
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Multiprocessing Neural Network

Simulator

by

Anton Kulakov

A thesis submitted for the

degree of Doctor of Philosophy

in the

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

January 2013

http://www.soton.ac.uk
mailto:ak06r@ecs.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Multiprocessing Neural Network Simulator

by Anton Kulakov

Over the last few years tremendous progress has been made in neuroscience by

employing simulation tools for investigating neural network behaviour. Many sim-

ulators have been created during last few decades, and their number and set of

features continually grows due to persistent interest from groups of researchers

and engineers.

A simulation software that is able to simulate a large-scale neural network has been

developed and presented in this work. Based on a highly abstract integrate-and-fire

neuron model a clock-driven sequential simulator has been developed in C++. The

created program is able to associate the input patterns with the output patterns.

The novel biologically plausible learning mechanism uses Long Term Potentiation

and Long Term Depression to change the strength of the connections between the

neurons based on a global binary feedback.

Later, the sequentially executed model has been extended to a multi-processor

system, which executes the described learning algorithm using the event-driven

technique on a parallel distributed framework, simulating a neural network asyn-

chronously. This allows the simulation to manage larger scale neural networks

being immune to processor failure and communication problems.

The multi-processor neural network simulator has been created, the main benefit of

which is the possibility to simulate large scale neural networks using high-parallel

distributed computing. For that reason the design of the simulator has been

implemented considering an efficient weight-adjusting algorithm and an efficient

way for asynchronous local communication between processors.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:ak06r@ecs.soton.ac.uk

Contents

Acknowledgements 11

1 Introduction 13

1.1 Background . 13

1.2 Aim and Motivation . 16

1.3 Objectives . 16

1.4 Contributions . 17

1.5 Thesis Structure . 18

2 Biological Principles 20

2.1 Neuron Structure . 21

2.2 Action Potential . 23

2.2.1 Formation . 24

2.2.2 Propagation . 25

2.2.3 Propagation Delay . 26

2.2.4 Active Properties of Dendrites 27

2.3 Synaptic Plasticity . 28

2.3.1 Long-term Plasticity . 28

2.3.1.1 Long-term Potentiation 28

2.3.1.2 Long-term Depression 29

2.3.2 Short-term Plasticity . 30

2.3.2.1 Facilitation of Transmitter Release 30

2.3.2.2 Post-tetanic Potentiation 30

2.3.2.3 Depression of Transmitter Release 30

2.4 Plasticity Mechanisms . 31

2.4.1 Hebbian-type Learning Rules 32

2.4.2 Spike-timing-dependent Plasticity 33

2.5 Summary . 36

3 Modelling and simulation 38

3.1 Information Sources . 39

3.1.1 Biological Sources . 39

3.1.2 Computational Sources . 40

3.2 Neuron Models . 41

3.2.1 Biophysically Detailed Models 43

2

CONTENTS 3

3.2.2 Computationally Efficient Models 44

3.3 Simulation Strategies . 50

3.3.1 Network Structure . 50

3.3.2 Activity Propagation . 51

3.3.2.1 Feed-forward Neural Network 52

3.3.2.2 Recurrent Neural Network 53

3.3.2.3 Reservoir Computing 54

3.3.3 Modelling Techniques . 55

3.3.3.1 Time-driven Technique 56

3.3.3.2 Event-driven Technique 57

3.3.3.3 Temporal Precision 59

3.3.4 Learning Paradigms . 60

3.3.4.1 Supervised Learning 60

3.3.4.2 Reinforcement Learning 61

3.3.4.3 Unsupervised Learning 61

3.4 Distributed Computing . 62

Need of Communication Network 62

Faster Execution . 62

Computational Reliability 63

Scalability . 63

Enough On-chip Memory 63

3.4.1 Distributed Simulation Challenges 63

3.5 Available Architectures . 64

3.5.1 Parallel Computers . 64

3.5.1.1 Single Program Multiple Data 65

3.5.2 Application-Specific Integrated Circuit 65

3.5.3 Field Programmable Gate Array 66

3.5.4 Graphics Processing Units 66

3.5.5 Summary . 67

3.6 Existing Simulation Environments 67

3.6.1 NEURON . 68

3.6.2 GENESIS . 69

3.6.3 NEST . 70

3.6.4 BRIAN . 70

3.6.5 NCS . 71

3.6.6 PCSIM . 72

3.6.7 SPLIT . 72

3.6.8 HHSIM . 73

3.6.9 MvaSpike . 73

3.6.10 SpikeNET . 73

3.6.11 KInNeSS . 74

3.6.12 LENS . 75

3.6.13 JavaNNS . 75

3.6.14 NeuroJet . 76

CONTENTS 4

3.6.15 Nengo . 76

3.6.16 MOOSE . 77

3.6.17 FANN . 77

3.6.18 CX3D . 78

3.6.19 Review Conclusions . 78

3.7 Summary . 79

4 Sequential Neural Network Simulation 81

4.1 Network Model . 82

4.1.1 Network Architecture . 82

4.1.1.1 Connectivity . 82

4.1.1.2 Introducing Dilution 82

4.1.1.3 Diluted Network Importance 83

4.1.1.4 Network Structure 84

4.1.2 Neuron Model . 85

4.1.2.1 Rationale for Chosen Model 85

4.1.2.2 Model Parameters 86

4.1.2.3 Model Dynamics 87

4.2 Learning . 88

4.2.1 What is Learning? . 88

4.2.2 Biological Inspiration . 88

4.2.2.1 Morris Water Maze 88

4.2.2.2 Representation of Biological Learning 89

4.2.3 Learning Mechanism . 90

4.2.3.1 Existing Techniques 90

4.2.3.2 Hebbian Postulate 91

4.2.3.3 Rosenblatt Principle 91

4.2.3.4 Weight Update Rule 92

4.3 Program Implementation . 93

4.3.1 Initialisation Phase . 93

4.3.2 Algorithm . 95

4.4 Model Weaknesses . 97

4.4.1 Active Paths Interference . 97

4.4.2 Reasons of Active Paths Interference 98

4.5 Simulation Results and Discussions 99

4.6 Biologically-inspired Agent . 103

4.6.1 Environment . 104

4.6.2 Agent and Food . 104

4.6.3 Food Searching Algorithm 106

4.6.4 Decision Making Mechanism 108

4.6.5 Agent Simulation Results 108

4.7 Summary . 111

5 Parallel Distributed Simulation 113

CONTENTS 5

5.1 Objectives . 114

5.2 Mapping . 114

5.2.1 Neuron Number Based Mapping 114

5.2.2 Delay Based Mapping . 114

5.2.3 Average Activity Based Mapping 115

5.2.4 Neuron Connection Based Mapping 115

5.2.5 Conclusion . 115

5.3 Distributed Time Management . 116

5.3.1 Synchronisation . 116

5.3.1.1 Synchronous Simulation 117

5.3.1.2 Asynchronous Simulation 118

5.3.2 Deadlock . 119

5.3.2.1 Conservative Synchronization 120

5.3.2.2 Optimistic Synchronization 121

5.4 Simulator Structure . 122

5.4.1 Communication Mode . 123

5.4.2 Spike Message . 124

5.4.3 Message Passing Interface 125

5.4.4 Master Processor . 125

5.4.4.1 Interaction with Environment 126

5.4.4.2 Initialization Stage 126

5.4.4.3 Simulation Flow 127

5.4.4.4 Master-Slave Interaction 127

5.4.4.5 Slave Termination 128

5.4.5 Slave’s Workload . 129

5.4.5.1 Applying Learning Rules 130

5.5 Results and Discussions . 130

5.5.1 Spiking Pattern . 130

5.5.2 Weight Alteration . 130

5.5.3 Performance Estimation . 136

5.5.4 Fault-tolerance . 138

5.6 Summary . 141

6 Conclusions and future work 142

6.1 Thesis Summary . 142

6.2 Future Work . 144

List of Figures

2.1 The schematic diagram of the neuron [1]. 22

2.2 Schematic and real view of an action potential [2]. 24

2.3 The propagation of an action potential [3]. a) The depolarised re-
gion on the far left causes sodium channels to open, further depolar-
ising the region. b) At certain point, the sodium channels become
inactive and potassium channels open, which temporary depolarise
the membrane. c) The process repeats as the wave of depolarisation
propagates down the axon. 25

2.4 LTP and LTD dependence on the difference between the spike ar-
rival and new spike generation times [4]. SCR (synaptic change
rate) describes the change of the absolute synaptic efficacy. The
parameter A represents absolute synaptic efficacy, Ti describes the
size of the learning window, SAT shows spike arrival time from pre-
synaptic neuron and FT shows firing time of post-synaptic neuron.
The dashed line demonstrates the change of the parameter A based
on the variation of pre- and post-synaptic firing time lag. 29

2.5 Variation in amplitude of excitatory postsynaptic current (EPSC)
as a function of action potential arrival times. ∆t = tpost− tpre, the
sending times of postsynaptic and pre-synaptic neurons [5]. 34

3.1 Two interconnected cortical pyramidal neurons and in vitro recorded
spike. 39

3.2 Simplified neuron model. If the sum of the inputs weighted by wji

exceeds the threshold θ, then the output yj of the neuron is different
from 0. 41

3.3 Action potential generation in the Hodgkin-Huxley model. 43

3.4 Neuronal responses obtained for different values of the four model
parameters a, b, c, and d (see Fig. 3.5). Each is labelled with the
corresponding biological behavior. [6]. 47

3.5 Choice of a, b, c, and d parameters for representation of regular
spiking (RS), intrinsically bursting (IB), chattering (CH), fast spik-
ing (FS), thalamo-cortical (TC), resonator (RZ), and low-threshold
spiking (LTS). [7]. 48

3.6 Comparison of the architecture of a feed-forward (left hand side)
and a recurrent neural network (right hand side); the grey arrows
sketch the direction of computation. 52

3.7 Various types of connections in a recurrent networks. 53

6

LIST OF FIGURES 7

3.8 Reservoir computing. 54

3.9 Approximating the value of the membrane potential in time-driven
simulation with every time step ∆t. 56

3.10 Change of state in time-driven (left) and event-driven (right) simu-
lation. 57

3.11 A. Comparison between time-driven (cd, top: low temporal reso-
lution; middle: higher resolution) and event-driven (ed) technique.
B. Impact of simulation strategy on facilitation and depression of
synapses. C. Differences in the synchronous event occurrence for
various temporal resolutions. D. Small differences in spike times
can accumulate and lead to severe delays (top, arrow) or even can-
cellation (bottom, arrow) of spikes (modified from [8]). 59

4.1 The effect of dilution: fully connected network (left) and with some
missing connections (right). 83

4.2 Example of different subsets of neurons in the network. 85

4.3 Neuron model parameters. 86

4.4 Influence of excitatory (EPSP) and inhibitory (IPSP) synapses on
the membrane potential, resulting in a spike (an action potential)
if the membrane potential crosses the threshold level [9]. 87

4.5 Morris water maze. 89

4.6 Simulation initialization stage. 94

4.7 Simplified representation of main program classes. 95

4.8 Path interference of A-C-D and A-B-D neuron paths [10]. 98

4.9 The performance of the neural network of 200 neurons while in-
creasing the number of patterns to be learned. 100

4.10 The capacity of the network to learn as the number of patterns
increases until the system is no longer capable of learning. The
solid lines represent the network of 2000 neurons and the dashed
lines represent the network of 200 neurons. 100

4.11 Dependence of the number of learning steps required to learn 20
neurons by 500-neuron size network on the faults number injected
at the network level during the learning process. The level of faults
is presented in percents. 101

4.12 The number of learning steps requried to learn 20 different input
patterns depending on the level of connectivity in the network of
500 neurons. 102

4.13 Dependence of the number of learning steps on faulty components
(the red line for faulty nodes and the green one for faulty synapses)
in the network of 500 neurons. 102

4.14 Environment view. 104

4.15 The agent design framework. 105

4.16 The food search algorithm. 107

4.17 Food chasing success rate versus the performed learning steps. . . . 109

4.18 Dependence of the neural network performance on the learned pat-
terns number. 110

LIST OF FIGURES 8

4.19 Comparison of the performance with and without un-learning tech-
nique as a function of the learned patterns number. 110

4.20 The influence of the corrupted level of vision on the quality of pro-
duced output. 111

5.1 Distributed time management techniques. 117

5.2 An example of synchronous simulation with a controlling processor
not participating (a) and participating (b) in simulation. Thick line
(blue) represents processing state, fine line (green) – idle, arrows (in
red) – communication. 118

5.3 An example of asynchronous simulation. Thick line (blue) repre-
sents processing state, fine line (green) – idle, arrows (in red) –
communication. 119

5.4 Secure window in conservatively synchronised simulation. 121

5.5 Sender-oriented and target-oriented communication mode. 123

5.6 A sample spike train obtained simulating a network of 40 neurons. . 131

5.7 Total activity obtained simulating a network of 40 neurons. 131

5.8 Training efficiency dependence on the number of equilibration steps
applied prior training. During the training phase 4 different pat-
terns were learned. The network size was 2000 neurons with 5 input
and 5 output neurons and 90 % connectivity. 132

5.9 Weight distribution of input-hidden connections at the initial phase
(a), after the equilibration phase (b), and after the learning phase
(c). 134

5.10 Weight distribution of hidden-output connections at the initial phase
(a), after the equilibration phase (b), and after the learning phase
(c). 134

5.11 Weight alteration of connections between input and hidden layers
during the simulation progress. 135

5.12 Weight alteration of connections between hidden and output layers
during the simulation progress. 135

5.13 The time required for simulation of a network with 1 · 104 neurons. 137

5.14 The mean value of rate of change in the synaptic weights of sequen-
tial (dashed red line) and parallel (solid blue line) simulation. . . . 137

5.15 The quality of output against the amount of faulty neural network’s
nodes while recalling pre-learned 20 patterns using the network of
2000 neurons. 140

5.16 The quality of output against the amount of faulty neural network’s
nodes while recalling pre-learned 20 patterns using the network of
2000 neurons (zoomed version of Fig. 5.15). 140

List of Tables

2.1 Summary of experimental evidence of axonal conduction delays in
different neurons and species. 27

3.1 Comparison of the computational properties of neuron models, after
[6]. Sign “+” means ability to implement and “-” means inability
to implement the given feature by certain model. 49

5.1 The weight matrices of synaptic weights after learning process. . . . 138

9

Declaration of Authorship

I, Anton Kulakov, declare that this thesis and the work presented in it are my own

and has been generated by me as the result of my own original research.

Multiprocessing Neural Network Simulator

I confirm that:

1. This work was done wholly or mainly while in candidature for a research

degree at this University;

2. Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated;

3. Where I have consulted the published work of others, this is always clearly

attributed;

4. Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

7. None of this work has been published before submission.

Signed:

Date:

10

Acknowledgements

I would like to thank all those who helped me throughout my research. I am

particularly thankful to my supervisor, Prof. Mark Zwolinski, for giving me the

opportunity to undertake this research assignment, and, most importantly, for his

invaluable advice, continuous encouragement, and patient guidance.

I would also like to thank my wife Olga for her invaluable support, thoughtful

care, and endless love. To her and our son Anton I dedicate this work.

11

“Our brains keep working despite frequent

failures of their component neurons, and

this ‘fault-tolerant’ characteristic is of

great interest to engineers who wish to

make computers more reliable.”

Stephen B. Furber

Chapter 1

Introduction

The brain’s structure and its organisation have been attracting attention through-

out all history. The brain has a very complex and intricate structure. For that

reason its study has always been an incredibly difficult and challenging task.

1.1 Background

Over the past century tremendous progress has been made in neuroscience, when

technological advances made it possible to move beyond description to explorations

of brain systems. The achievements have been made by employing classical and op-

tical electrophysiological techniques (e.g. sharp electrode and planar patch clamp

techniques or bioelectric recognition assay method). It was discovered that the

basic biological control component is an electrically excitable cell called the neu-

ron (also known as a nerve cell). Neurons communicate between each other by

sending electrochemical messages (i.e. using chemicals to produce an electrical

signal) via special connections with other cells called synapses. The fundamental

process that triggers synaptic activity is the action potential. It is an electrical dis-

charge (or spike), occurring in the cell’s membrane potential. Spikes travel along

the membrane down the axon and through synapses to other neurons, rapidly

carrying information.

In spite of the recent achievements made due to the astonishing level of current

experimental and measurement techniques (i.e. Hodgkin-Huxley mathematical

model on transmission of electrical signals in neurons, [11] and Kandel et al. work

on a biochemical analysis of changes in neurons associated with learning and mem-

ory storage, [12]), investigators are unable to discover and comprehend the brain’s

working details. And there is not any widely accepted theory about the brain’s

13

Chapter 1 Introduction 14

functionality, explaining the way brains reorganise and reinforce themselves in

response to new stimuli and learning experience. Using conventional laboratory

techniques (physical intervention of intracellular electrodes or influence of fluores-

cent dyes) alters the activity of the neurons and often produces inaccurate results.

Difficulties, associated with obtaining experimental data, limit the progress of un-

derstanding the principles and mechanisms of brain activity. In this situation

neural network modelling becomes more valuable by providing an alternative way

to make the experiments via computer simulation.

Motivated by outstanding biological achievements, engineers and scientists have

made various attempts to mimic the structure of the brain. A steadily growing

number of simulation environments endow computational neuroscience with tools,

allowing simulation of neural systems with increasing complexity and employing

various neuron models [13].

With the vast improvement in computational capacity, the chances to implement

the complex system of neural network noticeably increase. Computational power

requirements, necessary to perform real-time simulation, can be met by employ-

ing a massively parallel architecture. The communication load, caused by the

communication between the neurons, could be partly reduced by employing var-

ious sophisticated algorithms [14]. The simulation of the mechanisms implicated

in information processing at the network level already brings important achieve-

ments validating or disproving the various neuroscientific hypotheses [15, 16]. Un-

fortunately, due to insufficient knowledge about the processes occurring inside

the neuron, these simulations face many challenging problems, especially when

the simulator models are large, containing thousands of neurons and millions of

synapses.

One of the most important obstacles is the absence of a neuron model that would

precisely describe neuronal activity on ion channel level and at the same time would

be computationally efficient for large-scale simulation and amenable to mathemat-

ical analysis. There are hundreds of models in existence, but none of them fully

meets these requirements [17]. On the one side, detailed biophysical models fully

mimic the neuron by reproducing ion channels activity on the tree-like spatial

structure of the neuron cell (Hodgkin-Huxley model, [11]). Although they provide

very effective and biologically plausible neural networks (being able to predict

changes in the chemical environment or the influence of temperature dependence),

they are computationally demanding and thus expensive to implement. On the

other side, the abstract mathematical models provide only a weak link to the un-

derlying biophysical causes of electrical activity by neglecting neuronal morphology

Chapter 1 Introduction 15

and reducing the neuron to an extensionless mathematical construct (Izhikevich

model, [7]). They can be easily implemented, they are able to simulate a large

network and do not require expensive simulation equipment.

Several software tools have been developed which are able to simulate limited

aggregates of the neurons. The main aspects to take into account are:

1. the speed of simulation;

2. the memory requirements;

3. the accuracy of simulation.

These aspects are usually in conflict, such as the speed of simulation is inversely

proportional to the simulation’s accuracy and memory consumption. But a trade-

off can be found depending on the goal of simulation that indicates the flexibility

of the program.

For the research purposes there was a choice of either developing specific tools

or using an already adapted simulation environment following a designated pro-

cedure. There were a number of possible off-the-shelf simulators available to use

for our experiments (e.g. “Neuron”, [18] or “Genesis”, [19]). However, they had

been designed to be all-purpose simulators (allowing different simulation modes

and many other options). They were, therefore, large programs with very compli-

cated inner-working. Unfortunately, although intended as all-purpose feature-rich

simulation tools, none of them had all the built-in facilities that could serve all

our purposes. Modifications would have been needed to allow all the different

operations in this study (such as reinforcement learning technique combined with

Hebbian learning, all damage experiments and analysis procedures to be described

later). The way the adapted simulation environments are structured does not al-

low modifying them straightforwardly. Readjusting such large pieces of code would

have been more time-consuming and error-prone process than writing a new tool.

It was decided at an early stage that it would be easier overall to make the nec-

essary day-to-day changes to a smaller, custom-written program that contained

only the facilities necessary for our experiments.

Also, eventually there was an intention to launch the created simulator on the

SpiNNaker massively-parallel neuromorphic computing platform, which is capable

of simulating millions of neurons in real time. The distinctive feature of SpiNNaker

is based on distributed communication-centric computation and non-deterministic

communication, which provides the potential to investigate new principles of mas-

sively parallel computation.

Chapter 1 Introduction 16

1.2 Aim and Motivation

The aim of this thesis is to develop a neural network simulator. The motivation

for doing so is two-fold. Firstly, we hope that such models may contribute to our

understanding of mechanisms by which real brains operate. Secondly, the simula-

tor is designed to exploit the potential of the SpiNNaker neuromorphic distributed

computing machine, gaining insights into the nature of neural computation itself

[20].

1.3 Objectives

Bearing both of these aims in mind, the research is directed towards achieving the

following objectives:

• Biological plausibility: the approach we take in this thesis is not to limit

the models under study to those that precisely resemble their biological

counterparts, but nonetheless to use models which are biologically inspired

both in architecture and learning mechanism. We belief that focusing on

building models consistent with every known fact about the brain hinders

finding general principles of biological computation processes.

Therefore, to achieve a biologically realistic simulation of a neural network,

our approach is to employ an abstract neuron model, enriched with phys-

iologically motivated functionality (e.g. adaptable synaptic weights, fixed

threshold potentials) and to create a neural network simulator with a flex-

ible, reusable, event-driven, platform-independent and scalable framework,

based on such a neuron model.

We want to build a model that is able to search for a correct output by itself

without a feedback indicating an approximated error. The model searches

for the optimal set of weights and makes rewarding associations more prob-

able based on the binary feedback indicating the correctness of the current

solution. Our hope is that we do not have to use any additional artificial

mechanisms, which were not found in biological networks. For the same

reason we avoid using biologically implausible learning methods, where the

information about the states and the properties of the involved neurons,

which directly affects their synaptic alteration, is spread around the network

(e.g. error backpropagation algorithm). (Chapter 4)

Chapter 1 Introduction 17

• Multipurpose: it is not our aim to create a simulator that is optimised for

some particular task. Our purpose is to simulate the biologically inspired

network of neurons and to investigate the way it “learns”. The intention

is to study a network that is able to re-arrange its connection for a correct

output because it is biologically plausible. (Chapter 4)

• Fault-tolerance: the SpiNNaker platform has been constructed as a dy-

namically reconfigurable and fault-tolerant computing system. However, the

system depends on the software to make full use of these features. Therefore

in case of a node failure, the simulator should be able to dynamically redis-

tribute the working task in this way isolating the failed node from further

use. This emulates a biological neural system, where neurons die frequently

and spontaneously (one per second in adult human) without significantly

affecting the overall brain performance. (Chapter 5)

• Scalability: SpiNNaker is a scalable computing system, so that linking the

SpiNNaker multi-processor chips together it is possible to assemble a system

of almost any desired scale. Correspondingly, the simulator should satisfy

the same criteria being able to handle growing amount of network size in a

capable manner by employing new resources in the case of necessity. For such

a large systems it is necessary to apply an efficient weight-adjusting algorithm

and corresponding computational-communication balance (due to increased

communication increasing computational power reduces the speedup gains)

for parallel distributed execution. (Chapter 5)

A simulator with these features has been designed during the project. The program

is implemented in C++. Issues of computation efficiency and memory require-

ments were carefully considered. The software architecture and algorithm have

been presented. The implementation details have been introduced and explained.

1.4 Contributions

The research has contributed in providing:

• A novel parallel distributed event-driven simulation model of neural network

has been developed.

• A fault-tolerant mechanism immune to processor failure and communication

problems during a learning phase on a parallel distributed hardware has been

created.

Chapter 1 Introduction 18

1.5 Thesis Structure

The thesis is composed of six chapters. The first chapter presents an introduction

along with the motivation and objectives for the project. It includes an explanation

of the general background of the research, statement of the research aim and

objectives, in addition to the importance of the study.

The second chapter aims to introduce brief fundamentals of the synaptic plas-

ticity along with the biological characteristics of the neuron, which are involved in

an action potential formation and propagation. It presents the recent biological

knowledge of neural network plasticity to give an idea about the field of research.

The third chapter gives a comprehensive literature review of existing neuron

models together with an overview of simulation strategies and evaluation of the

existing neural network simulators. It also discusses important obstacles that

designer encounters while implementing large scale neural network.

The purpose of the second and third chapters is to develop a good understanding

of the relevant previous research work and investigation that took place in the

similar areas of interest.

The fourth chapter introduces and explains an approach for building and ex-

ecuting a biological plausible neural network on a single processor, capable of

simulating large-scale networks. It is capable of searching for correct patterns,

storing and reproducing them later. The algorithm and architecture of the simu-

lation software are illustrated. The model is functionally verified and experimental

results are included. It is tested by an agent application, which represents a learn-

ing system. The agent is able to accumulate the vital experience from a dynamic

ambient environment based on its own observations in an unsupervised manner.

An analysis of the performance as well as simulation results of the application are

presented and discussed at the end of the chapter.

The fifth chapter gives introduction to the field of distributed computation and

discusses commonly addressed issues along with distributed simulation techniques.

It also discusses the benefits and challenges of using the distributed hardware for

neural network simulation. It extends the sequentially executed model presented

in Chapter 4 to a concurrently executed model with calculations distributed over

a multi-processor machine. This makes the program more scalable and tolerant to

hardware failures. The algorithm and architecture of the simulation software are

illustrated. Discussion of challenging problems encountered while implementing

the system and the undertaken solutions are presented.

Chapter 1 Introduction 19

The sixth chapter is the last chapter of the thesis. It concludes the thesis with

a succinct summarization, discusses the results and produces conclusions of the

research. It also contains several possible directions for the future work of research

as well as the changes to the software that could be made in order to enrich and

improve the program’s performance.

Chapter 2

Biological Principles

The brain structure and its organisation have been attracting attention through all

history. Because of the brain’s incredible connectivity and the microscopic scale

of its interconnection, there is lack consistent theories about neural coding and

computation in modern neuroscience. The investigation of neuron structure is an

incredibly difficult and complex task that yields relatively low rewards in terms

of information from biological forms. The structure and connectivity of even the

simplest invertebrates are almost impossible to establish with standard laboratory

techniques. That is why at present knowledge about the operational principles of

the brain is far from complete, so simulation attempts must employ a great deal

of assumption and guesswork to fill the gaps in the experimental evidence.

Understanding of the principles and mechanisms of brain activity could benefit the

human development. First of all, imitation could allow expanding of computing

capabilities. Also, understanding such a phenomenon as memory capacity, an

animal’s planning or reasoning, thought or consciousness (particularly mammals)

would benefit the progress of the mankind. Finally, the hope is that by emulating

the brain, it will be possible to capture some of its computing capabilities.

The main feature of the brain is the ability to learn. We understand learning as

the probability for certain behaviour to happen in response to a certain event.

The basis for most models of learning is a synaptic plasticity. Plasticity refers to

the changes that occur in the organisation of the brain as a result of experience.

Several underlying mechanisms cooperate to achieve plasticity, forming cognition

and memory formation.

This chapter aims to introduce the biological structure of a neuron and its char-

acteristics (Section 2.1) that are involved in an action potential formation and

propagation (Section 2.2) along with the fundamentals of plasticity (Section 2.3).

20

Chapter 2 Biological Principles 21

Section 2.4 describes the contemporary learning rules based on a synaptical plas-

ticity.

2.1 Neuron Structure

In order to imitate biological neural networks it is important to understand the

nature of biological neurons, which are the building blocks of neural networks.

This section introduces biological neurons and explains how they work.

The investigation of the neuron behaviour is an incredibly difficult and complex

task. It is almost impossible to establish the brain’s structure and connectivity

of even an elementary animal using conventional laboratory techniques. Recent

research employed alternative ways of investigations using electro-physiological

techniques and computer simulation experiments [21]. They unveiled the internal

structure of the brain and allowed the scientists to mimic its behaviour.

Although there are all kinds of different neurons, the basic structure is the same.

As an ordinary cell, a neuron typically consists of a soma (or cell body), a den-

dric tree and an axon. The majority of the neurons in vertebrate organisms input

the signal through the synapses on the dendrites, transmit it along the cell body

outputting via the synapses located on the axon. However, there is some hetero-

geneity throughout the nervous system of different species in the size, shape and

function of neurons.

The key parts of the neuron are shown in Fig. 2.1 and their functionalities are

described below.

• The central part of the neuron is the soma. It houses the normal metabolic

systems required to maintain the cell, such as nucleus, mitochondria and

other organelles. All internal organelles are surrounded by a cell membrane

and suspended in intracellular fluid, known as cytoplasm.

• The cellular extensions with many treelike branches are referred to as a

dendritic tree. The dendrites’ role is to receive signals from other neu-

rons through the synapses. The backflow of a neuron is inhibited. Such

an inhibition happens first of all because the axon does not contain any

chemoreceptors and, secondly, because the dendrites are unable to secrete

the neurotransmitter chemicals. This unidirectionality of a chemical synapse

explains conduction of impulses only in one direction.

Chapter 2 Biological Principles 22

Figure 2.1: The schematic diagram of the neuron [1].

• The axon hillock connects the cell body to the axon. It contains the

greatest density of voltage-dependent sodium channels. This makes it the

most easily-excited part of the neuron and the spike initiation area for the

axon.

• The axon represents a finer, slender, cable-like extension, the length of which

can be tens, hundreds, thousands, or even tens of thousands times the soma’s

diameter. The axon edge has its own specialised structure for passing infor-

mation across the synapse to other cells in the nervous system.

• Some axons contain a fatty sheath around the axon called myelin, which

provides electrical insulation for the covered sections of the axon membrane

from the extracellular fluid with the purpose of accelerating the propagation

of an action potential along the axon. The areas between the consecutive

myelin sections are the nodes of Ranvier, which cause regeneration of elec-

trical signals.

Chapter 2 Biological Principles 23

• A synapse is a neuron’s protrusion, which acts as contact points where

two neurons can communicate with each other. It consists of two elements,

separated by a synaptic cleft: the presynaptic terminal and the postsynaptic

receptor site, which may be located on the axon, soma or dendrite of the

neuron cell. The synapse is one of the most important controlling factors

within the central neural system due to its role in controlling the signalling

process. Depending on whether a synapse raises or lowers the membrane

potential of its neuron, one differs between an excitatory synapse and an

inhibitory synapse respectively.

