
Security Analysis of Role-based Access Control through Program Verification

Anna Lisa Ferrara
University of Bristol, UK

anna.lisa.ferrara@bristol.ac.uk

P. Madhusudan
University of Illinois, USA

madhu@illinois.edu

Gennaro Parlato
University of Southampton, UK

gennaro@ecs.soton.ac.uk

Abstract—We propose a novel scheme for proving adminis-
trative role-based access control (ARBAC) policies correct with
respect to security properties using the powerful abstraction-
based tools available for program verification. Our scheme uses
a combination of abstraction and reduction to program verifi-
cation to perform security analysis. We convert ARBAC policies
to imperative programs that simulate the policy abstractly, and
then utilize further abstract-interpretation techniques from
program analysis to analyze the programs in order to prove the
policies secure. We argue that the aggressive set-abstractions
and numerical-abstractions we use are natural and appropriate
in the access control setting. We implement our scheme using a
tool called VAC that translates ARBAC policies to imperative
programs followed by an interval-based static analysis of the
program, and show that we can effectively prove access control
policies correct. The salient feature of our approach are the
abstraction schemes we develop and the reduction of role-based
access control security (which has nothing to do with programs)
to program verification problems.

Keywords-Access control; formal methods for security.

I. INTRODUCTION

Role-based access control (RBAC) has emerged as an
effective mechanism for administrators to manage the per-
missions of users in large organizations [4], [21]. RBAC
simplifies the administration by defining access control in
two stages: roles are defined and are associated with sets of
permissions, and users are assigned roles. Ease of adminis-
tration is mainly due to the fact that roles in an organization
are more stable as they are associated with job functions,
while the dynamic day-to-day changes in the organization
deal with user-role associations (personnel change across
departments, reassignment of duties, etc.) [18]. RBAC also
defines hierarchical relationships amongst roles that allow
users of a role to inherit the permissions of roles that are
below theirs [21].

Administrative role-based access control (ARBAC) [20],
[22] is a policy mechanism for controlling how changes
can be made to the RBAC policy by various administrators.
ARBAC is appealing in the context of large organizations
that have multiple administrators who are given different
levels of privileges. In a world where administration is
moving towards being highly distributed, ARBAC eases the
management of these tasks. ARBAC policies are generally
divided into three sub-policy languages: one that controls
the reassignment of users to roles (URA) [22], one that

controls reassignments of permissions to roles (PRA), and
one that controls the role-role assignments, including groups
and hierarchies (RRA) [20].

A critical question regarding ARBAC policies is whether
they ensure certain security properties. For instance, the
policy designer may have put in certain rules to ensure that
users cannot hold roles Recruiter and Grievance-Committee
simultaneously, as it may be a conflict-of-interest to do
so. While the designer may have crafted some rules in
the ARBAC system to ensure this property (for example,
allowing users to gain the role Recruiter only if they do not
already have the role Grievance-Committee), she may have
unintentionally introduced loopholes in the system. For in-
stance, there may be a rule that gives users with role Director
the role Grievance-Committee, which may have seemed a
natural rule at the time it was added, to facilitate directors
to see committee meeting minutes. This would allow a
director to gain both the conflict-of-interest roles and violate
the security intent. Role-hierarchies, multiple administrators,
and the administrator roles themselves evolving over time
further complicate the problem, and it is very hard for the
designer to determine whether security properties really hold
in their ARBAC system.

Policy analysis allows policy designers to check whether
their policies meet their security goals. Policy analysis gives
policy designers and system administrators the ability to
examine the logical implications of the policies they have
set forth; in particular, it allows them to gauge what security
breaches could happen if several untrusted users started
exploiting the rules to gain unintended permissions in the
system. Despite the importance of this problem, we do not
know of any effective tools that are available for policy
analysis, even in the ARBAC setting.

Policy analysis that checks if a policy meets the security
goals is a classical problem in security. The general problem
was phrased by the classical paper by Harrison, Russo, and
Ullman [7] using access control matrices and rules that
transform them, and it was shown that security analysis is
undecidable. The field has suffered greatly from this negative
result, and has led to the identification of several restricted
domains and alternate access control security settings that
admit a decidable security analysis problem [15], [25]. In
the setting of ARBAC, when the number of users is fixed
by the initial state of the system, the problem is decidable,

but suffers from an exponential time dependency on the
number of roles, making techniques unscalable [23], [14],
[27], [26]. Consequently, to date, there is no effective system
that administrators can use for security analysis, despite the
fact that most of these problem instances have simple proofs
that they are secure.

Our philosophy is that undecidability and complexity
hardness should not preclude useful tools. The current state
of the art in the field of program analysis is an excellent ex-
ample; scalable program analysis tools have been developed
for problems that are inherently undecidable, and provide
useful analysis for a large class of realistic programs. For
instance, static analysis algorithms (including type systems)
used in compilers tackle inherently undecidable problems;
however by performing an abstract analysis, several prop-
erties can be soundly proved about real-world programs in
reasonable time [3], [17]. The SLAM/SDV project is another
prime example, where device drivers are routinely checked
against the Windows API, and proven not to have bugs; this
analysis is sound (modulo certain pointer arithmetic aliasing
issues) and is based on counter-example guided predicate
abstraction and refinement, leading to the tool finding simple
proofs that the program conforms to the API [2].

The key techniques that have led the path to scalable
program analysis is a combination of abstraction (sometimes
guided through counter-examples) and efficient fixed-point
algorithms. Our aim, in this paper, is to use the very same
techniques to solve the problem of security analysis of
ARBAC policies.

Our goal is to extend the program analysis philosophy
and even the techniques and tools used in program analysis
to bear on the problem of access control policy security.
We believe that most ARBAC policies that contain security
constraints can be easily proven correct, as administrators
designing the policy have such a simple reasoning in mind.
We propose effective mechanisms that find these simple
proofs, using abstraction and fixed-point computation [3].

The security analysis that we propose for ARBAC (in
particular, URA) analyzes the system using several abstrac-
tions. The state of the ARBAC system can be accurately
modeled by tracking the number of users in every possible
combination of roles. This is, however, an intractably large
system, and we propose abstraction mechanisms to prove
properties of this system.

The two main abstraction techniques we propose in this
paper are: (a) set-abstractions, that track users’ membership
in only certain combinations of roles, and (b) numerical
abstractions, that abstract the precise number of users in
each combination of roles to interval ranges. The former
reduces the various sets of role-combinations that need to be
tracked (which is exponential in the number of roles), while
the latter abstracts the precise set of users in each tracked
role combination (which leads to using much smaller state-
spaces and achieve faster convergence). The main technical

contribution of this paper is the design of precise abstraction
systems that soundly model the two desired abstractions
above.

A consequence of using numerical abstractions is that we
can handle the ARBAC security analysis problem in a setting
with an unbounded number of users, where any number of
users are allowed to join or leave the organization.

While we could engineer tools to directly utilize the
abstractions we propose, we instead propose a technique to
directly utilize the abstraction tools available for program
verification. We show that the abstract analysis can be
achieved using state-of-the-art tools in program analysis
by reducing the security problem to a program analysis
problem.

Given an ARBAC system and a security goal, our security
analysis works in two phases:

(a) build an imperative program that abstractly simu-
lates the system by tracking only a subset of role-
combinations, and

(b) analyze the resulting program using a standard
interval-based program analysis tool called INTER-
PROC [3], [11].

If the program verification phase succeeds in proving that
a particular location is unreachable, then this translates to a
proof that the ARBAC system meets its security goal.

