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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Multiprocessing Neural Network Simulator

by Anton Kulakov

Over the last few years tremendous progress has been made in neuroscience by
employing simulation tools for investigating neural network behaviour. Many sim-
ulators have been created during last few decades, and their number and set of
features continually grows due to persistent interest from groups of researchers

and engineers.

A simulation software that is able to simulate a large-scale neural network has been
developed and presented in this work. Based on a highly abstract integrate-and-fire
neuron model a clock-driven sequential simulator has been developed in C++. The
created program is able to associate the input patterns with the output patterns.
The novel biologically plausible learning mechanism uses Long Term Potentiation
and Long Term Depression to change the strength of the connections between the

neurons based on a global binary feedback.

Later, the sequentially executed model has been extended to a multi-processor
system, which executes the described learning algorithm using the event-driven
technique on a parallel distributed framework, simulating a neural network asyn-
chronously. This allows the simulation to manage larger scale neural networks

being immune to processor failure and communication problems.

The multi-processor neural network simulator has been created, the main benefit of
which is the possibility to simulate large scale neural networks using high-parallel
distributed computing. For that reason the design of the simulator has been
implemented considering an efficient weight-adjusting algorithm and an efficient

way for asynchronous local communication between processors.
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Chapter 1
Introduction

The brain’s structure and its organisation have been attracting attention through-
out all history. The brain has a very complex and intricate structure. For that

reason its study has always been an incredibly difficult and challenging task.

1.1 Background

Over the past century tremendous progress has been made in neuroscience, when
technological advances made it possible to move beyond description to explorations
of brain systems. The achievements have been made by employing classical and op-
tical electrophysiological techniques (e.g. sharp electrode and planar patch clamp
techniques or bioelectric recognition assay method). It was discovered that the
basic biological control component is an electrically excitable cell called the neu-
ron (also known as a nerve cell). Neurons communicate between each other by
sending electrochemical messages (i.e. using chemicals to produce an electrical
signal) via special connections with other cells called synapses. The fundamental
process that triggers synaptic activity is the action potential. It is an electrical dis-
charge (or spike), occurring in the cell’s membrane potential. Spikes travel along
the membrane down the axon and through synapses to other neurons, rapidly

carrying information.

In spite of the recent achievements made due to the astonishing level of current
experimental and measurement techniques (i.e. Hodgkin-Huxley mathematical
model on transmission of electrical signals in neurons, [11] and Kandel et al. work
on a biochemical analysis of changes in neurons associated with learning and mem-
ory storage, [12]), investigators are unable to discover and comprehend the brain’s

working details. And there is not any widely accepted theory about the brain’s

13



Chapter 1 Introduction 14

functionality, explaining the way brains reorganise and reinforce themselves in
response to new stimuli and learning experience. Using conventional laboratory
techniques (physical intervention of intracellular electrodes or influence of fluores-
cent dyes) alters the activity of the neurons and often produces inaccurate results.
Difficulties, associated with obtaining experimental data, limit the progress of un-
derstanding the principles and mechanisms of brain activity. In this situation
neural network modelling becomes more valuable by providing an alternative way

to make the experiments via computer simulation.

Motivated by outstanding biological achievements, engineers and scientists have
made various attempts to mimic the structure of the brain. A steadily growing
number of simulation environments endow computational neuroscience with tools,
allowing simulation of neural systems with increasing complexity and employing

various neuron models [13].

With the vast improvement in computational capacity, the chances to implement
the complex system of neural network noticeably increase. Computational power
requirements, necessary to perform real-time simulation, can be met by employ-
ing a massively parallel architecture. The communication load, caused by the
communication between the neurons, could be partly reduced by employing var-
ious sophisticated algorithms [14]. The simulation of the mechanisms implicated
in information processing at the network level already brings important achieve-
ments validating or disproving the various neuroscientific hypotheses [15, 16]. Un-
fortunately, due to insufficient knowledge about the processes occurring inside
the neuron, these simulations face many challenging problems, especially when
the simulator models are large, containing thousands of neurons and millions of

Synapses.

One of the most important obstacles is the absence of a neuron model that would
precisely describe neuronal activity on ion channel level and at the same time would
be computationally efficient for large-scale simulation and amenable to mathemat-
ical analysis. There are hundreds of models in existence, but none of them fully
meets these requirements [17]. On the one side, detailed biophysical models fully
mimic the neuron by reproducing ion channels activity on the tree-like spatial
structure of the neuron cell (Hodgkin-Huxley model, [11]). Although they provide
very effective and biologically plausible neural networks (being able to predict
changes in the chemical environment or the influence of temperature dependence),
they are computationally demanding and thus expensive to implement. On the
other side, the abstract mathematical models provide only a weak link to the un-

derlying biophysical causes of electrical activity by neglecting neuronal morphology
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and reducing the neuron to an extensionless mathematical construct (Izhikevich
model, [7]). They can be easily implemented, they are able to simulate a large

network and do not require expensive simulation equipment.

Several software tools have been developed which are able to simulate limited

aggregates of the neurons. The main aspects to take into account are:

1. the speed of simulation;
2. the memory requirements;

3. the accuracy of simulation.

These aspects are usually in conflict, such as the speed of simulation is inversely
proportional to the simulation’s accuracy and memory consumption. But a trade-
off can be found depending on the goal of simulation that indicates the flexibility

of the program.

For the research purposes there was a choice of either developing specific tools
or using an already adapted simulation environment following a designated pro-
cedure. There were a number of possible off-the-shelf simulators available to use
for our experiments (e.g. “Neuron”, [18] or “Genesis”, [19]). However, they had
been designed to be all-purpose simulators (allowing different simulation modes
and many other options). They were, therefore, large programs with very compli-
cated inner-working. Unfortunately, although intended as all-purpose feature-rich
simulation tools, none of them had all the built-in facilities that could serve all
our purposes. Modifications would have been needed to allow all the different
operations in this study (such as reinforcement learning technique combined with
Hebbian learning, all damage experiments and analysis procedures to be described
later). The way the adapted simulation environments are structured does not al-
low modifying them straightforwardly. Readjusting such large pieces of code would
have been more time-consuming and error-prone process than writing a new tool.
It was decided at an early stage that it would be easier overall to make the nec-
essary day-to-day changes to a smaller, custom-written program that contained

only the facilities necessary for our experiments.

Also, eventually there was an intention to launch the created simulator on the
SpiNNaker massively-parallel neuromorphic computing platform, which is capable
of simulating millions of neurons in real time. The distinctive feature of SpiNNaker
is based on distributed communication-centric computation and non-deterministic
communication, which provides the potential to investigate new principles of mas-

sively parallel computation.
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1.2 Aim and Motivation

The aim of this thesis is to develop a neural network simulator. The motivation
for doing so is two-fold. Firstly, we hope that such models may contribute to our
understanding of mechanisms by which real brains operate. Secondly, the simula-
tor is designed to exploit the potential of the SpiNNaker neuromorphic distributed
computing machine, gaining insights into the nature of neural computation itself
[20].

1.3 Objectives

Bearing both of these aims in mind, the research is directed towards achieving the

following objectives:

e Biological plausibility: the approach we take in this thesis is not to limit
the models under study to those that precisely resemble their biological
counterparts, but nonetheless to use models which are biologically inspired
both in architecture and learning mechanism. We belief that focusing on
building models consistent with every known fact about the brain hinders

finding general principles of biological computation processes.

Therefore, to achieve a biologically realistic simulation of a neural network,
our approach is to employ an abstract neuron model, enriched with phys-
iologically motivated functionality (e.g. adaptable synaptic weights, fixed
threshold potentials) and to create a neural network simulator with a flex-
ible, reusable, event-driven, platform-independent and scalable framework,

based on such a neuron model.

We want to build a model that is able to search for a correct output by itself
without a feedback indicating an approximated error. The model searches
for the optimal set of weights and makes rewarding associations more prob-
able based on the binary feedback indicating the correctness of the current
solution. Our hope is that we do not have to use any additional artificial
mechanisms, which were not found in biological networks. For the same
reason we avoid using biologically implausible learning methods, where the
information about the states and the properties of the involved neurons,
which directly affects their synaptic alteration, is spread around the network

(e.g. error backpropagation algorithm). (Chapter 4)
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e Multipurpose: it is not our aim to create a simulator that is optimised for
some particular task. Our purpose is to simulate the biologically inspired
network of neurons and to investigate the way it “learns”. The intention
is to study a network that is able to re-arrange its connection for a correct

output because it is biologically plausible. (Chapter 4)

e Fault-tolerance: the SpiNNaker platform has been constructed as a dy-
namically reconfigurable and fault-tolerant computing system. However, the
system depends on the software to make full use of these features. Therefore
in case of a node failure, the simulator should be able to dynamically redis-
tribute the working task in this way isolating the failed node from further
use. This emulates a biological neural system, where neurons die frequently
and spontaneously (one per second in adult human) without significantly

affecting the overall brain performance. (Chapter 5)

e Scalability: SpiNNaker is a scalable computing system, so that linking the
SpiNNaker multi-processor chips together it is possible to assemble a system
of almost any desired scale. Correspondingly, the simulator should satisfy
the same criteria being able to handle growing amount of network size in a
capable manner by employing new resources in the case of necessity. For such
a large systems it is necessary to apply an efficient weight-adjusting algorithm
and corresponding computational-communication balance (due to increased
communication increasing computational power reduces the speedup gains)

for parallel distributed execution. (Chapter 5)

A simulator with these features has been designed during the project. The program
is implemented in C++. Issues of computation efficiency and memory require-
ments were carefully considered. The software architecture and algorithm have

been presented. The implementation details have been introduced and explained.

1.4 Contributions

The research has contributed in providing:

e A novel parallel distributed event-driven simulation model of neural network

has been developed.

e A fault-tolerant mechanism immune to processor failure and communication
problems during a learning phase on a parallel distributed hardware has been

created.
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1.5 Thesis Structure

The thesis is composed of six chapters. The first chapter presents an introduction
along with the motivation and objectives for the project. It includes an explanation
of the general background of the research, statement of the research aim and

objectives, in addition to the importance of the study.

The second chapter aims to introduce brief fundamentals of the synaptic plas-
ticity along with the biological characteristics of the neuron, which are involved in
an action potential formation and propagation. It presents the recent biological

knowledge of neural network plasticity to give an idea about the field of research.

The third chapter gives a comprehensive literature review of existing neuron
models together with an overview of simulation strategies and evaluation of the
existing neural network simulators. It also discusses important obstacles that

designer encounters while implementing large scale neural network.

The purpose of the second and third chapters is to develop a good understanding
of the relevant previous research work and investigation that took place in the

similar areas of interest.

The fourth chapter introduces and explains an approach for building and ex-
ecuting a biological plausible neural network on a single processor, capable of
simulating large-scale networks. It is capable of searching for correct patterns,
storing and reproducing them later. The algorithm and architecture of the simu-
lation software are illustrated. The model is functionally verified and experimental
results are included. It is tested by an agent application, which represents a learn-
ing system. The agent is able to accumulate the vital experience from a dynamic
ambient environment based on its own observations in an unsupervised manner.
An analysis of the performance as well as simulation results of the application are

presented and discussed at the end of the chapter.

The fifth chapter gives introduction to the field of distributed computation and
discusses commonly addressed issues along with distributed simulation techniques.
It also discusses the benefits and challenges of using the distributed hardware for
neural network simulation. It extends the sequentially executed model presented
in Chapter 4 to a concurrently executed model with calculations distributed over
a multi-processor machine. This makes the program more scalable and tolerant to
hardware failures. The algorithm and architecture of the simulation software are
illustrated. Discussion of challenging problems encountered while implementing

the system and the undertaken solutions are presented.
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The sixth chapter is the last chapter of the thesis. It concludes the thesis with
a succinct summarization, discusses the results and produces conclusions of the
research. It also contains several possible directions for the future work of research
as well as the changes to the software that could be made in order to enrich and

improve the program’s performance.



Chapter 2
Biological Principles

The brain structure and its organisation have been attracting attention through all
history. Because of the brain’s incredible connectivity and the microscopic scale
of its interconnection, there is lack consistent theories about neural coding and
computation in modern neuroscience. The investigation of neuron structure is an
incredibly difficult and complex task that yields relatively low rewards in terms
of information from biological forms. The structure and connectivity of even the
simplest invertebrates are almost impossible to establish with standard laboratory
techniques. That is why at present knowledge about the operational principles of
the brain is far from complete, so simulation attempts must employ a great deal

of assumption and guesswork to fill the gaps in the experimental evidence.

Understanding of the principles and mechanisms of brain activity could benefit the
human development. First of all, imitation could allow expanding of computing
capabilities. Also, understanding such a phenomenon as memory capacity, an
animal’s planning or reasoning, thought or consciousness (particularly mammals)
would benefit the progress of the mankind. Finally, the hope is that by emulating

the brain, it will be possible to capture some of its computing capabilities.

The main feature of the brain is the ability to learn. We understand learning as
the probability for certain behaviour to happen in response to a certain event.
The basis for most models of learning is a synaptic plasticity. Plasticity refers to
the changes that occur in the organisation of the brain as a result of experience.
Several underlying mechanisms cooperate to achieve plasticity, forming cognition

and memory formation.

This chapter aims to introduce the biological structure of a neuron and its char-
acteristics (Section 2.1) that are involved in an action potential formation and

propagation (Section 2.2) along with the fundamentals of plasticity (Section 2.3).

20
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Section 2.4 describes the contemporary learning rules based on a synaptical plas-

ticity.

2.1 Neuron Structure

In order to imitate biological neural networks it is important to understand the
nature of biological neurons, which are the building blocks of neural networks.

This section introduces biological neurons and explains how they work.

The investigation of the neuron behaviour is an incredibly difficult and complex
task. It is almost impossible to establish the brain’s structure and connectivity
of even an elementary animal using conventional laboratory techniques. Recent
research employed alternative ways of investigations using electro-physiological
techniques and computer simulation experiments [21]. They unveiled the internal

structure of the brain and allowed the scientists to mimic its behaviour.

Although there are all kinds of different neurons, the basic structure is the same.
As an ordinary cell, a neuron typically consists of a soma (or cell body), a den-
dric tree and an azon. The majority of the neurons in vertebrate organisms input
the signal through the synapses on the dendrites, transmit it along the cell body
outputting via the synapses located on the axon. However, there is some hetero-
geneity throughout the nervous system of different species in the size, shape and

function of neurons.

The key parts of the neuron are shown in Fig. 2.1 and their functionalities are

described below.

e The central part of the neuron is the soma. It houses the normal metabolic
systems required to maintain the cell, such as nucleus, mitochondria and
other organelles. All internal organelles are surrounded by a cell membrane

and suspended in intracellular fluid, known as cytoplasm.

e The cellular extensions with many treelike branches are referred to as a
dendritic tree. The dendrites’ role is to receive signals from other neu-
rons through the synapses. The backflow of a neuron is inhibited. Such
an inhibition happens first of all because the axon does not contain any
chemoreceptors and, secondly, because the dendrites are unable to secrete
the neurotransmitter chemicals. This unidirectionality of a chemical synapse

explains conduction of impulses only in one direction.
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FIGURE 2.1: The schematic diagram of the neuron [1].

e The axon hillock connects the cell body to the axon. It contains the
greatest density of voltage-dependent sodium channels. This makes it the
most easily-excited part of the neuron and the spike initiation area for the

axon.

e The axon represents a finer, slender, cable-like extension, the length of which
can be tens, hundreds, thousands, or even tens of thousands times the soma’s
diameter. The axon edge has its own specialised structure for passing infor-

mation across the synapse to other cells in the nervous system.

e Some axons contain a fatty sheath around the axon called myelin, which
provides electrical insulation for the covered sections of the axon membrane
from the extracellular fluid with the purpose of accelerating the propagation
of an action potential along the axon. The areas between the consecutive
myelin sections are the nodes of Ranvier, which cause regeneration of elec-

trical signals.
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e A synapse is a neuron’s protrusion, which acts as contact points where
two neurons can communicate with each other. It consists of two elements,
separated by a synaptic cleft: the presynaptic terminal and the postsynaptic
receptor site, which may be located on the axon, soma or dendrite of the
neuron cell. The synapse is one of the most important controlling factors
within the central neural system due to its role in controlling the signalling
process. Depending on whether a synapse raises or lowers the membrane
potential of its neuron, one differs between an excitatory synapse and an

inhibitory synapse respectively.

e The axon terminal contains synapses where neurotransmitter chemicals
are released in order to communicate with the target neurons. The impulse
charge, generated at the axon hillock, arrives at the chemical synapses of
the axon terminals. There the ionic charge is converted back into a chemical
signal and transmitted further to the postsynaptic neuron. At the same time
the axon terminals take up neuron growth factors (neurotrophin), released

by the postsynaptic dendrites, which are transported back to the nucleus.

e The axon terminal stores neurotransmitters. Neurotransmitter is a chem-
ical that is used to relay, amplify and modulate a signal between the neuron
and another cell. It uses the energy propagated by the action potential to

fuse with the membrane of the cell and diffuses across the synaptic cleft.

2.2 Action Potential

A neuron is responsible for propagating electrical signals through the neural sys-
tem. Neurons communicate by the chemical and electrical synapses in a process
known as a synaptic transmission. After receiving signals from the presynaptic
neurons, the cell makes “decision”. Based on the activity at its input, the neuron
either does or does not generate a spike. On average, the action potentials of
individual neuron are rare and occur at rates of 1-50 Hz. At the same time the
rate of incoming action potentials is much higher and is approaching 100 kHz due
to some 10* incoming connections [22]. The synaptic transmission occurs when an
action potential is initialised in the presynaptic neuron and is characterized by a

sudden change in membrane potential of the postsynaptic neuron.
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2.2.1 Formation

The action potential (or AP, also known as a wave of depolarisation or a spike) is
an electrical impulse travelling along several types of the cell membranes (Fig. 2.2).
The process starts when a neuron is excited by more than one synapse in a short
time, or when the same synapse is repeatedly active. The cell’s interior voltage
rises comparing to the cell’s exterior voltage. Voltage-sensitive sodium channels
expand and allow sodium current entering into the axon, further depolarising
the membrane. When the voltage reaches its threshold level, the neuron fires.
This process initiates a positive feedback loop, raising the voltage further up.
However, after the spike releases, the membrane voltage is restored to its resting
value (between -40mV and -90mV) because the channels, responsible for the initial
inward current, are deactivating. Meanwhile the raised voltage opens potassium

voltage-sensitive channels that pass through the outward current.
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FIGURE 2.2: Schematic and real view of an action potential [2].

The passage of an action potential can leave the ion channels in non-equilibrium
state, making them more difficult to open, and thus inhibiting another action
potential at the same spot (resting potential in Fig. 2.2). Such a state is said
to be refractory. The refractory period can be divided into two phases. In the
first phase with a duration of about 1 ms to 5 ms, called the absolute refractory
period, it is not possible for the neuron to fire another spike (i.e. the threshold
is said to be infinite). In the second phase, called the relative refractory period
with a length of 2 ms to 20 ms, the threshold slowly returns to its normal level.
During this phase a spike could be emitted, but a stronger depolarisation of the

membrane potential is required.



Chapter 2 Biological Principles 25

2.2.2 Propagation

The triggered action potential propagates through the axon without fading out
because the signal is regenerated at each patch of the membrane. Due to the
myelin sheath the action potential travels further before being regenerated at the
areas between the consecutive myelin sections known as the nodes of Ranvier, Fig.
2.1. This accelerates the action potential propagation along the axon, since it
only needs to be regenerated at the uncovered sections rather than continuously
along the length of the axon. An action potential at one patch raises the voltage
at nearby patches of the axon, depolarising them and provoking a new action
potential there. The diagram in Fig. 2.3 shows a section of an axon, which is
conducting an action potential. The action potential propagates through the axon

and causes a back-propagation low amplitude pulse in the dendrites [23].
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FIGURE 2.3: The propagation of an action potential [3]. a) The depolarised
region on the far left causes sodium channels to open, further depolarising the
region. b) At certain point, the sodium channels become inactive and potas-
sium channels open, which temporary depolarise the membrane. ¢) The process
repeats as the wave of depolarisation propagates down the axon.
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The action potential stops at the end of the axon and causes the secretion of
the neurotransmitter at the synapses that are found there, Fig. 2.1. Released
neurotransmitter binds to the receptors on adjacent cells, which are ion chan-
nels themselves. In contrast to the axonal channels, they are generally opened
by the presence of the neurotransmitter, rather than by changes in the voltage.
The opening of these ion channels can cause polarisation or depolarisation of the
postsynaptic neuron based on the type of neurotransmitters at the synapse. An ex-
citatory neurotransmitter generates a postsynaptic potential depolarisation, while
a depolarising inhibitory neurotransmitter causes postsynaptic potential hyperpo-
larisation. The generated potential depends on the amount of neurotransmitters
released into the synaptic cleft and the number of accepting receptors. Sufficiently

strong depolarisation can provoke another action potential in the new cell.

2.2.3 Propagation Delay

An action potential does not propagate between neurons instantaneously. First of
all, the delay is caused due to the cable properties of a neuron. In transmission
along the axon and dendrites a delay may vary from a half of a millisecond in a
short axon to tens of milliseconds in a very long one. A myelin sheath affects the
speed of action potential propagation, significantly increasing it (see Section 2.1).
Myelinated axons demonstrate the spike transmission velocity of around 1 m/s,

while in the non-myelinated axon it is only around 0.15 m/s. [24].

Another cause for transmission delay is a synapse. The time is required for a
neurotransmitter to be released by presynaptic terminal, diffuse across the synaptic
cleft (approximately 0.05 ms), and bind to a receptor site on the post-synaptic
ending (about 0.15 ms). After having reached the dendritic tree, the synaptic
input propagates to the soma. Depending on the physical location of a synapse
within the tree, it can take up to 10 ms [25]. However, the typical delay time
varies from 0.3 to 4.0 ms between the onset of the action potential on a pre-
synaptic neuron and action potential at the post-synaptic site. Delays could also

be instantiated by “chained” connections through other neurons.

Propagation delays demonstrate high variability in biological neural systems. This
also applies to connections that run in parallel. Different propagation delays can
be observed in two connections, which both originate and terminate in similar
brain areas and follow alike paths. Conversely, some connection types can pro-
duce similar transmission delays irrespective of the length of a connection (e.g.

thalamo-cortical). Nevertheless, the delay in any given connection is consistently
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reproducible with sub-millisecond precision despite the high variability between
connections in many brain areas. Some experimental data is collected in Table
2.1.

TABLE 2.1: Summary of experimental evidence of axonal conduction delays in
different neurons and species.

Connection Delays (ms) Animal Reference

1-44 cat 26]
layer 6 — LGN 1.7 - 32 rabbit [27]
cortico-cortical L-35 rabbit 28]

1.2 - 19 rabbit [27]
cortico-(ipsi)cortical 2.2 - 32.5 rabbit [27]
layer 5 — LGN 0.6 - 2.3 rabbit [27]
cortico-collicular 0-3 cat [26]
VB — layer 4 2 mice [29]

Apparently, biological neural networks exert purposeful control over the duration
of delays. This indicates the computational significance of a propagation delay.
But the delay time is not consistent and can vary over time depending on different
factors. For instance, the increasing activity of a neuron population can shorten
the delay time. This leads to the increasing susceptibility of the network area
due to the faster reaction of post-synaptic neurons to stimuli. In this way, delay
variations improve short-term memory and, thus, the overall learning process,

which occurs in this part of the neuron network [30].

