Elastic net prefiltering for two class classification
Elastic net prefiltering for two class classification
A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model’s generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.
286-295
Hong, Xia
e6551bb3-fbc0-4990-935e-43b706d8c679
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Harris, Chris J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
February 2013
Hong, Xia
e6551bb3-fbc0-4990-935e-43b706d8c679
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Harris, Chris J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Hong, Xia, Chen, Sheng and Harris, Chris J.
(2013)
Elastic net prefiltering for two class classification.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 43 (1), .
(doi:10.1109/TSMCB.2012.2205677).
Abstract
A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model’s generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.
Text
IEEETCyb-2013-Feb.pdf
- Version of Record
More information
Published date: February 2013
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 348552
URI: http://eprints.soton.ac.uk/id/eprint/348552
ISSN: 1083-4419
PURE UUID: c019f4f6-6856-40a1-b04b-2b04f9518834
Catalogue record
Date deposited: 14 Feb 2013 11:53
Last modified: 14 Mar 2024 13:02
Export record
Altmetrics
Contributors
Author:
Xia Hong
Author:
Sheng Chen
Author:
Chris J. Harris
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics