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Abstract—We propose a novel joint channel estimation and
three-stage iterative detection/decoding scheme for near-capacity
MIMO systems. In our scheme, as usual, the detected soft
information is first exchanged a number of times within the inner
turbo loop between the unity-rate-code (URC) decoder and the
MIMO soft-demapper, and the information gleaned from the
inner URC decoder is then iteratively exchanged with the outer
decoder in the outer turbo loop. Our channel estimator however
exploits the a posteriori information produced by the MIMO soft-
demapper to select a sufficient blocks of high-quality detected
soft bits, and it is naturally embedded into the original itera-
tive three-stage detection/decoding process, without introducing
the costly iterative loop between the decision-directed channel
estimator and the three-stage turbo detector/decoder. Hence, the
computational complexity of our joint channel estimation and
three-stage turbo detection is similar to that of the three-stage
turbo detection/decoding scheme associated with the perfect CSI.
Moreover, our reduced-complexity semi-blind scheme is capable
of achieving the optimal maximum-likelihood turbo detection
performance attained under the perfect CSI, with the same
number of turbo iterations.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless commu-

nication systems [1]–[3] have attracted substantial attention

due to their potential of providing spatial diversity and/or

multiplexing gains. Non-coherent MIMO systems, which do

not require channel state information (CSI), have found wide-

ranging applications [4], [5]. However, non-coherent MIMO

systems suffer from the classical 3 dB penalty in signal-to-

noise ratio (SNR) and, moreover, their design freedom is also

restricted [4], [6]. By contrast, coherent MIMO systems offer

better performance and enjoy high degree of design flexibility

in comparison to their non-coherent counterparts. The perfor-

mance of a coherent MIMO system, however, heavily relies

on the accuracy of CSI. Training-based channel estimators

[7] are capable of obtaining accurate CSI estimate at the

expense of significantly reducing the system’s throughput and

imposing high CSI estimation complexity, since employing a

large number of training symbols is necessary. In sequel, we

will refer to coherent MIMO simply as MIMO.

In attempt to circumvent the difficulties imposed by pure

training-based channel estimation (CE), powerful iterative

detection/decoding schemes have been incorporated with the

decision-directed channel estimator to form joint CE and
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turbo detection/decoding [8]–[12], where only a small number

of training symbols are employed for generating an initial

channel estimate. The initial turbo detection/decoding is then

carried out based on the initial channel estimate. After the

convergence of the turbo detector and decoder, the detected

data are fed into the channel estimator for updating the

channel estimate. The decision-directed channel estimator and

the turbo detector/decoder iterate a number of times until

the channel estimate converges. The turbo detector/decoder

is capable of improving the reliability of the detected signals

to assist the decision-directed channel estimator and likewise,

more accurate channel estimates will result in increasingly

more accurate turbo detector/decoder output.

To reduce the error propagation in the decision-directed

CE caused by erroneous detected symbols, soft-decision aided

channel estimators, which are also known as turbo CE

schemes, exploit the soft estimates of the detected signals

for CE and are more robust against the error propagation

than the hard-decision aided CE schemes [13]. These soft-

decision aided CE schemes can naturally be incorporated with

turbo detection/decoding schemes to form joint CE and turbo

detection/decoding structures. For example, an iterative soft-

decision based CE scheme was proposed in [14], which feeds

back the probabilities of the decisions from the equalizer to

the channel estimator. In [15], a soft-input Kalman channel

estimator and a weighted turbo recursive least square channel

estimator were proposed, while a soft-decision aided iterative

CE and symbol detection technique was proposed in [16].

All these existing joint CE and turbo detection/decoding

structures have a number of limitations. Firstly, an extra

iterative loop between the channel estimator and the turbo

detector/decoder is introduced, which requires a number of

iterations to converge and, therefore, increases the computa-

tional complexity of the receiver considerably. Secondly, the

CE itself in all these schemes imposes an extremely high

complexity. This is because the number of bits involved in a

single interleaved frame of a turbo code is typically very large,

and the number τ of the symbol vectors in a turbo coded frame

is usually several thousands. All the existing schemes use the

entire frame of the detected soft or hard bits for CE. Assume

that the least squares channel estimate (LSCE) is employed.