2.2.4 Active Properties of Dendrites

Not only the synapses play the primary role in propagation of the signal and pro-
cessing of information. Due to a small amplitude of synaptic potentials, summation
of multiple synaptic inputs is required to reach action potential firing threshold.
Dendrites are responsible for synaptic summation and for the changes in synaptic
strength that take place as a function of the activity of the neuron. Dendritic
voltage-gated ion channels can alter the local input resistance and time constant,
which in turn would influence both spatial and temporal summation of excitatory
and inhibitory postsynaptic potentials. Multiple excitatory postsynaptic poten-
tials occurring on the same branch and within a narrow time window might activate
voltage-gated channels and produce a much bigger response than would occur if

they were on separate branches or occurred outside this time window.
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2.3 Synaptic Plasticity

The concept of plasticity is very broad and can involve many levels of organisation.
Any changes in neural system activity can be attributed to some sort of plasticity.
We refer to plasticity as the ability of the synapse between two neurons to change

in strength. Therefore, we name this phenomenon as a synaptic plasticity.

The synaptic plasticity is not an unitary process but rather many processes on the
different time scales. There are several underlying mechanisms that cooperate to

form the synaptic plasticity operating at various time scales:

e within several hours (or days), known as Long Term Potentiation and Long

Term Depression, inducing long-persisting changes.

e within seconds, known as Short Term Potentiation and Short Term Depres-
ston for retaining a small amount of information in an active state for a short

period of time.

It seems likely that new, perhaps unanticipated, forms of plasticity remain to be

discovered. The most important, known today, are reviewed below.

2.3.1 Long-term Plasticity

Long-term plasticity represents the ability of chemical synapses to change their

strength, which preserves for days, months, or years.

2.3.1.1 Long-term Potentiation

Synaptic strength increments when a neuron repeatedly fires and depolarises the
postsynaptic neuron, producing a process called Long-Term Potentiation (LTP).
It causes the tendency of the postsynaptic neuron to be active simultaneously with
the pre-synaptic neuron. Subsequent stimuli applied to one cell are more likely
to elicit action potential in the cell to which it is connected. LTP improves the
receptors’ sensitivity to the neurotransmitter concentration in the synaptic cleft
[31]. It is achieved in large part because of increasing activity of existing receptors
and by increasing the number of receptors on the postsynaptic cell surface as well
as the dendrite’s growth into more branches, causing the presynaptic axon to form

more synapses.
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2.3.1.2 Long-term Depression

If synapses simply continued to increase in strength as a result of LTP, eventually
they probably would reach some maximum efficacy level. After this, the new
information encoding would be difficult, if not impossible. To make the synaptic
strengthening useful, another process must selectively weaken specific sets of the
synapses. Long-Term Depression (LTD) is such a process. LTD is the weakening
of synapse strength lasting from hours to days. The same mechanism of calcium
influx causes both LTP and LTD. Low calcium influx leads to LTD, and calcium
entry above the certain threshold leads to LTP [32]. The threshold rises after
the synapse has already been subjected to LTP. This provides a negative feedback
system to maintain synaptic plasticity. The threshold level is on a sliding scale
and depends on the history of the synapse. According to [33], timing is another
factor affecting LTP and LTD mechanisms. When the presynaptic neuron fires
just before the postsynaptic neuron fires, the connection will be strengthened.
However, when it fires slightly after the postsynaptic neuron, the connection will

be weakened.
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FIGURE 2.4: LTP and LTD dependence on the difference between the spike ar-

rival and new spike generation times [4]. SCR (synaptic change rate) describes

the change of the absolute synaptic efficacy. The parameter A represents abso-

lute synaptic efficacy, T; describes the size of the learning window, SAT shows

spike arrival time from pre-synaptic neuron and FT shows firing time of post-

synaptic neuron. The dashed line demonstrates the change of the parameter A
based on the variation of pre- and post-synaptic firing time lag.

The dependency of LTP and LTD on time is presented in Fig. 2.4. Absolute
synaptic efficacy depends on the time difference between the last firing time of the
postsynaptic neuron and the spike arrival time from the presynaptic neuron. In
this way the synaptic strength of a strong synapse is altered only insignificantly
as opposed to a weak one. This mechanism prevents the fast saturation of the

synaptic strength and stabilizes the network activity.
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2.3.2 Short-term Plasticity

Paired-pulse facilitation, paired-pulse depression and post-tetanic potentiation are
often referred as a short-term plasticity because of the duration of phenomenal
existence. They vary strongly according to the interval between the conditioning
and induced pulses. These mechanisms cannot provide the basis for memories that
persist even for several hours. Instead, they uphold a small amount of information
in an active state for a short period of time. To retain the information for longer,

the content of information must be periodically rehearsed.

2.3.2.1 Facilitation of Transmitter Release

Synaptic enhancement that is prominent on the hundreds of milliseconds time
scale is referred to as Paired-Pulse Facilitation (PPF), as was explained in [34].
Facilitation occurs solely at the pre-synaptic side of a synapse, where synaptic
vesicles containing neurotransmitter are released from a pool. It is the result of an
increase in the probability of the transmitter release. PPF can be seen with the
pairs of stimuli, in which the second postsynaptic pulse, following the first one,

can be up to five times the size of the first.

2.3.2.2 Post-tetanic Potentiation

When action potentials arrive close together in time, influxed calcium builds up
within the terminal. This calcium causes release of more neurotransmitter by a
subsequent presynaptic action potential. A high-frequency burst of the presynaptic
action potentials (sometimes referred as tetanus) causes elevation of presynaptic
calcium level, giving rise to another form of synaptic enhancement called Post-
Tetanic Potentiation (PTP). It usually continues a few minutes after the train of
the stimuli ends. The difference in duration distinguishes PTP from PPF.

2.3.2.3 Depression of Transmitter Release

Often the periods of the elevated activity lead to a decline in postsynaptic sig-
nal amplitude during repeated stimulations. This process is known as Paired-
Pulse Depression (PPD). This state continues from seconds to minutes before
the synaptic strength recovers. As explained in [34], the mechanism is caused by
presynaptic decrease in the release of neurotransmitters that reflects a depletion
of a release-ready pool of vesicles. The phenomenon gains strength also due to

release of adenosine from the activated presynaptic terminals, postsynaptic cells,



Chapter 2 Biological Principles 31

or neighbouring cells. This modulatory substance reduces the number of vesicles.
Finally, desensitization of ion receptors makes the target neuron less sensitive to

neurotransmitters.

Summarizing, synapses exhibit many forms of activity that occur over a broad
temporal range. At the shortest time (seconds to minutes), PPF, PTP, and PPD
provide rapid but transient modifications. Longer-lasting forms of synaptic plas-
ticity such as LTP and LTD are more enduring forms of plasticity and can yield

persistent changes in synaptic strength (hours to days or longer).

2.4 Plasticity Mechanisms

For a long time scientists believed that memories were stored in the synapses,
however, they never found a synaptic model of plasticity to corroborate their

theory.
In 1949 the Canadian physiologist Donald Hebb suggested the basic mechanism

of synaptic plasticity in his postulate, which has been an important milestone for
both neurophysiology and computer science. The suggested mechanism was the
first and the only plausible learning rule for artificial neuron networks. It proposes
the basis of a memory formation and storage process. The postulate describes
how the connection between a presynaptic neuron A and a postsynaptic neuron
B should be modified. The rule states that synapses increase their transmission
efficacy if the presynaptic spike arrives before the postsynaptic neuron is activated.

An often used simplification is those who fire together, wire together.

Basic Hebbian learning rule can be described by the following relation:

Tw% = vu (2.1)
where 7, is the time constant controlling the rate of weight change, v is the
postsynaptic activity evoked directly by the presynaptic activity u (the product
of uv represents the nature of interaction between pre- and post-synaptic spiking
activities), while w is a vector defining all the synaptic weights in the network.
The synaptic weight is a suitable abstract representation of ”synaptic strength“.
Commonly it is treated as a dimensionless variable, as its relation to biophysical

variables is not specified.

Hebb’s prediction was verified decades later with such an advanced technique as
the extracellular micro-electrodes and the explosion of interest in the hippocam-

pus [35]. The direct evidence of activity-dependent long-term potentiation and
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its contribution to behavioural conditioning has been provided in [36]. Synaptic
modifications caused by correlated activity of the involved neurons also has been
observed electrophysiologically in [37]. The influence, long suspected and now
proven biologically gave rise to the rule of synaptic plasticity based on the arrival

times of pre- and postsynaptic action potentials [38].

One further important finding is, that for this type of learning all information is
available at the location of the synapse itself. A synapse is modified as a func-
tion of the activity of only the two neurons it connects. No external teacher is
necessary to employ Hebbian learning: every synapse has information whether a
spike arrived from the presynaptic neuron A or not. An action potential also tra-
verses backwards up the dendritic tree of the firing neuron [23]. So the information
whether the neuron B has fired is also available to all of its synapses. Thus, ev-
ery synapse has all the information of pre- and postsynaptic firing available at its
location. This makes Hebbian rule a likely candidate for the biological plasticity

mechanism.

On a cellular level, the induction of synaptic strengthening is triggered by ac-
tivation of NMDA channels (glutamate receptors), caused by the pre-synaptic
cellular depolarization. Strong depolarization of the post-synaptic cell due to
post-synaptic spike completely displaces the magnesium ions (Mg**). Both neu-
rotransmitter (glutamate) penetration and removal of the Mg*" block allow brief
and strong C'a®*" influx through the NMDA channels. This leads to suddenly rising
level of post-synaptic C'a®* concentration, which initiate molecular process leading

to synaptic enhancement.

2.4.1 Hebbian-type Learning Rules

Several shortcomings arise while applying the Hebbian rule in its present form.
Firstly, Hebb did not specify in details what the term “near enough to excite”
exactly refers to. This addresses the question of when are two neurons considered
as being active together. For a long time it was mostly interpreted in terms of the
firing rates of the two neurons involved. During the last decades many varieties of
Hebbian-type learning rules evolved: conjunctive-type rules, that simply require
pre- and postsynaptic activity at the same time or correlational-type rules, where
synaptic strengthening is dependent on statistical measures like (e.g. covariance
[39]). In contrast to conjunctive-type rules, where a coincident activity of a pair
of neurons to be sufficient to cause synaptic weight modification, a modification

in correlation-type rules takes place only in the case when neuron A consistently
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takes part in firing neuron B.

Secondly, what is a mechanism of decreasing the synaptic weight. During a cor-
relation of pre-synaptic and post-synaptic neurons’ activity, weight growth causes
a higher post-synaptic potential and therefore even more weight growth. This
induces an exponential weight growth and leads to destabilisation of the entire
neuron network. New memories could not be stored and old ones would be oblit-
erated. To solve the described constraints, some modifications of the standard
Hebbian rule were proposed. The most known were to introduce a sliding thresh-
old in BCM rule (Bienenstock, Cooper, and Munro rule [40]), to introduce a
weight decay term in Oja rule [41], and in generalised Hebbian Algorithm (also
known as Sanger’s rule [42]), which is similar to Oja’s rule, but converges to or-

dered principal components.

2.4.2 Spike-timing-dependent Plasticity

With recent advancements in technology became possible more precisely measure
the spike timing of neurons. Evidence has been collected that the synaptic con-
nection between two neurons is more likely to strengthen if the presynaptic neu-
ron fires off shortly before the postsynaptic neuron. Thus, more recent types of
Hebbian learning rules incorporate exact time differences between single pre- and
postsynaptic spikes. It has also been possible to measure the direction and extend
of synaptic changes as a function of the exact activity timing of the presynaptic

and postsynaptic neurons [43].

Using dual patch clamping techniques, Markram showed that the strength of a
synapse increases while repeatedly activating the pre-synaptic neuron 10 millisec-
onds prior the post-synaptic target neuron and decreases if post-synaptic neuron
is activated first [44]. Bi and Poo [5] continued the mapping of the entire time
course relating pre- and postsynaptic activity and synaptic change and observing
similar results within a time window of 20 milliseconds. They stated, that repet-
itive postsynaptic spiking within this time window after presynaptic activation
results in LTP, whereas postsynaptic spiking within this time window before the
repetitive presynaptic activation leads to LTD, Fig 2.5. Additionally, the initial
synaptic efficacy also plays a role: significant LTP occurs only at synapses with
relatively low initial strength, in contrast to LTD where this does not seem to have
any influence. Recent work of Dan has advanced study of the phenomenon using

in vivo whole-cell recordings [45].
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FIGURE 2.5: Variation in amplitude of excitatory postsynaptic current (EPSC)
as a function of action potential arrival times. At = t,,5t — tpre, the sending
times of postsynaptic and pre-synaptic neurons [5].

It was established that C'a®" plays a crucial signalling role both in synaptic weight
potentiation and depression [46]. But it is a rise time and a decay time as well as
a peak level of the C'a?* influx, which determine plasticity outcomes. After pre —
post spike pairing the calcium ions enter through NMDA receptors (which rapidly
allow high volume of ions) and yield synaptic weight potentiation. Post — pre spike
pairing leads to C'a*" influx through post-synaptic voltage-gated channels (which
allows a moderate volume of ions) and induces depression of synaptic weight.
Biochemically, this picture of Ca?-level determinism is based on the differential
activation thresholds of CaMKII kinase enzyme and phosphatase (calcineuron),

both responsible for inducing the opposite synaptic modifications.

Due to such spatiotemporal dynamics, the model is called Spike-Timing-Dependent
Plasticity (STDP). It enables the system to assign credit to those synapses that
are actually responsible for generating the postsynaptic spike. This is implemented
through setting the sign and magnitude of synaptic modification based on the pre-
cise timing of pre-synaptic and post-synaptic spikes. The rule is directly in line
with the Hebbian hypothesis. Besides, it supplements the hypothesis by address-
ing the questions of when are two neurons considered as being active together and

determining an exact amount of synaptic modification.

Different types of computational models has been proposed based on STDP, and
differ by their implementation (in particular how synapse weights saturate to their
minimal and maximal values). All computational models can be divided into

biophysical models and computationally-efficient models.
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Biophysical models follow exact biophysical and biochemical pathways and are
crucial to understand the biological mechanisms underlying synaptic plasticity.
They give an interpretation of internal variables in terms of the internal state of
NMDA receptors and secondary messengers (e.g. [47]) as well as calcium con-
centration and backpropagating traces of action potentials (e.g. [48]). Due to
detailed reproduction, they are able to reconstruct more complex paradigms of
interaction between pairs of pre — post spikes (e.g. nonlinear interactions of spikes

and frequency-dependence of STDP).

On the other hand, computationally-efficient models reproduce the dynamics of
STDP without necessary referring to biological mechanism. They are amenable
to mathematical analysis and used in analytical and simulation study. One of
simplifications is an additive plasticity, where spike pairs are considered equally:
based on the time between the spikes all the synaptic changes are calculated and
summed linearly (e.g. [49]). Spike pairs contribute until an upper or lower bound
is reached, leading to a bi-modal weight distribution (e.g. [50]). Although some
of the models use multiplicative approach, where the magnitude of the synaptic
change depends on the current synaptic weight. In this way weight contributions
diminish as weight approaches its limit, providing a smoother form of saturation

and a stable, unimodal distribution of synaptic weights (e.g. [51]).

Nowotny et al. [52] proposed a learning rule based on the experimental recordings
of Bi and Poo [5]. According to [52], the weight change of a synapse Aw(At) is
defined by the equations:

At b

Aw(At) = Ay — xe ™, where At >0 (2.2)
T+
At —At

Aw(At) = A_— xe ™ , where At <0 (2.3)
T_

where At = t,050 — tpre is the difference in postsynaptic and presynaptic spike
times, 7. and 7_ determine the width of the learning windows for potentiation
and depression (often chosen 7, = 7. = 20 ms), respectively, and the amplitudes

A, and A_ determine the magnitude of synaptic change per spike pair (often
chosen A, = 0.1 and A_ = -0.12).

The value of A_ often taken larger than the value of A, so that depression is
stronger than the potentiation to ensure that the weights of uncorrelated pre- and
post-synaptic connections go slowly to zero, while the weights of strongly corre-
lated connections are strengthened. More about the choice of STDP parameters

can be found in [50].
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Obviously the only consideration of the temporality of the action potential can-
not be sufficient to fully explain the phenomenon of memory, which is associ-
ated with synaptic plasticity [53]. The modulation of STDP by a third factors
(e.g. dopamine) turns the learning mechanism from unsupervised learning into
a reward-based learning paradigm. The synaptic strength defines the ease with
which a signal traverses the synapse and is represented by a number and size of
synaptic receptors and the amount of neurotransmitter, participating in a process.
The amount of neurotransmitters released into the synapse varies depending on
the amount of available neurotransmitters and the storage capacity of vesicles.
All interacting parameters cause variations in the forms of impact and operate at

various time scales.

2.5 Summary

In order to simulate a neural network, it is important to understand the dynamics
of biological neurons and their collective behaviour as a population of neurons

interconnected in a network.

Like many biological cells, a neuron has a cell body, which contains a nucleus
and the metabolic structures required to maintain the cell. There are two sets
of processes extending from the cell body, which are collectively referred to as
neurites. These consist of the dendrites, which receive signals and the axon, which

transmits them.

The electrical signals in the neural system are called action potentials. They are
caused by the ions (sodium and potassium) flowing through specialised channels
to change the voltage across the membrane. Neurons communicate through the

specialised structures called synapses, which can be either excitatory or inhibitory.

The ability of the synapse linking two neurons to change in strength is one of the
important neurochemical foundations of learning and memory. It is not an unitary
process but rather many processes on the different time scales representing long-

term and short-term plasticity.

Hebbian theory describes the mechanism for synaptic plasticity. However, it can-
not be sufficient to fully explain the phenomenon of learning and many varieties
of Hebbian-type learning rule evolved. Recent research revealed spike-timing-
dependent plasticity, which in a sense is an extension to the Hebbian postulate. It
allows modelling more biologically plausible and sophisticated neural networks and

provides the answers to shortcomings of the Hebbian rule, supplementing it (e.g.
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precisely defining when two neurons are considered as being active together, spec-
ifying a mechanism of decreasing the synaptic weight, and evaluating an amount

of synaptic weight modification).

Nowadays the STDP process represents a tentative candidate for a hypothesis that
fully explains the development of an individual’s brain. However, the complexity
of described plasticity mechanism has certain restrictions on our ability to model,
firstly, due to the lack of available information and secondly, due to the lack of

computing power required for simulation.



Chapter 3
Modelling and simulation

The beginning of this chapter describes the different sources of information about
the biophysical parameters and functional behaviour of neurons (Section 3.1).
Section 3.2 explains the basic models of neurons that are used in most experiments.
Their advantages and disadvantages are outlined and the best models for creation
of large-scale neural networks are selected. However, the focus is only on those
features of neurons and synapses that are most relevant for understanding of the

computational models used in the coming chapters.

Later, Section 3.3 overviews the simulation strategies and techniques, particularly
paying attention to the information propagation mode in various network mod-
els (Section 3.3.2) and the influence of modelling techniques on the efficiency of

network simulation (Section 3.3.3).

Section 3.4 gives introduction to the field of distributed computation and dis-
cusses commonly addressed issues along the benefits and challenges of using the
distributed hardware for neural network simulation. A review of available ar-
chitectures for distributed neural network simulation is presented in Section 3.5,
emphasizing the benefits and shortcomings of each of them. Finally, there is an

overview of the existing simulation environments in Section 3.6.

38
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FIGURE 3.1: Two interconnected cortical pyramidal neurons and in vitro
recorded spike.

3.1 Information Sources

While making an attempt to implement the neural network simulator one faces
the challenging problem of selecting the most appropriate neuron model to use.
On the one side, neurobiologists are trying to understand the principles of neural
activity. For instance, how it is structured, how it develops, how it works and
malfunctions, and how it can be changed. On the other side, computer scientists
are questioning what computational models could describe the activity of a neural
system the best. What problems can be solved with certain architecture of a
neural network with certain types of neuron models connected to each other?
What tasks can be solved therewith? Does a certain model give an explanation
for various activities, for example in a human brain? These problems are especially
acute while implementing a neural system with a large number of highly-connected

neurons.

3.1.1 Biological Sources

Neurobiologists study a neural behaviour based on observation of changes in neu-
rons firing rate during experimentally controlled stimulation. Through the emer-
gence of new powerful measurement techniques neural behaviour can be obtained

in several ways:

e by detecting the action potential issued by a neuron using an intracellular

electrode, as shown in Fig. 3.1;
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e by MultiElectrode Array (MEA), or microelectrode array, where neuron
signals are obtained through multiple plates. They are grouped into im-

plantable MEAs (used in vivo) and non-implantable MEAs (used in vitro);

e by Local Field Potential (LFP), where the neuron’s potential changes in a

restricted area of the brain are recorded using an extracellular electrode;

e by ElectroEncephaloGrams (EEG), where electrodes are placed on a scalp

recording the potential changes in large areas of the brain;

e by functional Magnetic Resonance Imaging (fMRI), where observations of
changes in brain blood flow indicate the changes in electrical activity of
underlying cortical areas, which is caused mainly by the exchange of action

potentials between the neurons.

Even with such kind of advances, it is still difficult to determine parameters of
biological networks, for instance, such as connectivity or synaptic weighting. Be-

havioural modelling can be a powerful ally for studying the nervous system.

3.1.2 Computational Sources

Many different models of neurons have been created despite the fact that the
understanding of the neuron’s structure and particularly the neuron’s function at
the network level are still limited. Notwithstanding the fact that many of them
provide a weak link to the underlying biophysical processes, they are still valuable.
These models allow performance of certain experiments via computer simulation

that would be impossible to carry out in vitro.

The pioneering work of Turing [54], McCulloch and Pitts [55] proposed a neuron
model (called the McCulloch-Pitts neuron) trying to prove that neurons are able
to handle basic logic functions. They assumed that complex functional capacity
observed in the brain (such as attention or consciousness) could emerge from a
proper arrangement of a large number of neurons each performing a basic logical
gate operation. The state of the neuron can be either “active” or “inactive” and is
computed as the sum of all neurons’ states connected to the input of the neuron,
as shown in Fig. 3.2. Remarkably, networks of such a simple connected communi-
cation elements can implement a range of mathematical functions, relating input
states to output states. Using algorithms for setting the weights between neurons,

these artificial neural networks can “learn”.
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FIGURE 3.2: Simplified neuron model. If the sum of the inputs weighted by w;
exceeds the threshold 6, then the output y; of the neuron is different from 0.

However, the limitations of these early networks were amply recognized, such as
an inability to classify patterns that are not linearly separable in the input space,
e.g. XOR funcion [56]. To alleviate these issues, the models with a sigmoidal
shape transformation function were developed, creating a graded response instead
of original binary thresholding computation. The diversity and complexity of
neural processing were reduced to the mere notion of a rate at which a neuron
generates spikes. The idea is that when a neuron receives an increasing number
of spikes, the higher number of spikes is more likely to be emitted by this neuron.
Taking this approach, some of the deficiencies of the earlier neural networks were
overcome, such as an ability to learn computing the XOR function, produce pattern
recognition and classification or perform unsupervised clustering. The importance
of including the changes in neurons firing rate in visual processing has been shown
in the work of Hubel and Wiesel, which describes the way signals from the eye
generate building blocks of the visual scene (e.g. edge detectors, motion detectors,

stereoscopic depth detectors and color detectors) [57].

3.2 Neuron Models

Currently, all neuron models can be divided into two major categories according

their plausibility and computational efficiency:

e Biophysically detailed;
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e Computationally efficient.

A biophysically detailed model (as example, Hodgkin-Huxley model [11] or Morris-
Lecar model [58]) plausibly models the real neuron and accurately reproduces
all the processes that are taking place inside of the neuron. Their parameters
(such as membrane potential, conductance gating variables or concentration of the
intracellular substances) are biophysically meaningful and measurable. But their
major problem is that a significant computation is involved in managing synaptic
messages and simulation of post-synaptic currents. That is why implementation of
such models for large-scale neural networks is extremely expensive and simulation
time is greatly prolonged. For this reason they will not be extensively described

in this work.

