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Abstract—Differential amplitude phase-shift keying (DAPSK),
which is also known as star-shaped quadrature-amplitude mod-
ulation, has implementational advantages not only due to dis-
pensing with channel estimation but as a benefit of its low signal
detection complexity as well. It is widely recognized that separately
detecting the amplitude and the phase of a received DAPSK
symbol exhibits lower complexity than jointly detecting the two
terms. However, since the amplitude and the phase of a DAPSK
symbol are affected by correlated magnitude fading and phase
rotations, detecting the two terms completely independently re-
sults in a performance loss, which is particularly significant for
soft-decision-aided DAPSK detectors relying on multiple receive
antennas. Therefore, in this contribution, we propose a new
soft-decision-aided DAPSK detection method, which achieves op-
timum DAPSK detection capability at substantially reduced detec-
tion complexity. More specifically, we link each a priori soft-input
bit to a specific part of the channel’s output, so that only a reduced
subset of the DAPSK constellation points has to be evaluated
by the soft DAPSK detector. Our simulation results demonstrate
that the proposed soft DAPSK detector exhibits lower detection
complexity than that of independently detecting the amplitude and
the phase, whereas the optimal performance of DAPSK detection
is retained.

Index Terms—Differential amplitude phase-shift keying
(DAPSK), iterative demapping and decoding, Log-MAP,
Max-Log-MAP, reduced complexity, soft-decision-aided detection,
star quadrature-amplitude modulation (QAM).

I. INTRODUCTION

I T IS WIDELY recognized that soft-decision techniques are
superior to hard-decision techniques. More explicitly, the

classic quadrature-amplitude modulation (QAM) detector was
further developed for processing soft bits, to show that the
full potential of sophisticated coded modulation schemes can
be beneficially exploited [1]. However, accurate channel state
information (CSI) is required by coherent QAM detection for
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avoiding false phase locking of the carrier-recovery scheme
[2]–[6]. As a remedy, differential amplitude phase-shift keying
(DAPSK), which is also known as star QAM, was proposed
in [7] to dispense with high-complexity CSI estimation and,
hence, to eliminate the pilot overhead. It is demonstrated in
[8] that low-complexity noncoherent schemes are particularly
important in the context of relay-aided cooperative systems,
where it is unrealistic to expect that the relay can altruistically
estimate the source–relay channel.

The state-of-the-art channel decoding algorithms may be
beneficially applied to the soft-decision-aided demodulators
[1], [9]. More explicitly, the classic Bahl, Cocke, Jelinek,
and Raviv algorithm in [10] invoked the MAP algorithm for
channel decoding. Following the conception of the soft-output
Viterbi algorithm [11] for reducing the complexity of the MAP
algorithm, substantial research efforts have been dedicated to
channel codes. An outstanding invention was the classic Log-
MAP algorithm [12], which operates the MAP algorithm in the
logarithmic domain. The so-called Max-Log-MAP algorithm
was also proposed in [12], which searched for the two max-
imum a posteriori symbol probabilities having their specific
bit fixed to 1 and 0, respectively. In this paper, we focus our
attention on the low-complexity Max-Log-MAP conceived for
soft-decision-aided DAPSK detection.

Apart from dispensing with channel estimation, DAPSK
schemes also benefit from low signal detection complexity. It
is widely recognized that separately detecting the amplitude
and the phase of a received DAPSK symbol exhibits lower
complexity than the complexity of jointly detecting the two
terms. Following this idea, the hard-decision-aided and the soft-
decision-aided DAPSK demodulators were proposed in [7] and
[13], respectively. However, in fact, the ring amplitude fading
and the fading-induced phase rotations of a DAPSK symbol
are correlated; hence, the attempt of detecting the two terms
completely independently results in a performance loss, which
is particularly significant for DAPSK detectors relying on mul-
tiple receive antennas. As a remedy, a novel soft-decision-aided
DAPSK demodulator, which jointly detects the amplitude and
the phase, was proposed in [14], but its detection complexity
was substantially increased. Against this background, the novel
contributions of this paper are as follows.

1) We demonstrate that a performance loss is imposed by
independently detecting the received amplitude and the
received phase of hard-decision-aided DAPSK, when
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Fig. 1. Constellation diagram of 16-DAPSK (2,8). The constellation diagram
of M -DAPSK (MA,MP ) is rotated anticlockwise by π/MP , so that there are
exactly M/4 constellation points in each quadrant.

multiple receive antennas are employed. As a remedy,
we propose a new hard DAPSK detection method, which
detects the amplitude with the aid of the detected phase.
As a result of this “partially joint” amplitude–phase de-
tection, optimal performance is retained.

2) Second, we propose a new method for substantially
reducing the detection complexity of the soft-decision-
aided DAPSK detector in [14], which may be invoked by
a variety of iterative demapping and decoding schemes.
More specifically, we link each a priori soft-input bit
to a specific part of the channel’s output, so that only a
reduced subset of the DAPSK constellation points has to
be evaluated by the soft DAPSK detector. Our simula-
tion results demonstrate that the proposed soft DAPSK
detector exhibits an even lower detection complexity than
that of the separate amplitude–phase DAPSK detector in
[13]. This is achieved without imposing any performance
loss compared with the optimal joint amplitude–phase
DAPSK detector in [14].

The remainder of this paper is organized as follows. The
hard-decision-aided and the soft-decision-aided DAPSK de-
tectors are introduced in Sections II and III, respectively. We
provide simulation results in Section IV, and our conclusions
are offered in Section V.

