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Abstract

This paper shows the conditions under which endogeneity of a regressor variable does not

affect threshold nonlinearity tests. Inference on the values of the parameters derived from

standard statistics is also appropriate. Simulation techniques are used to approximate the p-

value of the test. Monte Carlo simulations confirm the validity of Wald tests in the presence of

endogeneity in the regressors.
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1 Introduction

Threshold models are simple yet efficient methods to capture nonlinearities in cross section and

time series models. They split the sample into classes based on the value of observed variables

according to threshold values. The theory of estimation and inference in threshold models with

exogenous regressors has been extensively studied in the classical papers of Chan and Tong (1986),

Chan (1993) and Hansen (1996,1997,2000). Consider a simple threshold nonlinear regression model

yt = xtβ1 + I(zt > δ)xtβ2 + ut, (1)

where δ is the threshold defined on the variable z over a compact set ∆ ⊂ R. Nonlinearity tests are

based on the hypothesis that HO : β2 = 0. The most interesting case is when the threshold value δ

is not known and must be estimated. There is an inherent statistical difficulty associated with this

problem. For instance, conventional tests of the null of a linear model against the alternative have

nonstandard distribution, since the threshold parameter is not identified under the null of linearity

(see Hansen, 1996).

Caner and Hansen (2004) extend this test to make allowance for endogeneity of x but assume

that the threshold variable is exogenous, i.e., E[zu] = 0, and extend Hansen’s (1996,1997,2000)

results to this case. However, as the authors note, “it may be desired to treat the threshold

variable as endogenous (...), [and this] would be a substantially different model and would require

a distinct estimator” (Caner and Hansen, 2004, p.814). Moreover, finding reliable instrumental

variables may be a futile task in empirical settings. In fact, in many applications the threshold

variable is zt = xt, such as in the self-exciting threshold autoregressive models where xt = yt−1.

Therefore, in this paper we consider the model,

yt = xtβ1 + I(xt > δ)xtβ2 + ut, (2)

where E[xtut] 6= 0, i.e., x is an endogenous variable. In a standard linear model with β2 = 0,

the endogeneity of x will make the OLS estimator of β1 inconsistent. However, we show that

this general endogeneity model, where the threshold variable is the endogenous one, produces no
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distortions in the Hansen (1996,1997,2000) threshold nonlinearity tests for a large family of joint

distributions describing the relationship between the explanatory variables and the error term. This

is the Pearson family of distributions that includes as particular cases the multivariate Normal and

t-Student distributions. The conclusion thus is that under these conditions there is no need to

pursue two-stage least squares instrumental variables strategies to obtain correct size and power

for these tests.

This paper is organized as follows. Section 2 presents the effect of endogeneity on threshold non-

linearity tests and derives the main asymptotic results. Section 3 reports Monte Carlo experiments.

Section 4 concludes.

2 Wald tests for threshold nonlinearity under endogeneity

Consider a sample of size n of {yt, xt, ut}nt=1, satisfying equation (2) and E[xtut] 6= 0. Define

x1t = xt and x2t = I(xt > δ)xt and xt(δ) = (x1t, x2t).

Consider the following assumptions:

Assumptions A1-A4:

A1: (yt, xt) is strictly stationary, ergodic and ρ-mixing, with ρ-mixing coefficients satisfying
∑∞

m=1 ρ
1/2
m <

∞; ut is a martingale difference sequence with respect to the sigma-algebra determined by

the set of all available information up to time t− 1.

A2: δ lies in a compact set ∆ ⊂ R, and β ≡ (β1, β2) ∈ int B, with B compact and convex;

A3: E[|xt|2+ε] <∞ with | · | the absolute value function;

A4: 1
n

∑n
t=1 xt(δ1)xt(δ2)

′ and 1
n

∑n
t=1(xt(δ1)ut)(xt(δ2)ut)

′ converge almost surely to E[xt(δ1)xt(δ2)
′]

and E[(xt(δ1)ut)(xt(δ2)ut)
′], respectively, uniformly over δ1, δ2 ∈ ∆. Further, assume that

E[xt(δ)xt(δ)
′] > 0 for all δ ∈ ∆.

These assumptions are common in the regime switching literature. A1 and A3 guarantees that

the process is stationary and that the series satisfies Hansen’s (2000) Assumption 1.1. A2 imposes
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that δ lies on a compact set. This assumption was used by Hansen (1996). A4 is equivalent to

Assumption 3 in Hansen (1996) and it guarantees that the probability limit of these expressions

exists for every δ. This assumption will be relevant for obtaining the asymptotic distribution of

the nonlinearity Wald test discussed later in the section. The assumption shows that the empirical

covariance function of the Wald test statistic converges uniformly almost surely to the covariance

function of a zero-mean Gaussian process.

