VaR, denoted as MVaR) of a new project could be obtained from the following 

equation. Suppose a new investment, x, is added into the current portfolio, the question 

“what is the difference between the VaRs before and after this investment?” will be 

asked. 
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  (2.36) 

It is of particular interest to investors what the effect of a new trade, x, would be to the 

current portfolio. The spirit of Eq. (2.36) is the risk increment of every dollar investment. 

Assume two options of the new trade, x and y, and       and       are their 

marginal VaR, respectively. If x and y are equivalent on the return-side, the decision for 

the new investment is obviously made on the project with the smaller MVaR. However, if 

there is a discrepancy between x and y in the risk-side and return side, then the 

investment of x and y is quite vague. Theoretically, under the perfect conditions, each 

unit of risk should have the same return.  

 

  

    
 

  

    
   

  

    
  (2.37) 

This concept as shown in the equation above is a well-known performance indicator, 

proposed by Sharpe (1966) or Treynor (1965). The spirit of Eq. (2.37) indicates that each 

unit risk in the portfolio obtained an equivalent return. Thus, an optimal portfolio can be 

derived in this condition. In addition, any new investment or project can then be tested to 

see if they increase or decrease the total risk of the portfolio. 

Secondly, from the aspect of total risk the management has to decide which one of the 

following two alternatives is their operating objective. 

Alternative 1: 

  
             

 
      

                     
   (2.38) 

Alternative 2:  

  
                             

              
 
        

   (2.39) 
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where Rall and ri indicate returns of the entire portfolio and the individual asset, 

respectively, and i is the proportion of the individual asset in the portfolio.   and   

are the lower and upper boundaries to the portfolio return and VaRall. There is no standard 

rule for choosing between alternative 1 or 2, since each business line might encounter 

varied market conditions and business strategies. For example, the bond market is 

generally more stable than the equity market. Thus, an equity fund might set alternative 2 

as its strategy, and a bond fund might find alternative 1 more suitable. Then in a volatile 

or a tranquil period, you can modulate the lower and upper boundaries.  

Finally, the efficient frontier can be built with the VaR. For example, the investors in the 

UK equity market can use the forecasted VaR of the constituent stocks of the FTSE100 

index and their expected returns to present the efficient frontier based on VaR. Based on a 

monthly efficient frontier, one could find which stocks fall around the efficient frontier. 

Consequently, investors could obtain an optimal investment of these constituent stocks. 

Moreover, they can adjust their portfolio according to the change of the monthly efficient 

frontier. 

 

2.5 Extreme Value Theory 

As mentioned in the beginning of this chapter, one of the critical factors in the 

calculation of value at risk is the density estimation of financial returns, particularly in 

the tail area. For the purpose of increasing the accuracy of the forecasted VaR, extreme 

value theory straightforwardly selects certain extreme values from the available sample 

to fit the tail distribution instead of estimating the whole distribution with the entire 

range of samples
24

. In this section, two different approaches (Block maxima and peak 

                                                      
24

Two very thorough textbook examples of extreme value theory can be found in Leadbetter, Lindgren and 

Rootzen (1983) and Embrechts, Kluppelberg and Mikosch (1997). 
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over threshold) of sampling procedure for extreme value theory and their application in 

the VaR calculation are introduced. Both of these two methods construct a series of 

extremes, however the procedure and assumptions used are substantially different.  

In financial markets, both positive and negative extremes are seen as a risk to investors. 

Therefore, VaRs to the long and short positions are demonstrated in this section. 

Fortunately, we can simply inverse a long position of a financial return to a short 

position with a minus sign.   

 

2.5.1 Extreme Values based on block maxima 

The first method of sampling procedure for extreme value theory is called block 

maxima, which means that each extreme
25

 (the maximum and minimum observations) 

is sampled in a fixed block period. The procedure of VaR calculation for this method 

can be divided into several steps. The first step is to opt for a block period, for example 

one week, ten days, or one month. The second step is to select the extreme value in each 

block, and then the maximum and minimum extremes are collected to fit the tail 

distribution of financial returns. Let            be a series of asset returns without 

autoregression. One can extract the maximum observation from each block that 

includes n observations. The first maximum extreme value in the first block is 

denoted as                        . In this manner, a sequence of extremes, 

                         , can be extracted from each block, where      . 

For these extremes, Fisher and Tippett (1928) suggested that if there exists a 

constant cn0 and a constant dnR, then the variable (xj) obtained from the 

normalized extremes will converge to a specific distribution,     . This can be 

                                                      
25

Generally, most natural sciences focus on the maximum observations, for example, the wind speed and flood 

level. Thus, the maximum observations of those variables are collected and analysed. In finance, stock prices 

going up and dropping down are both common risks for investors in short and long positions. 
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mathematically expressed as 

   
          

  

 
          (2.40) 

where 1    , and g is the number of the block. If        
26

 is a non-degenerate 

distribution
27

 then it must belong to one of the following three standard extreme 

value distributions. 

Type 1: Fréchet distribution
28

, 

         

                                   

        
 

            
     (2.41) 

 

Type 2: Weibull distribution
29

, 

                  
 

          

                                        

  (2.42) 

 

Type 3: Gumbel distribution
30

, 

                             (2.43) 

 

The figures for these three extreme distributions are shown in Figure 2.2. One can see 

                                                      
26

 The subscript, max, in Eq. (2.40) means that each extreme return is the largest in its block. 
27

 A clear definition of non-degenerate distribution can be found in Chung (2001). 
28

 This distribution is proposed by Maurice Fréchet in 1927 and the density function can be formulated as 

     
 

 
 
 

 
 
   

       
 

 
 
 

  , where  is the shape parameter and  is the scale parameter. 
29

 Weibull distribution was proposed by Waloddi Weibull in 1939, and is widely used in the material sciences. 
30

 Gumbel distribution was proposed by the German mathematician, Emil Gumbel, in 1960 and has been 

applied in particular for the modelling of meteorological phenomena such as annual flood flows. Its 

probability density function can be expressed as      
 

 
                 , where   

     
   ,  

is the location parameter and  is the distribution scale. 
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that the Gumbel distribution has the thinnest tail, and the Fréchet distribution is the 

thickest.  

 

Figure 2.2 The three types of distribution for the extreme value 

 

Jenkinson (1955) provided a representation with three parameters to generalize 

these three extreme value distributions above as follows. 

 

                    

 
 
 

 
 
           

          

  
  

 

  
            

           
          

  
                   

   (2.44) 

 

where j=1,2,…,g. The parameters (dn and cn) in Eq. (2.44) indicate the location 

parameter and scale parameter respectively, and,    is a shape parameter. When 

     and      correspond to the Fréchet distribution with a heavy tail and 



Chapter 2 Theory of Market Risk Measurement                                              

49 
 

the Weibull distribution with a limited tail, respectively. The case of      is 

associated with the Gumbel distribution. This generalization is known as 

generalized extreme value (GEV) distribution for maxima extremes. Eq. (2.44) can 

be rewritten for minimum extremes (i.e. long position) in the analogy. 

 

            
    

    
   

 

 
 
 

 
 
            

  
          

 

  
   

 

  
 

          
   

             
          

 

  
                  

   

  (2.45) 

 

All the parameters in Eq. (2.39) and (2.45) can be derived by using the maximum 

likelihood estimation. From the perspective of risk management for financial time 

series, the Fréchet distribution with a thick tail is the most suitable to fit the 

distribution of asset returns. However, other features of the returns of financial 

assets cannot be completely excluded. Consequently, GEV distribution with a 

shape parameter will be applied to fit the tail distribution of equity returns. Then 

the probability density function (pdf) of GEV with maximum extremes, h(), can be 

directly obtained by the first order of differentiation of Eq. (2.39). 

 

                      

 

  
     

            

  
 

 

  
  

          
            

  
 

 

  
   (2.46) 

 

Finally, the VaR for the long and short position can be obtained with a given probability, 

. Take for example a long position, the VaR formula for the original return based on Eq. 

(2.45) is 



Chapter 2 Theory of Market Risk Measurement                                              

50 
 

      
  

  
 

  
                

 

   (2.47) 

 

The distribution above is based on an i.i.d assumption. However, for most financial 

returns data might contain a cluster phenomenon on the basis of information signalling 

theory. In this case, the cumulative density function would be arranged as 

 

                                
          

  
  

 

  
               (2.48) 

where  is called the extremal index describing the clustering effect or series 

dependence in a stationary series. When  is close to 1, it indicates that the return series 

is weakly dependent. In contrast, the dependence effect is stronger with a smaller 

extremal index, . Unfortunately, most financial returns might have a weaker 

dependence but remain stationary in the return level. Analogically, the probability 

density function can be derived in the same way as shown in Eq. (2.49). 

 

 

                     

 
 

  
      

            

  
  

 

  
  

          
            

  
 

 

  
    (2.49) 

 

The parameters in Eq. (2.49): the location parameter (dn), scale parameter (cn), extremal 

index () and tail index (kn), can be estimated by the maximum likelihood estimator 

(MLE). The log-likelihood function would be:  
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          
 

  
         

          

  
 

 

          
          

  
 

 

   

   (2.50) 

 

 

2.5.2 Extreme Values based on the peak over threshold method (POT) 

The aforementioned extreme value sampling method encounters some intractable 

defects. First, as mentioned above, the length of the block is still difficult to define. 

Unfortunately, the parameters of the GEV distribution are strongly affected by the 

selection of the block. Secondly, the procedure of sample selection to block maxima 

needs a long range of data to collect enough extremes to accurately fit to the tail 

distribution. However, this is difficult in practice. For instance, it would not be possible 

in cases such as annual environment data or some newly issued financial instruments. 

Consequently, to overcome these drawbacks, a modern sample selection procedure, 

called the peak over threshold
31

, has been proposed, which pays attention to the values 

which exceed a certain threshold or a particular hurdle. In other words, POT considers 

the distribution of exceedances over a certain threshold rather than the original data. For 

illustration, let      be a random sequence of a certain financial return with a 

distribution function, F. The POT method concentrates on the conditional distribution Fu 

constructed by the values above a given threshold, u. In this manner, Fu can be defined 

as 

                       

                                                      
31

 Actually, the most complete and earliest reference to the peak over threshold (POT) method is Todorovic 

and Zelenhasic (1970). The original purpose of this method was developed for the natural sciences, for 

example, flood estimation and air pollution research. A more comprehensive discussion can be found in 

Smith (2002). Although this sampling concept in extreme value theory is not new, its application in 

financial areas is still quite modern. 
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  (2.51) 

where rt is a random return, u is a given threshold, and y= rt - u are the values over u. For 

the return sequence, rt, Eq. (2.51) focuses on a distribution given a positive threshold, u, 

and a particular distribution can be derived using a succession of algebra such as  

 

                      
  

        
 

 

 
  (2.52) 

where k, c, and d are the parameters of shape, scale, and location, respectively. Eq. (2.52) 

is the upper tail distribution based on extreme values exceeding the threshold u. In Eq. 

(2.52), the case k   corresponds to heavy-tail distribution where tail decay is like power 

functions, such as the Pareto, Student t, and Fréchet distributions. The case     suits 

normal, exponential, and lognormal situations where the tail decays exponentially. Then 

the case     adapts to the distribution with a short tail, for instance, uniform and beta 

distributions. Pickands III (1975) suggested that the conditional excess distribution 

function,      , can be usefully approximated by a limiting distribution         when 

   .  

 

                   (2.53) 

where   and   are the shape and dispersion parameters obtained from statistical 

estimation. 
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              (2.54) 

Since y represents the part of the return exceeding the threshold,               . Eq. 

(2.54) is called generalized Pareto distribution (GPD). In its earlier stages, GPD was 

generally applied to diversiform environmental science. Nowadays, it is employed to 

measure market risk in rare market conditions. From this standing point, Eq. (2.54) can be 

inverted to be a VaR measure after a sequence of algebraic procedures.  

 

      
 

 
  

 

  
  

 

     (2.55) 

where N and    indicate the total number of observations and the number of observations 

above the threshold u.  

However, in financial markets, investors would be more interested in the lower tail with a 

lower threshold v, which can be obtained from similar distributions for the long position.  

 

                    
  

        
 

 

 
  (2.56) 

 

By analogy, GDP and its VaR formula for the long position can be expressed as follows.  

 

           
   

 

 
  

 

 
       

    
  

 
          

          (2.57) 
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   (2.58) 

where v indicates the lower threshold of the return level.  

 

 

2.6 Portfolio VaR measure  

Based on the theories presented in Sections 2.3 and 2.5, a comprehensive theory and 

method for measuring portfolio VaR is provided in this section, a combination of extreme 

value theory and the dynamic relationship between individual assets. This section starts 

by linking extreme value theory with the method of variance/covariance, and then 

discusses the nature of correlation. In addition, two critical concepts, called seriality and 

correlation with seriality
32

, will be defined. Moreover, three frequently used measures of 

correlation and some of their shortcomings will be discussed. In the final subsection, the 

measure of portfolio VaR will be carried out, and some of its advantages will be 

explained. 

According to Sections 2.3 and 2.5, the calculation of portfolio VaR can be divided into 

two steps. A portfolio VaR could not be calculated using the multivariate version of Eq. 

(2.47) since that would only provide a possible set of spaces for portfolio VaR, which is 

not meaningful in practice. Accordingly, the secret for measuring a portfolio VaR is to 

find a way to aggregate individual VaRs. In the first step, individual VaRs are measured 

based on the method of extreme value theory. Avoiding the fallacy described in Section 

2.3.3, the extreme value sampling procedure, block maxima, is adopted in this thesis. 

Thus, Eq. (2.47) can be used to measure the original risk of each asset in the portfolio. 

Based on the method of variance-covariance, Eq. (2.18) can be rearranged as the 

                                                      
32

 The concept of seriality was proposed by Kammerer (1919). He was a biologist and the formulator of “the 

law of seriality”, offering a systematization of serial data, for example, homologous and analogous, pure and 

hybrid, and other types of sequences. However, his research was arrested on 23th September 1926 due to his 

suicide.  
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following equation by assuming the mean return of the portfolio approaches zero. 

              (2.59) 

In the univariate case, Eq. (2.59) will be reduced back to Eq. (2.3) without the mean 

return. Theoretically, the VaR (for a long position) obtained from extreme value theory is 

also a particular point in the horizontal axis of the distribution diagram as shown in 

Figure 2.2. Thus, VaR calculated by extreme value theory can be represented by the new 

volatility of a new distribution. 

               (2.60) 

 

For the bivariate condition, Eq. (2.59) can be rearranged as a matrix version.    

               
  
    

     
   

  
  
  

 
  

  

      
   

    
   

           
 
   (2.61) 

According to the concept of Eq. (2.60) and the basic theory of statistics, Eq. (2.61) can be 

represented as a summation of all the individual VaRs and the relationship between 

individual assets. This can be formulated as 

        
   

   
    

   
   

         
         

 
   

    
    

    
    

                 
 
   

    
        

    
        

                         
 
   (2.62) 

Using the approach for a portfolio VaR, Eq. (2.62) can be extended to a multivariate case. 

           
        

  
                      

 
   
   

 
   
   

 

 
  

 (2.63) 
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A similar approach to Eq. (2.63) was applied in Longin (2000), however, they found a 

paramount issue that needed to be addressed, which will be elaborated on in the second 

step of measuring portfolio VaR. The main advantage of the method of Eq. (2.63) in 

measuring portfolio VaR is that it is conceptually easy to understand and directly echoes 

Markowitz’s (1952) thoughts regarding the perspective of portfolio theory. In addition, it 

can be easily applied to monitor the marginal risk contribution for the entire portfolio risk. 

In other words, using Eq. (2.63) when measuring portfolio risk could achieve the 

purposes of controlling the total risk of a portfolio and monitoring the marginal risk 

contribution of each asset in the portfolio, as mentioned in Section 2.4. However, this 

approach still has a palpable weakness in aggregating individual risk as a portfolio VaR, 

particularly with the relationship
33

 between the individual VaRs. Although Eq. (2.63) has 

been applied in some research looking at measuring portfolio risk, the role of the 

correlation is mainly restricted within the property of linearity (Embrechts, McNeil and 

Straumann, 2002). Specifically, if the relationship between two random variables is 

non-linear, the relationship cannot be captured by the (Pearson) correlation. Accordingly, 

the principal objective of the second step in calculating portfolio VaR is to modify the 

method of aggregation in Eq. (2.63).  

                                                      
33

 The relationship between individual assets in Eq. (2.62) and (2.63) is characterized by using Pearson’s 

linear correlation (also called the Pearson correlation). According to Pearson (1920), the original 

concept of correlation was initiated by August Bravais, a geologist who also wrote on astronomy, 

physics, meteorology and the theory of probabilities. 
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Figure 2.3 The analogy of VaR based on EVT with standard deviation of financial return 

 

Before discussion of the second step, two important concepts of time series data 

mentioned in the beginning of this section should be defined. First, in this thesis a special 

term, called seriality, is defined as the order of occurrence of a set of time series data. 

Definition 1:Seriality is defined as the order of occurrence by time of a random time 

serial variable. 

The concept of seriality suggests that the order of time series data has natural properties. 

For example, the price of an asset at time t is derived from its price at time t-1, which 

synthesizes investors’ views and behaviour happening between t and t-1. Thus, the 

seriality of a sequence should not be changed if the sequence happened. The concept of 

seriality is not new in the literature. An Austrian biologist, Kammerer (1919) is generally 

credited as the first one to describe the term of seriality. Kammerer describes the feature 

of seriality by stressing the recurrence or clustering of the same or similar events in a 

time horizon or a certain space, but here the definition of seriality emphasizes the order of 

occurrence of a same or similar event. In Kammerer’s theory, a random event occurs in a 

f(r) 
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short time period more than its expectation of general intuition, indicating the existence 

of an unexplained physical force or statistical rule provoking this behaviour. For financial 

time series data, for example, the stock price reflects investors’ views about underlying 

assets, and investors’ behaviour changes are reflected on stock returns. In this manner, 

financial time series data sets have both features of seriality as defined by Kammerer and 

this thesis because investors’ behaviour is naturally assumed to be continuous based on its 

occurrence. In other words, investors’ behaviour at time t is driven by how they acted at 

time t-1. The importance of seriality is to supplement the lack of four moments in 

describing the characteristics of financial time series data. In the classical theory of 

statistics, it is known that the features of a distribution of a set of random data could be 

entirely described by its four moments, i.e. mean, variance, skewness, and kurtosis. 

However, one might obtain the same four moments from two different financial time 

series data sets with totally different patterns or ordering of the data. In this case, from the 

aspect of the four moments, the two sets of data are statistically alike with each other 

because of the same mean, variance, skewness, and kurtosis, and maybe even their 

distributions. Yet the two sets of time serial data probably actually have different patterns, 

i.e. different seriality, in the time horizon. This is a particular feature of time serial data, 

which does not show in cross-sectional data or in that collected from questionnaires. It is 

not easy to find the importance of seriality of single financial time series, and it is 

impossible to disturb the order when we are measuring the serial correlation since the 

order exists within the time series data. Thus, this thought can be used in the next 

concept. 

The second step of portfolio VaR calculation involves a new concept we need to define, a 

derivative constructed on the definition of seriality, called “correlation with seriality”.  

Definition 2: correlation with seriality. If the relationship between two sets of time series 
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data is calculated based on the order of their original occurrences, then any correlation 

is defined to be a correlation with seriality. 

According to the definition above, correlation with seriality is the relationship between 

two sets of time serial data derived from their patterns. In other words, correlation with 

seriality describes the degree of the co-movement of two sequences within their own 

patterns, and it emphasizes that the relationship between two sets of time serial data needs 

to be reasonably measured in accordance with the order of occurrence. Failure to take 

into account this property can render any conclusions meaningless. For example, if one 

would like to measure the dependence between the return of the FTSE 100 and the S&P 

500 over thirty years, it is meaningless to calculate the conditional probability of 

co-occurrence of the decline of S&P 500 in 2008 and the one of the FTSE 100 in 1987. 

The former, in the United States, was caused by the financial crisis of subordinated debts, 

and the latter was triggered by the well-known black Monday
34

. Statistically, it is possible 

that the two events would occur again in the future at the same time even though the 

probability is extremely low. However, from the viewpoint of risk management, we are 

interested in the relationship in their future pattern, and the degree of their co-movement. 

Specifically, the co-movement or the correlation of two sets of time series data is more 

meaningful than the pure probability of a co-occurrence of two particular events. 

For illustration, we provide an example with two original five-year financial index returns 

(the Hang Seng Index and the Nikkei 225 Index) as shown in Figure 2.4 panel (a) and (b). 

In panel (c), a changed Nikkei 225 (i.e. the returns from 1
st
 March 2007 to 31

th
 March 

2008 is moved backward to 2
nd

 January 2006.) is made. Under the peak over threshold 

(POT) sampling procedure as discussed in Section 2.5.2, conditional correlation of the 

                                                      
34

 Black Monday is the market crash on Monday (October 19, 1987), starting from Hong Kong and spreading to 

European stock markets, and finally the stock market of the United States. The stock markets around the 

world crashed, causing a huge value of losses in a very short time.  



Chapter 2 Theory of Market Risk Measurement                                              

60 
 

Hang Seng Index and the Nikkei 225 (ab) would be equal to the conditional correlation 

of the Hang Seng Index and the changed Nikkei 225 (ac). This phenomenon can be 

attributed to the lack of seriality
35

 in pairs of extreme series. Under these circumstances, 

several issues can arise. Firstly, from the viewpoint of conditional correlation (conditional 

on extremes collected by POT approach), it can cause serious confusion that ab=ac even 

if they do not have the same patterns. In addition, in the conditional correlation ac, it is 

difficult to offer an explanation as to why the extremes of the Hang Seng Index in 2008 

might be associated with the ones of the Nikkei 225 in the middle of 2007. In other words, 

if the data in panel (c) is real, how could we explain that the market shock happening in 

the Hong Kong stock market in 2008 could be related to another shock in the Japanese 

stock market one and a half years earlier? Finally, it is a troublesome puzzle to decide the 

threshold to make the number of extreme values of the two return series equivalent. 

Obviously, none of the three issues above is easy to solve, and, to my best knowledge, 

none of them has yet been successfully resolved. A similar question also arises with 

regard to the method of tail dependence in Eq. (2.66) and (2.68). The best method to 

solve this issue is to calculate the conditional correlation with data sets that are arranged 

according to their time of occurrence. In other words, the calculation of conditional 

correlation has to be time-matched with each other, consistent with the concept of 

seriality.  

                                                      
35

 Generally speaking, the feature of seriality refers to synchronous trading behaviour. Synchronicity to 

extremes indicates that an extreme value in each fixed period would be accompanied by another extreme 

value in the same time interval. 
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Figure 2.4 Returns of HSI and Nikkei225 index 

 

According to Eq. (2.63), the portfolio VaR can be expressed as the square root of the sum 

of each squared individual VaR, and their interaction in the portfolio. One critical 

component, the coefficient of Pearson correlation, is applied to describe the relationship 

between individual assets in the portfolio. In recent years, there has been a wide-ranging 

debate on how to measure the relationship between two random variables. McNeil, Frey 

and Embrechts (2005) suggest that three main approaches are generally applied in 

measuring the relationship between two random variables. They are Pearson’s linear 

correlation, rank correlation, and tail dependence (TD) based on the method of copula. 

Pearson’s correlation has been shown in Eq. (2.26). 

Two common measures of rank correlation, Spearman’s rho ( 
  
 ) and Kendall’s tau (), 

have been discussed and applied in the literature. However, they might not be helpful 

when measuring the relationship between two sets of time serial data due to their main 

weaknesses, especially in risk measurement. The first one, Spearman’s rank correlation, 
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can be expressed as Eq. (2.64). 

 
  
    

    
  

   

       
 (2.64) 

Where           , means the difference between the ranks of the two random 

variables, and is used to transfer data to a rank series for the purpose of avoiding the 

numerical scale issue. The second rank correlation can be regarded as an estimate of the 

concordance between two random sequences.  

                                            (2.65) 

As with Eq. (2.65), Kendall’s  can be explained as the probability of the concordance of 

X and Y, minus the probability of discordance. In other words, Kendall’s  describes the 

degree of co-monotonic increase or decrease of the two sequences.  

Thirdly, we look at tail dependence, which emphasizes the relationship between the 

variables in the tail area. Eq. (2.67) and (2.69) describe the tail dependence in the upper 

and lower tail, respectively.  
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 (2.69) 

where    and    are the cumulative density functions of X and Y, and q is the tail 

probability in a certain criteria. From the risk management perspective, especially as 

relates to extreme value theory, the concept of tail correlation is doubtless commendable, 

since we care more about the prices of financial instruments that concurrently run to the 

extreme rather than those that stay around the average price at the same time. As a result, 

the key point of correlation of the time serial data sets should be punctuated at the tail 

areas. However, there might be a considerable drawback in applying this measure to time 

serial data. The tail dependences shown in Eq. (2.66) and (2.68), based on the method of 

copula, are drawn as a conditional probability. Take, for example, the lower tail 

dependence in Eq. (2.66), if q approaches to zero, then the cumulative density functions, 

      and      , approach to zero as well. From the probability aspect of the X and Y 

sequences,   
        and   

        are two extremely left points in the tail area of 

f(x) and f(y). If X and Y are regarded as two general return sequences, the conditional 

probability in Eq. (2.66) implies the likelihood that X’s return drops in the extremely left 

area given that Y’s return falls in the same area. An obvious fallacy might be caused, as 

mentioned before, in cases like the S&P 500 and FTSE 100, because this measure of 

correlation lacks seriality. Mari and Kotz (2001) suggested that a special term, called 

“statistical dependence”, might be more suitable, especially as these events may not 

coincide at the same moment. 
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One might still be concerned with the applicability of the correlation in Eq. (2.63) in 

measuring portfolio VaR, particularly in non-linear cases. To address this uncertainty, Kat 

(2003) suggests using conditional correlation. Accordingly, Engle’s (2002) seminal DCC 

model describing the change of non-linear correlation over time can be utilized for 

aggregating individual risk into portfolio VaR. Furthermore, Lhabitant (2002) also 

applied a similar approach to calculate conditional correlation between two financial 

instruments.  

According to the discussion above, the modified Pearson’s correlation based on the DCC 

model is the only one in compliance with the concept of correlation with seriality. Rank 

correlation, like Pearson’s, measures the relationship between two variables based on the 

ordering of observations. However, the rank correlation in Eq. (2.64), in fact describes the 

relationship between the ranks of X and Y, which is obviously different from the 

correlation of X and Y. From another angle, although the method of tail dependence is not 

entirely consistent with the spirit of correlation with seriality, its approach of separating 

the upper and lower tail is still worthy to be apply in the modified Pearson’s correlation, 

especially in the extremes sampling procedure of block maxima. Roughly speaking, the 

conditional correlation of the upper and lower tail can be calculated with respect to the 

maxima and minima sampled from the method of block maxima (minima). More details 

of this forecasting procedure will be given in Chapter 4.  

Now that we have defined the concept of correlation with seriality, step two in calculating 

the portfolio VaR can be achieved by modifying Eq. (2.63) with the dynamic conditional 

correlation based on extreme values. 

           
        

  
                       

 
   
   

 
   
   

 

 
  

 (2.70) 
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where      is the dynamic conditional correlation between asset i and j. The main 

advantage of Eq. (2.70) is that this method not only accounts for the risk of extreme 

market conditions based on EVT, but also considers the variability within the conditional 

correlation. This means fund managers could monitor not only the risk of individual 

assets, but also any changes in the relationship between assets. This indeed would help 

them in portfolio management, as mentioned in Section 2.4. When considering whether a 

new asset should be added into the portfolio or not, the manager might apply this model 

to find the contribution of the new asset in risk reduction. Everything we have discussed 

above is designed to try and make the risk measurement more accurate and suitable for 

practical use. 
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2.7 Conclusion 

This chapter detailed some important theories of VaR and its applications in financial 

institutions. Several key points regarding the VaR calculation are introduced in Section 

2.2, including the background and the general concept of VaR. We also showed the 

criticism and debate surrounding VaR modelling. In Section 2.3, we explained the 

calculation of VaR in more detail, and the roles of correlation between different assets in 

the portfolio VaR calculation. Moreover, three measurements of relationship commonly 

used in the literature were introduced and discussed.  

Section 2.4 looked at how VaR could be applied in practice, starting from simple risk 

reporting, through risk control or monitoring, and finally to the aspect of actively 

risk-based performance management. Some of these have already been applied in 

financial institutions, other potential applications, for example active risk management, 

are linked with the performance and compensation systems. By applying VaR in these 

ways, financial institutions could be more efficient and effective in risk management, as 

well as in performance management. The active use of VaR is also of value for the 

management system, giving them greater awareness of which product, business line, or 

profit-centre takes more risk in its position and offering financial institutions a judgement 

criterion for a new investment or new project, based on their marginal contribution 

towards the firm-wide total risk. Although it is clear that many financial institutions 

derive great benefits from their use of VaR, the VaR disclosed by these different financial 

institutions could not be compared with each other, due to the divergence of the method 

and the assumption of VaR. 

In the Section 2.5, the theory of extreme value, its two sampling approaches, and VaR 

modelling with a single asset based on those extreme returns were shown. However, the 

multivariate VaR model is less prominent in the related research, and the method used in 
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my thesis fills this gap in the portfolio VaR modelling area. In Section 2.6, we took into 

account the extreme market conditions and time-varying relationship between individual 

financial assets to form a VaR method for a multivariate case. In addition, two unique and 

critical characteristics of time series data, less discussed in the literature, were also 

defined in Section 2.6. They are “seriality” for the individual asset and “correlation with 

seriality” for the relationship between individual assets, which do not generally present in 

cross-sectional data or data from questionnaires. A lack of either (seriality or correlation 

with seriality) could cause serious errors in the calculations, and even if results could be 

obtained their correlation would be difficult to explain. Based on these two concepts, we 

suggested a suitable measurement of correlation, considering the characteristics of 

financial data, to use in the portfolio VaR modelling. 

Finally, a modified dynamic conditional correlation (DCC) synthesized with individual 

VaR based on extreme value theory model was obtained. This method also considered the 

property of the fatness of financial returns in forecasting VaR. In practice, it provides the 

financial institutions with a clear overview of their market risk, looking at both the 

individual asset level and the portfolio as a whole. 
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3 Chapter 3 Literature Review 

 

3.1 Introduction 

As the general financial uncertainty increased during the 1990’s, there was an intensive push 

to do research by financial institutions, regulators and academics to try and develop more 

sophisticated models for measuring market risk. The major objectives of this chapter are to 

review the related literature in VaR modelling and the main methods of model evaluation. As 

mentioned in Section 2.2.1, the VaR concept proposed by J.P. Morgan has long been the 

standard for measuring market risk, and some of the academics followed J.P. Morgan’s idea 

by focusing on the parametric model. In this line of research, various (G)ARCH related 

models were developed and applied in measuring market risk, for example, the RiskMetrics 

model and the variance-covariance method. Other researchers found an alternative route to 

overcoming the shortcomings of parametric models by concentrating on the non-parametric 

model
36

.  

In more recent years, many studies have tried to fill the middle ground between the parametric 

and non-parametric approach by developing the alternative method, or so called 

semi-parametric method, and adding in risk management. The core concept, extreme value 

theory, used to be applied in hydrology but is now adapted to measure market risk in rare 

conditions (e.g., Embrechts et al. (1997), Embrechts et al. (1999), Longin (2000), McNeil and 

Frey (2000), Gencay et al. (2003), McNeil et al. (2005), and Gilli and Kellezi (2006)). 

                                                      
36

 The non-parameter models do not assume any distribution to financial returns, but use the -quantile (or 

-percentile) to calculate the VaR.  
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This chapter looks at the approach of these different VaR measurement models, dividing them 

into three main categories. The key features of each approach and its application will be 

reviewed and discussed. Section 2 looks at the parametric models, starting with the 

RiskMetrics approach introduced by JP.Morgan (1996). All approaches in this category 

assume a hypothetical distribution of financial returns before measuring VaR. Next, 

non-parametric models and their variants are presented in Section 3. This line of research 

overcomes some of the difficulties found in the parametric approach, but still encounters its 

own obstacles. In Section 4 of this chapter, a semi-parametric approach is presented which 

does not focus on the whole density of financial returns but instead just pays attention to the 

extreme returns. In Section 5, various performance evaluation approaches, or so called 

backtesting, will be reviewed, and some of their difficulties will be discussed as well. Section 

6 presents the conclusion. 

 

3.2 Parametric model 

According to Eq. (2.3), the volatility of a financial asset plays a critical role in the calculation 

of VaR. Thus, when we come to look at VaR, the estimation and forecast of volatility needs to 

be discussed. The development of volatility research directly led to the progression of risk 

management, especially to the development and refinement of VaR models. 

3.2.1 Univariate VaR 

Since the seminal paper of Markowitz (1952), the volatility of financial assets has become an 

important indicator of market risk. In addition, stimulated by the concept of asset risk, the 

capital asset pricing model (CAPM) was proposed and developed by Treynor (1961), Sharpe 

(1964), and Lintner (1965). In the CAPM, a market risk measure is obtained by using an 

indicator, beta, relative to the risk of market portfolio. These two measures (volatility and beta) 
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of market risk, however, do not answer the essential and fundamental question: “how much 

money are investors going to lose if tomorrow is a bad day in the market?” Volatility and beta 

merely describe the degree of uncertainty in the market, and cannot quantify any real potential 

loss of the investors’ holding positions. Market participants are generally looking for a simple 

measure to uncover how the value of their current portfolio is going to be affected in the next 

trading period. As a result, a third measure is proposed to fill the gap and answer the question 

posed above. In this section, this third market risk measure will be discussed in detail. 

As is well known in basic statistics and financial theory, the volatility of a financial asset 

describes the tendency of the price to fluctuate away from the mean. Reflecting the rapidly 

changing market conditions and getting a more accurate simulation of the reality of markets, 

Engle (1982) proposed a time-varying concept of the volatility process, called 

heteroscedasticity, based on the past square of the error term. After Bollerslev’s (1986) 

generalization of the ARCH model (GARCH) and Bollerslev’s (1990) multivariate version 

(MGARCH) which followed in this line of research, a series of more complicated versions of 

the volatility process were created and volatility estimation and forecasting made a 

remarkable splash in the area of risk management. Copious extensions and variants of the 

GARCH models have been introduced to encompass various different emphases. Some 

academics pay attention to the asymmetric response of investors (Nelson (1991), Engle and 

Ng (1993) and Glosten et al. (1993)), whilst others might focus on more fundamental issues, 

for example the density of financial returns (Bauer (2000), Giot and Laurent (2004)and 

Bauwens and Laurent (2005)). Falling somewhere between the two, Engle and Ng (1993) 

offered a comprehensive discussion in the modelling of asymmetric GARCH and suggested 

the GJR model fitted better than other asymmetric models. 

For the purpose of offering an explicit risk measure, JP.Morgan (1996) proposed a concept of 

risk measure, called value at risk (VaR), and taking inspiration from Engle’s (1982) and 
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Bollerslev’s (1986) works created a simple measure of market risk model, called RiskMetrics. 

The basic concept of VaR is defined as an amount of loss on a position with a given 

probability over a fixed horizon. In other words, it reflects how the value of an investors’ 

portfolio behaves in the extreme market conditions which could occur in the future. The 

common RiskMetrics model assumes that the returns of financial assets follow a conditional 

normal distribution with zero mean and conditional variance, which can be expressed as an 

exponentially weighted moving average (EWMA) process of their historical squared returns. 

The formula of VaR with a given significant level 1   can be set as          
37

 , where 

Z indicates a specific quantile of potential loss distribution of a portfolio and     means the 

forecasting conditional volatility (or time-varying volatility) estimated by a certain parametric 

model. Intuitionally, calculation of VaR here should put the stress on the conditional volatility 

(Christoffersen and Diebold (2000)). As a result of several market crunches, VaR became the 

third most popular type of model for measuring market risk in the late 1990’s (based on the 

parametric method) and it only gets more popular with time. Most uses of VaR concentrate on 

modelling a conditional volatility process of financial returns, although Jorion (1995) implied 

that ARCH models provide poor volatility forecasts. The past decade has witnessed a rapid 

development of different techniques for calculating VaR, and it has become a well-known 

measure in this field due to its simplicity and user-friendliness. In JP.Morgan’s (1996) 

technical document, as the precursor in this line of research, they suggested a GARCH(1,1) 

process to exchange rate movement with a decay parameter, =0.94. Nowadays, RiskMetrics 

is widely used by practitioners as a substantial tool in modelling volatility because of its easy 

implementation. However, it might display under- or overestimated risk because of the lack of 

any great deliberation in its distribution assumption. The VaRs obtained from RiskMetrics are 

calculated under the unrealistic assumption of normality to assets’ returns, and the critical 

                                                      
37

 In this setting, the mean of return to a financial asset is assumed to be zero in the long term due to the 

efficient market hypothesis. 
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character of a fat-tail to the distribution is completely neglected. Even though the effect of 

thickness is minor when calculating VaR at the 95% significant level, it would be significantly 

different in a higher confidence level (for example, at the 99% of the Basel’s standard 

requirement). Thus, this assumption of financial returns behaviour might cause market risk to 

be underestimated when calculating VaRs based on the RiskMetrics approach (Pafka and 

Kondor, 2001). 

Focusing on various volatility approaches, Christoffersen et al. (2001) tested the performance 

calculated by the original RiskMetrics, GARCH(1,1), an option-based implied volatility, and a 

stochastic volatility with S&P 500 returns, suggesting that the VaR measure based on the 

GARCH(1,1) approach generally excels over the others in the 5% and 10% level of 

significance. These findings are consistent with previous research, stating that significant 

improvements might be found by releasing the restrictions of RiskMetrics (Danielsson and De 

Vries (2000) and Engle and Manganelli (2004)). In addition, the failure identification of all 

these four competing approaches at the 1% level could simply be attributed to extreme 

returns.  

Risk management also corresponds to the holding capital for banking sectors. Berkowitz and 

O’Brien (2002) conducted an alternative value-at-risk model, ARMA(1,1)-GARCH(1,1), to 

calculate the risk in the top six large commercial banks in the U.S. They were the first to 

display direct evidence on the performance of the GARCH model with real data. Their results 

showed that the banks’ risk measures were too conservative, which would cause the banks to 

hold too much unnecessary capital and decrease their operating performance. By contrast, the 

GARCH model of the banks’ profit and loss (P&L) generally provided for lower VaRs and 

was better at predicting changes in volatility. Because of the latter, the GARCH model permits 

comparable risk coverage with less regulatory capital.  
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For the purpose of capturing the effect of the fat tail on the density of financial returns, 

Mittnik and Paolella (2000), Angelidis et al. (2004), Bams et al. (2005) and Hartz, Mittnik and 

Paolella (2006) presented some basic and practical methods of risk measurement. They 

applied various GARCH related models with non-normal distribution to capture the effect of 

fatness on major exchange rate and primary international equity indices. Their work indicates 

that VaR measures based on the GARCH approach with student-t distribution are more 

effective than other measures based on the normal and generalized error distribution (GED). 

In Mittnik and Paolella (2000), they even took the non-balance response of investors into 

account to form an asymmetric power ARCH (APARCH) model, and it outperformed other 

simple GARCH models with t density. Giot and Laurent (2004)
38

 adopted the APARCH 

model with t distribution to calculate 1-day-ahead VaRs of the CAC40 index and S&P 500 

futures contracts, and two major exchange rates. In this work, however, they found that the 

APARCH provides only an equivalent performance to the method based on the realized 

volatility approach. Echoing the related studies above, and keeping an eye on the skewness or 

asymmetry (third moment), some studies looked at the excess kurtosis (fourth moment), that 

is not captured by GARCH with normal density. Harvey and Siddique (1999, 2000) indicated 

that there is also a dependence in the conditional skewness and possibly in the kurtosis of 

stock return as well. Wilhelmsson (2009) extended Jensen and Lunde (2001) and Forsberg 

and Bollerslev’s (2002) work and proposed an NIG-autoregressive conditional density (ACD) 

model applying in market risk measurement. In this manner, it seems all the characters of 

return density, from the first to the fourth moment, can be included. As a result, the VaR 

measured by the NIG-ACD model displayed a very competitive performance against other 

parametric approaches. Similarly, So and Yu (2006) adopted seven GARCH related models to 

measure the VaR of a range of equity indices and exchange rates. Unfortunately, the results 

were inconsistent. Generally speaking, the models based on t distribution gave better 1% VaR 

                                                      
38

 The details of this model can be seen in Lambert and Laurent (2001). 
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estimates than normal distribution in the long position, however this was not the case for the 

short positions.  

Alternatively, some academics apply GARCH models taking into account the relationship 

between derivatives and their underlying assets. Spurred on by the delta-GARCH model 

proposed by Hsieh (1993) and the gamma-normal introduced by Wilson (1994), Fallon (1996) 

then generalized these two thoughts and proposed a volatility process, gamma-GARCH
39

. 

They used daily returns of four individual stocks listed in the NYSE and S&P 500 index, for a 

period over twenty-six years, to evaluate the performance of these risk measures. Surprisingly, 

the results showed that even the gamma-type measure outperformed the ones based on delta, 

however, both the two models performed poorly in certain situations. 

After the first and second energy crisis occurred in the 1970s and 80s, crude oil and the 

energy market as a whole were spotlighted in hedge investors’ energy portfolios. In the past 

decade, the price of crude oil peaking to a historical high has also caught international 

investors’ and governments’ attention and made them cautious. Thus, there has been a big 

focus in the academic community towards applying diverse parametric VaR approaches to 

measuring the market risk of crude oil contracts. For example
40

, Giot and Laurent (2003a), 

Fan et al. (2008), Hung et al. (2008), and Agnolucci (2009) suggested that volatility forecasts 

based on skewed and fat-tail distributions offer more accurate predictions than other 

competing approaches.  

To date, a number of studies looking at a variety of GARCH related models have been applied 

to measure the VaR of various markets. However, there has not been a conclusive result to 

give us clear direction and guidance towards which model is the best overall and which might 

                                                      
39

 The gamma of a derivative security is the second derivative with respect to the underlying asset. In a 

portfolio context, the gamma of a portfolio is the matrix of the second derivative of the portfolio with respect to 

the vector of underlying assets. 
40

 Here, Giot and Laurent (2003a) applied the ARARCH model with t distribution, Fan et al. (2008) and 

Agnolucci (2009) suggested the GARCH model with generalized error distribution (GED), and Hung et al. 

(2008)borrowed a GARCH with a heavy-tailed (HT) distribution proposed by Politis (2004). 
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be best suited for measuring the VaR of various different data.  

 

3.2.2 Multivariate models 

The research mentioned in the last section concentrated mostly on the VaR measure for 

univariate models. With the progress in methodology of time-series analysis, some researchers 

turned to looking at estimating the total risk of a portfolio. The earliest version of a 

multivariate GARCH (MGARCH) model can be found in Bollerslev, Engle and Wooldridge 

(1988), namely the VECH model. The researchers first applied the conditional volatility 

process as a univariate case, and then applications to VaR with the multivariate model were 

carried out. Engle and Kroner (1995) (hereafter called BEKK) partially surmounted the 

over-parameters phenomenon found in the VECH model by suggesting a diagonal 

representation in the covariance matrix. This significantly improves the efficiency in 

parameter estimation, especially in large portfolios. Moreover, BEKK also guarantees that a 

positive definite to the covariance matrix could be obtained, avoiding the uncertainty of 

parameter testing and inference in the VECH model.  

Coming at it from another angle, some researchers built diversified multivariate GARCH, 

similar to the BEKK model. Engle, Ng and Rothschild (1990) argued that asset excess returns 

are driven by specific factors, and the conditional covariance of return might be affected by 

these factors. Several extensions of the factor model were proposed in the literature. For 

example, Ng, Engle and Rothschild (1992) provided a dynamic multi-factor GARCH in stock 

returns and Vrontos, Dellaportas and Politis (2003) suggested a full-factor multivariate 

GARCH.  

When it comes to risk management of multi-asset portfolios, attention should also be directed 

towards the relationship amongst assets. For this reason, some multivariate GARCH models 



Chapter 4 Methodology and Data                                                          

77 
 

stress the correlations of various assets. Indeed, from both the viewpoint of risk management 

and portfolio diversification, it is important to clarify the relationship between various assets. 

Consequently, Bollerslev (1990) presented a multivariate GARCH(1,1) with a constant 

conditional correlation (CCC), investigating the short-run relationship of five weekly 

European exchange rates. In addition, Tse (2000) and Bera and Kim (2002) provided some 

robust evidence against the hypothesis of constant correlation by examining several major 

equity indices. Echoing this, Engle (2002), Tse and Tsui (2002)
41

, and Christodoulakis and 

Satchell (2002) offered similar models describing inconstant conditional correlation, also 

called time-varying correlation
42

. Multivariate GARCH models with time-varying correlation 

theoretically offer more accurate estimations and are intuitionally closer to reality. However, 

one major drawback to the DCC model reduces its accuracy: it assumes that the pattern of the 

dynamics of the conditional correlation in the market is not changeable since the parameters, 

 and  (or 1 and 2 in Tse and Tsui (2002)), are time-invariant. Therefore it erroneously 

concludes that the conditional correlation of all assets has the same dynamic pattern. From the 

aspect of VaR based on a MGARCH model, Engle (2002) displayed some rough results 

showing that MGARCH-DCC related models, especially mean reverting (MR) ones, offer 

better outcomes than other methods. A flexible DCC (FDCC) model and then its 

generalization version are proposed by Billio et al. (2006) and Billio and Caporin (2009) 

respectively, and both of these two models are applied in asset allocation based on conditional 

correlation. Taking into account the effect of asymmetry in conditional correlation, Cappiello, 

Engle and Sheppard (2006) generalized the asymmetric effect in conditional correlation, 

including the allowance of time-varying patterns of conditional correlation with the original 

                                                      
41

 Tse and Tsui (2002) assume the conditional correlation matrix is generated from a recursive pattern, 

                            , where      indicates a functional form dependant on the 

standardized residuals.  
42

 For the purpose of identification between Engle’s (2002) dynamic conditional correlation (DCC) model and 

Tse and Tsui’s (2002) time-varying correlation (TVC) model, they are marked as DCC and TVC, 

respectively.  
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DCC model, and called it asymmetric generalized DCC (AGDCC). The evidence in their 

research showed that asymmetry widely exists in the conditional volatility of international 

equity returns, but less so in international government bonds. However, asymmetric 

conditional correlation is present in both bond and equity returns. Although the advantages to 

this model are manifest, the cumbersome procedure in parameter estimation is the major 

shortcoming, even in the diagonal version.  

Alternatively, as suggested by Giot and Laurent (2004), the concept of VaR in the univariate 

case can simply be extended to the multivariate version. In this manner, the density of the 

multivariate case should be accurately calculated before measuring the portfolio risk. Looking 

at this, Giot and Laurent (2003b) and Bauwens and Laurent (2005) proposed a practical and 

flexible method to introduce skewness into the multivariate symmetric density and to improve 

the model creditability. In Giot and Laurent’s (2003b), they suggested an AR-APARCH
43

 

model with a multivariate skewed student distribution and time-varying correlation structure, 

as proposed by Tse and Tsui (2002). They offered a comprehensive empirical result, both in 

long and short positions, on three individual stock returns listed on the NYSE. They also 

offered direct evidence that the multivariate GARCH model with skewed distribution 

improves the performance of VaR estimations. Staying in the spirit of the DCC model, 

Bauwens and Laurent (2005) applied a multivariate GARCH model with skewed student-t 

distribution for measuring VaR of two stock indices and three major exchange rates. The 

results of their work are consistent with the previous study of the univariate model. Moreover, 

the model they proposed improves the quality of out-of-sample VaR forecasts when compared 

with a symmetric one.  

In general, the practicability of the multivariate GARCH model is limited by the fact that too 

                                                      
43

AR in this contraction means that the return in the mean equation follows a first order autoregression. The 

Asymmetric Power ARCH (APARCH) model is proposed by Ding, Granger and Engle (1993), which includes 

Bolleslev’s (1986) GARCH and five other models. 
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many parameters need to be estimated, and this is quite time consuming. To address this 

difficulty, Ledoit et al. (2003) suggested a flexible multivariate GARCH (Flex MGARCH) 

model, which skilfully separates the covariance as diagonal and off-diagonal parts and 

estimates each respectively. In addition, he also provided comprehensive evidence of the 

improvements of this model, comparing it with other multivariate models in VaR 

measurement of equity indices. Ledoit et al.’s (2003) study contributed not only by extending 

the academic field, but also by developing methodology which can easily be applied to real 

markets, for example the risk management of banks, mutual funds, and other financial 

institutions. As a mature technique of (multivariate) conditional volatility for estimating and 

forecasting, the covariance-related method
44

 has become the most well-used and 

representative VaR measure.   

 

3.2.3 The application of Copulas method 

As mentioned in the previous section, the relationship between the various assets is an 

essential issue for practitioners and academics to consider for several reasons. For example, 

portfolio selection, hedging strategies, and measuring the risk of the portfolio would all be 

strongly associated with this issue. In the early years, under the normality assumption, linear 

correlation was applied as a dependence measure for integrating the risk of the individual 

components which made up a portfolio. In more recent years, some oppositional perspectives 

have suggested that linear correlation might only be applicable under the particular conditions 

found with the normality assumption and thus not really suitable for real life situations 

(Embrechts, McNeil and Straumann (2002)). Nowadays, some academics strive to measure 

                                                      
44

 Sometimes, the variance-covariance method is called the “delta-normal” method. In the univariate case, the 

variance-covariance method is reduced to the variance model, which is called exponentially weighted moving 

average (EWMA) in JP Morgan’s method. 
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the relationship between the various assets in a portfolio. For example, the copulas
45

 method 

has been broadly applied in the statistical and biostatistics literature. This approach deems that 

any joint distribution can be represented in terms of a copula and marginal distribution 

functions. This representation demonstrates that it is possible to individually specify each 

variable’s marginal distribution and the dependence relation that links these marginals into a 

joint density. 

To my best knowledge, most studies apply copulas as a tool of dependence measure rather 

than as a risk scale. For example, Longin and Solnik (2001), Poon, Rockinger and Tawn 

(2004), and Hartmann, Straetmans and Vries (2004) all applied alternative copulas, 

investigating linkage or dependence of international markets. In general, focusing on the 

contemporaneous correlations in the tails, all these papers suggested that dependence is high 

when the market conditions are bad, and low in good market conditions. There is also an 

asymmetric phenomenon between international markets, suggesting that international markets 

tend to go down together but go up separately. This result is also found in Jondeau and 

Rockinger (2006). This is an important discovery for hedging strategy and implies that it is 

difficult to hedge effectively if the market collapses. Inspired by these results, and a similar 

concept found in Engle (2002) and Tse and Tsui (2002), Patton (2006b) extended the 

unconditional copula theory to the conditional case, and then proposed a time-varying 

conditional dependence model with asymmetry for capturing the rapidly changing market 

conditions. 

Some scholars use copula to obtain joint density for risk measurement. Cherubini and Luciano 

(2001) allocated capital to each business unit based on their risk, measured by a copula 

approach. Although there was a lack of backtesting in their research, they presented a new 

application of VaR in a trade-off relationship between risk and allocated capital. Poon, 
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 The original concept of copula was developed by Sklar(1973). More detail about the copula family and their 

application in finance can be found in Joe (1997) and Nelsen (2006).  
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Rockinger and Tawn (2004) offered a static VaR calculation for a particular date, comparing it 

to another market risk measure and expected shortfall, as proposed by Artzner et al. (1999). 

However, they did not display the results of the backtesting between the VaR and the expected 

shortfall. Along the line of Patton’s (2006b) job, Palaro and Hotta (2006) proposed a 

symmetrised Joe-Clayton (SJC) copula for measuring VaR. Compared with other 

conventional VaR approaches, they suggested that the SJC approach provided good 

performance for VaR one day ahead measuring, especially in extremal fields. Applying the 

copulas method, Rosenberg and Schuermann (2006) presented a comprehensive research 

study into measuring the total risk of particular bank holding companies with nine-year 

quarterly data; calculating market, credit, and operational risk individually and then 

aggregating the three types of risk. However, they only provided static VaR estimates without 

backtesting the results and thus it could not be compared with the other measures.  