Neurophysiological scientists are using biophysically detailed models to simulate
small neural networks in order to most plausibly reconstruct the biological pro-
cesses occurring in a central nervous system (i.e. brain and spinal cord), revealing
the functions and behaviour of different parts of the system. Utilizing biophysically
detailed neuron models provides more flexible and realistic behaviour of artificial

neural networks. However, at the same stage certain challenges arise:

e Processing time is long even for a relatively small networks due to inten-
sive computations required while simulating biologically realistic network.
However, this challenge is partly solved with employing distributed system

running simulation concurrently.

e Complex dynamics is involved in the complex behaviour of the network,
which should be understood and effectively managed. This is a complex
issue as a network dynamics is constantly changing at some level without

have a ‘stable’ state.

e Limited knowledge significantly restricts researcher’s efforts as an artificial
neural network is relatively recent development. Neurophysiological knowl-
edge cannot be easily integrated into the existing models and still many
methodologies should be developed and adapted before providing opportu-

nity to construct realistic brain-like model of a neural network.

Computationally efficient models do not have the computational drawback. This
is achieved at the price of direct mapping between biophysical parameters of a real
neuron and the corresponding parameters of the model. Despite their poor bio-

physical conformity, they are very popular among engineers due to computational
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FIGURE 3.3: Action potential generation in the Hodgkin-Huxley model.

efficiency. Computer scientists and engineers leave a lot of biological complexity
behind and work with more abstract neural models in order to construct large-scale
neural networks. The most significant biophysically detailed and computationally
efficient models and their applicability to large-scale network simulations are dis-

cussed below.

3.2.1 Biophysically Detailed Models

In 1952 Hodgkin and Huxley [11] performed experiments on the axon of the giant
squid and proposed a neuron model, derived from studies on the mechanisms re-
sponsible for generation of an action potential in a neuron, which earned them the
Nobel Prize (HH model). This neuron model is the most complex but also the most
precise existing to date. It consists of four coupled differential equations express-
ing the dynamics of the membrane potential V,, of the neuron. This corresponds

to the potential difference between the neuron and the external environment.

Vi is a function of input current I+ applied to the neuron when it is stimulated,
as shown in Fig. 3.3. Currents Ix and Iy, are generated by the movement of K+
and Na™' ions through the membrane and the leakage current I;, representing
movements of C'l~. Each of these currents is based on the difference between

the membrane potential V,, and the reversal potential Fy,, Ex and E;. The
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membrane potential of a neuron is described by the equation [11]:

dv,,
Cm? = _INa - ]K - ]l + ]inject
]Na - gNamSh(Vm - ENa)
]K = gKn4(Vm — EK) (31)
I = gz(Vm - E)

where (), is the specific membrane capacitance, g;,i € {K, Na,l} are constants
and the parameters h, m and n describe the probability of opening/closing of ion

channels: sodium h and m and potassium n.

The big drawback of this model is its complexity. Indeed, the coupling of four
differential equations makes it extremely difficult to build large networks from such
a neuron model. For that reason the HH model usually is used for simulation of
one or a couple of neurons. It is necessary to simplify the HH model for simulating
at least several hundred neurons for the purpose of studying their dynamics or the

plausibility of interaction.

3.2.2 Computationally Efficient Models

One of the simplest and most widely used one-dimensional mathematically effi-
cient models is the Leaky Integrate-and-Fire (LIF) neuron model [6]. It acts as
a simple incoming spike integrator and compares the sum with a fixed threshold.
Comparing to the HH model, LIF model provides the action potential’s represen-
tation by an instantaneous pulse. Such an instantaneous pulse marks a certain
point on the time axis but does not contain any information either in its height
or in its shape. In mathematical notation, an action potential is given by a delta

pulse at a certain time point (¢ — ¢;).

V' =T4a—bv,if v> Vppesh, then v« c (3.2)

where v is the membrane potential of the neuron, [ is the input current represent-
ing the post-synaptic potential received by the neuron (and/or current applied to

the neuron), vypes 18 @ threshold voltage and a, b, ¢ are constant parameters.

This model needs only five mathematical operations to perform one iteration.
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However, the model does not provide realistic behaviour close to the threshold
and reproduces only some characteristics of a conductance based neuron(e.g. pha-
sic spiking, any kind of bursting, rebound responses, any threshold variability,

bistability of attractors, or autonomous chaotic dynamics) [59].

Some improvements to that model have been made at the cost of a second equa-
tion describing activation dynamics and adding five mathematical operations to

implement spike frequency adaptation and after-potential depolarization [6]:

vV'=T4a—bv+g(d—)

ed(t) —
T
The idea is to use an activation gate ¢g that increases after each neuron’s firing via
the Dirac delta function 6 and produces an outward current, slowing down tonic

spiking frequency.

Bursting properties and some other implementations, like phasic spiking, rebound
spiking and bistability of resting and spiking states have been added by Smith and

co-authors in the Leaky Integrate-and-Fire-or-Burst neuron model [60]:

v'=I+a—bv+ gH(v—uvp)h(vr —v)

1f U= Uthresh, then v« c (3.4)
1 ;_il ) Zf V> Up
=19 (-n 4
5 lf v < v

Here h “ shows the dynamics of the calcium current, H is a Heaviside function and
g, v, v7, 7T, and 7~ are parameters describing the current dynamics. The price
for that is thirteen mathematical operations per iteration, which could be a crucial

factor for a very large-scale network.

A simple and efficient analogue of the leaky integrate-and-fire neuron model was
presented by Izhikevich [61]. It belongs to a resonator type of neuron models. In
contrast to integrators (found among cortical neurons), which perform temporal
integration of the incoming spike trains until the threshold is not reached, res-
onators (found among thalamic neurons) produce a response when stimulated at

the resonant frequency. The Resonate-and-Fire model is described by the follow-
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ing equations:

R P
T
., a w
= Ty -2 3.5
w Tw(v Veg) - (3.5)

Here, v, is the equilibrium potential, v represents the membrane potential, which
is reset whenever it reaches a firing threshold. The recovery variable w charac-
terises the membrane dynamics, 7, is the time scale of the dynamics of the w
variable, and 7, a and ¢ are parameters. This model is able to represent sub-
threshold damped oscillations of membrane potential (threshold depends on the
prior activity of the neurons) and resonance (neurons can respond selectively to the
inputs of similar frequency with subthreshold oscillations) as well as autonomous
chaotic activity. To implement a resonate-and-fire neuron model one needs 10

floating operations per one iteration.

Another alternative is the Quadratic Integrate-and-Fire (QIF) neuron model, also

known as the theta neuron [62]:

Ul =1 + a(v - 'Urest)(v - Uthresh)

if V= "Upeak, then v Upeset (3.6)

where v, is the resting membrane potential and vy.esn is the threshold value
of the membrane potential. This model can represent spike latency, threshold
variability (which is vy.esn only if I = 0) and bistability of resting and tonic
spiking modes. This is quite a limited model in terms of plausibility and it needs
seven mathematical operations for performing one iteration. Quadratic integrate-
and-fire model could be a reasonable substitution for the basic integrate-and-fire

model implementing a large-scale network.

Izhikevich presented another model [7], successfully reproducing the behaviour
observed in many biological neurons. His model is based on the Fitzhugh-Nagumo

model [63, 64] and is described by the following coupled differential equations:

v =0.040° +50+ 140 —u+ 1T
v = a(bv — u) (3.7)
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where v and wu are dimensionless variables, which correspond to the membrane
potential and the recovery of the membrane. The Eq. 3.7 and Eq. 3.8 represent
the behaviour of the membrane’s voltage and the recovery variable after reaching
the action potential’s peak value (+30 mV) or any higher value. The rest value
is dynamic and is located between -70 and -50 mV. After the potential reaches a
threshold (4+30 mV’), the membrane potential and the recovery variable are reset,
as shown in Eq. 3.8. The part 0.04v% + 5v + 140 — u + I is chosen empirically to

scale v to mV and time to ms [6].

Various choices of the a, b, ¢ and d parameters result in various intrinsic firing
patterns, Fig. 3.5. Izhikevich states in [7] that his model can exhibit all known
types of firing patterns in case of the proper choice of a, b, ¢ and d parameters, Fig.
3.4. Tt is necessary to perform 13 floating-point operations to execute one iteration.
The computational load is similar to the integrate-and-fire-or-burst model, but
the behavioural properties produced by the Izhikevich model are closer to those
observed in Hodgkin-Huxley-type models and therefore it is a more desirable model

for neural network simulations.

Despite the coupling of its two differential equations, this model is relatively simple
compared with HH-type models and is particularly suitable for simulations of

spiking neural networks [6].

As a result of different computationally efficient neurons’ models review, it is nec-
essary to emphasize that only few of them are widely used: one-dimensional leaky
integrate-and-fire model [6], requiring only 5 mathematical operations per one it-
eration and opposite both in computational complexity and the variety of the
behavioural properties to the Izhikevich model [7], requiring 13 mathematical op-
erations per one iteration. The former one is widely used due to its facilitated
mathematical analysis of neurons population and its computational efficiency.

Comparison of the all above described models is in the Table 3.1.
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Models

LIF

=

LIF with
adaptation

LIF-or-
burst
[60]

Resonate-
and-fire
[61]

Quadra-
tic LIF
[62]

Izhike-
vich

tonic spiking

+

+

+

phasic spiking

_I_

tonic bursting

phasic bursting

|+ =

mixed mode
(bursting
then spiking)

+

spike frequency
adaptation

+

class 1 excitable

class 2 excitable

++

spike latency

subthreshold
oscillations

+

+ |+ +|+

resonator

integrator

rebound spike

4|+

rebound burst

++|+

threshold
variability

[+

bistability

depolarizing
after-potential

+|+

+|+

accommodation

inhibition-induced
spiking

+|+

inhibition-induced
bursting

chaotic
activity

+

# of FLOPS

10

13

10

13

TABLE 3.1: Comparison of the computational properties of neuron models, after
[6]. Sign “4” means ability to implement and “-” means inability to implement
the given feature by certain model.
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3.3 Simulation Strategies

Simulation is the connecting link between neurophysiological measurements and
theoretical studies. It helps us to understand and to reproduce the behaviour of
biological systems of neurons and to verify functional behaviour of network models.
It also validates or refutes certain assumptions made in neuroscience by employing
appropriate network models. As an example, the study of the network dynamics
(the way a network changes the weights over time) or the distribution of weights
after learning offers an interesting perspective to explore new opportunities of the

brain.

This section reviews the common simulation techniques and approaches used to-
day for neural network simulation. It starts with a review of connectivity rules,
overviews the signal propagation modes and completes with a discussion about

the ways to trail the flow of simulation.

3.3.1 Network Structure

To interconnect neurons in a network, certain connectivity defining rule can be
applied for the entire network or a few rules can coexist in a simulation. One of
the intuitive ways is a fully-connected network, where every neuron is connected
to all other neurons of the network. Each connection is one-way only, so there are
two connections between every pair of neurons. A neuron ¢ through its axon is
connected to a dendrite or a cell body of a neuron j, while the neuron j is connected
to a dendrite or a cell body of the neuron i. A network of N neurons connected
in this way has N(N-1) connections, with the condition that self-connections are

omitted.

The connectivity can be of many other types, such as connectivity controlled by
the Gaussian distribution (for instance, receptive fields of sensory neurons in the
visual system), interconnecting all neurons or randomly connecting neurons in a
network. One popular architecture is the layered network, where the N neurons
are grouped in a number of layers. Starting from the simple concept of a neuron

“layer”, it is possible to define a network model as specific as necessary.

The choice of the term “layer” should not mislead here because it can be con-
sidered as unordered set of neurons or as one-dimensional, two-dimensional or
three-dimensional vector. An interconnection is called an intra-layer if the pre-
and post-connections are in the same layer. Only the applied rules and the con-

nectivity graphic representation (if any) of the network could visually define the
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pattern of connectivity.

An appropriate way of dividing a network into sub-networks and interconnecting
them properly could partially solve the problem of network complexity. This
approach is particularly worth attention in view of the fact that the study of
cortical neuroanatomy shows the repetition of small basic unit topologies in the
cortex. They differentiate by the types of neurons and the neural densities inside.
Some of them are further divided into ‘sub-layers’. Although their function is
still unknown to date [65, 66], the entire neocortex consists of a juxtaposition of
these units, called cortical columns [67, 68, 69]. It is a group of neurons, stetching
vertically through the layers of cortex. Each column encode similar feature and has
afferent input (e.g. from receptive field), efferent output (e.g. to motor neurons),
and intra-cortical circuitry with both excitatory and inhibitory neurons. This kind
of structure has been found in dogs, cats, monkeys, and also in other mammals

both as an anatomical and functional structure [70].

It must be noted that in biological networks neuron inter-connections have a high
level of diffusion and mixing. A single neuron does not have a large influence on
any other neuron and only a group of firing neurons can cause a post-synaptic
neuron to fire. However, it is not a case for all brain areas. For example, in the
cerebellar cortex there is only one cerebellar climbing fibre (one of the two axon
types that enter the cerebellum) per Purkinje cell. This sole climbing fibre is

powerful enough to activate the target Purkinje cell.

While setting up a network, a definition of an optional network structure should
be possible for a generic set of connectivity rules. For instance, it can be defined
in a XML configuration file. This gives an opportunity of creating a wide range
of various network topologies, such as a feedforward topology of a multilayer per-
ceptron, a recurrent topology of a Hopfield network, or a convertible topology of

a self-organizing map.

3.3.2 Activity Propagation

Biological neurons are the actual processing units of the brain. The computation
they do is slower compared to a silicon chip. A network of a large quantity of
these simple units however proves to be very powerful. A silicon-based computer
usually has one or a few processing units, while in a neural network all the neurons
work in parallel. To form this network, on average every neuron is connected with

thousands of other neurons.
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Since the early 80s, many network models based on models of non-spiking neurons
were developed and studied. These network models can be applied to spiking
neurons and their effectiveness has been proven [71]. Generally there are feed-

forward and recurrent networks with several variations.

3.3.2.1 Feed-forward Neural Network

One popular architecture is a feed-forward network, in which activity flows from
input to output and the network topology contains no cycles. The network built
according to this model often is called a layered network because its processing is

based on a succession of neurons layers, as shown in Fig. 3.6.
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FIGURE 3.6: Comparison of the architecture of a feed-forward (left hand side)
and a recurrent neural network (right hand side); the grey arrows sketch the
direction of computation.

In the layered network there is an input layer consisting of N; neurons, an output
layer consisting of Np neurons and a number of hidden layers in between, each
hidden layer consisting of Ny neurons. If the layers are sequentially numbered
starting with the input layer and ending with the output layer, then feed-forward
means that every neuron in layer ¢ has only connections to the neurons in layer j
if 7 > 4. In most cases there are only connections to the layer next to the current
layer: a neuron in layer ¢ has only connections to neurons in layer j if j =4 + 1

(most often every neuron connects to all neurons in the subsequent layer).

Biological observations suggest that the visual cortex of a human brain spreads

neuronal activation as a feed-forward wave [72]. After a stimulus is applied to
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receptive fields of the retina, activation spreads through the cascade of feed-forward
connections between the successive hierarchical levels. Short latencies between
hierarchical levels (about 10 ms [73]) suffice only for a single spike generation per
cortical neuron before activation of the next level [74], [75], leaving no time for any
lateral or feedback connections to exert their effect. The propagation is completed
within approximately 100 ms, which is not enough for detailed scene awareness
but suffices for high-level category-selective information processing (such as object

recognition or categorization) [72].

The radial Basis Function [76] and the Multilayer perceptron [77] in general fall

in the category of feed-forward networks.

3.3.2.2 Recurrent Neural Network

Contrary to feed-forward networks, recurrent neural networks are models with a
bi-directional activity flow. A network is said to be recurrent if there exists at
least one cycle in the network topology. For example, starting from a feed-forward
network, you can add feedback connections, in this way modulating inputs using
the previous outputs (Fig. 3.7 a). This can also lead to connections within a single

layer known as lateral connections (Fig. 3.7 b).
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FIGURE 3.7: Various types of connections in a recurrent networks.

With the recurrency, the network can retain certain level of activity over time,
even in the absence of input. This provides a sort of dynamical memory within
the network, enabling to process temporal context information and to compute
functions that are more complex than just simple reactive input-output mappings.
Self-sustained activation dynamics makes it a dynamical system, whereas feed-
forward networks are functions. This allows a system to incorporate a much richer

range of dynamical behavior.
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FIGURE 3.8: Reservoir computing.

In the narrower context of spiking neuron models, many recent works focus on
better understanding of how to handle these new neuron models to take advantage
of their potential computational power. Many approaches have been elaborated
on this topic. Among them are simple recurrent networks, such as the Elman
network (recurrency through a feedback from the hidden layer, maintaining a
copy of the previous values of the hidden units, see [78]) and the Jordan network
(similar to the Elman network but with recurrency through a feedback from the
output layer, see [79]), self-organizing map (using the competitive learning model
with a neighborhood constraint on the output units in order to produce a certain
topographic map in response to a corresponding input pattern, see [80]), and
associative memory models, such as Hopfield network (using binary threshold units
with symmetric connections, accepting only stationary input and guaranteed to
converge to a local minimum, see [81]) and interactive activation model (consisting
of competitive pools of processing units with excitatory bidirectional connections
among the different pools and inhibitory unidirectional connections within the

same pool, see [82]).

3.3.2.3 Reservoir Computing

Some approaches attempt to express the behavior of neuron populations using
mathematical equations [17, 83]. Other studies use detailed neural networks mod-
els applying a neuron reservoir computing approach, based on treating the recur-

rent part (the reservoir) separately than the readout nodes. Echo State Networks
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[84], Liquid State Machine [85], and Backpropagation—Decorrelation [86] are the
main paradigms of reservoir computing models which significantly facilitate the

application of recurrent neural networks.

The reservoir consists of a collection of recurrently connected nodes. The connec-
tivity structure is usually randomly created, and the units are usually non-linear.
The weights for the connections within the dynamic reservoir are chosen at the
beginning with a random distribution. The overall dynamics of the reservoir is
passively excited by the input signal and also is affected by the past input history.
The desired output signal is generated as a combination of the input and excited
reservoir activities. A rich collection of dynamical input-output mapping is a cru-
cial advantage over simple time delay neural networks. Various dynamics can be
observed while applying a large enough reservoir with sparse connections. This

can be used to compute many complex output functions [87].

The idea behind this is that one does not try to set the weights of the connections
within the pool of neurons but instead reduces learning to setting the weights
of the readout neurons. This facilitates learning dramatically and much simpler
supervised learning algorithms can be applied, for example minimizing the mean
square error in relation to a desired output. Also one of the many available linear
regression algorithms can be used instead of specialized gradient descent based
algorithms, which aim at iteratively reducing the training error and typically are

slow, computationally expensive and can end up in a local minimum.

3.3.3 Modelling Techniques

Despite a steady improvement of computational hardware and ever-growing knowl-
edge about functionality of a biological neuron and its modelling techniques, nu-
merical simulation results are still tightly bound to the selected modelling ap-

proach.

Conventionally, a time-driven approach was used for neural network simulation.
In such an approach, the temporal interval is chosen, during which a system recal-
culates its state. Such an algorithm can be easily coded and applied to any model.
But recently simulation based on event-driven approach has gained recognition
[88], [89]. Modern event-driven methods can be applied to almost every neuron
model and therefore challenge the traditional time-driven methods. Each strategy

has its own assets and constraints.
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3.3.3.1 Time-driven Technique

In the time-driven approach, the temporal interval is chosen, during which a system
recalculates its state, i.e. scrolling all the neurons and synapses of the network
at each time step. Therefore, the precision of simulation depends on the chosen
temporal interval. If the interval is very large, the system can miss some neural
activity and thus the simulation result will not be realistic. Conversely, if the
interval is too small, the computations will overload the system and slow down
the operational speed [8]. Spike timing is aligned to a time grid, thus the simulation
precision is approximate even if the differential equations are computed accurately.
Modern time-driven simulators mostly use 1 ms or less time interval in order to
find the trade-off and to achieve the accurate simulation result [6, 88, 90, 91].
Another drawback of this strategy is the linear dependence of the computational
load on the number of the neurons in the system. Threshold conditions are checked
only at the ticks of the clock and that can lead to some spikes being missed [8].

Time-driven technique can be easily coded and applied to any model.
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FIGURE 3.9: Approximating the value of the membrane potential in time-driven
simulation with every time step At.

Standard FEuler or second-order Runge-Kutta numerical integration algorithms
could be used for spike prediction when the differential system is used for describing
the dynamics of the neurons [59]. However, the spike can occur earlier or later
if, due to the approximation error, the predicted value of the membrane potential
reaches the firing threshold level at an inappropriate time. The overall impact of

such an errors is difficult to determine [92], [93].
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FIGURE 3.10: Change of state in time-driven (left) and event-driven (right)
simulation.

3.3.3.2 Event-driven Technique

In contrast to the time-driven approach, event-driven simulation is free from de-
pendence on the temporal resolution. There is no need for a discretisation of time
other than that enforced by the finite precision of the floating-point arithmetic of
the computer. But it is significantly more complex to implement and less univer-
sal. The simulation environment does not progress step-by-step through time, but
instead jumps ahead to the next event scheduled to occur, as shown in Fig. 3.10.

An event is any occurrence that changes the state of the model.

In a neural network simulation, events include firing of neurons and an arrival of
spikes at synapses. Events cause a change in the state of the system and often
result in the scheduling of other events for some future time. A cell recomputes its
state after every spiking event occurs in the network. Such a method allows time
saving due to skipping of the calculation update step when a neuron does not get

any event.

However, in a large neural networks with high level of connectivity (about 10*
targets per neuron) an event-driven strategy leads to an immense overhead. A
single spike generates up to 10* even objects, which have to be allocated, queued,

sorted, delivered and deallocated. This results in decelerated simulation execution.

While a high activity period of simulation benefits to the time-driven approach
due to the gain in speed when the temporal resolution integrates several events, all
low activity periods advantage the event-driven approach. According to biological
observations, the neurons of a spiking neural network are sparsely and irregularly

connected in space (network topology), and the variability of spike flows implies
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they communicate irregularly in time (network dynamics) with a low average ac-
tivity.

Since the activity of an spiking neural network can be fully described by emis-
sions of dated spikes from pre-synaptic neurons towards post-synaptic neurons,
an event-driven approach is clearly suitable for sequential simulations of spiking
neural networks [94], [88], [95], [89]. Furthermore, a time-driven simulation loses
the order of emission of spikes emitted at the same time interval, which is im-
portant for spike-timing-dependent plasticity and can change the behaviour of the
simulation [96]. In an event-driven simulation, temporal precision only depends
on the precision of the variable used for time stamps and clocks, and even a simple

16 bit variable gives a suitable precision [97].

Modern event-driven methods can be applied to almost every neuron model and
therefore challenge the traditional time-driven methods. However, an event-driven
simulation does have some drawbacks. The state of neurons is only actualized when
events are processed, ignoring the subthreshold variations of the membrane poten-
tial. Although it is possible to make a prediction of the spike emission date when
the behaviour of the neuron is described by several differential equations and/or
when synaptic impacts are not instantaneous [95]. Such a prediction implies heavy
computation costs, and a mechanism must control a posteriori the correctness of

the prediction.

Event-driven simulations are most appropriate where all activity can be broken
down into events that take place instantaneously, allowing the simulation to bypass
all the time between events when nothing changes. This is the case of pulse-coded
integrate-and-fire models, but not the Hodgkin-Huxley type of models. Thus, the
event-driven approach substantially reduces the computational cost of simulators
that control exchanges of dated events between event-driven cells, without check-
ing each cell at each time step. However, the system’s average activity increases
with the number of neurons employed in the network. This is why the number
of spiking events is large in the large-scale networks as network activity increases
with growing number of neurons. Use of the exact time of the event can noticeably
complicate the system’s state computation. That fact can be crucial for large-scale
networks. However, applying massively parallel systems can reduce the compu-
tational cost by processing a high number of events in parallel when activity is
distributed among the processing units. Another crucial component is the event

queue management.
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FIGURE 3.11: A. Comparison between time-driven (cd, top: low temporal res-

olution; middle: higher resolution) and event-driven (ed) technique. B. Impact

of simulation strategy on facilitation and depression of synapses. C. Differences

in the synchronous event occurrence for various temporal resolutions. D. Small

differences in spike times can accumulate and lead to severe delays (top, arrow)
or even cancellation (bottom, arrow) of spikes (modified from [8]).