Let the capital letters (Y,X1, X2, U) denote the sample vectors containing the n observations

for each variable. Simple OLS orthogonal projections algebra shows that

β̂2 = (X ′2M1X2)
−1(X ′2M1Y ), (3)

where M1 = In −X1(X
′
1X1)

−1X ′1. Using the definition of Y = X1β1 +X2β2 + U gets

β̂2 = β2 + (X ′2M1X2)
−1(X ′2M1U). (4)

Consider now the last factor,

1

n
X ′2M1U =

1

n
X ′2U−

1

n
X ′2X1(X

′
1X1)

−1X ′1U =
1

n

n∑
t=1

x2tut−

(
1

n

n∑
t=1

x2tx1t

)(
1

n

n∑
t=1

x21t

)−1(
1

n

n∑
t=1

x1tut

)

=
1

n

n∑
t=1

I(xt > δ)xtut −

(
1

n

n∑
t=1

I(xt > δ)x2t

)(
1

n

n∑
t=1

x2t

)−1(
1

n

n∑
t=1

xtut

)
. (5)

Then, under assumptions A1-A4, the following convergence in probability holds:

1

n
X ′2M1U

p→ E[xu|x > δ]P [x > δ]− E[x2|x > δ]P [x > δ](E[x2])−1E[xu]

= P [x > δ]
{
E[xu|x > δ]− E[x2|x > δ](E[x2])−1E[xu]

}
. (6)

The last expression determines whether the endogeneity in x has an effect on the estimation of

β2, and thus, whether it affects a test for threshold nonlinearities. Note that the last expression

may indeed be close to zero for a broad range of (x, u) bivariate distributions. For instance, if we
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assume that x and u follow a bivariate normal distribution with zero means, unit variances, and

correlation ρ (= E[xu]). Then, E[xu|x > δ] = ρE[x2|x > δ]. In this case,

E[xu|x > δ] = E[x2|x > δ](E[x2])−1E[xu]. (7)

In fact, this condition can be also satisfied for all bivariate random variables in the Pearson family

of distributions, such as the bivariate t-Student, where truncated moments can be expressed this

way and (7) is satisfied (see Lee, 1984, p.847). In practice, of course, the distribution of (x, u) is

not known. However, condition (7) is indeed satisfied for a large set of distributions.

We have explored the case of a single regressor xt defining the threshold nonlinearity. The above

results can be generalized under certain conditions to the following multivariate regression model

characterized by an endogenous variable, xt, that also defines the threshold nonlinearity, and wt, a

set of exogenous variables:

yt = xtβ1 + w′tγ1 + I(xt > δ)xtβ2 + I(xt > δ)w′tγ2 + ut.

For simplicity, we assume that both xt and wt have zero mean, although the result below can be

also obtained if the model has a constant term. The design matrix X is now defined as Xt =

(xt wt I(xt > δ)xt I(xt > δ)wt) with partitions X1t = (xt wt), X2t = (I(xt > δ)xt I(xt > δ)wt) and

define X1 = (x1 w1) and X2 = (x2 w2). The aim is to show the consistency of the OLS estimators of

β2 and γ2 under the presence of an endogenous threshold variable. The difference with the previous

case is the additional parameter γ2; the OLS estimator is consistent if the following asymptotic

condition is satisfied:

(X ′2M1U) = [X ′2U ]− [X ′2X1(X
′
1X1)

−1X ′1U ]
p→

 0

0

 .

The first term is such that

X ′2U
p→

 E[xu|x > δ]P [x > δ]

E[wu|x > δ]P [x > δ]

 .
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For the second term, our assumptions imply that

X ′1U
p→

 E[xu]

0

 .

Define the probability limit of the elements of the matrix (X ′2X1) as (axx, axw, awx, aww), that is,

1

n
(X ′2X1) =

 axx axw

awx aww


and the probability limit of the elements of the matrix (X ′1X1)

−1 as (bxx, bxw, bwx, bww). Then,

X ′2X1(X
′
1X1)

−1X ′1U
p→

 (axxbxx + axwbwx)E[xu]

(awxbxx + awwbwx)E[xu]


and the consistency condition becomes

 E[xu|x > δ]P [x > δ]− (axxbxx + axwbwx)E[xu]

E[wu|x > δ]P [x > δ]− (awxbxx + awwbwx)E[xu]


Two cases need to be considered here. First, assume that xt and wt are independent, which

(together with the mean zero condition) implies that E[wu|x > δ] = 0 and awx = axw = bwx = 0.