The following notations are used throughout this paper. M -
DAPSK (MA,MP ) represents an M -DAPSK scheme that has
MA ring amplitudes and MP phases, where we have M =
MAMP . The number of modulated bits per symbol is given
by m̄ = m̄A + m̄P , where m̄A and m̄P are the bits that are
mapped to the ring amplitude and to the phase, respectively.
Furthermore, we use (·)∗ to denote the conjugate of a complex
symbol/vector, whereas ‖ · ‖2 refers to the Euclidean norm of a
vector/matrix. The subscript of a symbol (e.g., subscript k in sk)
indicates the time index, whereas the superscript of a symbol
(e.g., superscript u in su) represents the modulation index.

II. HARD-DECISION-AIDED DIFFERENTIAL AMPLITUDE

PHASE-SHIFT KEYING DETECTION

A. DAPSK Modulation

The constellation diagram of the classic 16-DAPSK(2,8)
scheme is portrayed in Fig. 1. We deliberately rotate all of the
DAPSK constellations in [3], [7], [13], and [14] anticlockwise
by π/MP , so that there are exactly M/4 constellation points
in each quadrant. We will demonstrate in Section III that
this feature is beneficial for our soft-decision-aided DAPSK
detector design. Furthermore, Gray labeling is applied to all
DAPSK schemes in this paper. The symmetry exhibited by
the Gray-labeled DAPSK constellation diagram is the key to
detection complexity reduction.

Similar to the regular QAM schemes [3], the power of
the modulated DAPSK symbols has to be normalized. If we
denote the ring ratio as α, then the power normalization factor
is given by (β =

∑(MA−1)
a=0 α2a/MA). Note that in Rayleigh

fading channels, the advantageous choice for ring ratios are
(α = 2.0) for M -DAPSK (2,MP ) [14]–[16] and (α = 1.4) for
M -DAPSK (4,MP ) [17], [18], respectively.

If we denote the transmitted DAPSK symbol as xk =
γkexp(jψk),whereγk andψk refer totheamplitudeandthephase,
respectively, then differential encoding may be formulated as

xk =

{
1√
β
, if k = 0

sk−1xk−1, if k > 0
(1)

where the modulated symbol sk−1 = γk/γk−1 exp(jΔψk−1)
carries the source information. More explicitly, a generic
DAPSK modulator assigns the first m̄P bits to modulate
the phase difference of the transmitted symbols ωk−1 =
exp(jΔψk−1) = exp[j(ψk − ψk−1)] as an MP -PSK phasor,
whereas the last m̄A bits are assigned to modulate the amplitude
difference of the transmitted symbols ρk−1 = γk/γk−1 based
on the previous ring amplitude γk−1. More specifically, for two-
ring M -DAPSK (2,MP ) schemes, the amplitude difference is
modulated as

ρk−1 =

⎧⎪⎨⎪⎩
α−1, if bm̄ = 1 and γk−1 = α√

β

1, if bm̄ = 0
α, if bm̄ = 1 and γk−1 = 1√

β

(2)

whereas for four-ring M -DAPSK (4,MP ) schemes, the ampli-
tude difference is modulated as

ρk−1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α−3, if bm̄−1bm̄=01 and γk−1=
α3√
β

α−2, if bm̄−1bm̄=11 and γk−1∈
{

α2√
β
, α3√

β

}
α−1, if bm̄−1bm̄=10 and

γk−1∈
{

α√
β
, α2√

β
, α3√

β

}
1, if bm̄−1bm̄=00
α, if bm̄−1bm̄=01 and

γk−1∈
{

1√
β
, α√

β
, α2√

β

}
α2, if bm̄−1bm̄=11 and γk−1∈

{
1√
β
, α√

β

}
α3, if bm̄−1bm̄=10 and γk−1=

1√
β
.

(3)
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Since amplitude difference ρk−1 may be either equal to, smaller
than, or larger than 1, depending on the previous ring amplitude
γk−1, there are (2MA − 1) candidates for amplitude difference
ρk−1 of anM -DAPSK(MA,MP ) scheme, as seen in (2) and (3).

B. DAPSK Demodulation

Let us now consider an uplink scenario, where the transmitter
is equipped with a single antenna, whereas the receiver relies on
NR receive antennas. For cooperative communication systems
[8], [19], [20], NR may refer to the number of relay nodes.
Due to the increasing number of virtual antenna array links and
the requirement of imposing low signal processing complexity
at the relay nodes, it becomes unrealistic to require accurate
channel estimation; hence, DAPSK is preferred. The received
signal of the NR receive antennas may be modeled as

yk = xkhk + nk (4)

where the NR-element vectors yk, hk, and nk model the
received signal, the Rayleigh fading channels, and the additive
white Gaussian noise, which has a zero mean and a variance
of N0 in each dimension, respectively. For quasi-static fading
channels, we may assume (hk+1 = hk) over TQS symbol
periods. As a result, the next received signal vector may be
expressed as

yk+1 =xk+1hk + nk+1

= skyk + ñk+1 (5)

where the equivalent noise term (ñk+1 = −sknk + nk+1) is
Gaussian distributed with a zero mean and a variance of (1 +
ρ2k)N0 in each dimension. Therefore, the corresponding hard-
decision-aided DAPSK detection may be expressed as

