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Abstract

This study investigates the practical importance of several VaR modeling and forecasting issues in the

context of intraday stock returns. Value-at-Risk (VaR) predictions obtained from daily GARCH models

extended with additional information such as the realized volatility and squared overnight returns, are

confronted with those from ARFIMA realized volatility models. The out-of-sample evaluation is based on

a novel difference-in-proportions test that exploits the frequency of individual VaR rejections and a block-

bootstrap unconditional coverage test that is robust to estimation uncertainty and model risk. ARFIMA

models produce better backtesting results than GARCH models but fare worse in terms of independence of

the hits sequence. Encompassing tests further suggest that GARCH and ARFIMA models can be fruitfully

combined to produce more competitive VaR measures. We find evidence that intraday jumps also have

forecasting potential. The techniques are illustrated for a small portfolio of large-cap stocks.
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1 Introduction

Current commercial banks routinely compute and disclose their daily Value-at-Risk (VaR) forecasts of the

expected maximum loss over a target horizon (e.g. 1-day, 1-week) at a given confidence level (e.g. 95%, 99%).

Despite strong criticisms over its mathematical properties, VaR has become the standard measure of market

risk since Basel II.1 Different VaR approaches are available but a common thread underlying most of them is

their reliance on the assumption that returns belong to a location-scale family which implies that VaR is a linear

function of the volatility. Relatively simple conditional volatility models in the GARCH class alongside Gaussian

or Student-t quantiles remain widely used by banks for daily VaR prediction; e.g. see the recent RiskMetrics

methodology (Zumbach, 2007). By assuming that the returns distribution belongs to the location-scale family,

there is a direct mapping between volatility forecasts and VaR predictions.

The last decade has witnessed growing theoretical and empirical interest in model-free measures of volatility

based on intraday prices. Special efforts have been devoted to try to improve the forecasts from GARCH models

based on daily returns by exploiting intraday information. The main rationale for these efforts is that the

squared return is an extremely noisy (albeit unbiased) estimator of ex post volatility. Several studies show that

augmenting the daily GARCH model with the so-called realized variance (RV), or the sum of intraday squared

returns, affords volatility forecast improvements in a statistical sense (MSE or Mincer-Zarnowitz criteria); see

Martens (2001), Blair et al. (2001), Engle (2002) and Koopman et al. (2005) and Fuertes et al. (2009),

inter alios.2 Galbraith and Kisinbay (2002) illustrate that 1-day-ahead forecasts from AR models fitted to RV

outperform those from GARCH in a MSE sense. Another interesting contribution is Gallo’s (2001) analysis

of the overnight news content for daily volatility prediction in the context of 20 large-cap NYSE stocks. By

augmenting GARCH models with the squared overnight returns he demonstrates that the after-trading-hours

‘surprise’ has some conditional volatility forecasting potential according to the MAE criteria but rather less

1A critical overview of the Value-at-Risk approach and the Basel II Capital Accord is provided by Sollis (2009) together with

examples illustrating the need to develop improved estimation techniques and backtesting procedures.
2Several other non-parametric volatility measures based on intraday data have been developed in the theoretical literature,

partly, in an attempt to mitigate the bias introduced by market microstructure frictions (bid-ask bounce, screen fighting, price

discreteness and irregular trading). Instances are the realized power variation that sums powers of the absolute intraday returns,

realized range or the sum of intraday high-to-low price differences and realized kernel-based variance estimators. We direct the

reader to McAleer and Medeiros (2008) and Andersen et al. (2009) for comprehensive reviews.
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favourable evidence emerges from the RMSE.

There is a recent stream of research on high-frequency volatility modelling for daily VaR prediction. For two

assets, DM/$ and Yen/$, Andersen et al. (2003) show that accurate VaRs can be obtained from a long-memory

vector autoregression for RV coupled with the assumption of Gaussian standardized returns. Brownlees and

Gallo (2010) document for various individual NYSE stocks that multiplicative error models (MEM) for realized

volatility, realized bipower variation, two scale realized volatility and realized kernel produce VaR forecasts

with better coverage properties than the daily return-based GARCH. In Clements et al. (2008) the information

content of intraday FX quotes is exploited through several approaches that include MIxed DAta Sampling

(MIDAS) and Heterogeneous Autoregressive (HAR) models, coupled with different methods to compute quantile

forecasts; simple AR(5) models for RV coupled with Gaussian quantiles are shown to yield quite competitive

VaR predictions. Giot and Laurent (2004) document that VaRs obtained from skewed Student t APARCH

models are as adequate as those from ARFIMAX models fitted to daily realized variance. In a multi-period

VaR forecasting framework, Louzis et al. (2011) run a horserace among daily range, realized range, realized

variance, realized bipower variation, two scale realized variance and implied volatility. The jump-robust realized

bipower variation fares quite well in terms of efficient capital allocation. In a similar vein, Shao et al. (2009)

provide evidence in favor of the realized range compared to the realized volatility for daily VaR forecasting.

This paper contributes to the literature by shedding light on practical issues regarding how to improve

the adequacy of daily VaR predictions in the context of a 7-year sample of intraday prices for a cross-section

of 14 NYSE/Nasdaq stocks. As noted by Campbell et al. (2001) and Chen et al. (2012), inter alios, many

investors are not fully diversified and maintain large holdings of a few individual stocks; hence, the modeling and

forecasting of individual stock (as opposed to market index) volatility is relevant. For this purpose, we consider

three distinct risk modeling approaches: i) The standard GARCH model based on daily returns and augmented

GARCH versions that exploit the overnight returns or intraday-based realized volatilities, ii) Stochastic models

given by ARMA and ARFIMA specifications fitted to logarithmic realized volatilities, iii) A novel näıve equal-

weight combination of standard daily-based GARCH and intraday-based ARFIMA forecasts. As intraday

measures of volatility, we employ the realized variance and realized bipower variation. The latter was proposed
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as an alternative to the former that excludes rare large jumps (i.e. extreme outliers) in the log price process.

To our best knowledge, this is the first analysis that attempts (albeit indirectly) to decompose the degree

of VaR backtesting success into the contributions from modeling the continuous component of log prices and

rare extreme jumps. The quantile of the innovation distribution is estimated primarily from the standard

Gaussian density but the Student-t density (with d.f. parameter estimated from the standardized returns)

is also considered as a robustness check. VaR adequacy is defined both in terms of correct unconditional

coverage and independence of the hits sequence. The present analysis departs from the extant literature in

adopting a novel robustified version of Kupiec’s unconditional backtesting approach, proposed in Escanciano

and Olmo (2011), that is robust to estimation uncertainty and model misspecification. We propose as tool to

assess relative VaR adequacy a ‘panel’ difference-in-proportions (DIP) test that is able to exploit the backtesting

rejection frequencies obtained over a cross-section of time-series returns (i.e., pertaining to different assets). Last

but not least, this is the first study to empirically demonstrate through encompassing tests that the GARCH

(daily return based) and ARFIMA (intraday return based) forecasts contain distinct information.