• The axon terminal contains synapses where neurotransmitter chemicals

are released in order to communicate with the target neurons. The impulse

charge, generated at the axon hillock, arrives at the chemical synapses of

the axon terminals. There the ionic charge is converted back into a chemical

signal and transmitted further to the postsynaptic neuron. At the same time

the axon terminals take up neuron growth factors (neurotrophin), released

by the postsynaptic dendrites, which are transported back to the nucleus.

• The axon terminal stores neurotransmitters. Neurotransmitter is a chem-

ical that is used to relay, amplify and modulate a signal between the neuron

and another cell. It uses the energy propagated by the action potential to

fuse with the membrane of the cell and diffuses across the synaptic cleft.

2.2 Action Potential

A neuron is responsible for propagating electrical signals through the neural sys-

tem. Neurons communicate by the chemical and electrical synapses in a process

known as a synaptic transmission. After receiving signals from the presynaptic

neurons, the cell makes “decision”. Based on the activity at its input, the neuron

either does or does not generate a spike. On average, the action potentials of

individual neuron are rare and occur at rates of 1-50 Hz. At the same time the

rate of incoming action potentials is much higher and is approaching 100 kHz due

to some 104 incoming connections [22]. The synaptic transmission occurs when an

action potential is initialised in the presynaptic neuron and is characterized by a

sudden change in membrane potential of the postsynaptic neuron.

Chapter 2 Biological Principles 24

2.2.1 Formation

The action potential (or AP, also known as a wave of depolarisation or a spike) is

an electrical impulse travelling along several types of the cell membranes (Fig. 2.2).

The process starts when a neuron is excited by more than one synapse in a short

time, or when the same synapse is repeatedly active. The cell’s interior voltage

rises comparing to the cell’s exterior voltage. Voltage-sensitive sodium channels

expand and allow sodium current entering into the axon, further depolarising

the membrane. When the voltage reaches its threshold level, the neuron fires.

This process initiates a positive feedback loop, raising the voltage further up.

However, after the spike releases, the membrane voltage is restored to its resting

value (between -40mV and -90mV) because the channels, responsible for the initial

inward current, are deactivating. Meanwhile the raised voltage opens potassium

voltage-sensitive channels that pass through the outward current.

Figure 2.2: Schematic and real view of an action potential [2].

The passage of an action potential can leave the ion channels in non-equilibrium

state, making them more difficult to open, and thus inhibiting another action

potential at the same spot (resting potential in Fig. 2.2). Such a state is said

to be refractory. The refractory period can be divided into two phases. In the

first phase with a duration of about 1 ms to 5 ms, called the absolute refractory

period, it is not possible for the neuron to fire another spike (i.e. the threshold

is said to be infinite). In the second phase, called the relative refractory period

with a length of 2 ms to 20 ms, the threshold slowly returns to its normal level.

During this phase a spike could be emitted, but a stronger depolarisation of the

membrane potential is required.

Chapter 2 Biological Principles 25

2.2.2 Propagation

The triggered action potential propagates through the axon without fading out

because the signal is regenerated at each patch of the membrane. Due to the

myelin sheath the action potential travels further before being regenerated at the

areas between the consecutive myelin sections known as the nodes of Ranvier, Fig.

2.1. This accelerates the action potential propagation along the axon, since it

only needs to be regenerated at the uncovered sections rather than continuously

along the length of the axon. An action potential at one patch raises the voltage

at nearby patches of the axon, depolarising them and provoking a new action

potential there. The diagram in Fig. 2.3 shows a section of an axon, which is

conducting an action potential. The action potential propagates through the axon

and causes a back-propagation low amplitude pulse in the dendrites [23].

Figure 2.3: The propagation of an action potential [3]. a) The depolarised
region on the far left causes sodium channels to open, further depolarising the
region. b) At certain point, the sodium channels become inactive and potas-
sium channels open, which temporary depolarise the membrane. c) The process

repeats as the wave of depolarisation propagates down the axon.

Chapter 2 Biological Principles 26

The action potential stops at the end of the axon and causes the secretion of

the neurotransmitter at the synapses that are found there, Fig. 2.1. Released

neurotransmitter binds to the receptors on adjacent cells, which are ion chan-

nels themselves. In contrast to the axonal channels, they are generally opened

by the presence of the neurotransmitter, rather than by changes in the voltage.

The opening of these ion channels can cause polarisation or depolarisation of the

postsynaptic neuron based on the type of neurotransmitters at the synapse. An ex-

citatory neurotransmitter generates a postsynaptic potential depolarisation, while

a depolarising inhibitory neurotransmitter causes postsynaptic potential hyperpo-

larisation. The generated potential depends on the amount of neurotransmitters

released into the synaptic cleft and the number of accepting receptors. Sufficiently

strong depolarisation can provoke another action potential in the new cell.

2.2.3 Propagation Delay

An action potential does not propagate between neurons instantaneously. First of

all, the delay is caused due to the cable properties of a neuron. In transmission

along the axon and dendrites a delay may vary from a half of a millisecond in a

short axon to tens of milliseconds in a very long one. A myelin sheath affects the

speed of action potential propagation, significantly increasing it (see Section 2.1).

Myelinated axons demonstrate the spike transmission velocity of around 1 m/s,

while in the non-myelinated axon it is only around 0.15 m/s. [24].

Another cause for transmission delay is a synapse. The time is required for a

neurotransmitter to be released by presynaptic terminal, diffuse across the synaptic

cleft (approximately 0.05 ms), and bind to a receptor site on the post-synaptic

ending (about 0.15 ms). After having reached the dendritic tree, the synaptic

input propagates to the soma. Depending on the physical location of a synapse

within the tree, it can take up to 10 ms [25]. However, the typical delay time

varies from 0.3 to 4.0 ms between the onset of the action potential on a pre-

synaptic neuron and action potential at the post-synaptic site. Delays could also

be instantiated by “chained” connections through other neurons.

Propagation delays demonstrate high variability in biological neural systems. This

also applies to connections that run in parallel. Different propagation delays can

be observed in two connections, which both originate and terminate in similar

brain areas and follow alike paths. Conversely, some connection types can pro-

duce similar transmission delays irrespective of the length of a connection (e.g.

thalamo-cortical). Nevertheless, the delay in any given connection is consistently

Chapter 2 Biological Principles 27

reproducible with sub-millisecond precision despite the high variability between

connections in many brain areas. Some experimental data is collected in Table

2.1.

Table 2.1: Summary of experimental evidence of axonal conduction delays in
different neurons and species.

Connection Delays (ms) Animal Reference

1 - 44 cat [26]
layer 6 → LGN

1.7 - 32 rabbit [27]

1 - 35 rabbit [28]
cortico-cortical

1.2 - 19 rabbit [27]

cortico-(ipsi)cortical 2.2 - 32.5 rabbit [27]

layer 5 → LGN 0.6 - 2.3 rabbit [27]
cortico-collicular 0 - 3 cat [26]
VB → layer 4 2 mice [29]

Apparently, biological neural networks exert purposeful control over the duration

of delays. This indicates the computational significance of a propagation delay.

But the delay time is not consistent and can vary over time depending on different

factors. For instance, the increasing activity of a neuron population can shorten

the delay time. This leads to the increasing susceptibility of the network area

due to the faster reaction of post-synaptic neurons to stimuli. In this way, delay

variations improve short-term memory and, thus, the overall learning process,

which occurs in this part of the neuron network [30].

2.2.4 Active Properties of Dendrites

Not only the synapses play the primary role in propagation of the signal and pro-

cessing of information. Due to a small amplitude of synaptic potentials, summation

of multiple synaptic inputs is required to reach action potential firing threshold.

Dendrites are responsible for synaptic summation and for the changes in synaptic

strength that take place as a function of the activity of the neuron. Dendritic

voltage-gated ion channels can alter the local input resistance and time constant,

which in turn would influence both spatial and temporal summation of excitatory

and inhibitory postsynaptic potentials. Multiple excitatory postsynaptic poten-

tials occurring on the same branch and within a narrow time window might activate

voltage-gated channels and produce a much bigger response than would occur if

they were on separate branches or occurred outside this time window.

Chapter 2 Biological Principles 28

2.3 Synaptic Plasticity

The concept of plasticity is very broad and can involve many levels of organisation.

Any changes in neural system activity can be attributed to some sort of plasticity.

We refer to plasticity as the ability of the synapse between two neurons to change

in strength. Therefore, we name this phenomenon as a synaptic plasticity.

The synaptic plasticity is not an unitary process but rather many processes on the

different time scales. There are several underlying mechanisms that cooperate to

form the synaptic plasticity operating at various time scales:

• within several hours (or days), known as Long Term Potentiation and Long

Term Depression, inducing long-persisting changes.

• within seconds, known as Short Term Potentiation and Short Term Depres-

sion for retaining a small amount of information in an active state for a short

period of time.

It seems likely that new, perhaps unanticipated, forms of plasticity remain to be

discovered. The most important, known today, are reviewed below.

2.3.1 Long-term Plasticity

Long-term plasticity represents the ability of chemical synapses to change their

strength, which preserves for days, months, or years.

2.3.1.1 Long-term Potentiation

Synaptic strength increments when a neuron repeatedly fires and depolarises the

postsynaptic neuron, producing a process called Long-Term Potentiation (LTP).

It causes the tendency of the postsynaptic neuron to be active simultaneously with

the pre-synaptic neuron. Subsequent stimuli applied to one cell are more likely

to elicit action potential in the cell to which it is connected. LTP improves the

receptors’ sensitivity to the neurotransmitter concentration in the synaptic cleft

[31]. It is achieved in large part because of increasing activity of existing receptors

and by increasing the number of receptors on the postsynaptic cell surface as well

as the dendrite’s growth into more branches, causing the presynaptic axon to form

more synapses.

Chapter 2 Biological Principles 29

2.3.1.2 Long-term Depression

If synapses simply continued to increase in strength as a result of LTP, eventually

they probably would reach some maximum efficacy level. After this, the new

information encoding would be difficult, if not impossible. To make the synaptic

strengthening useful, another process must selectively weaken specific sets of the

synapses. Long-Term Depression (LTD) is such a process. LTD is the weakening

of synapse strength lasting from hours to days. The same mechanism of calcium

influx causes both LTP and LTD. Low calcium influx leads to LTD, and calcium

entry above the certain threshold leads to LTP [32]. The threshold rises after

the synapse has already been subjected to LTP. This provides a negative feedback

system to maintain synaptic plasticity. The threshold level is on a sliding scale

and depends on the history of the synapse. According to [33], timing is another

factor affecting LTP and LTD mechanisms. When the presynaptic neuron fires

just before the postsynaptic neuron fires, the connection will be strengthened.

However, when it fires slightly after the postsynaptic neuron, the connection will

be weakened.

Figure 2.4: LTP and LTD dependence on the difference between the spike ar-
rival and new spike generation times [4]. SCR (synaptic change rate) describes
the change of the absolute synaptic efficacy. The parameter A represents abso-
lute synaptic efficacy, Ti describes the size of the learning window, SAT shows
spike arrival time from pre-synaptic neuron and FT shows firing time of post-
synaptic neuron. The dashed line demonstrates the change of the parameter A

based on the variation of pre- and post-synaptic firing time lag.

The dependency of LTP and LTD on time is presented in Fig. 2.4. Absolute

synaptic efficacy depends on the time difference between the last firing time of the

postsynaptic neuron and the spike arrival time from the presynaptic neuron. In

this way the synaptic strength of a strong synapse is altered only insignificantly

as opposed to a weak one. This mechanism prevents the fast saturation of the

synaptic strength and stabilizes the network activity.

Chapter 2 Biological Principles 30

2.3.2 Short-term Plasticity

Paired-pulse facilitation, paired-pulse depression and post-tetanic potentiation are

often referred as a short-term plasticity because of the duration of phenomenal

existence. They vary strongly according to the interval between the conditioning

and induced pulses. These mechanisms cannot provide the basis for memories that

persist even for several hours. Instead, they uphold a small amount of information

in an active state for a short period of time. To retain the information for longer,

the content of information must be periodically rehearsed.

2.3.2.1 Facilitation of Transmitter Release

Synaptic enhancement that is prominent on the hundreds of milliseconds time

scale is referred to as Paired-Pulse Facilitation (PPF), as was explained in [34].

Facilitation occurs solely at the pre-synaptic side of a synapse, where synaptic

vesicles containing neurotransmitter are released from a pool. It is the result of an

increase in the probability of the transmitter release. PPF can be seen with the

pairs of stimuli, in which the second postsynaptic pulse, following the first one,

can be up to five times the size of the first.

2.3.2.2 Post-tetanic Potentiation

When action potentials arrive close together in time, influxed calcium builds up

within the terminal. This calcium causes release of more neurotransmitter by a

subsequent presynaptic action potential. A high-frequency burst of the presynaptic

action potentials (sometimes referred as tetanus) causes elevation of presynaptic

calcium level, giving rise to another form of synaptic enhancement called Post-

Tetanic Potentiation (PTP). It usually continues a few minutes after the train of

the stimuli ends. The difference in duration distinguishes PTP from PPF.

2.3.2.3 Depression of Transmitter Release

Often the periods of the elevated activity lead to a decline in postsynaptic sig-

nal amplitude during repeated stimulations. This process is known as Paired-

Pulse Depression (PPD). This state continues from seconds to minutes before

the synaptic strength recovers. As explained in [34], the mechanism is caused by

presynaptic decrease in the release of neurotransmitters that reflects a depletion

of a release-ready pool of vesicles. The phenomenon gains strength also due to

release of adenosine from the activated presynaptic terminals, postsynaptic cells,

Chapter 2 Biological Principles 31

or neighbouring cells. This modulatory substance reduces the number of vesicles.

Finally, desensitization of ion receptors makes the target neuron less sensitive to

neurotransmitters.

Summarizing, synapses exhibit many forms of activity that occur over a broad

temporal range. At the shortest time (seconds to minutes), PPF, PTP, and PPD

provide rapid but transient modifications. Longer-lasting forms of synaptic plas-

ticity such as LTP and LTD are more enduring forms of plasticity and can yield

persistent changes in synaptic strength (hours to days or longer).

2.4 Plasticity Mechanisms

For a long time scientists believed that memories were stored in the synapses,

however, they never found a synaptic model of plasticity to corroborate their

theory.

In 1949 the Canadian physiologist Donald Hebb suggested the basic mechanism

of synaptic plasticity in his postulate, which has been an important milestone for

both neurophysiology and computer science. The suggested mechanism was the

first and the only plausible learning rule for artificial neuron networks. It proposes

the basis of a memory formation and storage process. The postulate describes

how the connection between a presynaptic neuron A and a postsynaptic neuron

B should be modified. The rule states that synapses increase their transmission

efficacy if the presynaptic spike arrives before the postsynaptic neuron is activated.

An often used simplification is those who fire together, wire together.

Basic Hebbian learning rule can be described by the following relation:

τω
dw

dt
= υu (2.1)

where τω is the time constant controlling the rate of weight change, υ is the

postsynaptic activity evoked directly by the presynaptic activity u (the product

of uυ represents the nature of interaction between pre- and post-synaptic spiking

activities), while w is a vector defining all the synaptic weights in the network.

The synaptic weight is a suitable abstract representation of ”synaptic strength“.

Commonly it is treated as a dimensionless variable, as its relation to biophysical

variables is not specified.

Hebb’s prediction was verified decades later with such an advanced technique as

the extracellular micro-electrodes and the explosion of interest in the hippocam-

pus [35]. The direct evidence of activity-dependent long-term potentiation and

Chapter 2 Biological Principles 32

its contribution to behavioural conditioning has been provided in [36]. Synaptic

modifications caused by correlated activity of the involved neurons also has been

observed electrophysiologically in [37]. The influence, long suspected and now

proven biologically gave rise to the rule of synaptic plasticity based on the arrival

times of pre- and postsynaptic action potentials [38].

One further important finding is, that for this type of learning all information is

available at the location of the synapse itself. A synapse is modified as a func-

tion of the activity of only the two neurons it connects. No external teacher is

necessary to employ Hebbian learning: every synapse has information whether a

spike arrived from the presynaptic neuron A or not. An action potential also tra-

verses backwards up the dendritic tree of the firing neuron [23]. So the information

whether the neuron B has fired is also available to all of its synapses. Thus, ev-

ery synapse has all the information of pre- and postsynaptic firing available at its

location. This makes Hebbian rule a likely candidate for the biological plasticity

mechanism.

On a cellular level, the induction of synaptic strengthening is triggered by ac-

tivation of NMDA channels (glutamate receptors), caused by the pre-synaptic

cellular depolarization. Strong depolarization of the post-synaptic cell due to

post-synaptic spike completely displaces the magnesium ions (Mg2+). Both neu-

rotransmitter (glutamate) penetration and removal of the Mg2+ block allow brief

and strong Ca2+ influx through the NMDA channels. This leads to suddenly rising

level of post-synaptic Ca2+ concentration, which initiate molecular process leading

to synaptic enhancement.

2.4.1 Hebbian-type Learning Rules

Several shortcomings arise while applying the Hebbian rule in its present form.

Firstly, Hebb did not specify in details what the term “near enough to excite”

exactly refers to. This addresses the question of when are two neurons considered

as being active together. For a long time it was mostly interpreted in terms of the

firing rates of the two neurons involved. During the last decades many varieties of

Hebbian-type learning rules evolved: conjunctive-type rules, that simply require

pre- and postsynaptic activity at the same time or correlational-type rules, where

synaptic strengthening is dependent on statistical measures like (e.g. covariance

[39]). In contrast to conjunctive-type rules, where a coincident activity of a pair

of neurons to be sufficient to cause synaptic weight modification, a modification

in correlation-type rules takes place only in the case when neuron A consistently

Chapter 2 Biological Principles 33

takes part in firing neuron B.

Secondly, what is a mechanism of decreasing the synaptic weight. During a cor-

relation of pre-synaptic and post-synaptic neurons’ activity, weight growth causes

a higher post-synaptic potential and therefore even more weight growth. This

induces an exponential weight growth and leads to destabilisation of the entire

neuron network. New memories could not be stored and old ones would be oblit-

erated. To solve the described constraints, some modifications of the standard

Hebbian rule were proposed. The most known were to introduce a sliding thresh-

old in BCM rule (Bienenstock, Cooper, and Munro rule [40]), to introduce a

weight decay term in Oja rule [41], and in generalised Hebbian Algorithm (also

known as Sanger’s rule [42]), which is similar to Oja’s rule, but converges to or-

dered principal components.

2.4.2 Spike-timing-dependent Plasticity

With recent advancements in technology became possible more precisely measure

the spike timing of neurons. Evidence has been collected that the synaptic con-

nection between two neurons is more likely to strengthen if the presynaptic neu-

ron fires off shortly before the postsynaptic neuron. Thus, more recent types of

Hebbian learning rules incorporate exact time differences between single pre- and

postsynaptic spikes. It has also been possible to measure the direction and extend

of synaptic changes as a function of the exact activity timing of the presynaptic

and postsynaptic neurons [43].

Using dual patch clamping techniques, Markram showed that the strength of a

synapse increases while repeatedly activating the pre-synaptic neuron 10 millisec-

onds prior the post-synaptic target neuron and decreases if post-synaptic neuron

is activated first [44]. Bi and Poo [5] continued the mapping of the entire time

course relating pre- and postsynaptic activity and synaptic change and observing

similar results within a time window of 20 milliseconds. They stated, that repet-

itive postsynaptic spiking within this time window after presynaptic activation

results in LTP, whereas postsynaptic spiking within this time window before the

repetitive presynaptic activation leads to LTD, Fig 2.5. Additionally, the initial

synaptic efficacy also plays a role: significant LTP occurs only at synapses with

relatively low initial strength, in contrast to LTD where this does not seem to have

any influence. Recent work of Dan has advanced study of the phenomenon using

in vivo whole-cell recordings [45].

Chapter 2 Biological Principles 34

Figure 2.5: Variation in amplitude of excitatory postsynaptic current (EPSC)
as a function of action potential arrival times. ∆t = tpost − tpre, the sending

times of postsynaptic and pre-synaptic neurons [5].

It was established that Ca2+ plays a crucial signalling role both in synaptic weight

potentiation and depression [46]. But it is a rise time and a decay time as well as

a peak level of the Ca2+ influx, which determine plasticity outcomes. After pre –

post spike pairing the calcium ions enter through NMDA receptors (which rapidly

allow high volume of ions) and yield synaptic weight potentiation. Post – pre spike

pairing leads to Ca2+ influx through post-synaptic voltage-gated channels (which

allows a moderate volume of ions) and induces depression of synaptic weight.

Biochemically, this picture of Ca2+-level determinism is based on the differential

activation thresholds of CaMKII kinase enzyme and phosphatase (calcineuron),

both responsible for inducing the opposite synaptic modifications.

Due to such spatiotemporal dynamics, the model is called Spike-Timing-Dependent

Plasticity (STDP). It enables the system to assign credit to those synapses that

are actually responsible for generating the postsynaptic spike. This is implemented

through setting the sign and magnitude of synaptic modification based on the pre-

cise timing of pre-synaptic and post-synaptic spikes. The rule is directly in line

with the Hebbian hypothesis. Besides, it supplements the hypothesis by address-

ing the questions of when are two neurons considered as being active together and

determining an exact amount of synaptic modification.

Different types of computational models has been proposed based on STDP, and

differ by their implementation (in particular how synapse weights saturate to their

minimal and maximal values). All computational models can be divided into

biophysical models and computationally-efficient models.

Chapter 2 Biological Principles 35

Biophysical models follow exact biophysical and biochemical pathways and are

crucial to understand the biological mechanisms underlying synaptic plasticity.

They give an interpretation of internal variables in terms of the internal state of

NMDA receptors and secondary messengers (e.g. [47]) as well as calcium con-

centration and backpropagating traces of action potentials (e.g. [48]). Due to

detailed reproduction, they are able to reconstruct more complex paradigms of

interaction between pairs of pre – post spikes (e.g. nonlinear interactions of spikes

and frequency-dependence of STDP).

On the other hand, computationally-efficient models reproduce the dynamics of

STDP without necessary referring to biological mechanism. They are amenable

to mathematical analysis and used in analytical and simulation study. One of

simplifications is an additive plasticity, where spike pairs are considered equally:

based on the time between the spikes all the synaptic changes are calculated and

summed linearly (e.g. [49]). Spike pairs contribute until an upper or lower bound

is reached, leading to a bi-modal weight distribution (e.g. [50]). Although some

of the models use multiplicative approach, where the magnitude of the synaptic

change depends on the current synaptic weight. In this way weight contributions

diminish as weight approaches its limit, providing a smoother form of saturation

and a stable, unimodal distribution of synaptic weights (e.g. [51]).

Nowotny et al. [52] proposed a learning rule based on the experimental recordings

of Bi and Poo [5]. According to [52], the weight change of a synapse ∆w(∆t) is

defined by the equations:

∆w(∆t) = A+
∆t

τ+

∗ e
−∆t
τ+ , where ∆t ≥ 0 (2.2)

∆w(∆t) = A−
∆t

τ−
∗ e

−∆t
τ− , where ∆t < 0 (2.3)

where ∆t = tpost − tpre is the difference in postsynaptic and presynaptic spike

times, τ+ and τ− determine the width of the learning windows for potentiation

and depression (often chosen τ+ = τ− = 20 ms), respectively, and the amplitudes

A+ and A− determine the magnitude of synaptic change per spike pair (often

chosen A+ = 0.1 and A− = -0.12).

The value of A− often taken larger than the value of A+, so that depression is

stronger than the potentiation to ensure that the weights of uncorrelated pre- and

post-synaptic connections go slowly to zero, while the weights of strongly corre-

lated connections are strengthened. More about the choice of STDP parameters

can be found in [50].

Chapter 2 Biological Principles 36

Obviously the only consideration of the temporality of the action potential can-

not be sufficient to fully explain the phenomenon of memory, which is associ-

ated with synaptic plasticity [53]. The modulation of STDP by a third factors

(e.g. dopamine) turns the learning mechanism from unsupervised learning into

a reward-based learning paradigm. The synaptic strength defines the ease with

which a signal traverses the synapse and is represented by a number and size of

synaptic receptors and the amount of neurotransmitter, participating in a process.

The amount of neurotransmitters released into the synapse varies depending on

the amount of available neurotransmitters and the storage capacity of vesicles.

All interacting parameters cause variations in the forms of impact and operate at

various time scales.

2.5 Summary

In order to simulate a neural network, it is important to understand the dynamics

of biological neurons and their collective behaviour as a population of neurons

interconnected in a network.

Like many biological cells, a neuron has a cell body, which contains a nucleus

and the metabolic structures required to maintain the cell. There are two sets

of processes extending from the cell body, which are collectively referred to as

neurites. These consist of the dendrites, which receive signals and the axon, which

transmits them.

The electrical signals in the neural system are called action potentials. They are

caused by the ions (sodium and potassium) flowing through specialised channels

to change the voltage across the membrane. Neurons communicate through the

specialised structures called synapses, which can be either excitatory or inhibitory.

The ability of the synapse linking two neurons to change in strength is one of the

important neurochemical foundations of learning and memory. It is not an unitary

process but rather many processes on the different time scales representing long-

term and short-term plasticity.

Hebbian theory describes the mechanism for synaptic plasticity. However, it can-

not be sufficient to fully explain the phenomenon of learning and many varieties

of Hebbian-type learning rule evolved. Recent research revealed spike-timing-

dependent plasticity, which in a sense is an extension to the Hebbian postulate. It

allows modelling more biologically plausible and sophisticated neural networks and

provides the answers to shortcomings of the Hebbian rule, supplementing it (e.g.

Chapter 2 Biological Principles 37

precisely defining when two neurons are considered as being active together, spec-

ifying a mechanism of decreasing the synaptic weight, and evaluating an amount

of synaptic weight modification).

Nowadays the STDP process represents a tentative candidate for a hypothesis that

fully explains the development of an individual’s brain. However, the complexity

of described plasticity mechanism has certain restrictions on our ability to model,

firstly, due to the lack of available information and secondly, due to the lack of

computing power required for simulation.

Chapter 3

Modelling and simulation

The beginning of this chapter describes the different sources of information about

the biophysical parameters and functional behaviour of neurons (Section 3.1).

Section 3.2 explains the basic models of neurons that are used in most experiments.

Their advantages and disadvantages are outlined and the best models for creation

of large-scale neural networks are selected. However, the focus is only on those

features of neurons and synapses that are most relevant for understanding of the

computational models used in the coming chapters.

Later, Section 3.3 overviews the simulation strategies and techniques, particularly

paying attention to the information propagation mode in various network mod-

els (Section 3.3.2) and the influence of modelling techniques on the efficiency of

network simulation (Section 3.3.3).

Section 3.4 gives introduction to the field of distributed computation and dis-

cusses commonly addressed issues along the benefits and challenges of using the

distributed hardware for neural network simulation. A review of available ar-

chitectures for distributed neural network simulation is presented in Section 3.5,

emphasizing the benefits and shortcomings of each of them. Finally, there is an

overview of the existing simulation environments in Section 3.6.

38

Chapter 3 Modelling and simulation 39

Figure 3.1: Two interconnected cortical pyramidal neurons and in vitro
recorded spike.

3.1 Information Sources

While making an attempt to implement the neural network simulator one faces

the challenging problem of selecting the most appropriate neuron model to use.

On the one side, neurobiologists are trying to understand the principles of neural

activity. For instance, how it is structured, how it develops, how it works and

malfunctions, and how it can be changed. On the other side, computer scientists

are questioning what computational models could describe the activity of a neural

system the best. What problems can be solved with certain architecture of a

neural network with certain types of neuron models connected to each other?

What tasks can be solved therewith? Does a certain model give an explanation

for various activities, for example in a human brain? These problems are especially

acute while implementing a neural system with a large number of highly-connected

neurons.

3.1.1 Biological Sources

Neurobiologists study a neural behaviour based on observation of changes in neu-

rons firing rate during experimentally controlled stimulation. Through the emer-

gence of new powerful measurement techniques neural behaviour can be obtained

in several ways:

• by detecting the action potential issued by a neuron using an intracellular

electrode, as shown in Fig. 3.1;

Chapter 3 Modelling and simulation 40

• by MultiElectrode Array (MEA), or microelectrode array, where neuron

signals are obtained through multiple plates. They are grouped into im-

plantable MEAs (used in vivo) and non-implantable MEAs (used in vitro);

• by Local Field Potential (LFP), where the neuron’s potential changes in a

restricted area of the brain are recorded using an extracellular electrode;

• by ElectroEncephaloGrams (EEG), where electrodes are placed on a scalp

recording the potential changes in large areas of the brain;

• by functional Magnetic Resonance Imaging (fMRI), where observations of

changes in brain blood flow indicate the changes in electrical activity of

underlying cortical areas, which is caused mainly by the exchange of action

potentials between the neurons.

Even with such kind of advances, it is still difficult to determine parameters of

biological networks, for instance, such as connectivity or synaptic weighting. Be-

havioural modelling can be a powerful ally for studying the nervous system.

3.1.2 Computational Sources

Many different models of neurons have been created despite the fact that the

understanding of the neuron’s structure and particularly the neuron’s function at

the network level are still limited. Notwithstanding the fact that many of them

provide a weak link to the underlying biophysical processes, they are still valuable.

These models allow performance of certain experiments via computer simulation

that would be impossible to carry out in vitro.

The pioneering work of Turing [54], McCulloch and Pitts [55] proposed a neuron

model (called the McCulloch-Pitts neuron) trying to prove that neurons are able

to handle basic logic functions. They assumed that complex functional capacity

observed in the brain (such as attention or consciousness) could emerge from a

proper arrangement of a large number of neurons each performing a basic logical

gate operation. The state of the neuron can be either “active” or “inactive” and is

computed as the sum of all neurons’ states connected to the input of the neuron,

as shown in Fig. 3.2. Remarkably, networks of such a simple connected communi-

cation elements can implement a range of mathematical functions, relating input

states to output states. Using algorithms for setting the weights between neurons,

these artificial neural networks can “learn”.

Chapter 3 Modelling and simulation 41

Figure 3.2: Simplified neuron model. If the sum of the inputs weighted by wji

exceeds the threshold θ, then the output yj of the neuron is different from 0.

However, the limitations of these early networks were amply recognized, such as

an inability to classify patterns that are not linearly separable in the input space,

e.g. XOR funcion [56]. To alleviate these issues, the models with a sigmoidal

shape transformation function were developed, creating a graded response instead

of original binary thresholding computation. The diversity and complexity of

neural processing were reduced to the mere notion of a rate at which a neuron

generates spikes. The idea is that when a neuron receives an increasing number

of spikes, the higher number of spikes is more likely to be emitted by this neuron.

