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Fisher and Regression
John Aldrich

Abstract. In 1922 R. A. Fisher introduced the modern regression model,
synthesizing the regression theory of Pearson and Yule and the least squares
theory of Gauss. The innovation was based on Fisher’s realization that the
distribution associated with the regression coefficient was unaffected by the
distribution ofX. Subsequently Fisher interpreted the fixedX assumption in
terms of his notion of ancillarity. This paper considers these developments
against the background of the development of statistical theory in the early
twentieth century.
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INTRODUCTION

In the 1920s R. A. Fisher (1890–1962) created mod-
ern regression analysis out of two nineteenth century
theories: the theory of errors of Gauss and the theory of
correlation of Pearson. Although much has been writ-
ten about these theories, the synthesis has not really
been noticed.

Fisher is generally credited with having completed
the distribution theory of the theory of errors, the last
phase in “the historical development of the Gauss lin-
ear model” (cf. Seal, 1967). However, associated with
his t andF theory was a reconception of regression.
Regression had belonged, not to Gauss’ univariate the-
ory of errors, but to the multivariate theory of correla-
tion. Fisher’s reconception rested on two innovations:
the normal linear regression specification that, condi-
tional on thex ’s, y is normally distributed with its
expectation linear in thex ’s, and the notion that for in-
ference thex values could be treated as fixed. Histori-
ans have passed over the reconception. For Seal (1967,
page 16) it was restoration: “with Fisher (1922a) the
sampling theory of regression equations returned to the
Gaussian model.” For Hald (1998, page 616) it was
seeing the obvious: the statisticians who worked on the
multivariate theory “did not realise that their regression
analysis was a version of the linear model and the lin-
ear estimation theory.” Yet the realization did not come
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easily, or at all, to the statisticians who lived through
the change—Karl Pearson, Yule and Gosset—and how
could the theory return to where it had never been?

The account below begins before Fisher and fol-
lows the new regression from its emergence in the
1920s to Fisher’s last presentation of the theory more
than 30 years later. Section 1 describes the situa-
tion in Britain in 1900; I emphasize Britain because
the situation was different elsewhere as Hald (1998)
makes clear. In Britain there was an almost moribund
univariate theory and a new and thriving multivari-
ate theory. There was work to do in the multivariate
theory—on goodness of fit and inference about regres-
sion coefficients—but there was no sign that solving
these problems would lead to a reverse in which the
univariate theory would take over much of business of
the multivariate theory. These challenges and Fisher’s
responses are described in Sections 2–4. Fisher went
on to put his idea of regression to a broader audi-
ence in hisStatistical Methods for Research Workers
(Fisher, 1925a). The new unified theory relied on the
argument that the distribution of the test statistics is
the same whether thex ’s are fixed or random. Continu-
ing research on the multivariate theory of regression—
notably by M. S. Bartlett (1910–2002)—supported the
argument. Sections 5 and 6 describe the new idea of
regression and the continuing work on the old.

In the late 1930s, after Fisher had added a condi-
tional inference chapter to his theory of estimation,
a new idea about the legitimacy of fixedx analy-
sis appeared: thex ’s provide “ancillary information”
about regression coefficients. Sections 7–10 follow
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this development. Bartlett again made an important
contribution: he was the first to write about the re-
gression/ancillarity connection—in 1936. In Fisher’s
last engagement with fixedx regression—discussed in
Section 11—regression is pressed into the campaign
against Neyman’s emphasis on “repeated sampling
from the same population.” Section 12 has some com-
ments on the entire story and on where we stand now.
First, though, there is a sketch of the theories Fisher
unified; for further details see Seal (1967), Stigler
(1986), Aldrich (1995, 1998, 1999), Hald (1998) and
Farebrother (1999).

1. THE NINETEENTH CENTURY BACKGROUND

The theory of errors or the “Gauss linear model”
had been devised for combining astronomical obser-
vations. Using modern notation, equations from dy-
namical theory (θ = Xβ) connect the nonstochastic
θ andX with β, a vector of unknown quantities. The
elements ofX are observed, but not those ofθ ; a vec-
tor of measurementsy deviates fromθ by the vector
of unobserved errors,ε. In Gauss’ (1809) first treat-
ment the error vector is distributedN(0, σ 2I ) and
the least squares estimate is the mode of the poste-
rior of β obtained from a uniform prior. For Karl
Pearson (1857–1936) and Fisher—the main protago-
nists of the regression story—this combination of spec-
ification and inference procedurewas the theory of
errors,was Gauss; see Aldrich (1997, pages 162–164).
Neither referred to Gauss’ second proof—without nor-
mality and treated by the Gauss–Markov theorem—
although Pearson used books that presented it. The
proof had come to Britain in the nineteenth century, but
in its second coming it was called the Markoff theorem
in Neyman (1934).

Extensions of the error theory setup in which the el-
ements ofX might also be measured with error or the
elements ofθ might be points in space were developed,
but they did not become an essential part of the teach-
ing. The theory of errors was also applied to fitting
empirical formulae. Merriman’s (1884/1911) textbook
(the least squares reference for Pearson and Yule) gives
many examples; thex values are either time trends
or quantities selected by the scientist—for example,
recorded depth and depth squared in an equation for
water velocity (Merriman, 1884/1911, page 131)—not
values of observational variables. Surprisingly, per-
haps, the application of least squares to observational
data appears to have begun only in the correlation era.

Multivariateness was essential to Galton’s (1877)
normal autoregressive process of reversion and his

bivariate normal correlation (Galton, 1886). In devel-
oping these specifications Galton used distributional
results from the theory of errors but not its inference
theory. Edgeworth (1893) applied least squares theory
to the estimation of the correlation coefficient when
he took a weighted average of the ratiosy/x, treating
thex values as nonrandom. However, as Stigler (1986,
page 321, 2001) noted, Edgeworth gave no justifica-
tion for this procedure and dropped it when Pearson’s
approach arrived.

Pearson (1896) and Pearson and Filon (1898) ap-
plied a large-sample Bayesian argument to the para-
meters of the multinormal data density, including the
regression and partial regression coefficients; the ar-
gument probably derived ultimately from Gauss (see
Aldrich, 1997, page 170, 1993 and Hald, 1999). The
formulae for the regression coefficients and their prob-
able errors were the same as those for least squares
values, although the difference in derivation and no-
tation obscured the fact. If Pearson had noticed and
investigated the point, the modern Bayesian rational-
ization of regression analysis—as in Gelman, Carlin,
Stern and Rubin (1995, page 235)—might have ar-
rived in the nineteenth century. Instead Pearson empha-
sized the differences between the theory of correlation
and the theory of errors. Pearson (1920, pages 25–27)
described how the theories have different domains—
theX andy of Gauss’ theory arenot correlated—and
multinormality enters in one theory as the (posterior)
distribution ofβ and in the other as the distribution of
the observables. Pearson was not dissatisfied with his
large-sample results, but he was dissatisfied with the
underlying assumption of normality, so he worked on a
theory of skew correlation to complement his (Pearson,
1895) theory of skew curves; see Section 2 below.

In the Introduction I described the normal linear re-
gression specification as one of Fisher’s innovations.
Seal (1967, page 15) described how Pearson (1896)
was aware that conditional normality could hold with-
out joint normality, in particular when the values of
the conditioning variables are selected. Furthermore,
Seal mentioned Pearson’s “On the reconstruction of
the stature of prehistoric races” (Pearson, 1899), which
presents a regression formula for the most probable
value of an organB given the values of other organs
A1, . . . ,An. However, in the 1896 paper Pearson does
not provide any inference theory for those nonnormal
cases and in the 1899 applied paper he does not use
any inference theory. Fisher made the regression spec-
ification central and provided an inference theory for
it.
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G. U. Yule (1871–1951) also wanted to escape from
multinormality. His work needs close examination be-
cause it looks like Fisher’s regression analysis with-
out the small-sample refinements. Yule’s use of least
squares in regression, his inventiveness in least squares
technique and his interpretations of causal relation-
ships have been lovingly detailed by Stigler (1986,
pages 348–353) and Aldrich (1995, 1998). Yet Yule did
not make a transforming contribution to the inference
theory of regression. His (Yule, 1897, pages 813–817)
way of going beyond the multinormal specification was
to point out that the regression curve of conditional ex-
pectations existed in any multivariate population and to
choose linear least squares for estimating this curve for
“convenience of analysis.”All Yule took from the the-
ory of errors was the idea of least squares and the state-
ment of the first-order conditions for a minimum. He
took no further inference theory nor did he devise any,
which is not surprising, because to apply the method
of Pearson and Filon, Yule’s (1897, 1907) authority on
inference, would require a parametric form for the joint
density and he did not have one.

Yule’s (1899) major empirical paper shows how his
regression methods anticipated the Fisher synthesis
and how his theory did not. He used least squares with-
out reservation—seeing the regressors as not normal—
but he presented the Pearson and Filon normal the-
ory probable errors, warning “so far as they are valid
for these cases of nonnormal correlation” (Yule, 1899,
page 277). Yule did not develop his idea of regression
and it appears unchanged in his textbook (Yule, 1911).
His regression work began to have an influence only
around the time of the Fisher synthesis, for example,
in Tolley and Ezekiel (1923). His use of least squares
may have influenced Fisher, but the latter’s theory drew
on Pearson (1896, 1916), Slutsky (1913) and textbook
Gauss.

Stigler’s history ends on a least squares high with a
“second great synthesis” (Stigler, 1986, page 360), but
Yule’s intuitions had limited influence and elsewhere
least squares was under pressure. Pearson (1902a) ar-
gued that the method of moments was superior in curve
fitting and Pearson (1900, 1902b) argued that observa-
tional errors in astronomy arenot normally distributed.
In early twentieth century Britain the theory of errors
was applied and taught—to Fisher with spectacular
consequences!—but there was no sustained theoretical
research. Students of biometry and statistics were not
taught the theory of errors. The textbooks mentioned
least squares for the sake of the mathematician reader
but did not expound least squares or presuppose it. The

Edgeworthian Bowley (1901, page 284) mentioned
least squares twice, noting that his way of rationaliz-
ing his estimate of the modulus of the normal distribu-
tion came from that literature and remarking (Bowley,
1901, page 177) that least squares might be used to ob-
tain a relationship between the marriage rate and for-
eign trade. The Pearsonian Elderton (1906, page viii)
skipped least squares because “the range of its applica-
bility is so limited that there is a growing tendency to
put it aside in curve fitting.” Yule (1911, page 233)
mentioned the method of least squares, but did not sug-
gest the reader study it. Meanwhile Pearsonian notions
were entering courses for astronomers on the com-
bination of observations as in Brunt (1917, Chapters
IX and X). There were a few harbingers of Fisher’s
Gauss revival. Student’s (1908a) problem of the “prob-
able error of the mean” belonged to the theory of errors,
although it was written for Pearson’s journal and in his
language; see Aldrich (2003). Student was also apply-
ing the theory of errors to agricultural experiments, as
was Fisher’s tutor, the astronomer F. J. M. Stratton; see
E. S. Pearson (1990, page 47). However, the most pow-
erful force—Pearson’s laboratory—was being applied
in a different direction.

2. THE TWENTIETH CENTURY: REGRESSION AND
GOODNESS OF FIT

At the beginning of the twentieth century Yule had
moved on to other aspects of covariation—to associa-
tion and, eventually, to time series analysis. The only
continuing regression project was Pearson’s, and his
nonlinear regression generated the first of the problems
that Fisher solved—the testing of goodness of fit.

Pearson (1923) reviewed the years of struggle to
develop a “general theory of skew correlation and
nonlinear regression” based on a surface relating to
univariate skew curves as the multinormal surface re-
lates to the normal curve. In earlier days he (Pearson
1905, Section 4) had generalized Yule and presented
the regression curve, admitting that the full theory of
skew correlation surfaces “has not yet been worked
out owing to difficulties of analysis, and their com-
plete discussion must be postponed.” Pearson did not
write down a specification for the regression curve, but
something very commodious is implied, say

Y = µ(X) + ε(X),

where the regression curveµ(X) = E(Y |X) may be
linear, quadratic, . . . or quartic. My symbolε(X)

marks the possibility that the distribution of the de-
viation can vary withX; in particular, skewness and
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scedasticity can vary. The data onX are grouped and
consist of repeated values ofx—an array—with asso-
ciated values ofy. If Yp is associated withxp andµp is
its expected value, then the regression curve ofy on x

expresses the relationship betweenµp andxp. There
arenp replicates ofxp, where the numbersnp are ran-
dom variables. Pearson does not restrict the distribu-
tion of Yp aroundµp and he certainly did not want to
assume the normal homoscedastic case. Blyth (1994)
presents Pearson’s project and his data analysis from
the perspective of Bjerve and Doksum’s (1993) theory
of correlation curves.

Pearson (1905, Section 4) gave a string of proposi-
tions that led up to the probable error of the “corre-
lation ratio,” a measure of correlation that in the case
of linear regression equals the correlation coefficient.
Pearson proposed testing for linearity by comparing
the two quantities and Blakeman (1905) developed the
suggestion. Pearson did not give probable errors for
the regression coefficients that are to be estimated by
the method of moments.

A goodness of fit test was provided by E. E. Slutsky
(1880–1948), an economist correlator in Kiev, remem-
bered today for his work on probability and stochas-
tic processes; see Seneta (1988) for a brief biography.
Slutsky (1913) proposed aχ2 test for the skew corre-
lation setup. The test was a contribution to the Pearson
regression project and used Pearson’s (1900)χ2 test,
yet its assumption of normality was a departure from
Pearson’s practice. Pearson’sχ2 ventures involved the
multinormal, but as an approximation to the multino-
mial, not as a data distribution in its own right: normal-
ity, even conditional normality, was not acceptable.

To formulate Slutsky’s test, denote byyp the mean
of they ’s associated withµp and byep the deviation
of yp from its expected valueµp. Appealing to one of
Pearson’s propositions, Slutsky stated that the standard
deviation ofep is given byσp/

√
np, whereσp is the

standard deviation ofy in thepth array. Appealing to
another, he states, “Now it is known that there is no
correlation between the deviations in the mean of an
x-array and in the mean of a secondx-array.” Slutsky
altered Pearson’s specification, retaining heteroscedas-
ticity but assuming that eachYp is normally distributed
around the appropriateµp. Slutsky concluded that the
quantity

χ2 = ∑ np(yp − µp)2

σ 2
p

is distributed as chi squared with the number of degrees
of freedom equal to the number of arrays. In the test
statistic, estimates replace unknowns.

The first of Slutsky’s examples is the cubic Pearson
(1905, Section 9) fitted to the height and age of 2272
girls classified into 20 age groups. The other is a lin-
ear relationship fitted to 124 observations classified
into 11 groups on the price of rye in pairs of adjacent
months (the first fitting of an autoregressive model to
time series data?). Whereas the numbers in the groups
are small, heteroscedasticity cannot be established, so
for this case Slutsky reworked the test assuming ho-
moscedasticity.

Pearson reacted to Slutsky’s procedure first (Pearson,
1914, page xxxii) by offering a “word of caution” and
then by setting out his own ideas in a 1916 paper.
Pearson (1916, page 256) warned that “very fallacious
results” can be reached by Slutsky’s test. Pearson crit-
icized the presumption of normality, but adopted the
assumption nevertheless. He was content with replac-
ing population quantities with sample quantities, but
considered Slutsky’s replacements unsatisfactory. In
the case of a random array size, theσp/

√
np quantity

could be improved on, but Pearson (1916, page 248)
had a more general objection: Slutsky’s arbitrary prac-
tice of estimatingσp andnp from data on thepth array
but estimatingµp from all the data—all the quanti-
ties should be estimated from all the data. The re-
alized valuenp is replaced by an estimate obtained
from fitting a distribution to thex values, andσp is
estimated from the entire sample by using the het-
eroscedasticity relationship betweenσp andx. Com-
promises are necessary when working with Slutsky’s
price data (Pearson, 1916, pages 250–253), but the full
scheme is demonstrated on the abundant height/age
data (Pearson, 1916, pages 253–256).

The Pearson archives at University College Lon-
don have a letter from 1912 in which Slutsky outlined
his test but not Pearson’s reply. Slutsky told Pearson
that “quite analogous” would be a criterion to be ap-
plied to the physical sciences for testing whether a
given system of measurements can reasonably be sup-
posed to correspond to a certain functional relation-
ship. Slutsky’s published paper does not consider this
application and restricts itself to observational (statis-
tical) data. However Pearson’s (1916) “On the applica-
tion of ‘goodness of fit’ tables to test regression curves
and theoretical curves used to describe observational
or experimental data” considered both and rejected any
analogy.

Pearson (1916, page 256) wrote of the physicist who
makes a few measurements of a variateA for each of
a series of a variateB: “there is no question in the
ordinary sense of a frequency surface.” For Pearson
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there was an essential difference between the physi-
cal and the statistical cases: in the former, the num-
bers in each array are nonstochastic. For the category of
“physical, technical and astronomical measurements,”
Pearson’s (1916, pages 256–258) procedure is the same
as Slutsky’s except thatσp is estimated by a different
method. Pearson (1916, page 247) remarked, “It is sin-
gular that the goodness of fit theory can actually be ap-
plied with greater accuracy to test physical laws than to
test regression lines.” Presumably the reasoning behind
Slutsky’s analogy was the same as Fisher later gave—
that the distribution of the test statistic is the same. To
judge from the 1913 paper, Slutsky was not as deeply
immersed in the theory of errors as Fisher.