ŝk = argmin
su∈s

‖yk+1 − suyk‖2 (6)

where {su}(2MA−1)MP

u=1 denotes the uth element in the DAPSK
symbol set s. The demodulator of (6) operates on a vector-by-
vector basis, where the detection complexity is increased when
the vector size is increased due to using more receive antennas.
As a remedy, a decision variable may be introduced based on
the Euclidean norm calculation of (6) as

zk = yk+1 · y∗
k/‖yk‖2. (7)

Naturally, minimizing metric [‖yk+1 − suyk‖2 = ‖yk+1‖2 +
|su|2‖yk‖2 − 2Re{(su)∗yk+1 · y∗

k}] in (6) and minimizing
[|zk − su|2 = |zk|2 + |su|2 − 2Re{(su)∗zk}] are equivalent
because ‖yk+1‖2, ‖yk‖2, and |zk|2 are all invariant over the
different candidates su ∈ s. Therefore, decision variable zk
may be used for detecting the amplitude and the phase of
sk = ρkωk separately as

ρ̂k = min
ρv∈ρ

||zk| − ρv|2 (8)

ω̂k = min
ωl∈ω

|zk − ωl|2 (9)

where {ρv}2MA−1
v=1 and {ωl}MP

l=1 denote the vth element in
ring amplitude subset ρ and the lth element in phasor subset

Fig. 2. Performance comparison between the ML DAPSK detecton of (6) and
the simplified DAPSK detection of (8) and (9).

ω, respectively. For the special case of (NR = 1), we have
|zk| = |yk+1 · y∗k|/|yk|2 = |yk+1|/|yk| and ∠zk = ∠zk/|zk| =
∠(yk+1 · y∗k)/|yk+1 · y∗k| = ∠yk+1 − ∠yk. Therefore, (8) and
(9) are equivalent to the hard-decision-aided star QAM detec-
tion introduced in [7].

However, the maximum-likelihood (ML) DAPSK detector
of (6) and the simplified DAPSK detector of (8) and (9) do
not have the same detection capability, as evidenced in Fig. 2,
where the performance loss of (8) and (9) becomes significant
as NR is increased. We will demonstrate in Section III that in-
dependently detecting the amplitude and the phase also results
in substantial performance degradation for soft-decision-aided
DAPSK detection relying on multiple receive antennas.

To elaborate a little further, the phase of a received DAPSK
symbol may change the magnitudes on both the real and the
imaginary axes of the received signal’s constellation diagram,
which implies that the detection of the amplitude, in fact, relies
on the detection of the phase. Therefore, to restore the ML
DAPSK detector’s detection capability, we return to (6), which
may be simplied as

{ρ̂k, ω̂k} = argmin
su∈s

|su|2 − 2Re {(su)∗zk}
= arg min

ρv∈ρ,ωl∈ω
(ρv)2 − 2ρvRe

{
(ωl)∗zk

}
. (10)

We define the local minimum metric of [(ρv)2 −
2ρvRe{(ωl)∗zk}] in (10) as the minimum over the set of
phasors ωl ∈ ω only, then (10) may be transformed to

ω̂k = arg min
ωl∈ω

(ρv)2 − 2ρvRe
{
(ωl)∗zk

}
= arg min

ωl∈ω
−Re

{
(ωl)∗zk

}
(11)

where a fixed amplitude is chosen from ρv ∈ ρ. After deleting
the constants in (9), it can be seen that (11) and (9) have
become equivalent. The global minimum in (10) may now be
obtained by comparing the local minimum metrics, which may
be expressed as

ρ̂k = arg min
ρv∈ρ

(ρv)2 − 2ρvRe {(ω̂k)
∗zk} (12)
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where ω̂k is obtained by the local minimum search. As a result,
(9) and (12) have exactly the same detection capability as
(6). We have arranged for both detectors to process the same
channel output, and they always produce the same decision.
Moreover, (9) and (12) separately evaluate the phasor subset
and the amplitude subset; hence, the low DAPSK detection
complexity is retained.

III. SOFT-DECISION-AIDED DIFFERENTIAL AMPLITUDE

PHASE-SHIFT KEYING DETECTION

A. Conventional Soft-Decision-Aided DAPSK Detection

Here, we briefly summarize the features of the conventional
soft-decision-aided DAPSK detectors, namely, those of the
joint amplitude–phase detector (JAPD) in [14] and those of the
separate amplitude–phase detector (SAPD)1 in [13].

The Log-MAP algorithm invoked by the JAPD produces the
a posteriori log-likelihood ratio (LLR) Lp(bm) as [12], [21]

Lp(bm) = ln

∑
sk∈sbm=1

exp
[
d(ρv, ωl)

]∑
sk∈sbm=0

exp [d(ρv, ωl)]
(13)

where sbm=1 and sbm=0 represent symbol set s, when the
specific bit bm is fixed to 1 and 0, respectively, whereas JAPD’s
probability metric d(ρv, ωl) is defined as [14]

d(ρv, ωl) = −‖yk+1 − ρvwlyk‖2

Ñv
0

+

m̄∑
m̃=1

b
m̃
La(bm̃) (14)

where we have the equivalent noise power of {Ñv
0 = [1 +

(ρv)2]N0}2MA−1
v=1 , whereas {La(bm̃)}m̄

m̃=1
denotes the a priori

LLRs obtained from channel decoding. Similarly, the low-
complexity Max-Log-MAP algorithm is formulated as [12]

Lp(bm) = max
sk∈sbm=1

[
d(ρv, ωl)

]
− max

sk∈sbm=0

[
d(ρv, ωl)

]
(15)

where only the maximum a posteriori probability metrics are
taken into account.

It can be seen that the Log-MAP of (13) and the Max-Log-
MAP of (15) invoked by the JAPD have to evaluate (2MA −
1)MP metrics {{d(ρv, ωl)}2MA−1

v=1 }MP

l=1 of (14) to produce a
single soft-bit decision. By contrast, the SAPD defines its
amplitude-related probability metric {d(ρv)}2MA−1

v=1 and phase-
related probability metric {d(ωl)}MP

l=1 separately as [13]

d(ρv) =

NR∑
n=1

⎡⎣ −
∣∣ynk+1

∣∣ |ynk |
N0

(
1 + (λn

k )
2
) (λn

k − ρv)2

⎤⎦
+

m̄∑
m̃=m̄P+1

b
m̃
La(bm̃) (16a)

1The SAPD refers to the final results of partially combined differential
detection (PDD) in [13]. Although the PDD’s phase detector makes use of
the received symbols’ amplitudes, PDD still evaluates the (2MA − 1)-sized
amplitude subset and the MP -sized phase subset separately for detecting the
m̄A and m̄P bits, respectively. Therefore, PDD in [13] is referred to as SAPD
in this paper.

d(ωl) =

NR∑
n=1

⎡⎣− ∣∣ynk+1

∣∣2 + |ynk |
2 (λn

k )
2

N0

(
1 + (λn

k )
2
)

+
2
∣∣ynk+1

∣∣ |ynk |λn
k cos

(
Δθnk − ∠ωl

)
N0

(
1 + (λn

k )
2
)

⎤⎦
+

m̄P∑
m̃=1

b
m̃
La(bm̃) (16b)

where {ynk }
NR
n=1 denotes the nth element in yk, whereas we

have λn
k = |ynk+1|/|ynk | and Δθnk = ∠ynk+1 − ∠ynk . The Log-

MAP of (13) and the Max-Log-MAP of (15) invoked by the
SAPD have only to evaluate and compare (2MA − 1) metrics
{d(ρv)}2MA−1

v=1 of (16a) and MP metrics {d(ωl)}MP

l=1 of (16b)
for producing the amplitude bit decisions and the phase bit
decisions. As a result, the SAPD exhibits lower complexity.

If we use the average mutual information (AMI) as a measure
of detection capability, then the AMI achieved by the JAPD
may be expressed as [13], [22]

CJAPD = I(yk+1|yk; sk)

=
1

MMA

MA∑
w=1

M∑
u=1

E

{
log2

[
M · p(yk+1|yk, s̄

u)∑M
ū=1 p(yk+1|yk, s̄ū)

]

| sk = s̄u, γk = γw

}
(17)

where {γw}MA
w=1 is taken from the MA-element ring amplitude

set γ for γk, whereas {s̄u}Mu=1 is taken from the M -element
DAPSK symbol set s̄, whose size is smaller than the full set s,
simply because we have already decided upon the previous
transmitted DAPSK symbol’s amplitude (γk = γw). Based on
the received signal model of (5), the conditional probability
seen in (17) is given by

p(yk+1|yk, s̄
u) =

exp
[
−‖yk+1−s̄uyk‖2

(1+|s̄u|2)N0

]
[π(1 + |s̄u|2)N0]

NR
. (18)

Similarly, the AMI achieved by the SAPD [13], [22] is given
by (19), shown at the bottom of the next page, where conditions
(γk = γw1 , γk+1 = γw2) and (γk = γw1 , γk+1 = γw̄2) deter-
mine amplitude variables ρv and ρv̄ , respectively, whereas the
conditional probabilities in (19) are given by (20), also shown
at the bottom of the next page.

Based on (17) and (19), the AMI achieved by the JAPD and
the SAPD is shown in Fig. 3. It can be seen that the JAPD
and the SAPD have similar detection capabilities when we
have (NR = 1). However, the JAPD is capable of achieving a
higher AMI, when multiple receive antennas are employed, as
evidenced in Fig. 3 both for the 16-DAPSK(2,8) scheme and
for the 64-DAPSK(4,16) arrangement.

B. Reduced-Complexity Soft-Decision-Aided
DAPSK Detection

Since the a posteriori probability metrics d(ρv, ωl)
of (14) directly relate the symbol-level channel output
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Fig. 3. Comparison between AMI achieved by the JAPD in [14] and AMI achieved by the SAPD in [13]. The system parameters are summarized in Table I.
(a) 16-DAPSK(2,8). (b) 64-DAPSK(4,16).

(−‖yk+1 − ρvωlyk‖2/Ñv
0 ) to the symbol-level a priori LLRs

[
∑m̄

m̃=1
b
m̃
La(bm̃)], the JAPD in Section III-A operates on a

symbol-by-symbol basis, which implies that all of the DAPSK
constellation points have to be visited by the JAPD. Observe in
Section II-B that instead of evaluating all the DAPSK constella-
tion points using (6), the hard-decision-aided DAPSK detection
of (9) and (12) tests only a reduced subset of the constellation
points. Furthermore, the Max-Log-MAP of (15) aims at finding
the maximum metric, which is similar to the action of the hard-
decision-aided detection of (6). Motivated by this, here, we aim
for linking each a priori soft-input bit to a specific part of the
channel’s output, so that only a reduced subset of the constella-
tion points has to be evaluated by the JAPD. In the rest of this
paper, we refer to the proposed Max-Log-MAP-aided DAPSK
detection as the reduced-complexity JAPD (RC-JAPD).