We find that accounting for the slowly decaying empirical autocorrelations of realized volatility through

long-memory specifications is not crucial since ARMA models perform as well as ARFIMA in terms of VaR

adequacy. Intraday price variation can be useful for daily VaR prediction if appropriately exploited: augmenting

the standard GARCH model with realized volatilities does not improve VaR adequacy but a rather effective

approach is to combine the standard daily GARCH forecasts and intraday-based AR(FI)MA forecasts. This

conclusion stems from robust unconditional coverage and independence tests on the out-of-sample sequence of

hits for each of the stocks and, as a whole for the entire cross-section, using the DIP test. Accounting for rare

large jumps matters for VaR forecasting but it can be accomplished either through an appropriate choice of

realized volatility (e.g. RV that subsumes the jump risks) or through the choice of a fat-tailed density (e.g.

Student t) for the quantile computation.

The rest of the paper is organized as follows. Section 2 presents the risk management framework. Section 3

discusses the empirical results, and a final Section 4 concludes.
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2 VaR Prediction and Backtesting

Our VaR modeling approach builds upon the contributions of Clements et al. (2008) and Brownlees and Gallo

(2010). Let rt be the daily return at time t. The log return is assumed to follow a pure multiplicative process

rt =
√
σ2
t εt with εt ∼ Fε(·), where σ2

t is either a GARCH-type conditional variance of the daily return, a

realized volatility conditional expectation, or a combination of both; the standardized return εt is an iid unit

variance random variable with probability distribution Fε. The VaR of rt is essentially an α-percentage quantile

of the conditional distribution of financial returns given the agent’s information set Ωt−1. Thus the predicted

1-day-ahead VaR, a measure of the maximum 1-day-ahead loss, is computed as

V̂ aRt+1,α ≡
√
σ̂2
t+1(θ̂t)F̂

−1
ε (α), (1)

where θ̂t is a consistent estimator of the parameters required to obtain σ̂2
t+1, and F̂−1ε (α) is an α-quantile

estimate.3 Expression (1) reveals that the adequacy of VaR predictions hinges on two factors: the model chosen

to generate the volatility forecasts, and the assumption made for the α−quantile computation. Since our main

goal is to compare volatility forecasts, for most of the analysis Fε(·) is fixed at the standard Gaussian density but

we also consider, as a robustness check, the unit-variance Student-t density with degrees of freedom parameter

estimated by ML from the standardized returns. The models entertained to obtain σ̂2
t+1(θ̂t) are presented next.

2.1 GARCH and AR(FI)MA Models for Volatility Forecasting

The augmented-GARCH class of models can be formalized as

rt =
√
htεt, εt ∼ iid(0, 1) (2a)

ht = ω +

r∑
i=1

αir
2
t−i +

s∑
j=1

βjht−j + λzt−1 (2b)

where rt are daily returns, zt−1 is an intraday-based volatility predictor, and the lag orders (r, s) selection

criteria is the removal of return volatility clustering according to the ARCH LM test. With λ = 0, equation

(2b) becomes the standard GARCH. The candidates considered for zt−1 are the realized variance (RV), realized

3Our main focus is the 1-day-ahead prediction of downside tail risk (left quantile), that is, the VaR level for long traders who

incur losses when stock prices fall. The 1-day-ahead predictions can be projected several days ahead using any of the existing

approaches in the literature (see e.g., Kaplanski and Levy, 2010; Louzis et al., 2011).
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bipower variation (RBP), or squared overnight returns. Model estimation is either by QML by assuming

Gaussian errors or by ML on the basis of a Student t density.

The realized variance is defined as the sum of squared returns over M intraday (length δ) intervals

RVt ≡
M∑
j=1

r2t,j . (3)

where rt,j ≡ log(Pt,j) − log(Pt,j−1) denotes the jth intraday return on day t. This estimator converges in

probability (as M → ∞) to the quadratic variation process that characterizes the latent true variance, QVt ≡∫ t
t−1 σ

2(u)du+
∑
t−1<j≤t k

2(j), where the first term is the integrated variance (IVt) that reflects the continuous

component of the log price process, and the second term is the discontinuous jump component (Jt). Barndorff-

Nielsen and Shephard (2004; BN-S) define the realized bipower variation as

RBPt ≡
π

2

M∑
j=2

|rt,j | |rt,j−1| . (4)

We use the term “realized volatilities” to refer to both RV and RBP hereafter.4

The ARFIMA modeling framework has been successfully employed in the literature to capture the stylized

slow (less than exponentially) decay in autocorrelations of daily realized volatilities. We adopt it but, instead

of searching for the “best” long-memory specification, we focus on the homoskedastic ARFIMA(1, d, 0) model.5

The conditional variance of the daily return process rt =
√
σ2
t εt is consistently modeled via the ARFIMA model

(1− φL)(1− L)d(st − ω) = et, et|Ωt−1 ∼ iid(0, σ2
e), (5)

which has been shown to be a very good competitor to alternative time series methods of forecasting realized

volatility (e.g. Andersen et al., 2003; Pong et al., 2004; Koopman et al., 2005); st is the daily RV or RBP

sequence, as defined in (3) and (4), in logarithms; ω is the unconditional mean of st, and L is the lag operator

(Lst = st−1). A well-known property of logarithmic realized volatilities is that they are effectively Gaussian;

hence, estimation of the parameters in (5) including d is conducted by exact ML under normal innovations.

4The high-frequency volatility literature has grown considerably over the recent years. On the one hand, alternative measures

have been developed for exploiting intraday information such as the two scale realized variance of Zhang et al. (2005) or the realized

range of Christensen and Podolskij (2007) and Martens and van Dijk (2007). On the other hand, there is a literature that proposes

different approaches to account for the overnight non-trading hours period (e.g., Hansen and Lunde, 2005; Ahoniemi et al., 2012).
5A small literature adds a refinement to capture the volatility of volatility, e.g. Ishida and Watanabe (2009) adopt an ARFIMA-

GARCH for the Nikkei 225 index, and Corsi et al. (2008) introduce the HAR-GARCH model for S&P500 index futures.
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We also consider an ARMA(2,1) specification for the log realized measures following Pong et al. (2004) who

show for the £/$, Yen/$ and DM/$ rates that low order ARFIMA(1, d, 0) and ARMA(2,1) models of log
√
RV

produce forecasts of similar statistical (MSE and Mincer-Zarnowitz R2) accuracy.6 The AR(FI)MA volatility

predictions, R̂V t+1|t, are obtained through the bias-corrected mapping R̂V t+1|t = exp( ̂logRV t+1|t + 1
2 σ̂

2
e,t)

where σ̂2
e,t is the estimated variance. The connection between equation (5) and the conditional volatility σt is

made via the two-step estimation approach put forward by Giot and Laurent (2004) which, effectively, amounts

to setting σ2
t|t−1 = σ2RVt|t−1, i.e. the conditional variance of the daily return process is conceptualized as a

fraction of the realized volatility, and σ2 is a scaling factor that ensures a unit variance for the innovation εt.