In this case, the second row in the asymptotic condition is zero and the study of the endogeneity is

equal to the univariate regression model discussed above. Second, if xt and wt are not independent,

then the endogeneity in xt will have an effect in the estimation of γ2. For this case, the effect of

having endogeneity depends on the particular distribution of the triple (xt, wt, ut).

Now, we turn to the analysis of the nonlinearity test. To do this we discuss the effect of the

endogeneity of xt in the variance of the parameter estimators. For simplicity, we concentrate on

the univariate regression model and, in particular, on β̂2. The variance of the parameter estimator

is

V [
√
nβ̂2] = E

[(
X ′2M1X2

n

)−1 (X ′2M1U)(X ′2M1U)′

n

(
X ′2M1X2

n

)−1]
. (8)
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If we further assume homoscedasticity of the error term, this variance can be estimated by

V̂n =

(
X ′2M1X2

n

)−1 1

n

n∑
t=1

û2t , (9)

with ût the residuals of regression equation (2).

The linearity of model (2) is reflected in the null hypothesis HO : β2 = 0. In order to be able to

implement this test under endogeneity of the regressor, condition (7) needs to be satisfied. The null

hypothesis HO can be tested using a Wald type test that reduces in the univariate case to a t-test.

For the multivariate regression model the null hypothesis would be HO : β2 = γ2 = 0 implying an

F-test. Thus, for the univariate case the Wald test is

W = n
(β̂2)

2

V̂n
= t2

β̂2
. (10)

From the formulas above it follows that if δ is known and (7) holds, the t-test tβ̂2 is asymptotically

standard normal under HO.

The most interesting case, however, is when the threshold value δ is not known and must be

estimated. There is an inherent statistical difficulty associated with this problem. For instance,

conventional tests of the null of a linear model against the alternative have nonstandard distribution,

since the threshold parameter is not identified under the null of linearity (see Hansen, 1996). In

order to test the hypothesis we need to test the significance of the β2 parameter for every δ ∈ ∆ (a

compact set on R). Consider β̂2(δ) and V̂n(δ), where the dependence on δ is made explicit. Now

define the Wald statistic as

W (δ) = n
(β̂2(δ))

2

V̂n(δ)
= t2

β̂2
(δ). (11)

Now, W (.) is a process on δ and the test statistic is some functional of it, supremum and exponential

average tests are usually considered. The former method also provides a candidate of the threshold

parameter and the second defines an optimal test, as discussed by Andrews and Ploberger (1994).

As in Hansen (1996), we approximate the asymptotic distribution of these tests by simula-

tion techniques. Under assumptions A1-A4 and HO, the distribution of W (δ) can be approxi-
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mated by the distribution of an auxiliary process W ∗(δ) =
((X′2M1X2/n)−1S∗n(δ))

2

V̂n(δ)
, with S∗n(δ) =

1√
n

∑n
t=1 I(xt > δ)xtûtvt the score function of (2), where û is the residual sequence of this regres-

sion equation and (v1, . . . , vn)′ is an i.i.d. vector of standard normal random variables. Then, under

HO,
√
nβ̂2(δ) = (X ′2M1X2/n)−1S∗n(δ) + op(1). The auxiliary process W ∗(δ) can be simulated by

obtaining independent vectors v to compute independent replicas of W ∗(δ).

3 Monte Carlo Simulation Studies

This section implements the p-value transformation of Hansen (1996) for a nonlinearity test under

exogeneity and endogeneity. Consider the following data generating processes:

DGP1: yt = xtβ1 + u1t,

DGP2: yt = xtβ1 + u2t,

DGP3: yt = xtβ1 + I(xt > δ)xtβ2 + u1t,

DGP4: yt = xtβ1 + I(xt > δ)xtβ2 + u2t.

The random errors u1t and u2t are i.i.d. and mutually independent. The regressor xt is defined

as xt = ρu2t +
√

1− ρ2wt, with wt an i.i.d. random variable mutually independent of u1t and u2t.

This implies that DGP1 and DGP3 are defined by exogenous regressors and DGP2 and DGP4 by

endogenous regressors. For DGP1 and DGP3 the error term u1 is such that E[xtu1t] = 0 since

E[u1tu2t] = 0, by construction. For DGP2 and DGP4, if ρ 6= 0 it follows that E[xtu2t] = ρσ2u2 6= 0

with σ2u2 the variance of u2t, by construction of the regressor xt.