Considering 16-DAPSK (2,8) in Fig. 1 as our example, the
Max-Log-MAP of (15) invoked for detecting the last bit b4,
which determines the ring amplitude, may be expressed as

Lp(b4) = max
b4=1

d(ρv, ωl)−max
b4=0

d(ρv, ωl)

= max
ωl∈ω

{
d(α−1, ωl), d(α, ωl)

}
−max

ωl∈ω
d(1, ωl)

= max
{
dmax(ρ

1), dmax(ρ
3)
}
− dmax(ρ

2) (21)

where the local maximum probability metric of a specific ring
amplitude index v ∈ {1, . . . , 2MA − 1} is given by

dmax(ρ
v) = max

ωl∈ω
d(ρv, ωl). (22)

CSAPD = I
(
{λn

k}NR

n=1 ; ρ
v
)
+ I
(
{Δθnk , λ

n
k}NR

n=1 ;ω
l
)

=
1

(MA)2

MA∑
w1=1

MA∑
w2=1

E

⎧⎨⎩log2

⎡⎣ MA · p
(
{λn

k}
NR

n=1 |ρv
)

∑MA

w̄2=1 p
(
{λn

k}
NR

n=1 |ρv̄
)
⎤⎦ | γk+1 = γw2 , γk = γw1

⎫⎬⎭
+

1
M

MA∑
w=1

MP∑
l=1

E

⎧⎨⎩log2

⎡⎣MP · p
(
{Δθnk , λ

n
k}

NR

n=1 |ωl
)

∑MP

l̄=1
p
(
{Δθnk , λ

n
k}

NR

n=1 |ωl̄
)
⎤⎦ | ωk = ωl, γk = γw

⎫⎬⎭ (19)

p
(
{λn

k}NR

n=1 |ρv
)
=

NR∏
n=1

⎧⎪⎨⎪⎩
N0λ

n
k

[
1 + (λn

k )
2
]
+ λn

k |ynk |2 (ρvλn
k + 1)2[

1 + (λn
k )

2
] 5

2 √
πN0|ynk |2λn

kρ
v

exp

⎡⎣ −|ynk |2

N0

(
1 + (λn

k )
2
) (λn

k − ρv)2

⎤⎦
⎫⎪⎬⎪⎭ (20a)

p
(
{Δθnk , λ

n
k}NR

n=1 |ωl
)
=

NR∏
n

⎧⎪⎨⎪⎩ λn
k

π
[
1 + (λn

k )
2
]2
⎡⎣1 +

|ynk+1|2 (λn
k )

2 + |ynk |
2 + 2λn

k

∣∣ynk+1
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)
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k )
2
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)
N0

(
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k )
2
)

⎤⎦⎫⎬⎭ (20b)
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Similar to the hard-decision metric simplifications seen in (7),
the a posteriori probability metric of (14) may be further
extended as

d(ρv, ωl) = − ‖yk+1‖2

Ñv
0

− (ρv)2‖yk‖2

Ñv
0

+
2ρvRe

{
(ωl)∗yk+1 · y∗

k

)
Ñv

0

+
m̄∑

m̃=1

b
m̃
La(bm̃)

= − ‖yk+1‖2

Ñv
0

− (ρv)2‖yk‖2

Ñv
0

+
2ρvRe(ωl)

Ñv
0

Re(z̃k)

+
2ρvIm(ωl)

Ñv
0

Im(z̃k) +

m̄∑
m̃=1

b
m̃
La(bm̃) (23)

where we have the new decorrelating variable of (z̃k=yk+1 ·y∗
k).

Therefore, the local maximum probability metric of (22) may
be expressed as

dmax(ρ
v) =

[
max
ωl∈ω

d̃(ρv, ωl)

]
+ Cv (24)

where we explicitly relate amplitude index v to the correspond-
ing a priori La(b4) by defining

Cv = −‖yk+1‖2

Ñv
0

− (ρv)2‖yk‖2

Ñv
0

+ b4La(b4) (25)

while the remaining phasor-related submetric is given by

d̃(ρv, ωl) =
2ρvRe(ωl)

Ñv
0

Re(z̃k) +
2ρvIm(ωl)

Ñv
0

Im(z̃k)

+

m̄P∑
m̃=1

b
m̃
La(bm̃). (26)

Let us now try to relate La(b2) and La(b1) to the real part and
the imaginary part of decorrelating variable z̃k, respectively.
For a specific ring amplitude index v, there are (MP = 8)
candidates for d̃(ρv, ωl). Considering the four candidates of
ωl ∈ {exp(±j(π/8)), exp(±j(7π/8))}, which share the same
coordinate magnitudes but are associated with different signs,
the resultant four candidates of d̃(ρv, ωl) seen in (26) may be
expressed as

d̃
(
ρv exp

(
j
π

8

))
=

2ρv cos
(
π
8

)
Ñv

0

Re(z̃k) +
2ρv sin

(
π
8

)
Ñv

0

Im(z̃k)

= tvRe1
+ tvIm1

+
La(b1) + La(b2)

2

d̃

(
ρv exp

(
j

7π
8

))

= −
2ρv cos

(
π
8

)
Ñv

0

Re(z̃k) +
2ρv sin

(
π
8

)
Ñv

0

Im(z̃k) + La(b2)

= −tvRe1
+ tvIm1

+
La(b1) + La(b2)

2

d̃
(
ρv exp

(
−j

π

8

))
=

2ρv cos
(
π
8

)
Ñv

0

Re(z̃k)−
2ρv sin

(
π
8

)
Ñv

0

Im(z̃k) + La(b1)