2.2 Forecast Combination

The benefits of combining forecasts from a number of preferably distinct methods have been repeatedly demon-

strated; e.g. see Clements and Hendry (2004) for a review. Timmermann (2006) provides a threefold rationale

for why combined forecasts work well in practice: they exploit jointly the information contained in each indi-

vidual forecast; they are less sensitive to possible misspecification of individual forecasting models; and they

average across differences in the way individual forecasts are bedevilled by structural breaks. In this paper, the

interest is in combining conditional variance forecasts with the aim of improving the accuracy of VaRs. Since

our VaR predictions are obtained from a pure scale model, there is an immediate relationship between volatility

forecast combination and VaR forecast combination, given by equation (1). In other words, the volatility fore-

cast combination can be equivalently cast as a quantile (VaR) forecast combination.7 Since forecast combining

is particularly beneficial when the methods that are mixed differ substantially we focus on the two broad classes

here considered, GARCH and AR(FI)MA, to obtain conditional variance forecasts as8

v̂t+1 = wĥt+1 + (1− w)ŝt+1, (6)

6An ARMA(2,1) process can be conceptualized as the aggregation of two AR(1) processes. Using spectral density analysis,

Gallant et al. (1999) show that the sum of two AR(1) processes is able to capture much of the persistence in asset price volatility.
7Alternatively, Giacomini and Komunjer (2005) and Fuertes and Olmo (2012) put forward GMM-based and quantile regression-

based methods to optimally combine quantile forecasts obtained from any approach which can be non-parametric (simulation), semi-

parametric (CAViaR) or parametric (beyond pure scale), including nested VaR models which may be individually misspecified. The

resulting combined VaR is optimal because it meets by construction ex post the correct out-of-sample VaR specification condition.
8The approach of combining conditional volatility forecasts and mapping them onto a conditional VaR prediction via (1) builds

on the implicit assumption that the shape of the demeaned returns standardized by ĥt+1 and ŝt+1 is approximately identical.
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where 0 < w < 1 is a deterministic weight; we adopt w = 0.5. Equally-weighted forecast combinations

occupy a special place in the literature having stood out as quite effective; for a recent survey and application

see, respectively, Timmermann (2006) and Patton and Sheppard (2009). One motivation for GARCH and

AR(FI)MA model averaging in the present context is that it offers a simple but novel way of incorporating

intraday price variation into daily VaRs. Prior to this exercise, various encompassing regressions and Wald tests

are utilized to provide formal empirical evidence that justifies this model combination.

2.3 Robust Daily VaR Backtesting

Theoretically, a correctly specified α-th conditional VaR model of an asset or portfolio returns rt is defined as

P (rt ≤ V aRt,α | Ωt−1) = α, almost surely (a.s.), α ∈ (0, 1), ∀t ∈ Z, (7)

a conditional moment restriction that has been used extensively in the VaR literature; see, for instance, Escan-

ciano and Olmo (2011) and references therein. At an empirical level, given a target or nominal probability level

α, the VaR model is considered to be adequate iff the out-of-sample hits or exceedances sequence associated

with the VaR forecasts, defined as It+1,α(θ0) ≡ 1(rt+1 ≤ V aRt+1,α) for t = R, ..., T − 1, exhibits both correct

unconditional coverage and serial independence. This condition reads as follows

{It+1,α(θ0)} is iid Bernoulli(α) for some θ0 ∈ Θ, t = R, ..., T − 1 (8)

where Bernoulli(α) stands for a Bernoulli random variable with parameter α; this is the implicit “loss function”

for out-of-sample evaluation of VaR forecasts, leading to the so-called unconditional coverage backtesting (H0u :

E[It+1,α(θ0)] = α) and independence backtesting (H0i : {It+1,α(θ0)}T−1t=R is iid). In practice, the knowledge of

the VaR model parameters is rare. Thus we need to replace θ0 by a consistent estimator, denoted θ̂t, yielding

the estimated out-of-sample hits sequence It+1,α(θ̂t) ≡ 1(rt+1 ≤ V̂ aRt+1,α), for t = R, ..., T − 1.

The pioneering Kupiec’s (1995) test to test for correct unconditional coverage assumes {It+1,α(θ0)} ∼ iid

and is based on the standardized sample mean

SP ≡ SP (θ̂P ) =
1√
P

T−1∑
t=R

(It+1,α(θ̂t)− α), (9)
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where {θ̂t}T−1t=R are the volatility model parameter estimates obtained iteratively as the information set Ωt−1

changes and P = T − R is the length of the out-of-sample period. Inferences from (9) typically rely on the

critical values of the asymptotic N(0, α(1− α)) distribution.

Condition (7) is sufficient but not necessary for the correct unconditional coverage and the independence of

the out-of-sample hits sequence. There is a large class of VaR models which are misspecified in the sense that they

do not satisfy (7) but nevertheless they yield an iid sequence of out-of-sample hits with the correct unconditional

coverage probability α, that is, condition (8) is met; this mismatch is known as model misspecification (or model

risk). Escanciano and Olmo (2011) derive the correct asymptotic distribution of Kupiec’s test in the presence of

model risk and estimation uncertainty; the extra terms that arise are too cumbersome to compute in practice.

A block-bootstrap inference approach is suggested as a feasible and effective alternative.

The block bootstrap is an extension of the nonparametric iid bootstrap for serially dependent time series

where the resampling refers to data blocks instead of individual data points. The aim is to construct artificial

(i.e. bootstrap) time series that mimic the dependence structure observed in the original sample. The bootstrap

algorithm is described next. Start by defining a blocks partition of the overall daily returns sample, T = bl,

where b is the block size and l the total number of blocks, {B1, ..., Bl, }, with B1 = {r1, . . . , rb} and so forth.

For each bootstrap iteration j = 1, . . . , B conduct the steps:

1. Generate a block-bootstrap returns sample r∗1,j , . . . , r
∗
T,j , with the same size as the original sample, T =

R+ P , by concatenating the blocks B∗1,j , ..., B
∗
l,j randomly drawn with replacement from {B1, ..., Bl}.

2. Obtain an out-of-sample hits sequence {I∗R+k,j,α}Pk=1 as follows:

(a) Construct a sequence of R-length rolling samples {r∗t,j}
R+k−1
t=k for k = 1, . . . , P .

(b) Obtain the volatility model parameters, θ̂∗R+k−1,j , for each sequential sample k = 1, . . . , P .