As far as we know, our work is the first in proposing ab-
straction based verification for proving security of ARBAC
policies. Complexity analysis of checking security (when the
number of users is fixed) has been studied [12], [14], [27],
and several model-checking techniques and error finding
techniques have also been investigated [9] (the latter can
find errors but cannot prove that a policy is correct).

Technically, the abstraction techniques we propose are
novel, even in the setting of program analysis. The security
analysis calls for tracking the number of users in a subset
of combinations of roles, and it is non-trivial to build this
abstract domain and the abstract transitions that are sound
and precise (up to the abstraction). The program that we
construct, when tracking the number of users in a particular
set of role combinations (say S1, . . . , Sk, where each Si is
a set of roles), must determine how to simulate whether an
administrator can change (grant or deny) the roles of a user
in the abstract domain. Our program achieves this using non-
determinism in a novel way followed by Boolean checks to
simulate such a transition, leading to a sound and precise
abstraction. Furthermore, the programs are specially crafted
so that the subsequent interval abstractions used to analyze
the program are meaningful.
In summary, our contributions are:
• The proposal to analyze ARBAC-URA systems for

role-reachability using set-abstractions and numerical
abstractions.

• The design of an abstract analysis using a transition
system that tracks the ARBAC system soundly using

only integers that capture the cardinalities of the sets
of users in a subset of role combinations. The design of
a sound and precise abstract transformer is technically
non-trivial.

• The realization of the abstract system above as an
imperative non-deterministic while-program manipulat-
ing integers, such that the security question reduces to
location reachability in the program. The abstract se-
curity analysis can then be performed using an interval
analysis of the above synthesized program.

• A prototype implementation of the entire pro-
posed methodology that translates ARBAC-URA role-
reachability problems to imperative programs, and uses
the INTERPROC tool to perform the interval analysis.
We also evaluate our tool and show that it is effective
in proving several reasonably large ARBAC policies
correct according to privilege escalation and separation-
of-duty properties, automatically.

Related Work

There is a rich literature on analysis of static and dynam-
ically evolving access control policies. We restrict ourselves
in discussing only dynamic security analysis of access
control policies, which change over time in accordance with
set rules. The classical HRU model is based on access
matrices, with ability to add subjects and objects, and
which was proved to have an undecidable security analysis
problem [7]. Several restricted models have been shown
to admit decidable security analysis [16], [19], [25], [13],
including the Graham-Denning model [15], [6]. As far as we
know, abstraction-based sound but incomplete procedures, as
set forth in this paper, are not known even in this general
setting.

Turning to analysis of ARBAC, there has been a lot of
recent research in finding security errors, finding the com-
plexity of checking security, and finding tractable algorithms
for smaller fragments. This work, unlike ours, concentrates
on the security analysis problems with a finite number of
users, which is always decidable. Li and Tripunitara [14]
have investigated the security analysis problem for ARBAC-
URA schemes and identified fragments (AATU and AAR)
and restricted queries that can be solved in polynomial
time (for instance negative pre-conditions are completely
disallowed in these restricted models). Sasturkar et al [23],
[24] study ARBAC security, and show that the problem
is PSPACE-complete, that most restrictions still are NP-
hard, and some very restricted versions can be solved in
polynomial time. Stoller et al follow up this work by
identifying the fixed-parameter complexity of the problems,
and show that the problem is tractable when one fixes the
number of roles, and also study restricted versions that
are tractable [27], [5]. In more recent work, Stoller et al
have extended the ARBAC model to parameterized ARBAC
that allows conditions that depend on parameters, and have

extended the analysis algorithms to this setting [26]. Re-
cently, Jayaraman et al [9] propose a new under-approximate
analysis particularly suited for finding shallow errors in
complex ARBAC policies.

Our work differs from the above works in two ways.
First, we handle the security problem for unboundedly many
users entering and leaving the system, while the above works
assume that the set of users is fixed. There are a class of
ARBAC policies, called separate administration policies,
where the set of administrative roles are separate from the
set of regular roles, and user membership to administrative
roles never changes (ARBAC97 and several other policy
languages assume such a restriction). In this setting, there
is in fact not much of a difference between handling a fixed
number of users vs handling unboundedly many users, as we
can show that tracking only one regular user is sufficient.
However, our setting does not assume policies have separate
administration.

A second difference from the above works is that we
do not restrict the ARBAC scheme in any way, but rely
on abstraction based techniques to achieve scalability. We
believe that abstraction based techniques, especially when
the abstraction can be tuned to the instance, will yield
the algorithms that best exploit the simplicity in real-world
instances.

Finally, in very recent work, Armando and Ranise [1] have
studied the analysis of ARBAC security problems with an
unbounded number of users, and showed a decidability result
for a fragment of ARBAC policies that can be expressed
in a restricted logical framework. However, the algorithms
have non-elementary complexity, and the restrictions are
awkward with only very restricted negated pre-conditions
permitted. Also, in recent work, Jayaraman et al [9] investi-
gate abstraction-refinement techniques for ARBAC analysis,
but towards finding errors in the policy. In contrast, the
mechanism we set forth can be used to prove security
properties of systems.

II. OVERVIEW

In ARBAC, a set of administrative roles are defined, and
users with these administrative roles are given the privilege
of assigning users to roles, hence giving them new permis-
sions, as well as revoking their roles, removing permissions.
In this paper, we restrict ourselves to the ARBAC model
URA that allows reassignment of users to roles. We do
not consider reassignments of permissions to roles (PRA)
and role-hierarchy reconfigurations (RRA). The URA model
captures the most interesting changes that happen in an
organization day-to-day, where users get reassigned roles;
changes of permissions to roles and role-hierarchy changes
are much less frequent.

Hiring and retiring: ARBAC with unbounded number
of users

In this paper, we formulate security questions in a setting
that handles an unbounded number of users that can be
included into the system, independent of the number of
users in the initial configuration of the system. For instance,
in an access control system for a university, staff can be
hired or retire, and the security question should model this
hiring and retiring, and the security properties must be
independent of the number of current staff members in
the university. Our model of ARBAC hence considers the
security problem as examining systems where there are an
unbounded number of users W , which includes the users
in the initial configuration of the system. Users in W that
are not in the initial configuration have no roles assigned
to them, by default. The security questions that we address
ask reachability questions in the system starting from any
of these infinite initial configurations.

We can then model hiring and retiring of users in the
organization using the ARBAC mechanism itself. We can
have a single role called Org that all the users in the initial
configuration are assigned to. Hiring users can be achieved
using rules that hire a user provided they do not have the
Org role nor any other role assigned to them; retiring of
users can be achieved by revoking the Org role.

Security of ARBAC policies: The security problem for
ARBAC policies relates to the unintended escalation of
privileges of users. The developers of the administrative
system have an intended security goal that they want to
enforce through the policy, and they set up the roles and
administrative rules (formalized in ARBAC) to realize these
intentions. Security breaches include privilege escalation
(e.g. an employee of a lower rank gaining access to resources
meant for a higher rank), separation of duty constraints that
model conflict of interest (e.g. a user u cannot simultane-
ously have roles r1 and r2), etc.

The security problem we study in this paper is role
reachability, formulated as follows:

The Role-reachability problem: Given an ARBAC policy
with unboundedly many users, an initial RBAC configuration
of the system, and a target role goal, is there a reachable
configuration of the access-control system where some user
is assigned role goal?

The above technical problem (formulated in the setting
with unboundedly many users) seems to be the most useful
security question in the setting of ARBAC-URA; almost
all other interesting security questions can be reduced to
the above problem. For example, the problems of checking
whether a particular user u can ever reach a role r, whether
any user u can ever have both roles r1 and r2, whether any
user u can get permission p, etc., can all be reduced to the
role-reachability problem (see Section III-D for details).