= tvRe1
− tvIm1

+
La(b1) + La(b2)

2

d̃

(
ρv exp

(
−j

7π
8

))

= −
2ρv cos

(
π
8

)
Ñv

0

Re(z̃k)

−
2ρv sin

(
π
8

)
Ñv

0

Im(z̃k) + La(b1) + La(b2)

= −tvRe1
− tvIm1

+
La(b1) + La(b2)

2
(27)

where we relate Re(z̃k) and Im(z̃k) to the corresponding
a priori LLRs La(b2) and La(b1) by defining the following two
test variables as

tvRe1
=

2ρv cos
(
π
8

)
Ñv

0

Re(z̃k)−
La(b2)

2

tvIm1
=

2ρv sin
(
π
8

)
Ñv

0

Im(z̃k)−
La(b1)

2
. (28)

It may be seen in (27) that all four probability submetrics are
constituted by three parts, i.e., they are (±tvRe1

), (±tvIm1
), and

a constant of [La(b1) + La(b2)/2]. According to our arrange-
ment, the only difference between the four candidates is the
signs of the real and the imaginary test variables. Therefore,
the local maximum submetric over ωl ∈ {exp(±j(π/8)),
exp(±j(7π/8))} is directly given by

d̃max1
(ρv) = max

ωl∈{exp(±j π
8 ),exp(±j 7π

8 )}
d̃(ρv, ωl)

=
∣∣tvRe1

∣∣+ ∣∣tvIm1

∣∣+ La(b1) + La(b2)

2
. (29)

Therefore, instead of evaluating and comparing a group of four
probability submetrics in (27), the direct calculation of (29)
may provide a significant 75% reduction in complexity.

Similarly, the other local maximum submetric over ωl ∈
{exp(±j(3π/8)), exp(±j(5π/8))} may be also given by a
one-step calculation as

d̃max2
(ρv)=

∣∣tvRe2

∣∣+∣∣tvIm2

∣∣+La(b3)+
La(b1)+La(b2)

2
(30)
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where the two new test variables are defined by

tvRe2
=

2ρv sin
(
π
8

)
Ñv

0

Re(z̃k)−
La(b2)

2

tvIm2
=

2ρv cos
(
π
8

)
Ñv

0

Im(z̃k)−
La(b1)

2
. (31)

After considering all the (MP = 8) phasors, the local max-
imum probability metric associated with a specific ring radius
index v seen in (22) is now given by

dmax(ρ
v) =

[
max

i∈{1,...,MP /4}
d̃maxi

(ρv)

]
+ Cv (32)

where i ∈ {1, . . . ,MP /4} denotes the phasor index for the
M -DAPSK constellation points in the first quadrant, and then,
the global maximum metric pursued by the Max-Log-MAP of
(21) may be obtained by invoking (32). Moreover, we note
that (La(b1) + La(b2))/2 may be omitted in (29) and (30)
because it is a common constant for all probability metrics
{dmax(ρ

v)}2MA−1
v=1 , and hence, it is eliminated by the negative

polarity seen in the Max-Log-MAP of (21).
Since we have related La(b2) and La(b1) to the real and

the imaginary parts of the decorrelating variable, the local
maximum submetric over every set of four probability submet-
rics, which share the same magnitudes but are associated with
different polarities, is obtained in a single step in (29) and (30).
This implies that only the (MP /4) specific phasors in the first
quadrant have to be considered by the Max-Log-MAP, which is
shown in Fig. 1.

More explicitly, we summarize the RC-JAPD proposed for
the general M -DAPSK (MA,MP ) scheme as in Algorithm 1.

Algorithm 1: RC-JAPD Detecting anM-DAPSK (MA,MP)
Symbol
1) Update constants {Cv}2MA−1

v=1 , which relate the last m̄A

a priori LLRs {La(bm̃)}m̄
m̃=m̄P+1

to ring amplitude

index v as

Cv=−‖yk+1‖2

Ñv
0

− (ρv)2‖yk‖2

Ñv
0

+

m̄∑
m̃=m̄P+1

b
m̃
La(bm̃) (33)

where (−‖yk+1‖2/Ñv
0 ) only has to be estimated once,

and (−‖yk‖2/Ñv
0 ) is known from detecting the previous

received signal block.
2) Evaluate the test variables, which relate La(b2) and

La(b1) to the real and imaginary parts of the decorrelating
variable (z̃k = yk+1 · y∗

k) as

tvRei
=

2ρvai
Ñv

0

Re(z̃k)−
La(b2)

2

tvImi
=

2ρvbi
Ñv

0

Im(z̃k)−
La(b1)

2
(34)

where {(ai, bi)}MP /4
i=1 are coordinates of the MP -PSK

phasors in the first quadrant.

3) Evaluate the local maximum submetric for each group,
which relates the rest of the a priori LLRs {La(bm̃)}m̄P

m̃=3
to the MP -PSK phasor index i ∈ {1, . . . ,MP /4} as

d̃maxi
(ρv) =

∣∣tvRei

∣∣+ ∣∣tvImi

∣∣+ m̄P∑
m̃=3

b
m̃
La(bm̃) (35)

so that the local maximum metric associated with a
specific ring index v may be obtained by

dmax(ρ
v) =

[
max

i∈{1,...,MP /4}
d̃maxi

(ρv)

]
+ Cv. (36)

4) The soft-bit output for the last m̄A bits is directly given by

Lp(bm) = max
bm=1

dmax(ρ
v)− max

bm=0
dmax(ρ

v),

m ∈ {m̄P + 1, . . . , m̄} (37)

where the tentative indexes set for [v∈{1, . . . , 2MA−1}]
is divided into two subsets corresponding to fixing the
specific bit bm to 1 and 0, respectively. Considering
16-DAPSK(2,8) as an example, the subsets for index v are
given by (v ∈ {1, 3}) and (v = 2), when we fix b4 to 1 and
0, respectively, as seen in (21).