The complexity of the LSCE is well known in the order of τ3,

O
(
τ3

)
, which can be unacceptably high. Thirdly, at low SNR

conditions, 20% to 50% of the detected bits are erroneous

decisions and, even with soft-decision aided CE schemes, the



error propagation can still be serious, which will degrade the

achievable performance. Therefore, all these existing schemes

cannot approach the optimal maximum-likelihood (ML) turbo

detection performance associated with the perfect CSI.

Against this background, we propose a reduced-complexity

joint CE and three-stage iterative detection/decoding structure

for near-capacity MIMO systems [17]. As usual, only a very

small number of training symbols are utilised for obtaining

an initial LSCE. Our original contribution is twofold. Firstly,

we propose a block-of-bits selection based soft-decision aided

channel estimation (BBSB-SCE) scheme, which selects the

high quality or more reliable detected blocks of bits based

on the a posteriori information produced by the MIMO soft-

demapper within the original inner turbo loop of the unity-rate-

code (URC) decoder and MIMO detector. This novel BBSB-

SCE produces two desired effects. Since it only utilises the

high quality decisions in CE, unlike all the existing soft-

decision aided channel estimators, it does not suffer from the

same performance degradation caused by erroneous decisions.

Moreover, the number of the high-quality blocks of bits used

can be at least one order of the magnitude smaller than τ and,

therefore, the computational complexity of the LSCE based

on our BBSB-SCE scheme is reduced to several orders of the

magnitude smaller than the estimator based on the entire de-

tected data frame. Secondly, our channel estimator is naturally

embedded in the original three-stage turbo detection/decoding

process, and no extra iterative loop is required between the

channel estimator and the three-stage MIMO detector/decoder.

Therefore, the complexity of our joint BBSB-SCE and three-

stage turbo detector/decoder structure is similar to that of

the original three-stage turbo detector/decoder scheme asso-

ciated with the perfect CSI. We will demonstrate that our

proposed semi-blind joint BBSB-SCE and three-stage turbo

detection/decoding scheme is capable of fully exploiting the

“turbo effects” to attain the optimal ML performance obtained

by the idealised three-stage turbo detector/decoder receiver

furnished with the perfect CSI, despite using only the same

number of turbo iterations as the latter.

II. JOINT CE AND THREE-STAGE TURBO RECEIVER

We consider the MIMO system consisting of Mt transmit

antennas and Mr receive antennas for communication in a

frequency-flat Rayleigh fading environment.

A. MIMO System Model

The transmitter consists of the two-stage serial-concatenated

outer recursive systematic code (RSC) encoder and inner

URC encoder, followed by the MIMO L-QAM modulator, for

achieving near-capacity performance [17]. Let C denote the

field of complex numbers and BPS = log2(L). The MIMO

system model is expressed as

y(i) = Hs(i) + v(i), (1)

where i denotes the symbol index, H ∈ C
Mr×Mt is the

MIMO channel matrix, s(i) ∈ C
Mt×1 represents the trans-

mitted L-QAM symbol vector, and y(i) ∈ C
Mr×1 denotes

the received signal vector, while v(i) ∈ C
Mr×1 represents the

noise vector, whose elements obey the complex-valued zero-

mean Gaussian distribution of CN (0, N0), with a variance

of N0/2 per dimension. The system’s SNR is defined as

SNR = Es/N0, where Es is the average symbol energy.

At the receiver, upon obtaining the a priori log-likelihood

ratios (LLRs)
{
La

(
uk

)}Mt·BPS

k=1
from the channel decoder,

where
{
uk

}Mt·BPS

k=1
indicate the corresponding bits that map

to the symbol vector s(i), the a posteriori LLRs produced by

the ML MIMO soft-demapper1 are expressed as [18]

Lp (uk) = Lp(k) = ln

∑
s

n∈{suk=1}

exp(pn)

∑
s

n∈{suk=0}

exp(pn)
, (2)

where {suk=1} and {suk=0} represent the L-QAM symbol

vector sets with the corresponding bit uk = 1 and uk = 0,

respectively. The probability metrics {pn}
LMt

n=1 for the possible

L-QAM symbol vectors
{
sn

}LMt

n=1
are given as

pn = −
‖y(i) − Hsn‖2

N0
+

Mt·BPS∑

k=1

ũkLa(uk), (3)

where
{
ũk

}Mt·BPS

k=1
indicate the corresponding bits that map

to the specific symbol vector sn.
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Fig. 1: Conventional joint channel estimation and three-stage turbo
detector/decoder.

Let us first examine the conventional structure of joint CE

and three-stage turbo detector/decoder as depicted in Fig. 1.