3.3.3.3 Temporal Precision

Rudolph and Destexhe [8] made their experiments with the temporal develop-
ment of individual synaptic weights employing both time-driven and event-driven
strategies. They stated that a an inappropriately chosen temporal interval can
significantly influence the accuracy of simulation, producing severe delays that
eventually lead to additional spikes or spike cancellations. Comparing the weight
development for specific synaptic channels, the authors report that both simula-
tion strategies present dramatically contrasting results. Time-driven simulation
leads to about a 10 % higher firing rate compared to the event-driven simulations
over the whole simulated window (applying 0.1 ms temporal precision). Fig. 3.11
shows that small differences in the precision of synaptic events can have severe

impacts.
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Concluding this section, it is important to point out that any network can be
divided into sub-networks, or layers, with extra-layer and intra-layer connections.
The network can propagate data in a feed-forward mode sending data from input
to output without any cycles or in a recurrent mode with a bi-direction data flow,
which provides a sort of memory within the network. Reservoir computing is an
example of a recurrent network, the dynamics of which is driven by the input and is
also affected by the past. Despite discrete event-based simulation’s drawbacks, this
approach is more advanced, because of the higher precision of simulation (every
event is fixed during simulation) and lighter computation (spiking activity is not
a uniform process and on average the number of spiking events is smaller than
in the time-driven approach). Also, the computational cost can be significantly
reduced for the networks with uniformly distributed activity, by implementing on

massively parallel systems.

3.3.4 Learning Paradigms

There are several learning paradigms organized into a taxonomy corresponding to

a particular abstract learning task.

3.3.4.1 Supervised Learning

Supervised learning is widely used in conventional neural networks based on thresh-
old or sigmoid neurons (Perceptron [98], Adaline [99], backpropagation multilayer
perceptron [100]). The idea is to infer a function from pairs of input object (typi-
cally a vector) and a desired output supervisory signal, which constitute a training
data. The inferred function evaluates the difference between a calculated output
vector and expected output vector and is either a classifier (for discrete output) or
regression function (for continuous output). The least squares or gradient descent

methods are the most convenient for supervised learning.

The simulations using supervised learning are generally divided into two phases:

1. A learning phase, during which the weight vector is modified according to

the chosen method applying the example set of patterns.

2. A generalization phase, during which the weight vector is set to the values,
obtained after the learning phase and the network is applied to the processing

of the non-learned patterns.
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The achieved learning quality is evaluated by the network’s ability to generalize
[101]. For instance, in classification, the examples used during the learning phase
must be determined so as to enable the network to efficiently approximate the
various classes. The neural network performs a separation of possible entries into
several clusters whose form and number depends on the used type of neurons and

the network size.

The main disadvantage of this type of learning is that although a network will be
able to generalize to achieve the task in the particular manner, it will not be able

to explore novel ways to achieve its goals.

3.3.4.2 Reinforcement Learning

Reinforcement learning is another training method that is capable of learning goal-
directed behaviour. It differs from standard supervised learning in that correct
input and output pairs are never presented nor sub-optimal actions are explicitly
corrected. The network is guided by a reward function, which is unalterable and
defines what is objectively “good” and “bad” so that learning is conducted through

trial and error.

Reinforcement learning can be categorized into three classes: actor-only networks,
critic-only networks, and actor-critic networks. Actor-only networks [102, 103]
learn the policy directly by adjusting their parameters as indicated by the rein-
forcements signal. Critic-only networks [104] learn an approximation of the value
function, which is then used to derive the policy. Actor-critic networks combine
the above two by feeding the output of the critic network to the actor network

[105).

Reinforcement learning is particularly well suited to problems, which include long-
term versus short-term reward trade-off. The method has been used successfully
to train neural networks in a number of domains such as controlling an inverted

pendulum [106] and landing an aircraft [104].

3.3.4.3 Unsupervised Learning

Unsupervised learning includes a wide spectrum of learning methods. The pro-
cessed data in unsupervised learning is not associated with desired outputs, unlike
supervised or reinforcement learning. Some forms of unsupervised learning ob-
served in biological neural networks are outlined in the Hebbian law. The law
states that the joint activation of two connected neurons strengthens their con-

nections and thus facilitates their joint activation in the future (see 2.3).
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Hebbian law has been implemented in various forms, start from the Hopfield net-
work [81], self-organizing map [80] and adaptive resonance theory [107]. More
recently, this law has often been revised in a temporal context: modelling of spik-
ing neural networks directly exploit these principles to model a form of synaptic

plasticity as a rule of unsupervised learning [49].

Summarizing, learning algorithms can be grouped into supervised, reinforcement
and unsupervised learning. A supervised learning algorithm generalizes from the
training data to unseen situations in a “reasonable” way. Reinforcement can be
defined as the trial-and-error “law-of-effect” learning, which balances between ez-
ploration of unknown states and actions and ezploitation of current knowledge.
Unsupervised learning does not require pre-defined output data and usually is ap-
plied for the tasks with known learning input samples while searching for relations
among system’s stimuli and responses. In our project we combine reinforcement

and unsupervised techniques based on the biological inspirations described below.

3.4 Distributed Computing

Although the use of a single-core computer is possible in principle, execution of
the simulation on multiple cores is beneficial for a very large neural network for

the following reasons.

Need of Communication Network First of all, the very nature of the neu-
ral network requires the use of a communication network that connects several
computational units. This happens because the data is produced in one physi-
cal location and is sent to another. Therefore it is more cost-efficient to obtain
the desired level of performance by using a cluster of chips, each making its own
computation in comparison with a single chip performing all the computation it-
self. One can reduce the execution time by up to a factor equal to the number of

processors that are used [108].

Faster Execution Biological systems are slow comparing with modern com-
puters, operating at several GHz. However, the massive population of neurons,
high density of connectivity, and high frequency of interactions compensate their
natural slowness. When implemented on distributed hardware, neuron networks
take full advantage of their inherent parallelism and run orders of magnitude faster

thus becoming appropriate for real-time applications.
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Computational Reliability = Another reason is increased tolerance to failures
and thus computation reliability, enabling a system to continue operating properly
in the event of one or more faults within some of its components. A distributed
system is more reliable than a non-distributed one, as there is no single point of
failure. If one processor fails, it may be possible for other processors to continue
the simulation provided critical elements do not reside on the failed processors or

dynamically redistribute to the working nodes.

Scalability  Additional interest for supporting such a type of computing gives
high scalability due to the fact that a distributed system may be easier to expand

and manage than a monolithic uniprocessor system.

Enough On-chip Memory Finally, there is a prospect of using a number
of processors, each with a high enough on-chip memory. This makes possible
to simulate large networks with high accuracy of the neuron model, giving the

opportunity to implement and investigate learning dynamics.

3.4.1 Distributed Simulation Challenges

Distributed computation of separate network segments comes at the cost of addi-
tional distribution-related communication. It is obvious that a distribution bene-
fits only from a certain network size as the layout of the network generally takes
computing time for communication between processors. Moreover, an uneven
computation load distribution among sub-processing units further burdens the
simulation speed. Evenly distributing the computational load and using the tech-
niques to reduce communication among the involved processing units significantly

improves simulation speed and facilitates program maintenance.

Another issue concerns a distribution of the information, required for computation.
In a sequential system with a single processing node all information is stored in
the system memory. Conversely, in distributed system with multiple processing
nodes keeping some part of information remotely from a processing node causes

inefficiency and optimization is necessary before mapping.

In the case of a neural network simulation, however, the physical mapping prob-
lem is simplified because each individual neuron is a self-contained unit, and all
communication is limited to the short-lasting impulses carrying no information in

their shape or size, but the time of spikegeneration. But issues such as storage,
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communication mode and synchronization still should be addressed before work-
load distribution by mapping a neural network onto different hardware processing

units.

3.5 Available Architectures

The last 50 years have witnessed considerable research in the area of neural network
implementation on distributed systems, resulting in a range of various architec-

tures. Here we overview the most popular of them.

3.5.1 Parallel Computers

Parallel computers are typically classified into two categories, namely Single Instru-
ction, Multiple Data (SIMD) and Multiple Instruction, Multiple Data (MIMD).

textbfSIMD usually has a high number (10%) of very limited-functionality process-
ing elements that all execute the same instruction (i.e. program). In this way such
machines exploit data level parallelism. This type of computer was dominating
the scene until the MIMD class of computers became more powerful, and interest
in SIMD waned.

MIMD are usually built with a moderate number (10?) of general-purpose pro-
cessors that function asynchronously and independently. At any time, different
processors execute different instructions on different pieces of data. MIMD ma-
chines can be of either shared memory or distributed memory categories. These

classifications are based on how MIMD processors access memory.

In the shared memory MIMD model (MIMD-SM) all processors are connected
to a “globally available” memory. Shared memory model is less flexible than the
distributed memory model (MIMD-DM), where each processor has its own indi-

vidual memory location and no direct knowledge about other processors’ memory.

In the distributed memory MIMD model (MIMD-DM) a message must be
passed from one processor to another in order to share some data. Since there is
no shared memory, data contention is not as great a problem with these machines.
Thus, in recent years interest in applications exploiting MIMD-DM architectures
is growing. The communication between the nodes is explicitely included in the
program by calls to a communication API (e.g. MPI or PVM). The most common
form of MIMD-DM network architecture is a workstation, where each machine has

its own physical memory.
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A combination of shared and distributed memory is possible when each machine’s
processing unit is operated as such in the designed distributed system. It is also
possible to use distinct light-weight multiple processes (or threads) on each ma-
chine. In this case, some messages are sent over the network to other processors

while other will be sent via the local memory between the threads [109].

3.5.1.1 Single Program Multiple Data

Most often tasks are split up and run simultaneously on multiple autonomous
processors executing different portions of program on different data. Each pro-
cessor executes part of the code according to its identification number. Different
instances of the program communicate with each other by exchanging messages.
This mode, which uses the same program executing different data on each proces-
sor is named Single Program Multiple Data (or SPMD) and is a subcategory of
MIMD.

3.5.2 Application-Specific Integrated Circuit

Application-Specific Integrated Circuit (ASIC) traditionally referred to as neuro-

processor or neuron chip [110, 111].

A notable example of an ASIC is the Blue Brain Project, using the IBM Blue
Gene supercomputer with 8000 CPUs to simulate neurons with STDP learning in
software [112]. The distinctive feature of the project is its goal to simulate the
ion channels and processes of neurons at the fine-grain compartmental level with
a high degree of biological realism. A 10000 neuron model of a neocortical column
of a 2-week-old rat was successfully simulated on the Blue Gene platform. This
part of the somatosensory cortex is the smallest functional unit of the neocortex,

which is thought to be responsible for higher functions, such as conscious thought.

Another notable example of a flexible application-specific integrated circuit is the
SpiNNaker neuromorphic hardware, which provides a universal platform to simu-
late large networks in biological real time [113]. As well as IBM Blue Brain Project,
SpiNNaker represents a new breed of cluster computers where the number of pro-
cessors, instead of the computational performance of each individual processor, is
the key to high performance. It uses highly-parallel computing distributed on 20
identical ARM968 processing subsystems with high-bandwidth inter-process com-
munication through the self-timed links. The key feature of SpiNNaker design is

fault tolerance. The basic approach is a combination of redundancy and reconfig-
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urability, so that the work of any failing processor can be dynamically re-mapped

without harm to the whole system.

However, developing custom ASIC devices for neural networks is both time con-
suming and expensive. These devices are also inflexible as a modification of the
basic neuron model requires a new development cycle to be undertaken; unless a

flexible neuromimetic system is developed, such as SpiNNaker.

3.5.3 Field Programmable Gate Array

Another type of dedicated hardware architecture is the Field Programmable Gate
Array (FPGA), which compromise a large number of logic cells with rich inter-
connectivity resources. Due to the reconfigurable nature of the device, the em-
ployed neuron model can easily be modified and a new bitstream generated and
downloaded an unlimited number of times. Several concepts for neural network
implementation have been created on FPGAs ([114], [115], [116]).

The fundamental problem limiting the size of neural network realization on the
FPGA is the cost of implementing the multiplications associated with the synaptic
connections. A fully parallel neural network requires a large number of multipliers,
which limits the size of the network. Several techniques were proposed to enlarge
the density of the neural network realization on FPGA hardware. The use of
weights with values limited to powers-of-two has been proposed to avoid the use
of multipliers [117]. Distributed arithmetic and lookup tables are applied to im-
prove the efficiency of synapse multiplication [118]. Dynamic adaptive memories
are proposed in order to reduce memory requirement [119]. Finally, a multiplexed
architecture implementation was suggested, minimizing the resource requirement
[120]. These techniques significantly reduce the cost of implementing neural net-
works of reasonably small size, but an efficient implementation of neural networks

with a large number of neurons on FPGA remains a challenging task.

3.5.4 Graphics Processing Units

Graphics Processing Units (GPUs) were originally designed to exploit parallel
shared memory-based floating point computation applied to computer graphics.
The single instruction, multiple data architecture (SIMD) of GPUs is gaining pop-
ularity because of their high performance, programmability, and price. Graphics
processing units were primarily designed for high-performance rendering where re-

peated operations are common, due to that fact they outperform general purpose
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CPUs in utilizing parallelism.

Many neural network algorithms have been re-implemented on GPUs. Among
them are classification of the pixels of input images with the feature extraction and
pattern recongition stage [121], and character recognition using a neural network
based on the Izhikevich neuron model [122]. Also, a number of neural network
simulators were created for execution on GPU. Among them are simulators based
on spiking integrate-and-fire neuron model, however omitting axonal delays and
synaptic learning [123], implementing Izhikevich neurons [124], and modelling both

Hodgkin-Huxley and Izhikevich neuron models [125].

The implementation using GPU involves several issues. First of all, the developer
encounters tight constraints, as a graphic card is mainly designed to render a
scene and display it. Also, the programmer should master the fundamentals of the
graphics shading languages that require the prior knowledge of computer graphics.
Lastly, GPUs underperform when either a significant overhead in calculations is

incurred or the algorithm is not sufficiently parallel.

3.5.5 Summary

We overviewed approaches based on custom shared memory solutions, cluster
message passing computing systems, integrated circuits, programmable logic, and
GPU-based computing. Applying SPMD by one-to-one placement of the neurons
or group of neurons into physical components mostly suits our aim,taking into
account the benefits of the architecture, as well as considering cost and time spent

on development.

3.6 Existing Simulation Environments

Two solutions are available to neural network researchers for their experiment:
either developing specific tools or using an already adapted simulator following a
designated procedure. However, the problem of having a biologically realistic size
and complexity in a neural network simulation has been underestimated for a long
time. This reflected in the limited number of powerful neural network simulation

environments used both in industry and academia.

It is difficult to make a proper comparison between different simulation environ-
ments because each is optimal for a given problem. It is interesting to note that

many simulators are able to simulate the same models, allowing simulation results
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to be cross-checked between different simulators and providing greater confidence
in their correctness. However, the codes are not always compatible with each
other, making it difficult to incorporate the findings of others in a different model.
This underlines the need for a more transparent communication channel between

simulators.

Various common programming interfaces acquire popularity in order to reduce
or eliminate the problem of simulator diversity. PyNN Python-based common
simulator interface is one of them, already adapted by several large-scale simula-
tion projects, such as NEURON, NEST, PCSIM, and BRIAN [126]. Nevertheless,
many widely-used simulator tools still are not compatible with any common pro-

gramming interface.

Below is presented an overview of presently most available simulation environ-

ments.

3.6.1 NEURON

NEURON is a highly reputable general purpose simulation environment for mod-
elling both individual neurons and networks of neurons [18]. The program was in-
troduced as a single-cell modelling domain but in the early 1990s it was enhanced
and applied to network models containing large number of both computationally-
efficient and biophysically-detailed neurons, or a combination of both. Later, it
was extended for a distributed execution over parallel hardware. The simulator
can run under Windows, Linux and Mac OS operational systems and is available

free of charge.

The simulator is well-suited to conductance-based models of individual neurons
with complex anatomical and biophysical properties, with extracellular potential
near the membrane, and biophysical properties (i.e. multiple channel types, in-
homogeneous channel distribution, ionic accumulation and diffusion, and second

messengers).

NEURON offers several different numerical integration methods, such as Euler’s
method, the Crank-Nicolson method (providing higher accuracy at little additional
cost), and IDA adaptive integration method (providing the highest accuracy at the
cost of reduced runtime) [127]. The NEURON library is extensible through the
NMODL and Hoc programming languages, which allow users to add new features
to existing mechanisms (i.e. voltage- and ligand-gated ion channels, diffusion and
buffering), as well as developing new descriptions for neuron models that have

analytical solutions [128].
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The simulator earned a reputation for having very friendly interface with a large
number of tools for model construction (such as channel, cell, network and lin-
ear circuit builders), analyzing (such as Import3D, Model View, Impedance) and
simulation control (such as Variable Step Control, Multiple Run Fitter). Besides,
it has an extensive user base with more than 860 scientific articles and books
reporting work that was done with NEURON.

3.6.2 GENESIS

The GEneral NEural SImulation System (GENESIS) is a further example of
a reputable general purpose simulation platform. It was the first broad scale
modelling system in computational neuroscience. The last version (GENESIS

version 2.3) is an open source program for UNIX-based systems.

The system was developed to simulate neural systems ranging from sub-cellular
components and biochemical reactions to complex models of single neurons, simu-
lations of large networks, and system-level models [19]. It is widely used both for
single cell modelling (over 600 research publications) as well as for large network
models (over 20 large-scale neural network GENESIS simulations were reported,

many of which exceed 10,000 neurons per network).

GENESIS is an object-oriented simulation system with a “building block” ap-
proach. Basic building elements receive inputs, perform calculations and commu-
nicate by sending messages to each other. The message content differs according
to the neuron’s own variables and the method used to perform its calculations. A
wide range of neuron models is built in into the program, from abstract integrate-
and-fire model and the simplified Izhikevich model, to the biophysically realistic
and plausible Hodgkin-Huxley model. Additionally, new user-defined GENESIS
object types, or script language commands can be easily added, which is central to
the generality and flexibility of the system. The simulator uses precompiled object
types, rather than re-compiling all the scripts each time. This allows modifying a

simulation while it is running without a significant change in speed.

The Parallel GENESIS (PGENESIS) was created as an extension to GENESIS.
It runs on any parallel cluster, SMP, supercomputer, or network of workstations
where MPI or PVM is supported, and on which serial GENESIS itself is able to

rumn.
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3.6.3 NEST

Neural Simulation Technology (NEST) is a simulation framework for large, struc-
tured networks of neural systems, at the same time maintaining an appropriate
degree of biological detail [129]. The main focus of this simulator is the dynamics
behaviour of large networks, rather than the detailed morphological and biophys-
ical properties of individual neurons [130]. It is a freely available software able to
run on UNIX, Linux, Mac OS and Windows.

NEST is written in an object-oriented style in C++ and a network is regarded as a
hierarchical structure, consisting on abstract atomic and compaund components.
The simulator can be easily extended by adding new models of components (i.e.
neurons and sub-neuronal compartments), or writing new libraries and routines.

New components can be loaded during run-time as the NEST code is modularized.

The program package does not have any built-in graphical interface and data anal-
ysis happens off-line. The analysis can be done using the compatible mathematical

tools, such as Matlab, Mathematica or Python.

The NEST simulation kernel supports parallelization by a POSIX multi-threading
and message passing interface. On spike occurence, the pre-synaptic node simply
notifies the post-synaptic node because the dynamics of synapses are placed on
the post-synaptic side of the connections. In order to ensure causality, all com-
munication is performed in intervals of the minimum propagation delay between

neurons.

3.6.4 BRIAN

BRIAN is a clock-driven simulator for modelling networks consisting of spiking
neurons, primarily aimed at modelling single compartmental model neurons. It is
an open source Python extension package using vector-based computation. Despite
the overheads of an interpreted language, vectorisation techniques allow efficient

simulations.

In BRIAN all the internal variables of the simulator can be directly accessed in or-
der to initialise the network or control it as it runs. Both short-term plasticity and
STDP learning are included for integrate-and-fire (with adjustable threshold and
reset) and Hodgkin-Huxley type neuron models. Linear, nonlinear, and stochastic
neuron models can be easily defined by differential equations using standard math-
ematical notation. Runge-Kutta, linear and exponential (for non-linear models)

Euler methods are implemented for numerical integration. The connectivity of
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a network can be specified either by directly describing connections of each pair
of neurons, or applying all-to-all or random connectivity. Each of the synaptic

connections can have a specific value of the propagation delay.

Brian includes several functions for spike train statistics. Python scientific libraries
allow fast data analysis and processing with the NumPy and SciPy numerical and
scientific computing packages and the PyLab graphics package, which mirrors
the syntax of the Matlab plotting commands. There is a number of third-party
packages available for graphic interfaces. The CherryPy package can be applied
for creation HTML interfaces to Brian simulations, which can run locally or on a

web server. Parts of the simulator can optionally be run using C code.

The popularity of Brian is due to the ease of learning and using the software
and minimal development time necessary to construct a neural model. Also, the
simulator does not require learning custom scripting languages (such as Hoc and
NMODL for NEURON, NEST’s SLI, and Genesis’ SLI (the last two being different
languages with the same name)). Parallel Python package can be used to run
independent simulations with different parameter values on a cluster or on different

Processors.

3.6.5 NCS

The NeoCortical Simulator (NCS) is a simulation platform optimized for mod-
elling the horizontally dispersed and vertically layered distribution of neurons [131].
It performs both sequential and parallel simulation on Linux clusters (including

Linux emulation) and on Mac OS systems.

NCS is written in C++ using object-oriented design principles. Each object can
represent a cell, a compartment, a channel and the like, which model the corre-
sponding cortical entities. The simulator employes integrate-and-fire and Hodgkin-
Huxley neuron models using a clock-based approach [132]. Nonlinear specifications

(like the Izhikevich model) are not supported.

Learning is implemented by using a look-up table, which contains values of synap-
tic weight modification (both positive and negative) based on the time between

incoming and outcoming spikes occurence.

NCS delivers reports on any fraction of neural cell groups, at any specified interval.
The report contains membrane voltages (current clump mode), currents (voltage
clamp), spike-event-only timings (event-trigged), calcium concentration, synaptic
dynamic parameter states and any Hodgkin-Huxley channel parameters. However,

simulation does not provide any visualization software.
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3.6.6 PCSIM

The Parallel Circuit SIMulator (CSIM) is a tool for simulating heterogeneous
networks composed of spiking neurons [133]. The tool is written in C++ using
object-oriented design and is compatible with Python, which provides data anal-
ysis and visualization. It is a freely distributed software able to run on Windows

and Linux-like platforms. PCSIM can also be used as a package within Python.

PCSIM uses standard linear leaky integrate-and-fire and non-linear Izhikevich,
as well as Hodgkin-Huxley models of a neuron. Also the framework simulates
hybrid network models, which consist of both spiking and analog neural network
components. Simulation is accelerated by dividing all synapses into the idle and
active groups. Only the spike-receiving synapses are updated during simulation
fixed time step. A synapse becomes idle again after its post-synaptic response has

vanished.

The simulator has two forms of inputs, which are spike trains and analog sig-
nals. Correspondingly, communication consists on sending discrete and analogue
messages (i.e. spikes, firing rates, or membrane voltages) between the connected
neurons using either a multi-threaded approach, the MPI communication protocol,
or both.

3.6.7 SPLIT

SPLIT is a simulation library specialized for efficient simulation of networks with
a moderate number of multicompartmental models based on Hodgkin-Huxley for-
malism [134]. The model is written in the C++ language and supports parallelism
using MPI.

SPLIT provides conductance-based synaptic interactions with short-term plastic-
ity (facilitation and depression). Long-term plasticity (i.e. STDP) and integrate-
and-fire types of neuron model are not implemented. It is a “general-purpose”
simulator, where no specific topology or neuronal organisation is taken for granted
beforehand.