3. FISHER ON THE FIT OF REGRESSION
FORMULAE

Fisher’s first years at Rothamsted were spectacu-
larly productive; see Box (1978, Chapters 3–5) and,
for Fisher more generally, Aldrich (2003–2005). In
1922 he was working onχ2 theory, agricultural me-
teorology, genetics, the theory of estimation and the
analysis of variance—projects which were more inter-
related than they may sound; there are sketches of some
of them in Fienberg and Hinkley (1980). Regression
goodness of fit was a minor division ofχ2 theory. Work
in another division brought Fisher recognition from the
statisticians because Bowley and Yule were both dis-
satisfied with Pearson’s contingency table theory. The
regression work, however, made no immediate mark; it
was not mentioned in the new editions of the Bowley
and Yule textbooks.

The main business of the paper (Fisher, 1922a) “The
goodness of fit of regression formulae, and the distrib-
ution of regression coefficients” was to sort out the re-
gression goodness of fit issue. Fisher’s core model was
the normal linear regression model: conditional on the
x ’s, y is normally distributed with its expectation linear
in thex ’s. Expressed in modern notation the goodness
of fit analysis uses

y ∼ N(Xβ,σ 2I ),

where theN rows ofX (thex ’s may be powers of some
underlying variable) comprisea distinct vectors, the
pth of which is replicatednp times, wherenp is ran-
dom. Fisher focusses on the homoscedastic version of
Slutsky’s statistic, namely

χ2 = ∑ np(yp − µp)2

σ 2 .

Fisher treated explicitly only the statistical case of ran-
domn’s, though it is obvious that the results also hold
for the physical case. The key step is establishing the
distributions of the components of theχ2 statistic.
Fisher (1922a, page 598) wrote:

For such samples ofnp, therefore, the mean,
yp, will vary about the same meanmp

[my µp], and since this mean ofyp is in-
dependent of the number in the array,mp

[my µp] will be the mean of all values ofyp

from random samples, however the num-
bernp may vary.

Fisher took
√

np(yp − µp) to be normal with mean
zero and standard deviationσ , so the numerator of
Slutsky’s statistic wasσ 2 times aχ2. Whenµp has to
be estimated, a degrees of freedom adjustment is neces-
sary; in this regression setup there is the further distri-
butional complication associated withs2 replacingσ 2

in the test statistic,

χ2 = ∑ np(yp − µ̂p)2

s2 .

The estimates2 is obtained by combining the within-
array estimates ofσ 2. The combining rule is based on
a marginal maximum likelihood argument;s2 has aχ2

distribution with N − k degrees of freedom. Fisher
derived the exact distribution of the test statistic and
identified it as a Pearson Type VI curve—as distinct
from the Type III, which is appropriate whenσ 2 is
known. When Fisher (1924–1928, page 812, 1925a,
pages 214–218) presented the test in the format of
analysis of variance, he introduced the numbers of de-
grees of freedom associated with the deviation of the
array mean from the formula and rescaled the statis-
tic to becomeF(a − k,N − k). Statistical Methods
for Research Workers (Fisher, 1925a) has tables for
z = 1/2 lnF . Hald (1998, Section 27.6) has a more de-
tailed discussion.

Fisher compared his statistic with Slutsky’s and with
Pearson’s statistic for the experimental case. The point
he stressed was that neither Slutsky nor Pearson ad-
justed the degrees of freedom for the estimated para-
meters; the need for such an adjustment was the theme
of hisχ2 work (see, e.g., Fisher, 1922c and the discus-
sions by Lancaster, 1969, Chapter 1, Fienberg, 1980
and Hald, 1998, Section 27.4). It is very clear that for
Fisher the observational and experimental cases should
not be treated differently. For example, he (Fisher,
1925a, page 607) comments on the limitation of the
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analysis to the case of groups ofy-values that cor-
respond to identical values ofx: “little statistical or
physical data is strictly of this kind although the for-
mer may in favourable cases be confidently grouped,
so as to simulate [this] kind of data.” When he illus-
trated the method inStatistical Methods (Fisher, 1925a,
Example 42 of Section 44 in all editions), it was for
a (nonrandomized) experiment on the influence of tem-
perature on the number of eye facets in drosophila.

4. THE DISTRIBUTION OF REGRESSION
COEFFICIENTS

Fisher’s treatment of the first topic of “The good-
ness of fit of regression formulae, and the distribution
of regression coefficients” (1922a) was an incremental
improvement, a resolution of a disagreement in the lit-
erature. The second topic also arose from the multivari-
ate theory—from his own paper (Fisher, 1915) on the
exact distribution of the correlation coefficient and ul-
timately from Pearson (1896)—but the treatment came
out of nowhere.

The story of how Gosset asked Fisher for the re-
gression counterpart of the 1915 result and how a
new role for Student’s (1908a) distribution was found
is familiar from Box (1978, page 115), Eisenhart
(1979, pages 7–8), E. S. Pearson (1990, page 48) and
Lehmann (1999, pages 420–421). In April 1922 Gosset
wrote (letter 5 of McMullen, 1970):

I want to know what is the frequency distri-
bution of rσx/σy for small samples, in my
work I want that more than ther distribution
now happily solved. . . .

Apparently Fisher sent his answer by return and then
included it in the goodness of fit paper. In a letter
from 1954 (see Bennett, 1990, page 214) Fisher refers
to applying the principle used in treating the goodness
of fit test to the distribution of regression coefficients.
In fact he never answered Gosset’s question because
his (Fisher, 1922a, page 598) “exact solution of the dis-
tribution of the regression coefficients” proved to be the
distribution of the regression coefficientt-ratio, to use
modern (post-1925) terminology.

Fisher’s argument belongs to the theory of errors and
follows now-familiar lines; see Seal (1967, page 17).
In the simple case with which he began the depen-
dent variabley is normally distributed with expecta-
tion a + b(x − x) and standard deviationσ . The “co-
efficientsa andb are calculated by the equations”

a = y, b =
∑

y(x − x)∑
(x − x)2 .

The assumption thatx is given slips out when Fisher
(1922a, page 608) notes that “a andb are orthogonal
functions, in that given the series ofx observed, their
sampling variation is independent.” Fisher gives only
the derivation of the Student distribution associated
with the parameterα, but he states the results for all the
coefficients in multiple regression. It may be worth re-
marking on the notational innovations here, for exam-
ple, the use of Greek and Latin letters for statistics and
parameters; for more on this theme see Aldrich (2003)
or Miller (1999–2005) (continuing)Earliest Uses of
Symbols. . . .

Everything in Fisher’s paper—apart apparently from
the argument—indicates that Fisher was talking about
regression as it had been traditionally understood: the
language of “regression coefficients,” the bundling
with the regression goodness of fit test, the refer-
ence (Fisher, 1925a, page 612) to “agricultural me-
teorology,” wherex ’s are weather variables (as in
Hooker, 1907), and finally the emphasis in the state-
ment (Fisher, 1925a, page 611), “the accuracy of the
regression coefficients is only affected by the corre-
lations which appearin the sample,” which makes no
sense unless there is a population ofx ’s.

Gosset was gratified by Fisher’s extension of his
(Student, 1908a) distribution, but he was not con-
vinced. Through 1922 he kept asking for the marginal
distribution forb; in November he told Fisher that the
proof of the distribution ofb is limited to “given x

andσx .” Fisher’s replies have not survived, but Fisher
(1925c) contains an answer. Fisher (1925c, page 96)
begins his derivation of the distribution of thet-ratio,
emphasizing that he is “confining attention to samples
having the same value ofx.” The work done, he reflects
(Fisher, 1925c, page 99):

The quantity t involves no hypothetical
quantities, being calculable wholly from the
observations. It is the point of the method,
as of ‘Student’s’ original treatment of the
probable error of the mean, to obtain a quan-
tity of known distribution expressible in
terms of the observations only. If we had
found the distribution ofb for samples vary-
ing in the values ofx observed, we should
have been obliged to express the distribu-
tion in terms of the unknown standard devi-
ation σx in the population sampled; more-
over sinceσx is unknown, we should have
been obliged to substitute for it an esti-
mate based onS(x − x)2; the inexactitude
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of the estimate would have vitiated our so-
lution, and required us to make allowance
for the sampling variation ofS(x − x)2; fi-
nally this process, when allowance had been
accurately made would lead us back to the
‘Student’s’ distribution found above. The
proof given above has, however the advan-
tage that it is valid whatever may be the dis-
tribution of x, provided thaty is normally
and equally variable in each array, and the
regression ofy on x is linear in the popula-
tion sampled.