Tracking ARBAC using cardinalities of sets: One key
observation is that ARBAC systems can be modeled using

cardinalities of a finite set C of sets, where each set in
C represents a role combination. Intuitively, the ARBAC
system controls the user-role relationships, and hence the
configuration of a system can be captured by noting down
the precise set of users in each combination of roles. A Venn-
region is a combination of the form r1∧r2∧¬r3∧r4, where
we choose, for each role ri, either ri or ¬ri. A Venn region
denotes the set of users that have all the roles ri mentioned
positively in the region and do not have any of the roles rj
mentioned negatively in the region. The configuration of a
system is then uniquely described by the set of users in each
Venn-region of roles.

It is not hard to see that two users u and u′ that
have identical role-assignments are indistinguishable by the
system. This stems from the fact that ARBAC policies,
which enable administrators to change roles of users, allow
for pre-conditions that check only the user’s membership and
non-membership in roles. Consequently, the precise identity
of the users is immaterial. Hence, instead of modeling the
configuration using the precise sets of each Venn region,
we can instead model the configuration by only modeling
the cardinality of each Venn region. The role-reachability
problem then reduces to checking whether there is a reach-
able configuration of the system where the number of users
in some Venn-region that positively includes the target role
goal is greater than zero.

The above modeling of ARBAC using sets and then
cardinalities of sets loses absolutely no precision, and
accurately models the problem. We are exploiting the
crucial fact that RBAC and ARBAC operate at the level of
roles, and hence user-identities are not important (which is
in fact the salient feature of role-based access control).

Abstracting cardinalities: We now come to the first main
contribution of this paper: the proposal to use abstraction
techniques to reason with ARBAC system security. An
access control policy’s security crucially depends on the
various combinations of roles that can be held by individual
users, but almost never depends on the precise number of
users that can hold these roles. For instance, it would be
highly unnatural if the security of an access control system
for a hospital depended on the precise number of doctors
present. Consequently, the fact that is most important is
whether a non-zero number of users can hold a particular
combination of roles. In fact, policies in the strict ARBAC-
URA standard do not even allow the administrator to set
conditions on the precise set of users in a role, making
policies that depend on the precise number of users holding
role-combinations virtually infeasible (though some amount
of ‘counting’ can be smuggled in by carefully choosing the
initial configuration). In our experience, we have never come
across any natural scenario where the proof that an ARBAC
system is safe depended on the precise number of users in
a role-combination.

Our proposal in this paper is to conduct a search for an
abstraction-based proof that exploits this structure in the
instances. We propose that an abstraction-based scheme that
tracks the zero/non-zero cardinalities of the various Venn
regions is feasible and sufficient to prove real ARBAC
systems correct. ARBAC system designers have such a
reasoning in their mind that works at this level of abstraction.

Set and cardinality abstractions: The above proposal to
abstractly track the number of users in every possible role
combination, while sound, is still impractical as it does not
scale to large ARBAC policies. There are hence an exponen-
tial number of Venn regions to track (e.g., 50 roles would
lead to 250 Venn regions to track, which is intractable).
We hence propose tracking only certain combinations of
roles in the system, but insist on tracking them soundly.
More precisely, we choose Track , a subset of Venn regions,
by examining the combinations of roles mentioned in the
ARBAC policy, and build an abstraction scheme that soundly
tracks the system by only tracking the Venn regions in
Track . By ‘soundness’, we mean that if the abstracted
system cannot reach the target role, then we are assured that
the concrete system also cannot reach the target role (the
converse does not hold in general, unless Track includes all
Venn regions).

Our second main contribution is a sound abstraction of a
partial set of Venn regions Track . The non-trivial technique
here is the design of the abstract transformer that transforms
the cardinalities of the partial Venn regions soundly. We
propose an abstract transformer that is very precise, by
choosing non-deterministically a user that is consistent
with the current configuration of the system, and updates
the user according to a rule followed by a sound update
of the various sets in Track . This is the most technical
contribution of this paper. This abstraction, furthermore,
factors cleanly into program code, as described below.

Reduction to program verification: Our third contribu-
tion is the proposal that we can effectively conduct the
abstraction-based analysis by reducing the ARBAC role-
reachability problem to program analysis. In particular, the
modeling of the system by using pure numbers (captur-
ing cardinalities of the partial subset of Venn regions, as
sketched above) allows us to model the evolution of an
ARBAC system as a simple while-program that manip-
ulates integers. We propose using abstract-interpretation
techniques in program verification to perform abstract anal-
ysis of the ARBAC systems. In particular, we propose to
use static analysis that computes interval abstractions for
numerical domains, which are extremely scalable, allowing
us to effectively analyze the security problems for ARBAC.

Interval abstractions of programs are a classical abstrac-
tion framework that track the interval range for each vari-
able at each point in the program, performing widening

steps to intervals across loops in order to terminate. The
widening procedures hasten the computation of fixed-points
by widening a growing interval to extreme values, +∞
or −∞, to reach termination. A slew of techniques for
performing interval abstractions are known (including com-
pact representations of intervals, sound abstractions for each
operation, widening and narrowing techniques, heuristics for
delaying the widening, etc.), and moreover, there are fast
tools that have been developed to solve this problem that
scale to programs that span hundreds of thousands of lines
of code [10], [11].

The reduction to programs that we propose works, more
precisely, as follows. Given an ARBAC-URA system, an
initial configuration with an unbounded number of users,
and a target role goal, we follow the procedure below:

• Convert the ARBAC system to a program P in an im-
perative language (similar to C) that tracks the ARBAC
system by tracking a subset of Venn regions Track ,
where Track is the set of combinations mentioned
in the rules of the system. If the target role goal is
reachable from the initial configuration in the ARBAC
system then the error-configuration will be reachable
in the program P . The construction of the program
P realizes the precise abstract transformer mentioned
above.

• We perform an interval-analysis of the program P to
compute the possible intervals that variables can take at
various places of the program. In particular, the static
analyzer will also compute the various parts of the
program that are unreachable using the information in
the interval analysis it performs, and mark them.

• If the error position in P is found provably unreachable
by the static analysis, we have proved that the ARBAC
system is safe (for unbounded number of users entering
and leaving the system). If not, we cannot claim there
is an error (as the analysis is an over-approximation)
and hence report that we could not solve the problem.

Organization of the paper.: The rest of the paper
is structured as follows. In the next section, we define
RBAC and ARBAC policies, the formal security model
with an unbounded number of users, the role-reachability
problem, and outline how various other security problems
can be reduced to role-reachability. Section IV describes the
main technical contribution of the paper, modeling ARBAC
systems as integer programs and giving an approximate
transformation that defines an abstract transition system that
soundly captures the security problem. Section V gives
a simple slicing technique that (soundly) removes rules
irrelevant to the security question at hand, thus simplifying
problems in practice. Section VI discuss a possible choice
for a subset of Venn-regions to track. Section VII describes
the implementation of our tool VAC and experimental results
of our tool on a suite of ARBAC policies queries on various

security questions.

III. PRELIMINARIES

A. Role Based Access Control

In this section we define the RBAC model [4]. Since
we do not consider analysis queries involving sessions, we
describe a simplification which does not support sessions.

An RBAC policy is a tuple 〈U,R, P,UA,PA,�〉 where
U , R and P are finite sets of users, roles, and permissions,
respectively, UA ⊆ U × R is the user-role assignment
relation, and PA ⊆ P ×R is the permission-role assignment
relation. A pair (u, r) ∈ UA means that user u is a member
of role r. Similarly, (p, r) ∈ PA means that members of
role r are granted the permission p. Roles are related by a
partial order �, called the hierarchy relation. For any two
roles r1, r2 ∈ R, r1 inherits permissions of r2 iff r1 � r2. In
the following we will only consider RBAC policies without
hierarchy relation. Indeed, we perform the transformation
described in [23], [24] to turn a hierarchical policy into a
non-hierarchical one before starting our analysis. Thus, in
the rest of the paper we refer to an RBAC policy as a tuple
〈U,R, P,UA,PA〉.