Although the merit of the copulas method in measuring VaR is remarkable, it still poses an 

arduous problem for practitioners because there is not a standard rule to identify which copula 

function to use in practice. In addition, it is often cumbersome for multivariate cases when 

calculating VaR, especially in high dimensions. 

 

3.3 Non-parametric model 

As mentioned in the previous section, the major drawback of the parametric VaR model is the 

use of the assumption of the hypothetical normal distribution of financial returns when 

estimating VaR – this bears little or no resemblance to the real life situation. As a result, an 

alternative concept without any distribution assumptions, so called non-parametric models, 

was derived. Historical simulation (HS) is a common approach for measuring market risk. Its 

convenience in calculation has led it becoming one of the most popular methods for the 

banking sector. The spirit of HS is to obtain an asset’s return distribution based on its 
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historical data. Stimulated by the drawbacks of the parametric models, Beder (1995) was a 

pioneer in this field, using HS to calculate VaR by using conventional HS with a range of 

artificial data. He argued that the concepts of the VaR models were seductive, but they still 

had some difficulties. Even for the simplest one, like HS, the outcome could be affected by 

the horizon selection. In addition, employing long horizons of real exchange rates, Hendricks 

(1996) compared the HS approach (non-parametric) with the variance-covariance method 

(parametric), suggesting that HS with long period data, say over 1,250 days, offers very 

accurate coverage for both the 95
th

 and 99
th

 percentile risk measures. Unfortunately, similar 

comparisons in Vlaar (2000) suggested that the performance of the HS approach is merely 

satisfactory, even if a long range of historical data is included. In general, Hendricks (1996) 

could not specify which approach offered superior performance. Thus, he made an important 

suggestion for further research aimed at combining the best characteristics of the two 

approaches in measuring VaR.  

Although the traditional HS approach has some obvious merits in its convenience and 

avoidance of making any assumptions on the density of financial returns, it is still criticized 

for ignoring the impacts of serial correlation and the heteroscedasticity of volatility. The equal 

weight given to past returns is also an issue of the HS approach which has received criticism. 

Spurred on by Hendricks’ (1996) suggestion, several variants of HS were proposed. For the 

purpose of purging the noisy information in raw data, a new approach, named filtered 

historical simulation (FHS)
46

 was introduced by Barone-Adesi et al. (1998) and 

Barone-Adesi et al. (1999). In the first step of the FSH approach, an ARMA or GARCH 

model is adopted to wash off the serial correlation and heteroscedasticity of volatility in the 

financial time series. Then, an independent and identical density (i.e. i.i.d) applied to the 

conventional HS approach. They also offered backtesting residual sequence is obtained and of 

                                                      
46

 The FHS approach has also been extended to allow for more complicated volatility models, see Audrino 

and Barone-Adesi (2005). 
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empirical studies with the FHS approach for a derivative portfolio in Barone-Adesi et al. 

(2002). Overall, the evidence showed that FHS is accurate at shorter time horizons, but it 

tends to become more conservative with long period forecasting. Using a similar procedure, 

David Cabedo and Moya (2003) and Costello et al. (2008) utilized ARMA models to remove 

the effect of autoregression, measuring the market risk to oil markets. Their work, in general, 

suggested that the HS approach with ARMA provides a better VaR estimation than those 

provided by the standard HS approach or the variance-covariance method.  

Boudoukh, Richardson, and Whitelaw (1998) (hereafter BRW model) proposed an alternative 

approach, directly addressing the difficulty of using equal weighting for all past returns. The 

spirit of their paper is that over the longer simulation period the older data might be less 

relevant to the current situation. Accordingly, in this work the BRW approach combined the 

RiskMetrics’ concepts into the HS approach by giving each past return an exponentially 

calculated weighting before implementing standard HS. Applying a range of financial returns, 

including exchange rate, spots of Brent crude oil, S&P 500 index, and bond index, the results 

in Boudoukh, Richardson, and Whitelaw (1998) show significant improvements in statistical 

performance over the two competing methods, standard HS and RiskMetrics. However, BRW 

is criticized on the grounds that it is an indirect and somewhat inefficient way of allowing for 

stochastic volatility (Hull and White (1998)). Besides, Hull and White (1998) suggested that 

HS can be improved by taking into account the volatility changes experienced during the 

period covered by the historical data. They presented a variant of the HS model incorporating 

volatility updating schemes. They used about 9 years of daily data on 12 different exchange 

rates and 5 different equity indices to offer evidence that their approach is better than the 

BRW approach in 1-percentile estimates. Since the results of these various VaR models based 

on HS are inconsistent with each other, Pritsker (2006) suggested that practitioners needed to 

have awareness of the different properties of the different VaR models based on historical 
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simulation approaches before they adopted one as a tool for market risk measurement. 

Pritsker (2006) found that both the BRW and the FHS approach for measuring market risk 

responded sluggishly to changes in conditional volatility, and responded asymmetrically to 

large price moves, i.e. risk estimates increased after large losses, but not after gains. In 

summary, the accuracy of the HS based approach to VaR models is significantly different 

depending on the length of the horizon. 
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3.4 Semi-parametric model 

The semi-parametric model stands in the midpoint between the parametric and the 

non-parametric approach. Most methods in this field do not adopt entire samples in parameter 

estimation, but rather they take the extreme ones through various sampling procedures. The 

concern regarding this method is whether it can appropriately deal with the tail-area density of 

financial returns. In the last twenty years, international investors have suffered severely from 

different financial disasters, for example the American stock market crash in 1987, the Asian 

financial crisis in 1997, and the international credit crunch in 2008.
47

 However, traditional 

risk measures failed to capture the probability of these rare events and this might mislead 

investors about the potential risk of investors’ positions. Extreme value theory (EVT) fills this 

gap by focusing on the behaviour of the tail of the distribution of the asset return. In other 

words, extreme value theory models just the conditional tail distribution, rather than the 

whole distribution, to calculate VaR, which provides a more accurate method to measure the 

risk within an investors’ portfolio (Embrechts, Resnick and Samorodnitsky, 1999). This theory 

has been developing rapidly and there have been a large number of applications in the related 

field of finance (Longin (1996), Longin (2000), McNeil and Frey (2000), Bali (2003), Gilli 

and Kellezi (2006), and the references therein). In this section, the concept of extreme value 

theory with two different sampling procedures, maxima of block and peak of threshold, will 

be introduced in detail. In addition, some empirical applications to diversified markets or 

instruments will be reviewed. The weaknesses of these methods will be discussed in this 

section as well. 

 

                                                      
47

 Several regional financial crises with various impacts happened in other markets during the 90’s: the western 

European exchange rate mechanism crisis in 1992, the Mexican crisis in 1994-1995, the Russian crisis and 

the LTCM Hedge fund crisis in 1998, and the Brazilian crisis in early 1999.  
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3.4.1 Block Maxima  

Using the method of block maxima, the extremes are sampled (the biggest or smallest) within 

a fixed time horizon, for example, one week or one month. The sampled extremes are then 

applied to fit the density of the tail-area and to measure market risk. The core thinking behind 

this method puts more emphasis on the rare events in each time horizon, believing that the 

source of the tail distribution could provide more precise parameter estimations, especially for 

the maxima likelihood estimation. Fisher and Tippett (1928) suggested that the distribution 

of extremes should belong to one of three densities: Gumbel
48

, Fréchet
49

, and Weibull
50

. 

Jenkinson (1955) provides a representation with three parameters to generalize the three 

extreme value distributions, named generalized extreme value distribution (GEV). 

Academics and practitioners have tried to disentangle the distribution of asset returns for 

several decades, especially those of extreme returns. Gettinby et al. (2004) applied various 

distributions to fit the extremes of UK daily stock price changes from 1975 to 2000, and they 

empirically argued that GEV distribution might fail to capture a fatter tail compared to 

generalised logistic (GL) distribution. However, from the theoretical viewpoint, GEV 

statistically offers more creditability than the others. Longin (1996) investigated the 

asymptotic behaviour of the distribution of extreme returns (from this approach) to the most 

traded stocks in the New York Stock Exchange. He suggested that the asymptotic distribution 

of extreme returns is a stable Fréchet distribution. This finding is consistent with Fisher 

and Tippett (1928) and Jenkinson (1955). 

In recent years, this line of research has been broadly applied to measuring VaR. Cutler et al. 

                                                      
48

 Gumbel distribution was proposed by the German mathematician, Emil Gumbel, in 1960 and has been 

applied in particular for modelling meteorological phenomena such as annual flood flows. Its probability 

density function can be expressed as      
 

 
                 , where   

     
   ,  is the 

location parameter and  is the distribution scale. 
49

 This distribution was proposed by Maurice Fréchet in 1927 and the density function can be formulated as 

     
 

 
 
 

 
           

 

 
    , where  is the shape parameter and  is the scale parameter. 

50
 Weibull distribution was proposed by Waloddi Weibull in 1939, and is widely used in material sciences. 
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(1989) triggered this area of study focusing on extreme returns. They applied seven measures 

to analyse long-range monthly stock price changes, from 1926 to 1985, and annual returns 

from 1871 to 1986, and they implied that most extreme returns were actually associated with 

major news, in particular with bad news. In addition, Jondeau and Rockinger (2003) offered a 

comparison on left and right tail extreme returns with five mature market indices and fifteen 

emerging market indices. In general, the characteristic parameters of the left and right tails 

were equal, which means that the asymmetry of extreme returns in the left and right tail is not 

significantly different. After several market collapses, Këllezi and Gilli (2000)
51

 offered a 

comprehensive illustration covering twenty years of data, applying the extreme value method 

for VaR measuring. However, they did not offer any backtesting of their results.  

To date, extreme value theory with the BM sampling method has been widely applied for 

measuring market risk across various fields. Lauridsen (2000) applied extreme value theory 

based on the BM procedure to measure the market risk of two Danish banks with 14 years of 

daily returns, offering distinct evidence that this method was superior to the method with 

normal distribution. This finding was consistent with Ho et al. (2000), who offered a simple 

sensitivity analysis with major Asian stock indices and demonstrated the that the performance 

of the GEV method was much stronger than the other techniques. They also pointed out the 

fact that the estimated parameters might be affected by the size of window selected. Moreover, 

they indicated that extreme returns, both minima and maxima ones, could be described well 

within an extreme value theory framework. Along this line, Longin (2000) applied the 

extreme value model with BM to calculate the VaRs of S&P 500 returns over three 

frequencies, daily, five-day, and ten-day returns. Compared with the GARCH method and 

RiskMetrics with normal and historical distribution, the evidence showed that the extreme 

value method is conservative in the high confidence level. To calculate the risk of a portfolio 

                                                      
51

 The new version of this paper can be referred to in Gilli and Këllezi (2006). 
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with two assets, Longin (2000) provided a simple ad hoc method to aggregate the risk. 

Although it is criticized as feasible only in normal distribution or linear combination 

portfolios, until recently it was difficult to straightforwardly calculate portfolio VaR any other 

way. Byström (2004) tried to evaluate the extreme value model from the alternative aspect, he 

found that the unconditional extreme value model tends to be too conservative during more 

tranquil periods. 

Bali (2003) used extreme value theory to assess the VaR of various interest-rate related 

securities with long period data sets from the US markets. They indicated that generalized 

extreme value distributions worked surprisingly well for capturing the extremes in the interest 

rate market. In addition, they also suggested that the performance of extreme value theory in 

VaR measurement is significantly more precise than the standard approach. Krehbiel and 

Adkins (2005) used the extreme value model for measuring the price risk in the energy 

market.  

The primary advantage of the extreme value method with block maxima sampling approach is 

that it is able to reduce dependencies in the raw data. Unfortunately, due to the nature of the 

procedure, only the most extreme values are recorded and the others are discarded, thus some 

important information within other observations in the same block might be neglected 

(Diebold, Schuermann and Stroughair, 2000). In addition, the selection of block size is still a 

contentious question. Furthermore, Lauridsen (2000) and Ho et al. (2000) indicated that the 

estimated parameters are very sensitive to the choice of block size and, unfortunately, as of 

now there has been no standard selection rule to overcome this weakness. Some researchers 

offer alternative solutions to this, for example, Coles (2001) argued for using yearly maxima 

in order to avoid seasonality and to reflect the rare events. However, for the financial assets 

with short historical horizons, large blocks might cause less extreme observations and reduce 

the accuracy of parameters estimation. To this problem of parameters and block size, a more 
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reasonable suggestion is made by Christoffersen et al. (1998), who proposed that ten to fifteen 

trading days as a block is required to capture independent and identical features of the 

extreme observation. 

 

3.4.2 Peak over threshold  

Instead of the block maxima procedure mentioned above, an alternative efficient sampling 

approach can be employed to fit the tail distribution, called peak over threshold (POT). In this 

procedure, extreme values are defined as those over a given threshold value. In other words, 

this method is more concerned with particular large losses than with whole loss observations. 

For modelling the behaviour of these exceedances
52

, Pickands (1975) showed that the 

generalized Pareto distribution (GPD) is the only non-degenerate distribution which 

approximates the distribution of return exceedances. In the past ten years, extreme value 

theory with POT (hereafter, the GPD model) has been widely applied in measuring the market 

risk of various financial instruments, suggesting that using extreme density formed by the 

observations in the tail area to calculate VaR is more precise than other standard approaches 

(e.g, McNeil and Saladin (1997), Neftci (2000), and Gencay et al. (2003)).  

As a pioneer in this field, McNeil (2005)
53

 offered a general good-practice guide for fitting 

tail area distribution. Looking at Danish fire losses from 1980 to 1990, the evidence suggested 

that GPD is a useful method for estimating the tails of loss severity distributions. Consigli 

(2002) used a GPD model for liquid bonds, equity markets and emerging bond markets. The 

GPD method consistently offered an accurate tail approximation in the liquid equity market. 

However, for the emerging bond market the accuracy of this approach was restricted by the 

                                                      
52

 The word “exceedance” is not a regular word but an idiom in this field. In this section, I follow the wording 

in Davison and Smith (1990) and Reiss and Thomas (2007). 
53

 The earliest version of this paper refers to a working paper in 1996. Barone-Adesi et al. (2002) called this 

method “filtered” VaR.  
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length of data set available. For emerging equity markets, Gencay et al. (2003), Gençay and 

Selçuk (2004), Maghyereh and Al-Zoubi (2006) and Bao et al. (2006) cover a range of 

comparisons of VaR forecasts between the extreme value models and other conventional 

approaches, focusing on the period of the Asian financial crash in 1997. In their results the 

GPD model was less satisfactory in the coverage rate, although it was still better than some 

other approaches (Bao et al. (2006)). Generally speaking, in Gençay and Selçuk’s (2004) 

investigation, the GPD model fitted the tail distribution of financial returns in emerging 

markets well and offered an accurate VaR estimation in both long and short positions, 

compared with other standard methods. However, it failed to present the best performance in 

all emerging markets, especially Korea and Turkey. Similar results for the GPD model are 

found in Bali and Gokcan (2004) and Maghyereh and Al-Zoubi (2006) who looked at monthly 

hedge fund returns and daily equity returns in the Middle East and North Africa respectively. 

Looking at the derivatives market, Brooks et al. (2005) applied non-parametric and 

semi-parametric methods to measure the VaR of three derivatives traded on the London 

International Financial Futures and Options Exchange (LIEFT). They suggested that the GPD 

model offers a reasonable performance compared to other conventional approaches, 

particularly in the period of the Asian financial crisis.  

For energy markets, the GPD model is applied to measure the risk of the electricity and oil 

markets by Byström (2005) and Marimoutou et al. (2009), respectively. In summary, most 

previous research deems that GPD is an indispensable tool in market risk management for a 

range of markets. 

Although the GPD model is more popular in this line of research, and has the advantage of 

efficiency of data use, it still has two main drawbacks. Firstly, the parameters estimated can be 

affected by the choice of the threshold, especially in small sample cases (Jondeau and 

Rockinger, 2003). Huisman et al. (2001) provided a robust small sample bias-corrected 
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estimator based on the linear regression of Hill’s (1975)
54

 tail estimates. However, this issue 

is still contentious. This impact of the different thresholds can also be found in McNeil (2005) 

and Brooks et al. (2005), particularly with regards to the shape parameter. Secondly, the 

tail-index estimators could be significantly biased by a non-iid series. Most evidence in 

previous research supports the idea that there are clustering and autoregressive effects in 

financial series against the iid assumption. Moreover, Danielsson and De Vries (2000) argued 

that extreme values, by their very definition, only happen infrequently and might thus be 

associated with different events. Consequently, they would not exhibit particularly strong time 

dependence in financial time series data. 

An alternative conditional GPD method is proposed by McNeil and Frey (2000), who suggest 

a two stage method, evading the iid problem, to calculate VaR. In the first stage, iid residuals 

of the financial return are obtained after GARCH filtering
55

, which washes off the 

autoregressive effect in financial time series data. In the second step, the iid residuals would 

be applied to fit ETV with a generalized Pareto distribution and to calculate VaR. McNeil and 

Frey’s (2000) method has been applied fruitfully in a variety of studies (see Lauridsen (2000), 

Byström (2004), Byström (2005), Fernandez (2005), and Maghyereh and Al-Zoub (2006)). 

However, the GARCH filter is not a monotonic transformation from the original return level 

to residuals; thus, one might miss some information and characteristics when conducting this 

procedure. Moreover, the number of extreme values after the GARCH-filter is significantly 

reduced (Lauridsen’s (2000)). From this aspect of the GPD model, although there is no direct 

evidence on this issue, theoretically the results might still be affected by the non-iid feature of 

financial data. 

                                                      
54

The estimation techniques for tail indexes for particular distributions proposed by Hill (1975) can be applied in 

risk management which focuses on the probability of tail area.  
55

 Some similar procedures are adopted to wash-off the effect of autoregression, for example, MA(1) and 

ARMA(p,q) were employed in Stephan and Whaley (1990) and Stoll and Whaley (1990) to exclude the 

serial correlation effect. 
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3.4.3 Comparison 

The nature of extreme value theory in VaR measurement is to estimate the tail distribution of 

the financial returns, rather than the entire distribution. The main advantage of only focusing 

on the extremes is that it improves the performance and efficiency of parameter estimation. 

This concept involves the two different approaches to sampling mentioned in the previous 

sections, block maximum (BM) and peak over threshold (POT). Two types of tail distribution 

generated from GEV and GPD methods can be used for estimating VaR. In some 

circumstances, they can be easily transferred to each other. In other words, when the threshold 

is approaching to the right-end or left-end point, then GEV is also approaching to GPD. 

However, there is still some dispute about these two approaches. 

Although both the two methods have been applied as a market risk measurement, it is still 

unclear which one is more appropriate to projecting VaR. Both of the two approaches have 

been criticized for specific demerits, although some of these criticisms are not relevant when 

using them for the financial markets. Most comments regarding the BM sampling procedure 

focus on the wastage of data, since only one observation is taken in each block (Coles (2001) 

and Gilli and Kellezi (2006)). For a newly issued financial instrument, it is difficult to 

implement the VaR model, regardless of the model choice. Another problem with this method 

is how to decide the length of the block. Christoffersen et al. (1998) offered a simple rule to 

solve this problem, which suggests ten to fifteen trading days is the optimum as a block for 

financial data. In addition, some evidence in the previous research has demonstrated that 

financial markets exhibit a weekend or Monday effect; thus, a weekly block might be a good 

alternative approach to prevent omissions of extremes happening on a Friday or Monday. 

Therefore, the two main weaknesses to the BM method can be addressed. The main advantage 

of this approach is that it does not assume financial returns have to be entirely independent 
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(Jondeau and Rockinger, 2003). Moreover, the extremes extracted by this sampling procedure, 

by its very nature, can be seen as non-dependent series (especially in the case of large blocks). 

Looked at in this light, VaR measures based on block maxima demonstrate fewer impacts 

from extreme selection. 

Looking at the alternative approach, the main difficulty with POT is that the threshold can be 

difficult to decide. If the threshold is set too high, then the number of extreme values will be 

reduced and the accuracy of tail estimation might be diminished as well. In contrast, if the 

threshold is too low, the estimation would be inefficient and the accuracy of the tail estimation 

would be similarly affected. Thus, the threshold choice is a trade-off decision between 

accuracy and efficiency. Although Hull and White (1998) and Gonzalo and Olmo (2004) 

offered some guidance on how to choose a proper threshold, it is still not definitively clear cut. 

A more serious problem with this method is found in the multivariate case. The conditional 

correlation between various assets cannot be calculated with direct interpretation since the 

number of extreme values in each series might be different, and a mis-matching phenomenon 

can be expressed even if the number of extremes are equal. More specifically, one might 

intend to calculate the (conditional) correlation between two financial returns, rx and ry, based 

on the extremes above their certain thresholds, ux and uy. The conditional correlation could be 

presented as 
  
                  , where ux and uy are the thresholds to rx and ry, 

respectively. Consequently, the extreme values of rx and ry might not come from the same 

period or might be mismatched in the time horizon. Thus, it is difficult to explain the 

implication of any conditional correlation, because it has integrated two different events from 

two different time horizons as mentioned in Section 2.6. Even if the numbers of extreme 

values from various series are equivalent, the implications of the conditional correlation might 

still be inexplicable.  

To compare POT with the BM approach, most characteristics of a return series could be 
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conserved in the series of the extreme values generated from the block maxima procedure, 

although it does still have some shortcomings which cannot be overcome. POT, on the other 

hand, has a fatal drawback because it completely disregards the sequential characteristic of 

financial time series data. 

 

3.5 Performance evaluation 

In the previous sections, a large number of VaR measures based on different assumptions 

were reviewed. Although the pros and cons and the applications of each approach has been 

displayed, it is still unclear as to how we should best evaluate these methods. Consequently, in 

this section the verification schemes of VaR measures will be reviewed in detail.  

There are a number of diverse ways to check model validation, such as backtesting, stress 

testing, sensitivity analysis, and scenario analysis. For simplicity, in general the VaR model 

evaluation or performance evaluation focuses on the procedure of backtesting, which is a 

comparison between the VaR numbers and the actual returns after VaR modelling and 

forecasting. Briefly, there are two main reasons why financial institutions need to assess their 

VaR measures. The first comes from the regulatory authority requirement for market 

discipline. The amended Capital requirement was proposed by the Accord Basel Bank 

Supervisors Committee in 1996, suggesting that market risk can been measured by internal 

models proposed by financial institutions instead of the standard model (see Basel Committee 

on Banking Supervision, 1996a; Basel Committee on Banking Supervision, 1996b). The 

current regulatory market risk framework requires that the internal model is reviewed by local 

authorities according to its VaR result based on at least a one-year period with ten days 

forecasting. The second driver to evaluate the VaR measure comes from the management, 

who like to understand their operating performance and the quantity of risk in their portfolio. 

Thus, selecting an appropriate evaluation procedure or approach for the VaR model is as 
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critical as selecting the best form of VaR modelling. Under the circumstances mentioned 

above, evaluating the accuracy of the VaR models is thus a necessary exercise. 

3.5.1 Regulatory evaluation method 

Generally speaking, the object of regulatory evaluation is to reflect the market risk in the 

regulatory capital of commercial banks, as described in Section 2.2.4, requiring that the banks 

hold enough capital to absorb any potential losses. As shown in Eq. (2.8), the market risk 

capital (MRC)
56

 is set with an indicator parameter, reflecting the backtesting performance of 

the internal model. The backtesting method proposed by the Basel Committee has several 

drawbacks. It assumes that the violation sequence follows an iid process, but some research 

has suggested instead the presence of a clustering phenomenon within the violation series 

(Berkowitz and O'Brien, 2002). Moreover, the minimum number of backtesting observations 

required is 250 (i.e. about one year of daily returns) which seems insufficient to examine the 

creditability of the VaR measure. Another weakness of the regulatory approach is that it 

suggests a method to convert the daily VaR number to k-day VaR by using the square root of k, 

i.e. k. Christoffersen, Diebold and Schuermann (1998) provided mathematical 

demonstrations and practical examples to show that this method is not a proper way to scale 

the time horizon. According to the discussion above, the regulatory backtesting method is not 

a good method to evaluate the VaR model.  

3.5.2 Coverage test 

Following the basic requirement of backtesting regulated by the Basel Committee as 

mentioned in the previous section and Section 2.2.4, two widespread tests are proposed to 

examine the accuracy of the VaR measure. Kupiec (1995) assumed that estimated losses (VaR 

numbers) follow a binomial process, either smaller or larger than actual losses, and thus could 
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Currently,                       
             
  
   

  
   , in which St is a multiplication factor, which is 

divided into three categories corresponding to the back-testing results.   
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be evaluated for accuracy via a likelihood test (denoted as LRK), marked as a proportion of 

failures. Under perfect conditions, the expected number of exceptions
57

 should be equivalent 

to the sample size times the tail probability () as shown in Figure 2.1. In this situation, 

likelihood test statistics, LRK, would approach to zero. An under- or over-estimated potential 

loss to the next trading period would drive LRK toward the positive or negative, respectively. 

Kupiec’s (1995) method has been widely applied in this line of research, particularly with 

unconditional coverage tests (UCT). Pérignon and Smith (2008) stepped further ahead to 

extend this model to multivariate cases. However, Kupiec’s test only looked at whether the 

proportion of the reported VaR sequence violated by the corresponding actual return was 

equal to expectation or not. In this manner, the power of this test might be obstructed by, at 

least, two ignored features of these violations. The first defect is that the UCT related 

approach might fail to detect VaR measures that are systematically under- or over-estimating 

risk. The second is that UCT related methods do not take into account whether the property of 

dependence exists in the violation sequence. If violation at time t could be presaged by the 

one at time t-1 (or the so-called clustering effect) accordingly the probability to the violation 

at time t will be unity. To overcome this second deficiency, Christoffersen (1998) modified 

Kupiec’s statistics by adding an independence test to form a combination test which takes into 

account coverage ratio and the independence of violations. Basically, Christoffersen’s (1998) 

independence check was constructed on a Markov test by forming a two by two contingency 

table with the numbers of violations to time t and t-1. Specifically, the Markov independence 

test examines whether the proportion of the violations following the previous violation is 

equal to the proportion of violations following the previous non-violations or not. Several 

studies have progressed the independence test along further, following Christoffersen (1998). 

Christoffersen and Diebold (2000) suggested a convenient and powerful model-free runs test 
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In this field, an exception or violation is defined as an actual loss larger than the estimated (reported) VaR.  
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for testing the independence of the violation sequence. Alternatively, an independence test 

focused on the time elapsed between violations, called the duration-based approach, was 

proposed by Christoffersen and Pelletier (2004), who argued that if VaR violations are purely 

independent of each other, then the durations between the violations should be independent as 

well. In the case of independence, the time between violations in the series of VaR violations 

should not present any duration of dependence. Following the moment estimation technique, 

Bontemps (2008) and Bertrand et al. (2009) modified Christoffersen and Pelletier’s (2004) 

model as a GMM duration-based test, which provides a better parameter estimation. 

All the evaluation methods mentioned above are built on testing the original violation 

sequence or its derivatives. Lopez (1999)
58

 provided a different approach for violation testing. 

In Lopez’s method, he takes the evaluation further by adding the square of the difference 

between the VaR estimates and actual returns. A loss function generated by this device not 

only keeps the advantages of the original method of Kupiec (1995), but also takes into 

account the magnitude of the violations. Thus, the verification work is based on testing 

average sample losses. However, this mean test towards losses might be easily and strongly 

affected by extreme values. Alternatively, Christoffersen et al. (2001) suggested a complicated 

back-testing procedure within a GMM framework, and Kerkhof and Melenberg (2004) 

focused on density risk in measuring risk. 

  

                                                      
58

 An early and concise version can be referred to in Lopez (1998). 
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3.6 Conclusion 

This Chapter reviewed the critical literature of three different types of VaR models and the 

major methods of model evaluation. Lately, more attention has been given to VaR models that 

consider the distribution modelling of financial returns. Some academics have conventionally 

tried to measure market risk via parametric models, as shown in Section 3.2. The GARCH 

model is still widely used in this line to model time-varying volatility and VaR modelling. 

Alternatively, some methods do not assume any kind of distribution of the financial data. For 

example, historical simulation has been used for a wide variety of markets over the last two 

decades to fit the empirical distribution and to calculate VaR.  

The two types of VaR measures mentioned above, which focus on fitting the whole 

distribution of financial returns, were developed and widely used over the past ten years; 

however, international financial markets still suffered a series of market collapses. 

Consequently, extra effort has been made to investigate the risk associated with these crashes. 

In this manner, it is suggested that the extreme value in return series delivers more useful 

information about market risk. Thus, extreme value theory (EVT) is borrowed to evaluate the 

risk in financial markets. This approach is divided into semi-parametric models that look at 

extremes and sampling procedure. The definition of the extreme values is a critical issue in 

this field, since the results are significantly affected by the selection of the extremes. In 

Section 3.4, two approaches for selecting the extreme values (block maxima and peak over 

threshold) are reviewed and discussed. Both of them have some drawbacks, although some 

researchers have offered various remedies to counteract these. We further show the 

troublesome problems of these two approaches which might affect the VaR modelling, 

although not significantly. Generally, most VaR-related literature concentrates on the 

univariate VaR modelling and the model evaluation of the violations: this is a major gap in the 

literature. 
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Identical portfolios from different or even the same VaR models can provide different risk 

forecasts (e.g., Marshall and Siegel (1997) and Christoffersen et al. (2001)). This phenomenon 

implies that market participants have some difficulties in the model selection and usage of 

VaR numbers. In Section 3.5, we discussed the regulatory method of VaR evaluation and the 

two conventional VaR backtesting approaches widely used in related literature. However, 

these methods focus on the proportion of violated returns rather than the non-violated or even 

the whole pattern of observations. This is a further gap in the literature.  

This thesis attempts to fill these two gaps. To achieve this goal, a portfolio VaR model is 

proposed that considers the financial market collapse conditions, the estimation accuracy of 

return distribution, and the correlations between the financial assets. In other words, this 

portfolio VaR model bridges the univariate VaR model using a special tail-DCC suggested in 

this thesis. Furthermore, we fill the gap of the VaR model evaluation by offering the quality 

measures from the whole pattern and those from non-violated observations, delivering a 

comprehensive understanding of the VaR model to academics, practitioners, and financial 

institutions.   
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4 Chapter 4 Methodology and Data  

 

4.1 Introduction 

In this chapter, we present some basic econometric tests, the methodology of portfolio VaR 

modelling, and the methods of VaR model evaluation used in this thesis. In the final part, a 

description of the data sample and the estimation approach applied are exhibited. In Section 

4.2, several fundamental econometric statistics of time series data will be employed to test the 

characteristics of the data sets. The method of estimation of the parameters and its procedure 

are discussed in Section 4.3. The description of dynamic conditional correlation based on the 

extreme returns is also explained in this section.  

In the thesis we apply four competing models against the GEV-DC model. Section 4.4 

outlines the fundamentals of the four competing models, which are widely used approaches in 

practice and related literature. They are the GARCH (1,1) model, the RiskMetrics model, 

Multivariate stochastic volatility, and historical simulation. 

In Section 4.5, we present the methods of performance evaluation for all VaR models applied 

in this thesis. In addition, the elemental concept, the procedure of backtesting, and the theory 

of the evaluation of model performance are explained in detail. Furthermore, two critical 

indicators used to evaluate the suitability of the forecasted VaR sequences are proposed in this 

section. These two methods offer different viewpoints for the model evaluation.  

Section 4.6 covers the range of the data sample sets used in this thesis, from developed equity 
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markets to emerging markets. In order to be consistent with previous research and avoid the 

data contaminated by government policies, more equity indices are used to demonstrate VaR 

modelling. In addition, some important histories of these equity markets are briefly laid out, 

which might help us to understand the market risk or help us to interpret the origins of market 

risk. We offer the profile of the data sets from the general descriptive summary. Some analysis 

based on the quantile-quantile plot (QQ plot) and autocorrelation function (ACF) are also 

provided. Obviously, most of the data sets are stationary and tend to be independent. In 

general, the developed equity markets tend to be independent and the Latin-American 

emerging equity markets have some autoregressive effects in the lag one level. In addition, the 

Q-Q plots show that some returns of each index fall into the extreme area, indicating that it is 

appropriate to apply extreme value theory to fit the tail-distribution. 

 

4.2 Basic econometric tests 

In this section, some econometric approaches used in this thesis for testing the characteristics 

of time series data are introduced and presented. Obviously, financial data such as trading 

price is significantly different to those in other forms, as, for example, collected from 

questionnaires, since the former has the property of continuity by time. Thus, it is worthwhile 

making a clear explanation of the financial time series data used, as well as its properties.  

4.2.1 Time series data 

Empirical research around related financial issues should be constructed using financial data. 

Brooks (2008) suggests that generally three types of data could be employed in quantitative 

analysis of financial issues, they are: time series data, cross-sectional data, and panel data. 

Time series data are collected over a specified period and consist of one or several variables, 

based on a regular frequency. In contrast, cross-sectional data are one or several variables 
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collected at a single point in time. The panel data are the sets of data collected by time and by 

object. In this thesis, a range of time series data are used for measuring the market risk of 

equity markets. Thus, it is essential to realize the properties of financial time series data 

before we use it. Financial time series data often differs from macroeconomic data due to their 

frequency, accuracy, seasonality, and other characteristics. Moreover, financial time series 

data are also often regarded as noisy, with a lack of normality, and having different patterns 

with different frequencies.  

4.2.2 Basic econometric tests 

Normality test 

In conventional theory and empirical studies, it is generally assumed that financial returns 

follow the normal distribution. However, to date it is evident that some characteristics of 

financial returns do not fit the assumption of normality. One of the most widely applied tests 

for normality is the approach proposed by Bera and Jarque (1981) (the BJ test). The statistics 

primarily examine the normality assumption by testing whether the coefficient of skewness 

and excess kurtosis are appropriate for normal distribution. The statistics of skewness (sk) and 

kurtosis (k) are given by 

   
    

  

     
 
  
 

  
    

  

      
 

where the residual of the forecasted return is set as            , and     is the estimated 

mean of return. Then the statistic of the BJ test is  

     
   

 
 

      

  
  (4.1) 

where N is the number of samples. Since the kurtosis of normal distribution is 3, thus the 
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excess kurtosis has to be minus 3. The BJ test statistic asymptotically follows a chi-square 

distribution with a degree of 2.  

Stationarity test 

As mentioned in related textbooks (Tsay, 2005), stationary sequences can be sorted into 

strictly and weakly stationary according to the stability of the four moments. Time series data 

is said to be strictly stationary if the distribution of              equals to the one of 

                to all the values of k. In other words, all the four moments keep constant 

with any k. By contrast, the weakly stationary one focuses on the first and the second moment. 

Time series data is said to be weakly stationary if the mean and variance of             is 

equal to the ones of                 for any k. Generally, it is rare to see only strictly 

stationary sequences in the financial markets. Thus, most discussions in finance about 

stationarity mainly concentrate on the weakly stationary rather than the strictly one, because 

the first and second moment often represent the mean return and risk of financial assets.  

The most important function of stationarity is to avoid the spurious inference. Granger and 

Newbold (1974) suggested that the null hypothesis (               ) might be 

rejected by the conventional F test under non-stationary situations, because the statistic of F 

would not follow Fisher’s F distribution in this circumstance. In that manner, obviously the 

statistic inference might be easily misled by the characteristics of the financial time series. 

Therefore, the test of stationarity is essential and should be done before the application of 

other econometric models. Several approaches have been employed to test this feature. In this 

thesis, three main approaches are applied to test the stationarity of the sample sets, they are 

the Dickey-Fuller (DF) test proposed by Dickey and Fuller (1979), the Augmented Dickey 

Fuller test (ADF) proposed by Dickey and Fuller (1981), and Phillips and Perron’s (1988) PP 
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test
59

. Assume the AR(1) process of a certain return sequence is formulated as  

              (4.2) 

where c could be a constant or a constant with a time trend, i.e.        , and at is a white 

noise disturbance term. Generally speaking, if the condition       holds then the return 

process follows an explosive pattern. In financial markets, this theoretical hypothesis is often 

ignored since none of the financial returns or prices retain this pattern in the long term. For 

=1, rt follows the non-stationary process of at. In the case of <1   rt will converge to a 

certainly stable level as     and any effect of shock in the market will be smoothed out in 

the long run. In this manner, rt is called a stationary sequence. The original DF focuses on 

testing the parameter, , and sets the null hypothesis        versus the alternative 

hypothesis       . Generally, its statistics could be presented as 

   
    

      
 (4.3) 

where    is the least squares estimate of . Moreover, Dickey and Fuller (1981) extend the 

original DF to verify if a non-stationary characteristic exists in the higher order process, for 

example      , and p>1 and pN. Accordingly, Eq. (4.2) can be reworked as  

                   
 
       (4.4) 

and Eq. (4.3) can still be applied to test the stationarity of the equation above. This is called 

the augmented DF test. Since the sequence of returns is the order differencing of the price 

level, Eq. (4.4) can be rearranged as follows by subtracting     . 

                                                      
59

 The PP test is an extension of Phillips’ (1987) work, by setting the mean equation with a drift, or a drift and a 

linear trend. The original approach of Phillips (1987) is    
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   , where    is a transformation of the 

standardized estimator N       and Zt is a transformation of the regression t statistics. 
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       (4.5) 

Alternatively, following the same concept of the ADF test, the Phillips and Perron (1988) test 

stresses the issue that the return sequence from a certain generating process might have a 

higher order of autocorrelation. Whilst the augmented Dickey–Fuller test addresses this issue 

by introducing lags of rt as the regressors in the test equation as shown in Eq. (4.5), the PP 

test makes a non-parametric correction to the t-test statistic. The two hypothetical regression 

models are 

                (4.6) 

           
 

 
              (4.7) 

The t-test statistics of parameters in the model above are 

    
                       

  
 
  

  
  (4.8) 

    
                       

      
   

 

 

  
  (4.9) 

    
      

        
  (4.10) 

    
      

        
  (4.11) 

    
      

        
  (4.12) 

where    and    denote the standard errors of the two regression models, respectively, and    

means the jth element of the matrix of dependent variables,        . A transformation of the 

standardized estimator        and   is a transformation of the regression t statistic.  



Chapter 4 Methodology and Data                                                          

107 
 

 

4.3 Estimation and Forecast 

This section describes the method of parameter estimation and the steps of VaR forecasting 

used in this thesis. In the first part, the estimation of parameters in measuring individual VaRs 

and dynamic conditional correlations will be explained. The second part elaborates on the 

method of VaR forecasting based on one- and 10-day ahead. 

4.3.1 Estimation of parameters 

Parameters in individual VaR 

Based on the extreme value theory model, the distribution of selected extremes would 

converge to a generalized extreme value distribution (GEV) as shown in Eq. (2.44). Ignoring 

the case of kn=0, the probability density function can be derived from Eq. (2.44) by a simple 

differentiation.  

                      

 

  
     

            

  
 

 

  
  

           
            

  
 

 

  
  (4.13) 

where n is the number of observations in the block and j          dn, cn, and kn 

indicate the location parameter, scale parameter and shape parameter, respectively. 

Under the assumption of independence to return consequences, the parameters of the GEV 

distribution can be obtained via the method of maxima likelihood. The log-likelihood function 

can be shown as  
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    (4.14) 

There is no standard guidance as to the selection of the length of the block. The main 

advantage of extreme value theory is that it improves accuracy in the estimation of parameters. 

If n is too big then obviously fewer extreme observations can be obtained. In contrast, if n is 

too small then the result might lose the spirit of extreme value theory. Moreover, the accuracy 

of the estimation might be affected in this manner. In this thesis, for the most robust check, n 

is set to be 5, 10, and 22 corresponding to one week, two weeks and one month.  

After obtaining the estimated parameters, the critical point of the extreme sequence can be 

gained by inverting the accumulative density function (CDF) given a confidence level ().  

                       

            
          

  
  

 
  
  

The critical value of the extreme level is  

    
     

  

  
            

  
  (4.15) 

According to the order statistics, the relationship between extreme returns and original returns 

in probability is 
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Since Fr(x) is the probability, , in the original return level in the right tail, the final 

relationship between the extreme level and original return is 

          (4.16) 

Taking Eq. (4.16) into Eq. (4.14), the individual VaR would be carried out in the original 

return level.  

       
  

  
              

  
  (4.17) 

 

Parameters in the model of dynamic conditional correlation 

The second part of this subsection is to account for the parameters in the DCC model, which 

has been generally regarded as having a critical role in the related literature. The original 

application of the DCC model focuses on the dynamics of the conditional correlation based on 

the whole sequence. Specifically, in the procedure of estimation, whole samples are applied to 

estimate the conditional correlation and its dynamics. However, from the perspective of risk 

management it is reasonable to focus only on the tail-correlation rather than including the 

whole distribution. In this thesis, the main purpose for the calculation of DCC is to aggregate 

the individual VaRs into a portfolio VaR, and thus the main spirit of DCC applied in this thesis 

is to discover the dynamic pattern of any two extreme return sequences obtained from the 

block maxima sampling procedure. As shown in Eq. (2.22) and (2.23), the dynamic 

conditional correlation is obtained via the process of conditional covariance, modelled by the 

generalized autoregressive conditional heteroskedasticity (GARCH) model. The parameters, 

 and , in Eq. (2.22) mainly describe the time-varying pattern of conditional volatility. 

However, it also implies that each individual return series has the same dynamics in the 

original model, which is not appropriate in real life. Consequently, a generalized DCC model, 

similar to Hafner and Franses (2009), is applied to estimate the time-varying relationship 
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between individual assets in this thesis, conditioned on previous information.  

          

           
              

     (4.18) 

                              
           (4.19) 

where A and B are k-dimension matrices, and    is the unconditional correlation which is 

obtained from the sample correlation. For the purpose of reducing the number of estimated 

parameters, A and B are assumed to be a diagonal matrix. Then, the generalized dynamic 

conditional correlation can be calculated via Eq. (2.23). Since investors might have long or 

short positions, intuitionally the correlation of financial assets to long and short positions 

would be different due to the asymmetric effect. In other words, the correlations of two return 

sequences in the left and right tail tend to be different. Accordingly, the generalized (diagonal) 

DCC to any pair return sequence will be calculated twice based on those maximum (right tail) 

and minimum (left tail) returns sampled through the BM approach, called tail-DCC. There are 

two main advantages to calculating conditional correlation as above. Firstly, it is needless to 

model asymmetry in the covariance pattern, since conditional covariance patterns of the left 

and right tails will be estimated separately. Secondly, separate calculation of conditional 

correlation avoids a contamination from the maximum returns when we calculate the 

correlation of the left tail. The major benefit of this approach is that to any two return 

sequences investors would more likely care about the concurrent likelihood in the left or right 

tail based on their extreme returns rather than the entire returns.  

Estimating the generalized DCC in Eq. (4.18) and (4.19), a quasi-maximum likelihood is 

adopted, maximizing the log-likelihood function. 

      
 

 
               

   
        

 
    (4.20) 

Following Engle’s (2002) two stage method, the likelihood can be divided into two parts, the 
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volatility term and the correlation term.  

                   (4.21) 

        
 

 
                

    
   

     
 
    (4.22) 

        
 

 
           

   
       

    
 
    (4.23) 

The parameters obtained in maximizing Eq. (4.21) are then applied in maximizing Eq. (4.23). 

Then all the parameters in the generalized DCC model are finally obtained. An alternative 

distribution with fatness property can also be applied in Eq. (4.20) to (4.23). In this thesis, to 

capture the fat-tail characteristics consistently, a multivariate student t distribution is applied 

to estimate the pattern of the covariance matrix. Several papers in this area proposed similar 

GDCC models with the asymmetry effect based on a skewed multivariate student t 

distribution, emphasizing that the correlation between financial assets would be changed 

under different market conditions. Yet this is not an appropriate case in this thesis, since the 

dynamic conditional correlation in this thesis is estimated based on the extreme values, 

separating minima and maxima.   

In this thesis, after the data sets are collected from DataStream, Excel 2007 is used to arrange 

the data and the professional software, RATS v.6.35 and v.7.0, used to estimate the parameters 

such as Eq. (4.14) and Eq. (4.21) to Eq. (4.23). As mentioned above, the VaR and DCC can be 

calculated after we obtain all the parameters.  

 

4.3.2 VaR forecast 

Basically, the Basel regulation requires the banks to offer information relating to a ten-day 

VaR estimate. Yet this seems not to meet the demand when using VaR for risk management. 

Thus, financial institutions mainly predict the VaR as one-day ahead in their portfolios. 
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Logically, the estimated critical return given a probability at time t is used to forecast the VaR 

at time t+1. 

     
             (4.24) 

Taking a similar concept, the estimated dynamic conditional correlation at time t is regarded 

as the relationship between individual assets in the next trading period. After receiving all the 

estimated parameters, the portfolio VaR can be calculated according to Eq. (2.63). For the 

purpose of backtesting the performance of this model of VaR, a method of fixed-window 

rolling samples is adopted to forecast the VaR sequence. In this thesis, sixteen-year daily 

returns are applied to estimate dynamic conditional correlation since most of the observations 

would be filtered out by the procedure of extreme value selection.  

 

4.4 Competing models 

In order to provide some significant evidence that the performance of the portfolio VaR 

measure suggested by my thesis is theoretically and empirically better than related ones, some 

comparisons among the various measures needs to be made. In this section, four conventional 

VaR measures in this area are applied as competing models. One of the competing approaches 

is a non-parametric model, the others are parametric. All of these methods are widely used in 

financial institutions, especially in the banking sector. As the basic concept of VaR discussed 

in Section 2.2, the main factor of a VaR calculation is the process of estimated return volatility. 

Various VaR measures have assumed different dynamic patterns of financial returns. All of 

these dynamics or assumptions can be divided into the three categories, discussed in Section 

3.2 to 3.4. Generally, the competing approaches assume the measure of portfolio VaR can be 

formulated as  

                  (4.25) 
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Alternatively, for convenience, the mean of daily returns for each financial asset is assumed to 

be zero. Thus, Eq. (4.25) can be reduced to a pure volatility version 

             (4.26) 

where rt is the matrix including the mean return of all individual assets,  is the matrix of 

weight for each individual asset in the portfolio, and t indicates the covariance matrix of the 

portfolio. This section describes the four approaches, all theoretically modelling diversified 

viewpoints in the hypothetical process of return volatility and widely used in risk 

management. Consequently, they are appropriate to be the alternative methods against the 

GEV approach with DCC model proposed by this thesis. As mentioned in Section 4.3.1, Excel 

2007 is used to arrange the data and RATS is used to estimate the parameters shown in this 

section. VaR can be calculated after we obtain all the parameters. 

4.4.1 GARCH model     

As discussed in Section 2.2, volatility is one of the critical factors in measuring VaR. Since 

the dynamic volatility process, ARCH and GARCH models, were proposed by Engle (1982) 

and Bollerslev (1986), numerous (G)ARCH models have been proposed focusing on different 

aspects in this area. Since then, conditional volatility of financial returns has played a critical 

role in measuring market risk. In particular, these volatility models are at the centre of the 

measurements for VaR. Thus, it is both necessary and worthwhile to compare the performance 

in VaR measuring of the GARCH-related model with the one from the GEV-DCC model.  

In the portfolio case, the measure of VaR based on multivariate GARCH (denoted as VaRMG) 

can be displayed as Eq. (4.25) or (4.26). The critical point of the two measures is the process 

of estimated return volatility, . For the issue of positive-definite, and reducing the number of 

estimated parameters, the dynamic process of covariance in Eq. (4.26) is simply assumed as a 

BEKK GARCH model without exogenous variables, as shown below. For avoiding 
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cumbersome calculations, the order of lag in the process of return volatility is set to unity 

     
      

         
      

        (4.27) 

where at-1 is the residual vector at time t-1. In the two variables case, Eq. (4.27) can be shown 

as a matrix version 

     
     

      
      

 
 

 
      
             

                  
   

      
      

  

  
 
  

 
  

 
  

 
  

 

 

     
 
  

 
  

 
  

 
  

  (4.28) 

Although the mean of equity returns tends to be zero, for the purpose of accuracy VaRs are 

still measured with this term as shown in Eq. (4.25). Thus, the last step of this approach is 

simply to substitute Eq. (4.28) into the Eq. (4.25) VaR formula. 

 

4.4.2 RiskMetrics model  

As mentioned in Section 3.2.1, RiskMetrics (denoted VaRRM) is the earliest VaR measure 

(proposed by J.P. Morgan in 1996). For a long position, VaRRM can be expressed as shown 

below. 

          (4.29) 

where z  is a critical point of normal distribution given a probability . The multivariate 

case can be presented as Eq. (4.25) or (4.26). Obviously, based on the concept of volatility of 

financial returns, a variation of returns is deemed the main indicator of market risk. However, 

the conventional variance is calculated based on the spirit of equally weighted previous 

information, and estimated volatility might thus be easily affected by particular shocks 

(positive or negative) that happened a long time ago. Moreover, it seems unreasonable to say 

that the current return volatility has the same degree of influence as another volatility which 
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happened a long time ago. Consequently, RiskMetrics adopted volatility based on the 

exponentially weighted moving average (EWMA) method which could eliminate the 

influence from large shocks in the economy by giving a decay factor. The original 

exponentially weighted moving average variance is formulated as in the following equation.   

       
         

            
    (4.30) 

where  is the decay factor, which indicates the amount of volatility at time t affected by 

previous volatility. In practice, the average financial return is set as zero, and this equation can 

be rearranged as a tractable version
60

. 

       
     

         
  (4.31) 

Furthermore, J.P. Morgan suggested that the decay factor, , equals to 0.94 and 0.97 for daily 

and monthly data, respectively. Analogically, the covariance can be derived with the similar 

form  

          
        

                (4.32) 

From the aspect of portfolio risk management, Eq. (4.31) and (4.32) can be extended to the 

multivariate version. The dynamic process of stacked covariance of financial returns can be 

shown as the equation below. 
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By assuming the mean of financial returns is zero, then the exponentially weighted moving average volatility 

(or variance) of the financial return can be obtained as 
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  (4.33) 

where X, Y, XY are the decay factors of X, Y, and XY, respectively. In the original 

RiskMetrics model, all the decay factors of financial return volatility were identical: 0.94 for 

daily data. Thus, the VaR based on RiskMetrics can be presented as  

                      
   (4.34) 

 

4.4.3 Multivariate stochastic volatility 

Both the previous two models focus on using the time series model to describe the 

co-movement of covariance between various financial returns. However, these time-varying 

covariance matrices can be estimated by other approaches. Harvey, Ruiz and Shephard’s 

(1994) stochastic volatility has already been demonstrated as successful in presenting the 

jump-diffusion process volatility. Accordingly, the third VaR competing model is based on the 

concept of stochastic volatility (denoted VaRSV), which is an alternative method to capture the 

dynamics of return volatility. In this section, a multivariate stochastic volatility proposed by 

Harvey, Ruiz and Shephard (1994) is briefly introduced and applied for measuring the 

portfolio VaR (denoted VaRSV), by estimating the covariance in advance. The univariate 

model can be simply shown as an AR(1) process, as below. 

    
        

      
             (4.35) 

    
             

     (4.36) 

where the original mean equation is set as                   , at follows a normal 

distribution with zero mean and unit variance, and t are iid      
  . For convenience, the 

stationary assumption is set,      . As with the exponential GARCH (EGARCH), the 
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stochastic volatility model working in logarithms guarantees the variance to be positive over 

time. Harvey, Ruiz and Shephard (1994) suggested that the parameters in the volatility 

equation could be estimated by the quasi-maximum likelihood method, computed using the 

Kalman filter. They also provided a multivariate stochastic volatility model as follows. Let rt 

be an     vector, with elements 

      
 
          (4.37) 

                               (4.38) 

where i              . In this thesis, a quasi-maximum likelihood method is used to 

estimate the parameters in Eq. (4.37) and (4.38) by using the RATS v.7.0 package procedure. 

The non-diagonal element of the covariance matrix can be derived by          
 , where 
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                     (4.39) 

where                    . With the covariance matrix obtained from Eq. (4.38) 

and (4.39), the portfolio VaR can be measured by applying Eq. (4.26).  

 

4.4.4 Historical simulation (HS) 

Historical simulation is the most popular non-parametric approach to forecast VaR in practice. 