To start the joint CE and three-stage turbo detector/decoder

process requires an initial training based channel estimate.

Assume that the number of the available training blocks is

M and the initial training data are arranged as

YtM =
[
y(1) y(2) · · ·y(M)

]
, (4)

StM =
[
s(1) s(2) · · · s(M)

]
. (5)

Then the LSCE of the MIMO channel matrix H is given by

ĤLSCE = YtMSH
tM

(
StMSH

tM

)−1
, (6)

1For large MIMO systems, we may opt for using near-optimum low-
complexity detection schemes, e.g. the K-best sphere detector [19], [20], to
avoid the exponentially increasing complexity imposed by the ML detector.



where (·)H denotes the conjugate transpose operator. To main-

tain a high system throughput, only a small number of training

blocks should be used. Note that to ensure a full rank of

StMSH
tM , it is necessary to choose M ≥ Mt. Therefore, Mt is

a lower bound for the number of initial training blocks. With

M chosen to be close to its lower bound Mt, the accuracy of

the LSCE (6) is poor and hence the achievable bit error rate

(BER) based on this initial LSCE is also poor. However, the

three-stage turbo detector/decoder is capable of improving the

reliability of the detected bits for assisting the soft decision-

directed channel estimator to provide a more accurate channel

estimate, which in turn results in an increasingly more reliable

turbo detector/decoder output.

Assume that, given the CSI, the two-stage inner turbo loop

requires Iinner iterations, while the outer turbo loop requires

Iouter iteration. Denote the complexity of the three-stage turbo

detector/decoder as C3str

(
Iouter · Iinner

)
. Let a transmitted

frame of the turbo coded bits contain τ symbol vectors, and

further assume that the CE loop in Fig. 1 requires Ice iterations

to converge. Then the complexity of the conventional joint CE

and three-stage turbo receiver can be expressed as

Cconventional = Ice · O
(
τ3

)
+ Ice · C3str

(
Iouter · Iinner

)
, (7)

where O
(
τ3

)
is the complexity of the LSCE, as the entire

frame of detected bits is used. Note that using the entire

detected data frame leads to an extremely high CE complexity.

More importantly, the frame of the detected bits may contain

very large percentage of the erroneous decisions, particularly

under low SNR conditions, which will degrade even the

soft decision-directed channel estimator. Therefore, it is well-

known that there exists a BER performance gap between this

semi-blind joint CE and three-stage turbo receiver and the

idealised three-stage turbo receiver with the perfect CSI.
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Fig. 2: Proposed joint BBSB-SCE and three-stage turbo detec-
tor/decoder.

B. Joint BBSB-SCE and Three-Stage Turbo Receiver

Our novel structure of semi-blind joint BBSB-SCE and

three-stage turbo detector/decoder is depicted in Fig. 2. Notice

the two significant differences with the conventional structure

of Fig. 1. Firstly, there is no additional iterative loop involving

the CE and the three-stage turbo detector/decoder. In other

words, our soft decision aided channel estimator is embedded

in the original outer loop of the three-stage turbo structure,

and updating of the channel estimate occurs concurrently with

the original outer turbo decoding iteration. Consequently, the

complexity of our joint scheme is reduced to the same level of

C3str

(
Iouter · Iinner

)
. More importantly, our channel estimator

does not use the entire frame of the detected bits. Rather,

it only selects the high-quality decisions. Specifically, the a

posteriori information (2) output by the MIMO soft-demapper

provides the confidence levels, i.e. the probabilities, of binary

1s and 0s [17]. Therefore, based on this confidence level,

we can select the reliable decisions from the MIMO soft-

demapper’s output sequence for CE. Thus, the complexity

of our soft-decision aided LSCE is dramatically lower than

O
(
τ3

)
. Moreover, as will be confirmed later in our simulation

study, our joint BBSB-SCE and three-stage turbo receiver is

capable of approaching the near-capacity optimal ML perfor-

mance associated with the perfect CSI. With the notation

Ydτ =
[
y(1) y(2) · · ·y(τ)

]
(8)

representing the MIMO observation data sequence, we now

detail our semi-blind joint BBSB-SCE and three-stage turbo

detector/decoder scheme.

Step 1) Set the outer turbo iteration index to t = 0 and the

initial channel estimate to Ĥ(t) = ĤLSCE .