B. Administrative Role Based Access Control

ARBAC97 [20] presents a comprehensive model for role-
based administration of RBAC. ARBAC97 has three compo-
nents: URA97 user-role administration, PRA97 permission-
role administration, and RRA97 role-role administration. In
this paper we focus on the user-role administration model,
which we will refer to as URA.

The URA policy control allows to change the user-role
assignment UA by means of assignment/revocation rules
carried out by administrators which are organized in a set
AR of administrative roles.

Administrators are allowed to change roles of a user
according to a precondition which only depends on the user
membership and non-membership in roles. A precondition
is a conjunction of literals, where each literal is either in
positive form r or in negative form ¬r, for some role r in R.
We partition any precondition in two sets denoted Pos and
Neg . Such sets, respectively, correspond to the set of roles
that appear in positive and negative form in the precondition.

Permission to assign users to roles is specified as:

can assign ⊆ AR × 2R × 2R ×R.

The meaning of a can-assign tuple (admin,Pos,Neg , r) ∈
can assign is that a member of the administrative role
admin ∈ AR can make a user whose current role mem-
berships satisfies the precondition (Pos,Neg), a member
of r ∈ R. In the rest of the paper we assume that
Pos ∩Neg = ∅.

Permission to revoke users from roles is specified as:

can revoke ⊆ AR ×R.

The meaning of a tuple (admin, r) ∈ can revoke is that a
member of the administrative role admin ∈ AR, can revoke
the membership of a user from a role r ∈ R.

In [20] the set of administrative roles AR is disjoint
from the set of roles R, such policies are called separate
administration policies. However, we allow administrative
roles to be part of the set of roles R, i.e., AR ⊆ R.

C. ARBAC with unbounded users

The URA model does not allow new users to enter the
system. Indeed, the set of users U is finite and remains
the same along the whole evolution of the system. In this
paper we formulate security questions in a setting where
an unbounded number of users can enter the system. In
order to allow users to join the system and being revoked
we define an unbounded set of users W and let the initial
configuration of the system be any bounded set of users
Û ⊆ W . Intuitively, Û is the set of users that will be
involved in the system at any time.

Formally, an ARBAC with an unbounded world system, or
simply ARBAC system, is a state-transition system defined
as: S = 〈RBAC, URA,W 〉 where RBAC = 〈U,R, P,UA,PA〉
is an RBAC policy, URA = 〈can assign, can revoke〉 is an
URA policy control over the set of roles R, and W is an
unbounded set of users.

A configuration of S is any pair (Û ,UR) where Û ⊆W
is a finite set, and UR ⊆ Û × R. A configuration is initial
if UR = UA. For any user u ∈ Û and configuration c =
(Û ,UR), we define conf (c, u) = (P,N) where P = {r ∈
R | (u, r) ∈ UR} and N = R \ P .

Given two configurations c = (Û ,UR) and c′ =
(Û ,UR′), there is a transition from c to c′ with rule
m ∈ (can assign∪can revoke), denoted c τm−−→S c′, if there
exists an administrative user ad ∈ Û with (ad , admin) ∈
UR, a user u ∈ Û , and one of the following holds. Let
conf (c, u) = (Posu,Negu).

[Can Assign]: m = (admin,Pos,Neg , r), Pos ⊆ Posu,
Neg ⊆ Negu, and UR′ = UR ∪ {(u, r)};

[Can Revoke]: m = (admin, r), (u, r) ∈ UR, and
UR′ = UR \ {(u, r)}.

A run of S is a sequence of S configurations c0c1 . . . cn,
for some n ≥ 0, such that c0 is an initial configuration of
S, and for every i ∈ {0, 1, . . . , n − 1}, ci

τmi−−→S ci+1 for
some mi ∈ (can assign ∪ can revoke). Furthermore, we
say that cn is a reachable configuration of S.

The role-reachability problem: Given an ARBAC sys-
tem S over the set of roles R, and a target role goal ∈ R,
the role-reachability problem asks whether there is a user set
Û and a configuration c = (Û ,UR) that is reachable from
the initial configuration (Û ,UA), such that (u, goal) ∈ UR,
for some user u ∈ Û .

D. From security properties to role-reachability
In this section we describe several security properties

of interest in the setting of ARBAC-URA and show that
they can be reduced to the role-reachability problem. Those
properties were first identified by Li and Tripunitara [15]:

Mutual Exclusions: Will no user be assigned to both
roles r1 and r2, simultaneously, in all reachable
configurations? This helps ensuring separation of
duty constraints.
Reduction to role reachability: Add a new role
goal and a can-assign rule with target goal and
with the precondition (r1 ∧ r2). Check the role-
reachability for goal.

Bounded Safety: Will the users (u1, u2, u3) be the only
ones that have permissions p1 and p2 in any
reachable configuration?
Reduction to role-reachability: Endow the users
(u1, u2, u3) with a special role r̂, that is irrevo-
cable. Add a role goal. Then, for every minimal
subset of roles R′ where R′ has at most two roles
and such that the union of permissions of roles in
R′ include both p1 and p2, add a can-assign rule
that has goal as target and with the precondition
¬r̂ ∧

∧
r∈R′ r. Then query whether the role goal

is reachable.
Availability: Will a user u have permission p in every

reachable configuration?
Reduction to role-reachability: Endow user u with
a special role r̂ which is irrevocable. Then, add a
role goal and a can-assign rule with target goal
and precondition r̂ ∧

∧
r∈S ¬r, where S is the set

of all roles that have the permission p. Check role-
reachability for goal.

IV. POLICIES TO PROGRAMS

In this section we describe two translations from ARBAC
systems to integer programs. An integer program is a
program in a simple imperative programming language with
only integer variables, the usual control statements (while,
if) and non-determinism, but without function calls. The
program that we synthesize for an URA policy will simulate
the user-role reassignments that can possibly result due to
the policy, but the program will simulate this only at the level
of cardinalities of the sets of users in each combination of
roles. The resulting programs can be subject to static analysis
techniques in order to answer role-reachability questions in
the ARBAC system soundly.

The first translation is an exact reduction: we synthesize a
program P with an error configuration for a role-reachability
problem on an ARBAC system such that the target role is
reachable in the ARBAC system iff the error configuration
is reachable in the program P . The main idea is that P uses
an integer variable for each complete Venn region over the
set of roles R.

〈stmt〉 ::= skip; |assume(〈bexpr〉); |
var := 〈nexpr〉; | var := *; |
if(〈bexpr〉) then 〈stmt〉 else 〈stmt〉 fi |
while (〈bexpr〉) do 〈stmt〉 od |
〈stmt〉〈stmt〉

〈bexpr〉 ::= true | false | * | 〈nexpr〉 <= 〈nexpr〉 |
¬〈bexpr〉 | 〈bexpr〉 ∧ 〈bexpr〉

〈nexpr〉 ::= c | var | −〈nexpr〉 |
〈nexpr〉 + 〈nexpr〉 | 〈nexpr〉 − 〈nexpr〉
where c ∈ N.

Figure 1. Syntax of integer programs.

The precise translation, however, is infeasible in practice,
as it produces integer programs of exponential size in the
number of roles. When the number of roles is high, the
synthesized program P can be prohibitively large, rendering
program verification techniques useless.

Our second translation is a translation that uses set-
abstractions. We propose to track only a subset of combina-
tions of roles. This set is assumed to be given as a parameter
to the translation, and in practice (see Section VI) we take
this to be the combinations mentioned in the can-assign rules
in the ARBAC system. Using fewer tracking variables to
track only a subset of role-combinations loses precision, nat-
urally. Our translation however guarantees soundness: if the
synthesized program cannot reach the error configuration,
then we are guaranteed that the target role is unreachable in
the ARBAC system.

Before presenting the two translations (Section IV-A and
Section IV-B), we fix some notation and define integer
programs. Throughout this section, we fix an ARBAC
system S over the roles R, with URA policy control
〈can assign, can revoke〉.

Venn-regions: A Venn-region over the set of roles R is any
pair (P,N) with P,N ⊆ R and P ∩N = ∅. Intuitively, such
a role combination stands for the set of users that belong to
each role r ∈ P and do not have any of the roles r′ ∈ N .
If P ∪ N = R, then we refer to the role-combination as a
complete Venn-region.

Given two Venn-regions (P,N), (P ′, N ′), (P,N) is said
to be coherent with (P ′, N ′) if (P ∪ P ′, N ∪ N ′) is a
Venn-region (intuitively, the two regions do not contradict).
Furthermore, (P,N) is coherently under (P ′, N ′) if P ⊆ P ′
and N ⊆ N ′.

Integer programs: Let us fix the syntax of a simple
sequential programming language whose variables are of
integer type, and with explicit syntax for non-determinism.
Integer programs are described by the grammar given in
Figure 1.

A program consists of atomic statements combined with
sequential composition and control-flow constructs like con-
ditional statements and while-loops. Atomic statements in-
clude skip, assumes, and assignments that assign an (integer)

variable to integer expressions or a nondeterministically
chosen value (denoted by *). Boolean expressions are built
in the standard way, starting from relational comparisons
between integer expressions; Boolean expressions can also
be the constants true, false, or a non-deterministically chosen
value of true or false (denoted by *). Numerical expressions
are built from integer constants or variables, and can be
combined using standard integer operators.

The semantic of integer programs is the standard one, like
C programs. We assume that all variables are initialized to 0.
The only non-standard statements are the non deterministic
choices, and the assume statement. When the program exe-
cutes an assume(b) statement, it evaluates b, and if b is true,
it continues executing the program; however, if b evaluates
to false, then the program silently terminates (without an
error).

A. Precise transformer

In this section we describe a translation [[·]]exact from an
ARBAC system S to an integer program P that faithfully
simulates the evolutions of S. Furthermore, we reduce the
role-reachability problem in S to a reachability problem
in the corresponding program P . We do not describe the
synthesized program P formally or in great detail, as this
transformation will not feature in the final tool we build;
however, a brief account of how this program is constructed
will be useful in motivating the abstract program that we
construct in the next section.

In the rest of the section, we refer to P as the program
[[S]]exact .

Let V be the set of all complete Venn-regions (i.e. Venn-
regions (P,N) such that every role r ∈ R is either in P
or in N ; i.e. N = R \ P). Each Venn-region (P,N) in V
stands for the set of users whose precise role-membership
is P . The program P will have an integer variable c(P,N),
for each Venn-region (P,N) in V , that keeps track of the
cardinality of the set of users that (P,N) represents.

In the initial configuration, the various integers are ini-
tialized according to the initial configuration of the ARBAC
system S.

The program P simulates the evolution of the AR-
BAC system S by simulating every can assign and ev-
ery can revoke rule, choosing to simulate any rule non-
deterministically, and does this recursively, forever.

A can assign rule is simulated by appropriately changing
the integers representing the various regions. Consider a
rule (admin,Pos,Neg , r) ∈ can assign. The program P
simulates this rule by:
• Let X be the set of all complete Venn-regions (P,N)

such that (P,N) is coherent with (Pos,Neg) and r ∈
N . If (Σ(P,N)∈X c(P,N)) > 0, then the rule can be
fired. In this case, pick non-deterministically a region
(P0, N0) ∈ X such that c(P0,N0) > 0. If the rule is not
fireable, abort.

• If the rule is determined to be fireable by the above
condition, then decrement c(P0,N0), and increment
c(P0∪{r},N0\{r}).

The can revoke rules are simulated in an analogous
manner.
Reachability reduction. We can now show that for any
ARBAC system S, and role goal, goal is reachable from
the initial configuration iff the program P can reach a
configuration where some c(P,N) > 0, with goal ∈ P .

In fact, we can add a statement in P that checks whether
such a configuration is reached, and if so go to an error
configuration; hence role-reachability reduces to program
location reachability.

We can hence verify the security of the ARBAC system by
proving correctness of the corresponding program P . We can
use any of the variety of techniques for program verification
to solve this problem, including abstraction based techniques
as we do in this paper.

B. Approximate transformer

Although the translation [[·]]exact above allows us to
simulate precisely any execution of an ARBAC system S,
the number of variables required to track the system in
P = [[S]]exact is exponential in the number of roles in R.
Thus, when R contains a large number of roles, the size of
P can be prohibitively high and prevents any practical use
of static analysis on program.

To circumvent this explosion of variables, we propose an
alternative analysis that analyzes the policy using abstrac-
tions. Rather than track all the complete Venn-regions of
roles, we propose to track only a subset of Venn-regions (and
allow incomplete Venn-regions as well). Given a subset of
Venn-regions Track, our abstract analysis will soundly track
the evolution of the ARBAC system–if the role is found
unreachable in the abstract analysis, we will be guaranteed
that the role is unreachable in the concrete system as well.
However, our analysis is an abstraction; if the role is found
to be reachable in the abstract analysis, then we are not
guaranteed that the role is reachable in the ARBAC system.
Consequently, our technique is useful only for proving non-
reachability of roles (which is often the more important
property, for example in privilege escalation and separation
of duty analysis).

We present the abstract analysis in two phases. In the first
phase, we set up an abstract transition system that simulates
the ARBAC system abstractly using a set of Venn-regions
Track. The design of this abstract system, especially the
updates to the abstract state, is quite involved, and much
more intricate than the exact translation described above.
We describe the abstraction, and prove its soundness. In the
second phase, we implement the abstract transition system
in our imperative programming language.

In the rest of the section we assume Track ⊆ T =
{(P,N) | P,N ⊆ R,P ∩ N = ∅}. The set Track could

be initialized as shown in SectionVI.

Phase I. The abstract transition system:
Abstract states of the system are characterized by integer
variables c(P,N) for each Venn-region (P,N) ∈ Track,
which intuitively stands for the number of users that have
all the roles in P and none of the roles in N (their
membership in roles outside P ∪ N do not matter). Since
there can be several concrete configurations corresponding to
an abstract state, the update of an abstract state according to
a can assign rule is not deterministic (unlike the exact trans-
lation). Updating the abstract state non-deterministically that
takes into account all possible evolutions of concrete config-
urations corresponding to it, without explicitly enumerating
the concrete configurations, and doing it fairly accurately, is
hard, and is the main contribution of this section.

Formally, we define the set of abstract states of S with
respect to the set Track as ATrack = {a | a : Track → N}.

With an abuse of notation in the rest of the section
we refer to C = {UR | (Û ,UR) is an S configuration}
as the set of (concrete) configurations of S. Let us now
define an abstraction function αTrack that associates each
concrete configuration with precisely one abstract state:
αTrack : C → ATrack is the abstraction map defined as:

αTrack (c) = a where

a((P,N)) = |{u ∈ Û | ∀r ∈ P.(u, r) ∈ c,∀r ∈ N.(u, r) /∈ c}|.