The advantages and application of this method have been discussed in Section 3.3. For the 

purpose of eliminating the noisy information embedded in the return series, a filtered 

historical simulation proposed by Barone-Adesi et al. (1999) is adopted. The spirit of this 

approach is to form a modified filtered historical simulation and to compare with the VaR 

measure suggested by this thesis. This competing model follows Barone-Adesi et al’s 

suggestion that a GARCH model can be used as a filter to generate i.i.d. residuals from the 
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return series. The choice of filter for each return sequence is made up of two criterions: 

Akaike information criterion (AIC) and Bayesian information criterion (BIC).  

    
 

 
                                 

 

 
                  (4.40) 

             
   

       

 
 (4.41) 

where n is the sample size, and   is the lag of AR model.  

After obtaining the i.i.d. filtered return series, the procedure of historical simulation in 

measuring portfolio VaR can be separated into four steps. Firstly, the number of historical data 

used to perform the empirical distribution needs to be appropriately accounted for. Three 

sample sizes (250, 750, and 1,250 observations corresponding to one, three, and five years) 

are taken into account for measuring the VaR. Secondly, the selected samples are utilized to 

estimate standard deviation and empirical distribution. The third step is setting the probability 

of confidence level. Then the VaR of each financial asset can be obtained based on Eq. (2.3). 

Finally, all individual VaRs are aggregated into a portfolio VaR.  

 

4.5 Backtesting 

In the related forecasting research, it is essential to detect the quality of forecasting obtained 

from various risk measures, especially for those that have been applied in financial 

institutions. The basic concept behind the method of backtesting suggested by the Basel 

Committee on Banking Supervision (1996) has been further developed and widely applied 

across the banking sector for several years. In general, the substance of these diverse 

backtesting approaches is to compare the forecasted risk derived from internal models with 

the actual returns. Thus, the internal models can be refined and improved based on the results 

of the backtesting.  
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The first sub-section reviews the backtesting approach suggested by the Basel Committee on 

Banking Supervision in 1996, and discusses its main defects. In the second part of this section, 

some statistical tests that can be used to compare the quality of the alternative risk measures 

are discussed.  

4.5.1 Backtesting procedure 

Using internal risk models to measure market risk is now the approved alternative method for 

the practitioners. However, as set out in the Basel’s regulations (see BCBS (1995)), and 

designed to ensure the accuracy of these risk forecasts, financial institutions adopting internal 

risk models are required to backtest the performance of their approaches and report the results 

to the local authorities. The committee believes that the procedure of backtesting properly 

provides the opportunity to the designers of risk measures to understand how to incorporate a 

variety of market circumstances into their methodologies. 

As mentioned above, most backtesting procedures typically consist of a series of comparisons 

between the daily return of a hypothetical portfolio and the forecasted VaR. Conceptually, the 

measure of value at risk is an estimate of the amount that might happen in the next trading 

period with a given probability. Since the holding positions usually involve a large amount of 

capital, the Basel Committee requires that the backtesting should be implemented with a 99% 

level of confidence of risk measure, which means that, on average, 99% of daily returns to a 

long position are bigger than the corresponding VaR. In other words, a well-designed VaR 

model will cover 99% of market variation in its estimate.  

The complete procedure of backtesting adopted in this thesis can be separated into several 

main steps. After selecting the methodology of risk measurement, the first step is to do the 

one-day-ahead out of sample forecast of VaR, which represents the VaR of the next trading 

period. The second step is to create the VaR series by using the method of fixed-window 

rolling sample forecasting, and then repeating step one. For example, according to step one, 
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the historical observations within the period from 2
nd

 January 1990 to 29
th

 December 2006 are 

used to estimate the model parameters and forecast the VaR on 2
nd

 January 2007. Similarly, 

the samples within 3
rd

 January 1990 to 2
nd

 January 2007 are applied for the VaR on 3
rd

 

January 2007, and so on. The last VaR (30
th

 April 2010) is forecasted based on the period 

from 6
th

 May 1993 to 29
th

 April 2010.  

The third step is to compare the actual return series with the VaR sequence obtained from the 

risk measurements. Based on the theory, the VaRt is applied to forecast the market risk or 

potential loss in the next trading period, therefore the comparison will be made between the 

forecasted value-at-risk at time t (VaRt) and the actual portfolio return at time t+1 (    ). In 

the fourth step, the violation series is obtained based on the actual return and its 

corresponding VaR. Simply put, an actual return (of a long position) smaller than the 

corresponding forecasted VaR is regarded as a violation, et. Then, the violation function can 

be defined as  

                 

  
                  
                 

  (4.42) 

where et is a series with T-1 elements. 

Finally, the performance of risk measure can be tested based on the unconditional approach 

proposed by the Kupiec (1995) method. The violation rate (VR) is calculated as  

   
   
 
   

 
 (4.43) 

where N is the total number of observations within the backtesting period, which is from 2
nd

 

January 2007 to 30
th

 April 2010. Theoretically, VR of a well-designed VaR measure will 

approximate the value of , which is the probability in Eq. (2.1). Statistically, the alternative 

hypothesis is set as       , against the null hypothesis,       . The statistics of the 
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unconditional test are 

                                         (4.44) 

where x is the total number of violations.  

Alternatively, based on Kupiec’s (1995) work, Christoffersen (1998) concentrates on the 

consequences of the independence of the violations. He emphasizes that a good risk measure 

should not only meet the criteria of VR=, but also have to avoid the clustering 

(autoregressive) effect in the violation series. Since if    could be applied to forecast     , 

then the probability of occurrence of      might not be equal to . Assuming the transition 

probability matrix and the approximate likelihood function of the binary exceedance series 

can be shown as 

    
        
        

  

                     
      

          
      

    (4.45) 

where                     . The estimate of    can be obtained by the observed 

outcomes of the exceedance series.  

     

   

       

   

       
   

       

   

       

  (4.46) 

To test the independence of the violation series, a corresponding independent transition matrix 

is assumed as 

    
      
      

  

where                                , indicating the probability of a value as 0 

followed by the value as 1. The likelihood under the null is 

                    
           

          (4.47) 
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Then, the independence test and LR test to the same hypothesis proposed by Christoffersen 

(1998) can be expressed as  

            
              

              
  (4.48) 

                (4.49) 

In the backtesting procedure, the conditional and unconditional assessments shown in Eq. 

(4.44) and (4.49) are mainly applied to test the quality of the risk measures.  

 

4.5.2 Other performance tests   

The two backtesting measures mentioned in the previous section are coverage tests, which 

focus on testing whether the ratio of coverage and type I error of the VaR measure are 

consistent or not. There are alternative methods to evaluate the performance of VaR 

measurements. In this section, the performance evaluations are conducted based on stability, 

conservativeness, and magnitude of potential losses over VaR. Hendricks (1996) developed an 

application with similar measures to test the performance of VaR models, however the details 

were unfortunately not numerically evident in his research.  

In general, risk management departments would continuously monitor the performance of the 

portfolios held by financial institutions in the aspect of potential gains and possible losses. To 

maximize the profit of their positions, the portfolio is adjusted daily according to the 

monitoring report. In general, the daily market condition would not be significantly changed, 

except in very rare cases. Consequently, if the risk measure reflected the market condition 

truly and appropriately, the daily pattern of risk forecasting of a good risk measure would not 

be volatile. Bearing in mind the transaction fee, investors does not want to have to be 

continually tuning the portfolio following highly fluctuating forecasted risk. Therefore, it is 

critical to assess the stability of the risk measure, because a volatile risk measure could not 



Chapter 4 Methodology and Data                                                          

123 
 

usefully be used in practice. Thus, a stability test for the VaR forecast is essential,  

                       
    (4.50) 

where n is the number of observations in the backtesting period, and E(VaR) means the 

expected value of VaR in the backtesting period
61

. As mentioned above, the measure of VaR is 

regarded as the minimum required capital for financial institutions. In this manner, a VaR 

measure with a larger MSE means that the financial institutions need to adjust the amount of 

required capital frequently, which is unlikely to be implemented in practice. In other words, it 

would be preferable for a VaR model to have appropriate stability, particularly when it is used 

for daily forecasts. 

From another perspective, as mentioned in Section 2.4.2, the VaR can also be a tool in capital 

allocation and capital charge. Therefore, if the risk measure is too conservative (also called 

overestimating) then the financial institutions might find themselves required to hold a larger 

number of capital than they really should. This has a critical impact to financial institutions 

that how they use their capital. In contrast, if the risk measure tends to under-estimate the risk 

of the portfolio then the financial institutions are likely to go bankrupt more easily due to the 

lack of enough capital. Thus, an ideal and efficient risk measure needs to offer accurate daily 

risk forecasts without too much or too little protection. With a long position, two simple tests 

are proposed
62

  

  
                 
 
   

 
 (4.51) 

  
                 
   
   

   
 (4.52) 

                                                      
61

Eq. (4.50) is a natural variance formula. However, it is obvious that the forecasted VaR sequence of a 

well-designed VaR measure will stay around the expectation of VaR if the return series has less fluctuation. 

According to Montgomery, Jennings and Kulahci (2008), the MSE is formulated as Eq. (4.50). 
62

 Eq. (4.51) and (4.52) are for the long positions, they can be rewritten for the short positions:   

                 
 
   

 
 and   

                 

   
   

   
. The main statistical properties of these two measures 

(D and Q) are shown in appendix A.  
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where m is the number of non-violated observations and     is the number of violations 

(N is the total number of observations in the backtesting period). The D statistics in Eq. (4.51) 

describes the average distance between the VaR measures and the actual returns in the case 

that the actual returns do not exceed the forecasted VaRs, i.e. the non-violations. The main 

aim of D is to evaluate the conservativeness of the VaR measurement. In general, a VaR 

measure with a larger D means that the approach is likely to be too conservative in measuring 

market risk and thus this would cause financial institutions to lose their efficiency in capital 

usage.  

In Section 4.5.1, the test of coverage mainly focuses on the assessment of the violation ratio, 

however the Q statistics in Eq. (4.52) looks at the magnitude of the violation. Following the 

concept of “loss function” proposed by Lopez (1999), a good VaR measure must not cause too 

much loss. Thus, the potential loss of those violated observations needs to be reviewed. In 

other words, it presents the average potential loss as more than the VaR numbers and 

evaluates the performance of the VaR measures from the perspective of the quantity of the 

loss.  

Using these three performance measures, one can have a clearer overview and understanding 

when assessing various VaR approaches.  
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4.6 Data 

This section presents the descriptions of the data sets and some of their statistical 

characteristics. This thesis applies daily equity index data, however the VaR method suggested 

in this thesis can also be applied to measure the VaR of other financial data, for example 

exchange rates or interest rates.
63

 For comparing the risk of equity indices with previous 

research, the daily closing price of six developed equity markets, six East Asian emerging 

equity markets, and four Latin American emerging equity markets are included in this thesis
64

. 

The six developed equity market indices include the Standard & Poor 500 (SP 500) of the 

United States, the FTSE 100 of the United Kingdom, the Nikkei 225 of the Japanese equity 

market, the Toronto Stock Exchange (TSX) index of the Canadian equity market, the 

Deutscher Aktien index (DAX) of the German equity market, and the Continuous Assisted 

Quotation 40 (CAC 40) of the French stock market. The indices of the East Asian emerging 

equity markets are the Hang Seng Index (HSI) of the Hong Kong equity market, the Taiwan 

Stock Exchange Capitalization Weighted Stock Index (TAIEX) of the Taiwanese equity 

market, the Korea Composite Stock Price Index (KOSPI) of the South Korean equity market, 

the FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLCI) index of the Malaysian 

equity market, the Jakarta Composite Index (JCI) of the Indonesian equity market, and the 

Stock Exchange of Thailand index (SET) of the Thai equity market. The third data set is 

mainly taken from the emerging equity markets in Latin America. They include the Merval 

                                                      
63

 According to the economic theory, the exchange rate and interest rate are generally led by the policies of the 

central bank such as open market operations and re-discounting rate adjustments (Taylor, 2001). Taking into 

consideration of the influence of governments’ policies, the main equity indices employed here are effected less 

by these policies and reflect more truthful market information. Thus, the main equity indices are employed to 

model daily VaR. 
64

 In
 
this field, equity indices are commonly used for measuring VaR. For example, Longin (2000) measured the 

VaR of the S&P500 index, Ho et al. (2000) analysed the parameter sensitivity of major Asian equity indices, 

Jondeau and Rockinger (2003) and Longin (2005) applied the method of extreme value theory to estimate left- 

and right tail-distribution of equity indices. Gencay et al. (2003) and Gençay and Selçuk (2004) investigated the 

VaR of long and short positions for a series of emerging equity indices. In addition, Christoffersen et al. (2001), 

Consigli (2002), Angelidis et al. (2004), Giot and Laurent (2004), Bao et al. (2006), Hartz, Mittnik and Paolella 

(2006) measured the VaR of various equity indices.  
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index of the Argentinean equity market, the Brazilian Bovespa index, the Chilean IGPA index, 

and the Mexican Bolsa index. All of the three sets of daily closing price are collected from 

DataStream. The equity indices used in this thesis are the most important indices in their 

markets. Thus, the question of survivorship does not come into consideration. All of these 

indices have the corresponding index derivatives such as index futures and options contracts 

for market traders. In addition, the survivorship of the equity index does not make any 

influence to the VaR modelling. Thus, we do not have to be concerned about this issue. To the 

issue of investability, it is obvious that investors cannot make the long or short positions on an 

equity index. However, it does not mean that measuring the VaR of equity index returns is 

meaningless. As is already known, these indices have their corresponding derivatives such as 

index futures and index options contracts, and measuring VaR of the long and short positions 

of equity indices offers the investors a comprehensive understanding of the market risk profile 

of these derivatives’ underlying assets. There is no doubt that the VaR models in this thesis 

can be applied to various financial data. As mentioned in Chapter 1, the main objective of this 

thesis, as well as previous research, is to provide a better approach for measuring market risk, 

rather than to establish which asset is the best for investment. To the issue of changes in the 

constituent stocks of the equity index, it is shown and explained in Appendix B that the effect 

of changes in constituent stocks to VaR modelling can be ignored. 

The sample period for the developed market indices and the Asian emerging market indices is 

from the 2
nd

 January 1990 to 30
th

 April 2010. In order to avoid the situation that market risk 

may not be reflected in the price because of the thin trading phenomenon in the early stages of 

the Latin American equity markets, those price sequences start from the 2
nd

 January 1995 and 

end on the 30
th

 April 2010. In addition, the sample sets used in this thesis span many equity 

markets and the business days of these equity markets are not the same. Some special and 

traditional holidays may only exist in one country or one regional market and not in all global 
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equity markets, for example, bank holidays in the UK, the Chinese New Year holiday in 

Taiwan. This phenomenon might cause indices to suffer data mismatching, moreover, the 

inference and analysis might then be made incorrectly. To overcome this inherent issue within 

the data sets, two general approaches are adopted
65

. Firstly, for obtaining the entire time serial 

data a method of interpolation is utilized to reform the data sequence by inserting a 

hypothetical observation. This remedy is constructed on the grounds that the index price 

changes linearly, and thus the price at time t could be seen as the midpoint between the price 

at t-1 and t+1. The second method simply uses the previous closing price in place of the 

missing ones. However, the index closing price is not always linear over time, and the method 

of replacement seems unsuitable for situations where there is a long range of data missing. To 

avoid contamination from the over-repair of data, the index price of those particular dates will 

be excluded if more than half of the equity markets in the data set are closed. The method of 

interpolation is adopted if only one day of each equity market is closed. After the series of 

data collation was completed there were 5,255 observations in the developed equity market, 

5,287 observations in the Asian emerging equity market, and 3,945 observations in the Latin 

American emerging equity market.  

The continuously compounded returns of the individual indexes were calculated as the first 

order difference of the natural logarithm of each series
66

 (Cont, 2001). 

                   (4.53) 

The portfolio return is set as an equally weighted return of each individual return (p. 

                                                      
65

 It is not suitable to exclude all days with a missing observation, since most of the missing data happened in a 

single equity market at a time. The exclusion of the missing data would thus drop more observations. For 

example, the bank holidays are only in the UK equity market, then the observations for the same date of all the 

other equity markets will be excluded for the purpose of consistency. This treatment would thus cause more 

influence to the data.  
66

 With the issue of dividends, stock dividend (ex-right) will not affect the index price and its return. However, 

the opening index price on the ex-dividend date will be affected by the amount of ex-dividend. The index prices 

used in this thesis are closing prices, which are not influenced by any one single event of the ex-dividend. 

Besides, the effect of the ex-dividend will be diversified by the weight of the individual stocks. Thus, the 

influence of the dividend issue can be ignored. To the issue of changes in constituent stocks of equity indexes 

can be seen in Appendix B, where the effect is shown to be trivial.   
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390,Bessis, 2010). 

            

 

   

 

where d is the number of assets in the portfolio (     ) , rp,t is the portfolio return at time 

t, i is the weight of each asset in the portfolio, and ri,t is the return of each individual asset at 

time t. In the following subsections, each index sequence will be introduced fully, with its 

main history, regulations, and critical properties. 

 

4.6.1 Six developed equity markets
67

 

Standard & Poor 500 

This index has been published by the Standard & Poor group since 1957 and has been broadly 

regarded as the best gauge of the equity market in the U.S., capturing about 75% coverage of 

market capitalization. It covers the prices of 500 large-cap common stocks frequently and 

publicly traded in both the two main exchanges: the Nasdaq and the New York Stock 

Exchange. The 500 U.S.-based companies span various industries and are chosen by the 

Standard & Poor Index Committee based on critical criteria, for example, market 

capitalization, liquidity, financial viability, and sector representation. The Index Committee 

meets monthly and reviews the pending corporate actions which may affect the constituency 

of the S&P 500.  

FTSE 100 

                                                      
67

 The information of the six developed market indices please refer their official website: Standard & Poor 500 

(http://www.standardandpoors.com/indices/main/en/eu ), FTSE 100 

(http://www.londonstockexchange.com/exchange/prices-and-markets/stocks/indices/summary/summary-indices.

html?index=UKX), Nikkei 225 (http://www.tse.or.jp/english/market/topix/comparison.html), TSX 

(http://www.tmxmoney.com/HttpController?GetPage=EquityIndices&SelectedIndex=0000&IndexID=0000&Ex

change=T&SelectedTab=QuoteResults&Language=en), DAX 

(http://www.boerse-frankfurt.de/en/equities/indices), CAC 40 

(http://www.euronext.com/trader/summarizedmarket/stocks-2634-EN-FR0003500008.html?selectedMep=1).  

http://www.standardandpoors.com/indices/main/en/eu
http://www.londonstockexchange.com/exchange/prices-and-markets/stocks/indices/summary/summary-indices.html?index=UKX
http://www.londonstockexchange.com/exchange/prices-and-markets/stocks/indices/summary/summary-indices.html?index=UKX
http://www.tse.or.jp/english/market/topix/comparison.html
http://www.tmxmoney.com/HttpController?GetPage=EquityIndices&SelectedIndex=0000&IndexID=0000&Exchange=T&SelectedTab=QuoteResults&Language=en
http://www.tmxmoney.com/HttpController?GetPage=EquityIndices&SelectedIndex=0000&IndexID=0000&Exchange=T&SelectedTab=QuoteResults&Language=en
http://www.boerse-frankfurt.de/en/equities/indices
http://www.euronext.com/trader/summarizedmarket/stocks-2634-EN-FR0003500008.html?selectedMep=1
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The FTSE 100 index is composed of the 100 most highly capitalised companies listed on the 

London Stock Exchange (LSE), presenting approximately 81% of the UK market 

capitalization. It is calculated in real-time by the FTSE Group, owned by The Financial Times 

and the London Stock exchange. The components of the FTSE 100 are reviewed quarterly by 

the FTSE UK regional committee, based on at least 20 trading records of individual stocks. A 

security will be included in the FTSE 100 index if its market value ranking rises to 90 per cent 

quantile or above of all current FTSE 100 shares. In the same manner, a current security in the 

FTSE 100 will be dropped if its market value ranking falls to the 111 quantile or below. 

Nikkei 225 

The Nikkei 225 index is calculated daily by the Nihon Keizai Shimbun (Nikkei) newspaper 

and is an equity index comprised of 225 stocks listed on the first section of the Tokyo Stock 

Exchange (TSE). Now it is one of the most watched indexes of the Asian equity market. The 

components of the Nikkei 225 index are reviewed every October, but an extraordinary review 

will take place if necessary. In 2000, faced with the evolution of the industry structure, both of 

these two reviews were redefined. The main purpose of the periodic review is to annually 

reconsider individual company issues from the aspect of changes in the industrial and market 

structures, and the extraordinary review is designed for deleting and adding constituents in 

response to special developments, for example, mergers or bankruptcies. 

Toronto Stock Exchange (TSX) Composite index 

The Toronto Stock Exchange (TSX) was established in 1852 and formally incorporated in 

1878. The TSX index, managed by Standard and Poor's, includes 245 large-cap companies 

and covers about 70% market capitalization of all companies listed in the TSX. All the 

securities under consideration for addition to or deletion from the index will be assessed by 

the Index Committee on the basis of 12-month data ending the month prior to the quarterly 

review. The assessment is based on several points, such as the weight of an individual 
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component to the TSX composite index and their liquidity based on trading volume. 

Generally, the quarterly review months are March, June, September and December.  

Deutscher Aktien index (DAX)  

The DAX index reflects the segment of blue chips listed in the Prime Standard Segment and 

comprises the 30 largest and most actively traded companies listed at the Frankfurt Stock 

Exchange (FSE). The selection of companies for the DAX index are generally based on two 

quantitative criteria, turnover and market capitalization. All the constituents included in the 

DAX are generally reviewed by the Management Board every three months. The review is 

divided into ordinary adjustments and extraordinary adjustments. The former is decided based 

on the rules of fast exit, fast entry, regular exit, and regular entry. The latter is designed for the 

occurrence of specific events such as insolvency. 

CAC 40 

The CAC 40 index takes its name from the Paris Bourse's early automation system Cotation 

Assistée en Continu (CAC, called “Continuous Assisted Quotation”). It comprises 40 

companies selected from among the 100 largest and most traded stocks listed on the NYSE 

Euronext Paris
68

. Responding to the changes, the periodic review is made quarterly by an 

independent Index Steering Committee. In principle, the quarterly adjustment of the 

weighting of constituents is carried out after the markets close, on the third Friday of March, 

June, September and December. In addition, the free floats and capping factors of the 

companies included in the CAC 40 are reviewed annually. Corporate events, for example 

mergers and acquisitions, might affect the composition of the CAC 40 index.  

  

                                                      
68

NYSE Euronext has a series of merger histories over the last few years. In March of 2000, it was announced 

that the exchanges of Amsterdam, Brussels, and Paris planned to merge into the Euronext exchange and 

Euronext Paris was set as the headquarters of the new exchange. In 2002, the Lisbon exchange was merged 

into Euronext as well. Then, in 2007, the New York Stock Exchange (NYSE) and Euronext merged, to become 

NYSE Euronext.  
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Figure 4.1 Daily index price and return of S&P 500 

 

 
Figure 4.2 Daily index price and return of FTSE 100 

 

 
Figure 4.3 Daily index price and return of NIKKEI 225 
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Figure 4.4 Daily index price and return of TSX 

 
 

 
Figure 4.5 Daily index price and return of DAX 

 

 
Figure 4.6 Daily index price and return of CAC 40 
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Summary 

The patterns of the developed equity markets are presented in Figures 4.1 to 4.6. Generally 

speaking, the indices of the developed equity markets have consistent patterns, with the 

exception of the Nikkei 225. Excluding the Nikkei 225, the other five indices were moving 

significantly upwards from 1990 to 2000, and then sharply fell to their record low around the 

third quarter of 2002 because of the burst of the internet bubble. After climbing to a new high 

in 2007, the indices suddenly dropped to another new record low due to the financial crisis of 

the subordinated bonds happening around 2008 to 2009. The index of the Nikkei 225 has had 

a clear downturn trend since 1990 and it reached its global low towards the end of 2002 when 

the investors were widely disillusioned with the dot-com bubble. After that, it went up slowly 

until dramatically dropping again in the first quarter of 2008. From the viewpoint of the 

volatility pattern of daily returns, the Nikkei 225 and the CAC 40 have more volatile 

dynamics than other indices, and the TSX has relatively small volatility, except for the period 

of 2008 to 2009.  

4.6.2 Six emerging equity markets in East Asia
69

 

Hang Seng Index  

The Hang Seng Index (HSI) is one of the earliest stock market indexes in Hong Kong, and 

was launched on 24 November 1969. Now the HSI comprises 45 individual stocks listed on 

the main board of the Stock Exchange of Hong Kong (SEHK). To reflect the market 

conditions properly, the components are selected from four sub-sectors: finance, utilities, 

properties, and commerce and industry, and are reviewed quarterly. A new company is eligible 

for selection into HSI if its market capitalisation and total turnover is among the top 90% of 

                                                      
69

 For information on the six emerging market indices please refer to their official website:  

Hang Seng Index (http://www.hsi.com.hk/HSI-Net/), TAIEX (http://www.twse.com.tw/en/ ),  

KOSPI (http://eng.krx.co.kr/m1/m1_4/m1_4_2/m1_4_2_1/UHPENG01004_02_01_01.html ),  

KLCI (http://www.bursamalaysia.com/website/bm/market_information/fbm_klci.html ),  

JCI (http://www.idx.co.id/Home/MarketInformation/MarketIndex/tabid/110/language/en-US/Default.aspx ),  

SET (http://www.set.or.th/en/products/index/setindex_p1.html ). 

http://www.hsi.com.hk/HSI-Net/
http://www.twse.com.tw/en/
http://eng.krx.co.kr/m1/m1_4/m1_4_2/m1_4_2_1/UHPENG01004_02_01_01.html
http://www.bursamalaysia.com/website/bm/market_information/fbm_klci.html
http://www.idx.co.id/Home/MarketInformation/MarketIndex/tabid/110/language/en-US/Default.aspx
http://www.set.or.th/en/products/index/setindex_p1.html
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all the primary shares listed on the SEHK. Then all of the eligible candidates will be finally 

reviewed based on their company performance, capitalization and turnover ranking, and the 

representation of the sub-sectors.   

Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) 

The TAIEX is the most widely quoted of all the Taiwan Stock Exchange Corporation (TWSE) 

indices, which includes all of the common stocks listed on TWSE, excluding the full-delivery 

stocks and newly listed stocks less than one calendar month old. One of the special 

characteristics of the TAIEX (or of the individual stock) is the limitation of ±7% price 

fluctuation to the previous closing price during a trading day, thus only a maximum of 7% of 

price change is allowed at the market close. Since 2005, the first-five trading days of any new 

listing stock are not confined by this restriction. Before the 2
nd

 January 1998, the stock market 

opened from 9:00 A.M. to 12:00 noon, Monday to Friday, and 9:00 to 11:00 A.M on Saturday. 

In order to have consistency with other sequences, the observations on Saturday are excluded.  

Korea Composite Stock Price Index (KOSPI) 

The Korea Composite Stock Price Index (KCSPI) was introduced in 1972 with a base index 

of 100 set to January 4 of the same year, which covers 35 constituent stocks selected from the 

stocks traded on the Primary Board of the Market. After a serious reform of this index, a new 

method of market capitalization based index (symbol: KOSPI) comprising all stocks listed on 

the Korean Exchange was introduced in 1983. The new KOSPI is currently the main 

representative for the performance of the Korean equity market. It was assigned a base index 

of 100 on the 4
th

 January 1980.  

FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLCI)  

The original stock market index was launched in 1970 and covered 30 industrial stocks. To 

better reflect the market condition and industrial structure, the KLSE index with 83 
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companies was introduced in 1986. Similarly, in 2009, Bursa Malaysia reformed the index as 

the FTSE Bursa Malaysia Kuala Lumpur Composite Index (FTSE BM KLCI or, for brevity, 

“KLCI”) which comprises the top 30 largest-cap shares listed on the Main Board of the Bursa 

Malaysia Exchange. The eligibility requirements are based on the free float share price and its 

liquidity. The index is biannually reviewed by the FTSE Bursa Malaysia Index Advisory 

board in June and December.  

Jakarta Composite Index (JCI)  

The first stock exchange of Indonesia was opened in 1912 by the Dutch government in 

Batavia. After that, the stock exchange was closed and reopened several times. Finally, a new 

stock exchange, named the Jakarta Stock Exchange (JSX), was started in 1977, and then was 

privatized in 1992. In September 2007, the Jakarta Stock Exchange merged with another 

exchange, the Surabaya Stock Exchange, to form the Indonesian Stock Exchange (IDX). The 

daily trading is divided into two sessions, session one is from 9:30 A.M to 12:00 noon and 

session two is from 1:30 P.M. to 4:00 P.M.  

Stock Exchange of Thailand (SET) index 

The stock market and Bangkok Stock Exchange (BSE) were initiated in the early 1960s. After 

a serious amendment in regulations and formation, the Securities Exchange of Thailand (SET) 

was founded and officially started trading on the 30
th

 April 1975. The SET Composite Index is 

the main indicator representing the price movement for all common stocks traded on the main 

board of SET, except for those stocks suspended for more than one year. 
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Figure 4.7 Daily index price and return of HSI 

 

 
Figure 4.8 Daily index price and return of TAIEX 

 

 
Figure 4.9 Daily index price and return of KOSPI 
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Figure 4.10 Daily index price and return of KLCI 

 

 
Figure 4.11 Daily index price and return of JCI 

 

 
Figure 4.12 Daily index price and return of SET 
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Summary 

The patterns of indices and volatility of the six emerging equity markets in East Asia are 

shown above in Figures 4.7 to 4.12. Most of them demonstrate the significant impact of the 

Asian financial crisis in 1997, with slightly less effect evident in the TAIEX, and then a 

sudden fall in 2008. From the aspect of the dynamics of volatility, the six indices have a 

similar pattern: high volatility around 1997 to 1998 and 2008 to 2009, covering the period of 

the financial crises. The volatilities of the HIS, TAIEX, and KOSPI are significantly larger 

than the ones of KLCI, JCI, and SET, even in the two periods of financial crisis. In principle, 

HIS and KOSPI have a similar pattern, depressed by the Asian financial crisis, they went on 

an upward trend to a historical high in 2007, and then sharply dropped in the first quarter of 

2008 due to the storm of the credit crunch. A similar pattern happens in the SET and KLCI, 

however, the SET kept dragging during the downturn whereas the KLCI slightly moved up to 

its new record high at the end of 2007. The pattern of TAIEX is quite fluctuant, falling from a 

historical high in February 1990 to its historical low in October 1990. After that, it reached 

several regional peaks and then went down in the third quarter of 2008. In the Indonesian 

equity market, the JCI stayed at a low level from 1990 to 2004, although it dropped during the 

period of the Asian financial crisis. After 2004, JCI went on an escalating trend, peaking in the 

fourth quarter of 2007, and suddenly dropping down from 2008 to 2009. 

 

4.6.3 Four emerging equity markets in Latin America 
70

 

Merval index  

The Merval index includes the most important stocks traded on the Buenos Aires Stock 

                                                      
70

 Information about the four emerging market indices can be found on their official websites:  

Merval Index (http://www.merval.sba.com.ar/Default.aspx ),  

Bovespa Index (http://www.bmfbovespa.com.br/en-us/markets/equities.aspx?idioma=en-us ),  

IGPA Index (http://www.bolsadesantiago.com/index.aspx ),  

Bolsa (http://www.bmv.com.mx/ ). 

http://www.merval.sba.com.ar/Default.aspx
http://www.bmfbovespa.com.br/en-us/markets/equities.aspx?idioma=en-us
http://www.bolsadesantiago.com/index.aspx
http://www.bmv.com.mx/
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Exchange in the Argentina Republic. To date, 14 individual securities have been covered by 

the Merval index based on their market share, number of transactions and quotation price. The 

base of the Merval was set on the 30
th

 June 1986. The corporations and weighted prices that 

compose the Merval are reviewed quarterly according to their market share during the 

previous period.  

Bovespa index 

The Brazilian stock market has a long history, which can be traced back to the St. Paulo stock 

exchange founded in 1890. It includes 50 stocks traded on the St. Paulo Stock, Mercantile & 

Futures Exchange (BM&FBOVESPA) and represents about 70% of the market capitalisation 

of the market value trade in the Bovespa. The index and its components are regularly 

reviewed every four months. A security will be added to the index if the trading value 

participation is higher than 0.1% of the total and the presence of the trading session covers 

more than 80%. On the other hand, a security might be excluded from the index if it no longer 

fits the inclusion criteria, or if the company files for bankruptcy.  

IGPA index 

The Indice General de Precios de Acciones (IGPA) is the main representative of the market 

performance of the Chilean stock market, and is a market capitalization weighted index 

measuring price variations of all the stocks listed on the Santiago Stock Exchange. This index 

is annually reviewed by the Committee of the Board, based on the frequency of trade and the 

sector representativeness. The index was developed with a base level of 100 on the 30
th

 

December 1980. The Chilean economy experienced a sharp crisis at the end of the 1990s, but 

it did not have any significant impact on the equity market. Since then, the stock market in 

Chile has experienced a long period of stability.  
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Bolsa index 

The Bolsa index (sometimes called IPC, in Spanish, Índice de Precios y Cotizaciones) 

composes 35 individual stocks traded on the Mexican Stock Exchange (MSE), which is the 

second largest stock exchange in Latin America after the Brazilian BM&FBOVESPA. Now 

the Bolsa index is the main representative of the overall Mexican market performance. The 

selection of the component stock of the Bolsa index is based on two indicators. Firstly, 

whether the individual stocks come within the top 45 daily turnover ratio. Secondly, if the 

market cap value adjusted by floating shares is bigger than or equal to 0.1% of the total 

market cap value. These constituents are normally reviewed once a year, and currently there is 

no provision for any special review.  
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Figure 4.13 Daily index price and return of Merval 

 

 
 

Figure 4.14 Daily index price and return of Bovespa 

 

 
Figure 4.15 Daily index price and return of IGPA 

 

 
Figure 4.16 Daily index price and return of Bolsa 
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Summary 

The patterns of index level and daily return of the four equity markets in Latin America are 

displayed above, Figures 4.13 to 4.16. The four indices had very similar patterns in the price 

level, which went up slowly before 2005, kept climbing to a peak in 2008, and then sharply 

fell in the fourth quarter of 2008. After that, the indices rocketed up to another historical high 

in the second quarter of 2010. From the fluctuation pattern of the indices, the Merval has the 

most volatile pattern due to the economic and currency crisis between 1999 and early 2003, 

and the credit crisis in 2008. In the volatility pattern of IGPA, it has the smallest movement of 

all the Latin-American emerging equity markets. The Bovespa has the second-largest 

volatility, likely as the result of several economic crises in early 1995, 1999, and late 2008. 

These series of crises had some critical impacts on the stock market, especially in the period 

of the crisis of subordinated debt.  
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4.6.4 Data preliminaries 

The aim of this sub-section to view the sample sets used in this thesis as a whole, to 

understand the basic characteristics of the original return sequences. All samples mentioned in 

the previous section will be described in detail. Table 4.1 provides the basic statistics of each 

individual sequence from the index price and index return. The statistics in the fourth column 

are the four moments of each series of the sample, and the JB statistics are in the last column. 

The statistics in panel A show the indices’ price and the corresponding moments present their 

basic features. In panel B, more specific information about the index returns is provided as 

well. Generally speaking, the mean return of most equity markets tends to be zero, excepting 

the IGPA (Chile) and the Bolsa (Mexico), and three (Nikkei225, TAIEX, and SET) out of the 

fourteen statistically zero-mean indices display a tendency with negative average return, 

although they are not significant. The equity market of Japan (Nikkei 225) has the smallest 

mean return, and this might be associated with the downturn of the Japanese economy over 

the past twenty years. For volatility, most indices demonstrate similar degrees of fluctuation, 

and overall the TSX and IGPA have the lowest volatility. In contrast, the Merval and the 

Bovespa have equally high variations of index return, which could be attributed to the several 

financial and economic crises happening in Argentina and Brazil. The developed equity 

markets tend to be left-skewed whereas the Latin-American emerging markets generally skew 

to the right. In the Asian emerging equity markets, the asymmetry of the distribution of these 

indices is quite obscure. The value in the column of kurtosis indicates that all the individual 

series are leptokurtic, implying the property of a fat-tail in the index return sequence. In the 

last column, the JB statistics consistently suggest that the distribution of each index does not 

follow the normal distribution; even the multivariate Q test for each market portfolio rejects 

the assumption of normality. In the left column of Figure 4.17, 4.18, and 4.19, the Q-Q plots 

also provide robust evidence supporting this suggestion.   
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The information in Table 4.2 shows the stationarity statistics based on the Dickey-Fuller test 

and the Phillips-Perron test. These two approaches provide similar results, suggesting that 

each return series is significantly stationary. Combined with the ACF of index returns in the 

right column of Figure 4.17, 4.18, and 4.19, it is obvious that most of the time series applied 

tend not to have autoregressive correlation. Although some of them are slightly autoregressive, 

for example JCI, KLCI, SET, and Bolsa, this is only in the lag one level. The autoregression 

of the IGPA index is a special case and lasts for the lag two level. Roughly speaking, the 

emerging equity markets have a stronger autoregressive effect than the developed equity 

markets, due to the issue of transparency in the market (Gelos and WEI, 2005, Lang and 

Maffett, 2011). Similar evidence can be found in comparing the HSI (TAIEX or KOSPI) with 

the other three indices of equity markets in Southeast Asia. This phenomenon might imply 

that more developed equity markets tend to reflect the information to the market more 

efficiently. According to the evidence above, the sequences of index return tend to be serially 

independent over time, and this hypothesis can support us in measuring the individual VaRs 

based on Eq. (2.47). In other words, the evidence above stands for the assumption of 

stationarity and independence, and offers a convenient tool for the estimation of VaR as well.  
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Table 4.1 Descriptive statistics 

Panel A: Price level Max. Min. Mean a Std. Skewness Kurtosis JB test 

Developed equity market        

S&P500 1565.15 295.46 923.89 375.39 -0.2080 -1.3490 4369 

FTSE 100 6930.20 1990.20 4499.49 1358.77 -0.1399 -1.2304 348 

Nikkei 225 38915.87 7054.98 16253.64 5305.49 0.8893 1.5943 1249 

TSX 15073.13 3009.90 7420.06 3196.37 0.4810 -0.7868 338 

DAX 11862.87 7054.98 4862.91 2453.41 0.7631 -0.0689 511 

CAC 40 8461.44 1798.59 4078.30 1689.33 0.6567 -0.4792 428 

Asian emerging market        

HSI 31638.22 2736.55 12193.88 5517.50 0.5191 0.1933 245 

TAIEX 12424.53 2560.47 6035.03 1655.42 0.4957 0.0476 217 

KOSPI 2064.85 280.00 912.54 371.75 1.0528 0.4066 1013 

KLCI 1516.22 262.70 857.54 248.33 0.3201 -0.7512 214 

JCI 2971.25 223.25 836.71 663.74 1.5883 1.3259 2610 

SET 1753.73 207.31 711.31 318.67 0.7416 -0.0471 485 

Latin American emerging 

market 

       

Merval 2487.76 200.86 1007.98 643.91 0.7452 -0.8886 495 

Bovespa 73516.00 2138.20 24038.62 19053.43 1.0245 -0.1996 495 

IGPA 18039.09 2973.92 7917.99 3817.08 0.9472 -0.3882 614 

Bolsa 34134.23 1447.52 11984.16 9672.04 0.9342 -0.6148 696 

Panel B: Return level Max. Min. Mean b Std. Skewness Kurtosis JB test c 

Developed equity market        

S&P500 0.1096 -0.0947 0.0227   0.0115 -0.2062 9.4817 19710 

FTSE 100 0.0938 -0.0926 0.0159   0.0113 -0.1191 6.7795 10070 

Nikkei 225 0.1323 -0.1211 -0.0237   0.0154 -0.0240 5.6957 7099 

TSX 0.0937 -0.0979 0.0211   0.0104 -0.7751 11.6599 30276 

DAX 0.1237 -0.1306 0.0262   0.0154 -0.1310 6.0992 8155 

CAC 40 0.1214 -0.1174 0.0158   0.0146 -0.0432 6.9774 10655 

Asian emerging market        

HSI 0.1725 -0.1473 0.0380*  0.0168 0.0123 9.6887 20679 

TAIEX 0.0655 -0.0698 -0.0035   0.0182 -0.1005 3.6862 3002 

KOSPI 0.1128 -0.1280 0.0123   0.0185 -0.1236 4.4899 4454 

KLCI 0.2082 -0.2415 0.0162   0.0142 0.3787 44.1551 429622 

JCI 0.1313 -0.1273 0.0380** 0.0153 0.0099 9.6229 20399 

SET 0.1135 -0.1606 -0.0031   0.0171 -0.0132 6.5792 9353 

Latin American emerging 

market 

       

Merval 0.1611 -0.1476 0.0406   0.0225 -0.1934 5.1691 4416 

Bovespa 0.2882 -0.1723 0.0697** 0.0234 0.4762 12.8014 27086 

IGPA 0.0906 -0.0502 0.0305** 0.0079 0.1349 9.3372 14342 

Bolsa 0.1215 -0.1431 0.0667** 0.0165 0.0741 6.0888 6097 

a. The significance tests of mean in price level are not made in this table, since the purpose of the information in 

panel A is to provide an overview and a brief understanding of each equity index. *(**) means the variable is 

significant at 5% (1%) level. 
b. The mean of daily return in panel B is multiplied by 100. 

c. The JB statistics of mean are significant at the 1% level. The multivariate Q tests (MV-Q) proposed by 

Hosking (1980) to these three portfolios are also done but not presented in this table. The assumption of 

normality is significantly rejected across the portfolios by the statistics of MV-Q. 
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Figure 4.17 Q-Q plot and ACF of the developed equity markets 
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Figure 4.18 Q-Q plot and ACF of the Asian emerging equity markets 
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Figure 4.19 Q-Q plot and ACF of the Latin-American emerging equity markets 
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Table 4.2 Stationarity test of index returns 

 Dickey-Fuller test Phillips-Perron test  
Developed equity market    

S&P500 -76.5488 -76.7677  
FTSE 100 -73.9064 -74.0593  
Nikkei 225 -73.7259 -73.8508  
TSX -71.0308 -71.0379  
DAX -73.3267 -73.3625  
CAC 40 -72.6398 -72.7094  

Asian emerging market    
HSI -72.4791 -72.4933  
TAIEX -69.7824 -69.8772  
KOSPI -69.7862 -69.7687  
KLCI -67.2462 -67.3097  
JCI -60.8525 -60.8682  
SET -66.0716 -66.2565  

Latin American emerging 

market 
   

Merval -58.3342 -58.3143  
Bovespa -61.1877 -61.1884  
IGPA -49.5367 -49.8062  
Bolsa -56.9016 -56.7781  

Note: The critical values of the Dickey-Fuller test and the Phillips-Perron test in 

1% and 5% are -3.435 and -2.863, respectively. 
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4.7 Conclusion   

This chapter included the methods of estimation and forecasting, the backtesting procedure, 

and the data samples used in this thesis. Four well-known and widely used VaR models 

chosen as the competing models were also introduced. They covered both the parametric and 

non-parametric approaches. In Section 4.2, some fundamental econometric tests applied to 

realize the characteristics of the equity indices were explained.  

Section 4.3 explained the method of parameter estimation and the one-day forward VaR 

forecast which includes the method of maximum likelihood function utilized in estimating the 

parameters in the generalized extreme value distribution. Another task of this section was the 

description of dynamic conditional correlation. To reflect the market condition and risk in the 

tail-area appropriately, a generalized dynamic conditional correlation based on the selected 

extremes is used to estimate the relationship between various asset returns. This approach 

stresses the conditional correlation in the extreme event rather than the entire sequence. The 

concept of the VaR forecast is accounted for in this section as well. 

In Section 4.4, we briefly outlined the alternative VaR methods which are used to compare 

with the one proposed in this thesis. They are the GARCH(1,1) model, RiskMetrics, 

multivariate stochastic volatility, and historical simulation. The first three models are based on 

the parametric approach and the method of historical simulation is non-parametric. All the 

VaRs forecasted by these approaches are compared with the semi-parametric approach 

proposed by this thesis. 

In Section 4.5, the procedure of backtesting is elaborated upon. Based on Kupiec (1995) and 

Christoffersen’s (1998) method, the exceedance function is firstly carried out and then the 

violation ratio will be achieved. In addition, Christoffersen’s (1998) independence test will 

also be applied in the performance comparison.  
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Section 4.6 described the data sets used in this thesis, and the general descriptive summary 

was presented and discussed. Some graphic (QQ plot and ACF) analysis was also provided. 

According to the evidence of the Q-Q plots, some of the observations of the return sequences 

fall into the extreme area, indicating that it is appropriate to apply extreme value theory to fit 

the tail-distribution. In addition, Several ACF of the indices indicate that they are weakly 

dependent but most of the data sets are stationary (according to the results of the two 

stationarity tests) and tend to be independent. Roughly speaking, the developed equity 

markets tend to be independent; in contrast the Latin-American emerging equity markets have 

some autoregressive effects in the lag one level.  
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5 Chapter 5 Results and Findings 

5.1 Introduction 

In this chapter, the results and findings of the empirical thesis will be presented in three 

subsections; starting with the univariate analysis, then through the discussion of correlations 

based on extreme values, and ending in the multivariate VaR analysis. In Section 5.2, the 

market risk of each equity index is measured according to its basic approach without any 

assumption about the correlation amongst various equity indices. In Section 5.3, the extremal 

correlations, or so-called tail correlations, are presented and analysed. Substantial evidence 

will show that the distribution of financial returns is asymmetric and thick.  

In Section 5.4, the results of the multivariate VaR forecasts and the outcomes of quality 

checks are presented and discussed. In this chapter, Kupiec’s (1995) unconditional coverage 

test and Christoffersen’s (1998) conditional coverage test are applied to backtest the VaR 

forecasts of the GEV-DCC model and the four competing models. The quality of VaR models 

are also provided with three quality measures including adaptability, conservativeness and 

magnitude of violation. The backtesting results of the portfolio VaR show that the GEV-DCC 

model offers an accurate coverage in general. In the quality of portfolio VaR patterns, the 

GEV-DCC model demonstrates the stable VaR sequences and produces satisfactory results in 

the conservativeness and magnitude of violation. Section 5.5 marks the implications of the 

results by offering a simple illustration. Section 5.6 presents the conclusion. 
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5.2 Univariate Analysis 

This section explains and presents the procedure of estimation, the results of the univariate 

VaR, and analyses the backtesting performance for each return series. Two main coverage 

tests will be applied in evaluating the performance of each VaR model, but the final decision 

will be based on Christoffersen’s (1998) approach due to the extra independence test. In 

addition, three other benchmarks will also be used to check the quality and suitability of these 

VaR models. 

5.2.1 Individual VaR based on Extreme Value Theory 

5.2.1.1 Estimation of the tail distribution 

As mentioned in Section 2.5.1 and 3.4.1, Jenkinson’s (1955) generalized distribution based on 

the block maxima with three parameters is used to fit the tail-distribution. As noted in section 

4.5, a rolling procedure is adopted to forecast the VaR of the next period. Thus, each rolling 

period would produce three parameters for GEV distribution. The mean of the estimated 

parameters (and their standard deviations in parentheses) are displayed in Table 5.1, including 

three different time block spans: one week (5 days), two weeks (10 days), and one month (22 

days). The parameters of both the long and short positions are investigated as well. The results 

from Table 5.1 indicate that more than 99% of the scale and location parameters of the long 

and short positions of all equity indices are significant at the 1% level. In addition, most of the 

tail parameters are significant at either the 1% or the 5% level. These evidences imply that the 

estimated parameters fit the GEV distribution appropriately
71

. According to the backtesting 

                                                      
71

 Although ACF in Figures 4.17 to 4.19 show that autocorrelation in most of equity indices is indistinct and 

weak, Eq. (2.49) and (2.50) are estimated for examining the extremal index. An alternative approach proposed by 

Embrechts, Kluppelberg and Mikosch (1997) is also employed to estimate the extremal index, . The 

asymptotical estimate of the extremal index can be formulated as  

  
 

 

     
  

   

     
  

    
 

where Nu is the number of returns exceeding a certain high threshold, Ku is the number of blocks in which this 
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period, from 2
nd

 January 2007 to 30
th

 April 2010, there are in total about 850 observations to 

each parameter. It is reasonable that location parameters of minimum extremes are negative, 

and the ones of maximum extremes are positive. The evidence of the standard deviations 

show that the estimated parameters are stable over time, which is consistent with the evidence 

from the patterns of the daily parameters shown in Figure C-1 to Figure C-16 in Appendix C. 

In these figures, most of the parameters vary within a small range, but several parameters are 

unexpectedly large or small due to the issue of convergence. In addition, the distributional 

stabilities of the parameters are also investigated based on two types of stationarity tests in 

Table C-1 in Appendix C. The results indicate that most of the parameter distributions are 

stable. 

Overall, the three parameters from larger blocks tend to be larger. Take the long position for 

example, the location parameter spans from -0.0036 (IGPA) to -0.0133 (Bovespa) for n=5 and 

from -0.0082 (IGPA) to -0.0297 (Merval) for n=22 in Table 5.1. Similar results can be found 

in the panel of the short position. The scale parameter still goes slightly up by the length of 

the block even though it does not rise significantly. Overall, the scale and location parameters, 

both of the long and short position, of the Bovespa (Brazil) and Merval (Argentina) across all 

blocks are larger (in absolute value) than the other equity indices, which suggests that the 

market risks in these two equity markets are larger. On the other hand, the results also suggest 

that the tail parameters are more likely to be negative, which further implies that the extreme 

value distribution of these return series is potentially suitable for the Fréchet distribution. This 

finding is generally consistent with previous research in this area, such as Danielsson and De 

Vries (1997), Longin (1996), and McNeil (1998). The Fréchet distribution corresponds to a 

thick process of financial returns, thus, the characteristic of the fat-tail in the data sets can be 

                                                                                                                                                                      
threshold is violated, and g and n are the number of blocks in the sequence and the length of the blocks. The 

results of these two approaches are mainly consistent with the ACF, indicating most of the return sequences are 

very slight auto-correlative. Overall, the estimated  is between 0.93 and 0.97, thus, the weak auto-correlation 

effect in return sequences is reasonably neglected in this thesis. 
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captured appropriately. As shown in Figure 5.1, the magnitude of fatness is positively related 

to the absolute value of the tail parameter, based on the zero mean and unit scale parameter. 

The red dashed curve with Kn= -0.6 has the thickest tail, and the one with -0.2 has a thinner 

tail. As shown in panel A of the long position, the tail parameters are between -0.0477 (DAX) 

and -0.1985 (KLCI) for the 5-day block and between -0.0709 (Nikkei 225) to -0.4541 (JCI) 

for the 22-day block in panel C, indicating that the asymptotic distribution of extremes tends 

to have thicker tails across the blocks. The results in the pattern of estimated parameters and 

their indication of extreme distribution of daily returns as shown above are generally 

consistent with Longin’s (2000) results. Furthermore, the results in Table 5.1 are more robust 

compared with Longin (2000), because they include the mean values from the backtesting 

period rather a single result at a particular date.  

Previous research in related areas has provided some robust evidence to suggest that the 

distributions of financial asset returns are skewed, mainly caused by information asymmetry 

and investors’ preference (Post, Van Vliet and Levy, 2008). However, less attention has been 

paid to the distribution of extreme values. Thus, it is essential and critical to test if a 

difference exists between the left and right tails. The results of the equality test of estimated 

parameters for the left and right tails are shown in Table 5.2. The first and second columns 

describe the equality test
72

 of the tendency of dispersion and centralization between the left- 

and right-tail, respectively, and the same tests of the tail index are displayed in the last column. 

It is natural that the location parameters in the left (minimum returns) and right tails 

(maximum returns) are significantly different. Most results show that the scale and tail 

parameters of the long positions are significantly different from the parameters in the short 

positions, indicating the shapes between the left-tail and right-tail of GEV distributions are 

generally different. Although some of the equality tests are not rejected, such as the scale 

                                                      
72

 The main objective of Table 5.2 is to test the equality of estimated parameters in the long and short positions. 