5) When detecting the first two bits, which determine the
quadrant, (37) is replaced by

Lp(bm) = max
bm=1

dmax(ρ
v)− max

bm=0
dmax(ρ

v),

m ∈ {1, 2}. (38)

Furthermore, when a specific bit is fixed to {bm = b}2m=1,
where we have b ∈ {1, 0}, the constellation set for ωl is
halved, and hence, Step 3 should be updated for (38)
accordingly. For example, when (b1 = 1) is fixed, only
the constellation points on the lower half of the constel-
lation plane in Fig. 1 have to be considered, and hence,
|tvImi

| has to be replaced by −tvImi
in (35). When (b1 = 0)

is fixed, |tvImi
| has to be replaced by tvImi

. Similarly, when
the second bit b2 is fixed to 1 or 0, |tvRei

| in (35) should
be replaced by −tvRei

or tvRei
, respectively.

6)When detecting the middle (m̄P − 2) bits, which deter-
mine the (MP /4) MP -PSK phasors in the first quadrant,
(37) may be replaced by

Lp(bm) = max
bm=1

dmax(ρ
v)− max

bm=0
dmax(ρ

v),

m ∈ {3, . . . , m̄P }. (39)

For a specific subset of ωl defined by fixing {bm =
b}m̄P

m=3, phasor index i in (36) is updated as

dmax(ρ
v) =

[
max
bm=b

d̃maxi
(ρv)

]
+ Cv (40)

where the phasor index set of (i ∈ {1, . . . ,MP /4})
is halved, when a specific bit (bm = b) is fixed. Consid-
ering 16-DAPSK(2,8) as an example, we have [dmax(ρ

v)=

d̃max2
(ρv)+Cv] for (40) if (b3=1) is fixed, where only

(i = 2) is considered. By contrast, only (i = 1) should be
considered when (b3 = 0) is fixed, which results in the
simple relationship of [dmax(ρ

v) = d̃max1
(ρv) + Cv].
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Fig. 4. Complexity comparison between the conventional JAPD (proposed in [14]) and the SAPD (proposed in [13]) in Section III-A and the proposed RC-JAPD
in Section III-B. (a) 16-DAPSK(2,8). (b) 64-DAPSK(4,16).

Fig. 5. EXIT charts of 16-DAPSK(2,8) and 64-DAPSK(4,16) invoking the JAPD, the SAPD, and the proposed RC-JAPD. (a) 16-DAPSK(2,8).
(b) 64-DAPSK(4,16).

C. Complexity Analysis

Here, we provide our complexity analysis for the three soft-
decision-aided DAPSK detectors in terms of both the number
of constellation points visited by the detectors and the total
number of real-valued calculations contributed by the detectors.

According to Section III-A, the total number of constel-
lation points visited by the conventional JAPD is given by
[NJAPD

vc = (2MA − 1)MP ]. By contrast, the SAPD evaluates
the amplitude subset and the phasor subset separately, so the
total number of constellation points visited by the SAPD may
be expressed by [NSAPD

vc = (2MA − 1) +MP ]. Furthermore,
as portrayed by Fig. 1, the proposed RC-JAPD visits a reduced
number of the DAPSK constellation points, which is given by
[NRC−JAPD

vc = (2MA − 1)MP /4].
More specifically, for 16-DAPSK(2,8), the JAPD visits

(NJAPD
vc = 24) constellation points, which is higher than

(NSAPD
vc = 11) of the SAPD, but the lowest is given

by (NRC−JAPD
vc = 6) of the proposed RC-JAPD. For 64-

DAPSK(4,16), our proposed RC-JAPD visits (NRC−JAPD
vc =

28) constellation points, which is substantially lower than
(NJAPD

vc = 112), but NRC−JAPD
vc is still slightly higher than

(NSAPD
vc = 23).

Fig. 6. Schematic of the TC-aided M -DAPSK (MA,MP ) scheme.

Since the DAPSK detectors are implemented by obeying
different equations, we quantify the complexity in terms of the
total number of real-valued calculations required for producing
a single-bit decision. We note that the JAPD- and SAPD-aided
DAPSK detection complexity increases multiplicatively as NR

increases, owing to the fact that all the a posteriori probabilities
at the NR antennas have to be multiplied together, as illustrated
by (14) and (16). By contrast, the proposed RC-JAPD utilizes
the decorrelating variable of (z̃k = yk+1 · y∗

k), which implies
that all the detection procedures after Step 2 of Algorithm 1
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TABLE I
SYSTEM PARAMETERS

have exactly the same detection complexity as a single-antenna-
based detector.