While it is not clear that the proof is “valid,” the an-
swer to Gosset is clear: the marginal distribution ofb is
no use on its own and the usable form—thet-ratio—is
available whetherx is normally distributed or not.

5. THE IDEA OF REGRESSION

Statistical Methods for Research Workers (1925a,
page 114) presents Fisher’s idea of regression:

The idea of regression is usually introduced
in connection with the theory of correlation,
but it is in reality a more general, and, in
some respects a simpler idea, and the regres-
sion coefficients are of interest and scientific
importance in many classes of data where
the correlation coefficient, if used at all, is
an artificial concept of no real utility.

Excluding Fisher’s own work, “usually” can be read as
“invariably.” Regression and correlation were related
features of a joint distribution.

Fisher took the situations for which Pearson and Yule
had used correlation/regression and Merriman has used
least squares, and treated them together. For Yule, least
squares was outside statistics: correlation is “an appli-
cation [of least squares] to the purposes of statistical
investigation” (Yule, 1909, page 722). He did not con-
flate the situations where least squares was tradition-
ally used with those to which correlation/regression
was appropriate, nor did he conflate the sampling the-
ories. Fisher did both. As “classes of data,” he made
no distinction between observational and experimental
material: his examples (Fisher, 1925a, pages 114–136)
of x andy include age and height of children, height of
fathers and sons, fertilizers, and yield, time and yield,
position and rainfall. One sampling theory does for
all. Curiously Fisher, so prolific in creating new terms,
retained the term “regression,” extending its range
into the theory of errors. Years before Yule (1897,

page 814) had wanted to use the colorless term “char-
acteristic line” instead of “regression line” which had
unwanted associations with biological “stepping back.”

Fisher’s (1925a, pages 114–115) only restrictions on
the use of the model arise from the “very different rela-
tions” the independent and dependent variables bear to
the regression line. If errors occur in the former, the re-
gression line will be altered; if they occur in the latter,
the regression line will not be altered, provided the er-
rors “balance in the averages”; so the errors in variables
case wasnot covered. Second, “the regression function
does not depend on the frequency distribution of the
independent variable, so that a true regression line may
be obtained even when the age groups are arbitrarily
selected. . . .” On the other hand, a selection of the de-
pendent variate will “change the regression line alto-
gether.”

The bookStatistical Methods. . . has a chapter on
correlation as an aspect of the bivariate normal; evi-
dently correlation coefficients may be of “interest and
scientific importance.” The results of several of his pa-
pers (Fisher, 1915, 1921a, 1925d) are presented and il-
lustrated. The examples that illustrate the significance
of a correlation and a partial correlation (Fisher, 1925a,
pages 158–161) are from agricultural meteorology and
Yule’s work on pauperism. Fisher mentions that the
partial correlation depends on the “assumption that
the variates correlated (but not necessarily those elim-
inated) are normally distributed.” Fisher was attached
to the idea of investigating the existence of dependence
between variables by testing hypotheses about the cor-
relation coefficient rather than the regression coeffi-
cient. Thet-test that modern packages offer (ofβ = 0)
appears inStatistical Methods. . . as a test on the corre-
lation coefficient, a coefficient only meaningful in the
bivariate normal setting.

Statistical Methods. . . was a very busy book and the
reviewers, including Student (1926) and E. S. Pearson
(1926), had plenty to discuss without mentioning re-
gression. The book went through 14 editions and came
to be recognized as epoch-making; an issue of theJour-
nal of the American Statistical Association marked its
silver jubilee. Yet it did not make a good platform
for a new idea of regression. Fisher (1925a, page 16)
had discovered that the same few distributions turn up
“again and again,” and his book consists of a few ta-
bles each prefaced by a chapter surveying its many
uses. The idea of regression appears in the chapter
on the t-distribution and the regression goodness of
fit test appears in the chapter on thez-distribution.
The methods are not documented; “references” are
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listed, but, apart from the data sources, not referred
to. The crucial papers (Fisher, 1924–1928 and 1925c)
were not published in time for the first edition and
are not listed. Fisher’s early readers had to discover
for themselves that his regressiona’s andb’s are least
squares/maximum likelihood values; only after 1934
was there a historical note (Section 5) mentioning
Gauss, least squares and maximum likelihood. Per-
haps Fisher was responding to grumbles like Schultz’s
(1929, page 86): “it is to be regretted that Dr. Fisher did
not see fit clearly to separate the propositions which are
due to him from the general body of statistical theory.”
However, Dr. Fisher never presented an integrated ac-
count of his new methods and the theory underlying
them.

The new regression was crowded out of Fisher’s em-
pirical work. In 1922 he had mentioned agricultural
meteorology as an application of regression and his
first job at Rothamsted was analyzing historical data on
yields and weather. The task may have inspired the new
regression, but the main product—the orthogonal poly-
nomials of Fisher (1921b and 1925a)—belonged to the
old least squares, to fitting empirical formulae; Hald
(1998, Section 25.7) placed Fisher’s work in a litera-
ture that goes back to Chebyshev. In the most ambitious
study, “The influence of rainfall on the yield of wheat at
Rothamsted,” Fisher (1925d, page 96) did not regress
yield on weekly rainfall directly, but made an ingenious
use of orthogonal polynomials in a discrete approxima-
tion to a continuous time formulation in which yield
depends on the entire past rainfall record. The regres-
sors are time trends!

“Studies in crop variation. I” (Fisher, 1921b) ana-
lyzed historical data, but Study II (Fisher and
Mackenzie, 1923) analyzed Fisher’s own experiments,
and soon observational studies were eclipsed by exper-
iments in the work of Fisher and other statisticians.
The new experimentation was not the kind familiar
to Merriman or Pearson, because now randomization
was involved. Fisher’s work on experiments did not
affect his regression theory—it was already done and
the later conditional inference theory owed nothing to
experiments—but there was probably an influence the
other way. The randomized experiment setup resem-
bles Pearsonian regression, with the statistician ran-
domizing rather than nature. The analysis of variance
in Study II is fixedx analysis.

The new regression went forward without further
contributions from Fisher. In econometrics, the field
where regression was most used, a practical synthesis

of regression and least squares had been proceeding in-
dependently with Tolley and Ezekiel (1923) and others
applying least squares algorithms to Pearson–Yule re-
gression. Ezekiel’s (1930) standard work,Methods of
Correlation Analysis, written at the end of the decade,
taught Fisher’s methods, and the first adequate account
of the new regression theory appeared in Koopmans’
(1937)Linear Regression Analysis of Economic Time
Series.

6. REGRESSION OLD AND NEW

Pearson did not visibly react to the new regres-
sion. He continued to publish on frequency surfaces
(Pearson, 1923), although the grand theory projected
long before never materialized. More surprisingly, he
started working in the vein of Student (1908b) and
Fisher (1915). His first contributions (Pearson, 1925,
1926) gave Gosset what he had asked Fisher for—the
marginal distribution ofb for the bivariate normal. By
the early 1930s there was a complete account of the
exact distribution of the statistics for the multinormal
distribution—statistics introduced in the 1890s; Fisher,
Wishart and Bartlett (Wishart’s first mathematical post-
graduate student) all contributed.

The results were consolidated in Bartlett’s (1933a)
“On the theory of statistical regression.” Part I surveyed
the statistics associated with the multivariate normal
distribution. Although Bartlett was born into the new
regression, he was not satisfied with the treatment in
Fisher (1925c): “[Fisher] seems to suggest that. . . his
test holds under somewhat wider conditions than he
assumed.” Part II considered which of the results sur-
vive if all that is normal is the conditional distribu-
tion of one of the variables. Crucial to the analysis
were factorizations of the joint distribution. Among
numerous results, Bartlett (1933a, page 278) showed
that thet-test of significance ofb is “valid, with no
restrictions onx.” Bartlett had shown how Fisher’s re-
gression theory could be integrated with the Pearson
regression, crossing all of thet ’s. Sampson (1974) pre-
sented Bartlett’s results for the multinormal distribu-
tion in modern notation, although curiously his tale of
two regressions does not include Bartlett’s interest in
integrating them.