In other words, the map a associates to each pair (P,N) the
number of users that are in all roles P and not in any role
of N , for every (P,N) ∈ Track .
Building the Abstract transformer. We now describe how to
update an abstract state for a can assign rule.

Let ca ∈ can assign , and τca ⊆ C × C be the concrete
transition relation of S on the rule ca. For any ca, we define
the abstract transformer τ̂ca ⊆ ATrack ×ATrack as follows.

Let b = 〈br〉r∈R (respectively, d = 〈dr〉r∈R) denote
a tuple of Boolean variables, one for each role. Interpreting
the valuation of b (respectively, d) as the membership status
of a user (respectively, administrator) in each role, we can
define when a Venn-region (P,N) is coherently under b
(respectively, d) using the following formula:

coh((P,N),b) =
∧
r∈P

br ∧
∧
r∈N
¬br

Let ca = (admin,Pos,Neg , t). Then, for any a, a′ ∈
ATrack, τ̂ca(a, a′) holds iff the following holds:

∃b. (ψ(b) ∧ coh((Pos,Neg),b) ∧ ϕca(b))

∧ ∃d. (ψ(d) ∧ dadmin)

where

ψ(b) =
∧

A=(P,N)∈Track

(coh(A,b) ⇒ a(A) > 0)

ϕca(b) =
∧

A=(P,N)∈Track,t/∈P∪N

a′(A) = a(A)

∧
∧

A=(P,N)∈Track
t∈P

(coh((P \{t}, N),b) ⇒ a′(A)=a(A)+1)

∧
∧

A=(P,N)∈Track
t∈P

(¬coh((P \{t}, N),b) ⇒ a′(A)=a(A))

∧
∧

A=(P,N)∈Track
t∈N

(coh(A,b) ⇒ a′(A)=a(A)−1)

∧
∧

A=(P,N)∈Track
t∈N

(¬coh(A,b) ⇒ a′(A)=a(A))

In the above, the formula expresses that there is an abstract
transition from a to a′ if there exists some user u whose
role-memberships are given by b that is in accordance
with the current configuration (captured by ψ(b)) such
that the can assign rule is applicable for u (captured by
coh((Pos,Neg),b)) and the updated abstract state reflects
the assigning of the role t to this user (captured by ϕca(b)).
Furthermore, there exists an administrator in role admin
whose role-memberships are given by d that is in ac-
cordance with his configuration (realized by the formula
ψ(d) ∧ dadmin).

The formula ψ(b) says that a user with chosen role-
membership according to b is satisfied in some concretiza-
tion of a. This formula does this check by ensuring that
every Venn-region that is tracked and coherent with the
user’s role-membership has a count greater than 0. The
formula coh((Pos,Neg),b) checks that the pre-condition
of the can assign rule is consistent with the chosen vector
b. Finally, the condition ϕca(b) checks whether the new
abstract state reflects the user u acquiring the role t. This
is done by (a) ensuring that the counters for Venn-regions
that do not mention t do not change at all, (b) ensuring that
a counter with a Venn-region consistent with u’s pre-state
except for positively including role {t} gets incremented,
and (c) ensuring that the counter for a Venn-region consistent
with u’s pre-state but that mentions {t} in the negative gets
decremented.

We skip the abstract transformer for can revoke rules,
which is similar.

For any a, a′ ∈ ATrack and any m ∈ (can assign ∪
can revoke), whenever τ̂ca(a, a′) holds we denote it as
a
τ̂m−−→A a

′.
The lemma below gives the main technical result, namely

that the above abstract transformer soundly abstracts the
concrete rule. It says that if a configuration c is transformed
to c′ in the concrete ARBAC system, then there is an ab-
stract transition system from the abstract state corresponding

to c (αTrack (c)) to the abstract state corresponding to c′

(αTrack (c′)).
Lemma 4.1: Let c, c′ be two configurations of the AR-

BAC system S and c
τm−−→S c′. Let a = αTrack (c) and

a′ = αTrack (c′). Then a τ̂m−−→A a
′.

Sketch of proof. Here we give a sketch of the proof when
m is a can-assign rule. Let ca = (admin,Pos,Neg , t) ∈
can assign . From the hypothesis of the lemma, c τac−−→S
c′ and hence there must exist (1) a user u ∈ Û such that
conf (c, u) = (Posu,Negu) is coherent under (Pos,Neg)
and c′ = c∪ {(u, t)}, and (2) an administrator ad such that
(ad , admin) ∈ c.

Let conf (c, ad) = (Posad ,Negad). Now by
picking 〈br〉r∈R (respectively, 〈dr〉r∈R) such that
br = true (respectively, dr = true) iff r ∈ Posu
(respectively, r ∈ Posad), it is direct to prove that
(ψ(b) ∧ coh((Pos,Neg),b) ∧ ϕca(b)) ∧ (ψ(d) ∧ dadmin)

holds true, and hence a τ̂m−−→A a
′.

Phase II. Integer program simulation:
The sound abstract transformer described above can be trans-
lated into an integer program. We create a program P that
has one integer variable c(P,N) for each (P,N) ∈ Track.
Hence the abstract state is captured by the valuation of these
variables in the program.

To construct the program P , we have a recursive loop,
where we simulate non-deterministically the abstract tran-
sitions. This essentially calls for translating the abstract
transition relation described above in terms of a program.
Though the formulas above seem complex, this is not hard
to achieve. We sketch the main points below:
• The existential quantifier over variables b is simulated

in the program by having a set of Boolean variables
b, and by assigning them non-deterministically a truth
value. This is done with a sequence of statements of
the form br := ∗; assume((br = 0) ∨ (br = 1));. The
same is done for the variables d.

• The program then checks whether b is consistent with
the current state by executing an assume statement on
the formula ψ(b).

• The program then checks whether the can assign rule
is applicable for b by executing an assume statement
on the formula coh((Pos,Neg),b).

• Finally, the program updates the current state of the
variables c(P,N) by checking the various subformulas
on the left-hand side of the conjuncts in ϕca, and
incrementing, decrementing, or keeping the same value
of the various counters, as appropriate.

We skip the formal program corresponding to the abstract
transitions, as it is fairly straightforward.

For example, consider the scenario where we have
three roles {A,B,C}, and assume that Track =
{({A,B}, {C}), ({B,C}, ∅)}. Consider the can-assign rule

(B, {A}, {B}, C). Then the program that does the abstract
update of the variables is given by:

assume(// Implementation of ψ(b)

((bA ∧ bB ∧ ¬bC)⇒ c({A,B},C) > 0)

∧ ((bB ∧ bC)⇒ c({B,C},∅) > 0)

∧ (bA ∧ ¬bB) // Impl. of coh((Pos,Neg),b)

// Implementation of ψ(d) ∧ dadmin

((dA ∧ dB ∧ ¬dc)⇒ c({A,B},C) > 0)

∧ ((dB ∧ dC)⇒ c({B,C},∅) > 0)) ∧ dB);

// Implementation of ϕca(b)

if (bB) then c({B,C},∅) := c({B,C},∅) + 1; fi

if (bA ∧ bB ∧ ¬bC) then c({A,B},C) := c({A,B},C) − 1; fi

Over-approximation guarantee: From the fact that the ab-
stract transition system is an over-approximation of the
ARBAC system, and from the fact that the program defined
above realizes the abstract transition system, we conclude
the following soundness theorem: (below, [[S,Track]]approx
denotes the abstract program constructed above).

Theorem 4.2: (OVER-APPROXIMATE SIMULATION)
Let S be an ARBAC system over the set of roles R, t ∈ R,
Track ⊆ T = {(P,N) | P,N ⊆ R,P ∩ N = ∅} with
({t}, ∅) ∈ Track , and P = [[S,Track]]approx .
Then, the role t is reachable in S if a program state is
reachable in P with variable c({t},∅) > 0.