A user needs to adapt the simulator for a certain model as the software should be
regarded as a pure, generic neural simulation kernel. Nor does the simulator have

any graphical interface nor any support for analysis of results.
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3.6.8 HHSIM

Graphical Hodgkin-Huxley SIMulator (HHSIM) is a graphical simulation of a sec-
tion of excitable neuronal membrane using the Hodgkin-Huxley equations. The
simulator allows a full access to the Hodgkin-Huxley parameters, membrane pa-
rameters, stimulus parameters, and ion concentrations. It was specifically designed
for teaching neurophysiology courses. HHSIM is a free software and is compati-
ble with Windows, MAC OS, and Linux-like systems. It should be regarded as
a generic neural simulation kernel with the user program adapting for a certain

model.

Unlike NEURON and GENESIS, where a user explicitly controls the use of the
underlying parallel system (i.e. manages communication between processors), the
SPLIT simulator automatically makes the best possible use of the available hard-
ware. In this way the user is shielded from the underlying computer system. At
the moment the software does not have any graphical interface nor any built-in

support for analysis of results.

3.6.9 MyvaSpike

MvaSpike was designed as an event-based simulator for large, hierarchical or mod-
ular biological neural networks [135]. It consists of a core C++ library, is easily
extensible and accessible from scripting languages, such as Python. MvaSpike is

released under the GPL license.

A few common models of neuron are built-in, including linear and quadratic
integrate-and-fire model with STDP, stochastic neurons, and phase-coded neu-
rons. The simulator implements synaptic and axonal propagation delays, absolute
refractory periods, Poisson input spike trains generation, and provides some con-

nectivity patterns (both structured and randomly connected).

Partial parallel implementation and utilization of the XML structured data lan-
guage for input and output data formatting are developed in the simulator. How-
ever, MvaSpike does not contain any graphical user interface, nor any pre- or

post-processing tools.

3.6.10 SpikeNET

SpikeNET is an object-oriented neuron simulation program written in C++ [136].

It is another powerful framework for simulating large-scale networks of asyn-
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chronous spiking neurons, based on the integrate-and-fire neuron model. SpikeNET

is available for public download under the GNU public license.

High simulation performance is achieved applying several techniques of computa-
tional efficiency. First of all, spikes are not propagated immediately but buffered in
lists before being propagated. This greatly reduces the computations associated
with large networks. This also simplifies distributed implementation as inter-
processor communication can be limited to sending lists of the neurons, which
just fired. Secondly, neurons are simulated with a limited number of parameters
(i.e. classic properties like a membrane potential, a threshold and more novel fea-
tures like dendritic sensitivity). They are organised in a two-dimensional arrays,
which represent retinotopical homogenous maps and are the basic objects of the
SpikeNET simulator. Thirdly, high simulation performance is achieved by weight
sharing, which means that one set of weights can be used for all the neurons in an

array.

Initially it was designed to investigate the biological plausibility of feed-forward
processing using “at most one spike per neuron” scheme. Although the modern
version of the simulator is a sophisticated simulation tool, it is still unable to
process more than one spike per neuron. SpikeNET is able to simulate networks
with millions of neurons and hundreds of millions of synaptic weights as long as
the average spike discharge rate is low. This limitation of a low discharge rate is
caused because of applying the event-driven computation approach, so that only

the neurons that emit spikes are processed.

3.6.11 KInNeSS

KDE Integrated NeuronSimulation Software (KInNeSS) is an integrated environ-
ment for running neural simulations [137]. It uses Synchronous Artificial Neuronal
Networks Distributed Runtime Algorithm (SANNDRA) as the core of all numeric
simulations, which also provides distributed calculations. KInNeSS is built using
object-oriented design in C++ and is an open source software for LINUX based

systems.

It provides an expandable framework incorporating features such as ease of use,
scalability, and an XML based schema. It is primarily aimed at modelling branched
multi-compartmental neurons with biophysical properties like membrane poten-
tial, voltage-gated and ligand-gated channels, the presence of gap junctions or
ionic diffusion, neuromodulation channel gating, the mechanism for habituative or

depressive synapses, and axonal delays. The simulator implements STDP based
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only on local spatial and temporal information. This means that synaptic mod-
ification depends exclusively on the quantities present at the synapse and at the
current time step. KInNeSS output data for later analysis in a variety of formats,
such as MATLAB. The outputs include compartment membrane voltage, spikes,
local-field potentials, and current source densities, as well as visualization of the

behaviour of a simulated agent.

KInNeSS has a friendly point-and-click interface allowing the modeller to set all
the necessary parameters and XML schema for both import and export of model

specifications.

3.6.12 LENS

The Light, Efficient Network Simulator (LENS) is a fast, flexible neural net-
work simulation framework primarily designed for backpropagation networks [138].
Nevertheless it also supports deterministic Boltzmann machines and Kohonen net-
works and can be extended to other Hebbian or Bayesian models. It is written
in C++ and Tecl using object-oriented design and new functions can be easily
added to extend the standard functions. The simulator operates on both Unix

and Windows platforms and is distributed free-of-charge for academic purposes.

The simulator supports feed-forward, simple recurrent, recurrent-backpropagation-
through-time, and continuous recurrent-backpropagation-through-time (RBPTT)
networks as well as deterministic Boltzmann machines and Kohonen networks.
Other models of networks can be added with little effort. It implements five
learning algorithms: steepest descent, momentum descent, “Doug’s momentum
descent”, delta-bar-delta, and quick-prop. The simulator provides over 100 com-

mands for building, training, and analyzing networks.

Lens supports batch-level parallel training on multiple machines, however the net-
work itself is not partitioned among machines. This type of parallelism is typically
used for searching for best network or training parameters in order to find the best

performance.

3.6.13 JavalNNS

Java Neural Network Simulator (JavaNNS) is an efficient universal cross-platform
simulator of neural networks [139]. It is written in Java and based on its prede-

cessor Stuttgart Neural Network Simulator (SNNS) kernel (which was written in
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ANSI C). JavaNNS has a new graphical user interface with a 2D and 3D graphical

representation set on top of it.

JavaNNS provides event based simulation. It supports many network architec-
tures, among them are self-organizing maps, dynamic learning vector quantiaza-
tion networks, radial basis function network, and time delay neural networks.
Several learning procedures are implemented, such as the backpropagation, the

counterpropagation, the QuickProp, and the resilient propagation.

In order to achieve a higher generalization performance by fewer free parameters,
several pruning algorithms are able to reduce the number of weights or neurons
of a network. Among them are magnitude based pruning (Mag), optimal brain
damage (OBD), optimal brain surgeon (OBS), skeletonization (Skel), and non-
contributing units techniques. It also has ENZO tool integrated into it, which

allows optimizing the topology of neural network by means of genetic algorithms.

3.6.14 NeurodJet

NeuroJet is another neural network simulation program written in C++ using
object-oriented design, which is freely available for Windows and Unix-like sys-

tems.

It was originally designed to proof a cognitive and behavioural concept via a
biologically based, but still simplified, model of the hippocampal region of brain.
This brain area raised an interest because of its key role in episodic learning. The
current version is implemented to run on either a single computer or on a cluster.
It can be easily extensible to incorporate any new models. At the current state
the developers plan to design graphical user interface and make it compatible with

mathematical packages, such as Matlab and Octave.

A parallel version of NeuroJet, originally known as PUNIT was designed to run

on computer clusters. Later, the parallel implementation of NeuroJet was created
on an NVIDIA GPU using CUDA API [140].

3.6.15 Nengo

Nengo is an open-source cross-platform software package for modelling large-scale
neural systems [141]. It includes customizable models of spike generation, mus-
cle dynamics, synaptic plasticity, and synaptic integration. Nengo is written in
JAVA and uses Python script interface. It works on Mac OS, Linux and Windows

systems.
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Nengo provides standard and adapting leaky integrate-and-fire as well as the
Hodgkin-Huxley model. The simulator regards a spike as a descrete event. Thus,
it is not designed for neural models where the detailed voltage profile of a specific
spike affects the post-synaptic neurons. Spike times, membrane voltages, and cur-
rent can be recorded from the neurons. Variable-timestep integrator is applied,

using the Dormand-Prince 4th and 5th order Runge-Kutta formulae.

Neural engineering framework (NEF) is used in order to encode and decode time-
varying representations using spike train. It also is used to derive linearly optimal
synaptic weights to transform and combine these representations. This framework
represents a method for realizing a high-level description of neural models with

adjustable degree of accuracy.

3.6.16 MOOSE

Multiscale Object-Oriented Simulation Environment (MOOSE) is a general bio-
logical neural network simulator [142]. It allows simulation from single molecules

to neuronal networks.

Like the GENESIS simulator, MOOSE has a similar set of objects represent-
ing biological concepts (i.e. channels, molecules, compartments) and is backward
compatible with it. MOOSE uses a Python-based scripting interface, which allows
communicating among Python-aware simulators (i.e. simulating a single neuron
in NEURON and an intracellular reaction in MOOSE). MOOSE is able to run in

parallel on a cluster of machines using the MPI standard for communication.

3.6.17 FANN

The Fast Artificial Neural Network (FANN) simulator is a free open source cross-
platform library written in ANSI C [143].

The simulator implements multilayer artificial neural networks supporting fully-
connected and sparsely-connected networks. It has fixed-point and floating point
arithmetic for a bias neuron model with two activation functions (sigmoid and
threshold). There is a choice of several types of backpropagation training, such
as resilient backpropagation, quickprop, batch and incremental. It also has an
option of evolving topology training, which dynamically builds and trains a neural
network. For developing and analysing neural networks the simulator contains
several graphic interfaces, such as FANNTool, NeuralView, FannExplorer, and

sfann.
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3.6.18 CX3D

Cortex simulation in 3D (Cx3D) software is an open-source cross-platform soft-
ware package written in Java. The simulator includes a wide range of phenomena
related to growth and development of tissues and taking place in a 3-dimensional
space. It is mainly applied to model large neural networks, where mechanical
forces play a major role in development of nervous systems. The examples vary

from simulation of a cortical folding to a neuron tube growth [144].

CX3D allows studying cell division, differentiation, migration, and extension of
axonal and dendritic trees. Model components (such as spheres for somata and
cylinders for neurites) are defined by creating small mechanistic modules, each
having its exact space coordinate and represent all the local biological processes.
The modules interact through mechanical forces of a direct contact and commu-
nicate by release of diffusible signaling molecules. The state of the components
is recalculated during each time step and changes appropriately if the certain

threshold is crossed.

A parallelized version of the Cx3Dp simulator scales with the number of available

machines, both in speed and in the size of possible simulation.

3.6.19 Review Conclusions

Several mature simulators were presented in the previous section, which can simu-
late sophisticated neuron models and take advantages of distributed architectures
with efficient algorithms. Each of above simulators has its own strengths and
weaknesses and often is specialised in different application, having different opti-
misations. This allows choosing for the most appropriate one for a given modelling
task. For example, BRIAN, PCSIM and NEST make use of a single compart-
mental models whereas NEURON, GENESIS, KInNeSS, and SPLIT also include
functionality for creating multi-compartmental models. Other software focus pri-
marily on dynamical systems analysis (i.e. XPPAUT), or model physical growth
and development of tissues (i.e. CX3D).

Although many of reviewed simulation environments were initially designed for
a specific purpose and domain of applicability, their set of features continually
improves and expands due to persistent interest from groups of researchers and

engineers.

A reasonable question to ask is whether there is any need for another neural net-

work simulator. Usually off-the-shelf simulators are designed to be all-purpose
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feature-rich simulation tools, providing different simulation modes and techniques
and allowing additional useful features, such as predefined templates, graphics
management and data analysis. However, none of them has all the built-in facil-
ities that could serve all existent purposes. It might be that currently available
simulators do not fulfil the specific expectations of the user. Modifications can be
necessary to allow different operations, such as combining reinforcement learning
technique with Hebbian learning or implementing specific damage experiments
and analysis procedures. The off-the-shelf software packages often are large pro-
grams with very complicated inner-working. Also the way the adapted simulation
environments are structured does not allow modifying them straightforwardly.
Readjusting such large pieces of code would have been a more time-consuming

and error-prone process than writing a new specifically oriented tool.

Besides, the most desired features of a simulator are the ability to run a specific
model (flexibility) in a reasonable amount of time (efficiency). However, efficiency
is not only about the speed of simulations. The time spent on model implemen-
tation is at least as important in many situations. Many of the off-the-shelf sim-
ulators use custom scripting languages: Hoc and NMODL for NEURON, NEST’s
SLI, and GENESIS’ SLI (the last two are different langauges with the same name).

Mastering these scripts often extends the total time spent on simulation.

Therefore, it was decided at an early stage that it would be easier overall to
make the necessary day-to-day changes to a smaller, custom-written program that

contained only the facilities necessary for our experiments.

3.7 Summary

In this chapter we link neurophysiological measurements and theoretical studies,
helping to capture some of the brain’s computing capabilities. For this purpose
we review popular today engineering solutions on the way to apply the current
neurobiological knowledge to solve the technical problems, where conventional

methods are inefficient (e.g. speech synthesis or computer vision).

In the beginning of the chapter we reviewed the basic neuron models, which are
used in most neural network experiments. We outlined their advantages and dis-

advantages and selected the best candidates for large-scale network simulation.

Later, we overviewed the simulation strategies and techniques, used by engineers
for solving technical problems, and highlighted an influence of the modelling tech-

niques on the efficiency of network simulation. We discussed the potential contri-
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butions of a distributed architecture for simulations of neural networks. We also
reviewed available architectures for distributed neural network simulation and em-

phasized the benefits and drawbacks of each of them.

Finally, we overviewed presently the most available simulation environments, which
can simulate sophisticated neuron models and take advantages of distributed ar-

chitectures with efficient algorithms.



Chapter 4

Sequential Neural Network

Simulation

This chapter describes a designing procedure of a biologically-plausible network
model, which is capable of searching for correct patterns, storing and reproducing
them later. The biological learning processes found in the animal’s brain are
resembled. It is not the aim to build a realistic model of a brain, as at this time due
to the lack of knowledge this task is impossible. The first aim is to understand the
essential computations that take place in the network of interconnected neurons,
resembling an actual biological neural network. Another aim is to construct a
network designed to exploit potential of the SpiNNaker neuromorphic distributed

computing machine gaining insights into the nature of neural computation [20].

Section 4.1 defines the network architecture used for simulation. Section 4.2 derives
the employed learning mechanism, adapting the network weights based on a global
binary feedback. In Section 4.3 the program is implemented, which allows a neural
network to compute in ways traditionally associated with artificial neural networks.
For this reason, a computationally efficient neuron model is applied, known as
Integrate-and-Fire model. It does not include many kinds of known properties of
neuron behaviour but helps to obtain an insight in the behaviour of the network
at the learning stage. After it, the chapter investigates the network’s performance

and learning capacity dependence on the level of neuron interconnection.

As a case study, Section 4.6 presents an agent able to accumulate the vital experi-
ence from an ambient environment based on three proposed techniques. For this,
we derive an algorithm that changes the weight of a neuron network by determin-
ing the exact error that the network makes on each example of a particular task

in an unsupervised manner.

81
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4.1 Network Model

This chapter defines precisely the model, its characteristics and its implementa-
tion challenges. Also this section reviews the network structure employed in the

simulator.

4.1.1 Network Architecture

Various architectures have been constructed and applied to different network mod-
els. A structured network with a feed-forward signal propagation was chosen,
resembling the visual cortex of a human brain (see 3.3.2.1). Input and output
neurons are distinguished in the network from other neurons, belonging to the
hidden layers. Each neuron operates according to the Integrate-and-Fire neuron

model.

4.1.1.1 Connectivity

In biology, neurons have one of two types of synapse: excitatory, where the synapse
releases neurotransmitter, which increases the membrane potential of a target cell,

and inhibitory, which decreases the potential.

Similarly, every connection in the simulator has a certain strength (or weight),
which is a real value and can be positive (for excitatory synapses) or negative
(for inhibitory synapses). The weight is labelled w; ; for a direct connection from
the axon of neuron j (pre-synaptic neuron) to the membrane or dendrites of neu-
ron i (post-synaptic neuron). The weights can be shown as a matrix, visually

representing a topology of connections.

It must be noted that synaptic connectivity of biological networks is sparse. This
is caused by the fact that almost all synapses of the axon of one neuron connect
to different neurons. This means that only a certain group of firing neurons can
cause a fire of a post-synaptic neuron, as probably no one neuron does have a large
influence on any other neuron (except certain special areas of the brain, like the
cerebellar cortex). This fact is important in order to maintain low firing activity

of a neuron network.

4.1.1.2 Introducing Dilution

Neurons in biological networks are connected asymetrically by one-way connec-

tions. It means that an axon of pre-synaptic neuron 4 can connect to a dendrite or
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FIGURE 4.1: The effect of dilution: fully connected network (left) and with
some missing connections (right).

cell body of a post-synaptic neuron j by a connection J;;, while at the same time
the axon of a post-synaptic neuron can connect to the cell body or a dendrite of
neuron ¢ by a connection Jj;, so that J;; # J;; . Notably, both connections have

unequal weights.

It also turns out that not all neurons are connected to each other in biological
neural networks. The human brain, for instance, consists of 10! neurons with each
neuron connecting to about 10* others [145]. In order to represent this phenomenon
dilution is introduced, i.e., the random breaking of connections between neurons.
In the simulation a partially connected (or diluted) three-layer network is used
(although there is a possibility to vary the number of hidden layers). The dilution

d represents whether a connectivity of the network is dense or sparse:

M
1= N =T) (4.1)

where N represents the total number of neurons and M is the number of missing

(or ‘broken’) connections.

4.1.1.3 Diluted Network Importance

There are several reasons why the investigation of diluted networks is worth at-

tention.

Firstly, as it was mentioned, this guarantees closer resemblance to the cortical

areas associated with vision [146].

Secondly, and the most importantly for our research, the reduced number of con-

nections reduces the communication load on the network as well as the computa-
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tional speed. Particularly it is beneficial for distributed hardware implementation.

Thirdly, dilution is an attractive tool to investigate the fault-tolerance and ro-
bustness of the cooperative behaviour of neural networks against malfunctioning
of some of its elements. This reduces a probability of system break down if only
a few elements deteriorate in their performance. This aspect is vitally important
for parallel hardware architectures and is often advocate the superiority of neural

network architectures over more traditional sequential computing systems.

Several types of diluted network are widely used, depending on the procedure used

for breaking up neuron connections in the fully connected network [147].

In our research we interconnect neurons based on a certain probability. This
diminishes the chance of involving the same neurons forming the activity paths
for different input patterns. However, the level of activity depends strongly on
the level of dilution and our investigation shows that the most optimal level of

dilution would be 80 % of the full network interconnection (see Fig. 4.12 in 4.5).

4.1.1.4 Network Structure

A subset of the neurons of a network is chosen to be input neurons. In a biological
organism they would get their input from one of the sensory systems. They can
be triggered to fire in reaction to outside events, like light falling on a particular
sensor cell in the eye. As the input neurons get their input only from a sensory

system, they do not get input from other neurons in the neural network.

Another subset of the neurons can be distinguished as an output of the network.
Their axons are designed to output the signal and therefore are not connected to
other neurons in the network. In a biological organism this could represent motor

neurons with long axons connected to cells of muscle fibres of the body.

The input to a neural network is provided by setting the activity of a number of
neurons defined as input neurons according to a certain input pattern. An input
pattern consists of a set of binary numbers (0 and 1). In the same way the output
pattern is read from the subset of the output neurons. The length of input and
output patterns cannot be higher than the number of the corresponding subset
of neurons, but it can be lower, in which case the rest of neurons are assumed to

have activity equal to zero.

All other neurons in the network are grouped to one or more hidden layers. Their
output is connected either to other hidden neurons of other layers, if any, or to

the output neurons.
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FIGURE 4.2: Example of different subsets of neurons in the network.

We deliberately avoid the direct connections between the neurons’ set dedicated
for the input with the neurons responsible for the output. Otherwise, the direct
connections extend the learning period or corrupt the final result. It happens
because these connections cannot fit all set of learning patterns and if they do not
fit the current learning pattern, it takes a long time to reduce such connections’
weight to zero. Besides, according to the learning mechanism, all other weights

are affected by the changes.

The activity signals propagate in a feed-forward mode from an input layer to a
hidden layer and from the hidden layer to another hidden layer, if any, or to an
output layer. Feed-forward mode means that every neuron in layer ¢ has only

connections to neurons in layer j, if j =i+ 1 (in broader meaning j > i) (refer to
3.3.2.1).

4.1.2 Neuron Model

The neuron model describes the neuron behaviour in response to input stimuli and

the process of producing output spikes.

4.1.2.1 Rationale for Chosen Model

The neuron model must be optimal in terms of balance between a computational
load and biological conformity. We use a simplified but computationally efficient
neuron model, known as Integrate-and-Fire, which does not include many proper-

ties of neuron behaviour.

Using a more complicated neuron model at this stage could obstruct understanding

of which mechanism causes the observed behaviour of the network under research.
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FIGURE 4.3: Neuron model parameters.

On the other hand, by limiting the important properties some of computational
capabilities of the neuron model (STDP as an example) are ignored. However,
it helps to understand what role these properties perform in the learning process
and how much they influence the learning speed and capacity of the network.
The simulator is able to simulate several neuron models. But for the research
purposes the integrate-and-fire model is employed, which was described in section
3.2.2, because it is comparatively easy to keep track on the neuron’s execution and

backtrace the possible bugs.

Remarkably, networks, which are using such a simple neuron model, are able
to implement a range of tasks relating input states to output states and are a
convenient tool for investigating the dependence of network dynamics and activity

on various network parameters.

4.1.2.2 Model Parameters

In the Integrate-and-Fire model, an internal state of any neuron ¢ is described by

the following three variables:

e a binary state variable x;, describing whether neuron i is active and firing

(x; = 1) or inactive and staying at rest (z; = 0).

e a variable membrane potential h;, representing the sum of the states of the

pre-synaptical neurons multiplied by the weights of their connections.

e a fixed threshold potential 6;; a neuron becomes active when the neuron’s

potential h; exceeds the threshold potential 6;.
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4.1.2.3 Model Dynamics

The state variable is calculated using the relationship between h;, 8; according to

the equation:

where O is the Heaviside stepfunction, defined by Oy (z) = 0 if z < 0 and O ()
= 1if x > 0. If the weighted sum of the states of the neurons connected to neuron

1 exceeds threshold 6, the state of the neuron is set to active, otherwise it is not.

The potential h; of a neuron is subject to change if a neuron receives some input
via its synapses from other neurons. It is determined by the sum of the states of

the neurons connecting to neuron ¢ and the weights of these connections:

h; = Zwij:vj (4.3)

JjeVi
where V; is the collection of all neurons that have an afferent synaptic connection to
neuron 4. Excitatory synaptic connection (EPSP) increases the membrane poten-
tial whereas inhibitory input (IPSP) decreases the membrane potential, as shown
in Fig. 4.4. If enough excitatory input accumulates and reaches the threshold

level, a spike is emitted. The membrane potential returns to its resting level.

EPSP IPSP action potential
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FIGURE 4.4: Influence of excitatory (EPSP) and inhibitory (IPSP) synapses
on the membrane potential, resulting in a spike (an action potential) if the
membrane potential crosses the threshold level [9].

Other more complicated neuron models, such as (a) using continuous state vari-
ables, representing the frequency of firing either () including some stochastics by
introducing a probability distribution for a neuron to become active or (¢) using

other transfer-functions than Heaviside stepfunction for state variable calculation
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(sigmoidal, as example) or (d) multiplying the state variables of pre-synaptic neu-

rons for potential h; calculation, are also compatible with the simulator.

4.2 Learning

A lot is unknown nowadays about the behaviour of a biological neural network
and the mechanisms of learning at the level of neurons. To clarify the task, this
section explains what is actually ment by learning and introduces some basic
principles. After that, it presents the learning paradigms and reviews some possible
learning mechanisms. Finally, it discusses the way the network evolves over time

by changing the weights and in this way provides a learning process.