(c) Compute the sequence of out-of-sample 1-day-ahead VaR forecasts {V̂ aRR+k,j,α}Pk=1 from which the

hits can be obtained as I∗R+k,j,α(θ̂∗R+k−1,j) = 1(r∗R+k,j ≤ V̂ aRR+k,j,α) for k = 1, . . . , P.
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3. Compute a block-bootstrap version of (9) denoted SbbP,j(θ̂
∗
P,j) ≡ SP (B∗1,j , ..., B

∗
l,j ; θ̂

∗
P,j) as

SbbP,j(θ̂
∗
P,j) =

1√
P

T−1∑
t=R

(
I∗t+1,j,α(θ̂∗t,j)− Īα(θ̂P )

)
(10)

where Īα(θ̂P ) = 1
P

∑T−1
t=R It+1,α(θ̂t) is the average number of out-of-sample exceedances associated with

θ̂t, the rolling parameter estimates from the actual returns sample.

From the centered statistics {SbbP,j(θ̂∗P,j)}Bj=1 one can compute the empirical p-value of Kupiec’s test as9

p̂bbP =
1

B

B∑
j=1

1(|SbbP,j(θ̂∗P,j)| > |SP (θ̂P )|). (11)

Escanciano and Olmo (2011) show that, under certain regularity conditions, a small ratio of out-of-sample

to in-sample observations (P/R < 0.5) is a sufficient condition for estimation risk to become harmless and

therefore, step 1 of the above algorithm can be simplified to random (block) draws from the hits sequence rather

than from the returns sequence, and step 2 is redundant. We employ B = 500 iterations which is shown in

Escanciano and Olmo (2011) to deliver a correctly-sized test with good power properties. Our choice of block

size b is based on Politis et al. (2009) optimal data-driven algorithm.10

Financial regulation backtesting mainly focuses on the unconditional coverage property somehow understat-

ing the relevance of the iid condition (H0i). However, it is possible to find a VaR approach yielding exceptions

(i.e. larger losses than the maximum expected one) which, although adequate in number, happen to adversely

occur over consecutive days; such VaR approach would imply greater stress for the corresponding trading desk

(or bank) than a similar VaR that reports randomly scattered exceedances. Since for a Bernoulli random variable

serial independence is equivalent to serial uncorrelation, it is natural to employ the test statistic

ξP,k ≡
1√
P − k

T−1∑
t=R+k

(It+1,α(θ̂t)− E[It+1,α(θ̂t)])(It−k+1,α(θ̂t−k)− E[It−k+1,α(θ̂t−k)]), k ≥ 1 (12)

in which the expectations are estimated by the average number of the corresponding out-of-sample hits. The

test statistic ξP,k is asymptotically Gaussian with zero mean and variance α2(1− α)2. As shown in Escanciano

and Olmo (2011), the latter is not bedevilled by model risk, only by estimation uncertainty which is nevertheless

negligible for small P/R ratios. In our empirical analysis we deploy ξP,1 ≡ ξP .

9For a detailed discussion on the asymptotic properties of the test as B →∞ (and as P →∞) see Escanciano and Olmo (2011).
10We employ Politis et al.’s (2009) Matlab routine available from Andrew Patton’s website which we gratefully acknowledge. The

optimal b ranges between 30 and 60 across our sample of stocks.
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2.4 Comparing VaR Models

One would wish to assess the statistical significance of differences in VaR adequacy between two risk models of

interest, e.g. GARCH- versus ARFIMA-based VaR, but most of the models entertained above are nonnested

implying that traditional approaches, such as LR tests, cannot be used.11 Our novel test to compare VaR models,

described below, exploits a cross-section of time-series returns {rt,i}Ni=1 since its inputs are the unconditional

coverage (or iid) test p-values obtained over a set of N assets or portfolios. Therefore it can be seen as a ‘panel’

assessment of the relative ability of the VaR measure at hand to satisfy the conditions stated in (8).

Let V1 and V2 denote two competing VaR models. The statistical measure that we propose is a difference

of proportions, p̂V1
− p̂V2

with p̂V1
= 1

N

N∑
i=1

1(p-val SbbP,i(V1)
< c) or p̂V1

= 1
N

N∑
i=1

1(p-val ξP,i(V1) < c), where

p-val SbbP,i(V1)
and p-val ξP,i(V1) are, respectively, the p-value of the unconditional coverage test (11) and the

p-value of the iid test (12) for model V1 over the ith time series of daily returns; we adopt a conservative c = 0.10

significance level to map each cross-section of p-values into a cross-section of 0s and 1s which are subsequently

averaged to obtain an overall adequacy measure or proportion p̂V1
. The difference-in-proportions p̂V1

− p̂V2

enables a formal panel test to compare VaR models. The null hypothesis H0 : pV1
≤ pV2

can be tested via

ΠN,P ≡
√
N

p̂V1 − p̂V2√
p̂V1

(1− p̂V1
) + p̂V2

(1− p̂V2
)
, (13)

against H1 : pV1
> pV2

using the asymptotic N(0, 1) critical values; the subscripts N and P denote that the test

statistic exploits a time series of P daily returns and out-of-sample VaR forecasts across N assets. This test

rests on the assumption that the p-values of the unconditional coverage (or iid) test are independent across the

two VaR models V1 and V2. Seeking to add robustness to the comparative analysis, we also deploy a bootstrap

relative VaR adequacy test Πb
N,P that does not hinge on this assumption since it does not necessitate a closed-

form expression for the variance of the difference-in-proportions p̂V1
− p̂V2

. In order to maintain the dependence

structure between VaR models, each bootstrap sample contains N pairs of the form 1(p-val SbbP,i(V1)
< c), 1(p-

11Christoffersen et al. (2001) propose an elegant nonnested VaR comparison test based on the Kullback-Leibler Information

criterion. However, their approach requires choosing an appropriate set of instrumental variables and adequate estimation of an

unconditional long-run variance, two challenging tasks. Further, their test is ‘univariate’ in that it compares two VaR models

deployed on the returns of a single asset or portfolio. Similarly, Giacomini and Komunjer (2005) propose a conditional forecast

encompassing test for pairs of VaR models using single stocks/portfolios.
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val SbbP,i(V2)
< c) randomly drawn with replacement from the cross-section of i = 1, ..., N assets. For each

bootstrap sample j = 1, ..., B we compute the centered test statistic Πb
N,P ≡

√
N(∆p̂∗ − ∆p̂) where ∆p̂ ≡

p̂V1
− p̂V2

, ∆p̂∗ ≡ p̂∗V1
− p̂∗V2

with p̂V1
defined as above, p̂∗V1

= 1
N

N∑
i=1

1∗(p-val SbbP,i(V1)
< c) and 1∗(·) denotes a

bootstrap observation; likewise, we deploy a relative VaR adequacy test that focuses on the serial independence

(of the hits sequence) using p-val ξP,i(V1) instead to construct p̂V1
and p̂∗V1

.