V. SLICING

In this section we give a procedure to simplify ARBAC
role-reachability problems by safely removing a set of
roles and the rules that involve them. Intuitively, a role is
uninteresting if it is not acquired by a user starting from
the initial state and reaching the target role. Finding the
precise set of uninteresting roles is hard, but we do a quick
under-approximation of this set using simple slicing, where
we track only individual roles (as opposed to combinations
of roles). Removing these roles is safe and simplifies the
reachability problem. A slicing technique similar to our can
be found in [12].

Our procedure works by repeating two phases, until a
fixed point is reached. Each phase itself is a fixed point
computation followed by a simplification of the system.

In the forward phase we compute an over-approximation
of reachable goals of S as the fixed point of the following
set of equations. Let Init be the initial configuration of S.
Then, S0 = {r | ∃u.(u, r) ∈ Init}, and for i > 0, Si =
Si−1∪{r | (admin, P,N, r) ∈ can assign, P ∪{admin} ⊆
Si−1}. In other words, we start with S0 as the set of all roles
containing at least one user in the initial configuration of S,
and for each i > 0, we add in Si the targets of all can-assign
roles ca such that the roles in the positive precondition and
the administrative role of ca are already in Si−1. It is easy

to see that the fixed point reached will be a set S∗ which
is an over-approximation of the set of reachable roles. We
then simplify the system S by (a) remove all can assign
rules which mention in the positive precondition any role in
R \S∗ or have a role in R \S∗ as the target, (b) remove all
can revoke rules referring to any role in R \S∗, (c) remove
the roles R \ S∗ from the negative preconditions of all the
rules, and (d) remove the roles R\S∗ from the initial RBAC
system.

In the backward phase, we start with a system S (obtained
as the result of the above phase), and compute the fixed
point of the equations: S′0 = {goal}, and for i > 0,
S′i = S′i−1∪

⋃
(admin,P,N,r)∈can assign,r∈S′i−1

(P ∪N). This
process will also reach a fixed-point, S′∗. R\S′∗ are useless
roles, as membership or non-membership in these roles
are not important to reach the target role goal. We then
simplify the system S by (a) remove all can assign rules
which have in the positive precondition a role in S′∗ or
have as target a role in S′∗, (b) remove all can revoke rules
referring to any role in S′∗, (c) remove the roles S′∗ from
the negative preconditions of all the rules, and (d) remove
the roles S′∗ from the initial ARBAC system.

We continue the above two phases till the system stabi-
lizes and reaches a fixed-point. This system S ′ is the slicing
of the original system S.

It is not hard to see that the slicing above preserves the
reachability of the role goal. Hence,

Theorem 5.1: Let S be a ARBAC system and S ′ be the
slicing of S w.r.t. the role goal. Then the role goal is
reachable in S iff goal is reachable in S ′.

VI. CHOOSING THE VENN-REGIONS TO TRACK

The set of Venn-regions Track should be small enough
for the analysis to be practical while preserving a cer-
tain level of accuracy to make the analysis effective. We
notice that in order to assign a user to a role (i.e., fir-
ing a can-assign rule), it is significant for accuracy to
check the existence of either an administrator enabled to
fire the rule and that of a user whose configuration is
consistent with the precondition of the can-assign rule.
Thus, we choose Track according to the preconditions
of the can-assign rules. More in details, Track contains
the Venn-regions (Pos,Neg) and (admin, ∅) for each
(admin,Pos,Neg , r) ∈ can assign, (admin, ∅) for each
(admin, r) ∈ can revoke and (goal, ∅).

Such a choice requires to track a linear number of role-
combinations (linear in the number of can-assign rules), as
opposed to the exponential number of role-combinations
deriving by all complete Venn-regions which would make
the approach impractical for even medium-sized policies.
Intuitively, the set Track chosen provides a certain minimal
level of precision. Clearly, we can prove only empirically
that such a minimal choice is effective, which we do in the
next section.

VII. EVALUATION

We implemented a prototype tool, VAC (Verifier
of Access Control), that realizes the abstract analysis
set forth in this paper to verify ARBAC policies
for role-reachability. VAC is available at the website
http://users.ecs.soton.ac.uk/gp4/VAC.html.

Given an ARBAC system, VAC first executes the slicing
phase, as described in Section V, to reduce the number of
roles and rules of the system, if possible. Then, it trans-
lates the obtained ARBAC system into an integer program
instrumented for the INTERPROC analyzer, according to the
approximation described in Section IV-B. We parameterize
the translation by choosing the set of Venn-regions as
explained in SectionVI.

Finally, VAC uses the INTERPROC static analyzer to per-
form the interval analysis, and checks whether the program
can reach the particular program location corresponding to
the target role being reached (INTERPROC marks unreach-
able locations with ⊥).

Our experiments are conducted on three sets of realistic
ARBAC policies. The first two policies refer to a hospital
policy and a university policy used in several case studies
in the literature [27], [5], while the third one describes
an ARBAC policy for large bank comprising a number
of identically structured branches [8], [9]. In the bank
system, each branch consists of four divisions, each having
five non-managerial roles and two managerial ones. In the
following we will refer to the ARBAC policy of the bank
with i branches as Banki. In all the policies we allow an
unbounded number of users that can be recruited into any
of the individual roles of the system (and then acquire more
roles according to the rules).

In all the experiments the input consists of an ARBAC
policy and a role-reachability question. We consider Priv-
ilege Escalation Properties (PEP), (e.g. an employee of a
lower rank gaining access to resources meant for a higher
rank), and Separation of Duty (SoD) constraints that model
conflict of interest.

Table I summarizes our experiment results. We report, for
an ARBAC policy and role-reachability query, the number of
roles and rules in the system, the number of roles and rules
after slicing, the size of the synthesized abstract program
and the time it took to synthesize it, the time taken by
INTERPROC to do the analysis, the total time taken, and
whether the role was found unreachable (safe).

The experiments were conducted on an Intel Xeon Quad-
Core 2.33GHz machine with 8Gb RAM.

Table I is divided into five sets of experiments as follows.
The first set of experiments were executed on the hospital
policy. The first experiment checks that a patient cannot have
privileges of his own primary doctor! The second one tests
that a user cannot be a member of both the roles receptionist
and doctor, thus avoiding fraud by preventing the user to

After Slicing VAC
LOC of Time INTERPROC

ARBAC Policy Property #roles #rules #roles #rules synthesized taken to Analysis Total Result
program transform Time Time

1 Hospital PEP 12 24 3 4 73 0.3s 0s 0.3s safe
Hospital SoD 12 24 5 8 134 0.3s 0.01s 0.3s safe

2
University PEP 32 132 5 9 162 0.5s 0.1s 0.6s safe
University SoD 32 132 13 37 541 0.6s 0.2s 0.8s safe
University SoD 32 132 15 43 535 0.6s 0.2s 0.8s safe

3

Bank1 SoD 34 593 34 593 13,356 7s 44s 51s safe
Bank2 SoD 68 1186 68 1186 26,684 9s 3m 02s 3m 11s safe
Bank3 SoD 102 1779 102 1779 40,012 11s 7m 08s 7m 19s safe
Bank4 SoD 136 2372 136 2372 53,340 11s 13m 16s 13m 27s safe

4
Bank2 SoD 68 1186 68 1186 26,705 9s 3m 03s 3m 12s safe
Bank3 SoD 102 1779 102 1779 40,045 10s 7m 08s 7m 18s safe
Bank4 SoD 136 2372 136 2372 53,383 9s 13m 15s 13m 24s safe

5 University SoD 32 132 17 53 698 0.6s 0.3s 0.9s -
Bank1 SoD 34 593 34 593 16,577 4s 1m 31s 1m 35s -

Table I
EXPERIMENTAL RESULTS.

falsely claim to treat a patient and billing the insurance
company.