Taking this approach, some of the deficiencies of the earlier neural networks were

overcome, such as an ability to learn computing the XOR function, produce pattern

recognition and classification or perform unsupervised clustering. The importance

of including the changes in neurons firing rate in visual processing has been shown

in the work of Hubel and Wiesel, which describes the way signals from the eye

generate building blocks of the visual scene (e.g. edge detectors, motion detectors,

stereoscopic depth detectors and color detectors) [57].

3.2 Neuron Models

Currently, all neuron models can be divided into two major categories according

their plausibility and computational efficiency:

• Biophysically detailed;

Chapter 3 Modelling and simulation 42

• Computationally efficient.

A biophysically detailed model (as example, Hodgkin-Huxley model [11] or Morris-

Lecar model [58]) plausibly models the real neuron and accurately reproduces

all the processes that are taking place inside of the neuron. Their parameters

(such as membrane potential, conductance gating variables or concentration of the

intracellular substances) are biophysically meaningful and measurable. But their

major problem is that a significant computation is involved in managing synaptic

messages and simulation of post-synaptic currents. That is why implementation of

such models for large-scale neural networks is extremely expensive and simulation

time is greatly prolonged. For this reason they will not be extensively described

in this work.

Neurophysiological scientists are using biophysically detailed models to simulate

small neural networks in order to most plausibly reconstruct the biological pro-

cesses occurring in a central nervous system (i.e. brain and spinal cord), revealing

the functions and behaviour of different parts of the system. Utilizing biophysically

detailed neuron models provides more flexible and realistic behaviour of artificial

neural networks. However, at the same stage certain challenges arise:

• Processing time is long even for a relatively small networks due to inten-

sive computations required while simulating biologically realistic network.

However, this challenge is partly solved with employing distributed system

running simulation concurrently.

• Complex dynamics is involved in the complex behaviour of the network,

which should be understood and effectively managed. This is a complex

issue as a network dynamics is constantly changing at some level without

have a ‘stable’ state.

• Limited knowledge significantly restricts researcher’s efforts as an artificial

neural network is relatively recent development. Neurophysiological knowl-

edge cannot be easily integrated into the existing models and still many

methodologies should be developed and adapted before providing opportu-

nity to construct realistic brain-like model of a neural network.

Computationally efficient models do not have the computational drawback. This

is achieved at the price of direct mapping between biophysical parameters of a real

neuron and the corresponding parameters of the model. Despite their poor bio-

physical conformity, they are very popular among engineers due to computational

Chapter 3 Modelling and simulation 43

Figure 3.3: Action potential generation in the Hodgkin-Huxley model.

efficiency. Computer scientists and engineers leave a lot of biological complexity

behind and work with more abstract neural models in order to construct large-scale

neural networks. The most significant biophysically detailed and computationally

efficient models and their applicability to large-scale network simulations are dis-

cussed below.

3.2.1 Biophysically Detailed Models

In 1952 Hodgkin and Huxley [11] performed experiments on the axon of the giant

squid and proposed a neuron model, derived from studies on the mechanisms re-

sponsible for generation of an action potential in a neuron, which earned them the

Nobel Prize (HH model). This neuron model is the most complex but also the most

precise existing to date. It consists of four coupled differential equations express-

ing the dynamics of the membrane potential Vm of the neuron. This corresponds

to the potential difference between the neuron and the external environment.

Vm is a function of input current Iinject applied to the neuron when it is stimulated,

as shown in Fig. 3.3. Currents IK and INa are generated by the movement of K+

and Na+ ions through the membrane and the leakage current Il, representing

movements of Cl−. Each of these currents is based on the difference between

the membrane potential Vm and the reversal potential ENa, EK and El. The

Chapter 3 Modelling and simulation 44

membrane potential of a neuron is described by the equation [11]:

Cm
dVm

dt
= −INa − IK − Il + Iinject

INa = gNam
3h(Vm − ENa)

IK = gKn4(Vm − EK) (3.1)

Il = gl(Vm − El)

where Cm is the specific membrane capacitance, gi, i ∈ {K, Na, l} are constants

and the parameters h, m and n describe the probability of opening/closing of ion

channels: sodium h and m and potassium n.

The big drawback of this model is its complexity. Indeed, the coupling of four

differential equations makes it extremely difficult to build large networks from such

a neuron model. For that reason the HH model usually is used for simulation of

one or a couple of neurons. It is necessary to simplify the HH model for simulating

at least several hundred neurons for the purpose of studying their dynamics or the

plausibility of interaction.

3.2.2 Computationally Efficient Models

One of the simplest and most widely used one-dimensional mathematically effi-

cient models is the Leaky Integrate-and-Fire (LIF) neuron model [6]. It acts as

a simple incoming spike integrator and compares the sum with a fixed threshold.

Comparing to the HH model, LIF model provides the action potential’s represen-

tation by an instantaneous pulse. Such an instantaneous pulse marks a certain

point on the time axis but does not contain any information either in its height

or in its shape. In mathematical notation, an action potential is given by a delta

pulse at a certain time point δ(t− ti).

v′ = I + a− bv, if v ≥ vthresh, then v ← c (3.2)

where v is the membrane potential of the neuron, I is the input current represent-

ing the post-synaptic potential received by the neuron (and/or current applied to

the neuron), vthresh is a threshold voltage and a, b, c are constant parameters.

This model needs only five mathematical operations to perform one iteration.

Chapter 3 Modelling and simulation 45

However, the model does not provide realistic behaviour close to the threshold

and reproduces only some characteristics of a conductance based neuron(e.g. pha-

sic spiking, any kind of bursting, rebound responses, any threshold variability,

bistability of attractors, or autonomous chaotic dynamics) [59].

Some improvements to that model have been made at the cost of a second equa-

tion describing activation dynamics and adding five mathematical operations to

implement spike frequency adaptation and after-potential depolarization [6]:

v′ = I + a− bv + g(d− v)

g′ =
(eδ(t)− g)

τ
(3.3)

The idea is to use an activation gate g that increases after each neuron’s firing via

the Dirac delta function δ and produces an outward current, slowing down tonic

spiking frequency.

Bursting properties and some other implementations, like phasic spiking, rebound

spiking and bistability of resting and spiking states have been added by Smith and

co-authors in the Leaky Integrate-and-Fire-or-Burst neuron model [60]:

v′ = I + a− bv + gH(v − vh)h(vT − v)

if v = vthresh, then v ← c (3.4)

h′ =

{
−h
τ−

, if v > vh

(1−h)
τ+ , if v < vh

Here h´ shows the dynamics of the calcium current, H is a Heaviside function and

g, vh, vT , τ+, and τ− are parameters describing the current dynamics. The price

for that is thirteen mathematical operations per iteration, which could be a crucial

factor for a very large-scale network.

A simple and efficient analogue of the leaky integrate-and-fire neuron model was

presented by Izhikevich [61]. It belongs to a resonator type of neuron models. In

contrast to integrators (found among cortical neurons), which perform temporal

integration of the incoming spike trains until the threshold is not reached, res-

onators (found among thalamic neurons) produce a response when stimulated at

the resonant frequency. The Resonate-and-Fire model is described by the follow-

Chapter 3 Modelling and simulation 46

ing equations:

v′ = −v − veq

τ
− cw + I

w′ =
a

τw

(v − veq)−
w

τw

(3.5)

Here, veq is the equilibrium potential, v represents the membrane potential, which

is reset whenever it reaches a firing threshold. The recovery variable w charac-

terises the membrane dynamics, τω is the time scale of the dynamics of the w

variable, and τ , a and c are parameters. This model is able to represent sub-

threshold damped oscillations of membrane potential (threshold depends on the

prior activity of the neurons) and resonance (neurons can respond selectively to the

inputs of similar frequency with subthreshold oscillations) as well as autonomous

chaotic activity. To implement a resonate-and-fire neuron model one needs 10

floating operations per one iteration.

Another alternative is the Quadratic Integrate-and-Fire (QIF) neuron model, also

known as the theta neuron [62]:

v′ = I + a(v − vrest)(v − vthresh)

if v = vpeak, then v ← vreset (3.6)

where vrest is the resting membrane potential and vthresh is the threshold value

of the membrane potential. This model can represent spike latency, threshold

variability (which is vthresh only if I = 0) and bistability of resting and tonic

spiking modes. This is quite a limited model in terms of plausibility and it needs

seven mathematical operations for performing one iteration. Quadratic integrate-

and-fire model could be a reasonable substitution for the basic integrate-and-fire

model implementing a large-scale network.

Izhikevich presented another model [7], successfully reproducing the behaviour

observed in many biological neurons. His model is based on the Fitzhugh-Nagumo

model [63, 64] and is described by the following coupled differential equations:

v′ = 0.04v2 + 5v + 140− u + I

u′ = a(bv − u) (3.7)

Chapter 3 Modelling and simulation 47

Figure 3.4: Neuronal responses obtained for different values of the four model
parameters a, b, c, and d (see Fig. 3.5). Each is labelled with the corresponding

biological behavior. [6].

with the auxiliary after-spike resetting

if v ≥ +30mV, then

{
v ← c

u← u + d
(3.8)

Chapter 3 Modelling and simulation 48

Figure 3.5: Choice of a, b, c, and d parameters for representation of regular
spiking (RS), intrinsically bursting (IB), chattering (CH), fast spiking (FS),
thalamo-cortical (TC), resonator (RZ), and low-threshold spiking (LTS). [7].

where v and u are dimensionless variables, which correspond to the membrane

potential and the recovery of the membrane. The Eq. 3.7 and Eq. 3.8 represent

the behaviour of the membrane’s voltage and the recovery variable after reaching

the action potential’s peak value (+30 mV) or any higher value. The rest value

is dynamic and is located between -70 and -50 mV. After the potential reaches a

threshold (+30 mV), the membrane potential and the recovery variable are reset,

as shown in Eq. 3.8. The part 0.04v2 + 5v + 140− u + I is chosen empirically to

scale v to mV and time to ms [6].

Various choices of the a, b, c and d parameters result in various intrinsic firing

patterns, Fig. 3.5. Izhikevich states in [7] that his model can exhibit all known

types of firing patterns in case of the proper choice of a, b, c and d parameters, Fig.

3.4. It is necessary to perform 13 floating-point operations to execute one iteration.

The computational load is similar to the integrate-and-fire-or-burst model, but

the behavioural properties produced by the Izhikevich model are closer to those

observed in Hodgkin-Huxley-type models and therefore it is a more desirable model

for neural network simulations.

Despite the coupling of its two differential equations, this model is relatively simple

compared with HH-type models and is particularly suitable for simulations of

spiking neural networks [6].

As a result of different computationally efficient neurons’ models review, it is nec-

essary to emphasize that only few of them are widely used: one-dimensional leaky

integrate-and-fire model [6], requiring only 5 mathematical operations per one it-

eration and opposite both in computational complexity and the variety of the

behavioural properties to the Izhikevich model [7], requiring 13 mathematical op-

erations per one iteration. The former one is widely used due to its facilitated

mathematical analysis of neurons population and its computational efficiency.

Comparison of the all above described models is in the Table 3.1.

Chapter 3 Modelling and simulation 49

Models LIF LIF with LIF-or- Resonate- Quadra- Izhike-
adaptation burst and-fire tic LIF vich

[6] [6] [60] [61] [62] [7]
tonic spiking + + + + + +
phasic spiking - - + + - +
tonic bursting - - - - +
phasic bursting - - + - - +
mixed mode
(bursting - - - - - +
then spiking)
spike frequency - + + - - +
adaptation
class 1 excitable + + + + + +
class 2 excitable - - - + - +
spike latency - - - - + +
subthreshold - - - + - +
oscillations
resonator - - - + - +
integrator + + + + + +
rebound spike - - + + - +
rebound burst - - + - - +
threshold - - - - + +
variability
bistability - - + + + +
depolarizing - + + + - +
after-potential
accommodation - - - + - +
inhibition-induced - - - - - +
spiking
inhibition-induced - - - - - +
bursting
chaotic - - + - +
activity
of FLOPS 5 10 13 10 7 13

Table 3.1: Comparison of the computational properties of neuron models, after
[6]. Sign “+” means ability to implement and “-” means inability to implement

the given feature by certain model.

Chapter 3 Modelling and simulation 50

3.3 Simulation Strategies

Simulation is the connecting link between neurophysiological measurements and

theoretical studies. It helps us to understand and to reproduce the behaviour of

biological systems of neurons and to verify functional behaviour of network models.

It also validates or refutes certain assumptions made in neuroscience by employing

appropriate network models. As an example, the study of the network dynamics

(the way a network changes the weights over time) or the distribution of weights

after learning offers an interesting perspective to explore new opportunities of the

brain.

This section reviews the common simulation techniques and approaches used to-

day for neural network simulation. It starts with a review of connectivity rules,

overviews the signal propagation modes and completes with a discussion about

the ways to trail the flow of simulation.

3.3.1 Network Structure

To interconnect neurons in a network, certain connectivity defining rule can be

applied for the entire network or a few rules can coexist in a simulation. One of

the intuitive ways is a fully-connected network, where every neuron is connected

to all other neurons of the network. Each connection is one-way only, so there are

two connections between every pair of neurons. A neuron i through its axon is

connected to a dendrite or a cell body of a neuron j, while the neuron j is connected

to a dendrite or a cell body of the neuron i. A network of N neurons connected

in this way has N(N-1) connections, with the condition that self-connections are

omitted.

The connectivity can be of many other types, such as connectivity controlled by

the Gaussian distribution (for instance, receptive fields of sensory neurons in the

visual system), interconnecting all neurons or randomly connecting neurons in a

network. One popular architecture is the layered network, where the N neurons

are grouped in a number of layers. Starting from the simple concept of a neuron

“layer”, it is possible to define a network model as specific as necessary.

The choice of the term “layer” should not mislead here because it can be con-

sidered as unordered set of neurons or as one-dimensional, two-dimensional or

three-dimensional vector. An interconnection is called an intra-layer if the pre-

and post-connections are in the same layer. Only the applied rules and the con-

nectivity graphic representation (if any) of the network could visually define the

Chapter 3 Modelling and simulation 51

pattern of connectivity.

An appropriate way of dividing a network into sub-networks and interconnecting

them properly could partially solve the problem of network complexity. This

approach is particularly worth attention in view of the fact that the study of

cortical neuroanatomy shows the repetition of small basic unit topologies in the

cortex. They differentiate by the types of neurons and the neural densities inside.

Some of them are further divided into ‘sub-layers’. Although their function is

still unknown to date [65, 66], the entire neocortex consists of a juxtaposition of

these units, called cortical columns [67, 68, 69]. It is a group of neurons, stetching

vertically through the layers of cortex. Each column encode similar feature and has

afferent input (e.g. from receptive field), efferent output (e.g. to motor neurons),

and intra-cortical circuitry with both excitatory and inhibitory neurons. This kind

of structure has been found in dogs, cats, monkeys, and also in other mammals

both as an anatomical and functional structure [70].

It must be noted that in biological networks neuron inter-connections have a high

level of diffusion and mixing. A single neuron does not have a large influence on

any other neuron and only a group of firing neurons can cause a post-synaptic

neuron to fire. However, it is not a case for all brain areas. For example, in the

cerebellar cortex there is only one cerebellar climbing fibre (one of the two axon

types that enter the cerebellum) per Purkinje cell. This sole climbing fibre is

powerful enough to activate the target Purkinje cell.

While setting up a network, a definition of an optional network structure should

be possible for a generic set of connectivity rules. For instance, it can be defined

in a XML configuration file. This gives an opportunity of creating a wide range

of various network topologies, such as a feedforward topology of a multilayer per-

ceptron, a recurrent topology of a Hopfield network, or a convertible topology of

a self-organizing map.

3.3.2 Activity Propagation

Biological neurons are the actual processing units of the brain. The computation

they do is slower compared to a silicon chip. A network of a large quantity of

these simple units however proves to be very powerful. A silicon-based computer

usually has one or a few processing units, while in a neural network all the neurons

work in parallel. To form this network, on average every neuron is connected with

thousands of other neurons.

Chapter 3 Modelling and simulation 52

Since the early 80s, many network models based on models of non-spiking neurons

were developed and studied. These network models can be applied to spiking

neurons and their effectiveness has been proven [71]. Generally there are feed-

forward and recurrent networks with several variations.

3.3.2.1 Feed-forward Neural Network

One popular architecture is a feed-forward network, in which activity flows from

input to output and the network topology contains no cycles. The network built

according to this model often is called a layered network because its processing is

based on a succession of neurons layers, as shown in Fig. 3.6.

Figure 3.6: Comparison of the architecture of a feed-forward (left hand side)
and a recurrent neural network (right hand side); the grey arrows sketch the

direction of computation.

In the layered network there is an input layer consisting of NI neurons, an output

layer consisting of NO neurons and a number of hidden layers in between, each

hidden layer consisting of NH neurons. If the layers are sequentially numbered

starting with the input layer and ending with the output layer, then feed-forward

means that every neuron in layer i has only connections to the neurons in layer j

if j > i. In most cases there are only connections to the layer next to the current

layer: a neuron in layer i has only connections to neurons in layer j if j = i + 1

(most often every neuron connects to all neurons in the subsequent layer).

Biological observations suggest that the visual cortex of a human brain spreads

neuronal activation as a feed-forward wave [72]. After a stimulus is applied to

Chapter 3 Modelling and simulation 53

receptive fields of the retina, activation spreads through the cascade of feed-forward

connections between the successive hierarchical levels. Short latencies between

hierarchical levels (about 10 ms [73]) suffice only for a single spike generation per

cortical neuron before activation of the next level [74], [75], leaving no time for any

lateral or feedback connections to exert their effect. The propagation is completed

within approximately 100 ms, which is not enough for detailed scene awareness

but suffices for high-level category-selective information processing (such as object

recognition or categorization) [72].

The radial Basis Function [76] and the Multilayer perceptron [77] in general fall

in the category of feed-forward networks.

3.3.2.2 Recurrent Neural Network

Contrary to feed-forward networks, recurrent neural networks are models with a

bi-directional activity flow. A network is said to be recurrent if there exists at

least one cycle in the network topology. For example, starting from a feed-forward

network, you can add feedback connections, in this way modulating inputs using

the previous outputs (Fig. 3.7 a). This can also lead to connections within a single

layer known as lateral connections (Fig. 3.7 b).

Figure 3.7: Various types of connections in a recurrent networks.

With the recurrency, the network can retain certain level of activity over time,

even in the absence of input. This provides a sort of dynamical memory within

the network, enabling to process temporal context information and to compute

functions that are more complex than just simple reactive input-output mappings.

Self-sustained activation dynamics makes it a dynamical system, whereas feed-

forward networks are functions. This allows a system to incorporate a much richer

range of dynamical behavior.

Chapter 3 Modelling and simulation 54

Figure 3.8: Reservoir computing.

In the narrower context of spiking neuron models, many recent works focus on

better understanding of how to handle these new neuron models to take advantage

of their potential computational power. Many approaches have been elaborated

on this topic. Among them are simple recurrent networks, such as the Elman

network (recurrency through a feedback from the hidden layer, maintaining a

copy of the previous values of the hidden units, see [78]) and the Jordan network

(similar to the Elman network but with recurrency through a feedback from the

output layer, see [79]), self-organizing map (using the competitive learning model

with a neighborhood constraint on the output units in order to produce a certain

topographic map in response to a corresponding input pattern, see [80]), and

associative memory models, such as Hopfield network (using binary threshold units

with symmetric connections, accepting only stationary input and guaranteed to

converge to a local minimum, see [81]) and interactive activation model (consisting

of competitive pools of processing units with excitatory bidirectional connections

among the different pools and inhibitory unidirectional connections within the

same pool, see [82]).

3.3.2.3 Reservoir Computing

Some approaches attempt to express the behavior of neuron populations using

mathematical equations [17, 83]. Other studies use detailed neural networks mod-

els applying a neuron reservoir computing approach, based on treating the recur-

rent part (the reservoir) separately than the readout nodes. Echo State Networks

Chapter 3 Modelling and simulation 55

[84], Liquid State Machine [85], and Backpropagation–Decorrelation [86] are the

main paradigms of reservoir computing models which significantly facilitate the

application of recurrent neural networks.

The reservoir consists of a collection of recurrently connected nodes. The connec-

tivity structure is usually randomly created, and the units are usually non-linear.

The weights for the connections within the dynamic reservoir are chosen at the

beginning with a random distribution. The overall dynamics of the reservoir is

passively excited by the input signal and also is affected by the past input history.

The desired output signal is generated as a combination of the input and excited

reservoir activities. A rich collection of dynamical input-output mapping is a cru-

cial advantage over simple time delay neural networks. Various dynamics can be

observed while applying a large enough reservoir with sparse connections. This

can be used to compute many complex output functions [87].

The idea behind this is that one does not try to set the weights of the connections

within the pool of neurons but instead reduces learning to setting the weights

of the readout neurons. This facilitates learning dramatically and much simpler

supervised learning algorithms can be applied, for example minimizing the mean

square error in relation to a desired output. Also one of the many available linear

regression algorithms can be used instead of specialized gradient descent based

algorithms, which aim at iteratively reducing the training error and typically are

slow, computationally expensive and can end up in a local minimum.

3.3.3 Modelling Techniques

Despite a steady improvement of computational hardware and ever-growing knowl-

edge about functionality of a biological neuron and its modelling techniques, nu-

merical simulation results are still tightly bound to the selected modelling ap-

proach.

Conventionally, a time-driven approach was used for neural network simulation.

In such an approach, the temporal interval is chosen, during which a system recal-

culates its state. Such an algorithm can be easily coded and applied to any model.

But recently simulation based on event-driven approach has gained recognition

[88], [89]. Modern event-driven methods can be applied to almost every neuron

model and therefore challenge the traditional time-driven methods. Each strategy

has its own assets and constraints.

Chapter 3 Modelling and simulation 56

3.3.3.1 Time-driven Technique

In the time-driven approach, the temporal interval is chosen, during which a system

recalculates its state, i.e. scrolling all the neurons and synapses of the network

at each time step. Therefore, the precision of simulation depends on the chosen

temporal interval. If the interval is very large, the system can miss some neural

activity and thus the simulation result will not be realistic. Conversely, if the

interval is too small, the computations will overload the system and slow down

the operational speed [8]. Spike timing is aligned to a time grid, thus the simulation

precision is approximate even if the differential equations are computed accurately.

Modern time-driven simulators mostly use 1 ms or less time interval in order to

find the trade-off and to achieve the accurate simulation result [6, 88, 90, 91].

Another drawback of this strategy is the linear dependence of the computational

load on the number of the neurons in the system. Threshold conditions are checked

only at the ticks of the clock and that can lead to some spikes being missed [8].

Time-driven technique can be easily coded and applied to any model.

Figure 3.9: Approximating the value of the membrane potential in time-driven
simulation with every time step ∆t.

Standard Euler or second-order Runge-Kutta numerical integration algorithms

could be used for spike prediction when the differential system is used for describing

the dynamics of the neurons [59]. However, the spike can occur earlier or later

if, due to the approximation error, the predicted value of the membrane potential

reaches the firing threshold level at an inappropriate time. The overall impact of

such an errors is difficult to determine [92], [93].

Chapter 3 Modelling and simulation 57

Figure 3.10: Change of state in time-driven (left) and event-driven (right)
simulation.

3.3.3.2 Event-driven Technique

In contrast to the time-driven approach, event-driven simulation is free from de-

pendence on the temporal resolution. There is no need for a discretisation of time

other than that enforced by the finite precision of the floating-point arithmetic of

the computer. But it is significantly more complex to implement and less univer-

sal. The simulation environment does not progress step-by-step through time, but

instead jumps ahead to the next event scheduled to occur, as shown in Fig. 3.10.

An event is any occurrence that changes the state of the model.

In a neural network simulation, events include firing of neurons and an arrival of

spikes at synapses. Events cause a change in the state of the system and often

result in the scheduling of other events for some future time. A cell recomputes its

state after every spiking event occurs in the network. Such a method allows time

saving due to skipping of the calculation update step when a neuron does not get

any event.

However, in a large neural networks with high level of connectivity (about 104

targets per neuron) an event-driven strategy leads to an immense overhead. A

single spike generates up to 104 even objects, which have to be allocated, queued,

sorted, delivered and deallocated. This results in decelerated simulation execution.

While a high activity period of simulation benefits to the time-driven approach

due to the gain in speed when the temporal resolution integrates several events, all

low activity periods advantage the event-driven approach. According to biological

observations, the neurons of a spiking neural network are sparsely and irregularly

connected in space (network topology), and the variability of spike flows implies

Chapter 3 Modelling and simulation 58

they communicate irregularly in time (network dynamics) with a low average ac-

tivity.

Since the activity of an spiking neural network can be fully described by emis-

sions of dated spikes from pre-synaptic neurons towards post-synaptic neurons,

an event-driven approach is clearly suitable for sequential simulations of spiking

neural networks [94], [88], [95], [89]. Furthermore, a time-driven simulation loses

the order of emission of spikes emitted at the same time interval, which is im-

portant for spike-timing-dependent plasticity and can change the behaviour of the

simulation [96]. In an event-driven simulation, temporal precision only depends

on the precision of the variable used for time stamps and clocks, and even a simple

16 bit variable gives a suitable precision [97].

Modern event-driven methods can be applied to almost every neuron model and

therefore challenge the traditional time-driven methods. However, an event-driven

simulation does have some drawbacks. The state of neurons is only actualized when

events are processed, ignoring the subthreshold variations of the membrane poten-

tial. Although it is possible to make a prediction of the spike emission date when

the behaviour of the neuron is described by several differential equations and/or

when synaptic impacts are not instantaneous [95]. Such a prediction implies heavy

computation costs, and a mechanism must control a posteriori the correctness of

the prediction.

Event-driven simulations are most appropriate where all activity can be broken

down into events that take place instantaneously, allowing the simulation to bypass

all the time between events when nothing changes. This is the case of pulse-coded

integrate-and-fire models, but not the Hodgkin-Huxley type of models. Thus, the

event-driven approach substantially reduces the computational cost of simulators

that control exchanges of dated events between event-driven cells, without check-

ing each cell at each time step. However, the system’s average activity increases

with the number of neurons employed in the network. This is why the number

of spiking events is large in the large-scale networks as network activity increases

with growing number of neurons. Use of the exact time of the event can noticeably

complicate the system’s state computation. That fact can be crucial for large-scale

networks. However, applying massively parallel systems can reduce the compu-

tational cost by processing a high number of events in parallel when activity is

distributed among the processing units. Another crucial component is the event

queue management.

Chapter 3 Modelling and simulation 59

Figure 3.11: A. Comparison between time-driven (cd, top: low temporal res-
olution; middle: higher resolution) and event-driven (ed) technique. B. Impact
of simulation strategy on facilitation and depression of synapses. C. Differences
in the synchronous event occurrence for various temporal resolutions. D. Small
differences in spike times can accumulate and lead to severe delays (top, arrow)

or even cancellation (bottom, arrow) of spikes (modified from [8]).

3.3.3.3 Temporal Precision

Rudolph and Destexhe [8] made their experiments with the temporal develop-

ment of individual synaptic weights employing both time-driven and event-driven

strategies. They stated that a an inappropriately chosen temporal interval can

significantly influence the accuracy of simulation, producing severe delays that

eventually lead to additional spikes or spike cancellations. Comparing the weight

development for specific synaptic channels, the authors report that both simula-

tion strategies present dramatically contrasting results. Time-driven simulation

leads to about a 10 % higher firing rate compared to the event-driven simulations

over the whole simulated window (applying 0.1 ms temporal precision). Fig. 3.11

shows that small differences in the precision of synaptic events can have severe

impacts.

Chapter 3 Modelling and simulation 60

Concluding this section, it is important to point out that any network can be

divided into sub-networks, or layers, with extra-layer and intra-layer connections.

The network can propagate data in a feed-forward mode sending data from input

to output without any cycles or in a recurrent mode with a bi-direction data flow,

which provides a sort of memory within the network. Reservoir computing is an

example of a recurrent network, the dynamics of which is driven by the input and is

also affected by the past. Despite discrete event-based simulation’s drawbacks, this

approach is more advanced, because of the higher precision of simulation (every

event is fixed during simulation) and lighter computation (spiking activity is not

a uniform process and on average the number of spiking events is smaller than

in the time-driven approach). Also, the computational cost can be significantly

reduced for the networks with uniformly distributed activity, by implementing on

massively parallel systems.

3.3.4 Learning Paradigms

There are several learning paradigms organized into a taxonomy corresponding to

a particular abstract learning task.

3.3.4.1 Supervised Learning

Supervised learning is widely used in conventional neural networks based on thresh-

old or sigmoid neurons (Perceptron [98], Adaline [99], backpropagation multilayer

perceptron [100]). The idea is to infer a function from pairs of input object (typi-

cally a vector) and a desired output supervisory signal, which constitute a training

data. The inferred function evaluates the difference between a calculated output

vector and expected output vector and is either a classifier (for discrete output) or

regression function (for continuous output). The least squares or gradient descent

methods are the most convenient for supervised learning.

The simulations using supervised learning are generally divided into two phases:

1. A learning phase, during which the weight vector is modified according to

the chosen method applying the example set of patterns.

2. A generalization phase, during which the weight vector is set to the values,

obtained after the learning phase and the network is applied to the processing

of the non-learned patterns.

Chapter 3 Modelling and simulation 61

The achieved learning quality is evaluated by the network’s ability to generalize

[101]. For instance, in classification, the examples used during the learning phase

must be determined so as to enable the network to efficiently approximate the

various classes. The neural network performs a separation of possible entries into

several clusters whose form and number depends on the used type of neurons and

the network size.

The main disadvantage of this type of learning is that although a network will be

able to generalize to achieve the task in the particular manner, it will not be able

to explore novel ways to achieve its goals.

3.3.4.2 Reinforcement Learning

Reinforcement learning is another training method that is capable of learning goal-

directed behaviour. It differs from standard supervised learning in that correct

input and output pairs are never presented nor sub-optimal actions are explicitly

corrected. The network is guided by a reward function, which is unalterable and

defines what is objectively “good” and “bad” so that learning is conducted through

trial and error.

Reinforcement learning can be categorized into three classes: actor-only networks,

critic-only networks, and actor-critic networks. Actor-only networks [102, 103]

learn the policy directly by adjusting their parameters as indicated by the rein-

forcements signal. Critic-only networks [104] learn an approximation of the value

function, which is then used to derive the policy. Actor-critic networks combine

the above two by feeding the output of the critic network to the actor network

[105].