Step 2) Given the channel estimate Ĥ(t), perform the ML

MIMO soft-demapping based on the observation data Ydτ

of (8). The MIMO soft-demapper then exchanges its soft

information with the URC inner decoder for Iinner iterations.

This yields the Iinner vectors of the a posteriori information

defined in (2), which can be arranged as

Lp =
[
l1p l2p · · · l

Iinner

p

]T

, (9)

where (·)T represents the transpose operator, lip ∈ C
(BPB·τ)×1

denotes the a posteriori information vector obtained by the

MIMO soft-demapper during the ith inner iteration, and

BPB = Mt · BPS, while Lp ∈ C
Iinner×(BPB·τ) is the

equivalent a posteriori information matrix. Based on the fact

that the nth column of Lp represents the Iinner soft decisions

of the nth information bit, where n ∈ {1, 2, · · · , (BPB · τ)},

the block of bits to be used for the CE is selected in either of

the following two cases:

Case 1: If the soft decisions in the same column share

similar values, these soft decisions may result in a relatively

stable and reliable bit decision, which are hence invoked for

the CE. Specifically, the criterion for the nth information bit

to be selected is

|L1
p(n)−L2

p(n)| + · · · + |LIinner−1
p (n)−LIinner

p (n)|

|µ|
∈(0, Th) ,

(10)

where µ is the mean of the soft decisions in the nth column

of Lp, and Th denotes the block-of-bits selection threshold.

Case 2: If the absolute values of the soft decisions in the

nth column appear to be in monotonically ascending order and

share the same polarity (i.e. the decisions are all positive or

negative), the nth information bit may be regarded as correct

and hence is selected for the CE.

After checking through all the columns of Lp, only high con-

fidence decisions are selected and the corresponding symbol

block indices can be obtained by a sliding-window method us-

ing a window size of BPB. More explicitly, if BPB consecutive



information bits are all regarded as correct, the corresponding

information block or symbol vector will be selected for the

CE. This yields a high confidence integer-valued index vector,

which is denoted as xt =
[
xt(1) xt(2) · · ·xt(τ t

s)
]T

, with

the number of the selected symbol vectors τ t
s varying within

(0, τsel], where τsel ≪ τ is the maximum number of blocks

for the CE, imposed to limit the complexity of CE. By using

this index vector, the corresponding observation data can be

selected from (8), and re-arranged as

Y
(t)
sel =

[
y(xt(1)) y(xt(2)) · · ·y(xt(τ t

s))
]
. (11)

Step 3) Based on the selected high-confidence detected blocks

of bits with the aid of the corresponding symbol vector indices

xt, generate the soft-estimate of each symbol element as [21]

ŝm(xt(n)) =

L∑

l=1

sl Pr{sm(xt(n)) = sl}

=
L∑

l=1

sl ·
exp

( ∑BPS

j=1 ũjLa(uj)
)

∏BPS

j=1

(
1 + exp

(
La(uj)

)) , (12)

for 1 ≤ n ≤ τs, where {sl}L
l=1 denotes the L-QAM symbol

set, m ∈ {1, 2, · · · ,Mt} indicates the symbol index in the

soft-estimated symbol vector ŝ(xt(n)), and {ũj}BPS
j=1 repre-

sents the bit mapping corresponding to {sl}L
l=1. By arranging

the soft-estimated symbol vectors as

Ŝ
(t)
sel =

[
ŝ(xt(1)) ŝ(xt(2)) · · · ŝ(xt(τ t

s))
]
, (13)

the resulting decision-directed LSCE is given by

Ĥ(t+1) = Y
(t)
sel

(
ŝ
(t)
sel

)H
(
ŝ
(t)
sel

(
ŝ
(t)
sel

)H
)−1

. (14)

This update occurs as the soft information is exchanged be-

tween the two-stage inner decoder and the outer RSC decoder.

Step 4) Set t = t + 1. If t < Iouter, repeat Steps 2) and 3);

otherwise, stop.

The complexity of CE in our scheme is upper bounded by

O
(
τ3
sel

)
which is much smaller than O

(
τ3

)
. As an example,

in the simulation we have τ = 1000 and we set τsel = 100.

Therefore, the complexity of our channel estimator is more

than 1000 times smaller than that of the conventional scheme.

The total complexity of our proposed scheme is

Cproposed ≤ Iouter · O
(
τ3
sel

)
+ C3str

(
Iouter · Iinner

)
. (15)

Since the 1st term is negligible in comparison with the 2nd

term, we have Cproposed ≈ C3str

(
Iouter · Iinner

)
.