3 Empirical Results

3.1 Data and Summary Statistics

The analysis is based on high-frequency transaction prices from Tick Data for 14 large-cap NYSE/Nasdaq

pertaining to the financial, industrial, technology, telecommunication and miscelaneous retailer sectors.12 The

7-year sample period 02/01/97 to 02/01/04 amounts to T = 1761 days.13 In order to compute daily realized

volatilities, the official trading interval [9:30am-4:00pm] is divided into M = 78 five-minute subintervals.14 The

price at the start of the jth intraday interval is computed as the average of the close and open prices of intervals

j − 1 and j, respectively. The jth intraday return (on day t) is defined as

rt,j ≡
(

log(pct,j) + log(pot,j+1)

2
−

log(pct,j−1) + log(pot,j)

2

)
, j = 2, ...,M − 1 (14)

where pct,j (pot,j) is the close (open) price of the jth interval; rt,1 ≡
(

log(pct,1)+log(pot,2)

2 − log(pot,1)
)

and rt,M ≡(
log(pct,M )− log(pct,M−1)+log(pot,M )

2

)
are the first and last intraday return. The closing price on day t, denoted

pct,M or simply pct , is defined as the last price observed before 4:00pm; the intraday closing price pct,j is similarly

defined as the last seen tick before the jth 5-min mark. The observed opening price on day t, denoted pot,1 or

pot , is the first price recorded after 9:30am; likewise for pot,j with reference to the 5-min mark j-1.

The aggregation of all intraday returns gives the daily return rt =
∑M
j=1 rt,j = log(

pct,M
pot,1

) = log(
pct
pot

). The

inter-daily (logarithmic close-to-close) return can be decomposed as the sum of the overnight return (previous-

12The stocks were chosen to give wide market coverage in terms of market capitalization and sector representation: American

Express (AXP), AT&T (ATT), Boeing (BA), Caterpillar (CAT), DELL, General Electric (GE), General Motors (GM), IBM, J.P.

Morgan (JPM), KO (Coca-Cola), McDonald (MCD), Microsoft (MSFT), Procter & Gamble (PG) and WAL-MART (WMT)
13The G@RCH 4.2 module (Laurent and Peters, 2004) and ARFIMA package 1.04 (Doornik and Ooms, 2006) for OxMetrics 5

are used in modeling and forecasting. Matlab 6.5 is used for the VaR estimation and backtesting.
14The 5-min grid is the most widely adopted in the empirical literature because it is short enough for the daily volatility dynamics

to be picked up with reasonable accuracy, and long enough for the adverse effects of market microstructure noise not to be excessive.
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day close to open) and the daily return, i.e. log(
pct
pct−1

) = log(
pot
pct−1

) + log(
pct
pot

). As in Liu and Maheu (2009)

and Gallo (2001), the modeling object of interest is the daily return defined as open-to-close logarithmic price

differences excluding the overnight (ON) return. The argument for this choice is twofold. First, this allows

us to complement and extend Gallo’s (2001) analysis, based exclusively on the RMSE and MAE criteria, by

assessing whether the information content in the squared ON return, r2o,t ≡ (log
pot
pct−1

)2, can enhance in a

GARCH framework the adequacy of daily VaR predictions. Second, a practical problem with adopting instead

the inter-daily return as the object of interest is having to determine the weight that r2o,t should deserve in the

realized measures since the ON return is far more volatile than the intraday 5-min returns which would introduce

extra noise. Hansen and Lunde (2005) propose an optimal weighting scheme for incorporating intraday and

overnight information into daily volatility measures. Other studies concerned with the importance of overnight

information in a volatility forecasting framework are Engle et al. (2006) and Ahoniemi and Lanne (2010).

Ljung-Box portmanteau tests confirm the well-known absence of serial correlation in daily stock returns and

the presence of strong volatility clustering. Table 1 reports summary statistics for several daily unconditional

volatility measures. Relative to their mean, the realized volatilities exhibit much smaller dispersion than the

squared daily and overnight returns; RV is the least noisy and the squared overnight return the most noisy. The

mean of RV is invariably higher than the mean of the jump-immune RBP measure. Both realized volatilities

are markedly right-skewed and leptokurtic. In contrast, the (unreported, to preserve space) sample skewness

and kurtosis of logRV and logRBP suggest that their distribution is approximately Gaussian. The skewness of

logRV ranges between 0.0189 (stock PG) and 0.359 (stock MCD) and the kurtosis between 2.969 (stock DELL)

and 4.004 (stock JPM); for logRBP the range is [0.0050, 0.359] and [2.958, 3.903], respectively. The Ljung-Box

statistics indicate that volatility clustering is not a distinctive feature of the overnight returns although this

may be due to their noisiness, i.e. the autocorrelation signal is difficult to pick up, rather than its true absence.

Prior to the ARFIMA modeling of the realized volatilities, we compute the long-memory parameter d using

the Gaussian Semi-Parametric estimator (see Robinson and Henry, 1998). The estimates d̂GSP for RV and

RBP are significantly positive, generally below 0.4. The estimates d̂GSP for logRV and logRBP (unreported, to

preserve space) are closer to the stationarity boundary of 1/2; for instance, for AXP the estimate is 0.401 (RV)
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and 0.414 (RBP), and increases to 0.435 (logRV) and 0.426 (logRBP). Nevertheless, in both levels and logs

none of the estimated long-memory parameters is significantly different from 1/2. The stationarity of realized

volatilities in levels (and logs) is also borne out by the ADF test statistic. Thus our dataset confirms two stylized

facts of daily realized volatilities: covariance stationarity and slow hyperbolic decay of autocorrelations.15

3.2 Out-of-Sample VaR Backtesting

The volatility models’ parameters are updated over rolling windows of length R = 1261 days.16 This forecasting

scheme facilitates 500 out-of-sample daily VaR predictions.17 Tables 2 and 3 summarize the backtesting of daily

VaR predictions when F̂−1ε (α) is a Gaussian quantile at, respectively, the nominal level α = 5% (often adopted

by banks internally) and the mandatory 1% level to set minimal capital requirements.18

We start by examining the role of the overnight surprise. Both the 5% and 1% VaRs suggest that the

simple approach of extending GARCH models with the squared previous-close-to-open overnight return is rather

futile.19 If anything, it adds noise to the VaR prediction by slightly increasing the number of VaR adequacy

rejections regarding correct unconditional coverage (SbbP test) and the iid property (ξasyP test). Another practical

question of interest is whether augmenting the standard daily GARCH model with intraday-based realized

volatilities enhances VaR adequacy. The results indicate that the GARCH-RV or GARCH-RBP models do not

improve VaR adequacy relative to GARCH. Hence, augmenting the standard GARCH equation with realized

volatilities is not an effective way of exploiting intraday data for assessing downside tail risk exposure.