Reinforcement learning is particularly well suited to problems, which include long-

term versus short-term reward trade-off. The method has been used successfully

to train neural networks in a number of domains such as controlling an inverted

pendulum [106] and landing an aircraft [104].

3.3.4.3 Unsupervised Learning

Unsupervised learning includes a wide spectrum of learning methods. The pro-

cessed data in unsupervised learning is not associated with desired outputs, unlike

supervised or reinforcement learning. Some forms of unsupervised learning ob-

served in biological neural networks are outlined in the Hebbian law. The law

states that the joint activation of two connected neurons strengthens their con-

nections and thus facilitates their joint activation in the future (see 2.3).

Chapter 3 Modelling and simulation 62

Hebbian law has been implemented in various forms, start from the Hopfield net-

work [81], self-organizing map [80] and adaptive resonance theory [107]. More

recently, this law has often been revised in a temporal context: modelling of spik-

ing neural networks directly exploit these principles to model a form of synaptic

plasticity as a rule of unsupervised learning [49].

Summarizing, learning algorithms can be grouped into supervised, reinforcement

and unsupervised learning. A supervised learning algorithm generalizes from the

training data to unseen situations in a “reasonable” way. Reinforcement can be

defined as the trial-and-error “law-of-effect” learning, which balances between ex-

ploration of unknown states and actions and exploitation of current knowledge.

Unsupervised learning does not require pre-defined output data and usually is ap-

plied for the tasks with known learning input samples while searching for relations

among system’s stimuli and responses. In our project we combine reinforcement

and unsupervised techniques based on the biological inspirations described below.

3.4 Distributed Computing

Although the use of a single-core computer is possible in principle, execution of

the simulation on multiple cores is beneficial for a very large neural network for

the following reasons.

Need of Communication Network First of all, the very nature of the neu-

ral network requires the use of a communication network that connects several

computational units. This happens because the data is produced in one physi-

cal location and is sent to another. Therefore it is more cost-efficient to obtain

the desired level of performance by using a cluster of chips, each making its own

computation in comparison with a single chip performing all the computation it-

self. One can reduce the execution time by up to a factor equal to the number of

processors that are used [108].

Faster Execution Biological systems are slow comparing with modern com-

puters, operating at several GHz. However, the massive population of neurons,

high density of connectivity, and high frequency of interactions compensate their

natural slowness. When implemented on distributed hardware, neuron networks

take full advantage of their inherent parallelism and run orders of magnitude faster

thus becoming appropriate for real-time applications.

Chapter 3 Modelling and simulation 63

Computational Reliability Another reason is increased tolerance to failures

and thus computation reliability, enabling a system to continue operating properly

in the event of one or more faults within some of its components. A distributed

system is more reliable than a non-distributed one, as there is no single point of

failure. If one processor fails, it may be possible for other processors to continue

the simulation provided critical elements do not reside on the failed processors or

dynamically redistribute to the working nodes.

Scalability Additional interest for supporting such a type of computing gives

high scalability due to the fact that a distributed system may be easier to expand

and manage than a monolithic uniprocessor system.

Enough On-chip Memory Finally, there is a prospect of using a number

of processors, each with a high enough on-chip memory. This makes possible

to simulate large networks with high accuracy of the neuron model, giving the

opportunity to implement and investigate learning dynamics.

3.4.1 Distributed Simulation Challenges

Distributed computation of separate network segments comes at the cost of addi-

tional distribution-related communication. It is obvious that a distribution bene-

fits only from a certain network size as the layout of the network generally takes

computing time for communication between processors. Moreover, an uneven

computation load distribution among sub-processing units further burdens the

simulation speed. Evenly distributing the computational load and using the tech-

niques to reduce communication among the involved processing units significantly

improves simulation speed and facilitates program maintenance.

Another issue concerns a distribution of the information, required for computation.

In a sequential system with a single processing node all information is stored in

the system memory. Conversely, in distributed system with multiple processing

nodes keeping some part of information remotely from a processing node causes

inefficiency and optimization is necessary before mapping.

In the case of a neural network simulation, however, the physical mapping prob-

lem is simplified because each individual neuron is a self-contained unit, and all

communication is limited to the short-lasting impulses carrying no information in

their shape or size, but the time of spikegeneration. But issues such as storage,

Chapter 3 Modelling and simulation 64

communication mode and synchronization still should be addressed before work-

load distribution by mapping a neural network onto different hardware processing

units.

3.5 Available Architectures

The last 50 years have witnessed considerable research in the area of neural network

implementation on distributed systems, resulting in a range of various architec-

tures. Here we overview the most popular of them.

3.5.1 Parallel Computers

Parallel computers are typically classified into two categories, namely Single Instru-

ction, Multiple Data (SIMD) and Multiple Instruction, Multiple Data (MIMD).

textbfSIMD usually has a high number (104) of very limited-functionality process-

ing elements that all execute the same instruction (i.e. program). In this way such

machines exploit data level parallelism. This type of computer was dominating

the scene until the MIMD class of computers became more powerful, and interest

in SIMD waned.

MIMD are usually built with a moderate number (102) of general-purpose pro-

cessors that function asynchronously and independently. At any time, different

processors execute different instructions on different pieces of data. MIMD ma-

chines can be of either shared memory or distributed memory categories. These

classifications are based on how MIMD processors access memory.

In the shared memory MIMD model (MIMD-SM) all processors are connected

to a “globally available” memory. Shared memory model is less flexible than the

distributed memory model (MIMD-DM), where each processor has its own indi-

vidual memory location and no direct knowledge about other processors’ memory.

In the distributed memory MIMD model (MIMD-DM) a message must be

passed from one processor to another in order to share some data. Since there is

no shared memory, data contention is not as great a problem with these machines.

Thus, in recent years interest in applications exploiting MIMD-DM architectures

is growing. The communication between the nodes is explicitely included in the

program by calls to a communication API (e.g. MPI or PVM). The most common

form of MIMD-DM network architecture is a workstation, where each machine has

its own physical memory.

Chapter 3 Modelling and simulation 65

A combination of shared and distributed memory is possible when each machine’s

processing unit is operated as such in the designed distributed system. It is also

possible to use distinct light-weight multiple processes (or threads) on each ma-

chine. In this case, some messages are sent over the network to other processors

while other will be sent via the local memory between the threads [109].

3.5.1.1 Single Program Multiple Data

Most often tasks are split up and run simultaneously on multiple autonomous

processors executing different portions of program on different data. Each pro-

cessor executes part of the code according to its identification number. Different

instances of the program communicate with each other by exchanging messages.

This mode, which uses the same program executing different data on each proces-

sor is named Single Program Multiple Data (or SPMD) and is a subcategory of

MIMD.

3.5.2 Application-Specific Integrated Circuit

Application-Specific Integrated Circuit (ASIC) traditionally referred to as neuro-

processor or neuron chip [110, 111].

A notable example of an ASIC is the Blue Brain Project, using the IBM Blue

Gene supercomputer with 8000 CPUs to simulate neurons with STDP learning in

software [112]. The distinctive feature of the project is its goal to simulate the

ion channels and processes of neurons at the fine-grain compartmental level with

a high degree of biological realism. A 10000 neuron model of a neocortical column

of a 2-week-old rat was successfully simulated on the Blue Gene platform. This

part of the somatosensory cortex is the smallest functional unit of the neocortex,

which is thought to be responsible for higher functions, such as conscious thought.

Another notable example of a flexible application-specific integrated circuit is the

SpiNNaker neuromorphic hardware, which provides a universal platform to simu-

late large networks in biological real time [113]. As well as IBM Blue Brain Project,

SpiNNaker represents a new breed of cluster computers where the number of pro-

cessors, instead of the computational performance of each individual processor, is

the key to high performance. It uses highly-parallel computing distributed on 20

identical ARM968 processing subsystems with high-bandwidth inter-process com-

munication through the self-timed links. The key feature of SpiNNaker design is

fault tolerance. The basic approach is a combination of redundancy and reconfig-

Chapter 3 Modelling and simulation 66

urability, so that the work of any failing processor can be dynamically re-mapped

without harm to the whole system.

However, developing custom ASIC devices for neural networks is both time con-

suming and expensive. These devices are also inflexible as a modification of the

basic neuron model requires a new development cycle to be undertaken; unless a

flexible neuromimetic system is developed, such as SpiNNaker.

3.5.3 Field Programmable Gate Array

Another type of dedicated hardware architecture is the Field Programmable Gate

Array (FPGA), which compromise a large number of logic cells with rich inter-

connectivity resources. Due to the reconfigurable nature of the device, the em-

ployed neuron model can easily be modified and a new bitstream generated and

downloaded an unlimited number of times. Several concepts for neural network

implementation have been created on FPGAs ([114], [115], [116]).

The fundamental problem limiting the size of neural network realization on the

FPGA is the cost of implementing the multiplications associated with the synaptic

connections. A fully parallel neural network requires a large number of multipliers,

which limits the size of the network. Several techniques were proposed to enlarge

the density of the neural network realization on FPGA hardware. The use of

weights with values limited to powers-of-two has been proposed to avoid the use

of multipliers [117]. Distributed arithmetic and lookup tables are applied to im-

prove the efficiency of synapse multiplication [118]. Dynamic adaptive memories

are proposed in order to reduce memory requirement [119]. Finally, a multiplexed

architecture implementation was suggested, minimizing the resource requirement

[120]. These techniques significantly reduce the cost of implementing neural net-

works of reasonably small size, but an efficient implementation of neural networks

with a large number of neurons on FPGA remains a challenging task.

3.5.4 Graphics Processing Units

Graphics Processing Units (GPUs) were originally designed to exploit parallel

shared memory-based floating point computation applied to computer graphics.

The single instruction, multiple data architecture (SIMD) of GPUs is gaining pop-

ularity because of their high performance, programmability, and price. Graphics

processing units were primarily designed for high-performance rendering where re-

peated operations are common, due to that fact they outperform general purpose

Chapter 3 Modelling and simulation 67

CPUs in utilizing parallelism.

Many neural network algorithms have been re-implemented on GPUs. Among

them are classification of the pixels of input images with the feature extraction and

pattern recongition stage [121], and character recognition using a neural network

based on the Izhikevich neuron model [122]. Also, a number of neural network

simulators were created for execution on GPU. Among them are simulators based

on spiking integrate-and-fire neuron model, however omitting axonal delays and

synaptic learning [123], implementing Izhikevich neurons [124], and modelling both

Hodgkin-Huxley and Izhikevich neuron models [125].

The implementation using GPU involves several issues. First of all, the developer

encounters tight constraints, as a graphic card is mainly designed to render a

scene and display it. Also, the programmer should master the fundamentals of the

graphics shading languages that require the prior knowledge of computer graphics.

Lastly, GPUs underperform when either a significant overhead in calculations is

incurred or the algorithm is not sufficiently parallel.

3.5.5 Summary

We overviewed approaches based on custom shared memory solutions, cluster

message passing computing systems, integrated circuits, programmable logic, and

GPU-based computing. Applying SPMD by one-to-one placement of the neurons

or group of neurons into physical components mostly suits our aim,taking into

account the benefits of the architecture, as well as considering cost and time spent

on development.

3.6 Existing Simulation Environments

Two solutions are available to neural network researchers for their experiment:

either developing specific tools or using an already adapted simulator following a

designated procedure. However, the problem of having a biologically realistic size

and complexity in a neural network simulation has been underestimated for a long

time. This reflected in the limited number of powerful neural network simulation

environments used both in industry and academia.

It is difficult to make a proper comparison between different simulation environ-

ments because each is optimal for a given problem. It is interesting to note that

many simulators are able to simulate the same models, allowing simulation results

Chapter 3 Modelling and simulation 68

to be cross-checked between different simulators and providing greater confidence

in their correctness. However, the codes are not always compatible with each

other, making it difficult to incorporate the findings of others in a different model.

This underlines the need for a more transparent communication channel between

simulators.

Various common programming interfaces acquire popularity in order to reduce

or eliminate the problem of simulator diversity. PyNN Python-based common

simulator interface is one of them, already adapted by several large-scale simula-

tion projects, such as NEURON, NEST, PCSIM, and BRIAN [126]. Nevertheless,

many widely-used simulator tools still are not compatible with any common pro-

gramming interface.

Below is presented an overview of presently most available simulation environ-

ments.

3.6.1 NEURON

NEURON is a highly reputable general purpose simulation environment for mod-

elling both individual neurons and networks of neurons [18]. The program was in-

troduced as a single-cell modelling domain but in the early 1990s it was enhanced

and applied to network models containing large number of both computationally-

efficient and biophysically-detailed neurons, or a combination of both. Later, it

was extended for a distributed execution over parallel hardware. The simulator

can run under Windows, Linux and Mac OS operational systems and is available

free of charge.

The simulator is well-suited to conductance-based models of individual neurons

with complex anatomical and biophysical properties, with extracellular potential

near the membrane, and biophysical properties (i.e. multiple channel types, in-

homogeneous channel distribution, ionic accumulation and diffusion, and second

messengers).

NEURON offers several different numerical integration methods, such as Euler’s

method, the Crank-Nicolson method (providing higher accuracy at little additional

cost), and IDA adaptive integration method (providing the highest accuracy at the

cost of reduced runtime) [127]. The NEURON library is extensible through the

NMODL and Hoc programming languages, which allow users to add new features

to existing mechanisms (i.e. voltage- and ligand-gated ion channels, diffusion and

buffering), as well as developing new descriptions for neuron models that have

analytical solutions [128].

Chapter 3 Modelling and simulation 69

The simulator earned a reputation for having very friendly interface with a large

number of tools for model construction (such as channel, cell, network and lin-

ear circuit builders), analyzing (such as Import3D, Model View, Impedance) and

simulation control (such as Variable Step Control, Multiple Run Fitter). Besides,

it has an extensive user base with more than 860 scientific articles and books

reporting work that was done with NEURON.

3.6.2 GENESIS

The GEneral NEural SImulation System (GENESIS) is a further example of

a reputable general purpose simulation platform. It was the first broad scale

modelling system in computational neuroscience. The last version (GENESIS

version 2.3) is an open source program for UNIX-based systems.

The system was developed to simulate neural systems ranging from sub-cellular

components and biochemical reactions to complex models of single neurons, simu-

lations of large networks, and system-level models [19]. It is widely used both for

single cell modelling (over 600 research publications) as well as for large network

models (over 20 large-scale neural network GENESIS simulations were reported,

many of which exceed 10,000 neurons per network).

GENESIS is an object-oriented simulation system with a “building block” ap-

proach. Basic building elements receive inputs, perform calculations and commu-

nicate by sending messages to each other. The message content differs according

to the neuron’s own variables and the method used to perform its calculations. A

wide range of neuron models is built in into the program, from abstract integrate-

and-fire model and the simplified Izhikevich model, to the biophysically realistic

and plausible Hodgkin-Huxley model. Additionally, new user-defined GENESIS

object types, or script language commands can be easily added, which is central to

the generality and flexibility of the system. The simulator uses precompiled object

types, rather than re-compiling all the scripts each time. This allows modifying a

simulation while it is running without a significant change in speed.

The Parallel GENESIS (PGENESIS) was created as an extension to GENESIS.

It runs on any parallel cluster, SMP, supercomputer, or network of workstations

where MPI or PVM is supported, and on which serial GENESIS itself is able to

run.

Chapter 3 Modelling and simulation 70

3.6.3 NEST

Neural Simulation Technology (NEST) is a simulation framework for large, struc-

tured networks of neural systems, at the same time maintaining an appropriate

degree of biological detail [129]. The main focus of this simulator is the dynamics

behaviour of large networks, rather than the detailed morphological and biophys-

ical properties of individual neurons [130]. It is a freely available software able to

run on UNIX, Linux, Mac OS and Windows.

NEST is written in an object-oriented style in C++ and a network is regarded as a

hierarchical structure, consisting on abstract atomic and compaund components.

The simulator can be easily extended by adding new models of components (i.e.

neurons and sub-neuronal compartments), or writing new libraries and routines.

New components can be loaded during run-time as the NEST code is modularized.

The program package does not have any built-in graphical interface and data anal-

ysis happens off-line. The analysis can be done using the compatible mathematical

tools, such as Matlab, Mathematica or Python.

The NEST simulation kernel supports parallelization by a POSIX multi-threading

and message passing interface. On spike occurence, the pre-synaptic node simply

notifies the post-synaptic node because the dynamics of synapses are placed on

the post-synaptic side of the connections. In order to ensure causality, all com-

munication is performed in intervals of the minimum propagation delay between

neurons.

3.6.4 BRIAN

BRIAN is a clock-driven simulator for modelling networks consisting of spiking

neurons, primarily aimed at modelling single compartmental model neurons. It is

an open source Python extension package using vector-based computation. Despite

the overheads of an interpreted language, vectorisation techniques allow efficient

simulations.

In BRIAN all the internal variables of the simulator can be directly accessed in or-

der to initialise the network or control it as it runs. Both short-term plasticity and

STDP learning are included for integrate-and-fire (with adjustable threshold and

reset) and Hodgkin-Huxley type neuron models. Linear, nonlinear, and stochastic

neuron models can be easily defined by differential equations using standard math-

ematical notation. Runge-Kutta, linear and exponential (for non-linear models)

Euler methods are implemented for numerical integration. The connectivity of

Chapter 3 Modelling and simulation 71

a network can be specified either by directly describing connections of each pair

of neurons, or applying all-to-all or random connectivity. Each of the synaptic

connections can have a specific value of the propagation delay.

Brian includes several functions for spike train statistics. Python scientific libraries

allow fast data analysis and processing with the NumPy and SciPy numerical and

scientific computing packages and the PyLab graphics package, which mirrors

the syntax of the Matlab plotting commands. There is a number of third-party

packages available for graphic interfaces. The CherryPy package can be applied

for creation HTML interfaces to Brian simulations, which can run locally or on a

web server. Parts of the simulator can optionally be run using C code.

The popularity of Brian is due to the ease of learning and using the software

and minimal development time necessary to construct a neural model. Also, the

simulator does not require learning custom scripting languages (such as Hoc and

NMODL for NEURON, NEST’s SLI, and Genesis’ SLI (the last two being different

languages with the same name)). Parallel Python package can be used to run

independent simulations with different parameter values on a cluster or on different

processors.

3.6.5 NCS

The NeoCortical Simulator (NCS) is a simulation platform optimized for mod-

elling the horizontally dispersed and vertically layered distribution of neurons [131].

It performs both sequential and parallel simulation on Linux clusters (including

Linux emulation) and on Mac OS systems.

NCS is written in C++ using object-oriented design principles. Each object can

represent a cell, a compartment, a channel and the like, which model the corre-

sponding cortical entities. The simulator employes integrate-and-fire and Hodgkin-

Huxley neuron models using a clock-based approach [132]. Nonlinear specifications

(like the Izhikevich model) are not supported.

Learning is implemented by using a look-up table, which contains values of synap-

tic weight modification (both positive and negative) based on the time between

incoming and outcoming spikes occurence.

NCS delivers reports on any fraction of neural cell groups, at any specified interval.

The report contains membrane voltages (current clump mode), currents (voltage

clamp), spike-event-only timings (event-trigged), calcium concentration, synaptic

dynamic parameter states and any Hodgkin-Huxley channel parameters. However,

simulation does not provide any visualization software.

Chapter 3 Modelling and simulation 72

3.6.6 PCSIM

The Parallel Circuit SIMulator (CSIM) is a tool for simulating heterogeneous

networks composed of spiking neurons [133]. The tool is written in C++ using

object-oriented design and is compatible with Python, which provides data anal-

ysis and visualization. It is a freely distributed software able to run on Windows

and Linux-like platforms. PCSIM can also be used as a package within Python.

PCSIM uses standard linear leaky integrate-and-fire and non-linear Izhikevich,

as well as Hodgkin-Huxley models of a neuron. Also the framework simulates

hybrid network models, which consist of both spiking and analog neural network

components. Simulation is accelerated by dividing all synapses into the idle and

active groups. Only the spike-receiving synapses are updated during simulation

fixed time step. A synapse becomes idle again after its post-synaptic response has

vanished.

The simulator has two forms of inputs, which are spike trains and analog sig-

nals. Correspondingly, communication consists on sending discrete and analogue

messages (i.e. spikes, firing rates, or membrane voltages) between the connected

neurons using either a multi-threaded approach, the MPI communication protocol,

or both.

3.6.7 SPLIT

SPLIT is a simulation library specialized for efficient simulation of networks with

a moderate number of multicompartmental models based on Hodgkin-Huxley for-

malism [134]. The model is written in the C++ language and supports parallelism

using MPI.

SPLIT provides conductance-based synaptic interactions with short-term plastic-

ity (facilitation and depression). Long-term plasticity (i.e. STDP) and integrate-

and-fire types of neuron model are not implemented. It is a “general-purpose”

simulator, where no specific topology or neuronal organisation is taken for granted

beforehand.

A user needs to adapt the simulator for a certain model as the software should be

regarded as a pure, generic neural simulation kernel. Nor does the simulator have

any graphical interface nor any support for analysis of results.

Chapter 3 Modelling and simulation 73

3.6.8 HHSIM

Graphical Hodgkin-Huxley SIMulator (HHSIM) is a graphical simulation of a sec-

tion of excitable neuronal membrane using the Hodgkin-Huxley equations. The

simulator allows a full access to the Hodgkin-Huxley parameters, membrane pa-

rameters, stimulus parameters, and ion concentrations. It was specifically designed

for teaching neurophysiology courses. HHSIM is a free software and is compati-

ble with Windows, MAC OS, and Linux-like systems. It should be regarded as

a generic neural simulation kernel with the user program adapting for a certain

model.

Unlike NEURON and GENESIS, where a user explicitly controls the use of the

underlying parallel system (i.e. manages communication between processors), the

SPLIT simulator automatically makes the best possible use of the available hard-

ware. In this way the user is shielded from the underlying computer system. At

the moment the software does not have any graphical interface nor any built-in

support for analysis of results.

3.6.9 MvaSpike

MvaSpike was designed as an event-based simulator for large, hierarchical or mod-

ular biological neural networks [135]. It consists of a core C++ library, is easily

extensible and accessible from scripting languages, such as Python. MvaSpike is

released under the GPL license.

A few common models of neuron are built-in, including linear and quadratic

integrate-and-fire model with STDP, stochastic neurons, and phase-coded neu-

rons. The simulator implements synaptic and axonal propagation delays, absolute

refractory periods, Poisson input spike trains generation, and provides some con-

nectivity patterns (both structured and randomly connected).

Partial parallel implementation and utilization of the XML structured data lan-

guage for input and output data formatting are developed in the simulator. How-

ever, MvaSpike does not contain any graphical user interface, nor any pre- or

post-processing tools.

3.6.10 SpikeNET

SpikeNET is an object-oriented neuron simulation program written in C++ [136].

It is another powerful framework for simulating large-scale networks of asyn-

Chapter 3 Modelling and simulation 74

chronous spiking neurons, based on the integrate-and-fire neuron model. SpikeNET

is available for public download under the GNU public license.

High simulation performance is achieved applying several techniques of computa-

tional efficiency. First of all, spikes are not propagated immediately but buffered in

lists before being propagated. This greatly reduces the computations associated

with large networks. This also simplifies distributed implementation as inter-

processor communication can be limited to sending lists of the neurons, which

just fired. Secondly, neurons are simulated with a limited number of parameters

(i.e. classic properties like a membrane potential, a threshold and more novel fea-

tures like dendritic sensitivity). They are organised in a two-dimensional arrays,

which represent retinotopical homogenous maps and are the basic objects of the

SpikeNET simulator. Thirdly, high simulation performance is achieved by weight

sharing, which means that one set of weights can be used for all the neurons in an

array.

Initially it was designed to investigate the biological plausibility of feed-forward

processing using “at most one spike per neuron” scheme. Although the modern

version of the simulator is a sophisticated simulation tool, it is still unable to

process more than one spike per neuron. SpikeNET is able to simulate networks

with millions of neurons and hundreds of millions of synaptic weights as long as

the average spike discharge rate is low. This limitation of a low discharge rate is

caused because of applying the event-driven computation approach, so that only

the neurons that emit spikes are processed.

3.6.11 KInNeSS

KDE Integrated NeuronSimulation Software (KInNeSS) is an integrated environ-

ment for running neural simulations [137]. It uses Synchronous Artificial Neuronal

Networks Distributed Runtime Algorithm (SANNDRA) as the core of all numeric

simulations, which also provides distributed calculations. KInNeSS is built using

object-oriented design in C++ and is an open source software for LINUX based

systems.

It provides an expandable framework incorporating features such as ease of use,

scalability, and an XML based schema. It is primarily aimed at modelling branched

multi-compartmental neurons with biophysical properties like membrane poten-

tial, voltage-gated and ligand-gated channels, the presence of gap junctions or

ionic diffusion, neuromodulation channel gating, the mechanism for habituative or

depressive synapses, and axonal delays. The simulator implements STDP based

Chapter 3 Modelling and simulation 75

only on local spatial and temporal information. This means that synaptic mod-

ification depends exclusively on the quantities present at the synapse and at the

current time step. KInNeSS output data for later analysis in a variety of formats,

such as MATLAB. The outputs include compartment membrane voltage, spikes,

local-field potentials, and current source densities, as well as visualization of the

behaviour of a simulated agent.

KInNeSS has a friendly point-and-click interface allowing the modeller to set all

the necessary parameters and XML schema for both import and export of model

specifications.

3.6.12 LENS

The Light, Efficient Network Simulator (LENS) is a fast, flexible neural net-

work simulation framework primarily designed for backpropagation networks [138].

Nevertheless it also supports deterministic Boltzmann machines and Kohonen net-

works and can be extended to other Hebbian or Bayesian models. It is written

in C++ and Tcl using object-oriented design and new functions can be easily

added to extend the standard functions. The simulator operates on both Unix

and Windows platforms and is distributed free-of-charge for academic purposes.

The simulator supports feed-forward, simple recurrent, recurrent-backpropagation-

through-time, and continuous recurrent-backpropagation-through-time (RBPTT)

networks as well as deterministic Boltzmann machines and Kohonen networks.

Other models of networks can be added with little effort. It implements five

learning algorithms: steepest descent, momentum descent, “Doug’s momentum

descent”, delta-bar-delta, and quick-prop. The simulator provides over 100 com-

mands for building, training, and analyzing networks.

Lens supports batch-level parallel training on multiple machines, however the net-

work itself is not partitioned among machines. This type of parallelism is typically

used for searching for best network or training parameters in order to find the best

performance.

3.6.13 JavaNNS

Java Neural Network Simulator (JavaNNS) is an efficient universal cross-platform

simulator of neural networks [139]. It is written in Java and based on its prede-

cessor Stuttgart Neural Network Simulator (SNNS) kernel (which was written in

Chapter 3 Modelling and simulation 76

ANSI C). JavaNNS has a new graphical user interface with a 2D and 3D graphical

representation set on top of it.

JavaNNS provides event based simulation. It supports many network architec-

tures, among them are self-organizing maps, dynamic learning vector quantiaza-

tion networks, radial basis function network, and time delay neural networks.

Several learning procedures are implemented, such as the backpropagation, the

counterpropagation, the QuickProp, and the resilient propagation.

In order to achieve a higher generalization performance by fewer free parameters,

several pruning algorithms are able to reduce the number of weights or neurons

of a network. Among them are magnitude based pruning (Mag), optimal brain

damage (OBD), optimal brain surgeon (OBS), skeletonization (Skel), and non-

contributing units techniques. It also has ENZO tool integrated into it, which

allows optimizing the topology of neural network by means of genetic algorithms.

3.6.14 NeuroJet

NeuroJet is another neural network simulation program written in C++ using

object-oriented design, which is freely available for Windows and Unix-like sys-

tems.

It was originally designed to proof a cognitive and behavioural concept via a

biologically based, but still simplified, model of the hippocampal region of brain.

This brain area raised an interest because of its key role in episodic learning. The

current version is implemented to run on either a single computer or on a cluster.

It can be easily extensible to incorporate any new models. At the current state

the developers plan to design graphical user interface and make it compatible with

mathematical packages, such as Matlab and Octave.

A parallel version of NeuroJet, originally known as PUNIT was designed to run

on computer clusters. Later, the parallel implementation of NeuroJet was created

on an NVIDIA GPU using CUDA API [140].

3.6.15 Nengo

Nengo is an open-source cross-platform software package for modelling large-scale

neural systems [141]. It includes customizable models of spike generation, mus-

cle dynamics, synaptic plasticity, and synaptic integration. Nengo is written in

JAVA and uses Python script interface. It works on Mac OS, Linux and Windows

systems.

Chapter 3 Modelling and simulation 77

Nengo provides standard and adapting leaky integrate-and-fire as well as the

Hodgkin-Huxley model. The simulator regards a spike as a descrete event. Thus,

it is not designed for neural models where the detailed voltage profile of a specific

spike affects the post-synaptic neurons. Spike times, membrane voltages, and cur-

rent can be recorded from the neurons. Variable-timestep integrator is applied,

using the Dormand-Prince 4 th and 5 th order Runge-Kutta formulae.

Neural engineering framework (NEF) is used in order to encode and decode time-

varying representations using spike train. It also is used to derive linearly optimal

synaptic weights to transform and combine these representations. This framework

represents a method for realizing a high-level description of neural models with

adjustable degree of accuracy.

3.6.16 MOOSE

Multiscale Object-Oriented Simulation Environment (MOOSE) is a general bio-

logical neural network simulator [142]. It allows simulation from single molecules

to neuronal networks.

Like the GENESIS simulator, MOOSE has a similar set of objects represent-

ing biological concepts (i.e. channels, molecules, compartments) and is backward

compatible with it. MOOSE uses a Python-based scripting interface, which allows

communicating among Python-aware simulators (i.e. simulating a single neuron

in NEURON and an intracellular reaction in MOOSE). MOOSE is able to run in

parallel on a cluster of machines using the MPI standard for communication.

3.6.17 FANN

The Fast Artificial Neural Network (FANN) simulator is a free open source cross-

platform library written in ANSI C [143].

The simulator implements multilayer artificial neural networks supporting fully-

connected and sparsely-connected networks. It has fixed-point and floating point

arithmetic for a bias neuron model with two activation functions (sigmoid and

threshold). There is a choice of several types of backpropagation training, such

as resilient backpropagation, quickprop, batch and incremental. It also has an

option of evolving topology training, which dynamically builds and trains a neural

network. For developing and analysing neural networks the simulator contains

several graphic interfaces, such as FANNTool, NeuralView, FannExplorer, and

sfann.