The hypothesis are: H0: c’n = cn for the scale parameter, and H0: k’n = kn for the tail parameter. 
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parameters of the Nikkei225 and Merval in panel A, the KOSPI in panel B, and the Bolsa and 

TAIEX in panel C, none of these exceptions goes across all blocks. Thus, the majority of 

results in Table 5.2 clearly imply that market participants have different behaviours in the left 

and right tail. One possible explanation for this is that investors respond differently to bad and 

good news (see Braun, Nelson and Sunier (1995)). 

Based on the Basel rules, the banks are required to expose the potential firm-wide risk for the 

next 10-day by 1% probability. Thus, 10-day returns of each index are created to perform 

extreme value distribution and to measure 10-day VaRs. The results of the estimated 

parameters and the standard deviations with 10-day returns are shown in Table 5.3. The 

patterns of the parameters are shown in Figure C-17 to C-32 in Appendix C. The results of the 

standard deviation and the figures show that the parameters of the 10-day return are stable, 

although they are larger in the larger blocks. Similar to the results of daily returns, the 

distributional stabilities of the parameters are tested by stationarity tests as shown in Table 

C-2 in Appendix C. Overall, the estimated parameters of 10-day returns are reasonably stable 

on average. 

In general, more than 99% of observations of the scale parameters in the left and right tails of 

all equity markets are significant in 1%. Consistent with the daily results in Table 5.1, the 

scale parameters of the Bovespa and Merval are larger on average. However, the scale and tail 

parameters in panel A of Table 5.3 are systemically larger than the parameters in Table 5.1. 

For example, the average locations of long positions in Table 5.3 are 0.0417, 0.0373, and 

0.0361 for the 5-, 10-, and 22-day block respectively, against 0.0086, 0.0087, and 0.0095 in 

Table 5.1. The results of lower frequency returns provide some interesting new information. 

Firstly, the scale parameters in panel A (n=5) are the highest. Secondly, under the 10-day 

frequency, the scale parameters tend to be higher than the ones under the daily pattern. These 

two outcomes suggest that the VaR based on 10-day returns might be higher than the daily 
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ones due to its larger scale parameters. In the tail parameters, the estimated tail in the panel of 

n=5 and n=10 (for the short position only) are more significant than the case of n=22; and the 

significance in the short positions is clearer than in the long positions. One interesting result is 

that some tail parameters (kn) tend to be positive, such as the long position in panel C, 

although they are not statistically significant. As mentioned in section 2.5.1, the null 

hypothesis (i.e. Kn=0) of the tail parameter cannot be rejected, implying that in some cases the 

10-day based extreme value distribution could fit the Gumbel distribution. Overall, an 

extreme value distribution with negative tail parameter is still the most appropriate one for 

10-day returns. With the location parameter, most results in n=10 and n=22 are significant at 

1%, but unexpectedly not significant in the case of n=5 (although the majority of the 

developed equity indices in the short position, and a few indices of Latin American markets 

are significant at 1%). This phenomenon indicates that the average extreme returns of the 

10-day return series in panel A (n=5) tend to be zero, particularly for the Asian and Latin 

American equity markets. The results of the location parameters in Table 5.3 tend to be 

negative in long positions and positive in short positions, but most results in the case of n=5 

of both the long and short panels are not substantially significant to reject the null hypothesis. 

Comparing the results of extreme value distribution with daily and 10-day returns as shown in 

Table 5.1 and Table 5.3, it is natural that the low frequency extreme returns (10-day returns) 

are more volatile than high frequency ones (daily returns). For example, the scale parameters 

are between 0.0044 (IGPA) and 0.0124 (Bovespa) for the long position with n=5 in panel A of 

Table 5.1, corresponding to the one from 0.0247 (TSX) to 0.0622 (Merval) in Table 5.3. 

Besides, the tail parameters in Table 5.3 are systematically smaller than the ones in Table 5.1. 

As we know that the function of the tail parameter describes the thickness of extreme 

distribution (as shown in Table 5.1), this implies that the extreme distribution based on 10-day 

returns has a thicker tail than the distribution obtained from daily returns. 
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Figure 5.1 Generalized extreme value distribution with different tail parameters 
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Table 5.1 The mean of estimated parameters of GEV distribution with the 5-day block and 

daily returns 

  Long position  Short position 

Panel A:n=5 
 Scale 

parameter 

(   ) 

Location 

parameter 

(   ) 

Tail 

parameter 

(   ) 

 Scale 

parameter  

(cn) 

Location 

parameter 

(  ) 

Tail 

parameter 

(  ) 

S&P500 0.0058** 

(0.0004) 

-0.0064** 

(0.0036) 

-0.1746** 

(0.0757) 

 0.0058** 

(0.0005) 

0.0076** 

(0.0034) 

-0.1088** 

(0.0626) 

FTSE100 0.0055** 

(0.0005) 

-0.0052** 

(0.0042) 

-0.1777** 

(0.0698) 

 0.0052** 

(0.0003) 

0.0065** 

(0.0029) 

-0.0494   

(0.0584) 

CAC40 0.0062** 

(0.0006) 

-0.0073** 

(0.0054) 

-0.0965   

(0.0933) 

 0.0060** 

(0.0003) 

0.0078** 

(0.0031) 

-0.0616   

(0.0648) 

DAX 0.0081** 

(0.0004) 

-0.0095** 

(0.0054) 

-0.0447** 

(0.0603) 

 0.0079** 

(0.0005) 

0.0107** 

(0.0065) 

-0.0085   

(0.0734) 

TSX 0.0084** 

(0.0004) 

-0.0097** 

(0.0069) 

-0.0899** 

(0.0702) 

 0.0081** 

(0.0006) 

0.0108** 

(0.0031) 

-0.0347   

(0.0528) 

Nikkei225 0.0086** 

(0.0003) 

-0.0104** 

(0.0057) 

-0.0800   

(0.0632) 

 0.0086** 

(0.0006) 

0.0111** 

(0.0063) 

-0.0416   

(0.0640) 

IGPA 0.0044** 

(0.0003) 

-0.0036** 

(0.0012) 

-0.0853   

(0.0511) 

 0.0048** 

(0.0005) 

0.0046** 

(0.0002) 

0.0002   

(0.0276) 

Bolsa 0.0093** 

(0.0006) 

-0.0096** 

(0.0067) 

-0.0877   

(0.0608) 

 0.0098** 

(0.0007) 

0.0117** 

(0.0057) 

-0.0547   

(0.0589) 

Bovespa 0.0124** 

(0.0005) 

-0.0133** 

(0.0006) 

-0.1243** 

(0.0194) 

 0.0130** 

(0.0015) 

0.0167** 

(0.0074) 

-0.0391   

(0.0419) 

Merval 0.0130** 

(0.0008) 

-0.0126** 

(0.0005) 

-0.1567** 

(0.0443) 

 0.0130** 

(0.0009) 

0.0147** 

(0.0050) 

-0.0787   

(0.0465) 

HSI 0.0089** 

(0.0008) 

-0.0093** 

(0.0076) 

-0.1828** 

(0.0642) 

 0.0094** 

(0.0007) 

0.0112** 

(0.0063) 

-0.0882** 

(0.0468) 

TAIEX 0.0099** 

(0.0006) 

-0.0103** 

(0.0038) 

-0.0992   

(0.0698) 

 0.0102** 

(0.0009) 

0.0117** 

(0.0044) 

-0.0294   

(0.0574) 

KOSPI 0.0113** 

(0.0004) 

-0.0118** 

(0.0087) 

-0.1049** 

(0.0755) 

 0.0110** 

(0.0003) 

0.0128** 

(0.0066) 

-0.0810** 

(0.0754) 

KLCI 0.0085** 

(0.0004) 

-0.0068** 

(0.0031) 

-0.1985** 

(0.0307) 

 0.0089** 

(0.0007) 

0.0084** 

(0.0037) 

-0.1220** 

(0.0551) 

JCI 0.0074** 

(0.0011) 

-0.0066** 

(0.0091) 

-0.1551** 

(0.0848) 

 0.0079** 

(0.0005) 

0.0072** 

(0.0058) 

-0.1257   

(0.0413) 

SET 0.0095** 

(0.0007) 

-0.0104** 

(0.0079) 

-0.1029** 

(0.0555) 

 0.0103** 

(0.0003) 

0.0110** 

(0.0087) 

-0.0626*  

(0.0880) 

Panel B:n=10               cn       

S&P500 0.0062** 

(0.0004) 

-0.0096** 

(0.0031) 

-0.1957** 

(0.0660) 

 0.0055** 

(0.0003) 

0.0109** 

(0.0016) 

-0.2097** 

(0.0663) 

FTSE100 0.0057** 

(0.0005) 

-0.0081** 

(0.0045) 

-0.2557** 

(0.0745) 

 0.0048** 

(0.0003) 

0.0091** 

(0.0026) 

-0.1547** 

(0.0615) 

CAC40 0.0059** 

(0.0004) 

-0.0100** 

(0.0035) 

-0.2035*  

(0.0577) 

 0.0054** 

(0.0003) 

0.0108** 

(0.0025) 

-0.1968*  

(0.0526) 

DAX 0.0076** 

(0.0003) 

-0.0138** 

(0.0031) 

-0.1133** 

(0.0465) 

 0.0066** 

(0.0003) 

0.0146** 

(0.0035) 

-0.1599** 

(0.0768) 

TSX 0.0082** 

(0.0003) 

-0.0140** 

(0.0035) 

-0.1551   

(0.0526) 

 0.0074** 

(0.0004) 

0.0147** 

(0.0020) 

-0.1742** 

(0.0462) 

Nikkei225 0.0091** 

(0.0002) 

-0.0154** 

(0.0032) 

-0.0609   

(0.0440) 

 0.0081** 

(0.0002) 

0.0157** 

(0.0002) 

-0.1113*  

(0.0224) 

IGPA 0.0042** 

(0.0003) 

-0.0058** 

(0.0002) 

-0.1743*  

(0.0476) 

 0.0043** 

(0.0002) 

0.0071** 

(0.0002) 

-0.0780   

(0.0364) 

Bolsa 0.0089** 

(0.0005) 

-0.0143** 

(0.0006) 

-0.1894*  

(0.0211) 

 0.0089** 

(0.0004) 

0.0166** 

(0.0032) 

-0.1964** 

(0.0435) 

Bovespa 0.0125** 

(0.0004) 

-0.0206** 

(0.0044) 

-0.1624** 

(0.0337) 

 0.0109** 

(0.0004) 

0.0233** 

(0.0005) 

-0.1650** 

(0.0185) 

Merval 0.0139** 

(0.0005) 

-0.0198** 

(0.0006) 

-0.2103** 

(0.0183) 

 0.0121** 

(0.0006) 

0.0215** 

(0.0040) 

-0.2282** 

(0.0418) 

HSI 0.0094** 

(0.0007) 

-0.0146** 

(0.0077) 

-0.2049** 

(0.0690) 

 0.0091** 

(0.0004) 

0.0163** 

(0.0005) 

-0.1795** 

(0.0234) 

TAIEX 0.0105** 

(0.0004) 

-0.0160** 

(0.0041) 

-0.1178   

(0.0633) 

 0.0098** 

(0.0005) 

0.0179** 

(0.0035) 

-0.0758   

(0.0546) 

KOSPI 0.0116** -0.0174** -0.1638**  0.0107** 0.0190** -0.1617** 
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(0.0004) (0.0052) (0.0526) (0.0003) (0.0058) (0.0719) 

KLCI 0.0092** 

(0.0006) 

-0.0113** 

(0.0050) 

-0.2767** 

(0.0598) 

 0.0092** 

(0.0003) 

0.0133** 

(0.0050) 

-0.2174** 

(0.0541) 

JCI 0.0068** 

(0.0001) 

-0.0094** 

(0.0001) 

-0.3354** 

(0.0107) 

 0.0073** 

(0.0002) 

0.0107** 

(0.0001) 

-0.3138** 

(0.0236) 

SET 0.0096** 

(0.0004) 

-0.0151** 

(0.0040) 

-0.1720** 

(0.0339) 

 0.0101** 

(0.0003) 

0.0164** 

(0.0044) 

-0.1561** 

(0.0490) 

Panel B:n=10               cn       

S&P500 0.0070** 

(0.0005) 

-0.0132** 

(0.0025) 

-0.1875*  

(0.0549) 

 0.0058** 

(0.0004) 

0.0138** 

(0.0004) 

-0.2798*  

(0.0546) 

FTSE100 0.0063** 

(0.0005) 

-0.0112** 

(0.0007) 

-0.3028*  

(0.0324) 

 0.0052** 

(0.0003) 

0.0116** 

(0.0011) 

-0.2055** 

(0.0682) 

CAC40 0.0064** 

(0.0005) 

-0.0133** 

(0.0019) 

-0.2415*  

(0.0633) 

 0.0054** 

(0.0004) 

0.0135** 

(0.0013) 

-0.3077*  

(0.0662) 

DAX 0.0076** 

(0.0006) 

-0.0185** 

(0.0037) 

-0.1553*  

(0.0592) 

 0.0069** 

(0.0005) 

0.0184** 

(0.0002) 

-0.2172*  

(0.0584) 

TSX 0.0086** 

(0.0004) 

-0.0185** 

(0.0003) 

-0.1844** 

(0.0316) 

 0.0080** 

(0.0004) 

0.0192** 

(0.0045) 

-0.2187*  

(0.0672) 

Nikkei225 0.0095** 

(0.0003) 

-0.0207** 

(0.0002) 

-0.0709   

(0.0476) 

 0.0087** 

(0.0003) 

0.0206** 

(0.0003) 

-0.1640   

(0.0261) 

IGPA 0.0043** 

(0.0004) 

-0.0082** 

(0.0012) 

-0.3227*  

(0.0744) 

 0.0041** 

(0.0003) 

0.0095** 

(0.0003) 

-0.2228   

(0.0477) 

Bolsa 0.0095** 

(0.0006) 

-0.0199** 

(0.0038) 

-0.2722   

(0.0565) 

 0.0096** 

(0.0006) 

0.0221** 

(0.0024) 

-0.2737*  

(0.0421) 

Bovespa 0.0129** 

(0.0005) 

-0.0288** 

(0.0043) 

-0.2112*  

(0.0456) 

 0.0108** 

(0.0009) 

0.0294** 

(0.0006) 

-0.2853** 

(0.0719) 

Merval 0.0151** 

(0.0006) 

-0.0297** 

(0.0050) 

-0.2520   

(0.0660) 

 0.0139** 

(0.0008) 

0.0298** 

(0.0041) 

-0.2074   

(0.0510) 

HSI 0.0101** 

(0.0006) 

-0.0199** 

(0.0009) 

-0.2707** 

(0.0228) 

 0.0094** 

(0.0006) 

0.0213** 

(0.0006) 

-0.2695** 

(0.0213) 

TAIEX 0.0120** 

(0.0005) 

-0.0234** 

(0.0005) 

-0.0729   

(0.0338) 

 0.0103** 

(0.0005) 

0.0242** 

(0.0005) 

-0.0727   

(0.0468) 

KOSPI 0.0126** 

(0.0004) 

-0.0236** 

(0.0025) 

-0.2153*  

(0.0325) 

 0.0109** 

(0.0003) 

0.0247** 

(0.0019) 

-0.2617*  

(0.0427) 

KLCI 0.0114** 

(0.0006) 

-0.0178** 

(0.0043) 

-0.2423** 

(0.0501) 

 0.0107** 

(0.0003) 

0.0185** 

(0.0009) 

-0.2335** 

(0.0157) 

JCI 0.0077** 

(0.0005) 

-0.0136** 

(0.0065) 

-0.4541** 

(0.0422) 

 0.0085** 

(0.0002) 

0.0151** 

(0.0003) 

-0.3730** 

(0.0275) 

SET 0.0105** 

(0.0003) 

-0.0207** 

(0.0004) 

-0.2480** 

(0.0259) 

 0.0108** 

(0.0004) 

0.0230** 

(0.0024) 

-0.2022** 

(0.0443) 

Note: ** (*) means more than 99% (95%) of the observations are significant at 1% (5%) level. The numbers in 

parentheses are the standard deviation of the estimated parameters. 
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Table 5.2 The test of equality of the estimated parameters of GEV distribution in the left and 

right tails 

Panel A: n=5  P-value of scale 

parameter equality test 

 P-value of location 

parameter equality test 

 P-value of tail 

parameter equality test 
 

S&P500  0.0619  0.0000  0.0000  

FTSE100  0.0000  0.0000  0.0000  

CAC40  0.0000  0.0000  0.0000  

DAX  0.0000  0.0000  0.0000  

TSX  0.0000  0.0000  0.0000  

Nikkei225  0.8376  0.0000  0.0000  

IGPA  0.0000  0.0000  0.0000  

Bolsa  0.0000  0.0000  0.0000  

Bovespa  0.0000  0.0000  0.0000  

Merval  0.3075  0.0000  0.0000  

HSI  0.0000  0.0000  0.0000  

TAIEX  0.0000  0.0000  0.0000  

KOSPI  0.0000  0.0000  0.0000  

KLCI  0.0000  0.0000  0.0000  

JCI  0.0000  0.0000  0.0000  

SET  0.0000  0.0000  0.0000  

Panel B: n=10  P-value of scale 

parameter equality test 

 P-value of location 

parameter equality test 

 P-value of tail 

parameter equality test 
 

S&P500  0.0000  0.0000  0.0000  

FTSE100  0.0000  0.0000  0.0000  

CAC40  0.0000  0.0000  0.0130  

DAX  0.0000  0.0000  0.0000  

TSX  0.0000  0.0000  0.0000  

Nikkei225  0.0000  0.0000  0.0000  

IGPA  0.0000  0.0000  0.0000  

Bolsa  0.1939  0.0000  0.0000  

Bovespa  0.0000  0.0000  0.0525  

Merval  0.0000  0.0000  0.0000  

HSI  0.0000  0.0000  0.0000  

TAIEX  0.0000  0.0000  0.0000  

KOSPI  0.0000  0.0000  0.4914  

KLCI  0.0026  0.0000  0.0000  

JCI  0.0000  0.0000  0.0000  

SET  0.0000  0.0000  0.0000  

Panel C:n=22  P-value of scale 

parameter equality test 

 P-value of location 

parameter equality test 

 P-value of tail 

parameter equality test 
 

S&P500  0.0000  0.0000  0.0000  

FTSE100  0.0000  0.0000  0.0000  

CAC40  0.0000  0.0000  0.0000  

DAX  0.0000  0.0000  0.0000  

TSX  0.0000  0.0000  0.0000  

Nikkei225  0.0000  0.0000  0.0000  

IGPA  0.0000  0.0000  0.0000  

Bolsa  0.0337  0.0000  0.5184  

Bovespa  0.0000  0.0000  0.0000  

Merval  0.0000  0.0000  0.0000  

HSI  0.0000  0.0000  0.2533  

TAIEX  0.0000  0.0000  0.9054  

KOSPI  0.0000  0.0000  0.0000  

KLCI  0.0000  0.0000  0.0000  

JCI  0.0000  0.0000  0.0000  

SET  0.0000  0.0000  0.0000  
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Table 5.3The mean of estimated parameters fitting the GEV distribution with 10-day returns 

  Long position  Short position 

Panel A: n=5 

 Scale 

parameter 

(   ) 

Location 

parameter 

(   ) 

Tail 

parameter 

(   ) 

 Scale 

parameter  

(cn) 

Location 

parameter 

(  ) 

Tail parameter 

(  ) 

S&P500 0.0248** 

(0.0018) 

-0.0002   

(0.0003) 

-0.0712*  

(0.0354) 

 0.0268** 

(0.0027) 

0.0066** 

(0.0004) 

-0.1772** 

(0.0174) 

FTSE100 0.0253** 

(0.0020) 

-0.0012   

(0.0055) 

-0.0712** 

(0.0399) 

 0.0269** 

(0.0017) 

0.0062** 

(0.0003) 

-0.1865** 

(0.0116) 

CAC40 0.0341** 

(0.0066) 

-0.0016   

(0.0063) 

-0.0870*  

(0.0661) 

 0.0347** 

(0.0025) 

0.0082** 

(0.0008) 

-0.1891** 

(0.0164) 

DAX 0.0340** 

(0.0018) 

0.0003   

(0.0004) 

-0.0423   

(0.0198) 

 0.0395** 

(0.0025) 

0.0081** 

(0.0006) 

-0.1744** 

(0.0101) 

TSX 0.0247** 

(0.0015) 

0.0020   

(0.0002) 

-0.0446   

(0.0278) 

 0.0280** 

(0.0032) 

0.0062** 

(0.0004) 

-0.2337** 

(0.0143) 

Nikkei225 0.0370** 

(0.0010) 

-0.0059** 

(0.0009) 

-0.1390** 

(0.0590) 

 0.0365** 

(0.0020) 

0.0041   

(0.0008) 

-0.1462** 

(0.0258) 

IGPA 0.0273** 

(0.0013) 

-0.0041** 

(0.0010) 

-0.1094** 

(0.0229) 

 0.0291** 

(0.0017) 

0.0032   

(0.0010) 

-0.2149** 

(0.0165) 

Bolsa 0.0437** 

(0.0072) 

-0.0040   

(0.0045) 

-0.0952*  

(0.0392) 

 0.0468** 

(0.0053) 

0.0095** 

(0.0049) 

-0.1370** 

(0.0163) 

Bovespa 0.0517** 

(0.0015) 

-0.0031   

(0.0014) 

-0.0349   

(0.0124) 

 0.0609** 

(0.0053) 

0.0121** 

(0.0010) 

-0.1244** 

(0.0044) 

Merval 0.0622** 

(0.0023) 

-0.0006   

(0.0009) 

-0.1127** 

(0.0272) 

 0.0657** 

(0.0027) 

0.0086   

(0.0013) 

-0.1771** 

(0.0105) 

HSI 0.0458** 

(0.0022) 

0.0032   

(0.0010) 

-0.0656** 

(0.0141) 

 0.0509** 

(0.0065) 

0.0061*  

(0.0040) 

-0.1850** 

(0.0223) 

TAIEX 0.0500** 

(0.0025) 

-0.0011   

(0.0012) 

-0.1646** 

(0.0365) 

 0.0501** 

(0.0079) 

0.0042   

(0.0041) 

-0.1783** 

(0.0232) 

KOSPI 0.0554** 

()0.0011 

-0.0013   

(0.0007) 

-0.1582** 

(0.0169) 

 0.0522** 

(0.0011) 

0.0062   

(0.0008) 

-0.1388** 

(0.0100) 

KLCI 0.0458** 

(0.0013) 

0.0031   

(0.0005) 

-0.1151** 

(0.0120) 

 0.0476** 

(0.0005) 

0.0003   

(0.0005) 

-0.1036** 

(0.0024) 

JCI 0.0493** 

(0.0012) 

0.0052   

(0.0008) 

-0.1072** 

(0.0229) 

 0.0522** 

(0.0012) 

0.0044   

(0.0014) 

-0.1566** 

(0.0058) 

SET 0.0562** 

(0.0012) 

-0.0013   

(0.0005) 

-0.1704** 

(0.0215) 

 0.0548** 

(0.0019) 

0.0002   

(0.0005) 

-0.1388** 

(0.0096) 

Panel B:n=10               cn       

S&P500 0.0210** 

(0.0015) 

-0.0092** 

(0.0043) 

-0.0347   

(0.0579) 

 0.0220** 

(0.0023) 

0.0167** 

(0.0005) 

-0.1059*  

(0.0322) 

FTSE100 0.0221** 

(0.0010) 

-0.0113** 

(0.0090) 

-0.0107   

(0.0541) 

 0.0225** 

(0.0017) 

0.0167** 

(0.0006) 

-0.1304** 

(0.0255) 

CAC40 0.0285** 

(0.0011) 

-0.0148** 

(0.0005) 

0.0027   

(0.0377) 

 0.0295** 

(0.0020) 

0.0228** 

(0.0024) 

-0.1485** 

(0.0301) 

DAX 0.0307** 

(0.0012) 

-0.0131** 

(0.0050) 

-0.0298   

(0.0349) 

 0.0333** 

(0.0024) 

0.0234** 

(0.0008) 

-0.1329** 

(0.0165) 

TSX 0.0220** 

(0.0012) 

-0.0068** 

(0.0071) 

-0.0529   

(0.0537) 

 0.0224** 

(0.0025) 

0.0161** 

(0.0009) 

-0.1625** 

(0.0334) 

Nikkei225 0.0328** 

(0.0011) 

-0.0205** 

(0.0008) 

0.0948   

(0.0640) 

 0.0316** 

(0.0017) 

0.0190** 

(0.0009) 

-0.0987*  

(0.0283) 

IGPA 0.0244** 

(0.0011) 

0.0047   

(0.0006) 

-0.0413   

(0.0334) 

 0.0262** 

(0.0009) 

0.0126** 

(0.0015) 

-0.1913** 

(0.0120) 

Bolsa 0.0366** 

(0.0021) 

0.0126** 

(0.0008) 

0.0207   

(0.0560) 

 0.0407** 

(0.0012) 

0.0282** 

(0.0013) 

-0.1037** 

(0.0087) 

Bovespa 0.0481** 

(0.0023) 

0.0167** 

(0.0019) 

0.0250   

(0.0320) 

 0.0540** 

(0.0012) 

0.0352** 

(0.0008) 

-0.0940** 

(0.0098) 

Merval 0.0560** 

(0.0020) 

0.0210** 

(0.0013) 

-0.0476   

(0.0336) 

 0.0582** 

(0.0031) 

0.0328** 

(0.0018) 

-0.1402** 

(0.0167) 

HSI 0.0423** 

(0.0019) 

-0.0128** 

(0.0015) 

-0.0221   

(0.0142) 

 0.0431** 

(0.0023) 

0.0242** 

(0.0008) 

-0.1405** 

(0.0218) 

TAIEX 0.0466** 

(0.0019) 

-0.0177** 

(0.0012) 

-0.1255   

(0.0521) 

 0.0427** 

(0.0035) 

0.0223** 

0.0011) 

-0.1293*  

(0.0300) 

KOSPI 0.0496** 

(0.0011) 

-0.0196** 

(0.0011) 

-0.1038*  

(0.0234) 

 0.0466** 

(0.0018) 

0.0252** 

(0.0013) 

-0.0893*  

(0.0190) 

KLCI 0.0389** 

(0.0017) 

-0.0102** 

(0.0005) 

-0.0240   

(0.0215) 

 0.0398** 

(0.0021) 

0.0149** 

(0.0007) 

-0.0518   

(0.0164) 



Chapter 5 Results and Findings                                                           

164 
 

JCI 0.0443** 

(0.0023) 

-0.0103** 

(0.0056) 

-0.0269   

(0.0419) 

 0.0467** 

(0.0032) 

0.0210** 

(0.0035) 

-0.1206** 

(0.0283) 

SET 0.0525** 

(0.0014) 

-0.0198** 

(0.0008) 

-0.1423** 

(0.0238) 

 0.0486** 

(0.0020) 

0.0185** 

(0.0009) 

-0.0895** 

(0.0160) 

Panel C:n=22               cn       

S&P500 0.0191** 

(0.0012) 

-0.0192   

(0.0008) 

0.1626** 

(0.0594) 

 0.0176** 

(0.0013) 

0.0277** 

(0.0007) 

0.0408   

(0.0478) 

FTSE100 0.0196** 

(0.0012) 

-0.0226   

(0.0009) 

0.1343*  

(0.0677) 

 0.0179** 

(0.0008) 

0.0290** 

(0.0010) 

-0.0123   

(0.0222) 

CAC40 0.0261** 

(0.0011) 

-0.0300   

(0.007) 

0.0702*  

(0.0451) 

 0.0231** 

(0.0014) 

0.0388** 

(0.0008) 

-0.0381   

(0.0317) 

DAX 0.0289** 

(0.0021) 

0.0290   

(0.0010) 

0.1086   

(0.0583) 

 0.0254** 

(0.0016) 

0.0403** 

(0.0008) 

-0.0095   

(0.0335) 

TSX 0.0213** 

(0.0022) 

-0.0179   

(0.0009) 

0.1280   

(0.0645) 

 0.0176** 

(0.0011) 

0.0277** 

(0.0012) 

-0.0527   

(0.0418) 

Nikkei225 0.0288** 

(0.0006) 

-0.0387** 

(0.0014) 

-0.0354** 

(0.0698) 

 0.0275** 

(0.0014) 

0.0374** 

(0.0011) 

-0.0325   

(0.0311) 

IGPA 0.0224** 

(0.0019) 

0.0163** 

(0.0008) 

0.0410   

(0.0552) 

 0.0226** 

(0.0031) 

0.0244** 

(0.0035) 

-0.1265   

(0.0446) 

Bolsa 0.0355** 

(0.0016) 

0.0324** 

(0.0019) 

0.0822   

(0.0382) 

 0.0341** 

(0.0034) 

0.0497** 

(0.0014) 

-0.0265   

(0.0428) 

Bovespa 0.0436** 

(0.0023) 

0.0398** 

(0.0026) 

0.1589   

(0.0387) 

 0.0440** 

(0.0034) 

0.0616** 

(0.0016) 

-0.0126   

(0.0425) 

Merval 0.0508** 

(0.0033) 

0.0506** 

(0.0026) 

0.0301   

(0.0487) 

 0.0466** 

(0.0046) 

0.0613** 

(0.0026) 

-0.0340   

(0.0558) 

HSI 0.0372** 

(0.0029) 

-0.0336** 

(0.0020) 

-0.0782  

(0.0275)  

 0.0361** 

(0.0018) 

0.0473** 

(0.0009) 

-0.0683   

(0.0270) 

TAIEX 0.0447** 

(0.0026) 

-0.0412** 

(0.0014) 

0.1115   

(0.0830) 

 0.0347** 

(0.0033) 

0.0443** 

(0.0045) 

-0.0397   

(0.0580) 

KOSPI 0.0444** 

(0.0014) 

-0.0428** 

(0.0011) 

0.0216   

(0.0244) 

 0.0381** 

(0.0013) 

0.0492** 

(0.0021) 

0.0386   

(0.0275) 

KLCI 0.0353** 

(0.0022) 

-0.0252** 

(0.0009) 

-0.0892   

(0.0414) 

 0.0319** 

(0.0010) 

0.0327** 

(0.0013) 

0.0691   

(0.0168) 

JCI 0.0390** 

(0.0014) 

-0.0298** 

(0.0012) 

-0.1162   

(0.0339) 

 0.0398** 

(0.0017) 

0.0424** 

(0.0028) 

-0.0491   

(0.0244) 

SET 0.0451** 

(0.0024) 

-0.0435** 

(0.0012) 

0.0372   

(0.0503) 

 0.0430** 

(0.0013) 

0.0435** 

(0.0015) 

-0.0379   

(0.0136) 

Note: ** (*) means more than 99% (95%) of the observations are significant at 1% (5%) level. The numbers in 

parentheses are the standard deviation of the estimated parameters. 
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5.2.1.2  Univariate VaR results of the GEV model and VaR backtesting 

The results of the one period ahead forecasted VaR with the GEV model are presented in 

Table 5.4 and 5.5, including Kupiec’s (1995) unconditional coverage test and Christoffersen’s 

(1998) conditional test. As mentioned in Section 4.5.1, VR of a well-designed VaR measure 

will approximate the value of  as shown in Eq. (2.1). Thus, the coverage ratio of a 

well-calibrated VaR0.99 measure would theoretically approach 99%. The VaR model will not 

be regarded as a good risk measure if the VR is too high (or the coverage ratio is too low). 

According to Kupiec (1995) and Christoffersen (1998), the null hypothesis of the coverage 

test is H0: VR=, where VR is the violation rate shown in Eq. (4.43). However, one would 

care more about whether the violation rate exceeds  rather than if it is smaller than . Thus, 

the conditional and unconditional coverage tests used in this thesis follow the convention 

applied by related research to test if the violation rate overtakes the type I error (). If the 

statistics exceed the critical point and fall into the area of rejection, the null hypothesis is 

rejected. Thus, the VaR approach is not a proper market risk measure. On the other hand, the 

likelihood ratio test of Kupiec (1995) and Christoffersen (1998) might be very small, 

implying that VR does not equal . This phenomenon will be discussed and presented with 

other measures in section 5.2.6. Ideally, VaR forecasted by the GEV model is expected to 

show theoretically proper potential losses to each equity index.  

The main results of VaR0.99 and VaR0.95 based on the GEV model with daily returns of each 

equity index are shown in Table 5.4 and 5.5, respectively. The case with 10-day returns is 

displayed in Table 5.6. Theoretically, the violation rate of VaR0.99 (VaR0.95) is expected to be 

1% (5%). The first and second columns in Table 5.4 show the statistics of the likelihood ratio 

test of the long and short based on the GEV model with n=5 (i.e. the maxima or minima value 

is extracted in every five observations with a rolling process). The third and fourth columns 
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are for n=10 and n=22. The mean VaR of each index for various blocks are also in Table 5.4 

to Table 5.6. Overall, Latin American indices are riskier than the other two sets of equity 

indices, and the developed equity indices have less market risks. In the three different blocks, 

the larger block leads to a smaller market risk. In addition, the forecasted VaR also shows that 

the long position has a higher market risk than the short one. 

Generally speaking, the GEV model with daily returns provides a better VaR forecast in the 

four Latin American returns and six Asian equity returns than in the six returns from the 

developed equity markets. Furthermore, the evidence across the three panels shows that the 

violation rate goes up with the size of the block, particularly in panel A. For example, the 

violation rate in the long position of the S&P500 rises from 0.0477 for n=5 to 0.0675 for n=22. 

This consistent pattern can also be found in the long position of the FTSE 100, CAC40, DAX, 

Nikkei 225, and most of the indices in Latin America. Compared with the results between the 

long and short position in panel A, there are 10 out of a total of 18 parts in the short positions 

which are significant at 1% or 5% to both Kupiec (1995) and Christoffersen’s (1998) statistics, 

corresponding to none in just the long position. For both the Latin American results in panel B 

and the Asian equity results in panel C, the GEV model offers satisfactory VaR forecasts in 

both the long and short positions, although most of them are only accepted at 95%. However, 

one finds that most violation rates in the short positions in Table 5.4 are close to . In other 

words, the GEV model produces a more accurate VaR forecast in short positions than in long 

ones. Thus, it is obvious that the GEV model is more suitable to forecast market risk in the 

short position than the long position.  

Sometimes, the forecasted VaR might be calculated under a tolerant probability, for example 

95% (i.e., =0.05). The outcomes of this condition are presented in Table 5.5, and the 

performance of the VaR forecast here is not as good as in that of the case of =0.01. 

Technically, the absolute VaRs with the condition =0.05 are smaller than the ones with 
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=0.01. Therefore, actual index returns would easily surpass forecasted VaRs.  

An important phenomenon can be noted in Table 5.4 and 5.5. The results of the violation rate 

and backtesting are positively associated with the block size, although this tendency is not 

significant. These findings indicate that the GEV model with a larger block tends to produce 

smaller VaRs, and it means that VaRs are easily exceeded by actual returns. Under these 

circumstances the number of exceedance and the violation rate rises. Similarly, as discussed 

by Lauridsen (2000) and Ho et al. (2000), both parameters in generalized extreme distribution 

and forecasted VaRs are very sensitive to the size of the block, and until now there has been 

no standard selection rule to overcome this weakness. Coles (2001) suggested that yearly 

extreme values would be a better solution to describe the characteristics of the tail. However, 

this is restricted by the accessibility of the financial time series. Moreover, a yearly block 

would produce fewer observations, and the results of the tail distribution estimation might be 

biased. One possible suggestion is that the choice of block size might depend on the 

frequency of the market down-turn. If one prefers to take the risk that risk potentially happens 

once in one week, the size of block would be equal to five and so on.  

The backtesting of the daily performance in VaR0.99 is superior to VaR0.95. Thus, only the 

VaR0.99 based on the 10-day return sequences are created and examined here. The backtesting 

results are presented in Table 5.6. Due to the higher diversity in 10-day returns, the coverage 

performance is dissatisfactory compared with that of the daily results in Table 5.4. Similar to 

the VaR of daily return, the back-testing results in the developed equity markets are worse 

than the Latin American and Asian indices. For example, the average violation rate of the long 

(short) positions are 0.0565, 0.0685, and 0.0565 (0.0295, 0.0388, and 0.0491) for n=5, n=10, 

and n=22. All of these violation rates are too large for the target, 0.01. Apart from the 

fluctuation feature of the 10-day return sequence, another cause of the lower coverage rate to 

forecasted VaR is the serial correlation of the violations. In panel A of Table 5.6, the 
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independence tests are considerably higher than the ones in Table 5.4, implying that the 

violations are highly correlated. In addition, the GEV model with the 10-day return sequence 

provides acceptably more accurate results in the short positions in the cases of n=5 and n=10 

of the Latin American indices, and for some blocks of the Asian equity market indices. In the 

developed market, the GEV model provides a similarly poor performance in both the long and 

short positions. 
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Table 5.4  Backtesting of 99% quantile daily VaR measured by generalized extreme value 

(GEV) 

 GEV(n=5) GEV(n=10) GEV(n=22) 

Panel A Long Short Long Short Long Short 

S&P500       
Ave. VaR -0.0295   0.0281   -0.0277   0.0271   -0.0254   0.0247   

Violation (%) 0.0477   0.0373   0.0536   0.0407   0.0675   0.0512   

Unconditional test 28.0532   16.5028   35.2779   20.1258   54.5691   32.3251   

Independent test 1.6441*  0.9284*  1.0029*  0.6355*  0.4842*  0.5405*  

Conditional test 29.6974   17.4312   36.2807   20.7613   55.0533   32.8657   

FTSE100       
Ave. VaR -0.0290   0.0278   -0.0274   0.0266   -0.0249   0.0241   

Violation (%) 0.0373   0.0291   0.0442   0.0314   0.0512   0.0210   

Unconditional test 16.5028   9.0822   23.9818   11.0416   32.3251   3.4380*  

Independent test 1.9977*  0.7099*  1.1295*  0.5333*  0.5405*  0.3248*  

Conditional test 18.5006   9.7921   25.1113   11.5749   32.8657   3.7628*  

CAC40       
Ave. VaR -0.0356   0.0348   -0.0338   0.0331   -0.0315   0.0307   

Violation (%) 0.0466   0.0221   0.0489   0.0303   0.0605   0.0407   

Unconditional test 26.6731   4.1145** 29.4556   10.0447   44.6028   20.1258   

Independent test 0.9052*  0.3738*  2.5146*  0.7058*  3.7767*  0.0670*  

Conditional test 27.5783   4.4882*  31.9702   10.7505   48.3795   20.1928   

DAX       
Ave. VaR -0.0388   0.0365   -0.0366   0.0357   -0.0334   0.0335   

Violation (%) 0.0338   0.0175   0.0373   0.0210   0.0442   0.0210   

Unconditional test 13.1340   1.7163*  16.5028   3.4380*  23.9818   3.4380*  

Independent test 0.3863*  0.2318*  0.2152*  0.3351*  0.4053*  0.3351*  

Conditional test 13.5203   1.9482*  16.7180   3.7731*  24.3870   3.7731*  

TSX       
Ave. VaR -0.0270   0.0235   -0.0259   0.0228   -0.0235   0.0212   

Violation (%) 0.0547   0.0419   0.0373   0.0233   0.0629   0.0210   

Unconditional test 36.7844   21.3861   16.5028   4.8377** 47.8570   3.4380*  

Independent test 2.6450*  1.3846*  0.2152*  0.2121*  3.3253*  0.3351*  

Conditional test 39.4293   22.7707   16.7180   5.0498*  51.1823   3.7731*  

Nikkei225       
Ave. VaR -0.0395   0.0384   -0.0378   0.0371   -0.0359   0.0355   

Violation (%) 0.0303   0.0210   0.0314   0.0210   0.0349   0.0210   

Unconditional test 10.0447   3.4380*  11.0416   3.4380*  14.2273   3.4380*  

Independent test 0.6177*  3.4834*  0.5333*  1.6220*  1.1625*  0.3351*  

Conditional test 10.6624   6.9214** 11.5749   5.0600*  15.3897   3.7731*  

Panel B Long Short Long Short Long Short 

Merval        
Ave. VaR -0.0623   0.0584   -0.0608   0.0581   -0.0565   0.0544   

Violation (%) 0.0129   0.0093   0.0129   0.0093   0.0175   0.0117   

Unconditional test 0.2799*  0.0164*  0.2799*  0.0164*  1.7361*  0.1008*  

Independent test 1.0137*  0.0656*  1.0137*  0.0656*  2.2015*  0.1028*  

Conditional test 1.2936*  0.0821*  1.2936*  0.0821*  3.9376*  0.2036*  

Bovespa       
Ave. VaR -0.0584   0.0578   -0.0554   0.0538   -0.0510   0.0497   

Violation (%) 0.0152   0.0140   0.0164   0.0175   0.0187   0.0210   

Unconditional test 0.8718*  0.5391*  1.2724*  1.7361*  2.2588*  3.4671*  

Independent test 0.7562*  0.1484*  0.6484*  0.5524*  0.4668*  0.3228*  

Conditional test 1.6280*  0.6875*  1.9208*  2.2885*  2.7256*  3.7900*  

IGPA       
Ave. VaR -0.0186   0.0190   -0.0179   0.0182   -0.0261   0.0169   

Violation (%) 0.0479   0.0164   0.0210   0.0187   0.0199   0.0210   

Unconditional test 28.1547   1.2724*  3.4671*  2.2588*  2.8369*  3.4671*  

Independent test 5.3866** 0.6484*  0.3228*  0.4668*  3.7715*  1.6169*  

Conditional test 33.5414   1.9208*  3.7900*  2.7256*  6.6084** 5.0840*  

Bolsa       
Ave. VaR -0.0416   0.0436   -0.0398   0.0425   -0.0371   0.0400   

Violation (%) 0.0187   0.0187   0.0222   0.0199   0.0292   0.0222   

Unconditional test 2.2588*  2.2588*  4.1467** 2.8369*  9.1331   4.1467** 

Independent test 4.0921** 0.4668*  7.8411   0.3905*  7.4837   0.2630*  
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Conditional test 6.3509** 2.7256*  11.9878   3.2274*  16.6168   4.4097*  

Panel C Long Short Long Short Long Short 

HSI       
Ave. VaR -0.0446   0.0435   -0.0423   0.0421   -0.0383   0.0389   

Violation (%) 0.0312   0.0173   0.0323   0.0219   0.0266   0.0300   

Unconditional test 10.9094   1.6708*  11.9322   4.0401** 7.1628   9.9197   

Independent test 1.5962*  0.2299*  1.4471*  0.3707*  2.3022*  0.7000*  

Conditional test 12.5055   1.9007*  13.3793   4.4108*  9.4650   10.6197   

TAIEX       
Ave. VaR -0.0448   0.0435   -0.0439   0.0426   -0.0419   0.0407   

Violation (%) 0.0139   0.0092   0.0139   0.0115   0.0185   0.0150   

Unconditional test 0.5045*  0.0226*  0.5045*  0.0866*  2.1832*  0.8269*  

Independent test 0.8859*  0.0649*  0.8859*  0.1016*  0.4741*  0.7646*  

Conditional test 1.3904*  0.0875*  1.3904*  0.1882*  2.6573*  1.5915*  

KOSPI       
Ave. VaR -0.0517   0.0502   -0.0497   0.0489   -0.0453   0.0449   

Violation (%) 0.0115   0.0092   0.0115   0.0092   0.0139   0.0139   

Unconditional test 0.0866*  0.0226*  0.0866*  0.0226*  0.5045*  0.5045*  

Independent test 3.6513*  0.0649*  3.6513*  0.0649*  2.9885*  0.1466*  

Conditional test 3.7379*  0.0875*  3.7379*  0.0875*  3.4930*  0.6511*  

KLCI       
Ave. VaR -0.0343   0.0358   -0.0330   0.0355   -0.0296   0.0324   

Violation (%) 0.0081   0.0023   0.0104   0.0023   0.0127   0.0035   

Unconditional test 0.1494*  3.2613*  0.0058*  3.2613*  0.2555*  2.1700*  

Independent test 0.0496*  0.0040*  0.0822*  0.0040*  0.1231*  0.0091*  

Conditional test 0.1990*  3.2653*  0.0880*  3.2653*  0.3786*  2.1791*  

JCI       
Ave. VaR -0.0414   0.0406   -0.0410   0.0407   -0.0379   0.0378   

Violation (%) 0.0242   0.0185   0.0242   0.0185   0.0185   0.0208   

Unconditional test 5.5166** 2.1832*  5.5166** 2.1832*  2.1832*  3.3709*  

Independent test 4.6805** 2.0074*  4.6805** 2.0074*  2.2196*  0.3294*  

Conditional test 10.1970   4.1906*  10.1970   4.1906*  3.8904*  3.7003*  

SET       
Ave. VaR -0.0430   0.0453   -0.0420   0.0443   -0.0393   0.0421   

Violation (%) 0.0092   0.0081   0.0104   0.0104   0.0104   0.0115   

Unconditional test 0.0226** 0.1494*  0.0058** 0.0058*  0.0058*  0.0866*  

Independent test 8.1919   1.7914*  7.4455   1.3532*  1.3532*  1.1771*  

Conditional test 8.2146** 1.9408*  7.4513** 1.3590*  1.3590*  1.2638*  

1. ** (*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of likelihood ratio test 

(unconditional test) and independent test are      
            and      

           . The critical value of 

conditional test are      
            and      

             All of the average VaR and violation in the 

table are significant at 1% level, for convenience, the asterisk symbol of significance is not made. 

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     and     equal 

zero and    
    cannot be calculated. Therefore, one extreme small number, says      , is assigned to this 

term for the purpose of convenient to calculate independent test and Christoffersen (1998) unconditional 

coverage test.  
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Table 5.5 95% quantile daily VaR based on the method of generalized extreme value (GEV) 

 GEV(n=5) GEV(n=10) GEV(n=22) 

Panel A Long Short Long Short Long Short 

S&P500       
Ave. VaR -0.0154   0.0161   -0.0141   0.0148   -0.0124   0.0132   

Violation (%) 0.1315   0.0908   0.1444   0.1083   0.1595   0.1269   

Unconditional test 36.7910   10.6438   47.4125   20.2951   61.2382   33.1897   

Independent test 0.0306*  0.0006*  0.1559*  0.0004*  0.3658*  0.0010*  

Conditional test 36.8215   10.6444   47.5683   20.2954   61.6040   33.1907   

FTSE100       
Ave. VaR -0.0164   0.0164   -0.0143   0.0147   -0.0125   0.0128   

Violation (%) 0.1118   0.0908   0.1234   0.0990   0.1420   0.1339   

Unconditional test 22.5198   10.6438   30.5844   14.8309   45.4053   38.6450   

Independent test 0.5079*  0.0922*  0.6163*  0.0114*  1.0170*  0.0768*  

Conditional test 23.0277   10.7360   31.2007   14.8423   46.4223   38.7218   

CAC40       
Ave. VaR -0.0209   0.0215   -0.0191   0.0193   -0.0175   0.0176   

Violation (%) 0.1141   0.0908   0.1246   0.0920   0.1385   0.1281   

Unconditional test 24.0541   10.6438   31.4436   11.2063   42.4571   34.0765   

Independent test 4.0213** 0.2455*  3.4467*  0.1236*  2.3160*  0.5796*  

Conditional test 28.0753   10.8893   34.8904   11.3300   44.7730   34.6562   

DAX       
Ave. VaR -0.0220   0.0221   -0.0197   0.0200   -0.0174   0.0182   

Violation (%) 0.1024   0.0803   0.1222   0.0896   0.1304   0.1024   

Unconditional test 16.7980   6.1506** 29.7346   10.0936   35.8772   16.7980   

Independent test 4.8265** 0.0287*  3.8903** 0.0865*  4.4059** 0.0552*  

Conditional test 21.6245   6.1793** 33.6248   10.1801   40.2831   16.8532   

TSX       
Ave. VaR -0.0137   0.0139   -0.0123   0.0126   -0.0105   0.0111   

Violation (%) 0.1525   0.1246   0.1630   0.1339   0.1665   0.1548   

Unconditional test 54.6924   31.4436   64.6136   38.6450   68.0557   56.8436   

Independent test 0.4641*  0.5345*  0.6904*  2.4845*  0.4400*  0.1635*  

Conditional test 55.1565   31.9781   65.3040   41.1294   68.4957   57.0071   

Nikkei225       
Ave. VaR -0.0228   0.0231   -0.0216   0.0214   -0.0196   0.0196   

Violation (%) 0.0990   0.0757   0.0943   0.0768   0.1187   0.0861   

Unconditional test 14.8309   4.5023** 12.3675   4.8931** 27.2419   8.5178   

Independent test 0.0209*  0.8452*  0.1213*  0.7498*  0.0346*  0.2002*  

Conditional test 14.8519   5.3475*  12.4888   5.6429*  27.2766   8.7179** 

Panel B Long Short Long Short Long Short 

Merval        
Ave. VaR -0.0324   0.0333   -0.0297   0.0302   -0.0272   0.0282   

Violation (%) 0.0619   0.0397   0.0689   0.0502   0.0783   0.0584   

Unconditional test 1.0364*  2.8112*  2.5201*  0.0004*  5.3766** 0.5266*  

Independent test 1.6280*  0.7204*  2.3305*  0.1409*  1.8100*  0.1763*  

Conditional test 2.6644*  3.5316*  4.8506*  0.1414*  7.1867** 0.7028*  

Bovespa       
Ave. VaR -0.0317   0.0348   -0.0294   0.0310   -0.0267   0.0281   

Violation (%) 0.0771   0.0409   0.0911   0.0514   0.1028   0.0631   

Unconditional test 4.9682** 3.2398*  10.7587   0.0152*  16.9465   1.2417*  

Independent test 2.7597*  0.6303*  2.8793*  0.1057*  3.9357** 0.0481*  

Conditional test 7.7279** 3.8701*  13.6380   0.1210*  20.8823   1.2898*  

IGPA       
Ave. VaR -0.0099   0.0111   -0.0088   0.0101   -0.0143   0.0101   

Violation (%) 0.1168   0.0829   0.1262   0.1051   0.0689   0.1227   

Unconditional test 25.8178   7.1492   32.5292   18.3199   2.5201*  29.9413   

Independent test 15.0128   0.7467*  12.4656   3.4886*  5.4623** 1.9752*  

Conditional test 40.8306   7.8959** 44.9948   21.8085   7.9824** 31.9165   

Bolsa       
Ave. VaR -0.0231   0.0256   -0.0206   0.0229   -0.0184   0.0209   

Violation (%) 0.0736   0.0467   0.0911   0.0572   0.1157   0.0701   

Unconditional test 3.8292*  0.0855*  10.7587   0.3931*  25.0222   2.8243*  

Independent test 1.6915*  2.8985*  4.6026** 2.2634*  3.0490*  0.7955*  

Conditional test 5.5207*  2.9840*  15.3613   2.6564*  28.0713   3.6198*  
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Panel C Long Short Long Short Long Short 

HSI       
Ave. VaR -0.0230   0.0248   -0.0213   0.0227   -0.0182   0.0202   

Violation (%) 0.1212   0.0843   0.1443   0.1016   0.1617   0.1178   

Unconditional test 29.2572   7.7922   47.7882   16.4556   63.8486   26.7885   

Independent test 1.5587*  0.6079*  0.7565*  0.2385*  0.4948*  0.0430*  

Conditional test 30.8159   8.4001** 48.5447   16.6940   64.3433   26.8316   

TAIEX       
Ave. VaR -0.0247   0.0258   -0.0233   0.0246   -0.0214   0.0230   

Violation (%) 0.0727   0.0427   0.0785   0.0473   0.0901   0.0577   

Unconditional test 3.6148*  0.4398*  5.5300*  0.0568*  10.3794   0.4524*  

Independent test 0.0182*  0.0485*  0.2423*  0.0008*  0.0001*  0.0020*  

Conditional test 3.6330*  0.4883*  5.7724*  0.0576*  10.3794   0.4544*  

KOSPI       
Ave. VaR -0.0283   0.0286   -0.0255   0.0266   -0.0216   0.0234   

Violation (%) 0.0566   0.0358   0.0635   0.0427   0.0785   0.0531   

Unconditional test 0.3296*  1.7653*  1.3363*  0.4398*  5.5300** 0.0755*  

Independent test 0.7212*  0.2727*  0.2870*  0.0485*  0.0116*  0.0571*  

Conditional test 1.0509*  2.0380*  1.6233*  0.4883*  5.5417*  0.1326*  

KLCI       
Ave. VaR -0.0173   0.0189   -0.0145   0.0162   -0.0123   0.0141   

Violation (%) 0.0393   0.0312   0.0566   0.0462   0.0843   0.0704   

Unconditional test 0.9828*  3.2206*  0.3296*  0.1179*  7.7922   2.9513*  

Independent test 0.7385*  3.0190*  1.4226*  1.8203*  7.2597   2.9115*  

Conditional test 1.7212*  6.2396** 1.7523*  1.9381*  15.0519   5.8628*  

JCI       
Ave. VaR -0.0200   0.0216   -0.0181   0.0199   -0.0160   0.0173   

Violation (%) 0.0889   0.0589   0.1062   0.0727   0.1201   0.0889   

Unconditional test 9.8369   0.5937*  19.2004   3.6148*  28.4248   9.8369   

Independent test 9.5760   1.9752*  11.1302   1.7429*  10.9155   2.3941*  

Conditional test 19.4128   2.5689*  30.3306   5.3576*  39.3403   12.2310   

SET       
Ave. VaR -0.0236   0.0257   -0.0218   0.0235   -0.0190   0.0217   

Violation (%) 0.0647   0.0485   0.0727   0.0531   0.0820   0.0670   

Unconditional test 1.5649*  6.7134   3.6148*  0.0755*  6.8472   2.0716*  

Independent test 4.0022** 0.1921*  2.5329*  0.0571*  1.3135*  0.1470*  

Conditional test 5.5671*  6.9055** 6.1477** 0.1326*  8.1606** 2.2185*  

1. ** (*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of likelihood ratio test 

(unconditional test) and independent test are      
            and      

           . The critical value 

of conditional test are      
            and      

             All of the average VaR and violation in 

the table are significant at 1% level, for convenience, the asterisk symbol of significance is not made. 