15For all stocks, the unconditional distribution of daily stock returns is fat-tailed with mild skewness. Daily returns scaled by ex

post RV are far closer to Gaussian than GARCH-scaled returns, consistent with the literature (e.g. Andersen et al., 2003). The

average contribution of rare large jumps to the realized variance is 9.8% over trading hours.
16The GARCH equation (2b) for CAT, JPM, KO and MCD has lags r = 2 and s = 1 whereas for all other stocks a GARCH(1,1)

sufficed to absorb the autocorrelation in squared daily returns.
17Several volatility forecast competitions have been based on fixed model parameters over the out-of-sample period (e.g. Ghysels

et al., 2006; Giot and Laurent, 2004; Andersen et al., 2003). However, as illustrated empirically in Clements et al. (2008) and

theoretically argued in Eklund et al. (2009), a rolling-window scheme facilitates some ‘shield’ against abrupt changes in the dynamics

of the volatility process during the out-of-sample period.
18The backtesting procedure enforced by Basel II for market risk VaR boils down to assessing out-of-sample whether the observed

frequency with which daily returns fall below the daily VaR (“exceedances”) exceeds the nominal coverage level; the observed daily

losses can exceed the 99% VaR reported by the institution no more often than once every one hundred days. The capital charge

for market risk for banks using internal models is set at the maximum of the previous day’s VaR and three times (plus a penalty)

the previous 60-day average of the daily VaR. The penalty component seeks to reflect too frequent exceedances.
19In a recent paper, Ahoniemi et al. (2012) compare different modeling approaches to incorporate the overnight period into daily

VaR predictions. For the large cap S&P 500 index, the evidence supports a bivariate framework where separate efforts are devoted

to model the daytime and overnight return processes, and which can also account for the intraday-overnight return covariance.
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Regarding the comparison among the two realized volatility measures, we observe that the empirical coverage

rates for GARCH-RBP and GARCH-RV are very close; on average across stocks the actual 5% VaR coverage is

3.600% for GARCH-RBP and 3.743% for GARCH-RV. The unconditional coverage and iid backtesting outcome

is also very similar for both models. However, it would be too hasty thus to conclude that rare large jumps play

no role in VaR prediction since the augmented GARCH models miss the autocorrelation dynamics of realized

volatilities.20 In fact, a somewhat different picture emerges when facing the choice between ARFIMA(logRV)

and ARFIMA(logRBP): the number of stocks where Īα(%) > α (risk underprediction) with α = 5% is 7 for

ARFIMA(logRV) and increases to 11 for ARFIMA(logRBP); the average empirical coverage probability across

stocks is 5.2% for ARFIMA(logRV) and 5.9% for ARFIMA(logRBP). Moreover, the ARFIMA(logRV) forecasts

appear to outperform the corresponding logRBP forecasts in two senses: the resulting 5% and 1% VaRs pass

more often the unconditional coverage and iid backtesting. Figure 1 (bottom panel) depicts this contrast.

Confronting next the GARCH and ARFIMA frameworks, as illustrated in Figure 1 (top panel), VaR predic-

tions based on GARCH models tend to appear more conservative (downside tail risk appears overstated) than

those associated with ARFIMA models fitted to realized volatilities. This finding together with the fact that the

GARCH framework remains widely used in the financial industry (e.g. J.P.Morgan Riskmetrics can be cast as

a Gaussian IGARCH) squares well with the evidence presented in Pérignon et al. (2006) for several commercial

banks suggesting a tendency to report inflated VaRs.21 The long-memory models of realized volatilities tend to

outperform the GARCH models in terms of correct unconditional coverage backtesting; e.g. the VaR based on

ARFIMA(logRV) forecasts is rejected as inadequate in one case only (stock GM) whereas the GARCH models

tend to produce too few exceedances (Īt+1,α < α). Hence, modeling the dynamics of realized volatility is quite

effective to achieve correct VaR coverage but the use of a long-memory specification does not seem crucial since

the ARMA(2,1) forecasts yield very similar backtesting results. Therefore the genuinely advantageous feature

20In an earlier version of the paper, we also explored the information role of jumps by incorporating the jump variation measure

Ĵt ≡ max{0, (RVt−RBPt)} lagged one day as regressor in the GARCH equation, and Andersen et al.’s (2007) shrinkage refinement

of this jump measure. The resulting VaR backtesting results fail to improve also upon those from the standard GARCH.
21Pérignon et al. (2006) rationalize their evidence on over-conservatism in the banks’ overall market risk VaRs using two different

arguments which do not relate to the volatility modeling framework. One is that banks are deliberately cautious because they do not

want to taint their reputation by reporting too many exceedances. Another is that, by only taking partial account of diversification

across portfolios (and risk classes) some of the offsetting effects are lost, resulting in inflated VaRs.
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of the AR(FI)MA framework is the effective incorporation of intraday information by enabling the realized

volatility forecasts to quickly adapt to changes in the underlying latent volatility process. However, a finding

in favour of the GARCH-based volatility forecasts is that they tend to produce VaRs which satisfy more often

the iid backtesting criteria (ξasyP ). Hence, in terms of coverage rates the most competitive VaRs come from the

ARFIMA(logRV) forecasts which outperform the (augmented) GARCH forecasts. But the GARCH-based VaR

framework is better able to filter out the serial dependence in the hits sequence which may indirectly suggest

that it is more reactive to actual P&L shocks. These findings provide prima facie evidence that GARCH and

AR(FI)MA forecasts exhibit complementary ‘skills’ from the point of view of VaR adequacy which points to

the potential usefulness of forecast combining. This issue is formally examined in Section 3.3.

3.3 Exploiting Intraday Returns Through Forecast Combination

We run encompassing tests formally to corroborate that there is distinct information in the GARCH and

ARFIMA volatility forecasts which can be usefully combined. A typical approach adopted in the literature is

to run a regression of the observed data on the competing forecasts, in our context this is

ENC1: σ̃2
t = ϕ0 + ϕ1ĥt + ϕ2ŝt + e1,t, (15)

where ŝt is the forecasted daily variance conditional on information up to day t− 1 using the ARFIMA(logRV)

model, ĥt is the forecasted variance using the daily GARCH model and σ̃2
t is the ‘actual’ or realized daily

variance proxied by the sum of intraday 5-min squared returns. The practice of forecast combination implicitly

acknowledges the possibility of model misspecification. We seek to combine the ‘best’ models considered within

the GARCH and AR(FI)MA classes. Following the parsimony principle, the standard GARCH is chosen because

it was not outperformed by any of the augmented GARCH models. ARMA and ARFIMA forecast performance

proved very similar but on the basis of the d̂GSP estimates discussed in Section 3.1 we opted for the latter.