Chapter 3 Modelling and simulation 78

3.6.18 CX3D

Cortex simulation in 3D (Cx3D) software is an open-source cross-platform soft-

ware package written in Java. The simulator includes a wide range of phenomena

related to growth and development of tissues and taking place in a 3-dimensional

space. It is mainly applied to model large neural networks, where mechanical

forces play a major role in development of nervous systems. The examples vary

from simulation of a cortical folding to a neuron tube growth [144].

CX3D allows studying cell division, differentiation, migration, and extension of

axonal and dendritic trees. Model components (such as spheres for somata and

cylinders for neurites) are defined by creating small mechanistic modules, each

having its exact space coordinate and represent all the local biological processes.

The modules interact through mechanical forces of a direct contact and commu-

nicate by release of diffusible signaling molecules. The state of the components

is recalculated during each time step and changes appropriately if the certain

threshold is crossed.

A parallelized version of the Cx3Dp simulator scales with the number of available

machines, both in speed and in the size of possible simulation.

3.6.19 Review Conclusions

Several mature simulators were presented in the previous section, which can simu-

late sophisticated neuron models and take advantages of distributed architectures

with efficient algorithms. Each of above simulators has its own strengths and

weaknesses and often is specialised in different application, having different opti-

misations. This allows choosing for the most appropriate one for a given modelling

task. For example, BRIAN, PCSIM and NEST make use of a single compart-

mental models whereas NEURON, GENESIS, KInNeSS, and SPLIT also include

functionality for creating multi-compartmental models. Other software focus pri-

marily on dynamical systems analysis (i.e. XPPAUT), or model physical growth

and development of tissues (i.e. CX3D).

Although many of reviewed simulation environments were initially designed for

a specific purpose and domain of applicability, their set of features continually

improves and expands due to persistent interest from groups of researchers and

engineers.

A reasonable question to ask is whether there is any need for another neural net-

work simulator. Usually off-the-shelf simulators are designed to be all-purpose

Chapter 3 Modelling and simulation 79

feature-rich simulation tools, providing different simulation modes and techniques

and allowing additional useful features, such as predefined templates, graphics

management and data analysis. However, none of them has all the built-in facil-

ities that could serve all existent purposes. It might be that currently available

simulators do not fulfil the specific expectations of the user. Modifications can be

necessary to allow different operations, such as combining reinforcement learning

technique with Hebbian learning or implementing specific damage experiments

and analysis procedures. The off-the-shelf software packages often are large pro-

grams with very complicated inner-working. Also the way the adapted simulation

environments are structured does not allow modifying them straightforwardly.

Readjusting such large pieces of code would have been a more time-consuming

and error-prone process than writing a new specifically oriented tool.

Besides, the most desired features of a simulator are the ability to run a specific

model (flexibility) in a reasonable amount of time (efficiency). However, efficiency

is not only about the speed of simulations. The time spent on model implemen-

tation is at least as important in many situations. Many of the off-the-shelf sim-

ulators use custom scripting languages: Hoc and NMODL for NEURON, NEST’s

SLI, and GENESIS’ SLI (the last two are different langauges with the same name).

Mastering these scripts often extends the total time spent on simulation.

Therefore, it was decided at an early stage that it would be easier overall to

make the necessary day-to-day changes to a smaller, custom-written program that

contained only the facilities necessary for our experiments.

3.7 Summary

In this chapter we link neurophysiological measurements and theoretical studies,

helping to capture some of the brain’s computing capabilities. For this purpose

we review popular today engineering solutions on the way to apply the current

neurobiological knowledge to solve the technical problems, where conventional

methods are inefficient (e.g. speech synthesis or computer vision).

In the beginning of the chapter we reviewed the basic neuron models, which are

used in most neural network experiments. We outlined their advantages and dis-

advantages and selected the best candidates for large-scale network simulation.

Later, we overviewed the simulation strategies and techniques, used by engineers

for solving technical problems, and highlighted an influence of the modelling tech-

niques on the efficiency of network simulation. We discussed the potential contri-

Chapter 3 Modelling and simulation 80

butions of a distributed architecture for simulations of neural networks. We also

reviewed available architectures for distributed neural network simulation and em-

phasized the benefits and drawbacks of each of them.

Finally, we overviewed presently the most available simulation environments, which

can simulate sophisticated neuron models and take advantages of distributed ar-

chitectures with efficient algorithms.

Chapter 4

Sequential Neural Network

Simulation

This chapter describes a designing procedure of a biologically-plausible network

model, which is capable of searching for correct patterns, storing and reproducing

them later. The biological learning processes found in the animal’s brain are

resembled. It is not the aim to build a realistic model of a brain, as at this time due

to the lack of knowledge this task is impossible. The first aim is to understand the

essential computations that take place in the network of interconnected neurons,

resembling an actual biological neural network. Another aim is to construct a

network designed to exploit potential of the SpiNNaker neuromorphic distributed

computing machine gaining insights into the nature of neural computation [20].

Section 4.1 defines the network architecture used for simulation. Section 4.2 derives

the employed learning mechanism, adapting the network weights based on a global

binary feedback. In Section 4.3 the program is implemented, which allows a neural

network to compute in ways traditionally associated with artificial neural networks.

For this reason, a computationally efficient neuron model is applied, known as

Integrate-and-Fire model. It does not include many kinds of known properties of

neuron behaviour but helps to obtain an insight in the behaviour of the network

at the learning stage. After it, the chapter investigates the network’s performance

and learning capacity dependence on the level of neuron interconnection.

As a case study, Section 4.6 presents an agent able to accumulate the vital experi-

ence from an ambient environment based on three proposed techniques. For this,

we derive an algorithm that changes the weight of a neuron network by determin-

ing the exact error that the network makes on each example of a particular task

in an unsupervised manner.

81

Chapter 4 Sequential Neural Network Simulation 82

4.1 Network Model

This chapter defines precisely the model, its characteristics and its implementa-

tion challenges. Also this section reviews the network structure employed in the

simulator.

4.1.1 Network Architecture

Various architectures have been constructed and applied to different network mod-

els. A structured network with a feed-forward signal propagation was chosen,

resembling the visual cortex of a human brain (see 3.3.2.1). Input and output

neurons are distinguished in the network from other neurons, belonging to the

hidden layers. Each neuron operates according to the Integrate-and-Fire neuron

model.

4.1.1.1 Connectivity

In biology, neurons have one of two types of synapse: excitatory, where the synapse

releases neurotransmitter, which increases the membrane potential of a target cell,

and inhibitory, which decreases the potential.

Similarly, every connection in the simulator has a certain strength (or weight),

which is a real value and can be positive (for excitatory synapses) or negative

(for inhibitory synapses). The weight is labelled wi,j for a direct connection from

the axon of neuron j (pre-synaptic neuron) to the membrane or dendrites of neu-

ron i (post-synaptic neuron). The weights can be shown as a matrix, visually

representing a topology of connections.

It must be noted that synaptic connectivity of biological networks is sparse. This

is caused by the fact that almost all synapses of the axon of one neuron connect

to different neurons. This means that only a certain group of firing neurons can

cause a fire of a post-synaptic neuron, as probably no one neuron does have a large

influence on any other neuron (except certain special areas of the brain, like the

cerebellar cortex). This fact is important in order to maintain low firing activity

of a neuron network.

4.1.1.2 Introducing Dilution

Neurons in biological networks are connected asymetrically by one-way connec-

tions. It means that an axon of pre-synaptic neuron i can connect to a dendrite or

Chapter 4 Sequential Neural Network Simulation 83

Figure 4.1: The effect of dilution: fully connected network (left) and with
some missing connections (right).

cell body of a post-synaptic neuron j by a connection Jij, while at the same time

the axon of a post-synaptic neuron can connect to the cell body or a dendrite of

neuron i by a connection Jji, so that Jij 6= Jji . Notably, both connections have

unequal weights.

It also turns out that not all neurons are connected to each other in biological

neural networks. The human brain, for instance, consists of 1011 neurons with each

neuron connecting to about 104 others [145]. In order to represent this phenomenon

dilution is introduced, i.e., the random breaking of connections between neurons.

In the simulation a partially connected (or diluted) three-layer network is used

(although there is a possibility to vary the number of hidden layers). The dilution

d represents whether a connectivity of the network is dense or sparse:

d =
M

N(N − 1)
(4.1)

where N represents the total number of neurons and M is the number of missing

(or ‘broken’) connections.

4.1.1.3 Diluted Network Importance

There are several reasons why the investigation of diluted networks is worth at-

tention.

Firstly, as it was mentioned, this guarantees closer resemblance to the cortical

areas associated with vision [146].

Secondly, and the most importantly for our research, the reduced number of con-

nections reduces the communication load on the network as well as the computa-

Chapter 4 Sequential Neural Network Simulation 84

tional speed. Particularly it is beneficial for distributed hardware implementation.

Thirdly, dilution is an attractive tool to investigate the fault-tolerance and ro-

bustness of the cooperative behaviour of neural networks against malfunctioning

of some of its elements. This reduces a probability of system break down if only

a few elements deteriorate in their performance. This aspect is vitally important

for parallel hardware architectures and is often advocate the superiority of neural

network architectures over more traditional sequential computing systems.

Several types of diluted network are widely used, depending on the procedure used

for breaking up neuron connections in the fully connected network [147].

In our research we interconnect neurons based on a certain probability. This

diminishes the chance of involving the same neurons forming the activity paths

for different input patterns. However, the level of activity depends strongly on

the level of dilution and our investigation shows that the most optimal level of

dilution would be 80 % of the full network interconnection (see Fig. 4.12 in 4.5).

4.1.1.4 Network Structure

A subset of the neurons of a network is chosen to be input neurons. In a biological

organism they would get their input from one of the sensory systems. They can

be triggered to fire in reaction to outside events, like light falling on a particular

sensor cell in the eye. As the input neurons get their input only from a sensory

system, they do not get input from other neurons in the neural network.

Another subset of the neurons can be distinguished as an output of the network.

Their axons are designed to output the signal and therefore are not connected to

other neurons in the network. In a biological organism this could represent motor

neurons with long axons connected to cells of muscle fibres of the body.

The input to a neural network is provided by setting the activity of a number of

neurons defined as input neurons according to a certain input pattern. An input

pattern consists of a set of binary numbers (0 and 1). In the same way the output

pattern is read from the subset of the output neurons. The length of input and

output patterns cannot be higher than the number of the corresponding subset

of neurons, but it can be lower, in which case the rest of neurons are assumed to

have activity equal to zero.

All other neurons in the network are grouped to one or more hidden layers. Their

output is connected either to other hidden neurons of other layers, if any, or to

the output neurons.

Chapter 4 Sequential Neural Network Simulation 85

Figure 4.2: Example of different subsets of neurons in the network.

We deliberately avoid the direct connections between the neurons’ set dedicated

for the input with the neurons responsible for the output. Otherwise, the direct

connections extend the learning period or corrupt the final result. It happens

because these connections cannot fit all set of learning patterns and if they do not

fit the current learning pattern, it takes a long time to reduce such connections’

weight to zero. Besides, according to the learning mechanism, all other weights

are affected by the changes.

The activity signals propagate in a feed-forward mode from an input layer to a

hidden layer and from the hidden layer to another hidden layer, if any, or to an

output layer. Feed-forward mode means that every neuron in layer i has only

connections to neurons in layer j, if j = i + 1 (in broader meaning j > i) (refer to

3.3.2.1).

4.1.2 Neuron Model

The neuron model describes the neuron behaviour in response to input stimuli and

the process of producing output spikes.

4.1.2.1 Rationale for Chosen Model

The neuron model must be optimal in terms of balance between a computational

load and biological conformity. We use a simplified but computationally efficient

neuron model, known as Integrate-and-Fire, which does not include many proper-

ties of neuron behaviour.

Using a more complicated neuron model at this stage could obstruct understanding

of which mechanism causes the observed behaviour of the network under research.

Chapter 4 Sequential Neural Network Simulation 86

Figure 4.3: Neuron model parameters.

On the other hand, by limiting the important properties some of computational

capabilities of the neuron model (STDP as an example) are ignored. However,

it helps to understand what role these properties perform in the learning process

and how much they influence the learning speed and capacity of the network.

The simulator is able to simulate several neuron models. But for the research

purposes the integrate-and-fire model is employed, which was described in section

3.2.2, because it is comparatively easy to keep track on the neuron’s execution and

backtrace the possible bugs.

Remarkably, networks, which are using such a simple neuron model, are able

to implement a range of tasks relating input states to output states and are a

convenient tool for investigating the dependence of network dynamics and activity

on various network parameters.

4.1.2.2 Model Parameters

In the Integrate-and-Fire model, an internal state of any neuron i is described by

the following three variables:

• a binary state variable xi, describing whether neuron i is active and firing

(xi = 1) or inactive and staying at rest (xi = 0).

• a variable membrane potential hi, representing the sum of the states of the

pre-synaptical neurons multiplied by the weights of their connections.

• a fixed threshold potential θi; a neuron becomes active when the neuron’s

potential hi exceeds the threshold potential θi.

Chapter 4 Sequential Neural Network Simulation 87

4.1.2.3 Model Dynamics

The state variable is calculated using the relationship between hi, θi according to

the equation:

xi = ΘH(hi − θi) (4.2)

where ΘH is the Heaviside stepfunction, defined by ΘH(x) = 0 if x < 0 and ΘH(x)

= 1 if x > 0. If the weighted sum of the states of the neurons connected to neuron

i exceeds threshold θ, the state of the neuron is set to active, otherwise it is not.

The potential hi of a neuron is subject to change if a neuron receives some input

via its synapses from other neurons. It is determined by the sum of the states of

the neurons connecting to neuron i and the weights of these connections:

hi =
∑
jεVi

wijxj (4.3)

where Vi is the collection of all neurons that have an afferent synaptic connection to

neuron i. Excitatory synaptic connection (EPSP) increases the membrane poten-

tial whereas inhibitory input (IPSP) decreases the membrane potential, as shown

in Fig. 4.4. If enough excitatory input accumulates and reaches the threshold

level, a spike is emitted. The membrane potential returns to its resting level.

Figure 4.4: Influence of excitatory (EPSP) and inhibitory (IPSP) synapses
on the membrane potential, resulting in a spike (an action potential) if the

membrane potential crosses the threshold level [9].

Other more complicated neuron models, such as (a) using continuous state vari-

ables, representing the frequency of firing either (b) including some stochastics by

introducing a probability distribution for a neuron to become active or (c) using

other transfer-functions than Heaviside stepfunction for state variable calculation

Chapter 4 Sequential Neural Network Simulation 88

(sigmoidal, as example) or (d) multiplying the state variables of pre-synaptic neu-

rons for potential hi calculation, are also compatible with the simulator.

4.2 Learning

A lot is unknown nowadays about the behaviour of a biological neural network

and the mechanisms of learning at the level of neurons. To clarify the task, this

section explains what is actually ment by learning and introduces some basic

principles. After that, it presents the learning paradigms and reviews some possible

learning mechanisms. Finally, it discusses the way the network evolves over time

by changing the weights and in this way provides a learning process.

4.2.1 What is Learning?

By learning we mean that the probability for certain behaviour to happen in

reaction to a certain event is altered. Such an alteration either means that some

reaction is likely to be repeated, or that the probability for some reaction to occur

is lowered.

4.2.2 Biological Inspiration

For inspiration, we refer to the Morris water maze, devised by R. Morris nearly

30 years ago [148]. The maze was designed as a method to assess spatial or place

learning. It has been proven that the test strongly correlates with hippocampal

synaptic plasticity and glutamate receptor function [149].

4.2.2.1 Morris Water Maze

During the test a rat is immersed into a water tank with a platform located

somewhere near the centre. The water contains skim milk powder to stop the

rat from seeing through the water. During the training phase the platform is

lifted above the water so the rat could see it and find its way out of water, as

shown in Fig. 4.5. On subsequent trials with the platform submerged in the same

position (although being invisible to the rat), the rat is able to locate the platform

increasingly rapidly. After enough practice, a capable rat swims directly from any

release point to the platform. Such an improvement occurs as a result of learning

and memory for where the hidden platform is located.

Chapter 4 Sequential Neural Network Simulation 89

Figure 4.5: Morris water maze.

In the test finding the submerged platform leads to some sort of satisfaction or

safety feeling, which we correspond with reinforcement of knowledge. When a

learning phase of the test is repeated with the platform being in a new location,

the rat heads to the direction of the new platform position, forgetting about the

old position of platform (which we correspond with deinforcement of knowledge).

4.2.2.2 Representation of Biological Learning

Obviously, some kind of memory is involved in the process of learning. On the

basis of biologically motivated assumptions it is found that the strength of the

synaptic connections between neurons can change for some time or more per-

manently through two possible learning processes: LTP and LTD, discussed in

sections 2.3.1.1 and 2.3.1.2. It is likely that these are the underlying mechanisms

of memory and learning, if a correct (or satisfactory) output has been found in

reaction to a certain input pattern.

LTP fixes and strengthens the state of the network at the moment it is applied,

while LTD destabilises the state of the network, and, when applied repeatedly,

changes the network output when the effect of the found output is not satisfac-

tory. In this way the system changes its behaviour by changing its output signals

Chapter 4 Sequential Neural Network Simulation 90

following a certain input and searching for a correct output occurs. In other words,

LTP should be applied if the network realises the desired output state in reaction

to its input, while LTD should be applied when the output of the network is wrong

and the network should search for a better output.

In the same way our neural network gets information to deinforce or reinforce the

current behaviour through some kind of feedback, which represents the ‘feeling’ of

(un)happiness. Every time when a pattern is presented to the network, a learning

rule is applied in order to memorise the pattern. It is trained to recognise input-

output patterns by adapting its synaptic connections, given by wij, by certain

learning rule. One of this rules (LTP) memorizes input-output relations and takes

place when the output is right, while another (LTD) does the opposite: it changes

the input-output relations of the network and takes place when the output is

wrong.

Another possibility, often used to model memory, is to instruct the network exactly

what output it should generate for an input (known as learning with a teacher). In

such a way a network is not able to solve any problem by itself. It will only imitate

some desired behaviour, which was already determined in advance. Therefore we

are not interested in such learning method and leave it outside of the scope of our

research.

4.2.3 Learning Mechanism

This subsection describes how learning is realized by changing the weights wij of

the neural network and discusses about what actually the neural network should

learn.

4.2.3.1 Existing Techniques

Various techniques are widely used for association of input-output patterns. Some

of the most well-known techniques are perceptron learning rule, backpropagation

and Boltzman machines [150, 151].

Despite being popular, however, these techniques violate the existing biological

limitation of local update rule, in this way abandoning the biological nature of

the learning mechanism. They are not realizable just with the help of processes

occurring in nature, learning does not occur through an adaptation of synaptic

strength while depending purely on the activity of the involved neurons. Instead,

Chapter 4 Sequential Neural Network Simulation 91

for instance, in the backpropagation algorithm the update rule involves the back-

propagation of a distant error signal, potentially computed many layers above it.

Therefore we avoid using them for our model.

It is necessary to note that a learning process, based purely on locally specific

information, is more difficult and slow comparing to non-biologically realizable

algorithms.

4.2.3.2 Hebbian Postulate

Formulated as early as 1949, Hebbian rule [152] has been an important milestone

for both neurophysiology and computer science. It was the first and the only

plausible learning rule for artificial neuron networks. The rule was successfully

used in various applications, including the model of bees foraging in an uncertain

environment [153] and human decision making [154].

More than one neuron is needed to excite a postsynaptic neuron. Although this

point is mentioned in the Hebbian postulate [155], often it is violated. This re-

striction limits the probability of any neuron to influence several activity paths

and thus reduces the chance of their overlapping.

While applying the method in its present form, an autocorrelation term of the

learning rule stands out. It is caused by correlation of presynaptic and postsynap-

tic neurons’ activity: weight growth leads to a higher postsynaptic potential and

therefore even more weight growth. It causes the exponential weight growth and

leads to destabilisation of the network [156]. Although in an earlier paper [157]

Hebb had introduced the mechanism of decreasing the synaptic weight under cer-

tain conditions, he has excluded it in its final version [155]. Consequently, it is

unlikely that applying only the pure Hebbian learning will result in an entirely

adaptive system capable of task-oriented learning.

4.2.3.3 Rosenblatt Principle

In 1962, Rosenblatt developed the first computer that could learn new skills by

trial and error and proved [77] that a neuron network is able to associate input-

output relations, if a finite number of times the weights are adopted accordingly

to the following rule:

wij(tn+1) = wij(tn) + ∆wij(tn) (4.4)

Chapter 4 Sequential Neural Network Simulation 92

In other words, the equations tells us that with each time step the quantity of

weight wij is corrected by a certain portion ∆wij. Being constant, this important

parameter directly influences the speed of the learning process. In a case of a very

small value, the weight adaptation process drastically slows down and learning

may take extremely long time. Application of large values of ∆wij destabilizes

the learning process because after finding the optimal weight values, large change

in weight may significantly reshape the weight matrix, destroying the learned

patterns. Rosenblatt suggested using the variable parameter, adapted to the level

of produced error:

∆wij = ε(xTi − xOi)xj (4.5)

where xTi is desired output or target output of neuron i, and xOi is its actual

output. Furthermore, xj is the state of the pre-synaptic input neuron j and ε is

some function of the neuron states and properties of neurons i and j.

4.2.3.4 Weight Update Rule

The important limitation of the Rosenblatt rule is that the knowledge about the

states and properties must be local at the involved neurons and a synapse, con-

necting them. In other words, the value ∆wij cannot depend on variables local to

neurons other than the neurons i and j. By satisfying the requirements of the local

update rule, learning corresponds to the processes happening in the biologically

plausible network.

To solve the described constraints without loosing the biological plausibility, i.e.

keeping it consistent with learning processes of the animal’s brain, Bosman et al.

suggested a model of neural network in which both Hebbian and reinforcement

learning occur [10].

The reinforcement learning happens when a network is searching for the best so-

lution on its own by trying different possibilities and getting feedback on how

well it performs instead of being instructed somehow what output to generate

for a certaing input [158, 159]. On the basis of trial and error, a neural network

learns to associate the provided patterns according to the principle of reinforce-

ment learning. Natural interpretation of the principle is rewarding the satisfactory

neuron network outputs (with r = 1), causing them to occur more frequently and

punishing the incorrect outputs, which produce the feedback r = 0.

According to the contemporary biological studies, reinforcement mechanism was

observed in biological learning processes and was successfully used to interpret the

Chapter 4 Sequential Neural Network Simulation 93

activity of dopamine neurons to mediate reward-processing and reward-dependent

learning in non-human primates [160], and modulate cortico-striatal synaptic ef-

ficacy in humans [161], also solving problems, including robot control, elevator

sheduling, telecommunications and chess [162].

However, in his “minibrain” model Bosman applies the extremal (“winner-takes-

all”) dynamics, inspired both by earlier self-organized critical models [163] and

the self-organized map [164]. This considerably improves learning performance and

provides a fast and highly adaptive learning system. The idea is based on artificial

control of the firing neuron number by allowing firing exactly the previously set

number with the highest membrane potential. The neurons, whose potential is

above the threshold potential will not fire if there are enough of other neurons with

higher potential, and the neurons with potentials below the threshold value could

be forced to fire if their potential is the highest. A similar idea was researched by

J. Bedaux and W. van Leeuwen in [165]. This external regulation of activity works

well enough, however the biological property of threshold potential is neglected and

for this reason we do not apply such a regulation in our model. Another drawback

of extremal dynamics is a significant overload of the computational resources.

To determine ∆wij we apply the learning mechanism modified by J. Bedaux and

W. van Leeuwen in [165], however we ignore the extremal dynamics component:

∆wij = rηi[k(2xi − 1)− (hi − θi)]xj − (1− r)ρi(xi − αi)xj (4.6)

where η, k, α and ρ are coefficients and r represents the binary feedback sig-

nal, representing ‘success’ or ‘failure’ of a provided output after each attempt to

associate the correct output with the given input.

4.3 Program Implementation

This section describes the implementation of the described algorithm for neural

network learning input-output patterns.

4.3.1 Initialisation Phase

The algorithm of learning input-output patterns has been developed and imple-

mented. The structure of program’s initialisation stage is given in Fig. 4.6. A

choice of pre-defined and random input-output patterns has been implemented.

In the case of pre-defined patterns, they are stored in an external file and read

Chapter 4 Sequential Neural Network Simulation 94

Figure 4.6: Simulation initialization stage.

Chapter 4 Sequential Neural Network Simulation 95

by a program during simulation. The network can be either generated according

to supplied rules or read from an external file, which may contain the state of

the network from a previous simulation. The supplied rules and parameters are

stored in description files, which contain initial parameters required to built the

neural network and set up the learning rules. They are read by a program before

simulation starts.

Some of the parameters are specified in the way to pass the range of the values.

In this case the first and the last value of the vector are supplied as well as the

number of values contained in this range. If the set of the numbers cannot be

divided into the equal intervals, the rounding applies and intervals slightly deviate

in the term of the size.

4.3.2 Algorithm

The entire design of the neural network is object-oriented. The building blocks of

the system are Network, Neuron and Synapse, as presented in Fig. 4.7. Each

of these classes stores only a minimum amount of information that is required for

representing its dynamic state. An object with lots of parameters requires large

memory allocation to store these parameters, which results in memory overload

and in a high computation time.

Figure 4.7: Simplified representation of main program classes.

The program operates as represented in Algorithm 4.1. After the certain input

pattern is fed to the simulation program, the program tries possible output pat-

terns as a reaction to an input pattern for maxSearchAttempt times. As long as

Chapter 4 Sequential Neural Network Simulation 96

the output pattern is not the desired one, the LTD rule is applied to the network.

Once the correct output has been found, the input-output relation should be mem-

orised by applying LTP rule. In this case it will be recalled a next time after the

network learns some other relations. The learning of all input-output patterns is

attempted. When all patterns are learnt once, the relations are shuffled and the

learning cycle is repeated until all output patterns are recalled at the first time

step after presenting the corresponding input. At this point we assume the net-

work has successfully learned all patterns and the network state can be saved in

an external file.

The program “knows” about the output correlation by the binary feedback. If

the value of the feedback is 0, the output does not correspond to the input. If

the value is 1, the output corresponds to the input according to the input-output

relation.

� �
1 begin

2 for i = 0 to patternNumber do

3 for j = 0 to maxSearchAttempt do

4 reset Potentials ();

5 inputPattern[i];

6 propagateActivity ();

7 if (simulationOutput != expectedOutput)

8 applyLTD ();

9 if (simulationOutput == expectedOutput)

10 applyLTP ();

11 shufflePatterns ();

12 end� �
Algorithm 4.1: One cycle of simulation

In our simulation time is discretized, which means that the states of the neurons

are only determined at the moments tn, tn+1, ..., with tn+1 = tn +∆t. In each time

advancement ∆t the states of neurons are updated. In each update the neurons

influence the post-synaptic neurons: increasing their potential if a connection is

excitatory and decreasing the potential if the connection is inhibitory.

In this way some of post-synaptic neurons can become active, if their potential

exceeds the threshold potential. Or the post-synaptic neuron can become inactive,

if the influence of inhibitory connections is high enough to lower the value of

potential below the threshold potential.

Chapter 4 Sequential Neural Network Simulation 97

4.4 Model Weaknesses

Our approach resembles an actual biological neural network and the way it might

learn. Biological resemblance embraces a neuron network’s unassisted search pro-

cess aimed at finding an appropriate set of synaptic weights through the potenti-

ation and depression of the synaptic weights based on the local synaptic update

rule. We created a network capable of learning new information without losing

the old at the same time. However, the network’s learning capacity remains the

crucial issue.

The interference of new learned data with previously learned data occurs while

storing the large amount of input patterns into the network. A self-destruction

of a pre-learned information in an attempt to adjust the weights for storing new

information is a common problem.

In the canonical example of [166], Edelman compares a mouse’s behaviour with

the behaviour of a robot, controlled by a neural network in a certain environment.

The result shows that after the environment changes, the robot seldom retrieves

pre-learned knowledge, unlike the mouse. The reason is that the field of coefficients

of neural network is destroyed by the newly learned information. This example

presents the importance of storing a pre-learned data while being able to perceive

the new data without any overlap.

4.4.1 Active Paths Interference

When the new pattern is learned, additional paths of activity are formed. To

preserve the old learned patterns, the new patterns should not influence and change

the already existing paths too much. This can be accomplished by keeping the

activity of the neurons low, as experiments have shown [10], [167]. The neuron

activity is defined as the ratio of the firing neurons to the overall neuron number

in a certain fraction of time. In this way it is possible to calculate the average

activity over a certain period of time.

Modifications of the synapses is a very powerful mechanism that allows shaping and

modifying the response properties of a neuron. Poorly regulated neural network’s

activity level can grow and shrink in an unpredictable manner. The neuron activity

can present excessively high or low firing rates. Therefore unless synaptic strength

changes are coordinated appropriately, such a mechanism can be very dangerous

for the network stability.

Chapter 4 Sequential Neural Network Simulation 98

4.4.2 Reasons of Active Paths Interference

The negative effect of the paths interference arises with more input patterns are

applied to the neural network to be learned. The active paths overlap when the

strongest connection from the different input patterns point to the same interme-

diary neurons. As result, the learning of something new causes forgetting of an

old data.

Figure 4.8: Path interference of A-C-D and A-B-D neuron paths [10].

There may be several reasons, which give rise to such a situation. First of all, from

the active input neuron the path of activity runs along the strongest synaptic con-

nections to the corresponding output neurons. In certain situations an established

path can be completely “wiped out” by an attempt to learn new data, so that

connection of the previously learned pattern is no longer the strongest. Also the

competition between the activity path, formed in previous steps, and newly form-

ing active path can happen. Such a competition often erases or partially destroys

the old path and correspondingly leads to forgetting of old data by the network.

Secondly, according to the algorithm, in the case of the incorrect ouput pattern, the

mechanism of decreasing the strength of recently formed synaptical connections is

applied. This almost certainly removes the previously formed synaptic connection

from the active level of synapses and forms another one, which produces a different

output pattern. Correspondingly, a large number of incorrect output patterns

cause a large change in the geometry of the active level and, hence, in the weight

Chapter 4 Sequential Neural Network Simulation 99

matrix of the network connections. This causes a so-called “avalanche” in the

network landscape [168].

Bienenstock, Cooper and Munro suggested using the flexible threshold [40] as a

mechanism of global neuron activity regulation. Correlated pre-synaptic and post-

synaptic activity evokes LTP if the post-synaptic firing rate is above the threshold

value and LTD when it is below. The threshold is not a constant value, but a

function of the average post-synaptic firing rate. When the post-synaptic firing

rate is highly active, the threshold increases. This mechanism reasonably regulates

the activity of the neurons, stabilizing the overall activity of the network.