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     and     equal 

zero and    
    cannot be calculated. Therefore, one extreme small number, says      , is assigned to this 

term for the purpose of convenient to calculate independent test and Christoffersen (1998) unconditional 

coverage test. 
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Table 5.6 Backtesting of 99% quantile daily VaR measured by generalized extreme value 

(GEV) based on 10-day returns 

 GEV(n=5) GEV(n=10) GEV(n=22) 

Panel A Long Short Long Short Long Short 

S&P500       
Ave. VaR -0.0671   0.0687   -0.0596   0.0614   -0.0671   0.0550   

Violation (%) 0.0617   0.0314   0.0768   0.0384   0.0617   0.0454   

Unconditional test 46.2211   11.0416   68.7494   17.6834   46.2211   25.3158   

Independent test 68.3836   33.5656   82.0366   36.6233   68.3836   35.9105   

Conditional test 114.6047   44.6072   150.7860   54.3067   114.6047   61.2263   

FTSE100       

Ave. VaR -0.0693   0.0677   -0.0628   0.0614   -0.0693   0.0557   

Violation (%) 0.0594   0.0291   0.0722   0.0407   0.0594   0.0547   

Unconditional test 43.0022   9.0822   61.5384   20.1258   43.0022   36.7844   

Independent test 85.0357   28.5957   86.2115   30.7447   85.0357   56.0921   

Conditional test 128.0379   37.6779   147.7499   50.8704   128.0379   92.8765   

CAC40       

Ave. VaR -0.0907   0.0876   -0.0801   0.0803   -0.0907   0.0728   

Violation (%) 0.0640   0.0361   0.0792   0.0442   0.0640   0.0524   

Unconditional test 49.5100   15.3505   72.4413   23.9818   49.5100   33.7913   

Independent test 89.0570   32.0434   89.5974   44.2096   89.0570   44.8982   

Conditional test 138.5670   47.3939   162.0387   68.1914   138.5670   78.6895   

DAX       

Ave. VaR -0.0954   0.1002   -0.0862   0.0894   -0.0954   0.0784   

Violation (%) 0.0594   0.0314   0.0640   0.0396   0.0594   0.0512   

Unconditional test 43.0022   11.0416   49.5100   18.8913   43.0022   32.3251   

Independent test 89.6196   50.7627   98.2322   46.5771   89.6196   53.5122   

Conditional test 132.6218   61.8044   147.7422   65.4683   132.6218   85.8373   

TSX        

Ave. VaR -0.0672   0.0665   -0.0608   0.0591   -0.0672   0.0532   

Violation (%) 0.0570   0.0314   0.0733   0.0454   0.0570   0.0547   

Unconditional test 39.8557   11.0416   63.3190   25.3158   39.8557   36.7844   

Independent test 67.9972   29.8041   62.3162   42.7729   67.9972   56.0921   

Conditional test 107.8529   40.8458   125.6352   68.0886   107.8529   92.8765   

Nikkei225       

Ave. VaR -0.0970   0.0924   -0.0885   0.0840   -0.0970   0.0778   

Violation (%) 0.0373   0.0175   0.0454   0.0244   0.0373   0.0361   

Unconditional test 16.5028   1.7163*  25.3158   5.6053** 16.5028   15.3505   

Independent test 41.8278   25.9025   46.4164   22.1852   41.8278   39.4385   

Conditional test 58.3307   27.6189   71.7322   27.7906   58.3307   54.7890   

Panel B Long Short Long Short Long Short 

Merval        
Ave. VaR -0.1574   0.1610   -0.1430   0.1469   -0.1290   0.1296   

Violation (%) 0.0292   0.0129   0.0315   0.0164   0.0339   0.0222   

Unconditional test 9.1331   0.2799*  11.0988   1.2724*  13.1975   4.1467** 

Independent test 72.8750   0.0257*  72.2788   0.0258*  71.9028   0.0374*  

Conditional test 82.0081   0.3056*  83.3776   1.2982*  85.1003   4.1841*  

Bovespa       
Ave. VaR -0.1439   0.1642   -0.1304   0.1468   -0.1142   0.1271   

Violation (%) 0.0175   0.0012   0.0210   0.0023   0.0245   0.0093   

Unconditional test 1.7361*  4.7308*  3.4671*  3.1942*  5.6438** 0.0164*  

Independent test 30.7140   0.0010*  34.9505   0.0010*  43.8023   0.0256*  

Conditional test 32.4501   4.7318*  38.4176   3.1952*  49.4461   0.0421*  

IGPA       
Ave. VaR -0.0657   0.0672   -0.0582   0.0613   -0.0512   0.0553   

Violation (%) 0.0502   0.0187   0.0631   0.0280   0.0864   0.0421   

Unconditional test 30.9876   2.2588*  48.0003   8.2033   84.0531   21.4717   

Independent test 85.9340   0.1035*  95.9676   0.1767*  117.3510   0.1792*  

Conditional test 116.9216   2.3624*  143.9678   8.3800** 201.4041   21.6509   

Bolsa       
Ave. VaR -0.1092   0.1242   -0.0988   0.1114   -0.0894   0.1000   

Violation (%) 0.0269   0.0140   0.0304   0.0199   0.0386   0.0292   

Unconditional test 7.3107   0.5391*  10.0987   2.8369*  17.7594   9.1331   

Independent test 44.5563   0.0258*  43.4207   0.0840*  52.4394   0.1047*  

Conditional test 51.8670   0.5649*  53.5195   2.9209*  70.1988   9.2378   
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Panel C Long Short Long Short Long Short 

HSI       
Ave. VaR -0.1210   0.1228   -0.1075   0.1090   -0.0932   0.0991   

Violation (%) 0.0335   0.0323   0.0427   0.0404   0.0600   0.0520   

Unconditional test 12.9872   11.9322   22.4662   19.9350   44.2858   33.5266   

Independent test 38.6259   0.1494*  53.7896   0.1769*  52.1704   63.6743   

Conditional test 51.6131   12.0817   76.2558   20.1118   96.4562   97.2009   

TAIEX       
Ave. VaR -0.1196   0.1262   -0.1110   0.0920   -0.1034   0.0985   

Violation (%) 0.0277   0.0069   0.0381   0.0289   0.0485   0.0254   

Unconditional test 8.0450   0.4016*  17.5073   8.9645   29.2132   6.3195   

Independent test 42.7491   0.0162*  52.6629   0.1034*  57.0716   140.3977   

Conditional test 50.7942   0.4718*  70.1702   9.0679** 86.2848   256.2839   

KOSPI       
Ave. VaR -0.1334   0.1873   -0.1211   0.0939   -0.1088   0.1050   

Violation (%) 0.0196   0.0012   0.0266   0.0300   0.0370   0.0208   

Unconditional test 2.7510*  4.8080** 7.1628   9.9197   16.3341   3.3709*  

Independent test 23.1131   0.0010*  31.3555   0.2029*  50.1933   25.9607   

Conditional test 25.8640   4.8090*  38.5184   10.1226   66.5274   29.3316   

KLCI       
Ave. VaR -0.1128   0.0798   -0.0971   0.0822   -0.0822   0.0783   

Violation (%) 0.0115   0.0035   0.0219   0.0046   0.0358   0.0058   

Unconditional test 0.0866*  2.1700*  4.0401** 1.3749*  15.1891   0.8003*  

Independent test 10.4911   0.0040*  33.2669   0.0040*  47.7097   11.5189   

Conditional test 10.5778   2.1741*  37.3071   1.3790*  62.8988   12.3193   

JCI       
Ave. VaR -0.1210   0.1324   -0.1090   0.1028   -0.0941   0.1049   

Violation (%) 0.0462   0.0115   0.0520   0.0300   0.0589   0.0242   

Unconditional test 26.4455   0.0866*  33.5266   9.9197   42.6927   5.5166** 

Independent test 84.2096   0.0254*  96.2150   0.1253*  94.6597   30.1088   

Conditional test 110.6551   0.1120*  129.7416   10.0450   137.3524  35.6254   

SET       
Ave. VaR -0.1332   0.1422   -0.1227   0.1056   -0.1097   0.1104   

Violation (%) 0.0196   0.0023   0.0219   0.0208   0.0266   0.0185   

Unconditional test 2.7510*  3.2613*  4.0401** 3.3709*  7.1628   2.1832*  

Independent test 48.4535   0.0040*  48.7725   0.0502*  55.1194   29.0246   

Conditional test 51.2045   3.2653*  52.8127   3.4211*  62.2823   31.2078   

1. ** (*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of likelihood ratio test 

(unconditional test) and independent test are      
            and      

           . The critical value 

of conditional test are      
            and      

             All of the average VaR and violation in 

the table are significant at 1% level, for convenience, the asterisk symbol of significance is not made. 

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     and     equal 

zero and    
    cannot be calculated. Therefore, one extreme small number, says      , is assigned to this 

term for the purpose of convenient to calculate independent test and Christoffersen (1998) unconditional 

coverage test. 

 

 

  



Chapter 5 Results and Findings                                                           

175 
 

5.2.2 VaR backtesting of competing models 

The second part of the univariate analysis is the analysis of four competing models, 

GARCH(1,1), RiskMetrics, stochastic volatility, and historical simulation. The focus of this 

section is the backtesting results of the competing VaR models, rather than the estimation of 

parameters in these models since that is not the core focus of this thesis. Some parts of the 

estimation will be briefly discussed for the purpose of understanding the procedure of VaR. 

Before the backtesting analysis, the average forecasted VaR of four competing VaR estimates 

are shown in Table 5.7. In general, the developed equity markets have the lowest market risk 

and the market risk in Latin American equity markets are the highest. For example, the VaR of 

Argentinean (Merval) and Brazilian (Bovespa) equity indices indicate that they have higher 

market risk in both the long and short positions. The former was affected by several economic 

and financial crises, for example the economic crisis from 1999 to 2002 and the global 

financial crisis in 2008. Brazil also experienced an economic crisis in 1999 and the global 

financial crisis in 2008. Unexpectedly, the forecasted VaR of the Chilean equity index is quite 

low, but it is still consistent with its daily return pattern shown in Figure 4.15. 

 

Table 5.7 Average VaRs of the four competing models 

 VaR0.99 VaR0.95  

Panel A GARCH(1,1) Long Short Long Short   

S&P500 -0.0340 0.0345 -0.0240 0.0245   

FTSE100 -0.0325 0.0277 -0.0229 0.0233   

CAC40 -0.0417 0.0421 -0.0294 0.0299   

DAX -0.0410 0.0415 -0.0289 0.0295   

TSX -0.0326 0.0332 -0.0230 0.0235   

Nikkei225 -0.0388 0.0325 -0.0275 0.0272   

Merval  -0.0460 0.0393 -0.0324 0.0330   

Bovespa -0.0475 0.0411 -0.0335 0.0346   

IGPA -0.0211 0.0183 -0.0148 0.0154   

Bolsa -0.0364 0.0318 -0.0256 0.0268   

HSI -0.0462 0.0396 -0.0326 0.0333   

TAIEX -0.0360 0.0305 -0.0254 0.0256   

KOSPI -0.0377 0.0321 -0.0266 0.0270   

KLCI -0.0232 0.0198 -0.0164 0.0167   

JCI -0.0383 0.0391 -0.0270 0.0278   

SET -0.0362 0.0361 -0.0256 0.0255   

Panel B RiskMetrics Long Short Long Short   
S&P500 -0.0260 0.0260 -0.0184 0.0184   

FTSE100 -0.0260 0.0260 -0.0184 0.0184   

CAC40 -0.0327 0.0327 -0.0231 0.0231   
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DAX -0.0346 0.0346 -0.0245 0.0245   

TSX -0.0235 0.0235 -0.0166 0.0166   

Nikkei225 -0.0344 0.0344 -0.0243 0.0243   

Merval  -0.0515 0.0515 -0.0364 0.0364   

Bovespa -0.0523 0.0523 -0.0370 0.0370   

IGPA -0.0175 0.0175 -0.0123 0.0123   

Bolsa -0.0372 0.0372 -0.0263 0.0263   

HSI -0.0391 0.0391 -0.0276 0.0276   

TAIEX -0.0380 0.0380 -0.0269 0.0269   

KOSPI -0.0433 0.0433 -0.0306 0.0306   

KLCI -0.0337 0.0337 -0.0238 0.0238   

JCI -0.0359 0.0359 -0.0254 0.0254   

SET -0.0388 0.0388 -0.0275 0.0275   

Panel C: SV model Long Short Long Short   
S&P500 -0.0291 0.0241 -0.0141 0.0141   

FTSE100 -0.0430 0.0430 -0.0303 0.0303   

CAC40 -0.0206 0.0204 -0.0145 0.0145   

DAX -0.0272 0.0272 -0.0191 0.0191   

TSX -0.0197 0.0197 -0.0138 0.0138   

Nikkei225 -0.0947 0.0947 -0.0670 0.0670   

Merval  -0.0486 0.0486 -0.0343 0.0343   

Bovespa -0.0426 0.0426 -0.0300 0.0300   

IGPA -0.0405 0.0405 -0.0286 0.0286   

Bolsa -0.0485 0.0485 -0.0341 0.0341   

HSI -0.0311 0.0318 -0.0219 0.0226   

TAIEX -0.1478 0.1480 -0.1045 0.1046   

KOSPI -0.0649 0.0318 -0.0321 0.0226   

KLCI -0.0119 0.0119 -0.0084 0.0084   

JCI -0.0272 0.0272 -0.0192 0.0193   

SET -0.0733 0.0733 -0.0518 0.0518   

Panel D: HS model VaR0.99 (n=1250) VaR0.99 (n=750) VaR0.99 (n=250) 
S&P500 -0.0356 0.0290 -0.0379 0.0330 -0.0455 0.0387 

FTSE100 -0.0362 0.0300 -0.0381 0.0328 -0.0418 0.0424 

CAC40 -0.0440 0.0351 -0.0461 0.0404 -0.0506 0.0546 

DAX -0.0444 0.0364 -0.0445 0.0387 -0.0496 0.0523 

TSX -0.0326 0.0271 -0.0380 0.0308 -0.0434 0.0359 

Nikkei225 -0.0424 0.0359 -0.0477 0.0373 -0.0552 0.0429 

Merval  -0.0518 0.0466 -0.0545 0.0449 -0.0614 0.0465 

Bovespa -0.0516 0.0471 -0.0544 0.0508 -0.0577 0.0564 

IGPA -0.0237 0.0189 -0.0272 0.0199 -0.0304 0.0238 

Bolsa -0.0394 0.0375 -0.0427 0.0396 -0.0437 0.0449 

HSI -0.0413 0.0384 -0.0438 0.0449 -0.0524 0.0576 

TAIEX -0.0403 0.0338 -0.0408 0.0329 -0.0433 0.0373 

KOSPI -0.0404 0.0355 -0.0454 0.0367 -0.0491 0.0388 

KLCI -0.0250 0.0205 -0.0281 0.0214 -0.0295 0.0230 

JCI -0.0438 0.0364 -0.0479 0.0407 -0.0506 0.0445 

SET -0.0337 0.0318 -0.0364 0.0337 -0.0441 0.0375 

Note: The null hypothesis of average VaR (H0: mean VaR=0) is significantly rejected at 1% level, for 

convenience, the asterisk symbol of significance is not made. J.P. Morgan’s RiskMetrics model is assumed that 

the mean return is zero. Thus, forecasted VaR on this approach is symmetrical.  

 

 

5.2.2.1 GARCH (1,1) model 

The first competing model is based on a commonly used econometric volatility model 

proposed by Bollerslev (1986). The detail of this model has been described in Section 4.4.1. 
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The best choice for the length of AR and MA should not be considered at this stage
73

, and 

thus the GARCH(1,1) model is adopted in this section. The backtesting results of the GARCH 

(1,1) model are shown in Table 5.7. In general, the GARCH (1,1) model produces very 

satisfactory backtesting results since most of them are significant at 95%. In addition, the 

significances of the unconditional and conditional tests are very balanced. However, in the 

comparison between the long and short positions, the violation rate in the long position tends 

to be larger than the one of the short position. Moreover, most results show that the violation 

rate of the short position is closer to 1% or 5%. For example, the average violation rates of the 

developed, Latin American, and Asian indices in the long (short) positions are 0.0250, 0.0210, 

and 0.0210 (0.0169, 0.0257, and 0.0196), respectively. Consequently, this outcome indicates 

that the GARCH (1,1) model is more suitable for measuring VaR in the short positions rather 

than the long positions, particularly in the developed and Asian equity markets. On the other 

hand, the forecasted VaRs of the Latin American equity indices cover more actual returns. For 

example, the average of all the violation ratios of panel B in Table 5.7, are 0.0210 and 0.0257 

(0.0616, and 0.0447) for the long and short position of VaR0.99 (VaR0.95), respectively. The 

corresponding violation ratios are 0.0250, 0.0169, 0.0759, and 0.0446 in panel A, and 0.0210, 

0.0196, 0.0563, and 0.0444 in panel C respectively.  

 

 

Table 5.8 Backtesting of VaR measured by GARCH model 

 VaR0.99 VaR0.95 

Panel A Long Short Long Short 

S&P500     
Violation (%) 0.0349   0.0116   0.0768   0.0396   

Unconditional test 14.2273   0.0964*  4.8931** 18.8913   

Independent test 0.0310*  1.1708*  0.5348*  0.0460*  

Conditional test 14.2583   1.2672*  5.4279*  18.9373   

FTSE100     

                                                      
73

 There are two main reasons to support this. Firstly, GARCH(1,1) can be used as an approach for extending 

the RiskMetrics presented in the next section, by releasing the restriction in the parameters. Due to the 

consistency between these two methods, the GARCH model is set with first order in the AR and MA term. 

Secondly, the VaR forecasting procedure is based on a fixed-window rolling sample. For each equity index, the 

forecasting procedure will be repeated more than 850 times. In this manner, the optimal choice of the length of 

AR and MA might not be identical. Thus, it seems meaningless to decide the order of AR and MA here. 
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Violation (%) 0.0256   0.0245   0.0722   0.0547   

Unconditional test 6.4154** 5.6053** 3.4172*  0.1696*  

Independent test 0.1265*  0.1248*  0.6256*  0.5159*  

Conditional test 6.5420*  5.7302*  4.0428*  0.6855*  

CAC40     
Violation (%) 0.0210   0.0140   0.0850   0.0501   

Unconditional test 3.4380*  0.5286*  8.0180   1.8937*  

Independent test 1.6220*  0.1242*  4.9523** 1.8808*  

Conditional test 5.0600*  0.6528*  12.9703   3.7745*  

DAX     
Violation (%) 0.0221   0.0163   0.0698   0.0466   

Unconditional test 4.1145** 1.2557*  2.7689*  0.0947*  

Independent test 1.4577*  0.1739*  4.0775** 0.1667*  

Conditional test 5.5721*  1.4296*  6.8464** 0.2614*  

TSX     
Violation (%) 0.0279   0.0093   0.0827   0.0326   

Unconditional test 8.1555   0.0182*  7.0576   2.6985*  

Independent test 0.0534*  0.0654*  0.3631*  0.8206*  

Conditional test 8.2089*  0.0836*  7.4207*  3.5191*  

Nikkei225     
Violation (%) 0.0186   0.0256   0.0687   0.0442   

Unconditional test 2.2359*  6.4154   2.4680*  0.2709*  

Independent test 0.4690*  0.1265*  0.0004*  0.1524*  

Conditional test 2.7049*  6.5420*  2.4684*  0.4233*  

Ave. violation 0.0250 0.0169 0.0759 0.0446 

Panel B Long Short Long Short 

Merval      
Violation (%) 0.0187   0.0234   0.0561   0.0397   

Unconditional test 2.2588*  4.8730** 0.2784*  0.8872*  

Independent test 1.9895*  0.4161*  0.2726*  1.1525*  

Conditional test 4.2484*  5.2891*  0.5509*  2.0396*  

Bovespa     
Violation (%) 0.0175   0.0234   0.0619   0.0409   

Unconditional test 1.7361*  4.8730** 1.0364*  0.6911*  

Independent test 0.2327*  1.0365*  0.2838*  1.2980*  

Conditional test 1.9688*  5.9095*  1.3202*  1.9891*  

IGPA     
Violation (%) 0.0280   0.0327   0.0666   0.0549   

Unconditional test 8.2033   12.1321   1.9595*  0.1828*  

Independent test 3.7387*  3.8457** 4.8191** 0.8882*  

Conditional test 11.9420   15.9779   6.7786** 1.0710*  

Bolsa     
Violation (%) 0.0199   0.0234   0.0619   0.0432   

Unconditional test 2.8369*  4.8730** 1.0364*  0.3758*  

Independent test 0.2996*  1.0365*  0.0723*  0.0440*  

Conditional test 3.1365*  5.9095*  1.1087*  0.4198*  

Ave. violation 0.0210 0.0257 0.0616 0.0447 

Panel C Long Short Long Short 

HSI     
Violation (%) 0.0173   0.0265   0.0657   0.0461   

Unconditional test 1.6643*  7.1482   1.7955*  0.1214*  

Independent test 0.5609*  0.5451*  0.5808*  1.6832*  

Conditional test 2.2252*  7.6933** 2.3763*  1.8045*  

TAIEX     
Violation (%) 0.0265   0.0173   0.0565   0.0358   

Unconditional test 7.1482   1.6643*  0.3236*  1.7782*  

Independent test 0.5451*  0.4756*  0.0089*  0.0052*  

Conditional test 7.6933** 2.1399*  0.3325*  1.7834*  

KOSPI     
Violation (%) 0.0219   0.0196   0.0611   0.0415   

Unconditional test 4.0296** 2.7425*  0.9198*  0.6031*  

Independent test 0.3702*  0.3307*  0.0816*  0.0874*  

Conditional test 4.3998*  3.0732*  1.0014*  0.6905*  
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KLCI     
Violation (%) 0.0173   0.0334   0.0496   0.0519   

Unconditional test 1.6643*  12.9664   0.0013*  0.0284*  

Independent test 0.5609*  6.8167** 0.6383*  3.0892*  

Conditional test 2.2252*  19.7831   0.6396*  3.1176*  

JCI     
Violation (%) 0.0277   0.0138   0.0565   0.0438   

Unconditional test 8.0294   0.5011*  0.3236*  0.3144*  

Independent test 2.1102*  0.1465*  4.5811** 0.4169*  

Conditional test 10.1396   0.6476*  4.9047*  0.7313*  

SET     
Violation (%) 0.0150   0.0069   0.0484   0.0473   

Unconditional test 0.8225*  0.4043*  0.0194*  0.0593*  

Independent test 5.2659** 0.0364*  3.7674*  0.2405*  

Conditional test 6.0884** 0.4407*  3.7868*  0.2997*  

Ave. violation 0.0210   0.0196   0.0563   0.0444   

1. **(*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of the 

likelihood ratio test (unconditional test) and the independent test are      
            and 

     
           . The critical values of the conditional test are      

            and 

     
             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     

and     equal zero and    
    cannot be calculated. Therefore, one extreme small number, 

say      , is assigned to this term for the purpose of convenience to calculate the independent 

test and Christoffersen’s (1998) unconditional coverage test. 
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5.2.2.2 RiskMetrics models 

The second competing VaR model was proposed by the famous investment bank, J. P. Morgan, 

in 1996, and its formula is presented in Eq. (4.29) and (4.31). Following J.P. Morgan’s 

suggestion, the decay factor () is set as 0.94 for the daily returns. The backtesting results of 

this method are displayed in Table 5.9.  

Overall, VaRRM offers a range of satisfactory results for the three sets of return series, 

particularly the Asian market (panel C). However, it is surprising that the poor back-testing 

performance in developed equity markets (panel A), has the highest violation rate compared 

with the other two markets. The average of all the violation rates in panel A are 0.0520, 

0.0324, 0.0990, and 0.0761 for the long and short position of VaRRM,0.99 and VaRRM,0.95, 

respectively. The highest violation rate (some violation rates are even more than 10%) of the 

developed equity markets indicates that the RiskMetrics model might not be appropriate to 

forecast the market risk in the six developed equity markets. This phenomenon implies that 

the VaRRM might underestimate the market risk in developed equity markets, which are not as 

tranquil as we generally think
74

. On the other hand, violation rates in the Latin American 

panel are 0.0292, 0.0216, 0.0611, and 0.0476, and the ones of the Asian indices are 0.0237, 

0.0158, 0.0548, and 0.0396. Another possible reason for the poor performance of this 

approach is the nature of its volatility assumption. According to the discussion in section 4.4.2, 

the RiskMetrics model can be regarded as a simplified version of the GARCH (1,1) model 

with a restriction in parameters. Thus, some information in the market might not have been 

fully described due to the hypothetical value of the decay factor, . It is unreasonable to set 

aside all the return series in the same decay process across several years.  

 

                                                      
74

 This intuition is a general impression. Theoretically, developed equity markets have stronger transparency 

and more efficiency due to the quality of investors and market regulation. They also have a good flow of 

market information. Thus, the index return would be less volatile, and the index return would have lower risk. 

This should mean that the market risk would be easy to forecast with VaR models.  
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Table 5.9 Backtesting of VaR measured by RiskMetrics model 

 VaRRM,0.99 VaRRM,0.95 

Panel A Long Short Long Short 

S&P500     
Violation (%) 0.0629   0.0419   0.1141   0.0827   

Unconditional test 47.8570   21.3861   24.0541   7.0576   

Independent test 0.0502*  0.5522*  0.0724*  0.8597*  

Conditional test 47.9071   21.9383   24.1265   7.9173*  

FTSE100     
Violation (%) 0.0477   0.0396   0.0966   0.0768   

Unconditional test 28.0532   18.8913   13.5760   4.8931** 

Independent test 0.0004*  0.0460*  0.9350*  1.1927*  

Conditional test 28.0537   18.9373   14.5110   6.0858** 

CAC40     
Violation (%) 0.0512   0.0314   0.0990   0.0687   

Unconditional test 32.3251   11.0416   14.8309   2.4680*  

Independent test 1.2369*  0.7621*  1.1817*  1.5895*  

Conditional test 33.5620   11.8037   16.0126   4.0575*  

DAX     
Violation (%) 0.0419   0.0233   0.0827   0.0652   

Unconditional test 21.3861   4.8377** 7.0576   1.6612*  

Independent test 0.0918*  0.4146*  0.3631*  1.2995*  

Conditional test 21.4780   5.2523*  7.4207** 2.9607*  

TSX     
Violation (%) 0.0710   0.0338   0.1269   0.0966   

Unconditional test 59.7728   13.1340   33.1897   13.5760   

Independent test 0.7124*  0.0002*  0.0536*  0.0001*  

Conditional test 60.4852   13.1342   33.2434   13.5761   

Nikkei225     
Violation (%) 0.0373   0.0244   0.0745   0.0664   

Unconditional test 16.5028   5.6053** 4.1258** 1.9139*  

Independent test 0.0155*  1.1667*  0.0054*  0.5602*  

Conditional test 16.5183   6.7721** 4.1312*  2.4741*  

Ave violation(%) 0.0520  0.0324  0.0990  0.0761  

Panel B Long Short Long Short 

Merval      
Violation (%) 0.0234   0.0164   0.0514   0.0292   

Unconditional test 4.8730** 1.2724*  0.0152*  3.9537** 

Independent test 0.2104   0.2024*  0.5347*  0.0412*  

Conditional test 5.0834*  1.4748*  0.5499*  3.9948*  

Bovespa     
Violation (%) 0.0175   0.0152   0.0479   0.0374   

Unconditional test 1.7361*  0.8718*  0.0351*  1.3600*  

Independent test 0.5524*  0.1743*  0.1815*  0.0161*  

Conditional test 2.2885*  1.0461*  0.2166*  1.3761*  

IGPA     
Violation (%) 0.0502   0.0304   0.0888   0.0818   

Unconditional test 30.9876   10.0987   9.6639   6.6856   

Independent test 2.3168*  0.6138*  8.5238   0.4204*  

Conditional test 33.3044   10.7125   18.1877   7.1060   

Bolsa     
Violation (%) 0.0257   0.0245   0.0561   0.0421   

Unconditional test 6.4570** 5.6438*  0.2784*  0.5209*  

Independent test 1.0335*  0.1646*  3.5311*  0.0670*  

Conditional test 7.4904** 5.8084*  3.8095*  0.5879*  

Ave. violation(%) 0.0292  0.0216  0.0611  0.0476  

Panel C Long Short Long Short 

HSI    
Violation (%) 0.0450   0.0300   0.0865   0.0704   

Unconditional test 25.0643   9.9020   8.7551   2.9324*  
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Independent test 0.3522*  0.6991*  1.3960*  0.3073*  

Conditional test 25.4164   10.6011   10.1510   3.2397*  

TAIEX     
Violation (%) 0.0277   0.0185   0.0681   0.0404   

Unconditional test 8.0294   2.1757*  2.3324*  0.7849*  

Independent test 0.0676*  0.2616*  0.1121*  00634*  

Conditional test 8.0970** 2.4373*  2.4445*  0.8482*  

KOSPI     
Violation (%) 0.0185   0.0115   0.0461   0.0265   

Unconditional test 2.1757*  0.0853*  0.1214*  5.2303** 

Independent test 2.0091*  0.1015*  0.2934*  0.0961*  

Conditional test 4.1849*  0.1868*  0.4148*  5.3265*  

KLCI     
Violation (%) 0.0081   0.0035   0.0219   0.0127   

Unconditional test 0.1511*  2.1757*  7.8468   15.5405   

Independent test 0.0495*  0.0091*  1.4710*  0.1229*  

Conditional test 0.2006*  2.1848*  9.3178   15.6634   

JCI     
Violation (%) 0.0334   0.0196   0.0588   0.0473   

Unconditional test 12.9664   2.7425*  0.5855*  0.0593*  

Independent test 3.8842** 1.8145*  6.3919** 1.6712*  

Conditional test 16.8505   4.5570*  6.9774** 1.7304*  

SET     
Violation (%) 0.0092   0.0115   0.0473   0.0404   

Unconditional test 0.0233*  0.0853*  0.0593*  0.7849*  

Independent test 1.5566*  0.1015*  2.3641*  0.1022*  

Conditional test 1.5799*  0.1868*  2.4233*  0.8871*  

Ave. violation(%) 0.0237  0.0158  0.0548  0.0396  

1. ** (*)means the null hypothesis is not rejected at 1% (5%) level. The critical values of the 

likelihood ratio test (unconditional test) and the independent test are      
            and 

     
           . The critical values of the conditional test are      

            and 

     
             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     

and     equal zero and    
    cannot be calculated. Therefore, one extreme small number, 

say      , is assigned to this term for the purpose of convenience to calculate the independent 

test and Christoffersen’s (1998) unconditional coverage test. 

 

 

5.2.2.3 Stochastic volatility model (SV) 

As mentioned in Chapter 2, the process of dynamic volatility can be described using two basic 

methodologies: the GARCH model and the method of stochastic volatility. In this subsection 

nothing new to the stochastic volatility process will be provided, except the results of the VaR 

model based on Harvey, Ruiz and Shephard (1994).  

The results of backtesting are shown in Table 5.10. Roughly speaking, this VaR model 

demonstrated a poor performance, especially in panel A (i.e. the indices in developed equity 

markets) and C (Asian equity indices). However, the independence test shows that the 

violations tend to be independent in general. There are two indices (FTSE100 and Nikkei225) 
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significant at the 5% level in the developed markets, and very few parts in the Asian markets 

(VaR0.95 of TAIEX long position and VaR0.95 of KOSPI short position) are significant. Most 

results of conditional tests significantly reject the null hypothesis. Similar to the GARCH (1,1) 

model, the violation rate in the long pattern is systematically higher than in the short position. 

A possible explanation is that the stochastic volatility model is good at capturing the property 

of dynamics, but it might ignore the fatness of the return distribution. Thus, the value of the 

forecasted VaRs would be systematically smaller than the actual returns. Another cause of the 

high violation rate is the convergence issue of the stochastic model. On average, the 

un-converged observations of the developed and Asian markets are about 7% and 10%. Those 

non-converged observations would cause the forecasted VaR to be larger or smaller than they 

should be, and thus eventually lead to a higher violation rate. In summary, the stochastic 

volatility might not be good enough for measuring the VaR of the equity indices. This 

non-converged issue would cause a significant impact in the analysis of MSE in the later 

section. From the results of VaR backtesting and the issue of convergence, the stochastic 

volatility process does not seem to be a good VaR forecast. 

 

 

 

 

 

 

 

Table 5.10 Backtesting of VaR measured by stochastic volatility model 

 VaR0.99 VaR0.95 

Panel A Long Short Long Short 

S&P500     
Violation (%) 0.0559   0.0501   0.1630   0.1350   

Unconditional test 38.3104   30.8797   64.6136   39.5851   

Independent test 0.0174   0.0055*  0.2259*  0.5343*  

Conditional test 38.3278   30.8852   64.8395   40.1194   

FTSE100     
Violation (%) 0.0163   0.0151   0.0466   0.0279   

Unconditional test 1.2557*  0.8582*  0.0947*  4.5173** 

Independent test 0.2017*  0.1737*  0.9052*  0.6000*  

Conditional test 1.4574*  1.0319*  0.9999*  5.1173*  

CAC40     
Violation (%) 0.1211   0.1059   0.1932   0.1758   

Unconditional test 147.2334   118.5645   96.5489   77.5523   
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Independent test 1.1850*  0.7045*  1.5652*  2.1675*  

Conditional test 148.4184   119.2689   98.1142   79.7198   

DAX     
Violation (%) 0.0629   0.0489   0.1246   0.1036   

Unconditional test 47.8570   29.4556   31.4436   17.4759   

Independent test 0.0502*  0.3158*  4.1510** 1.7921*  

Conditional test 47.9071   29.7714   35.5946   19.2680   

TSX     
Violation (%) 0.1001   0.0617   0.1537   0.1234   

Unconditional test 108.0070   46.2211   55.7641   30.5844   

Independent test 0.3300*  0.3941*  0.6275*  0.1977*  

Conditional test 108.3370   46.6153   56.3916   30.7822   

Nikkei225     
Violation (%) 0.0105   0.0070   0.0221   0.0175   

Unconditional test 0.0085*  0.3830*  7.6451   10.9820   

Independent test 1.3467*  5.6469** 0.2649*  7.1311   

Conditional test 1.3551*  6.0298** 7.9099** 18.1131   

Ave. Violation (%) 0.0611  0.0481  0.1172  0.0972  

Panel B Long Short Long Short 

Merval      
Violation (%) 0.0257   0.0070   0.0561   0.0315   

Unconditional test 6.4570** 0.3751*  0.2784*  3.0519*  

Independent test 2.4842*  0.0368*  1.5217*  0.7649*  

Conditional test 8.9412** 0.4119*  1.8000*  3.8167*  

Bovespa     
Violation (%) 0.0386   0.0210   0.0876   0.0631   

Unconditional test 17.7594   3.4671*  9.1352   1.2417*  

Independent test 0.0297*  0.3363*  0.8236*  0.0481*  

Conditional test 17.7891   3.8034*  9.9589   1.2898*  

IGPA     
Violation (%) 0.0105   0.0047   0.0187   0.0082   

Unconditional test 0.0098*  1.3281*  9.9833   20.7613   

Independent test 0.0832*  0.0163*  4.0921** 0.0502*  

Conditional test 0.0929*  1.3444*  14.0753   20.8115   

Bolsa     
Violation (%) 0.0175   0.0105   0.0397   0.0245   

Unconditional test 1.7361*  0.0098*  0.8872*  6.1994** 

Independent test 4.4398** 1.3439*  6.0116** 1.1620*  

Conditional test 6.1760** 1.3536*  6.8988** 7.3614** 

Ave. Violation (%) 0.0231  0.0108  0.0505  0.0318  

Panel C Long Short Long Short 

HSI     
Violation (%) 0.0854   0.0588   0.1315   0.1223   

Unconditional test 83.2910   42.6487   37.0855   30.0302   

Independent test 3.8191*  0.0000*  1.2690*  0.0249*  

Conditional test 87.1102   42.6487   38.3545   30.0551   

TAIEX     
Violation (%) 0.0669   0.0715   0.0738   0.0865   

Unconditional test 54.1555   61.0902   3.9468** 8.7551   

Independent test 0.2286*  0.0109*  0.0793*  0.0943*  

Conditional test 54.3841   61.1010   4.0261*  8.8494** 

KOSPI     
Violation (%) 0.0346   0.0358   0.1107   0.0738   

Unconditional test 14.0513   15.1662   22.0568   3.9468** 

Independent test 0.3312*  0.2737*  0.0066*  2.3614*  

Conditional test 14.3825   15.4398   22.0633   6.3082** 

KLCI     
Violation (%) 0.1234   0.1223   0.1684   0.1915   

Unconditional test 153.2342   150.9504   70.6319   95.4209   

Independent test 9.7390   3.7684*  11.1498   2.3214*  

Conditional test 162.9732   154.7189   81.7817   97.7423   

JCI     
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Violation (%) 0.0565   0.0484   0.1015   0.1003   

Unconditional test 39.5193   29.1788   16.4071   15.7492   

Independent test 10.7519   3.7674*  10.3078   0.4157*  

Conditional test 50.2712   32.9462   26.7149   16.1649   

SET     
Violation (%) 0.1084   0.1315   0.1269   0.1534   

Unconditional test 124.2964   169.4758   33.4855   56.0370   

Independent test 8.0576   9.1699   9.6499   10.7213   

Conditional test 132.3540   178.6457   43.1354   66.7582   

Ave. Violation (%) 0.0792  0.0781  0.1188  0.1213  

1. ** (*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of the 

likelihood ratio test (unconditional test) and the independent test are      
            and 

     
           . The critical values of the conditional test are      

            and 

     
             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     

and     equal zero and    
    cannot be calculated. Therefore, one extreme small number, 

say      , is assigned to this term for the purpose of convenience to calculate the independent 

test and Christoffersen’s (1998) unconditional coverage test. 
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5.2.2.4 Historical simulation 

The last competing model is easy to implement in practice, and is called historical simulation 

(denoted HS). Actually, according to Pérignon and Smith (2010), approximately 47% of their 

surveyed banks use the method of historical simulation to compute their VaRs. Thus, it is 

essential to include this approach to compete against the GEV model. This method has been 

refined for many years, and a filtered historical simulation proposed by Barone-Adesi et al. 

(1999) is adopted in this section to measure VaR. The procedures of measurement are 

discussed in Section 4.4.4. 

For the measurement, an i.i.d sequence of each return series is essential. According to 

Barone-Adesi et al. (1999), this could be made using a GARCH model. The length of lag is 

tested
75

 and the best choice of the various models are shown in Table 5.11. In addition, the 

backtesting results are exhibited from Table 5.12 to Table 5.13. The evidence in Table 5.11 

shows that the length of lag of all the return series are within the boundary using 

GARCH(2,2), but only three indices fit well using GARCH(1,1). This is quite different from 

previous research
76

 (Barone-Adesi et al. (1999), Longin (2000), and Jalal and Rockinger 

(2008)). On the other hand, some interesting outcomes are presented in the backtesting results 

of VaR0.99 and VaR0.95 in Table 5.12 and Table 5.13. Firstly, the performance of the forecasted 

VaR based on the HS model negatively relates to the size of n. Clearly, using a longer period 

of data to estimate the empirical distribution and VaR will be more likely to produce higher 

violation rates because the VaR is underestimated. For example, all of the conditional and 

unconditional tests tend to accept the null hypothesis (    exceedance ratio=) in the part of 

n=250 in panel A. By contrast, only one in the panel of VaR(n=1250), the long position of 

DAX, accepts the null hypothesis. Similar findings can be seen in all panels of Table 5.12 and 

5.13. Crnkovic and Drachman (1995) emphasize that 1,000 observations should be set as the 

                                                      
75

 The length of lag is tested from GARCH(0,0) up to GARCH(3,3).  
76

 The GARCH model in this research is based on GARCH(1,1). 
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minimum for Monte Carlo analysis. However, VaR estimated with a larger set of data like this 

would tend to respond to the market condition quite slowly. This might also be the main 

reason why VaR(n=250) provides the best performance throughout these two tables.  

Secondly, the method of historical simulation provides better performance for measuring the 

VaR of the Asian index return, for both the 99%- and 95%-quantile. There are 24 significant 

results in both the unconditional and conditional statistics in the Asian panel of Table 5.12, 

corresponding to 19 and 17 significant results in the panel of the developed markets and the 

Latin American market, respectively. Similar results can also be found in Table 5.12; there are 

22 significant results in the Asian panel against 15 ones in the other two panels. Thirdly, it is 

consistent with the previous section; the violation rate of the long position systematically 

tends to be larger than the one of the short position, although some of them do not accept the 

null hypothesis. 

Overall, the historical simulation provides a reasonable performance for measuring VaR. 

However, the reliability of the results generated with this approach needs to be improved 

since most of the significant null hypothesis are at the probability of 95%, implying that a five 

per cent possibility exists and so the violation rate could be larger than . Pérignon and Smith 

(2010) offer a fair comment on the HS based VaR model, suggesting that forecasted VaR 

based on this approach contains very little information about future volatility, and causes the 

worst backtesting performance.   
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Table 5.11 Selected GARCH model of individual equity return 

Index Model  Index Model  Index Model 

S&P500 GARCH(2,2)  Merval GARCH(1,1)  HSI GARCH(2,2) 

FTSE100 GARCH(2,1)  Bovespa GARCH(1,2)  TAIEX GARCH(2,2) 

CAC40 GARCH(1,1)  IGPA GARCH(2,2)  KOSPI GARCH(1,1) 

DAX GARCH(1,2)  Bolsa GARCH(2,1)  KLCI GARCH(2,2) 

TSX GARCH(2,2)     JCI GARCH(2,2) 

Nikkei225 GARCH(2,1)     SET GARCH(2,2) 

 

 

 

Table 5.12 99% quantile VaR based on the historical simulation 

 VaR(n=1250) VaR(n=750) VaR(n=250) 

Panel A Long Short Long Short Long Short 

S&P500       
Violation (%) 0.0477   0.0373   0.0454   0.0338   0.0268   0.0221   

Unconditional test 28.0532   16.5028   25.3158   13.1340   7.2661   4.1145** 

Independent test 0.8039*  0.2152*  0.34125*  0.3863*  0.5504*  0.2649*  

Conditional test 28.8571   16.7180   25.6570   13.5203   7.8164** 4.3793*  

FTSE100       
Violation (%) 0.0349   0.0338   0.0314   0.0279   0.0186   0.0244   

Unconditional test 14.2273   13.1340   11.0416   8.1555   2.2359*  5.6053** 

Independent test 0.3230*  0.3863*  1.5800*  0.0647*  0.2641*  0.1662*  

Conditional test 14.5502   13.5203   12.6216   8.2203** 2.5000*  5.7715*  

CAC40       
Violation (%) 0.0291   0.0326   0.0279   0.0233   0.0186   0.0163   

Unconditional test 9.0822   12.0718   8.1555   4.8377** 2.2359*  1.2557*  

Independent test 3.4829*  0.0037*  2.0903*  0.4146*  1.9949*  0.2017*  

Conditional test 12.5651   12.0755   10.2459   5.2523*  4.2308*  1.4574*  

DAX       
Violation (%) 0.0244   0.0291   0.0268   0.0256   0.0140   0.0163   

Unconditional test 5.6053*  9.0822   7.2661   6.4154** 0.5286*  1.2557*  

Independent test 1.1667*  0.0420*  0.9195*  0.5029*  0.1478*  0.2017*  

Conditional test 6.7721** 9.1242   8.1855** 6.9184** 0.6764*  1.4574*  

TSX       
Violation (%) 0.0407   0.0338   0.0326   0.0326   0.0210   0.0186   

Unconditional test 20.1258   13.1340   12.0718   12.0718   3.4380*  2.2359*  

Independent test 2.6899*  2.5614*  2.7721*  2.7721*  0.3351*  0.2641*  

Conditional test 22.8157   15.6954   14.8439   14.8439   3.7731*  2.5000*  

Nikkei225       
Violation (%) 0.0291   0.0314   0.0279   0.0244   0.0175   0.0163   

Unconditional test 9.0822   11.0416   8.1555   5.6053** 1.7163*  1.2557*  

Independent test 0.7099*  2.9953*  0.8103*  2.7143*  0.5547*  2.4390*  

Conditional test 9.7921   14.0369   8.9658** 8.3197** 2.2710*  3.6946*  

Ave. violation(%) 0.0343  0.0330  0.0320  0.0279  0.0194  0.0190  

Panel B Long Short Long Short Long Short 

Merval        
Violation (%) 0.0269   0.0199   0.0245   0.0199   0.0210   0.0199   

Unconditional test 7.3107   2.8369*  5.6438** 2.8369*  3.4671*  2.8993*  

Independent test 4.0216** 0.3905*  2.7064*  0.3905*  1.6169*  0.3905*  

Conditional test 11.3324   3.2274*  8.3501** 3.2274*  5.0840*  3.2274*  

Bovespa       
Violation (%) 0.0222   0.0210   0.0222   0.0199   0.0187   0.0210   

Unconditional test 4.1467** 3.4671*  4.1467** 2.8369*  2.2588*  3.4671*  

Independent test 1.4527*  0.3228*  0.3751*  0.3905*  0.2650*  0.3228*  

Conditional test 5.5993*  3.7900*  4.5218*  3.2274*  2.5239*  3.7900*  

IGPA       
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Violation (%) 0.0339   0.0350   0.0327   0.0280   0.0152   0.0350   

Unconditional test 13.1975   14.2939   12.1321   8.2033   0.8718*  14.2939   

Independent test 5.9118** 2.3529*  6.2745** 2.0829*  0.7562*  2.3529*  

Conditional test 19.1093   16.6468   18.4066   10.2862   1.6280*  16.6468   

Bolsa        
Violation (%) 0.0304   0.0210   0.0245   0.0164   0.0210   0.0210   

Unconditional test 10.0987   3.4671*  5.6438** 1.2724*  3.4671*  3.4671*  

Independent test 5.0109** 0.3228*  2.7064*  0.6484*  0.3363*  0.3228*  

Conditional test 15.1096   3.7900*  8.3501** 1.9208*  3.8034*  3.7900*  

Ave. violation(%) 0.0284   0.0242  0.0260  0.0211  0.0190  0.0242  

Panel C Long Short Long Short Long Short 

HSI       
Violation (%) 0.0461   0.0392   0.0392   0.0323   0.0254   0.0242   

Unconditional test 26.4132   18.6818   18.6818   11.9124   6.3058** 5.5040** 

Independent test 1.8237*  0.0430*  1.6961*  0.0045*  2.5127*  0.1703*  

Conditional test 28.2369   18.7248   20.3779   11.9169   8.8186** 5.6743*  

TAIEX         
Violation (%) 0.0242   0.0219   0.0219   0.0300   0.0161   0.0196   

Unconditional test 5.5040** 4.0296** 4.0296** 9.9020   1.2119*  2.7425*  

Independent test 1.1793*  0.2698*  1.4710*  0.0263*  2.4537*  0.2957*  

Conditional test 6.6833** 4.2994*  5.5006*  9.9282   3.6656*  3.0382*  

KOSPI       
Violation (%) 0.0231   0.0219   0.0265   0.0219   0.0173   0.0161   

Unconditional test 4.7446** 4.0296** 7.1482   4.0296** 1.6643*  1.2119*  

Independent test 1.3193*  0.2698*  2.3047*  0.2698*  2.2214*  0.1998*  

Conditional test 6.0638** 4.2994*  9.4529   4.2994*  3.8858*  1.4117*  

KLCI       
Violation (%) 0.0242   0.0265   0.0196   0.0242   0.0127   0.0173   

Unconditional test 5.5040** 7.1482   2.7425*  5.5040** 0.2532*  1.6643*  

Independent test 2.7354*  2.3047*  1.8145*  4.6841** 1.0234*  2.2214*  

Conditional test 8.2394** 9.4529   4.5570*  10.1881   1.2766*  3.8858*  

JCI       

Violation (%) 0.0219   0.0219   0.0185   0.0196   0.0161   0.0150   

Unconditional test 4.0296** 4.0296** 2.1757*  2.7425*  1.2119*  0.8225*  

Independent test 3.2300*  1.4710*  4.1232** 1.8145*  2.4537*  2.7088*  

Conditional test 7.2596** 5.5006*  6.2989** 4.5570*  3.6656*  3.5313*  

SET       
Violation (%) 0.0231   0.0185   0.0219   0.0254   0.0208   0.0173   

Unconditional test 4.7446** 2.1757*  4.0296** 6.3058** 3.3614*  1.6643*  

Independent test 5.0271** 0.4749*  5.3939** 0.1302*  8.4138   0.5609*  

Conditional test 9.7716   2.6506*  9.4235   6.4361** 11.7752   2.2252*  

Ave. violation(%) 0.0271  0.0250  0.0246  0.0256  0.0181  0.0183  

1. ** (*)means the null hypothesis is not rejected at 1% (5%) level. The critical values of the likelihood ratio 

test (unconditional test) and the independent test are      
            and      

           . The 

critical values of the conditional test are      
            and      

             
2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     and     equal 

zero and    
    cannot be calculated. Therefore, one extreme small number, say      , is assigned to this 

term for the purpose of convenience to calculate the independent test and Christoffersen’s (1998) 

unconditional coverage test. 
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Table 5.13 95% quantile VaR based on the historical simulation 

 VaR(n=1250) VaR(n=750) VaR(n=250) 

Panel A Long Short Long Short Long Short 

S&P500       
Violation (%) 0.1257   0.1094   0.1153   0.1036   0.0733   0.0710   

Unconditional test 32.3121   21.0263   24.8362   17.4759   3.7641*  3.0854*  

Independent test 0.0068*  0.0048*  0.1017*  0.0032*  1.0551*  0.0135*  

Conditional test 32.3189   21.0311   24.9379   17.4790   4.8191*  3.0989*  

FTSE100       
Violation (%) 0.1153   0.1106   0.1001   0.1013   0.0617   0.0617   

Unconditional test 24.8362   21.7679   15.4754   16.1312   1.0038*  1.0038*  

Independent test 0.9323*  0.1107*  2.1713*  0.2090*  0.0748*  0.9246*  

Conditional test 25.7685   21.8786   17.6467   16.3401   1.0786*  1.9284*  

CAC40       
Violation (%) 0.1141   0.1013   0.1059   0.0885   0.0722   0.0605   

Unconditional test 24.0541   16.1312   18.8641   9.5557   3.4172*  0.8192*  

Independent test 4.8209** 0.5345*  4.0842** 0.1492*  2.6731*  0.1600*  

Conditional test 28.8750   16.6657   22.9483   9.7049   6.0902** 0.9792*  

DAX       
Violation (%) 0.1048   0.1001   0.1013   0.0943   0.0640   0.0559   

Unconditional test 18.1646   15.4754   16.1312   12.3675   1.4251*  0.2619*  

Independent test 5.1980** 0.0089*  9.3364   0.0942*  1.3676*  0.0326*  

Conditional test 23.3626   15.4843   25.4676   12.4617   2.7928*  0.2022*  

TSX       
Violation (%) 0.1292   0.1176   0.1036   0.1024   0.0629   0.0605   

Unconditional test 34.9724   26.4303   17.4759   16.7980   1.2059*  0.8192*  

Independent test 0.2668*  0.0566*  1.7061*  0.2209*  3.3253*  0.4624*  

Conditional test 35.2392   26.4869   19.1820   17.0189   4.5312*  1.2816*  

Nikkei225       
Violation (%) 0.1036   0.0850   0.0803   0.0768   0.0594   0.0594   

Unconditional test 17.4759   8.0180   6.1506** 4.8931** 0.6524*  0.6524*  

Independent test 0.1747*  0.5843*  2.2400*  1.3014*  0.5367*  1.9436*  

Conditional test 17.6506   8.6023** 8.3905** 6.1946** 1.1891*  2.5960*  

Panel B Long Short Long Short Long Short 

Merval        
Violation (%) 0.0783   0.0654   0.0771   0.0689   0.0549   0.0666   

Unconditional test 5.3766** 1.7035*  4.9682** 2.5201*  0.1828*  1.9595*  

Independent test 1.8100*  1.2301*  0.7394*  0.8944*  0.3292*  1.1114*  

Conditional test 7.1867** 2.9337*  5.7076*  3.4145*  0.5120*  3.0709*  

Bovespa       
Violation (%) 0.0911   0.0666   0.0864   0.0631   0.0643   0.0666   

Unconditional test 10.7587   1.9595*  8.6193   1.2417*  1.4642*  1.9595*  

Independent test 2.1515*  0.0052*  4.6592** 0.0481*  2.1514*  0.0052*  

Conditional test 12.9102   1.9647*  13.2785   1.2898*  3.6156* 1.9647*  

IGPA       
Violation (%) 0.1063   0.1028   0.0876   0.0911   0.0619   0.1028   

Unconditional test 19.0228   16.9465   9.1352   10.7587   1.0364*  16.9465   

Independent test 16.9046   0.8397*  14.6400   1.5185*  8.9157   0.8397*  

Conditional test 35.9274   17.7862   23.7752   12.2772   9.9521   17.7862   

Bolsa       
Violation (%) 0.0888   0.0724   0.0724   0.0666   0.0549   0.0724   

Unconditional test 9.6639   3.4791*  3.4791*  1.9595*  0.1828*  3.4791*  

Independent test 2.4958*  1.1573*  3.5887*  1.8310*  2.6299*  1.1573*  

Conditional test 12.1597   4.6364*  7.0678** 3.7905*  2.8128*  4.6364*  

Panel C Long Short Long Short Long Short 

HSI       
Violation (%) 0.1234   0.1234   0.0969   0.1142   0.0623   0.0646   

Unconditional test 30.8802   30.8802   13.8426   24.3460   1.1133*  1.5514*  

Independent test 1.7689*  0.2321*  3.3277*  0.0490*  0.8487*  0.3365*  

Conditional test 32.6491   31.1123   17.1703   24.3950   1.9620*  1.8880*  

TAIEX       
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Violation (%) 0.0900  0.0773   0.0911   0.0854   0.0565   0.0577   

Unconditional test 10.3420   5.0931** 10.8956   8.2513   0.3236*  0.4454*  

Independent test 0.0000*  0.2976*  0.0446*  0.5319*  0.2367*  0.1899*  

Conditional test 10.3420   5.3907*  10.9403   8.7832** 0.5603*  0.6353*  

KOSPI       
Violation (%) 0.0715   0.0727   0.0669   0.0750   0.0519   0.0542   

Unconditional test 3.2555*  3.5937*  2.0559*  4.3145** 0.0284*  0.1369*  

Independent test 0.0345*  0.2045*  0.5036*  0.0015*  2.0191*  2.6849*  

Conditional test 3.2901*  3.7982*  2.5596*  4.3161*  2.0474*  2.8218*  

KLCI       
Violation (%) 0.0934   0.0842   0.0807   0.0830   0.0496   0.0600   

Unconditional test 12.0391   7.7603   6.3659** 7.2823   0.0013*  0.7438*  

Independent test 4.9011** 3.1574*  7.0546   2.5378*  6.3732** 5.0462** 

Conditional test 16.9402   10.9177   13.4206   9.8201   6.3745** 5.7900*  

JCI       
Violation (%) 0.0796   0.0634   0.0669   0.0623   0.0542   0.0519   

Unconditional test 5.9279** 1.3239*  2.0559*  1.1133*  0.1369*  0.0284*  

Independent test 10.0700   3.1633*  10.1535   1.5337*  8.1576   1.1400*  

Conditional test 15.9979   4.4873*  12.2094   2.6470*  8.2946** 1.1684*  

SET       
Violation (%) 0.0773   0.0796   0.0738   0.0727   0.0565   0.0554   

Unconditional test 5.0931*  5.9279** 3.9468** 3.5937*  0.3236*  0.2207*  

Independent test 1.8723*  0.9893*  1.6047*  0.0187*  3.3723*  0.8178*  

Conditional test 6.9654** 6.9172** 5.5515*  3.6124*  3.6959*  1.0385*  

1. ** (*)means the null hypothesis is not rejected at 1% (5%) level. The critical values of the likelihood ratio 

test (unconditional test) and the independent test are      
            and      

           . The 

critical values of the conditional test are      
            and      

             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     and     equal 

zero and    
    cannot be calculated. Therefore, one extreme small number, say      , is assigned to this 

term for the purpose of convenience to calculate the independent test and Christoffersen’s (1998) 

unconditional coverage test. 