Within the ARFIMA class, the forecasting properties of ARFIMA(logRV) proved somewhat superior to those of

ARFIMA(logRBP) as noted earlier. Forecast ĥt encompasses forecast ŝt when the parameter restriction (ϕ0 ϕ1

ϕ2) = (0 1 0) holds. Conversely, if forecast ŝt encompasses forecast ĥt we have (ϕ0 ϕ1 ϕ2) = (0 0 1). A potential

problem with the above encompassing regression (hereafter, ENC1) is the multicollinearity arising from the high
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correlation between the two sets of forecasts. In our sample, the correlation between standard GARCH and

ARFIMA(logRV) forecasts ranges across stocks from a low of 55.13 (stock CAT) to a high of 91.69 (stock GM)

with mean and median equal to 78.58 and 79.92, respectively. As an ad hoc solution to this problem, following

Timmermann (2006) we implement a more general test of the hypothesis that ŝt encompasses ĥt by fitting

ENC2: σ̃2
t − ŝt = γ0,1 + γ1ĥt + e2,t (16)

and testing that γ1 = 0; likewise, to investigate whether ĥt encompasses ŝt we test for γ2 = 0 in σ̃2
t − ĥt =

γ0,2 + γ2ŝt + et. To make our inferences more robust, we also deploy the encompassing test suggested by Fair

and Shiller (1990) based on the first-difference regression

ENC3: ∆σ̃2
t = η0 + η1(ĥt − σ̃2

t−1) + η2(ŝt − σ̃2
t−1) + e3,t (17)

that relates the actual changes to the predicted changes from the two competing models. On this basis, we

conduct a Wald test for the restriction (η1, η2) = (1, 0) pertaining to the hypothesis that ŝt contains no

information relevant to predict σ̃2
t not already contained in the constant term and in ĥt; conversely, the restriction

(η1, η2) = (0, 1) is tested to falsify the hypothesis that ĥt contains no information relevant to predict σ̃2
t not

already contained in the constant term and in ŝt. The main motivation for ENC3 is that the regressand is less

persistent than that in ENC1. Table 4 sets out the OLS coefficient estimates and p-values of Wald type tests

for the above restrictions. All inferences are based on the Newey-West h.a.c. covariance matrix. Although the

constraint ϕ1 +ϕ2 = 1 is not imposed in (15) the ϕ̂1 and ϕ̂2 estimates often sum quite reasonably close to one.

Overall there is evidence that none of the two forecasts clearly dominates the other.

Thus motivated we compute VaRs based on the combination of GARCH and ARFIMA(logRV) forecasts

through a model averaging approach corresponding to w = 0.5 in (6). The results in Table 5 are rather

encouraging despite the näıve equal-weighting nature of our approach. VaR adequacy is virtually supported for

all stocks with both the unconditional coverage SbbP and independence ξasyP tests. One key message from these

findings is that the informational value of realized volatility-based ARFIMA forecasts becomes more apparent

when it is combined with daily return-based GARCH forecasts. Augmenting GARCH with realized volatilities

did not materialize in VaR adequacy improvement. However, combining forecasts from GARCH models fitted
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to daily returns and AR(FI)MA models for logRV yields more adequate VaR predictions for several stocks than

any of them individually in terms of both correct coverage and independence of the hits sequence.

3.4 Testing for Relative VaR Adequacy

The comparison of risk models thus far has relied on observations about the backtesting results for the individual

sampled stocks. But how does one statistically decide between two VaR models V1 and V2? The statistic ΠN,P

outlined in Section 3.4 is useful should a risk manager want to perform a pairwise (nonnested) VaR comparison

testing across a set of assets/portfolios or classes of risk. It provides a formal way to gauge ‘relative VaR-

adequacy’ or model ranking in terms of two desirable properties for the hits sequence: correct unconditional

coverage and serial independence. In order to gather evidence that is robust to cross-section dependence (across

forecasting models) and sample size (N = 14 stocks in our application), the discussion focuses on the bootstrap

Πb
N,P test with B = 500 iterations. Table 6 sets out the results.

The comparison testing results, in general, square well with our earlier observations. Regarding the uncon-

ditional coverage property, for instance, the ARMA(logRV) forecasts are preferred to the GARCH forecasts as

suggested by the p-value=0.058 (95% VaR) and p-value=0.084 (99% VaR) in the first row of Table 6. Predom-

inantly for the 95% VaRs, the vast majority of the significant pairwise statistics are located in the top-right

area of the table; this outcome formally corroborates our initial observation that forecasts from the (augmented)

GARCH family of models tend to produce inferior VaR adequacy relative to the AR(FI)MA forecasts in terms of

unconditional coverage backtesting. Table 7 pertains to the comparison based on the iid property; it shows most

of the significant cases in the bottom-left area suggesting that forecasts from the (augmented) GARCH family

of models tends to yield superior VaR adequacy than the AR(FI)MA forecasts in terms of independence of the

hits sequence. In both tables and particularly so with regard to the unconditional coverage criteria (Table 6),

there is a striking contrast between the large number of rejections reported in the last column and the invariably

insignificant test statistics in the bottom row; this pattern is a reflection of the overall superior adequacy of

the VaR model based on combined GARCH-ARFIMA forecasts. The less reliable asymptotic p-values of the

pairwise comparison tests are quantitatively (and in some cases, qualitatively) different but the above picture
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can be seen broadly to remain, particularly, for the 95% VaRs.

3.5 Predicting VaR with Fat-Tailed Densities

As a robustness check, we now re-conduct the ‘horse race’ relying on the Student-t family for the quantile F̂−1ε (α)

computation. This choice instead of the skewed counterpart densities obeys the non-rejection of the symmetry

null for the standardized returns distribution on the basis of Delgado and Escanciano’s (2007) nonparametric

conditional test. To illustrate this finding graphically, we plot in Figure 2 for four stocks the kernel smoothed

finite-sample density of rt/ĥ
1/2
t and rt/ŝ

1/2
t corresponding to the first estimation window, t=1,...,1261 days,

where ĥt and ŝt are the in-sample GARCH and ARFIMA(logRV) volatility forecasts, alongside the N(0,1) and

standardized Student-t density with d.f. parameter estimated by ML. The plots reveal negligible asymmetries.22

A controversial empirical question is whether Student t quantiles add accuracy to VaRs relative to Gaussian

quantiles.23 In order to address this question it is key to confront again the results from the two realized volatility

measures, RV and RBP. The answer from our analysis, summarised in Figure 1 (bottom panel), is: yes and no.

Mostly for the 99% VaRs, the unconditional coverage properties associated with ARFIMA(logRBP) forecasts

together with Student-t quantiles show improvements relative to the Gaussian framework (likewise, for the

unreported GARCH-based VaRs). However, this improvement is virtually absent in the ARFIMA(logRV)-based

VaRs and this may relate to the fact that the RV measure fully incorporates the intraday jump contribution.