Similar effect can be achieved by keeping the overall network activity at low level.

The formation of new network activity patterns has less influence to the already

existing paths, allowing both to coexist [167].

4.5 Simulation Results and Discussions

To measure the efficiency of the learning process we selected two parameters: the

number of learning steps and learning performance. The latter can be calculated

as the ratio of the actual number of steps, which were needed to learn the set of

applied input patterns and to associate them with the output patterns to the total

number of performed learning steps.

According to the proposed approach we created a neural network of 500 neurons

and studied it under various conditions. We dedicated 33 neurons to input and

10 neurons to output and taught the network for 20 different input patterns, asso-

ciating them with certain non-repeating output patterns chosen by the network.

Every experiment was repeated 100000 times to calculate the mean value of the

learning efficiency.

Fig. 4.9 shows the performance of the neural network as a function of the number of

input patterns. The performance falls with the higher number of applied patterns.

The learning performance is almost equal to 1 for one or two input patterns, but

drops to 0.05 for 16 input patterns.

Similar behaviour is observed by counting the number of learning steps in order

to find the capacity of the network to learn. The idea is to increase the number

of patterns to be learned until the system is no longer capable of learning. We

used two networks of 500-neurons and 2000-neurons sizes with various connectivity

patterns. Fig. 4.10 shows a comparison of the average number of learning steps

performed by the neural networks as a function of the number of input patterns.

Chapter 4 Sequential Neural Network Simulation 100

Figure 4.9: The performance of the neural network of 200 neurons while
increasing the number of patterns to be learned.

Figure 4.10: The capacity of the network to learn as the number of patterns
increases until the system is no longer capable of learning. The solid lines rep-
resent the network of 2000 neurons and the dashed lines represent the network

of 200 neurons.

The 2000-neuron network is able to learn a higher number of patterns and presents

the best capacity at connectivity around 40 % and 60 %.

Fig. 4.11 shows the dependence of the number of learning steps on faults. The red

line represents the dependence on the faulty nodes and the green line represents the

dependence on the faulty synapses. The level of faults is represented in percents

rather than by the actual number of faults as this provides a better representation

of the scale of damage done to the network. The dependence is almost linear

up until 0.3 % for the network with damaged nodes and up until 0.25 % for the

Chapter 4 Sequential Neural Network Simulation 101

Figure 4.11: Dependence of the number of learning steps required to learn
20 neurons by 500-neuron size network on the faults number injected at the
network level during the learning process. The level of faults is presented in

percents.

network with damaged synapses. The faulty nodes reduce the learning speed more

significantly comparing to the faulty synapses when the number of faults is small.

However, this changes to the opposite after the level of faults reaches 0.4 %, when

the level of damage caused by faulty synapses becomes larger than by the faulty

nodes. The value 0.4 % represent the point when the number of faulty synapses

introduced to the network is equal to the number of faulty synapses caused by the

faulty nodes.

We empirically investigated how the level of connectivity influences learning. We

examined its dependence on the level of connectivity by gradually reducing the

connectivity of the network and measuring the required number of learning steps.

Fig. 4.12 shows that the range of the most optimal performance is located in

the range of 45 % - 75 % of connectivity with the peak located at 55 %. The

low interconnection level as well as nearly 100 % connectivity leads to longer

adaptation time.

We took a closer look at the dynamics of the synaptic weight changes of the net-

work. Fig. 4.13 shows the rate of weight change of a randomly taken connection.

It presents how a neuron participates in the activity path formation and keeps

adjusting its value during the whole process of the experiment. The fluctuations

shown in Fig. 4.13 are caused by adapting the synaptic weight while opposing the

effect of path interferences and are also decreasing as the network redistributes

the weights and forms alternative paths to associate the input patterns with the

Chapter 4 Sequential Neural Network Simulation 102

Figure 4.12: The number of learning steps requried to learn 20 different input
patterns depending on the level of connectivity in the network of 500 neurons.

Figure 4.13: Dependence of the number of learning steps on faulty components
(the red line for faulty nodes and the green one for faulty synapses) in the

network of 500 neurons.

Chapter 4 Sequential Neural Network Simulation 103

most optimal output patterns.

The phenomenon can be explained by taking into consideration the way the neu-

ral network stores the learned information. Intuitively we could presume that the

learning efficiency of the network grows with the number of neurons. However,

this is only valid to a certain extent. The applied input pattern activates the cor-

responding neurons and causes them to fire further to the post-synaptic neurons.

Those neurons, however, activate only if their input weights are strong enough to

cause the accumulated signal to exceed the firing threshold.

Due to these aforementioned activation constraints, the activity paths are formed

in the network. Corresponding to each input, the most probable signal propagation

will follow the associated pattern. However, when the number of input patterns

or the connectivity level increases, the activity paths overlap, thereby destroying

each other and corrupting the output result.

4.6 Biologically-inspired Agent

In this section we present a biologically-inspired agent, which represents a learning

system. We understand a learning system as a system able to decide in a reason-

able way what to do in a particular situation from previous experience and/or

provided examples of appropriate behaviour even though the situation may not be

experienced by the system before. This allows specifying ‘what’ the system should

do for each case, and not ‘how’ the system should act for each step.

An agent is designed to study the proposed approach of simulating the neural

network. The agent is able to accumulate the vital experience from an ambient

environment. The neural network of the agent determines the behaviour of an

agent based on its own observations. It is a dynamic system that accepts the

agent’s input sensor values and provides the output values, which correspond to

one of the possible movements - for example, turn left or move forward. If all

output values are set to zeros, the agent moves in random way.

A 3D virtual application has been created for simulating a self-learning agent

hunting food. Food has a fixed position and only interacts with the agent when

they are in the same geographical position (i.e. when the agent catches food),

adding energy to the agent and disappearing. Another food appears at the same

time in a randomly chosen position of the environment. Energy is a measure

of hunting success and diminishes when the agent unsuccessfully moves in the

environment for a long time, causing the agent to “die” eventually.

Chapter 4 Sequential Neural Network Simulation 104

Figure 4.14: Environment view.

4.6.1 Environment

The screenshot of the environment’s view is shown in Fig. 4.14, with a top down

view in upper right corner, which displays the position of the agent and the food

in the environment. Also a pair of displays are available that show what an agent

can see, one giving a 3D view with an energy bar above and the other is giving the

more primitive, pixilated view, which actually is used as the input to the neural

network.

4.6.2 Agent and Food

The agent has five characteristics: perception, execution, decision-making, rea-

soning and learning mechanism. It also includes some other attributes (see Fig.

4.15).

• Perception: the internal representation of the agent’s environment through

its vision sensors.

• Learning: the adaptation mechanism, which saves newly acquired useful

Chapter 4 Sequential Neural Network Simulation 105

Figure 4.15: The agent design framework.

experience and removes redundant experience to properly utilize the capacity

for efficient use of essential knowledge.

• Decision-making mechanism: the way to determine which action the agent

should take under certain circumstances. The decision should be based on

its objective, perception and a set of predefined rules.

• Execution: the agent executes the selected action. The agent may move

forward to a new place, return to the previous position or start moving

randomly if the target is not visible.

• Reasoning: the set of rules according to which the success of the previous

move is calculated based on the change in the azimuthal angle and the dis-

tance to the target.

• Attribute: an agent may have attributes such as how well the agent behaves,

what its physical position is and what kind of feedback it receives from the

previous move.

Chapter 4 Sequential Neural Network Simulation 106

At each simulation step, agent builds its perception of the ambient environment

through the visual sensors and then makes decision based on its perception, goal

and learned experience. Finally it executes the made decision. The changed status

of the system will in turn lead to new perception of agent.

The neural network must in some way receive information to deinforce or reinforce

the performed behaviour. Thus, it is necessary to estimate the performed action in

a given state in terms of total expected reward in the long term. A commonly used

approach consists of creating a table of reward values for each state – action pair.

However, we consider this approach as inadequate because in a biological system

the learning reward is based on the (dis)satisfaction level induced by some released

chemicals. It is also not practical for a system with a large number of possible

states. For example, Tesauro successfully used a feed-forward neural network to

implement a backgammon player (containing about 1020 possible positions) [169],

which would be impossible in case lookup-table were used. The success of the

previous move is calculated based on the Boolean feedback signal.

The energy defines the level of success for an agent. Initially the agent starts with

a maximum level of energy. When the agent acts unsuccessfully for a long time,

its energy degrades. When the energy eventually reaches its minimum level, the

agent dies.

4.6.3 Food Searching Algorithm

An agent and a food are located randomly in the environment. The agent’s vision

is limited by its view, which is defined as an 11x3 matrix of cells, as shown in Fig.

4.14. The agent perceives the environment through this view and can identify the

food only within a defined distance. Only when the food is visible, the neural

network is engaged; otherwise the agent moves randomly because no learning

happens without the visible object. The food chasing algorithm is presented in

Fig. 4.16.

Initially, while the food is not within the range of the view, the agent moves

randomly in its attempts to find the food. When the agent spots it, its behaviour

changes. Now with each movement the agent’s view is passed into the neural

network, which processes it and suggests the next motion. The agent performs

a try-step and evaluates the distance to the target. If the distance to the target

decreases, the positive feedback signal is sent to the neural network and the input-

output pattern is “saved”. Otherwise, if the distance to the target increases or

remains the same, negative feedback is sent. In this case weight redistribution

Chapter 4 Sequential Neural Network Simulation 107

Figure 4.16: The food search algorithm.

takes place and an alternative try-step is suggested to the agent.

This process is repeated while the food is within the range of the view or the

agent does not approach the food. In this way the feedback signal is based on

the agent’s own judgment of the effect of its previous motion. This is the first

proposed technique, which ensures the agent-environment interaction maintains

only through one single Boolean feedback signal retrieved from the agent’s field of

vision without the need of any extra information.

Each node in the input layer corresponds to a cell in the agent’s view. In this

way the distance to the target is evaluated in a biologically plausible approach by

comparing the last two views only. The weight of every input node connection

corresponds to a certain array, the values of which follows a Gaussian distribution.

This allows the neural network to distinguish the distance to the target simply by

calculating the input layer activity, which is inversely proportional to the distance

between the agent and its target. The concentration of the higher coefficients in

the centre of the input neuron’s array presents the angle of movement. The agent

has a higher chance to reach the food when it is in front of it and thus the active

neurons are more centred in its view.

Using this method, the neural network measures the success of the previously

suggested movement and either strengthens or weakens the connections among

the nodes that have been active while processing the corresponding input pattern.

This is the second proposed technique, according to which the feedback signal is

Chapter 4 Sequential Neural Network Simulation 108

based not on the network’s output but on the next input provided to the neural

network.

As initially the network does not contain any pre-learned patterns, its output is

purely random. After each successful attempt the action is learned by the neural

network block thus increasing the chance to provide similar output in similar

circumstances, which might arise in the future. If, due to the suggested motion, the

distance to the food increases, the anti-learning mechanism starts and continues

until the proper output is found. As a result, the corresponding input-output

patterns will be formed and stored in the neural network. This will increase the

probability of choosing matching actions as a result of receiving the corresponding

view.

Un-learning is the third proposed technique, which provides a possibility to develop

more optimal strategy, when newly acquired experience is more effective comparing

to known already. As example, it is more efficient to move towards the food directly

instead of approaching to it by making circles around.

4.6.4 Decision Making Mechanism

At each simulation time step, agent movements are based on following simple rules:

• If alive, the agent scans its environment;

• If the target is not in the field of vision, the agent moves in random way;

• If the target is observed, in its field of vision the agent performs a try-step;

• If the try-step is successful, the reward mechanism reinforces the knowledge;

• If the try-step does not lead to success, the agent returns to its previous

position and the punishment mechanism destructs the knowledge;

• If the target is reached, the energy level increases.

4.6.5 Agent Simulation Results

The agent-environment interaction is implemented by providing the simply Boolean

feedback signal retrieved from the agent’s field of vision without the need of any

extra information. Rule-based decision-making mechanism is employed in the sim-

ulator. An algorithm is adopted to decide where the agent should move to. Every

Chapter 4 Sequential Neural Network Simulation 109

Figure 4.17: Food chasing success rate versus the performed learning steps.

simulation time step, agent evaluates its environment trying to approach to the

target.

Our experiment proves that the proposed network architecture receiving the feed-

back based on the localised knowledge about the environment indeed works. Using

C++, according to the proposed method we created the neural network and sub-

jected it to the number of the experiments. During every experiment the network

was associating 10 various views of environment with a proper action chosen by

the network and leading to the reduction of the degree of closeness. Fig. 4.17

shows almost linear dependence of the success rate of food chasing on the number

of learning steps.

Fig. 4.18 presents the dependence of the learning performance on the increasing

number of patterns to be learned, while the agent learns new actions. The depen-

dence is linear and decreases with the higher number of patterns to be learned.

We compared the dependence of the agent’s success rate in searching a food with

and without applying the un-learning technique (deinforcing process) in order to

limit the negative effect of active paths interference. Fig. 4.19 shows the agent’s

success rate increases by 50 % after applying the un-learning technique.

Chapter 4 Sequential Neural Network Simulation 110

Figure 4.18: Dependence of the neural network performance on the learned
patterns number.

Figure 4.19: Comparison of the performance with and without un-learning
technique as a function of the learned patterns number.

Chapter 4 Sequential Neural Network Simulation 111

Figure 4.20: The influence of the corrupted level of vision on the quality of
produced output.

We also paid attention to the way the previously learned but corrupted input

patterns influence the quality of output. For this purpose we artificially inverted

part of the input patterns’ bits (each input pattern has 33 bits) before applying

the corrupted inputs to the neural network. Later we compared the produced

output with the expected one. Fig. 4.20 presents the quality of output when the

input is corrupted. It presents how the capacity to find a food is affected with a

reduced level of vision. The quality of output equals to 80 % when 1 % of set of

input patterns is corrupted, and it decreases to 50 % for 3 % corrupted input.

4.7 Summary

Our goal was to simulate a neural network capable of learning in a biologically plau-

sible way. The simulation program with a flexible, reusable, platform-independent

and scalable framework has been presented.

The program employs the feed-forward neural network combining unsupervised

and reinforcement learning. The plasticity mechanism was implemented employing

the long term potentiation and long term depression mechanisms. An approach

how to keep the activity level of the neurons and how to preserve the learned

patterns has been discussed.

The software architecture and algorithm have been presented. The implementation

details have been introduced and explained. The model has been functionally

verified and experimental results are included.

Chapter 4 Sequential Neural Network Simulation 112

As a case study, an agent chasing a food in an ambient environment. In the

simulation agent-environment interaction is maintained only through one single

Boolean feedback signal retrieved from the agent’s field of vision and based not

on the network’s output but on the next input provided to the network. On the

basis of trial and failure, the network learns certain tasks, such as move forward,

rotate, step back. We showed that by applying the combination of Hebbian and

reinforcement learning and incorporating the proposed techniques it is possible

to teach an autonomous agent to search for a food without providing any hints

except for the data retrieved from its limited field of vision.

Chapter 5

Parallel Distributed Simulation

Traditionally, software used to be oriented for sequential computation and exe-

cuted on one-core computers. These days performance of sequential execution

approaches the physical limitation and a new form of computation, known as

distributed computation, becomes more popular because of higher performance,

scalability and fault-tolerance. However, such an approach raises challenging is-

sues, concerning the execution of simulation programs on distributed computing

platforms.

The objectives of our study are first presented in Section 5.1. Section 5.2 overviews

possible topology exploitation in order to find the most efficient mapping algorithm

to optimise the communication load and provide additional performance gain.

Section 5.3 discusses various algorithms of time management and synchronisation

within distributed simulation.

Section 5.4 introduces a simulation environment suitable for efficient parallel dis-

tributed simulation of large-scale neural networks and representation of neurons,

synaptic connections and communication between the asynchronous processors

through the interchange of spike-representing messages.

Asynchronous execution raised the challenging side-effects, such as the cost of

additional distribution-related communication and synchronisation of the parallel

processing. Solving them, the novel protocol for local communication between

processors was developed, which is immune to spikes delivered late or out of or-

der. The algorithm and distributed hardware allows implementing a fault-tolerant

mechanism, immune to processor failures and communication problems. Also, the

chapter presents in details an efficient implementation, design and operation of the

neural network simulator. Section 5.5 discusses the achieved results and compares

them with the research objectives.

113

Chapter 5 Parallel Distributed Simulation 114

5.1 Objectives

The proposed and developed simulator has several objectives. The first one is

to provide simulation of a large-scale neural network. For this the simulator is

designed to run on a distributed hardware, resolving the issues of parallelism,

communication and timing inherited in distributed simulations. The second ob-

jective is a possibility to apply a range of various neuron models. Finally, it is

essential for the simulator that the definition and design of network model and

learning process is biologically inspired (was described in Chapter 4).

Starting from the first objective, the chapter begins with commonly addressed

related side-effects and challenges of distributed computation.

5.2 Mapping

Neuron mapping on participating processors is one of the most obvious require-

ments of distributed simulation. Here we define a network topology, distributing

the groups of neurons and their internal connections over the processors.

Evenly distributed average activity and balanced load distribution is crucial for

computational and communication load generated by simulation. It is beneficial

also to take into account the dynamics of a network in addition to its topology.

5.2.1 Neuron Number Based Mapping

An intuitive and the simplest possible distribution we can apply consists in as-

signing an equal number of neurons to each machine. This approach is easy to

implement and simple to maintain. However, various neuron groups have uneven

computation cost leading to the irregular communication in the network. This pro-

duces non-uniformly distributed areas with different activity of message passing,

which results in non-optimal usage of resources.

5.2.2 Delay Based Mapping

It is also possible to map a neural network according to the time delay between the

groups of different neurons. However, some learning implies a variation of delays

in the network. If such learning is applied to a network, mapping optimization

may cause certain difficulties and quickly affect the quality of mapping. This may

result in non-optimal usage of resources.

Chapter 5 Parallel Distributed Simulation 115

One solution might be to rebalance the distribution of the neural network during

the simulation, according to the changes of delay time. However, the additional

costs should be evaluated, which are generated by the transmission and data struc-

tures update.

5.2.3 Average Activity Based Mapping

Another type of dynamic load balancing is also possible depending on the ac-

tivity of the neural network. The neurons most active during simulation could

be redistributed to optimise the mapping. The activity of the neuron cannot be

predefined because it depends on the input, applied to the network; as well as

overall network activity changes dynamically during the simulation. Therefore,

it is extremely cumbersome to find the ideal dynamic re-distribution of neurons

between the processors depending on their activity level. An approach of dynamic

re-distribution leads to further increase of the potential computational load of the

network.

5.2.4 Neuron Connection Based Mapping

Taking into the consideration the utilized topology of a fully-interconnected feed-

forward network containing three layers, an intuitive way of thinking suggests

mapping of each layer on a separate processor. Since there are no internal connec-

tions in the same layer, the internal communication of each processor is minimal

as no events are sent locally. At the same time the inter-processor communication

is maximal as all events are sent over the communication network, overloading

the simulation. It is obvious that for an optimal performance a trade-off between

the local events and external events must be found to get the balanced network

communication with optimal neuron distribution.

5.2.5 Conclusion

It is very important to find the balance taking into account the network dynamics

in addition to its topology. In practice, however, it is extremely complex to find

the ideal distribution for topologies and dynamics of neural network dividing it in

the separated processors. Consideration of a dynamic allocation is cumbersome

to implement and it leads to further increase of the potential computational load.

We choose mapping of the neurons with a maximum number of incoming and

outcoming mutual connections to the same processor. It significantly reduces the

Chapter 5 Parallel Distributed Simulation 116

amount of messages sent among the processors since the majority of events are

aimed for locally-based neurons. The number of inter-processor links determines

the quality of partitioning. Such an effective approach is beneficial because it is

applicable for a wide range of neuron network types.

5.3 Distributed Time Management

A process of maintaining a conscious control over the event generation, emitting,

storing, and processing is called time management. It supports a proper synchroni-

sation of execution of distributed simulation. It ensures that events are processed

in a correct order as well as guarantees exactly the same output as a result of

repeated execution of a simulation with the same inputs.

5.3.1 Synchronisation

In a neural network simulation spikes are considered independently. However,

events are rarely independent of each other. An important requirement of neural

simulation is that if two events influence each other, they have to be executed in the

correct chronological order. Events cannot be sent until earlier event processing

has not been finished. The processing of an event in the foreseeable future is based

on events that precede it. However, it is hard to determine, which events can be

executed in parallel as the mutual influence of two events depends on the input

and the internal state of the neurons, which is very unpredictable [108].

An inconsistency with a sequential simulation equivalent can arise, for example, if

due to some reason a spike, coming through an inhibitory synapse, is postponed

and processed later than a next in turn spike, which came through an excitatory

synapse and caused a neuron to fire. So that if the postponed spike has been

processed in time, a neuron would not fire in a first place.

Each processor sequentially performs events processing in accordance with the tem-

poral order of these events, however it is necessary to adopt a method of managing

global virtual time. A processor has knowledge about a subset of events processed

in simulation. However, in the overall view of the simulation, the temporal events

order must be consistent with a sequential simulation equivalent.

A processor has to check that the time of their next event queue is consistent with

the overall time. The only synchronisation of the event list of the simulator is no

longer sufficient as each processor has its version of the event list. To ensure the

Chapter 5 Parallel Distributed Simulation 117

Figure 5.1: Distributed time management techniques.

temporal consistency, two types of global virtual time management are possible:

synchronous and asynchronous (Fig. 5.1).

5.3.1.1 Synchronous Simulation

The goal of synchronisation mechanism is to ensure that each processor executes

events in time-stamp order. This requirement is referred to as the local causality

constraint. It can be shown that if each processor adheres to the local causality

constraint, execution of the simulation program on a distributed environment will

produce exactly the same results as an execution on a sequential computer [108].

It helps to ensure that the execution of the simulation is repeatable.

Synchronous simulation requires an explicit synchronization between each of the

phases of processing. This can be done employing barrier synchronization. Barrier

synchronization is a program’s instruction for each processor (for instance, after

sending a message) to wait until all other simulation processors have also reached

this point in the program.

One processor can be used as a controller, requiring synchronization of other nodes

at specific time intervals. It awaits the other processors’ message containing in-

formation on the global virtual time allowing it to process upcoming events. In

the example shown in Figure 5.2 the simulation time step ∆t used in a neural

network. We assume that LP1 processor plays a role of a controller and indicates

the global time. Local time of each other processor (in our case LP2, LP3, LP4)

Chapter 5 Parallel Distributed Simulation 118

Figure 5.2: An example of synchronous simulation with a controlling proces-
sor not participating (a) and participating (b) in simulation. Thick line (blue)
represents processing state, fine line (green) – idle, arrows (in red) – communi-

cation.

is always the same as for LP1 processor. Time flow of activities of four processors

during simulation is presented when the controller LP1 is chosen as dedicated en-

tirely to synchronization task, case a, and as well participates in event processing,

case b. In both cases, each processor spends much of the time in idle state while

waiting for the next synchronization. Each time the LP1 reads the time stamps of

upcoming event of other processors and provides a new global virtual time to all

of them.

This approach is often used for time-driven simulation, where it is necessary that

all processing units be synchronised to each slice. This means that the simula-

tion proceeds to the next time slice only when all the processing units have gone

through the current time slice. So that the next time slice can be compared to a

limit that must be achieved by all processing units. Due to this rigidly coupled

synchronization such a distributed simulation is very sensitive to changes in load

distribution when most processors remain idle waiting for the most overloaded

one.

5.3.1.2 Asynchronous Simulation

A processor does not receive events in any order. Each processor establishes com-

munication channels with all incoming and outgoing of other processors. On each

channel, message sent in chronological order arrives to the destination in the same

order (according to so called First-Input-First-Output principle). This feature

of the simulation is exploited to develop asynchronous methods of decentralized

synchronization.

Chapter 5 Parallel Distributed Simulation 119

In asynchronous simulation, time management is decentralized, processors com-

municate by exchanging messages to maintain a global virtual time for synchroni-

sation.

Figure 5.3: An example of asynchronous simulation. Thick line (blue) repre-
sents processing state, fine line (green) – idle, arrows (in red) – communication.

Fig. 5.3 illustrates an asynchronous simulation. Here waiting times are reduced

because work progress of each processor is exchanged with others. The acceleration

of an asynchronous simulation to synchronous simulation can be at best O(log(P))

[170]. More decentralized methods generate more message emission to perform the

required synchronization.

The potential gain of an asynchronous method over a synchronous method de-

pends directly on the dynamics of simulated networks and therefore an amount of

produced synchronization messages. Depending on average activity of a network

in certain cases it is possible to take advantage of this dependence limiting the

number of extra messages required for asynchronous time management.

This form of synchronisation is particularly effective for event-based simulation,

where processing units are not as rigidly coupled conversely to event-driven sim-

ulation. Simulation facilitates when the events are produced in larger intervals

than the time range dictated by the underlying time resolution. This is the case of

neural network with reduced connectivity and therefore with a low firing activity.

5.3.2 Deadlock

If a number of unprocessed event messages is relatively low comparing to the num-

ber of connections in a network, or if the unprocessed events become clustered in

one part of the network, a specific condition may occur, when two or more proces-

sors are each waiting for the other in order to progress the global time. It results in

Chapter 5 Parallel Distributed Simulation 120

one or more processors being blocked, waiting for messages from a processor, which

is itself awaiting one of them. Such kind of situation is called deadlock. Quite often

deadlock can overflow memory when the events are accumulated locally without

being sent to the target processor.

For deadlock avoiding, two common approaches are used: the conservative and the

optimistic synchronisation. The conservative method processes only “safe” events,

preventing all types of deadlocks whereas the optimistic synchronisation processes

all available events, even the events, which could falsify the previous calculations

and if deadlock is identified, it fixes any generated errors.

5.3.2.1 Conservative Synchronization

The distinguishable feature of a conservative synchronisation method consists in

avoiding deadlocks at any cost. This is achieved by limiting events to be processed

by a so-called secure window. This window is set by the processor hosting the

source neuron and is known as a look-ahead window.

Larger size look-ahead window allows the simulator to run faster. This gives an

opportunity to apply sophisticated algorithms for calculation of an optimal look-

ahead, where the principal task is to define when it is “safe” to process an event

so that no event containing a smaller time stamp will be later received by the

processor.

A processor being at simulation time T guarantees that any message to be sent in

the future will have a time stamp of at least T + L regardless of what messages it

may later receive, as shown in Fig. 5.4. The processor is said to have a look-ahead

of L.

Another way to avoid deadlock is using null messages. Once a processor progresses

in simulation, it sends a null message to each outgoing link. Such a message does

not carry any information except the local time of message sending processor and

guaranteeing that no more events will be sent until this time.

Provided with this information, receiving processor safely executes the events pro-

gressing to the indicated time. Null messages are processed by each processor just

like ordinary non-null messages, except no activity is simulated while processing of

a null message. It only advances the simulation clock of the processor to the time

stamp of the null message and none of state variables are modified and no non-null

messages are sent as the result of processing a null message. Whenever a processor

finishes processing a null or non-null message, it sends a new null message on each

outgoing link.

Chapter 5 Parallel Distributed Simulation 121

Figure 5.4: Secure window in conservatively synchronised simulation.

A deadlock-free nature of this approach was proven by [171]. However, the prin-

cipal problem of this method is that the null messages cause the high volume of

communication considerably restricting the speed of simulation.

5.3.2.2 Optimistic Synchronization

Contrary to conservative approaches that avoid violation of the local causality

constraint, optimistic approaches allow violations to occur. However, they are

able to detect and recover from them. This allows exploitation of greater degree of

parallelism as two interdependent events can be executed simultaneously. A system

recovery is performed upon the time when an error occurred if one of the events

affects another. Also, optimistic approaches are more flexible and transparent and

do not depend on application specific information in order to compute which event

is safe to process.

The Time Warp mechanism [172] is the most widespread optimistic method. Ac-

cording to it, upon the receiving of an event with a time stamp smaller than one

it has already processed, a system rolls back until the time the error occurred (for

this checkpoints are used). After it the system reprocesses the sequence of events

in timestamp order taking into account the newly received event. It is necessary

to store the events processed in the past and the certain amount of recent states

of the neuron to be able to restore itself to the necessary state.

Chapter 5 Parallel Distributed Simulation 122

The main disadvantage of this method is high memory requirements, even if no

roll-backs occur. The roll-back operation requires additional calculation. This

presents another disadvantage of computational overload, which is acute if the

number of roll-backs is exceeding certain limit.

During the roll-back operation the process sends the corresponding anti-message

and restores its previous state. An anti-messages mechanism is provided to “un-

send” messages and cancels their impact. In this way it revokes the erroneous

impact and improves the progress of simulation. The anti-message is a copy of

a previously sent matching message. In the case when both messages are stored

in the same queue, the both are deleted. However, the main limitation is that

input/output operations cannot be rolled-back.

A pure Time Warp system causes excessive memory utilization and long rollbacks

due to overly optimistic execution. To address the constraint of consumption

a large memory amount for storing neuron states and anti-messages is partially

solved by global virtual time (GVT). It represents the lower bound on the times-

tamp of any future messages (or anti-messages) and is equal to the smallest times-

tamp among unprocessed and partially processed messages. In this way the storage

of messages and states older than GVT is inessential and can be reclaimed.

The optimistic methods are particularly effective for simulations not prone to

deadlocks, which require little communication. In these cases, only the deadlock

detection influences the processing time. Otherwise, when deadlocks are frequent,

the computational costs of error recovery can significantly extend the progress of

simulation.

5.4 Simulator Structure

Along with the choice of hardware resources, mapping type, and distributed time

management, none the less important is the representation of simulation entities,

such as neurons and the way of information exchange.

The simulator is programmed entirely in C++ using an object-oriented architec-

ture. The simulation consists of a number of logical processes, responsible for one

or a subset of neurons. The simulator works on the principle of events exchange

between the neurons by means of messages circulating on the network between

the processors. In this way the main task of each neuron is to receive a spike and

possibly to create one in return. The following sections will help to understand

the operation more precisely.

Chapter 5 Parallel Distributed Simulation 123

5.4.1 Communication Mode

In biological neural networks information is conveyed in a one-to-many pattern.

Depending on the method of event management, communication mode can be

either sender-oriented or target-oriented.

In a target-oriented communication mode a source neuron sends a message to all

other neurons, which is checked by every neuron in the network and only the

corresponding neurons accept and process the message, as shown in Fig. 5.5. The

advantage of this mode consists in the considerably low number of events stored

in the event list as each spike generates only one event. However, the bottleneck

of this approach is that for each event the validation operation must be performed

at least by every neuron in the system regardless whether it is related to this event

or not.