 

 

 

 

 

 

 

5.2.3 Other performance tests 

The coverage tests in the previous section follow the conventional procedure in this field of 

testing if the exceedance ratio is equal to the value of  or not. However, the quantitative test 

might ignore some critical information behind the two methods it is comparing. In this section, 

three measures for quality testing are adopted to identify the suitability and quality of the VaR 

measures. For convenience, three forecasted VaR patterns, from 2
nd

 January 2007 to 30
th

 April 

2010, based on the five models are presented, Figure 5.2 to Figure 5.7.
77

 The three return 

                                                      
77

 The data used in this thesis includes 16 equity indices. The VaR patterns of three equity returns are discussed 
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series of equity indices are the S&P500, the Merval index (Argentina), and the Heng Seng 

index. Overall, the forecasted VaR is very volatile around the 430
th

 to 600
th

 observation, 

which is the period of financial crisis from the third quarter of 2008 to the end of 2009. 

Another noticeable point in these figures is that some patterns of the forecasted VaR are too 

fluctuating to apply in practice even in the crisis period
78

. For example, the patterns of the 

VaR measured by the GARCH (1,1), stochastic volatility and HS models are the three with 

the most fluctuation or sudden jumps. As mentioned in section 2.4, VaR is not only a risk 

measure but also a management tool in practice; it can be applied to adjust the portfolio 

according to managers’ investment philosophy. No matter whether it is a long or short 

position, a volatile VaR result could not support the manager when considering the weight of 

an individual asset in a portfolio. In addition, it seems hard to believe that daily potential loss, 

on average, would be more than 10%, although it occurs in actual daily returns and the 

forecasted VaR pattern
79

. Yet, the quality of a VaR model in this aspect could not be accounted 

for by the two coverage tests. Consequently, there is a need to provide a benchmark for 

evaluating the quality and accessibility of the VaR model.  

On the other hand, if the pattern of VaR responded to the market condition sluggishly, then it 

could not be called a proper risk measure. An ideal measure of market risk should provide the 

potential loss associated with the current market condition. Thus, the creeping VaR from 

historical simulation would not be good enough to measure the immediate market risk. The 

                                                                                                                                                                      
in this sub-section.  

78
 As mentioned in Section 2.4, the VaR is a risk management system used by financial institutions. Generally, 

the portfolio would be adjusted for reducing the total risk according to the concept of Eq. (2.37) and (2.38). If 

the portfolio size is big and its forecasted daily VaR is strongly volatile, the adjustment will be difficult to 

make in practice for two main reasons. Firstly, the adjustment will be associated with numerous securities 

transactions, and some transactions of securities with low liquidity are difficult to perform in a certain period. 

Secondly, any adjustment generally carries a high transaction cost making frequent portfolio adjustment 

impractical.  
79

 In the sample set used in this thesis, there are few actual returns (less than 4 observations) smaller than -10% 

in the developed and Asian equity indices. Most of these extreme returns cluster around the Asian financial 

crisis in 1997 and the period of subordinated debt crisis in 2008. However, there are many actual daily 

returns less than -10% in the Latin American markets, especially in Brazil and Argentina.  
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VaR pattern based on the HS approach with 1,250 observations moves much too slowly. 

The results of the VaR performance based on the three benchmarks are exhibited in Table 5.14. 

Leaving aside the GARCH (1,1), RiskMetrics, and stochastic volatility models, only the case 

of the 5-day block of the GEV model and the HS with the shortest estimation period
80

, n=250, 

are included this section because they offer the best performance compared with n=750 and 

n=1250. The results in the first and second column describe the mean squared error (MSE) on 

average of the VaR series, which is applied to measure the fluctuation of the VaR pattern. 

From this angle, the GEV with the 5-day block and the RiskMetrics model produce the 

equally smallest MSE. By contrast, the historical simulation based on 250 observations has 

the largest. The stochastic volatility model shows a great diversity in the MSE result. The 

variability of some indices is small, which means the SV model provides a good forecasting 

performance in those indices, such as 0.0967 for TSX, 0.1382 for DAX and 0.1518 for 

CAC40. However, it offers a very lamentable performance in the TAIEX and SET indexes. In 

Panel E, the MSEs (i.e. from the stochastic volatility model) of the Nikkei225, TAIEX, 

KOSPI, and SET are very high. According to Eq. (4.50), MSE is the average value of the 

squared difference between VaRt and E(VaR). As mentioned in Section 5.2.2.3, some of the 

forecasted VaR (about 2% to 10%) do not converge and this causes those non-converged VaRs 

to be extremely high. In this manner, MSEs of Nikkei225, TAIEX, KOSPI, and SET are high. 

Take TAIEX as an example, its original volatility of VaR is 0.2657, if we exclude the 57 

non-converged observations (about 6.5% of whole sample), and the volatility of the rest is 

0.1111, then the MSE of the long and short positions are 0.0123 and 0.0087, respectively. 

The second benchmark is the D statistics shown in Eq. (4.51), the results of this benchmark 

are displayed in the third and fourth columns in Table 5.14. It emphasizes the quality of the 

                                                      
80

 In the method of historical simulation (HS), three forecasting periods (250, 750, and 1250 previous returns) 

are used to forecast one-day ahead VaR. The results in Table 5.12 and Table 5.13 show that HS with a 

previous 250 historical returns is more appropriate compared to other forecasting periods. Thus, the other 

two results are not included in the quality checks .  
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VaR model by calculating the average distance between the non-violated VaRs and the actual 

returns. The main goal of the D measure is to evaluate the conservativeness of the VaR. 

Generally, a VaR model which derives a larger number of D indicates that the approach is 

most likely too conservative in measuring market risk and thus would cause financial 

institutions to lose their efficiency in capital usage. By contrast, the VaR model with a small D 

could be a good risk measure if the coverage of the VaR model is also appropriate. The 

evidence in Table 5.14 shows that the GEV(n=5) and GARCH(1,1) models exhibit equally 

strong performances, averaging around -0.0415 and -0.0380 for the long position, and 0.0401 

and 0.0345 for the short position. This implies that the GEV model and the GARCH model 

properly forecast the market risk and are less likely to be over-conservative. In contrast, the 

worst case is the stochastic volatility model. Its average of D measures are -5.2% and 4.8% 

for the long and short respectively, implying that the SV model is more conservative than the 

other VaR models.  

The last benchmark in this section, Q
81

, looks at the magnitude of violation of those violated 

observations. In other words, it presents the average potential extra loss to each VaR model 

and evaluates the performance from the aspect of the quantity of the loss. The results for Q 

are shown in the fifth and sixth columns in Table 5.14. The GARCH (1,1) model demonstrates 

the best performance, on average -0.0105 for the long position and 0.0086 for the short 

position. One possible explanation for this is found in the nature of the GARCH model; the 

original function of the GARCH model is to forecast the return and fit the process of volatility. 

The average potential losses of the other models are equivalent to each other, but the 

RiskMetrics model produces the worse result, -0.0163 for the long and 0.0155 for the short 

position, suggesting the portfolio might encounter a 1.63% (1.55%) loss in the long (short) 

position on average once a violation occurs. 

                                                      
81

 The details of Q can be found in Eq. (4.52). 
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Figure 5.2 1%-VaR of long position v.s. actual return of S&P 500 index 

 

 

 

 

Figure 5.3 1%-VaR of short position v.s. actual return of S&P 500 index 
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Figure 5.4 1%-VaR of long position v.s. actual return of Merval index 

 
 

Figure 5.5 1%-VaR of short position v.s. actual return of Merval index 
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Figure 5.6 1%-VaR of long position v.s. actual return of Hang Seng index 

 
 

Figure 5.7 1%-VaR of short position v.s. actual return of Hang Seng index 
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Table 5.14 The comparison of other benchmarks across various VaR models 

  MSE (10
-4

)  D  Q 
Panel A: GEV(n=5)  Long Short  Long Short  Long Short 

S&P500 0.1797 0.1296 -0.0316 0.0301 -0.0172 0.0178 

FTSE100  0.2309 0.0929  -0.0306 0.0293  -0.0157 0.0186 

CAC40  0.2487 0.3637  -0.0378 0.0368  -0.0181 0.0320 

DAX  0.3505 0.1020  -0.0408 0.0378  -0.0209 0.0354 

TSX  0.2290 0.1127  -0.0295 0.0252  -0.0158 0.0155 

Nikkei225  0.2651 0.3221  -0.0408 0.0401  -0.0217 0.0190 

Merval   0.0365 0.2349  -0.0635 0.0590  -0.0184 0.0159 

Bovespa  0.0442 0.6364  -0.0601 0.0585  -0.0212 0.0167 

IGPA  0.0358 0.0240  -0.0204 0.0191  -0.0089 0.0140 

Bolsa  0.3733 0.2674  -0.0428 0.0445  -0.0106 0.0138 

HSI  0.5186 0.3976  -0.0466 0.0448  -0.0158 0.0327 

TAIEX  0.1364 0.1774  -0.0455 0.0440  -0.0073 0.0130 

KOSPI  0.4574 0.2033  -0.0528 0.0506  -0.0207 0.0148 

KLCI  0.0072 0.3287  -0.0349 0.0357  -0.0129 0.0058 

JCI  0.1078 0.1078  -0.0434 0.0411  -0.0170 0.0160 

SET  0.4257 0.1504  -0.0438 0.0456  -0.0206 0.0129 

Ave.  0.2279 0.2282  -0.0415 0.0401  -0.0164 0.0184 

Panel B: GARCH  Long Short  Long Short  Long Short 

S&P500  4.7684 4.7368  -0.0353 0.0353  -0.0070 0.0076 

FTSE100  3.2728 2.3096  -0.0335 0.0288  -0.0091 0.0088 

CAC40  5.0468 5.0108  -0.0424 0.0433  -0.0113 0.0119 

DAX  4.9998 4.8855  -0.0420 0.0424  -0.0101 0.0096 

TSX  4.3115 4.2884  -0.0337 0.0336  -0.0068 0.0074 

Nikkei225  4.4266 3.1240  -0.0394 0.0341  -0.0170 0.0093 

Merval   4.3465 3.0484  -0.0473 0.0403  -0.0141 0.0087 

Bovespa  4.5683 3.2437  -0.0491 0.0419  -0.0099 0.0135 

IGPA  1.2924 0.9106  -0.0223 0.0186  -0.0064 0.0042 

Bolsa  2.7725 1.9509  -0.0376 0.0326  -0.0098 0.0100 

HSI  5.3072 3.7507  -0.0473 0.0409  -0.0120 0.0122 

TAIEX  1.4123 0.9991  -0.0372 0.0311  -0.0074 0.0075 

KOSPI  3.3097 2.3386  -0.0390 0.0327  -0.0107 0.0060 

KLCI  1.0241 0.7258  -0.0240 0.0204  -0.0107 0.0032 

JCI  3.3882 3.3866  -0.0404 0.0392  -0.0132 0.0070 

SET  1.7969 1.7906  -0.0371 0.0363  -0.0126 0.0101 

Ave.  3.5028  2.9063   -0.0380  0.0345   -0.0105  0.0086  

Panel C: RiskMetrics  Long Short  Long Short  Long Short 

S&P500  0.2256 0.2256  -0.0285 0.0280  -0.0150 0.0143 

FTSE100  0.1509 0.1509  -0.0279 0.0277  -0.0143 0.0126 

CAC40  0.2579 0.2579  -0.0350 0.0349  -0.0182 0.0232 

DAX  0.2049 0.2049  -0.0369 0.0361  -0.0191 0.0272 

TSX  0.2215 0.2215  -0.0262 0.0249  -0.0133 0.0140 

Nikkei225  0.1770 0.1770  -0.0360 0.0362  -0.0202 0.0168 

Merval   0.1346 0.1346  -0.0534 0.0524  -0.0182 0.0128 

Bovespa  0.1613 0.1613  -0.0541 0.0530  -0.0232 0.0246 

IGPA  0.0620 0.0620  -0.0193 0.0178  -0.0087 0.0077 

Bolsa  0.0906 0.0906  -0.0387 0.0382  -0.0115 0.0151 

HSI  0.2262 0.2262  -0.0417 0.0408  -0.0144 0.0201 

TAIEX  0.0758 0.0758  -0.0394 0.0389  -0.0081 0.0106 

KOSPI  0.0833 0.0833  -0.0447 0.0437  -0.0189 0.0158 

KLCI  0.0210 0.0210  -0.0343 0.0336  -0.0133 0.0051 

JCI  0.1121 0.1121  -0.0382 0.0363  -0.0143 0.0166 

SET  0.0635 0.0635  -0.0396 0.0393  -0.0298 0.0117 

Ave.  0.1418  0.1418   -0.0371  0.0364   -0.0163  0.0155  

Panel D: HS(n=250)  Long Short  Long Short  Long Short 

S&P500  6.9402 3.6581  -0.0464 0.0406  -0.0116 0.0134 
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FTSE100  2.9901 5.1055  -0.0423 0.0442  -0.0133 0.0114 

CAC40  4.7332 11.2954  -0.0509 0.0567  -0.0159 0.0231 

DAX  4.8315 9.5276  -0.0498 0.0542  -0.0184 0.0214 

TSX  5.4064 4.7304  -0.0441 0.0374  -0.0133 0.0133 

Nikkei225  8.5312 3.0420  -0.0558 0.0447  -0.0185 0.0184 

Merval   6.3989 0.5078  -0.0622 0.0488  -0.0189 0.0168 

Bovespa  4.7535 1.0349  -0.0581 0.0497  -0.0172 0.0270 

IGPA  1.0020 0.1897  -0.0310 0.0199  -0.0095 0.0078 

Bolsa  1.0885 0.8445  -0.0438 0.0396  -0.0084 0.0170 

HSI  4.3233 7.2443  -0.0541 0.0594  -0.0121 0.0156 

TAIEX  0.5683 1.4113  -0.0438 0.0387  -0.0089 0.0088 

KOSPI  3.8319 1.7215  -0.0500 0.0400  -0.0190 0.0150 

KLCI  0.5464 0.1710  -0.0298 0.0238  -0.0136 0.0061 

JCI  2.2972 2.0854  -0.0518 0.0454  -0.0170 0.0152 

SET  3.1637 1.4006  -0.0448 0.0388  -0.0137 0.0108 

Ave.  3.8379  3.3731   -0.0474  0.0426   -0.0143  0.0151  

Panel E: SV  Long Short  Long Short  Long Short 

S&P500  0.3873 0.3873  -0.0237 0.0232  -0.0141 0.0122 

FTSE100  3.0977 3.0977  -0.0438 0.0439  -0.0119 0.0083 

CAC40  0.1518 1.7574  -0.0250 0.0245  -0.0145 0.0160 

DAX  0.1382 0.2309  -0.0301 0.0293  -0.0171 0.0171 

TSX  0.0967 0.0967  -0.0232 0.0218  -0.0127 0.0114 

Nikkei225  19.1366 19.1366  -0.0955 0.0961  -0.0339 0.0329 

Merval   3.1804 3.1794  -0.0506 0.0489  -0.0211 0.0215 

Bovespa  1.8747 1.8521  -0.0453 0.0441  -0.0137 0.0212 

IGPA  8.2189 8.2201  -0.0415 0.0410  -0.0067 0.0160 

Bolsa  5.0162 5.0124  -0.0498 0.0505  -0.0131 0.0150 

HSI  1.2355 1.1982  -0.0356 0.0349  -0.0164 0.0179 

TAIEX  705.0279 704.9489  -0.1593 0.1603  -0.0129 0.0092 

KOSPI  44.5601 1.1982  -0.0721 0.0332  -0.0037 0.0122 

KLCI  0.6793 0.6783  -0.0149 0.0141  -0.0079 0.0057 

JCI  0.3545 0.3530  -0.0304 0.0287  -0.0170 0.0133 

SET  117.8449 117.8256  -0.0839 0.0860  -0.0132 0.0116 

Ave.  56.9375  54.3233   -0.0515  0.0488   -0.0144  0.0151  

Note: In the Panel E of this Table, MSEs of Nikkei225, TAIEX, KOSPI, and SET (i.e. from stochastic volatility 

model) are very high. According to Eq. (4.50), MSE is the average value of the squared difference between 

VaRt and E(VaR). As mentioned in Section 5.2.2.3, some of forecasted VaR (about 2% to 10%) do not 

converge and this causes those un-converged VaR to be extremely high. In this manner, MSEs of Nikkei225, 

TAIEX, KOSPI, and SET are high. Take TAIEX as an example (its original volatility of VaR is 0.2657), if we 

exclude the 57 un-converged observations (it is about 6.5% of whole sample, and the volatility of the rest is 

0.1111), then the MSE of long and short positions are 0.0123 and 0.0087, respectively.  

 

 

 

5.2.4 Summary 

This section of univariate analysis includes the estimation of the parameters for various GEV 

models and their results for equity indices. In addition, the analysis of the results of 

backtesting the GEV model and the competing models were provided as well. Moreover, apart 

from the two traditional coverage tests, several benchmarks focusing on the variability, 
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conservativeness and potential loss are presented in the last section. 

Based on the distribution of generalized extreme values, some specific properties of financial 

returns are described. For example, the results show that the tail parameters tend to be 

negative, indicating the characteristic of the fat-tail of financial returns could be captured 

appropriately. In addition, the results of the equality test of estimated parameters to the left 

and right tails of the GEV distribution show that the distribution of financial returns tends to 

be skewed (Peiro (1999) provides a comprehensive discussion for the possible causes of 

skewness). However, the estimation of the parameters is also highly associated with the size 

of the block.  

From the perspective of coverage tests, the GEV model with the 5-day block and the 

GARCH(1,1) model provide the best performance for measuring VaR, particularly for the 

Asian indices. The GEV model with the 10-day block also does a reasonably good job, 

however, it is not suitable for the developed equity market. Due to the stronger fluctuations in 

the series of 10-day returns, the VaR sequence of the GEV model produces a poor coverage, 

i.e. there are too many violations. Looking at the figures, some drawbacks of the models can 

be found. For example, the pattern of historical simulation responds to the market condition 

slowly, and the GARCH model is too volatile to be implemented in practice. The results of 

the RiskMetrics are consistent with Eberlein, Kallsen and Kristen’s (2003) suggestion that the 

VaR pattern is influenced by the fixed decay parameter, and the slow change in volatility 

produces a slow change pattern in forecasted VaR. 

In the final part of this section, three substantial benchmarks (MSE, D, and Q) are used to 

evaluate the VaR models. Specifically, MSE describes the suitability of the risk measure to be 

implemented in practice by measuring the variability of whole observations. D focuses on the 

conservativeness of the VaR measure by calculating the average distance between the 

forecasted VaRs and their corresponding actual returns of the non-violated observations. In 
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contrast, Q is concerned with the magnitude of the extra loss of the violations. Combined with 

the coverage tests, one could comprehensively understand the properties of any VaR measure, 

such as accuracy, variability, conservativeness, and magnitude of loss of the violations. 

Overall, the GARCH (1,1) model and the GEV (n=5) demonstrate better performances than 

the other models.  
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5.3 Correlation analysis 

In this section, a different measure of dynamic conditional correlation (DCC), called tail-DCC, 

is provided. It will then be applied in aggregating the individual VaRs into a portfolio VaR in 

the next section. The original DCC proposed by Engle (2002), also called linear correlation, 

mainly focuses on the relationship between the entirety of two sequences, however, the 

tail-DCC model pays attention only on the tail area of the distribution of financial returns. In 

this thesis, the observations in the tail area are sampled by the procedure of block maxima 

(minima) discussed in Section 3.4.1. Some critical features regarding this methodology are 

stressed and two main properties of tail-DCC are discussed.  

 

5.3.1 The fatness of the distribution   

The most significant advantage of tail-DCC for risk management based on extreme returns is 

that it emphasizes the discrepancies between the left and right tails rather than looking at only 

one relationship within the whole sequence. This feature highly coincides with the spirit of 

VaR, because we care more about the big-price changes than the small ones, and the big price 

changes fall in the tail area of the return distribution. Furthermore, lots of hypothesises in 

related fields have derived empirical support for suggesting that the distribution of financial 

returns are skewed (Singleton and Wingender (1986), Lai (1991), and Yan (2005)). The 

original DCC approach could not fully describe the relationship between the sequences of 

financial returns, making it inappropriate for risk management. That failing is demonstrated in 

the patterns of the degrees of freedom (DF) to each index portfolio shown in Figure 5.8  to 

Figure 5.13. The pattern in black is obtained via the original DCC model looking at whole 

samples. By contrast, the red and green ones correspond to the DF of left- and right-tail 

derived from the tail-DCC model respectively. From the aspect of the DCC model, the DF of 

developed equity markets is the largest one in the data set, winding around 11, compared with 
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6.5 and 8.5 for Asian and Latin American equity markets respectively. Statistically, the DF of 

the developed market implies that the distribution of the market is closer to normal 

distribution than the other two markets. For instance, the critical values of the 1% student 

distribution with DF=11 and DF=6 are -2.7181 and -3.1427, respectively. The former is much 

closer to the normal distribution with the same probability (i.e. Z0.01= -2.3264). On the other 

hand, the distribution of the Asian equity market portfolio tends to have a ticker tail on 

average. One could clearly observe the difference between these markets through the DCC 

model. However, some critical characteristics of financial returns might be neglected if the 

analysis was focused on the entire sample. The original DCC model regards the entire sample 

as a whole, and only provides one correlation representing the whole distribution. However, 

the tail-DCCs, as shown in red and green, are quite distinct from the original DCC. In the 

pattern of the developed market, the magnitude of thickness in the left and right tail is quite 

consistent from 2007 to the third quarter of 2008, and then they significantly disperse in the 

450
th

 observation, which is around the beginning of the financial crisis in 2008. Moreover, the 

imbalance between the left and right tail could naturally be different through the backtesting 

period. For example, the patterns of the Asian and Latin American markets show that the 

magnitude of fatness in the left and right tails is obviously different. In the Asian equity 

market, the left tail is thicker than the right tail, which implies that the risk in the left tail is 

larger than in the right tail. Clearly, the long position in the Asian equity market is more risky 

than the short position. However, it is the opposite condition in the Latin America equity 

market. According to the DF in the left and right tail, the risk in the right tail is higher than in 

the left tail. In summary, the discussion above stresses that the tail-DCC approach could offer 

some meaningful characteristics and content from behind the return sequences that are 

neglected by the original DCC model. In addition, the three findings above can also be found 

in the low frequency of the extreme observation patterns, for example, the 10-day trading 

period. Specifically, each extreme return is sampled from ten continuous observations by the 
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rolling window method. The results with the ten-day block are shown from Figure 5.11 to 

Figure 5.13. In general, the DF of the 10-day block method is likely to be higher than the DF 

of the 5-day block, indicating that the multivariate limiting distribution has a thicker tail. The 

results of n=10 are similar to the case of n=5 , in fact, the case of n=22 for the one month 

block also has consistent results, but they are not displayed in this thesis.  
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Figure 5.8 The degree of freedom of developed equity markets (n=5) 

 
Figure 5.9 The degree of freedom of Asian equity markets (n=5) 

 
Figure 5.10 The degree of freedom of Latin American equity markets 

(n=5) 

 
Figure 5.11 The degree of freedom of developed equity markets (n=10) 

 
Figure 5.12 The degree of freedom of Asian equity markets (n=10) 

 
Figure 5.13 The degree of freedom of Latin American equity markets (n=10) 
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5.3.2  The results of tail-DCC   

The second part of this section is graphical analysis of the time-varying correlations. The 

results of the tail-DCC are exhibited in Figure 5.14 to Figure 5.20, corresponding to the 

results of the original DCC model shown from Figure 5.21 to Figure 5.23. For convenience, 

all of the individual equity indexes are labelled as a number from 1 to 6 as displayed in Table 

5.15. For example, RO21 with black scatters in panel (a) and (b) of Figure 5.14 indicates the 

patterns of dynamic conditional correlation between the S&P 500 and TSX indexes in the left 

and right tails, respectively. The panels (a) and (b) from Figure 5.14 to Figure 5.16 are the tail 

DCCs between the developed equity markets, corresponding to panel (a), (b), and (c) in 

Figure 5.21 based on the original DCC model. In the developed equity market, the average 

dynamic conditional correlation of the left tail is generally between 0.4345 (RO62 for 

TSX/Nikkei) and 0.8483 (RO54 for CAC40/DAX). On the other hand, the ones for the right 

tail are from 0.3331 (RO62 for TSX/Nikkei) to 0.8176 (RO54 for CAC40/DAX). In the Latin 

American equity market, RO41 (for IGPA/Merval) and RO32 (for Bolsa/Bovespa) are the 

lowest and the highest tail-DCC in both two tails. In the Asian equity market, the pair, 

HSI/JCI, has the highest tail-DCC in both the left and right tail, 0.5331 and 0.5018, 

respectively. Yet, RO62 (SET/TAIEX) and RO53 (KLCI/KOSPI) are the lowest tail-DCC in 

the left and right tail, for 0.2587 and 0.2667, respectively. As in the detailed results shown in 

Table 5.16, the original DCC model tends to systematically derive higher correlation patterns 

than the tail DCC model, implying that these non-extreme observations could be highly 

correlated with each other. 
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Table 5.15 The numeric labels of the indices 

Indices of 

developed 

equity market 

Corresponding 

No. 

Indices of Asian 

equity market 

Corresponding 

No. 

Indices of Latin 

American equity 

market 

Corresponding 

No. 

S&P 500 1 HSI 1 IGPA 1 

TSX 2 TAIEX 2 Bolsa 2 

FTSE 100 3 KOSPI 3 Bovespa 3 

CAC 40 4 JCI 4 Merval 4 

DAX 5 KLCI 5   

Nikkei 225 6 SET 6   

 

Table 5.16 Average tail DCC and original DCC 

 Left tail Right tail Entire sample 

Panel A: 

developed equity 

market 

Average 

DCC 
SD. 

Average 

DCC 
SD. 

Average 

DCC 
SD. 

RO21 0.7264 0.0675 0.5979 0.1068 0.7012 0.0665 

RO31 0.6683 0.0654 0.5450 0.0869 0.5549 0.0674 

RO41 0.5879 0.0921 0.5414 0.0933 0.5231 0.0880 

RO51 0.5631 0.1017 0.5298 0.1116 0.5251 0.0987 

RO61 0.4736 0.1093 0.3686 0.1246 0.0852 0.0365 

RO32 0.6332 0.0937 0.5183 0.1292 0.5373 0.0645 

RO42 0.5739 0.1155 0.4890 0.1575 0.5305 0.0729 

RO52 0.5535 0.1148 0.4730 0.1546 0.5131 0.0813 

RO62 0.4345 0.1151 0.3331 0.1432 0.1742 0.0475 

RO43 0.7240 0.0690 0.6980 0.1076 0.8568 0.0443 

RO53 0.6865 0.0757 0.6037 0.1193 0.8199 0.0454 

RO63 0.5158 0.0977 0.3920 0.0947 0.2975 0.0941 

RO54 0.8483 0.0445 0.8176 0.0657 0.9482 0.0145 

RO64 0.4955 0.0974 0.3828 0.1144 0.3079 0.0924 

RO65 0.4811 0.0888 0.3747 0.1522 0.2981 0.1006 

Panel B: Latin American equity market     

RO21 0.6134 0.0767 0.3533 0.1396 0.5322 0.0810 

RO31 0.5481 0.0712 0.3497 0.1234 0.5250 0.0887 

RO41 0.5393 0.0734 0.2940 0.1320 0.5085 0.0975 

RO32 0.7483 0.0448 0.5345 0.0823 0.7103 0.0573 

RO42 0.6767 0.0581 0.4365 0.0882 0.6105 0.0633 

RO43 0.7312 0.0530 0.4693 0.0998 0.6738 0.0491 

Panel C: Asian equity market     

RO21 0.4753 0.0846 0.3881 0.0944 0.7012 0.0665 

RO31 0.5293 0.0745 0.4454 0.1033 0.5549 0.0674 

RO41 0.5331 0.0646 0.5018 0.1200 0.5231 0.0880 

RO51 0.5290 0.0701 0.4290 0.0846 0.5251 0.0987 

RO61 0.3871 0.1110 0.3986 0.1065 0.0852 0.0365 

RO32 0.5022 0.0590 0.4160 0.0824 0.5373 0.0645 

RO42 0.3498 0.0922 0.2785 0.1343 0.5305 0.0729 

RO52 0.3898 0.0642 0.3072 0.0954 0.5131 0.0813 

RO62 0.2587 0.1213 0.3012 0.1067 0.1742 0.0475 

RO43 0.4309 0.0861 0.3334 0.1224 0.8568 0.0443 

RO53 0.3994 0.0675 0.2667 0.0971 0.8199 0.0454 

RO63 0.3460 0.1303 0.3698 0.1113 0.2975 0.0941 

RO54 0.4919 0.0767 0.4187 0.1100 0.9482 0.0145 

RO64 0.4322 0.0829 0.3623 0.1286 0.3079 0.0924 

RO65 0.4078 0.0739 0.3507 0.0837 0.2981 0.1006 

 

According to the graphical evidences of the tail-DCCs as displayed in Figure 5.14 to Figure 
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5.23, several interesting findings cannot be ignored. Firstly, most patterns of tail-DCC 

generally exhibit positive structures, with the exception of several pairs in the Asian market. 

However, this is reasonable and acceptable as the big price changes of the pair of equity 

indices tend to rocket and to drop down with each other. Although the correlation theoretically 

spans between -1 to +1, the equity indices still move together towards the same direction 

because of the same market information.  

Secondly, another consistent characteristic to most patterns of the tail-DCC model is that it is 

obvious that correlations in the left tail are systematically higher than the ones in the right tail. 

For example, the correlation of the S&P 500 and TSX indexes in the left tail (panel (a) of 

Figure 5.14) hovers around 0.7 to 0.8; in contrast, the corresponding correlation in the right 

tail (panel (b) of Figure 5.14) fluctuates between 0.5 and 0.7. Similarly imbalanced results can 

also be found in other pairs. The observations of each pair of returns falling in their left tail 

could be regarded as showing that the markets are in a downslide, and the ones in the right tail 

imply that the conditions of equity markets are in a trend of escalation. The phenomenon of 

the correlation of the negative extremes being always greater than the correlation of positive 

ones is reasonably natural. A possible explanation could be due to investors’ expectations or 

their conservativeness; the investors’ behaviour would be affected more strongly by bad news 

than by good news. Thus, the market indices would move together when the bad news arrived. 

By contrast, the market indices might not move as consistently with the arrival of good news. 

Similar results can be also found in previous research (see Jondeau and Rockinger (1999), 

Longin (2001), Hartmann, Straetmans and Vries (2004), and Poon, Rockinger and Tawn 

(2004)). However, most of these works focus on the tail dependence by extracting the extreme 

observations over a particular threshold method, which might cause a confused result (as 

discussed in Section 2.3.3). Another difficulty of this approach is that the results of this 

method are highly affected by the choice of the threshold; however, the best way to choose the 
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appropriate threshold is still unclear. Fortunately, the results seem unaffected by the method of 

dependence.  

Thirdly, another phenomenon can be found in the patterns of the tail-correlation - the 

existence of a structural change or a circulation. The changes in the tail-DCC consistently 

present in the left and right tail. For instance, the blue scatters, denoted RO51, (tail-DCC 

between the DAX and S&P 500) in Figure 5.14 exhibit an obvious change around the 450
th

 

observation, particularly in the right tail. The tail-DCC spans between 0.4 and 0.55 in the left 

tail, however, it is around 0.6 to 0.7 in the right tail. The obvious changes happening around 

the 450
th

 observation in most patterns of tail-DCC could be attributed to the international 

financial crisis in 2008. Some patterns of correlation present a slight change around the 280
th

 

to 300
th

 observation, corresponding to the second quarter of 2008, for example, RO52 

(DAX/TSX) in both panel (a) and (b) of Figure 5.15, and RO53 (DAX/FTSE 100) in both 

panel (a) and (b) of Figure 5.16. Another case of circulation can be found in the Asian equity 

market, from Figure 5.18 to Figure 5.20. Moreover, the tail-DCC based on the 10-day block 

also presents similar results from Figure D- 1 to Figure D- 7 in appendix D.  
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Figure 5.14 The dynamic conditional correlations of developed market indices  

(a) Left tail  

 
(b) Right tail 

 

Figure 5.15 The dynamic conditional correlations of developed market indices 

(a) Left tails 

 
(b) Right tail 

 
Figure 5.16 The dynamic conditional correlations of developed market indices 

(a) Left tail 
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(b) Right tail  

 
Figure 5.17 The dynamic conditional correlations of Latin American indices 

(a) Left tail 

 
(b) Right tail 

 
Figure 5.18 The dynamic conditional correlations of Asian indices   

(a) Left tail 
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(b) Right tail 

 
Figure 5.19 The dynamic conditional correlations of Asian indices 

(a)Left tail 

 
(b) Right tail 

 
Figure 5.20 The dynamic conditional correlations of Asian indices 

(a)Left tail 
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(b)Right tail 

 
Figure 5.21 The pattern of original DCC model of developed market indices 

(a) 

 
(b)    

 
(c) 

 
Figure 5.22 The pattern of original DCC model of Asian equity indices 

(a) 
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(b) 

 
(c) 

 
Figure 5.23 The pattern of original DCC model of Latin American indices 
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5.4 Analysis of Portfolio VaR  

Risk management, particularly market risk management, has been under formal development 

for over twenty years. Most of the previous research focuses on the procedure of risk 

measurement for a single asset. The key thought behind this is based on the concept of asset 

mapping. Specifically, a portfolio with multiple assets could be integrated and regarded as a 

single asset. In this manner, the measurement of VaR becomes a simple task. However, this 

point of view has some difficulties in practice. For example, the management would lose lots 

of critical information in the process of asset mapping, particularly with regards to the 

correlations between various assets. Moreover, the management of a portfolio would stray 

from the balance of profit maximization and risk minimization. Therefore, there is a need for 

a new measurement of market risk stepping from the risk measure of a single asset and 

aggregating the individual risk as a whole portfolio risk. In this subsection, this new 

measurement is offered, called portfolio VaR. This subsection presents the portfolio VaR of all 

the models, including the GEV model and the other competing models. In addition, evaluation 

of its performance is also conducted through the regular backtesting procedure, called 

coverage test, as discussed in Section 4.5.1. Furthermore, considering the needs of the 

practitioners, the practicability and adaptability of these VaR models must also to be tested. 

Therefore, three benchmarks are applied to test how likely it is that the VaR model could be 

used easily in practice.  

5.4.1 Portfolio VaR and backtesting results 

The basic statistics of VaR 

This subsection graphically presents the patterns of VaR, including the GEV-DCC model and 

the other four competing models. In addition, the basic statistics of forecasted VaR, shown in 

Table 5.17 and Table 5.18, and several numerical analyses are provided for backtesting, 
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displayed from Table 5.19 to Table 5.22. According to the nature of VaR methodologies, J.P. 

Morgan’s EWMA model (also called RiskMetrics), the common multivariate GARCH model, 

and the stochastic volatility model are symmetric
82

 between the long and short position. 

Historical simulation and the GEV-DCC model are better because they measure the VaR from 

the long or short position. The main evidence shown in Table 5.17 indicates that the methods 

of historical simulation and the GEV-DCC model tend to derive higher daily risk. For 

example, the 99%-VaRs of the long (short) positions from HS are 0.0640, -0.0415, and 

-0.0381 (0.0601, 0.0317, and 0.0306) for the developed equity market, the Latin American, 

and the Asian equity markets, respectively. Similarly, the ones derived from the GEV-DCC 

model are -0.0331, -0.0509, and -0.0364 (0.0304, 0.0483, and 0.0390). On the other hand, 

VaRs from the other models are lower than ±0.0400. It is not surprising that the portfolio of 

Latin American equity indices is the riskiest one and the portfolio of the developed equity 

indices has the lowest risk. In addition, the VaRs from HS and GEV-DCC also show that the 

risks of long positions are generally higher than the short positions, which is consistent with 

the evidence in the univariate section (Section 5.2). As regards volatility (measured by 

standard deviation), GEV-DCC is a more stable risk measure, dispersing between 0.0030 and 

0.0039 (0.0030 and 0.0045) for the long (short) position. Another point which should not be 

neglected is the average daily return of the three portfolios: -0.0002, 0.0003, and 0.0002 for 

the developed, Latin American, and Asian equity markets, respectively. 

 

Graphical analysis of VaR patterns of derived competing models 

The patterns of the rolling one-day ahead portfolio VaR are exhibited in Figures 5.24 to 5.26 

including the long and short positions and the actual portfolio returns (a clearer figure of the 

                                                      
82

 Since the weighted mean return of the portfolio tends to zero, thus the first term of Eq. (2.18) is neglected. 
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Latin American one without the SV pattern can be found in Figure F- 1 in the Appendix F
83

). 

The patterns of 99%- and 95%-VaR are displayed in the (a) and (b) panels, respectively. For 

instance, Figure 5.24 (a) and (b) present the patterns of 99%- and 95%-VaR of the developed 

equity markets based on various VaR models, and the actual return. The black scattered points 

are the equally weighted portfolio returns. The patterns below (above) zero are the VaR for the 

long (short) position. In Figure 5.24, the noticeable VaR pattern in green, both in the long and 

short, is derived from the HS method and shows a dramatic rise around the 450
th

 observation. 

Obviously, it is affected by several extreme observations happening in the third quarter in 

2008. This phenomenon persisted until those extremes phased out of the forecasting period 

(i.e. 250 historical observations). Since all the six developed equity markets experienced a 

significant collapse in 2008, the empirical distribution was dragged toward the tail area. This 

could be a good explanation as to why the average VaR and standard deviation of the 

developed equity market is higher than other two portfolios in Table 5.17. A similar result can 

also be found in the Asian equity market in Figure 5.26, but not in the Latin American 

portfolio.  

As shown in the original definition and calculation of VaR from Eq. (2.1) to (2.3), volatility 

plays a critical role in VaR. Thus, three competing models in this thesis are represented 

focusing on volatility modelling. The first two models, RiskMetrics (in red) and GARCH (in 

blue) are quite similar, and use the same concept of dynamic volatility. As is already known, 

the RiskMetrics model is a simplified version of the GARCH model, which has a fixed 

parameter to daily returns proposed by J.P. Morgan (1996). The main spirit of these two 

models assumes that volatility is only affected by the one period ahead return and volatility. In 

other words, they assume that all the market information has been reflected in the previous 

                                                      
83

 To avoid the figures of the other four VaR models being obscured by the SV figures, a set of figures without 

the SV figures are displayed in the Appendix F (Figure F- 1). Then, the patterns of the other four models can 

be clearly seen and demonstrated.  
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return and volatility. Moreover, RiskMetrics assumes that 94% of a change of volatility is 

affected by itself at time t-1. As a result of the nature of RiskMetrics, the influence from those 

extremes comes in quickly and rapidly phases out as well. Take for example the pattern of the 

developed market (Asian market), the 99%-VaR of a long position from -0.0357 (-0.0256) 

dropped to -0.0673 (-0.0575) in 20 trading days and then returned to a more reasonable level 

in 45 trading days. In contrast to the RiskMetrics model, the pure multivariate GARCH (1,1) 

model allows for the parameters to change associated with the market condition over time. 

Thus, the VaR pattern of the GARCH model would not be as deeply influenced by extreme 

observations. Therefore, the pattern of the GARCH model is smoother than the RiskMetrics 

one. In fact, the main drawback of RiskMetrics is this restriction of volatility dynamics, which 

is reflected in its pattern, easily influenced by the extreme return and suddenly soaring to an 

incredible high. Furthermore, as shown in Eq. (4.33), the identical decay factor in all return 

sequences seems unreasonable in practice. The third VaR model (in yellow) based on the 

method of volatility modelling is the stochastic volatility approach (SV). Noticeably, the 

pattern of SV is more volatile than the first two and the fluctuations seem unrelated with the 

portfolio returns. One reason for this might be the feature of random walk in the SV model. 

For example, a local high in the VaR pattern of the developed market obtained from the SV 

model is around the 400
th

 observation (±0.0565 for the 402
th

), but the actual portfolio return in 

that period is relatively stable. On the other hand, the actual portfolio return of the developed 

market tempestuously varied around the 460
th

 to 490
th

 observation (from -0.0651 to 0.0727), 

but its VaR pattern in that period kept at a relatively small level. This phenomenon is more 

obvious in the same period in the Latin American equity market, and the 750
th

 observation at 

the end of the Asian pattern. All the evidence in the figures apparently shows that the SV 

model might not be a proper measure of market risk for these portfolios. Compared with the 

RiskMetrics and GARCH models, it derives a VaR pattern with too many fluctuations due to 

its randomness. Furthermore, the main difficulty of the SV model is its massive numerical 
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procedure. It involves a maximization process for which it is, in general, difficult to achieve a 

proper convergence. There are 6.17% and 8.3% (53 and 72 observations) non-converged 

observations in the developed and Asian equity markets, respectively. Compared with about 

2% of non-converged observations of the GEV-DCC model, the SV model seems to need a 

further refinement in volatility modelling. As a result, the VaR forecast becomes an extremely 

time-consuming task with the SV model. In fact, all of the three methods encounter a problem, 

the asymmetry in the long and short VaR patterns. Since some of the volatilities come from a 

positive return change and others from a negative one, it is unreasonable to just use the 

positive volatilities in calculating the VaR of long positions.  
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Table 5.17 Descriptive statistics of 99%-VaR 

 HS-L HS-S RiskMetrics-L RiskMetrics-S GARCH-L GARCH-S    SV-L    SV-S GEV-DCC-L GEV-DCC-S Return 

Panel A: Developed market           

Mean -0.0640 0.0601 -0.0298 0.0298 -0.0253 0.0253 -0.0168 0.0168 -0.0331 0.0304 -0.0002 

SD 0.0325 0.0343 0.0179 0.0179 0.0095 0.0095 0.0101 0.0101 0.0039 0.0036 0.0150 

SK -0.5783 0.5740 -1.8543 1.8906 -0.3052 0.3551 -0.8777 0.9041 -0.6070 1.3046 -0.3696 

K -1.3987 -1.3629 3.2971 3.2981 -1.0473 -1.0473 1.2037 1.2037 6.9675 8.7052 5.6259 

Panel B: Latin American 

market 

          

Mean -0.0415 0.0397  -0.0331 0.0331 -0.0269 0.0269 -0.0388 0.0388 -0.0509 0.0483 0.0003 

SD 0.0160 0.0143  0.0165 0.0165 0.0071 0.0071 0.0416 0.0416 0.0030 0.0045 0.0159 

SK -0.7284 0.5161  -1.8731 1.8720 -2.2714 2.2714 -1.9172 1.9172 -4.7427 8.3095 -0.3703 

K -1.2337 -1.2516  3.7256 3.7264 11.6628 11.6628 5.3371 5.3371 49.4282 131.0767 4.8003 

Panel C: Asian market           

Mean -0.0381 0.0306 -0.0288 0.0288 -0.0231 0.0231 -0.0159 0.0159 -0.0364 0.0390 0.0002 

SD 0.0128 0.0095 0.0129 0.0129 0.0055 0.0055 0.0091 0.0091 0.0034 0.0030 0.0135 

SK -0.4606 0.2404 -1.5922 1.6475 -1.6197 1.7849 -0.8959 0.9264 -3.6208 1.7257 -0.5067 

K -1.1187 -1.2845 3.1277 3.1277 8.3241 8.3241 1.0858 1.0858 57.8726 35.6213 4.3690 

Note: 1. –L (-S) means the long (short) position. 

2. The abbreviations of all models: HS is historical simulation based on 250 observations, GARCH means a simple multivariate GARCH(1,1) models, SV is the multivariate 

stochastic volatility model provided by Harvey, Ruiz and Shephard (1994), and GEV-DCC is the method of extreme value theory which combines the spirit of dynamic 

conditional volatility. 
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Table 5.18 Descriptive statistics of 95%-VaR 

 HS-L HS-S RiskMetrics-L RiskMetrics-S GARCH-L GARCH-S SV-L SV-S GEV-DCC-L GEV-DCC-S Return 

Panel A: Developed market           

Mean -0.0417 0.0323 -0.0210 0.0210 -0.0178 0.0178 -0.0119 0.0119 -0.0186 0.0183 -0.0002 

SD 0.0215 0.0134 0.0127 0.0127 0.0068 0.0068 0.0071 0.0071 0.0032 0.0029 0.0150 

SK -0.6358 0.5543 -1.8551 1.8906 -0.2967 0.3447 -0.8776 0.9041 -4.6630 4.9471 -0.3696 

K -1.1937 -1.2117 3.2987 3.2981 -1.0753 -1.0753 1.2037 1.2037 36.7699 38.9112 5.6259 

Panel B: Latin American 

market 

          

Mean -0.0253 0.0231  -0.0234 0.0234 -0.0188 0.0188 -0.0274 0.0274 -0.0274 0.0283 0.0003 

SD 0.0089 0.0083  0.0117 0.0117 0.0051 0.0051 0.0294 0.0294 0.0028 0.0044 0.0159 

SK -0.5312 0.8086  -1.8749 1.8760 -2.2035 2.2035 -1.9172 1.9172 -11.8876 12.7200 -0.3703 

K -1.1981 -0.6926  3.7331 3.7366 11.1493 11.1493 5.3372 5.3372 175.9050 220.1476 4.8003 

Panel C: Asian market           

Mean -0.0220 0.0195 -0.0204 0.0204 -0.0162 0.0162 -0.0113 0.0113 -0.0216 0.0221 0.0002 

SD 0.0078 0.0059 0.0091 0.0091 0.0039 0.0039 0.0064 0.0064 0.0043 0.0033 0.0135 

SK 0.0618 0.1729 -1.5922 1.6475 -1.5721 1.7299 -0.8939 0.9244 -6.6287 6.0639 -0.5067 

K -1.4299 -0.4820 3.1277 3.1277 7.9473 7.9473 1.0823 1.0823 61.4003 56.0712 4.3690 
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Figure 5.24  (a).99%-VaR patterns of the developed market and the actual return 

 

(b).95%-VaR patterns of the developed market and the actual return 
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Figure 5.25 (a). 99%-VaR patterns of the Latin American equity market and the actual return
84

 

 

(b). 95%-VaR patterns of the Latin American equity market and the actual returns 

 
 

  

                                                      
84

 Since most patterns are covered by the pattern of the SV model, a clear figure without the SV mode is 

provided in Appendix F.  
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Figure 5.26 (a). 99%-VaR patterns of the Asian equity market and the actual returns 

 

(b). 95%-VaR patterns of the Asian equity market and the actual returns 
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Figure 5.27 The 99%-VaR patterns of the GEV-DCC model with a different size of block 

(a)developed equity market 

 

(b)Latin American equity market 

 

(c)Asian equity market 
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Figure 5.28 The patterns of daily portfolio returns of the equity markets 
(a)portfolio return of the developed equity market 

 
(b) portfolio return of the Latin American equity market 

 
(c) portfolio return of the Asian equity market 
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Figure 5.29 The patterns of the 10-day portfolio return of the equity markets 
(a)portfolio return of the developed equity market 

 
(b) portfolio return of the Latin American equity market 

 
(c) portfolio return of the Asian equity market 
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Graphical analysis of VaR patterns derived from the GEV-DCC model 

The model suggested by this thesis is the GEV-DCC, which takes into account the univariate 

case and aggregation of all the individual VaRs. In the first step, the individual VaR of each 

return series is obtained via the generalized distribution of extreme value proposed by Fisher 

and Tippett (1928) and Jenkinson (1955), which is discussed in Section 5.2. The second step 

is to measure an appropriate correlation between the various asset returns; in particular the 

correlation should have the ability to describe the relationship in both tails. Finally, the third 

step is to aggregate the individual VaRs as a whole, to be called portfolio VaR. The VaR 

patterns (in black) of the GEV-DCC present some small variations although they are truly 

flatter than the other patterns of the competing models. Some of the higher peaks are the 

un-converged observations, and the small ones are real forecasted VaRs. As expected, the 

99%-VaR of the developed equity market portfolio is the smallest level, around -3.3% and 

3.0% for the long and short position, respectively. Interestingly, both the long and short VaR 

patterns of the GEV-DCC model are quite similar to the pattern derived from the GARCH 

model, particularly after 2008. The portfolio of the Latin American equity market is the 

riskiest one, and the VaRs of the long and short position are -5.09% and 4.83% on average. 

Generally speaking, the VaR pattern of the Asian equity market is more volatile, in both the 

long and short position. Both the VaR of the long and short positions around the 170
th

 

observation present a jump. Tracking the reason of the jump, interestingly it stems from the 

change of correlation between the Asian indices as shown in Figure 5.18 to Figure 5.20, rather 

than the change in individual VaR.  

The VaR patterns with different sizes of block are exhibited in Figure 5.27, including one 

week (n=5), two weeks (n=10), and one month (n=22). Previous research argued that there is 

no guidance to decide the size of block, but yet the estimated parameters of generalized 

extreme distribution are significantly affected by the choice of block size (Lauridsen (2000) 
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and Ho et al. (2000)). As with Lauridsen (2000) and Ho et al.’s (2000) studies, the estimated 

parameters of the generalized extreme value distribution in Table 5.1 are significantly 

influenced by the size of the block. However, the evidence in the VaR patterns in Figure 5.27 

shows that the size of VaR seems not to be influenced by the block size, except with the short 

pattern of the Asian equity market in Figure 5.27(c). For example, in Figure 5.27(a), the three 

patterns in different colours tend to overlap with each other. Even in the period of the third 

quarter of 2008 (around the 475
th

 observation to the 525
th

 one), there is only a small 

difference between the VaR pattern in the 22-day block and the VaR pattern in the 5- and 

10-day block. A similar phenomenon can also be found in the figures of the Latin American 

equity market, although the VaR patterns of the long positions are similar to the ones in the 

developed equity market. In other words, the block size mentioned in Section 5.2.1 would 

cause an influence in the parameter estimation of the distribution of generalized extreme 

returns, but it would not significantly affect the forecasted VaR pattern. 

 

 

Backtesting based on coverage test 

The performance evaluation of the VaR model is a critical part of the risk management 

procedure. This process involves the fundamental question: is this model robust or not? 

Statistically, a 99%-VaR (or 95%-VaR) sequence should cover 99% (95%) of the actual 

returns on average. For example, 99% of observations of a 99%-VaR series of a long position, 

derived by rolling forecasting, should be numerically smaller than the corresponding actual 

portfolio return. To achieve this task, two main applications, called coverage tests, are applied 

in this subsection. The results of the coverage test for GEV-DCC and the other four competing 

models are shown in Table 5.19 to Table 5.22. According to Kupiec (1995), in the coverage 

test the null hypothesis is that the violation rate equals 
85

, against the alternative hypothesis 

                                                      
85

 Eq. (2.1) to eq. (2.3) explain the . 
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that the violation rate is larger than . Christoffersen (1998) refined the coverage test by 

adding an independence test to the violations. The basic concept of Christoffersen’s work 

assumes that the probability of the appearance of each exceedance should be equal to . 

However, the existence of an autocorrelation in the sequence of the exceedance means the 

exceedance at time t could be an estimator of the exceedance at time t+1. In this case, the 

occurrence probability of the exceedance at time t+1 would not be equal to . Christoffersen’s 

(1998) method is applied in this section.  

The first part in this subsection is the VaR backtesting of the four competing models, for both 

the daily and 10-day return sequences, as shown in Table 5.19 and Table 5.20, respectively. 

Clearly, looking at the 99%-VaR or the 95%-VaR column, RiskMetrics and the Historical 

simulation method (with 250 historical data observations) provide the best performance in 

daily VaR backtesting. This result is inconsistent with the outcome in the univariate section, in 

which the GARCH model offers a better performance in VaR backtesting. Yet, in the portfolio 

VaR case, the GARCH model only provides a fair performance in the short position of the 

developed and Latin American equity markets (0.0256 and 0.0268, respectively). 

Unsurprisingly, the SV model provides the worst performance of the competing models. None 

of the 99%- and 95%-VaR in the SV panel are significant due to its high violation rate, caused 

by the randomness of the SV model. Both the GARCH and SV models are time-varying 

parametric models which involve difficult convergences and tedious calculations. Similarly 

poor results can be also found in the panel of historical simulation with 1250 historical data. 

The results of the HS model with n=1250 (hereafter HS-1250) are stable but sluggish. The 

sluggishness of HS can also be demonstrated in Figure E-1 in Appendix E. It is clear to see 

the green lines respond to the market condition quite slowly. On the other hand, the case of 

the HS model with 250 previous observations (hereafter HS-250) provides an excellent 

backtesting performance, both in the long and short positions. The fact that the HS method 
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with the shorter estimation period produces a better performance than the longer one can be 

seen as a matter of course since it contains much more current information. Looking at this in 

more depth, the RiskMetrics model presents only an acceptable performance in the long 

position of the three portfolios. The violation rates are 0.0279, 0.0280, and 0.0266 for the 

developed, Latin American, and Asian equity markets, respectively. Unfortunately, the three 

outcomes are not significant under Kupiec’s test. By contrast, the violation rates of the short 

positions are much better. At least, all of them are significant in both coverage tests at the 95% 

level. Turning to HS-250, the violation rates of the long positions are significant in both 

coverage tests, and two out of three of the short positions are significant, at least at the 95% 

level. In the 95%-VaR column, similar results can be found as well, which demonstrate that 

the RiskMetrics and HS-250 model provide a better back-testing performance. The magnitude 

of the violation rate between the long and short positions is obscure, except for the developed 

equity market. The RiskMetrics model shows that the violation rate in the long position is 

higher than the short one. However, HS-250 demonstrates the exact opposite. In addition, the 

one-day ahead VaR forecast and coverage tests are also made based on the 10-day return 

sequences (the results are exhibited in Table 5.20). The results of the performance of the 

10-day VaRs are worse than the daily VaR series. This is perplexing, and one possible 

explanation to this could be attributed to the stronger fluctuation of the 10-day return series.  

The second part of the backtesting looks at the results of the GEV-DCC model and is 

displayed in Table 5.21 to Table 5.23. As shown in panel A, the results based on the daily 

sequences are, in general, quite significant. Most of the backtesting results demonstrate that 

the GEV-DCC model offers a good performance, except for the case of the long position with 

the 22-day block in the developed equity market. Both the Latin American and Asian equity 

markets are, at least, significant at the 95% level. It is interesting that the violation rate in the 

developed market is the highest one and the one in the Latin American market is the lowest. 



Chapter 5 Results and Findings                                                           

235 
 

Intuitionally, as the evidence shows in Table 5.17, the mean VaR of most models would 

suggest that the Latin American equity market is the riskiest of the three portfolios, but the 

results of the violation rate put it as the lowest. In fact, the results of the violation rate might 

properly describe the reality in the market. Referring to the patterns of the three equity market 

portfolios as shown in Figure 5.28, Latin American equity has a more volatile pattern and 

those extreme returns will be sampled to form a generalized extreme distribution. As a result, 

the individual VaR will stay at a significantly high level, and the high level VaR pattern would 

not be exceeded easily by the returns. In contrast, the returns of the developed equity markets 

present a smaller fluctuation compared with the other two patterns. Thus, it is natural that the 

forecasted VaR would remain in the lower level and would be violated easily.  

Apart from the backtesting of daily VaR patterns, a backtesting of the 10-day VaR derived by 

the GEV-DCC model is provided in panel B. The results show that the developed equity 

market produced a poor performance in the backtesting, and only partial sections of the Asian 

portfolio are significant at the 95% level. Yet the GEV-DCC model has great success in 

measuring the 10-day VaR of the Latin American equity market, and most of the violation 

rates are between 0.0070 and 0.0175, except for the short position of the 10-day block (n=10). 

Partial results in the Asian market provide an acceptable performance, but the majority of the 

market is not good enough. Sometimes the VaR might be required in a tolerant condition, for 

example when =0.05; the results of VaR0.95 are displayed in Table 5.22. Similarly, the 

GEV-DCC model provides a good performance for the Latin American and Asian equity 

markets, and the short positions of developed markets in all sizes of blocks are significant at 

95%. However, VaR with =0.05 does not work well in the 10-day return sequences because 

of the extremely high violation rate.  

The results discussed and analysed above are estimated and forecasted with a long-range 

sample, from 2
nd

 January 1990 to 29
th

 December 2006. For the purpose of robustness testing 
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of the GEV-DCC model, a shorter period of sample set is used to investigate the VaR of the 

three portfolios using the same procedure, and the results are presented in Table 5.23. The 

alternative sample set includes 10-year daily returns, from 2
nd

 January 1997 to 29
th

 December 

2006
86

. The new period is shorter than the original one, which means that the less extreme 

returns will be sampled and applied in the estimation of asymptotic distribution of those 

extremes. Technically, less extreme observations inevitably produce a result with less 

accuracy. The results generally maintain a consistent pattern, showing that the violation rate in 

the long positions is higher than the one in the short positions. Most of the results in Table 

5.23 are significant at the 95% or 99% confidence level, and the performance is even better 

than the results in panel A of Table 5.21. One possible interpretation for this is that it is 

associated with the choice of sample period. Specifically, the original sample with a longer 

span includes many positive or negative extreme returns happening between 1990 and 1996. 

Referring to Figure 5.28, for instance, the sample set from 1990 to 1996 of the developed 

market tends to be stable, but the Latin American market in that period includes many 

extreme returns. As a result, the VaR pattern of the developed market tends to be high when 

those relatively smaller extreme returns are excluded. Therefore, a lower level of violation 

rate to the VaR pattern in the shorter period is found. By contrast, in the Latin American 

equity market, a smaller VaR pattern is obtained because a series of larger extreme returns in 

the period of 1995 to 1996 are dropped. Similarly, a higher level of violation rate of the 

alternative period is found as shown in Table 5.23. In addition, a clearer comparison of the 

two different periods, with three types of block, is shown in Table 5.24. In general, the two 

sets of VaR are highly consistent in all the blocks. As in the discussion above, the VaR pattern 

in the developed market in panel B tends to be higher than the one in panel A. In contrast, the 

VaR in the Latin American market in panel B is smaller than the one in panel A. The two 

                                                      
86

 The number of observations for the developed market between 1990 and 1996 is 1811, the Latin American 

market has 513 observations, and the number of observations of the Asian market in this period is 1820.   
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results of the VaR patterns of the Asian market are more obscure. However, the two results are 

quite similar. Overall, the evidence in Table 5.24 suggests that the GEV-DCC model is a 

reliable risk measure to use with different forecast periods.  

Comparison  

In this part, the three backtesting results of the VaR models are compared with each other; 

RiskMetrics, Historical simulation, and the GEV-DCC model as shown in panel B and D of 

Table 5.19 and panel A of Table 5.21. In the backtesting results with the daily return sequence, 

the GEV-DCC model generally provides a superior backtesting performance than RiskMetrics 

and HS; although all of them significantly accept the null hypothesis, the violation rate is 

equivalent to . For example, the violation rates of the GEV-DCC model with a 5-day block 

are 0.0244, 0.0105, and 0.0115 in the long position, corresponding to RiskMetrics at 0.0279, 

0.0280, and 0.0266, and the HS model at 0.0233, 0.0199, and 0.0150. On the other hand, the 

GEV-DCC also presents a slightly better violation rate in the short positions. In the 5-day 

block, the violation rates of the GEV-DCC model are 0.0186, 0.0058, and 0.0081, compared 

with RiskMetrics (for 0.0035, 0.0117, and 0.0115) and HS (for 0.0198, 0.0269, and 0.0161). 

Even with a 22-day block, the GEV-DCC model still offers an acceptable violation rate in the 

long positions (0.0314, 0.0129, and 0.0127) and the short positions (0.0198, 0.0105, and 

0.0173).  

Apart from the comparison of daily VaR performance, the VaR performance of the GEV-DCC 

based on the 10-day returns is also compared with the two alternative models. The results are 

shown in panels B and D in Table 5.20, and panel B in Table 5.21. The results show that the 

RiskMetrics model is only significant in the short position of VaR0.99. Furthermore, the 

HS-250 model produces the worst VaR performance, and none of the backtesting results is 

significant. However, the GEV-DCC model is highly significant in the Latin American market 

and partially significant in the Asian market. The backtesting results in the developed market 
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are quite bad due to the high violation rates and the failure in the independence test of the 

violations. Unfortunately, the performances of VaR0.95 in the three blocks are much worse. 

From this viewpoint, the GEV-DCC model is likely to be more suitable in the higher 

probability VaR forecast, for example, the performance of VaR0.99 is better than the one of 

VaR0.95. The critical implication from this comparison for investors is that using the 

GEV-DCC model to measure market risk generally offers the most accurate risk forecast and 

highest coverage (i.e., the lowest violation rate) in the equity markets, compared with 

RiskMetrics and historical simulation.  
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Table 5.19 The backtesting results of competing models based on daily returns 

                 

Panel A: GARCH model Long Short Long Short 

Developed market     
Violation (%) 0.0524   0.0256   0.1036   0.0652   

Unconditional test 33.7913   6.4154** 17.4759   1.6612*  

Independent test 1.9864*  1.0381*  8.5902   0.0158*  

Conditional test 35.7777   7.4535** 26.0661   1.6770*  

Latin American market     
Violation (%) 0.0479   0.0268   0.0946   0.0698   

Unconditional test 28.1547   7.2661   12.4924   2.7689*  

Independent test 0.2730*  0.5035*  0.1163*  0.5993*  

Conditional test 28.4278   7.7696** 12.6087   3.3683*  

Asian market     

Violation (%) 0.0461   0.0311   0.0957   0.0715   

Unconditional test 26.4132   10.8906   13.2298   3.2555*  

Independent test 1.8237*  0.7548*  0.9745*  0.2610*  

Conditional test 28.2369   11.6454   14.2043   3.5166*  

Panel B: RiskMetrics Long Short Long Short 

Developed market     

Violation (%) 0.0279   0.0035   0.0815   0.0442   

Unconditional test 8.1555   2.1301*  6.5973** 0.2709*  

Independent test 2.0903*  0.0091*  2.0745*  0.4015*  

Conditional test 10.2459   2.1392*  8.6719** 0.6724*  

Latin American market     
Violation (%) 0.0280   0.0117   0.0689   0.0444   

Unconditional test 8.2033   0.1008*  2.5201*  0.2553*  

Independent test 0.0637*  0.1028*  1.5404*  0.0995*  

Conditional test 8.2670** 0.2036*  4.0605*  0.3549*  

Asian market     
Violation (%) 0.0266   0.0115   0.0843   0.0427   

Unconditional test 7.1628   0.0866*  7.7922   0.4398*  

Independent test 0.0957*  0.1016*  0.6079*  0.1158*  

Conditional test 7.2585** 0.1882*  8.4001** 0.5556*  

Panel C: Stochastic volatility Long Short Long Short 
Developed market     

Violation (%) 0.1377   0.1228   0.1861   0.1787   

Unconditional test 169.4756   141.3746   83.1288   75.6029   

Independent test 2.2229*  1.0713*  5.1132** 0.0502*  

Conditional test 171.6985   142.4459   88.2420   75.6530   

Latin American market     
Violation (%) 0.1273   0.1379   0.1565   0.1694   

Unconditional test 159.0259   180.2627   58.2399   70.7359   

Independent test 0.1756*  0.0029*  0.9892*  0.1759*  

Conditional test 159.2014   180.2656   59.2291   70.9119   

Asian market     
Violation (%) 0.1145   0.1283   0.1660   0.1950   

Unconditional test 124.4897   149.4766   62.5851   91.1625   

Independent test 2.1264*  3.0055*  1.7760*  2.9875*  

Conditional test 126.6161   152.4821   64.3612   94.1500   

Panel D: HS (1250) Long Short Long Short 
Developed market     

Violation (%) 0.0314   0.0303   0.1187   0.1129   

Unconditional test 11.0416   10.0447   27.2419   23.2819   
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Independent test 4.7067** 3.2319*  6.3207** 0.7547*  

Conditional test 15.7483   13.2766   33.5626   24.0366   

Latin American market     

Violation (%) 0.0327   0.0269   0.0970   0.0864   

Unconditional test 12.1321   7.3107   13.7077   8.6193   

Independent test 1.4245*  0.9150*  1.9990*  0.0135*  

Conditional test 13.5567   8.2258** 15.7067   8.6328** 

Asian market     

Violation (%) 0.0311   0.0311   0.0911   0.0934   

Unconditional test 10.8906   10.8906   10.8956   12.0390   

Independent test 1.5985*  0.5432*  0.5194*  2.4154*  

Conditional test 12.4891   11.4338   11.4150   14.4545   

Panel D: HS (250) Long Short Long Short 
Developed market     

Violation (%) 0.0233   0.0198   0.0698   0.0605   

Unconditional test 4.8377** 2.8109*  2.7689*  0.8192*  

Independent test 0.2121*  0.3926*  9.2289   1.0332*  

Conditional test 5.0498*  3.2035*  11.9978   1.8524*  

Latin American market     

Violation (%) 0.0199   0.0269   0.0631   0.0864   

Unconditional test 2.8369*  7.3107   1.2417*  8.6193   

Independent test 0.3905*  0.9150*  4.4253** 0.0135*  

Conditional test 3.2274*  8.2258** 5.6670*  8.6328** 

Asian market     

Violation (%) 0.0150   0.0161   0.0542   0.0577   

Unconditional test 0.8225*  1.2119*  0.1369*  0.4453*  

Independent test 0.7654*  0.6573*  6.5778** 0.1899*  

Conditional test 1.5879*  1.8692*  6.7146** 0.6353*  

1. **(*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of the 

likelihood ratio test (unconditional test) and the independent test are      
            and 

     
           . The critical values of the conditional test are      

            and 

     
             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     

and     equal zero and    
    cannot be calculated. Therefore, one extreme small number, 

say      , is assigned to this term for the purpose of convenience to calculate the independent 

test and Christoffersen’s (1998) unconditional coverage test. 
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Table 5.20 The backtesting results of competing models based on 10-day returns 

                 

Panel A: GARCH model Long Short Long Short 

Developed market     
Violation (%) 0.0594   0.0373   0.1327   0.1176   

Unconditional test 43.0022   16.5028   37.7136   26.4303   

Independent test 43.5569   13.2878   133.1654   78.0734   

Conditional test 86.5591   29.7907   170.8790   104.5036   

Latin American market     
Violation (%) 0.0536   0.1292   0.1292   0.2619   

Unconditional test 35.2779   163.3480   34.9724   184.6410   

Independent test 25.8040   52.3276   63.8160   122.1978   

Conditional test 61.0819   215.6756   98.7884   306.8388   

Asian market     
Violation (%) 0.0559   0.0629   0.1339   0.1804   

Unconditional test 38.3104   47.8570   38.6450   82.4693   

Independent test 32.0858   7.0693   90.7646   57.3359   

Conditional test 70.3963   54.9263   129.4095   139.8053   

Panel B: RiskMetrics Long Short Long Short 

Developed market     

Violation (%) 0.0314   0.0012   0.0827   0.0404   

Unconditional test 11.0416   4.8080** 7.0576   0.7761*  

Independent test 46.1149   0.0010*  87.3528   21.7478   

Conditional test 57.1565   4.8090*  94.4104   22.5239   

Latin American market     
Violation (%) 0.0199   0.0035   0.0584   0.0589   

Unconditional test 2.8369*  2.1700*  0.5266*  0.5937*  

Independent test 27.3172   0.0040*  35.6280   47.5612   

Conditional test 30.1541   2.1741*  36.1546   48.1548   

Asian market     
Violation (%) 0.0164   0.0115   0.0596   0.0520   

Unconditional test 1.2724*  0.0866*  0.6785*  0.0301*  

Independent test 14.4964   0.0254*  72.0880   55.8347   

Conditional test 15.7688   0.1120*  72.7665   55.8649   

Panel C: HS (1250) Long Short Long Short 
Developed market     

Violation (%) 0.0407   0.0384   0.1267   0.1035   

Unconditional test 20.0984   17.6581   33.1165   17.4255   

Independent test 53.0938   0.1272*  126.0825   88.9040   

Conditional test 73.1922   17.7853   159.1990   106.3295   

Latin American market     
Violation (%) 0.0245   0.0374   0.1051   0.0935   

Unconditional test 5.6438** 16.5758   18.3199   11.9025   

Independent test 34.2981   41.7700   115.7831   81.1250   

Conditional test 39.9419   58.3458   134.1030   93.0275   

Asian market     
Violation (%) 0.0323   0.0381   0.1165   0.1027   

Unconditional test 11.9124   17.4823   25.9218   17.0760   

Independent test 40.1960   44.3690   138.2788   118.8967   

Conditional test 52.1084   61.8512   164.2006   135.9727   

Panel D: HS (250) Long Short Long Short 
Developed market     

Violation (%) 0.0186   0.0279   0.0593   0.0628   

Unconditional test 2.2283*  8.1397   0.6438*  1.1941*  

Independent test 20.2107   0.1040*  72.2316   74.3832   

Conditional test 22.4391   8.2437** 72.8753   75.5773   
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Latin American market     
Violation (%) 0.0175   0.0129   0.0678   0.0584   

Unconditional test 1.7361*  0.2799*  2.2318*  0.5266*  

Independent test 17.3336   22.7622   70.5578   58.4593   

Conditional test 19.0698   23.0421   72.7896   58.9858   

Asian market     
Violation (%) 0.0254   0.0242   0.0842   0.0750   

Unconditional test 6.3058** 5.5040** 7.7603   4.3145** 

Independent test 24.8422   26.0659   103.2510   73.1811   

Conditional test 31.1480   31.5699   111.0112   77.4956   

1. **(*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of the 

likelihood ratio test (unconditional test) and the independent test are      
            and 

     
           . The critical values of the conditional test are      

            and 

     
             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     

and     equal zero and    
    cannot be calculated. Therefore, one extreme small number, 

say      , is assigned to this term for the purpose of convenience to calculate the independent 

test and Christoffersen’s (1998) unconditional coverage test. 
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Table 5.21  The results of portfolio 99%-VaR based on GEV-DCC model  

 GEV(n=5) GEV(n=10) GEV(n=22) 
Panel A: daily return Long Short Long Short Long Short 

Developed market       

Violation (%) 0.0244   0.0186   0.0244   0.0210   0.0314   0.0198   

Unconditional test 5.6053** 2.2359*  5.6053** 3.4380*  11.0416   2.8109*  

Independent test 2.7143*  4.1006** 2.7143*  5.7569** 6.6731   3.7799*  

Conditional test 8.3197** 6.3365** 8.3197** 9.1949** 17.7147   6.5908** 

Latin American market       

Violation (%) 0.0105   0.0058   0.0105   0.0082   0.0129   0.0105   

Unconditional test 0.0098*  0.7636*  0.0098*  0.1330*  0.2799*  0.0098*  

Independent test 0.0832*  0.0255*  0.0832*  0.0502*  0.1245*  0.0832*  

Conditional test 0.0929*  0.7892*  0.0929*  0.1832*  0.4044*  0.0929*  

Asian market       
Violation (%) 0.0115   0.0081   0.0104   0.0104   0.0127   0.0173   

Unconditional test 0.0866*  0.1494*  0.0058*  0.0058*  0.2555*  1.6708*  

Independent test 1.1771*  0.0496*  1.3532*  1.3532*  1.0226*  0.5601*  

Conditional test 1.2638*  0.1990*  1.3590*  1.3590*  1.2781*  2.2309*  

Panel B: 10-day return Long Short Long Short Long Short 

Developed market       
Violation (%) 0.0466   0.0198   0.0547   0.0303   0.0652   0.0384   

Unconditional test 26.6731   2.8109*  36.7844   10.0447   51.1798   17.6834   

Independent test 74.0098   27.3476   90.3124   43.4727   95.6695   56.9487   

Conditional test 100.6829   30.1585   127.0967   53.5173   146.8494   74.6321   

Latin American market       
Violation (%) 0.0140   0.0164   0.0152   0.0245   0.0175   0.0070   

Unconditional test 0.5391*  1.2724*  0.8718*  5.6438** 1.7361*  0.3751*  

Independent test 0.0093*  0.0506*  0.0165*  0.1260*  0.0259*  0.0092*  

Conditional test 0.5484*  1.3230*  0.8883*  5.7698*  1.7620*  0.3843*  

Asian market       
Violation (%) 0.0186   0.0208   0.0277   0.0231   0.0369   0.0381   

Unconditional test 2.2359*  3.3614*  8.0294   4.7446** 16.3101   17.4823   

Independent test 28.9539   0.0830*  47.5440   0.0657*  74.6243   0.1762*  

Conditional test 31.1898   3.4444*  55.5734   4.8103*  90.9345   17.6585   

1. ** (*) means the null hypothesis is not rejected at 1% (5%) level. The critical values of the likelihood ratio test 

(unconditional test) and the independent test are      
            and      

           . The critical 

values of the conditional test are      
            and      

             

2. The numbers in boldface means that a difficulty in the last term of Eq. (4.45) where both     and     equal 

zero and    
    cannot be calculated. Therefore, one extreme small number, say      , is assigned to this 

term for the purpose of convenience to calculate the independent test and Christoffersen’s (1998) unconditional 

coverage test. 
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Table 5.22 The results of portfolio 95%-VaR based on the GEV-DCC model 

 GEV(n=5) GEV(n=10) GEV(n=22) 

Panel A: daily return Long Short Long Short Long Short 

Developed market       
Violation (%) 0.0768   0.0501   0.0885   0.0629   0.1024   0.0792   

Unconditional test 4.8931** 0.0000*  9.5557   1.2059*  16.7980   5.7175** 

Independent test 5.8264** 0.6218*  6.2164*  0.0502*  4.8265** 0.5773*  

Conditional test 10.7196   0.6218*  15.7722   1.2560*  21.6245   6.2948** 

Latin American market        
Violation (%) 0.0549   0.0350   0.0596   0.0397   0.0748   0.0444   

Unconditional test 0.1828*  1.9456*  0.6785*  0.8872*  4.1943*  0.2553* 

Independent test 3.7644*  0.3199*  5.2433** 1.6642*  4.1351*  2.1144*  

Conditional test 3.9472*  2.2655*  5.9218*  2.5514*  8.3294** 2.3697*  

Asian market       
Violation (%) 0.0589   0.0346   0.0658   0.0381   0.0785   0.0543   

Unconditional test 0.5937*  2.0831*  1.8101*  1.2160*  5.5300** 0.1408*  

Independent test 1.9752*  2.3849*  1.8798*  1.8514*  1.0949*  48.2302   

Conditional test 2.5689*  4.4680*  3.6898*  3.0674*  6.6250** 48.3710   

Panel B: 10-day return Long Short Long Short Long Short 

Developed market       
Violation (%) 0.1513   0.0768   0.2037   0.1234   0.2363   0.1723   

Unconditional test 53.6285   4.8931** 108.6544   30.5844   149.4658   73.9377   

Independent test 119.1629   67.6616   173.6211   100.6029   193.0635   144.1594   

Conditional test 172.7914   72.5547   282.2755   131.1874   342.5293   218.0971   

Latin American market       
Violation (%) 0.0864   0.0678   0.1308   0.1227   0.1741   0.1121   

Unconditional test 8.6193   2.2318*  36.1083   29.9413   75.4992   22.6955   

Independent test 92.5322   82.2840   133.8576   95.7197   163.0668   79.8556   

Conditional test 101.1515   84.5158   169.9659   125.6609   238.5660   102.5511   

Asian market         
Violation (%) 0.0896   0.0715   0.1522   0.1107   0.2099   0.1257   

Unconditional test 10.0936   3.2555*  54.9670   22.0568   117.1305   32.6079   

Independent test 105.9028   78.6873   150.8256   114.5689   230.3330   130.4648   

Conditional test 115.9964   81.9429   205.7926   136.6257   347.4635   163.0728   

Note: see the note in table 5.18 
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Table 5.23 The results of portfolio 99%-VaR based on the GEV-DCC model with a shorter forecasting period 

 GEV(n=5) GEV(n=10) GEV(n=22) 

 Long Short Long Short Long Short 

Developed market       

Violation (%) 0.0210   0.0151   0.0233   0.0175   0.0268   0.0163   

Unconditional test 3.4380*  0.8582*  4.8377** 1.7163*  7.2661   1.2557*  

Independent test 3.4834*  2.6938*  2.9526*  4.4485** 4.0325** 0.1245*  

Conditional test 6.9214** 3.5520*  7.7902** 6.1648** 11.2986   1.3802*  

Latin American market       
Violation (%) 0.0129   0.0081   0.0152   0.0105   0.0164   0.0117   

Unconditional test 0.2799*  0.1378*  0.8718*  0.0098*  1.2724*  0.1008*  

Independent test 0.1245*  0.0500*  0.1743*  0.0832*  0.2024*  0.1028*  

Conditional test 0.4044*  0.1878*  1.0461*  0.0929*  1.4748*  0.2036*  

Asian market       
Violation (%) 0.0104   0.0092   0.0104   0.0081   0.0139   0.0069   

Unconditional test 0.0058*  0.0226*  0.0058*  0.1494*  0.5045*  0.4016*  

Independent test 1.3532*  0.0649*  1.3532*  0.0496*  0.8859*  0.0364*  

Conditional test 1.3590*  0.0875*  1.3590*  0.1990*  1.3904*  0.4380*  

1. See the note in table 5.18 

2. The results of this table are made with a shorter period. The ten years daily data are from 2
nd

 January 1997 

to 29 December 2006.  
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Table 5.24 A comparison of the VaR statistics with two different periods 

 GEV-DCC-L GEV-DCC-S 

Panel A: n=5 n=10 n=22 n=5 n=10 n=22 

Developed market       

Mean -0.0331 -0.0315 -0.0299 0.0304 0.0292 0.0275 

SD 0.0039 0.0030 0.0025 0.0036 0.0027 0.0023 

SK -1.6778 -1.7947 -1.2230 1.8803 1.1349 2.0871 

K 6.9675 8.1935 4.9519 8.7052 5.8397 16.3889 

Latin American market       

Mean -0.0509 -0.0509 -0.0464 0.0483 0.0465 0.0439 

SD 0.0030 0.0026 0.0020 0.0045 0.0029 0.0048 

SK -4.7427 -4.3082 -1.2966 8.3095 2.5999 11.2145 

K 49.4282  61.0197 5.6044 131.0767 24.8214 180.6558 

Asian market       

Mean -0.0364 -0.0402 -0.0372 0.0390 0.0384 0.0288 

SD 0.0034 0.0028 0.0018 0.0030 0.0026 0.0015 

SK -6.3828 -3.4599 -1.7419 4.0293 1.5457 0.5150 

K 57.6392 20.8678 13.9452 35.3870 8.7618 1.4553 

Panel B: n=5 n=10 n=22 n=5 n=10 n=22 

Developed market       

Mean -0.0369 -0.0352 -0.0329 0.0351 0.0331 0.0311 

SD 0.0038 0.0030 0.0023 0.0045 0.0038 0.0023 

SK -0.4063 -0.2016 -0.7770 2.5041 2.0607 1.5208 

K -0.5579 -1.7017 1.5418 11.1360 9.6042 10.2509 

Latin American market       

Mean -0.0491 -0.0474 -0.0444 0.0481 0.0458 0.0430 

SD 0.0032 0.0026 0.0019 0.0091 0.0057 0.0044 

SK -7.5405 -7.6041 -3.1171 7.5820 11.6400 16.8581 

K 83.8461 110.5461 38.9429 61.0189 155.9128 362.7670 

Asian market       

Mean -0.0410 -0.0390 -0.0367 0.0378 0.0382 0.0366 

SD 0.0022 0.0019 0.0018 0.0027 0.0022 0.0019 

SK -3.4808 -3.3781 -4.2767 2.3340 0.0321 -0.0339 

K 22.3109 24.1308 46.6033 23.3045 -0.5132 -0.6427 

1. The results in panel A are measured by using the data set, which starts from 2
nd

 January 1990 to 

29
th

 December 2006, and the results in panel B are obtained from a shorter period sample, from 2
nd

 

January 1997 to 29
th
 December 2006. 

2. GEV-DCC-L (GEV-DCC-S) means the long (short) position forecasted by GEV-DCC model.  
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Figure 5.30 The 99%-VaR patterns of the GEV-DCC model with a different size of block with shorter data set 

(a)developed equity market 

 

(b)Latin American equity market 

 
(c)Asian equity market 
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5.4.2 The quality checks of portfolio VaR 

In this section, a quality check composed of three measures is set up for examining the 

practicability and adaptability of the VaR model. In the previous section, the backtesting 

based on the coverage tests was the main approach for testing if the results of the VaR model 

were robust. Theoretically, the violation rate is expected to equal the value of , and thus this 

is regarded as a good assessment of the ability of the VaR model. However, the coverage tests 

have their own disadvantages. Owing to the nature of the coverage tests, the violation rate 

merely reflects the proportion of exceedance in the backtesting sample, making it difficult to 

describe the quality of those non-exceeded observations and the magnitude of the violations. 

It is not even possible to show the quality of the VaR pattern using the violation rate. As 

mentioned in section 2.4, the results of the VaR measurements could be used as a risk report 

for fund managers when altering the composition of the portfolio, as shown in Eq. (2.38) and 

(2.39). However, the VaR model would not seem to be a good measuring tool for this if the 

forecasted VaR pattern is too volatile to be implemented in practice, even if the violation rate 

is significantly better. Therefore, there is a need here to examine the quality of the VaR model 

apart from the coverage test. Similar to the section looking at the univariate case, the mean 

squared error (MSE), D, and Q are calculated to examine the fluctuation, conservativeness, 

and magnitude of violation. Intuitionally, a VaR model producing a high MSE indicates that 

those VaR results could encounter problems when it comes to being used in real life. On the 

other hand, using a VaR model as a market risk measure that has a high D and Q score might 

cause over- or under-estimation of the quantity of market risk, putting financial institutions at 

danger of being inefficient or too risky with their capital. Thus, a quality examination of the 

VaR model is essential, although most previous research in this field just looks at the coverage 

test. According to Eq. (2.38) and (2.39), and the spirit of the violation rate, the measures Q 
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and D need to be balanced under a proper violation rate and the MSE. 

The results of the three measures are exhibited in Table 5.25. In the MSE column, as expected, 

the MSEs in the GEV-DCC panel are the smallest, indicating that the GEV-DCC model offers 

a relatively stable VaR pattern and that it would work well as a VaR measure when 

implemented in practice. In addition, both the results in the daily and 10-day return panel 

show that the values of the MSE negatively relate to the size of block. For example, MSEs of 

the 5-day block are 0.1509, 0.0921, and 0.1400 for the three equity portfolios, and 0.0634, 

0.0384, and 0.0333 for the block of 22-day. A similar pattern can be found in the GEV-DCC 

results for the 10-day return sequence in panel B. The values of the MSE in panel C 

(RiskMetrics) and D (HS method) are much larger than the ones in the GEV-DCC panel, 

especially those of HS with n=250. Thus, RiskMetrics and HS-250 seem like they could be 

difficult to use in practice although the coverage tests of the two methods were quite 

significant (see the previous section). In panel E, the SV model offers quite a volatile VaR 

pattern in the Latin American market (17.2692). Overall, the GARCH model is the most 

stable of the four competing VaR models. However, its MSEs (0.9035, 0.5037, and 0.3339 for 

the three portfolios) are significantly higher than the GEV-DCC model. 

The second part looks at the measure D, derived by calculating the average distance between 

the non-violated VaRs and the portfolio returns. Generally, the results in the D column of 

Table 5.25 are obscure, but the evidence illustrates that the GARCH and SV models generate 

an equally small average distance between the VaR and portfolio return in both the long and 

short position, implying that these two models have less of a tendency towards 

conservativeness. No matter whether it is 250 or 1250 days, the HS model produces a larger D 

measure (from -0.0320 to -0.0655 to the long position, and from 0.0266 to 0.0621 to the short 

position), suggesting that the HS model is quite conservative in forecasting the market risk of 

the three market portfolios. The GEV-DCC model provides decent results for the VaR pattern 
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of the daily return sequences, but it fares worse in the 10-day return sequences. Intuitionally, 

this could be attributed to the low violation rate as shown in panel B of Table 5.21; since a 

conservative VaR model derives higher VaR patterns, and a lower violation rate is obtained. 

Although the results are not very clear, in summary, the GARCH model, the SV model, and 

the daily return GEV-DCC demonstrate a good performance and would not be too 

conservative for measuring market risk in practice.  

The third part of the process is to measure the magnitude of the violations for each VaR model. 

The coverage test could not tell the potential losses when the VaRs were exceeded but the Q 

measure can fill this gap. As exhibited in the last two columns, all of the models actually 

provide a good result in the Q measure, with the exception of the GEV-DCC model in the 

10-day return pattern. The Q of the GEV-DCC model using the daily returns spans from 

-0.0086 to 0.0188 (0.0089 to 0.0207) in the long (short) position. In fact, the VaR pattern of 

the GARCH model offers the smallest Q, from -0.012 to -0.105, in the long position, and from 

0.0072 to 0.0115 in the short position. In other words, based on the GARCH model, the 

portfolio would encounter a loss in the long (short) position, on average, -0.0105 (0.0115) for 

the developed market, -0.0103 (0.0104) for the Latin American market, and -0.0102 (0.0072) 

for the Asian market, respectively. Those numbers indicate that once a violation occurs, the 

value of the portfolio might have an extra loss, in percentage, more than the buffer provided 

by the VaR. For example, the average value of the violated         to the portfolio of the 

developed market is -0.0337. The mean of the violating returns in this portfolio is -0.0510, 

and thus the portfolio might have an -0.0173 loss exceeding the average forecasted VaR once 

a violation happens.  

As demonstrated in this chapter, MSE, and the measures D and Q are useful validation tools. 

Looking at MSE, the GEV-DCC model provides the smallest volatility. Under certain 

circumstances, VaR could be applied as an indicator for capital reserve to cover potential 
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losses. Measure D helps to evaluate how conservative a model is when estimating risk. A 

higher D value, such as with the HS model, would cause an inefficiency in funding usage as 

the VaR overestimates market risk and thus the financial institution holds on to a higher 

capital reserve than is really necessary. The GARCH, SV and GEV-DCC models provide the 

smaller D, on average.  

A higher Q value means that the VaR is underestimating and the financial institution would be 

putting itself at risk by not holding on to sufficient capital to cover potential losses, 

particularly under extreme market conditions. Assessing the Q measure, the GEV-DCC and 

GARCH models offer a better outcome than the other models, suggesting that the portfolio 

might encounter smaller extra losses once a violation occurs. To sum up the discussion above, 

the GEV-DCC model seems to provide the best result taking into account all three 

requirements.  
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Table 5.25 The comparison of other benchmark tests between various VaR models in 99% 

  MSE (10
-4

)  D  Q 
Panel A: GEV-DCC (daily)  Long Short  Long Short  Long Short 

n=5       

Developed market  0.1509 0.1298  -0.0342 0.0315  -0.0173 0.0187 

Latin American market  0.0921 0.2066  -0.0519 0.0483  -0.0086 0.0147 

Asian market  0.1400 0.1091  -0.0412 0.0392  -0.0127 0.0108 

n=10          

Developed market  0.0911 0.0729  -0.0325 0.0304  -0.0188 0.0168 

Latin American market  0.0690 0.0861  -0.0519 0.0466  -0.0138 0.0146 

Asian market  0.0787 0.0711  -0.0410 0.0387  -0.0143 0.0089 

n=22          

Developed market  0.0634 0.0514  -0.0312 0.0287  -0.0176 0.0207 

Latin American market  0.0384 0.2323  -0.0475 0.0442  -0.0147 0.0138 

Asian market  0.0333 0.0274  -0.0381 0.0293  -0.0151 0.0120 

Panel B: GEV-DCC 

(10-day) 

 Long Short  Long Short  Long Short 

n=5          

Developed market  0.7814 0.9815  -0.0868 0.0882  -0.0529 0.0216 

Latin American market  0.8145 0.1640  -0.1378 0.0901  -0.0567 0.0228 

Asian market  0.8033 1.5246  -0.1222 0.0930  -0.0474 0.0153 

n=10          

Developed market  0.2988 0.4808  -0.0807 0.0778  -0.0503 0.0230 

Latin American market  0.5523 0.0701  -0.1275 0.0879  -0.0636 0.0195 

Asian market  0.2351 0.5743  -0.1138 0.0920  -0.0389 0.0121 

n=22          

Developed market  0.1464 0.2133  -0.0749 0.0695  -0.0497 0.0275 

Latin American market  0.2653 0.6147  -0.1159 0.1102  -0.0706 0.0236 

Asian market  0.0832 18.5158  -0.1046 0.0825  -0.0419 0.0218 

Panel B: GARCH  Long Short  Long Short  Long Short 

Developed market  0.9053 0.9053  -0.0270 0.0265  -0.0105 0.0115 

Latin American market  0.5037 0.5037  -0.0291 0.0275  -0.0103 0.0104 

Asian market  0.3339 0.3335  -0.0249 0.0238  -0.0102 0.0072 

Panel C: RiskMetrics  Long Short  Long Short  Long Short 

Developed market  3.2009 3.2009  -0.0305 0.0302  -0.0155 0.0123 

Latin American market  2.7226 2.7226  -0.0346 0.0332  -0.0187 0.0164 

Asian market  1.6414 1.6414  -0.0300 0.0290  -0.0182 0.0150 

Panel D: HS  Long Short  Long Short  Long Short 

n=250          

Developed market  10.5563 11.7634  -0.0655 0.0621  -0.0154 0.0194 

Latin American market  2.5550 0.9229  -0.0429 0.0326  -0.0125 0.0140 

Asian market  4.0213 1.8182  -0.0389 0.0310  -0.0116 0.0110 

n=1250          

Developed market  3.6496 1.6520  -0.0568 0.0464  -0.0310 0.0313 

Latin American market  0.7225 0.9242  -0.0355 0.0326  -0.0143 0.0140 

Asian market  0.5393 0.6212  -0.0320 0.0266  -0.0110 0.0097 

Panel E: SV  Long Short  Long Short  Long Short 

Developed market  1.0213 1.0213  -0.0210 0.0211  -0.0130 0.0102 

Latin American market  17.2692 17.2692  -0.0467 0.0463  -0.0125 0.0104 

Asian market  0.8225 0.8225  -0.0197 0.0193  -0.0114 0.0083 

Note: The results of the 10-day return sequences of the competing models are not shown in this table because of 

their failure in the coverage tests compared with GEV-DCC model.  
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5.5 Implication of the results  

The results shown in section 5.4 have two vital implications, which are likely to be a valuable 

reference to the practitioners. For convenience, a long portfolio with a 100-pound value 

(initial investment) to each equity index is assumed and held by a risk-averse reasonable 

investor, i.e. this portfolio includes 16 positions, and each investment is 100 pounds. Firstly, 

from the correlation analysis results presented in panel A of Table 5.16, RO54 (CAC40/DAX) 

has the highest average correlation in both the left (0.8483) and right tail (0.8176), which 

means that if the CAC40 index return declines (rises) 10%, then the DAX return will go down 

(up) about 8.483% (8.176%). By contrast, the correlations of RO62 (Nikkei 225/TSX) are 

0.4345 and 0.3331 in the left and right tail, suggesting that the Nikkei225 index return goes 

down (up) 10% on average but the TSX will only move in the same direction by 4.345% 

(3.331%). According to portfolio theory, the investor might then consider adjusting the weight 

of each component accordingly. Alternatively, you could argue that DAX or CAC40 should be 

sold since they are highly correlated.  

Secondly, it is useful and practical to use univariate and portfolio VaR to forecast potential 

loss in the next trading date. According to the backtesting results, overall the GEV-DCC 

model offers the best market risk measure. As shown in Table 5.17, GEV-DCC presents 

average potential losses of -0.0331, -0.0509, and -0.0364 (short for 0.0304, 0.0483, and 

0.0390) to developed, Latin American, and Asian equity index portfolios, respectively. 

Specifically, with 99% probability, the investor’s worst loss in the developed equity market 

will be not more than 19.86 (600*-0.0331) and 18.24 (600*-0.0304) pounds for the long and 

short positions respectively. The maximum losses to the other two portfolios are 20.36 

(400*-0.0509) and 21.84 (600*-0.0364) pounds for the long position (19.32 and 23.4 for the 

short position). The pound-based loss interpretation provides a clear indication of how to use 
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the VaR numbers. The results of the correlation analysis, portfolio VaR calculation, and 

backtesting imply that the GEV-DCC model not only theoretically provides accuracy in 

estimating parameters and fitting extreme distributions, but also offers a good and practical 

market risk measure. 

  



Chapter 5 Results and Findings                                                           

255 
 

5.6 Conclusion 

This chapter presents the results of various VaR models based on two traditional coverage 

tests. The content starts with the univariate VaR forecast in Section 5.2, then continues with 

the correlation analysis based on the tail-DCC model we first suggested in section 5.3, and 

finally ends in the analysis of a portfolio VaR. In the evaluation of the VaR results, three 

substantial measures are proposed to test the quality of a VaR model. The MSE focuses on the 

fluctuation of the VaR pattern, measure D looks at the conservativeness of the risk measure, 

and Q describes the magnitude of the violations. Combining the three measures with the 

coverage tests, one could comprehensively understand the properties of a VaR measure, such 

as variability, conservativeness, magnitude of loss of the violations, and the accuracy of the 

model. In the correlation analysis, a tail-DCC model is suggested for measuring the 

relationship between the individual assets in the portfolio. The tail-DCC model emphasizes 

the correlation in the tail area of the distributions because the most market risk generally 

happens in the left and right tail rather than across the whole distribution. Therefore, 

correlation of the extreme observations is more important than assessing the entire sample.  

The backtesting results of portfolio VaR are generally consistent with the results of the 

univariate VaR patterns. In the coverage tests of the univariate case, the GEV model using 

daily return sequences with a 5- or 10-day block, and the GARCH (1,1) model provide a 

better performance for measuring VaR. However, according to the results of the MSE measure 

and graphical analysis, the VaR pattern of all equity markets obtained from the GARCH, HS, 

and SV models are too volatile to be implemented in practice. Therefore, taking into account 

the results of the coverage tests and the three measures, the GEV model is the most 

appropriate model for measuring the risks of the equity indices.  

In Section 5.3, substantial evidence of the presence of the thick tail within the distribution of 

financial returns is provided by using the method of fixed window rolling forecast. 
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Furthermore, the graphical evidence also indicates that the fatnesses in the left and right tail 

are significantly different. The analysis of the shape of the tail implies that the distributions of 

financial returns are time-varying. In this manner, it is natural that the correlations between 

various asset returns would not be the same in the left and right tail. In section 5.3.2, the 

correlations in the left and right tails are exhibited, directly suggesting that the correlations are 

indeed time-varying and different in the left and right tail, although they tend to be positive. 

Looking at the patterns of tail-DCC, a cycle or a structural change could be found in most of 

the tail-DCCs examined, particularly in the third quarter of 2008.  

In Section 5.4, the evidence suggests that the GEV-DCC model is an appropriate model for 

measuring portfolio VaR. The backtesting results suggest that the GEV-DCC model offers an 

accurate coverage in general, and in the three quality measures it demonstrates a stable VaR 

sequence and decent D and Q measures. Among the four competing models, we found that the 

VaR derived from the HS model responds to market information slowly, and the longer the 

period of historical sample used the more sluggishly the VaR pattern reacted to the market 

condition. A similarly slow response could be found in the results of RiskMetrics as well. 

Although the HS model and RiskMetrics produce as strong a performance as the GEV-DCC 

model with the 5-day block in the backtesting of daily returns, the MSE measures of HS and 

RiskMetrics are larger than the ones from the GEV-DCC model, suggesting that those two 

models would encounter some difficulties when executed in a real life situation. Moreover, 

the VaR of the HS model tends to be over-conservative (as shown by it having the highest 

measure of D), implying the usage of funding might be inefficient. Although the GARCH 

model is the better one in the univariate case, it could not extend this superiority to the 

multivariate version because of the high violation rates across all three portfolios. In both the 

univariate VaR and the portfolio VaR the pattern in the volatility is higher than the other 

models. In addition, we found that the SV model has difficulty in converging in the 
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multivariate numerical process, and this causes a low coverage (i.e. poor backtesting result) 

and volatile VaR patterns. We also presented the implications of the results with a simple 

example in Section 5.5. Generally, compared with other VaR models, using the GEV-DCC 

model to forecast the risk in equity markets provides the most accurate risk measure and 

reliable coverage, which is not too volatile, satisfactory VaR patterns and manageable 

potential loss. 
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6 Chapter 6 Conclusions 

6.1 Summary of findings and discussion 

In the past two decades, risk management, particularly understanding the market risk, has 

been a critical issue due to the huge losses caused by several financial crises. In more recent 

years, risk management has also been extended to various other applications within financial 

institutions, for example for performance evaluation. The main goal of this thesis is 

investigation of the individual market risk of the major international equity indices using 

extreme value theory, and the offering of a credible portfolio VaR model taking into account 

the important characteristics of financial returns such as thickness and asymmetry. In addition, 

an empirical study with sixteen daily equity indices (six developed equity market indices, six 

Asian equity market indices, and four Latin American equity market indices) over twenty 

years, collected from DataStream, is provided. A method of fixed window rolling is applied to 

forecast one-day ahead tail distribution and VaR. In the accuracy evaluation, the forecasted 

VaR sequences of the period from 2
nd

 January 2007 to 30
th

 April 2010 (around 850 

observations for each index return) are backtested based on two conventional coverage tests. 

In this thesis, we show that evaluation of the performance of a VaR model should not entirely 

rely on quantitative coverage tests, but also take into account the quality of the whole VaR 

pattern in the backtesting period by using three measures describing variability, 

conservativeness, and the magnitude of the violation. The combination of all these tests gives 

a more comprehensive understanding of the VaR models’ suitability in practice. 

The main findings of this thesis are divided into three parts: the univariate VaR, the analysis 

of tail-DCC, and the outcomes of portfolio VaR. In the univariate VaR analysis, the tail 
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distribution (also called the GEV distribution) is fitted well using extreme value theory across 

three different lengths of the block maxima approach. For both daily and 10-day returns, the 

significance, volatilities and stationarity tests (see Appendix C) of the estimated parameters 

show the high stability of those parameters. The equality tests show significant evidence of 

asymmetry between the left and right tails of index return distributions. More specifically, the 

smaller tail parameters in the left side of the GEV distribution indicate a ticker tail, and this 

implies that the market risks of the long positions are generally larger than the ones of the 

short positions. However, the GEV distributions of 10-day returns do not fit as well as the 

daily returns, especially with the longer blocks.  

