Duda, G.N., Mandruzzato, F., Heller, M., Goldhahn, J., Moser, R., Hehli, M., Claes, L. and Haas, N.P. (2001) Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing. Journal of Biomechanics, 34 (5), 639-650. (PMID:11311705)
Abstract
Unreamed nailing favors biology at the expense of the achievable mechanical stability. It is therefore of interest to define the limits of the clinical indications for this method. The extended usage of unreamed tibial nailing resulted in reports of an increased rate of complications, especially for the distal portion of the tibia. The goals of this work were to gain a thorough understanding of the load-sharing mechanism between unreamed nail and bone in a fractured tibia, to identify the mechanical reasons for the unfavorable clinical results, and to identify borderline indications due to biomechanical factors. In a three-dimensional finite element model of a human tibia, horizontal defects were stabilized by means of unreamed nailing for five different fracture locations, including proximal and distal borderline indications for this treatment method. The loading of the bone, the loading of the implant and the inter-fragmentary strains were computed. The findings of this study show that with all muscle and joint contact forces included, nailing leads to considerable unloading of the interlocked bone segments. Unreamed nailing of the distal defect results in an extremely low axial and high shear strain between the fragments. The results suggest that mechanical conditions are advantageous to unreamed nailing of proximal and mid-diaphyseal defects. Apart from biological reasons, clinical problems reported for distal fractures may be due to the less favorable mechanical conditions in unreamed nailing. From a biomechanical perspective, the treatment of distal tibial shaft fractures by means of unreamed nailing without additional fragment contact or without stabilizing the fibula should be carefully reconsidered.
This record has no associated files available for download.
More information
Identifiers
Catalogue record
Export record
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.