III. SIMULATION RESULTS

A quasi-static Rayleigh fading MIMO system with Mt = 4,

Mr = 4 and 16-QAM was simulated. All the results were

averaged over 100 channel realisations, which were generated

with the normalised Doppler frequency of fd = 0.01. An

interleaver length of 16, 000 bits was used by the three-stage

serial-concatenated turbo encoder/decoder. The binary gener-

ator polynomials of the RSC encoder were GRSC = [1, 0, 1]2
and Gr

RSC = [1, 1, 1]2, while those of the URC encoder

were GURC = [1, 0]2 and Gr
URC = [1, 1]2, where Gr

RSC

and Gr
URC are the feedback polynomials of the RSC and

URC encoders, respectively. The transmitted signal power was

normalised to unity and, therefore, the SNR was given as 1
N0

.

The number of initial training data blocks was chosen to be

M = 6, while the maximum number of selected blocks for our

BBSB-SCE was set to τsel = 100. Three metrics were used to

assess the achievable performance, and they were the extrinsic

information transfer (EXIT) chart [17], the BER and the mean

square error (MSE) of the channel estimator. The Cramér-Rao

lower bound (CRLB) [22], [23] is known to provide the best

attainable performance for an unbiased estimator, and can be

used to lower bound the MSE of a channel estimator.
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Fig. 3: EXIT chart analysis of our proposed semi-blind joint BBSB-
SCE and three-stage turbo receiver with the block-of-bits selection
threshold of Th = 1.0, in comparison to the perfect-CSI scenario.

Fig. 3 shows the EXIT chart of our proposed joint BBSB-

SCE and three-stage turbo receiver with a selection threshold

of Th = 1.0, in comparison to that of the perfect-CSI case.

It can be seen that open tunnels exist between the EXIT

curves of the amalgamated inner MIMO soft-demapper-URC

decoder and the outer RSC decoder for both the proposed

semi-blind BBSB-SCE based scheme and the idealised optimal

ML detection based on the perfect CSI, at SNR= 5.0 dB.

The Monte-Carlo simulation based stair-case shaped decoding

trajectories, which closely match the EXIT curves, are also

provided at SNR= 5.0 dB. It is seen that both of the trajec-

tories are capable of reaching the perfect convergence point

of (1.0, 1.0), implying that the proposed semi-blind BBSB-

SCE based scheme is capable of achieving the optimal ML

detection performance with the same number of iterations.

Additionally, it can also be seen that the starting point of

the EXIT curve of the semi-blind BBSB-SCE based scheme

is lower than that of perfect CSI scenario. This is obviously

because poor initial CE quality leads to a lower extrinsic infor-

mation. However, as the a priori information value increases,

the EXIT curve of the BBSB-SCE based scheme is capable of

converging to that of the perfect CSI scenario, implying that

an accurate channel estimate has been obtained.

The BER performance of the proposed joint BBSB-SCE and

three-stage turbo receiver is shown in Fig. 4, in comparison to
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Fig. 4: BER performance of the proposed joint BBSB-SCE and
three-stage turbo receiver with a block-of-bits selection threshold of
Th = 1.0, in comparison to that of the perfect CSI scenario as well
as those of the conventional joint CE and three-stage turbo receivers
employing the entire detected data sequence for the soft-decision and
hard-decision aided channel estimators, respectively.

that of the perfect CSI case as well as those of the conventional

semi-blind joint CE and three-stage turbo schemes employing

the soft-decision and hard-decision aided channel estimators,

respectively, based on the entire detected data sequence. It

can be seen that the proposed semi-blind BBSB-SCE based

scheme is capable of converging to the near-capacity optimal

ML performance associated with the perfect CSI, with the

same “turbo-cliff” occurring at SNR= 5 dB as predicted by

the EXIT chart analysis of Fig. 3. Observe that the conven-

tional joint CE and three-stage turbo receiver with the soft-

decision aided channel estimator employing the entire detected

data sequence cannot attain the performance of the idealised

optimal ML performance achieved under the perfect CSI, and

there exists a 2 dB gap between the BER turbo-cliffs of the

two receivers. This clearly demonstrates the power of only

selecting high-quality blocks of bits for CE. The conventional

scheme employing the hard-decision aided channel estimator
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Fig. 5: BER convergence performance of the proposed joint BBSB-
SCE and three-stage turbo receiver with a block-of-bits selection
threshold of Th = 1.0, in comparison to the perfect-CSI case.

based on the entire detected data sequence exhibits further

1.5 dB degradation from its soft-decision assisted counterpart.

