The University of Southampton
University of Southampton Institutional Repository

A global hybrid coupled model based on atmosphere-SST feedbacks

A global hybrid coupled model based on atmosphere-SST feedbacks
A global hybrid coupled model based on atmosphere-SST feedbacks
A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic.
hybrid coupled model, atmospheric feedbacks, thermohaline circulation, multiple equilibria
0930-7575
745-760
Cimatoribus, Andrea A.
1e20d92c-fae8-49f6-9561-b0bbae3a645a
Drijfhout, Sybren S.
a5c76079-179b-490c-93fe-fc0391aacf13
Dijkstra, Henk A.
9178b06d-9de5-4f02-b9ff-204b20620291
Cimatoribus, Andrea A.
1e20d92c-fae8-49f6-9561-b0bbae3a645a
Drijfhout, Sybren S.
a5c76079-179b-490c-93fe-fc0391aacf13
Dijkstra, Henk A.
9178b06d-9de5-4f02-b9ff-204b20620291

Cimatoribus, Andrea A., Drijfhout, Sybren S. and Dijkstra, Henk A. (2012) A global hybrid coupled model based on atmosphere-SST feedbacks. Climate Dynamics, 38 (3-4), 745-760. (doi:10.1007/s00382-011-1094-1).

Record type: Article

Abstract

A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic.

Full text not available from this repository.

More information

Published date: February 2012
Keywords: hybrid coupled model, atmospheric feedbacks, thermohaline circulation, multiple equilibria
Organisations: Ocean and Earth Science

Identifiers

Local EPrints ID: 348337
URI: https://eprints.soton.ac.uk/id/eprint/348337
ISSN: 0930-7575
PURE UUID: 7ac62385-6d5f-4305-8fb4-04f27d03ef14

Catalogue record

Date deposited: 12 Feb 2013 12:01
Last modified: 16 Jul 2019 21:43

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×