Indirectly, our empirical analysis provides an answer to the question: how do rare but large jumps manifest

themselves in daily VaR predictions if they are ignored? The estimated d.f. from the standardized returns are

almost invariably smaller for the ARFIMA(logRBP), 8 on average and ranging between 5 and 11, than for the

ARFIMA(logRV) forecasts, 12 on average and ranging between 7 and 22. This result is in line with the fact that

extreme occassional jumps are fully accounted for in the logRV measure and so the standardization of returns

based on ARFIMA(logRV) forecasts brings them closer to Gaussianity. Relatedly, the differences previously

22A complete set of density plots and test results are available from the authors upon request. The VaR measures in this section

are obtained from (1) using as d.f. parameter for the Student t quantile computation the estimated parameter using at each point

in time the available sample at the time, day t, the forecast is made. Thus the forecast, V̂ aRt+1,α, is strictly out of sense.
23Andersen et al. (2003) conclude that accurate daily VaRs for DM/$ and Yen/$ returns can be obtained from long-memory AR

models for realized volatility alongside Gaussian quantiles. Clements et al. (2008) document that simple models such as AR(5)

fitted to
√
RV together with Gaussian quantiles yield good VaRs for currencies. In contrast, Giot and Laurent (2004) strongly

advocate the use of Skewed Student t quantiles for VaR prediction in the context of the CAC40, S&P500 and two currencies.
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observed in terms of VaR backtesting between the forecasts from ARFIMA fitted to logRBP and logRV (i.e.

the superiority of the latter over the former) coupled with Gaussian quantiles are virtually absent now, possibly

because the task of accounting for jumps is also given to the ‘freely estimated’ fat tails of the Student-t density.

Table 5 also bears this out by showing that the VaR backtesting results of combined GARCH-ARFIMA(logRV)

forecasts alongside Gaussian quantiles remain virtually unchanged by using Student-t quantiles.

The upshot is that, by adopting the standard Gaussian density for the quantile estimation, F̂−1ε (α), a

larger role is left to the volatility forecasts in capturing rare but large jumps for accurate VaR prediction.

Put differently, the use of a Student-t density with freely estimated d.f. parameter from the standardized

returns for the quantile computation inexorably obscures the link (relatively to the Gaussian case) between the

importance of incorporating the intraday jumps in daily volatility measurement and VaR adequacy. Therefore it

appears that from the lens of VaR backtesting one can choose either to pay more “attention” into the volatility

measurement (e.g. choosing an appropriate realized measure such that forecasts based on it delivers near

Gaussian standardized returns) or to the quantile computation using non-Gaussian distributions.

4 Conclusions

This paper examines in a robust backtesting framework the practical importance of several issues with a view

to improve the adequacy of daily VaR predictions. Two novel aspects of our VaR validation framework are

that it deploys a block-bootstrap version of Kupiec’s unconditional coverage test which is robust to estimation

uncertainty and model misspecification, and that it proposes a panel test for differences in VaR adequacy

between models. The ‘horse race’ includes two distinct classes of volatility models: GARCH specifications

based exclusively on daily returns and extensions thereof with squared overnight returns or intraday-based

realized volatilities, and AR(FI)MA specifications fitted directly to the realized volatilities in order to capture

their slowly-decaying autocorrelation dynamics.

Our findings suggest that GARCH augmentation with lagged realized volatility does not enhance VaR ade-

quacy, vis-à-vis the standard daily return-based GARCH, possibly because in this framework the autocorrelation

dynamics of realized volatility is not explicitly modeled. ARMA or ARFIMA models outperform GARCH in
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terms of VaR coverage backtesting but, regarding the serial independence of the hits sequence, GARCH fore-

casts lead to superior backtesting results than AR(FI)MA. This mixed picture prompts the thought that forecast

combining may be fruitful. Combination of forecasts from both classes of models, GARCH and AR(FI)MA,

is further motivated formally through various encompassing tests. To the best of our knowledge, this is the

first study to highlight the merits of forecast combination from standard GARCH fitted to daily returns and

AR(FI)MA fitted to logarithmic realized variance as a way of subsuming intraday information into VaRs. A

näıve model averaging approach produced rather satisfactory VaR backtesting, in terms of both coverage and

independence. There is evidence that daily realized variance forecasts together with the assumption of Gaussian

standardized returns are as effective, from the viewpoint of VaR adequacy, as volatility forecasts from models

that neglect rare large intraday jumps but are coupled with quantiles from appropriate fat-tailed Student t

densities. In future research it might be fruitful to dig deeper into forecast combining issues in a VaR context.
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Ī α
(%

)
2
.4

0
0

0
.6

0
0

1
.0

0
0

0
.4

0
0

0
.2

0
0

0
.6

0
0

0
.6

0
0

0
.8

0
0

1
.0

0
0

0
.8

0
0

0
.8

0
0

0
.2

0
0

1
.4

0
0

1
.0

0
0

p
-v
a
l
S
b
b
P

0
.0

4
0

0
.3

6
9

0
.8

2
8

0
.0

1
4

0
.0

0
0

0
.3

6
6

0
.3

6
6

0
.4

6
8

0
.8

2
8

0
.4

2
6

0
.6

0
4

0
.0

0
0

0
.5

5
0

0
.8

2
4

p
-v
a
l
ξa
s
y

P
0
.1

9
2

0
.9

3
5

0
.8

2
1

0
.9

7
1

0
.9

9
3

0
.9

3
5

0
.9

3
5

0
.8

8
5

0
.8

2
1

0
.8

8
5

0
.0

0
0

0
.9

9
3

0
.6

5
7

0
.8

2
1

G
A

R
C

H
a
u
g
m

e
n
te

d
w

it
h

R
B

P
t−

1
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ŝ t

a
re

th
e

o
n
e-

d
ay

-a
h
ea

d
v
o
la

ti
li
ty

fo
re

ca
st

s
u
si

n
g
,

re
sp

ec
ti

v
el

y,
th

e
G

A
R

C
H

m
o
d
el

a
n
d

th
e

A
R

F
IM

A
(l

o
g
R

V
)

m
o
d
el

.

p
-v

a
lu

es
in

b
o
ld

d
en

o
te

‘n
o

en
co

m
p
a
ss

in
g
’.

N
ew

ey
-W

es
t

h
.a

.c
.

st
a
n
d
a
rd

er
ro

rs
a
re

u
se

d
.

29



T
a
b
le

5
.

U
n
co

n
d
it

io
n
a
l

co
v
er

a
g
e

a
n
d

se
ri

a
l

in
d
ep

en
d
en

ce
b
a
ck

te
st

in
g

o
f

V
a
R

s
b
a
se

d
o
n

G
A

R
C

H
a
n
d

A
R

F
IM

A
(l

o
g
R

V
)

co
m

b
in

ed
fo

re
ca

st
s.

A
T

T
A

X
P

B
A

C
A

T
D

E
L

L
G

E
G

M
IB

M
J
P

M
K

O
M

C
D

M
S
F

T
P

G
W

M
T

G
a
u
ss

ia
n

q
u
a
n
ti

le
-b

a
se

d
9
5
%

V
a
R
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Figure 1. The top panel displays the percentage of daily VaR exceedances over a time-series of 500 days. The 
bottom panel depicts the proportion of VaR adequacy rejections across 14 stocks. 

Gaussian quantiles Student t quantiles 

95% 

95% 

99% 

99% 

95% 

95% 

99% 99% 

33



GARCH volatility

ARFIMA(logRV) volatility

Figure 2. Density functions of returns standardized by GARCH and ARFIMA(logRV)forecasts: American Express

(AXP; Financial), British Airways (BA; Industrial), IBM (Technology), Procter & Gamble (PG; Consumer Goods).
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