Fig. 5 illustrates the convergence behaviour of the proposed

joint BBSB-SCE and three-stage turbo scheme, in comparison

to that of the idealised three-stage turbo scheme based on the

perfect CSI. Observe that for both the proposed semi-blind

BBSB-SCE based and idealised three-stage turbo receivers,

Iouter = 5 outer iterations are sufficient to achieve the near-

capacity optimal performance. In addition, it can be seen that

the BER gap between the proposed BBSB-SCE based scheme

and the perfect CSI case reduces, as the number of outer

iterations increases. Specifically, at the initial iteration, there

exist a large BER gap, and during the third iteration, the BER

gap is reduced to around 1 dB, but at the fifth iteration, there

exists no BER gap, indicating that the BBSB-SCE scheme has

converged to the true MIMO channel.
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Fig. 6: Effects of the block-of-bits selection threshold Th on the
BER performance of our proposed semi-blind joint BBSB-SCE and
three-stage turbo receiver.

The effects of the block-of-bits selection threshold Th

on the achievable BER performance of our proposed semi-

blind scheme were also investigated by varying the value of

Th in the set {0.2, 0.5, 1.0, 2.0, 3.0} under the same system

configuration. The results obtained are shown in Fig. 6, where

it is observed that for Th = 0.5 and 1.0, the BER performance

of the proposed semi-blind joint BBSB-SCE and three-stage

turbo scheme converges to that of the perfect-CSI case. How-

ever, for a relatively small threshold value of Th = 0.2, a

performance degradation occurred, since the number of blocks

of bits selected for the CE is probably insufficient. On the

other hand, given relatively high values of Th = 2.0 and

3.0, some unreliable decisions may have been selected for the

CE and this can lead to a performance degradation from the

perfect-CSI case, as can be seen from Fig. 6. The results of

Fig. 6 clearly demonstrate that as long as the threshold value

is not chosen to be too small or too large, the performance of

the semi-blind BBSB-SCE based iterative scheme is not too

sensitive to the value of Th used. Indeed, there exists a wide

range of values for Th, which allow our scheme to approach

the optimal performance of the perfect-CSI case even without

increasing the number of turbo iterations.
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Fig. 7: MSE convergence performance of the channel estimator
in our proposed semi-blind joint BBSB-SCE and three-stage turbo
receiver using a block-of-bits selection threshold of Th = 1.0.

The MSE performance of the channel estimator in our

proposed scheme is compared with the CRLB in Fig. 7, where

it can be seen that the MSE of our decision-directed channel

estimate approaches the CRLB, once the number of outer

turbo iterations reaches Iouter = 5 for SNR≥ 5.0 dB. This

corresponds to the BER cliff at SNR≈ 5.0 dB and Iouter = 5
shown in Fig. 4, implying that the decision-directed channel

estimator in our scheme is most efficient for SNR≥ 5.0 dB,

since it approaches the CRLB. However, it can also be seen

that for SNR< 5.0 dB, the MSE of the channel estimate is

degraded. This is expected because for such low SNR values,

the open EXIT tunnel shown in Fig. 3 becomes closed and

hence the BER becomes extremely large. Under such adverse

conditions, a decision-directed channel estimator cannot be

expected to approach the CRLB.

IV. CONCLUSIONS

We have proposed a novel reduced-complexity joint BBSB-

SCE and three-stage turbo detection/decoding scheme for

near-capacity MIMO systems. Unlike the existing methods,

our scheme does not require an extra iterative loop between

the channel estimator and the turbo detector/decoder, since

our BBSB-SCE is naturally embedded in the original three-

stage demapping/decoding turbo loop. This novel arrangement

enables us to reduce the computational complexity substan-

tially. Most significantly, our BBSB-SCE scheme only selects

high-confidence decisions for our soft-decision based channel

estimate. This not only ensures that the complexity of our

channel estimator is several orders of the magnitude smaller

than the existing methods but also enables our proposed

scheme to attain the near-capacity optimal ML performance

of the idealised three-stage turbo receiver furnished with the

perfect CSI, using the same low number of turbo iterations as

the latter, as confirmed by our simulation results.
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