The second set of experiments were performed on the
university policy and consider both privilege escalation
properties and separation of duties. The first experiment
verifies whether a department chair may gain the privileges
of a Dean, the second asks whether a student may be
simultaneously a grad student and an undergraduate, and the
third one checks separation of duties between an admission
officer and a graduate admission officer.

In the third set, experiments were conducted on Banki
policies (the bank policy on i branches). They consider the
query: can a user be assigned to four non-managerial roles
in a business division in any of the i branches? The fourth set
is also on the Bank policies, asking: can a user be assigned
to four non-managerial roles in a business division in all
the i branches?

The final set of experiments were performed for queries
where the role is reachable (i.e. unsafe). The first query
tests whether a user may belong both to undergraduate and
honors student roles in the university system. The second
tests whether a user may belong to two non-managerial roles
in the same division of the bank case study.

Observations: The experiments clearly show that our ab-
straction schemes and usage of program analysis tools scale
to verify the security of large ARBAC policies. Note that
these policies are quite large, and given that the compu-
tational complexity of precise checking is exponential in
the number of roles (which are in the hundreds in these
benchmarks), precise checking will not scale to handle them.
The abstraction-based approach, by keeping track of only a

subset of combinations of roles, and further by performing
numerical interval-based abstraction on those, is able to
prove the policies safe. We consider this remarkable given
that the tool proves the policies entirely correct, in the
presence of an unbounded number of users.

While the static slicing does help in some experiments, it
was not helpful on the Bank examples as all roles and rules
were relevant for the target. In general, the time taken to syn-
thesize programs was negligible, despite creating programs
that span tens of thousands of lines of code! Furthermore,
INTERPROC performs extremely well over these programs,
as it is a scalable interval-based analysis, and proves safety
in reasonable time.

On the experiments on policies where the target role is
reachable, our tool obviously failed to find a safety proof
(as our techniques are sound), and quickly reached unsafe
fixed-points.

We believe our technique shows promise in being the
foundations for a versatile tool for verification of security
of role-based access control policies.

VIII. CONCLUSIONS AND FUTURE WORK

The work set forth in this paper solves the security prob-
lem for role-reachability in ARBAC systems using abstract
analysis. Furthermore, it achieves the abstract analysis by
reducing the problem to a program analysis problem, using a
novel set abstraction scheme. The resulting program can then
be analyzed using abstract numerical domains, exploiting
existing efficient fixed-point algorithms developed in this
domain. We believe that an abstraction-based approach to
access control verification paves the way to exploiting the

simplicity in the instances, avoiding the pitfalls of undecid-
ability and complexity hardness for this problem.

An important future extension of this work would be
a counter-example guided abstraction scheme. Intuitively,
instead of choosing the role combinations statically, we can
let the combinations be chosen using iterative abstractions,
where the abstraction is refined using concrete counter-
examples obtained in each iteration (similar to such CE-
GAR schemes in program verification [2]). This involves
several technical challenges: to generate concrete counter-
examples from abstract interval abstractions, to learn role-
combinations from them that avoid the counter-example,
and incorporating those into a refinement scheme. Such
a technique would be valuable as it will more closely
exploit the simplicity of the instance, and give administrators
concrete attacks that can happen in their system.

Acknowledgements: This research was partially supported
by NSF CCF #1018182 and NSF CAREER #0747041.

REFERENCES

[1] A. Armando and S. Ranise. Automated symbolic analysis of
arbac-policies. In STM, volume 6710 of LNCS, pages 17–34.
Springer, 2010.

[2] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam and
static driver verifier: Technology transfer of formal methods
inside microsoft. In IFM, volume 2999 of LNCS, pages 1–20.
Springer, 2004.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL, pages 238–252,
1977.

[4] D. Ferraiolo and R. Kuhn. Role-based access control. In 15th
NIST-NCSC National Computer Security Conference, pages
554–563, 1992.

[5] M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang,
and S. D. Stoller. Rbac-pat: A policy analysis tool for role
based access control. In TACAS, volume 5505 of LNCS, pages
46–49. Springer, 2009.

[6] G. S. Graham and P. J. Denning. Protection: principles
and practice. In Proc. of the AFIPS Spring Joint Computer
Conference, pages 417–429, 1972.

[7] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On protection
in operating system. In SOSP, pages 14–24, 1975.

[8] K. Jayaraman, V. Ganesh, M. Tripunitara, M. C. Rinard, and
S. J. Chapin. Arbac policy for a large multi-national bank. In
http://kjayaram.mysite.syr.edu/mohawk/casestudy.pdf, 2010.

[9] K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard,
and S. J. Chapin. Automatic error finding in access-control
policies. In CCS, pages 163–174. ACM, 2011.

[10] B. Jeannet and A. Miné. Apron: A library of numerical
abstract domains for static analysis. In CAV, volume 5643
of LNCS, pages 661–667. Springer, 2009.

[11] B. Jeannet, et al. The interproc analyzer. http://pop-
art.inrialpes.fr/interproc/interprocweb.cgi.

[12] S. Jha, N. Li, M. V. Tripunitara, Q. Wang, and W. H. Winsbor-
ough. Towards formal verification of role-based access control
policies. IEEE Trans. Dependable Sec. Comput., 5(4):242–
255, 2008.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond
proof-of-compliance: security analysis in trust management.
J. ACM, 52(3):474–514, 2005.

[14] N. Li and M. V. Tripunitara. Security analysis in role-based
access control. In SACMAT, pages 126–135. ACM, 2004.

[15] N. Li and M. V. Tripunitara. On safety in discretionary
access control. In IEEE Symp. on S&P, pages 96–109. IEEE
Computer Society, 2005.

[16] R. J. Lipton and L. Snyder. A linear time algorithm for
deciding subject security. J. ACM, 24(3):455–464, 1977.

[17] Muchnick and Steven S. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[18] A.C. O’Connor and R.J. Loomis. Economic analysis of role-
based access control. In Final Report. RTI International,
Project Number 0211876, 2010.

[19] R. S. Sandhu. The typed access matrix model. In IEEE Symp.
on S&P, pages 122–136, 1992.

[20] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The arbac97
model for role-based administration of roles. ACM Trans. Inf.
Syst. Secur., 2(1):105–135, 1999.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–
47, 1996.

[22] R. S. Sandhu and Q. Munawer. The arbac99 model for
administration of roles. In ACSAC, pages 229–238. IEEE
Computer Society, 1999.

[23] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan.
Policy analysis for administrative role based access control.
In CSFW, pages 124–138. IEEE Computer Society, 2006.

[24] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan.
Policy analysis for administrative role-based access control.
Theor. Comput. Sci., 412(44):6208–6234, 2011.

[25] J. A. Solworth and R. H. Sloan. A layered design of
discretionary access controls with decidable safety properties.
In IEEE Symp. on S&P, pages 56–. IEEE Computer Society,
2004.

[26] S. D. Stoller, P. Yang, M. I. Gofman, and C. R. Ramakrishnan.
Symbolic reachability analysis for parameterized administra-
tive role-based access control. Computers & Security, 30(2-
3):148–164, 2011.

[27] S. D. Stoller, Ping Yang, C. R. Ramakrishnan, and M. I.
Gofman. Efficient policy analysis for administrative role
based access control. In CCS, pages 445–455. ACM, 2007.