We consider three distributions. First, a multivariate normal case where u1, u2, w ∼ i.i.d.N(0, 1).

Second, a multivariate t-Student case where u1, u2, w ∼ i.i.d. t2 and t3. In these cases, except

for the t2, β̂2 = β2 + op(1) because (7) is satisfied. Finally, a mixture of distributions where

u1, u2 ∼ i.i.d. (χ2
3 − 3)/

√
6 and w ∼ i.i.d.N(0, 1). In this case β̂2 6= β2 + op(1) given that (7) is not

satisfied. We set β1 = β2 = 1 and ρ = 0.5. The support of the threshold parameter δ (defined above
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as ∆) is set to cover 90% of the endogenous regressor domain. We use the supremum and exponen-

tial average test statistics from the Wald-based p-value transformation method discussed above,

using 200 replications. We repeat the Monte Carlo simulation 500 times in each case for sample

sizes in n = 100, 200, 500, 1000. Finally we also consider three nominal sizes, α∗ = 0.10, 0.05, 0.01,

and report the empirical size for each case.

[TABLE 1 ABOUT HERE]

Table 1 reports the empirical size for the multivariate normal case. Note that for both DGP1

and DGP2, the exponential average Wald tests achieve empirical size close to its nominal level,

while the supremum Wald tests produces considerably small rejection rates. A more detailed look

to the simulations show that the supremum test has a nonconservative size for all sample sizes and

the exponential average appears the closest to their nominal rejection probabilities. In line with

Andrews and Ploberger (1994) the latter method should be preferred to carry out this type of tests.

Moreover, the exponential average provides better power in DGP3 and DGP4, although both tests

are consistent. In all cases, we observe that the presence of endogeneity in x does not affect the

tests for nonlinearities.

[TABLE 2 ABOUT HERE]

[TABLE 3 ABOUT HERE]

Tables 2 and 3 report the simulation results for the multivariate t2 and t3 distributions, respec-

tively. In the first case, the variance of β̂2(δ) does not exist, provided that this distribution has

infinite second moments. The size distortions produced by this distribution are of importance for

small n, but they are considerably reduced for large n. Better size results are observed for the

t3 case. As in the normal case, the exponential average test appears the closest to their nominal

rejection.

[TABLE 4 ABOUT HERE]
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Table 4 reports the simulation results for the mixture of distributions where (7) is not satisfied.

Note that even in this case, there are considerable differences between DGP1 and DGP2. As

expected, DGP2 produces unacceptable size distortions, and the empirical rejection rates increse

with n. This confirms the fact that condition (7) is necessary for the validity of the threshold

nonlinearity tests based on (2).

4 Conclusion

This article shows that for the Pearson family of distributions endogeneity of the regressor vari-

able does not produce distortions of associated nonlinearity tests based on self-exciting processes.

Otherwise, the parameter estimator corresponding to the nonlinear component is biased and incon-

sistent. We show via a Monte-Carlo experiment this statistical phenomenon for different simulated

processes.

The conclusions of this paper suggest that nonlinearity tests can be performed under the stan-

dard OLS with exogenous regressors paradigm under very general conditions, and complements

the results of Caner and Hansen (2004).
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Table 1: Bivariate normal

DGP1.000 DGP2 DGP3 DGP4
α∗ = 0.10

n=100 sup 0.024 0.018 0.634 0.732
expave 0.114 0.132 0.882 0.928

n=200 sup 0.012 0.014 0.910 0.966
expave 0.118 0.122 0.988 1.000

n=500 sup 0.008 0.014 1.000 1.000
expave 0.078 0.092 1.000 1.000

n=1000 sup 0.016 0.008 1.000 1.000
expave 0.086 0.070 1.000 1.000

α∗ = 0.05
n=100 sup 0.014 0.012 0.534 0.668

expave 0.084 0.080 0.840 0.884
n=200 sup 0.010 0.006 0.874 0.952

expave 0.074 0.076 0.976 0.998
n=500 sup 0.002 0.010 1.000 1.000

expave 0.026 0.052 1.000 1.000
n=1000 sup 0.006 0.004 1.000 1.000

expave 0.062 0.044 1.000 1.000

α∗ = 0.01
n=100 sup 0.004 0.002 0.360 0.504

expave 0.026 0.024 0.646 0.744
n=200 sup 0.004 0.000 0.756 0.886

expave 0.018 0.022 0.894 0.960
n=500 sup 0.000 0.000 1.000 1.000

expave 0.010 0.018 1.000 1.000
n=1000 sup 0.002 0.002 1.000 1.000

expave 0.020 0.012 1.000 1.000
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Table 2: Bivariate t2