Figure 5.5: Sender-oriented and target-oriented communication mode.

If a reference is stored on the output of the source neuron, such a communication

mode is called sender-oriented. The number of verification operation for sender-

oriented communication mode is lower comparing to the target-oriented mode,

on condition that an average number of connections per neuron is less than the

number of all neurons in the network. This can be seen from the equation 5.1 for

target-oriented mode and equation 5.2 for target-oriented mode:

k =
N∑
i

(nactive
i ∗ ni) (5.1)

Chapter 5 Parallel Distributed Simulation 124

k =
N∑
i

m∑
j

(nactive
i ∗ ni) (5.2)

where k shows the number of verification operations made by all neurons, N rep-

resents the number of neurons in a network, nactive
i is the number of active neurons

and m is the number of synapses of neuron ni.

Let us consider a cerebral cortex. It contains the densest network known so far,

with a number of neurons around 1010 [173], each having on average 104 outgoing

connections [174]. In this case sender-oriented mode benefits in 106 times less

number of verification operations. Considering another example of an artificial

neural network with 3 layers each having n neurons, which gives 3n neurons in

the network with 2n
3

outgoing connections for each neuron, the ratio 9
2

is still

significant.

These calculations indicate that using a sender-oriented communication mode is

more beneficial with conditions that:

• an outgoing AP is represented as a single event;

• considering a neural network with the low activity (similar to biological

neural networks);

• the average number of connections with post-synaptic neurons is smaller

than the number of neurons in the entire network (as it is in biological

neural networks).

5.4.2 Spike Message

The basic element of an event-driven simulation is a message, containing an event.

The event is any occurrence that changes the state of the model so various actions

of a system can be considered as events.

Events cause a change in the state of the system and often result in the scheduling

of other events for some future time. In order to achieve a flexible simulation

framework, it is necessary to model an event so that various learning rules could

be applied without modification of the simulation engine.

For simulation of neural networks, especially in the case of event simulation, mes-

sages representing action potentials (or spikes) are exchanged between neurons. A

spike message is a basic element of simulation. It is emitted by a neuron towards

one or more target neurons. Every spike message contains a target ID so that each

Chapter 5 Parallel Distributed Simulation 125

target of this message can identify the activated connection. It is possible to use

multi-event messages however at the moment we focus our attention on a single

event message. Events must be treated in chronological order in order to preserve

the causality of the simulation.

5.4.3 Message Passing Interface

To simplify the programming for distributed architecture, a language-independent

Message Passing Interface (MPI) standard communication protocol has been de-

veloped by Dongarra et al. [175]. It allows processes to communicate with one

another by sending and receiving messages. There are several implementations of

this standard: MPICH, LAM/MPI and MVICH, which have similar performance

[176]. These implementations provide access to features defined by the MPI stan-

dard in C, Fortran and C++ programming languages.

MPI provides broadcast and point-to-point communication. In broadcast com-

munication a message is sent to all nodes within a pre-defined group of nodes.

Point-to-point communication delivers messages to a single node and can be per-

formed in “blocking” and “non-blocking” modes.

A communication is “blocking” if the node that initiated the communication (ei-

ther sending or receiving procedure) is suspended until the message buffer is safe

to use. A communication is “non-blocking” if the node initiated the communica-

tion can advance immediately after the call without securing the communication

buffer is safe to use. In order to test whether the non-blocking communication is

complete, additional calls can be used.

The blocking communication is easier to handle as it partially synchronises the

nodes. But it causes a delay of large memory block messages in case of a limited

connection bandwidth between communication nodes. In order to avoid the impact

of message transfer delays we made the choice of using non-blocking mode of

communication. In the case of our simulator, the communication initiated nodes

make a request and are able to perform other calculations while awaiting for the

request to be processed.

5.4.4 Master Processor

Special processor is dedicated for interacting with environment and at the same

time managing the other processors work. We refer to it as a master processor,

Chapter 5 Parallel Distributed Simulation 126

whereas all other processors, participating in simulation, are referred as slave pro-

cessors. The master processor performs such operations, as network mapping onto

the slave processors, input feeding to the pre-defined subset of the network and

output collecting form another subset.

5.4.4.1 Interaction with Environment

Master node receives a set of input-output patterns provided by a file or an output

of another program or may generate them itself (by user choice). The safest way

to perform this would be to read all inputs into the queue before the simulation

starts. However, this means that simulator must store possibly very long input

stream, and this is an extremely cumbersome solution.

Instead a single call to a function is used, which fetches one input pattern and

provides it in corresponding way to the input subset of neurons. In this way an

input stream can be infinite or, conversely, the simulator repeatedly gets only one

provided input pattern and gives an output result. Of course, master node should

read into the first input pattern before simulation starts.

5.4.4.2 Initialization Stage

During the mapping stage master reads in data from the description files and feeds

the initialization data to each of the slave processors according to Algorithm 5.1.

� �
1 begin

2 for i = 0 to netSize do

3 initMessage ([ID][potential][threshold][inputSize])

4 for j = 0 to axonSize do

5 synapseInitMessage ([targetID][weight])

6 end� �
Algorithm 5.1: Initialization stage.

Each slave receives a message, containing the initial data: neuron’s ID, membrane

potential, threshold potential and a number of incoming connections. Next re-

ceived message contains an array of pairs, where target neuron ID and an initial

weight are specified for each synapse of the neuron. When each neuron receives

its initial values and sets up the required number of connections with the corre-

sponding weights, the initialization stage is over.

Chapter 5 Parallel Distributed Simulation 127

5.4.4.3 Simulation Flow

Flow of simulation consists on a number of learning cycles, during which the

network attempts to alter its weights in such a way that the output neurons

produce an expected pattern. On this level the neural network is synchronized in

the conservative way because master starts each new cycle when the previous one

is completed.

When an input pattern is fed into the network, spikes propagation is synchronized

according to the optimistic approach because each slave behaves asynchronously

and warp technique is applied to correct mistakenly emitted spikes.

5.4.4.4 Master-Slave Interaction

During the learning stage, master sends an input to each of the input neurons for

every pattern pair to be learned, as presented in Algorithm 5.2.

� �
1 begin

2 for i = 0 to patternNumber do

3 for j = 0 to maxAttempts do

4 resetPotential ();

5 setBarrier ();

6

7 /* set the input pattern bit to each input neuron */

8 for k = 0 to inputSet do

9 sendActivationMessage(k);

10

11 while (!outputReceived)

12 outputCollection ();

13

14 if (receivedOutput != expectedOutput)

15 reinforceActiveConnections ();

16 else

17 deinforceAllConections ();

18 end� �
Algorithm 5.2: A learning cycle of simulation.

At first, master sends a signal to each slave, directing him to reset their potential

and later it sets a barrier synchronization marker (line 5 in Algorithm 5.2). This

Chapter 5 Parallel Distributed Simulation 128

barrier is a program’s instruction for each processor to wait until all other simula-

tion processors have also reached this point in the program. As all processors run

in the asynchronous mode, this security measure guarantees that all processors are

receiving a proper input for corresponding cycle. Without it the delayed messages

could interfere with inputs of other cycles and deteriorate the final result.

Master ‘knows’ which slaves are dedicated for representation of input and output

neurons. After barrier synchronization, master supplies each input slave with a

corresponding input value, indicating them either to spike or not based on the

input pattern. Later, master enters a while loop in order to collect the outputs.

The loop terminates when master receives a complete set of messages from the

output subset of neurons.

In line 14 of Algorithm 5.2 master compares the received array with the expected

one. If the arrays are equal, master sends a reinforcement message to all slaves, be-

cause it does not know, which processor was active or idle. The message instructs

the slaves to reinforce the connections, which were used in the input signal prop-

agation through the network at the current cycle. Only the active slaves perform

the reinforcement, while the rest slaves ignore the message.

If the received and expected arrays are unequal, the deinforcement message is sent

to all the neurons and this time all neurons deinforce their connections accordingly.

The input pattern is fed into again until the correct output is found.

The learning phase repeats until all the input-output pairs are recognized by the

network at once. When this happens, we assume the network has successfully

learned all the patterns.

However, while learning new patterns, old patterns are partially destroyed due to

interference of active paths (explained in Section 4.4.1). To overcome this negative

effect, the pairs of patterns are periodically shuffled and fed into again. Firstly, this

approach assists in finding the most optimal weight values valid for all patterns

and secondly, it prevents possible effects due to a specific learning order.

5.4.4.5 Slave Termination

When the learning phase is over, the simulation enters its final stage, when master

terminates all the slaves by sending the termination message to each processor.

This message forces each processor to complete its operation and to save the

current state and the weights of connections to the outside file.

Chapter 5 Parallel Distributed Simulation 129

5.4.5 Slave’s Workload

A slave processor is idle until it receives a message from another slave or mas-

ter. Slave does not ‘know’ whether it contains an input, hidden or output neu-

rons. When the message is received, slave recalculates its internal state, checking

whether it reached the condition of spike emission and a new message is going to

be generated. If the message is generated, it is sent to all known targets, deter-

mined a priori while creating the network (discussed in Section 5.2). Slave saves

into the activatedBy array the ID of the neuron, which excited it, as shown in

Algorithm 5.3.

� �
1 begin

2 if (messageReceived)

3 stateRecalculation(weight);

4 activatedBy.push(src);

5

6 if (firstlyActivated)

7 preSynapticInform(potential);

8 postSynapticUpdate(weight);

9 else

10 preSynapticUpdate(potential);

11 if (!activeAnymore)

12 postSynapticErase(weight);

13 end� �
Algorithm 5.3: Data exchange among slaves.

If the firing condition is fulfilled and this is a first time of neuron excitation in

the current cycle, slave emits a spike to the post-synaptic neuron. In order to

implement learning, it is necessary to inform pre-synaptic neurons about this event.

For this reason, slave sends another message to the pre-synaptic neurons as well.

This message indicates the pre-synaptic neurons that they caused a post-synaptic

neuron to emit a new spike. Pre-synaptic neurons store this information into the

activated array.

If the firing condition is met not for the first time in the current cycle, slave needs

to inform the pre-synaptic neuron about the alteration of its potential value. This

helps to implement the warp synchronization. In the case if it receives an inhibitory

signal and is not active anymore, slave sends another message to its post-synaptic

Chapter 5 Parallel Distributed Simulation 130

neurons. In such a case the post-synaptic neurons warp the neuron’s influence

onto them, changing their state correspondingly.

5.4.5.1 Applying Learning Rules

Finally, when the output neurons produce the output pattern, slaves receive a

message from the master processor. This message informs either to reinforce or

deinforce the weights. Two arrays (activated and activatedBy) contain all the

necessary information for applying the learning rules, which were described in

Section 4.2.3.4. When weights are altered, a new cycle starts.

5.5 Results and Discussions

After describing the generic neural simulation platform able to support multi-

ple neuron network models and various ways of network mapping on distributed

hardware, we discuss the achieved results.

5.5.1 Spiking Pattern

A neural network was simulated to explore the neuron spiking behaviour. Fig.

5.6 represents a spiking training obtained from the network of 40 neurons with

input neurons 0, 1, 3, 4 and 9 permanently emitting spikes. At first, the number

of excited neurons significantly increases until eventually it reaches the required

number in order to excite the right output neurons, when the input-output pair of

patterns to be learned. Fig. 5.7 shows the total neuron activity at each learning

step.

5.5.2 Weight Alteration

Are all connections equally significant? To answer this question we investigated

the weight alteration dynamics during the training process in order to identify the

most and the least significant connections. Along with the network structure, the

initial state of the weights has a large impact on the ability to learn and resilience

of a neural network. Here we look into the optimal initial values of the weights.

A lower level of connectivity results in a lower fault distribution caused by poten-

tially faulty nodes while implementing the network on the distributed hardware.

Limiting the number of redundant fault-prone components potentially improves

Chapter 5 Parallel Distributed Simulation 131

Figure 5.6: A sample spike train obtained simulating a network of 40 neurons.

Figure 5.7: Total activity obtained simulating a network of 40 neurons.

Chapter 5 Parallel Distributed Simulation 132

Figure 5.8: Training efficiency dependence on the number of equilibration
steps applied prior training. During the training phase 4 different patterns were
learned. The network size was 2000 neurons with 5 input and 5 output neurons

and 90 % connectivity.

the fault tolerance of the entire network. As the faulty nodes have fewer outgoing

connections, there are fewer post-synaptic nodes receiving the ineligible spikes.

Secondly, fewer connections decreases the chance of a system failure as the mean

time to failure (MTTF) of the entire system is inversely proportional to the sum

of the failure rate λ of each its constituent, as shown in the Equation 5.3:

MTTF =
1∑i=N

i=1 λi

. (5.3)

Connection links can be safely pruned without significantly affecting the perfor-

mance. However, while significant connectivity reduction decreases the network

sensitivity to faults, it prolongs the training time due to the smaller quantity of

connections with alterable weights. Thus a trade-off must be made between the

level of connectivity and the adaptation time.

We constructed a small network of 20 neurons (for better visibility) and recorded

the alteration of each weight, plotting the measured values against each simulation

step. We noticed that training efficiency directly depends on the initial state of

the network: weight equilibration before the learning phase significantly improves

the training process. This is demonstrated in Fig. 5.8. 1000 random inputs

were applied to the network 10000 times before starting any measurements. For

each input the “deinforcement” process was applied to the weights, modifying the

overall distribution of their values in the network.

Chapter 5 Parallel Distributed Simulation 133

The weight alteration dynamics was investigated. We paid close attention to the

weights of connections between input and hidden layers (see Fig. 5.9) and between

hidden and output layers (see Fig. 5.10) as well as to the weight distribution at

the three stages of simulation:

1. at the initial phase, which is reached after the mapping process;

2. after the network equilibration phase, when the LTD rule is applied to the

network several times;

3. after the learning phase, when all the pattern pairs were successfully learned.

The Gaussian distribution of weights can be found on the graphs at the initial

phase of simulation. After equilibration is applied, the centre of distribution

slightly shifts towards the left side for the connections between input and hid-

den layers and remains almost unaltered for the connections outgoing from the

hidden layer.

A significant difference between the weight distribution dynamics can be observed

among input-hidden and hidden-output connections. In the first one, during the

learning phase, distribution expands over the range from -0.1 to 1 with a centre at

0.45 and a significant concentration of weights around 0.5. However, the weights

in the input-hidden connections shrinks considerably from being in the range from

-4 to 4 at the initial stage to the range from -0.02 to 0.015 at the final stage with

unclearly defined distribution centre around -0.002.

This phenomenon can be explained in the following way. The input neurons tend to

excite only specific set of hidden neurons and concentrate their connection efficacy

to the limited number of neurons. Because of this, a change of the formed active

paths requires more efforts but make the connections more stable and insensible

to changes. This behaviour can be seen in Fig. 5.11.

The hidden neurons broaden their influence on the wide range of neurons, although

having on them comparatively low influence. These connections are more sensi-

tive to the input changes and faster adapt the required firing pattern by exciting

the right output neurons. Fig. 5.12 shows that weights are almost unalterable

during the first phase of simulation, eventually changing their weights at the final

simulation phase.

Concluding, there are two levels of learning in a multi-layer neural network.

Whereas the weights of the input neurons are less sensible to changes, they better

Chapter 5 Parallel Distributed Simulation 134

Figure 5.9: Weight distribution of input-hidden connections at the initial
phase (a), after the equilibration phase (b), and after the learning phase (c).

Figure 5.10: Weight distribution of hidden-output connections at the initial
phase (a), after the equilibration phase (b), and after the learning phase (c).

Chapter 5 Parallel Distributed Simulation 135

Figure 5.11: Weight alteration of connections between input and hidden layers
during the simulation progress.

Figure 5.12: Weight alteration of connections between hidden and output
layers during the simulation progress.

Chapter 5 Parallel Distributed Simulation 136

retain the learned patterns as opposed to the weights of the hidden neurons, which

being highly-alterable and fastly adapting, easily ‘forget’ the learned patterns.

This allows us to assume that input-hidden connections are more influential on

the adaption of the required output connection compared to the hidden-output

connections. Taking into account that connections with large weights are highly

sensitive (according to [177]), it is more advisable to prune them before starting the

training phase. Pruning the connections of large weights also accelerates training

process: the input-hidden connections adapt faster due to their lower number and

only after their weights are settled, the hidden-output connections start actively

adapting. The adaptation process is shown in Fig. 5.11 and Fig. 5.12, where it

is clearly visible that the hidden-output weights start adapting. Moreover, after

the training phase is complete, a possible fault in the input-hidden connections is

more devastating as it automatically leads to a faulty output in the corresponding

post-synaptic nodes.

5.5.3 Performance Estimation

The processing time required to complete one cycle of simulation was calculated

and its dependence on the network size was estimated.

Since the real SpiNNaker chip is not available yet, the simulation was performed on

the Iridis computer cluster. The cluster consists on 1008 2.27 GHz Intel Nehalem

compute nodes connected to an InfiniBand network for interprocess communica-

tion. Each node has two 4-core processors with 22 GB of RAM per node. In this

way 8064 processor-cores provide over 72 TFlops.

We paid attention to the time performance dependence on the number of phys-

ical processors participating in simulation. The virtual neurons were distributed

among the physical processors by the principle that the neurons with the maxi-

mum number of incoming and outcoming mutual connections are mapped to the

same processor. This was done in order to reduce the amount of messages sent

among the processors so that the majority of events are aimed for locally-based

neurons.

Fig. 5.13 presents the dependence of time required for simulation of a network

with 104 neurons. Initially, it is very efficient to use more processors, as the

computation is dominating. However, the gain in processing time decreases when

using a higer number of processors. Such a slow down is caused by communication

between processors, which becomes the bottleneck for the further increase in time

performance.

Chapter 5 Parallel Distributed Simulation 137

Figure 5.13: The time required for simulation of a network with 1·104 neurons.

Figure 5.14: The mean value of rate of change in the synaptic weights of
sequential (dashed red line) and parallel (solid blue line) simulation.

Fig. 5.14 compares the distributed parallel implementation with the single proces-

sor implementation in terms of how both solutions affect the learning process. It

shows that during learning process with single and multicore implementations the

mean values of the rate of change in the synaptic weights are not completely iden-

tical, however have a close behaviour. The learning process results in two similar

but not identical matrices of synaptic weights, which are presented in Table 5.1.

Nevertheless, both weight matrices represent the correct solutions of learning the

set of patterns so that for any given input pattern the expected output pattern is

produced.

Also, the synaptic weights tend to vary in a more or less baunded range and re-

main within acceptable bounds, which can be also seen from the normal weight

Chapter 5 Parallel Distributed Simulation 138

Table 5.1: The weight matrices of synaptic weights after learning process.
Input-Hidden Hidden-Output Input-Hidden Hidden-Output
-0.00656572 0.075 -0.00599528 0.075
0.00586035 0.075 0.00659533 0.075
-0.00664575 0.075 -0.00569383 0.075
0.00592178 0.075 0.00662183 0.075
-0.00603716 0.552874 -0.00647891 1.04672
0.00649823 0.549234 0.00513071 1.03093
-0.00568837 0.55196 -0.00630918 1.03225
0.00664031 0.553604 0.00516618 1.02931
-0.00651443 0.594671 -0.00544413 1.05518
0.00678015 0.589824 0.00613593 1.07608
-0.00643133 0.590156 -0.00578153 1.05124
0.00661079 0.589209 0.00603277 1.06152
-0.0074707 0.0625 -0.00782281 0.05
0.00626806 0.0625 0.00637752 0.05
-0.00725277 0.0625 -0.00688018 0.05
0.00624353 0.0625 0.0061044 0.05

distribution in Fig. 5.9 and Fig. 5.10. This is caused by the fact that every time

when a network is confronted with a new input pattern to be learned, generat-

ing the weight fluctuation, it should find back its balance in order to retain the

previously learned patterns.

5.5.4 Fault-tolerance

Faults do and will occur in a system over time, and there always will come a time

when performance is below acceptable limits. However unlike traditional comput-

ing techniques, the neural network approach does not insist on exact computa-

tion. There is the strongly non-linear nature and the distribution of information

or knowledge throughout all of the network. Almost all of the units and connec-

tions participate in producing an output either directly or indirectly. Since it is

difficult to determine exactly the required amount of processing units and their

connections, their redundant number results in a higher degree of reliability. Thus

the malfunctioning of a particular element of a system should not greatly affect

the systems function if there is sufficient redundancy.

Any fault will influence the output to some degree since all components participate

in any computation. This leads to graceful degradation being exhibited by most

neural networks, i.e. neural networks will not suffer catastrophic failure, and

also allows approaching failure to be detected by using a continuous reliability

Chapter 5 Parallel Distributed Simulation 139

measure. The fault tolerance that results in this reliability is not inherent within

neural networks: it does need to be specifically designed and built into them, and

so the architectural complexity which often arises due to various fault tolerance

techniques being used is absent in neural network systems. Although any faults

which do occur cannot be located, they can be removed from the system since

neural networks can learn.

We investigated the performance degradation of the artificial neural network under

the presence of faults in a representative pattern-recognition task and analyse its

insensitivity to limited errors in the computational hardware.

In order to collect statistically valid data each simulation of the network of 2000

neurons was run 1000 times. Each time a certain number of faulty nodes was

placed probabilistically according to the described fault injection technique. The

quality of output stands for the probability of receiving the expected output and is

based on the maximum number of different bits (the Hamming distance) between

the expected patterns and the produced pattern, whereby correct classification

is still guaranteed. This experiment produced a plot of the neural network fault

tolerance against the number of faulty nodes, by which the network reliability

could then be judged.

Fig. 5.15 shows the effect of faults injection while evaluating a set of 20 patterns.

We presented the damage volume in percentage to the all possible damages in order

to scale the amount of damage with the size of the physical implementation. The

figure shows that performance degradation is in some sense graceful. According

to the plot, 5% faulty nodes guarantees 60% correct output and 10% faulty nodes

reduces the probability of the correct result to 50%. A network with 2% faulty

nodes produces the correct result with a probability of 90%. Fig. 5.16 presents

the zoomed area of Fig. 5.15.

Although the experiments were performed simulating comparatively small net-

works (about 2000 neurons) with a small training set, the results are considered

indicative for large networks with large training sets due to the scalable nature of

calculations.

Chapter 5 Parallel Distributed Simulation 140

Figure 5.15: The quality of output against the amount of faulty neural net-
work’s nodes while recalling pre-learned 20 patterns using the network of 2000

neurons.

Figure 5.16: The quality of output against the amount of faulty neural net-
work’s nodes while recalling pre-learned 20 patterns using the network of 2000

neurons (zoomed version of Fig. 5.15).

Chapter 5 Parallel Distributed Simulation 141

5.6 Summary

At the beginning of this chapter we discussed various ways of neural network

mapping on the distributed hardware. A mapping scheme is a very common issue

in parallel distributed processing and usually is a trade-off between computation

and communication and is mostly dependent on architecture of a network. We

overviewed possible exploiting of a topology in order to optimise the communica-

tion load and provide additional performance gain.

The potential gain offered by an asynchronous versus synchronous time manage-

ment was highlighted as well as the challenges caused by concurrent execution of

events on asynchronous distributed processors were mentioned. These challenges

require applying of specific synchronisation features to maintain the equal global

time.

We presented in details an efficient implementation, design and operation of the

neural network simulator. The structure and detailed performance analysis is also

presented as well as investigation of the simulator’s dependence on various neural

network parameters and learning coefficients.

An efficient protocol for local communication between neurons while modelling a

neural network on a parallel distributed hardware has been used. By using it,

all neural data can be localised on the neuron simulating processor and only a

necessary portion of data sharing occurs for the learning purposes. We also devel-

oped a fault-tolerant mechanism, immune to processor failure and communication

problems, which can take place during a learning phase on a parallel distributed

hardware.

Chapter 6

Conclusions and future work

6.1 Thesis Summary

This work contributes to the study of biological neural networks, in particular

with respect to the learning mechanism. It explores the biologically plausible

algorithm along with software implementation for efficient parallel simulation of

neural networks on a distributed hardware.

The main focus is on biologically credible learning, where the learning process

based on the weight adaptation depends exceptionally upon the variables, stored

locally at either a synapse or the neurons, involved in the spike transmission.

Chapter 2 introduced the nature of a biological neuron, the building block of a

neural network. It explained how the neural dynamics of biological neurons and

their collective activity contribute to the information processing mechanism and

the resultant collective intelligent behaviour. Also it overviewed the efforts to

capture neural dynamics by using mathematical models, which help to reproduce

the intelligent behaviour within a computer simulation. Later, it presented the

importance of the synaptic plasticity mechanism to learning and memory: the

ability of a synapse to change in strength in response to spike transmission activity

over it.

Chapter 3 explained the different mathematical models of neurons, outlining their

benefits and downsides and selected the best candidates for large-scale network

simulation. It introduced the contemporary neural network modelling theories,

strategies and techniques. They are used by engineers and scientists both for

biologically plausible neural network simulations and for solving various technical

problems, for which the conventional methods are inefficient (e.g. speech synthesis,

computer vision).

142

Chapter 6 Conclusions and future work 143

Chapter 4 focused on the research work performed to devise a biologically plau-

sible learning mechanism, capable of searching for correct patterns, storing and

reproducing them later. It resembled the biological learning processes, found in

the animal’s brain. The chapter aimed to understand the essential computations

that take place in the network of interconnected neurons, resembling actual biolog-

ical neural networks. In the chapter the algorithm implementation was discussed,

which is able to learn and recognise the learned patterns based only on a binary

feedback signal. Investigation was performed on activity paths formation and their

interference in the network. High level of activity paths interference directly influ-

ences learning speed and significantly limits capacity of stored patterns, causing

self-destruction of a pre-learned information in an attempt to adjust the weights

for storing new one.

As a case study, an agent was presented, which based on three proposed techniques

is able to accumulate the vital experience from an ambient environment. For this

purpose an algorithm was derived that changes the weights of a neuron network

by determining the exact error, which the network makes on each example of a

particular task in an unsupervised manner.

However, biological neural systems are intrinsically parallel by their nature. There-

fore, in Chapter 5 the previously mentioned single processor program was extended

to an asynchronous multi-processor system. Besides of increased computational

reliability and scalability, such an approach raised the challenging side-effects, such

as the cost of additional distribution-related communication and synchronisation

of the parallel execution. Solving them, the efficient protocol for local communi-

cation between processors was used, which is immune to belatedly or out of order

delivered spikes. We also developed a fault-tolerant mechanism, immune to pro-

cessor failure and communication problems, which can take place during a learning

phase on a parallel distributed hardware.

The simulator with the described features has been implemented during the project.

The implementation details of the simulation software were illustrated along with

the performance analysis and explanation of the weight changing dynamics.

Chapter 6 Conclusions and future work 144

6.2 Future Work

The approach proposed in this research is not perfect solution and does allow room

for improvements. Different extensions or alterations are possible to enhance the

performance of the learning process.

One of possibilities is to include more biologically known features into the pre-

sented model. As was mentioned in the thesis, the study on the behaviour of

biological neural networks collected strong evidence that time delays of axonal

signal and the refractory period of neuron plays an important role in the neuron

dynamics. This would make possible usage of spike-timing information processing.

There are believes that a network can efficiently control its activity level with the

help of the delay mechanism. Another possible benefit is increased learning capac-

ity because more advanced encoding mechanisms could be applied (e.g. population

coding).

Several attempts have been made to incorporate temporal concept into the learning

mechanism, while executing it on the asynchronous distributed hardware. When

a final version of SpiNNaker will be implemented, our next step is to adapt the

existing system onto it, where synchronisation mechanism is already realised on

the hardware level and the issue would not cause any significant challenges.

If temporal concept were incorporated, it would be possible to include different

types of neurons or a neuron model with various spiking patterns (such as the

Izhikevich model, which can exhibit over 20 different spiking patterns of all known

types of cortical neurons). It would be interesting to study the influence of different

neuron dynamics on the ordered complex network and particularly the possible

effect it will have on the stabilising the network activity. Another possible benefit is

reduction of the active paths interference because of the different neuron dynamics.

Certain types of neurons will store learned data tightly while another will be more

easily adapting to the new data and thus loosely storing the learned one. It could

also be a case that the LTD mechanism possibly does the job of searching for

successful output patterns without strongly alternating the already learned input-

output relations.

One more possible extension would be to refine the binary feedback response. In the

current version it is a binary value, representing the correct and incorrect network

output in reaction to some input. However, a more advanced relative measure

of success can return more precise response, representing closeness to a desired

output (such as the Hamming distance between two patterns). In such a way the

learning speed can be significantly increased if a feedback signal is represented as

Chapter 6 Conclusions and future work 145

a range of values.

References

[1] M. R. Villarreal, “Diagram of a typical myelinated vertebrate neuron.” July

2007, available on: http://en.wikipedia.org/wiki/Neuron [accessed in Jan-

uary 25, 2013].

[2] G. Leonardo, “Schematic view of an idealized action potential,” August

2006, available on: http://en.wikipedia.org/wiki/Action potential [accessed

in January 25, 2013].

[3] J. Bailey, “Towards the neurocomputer: an investigation of VHDL neuron

models,” Ph.D. dissertation, University of Southampton, February 2010.

[4] N. Mehrtash, D. Jung, H. H. Hellmich, T. Schönauer, V. T. Lu, and H. Klar,

“Synaptic plasticity in spiking neural networks (SP(2)INN): a system ap-

proach,” IEEE Trans Neural Netw, vol. 14, no. 5, pp. 980–992, 2003.

[5] G. Bi and M. Poo, “Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type,”

J Neurosci, vol. 18, no. 24, pp. 10 464–10 472, December 1998.

[6] E. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE

Trans Neural Netw, vol. 15, no. 5, pp. 1063–1070, September 2004.

[7] ——, “Simple model of spiking neurons,” IEEE Trans Neural Netw, vol. 14,

no. 6, pp. 1569–1572, November 2003.

[8] M. Rudolph and A. Destexhe, “How much can we trust neural simulation

strategies?” Neurocomput, vol. 70, no. 10-12, pp. 1966–1969, June 2007.

[9] T. Natschläger, “Networks of spiking neurons: A new generation of neural

network models,” in Jenseits von Kunst. Passagen Verlag, 1998.

[10] R. J. C. Bosman, W. A. van Leeuwen, and B. Wemmenhove, “Combining

Hebbian and reinforcement learning in a minibrain model,” Neural Netw,

vol. 17, no. 1, pp. 29–36, January 2004.

146

 http://en.wikipedia.org/wiki/Neuron
 http://en.wikipedia.org/wiki/Action_potential

REFERENCES 147

[11] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane

current and its application to conduction and excitation in nerve.” J Physiol,

vol. 117, no. 4, pp. 500–544, August 1952.