4.2.1 What is Learning?

By learning we mean that the probability for certain behaviour to happen in
reaction to a certain event is altered. Such an alteration either means that some
reaction is likely to be repeated, or that the probability for some reaction to occur

is lowered.

4.2.2 Biological Inspiration

For inspiration, we refer to the Morris water maze, devised by R. Morris nearly
30 years ago [148]. The maze was designed as a method to assess spatial or place
learning. It has been proven that the test strongly correlates with hippocampal

synaptic plasticity and glutamate receptor function [149].

4.2.2.1 Morris Water Maze

During the test a rat is immersed into a water tank with a platform located
somewhere near the centre. The water contains skim milk powder to stop the
rat from seeing through the water. During the training phase the platform is
lifted above the water so the rat could see it and find its way out of water, as
shown in Fig. 4.5. On subsequent trials with the platform submerged in the same
position (although being invisible to the rat), the rat is able to locate the platform
increasingly rapidly. After enough practice, a capable rat swims directly from any
release point to the platform. Such an improvement occurs as a result of learning

and memory for where the hidden platform is located.
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FIGURE 4.5: Morris water maze.

In the test finding the submerged platform leads to some sort of satisfaction or
safety feeling, which we correspond with reinforcement of knowledge. When a
learning phase of the test is repeated with the platform being in a new location,
the rat heads to the direction of the new platform position, forgetting about the

old position of platform (which we correspond with deinforcement of knowledge).

4.2.2.2 Representation of Biological Learning

Obviously, some kind of memory is involved in the process of learning. On the
basis of biologically motivated assumptions it is found that the strength of the
synaptic connections between neurons can change for some time or more per-
manently through two possible learning processes: LTP and LTD, discussed in
sections 2.3.1.1 and 2.3.1.2. It is likely that these are the underlying mechanisms
of memory and learning, if a correct (or satisfactory) output has been found in

reaction to a certain input pattern.

LTP fixes and strengthens the state of the network at the moment it is applied,
while LTD destabilises the state of the network, and, when applied repeatedly,
changes the network output when the effect of the found output is not satisfac-

tory. In this way the system changes its behaviour by changing its output signals
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following a certain input and searching for a correct output occurs. In other words,
LTP should be applied if the network realises the desired output state in reaction
to its input, while LTD should be applied when the output of the network is wrong

and the network should search for a better output.

In the same way our neural network gets information to deinforce or reinforce the
current behaviour through some kind of feedback, which represents the ‘feeling’ of
(un)happiness. Every time when a pattern is presented to the network, a learning
rule is applied in order to memorise the pattern. It is trained to recognise input-
output patterns by adapting its synaptic connections, given by w;;, by certain
learning rule. One of this rules (LTP) memorizes input-output relations and takes
place when the output is right, while another (LTD) does the opposite: it changes
the input-output relations of the network and takes place when the output is

wrong.

Another possibility, often used to model memory, is to instruct the network exactly
what output it should generate for an input (known as learning with a teacher). In
such a way a network is not able to solve any problem by itself. It will only imitate
some desired behaviour, which was already determined in advance. Therefore we
are not interested in such learning method and leave it outside of the scope of our

research.

4.2.3 Learning Mechanism

This subsection describes how learning is realized by changing the weights w;; of
the neural network and discusses about what actually the neural network should

learn.

4.2.3.1 Existing Techniques

Various techniques are widely used for association of input-output patterns. Some
of the most well-known techniques are perceptron learning rule, backpropagation
and Boltzman machines [150, 151].

Despite being popular, however, these techniques violate the existing biological
limitation of local update rule, in this way abandoning the biological nature of
the learning mechanism. They are not realizable just with the help of processes
occurring in nature, learning does not occur through an adaptation of synaptic

strength while depending purely on the activity of the involved neurons. Instead,
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for instance, in the backpropagation algorithm the update rule involves the back-
propagation of a distant error signal, potentially computed many layers above it.

Therefore we avoid using them for our model.

It is necessary to note that a learning process, based purely on locally specific
information, is more difficult and slow comparing to non-biologically realizable

algorithms.

4.2.3.2 Hebbian Postulate

Formulated as early as 1949, Hebbian rule [152] has been an important milestone
for both neurophysiology and computer science. It was the first and the only
plausible learning rule for artificial neuron networks. The rule was successfully
used in various applications, including the model of bees foraging in an uncertain

environment [153] and human decision making [154].

More than one neuron is needed to excite a postsynaptic neuron. Although this
point is mentioned in the Hebbian postulate [155], often it is violated. This re-
striction limits the probability of any neuron to influence several activity paths

and thus reduces the chance of their overlapping.

While applying the method in its present form, an autocorrelation term of the
learning rule stands out. It is caused by correlation of presynaptic and postsynap-
tic neurons’ activity: weight growth leads to a higher postsynaptic potential and
therefore even more weight growth. It causes the exponential weight growth and
leads to destabilisation of the network [156]. Although in an earlier paper [157]
Hebb had introduced the mechanism of decreasing the synaptic weight under cer-
tain conditions, he has excluded it in its final version [155]. Consequently, it is
unlikely that applying only the pure Hebbian learning will result in an entirely

adaptive system capable of task-oriented learning.

4.2.3.3 Rosenblatt Principle

In 1962, Rosenblatt developed the first computer that could learn new skills by
trial and error and proved [77] that a neuron network is able to associate input-
output relations, if a finite number of times the weights are adopted accordingly

to the following rule:

Wi (tnt1) = wij(tn) + Awij(tn) (4.4)
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In other words, the equations tells us that with each time step the quantity of
weight w;; is corrected by a certain portion Aw;;. Being constant, this important
parameter directly influences the speed of the learning process. In a case of a very
small value, the weight adaptation process drastically slows down and learning
may take extremely long time. Application of large values of Aw;; destabilizes
the learning process because after finding the optimal weight values, large change
in weight may significantly reshape the weight matrix, destroying the learned
patterns. Rosenblatt suggested using the variable parameter, adapted to the level

of produced error:

Awij = 5(xTi — in)xj (45)

where x7; is desired output or target output of neuron i, and zp; is its actual
output. Furthermore, z; is the state of the pre-synaptic input neuron j and ¢ is

some function of the neuron states and properties of neurons ¢ and j.

4.2.3.4 Weight Update Rule

The important limitation of the Rosenblatt rule is that the knowledge about the
states and properties must be local at the involved neurons and a synapse, con-
necting them. In other words, the value Aw;; cannot depend on variables local to
neurons other than the neurons 7 and j. By satisfying the requirements of the local
update rule, learning corresponds to the processes happening in the biologically

plausible network.

To solve the described constraints without loosing the biological plausibility, i.e.
keeping it consistent with learning processes of the animal’s brain, Bosman et al.
suggested a model of neural network in which both Hebbian and reinforcement

learning occur [10].

The reinforcement learning happens when a network is searching for the best so-
lution on its own by trying different possibilities and getting feedback on how
well it performs instead of being instructed somehow what output to generate
for a certaing input [158, 159]. On the basis of trial and error, a neural network
learns to associate the provided patterns according to the principle of reinforce-
ment learning. Natural interpretation of the principle is rewarding the satisfactory
neuron network outputs (with » = 1), causing them to occur more frequently and

punishing the incorrect outputs, which produce the feedback r = 0.

According to the contemporary biological studies, reinforcement mechanism was

observed in biological learning processes and was successfully used to interpret the
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activity of dopamine neurons to mediate reward-processing and reward-dependent
learning in non-human primates [160], and modulate cortico-striatal synaptic ef-
ficacy in humans [161], also solving problems, including robot control, elevator

sheduling, telecommunications and chess [162].

However, in his “minibrain” model Bosman applies the extremal (“winner-takes-
all”) dynamics, inspired both by earlier self-organized critical models [163] and
the self-organized map [164]. This considerably improves learning performance and
provides a fast and highly adaptive learning system. The idea is based on artificial
control of the firing neuron number by allowing firing exactly the previously set
number with the highest membrane potential. The neurons, whose potential is
above the threshold potential will not fire if there are enough of other neurons with
higher potential, and the neurons with potentials below the threshold value could
be forced to fire if their potential is the highest. A similar idea was researched by
J. Bedaux and W. van Leeuwen in [165]. This external regulation of activity works
well enough, however the biological property of threshold potential is neglected and
for this reason we do not apply such a regulation in our model. Another drawback

of extremal dynamics is a significant overload of the computational resources.

To determine Aw;; we apply the learning mechanism modified by J. Bedaux and

W. van Leeuwen in [165], however we ignore the extremal dynamics component:

Aw;j = rn[k(2x; — 1) — (hy — 0;)]x; — (1 — 7r)pi(z; — o)z (4.6)

where n, k, a and p are coefficients and r represents the binary feedback sig-
nal, representing ‘success’ or ‘failure’ of a provided output after each attempt to

associate the correct output with the given input.

4.3 Program Implementation

This section describes the implementation of the described algorithm for neural

network learning input-output patterns.

4.3.1 Initialisation Phase

The algorithm of learning input-output patterns has been developed and imple-
mented. The structure of program’s initialisation stage is given in Fig. 4.6. A
choice of pre-defined and random input-output patterns has been implemented.

In the case of pre-defined patterns, they are stored in an external file and read
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FIGURE 4.6: Simulation initialization stage.
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by a program during simulation. The network can be either generated according
to supplied rules or read from an external file, which may contain the state of
the network from a previous simulation. The supplied rules and parameters are
stored in description files, which contain initial parameters required to built the
neural network and set up the learning rules. They are read by a program before

simulation starts.

Some of the parameters are specified in the way to pass the range of the values.
In this case the first and the last value of the vector are supplied as well as the
number of values contained in this range. If the set of the numbers cannot be
divided into the equal intervals, the rounding applies and intervals slightly deviate

in the term of the size.

4.3.2 Algorithm

The entire design of the neural network is object-oriented. The building blocks of
the system are Network, Neuron and Synapse, as presented in Fig. 4.7. Each
of these classes stores only a minimum amount of information that is required for
representing its dynamic state. An object with lots of parameters requires large
memory allocation to store these parameters, which results in memory overload

and in a high computation time.

Synapse Neuron
weight state
delay membranePotential
target thresholdPotential
axon

Network

inputNeurons

hiddenNeurons

outputNeurons

hiddenLayers

FIGURE 4.7: Simplified representation of main program classes.

The program operates as represented in Algorithm 4.1. After the certain input
pattern is fed to the simulation program, the program tries possible output pat-

terns as a reaction to an input pattern for maxSearchAttempt times. As long as
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the output pattern is not the desired one, the LTD rule is applied to the network.
Once the correct output has been found, the input-output relation should be mem-
orised by applying LTP rule. In this case it will be recalled a next time after the
network learns some other relations. The learning of all input-output patterns is
attempted. When all patterns are learnt once, the relations are shuffled and the
learning cycle is repeated until all output patterns are recalled at the first time
step after presenting the corresponding input. At this point we assume the net-
work has successfully learned all patterns and the network state can be saved in

an external file.

The program “knows” about the output correlation by the binary feedback. If
the value of the feedback is 0, the output does not correspond to the input. If
the value is 1, the output corresponds to the input according to the input-output

relation.

10

11

12

begin
for i = 0 to patternNumber do
for j = 0 to mazSearchAttempt do
reset Potentials ();
inputPattern[i];
propagateActivity () ;
if (simulationOutput != expectedOutput)
applyLTD () ;
if (simulationOutput == expectedOutput)
applyLTP ();
shufflePatterns ();

end

Algorithm 4.1: One cycle of simulation

In our simulation time is discretized, which means that the states of the neurons
are only determined at the moments t,,,t,.1, ..., with ¢,,,1 = t,, + At. In each time
advancement At the states of neurons are updated. In each update the neurons
influence the post-synaptic neurons: increasing their potential if a connection is

excitatory and decreasing the potential if the connection is inhibitory.

In this way some of post-synaptic neurons can become active, if their potential
exceeds the threshold potential. Or the post-synaptic neuron can become inactive,
if the influence of inhibitory connections is high enough to lower the value of

potential below the threshold potential.
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4.4 Model Weaknesses

Our approach resembles an actual biological neural network and the way it might
learn. Biological resemblance embraces a neuron network’s unassisted search pro-
cess aimed at finding an appropriate set of synaptic weights through the potenti-
ation and depression of the synaptic weights based on the local synaptic update
rule. We created a network capable of learning new information without losing
the old at the same time. However, the network’s learning capacity remains the

crucial issue.

The interference of new learned data with previously learned data occurs while
storing the large amount of input patterns into the network. A self-destruction
of a pre-learned information in an attempt to adjust the weights for storing new

information is a common problem.

In the canonical example of [166], Edelman compares a mouse’s behaviour with
the behaviour of a robot, controlled by a neural network in a certain environment.
The result shows that after the environment changes, the robot seldom retrieves
pre-learned knowledge, unlike the mouse. The reason is that the field of coefficients
of neural network is destroyed by the newly learned information. This example
presents the importance of storing a pre-learned data while being able to perceive

the new data without any overlap.

4.4.1 Active Paths Interference

When the new pattern is learned, additional paths of activity are formed. To
preserve the old learned patterns, the new patterns should not influence and change
the already existing paths too much. This can be accomplished by keeping the
activity of the neurons low, as experiments have shown [10], [167]. The neuron
activity is defined as the ratio of the firing neurons to the overall neuron number
in a certain fraction of time. In this way it is possible to calculate the average

activity over a certain period of time.

Modifications of the synapses is a very powerful mechanism that allows shaping and
modifying the response properties of a neuron. Poorly regulated neural network’s
activity level can grow and shrink in an unpredictable manner. The neuron activity
can present excessively high or low firing rates. Therefore unless synaptic strength
changes are coordinated appropriately, such a mechanism can be very dangerous

for the network stability.
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4.4.2 Reasons of Active Paths Interference

The negative effect of the paths interference arises with more input patterns are
applied to the neural network to be learned. The active paths overlap when the
strongest connection from the different input patterns point to the same interme-
diary neurons. As result, the learning of something new causes forgetting of an
old data.

H

= Wmax h=wWam

FIGURE 4.8: Path interference of A-C-D and A-B-D neuron paths [10].

There may be several reasons, which give rise to such a situation. First of all, from
the active input neuron the path of activity runs along the strongest synaptic con-
nections to the corresponding output neurons. In certain situations an established
path can be completely “wiped out” by an attempt to learn new data, so that
connection of the previously learned pattern is no longer the strongest. Also the
competition between the activity path, formed in previous steps, and newly form-
ing active path can happen. Such a competition often erases or partially destroys

the old path and correspondingly leads to forgetting of old data by the network.

Secondly, according to the algorithm, in the case of the incorrect ouput pattern, the
mechanism of decreasing the strength of recently formed synaptical connections is
applied. This almost certainly removes the previously formed synaptic connection
from the active level of synapses and forms another one, which produces a different
output pattern. Correspondingly, a large number of incorrect output patterns

cause a large change in the geometry of the active level and, hence, in the weight
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matrix of the network connections. This causes a so-called “avalanche” in the

network landscape [168].

Bienenstock, Cooper and Munro suggested using the flexible threshold [40] as a
mechanism of global neuron activity regulation. Correlated pre-synaptic and post-
synaptic activity evokes LTP if the post-synaptic firing rate is above the threshold
value and LTD when it is below. The threshold is not a constant value, but a
function of the average post-synaptic firing rate. When the post-synaptic firing
rate is highly active, the threshold increases. This mechanism reasonably regulates

the activity of the neurons, stabilizing the overall activity of the network.

Similar effect can be achieved by keeping the overall network activity at low level.
The formation of new network activity patterns has less influence to the already

existing paths, allowing both to coexist [167].

4.5 Simulation Results and Discussions

To measure the efficiency of the learning process we selected two parameters: the
number of learning steps and learning performance. The latter can be calculated
as the ratio of the actual number of steps, which were needed to learn the set of
applied input patterns and to associate them with the output patterns to the total

number of performed learning steps.

According to the proposed approach we created a neural network of 500 neurons
and studied it under various conditions. We dedicated 33 neurons to input and
10 neurons to output and taught the network for 20 different input patterns, asso-
ciating them with certain non-repeating output patterns chosen by the network.
Every experiment was repeated 100000 times to calculate the mean value of the

learning efficiency.

Fig. 4.9 shows the performance of the neural network as a function of the number of
input patterns. The performance falls with the higher number of applied patterns.
The learning performance is almost equal to 1 for one or two input patterns, but

drops to 0.05 for 16 input patterns.

Similar behaviour is observed by counting the number of learning steps in order
to find the capacity of the network to learn. The idea is to increase the number
of patterns to be learned until the system is no longer capable of learning. We
used two networks of 500-neurons and 2000-neurons sizes with various connectivity
patterns. Fig. 4.10 shows a comparison of the average number of learning steps

performed by the neural networks as a function of the number of input patterns.
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The 2000-neuron network is able to learn a higher number of patterns and presents

the best capacity at connectivity around 40 % and 60 %.

Fig. 4.11 shows the dependence of the number of learning steps on faults. The red

line represents the dependence on the faulty nodes and the green line represents the

dependence on the faulty synapses. The level of faults is represented in percents

rather than by the actual number of faults as this provides a better representation

of the scale of damage done to the network. The dependence is almost linear

up until 0.3 % for the network with damaged nodes and up until 0.25 % for the
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percents.

network with damaged synapses. The faulty nodes reduce the learning speed more
significantly comparing to the faulty synapses when the number of faults is small.
However, this changes to the opposite after the level of faults reaches 0.4 %, when
the level of damage caused by faulty synapses becomes larger than by the faulty
nodes. The value 0.4 % represent the point when the number of faulty synapses
introduced to the network is equal to the number of faulty synapses caused by the

faulty nodes.

We empirically investigated how the level of connectivity influences learning. We
examined its dependence on the level of connectivity by gradually reducing the

connectivity of the network and measuring the required number of learning steps.

Fig. 4.12 shows that the range of the most optimal performance is located in
the range of 45 % - 75 % of connectivity with the peak located at 55 %. The
low interconnection level as well as nearly 100 % connectivity leads to longer

adaptation time.

We took a closer look at the dynamics of the synaptic weight changes of the net-
work. Fig. 4.13 shows the rate of weight change of a randomly taken connection.
It presents how a neuron participates in the activity path formation and keeps
adjusting its value during the whole process of the experiment. The fluctuations
shown in Fig. 4.13 are caused by adapting the synaptic weight while opposing the
effect of path interferences and are also decreasing as the network redistributes

the weights and forms alternative paths to associate the input patterns with the
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FIGURE 4.13: Dependence of the number of learning steps on faulty components
(the red line for faulty nodes and the green one for faulty synapses) in the
network of 500 neurons.
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most optimal output patterns.

The phenomenon can be explained by taking into consideration the way the neu-
ral network stores the learned information. Intuitively we could presume that the
learning efficiency of the network grows with the number of neurons. However,
this is only valid to a certain extent. The applied input pattern activates the cor-
responding neurons and causes them to fire further to the post-synaptic neurons.
Those neurons, however, activate only if their input weights are strong enough to

cause the accumulated signal to exceed the firing threshold.

Due to these aforementioned activation constraints, the activity paths are formed
in the network. Corresponding to each input, the most probable signal propagation
will follow the associated pattern. However, when the number of input patterns
or the connectivity level increases, the activity paths overlap, thereby destroying

each other and corrupting the output result.

4.6 Biologically-inspired Agent

In this section we present a biologically-inspired agent, which represents a learning
system. We understand a learning system as a system able to decide in a reason-
able way what to do in a particular situation from previous experience and/or
provided examples of appropriate behaviour even though the situation may not be
experienced by the system before. This allows specifying ‘what’ the system should

do for each case, and not ‘how’ the system should act for each step.

An agent is designed to study the proposed approach of simulating the neural
network. The agent is able to accumulate the vital experience from an ambient
environment. The neural network of the agent determines the behaviour of an
agent based on its own observations. It is a dynamic system that accepts the
agent’s input sensor values and provides the output values, which correspond to
one of the possible movements - for example, turn left or move forward. If all

output values are set to zeros, the agent moves in random way.

A 3D virtual application has been created for simulating a self-learning agent
hunting food. Food has a fixed position and only interacts with the agent when
they are in the same geographical position (i.e. when the agent catches food),
adding energy to the agent and disappearing. Another food appears at the same
time in a randomly chosen position of the environment. Energy is a measure
of hunting success and diminishes when the agent unsuccessfully moves in the

environment for a long time, causing the agent to “die” eventually.
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FIGURE 4.14: Environment view.

4.6.1 Environment

The screenshot of the environment’s view is shown in Fig. 4.14, with a top down
view in upper right corner, which displays the position of the agent and the food
in the environment. Also a pair of displays are available that show what an agent
can see, one giving a 3D view with an energy bar above and the other is giving the
more primitive, pixilated view, which actually is used as the input to the neural

network.

4.6.2 Agent and Food

The agent has five characteristics: perception, execution, decision-making, rea-
soning and learning mechanism. It also includes some other attributes (see Fig.
4.15).

e Perception: the internal representation of the agent’s environment through

its vision sensors.

e Learning: the adaptation mechanism, which saves newly acquired useful



Chapter 4 Sequential Neural Network Simulation 105

Ahead
)
A
Half-left Half-right

Ferception

~

Decision
making

Rules achieved

unachievedl

Move
Executicon
Return

Random move

Degree of
closeness

FIGURE 4.15: The agent design framework.

experience and removes redundant experience to properly utilize the capacity

for efficient use of essential knowledge.

e Decision-making mechanism: the way to determine which action the agent
should take under certain circumstances. The decision should be based on

its objective, perception and a set of predefined rules.

e Execution: the agent executes the selected action. The agent may move
forward to a new place, return to the previous position or start moving

randomly if the target is not visible.

e Reasoning: the set of rules according to which the success of the previous
move is calculated based on the change in the azimuthal angle and the dis-

tance to the target.

e Attribute: an agent may have attributes such as how well the agent behaves,
what its physical position is and what kind of feedback it receives from the

previous move.
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At each simulation step, agent builds its perception of the ambient environment
through the visual sensors and then makes decision based on its perception, goal
and learned experience. Finally it executes the made decision. The changed status

of the system will in turn lead to new perception of agent.

The neural network must in some way receive information to deinforce or reinforce
the performed behaviour. Thus, it is necessary to estimate the performed action in
a given state in terms of total expected reward in the long term. A commonly used
approach consists of creating a table of reward values for each state — action pair.
However, we consider this approach as inadequate because in a biological system
the learning reward is based on the (dis)satisfaction level induced by some released
chemicals. It is also not practical for a system with a large number of possible
states. For example, Tesauro successfully used a feed-forward neural network to
implement a backgammon player (containing about 10%° possible positions) [169],
which would be impossible in case lookup-table were used. The success of the

previous move is calculated based on the Boolean feedback signal.

The energy defines the level of success for an agent. Initially the agent starts with
a maximum level of energy. When the agent acts unsuccessfully for a long time,
its energy degrades. When the energy eventually reaches its minimum level, the

agent dies.

4.6.3 Food Searching Algorithm

An agent and a food are located randomly in the environment. The agent’s vision
is limited by its view, which is defined as an 11x3 matrix of cells, as shown in Fig.
4.14. The agent perceives the environment through this view and can identify the
food only within a defined distance. Only when the food is visible, the neural
network is engaged; otherwise the agent moves randomly because no learning
happens without the visible object. The food chasing algorithm is presented in
Fig. 4.16.

Initially, while the food is not within the range of the view, the agent moves
randomly in its attempts to find the food. When the agent spots it, its behaviour
changes. Now with each movement the agent’s view is passed into the neural
network, which processes it and suggests the next motion. The agent performs
a try-step and evaluates the distance to the target. If the distance to the target
decreases, the positive feedback signal is sent to the neural network and the input-
output pattern is “saved”. Otherwise, if the distance to the target increases or

remains the same, negative feedback is sent. In this case weight redistribution
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FIGURE 4.16: The food search algorithm.

takes place and an alternative try-step is suggested to the agent.