Pearson (1934, page li) eventually conceded the
goodness of fit point, writing that Fisher’s test ap-
plies whether the array totals “are kept the same or
vary in a random manner.” However, he (Pearson,
1931, pages cxxxii–cxl) gave a very negative eval-
uation of Student’st-work and did not mention the
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extension to regression. He finally engaged Fisherian
regression—without mentioning Fisher—in a very
long comment on Welch (1935) and Kołodziejczyk
(1935). They had applied the test theories of Neyman
and E. S. Pearson (1928 and 1933), and used Fisher’s
regression results. Welch was explicitly concerned
with fixed x regression (his y and x have a joint
distribution), while Kołodziejczyk’s “linear hypothe-
sis” belongs with Neyman (1934) in descending from
Markov’s statement of the theory of errors, although
with normality restored. Pearson (1935) argued that
the generality of the “Welch–Kołodziejczyk frequency
surface”—the frequency surface underlying the normal
linear regression specification—is illusory because the
only important case is the bivariate normal and that is
best treatedwithout using the Fisher–Student appara-
tus.

7. ESTIMATION: POPULATION, INFORMATION
AND SUFFICIENCY

Fisher’s first justification for fixingx was the dis-
tribution theory he produced for the tests proposed or
inspired by Pearson and Student. His later justifications
derived from his own “theory of estimation.” Fisher
worked on this theory while he worked on fixedx re-
gression. Originally the two did not fit, but eventually
he produced a conditional inference theory in which
they did. Fisher did not develop a conditional theory
to solve the regression problem, but his sense of the
rightness of the regression practice may have guided
his thinking. However, it cannot be seen in what he
wrote.

The theory of estimation is more a theory of thein-
formation that estimation, in its usual sense, exploits.
On the mathematical foundations of theoretical statis-
tics” (Fisher, 1922b, page 311) describes the statisti-
cian’s task as the “reduction of data,” ideally without
loss of information. The statistician specifies a “hypo-
thetical infinite population” to which the observed sam-
ple is referred and calculates a statistic which “should
summarise the whole of the relevant information sup-
plied by the sample.” This is the supreme “criterion of
sufficiency” (Fisher, 1922b, page 316): when such a
statistic is found, “the problem of estimation is com-
pletely solved” (Fisher, 1922b, page 315). See Aldrich
(1997, pages 171–173) for an account of the paper and
its criteria of estimation.

The application of sufficiency to regression was
problematic. In the regression paper, Fisher (1922a,
page 598) reflected on his handling of the randomness
of n (see Section 3 above):

[We] have not attempted to eliminate known
quantities, given by the sample, from the
distribution formulae of the statistics stud-
ied, but only the unknown quantities—
parameters of the population from which
the sample is drawn—which have to be es-
timated somewhat inexactly from the given
sample.

A footnote ties the point to the “problem of estima-
tion”:

Statistics whose sampling distribution de-
pends upon other statistics given by the
sample cannot, in the strict sense, fulfil the
Criterion of Sufficiency. In certain cases ev-
idently no statistic exists, which strictly ful-
fils this criterion. In these cases statistics
obtained by the Method of Maximum Like-
lihood appear to fulfil the Criterion of Ef-
ficiency; the extension of this criterion to
finite samples thus takes a new importance.

Fisher’s (1925b) “Theory of statistical estimation”
extended “efficiency” to finite samples—measured by
the information in the statistic’s sampling distribu-
tion—but it did nothing about the ineligibility due to
the use of a conditional distribution. In his note to the
1950 reprint, Fisher described the Theory as “more
compact and businesslike” than the foundations; it was,
because it shelved many of the problems. Bartlett’s no-
tion of “quasi-sufficiency” (see Section 9 below) better
addressed the regression difficulty.

Fisher applied efficiency and consistency—the two
lesser criteria—to regression in an unpublished critique
(Fisher, 1924–1925) of Campbell’s (1924) alternative
to least squares, a variant of the method of averages
(see Farebrother, 1999, pages 236–237). Fisher stated
that both methods are consistent and asymptotically
normal under general conditions, but that least squares
is more efficient. If the errors iny are normally distrib-
uted, “it may be shown” that the estimateb has 100%
efficiency. In the 1922 theory, “efficiency” is a large
sample property delivered by maximum likelihood and
“showing” presumably used the fact that least squares
is maximum likelihood in fixed or randomx situations.
Fisher gave two examples that quantify the inefficiency
of Campbell’s method. In the first, illustrative of exper-
imental work, thex is in a (nonstochastic) arithmetic
progression; in the other, illustrative of “observational
studies,”x is normally distributed. The second analysis
is curious because Fisher doesnot condition onx when
he calculates the variance of the estimator.
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Theinfinite in “hypothetical infinite population” was
criticized by William Burnside and Fisher (1925b,
page 700) offered a clarification. Only in the 1950s
(see Section 11) did he press himself to clarify thehy-
pothetical. He (Fisher, 1922b, page 313) had written,
“any such set of numbers [observations] are a random
sample from the totality of numbers produced by the
same matrix of causal conditions.” Naturally any hy-
pothesized population had to face a “rigorous and ob-
jective test of the adequacy with which the proposed
population represents the whole of the available facts,”
but that was the end of it.

Some students had paused over the hypotheticalness
of the regression population. Working and Hotelling
(1929, page 82), who made the first extension to
Fisher’s regressiont-results, were fitting time trends
by least squares:

The fiction is conventionally adopted that
the sampling might be repeated indefinitely
with new and independent values of the ran-
dom part ofy, but with the same fundamen-
tal trend.

Koopmans (1937, pages 1–8) discussed the interpre-
tation of the fixedx population. He sent his book to
Fisher, but they seem not to have discussed the regres-
sion population. Koopmans was to have a strong influ-
ence on econometric thinking on the subject, but that is
another story; see Aldrich (1993).

8. ANCILLARY INFORMATION

Ancillarity reconciled regression with the theory
of estimation. Ancillarity had been trailed in Fisher
(1925b, page 724), but it only became prominent
in “Two new properties of mathematical likelihood”
(Fisher, 1934) and “The logic of inductive inference”
(Fisher, 1935); see Hinkley (1980a, b) and Hald (1998,
pages 729–733) for discussion. The help an ancillary
provides is in reducing the “loss of accuracy” asso-
ciated with the use of a single estimate; the loss is the
difference between the information in the entire sample
and in the estimate. The ancillaries that materialized in
1934 were for the location and location/scale families.
For the location case, Fisher showed how conditioning
on the “configuration” leads to the full recovery of the
information lost; the configuration is the set ofn − 1
differences between the median and the other observa-
tions.

Fisher’s practice was to work through “trivial but
representative” (Fisher, 1956, page 158) problems,

without proving or even stating precisely any theorem
of which they are representative instances. To help fix
these notions of loss and recovery I present an argu-
ment which underlies much that he wrote, but which
he seems never to have written down. The formulation
is from Kalbfleisch (1982, page 78).

The information in the sampleX is

IX(θ) = −E
∂2 lnfX(x; θ)

∂θ2 .

In the case of interest there is no single sufficient sta-
tistic. If T is the maximum likelihood estimator ofθ ,
thenIT (θ), the information inT , calculated from the
sampling distribution ofT , will be less than that in the
sample,IX(θ). Fisher calls the information “lost” in
usingT rather thanX the difference.

Suppose there is a statisticA (for ancillary) such that
(T ,A) is jointly sufficient forθ and the distribution of
A is free fromθ . Consider now the information in the
conditional distribution ofT given the realized value
of A,

IT |A=a(θ) = −E

[
∂2 lnfT |A(t;x; θ)

∂θ2

∣∣∣A = a

]

= −E

[
∂2 lnfT,A(t;x; θ)

∂θ2

∣∣∣A = a

]
,

sincefA(a), the density ofA, is free fromθ .
Average these conditional informations acrossA and

use the joint sufficiency of(T , A) to obtain the infor-
mation measure for the sample,

EIT |A(θ) = IT ,A(θ) = IX(θ).

Fisher’s (1934, page 303) gloss is that “the process of
taking account of the distribution of our estimates in
samples of the particular configuration [A for the lo-
cation problem] observed has therefore recovered the
whole of the information available.”

Fisher (1935, page 48) emphasizes two further
points: ancillary statistics tell us nothing about the
value of the parameter; their function is to tell us what
“reliance” to place on the estimate. Regression is not
mentioned, but the ideas seem obviously applicable
and indeed Bartlett applied them. Fisher also initiated
a second life for ancillarity with an example showing
that ancillarity is “useful not only in questions of es-
timation proper” (Fisher, 1935, page 78). This is the
test for independence in the 2× 2 table, obtained by
conditioning on the margins (Fisher, 1935, page 48):
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If it be admitted that these marginal fre-
quencies by themselves supply no infor-
mation. . . as to the proportionality of the
frequencies in the body of the table we may
recognize the information they supply as
wholly ancillary; and therefore recognize
that we are concerned only with the rela-
tive probabilities of occurrence of the dif-
ferent ways in which the table may be filled
in, subject to these marginal frequencies.

Information is mentioned here but not loss and re-
covery. Fisher eventually applied to regression both
this recovery-free notion of ancillarity (and informa-
tion) and the original notion; see Sections 10 and 11
below.