We provide our complexity comparison between different
DAPSK detectors in Fig. 4, which shows that the JAPD
generally exhibits higher complexity than the SAPD. However,
a significant 74.7%–89.6% complexity reduction is achieved
by the proposed RC-JAPD compared with the JAPD using
the Max-Log-MAP, both for 16-DAPSK(2,8) and for 64-
DAPSK(4,16). As a result, for 16-DAPSK(2,8) detection, the
RC-JAPD imposes the lowest detection complexity, as evi-
denced in Fig. 4(a), owing to the fact that RC-JAPD visits the
lowest number of constellation points in this case. Furthermore,
observe in Fig. 4(b) for 64-DAPSK(4,16) that the proposed
RC-JAPD still exhibits slightly higher complexity than the
SAPD using the Max-Log-MAP, when we have (NR = 1),
because (NRC−JAPD

vc = 28) is higher than (NSAPD
vc = 23) for

64-DAPSK(4,16). However, as NR increases, the complexity of
the proposed RC-JAPD becomes the lowest again, as evidenced
in Fig. 4(b). This is because the SAPD’s complexity increases
multiplicatively as NR increases, whereas only a part of RC-
JAPD’s complexity is affected by NR.

IV. PERFORMANCE RESULTS

Our performance results are presented here. To investigate
the extrinsic information transfer (EXIT) characteristics of the
DAPSK detectors, we portray the EXIT charts [23] of both
16-DAPSK(2,8) and 64-DAPSK(4,16) in Fig. 5. It is shown
that, similar to the hard-decision-aided DAPSK’s performance
in Fig. 2, the JAPD and the RC-JAPD exhibit an improved
performance advantage over SAPD as NR increases, which
is evidenced in Fig. 5. Furthermore, Fig. 5 shows that the
performance difference between the Log-MAP and the Max-
Log-MAP invoked by both the JAPD and the SAPD is marginal.
Hence, employment of the Approx-Log-MAP [24], which cor-
rects Max-Log-MAP’s approximation with the aid of a correc-
tion term stored in a lookup table, is not neccessary for DAPSK
detection. In this paper, we only apply the RC-JAPD and the
SAPD relying on the Max-Log-MAP for the coded systems
considered.

As shown in Fig. 6, the soft DAPSK detectors may
be invoked by our iterative demapping-and-decoding-assisted
turbo-coded (TC) [25] systems. The half-rate TC employed is
constituted by two half-rate recursive convolutional codes asso-
ciated with a constraint length of K = 3 (using the octal gener-

Fig. 7. EXIT charts and decoding trajectory for TC/IRCC-URC-aided
16-DAPSK(2,8) detection, where the proposed RC-JAPD is invoked.

ator polynomials in [5, 7]) and with the half-rate puncturing of
the parity bits. To achieve further improved near-capacity per-
formance, an irregular convolutional code (IRCC) in [23] amal-
gamated with the unity rate code (URC) in [26] and our DAPSK
scheme may be conceived according to the schematic in [27].
We summarize our simulation parameters in Table I, where
the number of iterations between the DAPSK detector and
the TC/URC decoder was set to (ITC−DAPSK/IURC−DAPSK =
1) and (ITC−DAPSK/IURC−DAPSK = 2) for 16-DAPSK(2,8)
and 64-DAPSK(4,16), respectively, because in contrast to 16-
DAPSK(2,8), the 64-DAPSK(4,16) scheme has a useful itera-
tion gain, as shown in Fig. 5.

We portray the Monte-Carlo-simulation-based decoding
trajectory in Fig. 7, which shows that the IRCC-URC-aided
16-DAPSK(2,8) is capable of converging at a lower signal-to-
noise ratio than the TC-aided 16-DAPSK(2,8). The attainable
bit-error-rate (BER) performance is shown in Fig. 8, where
the AMI achieved by the JAPD and the SAPD are calculated
according to (17) and (19), respectively. More explicitly, the
AMI shown in Fig. 8 characterizes the DAPSK detector’s
capability in conjunction with half-rate channel coding, which
may be quantified by the Eb/N0 value, where the DAPSK
detectors’ AMI achieves half its maximum rate. It is shown in
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Fig. 8. BER performance of TC/IRCC-URC-aided 16-DAPSK(2,8) and
64-DAPSK(4,16) detection, where the SAPD using Max-Log-MAP and the
proposed RC-JAPD are invoked. (a) TC/IRCC-URC-aided 16-DAPSK(2,8).
(b) TC/IRCC-URC-aided 64-DAPSK(4,16).

Fig. 8 for both 16-DAPSK(2,8) and 64-DAPSK(4,16) that the
proposed RC-JAPD outperforms the SAPD using the Max-Log-
MAP by 0.9–1.4 dB, both for the TC-aided DAPSK scheme
and for the IRCC-URC-aided DAPSK scheme, when (NR = 4)
receive antennas are employed.

V. CONCLUSION

In this paper, we have demonstrated that separately detecting
the ring amplitude and the phase of DAPSK imposes a perfor-
mance loss, which is particularly significant for soft-decision-
aided DAPSK detection invoked by iterative demapping and
decoding schemes relying on multiple receive antennas. As
a result, compared with the SAPD [13], the JAPD [14] has
higher detection capability, but its detection complexity may

become excessive. As a remedy, we proposed a new RC-JAPD,
which links each a priori soft-input bit to a specific part of
the channel’s output, so that only a reduced subset of the
DAPSK constellation points has to be evaluated by the soft
DAPSK detector. Our simulation results demonstrate that the
proposed RC-JAPD achieves further improved near-capacity
performance (shown in Fig. 8), which is attained at reduced
detection complexity (shown in Fig. 4), when multiple receive
antennas are employed.

This contribution may be considered to be particularly ben-
eficial for cooperative communications systems [8], [19], [20],
which may employ DAPSK to dispense with channel estimation
at the relay nodes.
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