This process is repeated while the food is within the range of the view or the
agent does not approach the food. In this way the feedback signal is based on
the agent’s own judgment of the effect of its previous motion. This is the first
proposed technique, which ensures the agent-environment interaction maintains
only through one single Boolean feedback signal retrieved from the agent’s field of

vision without the need of any extra information.

Each node in the input layer corresponds to a cell in the agent’s view. In this
way the distance to the target is evaluated in a biologically plausible approach by
comparing the last two views only. The weight of every input node connection
corresponds to a certain array, the values of which follows a Gaussian distribution.
This allows the neural network to distinguish the distance to the target simply by
calculating the input layer activity, which is inversely proportional to the distance
between the agent and its target. The concentration of the higher coefficients in
the centre of the input neuron’s array presents the angle of movement. The agent
has a higher chance to reach the food when it is in front of it and thus the active

neurons are more centred in its view.

Using this method, the neural network measures the success of the previously
suggested movement and either strengthens or weakens the connections among
the nodes that have been active while processing the corresponding input pattern.

This is the second proposed technique, according to which the feedback signal is
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based not on the network’s output but on the next input provided to the neural

network.

As initially the network does not contain any pre-learned patterns, its output is
purely random. After each successful attempt the action is learned by the neural
network block thus increasing the chance to provide similar output in similar
circumstances, which might arise in the future. If, due to the suggested motion, the
distance to the food increases, the anti-learning mechanism starts and continues
until the proper output is found. As a result, the corresponding input-output
patterns will be formed and stored in the neural network. This will increase the
probability of choosing matching actions as a result of receiving the corresponding

view.

Un-learning is the third proposed technique, which provides a possibility to develop
more optimal strategy, when newly acquired experience is more effective comparing
to known already. As example, it is more efficient to move towards the food directly

instead of approaching to it by making circles around.

4.6.4 Decision Making Mechanism

At each simulation time step, agent movements are based on following simple rules:

If alive, the agent scans its environment;

If the target is not in the field of vision, the agent moves in random way;

If the target is observed, in its field of vision the agent performs a try-step;

If the try-step is successful, the reward mechanism reinforces the knowledge;

If the try-step does not lead to success, the agent returns to its previous

position and the punishment mechanism destructs the knowledge;

If the target is reached, the energy level increases.

4.6.5 Agent Simulation Results

The agent-environment interaction is implemented by providing the simply Boolean
feedback signal retrieved from the agent’s field of vision without the need of any
extra information. Rule-based decision-making mechanism is employed in the sim-

ulator. An algorithm is adopted to decide where the agent should move to. Every
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FIGURE 4.17: Food chasing success rate versus the performed learning steps.

simulation time step, agent evaluates its environment trying to approach to the

target.

Our experiment proves that the proposed network architecture receiving the feed-
back based on the localised knowledge about the environment indeed works. Using
C++, according to the proposed method we created the neural network and sub-
jected it to the number of the experiments. During every experiment the network
was associating 10 various views of environment with a proper action chosen by
the network and leading to the reduction of the degree of closeness. Fig. 4.17
shows almost linear dependence of the success rate of food chasing on the number

of learning steps.

Fig. 4.18 presents the dependence of the learning performance on the increasing
number of patterns to be learned, while the agent learns new actions. The depen-

dence is linear and decreases with the higher number of patterns to be learned.

We compared the dependence of the agent’s success rate in searching a food with
and without applying the un-learning technique (deinforcing process) in order to
limit the negative effect of active paths interference. Fig. 4.19 shows the agent’s

success rate increases by 50 % after applying the un-learning technique.
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We also paid attention to the way the previously learned but corrupted input
patterns influence the quality of output. For this purpose we artificially inverted
part of the input patterns’ bits (each input pattern has 33 bits) before applying
the corrupted inputs to the neural network. Later we compared the produced
output with the expected one. Fig. 4.20 presents the quality of output when the
input is corrupted. It presents how the capacity to find a food is affected with a
reduced level of vision. The quality of output equals to 80 % when 1 % of set of

input patterns is corrupted, and it decreases to 50 % for 3 % corrupted input.

4.7 Summary

Our goal was to simulate a neural network capable of learning in a biologically plau-
sible way. The simulation program with a flexible, reusable, platform-independent

and scalable framework has been presented.

The program employs the feed-forward neural network combining unsupervised
and reinforcement learning. The plasticity mechanism was implemented employing
the long term potentiation and long term depression mechanisms. An approach
how to keep the activity level of the neurons and how to preserve the learned

patterns has been discussed.

The software architecture and algorithm have been presented. The implementation
details have been introduced and explained. The model has been functionally

verified and experimental results are included.
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As a case study, an agent chasing a food in an ambient environment. In the
simulation agent-environment interaction is maintained only through one single
Boolean feedback signal retrieved from the agent’s field of vision and based not
on the network’s output but on the next input provided to the network. On the
basis of trial and failure, the network learns certain tasks, such as move forward,
rotate, step back. We showed that by applying the combination of Hebbian and
reinforcement learning and incorporating the proposed techniques it is possible
to teach an autonomous agent to search for a food without providing any hints

except for the data retrieved from its limited field of vision.



Chapter 5

Parallel Distributed Simulation

Traditionally, software used to be oriented for sequential computation and exe-
cuted on one-core computers. These days performance of sequential execution
approaches the physical limitation and a new form of computation, known as
distributed computation, becomes more popular because of higher performance,
scalability and fault-tolerance. However, such an approach raises challenging is-
sues, concerning the execution of simulation programs on distributed computing

platforms.

The objectives of our study are first presented in Section 5.1. Section 5.2 overviews
possible topology exploitation in order to find the most efficient mapping algorithm
to optimise the communication load and provide additional performance gain.
Section 5.3 discusses various algorithms of time management and synchronisation

within distributed simulation.

Section 5.4 introduces a simulation environment suitable for efficient parallel dis-
tributed simulation of large-scale neural networks and representation of neurons,
synaptic connections and communication between the asynchronous processors

through the interchange of spike-representing messages.

Asynchronous execution raised the challenging side-effects, such as the cost of
additional distribution-related communication and synchronisation of the parallel
processing. Solving them, the novel protocol for local communication between
processors was developed, which is immune to spikes delivered late or out of or-
der. The algorithm and distributed hardware allows implementing a fault-tolerant
mechanism, immune to processor failures and communication problems. Also, the
chapter presents in details an efficient implementation, design and operation of the
neural network simulator. Section 5.5 discusses the achieved results and compares

them with the research objectives.

113
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5.1 Objectives

The proposed and developed simulator has several objectives. The first one is
to provide simulation of a large-scale neural network. For this the simulator is
designed to run on a distributed hardware, resolving the issues of parallelism,
communication and timing inherited in distributed simulations. The second ob-
jective is a possibility to apply a range of various neuron models. Finally, it is
essential for the simulator that the definition and design of network model and

learning process is biologically inspired (was described in Chapter 4).

Starting from the first objective, the chapter begins with commonly addressed

related side-effects and challenges of distributed computation.

5.2 Mapping

Neuron mapping on participating processors is one of the most obvious require-
ments of distributed simulation. Here we define a network topology, distributing

the groups of neurons and their internal connections over the processors.

Evenly distributed average activity and balanced load distribution is crucial for
computational and communication load generated by simulation. It is beneficial

also to take into account the dynamics of a network in addition to its topology.

5.2.1 Neuron Number Based Mapping

An intuitive and the simplest possible distribution we can apply consists in as-
signing an equal number of neurons to each machine. This approach is easy to
implement and simple to maintain. However, various neuron groups have uneven
computation cost leading to the irregular communication in the network. This pro-
duces non-uniformly distributed areas with different activity of message passing,

which results in non-optimal usage of resources.

5.2.2 Delay Based Mapping

It is also possible to map a neural network according to the time delay between the
groups of different neurons. However, some learning implies a variation of delays
in the network. If such learning is applied to a network, mapping optimization
may cause certain difficulties and quickly affect the quality of mapping. This may

result in non-optimal usage of resources.
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One solution might be to rebalance the distribution of the neural network during
the simulation, according to the changes of delay time. However, the additional
costs should be evaluated, which are generated by the transmission and data struc-

tures update.

5.2.3 Average Activity Based Mapping

Another type of dynamic load balancing is also possible depending on the ac-
tivity of the neural network. The neurons most active during simulation could
be redistributed to optimise the mapping. The activity of the neuron cannot be
predefined because it depends on the input, applied to the network; as well as
overall network activity changes dynamically during the simulation. Therefore,
it is extremely cumbersome to find the ideal dynamic re-distribution of neurons
between the processors depending on their activity level. An approach of dynamic
re-distribution leads to further increase of the potential computational load of the

network.

5.2.4 Neuron Connection Based Mapping

Taking into the consideration the utilized topology of a fully-interconnected feed-
forward network containing three layers, an intuitive way of thinking suggests
mapping of each layer on a separate processor. Since there are no internal connec-
tions in the same layer, the internal communication of each processor is minimal
as no events are sent locally. At the same time the inter-processor communication
is maximal as all events are sent over the communication network, overloading
the simulation. It is obvious that for an optimal performance a trade-off between
the local events and external events must be found to get the balanced network

communication with optimal neuron distribution.

5.2.5 Conclusion

It is very important to find the balance taking into account the network dynamics
in addition to its topology. In practice, however, it is extremely complex to find
the ideal distribution for topologies and dynamics of neural network dividing it in
the separated processors. Consideration of a dynamic allocation is cumbersome

to implement and it leads to further increase of the potential computational load.

We choose mapping of the neurons with a maximum number of incoming and

outcoming mutual connections to the same processor. It significantly reduces the
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amount of messages sent among the processors since the majority of events are
aimed for locally-based neurons. The number of inter-processor links determines
the quality of partitioning. Such an effective approach is beneficial because it is

applicable for a wide range of neuron network types.

5.3 Distributed Time Management

A process of maintaining a conscious control over the event generation, emitting,
storing, and processing is called time management. It supports a proper synchroni-
sation of execution of distributed simulation. It ensures that events are processed
in a correct order as well as guarantees exactly the same output as a result of

repeated execution of a simulation with the same inputs.

5.3.1 Synchronisation

In a neural network simulation spikes are considered independently. However,
events are rarely independent of each other. An important requirement of neural
simulation is that if two events influence each other, they have to be executed in the
correct chronological order. Events cannot be sent until earlier event processing
has not been finished. The processing of an event in the foreseeable future is based
on events that precede it. However, it is hard to determine, which events can be
executed in parallel as the mutual influence of two events depends on the input

and the internal state of the neurons, which is very unpredictable [108].

An inconsistency with a sequential simulation equivalent can arise, for example, if
due to some reason a spike, coming through an inhibitory synapse, is postponed
and processed later than a next in turn spike, which came through an excitatory
synapse and caused a neuron to fire. So that if the postponed spike has been

processed in time, a neuron would not fire in a first place.

Each processor sequentially performs events processing in accordance with the tem-
poral order of these events, however it is necessary to adopt a method of managing
global virtual time. A processor has knowledge about a subset of events processed
in simulation. However, in the overall view of the simulation, the temporal events

order must be consistent with a sequential simulation equivalent.

A processor has to check that the time of their next event queue is consistent with
the overall time. The only synchronisation of the event list of the simulator is no

longer sufficient as each processor has its version of the event list. To ensure the
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temporal consistency, two types of global virtual time management are possible:

synchronous and asynchronous (Fig. 5.1).

5.3.1.1 Synchronous Simulation

The goal of synchronisation mechanism is to ensure that each processor executes
events in time-stamp order. This requirement is referred to as the local causality
constraint. It can be shown that if each processor adheres to the local causality
constraint, execution of the simulation program on a distributed environment will
produce exactly the same results as an execution on a sequential computer [108].

It helps to ensure that the execution of the simulation is repeatable.

Synchronous simulation requires an explicit synchronization between each of the
phases of processing. This can be done employing barrier synchronization. Barrier
synchronization is a program’s instruction for each processor (for instance, after
sending a message) to wait until all other simulation processors have also reached

this point in the program.

One processor can be used as a controller, requiring synchronization of other nodes
at specific time intervals. It awaits the other processors’ message containing in-
formation on the global virtual time allowing it to process upcoming events. In
the example shown in Figure 5.2 the simulation time step At used in a neural
network. We assume that LP; processor plays a role of a controller and indicates

the global time. Local time of each other processor (in our case LP,, LP;, LP;)
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FIGURE 5.2: An example of synchronous simulation with a controlling proces-

sor not participating (a) and participating (b) in simulation. Thick line (blue)

represents processing state, fine line (green) — idle, arrows (in red) — communi-
cation.

is always the same as for L P, processor. Time flow of activities of four processors
during simulation is presented when the controller LP; is chosen as dedicated en-
tirely to synchronization task, case a, and as well participates in event processing,
case b. In both cases, each processor spends much of the time in idle state while
waiting for the next synchronization. Each time the LP; reads the time stamps of
upcoming event of other processors and provides a new global virtual time to all
of them.

This approach is often used for time-driven simulation, where it is necessary that
all processing units be synchronised to each slice. This means that the simula-
tion proceeds to the next time slice only when all the processing units have gone
through the current time slice. So that the next time slice can be compared to a
limit that must be achieved by all processing units. Due to this rigidly coupled
synchronization such a distributed simulation is very sensitive to changes in load
distribution when most processors remain idle waiting for the most overloaded

one.

5.3.1.2 Asynchronous Simulation

A processor does not receive events in any order. Each processor establishes com-
munication channels with all incoming and outgoing of other processors. On each
channel, message sent in chronological order arrives to the destination in the same
order (according to so called First-Input-First-Output principle). This feature
of the simulation is exploited to develop asynchronous methods of decentralized

synchronization.
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In asynchronous simulation, time management is decentralized, processors com-
municate by exchanging messages to maintain a global virtual time for synchroni-

sation.

Time
-

FIGURE 5.3: An example of asynchronous simulation. Thick line (blue) repre-
sents processing state, fine line (green) — idle, arrows (in red) — communication.

Fig. 5.3 illustrates an asynchronous simulation. Here waiting times are reduced
because work progress of each processor is exchanged with others. The acceleration
of an asynchronous simulation to synchronous simulation can be at best O(log(P))
[170]. More decentralized methods generate more message emission to perform the

required synchronization.

The potential gain of an asynchronous method over a synchronous method de-
pends directly on the dynamics of simulated networks and therefore an amount of
produced synchronization messages. Depending on average activity of a network
in certain cases it is possible to take advantage of this dependence limiting the

number of extra messages required for asynchronous time management.

This form of synchronisation is particularly effective for event-based simulation,
where processing units are not as rigidly coupled conversely to event-driven sim-
ulation. Simulation facilitates when the events are produced in larger intervals
than the time range dictated by the underlying time resolution. This is the case of

neural network with reduced connectivity and therefore with a low firing activity.

5.3.2 Deadlock

If a number of unprocessed event messages is relatively low comparing to the num-
ber of connections in a network, or if the unprocessed events become clustered in
one part of the network, a specific condition may occur, when two or more proces-

sors are each waiting for the other in order to progress the global time. It results in
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one or more processors being blocked, waiting for messages from a processor, which
is itself awaiting one of them. Such kind of situation is called deadlock. Quite often
deadlock can overflow memory when the events are accumulated locally without

being sent to the target processor.

For deadlock avoiding, two common approaches are used: the conservative and the
optimistic synchronisation. The conservative method processes only “safe” events,
preventing all types of deadlocks whereas the optimistic synchronisation processes
all available events, even the events, which could falsify the previous calculations

and if deadlock is identified, it fixes any generated errors.

5.3.2.1 Conservative Synchronization

The distinguishable feature of a conservative synchronisation method consists in
avoiding deadlocks at any cost. This is achieved by limiting events to be processed
by a so-called secure window. This window is set by the processor hosting the

source neuron and is known as a look-ahead window.

Larger size look-ahead window allows the simulator to run faster. This gives an
opportunity to apply sophisticated algorithms for calculation of an optimal look-
ahead, where the principal task is to define when it is “safe” to process an event
so that no event containing a smaller time stamp will be later received by the

Processor.

A processor being at simulation time 7' guarantees that any message to be sent in
the future will have a time stamp of at least T+ L regardless of what messages it

may later receive, as shown in Fig. 5.4. The processor is said to have a look-ahead
of L.

Another way to avoid deadlock is using null messages. Once a processor progresses
in simulation, it sends a null message to each outgoing link. Such a message does
not carry any information except the local time of message sending processor and

guaranteeing that no more events will be sent until this time.

Provided with this information, receiving processor safely executes the events pro-
gressing to the indicated time. Null messages are processed by each processor just
like ordinary non-null messages, except no activity is simulated while processing of
a null message. It only advances the simulation clock of the processor to the time
stamp of the null message and none of state variables are modified and no non-null
messages are sent as the result of processing a null message. Whenever a processor
finishes processing a null or non-null message, it sends a new null message on each

outgoing link.
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FIGURE 5.4: Secure window in conservatively synchronised simulation.

A deadlock-free nature of this approach was proven by [171]. However, the prin-
cipal problem of this method is that the null messages cause the high volume of

communication considerably restricting the speed of simulation.

5.3.2.2 Optimistic Synchronization

Contrary to conservative approaches that avoid violation of the local causality
constraint, optimistic approaches allow violations to occur. However, they are
able to detect and recover from them. This allows exploitation of greater degree of
parallelism as two interdependent events can be executed simultaneously. A system
recovery is performed upon the time when an error occurred if one of the events
affects another. Also, optimistic approaches are more flexible and transparent and
do not depend on application specific information in order to compute which event

is safe to process.

The Time Warp mechanism [172] is the most widespread optimistic method. Ac-
cording to it, upon the receiving of an event with a time stamp smaller than one
it has already processed, a system rolls back until the time the error occurred (for
this checkpoints are used). After it the system reprocesses the sequence of events
in timestamp order taking into account the newly received event. It is necessary
to store the events processed in the past and the certain amount of recent states

of the neuron to be able to restore itself to the necessary state.
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The main disadvantage of this method is high memory requirements, even if no
roll-backs occur. The roll-back operation requires additional calculation. This
presents another disadvantage of computational overload, which is acute if the

number of roll-backs is exceeding certain limit.

During the roll-back operation the process sends the corresponding anti-message
and restores its previous state. An anti-messages mechanism is provided to “un-
send” messages and cancels their impact. In this way it revokes the erroneous
impact and improves the progress of simulation. The anti-message is a copy of
a previously sent matching message. In the case when both messages are stored
in the same queue, the both are deleted. However, the main limitation is that

input/output operations cannot be rolled-back.

A pure Time Warp system causes excessive memory utilization and long rollbacks
due to overly optimistic execution. To address the constraint of consumption
a large memory amount for storing neuron states and anti-messages is partially
solved by global virtual time (GVT). It represents the lower bound on the times-
tamp of any future messages (or anti-messages) and is equal to the smallest times-
tamp among unprocessed and partially processed messages. In this way the storage

of messages and states older than GVT is inessential and can be reclaimed.

The optimistic methods are particularly effective for simulations not prone to
deadlocks, which require little communication. In these cases, only the deadlock
detection influences the processing time. Otherwise, when deadlocks are frequent,
the computational costs of error recovery can significantly extend the progress of

simulation.

5.4 Simulator Structure

Along with the choice of hardware resources, mapping type, and distributed time
management, none the less important is the representation of simulation entities,

such as neurons and the way of information exchange.

The simulator is programmed entirely in C4++ using an object-oriented architec-
ture. The simulation consists of a number of logical processes, responsible for one
or a subset of neurons. The simulator works on the principle of events exchange
between the neurons by means of messages circulating on the network between
the processors. In this way the main task of each neuron is to receive a spike and
possibly to create one in return. The following sections will help to understand

the operation more precisely.
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5.4.1 Communication Mode

In biological neural networks information is conveyed in a one-to-many pattern.
Depending on the method of event management, communication mode can be

either sender-oriented or target-oriented.

In a target-oriented communication mode a source neuron sends a message to all
other neurons, which is checked by every neuron in the network and only the
corresponding neurons accept and process the message, as shown in Fig. 5.5. The
advantage of this mode consists in the considerably low number of events stored
in the event list as each spike generates only one event. However, the bottleneck
of this approach is that for each event the validation operation must be performed

at least by every neuron in the system regardless whether it is related to this event

or not.
Target neuron Target neuron
/ Source neuron /
4.. ———
Source neuron
& ]
g o
i *— 3
= =
Sender-oriented mode Target-oriented mode

FIGURE 5.5: Sender-oriented and target-oriented communication mode.

If a reference is stored on the output of the source neuron, such a communication
mode is called sender-oriented. The number of verification operation for sender-
oriented communication mode is lower comparing to the target-oriented mode,
on condition that an average number of connections per neuron is less than the
number of all neurons in the network. This can be seen from the equation 5.1 for

target-oriented mode and equation 5.2 for target-oriented mode:

N
k= Z(n?cme * ;) (5.1)

7
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N m
k=) (i xn,) (5.2)
i g

where k shows the number of verification operations made by all neurons, N rep-

active
7

resents the number of neurons in a network, n is the number of active neurons

and m is the number of synapses of neuron n;.

Let us consider a cerebral cortex. It contains the densest network known so far,
with a number of neurons around 10'° [173], each having on average 10? outgoing
connections [174]. In this case sender-oriented mode benefits in 10° times less
number of verification operations. Considering another example of an artificial
neural network with 3 layers each having n neurons, which gives 3n neurons in
the network with 2?” outgoing connections for each neuron, the ratio % is still
significant.

These calculations indicate that using a sender-oriented communication mode is

more beneficial with conditions that:

e an outgoing AP is represented as a single event;

e considering a neural network with the low activity (similar to biological

neural networks);

e the average number of connections with post-synaptic neurons is smaller
than the number of neurons in the entire network (as it is in biological

neural networks).

5.4.2 Spike Message

The basic element of an event-driven simulation is a message, containing an event.
The event is any occurrence that changes the state of the model so various actions

of a system can be considered as events.

Events cause a change in the state of the system and often result in the scheduling
of other events for some future time. In order to achieve a flexible simulation
framework, it is necessary to model an event so that various learning rules could

be applied without modification of the simulation engine.

For simulation of neural networks, especially in the case of event simulation, mes-
sages representing action potentials (or spikes) are exchanged between neurons. A
spike message is a basic element of simulation. It is emitted by a neuron towards

one or more target neurons. Every spike message contains a target ID so that each
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target of this message can identify the activated connection. It is possible to use
multi-event messages however at the moment we focus our attention on a single
event message. Events must be treated in chronological order in order to preserve

the causality of the simulation.

5.4.3 Message Passing Interface

To simplify the programming for distributed architecture, a language-independent
Message Passing Interface (MPI) standard communication protocol has been de-
veloped by Dongarra et al. [175]. It allows processes to communicate with one
another by sending and receiving messages. There are several implementations of
this standard: MPICH, LAM/MPI and MVICH, which have similar performance
[176]. These implementations provide access to features defined by the MPI stan-
dard in C, Fortran and C++ programming languages.

MPI provides broadcast and point-to-point communication. In broadcast com-
munication a message is sent to all nodes within a pre-defined group of nodes.
Point-to-point communication delivers messages to a single node and can be per-

formed in “blocking” and “non-blocking” modes.

A communication is “blocking” if the node that initiated the communication (ei-
ther sending or receiving procedure) is suspended until the message buffer is safe
to use. A communication is “non-blocking” if the node initiated the communica-
tion can advance immediately after the call without securing the communication
buffer is safe to use. In order to test whether the non-blocking communication is

complete, additional calls can be used.

The blocking communication is easier to handle as it partially synchronises the
nodes. But it causes a delay of large memory block messages in case of a limited
connection bandwidth between communication nodes. In order to avoid the impact
of message transfer delays we made the choice of using non-blocking mode of
communication. In the case of our simulator, the communication initiated nodes
make a request and are able to perform other calculations while awaiting for the

request to be processed.