9. QUASI-SUFFICIENCY AND STATISTICAL
REGRESSION

For the next few years Bartlett was writing more
about conditional inference than Fisher; see Fraser
(1992) for a brief review. The first paper, “Statisti-
cal information and properties of sufficiency” (Bartlett,
1936), is the most relevant to regression. Bartlett took
Fisher’s idea away from “the theory of estimation,”
because he did not share Fisher’s “reduction of data”
viewpoint, or his enthusiasm for information calcula-
tions in small-sample work. Relations between Fisher
and Bartlett were variable; sometimes they were in
accord but more often not (see Bartlett, 1965, 1982,
Olkin, 1989 and Zabell, 1992, pages 377–378).

Bartlett (1936, page 131) restates Fisher’s analysis
of the location problem: the distribution of each item
in the sampleS is of the formf (x − m), the chance
of a configurationC is independent of the parameterm

and there is aT such that

p(S|m) = p(S|C,m)p(C)

= p(T |C,m)p(C).

“Hence all the information onm is given by T |C.”
Such estimates asT are calledquasi-sufficient statis-
tics by analogy with the factorization condition for suf-
ficiency.

Bartlett thus made explicit the scheme implicit in
Fisher (1934)—or rather half explicit; the reader has to
define quasi-sufficiency in general. That done, Bartlett
(1936, page 135) pointed out:

The important practical illustration of the
use of quasi-sufficient statistics occurs in
the theory of statistical regression. In the

simplest case [σ 2 known] our estimatebyx

of the coefficientβyx is accompanied by a
specification of the value of

∑
(x − x)2 ob-

tained, the distribution ofbyx |∑(x − x)2

being normal (for normaly), whatever the
distribution ofx.

Behind the correspondence between(byx,
∑

(x −
x)2) and (T ,C) is a certain amount of calculation
which is not given; it draws on the factorization analy-
sis of the 1933 paper on statistical regression (see Sec-
tion 6 above). I do not think the sufficiency ofb in the
fixedx regression model had been noted before.

Bartlett’s later papers show the influence of Neyman
and Pearson (1933) as well as of Fisher. As Fraser
(1992, page 110) noted with regard to the 1937 paper,
Bartlett (1937) “uses concepts and theory from both the
Fisher and Neyman–Pearson schools in a manner that
might now be called unified.” Bartlett had an appetite
for unification: earlier he (Bartlett, 1933b) had tried to
explain Fisher and Jeffreys to one another. [For the
relationship between Fisher and Jeffreys, see Howie
(2002) and Aldrich (2005).] Bartlett returned to quasi-
sufficiency and the regression example after Welch
(1939) identified a conflict between conditioning and
power. Welch (1939, page 66) had concluded “that cer-
tain methods, for which properties analogous to those
of sufficiency have been claimed, do not satisfy condi-
tions which I think they should, if these claims are to
be upheld.” [See Fraser (2004) for a recent discussion
of Welch’s argument.] The “claims” were Fisher’s, the
“conditions” related to Neyman and Pearson’s power,
but Bartlett felt the criticism.

Bartlett (1940, page 392) did not directly defend
conditioning, but turned the objection by showing how,
if the size of the test is varied with the value of the an-
cillary, conditional tests can achieve maximum power
for a given unconditional (long run) size. He illustrates
as follows:

The orthodox theory is to consider the con-
ditional statisticb|∑(x − x)2. . . . Suppose
for the sake of argument that the true vari-
ance of. . .yx was known to be unity, and
the x ’s are such that

∑
(x − x)2 = 1 on

Mondays and 1.44 on Tuesdays. Then for
an 0.025 significance level (one tail), the
usual practice would be to take 1.96 as the
significance level forb (from b0 = 0) on
Mondays, and 1.96/1.2 = 1.633 on Tues-
days. The power of the test in relation to
the alternative thatb1 = 3.92 is 0.9860.
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But if we were satisfied with adjusting
the significance level to be 0.025 merely
in the long run for Mondays and Tues-
days together, we may raise the power of
the test to its maximum value of 0.9878
by taking the Monday significance level
at b = 1.87 (α = 0.0307) and the Tuesday
level atb = 1.723 (α = 0.0194).

Bartlett returned to regression and conditioning in an
obituary of E. S. Pearson. He (Bartlett, 1981, page 3)
mentioned a “formidable logical criticism” of the con-
cept of power: in regression the conditional power for
a test aboutβyx depends on

∑
(x − x)2 and “we usu-

ally consider it irrelevant to ask whether we can obtain
a better procedure based on ‘absolute power’ by con-
sidering the sampling variation of

∑
(x − x)2.”

In the 1930s neither Fisher nor Bartlett articulated
Birnbaum’s (1962, page 271) “conditionality princi-
ple,” although Bartlett wrote as though he accepted it.
Fisher was more equivocal: he recognized a world be-
yond “questions of estimation proper,” but information
extraction came first.

10. REGRESSION AND ANCILLARY INFORMATION

Fisher may well have regarded the application of an-
cillarity to regression as obvious; he first mentions it in
a 1939 letter to Jeffreys (see Bennett, 1990, page 173):

I regard regression work. . . as a good ex-
ample of ancillary information, in that the
precision of the regression does not re-
ally depend on the number in the sample,
but only on the sum of squares of the in-
dependent variate, or, in general, on the
dispersion. . . . In fact the whole work is
completely independent of how they may be
distributed in the population sampled. . . .

Fisher made the same point to Darmois in August
1940. In an earlier letter, Fisher (see Bennett, 1990,
page 70) had criticized Bartlett’s use of the phrase
“conditional sufficiency.” Bartlett had not actually used
the term, although years later Cox and Hinkley (1974,
page 32) did. Fisher never referred to Bartlett’s treat-
ment of regression, but he must have been aware of it.

The Fisher–Darmois correspondence (see Bennett,
1990, pages 65–79) is particularly rich and many of
the ideas sketched there went into “Conclusions fidu-
ciaires” (Fisher, 1948) and then intoStatistical Meth-
ods and Scientific Inference. One of the innovations of

“Conclusions fiduciaires” was a new definition of an-
cillarity. Instead of implicitly defining a ancillary by
its role in recovering lost information, Fisher (1948,
page 193) defined it as a variation-free statistic:

Tout ensemble de statistiques dont la dis-
tribution simultanée est indépendante des
paramètres, est appelé un ensemble “ancil-
laire” des statistiques.

In effect this was the Bartlett (1936) definition and
presumably it was what Fisher (1935) had in mind
when he wrote that marginal frequencies “supply no
information.”

In “Conclusions fiduciaires,” the technique of the
theory of estimation was applied to regression. The pa-
per’s second example (Fisher, 1948, page 197) consid-
ered the bivariate normal regression model with known
varianceσ 2. In 1922 Fisher had written that the least
squares estimatorb is normally distributed with vari-
anceσ 2/A, whereA is the sum of squared deviations
of x. He now supposed thatx is normally distributed
with known varianceα, so thatA is α times aχ2 with
N − 1 degrees of freedom. With this specification the
marginal distribution ofb is a noncentralt with N − 1
degrees of freedom with parameters which are func-
tions of the known quantitiesα and σ 2 and the un-
known β. Fisher (1921a, page 21) stated that there is
less information in this unconditional distribution than
in the normals of which it is a mixture. By ignoring
the value ofA and using the value ofα and the sam-
ple sizeN, the information has been reduced in the
ratioN/N + 2.

Fisher obtained this value by applying results from
his first example, which was itself based on a weight-
ing argument that went back to 1925. However, an
argument can be based on the “implicit theorem” of
Section 8 above, identifyingβ with θ and (b,A)

with (T ,A). The information in a sample of sizeN
conditional on the value ofA is A/σ 2. Taking the
expectation of these conditional informations yields
α(N −1)/σ 2 as the information in the entire sample. If
now we compute the information inb from its marginal
distribution, we obtain a smaller value: the information
in the sample is reduced in the ratioN/N + 2.

These information calculations—unlike most of the
paper—did not find their way intoStatistical Methods
and Scientific Inference. Indeed regression does not ap-
pear in the estimation chapter, but in the chapter on
“Misapprehensions about tests of significance.”
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11. A MULTIPLICITY OF POPULATIONS

Fisher’s campaign against the Neyman–Pearson the-
ory of testing and the notion of repeated sampling from
a fixed population was a reply to criticisms of his treat-
ment of the 2×2 table and of the Behrens–Fisher prob-
lem. Thus on the latter he (Fisher, 1946) wrote—rather
surprisingly—against Bartlett:

I am quite aware that Bartlett, following
Neyman, feels bound to identify the popu-
lation of samples envisaged in tests of sig-
nificance with those generated by repeated
sampling of a fixed hypothetical popula-
tion. . . .