mixture of two t distr with 2 dof
DGP1.000 DGP2 DGP3 DGP4

α∗ = 0.10

n=100 sup 0.046 0.126 0.998 0.496
expave 0.206 0.184 1.000 0.578

n=200 sup 0.022 0.096 1.000 0.504
expave 0.162 0.120 1.000 0.550

n=500 sup 0.014 0.098 1.000 0.608
expave 0.184 0.098 1.000 0.622

n=1000 sup 0.016 0.076 1.000 0.682
expave 0.162 0.076 1.000 0.688

α∗ = 0.05
n=100 sup 0.028 0.112 0.992 0.466

expave 0.182 0.150 1.000 0.534
n=200 sup 0.018 0.082 1.000 0.460

expave 0.126 0.096 1.000 0.498
n=500 sup 0.006 0.084 1.000 0.576

expave 0.164 0.092 1.000 0.594
n=1000 sup 0.008 0.070 1.000 0.652

expave 0.138 0.074 1.000 0.658
α∗ = 0.01

n=100 sup 0.012 0.076 0.986 0.374
expave 0.094 0.094 0.996 0.434

n=200 sup 0.006 0.056 1.000 0.350
expave 0.072 0.058 1.000 0.384

n=500 sup 0.004 0.062 1.000 0.478
expave 0.082 0.068 1.000 0.496

n=1000 sup 0.004 0.042 1.000 0.574
expave 0.074 0.042 1.000 0.586
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Table 3: Bivariate t3

DGP1.000 DGP2 DGP3 DGP4
α∗ = 0.10

n=100 sup 0.020 0.092 0.966 0.562
expave 0.160 0.154 0.994 0.668

n=200 sup 0.018 0.046 1.000 0.678
expave 0.156 0.082 1.000 0.750

n=500 sup 0.022 0.028 1.000 0.836
expave 0.122 0.040 1.000 0.852

n=1000 sup 0.016 0.036 1.000 0.904
expave 0.122 0.042 1.000 0.910

α∗ = 0.05
n=100 sup 0.016 0.070 0.954 0.492

expave 0.126 0.120 0.986 0.628
n=200 sup 0.014 0.034 1.000 0.626

expave 0.126 0.058 1.000 0.716
n=500 sup 0.014 0.022 1.000 0.810

expave 0.092 0.028 1.000 0.826
n=1000 sup 0.008 0.026 1.000 0.884

expave 0.080 0.032 1.000 0.892
α∗ = 0.01

n=100 sup 0.008 0.036 0.916 0.370
expave 0.058 0.060 0.966 0.468

n=200 sup 0.002 0.014 1.000 0.508
expave 0.040 0.030 1.000 0.558

n=500 sup 0.002 0.012 1.000 0.734
expave 0.032 0.018 1.000 0.760

n=1000 sup 0.000 0.016 1.000 0.828
expave 0.030 0.016 1.000 0.832
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Table 4: Mixture of χ2
3 and normal

DGP1 DGP2 DGP3 DGP4
α∗ = 0.10

n=100 sup 0.018 0.244 0.628 0.962
expave 0.130 0.430 0.856 0.988

n=200 sup 0.020 0.430 0.902 1.000
expave 0.110 0.630 0.988 1.000

n=500 sup 0.016 0.840 1.000 1.000
expave 0.100 0.944 1.000 1.000

n=1000 sup 0.016 0.988 1.000 1.000
expave 0.096 0.996 1.000 1.000

α∗ = 0.05
n=100 sup 0.006 0.186 0.554 0.920

expave 0.086 0.334 0.794 0.974
n=200 sup 0.010 0.352 0.854 1.000

expave 0.076 0.526 0.968 1.000
n=500 sup 0.012 0.770 1.000 1.000

expave 0.078 0.886 1.000 1.000
n=1000 sup 0.012 0.984 1.000 1.000

expave 0.068 0.992 1.000 1.000
α∗ = 0.01

n=100 sup 0.002 0.080 0.398 0.800
expave 0.018 0.162 0.618 0.890

n=200 sup 0.002 0.190 0.718 0.992
expave 0.028 0.292 0.898 0.996

n=500 sup 0.002 0.580 1.000 1.000
expave 0.018 0.680 1.000 1.000

n=1000 sup 0.006 0.940 1.000 1.000
expave 0.018 0.964 1.000 1.000
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