5.4.4 Master Processor

Special processor is dedicated for interacting with environment and at the same

time managing the other processors work. We refer to it as a master processor,
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whereas all other processors, participating in simulation, are referred as slave pro-
cessors. The master processor performs such operations, as network mapping onto
the slave processors, input feeding to the pre-defined subset of the network and

output collecting form another subset.

5.4.4.1 Interaction with Environment

Master node receives a set of input-output patterns provided by a file or an output
of another program or may generate them itself (by user choice). The safest way
to perform this would be to read all inputs into the queue before the simulation
starts. However, this means that simulator must store possibly very long input

stream, and this is an extremely cumbersome solution.

Instead a single call to a function is used, which fetches one input pattern and
provides it in corresponding way to the input subset of neurons. In this way an
input stream can be infinite or, conversely, the simulator repeatedly gets only one
provided input pattern and gives an output result. Of course, master node should

read into the first input pattern before simulation starts.

5.4.4.2 Initialization Stage

During the mapping stage master reads in data from the description files and feeds

the initialization data to each of the slave processors according to Algorithm 5.1.

=
begin
for i = 0 to netSize do
initMessage ([ID] [potentiall [threshold] [inputSize])
for j = 0 to azonSize do
synapseInitMessage ([ targetID] [weight])
end
|

Algorithm 5.1: Initialization stage.

Each slave receives a message, containing the initial data: neuron’s ID, membrane
potential, threshold potential and a number of incoming connections. Next re-
ceived message contains an array of pairs, where target neuron ID and an initial
weight are specified for each synapse of the neuron. When each neuron receives
its initial values and sets up the required number of connections with the corre-

sponding weights, the initialization stage is over.
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5.4.4.3 Simulation Flow

Flow of simulation consists on a number of learning cycles, during which the
network attempts to alter its weights in such a way that the output neurons
produce an expected pattern. On this level the neural network is synchronized in
the conservative way because master starts each new cycle when the previous one

is completed.

When an input pattern is fed into the network, spikes propagation is synchronized
according to the optimistic approach because each slave behaves asynchronously

and warp technique is applied to correct mistakenly emitted spikes.

5.4.4.4 Master-Slave Interaction

During the learning stage, master sends an input to each of the input neurons for

every pattern pair to be learned, as presented in Algorithm 5.2.
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begin
for i = 0 to patternNumber do
for j = 0 to mazAttempts do
resetPotential () ;

setBarrier ();

for k = 0 to <nputSet do

sendActivationMessage (k) ;

while (!outputReceived)
outputCollection();

if (recetvedOutput '= expectedOutput)
reinforceActiveConnections ();

else
deinforceAllConections ();

end

Algorithm 5.2: A learning cycle of simulation.

At first, master sends a signal to each slave, directing him to reset their potential

and later it sets a barrier synchronization marker (line 5 in Algorithm 5.2). This
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barrier is a program’s instruction for each processor to wait until all other simula-
tion processors have also reached this point in the program. As all processors run
in the asynchronous mode, this security measure guarantees that all processors are
receiving a proper input for corresponding cycle. Without it the delayed messages

could interfere with inputs of other cycles and deteriorate the final result.

Master ‘knows’ which slaves are dedicated for representation of input and output
neurons. After barrier synchronization, master supplies each input slave with a
corresponding input value, indicating them either to spike or not based on the
input pattern. Later, master enters a while loop in order to collect the outputs.
The loop terminates when master receives a complete set of messages from the

output subset of neurons.

In line 14 of Algorithm 5.2 master compares the received array with the expected
one. If the arrays are equal, master sends a reinforcement message to all slaves, be-
cause it does not know, which processor was active or idle. The message instructs
the slaves to reinforce the connections, which were used in the input signal prop-
agation through the network at the current cycle. Only the active slaves perform

the reinforcement, while the rest slaves ignore the message.

If the received and expected arrays are unequal, the deinforcement message is sent
to all the neurons and this time all neurons deinforce their connections accordingly.

The input pattern is fed into again until the correct output is found.

The learning phase repeats until all the input-output pairs are recognized by the
network at once. When this happens, we assume the network has successfully

learned all the patterns.

However, while learning new patterns, old patterns are partially destroyed due to
interference of active paths (explained in Section 4.4.1). To overcome this negative
effect, the pairs of patterns are periodically shuffled and fed into again. Firstly, this
approach assists in finding the most optimal weight values valid for all patterns

and secondly, it prevents possible effects due to a specific learning order.

5.4.4.5 Slave Termination

When the learning phase is over, the simulation enters its final stage, when master
terminates all the slaves by sending the termination message to each processor.
This message forces each processor to complete its operation and to save the

current state and the weights of connections to the outside file.
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5.4.5 Slave’s Workload

A slave processor is idle until it receives a message from another slave or mas-
ter. Slave does not ‘know’ whether it contains an input, hidden or output neu-
rons. When the message is received, slave recalculates its internal state, checking
whether it reached the condition of spike emission and a new message is going to
be generated. If the message is generated, it is sent to all known targets, deter-
mined a priori while creating the network (discussed in Section 5.2). Slave saves
into the activated By array the ID of the neuron, which excited it, as shown in
Algorithm 5.3.

10

11

12

13

begin
if (messageReceived)
stateRecalculation(weight) ;

activatedBy.push(src);

if (firstlydctivated)
preSynapticInform(potential);
postSynapticUpdate (weight);
else
preSynapticUpdate (potential);
if (lactivednymore)
postSynapticErase (weight);

end

Algorithm 5.3: Data exchange among slaves.

If the firing condition is fulfilled and this is a first time of neuron excitation in
the current cycle, slave emits a spike to the post-synaptic neuron. In order to
implement learning, it is necessary to inform pre-synaptic neurons about this event.
For this reason, slave sends another message to the pre-synaptic neurons as well.
This message indicates the pre-synaptic neurons that they caused a post-synaptic
neuron to emit a new spike. Pre-synaptic neurons store this information into the

activated array.

If the firing condition is met not for the first time in the current cycle, slave needs
to inform the pre-synaptic neuron about the alteration of its potential value. This
helps to implement the warp synchronization. In the case if it receives an inhibitory

signal and is not active anymore, slave sends another message to its post-synaptic
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neurons. In such a case the post-synaptic neurons warp the neuron’s influence

onto them, changing their state correspondingly.

5.4.5.1 Applying Learning Rules

Finally, when the output neurons produce the output pattern, slaves receive a
message from the master processor. This message informs either to reinforce or
deinforce the weights. Two arrays (activated and activatedBy) contain all the
necessary information for applying the learning rules, which were described in

Section 4.2.3.4. When weights are altered, a new cycle starts.

5.5 Results and Discussions

After describing the generic neural simulation platform able to support multi-
ple neuron network models and various ways of network mapping on distributed

hardware, we discuss the achieved results.

5.5.1 Spiking Pattern

A neural network was simulated to explore the neuron spiking behaviour. Fig.
5.6 represents a spiking training obtained from the network of 40 neurons with
input neurons 0, 1, 3, 4 and 9 permanently emitting spikes. At first, the number
of excited neurons significantly increases until eventually it reaches the required
number in order to excite the right output neurons, when the input-output pair of
patterns to be learned. Fig. 5.7 shows the total neuron activity at each learning

step.

5.5.2 Weight Alteration

Are all connections equally significant? To answer this question we investigated
the weight alteration dynamics during the training process in order to identify the
most and the least significant connections. Along with the network structure, the
initial state of the weights has a large impact on the ability to learn and resilience

of a neural network. Here we look into the optimal initial values of the weights.

A lower level of connectivity results in a lower fault distribution caused by poten-
tially faulty nodes while implementing the network on the distributed hardware.

Limiting the number of redundant fault-prone components potentially improves
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FIGURE 5.8: Training efficiency dependence on the number of equilibration

steps applied prior training. During the training phase 4 different patterns were

learned. The network size was 2000 neurons with 5 input and 5 output neurons
and 90 % connectivity.

the fault tolerance of the entire network. As the faulty nodes have fewer outgoing
connections, there are fewer post-synaptic nodes receiving the ineligible spikes.
Secondly, fewer connections decreases the chance of a system failure as the mean
time to failure (MTTF) of the entire system is inversely proportional to the sum

of the failure rate X\ of each its constituent, as shown in the Equation 5.3:

1
MTTF = ————. (5.3)

PDIPY
Connection links can be safely pruned without significantly affecting the perfor-
mance. However, while significant connectivity reduction decreases the network
sensitivity to faults, it prolongs the training time due to the smaller quantity of

connections with alterable weights. Thus a trade-off must be made between the

level of connectivity and the adaptation time.

We constructed a small network of 20 neurons (for better visibility) and recorded
the alteration of each weight, plotting the measured values against each simulation
step. We noticed that training efficiency directly depends on the initial state of
the network: weight equilibration before the learning phase significantly improves
the training process. This is demonstrated in Fig. 5.8. 1000 random inputs
were applied to the network 10000 times before starting any measurements. For
each input the “deinforcement” process was applied to the weights, modifying the

overall distribution of their values in the network.



Chapter 5 Parallel Distributed Simulation 133

The weight alteration dynamics was investigated. We paid close attention to the
weights of connections between input and hidden layers (see Fig. 5.9) and between
hidden and output layers (see Fig. 5.10) as well as to the weight distribution at

the three stages of simulation:

1. at the initial phase, which is reached after the mapping process;

2. after the network equilibration phase, when the LTD rule is applied to the

network several times;

3. after the learning phase, when all the pattern pairs were successfully learned.

The Gaussian distribution of weights can be found on the graphs at the initial
phase of simulation. After equilibration is applied, the centre of distribution
slightly shifts towards the left side for the connections between input and hid-
den layers and remains almost unaltered for the connections outgoing from the

hidden layer.

A significant difference between the weight distribution dynamics can be observed
among input-hidden and hidden-output connections. In the first one, during the
learning phase, distribution expands over the range from -0.1 to 1 with a centre at
0.45 and a significant concentration of weights around 0.5. However, the weights
in the input-hidden connections shrinks considerably from being in the range from
-4 to 4 at the initial stage to the range from -0.02 to 0.015 at the final stage with

unclearly defined distribution centre around -0.002.

This phenomenon can be explained in the following way. The input neurons tend to
excite only specific set of hidden neurons and concentrate their connection efficacy
to the limited number of neurons. Because of this, a change of the formed active
paths requires more efforts but make the connections more stable and insensible

to changes. This behaviour can be seen in Fig. 5.11.

The hidden neurons broaden their influence on the wide range of neurons, although
having on them comparatively low influence. These connections are more sensi-
tive to the input changes and faster adapt the required firing pattern by exciting
the right output neurons. Fig. 5.12 shows that weights are almost unalterable
during the first phase of simulation, eventually changing their weights at the final

simulation phase.

Concluding, there are two levels of learning in a multi-layer neural network.

Whereas the weights of the input neurons are less sensible to changes, they better
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FIGURE 5.9: Weight distribution of input-hidden connections at the initial
phase (a), after the equilibration phase (b), and after the learning phase (c).

) 100 T T

50

-
o
o

i=r

50

frequency

0
-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015

weight

FIGURE 5.10: Weight distribution of hidden-output connections at the initial
phase (a), after the equilibration phase (b), and after the learning phase (c).



Chapter 5 Parallel Distributed Simulation 135

80

simulation steps

neurons 1

FIGURE 5.11: Weight alteration of connections between input and hidden layers
during the simulation progress.

0.03

0.02

0.01 R : : ‘

-0.01

weights
(=]
—

-0.02

30

neurons 0 10

simulation steps

FIGURE 5.12: Weight alteration of connections between hidden and output
layers during the simulation progress.



Chapter 5 Parallel Distributed Simulation 136

retain the learned patterns as opposed to the weights of the hidden neurons, which

being highly-alterable and fastly adapting, easily ‘forget’ the learned patterns.

This allows us to assume that input-hidden connections are more influential on
the adaption of the required output connection compared to the hidden-output
connections. Taking into account that connections with large weights are highly
sensitive (according to [177]), it is more advisable to prune them before starting the
training phase. Pruning the connections of large weights also accelerates training
process: the input-hidden connections adapt faster due to their lower number and
only after their weights are settled, the hidden-output connections start actively
adapting. The adaptation process is shown in Fig. 5.11 and Fig. 5.12, where it
is clearly visible that the hidden-output weights start adapting. Moreover, after
the training phase is complete, a possible fault in the input-hidden connections is
more devastating as it automatically leads to a faulty output in the corresponding

post-synaptic nodes.

5.5.3 Performance Estimation

The processing time required to complete one cycle of simulation was calculated

and its dependence on the network size was estimated.

Since the real SpiNNaker chip is not available yet, the simulation was performed on
the Iridis computer cluster. The cluster consists on 1008 2.27 GHz Intel Nehalem
compute nodes connected to an InfiniBand network for interprocess communica-
tion. Each node has two 4-core processors with 22 GB of RAM per node. In this

way 8064 processor-cores provide over 72 TFlops.

We paid attention to the time performance dependence on the number of phys-
ical processors participating in simulation. The virtual neurons were distributed
among the physical processors by the principle that the neurons with the maxi-
mum number of incoming and outcoming mutual connections are mapped to the
same processor. This was done in order to reduce the amount of messages sent
among the processors so that the majority of events are aimed for locally-based

neurons.

Fig. 5.13 presents the dependence of time required for simulation of a network
with 10* neurons. Initially, it is very efficient to use more processors, as the
computation is dominating. However, the gain in processing time decreases when
using a higer number of processors. Such a slow down is caused by communication
between processors, which becomes the bottleneck for the further increase in time

performance.
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sequential (dashed red line) and parallel (solid blue line) simulation.

Fig. 5.14 compares the distributed parallel implementation with the single proces-
sor implementation in terms of how both solutions affect the learning process. It
shows that during learning process with single and multicore implementations the
mean values of the rate of change in the synaptic weights are not completely iden-
tical, however have a close behaviour. The learning process results in two similar
but not identical matrices of synaptic weights, which are presented in Table 5.1.
Nevertheless, both weight matrices represent the correct solutions of learning the
set of patterns so that for any given input pattern the expected output pattern is

produced.

Also, the synaptic weights tend to vary in a more or less baunded range and re-

main within acceptable bounds, which can be also seen from the normal weight
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TABLE 5.1: The weight matrices of synaptic weights after learning process.

Input-Hidden | Hidden-Output | Input-Hidden | Hidden-Output
-0.00656572 0.075 -0.00599528 0.075
0.00586035 0.075 0.00659533 0.075
-0.00664575 0.075 -0.00569383 0.075
0.00592178 0.075 0.00662183 0.075
-0.00603716 0.552874 -0.00647891 1.04672
0.00649823 0.549234 0.00513071 1.03093
-0.00568837 0.55196 -0.00630918 1.03225
0.00664031 0.553604 0.00516618 1.02931
-0.00651443 0.594671 -0.00544413 1.05518
0.00678015 0.589824 0.00613593 1.07608
-0.00643133 0.590156 -0.00578153 1.05124
0.00661079 0.589209 0.00603277 1.06152
-0.0074707 0.0625 -0.00782281 0.05
0.00626806 0.0625 0.00637752 0.05
-0.00725277 0.0625 -0.00688018 0.05
0.00624353 0.0625 0.0061044 0.05

distribution in Fig. 5.9 and Fig. 5.10. This is caused by the fact that every time
when a network is confronted with a new input pattern to be learned, generat-
ing the weight fluctuation, it should find back its balance in order to retain the

previously learned patterns.

5.5.4 Fault-tolerance

Faults do and will occur in a system over time, and there always will come a time
when performance is below acceptable limits. However unlike traditional comput-
ing techniques, the neural network approach does not insist on exact computa-
tion. There is the strongly non-linear nature and the distribution of information
or knowledge throughout all of the network. Almost all of the units and connec-
tions participate in producing an output either directly or indirectly. Since it is
difficult to determine exactly the required amount of processing units and their
connections, their redundant number results in a higher degree of reliability. Thus
the malfunctioning of a particular element of a system should not greatly affect

the systems function if there is sufficient redundancy.

Any fault will influence the output to some degree since all components participate
in any computation. This leads to graceful degradation being exhibited by most
neural networks, i.e. neural networks will not suffer catastrophic failure, and

also allows approaching failure to be detected by using a continuous reliability
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measure. The fault tolerance that results in this reliability is not inherent within
neural networks: it does need to be specifically designed and built into them, and
so the architectural complexity which often arises due to various fault tolerance
techniques being used is absent in neural network systems. Although any faults
which do occur cannot be located, they can be removed from the system since

neural networks can learn.

We investigated the performance degradation of the artificial neural network under
the presence of faults in a representative pattern-recognition task and analyse its

insensitivity to limited errors in the computational hardware.

In order to collect statistically valid data each simulation of the network of 2000
neurons was run 1000 times. Each time a certain number of faulty nodes was
placed probabilistically according to the described fault injection technique. The
quality of output stands for the probability of receiving the expected output and is
based on the maximum number of different bits (the Hamming distance) between
the expected patterns and the produced pattern, whereby correct classification
is still guaranteed. This experiment produced a plot of the neural network fault
tolerance against the number of faulty nodes, by which the network reliability
could then be judged.

Fig. 5.15 shows the effect of faults injection while evaluating a set of 20 patterns.
We presented the damage volume in percentage to the all possible damages in order
to scale the amount of damage with the size of the physical implementation. The
figure shows that performance degradation is in some sense graceful. According
to the plot, 5% faulty nodes guarantees 60% correct output and 10% faulty nodes
reduces the probability of the correct result to 50%. A network with 2% faulty
nodes produces the correct result with a probability of 90%. Fig. 5.16 presents
the zoomed area of Fig. 5.15.

Although the experiments were performed simulating comparatively small net-
works (about 2000 neurons) with a small training set, the results are considered
indicative for large networks with large training sets due to the scalable nature of

calculations.
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FIGURE 5.15: The quality of output against the amount of faulty neural net-
work’s nodes while recalling pre-learned 20 patterns using the network of 2000
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5.6 Summary

At the beginning of this chapter we discussed various ways of neural network
mapping on the distributed hardware. A mapping scheme is a very common issue
in parallel distributed processing and usually is a trade-off between computation
and communication and is mostly dependent on architecture of a network. We
overviewed possible exploiting of a topology in order to optimise the communica-

tion load and provide additional performance gain.

The potential gain offered by an asynchronous versus synchronous time manage-
ment was highlighted as well as the challenges caused by concurrent execution of
events on asynchronous distributed processors were mentioned. These challenges
require applying of specific synchronisation features to maintain the equal global

time.

We presented in details an efficient implementation, design and operation of the
neural network simulator. The structure and detailed performance analysis is also
presented as well as investigation of the simulator’s dependence on various neural

network parameters and learning coefficients.

An efficient protocol for local communication between neurons while modelling a
neural network on a parallel distributed hardware has been used. By using it,
all neural data can be localised on the neuron simulating processor and only a
necessary portion of data sharing occurs for the learning purposes. We also devel-
oped a fault-tolerant mechanism, immune to processor failure and communication
problems, which can take place during a learning phase on a parallel distributed

hardware.



Chapter 6

Conclusions and future work

6.1 Thesis Summary

This work contributes to the study of biological neural networks, in particular
with respect to the learning mechanism. It explores the biologically plausible
algorithm along with software implementation for efficient parallel simulation of

neural networks on a distributed hardware.

The main focus is on biologically credible learning, where the learning process
based on the weight adaptation depends exceptionally upon the variables, stored

locally at either a synapse or the neurons, involved in the spike transmission.

Chapter 2 introduced the nature of a biological neuron, the building block of a
neural network. It explained how the neural dynamics of biological neurons and
their collective activity contribute to the information processing mechanism and
the resultant collective intelligent behaviour. Also it overviewed the efforts to
capture neural dynamics by using mathematical models, which help to reproduce
the intelligent behaviour within a computer simulation. Later, it presented the
importance of the synaptic plasticity mechanism to learning and memory: the
ability of a synapse to change in strength in response to spike transmission activity

over it.

Chapter 3 explained the different mathematical models of neurons, outlining their
benefits and downsides and selected the best candidates for large-scale network
simulation. It introduced the contemporary neural network modelling theories,
strategies and techniques. They are used by engineers and scientists both for
biologically plausible neural network simulations and for solving various technical
problems, for which the conventional methods are inefficient (e.g. speech synthesis,

computer vision).
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Chapter 4 focused on the research work performed to devise a biologically plau-
sible learning mechanism, capable of searching for correct patterns, storing and
reproducing them later. It resembled the biological learning processes, found in
the animal’s brain. The chapter aimed to understand the essential computations
that take place in the network of interconnected neurons, resembling actual biolog-
ical neural networks. In the chapter the algorithm implementation was discussed,
which is able to learn and recognise the learned patterns based only on a binary
feedback signal. Investigation was performed on activity paths formation and their
interference in the network. High level of activity paths interference directly influ-
ences learning speed and significantly limits capacity of stored patterns, causing
self-destruction of a pre-learned information in an attempt to adjust the weights

for storing new one.

As a case study, an agent was presented, which based on three proposed techniques
is able to accumulate the vital experience from an ambient environment. For this
purpose an algorithm was derived that changes the weights of a neuron network
by determining the exact error, which the network makes on each example of a

particular task in an unsupervised manner.

However, biological neural systems are intrinsically parallel by their nature. There-
fore, in Chapter 5 the previously mentioned single processor program was extended
to an asynchronous multi-processor system. Besides of increased computational
reliability and scalability, such an approach raised the challenging side-effects, such
as the cost of additional distribution-related communication and synchronisation
of the parallel execution. Solving them, the efficient protocol for local communi-
cation between processors was used, which is immune to belatedly or out of order
delivered spikes. We also developed a fault-tolerant mechanism, immune to pro-
cessor failure and communication problems, which can take place during a learning

phase on a parallel distributed hardware.

The simulator with the described features has been implemented during the project.
The implementation details of the simulation software were illustrated along with

the performance analysis and explanation of the weight changing dynamics.
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6.2 Future Work

The approach proposed in this research is not perfect solution and does allow room
for improvements. Different extensions or alterations are possible to enhance the

performance of the learning process.

One of possibilities is to include more biologically known features into the pre-
sented model. As was mentioned in the thesis, the study on the behaviour of
biological neural networks collected strong evidence that time delays of axonal
signal and the refractory period of neuron plays an important role in the neuron
dynamics. This would make possible usage of spike-timing information processing.
There are believes that a network can efficiently control its activity level with the
help of the delay mechanism. Another possible benefit is increased learning capac-
ity because more advanced encoding mechanisms could be applied (e.g. population

coding).

Several attempts have been made to incorporate temporal concept into the learning
mechanism, while executing it on the asynchronous distributed hardware. When
a final version of SpiNNaker will be implemented, our next step is to adapt the
existing system onto it, where synchronisation mechanism is already realised on

the hardware level and the issue would not cause any significant challenges.

If temporal concept were incorporated, it would be possible to include different
types of neurons or a neuron model with various spiking patterns (such as the
Izhikevich model, which can exhibit over 20 different spiking patterns of all known
types of cortical neurons). It would be interesting to study the influence of different
neuron dynamics on the ordered complex network and particularly the possible
effect it will have on the stabilising the network activity. Another possible benefit is
reduction of the active paths interference because of the different neuron dynamics.
Certain types of neurons will store learned data tightly while another will be more
easily adapting to the new data and thus loosely storing the learned one. It could
also be a case that the LTD mechanism possibly does the job of searching for
successful output patterns without strongly alternating the already learned input-

output relations.

One more possible extension would be to refine the binary feedback response. In the
current version it is a binary value, representing the correct and incorrect network
output in reaction to some input. However, a more advanced relative measure
of success can return more precise response, representing closeness to a desired
output (such as the Hamming distance between two patterns). In such a way the

learning speed can be significantly increased if a feedback signal is represented as
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a range of values.
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