In the polemics of the 1950s Fisher argued that his
treatment must be correct because it follows the regres-
sion pattern which everyone knows is correct. The con-
troversy was over testing and the theory of estimation
aspect recedes from attention.

Fisher’s article, “Statistical methods and scientific
induction,” and his book,Statistical Methods and Sci-
entific Inference, stress thehypotheticalness of the
statistician’s population. The root difficulty with the
formula, “repeated sampling from the same popula-
tion,” is that there is “a multiplicity of populations to
each of which we can regard our sample as belonging”
(Fisher, 1955, page 71). In an “acceptance sampling”
(quality control) situation the population has an “ob-
jective reality,” but in the natural sciences the popula-
tion is a “product of the statistician’s imagination” and
“the first to come to mind may be quite misleading”
(Fisher, 1956, pages 77 and 78). Fisher was criticizing
Neyman, but his own formulation in the “foundations”
(see Section 7 above) was as vulnerable.

Setting up the regression model, Fisher (1955,
page 71) stated “the qualitative data may also tell us
how x is distributed with or without specific parame-
ters; this information is irrelevant.” He (Fisher, 1956,
page 72) continued:

The normal distribution ofb aboutβ with
varianceσ 2/A does not correspond with
any realistic process of sampling for accep-
tance but to a population of samples in all
relevant respects like that observed, neither
more precise nor less precise, and which
therefore we think it appropriate to select in
specifying the precision of the estimateb.
In relation to the value ofβ the valueA is
known as anancillary statistic.

However, there is no appeal to information calcula-
tions.

In the book, Fisher does not use the word “ancil-
lary” with regression, perhaps to make the attack on
repeated sampling less dependent on the theory of esti-
mation. He (Fisher, 1956, page 82) presented regres-
sion, adding the fiducial distribution ofβ and this
pointed introduction:

A case which illustrates well how mislead-
ing the advice is to base the calculations
on repeated sampling from the same pop-
ulation, if such advice were taken literally,
is that of data suitable for the estimation of
a coefficient of linear regression.

The regression material appears in the book’s chap-
ter on misapprehensions about significance tests and
the material is organized around thet-distribution, that
is, Fisher’s first regression theory, where it is shown
that the distribution is not affected by the distribution
of x. However, the “advice” for testing and fiducial in-
ference resulting from failure to condition is not going
to be “misleading”; it is going to be the same.

For Bartlett (1940) and for Fisher (1948), condition-
ing had to be related to power or to information. In
1956, Fisher (1956, page 84) made a more direct ap-
peal:

To judge of the precision of a given value
of b, by reference to a mixture of samples
having different values ofA, and therefore
different precisions for the values ofb they
supply, is erroneous because these other
samples throw no light on the precision of
that value which we have observed.

This is an eloquent amplification of the 1922 propo-
sition: “the accuracy of the regression coefficients is
only affected by the correlations which appearin the
sample.”

Fisher wrote about fixedx regression over a period
of more than 30 years. He produced three justifications:
from t distribution theory, from the theory of estima-
tion and from the application of the conditionality prin-
ciple to the choice from the multiplicity of populations.
He saw these justifications not as alternatives but as re-
inforcing each other.

12. RETROSPECTS

The story of the Gauss–Pearson–Fisher triangle and
the reconception of regression presents some para-
doxes. There is Seal’s (1967, page 16) tribute to
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Pearson, who “must. . . be given the credit for extend-
ing the Gauss linear model to a much broader class of
problems than those of errors of measurement.” Such
an acknowledgment to the model’s greatest critic be-
came possible only because Fisher moved Pearson’s re-
gression, with its applications, into the orbit of Gauss’
model. Fisher’s contribution even got short measure
from Fisher! In 1956 he (Fisher, 1956, page 84) did
not even mention it:

[I]n repeated sampling from the bivariate
distribution ofx andy, the value ofA would
vary from sample to sample. The distribu-
tion of (b − β) would no longer be normal,
and before we knew what is was, the distri-
bution ofA, which in turn depends on that
of x would have to be investigated. Indeed,
at an early stage Karl Pearson did attempt
the problem of the precision of a regres-
sion coefficient in this way, assumingx to
be normally distributed. The right way had,
however been demonstrated many years be-
fore by Gauss, and his method only lacked
for completeness the use of ‘Student”s dis-
tribution, appropriate for samples of rather
small numbers of observations.

In the Foreword Fisher (1956, page 3) remarked
that Pearson cared little for the past, instancing the
“Gaussian tradition of least square techniques.” Yet
when Fisher was pulling regression into that tradition,
Gauss was not to be seen; only Fisher’s first (preregres-
sion) paper (Fisher, 1912) has working references to its
literature.

In 1956 Fisher thought fixedx regression beyond
dispute. It was clearly a presence, although to investi-
gate its standing would be a project in itself. Section 6
gave some views from the Rothamsted/University Col-
lege “inside” and I will add some examples from out-
side to illustrate further possibilities. Hotelling was a
born-again Fisherian of the 1920s, an early contribu-
tor to regressiont-theory and ought to have been an
insider. Yet when he (Hotelling, 1940, pages 276–277)
weighed the merits of the fixedx and joint multinor-
mality assumptions in the regressor/predictor selection
problem, he did not consider Fisher’s distribution argu-
ment:

The advantages of exactness and of freedom
from the somewhat special trivariate normal
assumption are obtained at the expense of
sacrificing the precise applicability of the
results to other sets of values of the predic-
tors.

The attitude recalls Yule on normal theory probable er-
rors (Section 1 above): they are not perfect, but they
are all—or the best—there is. Fixedx regression had
not yet established itself as doing what comes naturally.
In the 1950s there was much soul-searching about the
treatment of relationships between variables (see, e.g.,
Berkson, 1950 and Kendall, 1951), and in these discus-
sions the models and techniques favored by Fisher had
no special ascendancy.

Cramér (1946) noticed the distribution theory argu-
ment or at least part of it. His Chapter 29 considers
regression inference for the multinormal distribution
case and Chapter 37 discusses regression with non-
randomx ’s. Cramér (1946, page 550) recorded the
“formal identity” of the t-results in the two cases: he
noticed Part I of Bartlett (1933a), but did not mention
the results in Part II.

The conditioning arguments were less visible and
less noticed. The underlying theory of estimation
was not accepted, understood or even widely known.
Hotelling (1948, page 867) complained after reading
Kendall’s (1946)Advanced Theory, “it is still not clear
what the statistician is supposed to do with ancillary
statistics.” Before 1955–1956 the regression applica-
tions were footnotes, not headlines; thus the earliest
reference in Barndorff-Nielsen’s (1978, page 36) his-
torical note on regression in relation to ancillarity is
to Fisher (1956). Modern high theory views on condi-
tioning in regression (see Barndorff-Nielsen and Cox,
1994, page 39 and Gelman et al., 1995, page 235)
are linked to Fisher and to Bartlett. Thus Cox (1958,
page 360) restated Fisher’s point about the multiplicity
of populations and his weighing machine example is
clearly a parable for regression: his references include
Bartlett (1940); see Reid (1994) for the background
to this paper. Savage (1962, page 19) referred to Cox
when he gave his Bayesian view of ancillarity and re-
gression. Of course, the general topic of ancillarity and
conditional inference has received plenty of attention
in recent years (see, e.g., the review by Reid, 1995) and
Brown (1990) has reopened the question of condition-
ing in regression.

Although a subject was built aroundt- andF -tests,
the fixed x assumption was not a central issue in
Anglo-American statistics. However, from the 1930s
into the 1970s econometricians made a profession out
of not fixing x—with errors in variables and simultane-
ity; see Morgan (1990) for an account. Naturally they
discussed whether the fixedx practice could pass (see
Aldrich, 1993), but their discussions did not influence
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the literature treated here. In their discussions the pos-
siblecausal nature of the relationship betweeny andx

was also an issue. From Yule onwards regression was
used for investigating causal relationships but in the
statistics tradition the causal interest was not intrinsic
to the statistical analysis but something apart.

ACKNOWLEDGMENTS

This paper is a revised version of a Southampton De-
partment of Economics discussion paper, “The origins
of fixedX regression” (2000). I am grateful for advice
and suggestions to the editors and referees who have
looked at it.

REFERENCES

Fisher’s published papers appear in J. H. Bennett, ed. (1971–1974).
Collected Papers of R. A. Fisher, 5 vols. Adelaide Univ. Press.
Bennett (1990) and nearly all of the papers referred to here are
available from the University of Adelaide R. A. Fisher Dig-
ital Archive at http://www.library.adelaide.edu.au/ual/special/
fisher.html.