The individual VaRs of the GEV model
87

 and the four competing models (GARCH (1,1) 

model, RiskMetrics, stochastic volatility, and historical simulation) can be obtained by setting 

a specific quantile, says 1%, in the tail distribution. From the backtesting results of the 

individual VaR0.01, we find that the GEV model with the 5-day block, the HS-250 and the 

GARCH(1,1) model provide the best coverage ratios with the forecasted daily VaR sequence. 

Specifically, the violation rates of these three models are statistically equivalent to the 

confidence level, 
88

. In addition, the GEV model also offers a significantly better 

performance with the 10- and 22-day blocks. However, the GEV model is not good enough in 

the developed equity market. Due to stronger fluctuations in the 10-day returns, the GEV 

model produces the worst coverage in its VaR sequence, i.e. there are too many violations.  

Looking at the competing models, some of their drawbacks are evident in their forecasted 

VaR patterns. For example, the pattern of historical simulation responds to the market 

condition slowly, and the one from the GARCH model is too volatile to be implemented in 

practice, although both of their results in the coverage tests were the best amongst all of the 

                                                      
87

 GEV model means a VaR model with generalized extreme value (GEV) distribution obtained from extreme 

value theory. 
88

 The details of  can be referred to in eq. (2.1) in section 2.2.2. 
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competing VaR models. We also found that the forecasted VaR of the HS model is 

significantly affected by the number of historical data used in the forecast of empirical 

distribution. A longer period of historical data produces a slower change in the VaR pattern. 

This would not be appropriate in practice. The VaR pattern of the GARCH model 

dramatically peaks at its highest value around the end of 2008 and then drops down quickly in 

the beginning of 2009, due to its volatility-oriented nature. As mentioned in Section 2.4, a 

VaR model frequently presenting large changes within its pattern is not appropriate for 

financial institutions in a real life situation since the transaction costs associated with 

changing the portfolio constituent will offset the trading profit. The results of RiskMetrics are 

consistent with Eberlein, Kallsen and Kristen’s (2003) suggestion that the VaR pattern is 

significantly influenced by the fixed decay parameter and highly dominated by previous 

volatility. As a result, it presents a slow change pattern in forecasted VaR.  

In the second part, the measurement of the dynamic conditional correlations between the 

tail-distributions (call the tail-DCC) is applied, and the results show that this model describes 

well the time-varying correlations in the tail area between various financial returns. Compared 

with the original DCC model, tail-DCC is more appropriate for risk management because it 

independently measures the correlations of the left and right tails rather than only one 

correlation across the whole distribution. Evidence shows that the tail-DCCs of the left tails 

are generally higher than the ones of the right tails, implying the equity indices tend to move 

together in the downturn period rather than in the up-turn period. This phenomenon is 

consistent with the concept of asymmetry in the financial distribution, but cannot be observed 

when using just the original DCC model. In the patterns of tail-DCC, we also find important 

characteristics in the correlation pattern of extreme returns such as structural changes, 

circulation patterns and asymmetry between left and right tails of the index return distribution. 

Most tail-correlations are positive which indicates that the big price (extreme price) changes 
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tend to go with each other in the same direction. Finally, the tail-DCC model also captures a 

structural change or circulation in the pattern of the tail-DCC, providing useful data for 

analysis.  

In the portfolio VaR analysis and backtesting, the results of the coverage tests and quality 

checks suggest that the GEV-DCC model is the best model for measuring portfolio VaR 

because of its accuracy with violation rates, its small variation in VaR patterns, and a good 

performance in conservativeness and in potential loss tests. From the portfolio risk 

perspective, on average, the Latin American equity market is the riskiest, and the developed 

equity market has the lowest risk. Generally, VaR in the left tail from the GEV-DCC model is 

higher than the one in the right tail for both the developed and Latin American equity markets, 

indicating that the long positions are riskier than the short ones. The results of the portfolio 

VaR for the four competing models are slightly different from the ones in the univariate cases. 

Overall, RiskMetrics and HS-250 offer adequate coverage in the backtesting tests. However, 

the GARCH model is superior to the other three competing models, particularly in the short 

positions of the developed and Latin American equity markets. From the quality checks, the 

results of MSE show that the GEV-DCC model presents the most stable VaR patterns, 

implying that this model is suitable for practical use, whereas the historical simulation and 

stochastic volatility models produce very fluctuating VaR patterns, unsuitable for real life 

situations. From the conservativeness of the VaR models (described by the D measure), the 

results from the GARCH and GEV-DCC demonstrate that both models show only a small 

tendency towards conservativeness, which means that financial institutions would not be too 

conservative by reserving too much cash and thus losing their efficiency in capital use. In 

contrast to this, the evidence also shows that historical simulation is the most conservative 

VaR model, producing inefficiency of fund use by the financial institutions. On the other hand, 

the evidence of the magnitude of potential losses (described by the Q measure) shows that the 
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potential losses of the GEV-DCC model are equivalent to the ones of the GARCH and 

historical simulation models. Although the GEV-DCC model is not always the best in each 

individual aspect of the quality checks, its results are overall the most reasonable and 

acceptable.  

In the VaR patterns of the four competing models, the historical simulation, like its results in 

the univariate case, responds to the market information too slowly. This gets worse when 

using longer periods of historical samples in the estimation of empirical distribution. An 

equivalently slow response is also found in the RiskMetrics VaR patterns. Although both the 

HS model and RiskMetrics provide a strong performance in the backtesting of daily returns 

(equivalent with the GEV-DCC with a 5-day block), there still could be difficulties in 

implementing them in practice due to their large MSE measures. The GARCH model is the 

best in the univariate analysis, but its superiority could not be extended to the multivariate 

version because of the high violation rates in all the three portfolios. We also found equally 

high violation rates in the VaR patterns of the SV model. From the backtesting results of the 

10-day VaR, the GEV-DCC model provides accurate coverage for the Latin American market 

and for a section of the Asian equity market. However, the 10-day VaR coverage of all the 

competing models is quite low, indicating that these models are not suitable for 10-day VaR 

forecasting. To demonstrate the robustness of the GEV-DCC model, a shorter period sample 

was used for forecasting one-day ahead daily VaR in this thesis, the results show that the 

GEV-DCC model with a shorter sample period provides a similar significance to the ones 

using the original period. In summary, the GEV model is indeed superior to the four 

competing models.    

6.2 Contributions and implication 

There is still a need for a comprehensive market risk measure due to the losses caused by 

several financial crises in recent years. Most previous research focused on modelling the VaR 
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measure of a single asset rather than looking at the risk measurement of a portfolio. A 

well-calibrated VaR model needs to consider the critical characteristics of financial returns. In 

addition, the measurement of the correlations between individual assets should be accounted 

for in the portfolio version. As previously mentioned, most research to date does not fulfil all 

the needs discussed above. Thus, the main contribution of this thesis is to fill this gap in the 

literature by offering a portfolio VaR model which considers all the important characteristics 

of financial returns. For increasing the accuracy of return distributions, the suggested portfolio 

VaR model applies extreme value theory to measure the VaR of a single asset, and a flexible 

tail-DCC model is then applied to aggregate all the individual VaRs into a whole portfolio 

VaR. The main advantage of this method is to offer a detailed view of all individual VaRs, and 

a clear pattern of the relationship (correlations) between the various assets. This study also 

contributes to the current literature by proposing the critical concept of seriality (and the 

correlation calculations with seriality) and a special correlation, called tail-correlation. From 

the results of this correlation model, it obviously describes some special characteristics that 

the original DCC model could not, such as structural changes, circulation patterns and 

asymmetry between the left and right tails of the index return distribution. Finally, this thesis 

also contributes to the existing literature in the VaR model evaluation, considering not only 

the coverage tests, but also the stability, conservativeness, and magnitude of violations of a 

VaR model. Whereas the stability test examines the variation of the entire VaR sequence, the 

tests of conservativeness and the magnitude of the violations pay attention to the quality of 

the non-violated VaR and the violated observations, respectively. Both of these tests are used 

to evaluate the quality of the forecasted VaR patterns. From the perspective of practical 

application, both the over-conservative VaR models or the VaR models incurring a high loss 

on the occurrence of violations is inappropriate for real life application. In summary, all the 

three measures suggested by this thesis describe the suitability of the VaR model for real life 

application. 
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In this thesis, we suggest a practical portfolio VaR model and a reasonable evaluation method, 

particularly for financial institutions and individual investors. In addition, this thesis also 

profiles the market risks of the major international equity indices. Generally, this thesis can be 

used in two aspects: portfolio management (ex ante) and risk management (ex post). In the 

aspect of portfolio management, this VaR model can be applied in place of the volatility in the 

efficient frontier. In addition, the tail correlation supports investors to realize the special 

relationship between the assets. In the simple application of ex post aspect, it is helpful for 

financial institutions (or a fund management team) to expand their understanding of the 

individual and portfolio risks within the portfolio by using the theoretical and practical VaR 

method.  

 

6.3 Research limitations and future research 

This thesis offers a comprehensive portfolio VaR model and new methods of model 

evaluation. However, it is still limited by three main factors as follows. The first limit of this 

thesis is with the techniques and development of multivariate extreme returns distribution. 

Alternative portfolio VaR models may be directly derived from multivariate extreme value 

distribution without the procedure of dynamic conditional correlation. To our best knowledge, 

however, this multivariate distribution has not been conducted in the related literature, 

probably due to its complexity. Although some previous researchers have paid attention to this 

issue, it is still in the progress of development (see Tawn (1988), Tawn (1990), and Zhang, 

Wells and Peng (2008)). In this thesis, individual VaR is obtained by inverting the extreme 

value distribution with a probability. Yet portfolio VaR cannot be carried out with this 

methodology. Under the best conditions, the portfolio VaR can be shown as a range of sets in 

the n-dimensional space (i.e. it is not a particular number but a range), but this is meaningless 

for practitioners. This thesis is also limited by the availability of data. Using real portfolio 
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data from financial institutions is the best approach for VaR model evaluation, however it is 

very difficult to access a large number of portfolio data from financial institutions. In addition, 

the details of the VaR models used in the financial institutions are highly confidential. This 

could be the explanation behind why none of the previous research uses real data in VaR 

modelling and evaluation. The last main limit of this thesis is the time of calculation, 

particularly with the portfolio VaR analysis. It is quite time-consuming in the correlation 

analysis if more equity indices are included into these portfolios. In addition, including more 

equity index returns increases the difficulty of convergence of the tail-DCC. For example, 

except for the fitting of maximum likelihood function, (2d + d(d-1)/2) parameters and 

correlations have to be estimated in every step of the fixed-window rolling forecast in the 

current d-variable vision, and there are about 850 rollings (both in the long and short positions) 

for each portfolio. Therefore, the scope of the datasets has to be narrowed down to save the 

time of calculations.  

Including the difficulties mentioned above, this thesis could be extended in several new 

directions for further research if the data and time were available. Firstly, as mentioned above, 

it is worthwhile to develop and apply the multivariate extreme value distributions in the 

measurement of portfolio VaR. However, this method needs a large number of historical data 

to fit the tail distribution of financial returns, which is a laborious problem for financial assets 

that do not have that much historical data. Moreover, as mentioned in Section 2.4.2, VaR can 

be applied in the performance system. Exactly how to decompose the firm-wide VaR to the 

department level VaR is a critical area for further research. Secondly, high frequency data 

could be applied in a portfolio VaR model for extracting more information from the VaR 

intra-day pattern, which may be helpful for the day-trading traders. The third is a minor issue 

in the VaR model evaluation. The majority of the previous research quantitatively examined 

the performance of VaR models based on Christoffersen’s (1998) approach. However, its 
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independence test of violations is strongly sensitive to the new violation, especially in cases 

where there are only a few violations. Perhaps the best approach would be to extend 

Christoffersen’s (1998) method with the consideration of stability, conservativeness and 

magnitude of violations.  
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7 Appendix A the statistical properties of D and Q and their economic 

meanings 

We show the statistical properties of D and Q in this Appendix, and the statistical and 
economic meanings of them are provided by an example in the second part. 

The first part—the properties of D and Q 

According to Eq. (4.52) 
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According to the definition of VaR,              , thus  
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Simply, we assume the average return is zero, e.g.,        , i=1,2,…,N-m, then 
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Thus, the distribution of Q is a mixed distribution of    and     (we use this as a symbol of 

the estimator of , however, one might use s or standard deviation). Since Ri and VaRi are the 

violated observations in the original return and VaR sequences, for convenience they are 

assumed to be serially independent.  

If    , then    follows a normal distribution, and    
   
    also follows a normal 

distribution. According to Kenney and Keeping (1951), the distribution of standard deviation 
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Thus,  
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where      is a function of N, and the asymptotically        
 

  
 

 

      

(Romanovsky, 1925). When    ,      is close to 1. In addition, they also show that the 



Appendix A                                                           

269 
 

rth moment of the distribution of standard deviation as  

    
 

 
 
 
    

     

 
 

  
   

 
 
   (A-9) 

Thus, the variance of standard deviation can be given by Eq. (A-9) 

              (A-10) 

where      
 

  
 

 

    
 

     . The details of b(N) and k(N) can be found in Kenney and 

Keeping (p.171,1951).  

According the analysis above, the distribution of Q is a mixed distribution of normal 

distribution and the distribution of standard deviation as shown in Eq. (A-6). The D measure 

has the similar definition with Q. Thus, the distribution of D is suggested as a mixed 

distribution of normal distribution and the distribution of standard deviation as shown in Eq. 

(A-6).   

  
                 
 
   

 
 (A-11) 

 
                           

 
   

 
 (A-12) 

 

 

 

 

The second part—the statistical and economic meanings of D and Q 

In this part, we explain the statistical and economic meanings of Q and D with a simple 

example from the S&P 500 long position of GEV (n=5) and GARCH (1,1) shown in Table A-1. In 

the column of D, GEV (n=5) is -0.0316 and GARCH (1,1) is -0.0353. As mentioned in Section 

2.4, average VaR is regarded as the amount of fund reserved for covering potential losses. 

Thus, the statistical meaning of D is that the VaR models with larger D (absolute value), on 

average, reserve more funds. In Table A-1, the absolute value of GARCH (1,1) (0.0353) is 

larger than the one of GEV (n=5) (0.0316) showing the differences between the VaRs and 

their corresponding returns of those non-violated observations of GARCH (1,1), on average, 

are larger than the ones of GEV (n=5). In other words, financial institutions will reserve more 

funds for covering potential losses if they use VaR from GARCH (1,1). This implies GARCH (1,1) 

is more conservative than the GEV (n=5) model. In these circumstances, the fund usage of 
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those financial institutions is inefficient and the average VaR of GARCH (1,1) is reasonably 

larger than the one of GEV (n=5). The economic meanings of D is -- if the original value of the 

investment is 1,000,000, and financial institutions secure the funds based on VaR of GEV 

(n=5) and GARCH (1,1), thus they have to reserve 29,500 (0.02951,000,000) and 34,000 

(0.03401,000,000) against potential losses, respectively. Moreover, financial institutions 

using GEV (n=5) and GARCH (1,1) models as their risk measures, on average, reserve 31,600 

(0.03161,000,000) and 35,300 (0.03531,000,000) more than the average return on the 

non-violated trading days. Thus, the VaR model with higher D such as GARCH (1,1) causes the 

financial institutions to reserve more capital. In this case, financial institutions using GARCH 

(1,1) model have to reserve more 3,700 (i.e. 35,300-31,600=3,700) than GEV (n=5). 

In the part of Q, GEV (n=5) is -0.0172 and GARCH (1,1) is -0.0070. The statistical meaning of 

Q is that financial institutions will, on average, lose 1.72% and 0.7% of their original 

investments by using GEV(n=5) and GARCH (1,1) models in the case of violation, after they 

use their reserved funds (VaR numbers) to cover the losses. Specifically, the economic 

meaning of Q is that, on average, financial institutions will have the extra losses for 17,200 

(1,000,0000.0172) and 7,000 (1,000,0000.0070) in the case of violations by using GEV (n=5) 

and GARCH (1,1) models, respectively. 

Table A-1 The example of D and Q 

 GEV (n=5) GARCH(1,1) GEV (n=5) GARCH(1,1) 

         -0.0295 -0.0340 -0.0295 -0.0340 

D -0.0316 -0.0353   

Q   -0.0172 -0.0070 
Note: The numbers of average VaR of GEV (n=5) is the long position VaR of S&P 500 in Table 5.4, 
and the average VaR of GARCH (1,1) is the long position VaR of S&P 500 in the panel A of Table 
5.7. The numbers of D and Q are collected from the long positions of S&P500 in the panel A and 
B in Table 5.14. 
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8 Appendix B The changes in constituent stocks of index 

Some might concern about the influence from the changes in constituent stocks to the 

measurement of VaR. In this appendix, it is shown that the impact of the changes in 

constituent stocks is very small and can be ignored. Assume the observed index price at 

time t and t+1 are pt and pt+1, respectively, and the constituent stocks are changed at t+1 

(i.e. pt+1 is the closing price of the new equity index). Let the unobserved index price at 

time t+1 is       if there is no constituent stock change at t+1. The difference between 

observed and unobserved index price at time t+1 is  

                 (B-1) 

Thus, the observed index return (    ) at t+1 is  

         
    

  
   

                 (B-2) 

And, the unobserved index return (     ) at t+1 if there is no change of constituent stock 
is 

          
     

  
  (B-3) 

    
          

  
  (B-4) 

                       (B-5) 

 

Obviously, the effect of change in the constituent stocks of the equity index is      . If 

      is small, then the effect of change in the constituent stocks is small. Thus,  

           (B-6) 

This effect does not happen in TAIEX, KOSPI, SET, JCI, and IGPA index because these 

indices include all stocks listed in their stock exchanges. That indicates that      and 

      are the same to these indices. The effects of change in constituent stocks on 

S&P500, FTSE100, Nikkei 225, and TSX (TSX includes 245 large-cap companies) are also 

extremely small since these indices capture, at least, 70% coverage of market 

capitalization and more than 100 stocks are included.  

Another point is that the effect of change in constituent stocks is diluted with the number 
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of stocks included within these indices. In fact,       is extremely small. For example, if 

stock A is replaced by stock B at time t+1, then, from the perspective of constituent stock, 

the change of index price,      , can be calculated as follows  

      
                     

                 
  (B-7) 

where QB and QA are the number of outstanding shares of stock B and stock A, and pB,t+1 

and pA,t+1 are the stock prices of stock A and B at time t+1, respectively. Compared with 

other stocks already included in the index, the number of outstanding shares of the new 

constituent (i.e., QB) is very small. Thus,       is also very small. From another aspect, in 

all the VaR models,      is used to estimate the distribution of equity returns and to 

forecast the VaR, and      is also used in the backtesting procedure. Thus, the influence 

from changes in constituent stocks to all models is consistent.  

According to the analysis above, it is evident that not all of the equity indices applied in 

the thesis have the issue of changes in constituent stocks. Even if it is an issue to some of 

the equity indices, the effect of changes in constituent stocks is very small and can be 

ignored.  
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9 Appendix C The parameter stability of GEV distribution  

This Appendix presents the distributional stability of estimated parameters in Section 5.2.1.1. 
The results in Table C.1 and Table C.2 are the stationarity tests of the estimated parameters 
based on daily and 10-day returns. The figures in this Appendix provide an overview of the 
patterns of the parameters. Figure C-1 to C-16 present the patterns of the estimated 
parameters of daily returns, and Figure C-17 to C-32 are the patterns of the ones of 10-day 
returns. 
 
 
Table C. 1 The stationarity test of estimated parameters of GEV distribution with daily returns 

  Long position  Short position 

n=5 
 Scale 

parameter 

(   ) 

Location 

parameter 

(   ) 

Tail 

parameter 

(   ) 

 Scale 

parameter  

(cn) 

Location 

parameter 

(  ) 

Tail 

parameter 

(  ) 

S&P500 -11.8949 

(-10.7934) 

-10.8167 

(-9.3042) 

-10.8501 

(-9.1458) 

 -14.1893 

(-13.2334) 

-28.9946 

(-29.0351) 

-27.5118 

(-28.5112) 

FTSE100 -11.9379 

(-10.8575) 

-11.3313 

(-10.2511) 

-16.5129 

(-17.0102) 

 -13.8055 

(-13.3914) 

-26.7225 

(-26.9870) 

-17.3133 

(-17.9142) 

CAC40 -12.7713 

(-11.7871) 

-29.4711 

(-29.5081) 

-28.4326 

(-28.4600) 

 -14.5318 

(-13.9446) 

-29.3660 

(-29.4010) 

-17.6651 

(-17.8730) 

DAX -17.3402 

(-17.8154) 

-26.1481 

(-26.4359) 

-19.1443 

(-20.0978) 

 -15.2020 

(-14.4645) 

-29.0979 

(-29.1331) 

-22.0152 

(-22.6345) 

TSX -16.7375 

(-17.2423) 

-27.9612 

(-28.0710) 

-25.0802 

(-25.3797) 

 -16.4091 

(-16.4258) 

-29.1482 

(-29.1852) 

-30.3871 

(-30.5532) 

Nikkei225 -25.7852 

(-26.5291) 

-29.1206 

(-29.1548) 

-15.1501 

(-15.1722) 

 -27.2134 

(-27.2177) 

-29.4731 

(-29.5085) 

-30.9798 

(-31.1629) 

IGPA -19.6174 

(-20.8542) 

-25.1344 

(-25.7021) 

-16.5890 

(-17.0940) 

 -15.4990 

(-14.9165) 

-5.6939 

(-2.9881) 

-28.9704 

(-29.3840) 

Bolsa -23.7170 

(-24.4150) 

-23.9182 

(-24.4863) 

-33.0216 

(-42.2597) 

 -27.3271 

(-27.3065) 

-28.8968 

(-28.9388) 

-35.7543 

(-40.0283) 

Bovespa -12.8051 

(-11.1243) 

-9.3292 

(-6.9815) 

-20.0509 

(-18.8616) 

 -18.5739 

(-17.7533) 

-26.3908 

(-26.8070) 

-23.0197 

(-24.4002) 

Merval -14.1592 

(-12.6070) 

-8.0793 

(-5.5281) 

-20.4453 

(-19.2624) 

 -20.3581 

(-19.2685) 

-25.6639 

(-25.9350) 

-26.3812 

(30.2035) 

HSI -21.5699 

(-22.8310) 

-24.3387 

(-25.0470) 

-35.8655 

(-37.8152) 

 -14.8935 

(-14.1999) 

-26.8629 

(-27.1433) 

-29.5272 

(-41.4841) 

TAIEX -26.9718 

(-27.4910) 

29.1713 

(-29.2048) 

-32.6633 

(-33.3425) 

 -7.9371 

(-5.4577) 

-29.1411 

(-29.1776) 

-20.0551 

(-19.6480) 

KOSPI -22.1514 

(-22.5972) 

-29.5824 

(-29.6900) 

-23.8747 

(-24.1454) 

 -21.5744 

(-20.6060) 

-29.6178 

(-29.6553) 

-27.6075 

(-28.0070) 

KLCI -19.1398 

(-19.6486) 

-16.9810 

(-17.1815) 

-21.0919 

(-21.0013) 

 -24.2489 

(-24.1941) 

-12.8133 

(-11.8981) 

-30.4220 

(-33.9341) 

JCI -48.3612 

(-88.9760) 

41.5497 

(-41.1627) 

-55.8334 

(-114.4107) 

 -31.4555 

(-32.5828) 

-24.2199 

(-24.8673) 

-39.1419 

(-58.7361) 

SET -26.3037 

(-26.3949) 

-4.3651 

(-2.5594) 

-34.5425 

(-38.6088) 

 -17.5991 

(-16.0870) 

-29.7870 

(-29.8189) 

-25.3180 

(-25.5274) 

Panel B: n=10                       
S&P500 -5.5811 

(-3.5723) 

-26.8282 

(-27.0953) 

-10.1486 

(-8.7967) 

 -13.1147 

(-12.4944) 

-29.0409 

(-29.0797) 

-13.3110 

(-12.6086) 

FTSE100 -8.4741 

(-6.7601) 

-4.3942 

(-2.6372) 

-13.6417 

(-13.1852) 

 -11.6445 

(-10.6444) 

-3.7800 

(-3.2786) 

-6.9939 

(-5.1567) 

CAC40 -7.1377 

(-5.3316) 

-20.6753 

(-21.5514) 

-25.3739 

(-25.8120) 

 -9.5596 

(-8.2895) 

-28.6942 

(-28.7438) 

-18.9518 

(-19.7112) 

DAX -8.3750 

(-6.8117) 

-23.1867 

(-23.8605) 

-13.0259 

(-12.5651) 

 -13.5673 

(-12.7666) 

-29.0170 

(-29.0537) 

-14.3665 

(-14.1241) 

TSX -6.3416 

(-5.0838) 

-19.4413 

(-20.2877) 

-16.8309 

(-17.2897) 

 -17.3491 

(-18.0173) 

-26.6257 

(-26.8870) 

-11.1819 

(-10.2030) 

Nikkei225 -8.3278 

(-8.2144) 

-26.4907 

(-26.7298) 

7.9923 

(-6.6893) 

 -14.6930 

(-14.4714) 

-14.5541 

(-13.6212) 

-11.9369 

(-11.4758) 

IGPA -6.6516 -7.1544 -7.0216  -8.3376 -5.1341 -9.8489 
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(-5.0665) (-8.3357) (-5.6505) (-7.6275) (-4.6986) (-8.1027) 

Bolsa -9.5228 

(-7.6607) 

-3.8973 

(-4.0166) 
-20.8081 

(-21.5380) 

 -8.6709 

(-8.2520) 

16.0249 

(-16.2973) 

-13.5261 

(-13.7254) 

Bovespa -16.5023 

(-17.2495) 

-15.4625 

(-15.7384) 

-22.5076 

(-23.4033) 

 -12.2709 

(-11.8633) 

-9.6142 

(-8.3769) 

-19.5915 

(-21.0030) 

Merval -10.1270 

(-9.2161) 

-6.7049 

(-4.5220) 

-15.0145 

(-15.1803) 

 -10.7425 

(-9.3851) 

-20.9791 

(-21.8661) 

-24.3390 

(-24.3100) 

HSI -11.6267 

(-11.3248) 

-23.7726 

(-24.5268) 

-21.0439 

(-20.9031) 

 -6.4117 

(-4.0510) 

-3.5992 

(-2.4639) 

-10.5853 

(-9.2199) 

TAIEX -10.5728 

(-10.3293) 

-29.2690 

(-29.3034) 

-12.9789 

(-12.5940) 

 -11.5402 

(-10.8005) 

-29.2208 

(-29.2557) 

-8.4384 

(-7.7636) 

KOSPI -13.7293 

(-13.7794) 

-29.3448 

(-29.3788) 

-21.8819 

(-21.8151) 

 -15.9341 

(-15.6713) 

-29.5972 

(-29.6342) 

-25.0966 

(-25.1960) 

KLCI -16.2997 

(-16.6075) 

-24.9002 

(-25.5173) 

-22.4330 

(-22.6427) 

 -14.6288 

(-14.8230) 

-19.7253 

(-20.6264) 

-20.4918 

(-20.4909) 

JCI -22.0237 

(-23.2253) 

-16.8073 

(-17.0589) 

-20.0551 

(-21.2626) 

 -21.9109 

(-22.6868) 

-17.6758 

(-18.5195) 

-22.7992 

(-22.5991) 

SET -20.9328 

(-21.4550) 

-29.2688 

(-29.3043) 

-13.8830 

(-13.6574) 

 -18.8238 

(-19.0156) 

-28.8492 

(28.9030) 

-19.5524 

(-20.1535) 

Panel C: n=22                       

S&P500 -3.2071 

(-3.2044) 

-24.2321 

(-24.9255) 

-9.9589 

(-8.8721) 

 -5.7676 

(-4.7357) 

-4.7399 

(-5.1718) 

-6.0849 

(-5.4381) 

FTSE100 -2.9043 

(-2.5296) 

-2.5934 

(-1.3757) 

-8.5821 

(-8.2279) 

 -3.4161 

(-2.9335) 

-24.3818 

(-25.0726) 

-11.8715 

(-11.1697) 

CAC40 -4.6162 

(-3.8200) 

-28.4827 

(-28.5568) 

-23.9945 

(-24.7379) 

 -6.9925 

(-6.5055) 

-28.4839 

(-28.5444) 

-15.6603 

(-15.7605) 

DAX -17.3274 

(-17.9075) 

-29.0408 

(-29.0774) 

-19.8977 

(-20.7079) 

 -6.1989 

(-6.0366) 

-10.0995 

(-9.6141) 

-5.5563 

(-4.0230) 

TSX -5.6111 

(-7.1217) 

-5.4306 

(-4.2762) 

-5.9536 

(-7.8095) 

 -7.6737 

(-6.6206) 

26.5767 

(-26.8496) 

-13.2280 

(-12.9286) 

Nikkei225 -9.4665 

(-10.4293) 

-10.9384 

(-10.9421) 

-3.6567 

(-4.4920) 

 -8.8099 

(-8.9965) 

-9.7451 

(-9.8797) 

-9.1357 

(-8.2424) 

IGPA -7.2384 

(-5.4467) 

-20.7221 

(-21.6105) 

-11.8915 

(-11.3039) 

 -5.4721 

(-5.9882) 

-4.2942 

(-4.0686) 

-5.1897 

(-5.4682) 

Bolsa -10.1652 

(-8.9653) 

-11.7714 

(-10.9549) 

-9.7763 

(-9.0465) 

 -11.5263 

(-10.9813) 

-25.9850 

(-26.3822) 

-20.1920 

(-20.5559) 

Bovespa -7.7650 

(-8.0684) 

-12.5756 

(-12.1286) 

-13.4938 

(-13.6620) 

 -8.9603 

(-10.1612) 

-4.7920 

(-5.3483) 

-7.8948 

(-9.3993) 

Merval -11.1388 

(-11.452) 

-18.1064 

(-18.8590) 

-13.8067 

(-13.9696) 

 -5.9493 

(-5.7363) 

-16.9299 

(-17.4208) 

-13.1816 

(-13.4860) 

HSI -4.4429 

(-3.7492) 

-1.7091 

(-1.7891) 

-11.0615 

(-10.8553) 

 -4.0621 

(-3.9824) 

-3.4354 

(-3.3233) 

-8.0991 

(-7.3039) 

TAIEX -5.4560 

(-4.7292) 

-7.2364 

(-7.4269) 

6.4822 

(-5.6319) 

 -4.8054 

(-5.8223) 

-6.3233 

(-7.4140) 

-3.8374 

(-4.3638) 

KOSPI -12.0248 

(-11.7096) 

-28.9670 

(-29.0079) 

-18.5984 

(-18.4441) 

 -9.0304 

(-10.4643) 

-28.7526 

(-28.8089) 

-12.1499 

(-11.8796) 

KLCI -9.5472 

(-8.4749) 

-11.9915 

(-11.2660) 

-18.3191 

(-18.8140) 

 -9.3107 

(-8.8425) 

-2.5443 

(-1.8914) 

-13.6283 

(-13.7896) 

JCI -12.8871 

(12.9421) 

-23.4195 

(-24.0666) 

-17.5430 

(-17.9648) 

 -13.5666 

(-12.7743) 

-9.7135 

(-10.1881) 

-11.5119 

(-11.4033) 

SET -8.0661 

(-7.2939) 

-7.5142 

(-7.4558) 

-8.1356 

(-8.1840) 

   -15.3545 

(-15.1896) 

-24.3193 

(-24.8659) 

-14.1577 

(-14.1191) 

Note: The major numbers and the numbers in parentheses are unit-root test based on augmented Dickey- 

Fuller test (ADF test) and Phillips-Perron test (PP test). The critical values of the Dickey-Fuller test and 

the Phillips-Perron test in 1% and 5% are -3.435 and -2.863, respectively. 
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Table C. 2 The stationarity test of estimated parameters of GEV distribution with 10-day returns 

  Long position  Short position 

n=5 
 Scale 

parameter 

(   ) 

Location 

parameter 

(   ) 

Tail 

parameter 

(   ) 

 Scale 

parameter  

(cn) 

Location 

parameter 

(  ) 

Tail 

parameter 

(  ) 

S&P500 -14.2405 

(-13.4792) 

-10.5617 

(-8.5129) 

-9.6859 

(-7.3285) 

 -5.0252 

(-2.2448) 

-7.8226 

(-5.0235) 

-12.0256 

(-9.9021) 

FTSE100 -17.6161 

(-17.8053) 

-21.5461 

(-22.2200) 

-7.6888 

(-4.9063) 

 -5.3200 

(-2.4494) 

-13.1398 

(-11.4373) 

-9.1452 

(-6.6125) 

CAC40 -27.9881 

(-28.0027) 

-28.8191 

(-28.8514) 

-21.3748 

(-22.1176) 

 -4.8592 

(-1.9678) 

-5.3187 

(-2.5765) 

-7.7505 

(-5.11900) 

DAX -9.1044 

(-6.3912) 

-18.7507 

(-19.1774) 

-10.5462 

(-8.2166) 

 -4.9210 

(-1.9944) 

-12.0764 

(-10.1423) 

-7.3797 

(-4.5037) 

TSX -7.6522 

(-4.7909) 

-15.5438 

(-14.4836) 

-10.2995 

(-8.0369) 

 -5.6174 

(2.9120) 

-11.0124 

(-9.4687) 

-15.0759 

(-14.1236) 

Nikkei225 -15.9224 

(-14.0735) 

-3.3343 

(-1.4172) 

-2.4296 

(-0.7637) 

 -15.3995 

(-15.4020) 

-10.4398 

(-8.1067) 

-6.9068 

(-4.6416) 

IGPA -14.1243 

(-13.7772) 

-21.6103 

(-22.6695) 

-9.0913 

(-7.0746) 

 -15.7786 

(-15.7035) 

-16.9786 

(-17.2435) 

-14.0795 

(-13.4525) 

Bolsa -28.4255 

(-28.5062) 

-28.3479 

(-28.3913) 

-25.2502 

(-25.8299) 

 -26.5012 

(-26.6429) 

-27.3916 

(-27.5936) 

-25.9839 

(-25.9890) 

Bovespa -10.8031 

(-8.4806) 

-4.8806 

(-2.0796) 

-13.4908 

(-11.5901) 

 -26.5012 

(-26.6429) 

-5.0495 

(-2.6078) 

-19.0667 

(-19.4515) 

Merval -14.2684 

(-12.4107) 

-11.2456 

(-8.9477) 

-11.2030 

(-8.8472) 

 -8.4568 

(-5.7702) 

-5.4421 

(-2.8946) 

-14.1343 

(-13.1992) 

HSI -14.1103 

(-12.1231) 

-9.3465 

(-6.9835) 

-20.4435 

(-20.0752) 

 -21.3846 

(-21.5424) 

-22.3364 

(-22.6405) 

-23.7550 

(-23.4784) 

TAIEX -5.9130 

(-3.1088) 

-4.2004 

(-2.5711) 

-3.9684 

(-2.4015) 

 -15.6001 

(-15.4397) 

-22.9890 

(-23.6604) 

-15.8035 

(-15.6055) 

KOSPI -22.1363 

(-21.9721) 

-14.6320 

(-14.1832) 

-5.4086 

(-2.5695) 

 -10.8889 

(-9.2858) 

-10.4570 

(-7.9998) 

-11.1397 

(-10.0920) 

KLCI -21.7220 

(-32.2253) 

-12.7107 

(-11.5350) 

-21.9150 

(-74.9154) 

 -25.4476 

(-25.6831) 

-15.6567 

(-15.8181) 

-51.2518 

(-60.1691) 

JCI -16.8925 

(-15.5795) 

-11.3523 

(-10.2995) 

-10.8384 

(-8.4047) 

 -9.1947 

(-6.5584) 

-4.5892 

(-2.3588) 

-8.3242 

(-5.6495) 

SET -15.1888 

(-14.3954) 

-14.5052 

(-13.7511) 

-4.4140 

(-2.4558) 

 -9.1369 

(-7.5086) 

-11.8261 

(-10.2154) 

-9.0275 

(-7.3626) 

Panel B: n=10                       
S&P500 -13.2677 

(-13.3666) 

-18.8108 

(-18.8919) 

-12.1075 

(11.7489) 

 -9.7629 

(-9.8142) 

-9.6596 

(-10.3984) 

-14.8007 

(-14.4945) 

FTSE100 -12.3831 

(-11.8347) 

-26.1949 

(-26.3873) 

-12.9464 

(-12.3592) 

 -11.6074 

(-11.1851) 

-11.1980 

(-10.6698) 

-16.7734 

(-16.1775) 

CAC40 -10.8386 

(-10.3078) 

-15.2320 

(-14.8059) 

-6.3704 

(4.5381) 

 -9.9015 

(-9.2388) 

-27.3655 

(-27.4592) 

-19.1793 

(-19.6156) 

DAX -8.7841 

(-8.4056) 

-29.3146 

(-29.3491) 

-12.3569 

(-11.7780) 

 -10.5779 

(-9.5513) 

-11.2728 

(-11.7804) 

-18.0050 

(-17.2332) 

TSX -11.8004 

(-11.3246) 

-28.7649 

(-28.8011) 

-9.6928 

(-8.1763) 

 -11.9496 

(-11.7594) 

-5.3352 

(-4.9703) 

-14.1161 

(-13.9165) 

Nikkei225 -11.4031 

(-12.0707) 

-6.4670 

(-4.1935) 

-3.6102 

(-3.3759) 

 -12.9805 

(-13.5449) 

-10.9638 

(-11.0068) 

-11.3831 

(-12.4396) 

IGPA -9.7772 

(-9.3048) 

-9.7625 

(-9.3431) 

-7.5214 

(-8.1604) 

 -10.3320 

(-9.8034) 

-14.6227 

(-14.6626) 

-12.3404 

(-11.8075) 

Bolsa -12.2437 

(-13.0934) 

-15.5978 

(-15.8535) 

-10.2874 

(-11.5709) 

 -10.8677 

(-11.5514) 

-11.1190 

(-11.3418) 

-12.1138 

(-13.5904) 

Bovespa -11.2223 

(-12.2583) 

-6.6605 

(-6.2113) 

-13.9496 

(-14.6029) 

 -10.8677 

(-11.5514) 

-14.0436 

(-14.0242) 

-15.4884 

(-15.7542) 

Merval -16.7638 

(-17.4029) 

-9.8739 

(-9.5818) 

-11.0687 

(-11.4528) 

 -6.2538 

(-7.3487) 

-10.4703 

(-11.0514) 

-9.4286 

(-10.4285) 

HSI -10.7823 

(-10.9009) 

-6.0599 

(-5.6333) 

-13.3691 

(-13.3923) 

 -9.3004 

(-10.5373) 

-15.8421 

(-16.1211) 

-8.5563 

(-8.3914) 

TAIEX -9.9315 

(-8.7661) 

-7.5724 

(-7.6841) 

-4.6563 

(-4.0213) 

 -11.1554 

(-10.5283) 

-20.8285 

(-21.6622) 

-10.8236 

(-10.2859) 

KOSPI -21.1348 

(-21.6099) 

-9.7907 

(-10.7489) 

-10.6572 

(-10.0239) 

 -19.9862 

(-19.9121) 

-11.5704 

(-11.1959) 

-22.6768 

(-24.2057) 

KLCI -35.6420 -11.3689 -42.6632  -20.9402 -20.8223 -29.8253 
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(-37.9988) (-10.8434) (-71.8306) (-19.9982) (-21.0428) (-33.0710) 

JCI -26.1999 

(-26.3360) 

-18.5884 

(-19.1703) 

-22.1193 

(-23.2767) 

 -27.2267 

(-27.2694) 

-20.2430 

(-21.1725) 

-12.6939 

(-12.2347) 

SET -20.2537 

(-20.5513) 

-20.5526 

(-21.3025) 

-10.5869 

(-9.9632) 

 -15.0721 

(-15.8681) 

-11.3097 

(-12.261) 

-19.6300 

(-19.5400) 

Panel C: n=22                       

S&P500 -6.8964 

(-7.1390) 

-7.4162 

(-7.8848) 

-6.5048 

(-6.2632) 

 -11.1476 

(-10.5683) 

-5.7927 

(-6.3494) 

-13.4195 

(-13.2027) 

FTSE100 -6.9609 

(-8.2293) 

-8.1841 

(-8.9767) 

-5.5397 

(-6.3550) 

 -9.5342 

(-9.3601) 

-5.2518 

(-6.9651) 

-12.4905 

(-12.6766) 

CAC40 -7.5362 

(-7.5963) 

-11.9010 

(-11.9104) 

-4.9933 

(-4.7931) 

 -6.1844 

(-7.2473) 

-7.6745 

(-8.6405) 

-6.0053 

(-6.6739) 

DAX -9.1707 

(-10.2934) 

-8.6680 

(-9.3879) 

-9.7051 

(-10.2660) 

 -7.6741 

(-8.1659) 

-5.1645 

(-6.3274) 

-9.0934 

(-9.7028) 

TSX -16.6130 

(-17.0675) 

-14.6268 

(-14.7043) 

-8.6242 

(-8.6079) 

 -6.7170 

(-8.1452) 

-3.7517 

(-3.3237) 

-6.5477 

(-6.6330) 

Nikkei225 -11.3188 

(-11.0431) 

-5.7786 

(-7.4722) 

-2.6772 

(-2.4676) 

 -6.7956 

(-8.9530) 

-7.1598 

(-8.9324) 

-6.6717 

(-8.6745) 

IGPA -6.0943 

(-7.6306) 

-6.9125 

(-8.8172) 

-6.8816 

(-8.1594) 

 -18.2346 

(-18.8959) 

-18.6523 

(-19.4721) 

-11.1138 

(-11.9379) 

Bolsa -6.5086 

(-7.4152) 

-6.8676 

(-8.6519) 

-7.7681 

(-7.7601) 

 -6.2669 

(-8.6563) 

-7.4696 

(-8.4867) 

-7.1369 

(-9.0923) 

Bovespa -8.1519 

(-8.9229) 

-6.4370 

(-6.3064) 

-9.7866 

(-10.6946) 

 -6.2669 

(8.6563) 

-7.9335 

(-9.2588) 

-11.2269 

(-12.0849) 

Merval -6.8035 

(-8.2538) 

-6.7968 

(-8.6898) 

-7.6983 

(-8.3838) 

 -7.4705 

(-9.1932) 

-5.5049 

(-7.4132) 

-7.1439 

(-9.0824) 

HSI -5.7585 

(-7.7155) 

-4.4406 

(-3.9506) 

-9.6239 

(-9.4734) 

 -5.2892 

(-4.9465) 

-8.0261 

(-7.8406) 

-4.7698 

(-4.2623) 

TAIEX -6.3043 

(-8.6750) 

-7.4566 

(-7.6181) 

-3.7461 

(-4.1528) 

 -17.1269 

(-17.6583) 

-22.7404 

(-23.3606) 

-7.7545 

(-7.2423) 

KOSPI -7.8030 

(-8.9917) 

-7.0861 

(-7.5425) 

-6.9443 

(-5.6801) 

 -14.2796 

(-13.6629) 

-5.9407 

(-7.1412) 

-15.2089 

(-15.0092) 

KLCI -12.3064 

(-12.7482) 

-10.1394 

(-10.8728) 

-12.9818 

(-13.3805) 

 -15.5857 

(-16.8120) 

-11.6314 

(-12.6871) 

-13.1565 

(-14.0563) 

JCI -10.7249 

(-11.0182) 

-12.4445 

(-13.6464) 

-9.9619 

(-9.8631) 

 -9.4231 

(-10.2213) 

-4.1007 

(-4.3598) 

-10.1485 

(-11.7450) 

SET -10.2118 

(-11.5600) 

-18.7656 

(-19.3560) 

-9.2328 

(10.8509) 

 -12.6907 

(-13.2980) 

-10.6917 

(-11.3488) 

-17.5757 

(-17.1075) 

Note: The major numbers and the numbers in parentheses are unit-root test based on augmented 

Dickey-Fuller test (ADF test) and Phillips-Perron test (PP test). The critical values of the Dickey-Fuller 

test and the Phillips-Perron test in 1% and 5% are -3.435 and -2.863, respectively. 
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Figure C- 1 The pattern of estimated parameters of S&P 500 

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position         (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

   
 
Figure C- 2 The pattern of estimated parameters of FTSE 100 

(a)scale parameter of a long position              (d) scale parameter of a short position 

   
(b)location parameter of a long position            (e) location parameter of a short position 

   
(c) tail parameter of a long position               (f) tail parameter of a short position 
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Figure C- 3 The pattern of estimated parameters of CAC40 

(a)scale parameter of a long position            (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
Figure C- 4 The pattern of estimated parameters of DAX 

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 
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(c) tail parameter of a long position             (f) tail parameter of a short position 

  
 
Figure C- 5 The pattern of estimated parameters of TSX 

(a)scale parameter of a long position            (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
Figure C- 6 The pattern of estimated parameters of Nikkei225 

(a)scale parameter of a long position               (d) scale parameter of a short position 
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(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position             (f) tail parameter of a short position 

 
 
Figure C- 7 The pattern of estimated parameters of IGPA 

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position            (e) location parameter of a short position 

  
(c) tail parameter of a long position               (f) tail parameter of a short position 
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Figure C- 8 The pattern of estimated parameters of Bolsa  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position             (f) tail parameter of a short position 

  
 
Figure C- 9 The pattern of estimated parameters of Bovespa  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 
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(c) tail parameter of a long position             (f) tail parameter of a short position 

  
 
Figure C- 10 The pattern of estimated parameters of Merval  

(a)scale parameter of a long position           (d) scale parameter of a short position 

  
(b)location parameter of a long position         (e) location parameter of a short position 

  
(c) tail parameter of a long position             (f) tail parameter of a short position 

  
 
Figure C- 11 The pattern of estimated parameters of HSI  

(a)scale parameter of a long position            (d) scale parameter of a short position 
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(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 12 The pattern of estimated parameters of TAIEX 

(a)scale parameter of a long position            (d) scale parameter of a short position 

  
(b)location parameter of a long position         (e) location parameter of a short position 

  
(c) tail parameter of a long position             (f) tail parameter of a short position 
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Figure C- 13 The pattern of estimated parameters of KOSPI  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position         (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 14 The pattern of estimated parameters of KLCI  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position   (e) location parameter of a short position 

-0.6 

-0.1 

0.4 

1 201 401 601 801 n=5 

n=10 

n=22 

-0.6 

-0.1 

0.4 

1 201 401 601 801 
n=5 

n=10 

n=22 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

1 201 401 601 801 

n=5 

n=10 

n=22 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

1 201 401 601 801 

n=5 
n=10 
n=22 

-0.3 

-0.2 

-0.1 

0 

1 201 401 601 801 

n=5 

n=10 

n=22 

0 

0.1 

0.2 

0.3 

1 201 401 601 801 n=5 

-0.6 

-0.1 

0.4 

1 201 401 601 801 n=5 

n=10 

n=22 

-0.6 

-0.1 

0.4 

1 201 401 601 801 n=5 
n=10 
n=22 

0 

0.01 

0.02 

0.03 

1 201 401 601 801 

n=5 

n=10 

n=22 

0 

0.01 

0.02 

0.03 

1 201 401 601 801 

n=5 

n=10 

n=22 



Appendix C                                                           

285 
 

  
(c) tail parameter of a long position               (f) tail parameter of a short position 

  
 
Figure C- 15 The pattern of estimated parameters of JCI  

(a)scale parameter of a long position              (d) scale parameter of a short position 

  
(b)location parameter of a long position            (e) location parameter of a short position 

  
(c) tail parameter of a long position                (f) tail parameter of a short position 

  
 
Figure C- 16 The pattern of estimated parameters of SET  

(a)scale parameter of a long position              (d) scale parameter of a short position 
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(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 17 The pattern of estimated parameters of S&P 500 (10-day return) 

(a)scale parameter of a long position           (d) scale parameter of a short position 

  
(b)location parameter of a long position         (e) location parameter of a short position 

  
 (c) tail parameter of a long position             (f) tail parameter of a short position 
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Figure C- 18 The pattern of estimated parameters of FTSE 100 

(a)scale parameter of a long position            (d) scale parameter of a short position 

  
 (b)location parameter of a long position        (e) location parameter of a short position 

  
 (c) tail parameter of a long position             (f) tail parameter of a short position 

  
Figure C- 19 The pattern of estimated parameters of CAC40 

(a)scale parameter of a long position            (d) scale parameter of a short position 

  
(b)location parameter of a long position         (e) location parameter of a short position 
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 (c) tail parameter of a long position             (f) tail parameter of a short position 

  
 
Figure C- 20 The pattern of estimated parameters of DAX 

(a)scale parameter of a long position              (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 

  
 (c) tail parameter of a long position             (f) tail parameter of a short position 

  
Figure C- 21 The pattern of estimated parameters of TSX 

(a)scale parameter of a long position             (d) scale parameter of a short position 
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(b)location parameter of a long position          (e) location parameter of a short position 

  
 (c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 22 The pattern of estimated parameters of Nikkei225 

(a)scale parameter of a long position              (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position                (f) tail parameter of a short position 
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Figure C- 23 The pattern of estimated parameters of IGPA 

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position               (f) tail parameter of a short position 

  
 
Figure C- 24 The pattern of estimated parameters of Bolsa  

(a)scale parameter of a long position              (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 
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(c) tail parameter of a long position                (f) tail parameter of a short position 

  
 
Figure C- 25 The pattern of estimated parameters of Bovespa  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position               (f) tail parameter of a short position 

  
Figure C- 26 The pattern of estimated parameters of Merval  

(a)scale parameter of a long position             (d) scale parameter of a short position 
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(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 27 The pattern of estimated parameters of HSI  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position               (f) tail parameter of a short position 
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Figure C- 28 The pattern of estimated parameters of TAIEX 

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position             (f) tail parameter of a short position 

  
 
Figure C- 29 The pattern of estimated parameters of KOSPI  

(a)scale parameter of a long position             (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 
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(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 30 The pattern of estimated parameters of KLCI  

(a)scale parameter of a long position           (d) scale parameter of a short position 

  
(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 31 The pattern of estimated parameters of JCI  

(a)scale parameter of a long position             (d) scale parameter of a short position 
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(b)location parameter of a long position          (e) location parameter of a short position 

  
(c) tail parameter of a long position              (f) tail parameter of a short position 

  
 
Figure C- 32 The pattern of estimated parameters of SET  

(a)scale parameter of a long position            (d) scale parameter of a short position 

  
(b)location parameter of a long position           (e) location parameter of a short position 

  
(c) tail parameter of a long position               (f) tail parameter of a short position 
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10 Appendix D The tail-DCC of the market indices 

Figure D- 1 The tail-DCC of developed market indices (n=10) 

(a) Left tail 

 
(b) Right tail 

 
 

Figure D- 2 The tail-DCC of developed market indices (n=10) 

(a) Left tail 

 
(b)Right tail 

 
Figure D- 3 The tail-DCC of developed market indices(n=10) 

(a) Left tail 
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(b) Right tail 

 
 

Figure D- 4 The tail-DCC of Asian market indices (n=10) 

(a) Left tail 

 
(b) Right tail 

 
 

Figure D- 5 The tail-DCC of Asian market indices(n=10) 

(a) Left tail 
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(b) Right tail 

 
 

 

Figure D- 6 The tail-DCC of Asian market indices(n=10) 

(a) Left tail 

 
(b) Right tail 

 
 

Figure D- 7 The tail-DCC of Latin American market indices(n=10) 

(a) Left tail 
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(b) Right tail 
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11 Appendix E VaR pattern of Historical simulation 

Figure E- 1 The VaR pattern of Historical Simulation with a different simulation period 

(a)developed equity market 

 
(b)Latin American equity market 

 
(c)Asian equity market 
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12 Appendix F The VaR pattern without SV model 

Figure F- 1 (a). 99%-VaR patterns of the Latin American equity market and the actual returns without SV 

model 

 

(b). 95%-VaR patterns of the Latin American equity market and the actual returns without SV model 
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