[12] T. Carew and E. Kandel, “Acquisition and retention of long-term habitua-

tion in Aplysia: correlation of behavioral and cellular processes,” Science,

vol. 182, no. 4117, pp. 1158–60, December 1973.

[13] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. Bower,

M. Diesmann, A. Morrison, P. Goodman, F. Harris, M. Zirpe, T. Natschlger,

D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel,

T. Vieville, E. Muller, A. Davison, El, and A. Destexhe, “Simulation of

networks of spiking neurons: A review of tools and strategies,” J Comp

Neurosci, July 2007.

[14] D. Brettle and E. Niebur, “Detailed parallel simulation of a biological neu-

ronal network,” IEEE Comput Sci Eng, vol. 1, no. 4, pp. 31–43, 1994.

[15] W. W. Lytton, A. Destexhe, and T. J. Sejnowski, “Control of slow oscilla-

tions in the thalamocortical neuron: A computer model,” J Neurosci, Febru-

ary 1996.

[16] P. C. Bush and T. J. Sejnowski, “Inhibition synchronizes sparsely connected

cortical neurons within and between columns in realistic network models,”

J Comp Neurosci, June 1996.

[17] W. Gerstner and W. M. Kistler, Spiking Neuron Models. Cambridge Uni-

versity Press, August 2002.

[18] M. Hines, J. W. Moore, and T. Carnevale, NEURON, NEURON Develop-

ment Team, 2007.

[19] D. Beeman and J. M. Bower, The GENESIS Simulator, GENESIS Develop-

ment Team, 2007.

[20] L. A. Plana, J. Bainbridge, S. Furber, S. Salisbury, Y. Shi, and J. Wu,

“An On-Chip and Inter-Chip Communications Network for the SpiNNaker

Massively-Parallel Neural Net Simulator,” in NOCS. IEEE Computer So-

ciety, April 2008, pp. 215–216.

[21] A. G. Guggisberg, S. S. Dalal, A. M. Findlay, and S. S. Nagarajan, “High-

frequency oscillations in distributed neural networks reveal the dynamics of

human decision making,” Frontiers in Human Neuronscience, March 2008.

REFERENCES 148

[22] H. Plesser, J. Eppler, A. Morrison, M. Diesmann, and M.-O. Gewaltig, “Ef-

ficient parallel simulation of large-scale neuronal networks on clusters of

multiprocessor computers,” in Euro-Par 2007 Parallel Processing, August

2007, pp. 672–681.

[23] G. J. Stuart and B. Sakmann, “Active propagation of somatic action poten-

tials into neocortical pyramidal cell dendrites.” Nature, vol. 367, no. 6458,

pp. 69–72, January 1994.

[24] E. M. Izhikevich, J. A. Gally, and G. M. Edelman, “Spike-timing dynamics

of neuronal groups,” Cerebral Cortex, vol. 14, pp. 933–944, August 2004.

[25] I. Segev, M. Rapp, Y. Manor, and Y. Yarom, Analog and digital processing

in single nerve cells: dendritic integration and axonal propagation. San

Diego, CA, USA: Academic Press Professional, Inc., 1992, pp. 173–198.

[26] D. Ferster and S. Lindström, “An intracellular analysis of geniculo-cortical

connectivity in area 17 of the cat.” J Physiol, vol. 342, pp. 181–215, 1983.

[27] H. A. Swadlow, “Efferent neurons and suspected interneurons in motor cor-

tex of the awake rabbit: axonal properties, sensory receptive fields, and

subthreshold synaptic inputs.” J Neurophysiol, vol. 71, pp. 437–53, 1994.

[28] ——, “Physiological properties of individual cerebral axons studied in vivo

for as long as one year,” J Neurophysiol, vol. 54, no. 5, pp. 1346–1362, 1985.

[29] M. Salami, C. Itami, T. Tsumoto, and F. Kimura, “Change of conduction

velocity by regional myelination yields constant latency irrespective of dis-

tance between thalamus and cortex.” Proceedings of the National Academy

of Sciences of the United States of America, vol. 100, pp. 6174–6179, 2003.

[30] I. Segev and M. London, “Untangling Dendrites with Quantitative Models,”

Science, vol. 290, no. 5492, pp. 744–750, October 2000.

[31] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. Lamantia, J. O.

McNamara, and S. M. Williams, Neurosci, 3rd ed. Sinauer Associates, 2004.

[32] T. Toyoizumi, J.-P. Pfister, K. Aihara, and W. Gerstner, “Generalized

Bienenstock-Cooper-Munro rule for spiking neurons that maximizes infor-

mation transmission,” Proceedings of the National Academy of Sciences of

the United States of America, vol. 102, no. 14, pp. 5239–5244, April 2005.

REFERENCES 149

[33] M. Tsodyks, A. Uziel, and H. Markram, “Synchrony generation in recurrent

networks with frequency-dependent synapses,” J Neurosci, vol. 20, p. 50,

January 2000.

[34] R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annu Rev

Physiol, vol. 64, pp. 355–405, November 2003.

[35] T. V. P. Bliss and T. Lomo, “Long-lasting potentation of synaptic transmis-

sion in the dendate area of anaesthetized rabbit following stimulation of the

perforant path.” J Physiol, vol. 232, no. 2, pp. 551–356, July 1973.

[36] I. Antonov, I. Antonova, E. R. Kandel, and R. D. Hawkins, “Activity-

dependent presynaptic facilitation and Hebbian LTP are both required and

interact during classical conditioning in aplysia,” Neuron, vol. 37, no. 1, pp.

135–147, January 2003.

[37] G. Bi and M. Poo, “Synaptic modification by correlated activity: Hebb’s

postulate revisited.” Annu Rev Neurosci, vol. 24, no. 1, pp. 139–166, 2001.

[38] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast.”

Nature Neuroscience, vol. 3, pp. 1178–1183, November 2000.

[39] T. J. Sejnowski, “Statistical constraints on synaptic plasticity,” J Theor Biol,

vol. 69, no. 2, pp. 385–389, November 1977.

[40] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the develop-

ment of neuron selectivity: orientation specificity and binocular interaction

in visual cortex,” J Neurosci, vol. 2, no. 1, pp. 32–48, January 1982.

[41] E. Oja, “Simplified neuron model as a principal component analyzer,” J

Math Biol, vol. 15, pp. 267–273, 1982.

[42] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear feed-

forward neural network,” Neural Networks, vol. 2:6, pp. 459 – 473, 1989.

[43] S. Song and L. F. Abbott, “Cortical development and remapping through

spike timing-dependent plasticity.” Neuron, vol. 32, pp. 339–350, 2001.

[44] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synap-

tic efficacy by coincidence of postsynaptic APs and EPSPs.” Science, vol.

275, no. 5297, pp. 213–215, January 1997.

REFERENCES 150

[45] C. D. Meliza and Y. Dan, “Receptive-field modification in rat visual cortex

induced by paired visual stimulation and single-cell spiking,” Neuron, vol. 49,

no. 2, pp. 183–189, January 2006.

[46] R. S. Zucker, “Calcium- and activity-dependent synaptic plasticity.” Curr

Opin Neurobiol, vol. 9, no. 3, pp. 305–313, June 1999.

[47] W. Senn, M. Tsodyks, and H. Markram, “An algorithm for modifying neuro-

transmitter release probability based on pre- and postsynaptic spike timing,”

Neural Comput, vol. 13, no. 1, pp. 35–67, January 2001.

[48] U. R. Karmarkar and D. V. Buonomano, “A model of spike-timing dependent

plasticity: One or two coincidence detectors?” J Neurophysiol, vol. 88, no. 1,

pp. 507–513, 2002.

[49] R. Kempter, W. Gerstner, and J. Hemmen, “Hebbian learning and spiking

neurons,” Physical Review E, vol. 59, no. 4, pp. 4498–4514, April 1999.

[50] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity,” Nature Neurosci, vol. 3,

no. 9, pp. 919–926, September 2000.

[51] M. van Rossum, G. Bi, and G. Turrigiano, “Stable Hebbian learning from

Spike Timing-Dependent Plasticity,” J Neurosci, vol. 20, no. 23, pp. 8812–

8821, December 2000.

[52] T. Nowotny, V. P. Zhigulin, A. I. Selverston, H. D. I. Abarbanel, and M. I.

Rabinovich, “Enhancement of synchronization in a hibrid neural circuit by

Spike-Time-Dependent Plasticity.” J Neurosci, vol. 23, no. 30, pp. 9776–

9785, October 2003.

[53] G. Bi and J. Rubin, “Timing in synaptic plasticity: from detection to inte-

gration.” Trends Neurosci, vol. 28, no. 5, pp. 222–228, May 2005.

[54] A. Turing, “On computable numbers, with an application to the entschei-

dungsproblem,” Proceedings of the London Mathematical Society, vol. s2-42,

pp. 230–265, 1937.

[55] W. Mcculloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bulletin of Mathematical Biology, vol. 5, no. 4, pp. 115–

133, December 1943.

[56] M. Minsky and S. Papert, Perceptron: an introduction to computational

geometry. MIT press, 1969.

REFERENCES 151

[57] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex.” J Physiol, vol. 160, pp.

106–154, January 1962.

[58] C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle

fiber,” Biophys J, vol. 35, no. 1, pp. 193–213, July 1981.

[59] N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk, and N. Brunel, “How

spike generation mechanisms determine the neuronal response to fluctuating

inputs.” J Neurosci, vol. 23, no. 37, pp. 11 628–11 640, December 2003.

[60] G. D. Smith, C. L. Cox, M. S. Sherman, and J. Rinzel, “Fourier analysis of

sinusoidally driven thalamocortical relay neurons and a minimal integrate-

and-fire-or-burst model,” J Neurophysiol, vol. 83, no. 1, pp. 588–610, 2000.

[61] E. Izhikevich, “Resonate-and-fire neurons.” Neural Netw, vol. 14, no. 6-7,

pp. 883–894, September 2001.

[62] B. Ermentrout, “Type I membranes, phase resetting curves, and synchrony,”

Neural Comput, vol. 8, no. 5, pp. 979–1001, 1996.

[63] R. Fitzhugh, “Impulses and physiological states in theoretical models of

nerve membrane,” Biophys J, vol. 1, no. 6, pp. 445–466, July 1961.

[64] J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission

line simulating nerve axon,” Proceedings of the IRE, vol. 50, no. 10, pp.

2061–2070, October 1962.

[65] H. A. Swadlow, A. G. Gusev, and T. Bezdudnaya, “Activation of a cortical

column by a thalamocortical impulse,” J Neurosci, vol. 22, no. 17, pp. 7766–

7773, September 2002.

[66] J. C. Horton and D. L. Adams, “The cortical column: a structure without a

function.” Philosophical transactions of the Royal Society of London. Series

B, Biological sciences, vol. 360, no. 1456, pp. 837–862, April 2005.

[67] V. B. Mountcastle, “An organizing principle for cerebral function: the unit

model and the distributed system,” in The Mindful Brain. Cambridge,

Mass.: MIT Press, 1978.

[68] ——, “Introduction. Computatation in cortical columns.” Cerebral cortex,

vol. 13, no. 1, pp. 2–4, January 2003.

REFERENCES 152

[69] D. P. Buxhoeveden and M. F. Casanova, “The minicolumn hypothesis in

neuroscience,” Brain, vol. 125, no. 5, pp. 935–951, May 2002.

[70] V. B. Mountcastle, “The columnar organization of the neocortex.” Brain,

vol. 120, no. 4, pp. 701–722, April 1997.

[71] S. M. Bohte, E. M. Bohte, H. L. Poutr, and J. N. Kok, “Unsupervised

clustering with spiking neurons by sparse temporal coding and multi-layer

RBF networks,” IEEE Trans Neural Netw, vol. 13, pp. 426–435, 2002.

[72] R. Vanrullen, “The power of the feed-forward sweep,” Adv Cogn Psychol,

vol. 3, no. 1–2, pp. 167–176, July 2008.

[73] V. A. Lamme and P. R. Roelfsema, “The distinct modes of vision offered by

feedforward and recurrent processing.” Trends Neurosci, vol. 23, no. 11, pp.

571–579, 2000.

[74] M. W. Oram and D. I. Perrett, “Time course of neural responses discrimi-

nating different views of the face and head,” J Neurophysiol, vol. 68, no. 1,

pp. 70–84, 1992.

[75] M. J. Tovee, “Neuronal processing. How fast is the speed of thought?” Cur-

rent Biology, vol. 4, no. 12, pp. 1125–1127, 1994.

[76] P. V. Yee and S. Haykin, Regularized radial basis functional networks: theory

and applications. New York: John Wiley & Sons, Inc., 2001.

[77] F. Rosenblatt, Principles of neurodynamics: perceptrons and the theory of

brain mechanisms. NewYork: Spartan, 1962.

[78] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2,

pp. 179–211, 1990.

[79] M. I. Jordan, Chapter 25. Serial order: A parallel distributed processing

approach. Elsevier, 1997, vol. 121, pp. 471–495.

[80] T. Kohonen, Self-organizing maps, 3rd ed., ser. Springer series in information

sciences. Springer, December 2001.

[81] J. J. Hopfield, “Neural networks and physical systems with emergent collec-

tive computational abilities,” National Academy of Sciences of the United

States of America, vol. 79, no. 8, pp. 2554–2558, April 1982.

REFERENCES 153

[82] J. L. McClelland and D. E. Rumelhart, “An interactive activation model of

context effects in letter perception. Part 1: an account of basic findings,”

pp. 401–436, 1988.

[83] B. Doyon, B. Cessac, M. Quoy, and M. Samuelides, “Mean-field equations,

bifurcation map and chaos in discrete time, continuous state, random neural

networks,” Acta Biotheoretica, vol. 43, pp. 169–175, June 1995.

[84] H. Jaeger, “The “echo state” approach to analysing and training recurrent

neural networks,” German National Research Center for Information Tech-

nology, Tech. Rep. GMD Report 148, 2001.

[85] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without

stable states: A new framework for neural computation based on perturba-

tions,” Neural Comput, vol. 14, no. 11, pp. 2531–2560, November 2002.

[86] J. J. Steil, “Backpropagation-decorrelation: online recurrent learning with

O(N) complexity,,” in IJCNN, vol. 2, July 2004, pp. 843–848.

[87] H. Jaeger, “Short term memory in echo state networks,” GMD - German

National Research Institute for Computer Science, GMD-Report 152, 2002.

[88] M. Mattia and P. D. Giudice, “Efficient event-driven simulation of large net-

works of spiking neurons and dynamical synapses,” Neural Comput, vol. 12,

no. 10, pp. 2305–2329, October 2000.

[89] O. Rochel and D. Martinez, “An event-driven framework for the simulation

of networks of spiking neurons,” in ESANN, April 2003, pp. 295–300.

[90] W. R. Softky, “Simple codes versus efficient codes.” Curr Opin Neurobiol,

vol. 5, no. 2, pp. 239–247, 1995.

[91] M. Raul and I. Iosif, “The “Neocortex” neural simulator. A modern design,”

in INES, September 2004, pp. 99–104.

[92] G. Lee and N. H. Farhat, “The double queue method: a numerical method

for integrate-and-fire neuron networks,” Neural Netw, pp. 921–932, 2001.

[93] M. Shelley and L. Tao, “Efficient and accurate time-stepping schemes for

integrate-and-fire neuronal networks,” J Comput Neurosci, vol. 11, no. 2,

pp. 111–119, October 2001.

[94] L. Watts, “Event-driven simulation of networks of spiking neurons,” in NIPS,

vol. 6. MIT Press, 1993, pp. 927–934.

REFERENCES 154

[95] T. Makino, “A discrete-event neural network simulator for general neuron

models,” Neural Computing and Applications, vol. 11, no. 3, pp. 210–223,

June 2003.

[96] N. Raghuvanshi, R. Narain, and M. C. Lin, “Efficient and accurate sound

propagation using adaptive rectangular decomposition,” IEEE Tran Vis

Comp Graph, vol. 15, pp. 789–801, October 2009.

[97] A. Mouraud and D. Puzenat, “Simulation of large spiking neural networks

on distributed architectures, the “Damned” simulator,” EANN, no. 5, pp.

359–370, 2009.

[98] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-

age and organization in the brain,” Psychol Rev, vol. 65, pp. 386–408, 1958.

[99] B. Widrow and M. Hoff, Adaptive switching circuits. Cambridge, MA, USA:

MIT Press, 1988.

[100] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Ex-

plorations in the Microstructure of Cognition. MIT Press, July 1993.

[101] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence of

relative frequencies of events to their probabilities,” Theory of Probability

and its Applications, vol. 16, no. 2, pp. 264–280, 1971.

[102] R. J. Williams, “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

[103] P. Marbach and J. N. Tsitsiklis, “Simulation-based optimization of Markov

reward processes,” in IEEE Conf Decision and Control, Tampa, FL , USA,

1998, pp. 2698–2703.

[104] D. Prokhorov, “Adaptive critic designs: A case study for neurocontrol,”

Neural Netw, vol. 8, no. 9, pp. 1367–1372, 1995.

[105] W. Potjans, A. Morrison, and M. Diesmann, “A spiking neural network

model of an actor-critic learning agent,” Neural Comput, vol. 21, no. 2, pp.

301–339, February 2009.

[106] A. G. Barto, R. S. Sutton, and C. W. Anderson, Artificial neural networks.

Piscataway, NJ, USA: IEEE Press, 1990.

REFERENCES 155

[107] G. A. Carpenter and S. Grossberg, “The handbook of brain theory and

neural networks,” M. A. Arbib, Ed. Cambridge, MA, USA: MIT Press,

1998, ch. Adaptive resonance theory (ART), pp. 79–82.

[108] R. Fujimoto, “Parallel simulation: parallel and distributed simulation sys-

tems,” in Winter Simulation Conference, 2001, pp. 147–157.

[109] A. Mouraud and H. Paugam-Moisy, “Damned, un simulateur parallèle et

événementiel, pour rèseaux de neurones impulsionnels,” in Actes NeuroComp

2006, October 2006, pp. 120–123.

[110] U. Roth, A. Jahnke, and H. Klar, “On-line Hebbian learning for spiking

neurons: Architecture of the weight-unit of NESPINN,” in Artificial Neural

Networks ICANN’97, ser. Lecture Notes in Computer Science, W. Gerstner,

A. Germond, M. Hasler, and J.-D. Nicoud, Eds. Springer Berlin/Heidelberg,

1997, vol. 1327, pp. 1217–1222.

[111] J. Schemmel, K. Meier, and E. Mueller, “A new VLSI model of neural micro-

circuits including spike time dependent plasticity,” IJCNN, pp. 1711–1716,

2004.

[112] H. Markram, “The Blue Brain project,” in ACM/IEEE Supercomputing.

New York, NY, USA: ACM, 2006.

[113] S. Furber and A. Brown, “Biologically-inspired massively-parallel architec-

tures - computing beyond a million processors,” in ICACSD, July 2009, pp.

3–12.

[114] M. Bumble and L. Coraor, “Implementing parallelism in random discrete

event-driven simulation,” in in Lecture Notes in Computer Science 1388,

Parallel and Distributed Processing. Springer, 1998, pp. 418–427.

[115] H. H. Hellmich and H. Klar, “SEE: a concept for an FPGA based emulation

engine for spiking neurons with adaptive weights,” in WSEAS Conf. on

Neural Netw and Applic, vol. 25-27, 2004, pp. 930–935.

[116] J. Bailey, P. Wilson, A. Brown, and J. Chad, “Behavioural simulation and

synthesis of biological neuron systems using synthesizable VHDL,” Neuro-

comput, vol. 74, no. 14-15, pp. 2393–2406, July 2011.

[117] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, “Fast neural networks

without multipliers,” IEEE Trans Neural Netw, vol. 4, no. 1, pp. 53–62,

January 1993.

REFERENCES 156

[118] B. Noory and V. Groza, “A reconfigurable approach to hardware implemen-

tation of neural networks,” Canadian Conference on Electrical and Computer

Engineering, vol. 3, pp. 1861 – 1864, May 2003.

[119] Y. Taright and M. Hubin, “FPGA implementation of a multilayer perceptron

neural network using VHDL,” Signal Processing Proceedings, vol. 2, pp. 1311

– 1314, October 1998.

[120] S. Himavathi, D. Anitha, and A. Muthuramalingam, “Feedforward neural

network implementation in FPGA using layer multiplexing for effective re-

source utilization,” IEEE Trans Neural Netw, vol. 3, pp. 880–888, May 2007.

[121] K. Oh and K. Jung, “GPU implementation of neural networks,” Pattern

Recognition, vol. 37, no. 6, pp. 1311–1314, June 2004.

[122] M. A. Bhuiyan, V. K. Pallipuram, and M. C. Smith, “Acceleration of spiking

neural networks in emerging multi-core and GPU architectures,” in IPDPS

Workshops, 2010, pp. 1–8.

[123] J. P. Tiesel and A. S. Maida, “Using parallel GPU architecture for simulation

of planar I/F networks,” in IJCNN. IEEE, June 2009, pp. 3118–3123.

[124] J. M. Nageswaran, N. D. Dutt, J. L. Krichmar, A. Nicolau, and A. V.

Veidenbaum, “A configurable simulation environment for the efficient simu-

lation of large-scale spiking neural networks on graphics processors,” Neural

Networks, vol. 22, no. 5-6, pp. 791–800, August 2009.

[125] B. Han and T. Taha, “Acceleration of spiking neural network based pattern

recognition on nvidia graphics processors,” Applied Optics, vol. 49, pp. B83–

B91, April 2010.

[126] A. Davison, D. Bruederle, J. Eppler, K. Jens, E. Muller, D. Pecevski, L. Per-

rinet, and P. Yger, “Pynn: a common interface for neuronal network simu-

lators,” Front Neuroinformatics, vol. 2, no. 11, January 2009.

[127] A. Hindmarsh and A. Taylor, User Documentation for IDA, A Differential-

Algebraic Equation Solver for Sequential and Parallel Computers, Lawrence

Livermore National Laboratory, 1999.

[128] M. Hines and N. Carnevale, “Expanding NEURON’s repertoire of mecha-

nisms with NMODL,” Neural Comput, vol. 12, no. 5, pp. 995–1007, 2000.

[129] D. F. Bacon, J. Schwartz, and Y. Yemini, MAIN Page - NEST, NEST

Development Team, 2007.

REFERENCES 157

[130] ——, “Nest: A network simulation and prototyping tool,” in Proceedings of

the USENIX Winter 1988 Technical Conference. Berkeley, CA: USENIX

Association, 1988, pp. 71–78.

[131] F. Harris and P. Goodman, NCS Documentation, NCS Development Team,

2007.

[132] E. C. Wilson, “Parallel implementation of a large scale biologically realistic

neocortical neural network simulator,” Master’s thesis, University of Nevada,

November 2001.

[133] H. Markram and W. Maass, Neural Micro circuits, CSIM Development

Team, 2007.

[134] P. Hammarlund, O. Ekeberg, T. Wilhelmsson, and A. Lansner, “Large neural

network simulations on multiple hardware platforms,” in CNS. New York,

NY, USA: Plenum Press, 1997, pp. 919–923.

[135] O. Rochel, Mvaspike, Mvaspike Development Team, 2007.

[136] A. Delorme and S. J. Thorpe, “Spikenet: an event-driven simulation package

for modelling large networks of spiking neurons,” Neural Networks, vol. 14,

no. 4, pp. 613–627, November 2003.

[137] M. Versace, H. Ames, J. Léveillé, B. Fortenberry, and A. Gorchetchnikov,

“Kinness: A modular framework for computational neuroscience,” Neuroin-

formatics, vol. 6, no. 4, pp. 291–309, 2008.

[138] D. Rohde, “LENS: The light, efficient network simulator,” Software package

available at www. cs. cmu. edu/dr/Lens/, 1999.

[139] I. Fischer, F. Hennecke, C. Bannes, and A. Zell, JavaNNS User Manual,

Version 1.1, Center for Bioinformatics, University of Tübingen, 2002.

[140] S.-H. Lee and K. Skadron, “Highly parallel implementation of neurojet using

GPUs,” School of Engineering and Applied Science-University of Virginia,

Tech. Rep. STS 4020, 2010.

[141] T. Stewart, B. Tripp, and C. Eliasmith, “Python scripting in the Nengo

simulator,” Front Neuroinformatics, vol. 3, no. 7, March 2009.

[142] U. Bhalla, S. Ray, N. Dudani, S. George, A. Gilra, and G. Harsharani,

“Multiscale models in Moose: interoperability and standardization,” Front

Neuroinformatics, vol. 1, 2011.

REFERENCES 158

[143] S. Nissen, “Implementation of a Fast Artificial Neural Network Library

(fann),” Report, Department of Computer Science University of Copenhagen

(DIKU), vol. 31, 2003.

[144] F. Zubler and R. Douglas, “A framework for modeling the growth and de-

velopment of neurons and networks,” Front Comput Neurosci, vol. 3, 2009.

[145] S. Furber and S. Temple, “Neural systems engineering,” in Computational

Intelligence: A Compendium, 2008, pp. 763–796.

[146] D. J. Felleman and D. C. V. Essen, “Distributed hierarchical processing in

the primate cerebral cortex,” Cerebral Cortex, pp. 1–47, February 1991.

[147] M. Bouten, A. Engel, A. Komoda, and R. Serneels, “Quenched versus an-

nealed dilution in neural networks,” Journal of Physics A: Mathematical and

General, vol. 23, no. 20, p. 4643, 1990.

[148] R. Morris, “Developments of a water-maze procedure for studying spatial

learning in the rat.” J Neurosci Methods, vol. 11, no. 1, pp. 47–60, 1984.

[149] C. V. Vorhees and M. T. Williams, “Morris water maze: procedures for as-

sessing spatial and related forms of learning and memory.” Nature protocols,

vol. 1, no. 2, pp. 848–858, 2006.

[150] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural

Computation, J. Hertz, A. Krogh, and R. Palmer, Eds. Addison-Wesley,

1991, vol. 1.

[151] B. Mueller, J. Reinhardt, and M. Strickland, Neural networks: an introduc-

tion, 2nd ed. Berlin: Springer, 1995.

[152] D. O. Hebb, “The organization of behavior,” pp. 43–54, 1988.

[153] P. R. Montague, P. Dayan, C. Person, and T. J. Sejnowski, “Bee foraging

in uncertain environments using predictive hebbian learning.” Nature, vol.

377, no. 6551, pp. 725–728, October 1995.

[154] P. Montague, P. Dayan, and T. Sejnowski, “A framework for mesencephalic

dopamine systems based on predictive hebbian learning,” J Neurosci, vol. 16,

no. 5, pp. 1936–1947, March 1996.

[155] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory,

new ed. New York: Wiley, June 1949.

REFERENCES 159

[156] B. Porr and F. Woergoetter, “Fast heterosynaptic learning in a robot food

retrieval task inspired by the limbic system,” Biosystems, vol. 89, no. 1-3,

pp. 294 – 299, June 2007.

[157] D. O. Hebb, “Conditioned and unconditioned reflexes and inhibition,” Mas-

ter’s thesis, McGill University, 1932.

[158] A. Barto, Reinforcement learning: The Handbook of Brain Theory and Neu-

ral Networks, M. A. Arbib, Ed. Cambridge, MA: MIT Press, 1995.

[159] R. Sutton and A. Barto, Reinforcement learning: an introduction. MIT

Press, 1998.

[160] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of prediction

and reward,” Science, vol. 275, no. 5306, pp. 1593–1599, March 1997.

[161] M. Pessiglione, B. Seymour, G. Flandin, R. J. Dolan, and C. D. Frith,

“Dopamine-dependent prediction errors underpin reward-seeking behaviour

in humans,” Nature, vol. 442, no. 7106, pp. 1042–1045, August 2006.

[162] R. S. Sutton, “Reinforcement learning: Past, present and future,” in SEAL,

1998, pp. 195–197.

[163] P. Bak and K. Sneppen, “Punctuated equilibrium and criticality in a simple

model of evolution,” Phys Rev Lett, vol. 71, pp. 4083–4086, Dec 1993.

[164] J. Wakeling and P. Bak, “Intelligent systems in the context of surrounding

environment,” October 2001, published in Physical Review E 64, 051920.

[165] J. Bedaux and W. A. Van Leeuwen, “Biologically inspired learning in a

layered neural net,” Physica A: Statistical Mechanics and its Applications,

vol. 335, no. 1–2, April 2004.

[166] J. L. Krichmar, A. K. Seth, D. A. Nitz, J. G. Fleischer, and G. M. Edelman,

“Spatial navigation and causal analysis in a brain-based device modeling

cortical-hippocampal interactions,” Neuroinformatics, vol. 3, no. 3, pp. 197–

222, September 2005.

[167] P. Bak and D. R. Chialvo, “Adaptive learning by extremal dynamics and

negative feedback,” Phys Rev E, vol. 63, no. 3, p. 031912, February 2001.

[168] J. Wakeling, “Order-disorder transition in the Chialvo-Bak minibrain con-

trolled by network geometry,” pp. 561–569, July 2003, in Physica A 325.

REFERENCES 160

[169] G. Tesauro, “Temporal difference learning and td-gammon,” Commun.

ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995.

[170] R. Felderman and L. Kleinrock, “An upper bound on the improvement of

asynchronous versus synchronous distributed processing,” in The Society for

Computer Simulation, Distributed Simulation 1990, D. Nicol, Ed., January

1990, pp. 131–136.

[171] K. M. Chandy and J. Misra, “Distributed simulation: A case study in design

and verification of distributed programs,” IEEE Trans Software Engineering,

vol. SE-5, no. 5, pp. 440–452, 2006.

[172] D. R. Jefferson, “Virtual time,” ACM Trans Program Lang Syst, vol. 7, pp.

404–425, July 1985.

[173] C. Koch, Biophysics of Computation: Information Processing in Single Neu-

rons (Computational Neuroscience). Oxford University Press, 1998.

[174] G. Shepherd, The Synaptic Organization of the Brain, 4th ed. Oxford

University Press, 1998.

[175] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-The

Complete Reference, Volume 1: The MPI Core, 2nd ed. Cambridge, MA,

USA: MIT Press, 1998.

[176] H. Ong and P. A. Farrell, “Performance comparison of LAM/MPI, MPICH,

and MVICH on a Linux cluster connected by a gigabit ethernet network,”

in Annual Linux Showcase and Conference, 2000, pp. 10–14.

[177] C. Chiu, K. Mehrotra, C. K. Mohan, and S. Ranka, “Training techniques to

obtain fault tolerant neural networks,” in Proc. FTCS-24, 1994, pp. 360–369.