ALDRICH, J. (1993). Cowles exogeneity and CORE exogeneity.
Discussion Paper 9308, Dept. Economics, Southampton Univ.

ALDRICH, J. (1995). Correlations genuine and spurious in Pearson
and Yule.Statist. Sci. 10 364–376.

ALDRICH, J. (1997). R. A. Fisher and the making of maximum
likelihood 1912–1922.Statist. Sci. 12 162–176.

ALDRICH, J. (1998). Doing least squares: Perspectives from Gauss
and Yule.Internat. Statist. Rev. 66 61–81.

ALDRICH, J. (1999). Determinacy in the linear model: Gauss to
Bose and Koopmans.Internat. Statist. Rev. 67 211–219.

ALDRICH, J. (2003–2005). A guide to R. A. Fisher. Available
at http://www.economics.soton.ac.uk/staff/aldrich/fisherguide/
rafreader.htm.

ALDRICH, J. (2003). The language of the English biometric
school.Internat. Statist. Rev. 71 109–129.

ALDRICH, J. (2005). The statistical education of Harold Jeffreys.
Internat. Statist. Rev. 73 289–308.

BARNDORFF-NIELSEN, O. (1978).Information and Exponential
Families in Statistical Theory. Wiley, Chichester.

BARNDORFF-NIELSEN, O. E. and COX, D. R. (1994).Inference
and Asymptotics. Chapman and Hall, London.

BARTLETT, M. S. (1933a). On the theory of statistical regression.
Proc. Royal Soc. Edinburgh 53 260–283.

BARTLETT, M. S. (1933b). Probability and chance in the theory of
statistics.Proc. Roy. Soc. London Ser. A 141 518–534.

BARTLETT, M. S. (1936). Statistical information and properties of
sufficiency.Proc. Roy. Soc. London Ser. A 154 124–137.

BARTLETT, M. S. (1937). Properties of sufficiency and statistical
tests.Proc. Roy. Soc. London Ser. A 160 268–282.

BARTLETT, M. S. (1940). A note on the interpretation of quasi-
sufficiency.Biometrika 31 391–392.

BARTLETT, M. S. (1965). R. A. Fisher and the last fifty years of
statistical methodology.J. Amer. Statist. Assoc. 60 395–409.

BARTLETT, M. S. (1981). Egon Sharpe Pearson, 1895–1980.Bio-
metrika 68 1–7.

BARTLETT, M. S. (1982). Chance and change. InThe Making of
Statisticians (J. Gani, ed.) 42–60. Springer, New York.

BENNETT, J. H., ED. (1990).Statistical Inference and Analysis:
Selected Correspondence of R. A. Fisher. Oxford Univ. Press.

BERKSON, J. (1950). Are there two regressions?J. Amer. Statist.
Assoc. 45 164–180.

BIRNBAUM , A. (1962). On the foundations of statistical inference.
J. Amer. Statist. Assoc. 57 269–326.

BJERVE, S. and DOKSUM, K. A. (1993). Correlation curves: Mea-
sures of association as functions of covariate values.Ann. Sta-
tist. 21 890–902.

BLAKEMAN , J. (1905). On tests for linearity of regression in fre-
quency distributions.Biometrika 4 332–350.

BLYTH , S. (1994). Karl Pearson and the correlation curve.Inter-
nat. Statist. Rev. 62 393–403.

BOWLEY, A. L. (1901).Elements of Statistics. King, London.
BOX, J. F. (1978).R. A. Fisher: The Life of a Scientist. Wiley, New

York.
BROWN, L. D. (1990). An ancillarity paradox which appears in

multiple linear regression (with discussion).Ann. Statist. 18
471–538.

BRUNT, D. (1917).The Combination of Observations. Cambridge
Univ. Press.

CAMPBELL, N. (1924). The adjustment of observations.Philo-
sophical Magazine (6) 47 816–826.

COX, D. R. (1958). Some problems connected with statistical in-
ference.Ann. Math. Statist. 29 357–372.

COX, D. R. and HINKLEY, D. V. (1974).Theoretical Statistics.
Chapman and Hall, London.

CRAMÉR, H. (1946).Mathematical Methods of Statistics. Prince-
ton Univ. Press, Princeton, NJ.

EDGEWORTH, F. Y. (1893). Exercises in the calculation of errors.
Philosophical Magazine (5) 36 98–111.

EISENHART, C. (1979). On the transition from ‘Student’sz’ to
‘Student’st .’ Amer. Statist. 33 6–10.

ELDERTON, W. P. (1906).Frequency Curves and Correlation.
Layton, London.

EZEKIEL, M. (1930). Methods of Correlation Analysis. Wiley,
London.

FAREBROTHER, R. W. (1999).Fitting Linear Relationships: A His-
tory of the Calculus of Observations. Springer, New York.

FIENBERG, S. E. (1980). Fisher’s contribution to the analysis of
categorical data.R. A. Fisher: An Appreciation. Lecture Notes
in Statist. 1 75–84. Springer, New York.

FIENBERG, S. E. and HINKLEY, D. V., EDS. (1980).R. A. Fisher:
An Appreciation. Lecture Notes in Statist. 1. Springer, New
York.

FISHER, R. A. (1912). On an absolute criterion for fitting fre-
quency curves.Messenger of Mathematics 41 155–160.

FISHER, R. A. (1915). Frequency distribution of the values of the
correlation coefficient in samples from an indefinitely large
population.Biometrika 10 507–521.

FISHER, R. A. (1921a). On the ‘probable error’ of a coefficient of
correlation deduced from a small sample.Metron 1 3–32.

FISHER, R. A. (1921b). Studies in crop variation. I. An examina-
tion of the yield of dressed grain from Broadbalk.J. Agricul-
tural Science 11 107–135.

FISHER, R. A. (1922a). The goodness of fit of regression formulae,
and the distribution of regression coefficients.J. Roy. Statist.
Soc. 85 597–612.

http://www.library.adelaide.edu.au/ual/special/fisher.html
http://www.library.adelaide.edu.au/ual/special/fisher.html
http://www.economics.soton.ac.uk/staff/aldrich/fisherguide/rafreader.htm
http://www.economics.soton.ac.uk/staff/aldrich/fisherguide/rafreader.htm


416 J. ALDRICH

FISHER, R. A. (1922b). On the mathematical foundations of the-
oretical statistics.Philos. Trans. Roy. Soc. London Ser. A 222
309–368.

FISHER, R. A. (1922c). On the interpretation ofχ2 from contin-
gency tables, and the calculation ofP . J. Roy. Statist. Soc. 85
87–94.

FISHER, R. A. (1924–1925). Note on Dr. Campbell’s alternative
to the method of least squares. Unpublished manuscript, Barr
Smith Library, Univ. Adelaide.

FISHER, R. A. (1924–1928). On a distribution yielding the error
functions of several well known statistics. InProc. Interna-
tional Mathematical Congress 2 805–813. Univ. Toronto Press,
Toronto.

FISHER, R. A. (1925a).Statistical Methods for Research Workers.
Oliver and Boyd, Edinburgh.

FISHER, R. A. (1925b). Theory of statistical estimation.Proc.
Cambridge Philos. Soc. 22 700–725.

FISHER, R. A. (1925c). Applications of ‘Student’s’ distribution.
Metron 5 90–104.

FISHER, R. A. (1925d). The influence of rainfall on the yield of
wheat at Rothamsted.Philos. Trans. Roy. Soc. London Ser. B
213 89–142.

FISHER, R. A. (1934). Two new properties of mathematical likeli-
hood.Proc. Roy. Soc. London Ser. A 144 285–307.

FISHER, R. A. (1935). The logic of inductive inference (with dis-
cussion).J. Roy. Statist. Soc. 98 39–82.

FISHER, R. A. (1946). Testing the difference between two means
of observations of unequal precision.Nature 158 713.

FISHER, R. A. (1948). Conclusions fiduciaires.Ann. Inst. H.
Poincaré 10 191–213.

FISHER, R. A. (1955). Statistical methods and scientific induction.
J. Roy. Statist. Soc. Ser. B 17 69–78.

FISHER, R. A. (1956).Statistical Methods and Scientific Inference.
Oliver and Boyd, Edinburgh.

FISHER, R. A. and MACKENZIE, W. A. (1923). Studies in crop
variation. II. The manurial response of different potato vari-
eties.J. Agricultural Science 13 311–320.

FRASER, D. A. S. (1992). Introduction to reprint of “Properties
of sufficiency and statistical tests” [Bartlett (1937)]. InBreak-
throughs in Statistics (S. Kotz and N. L. Johnson, eds.)1
109–112. Springer, New York.

FRASER, D. A. S. (2004). Ancillaries and conditional inference
(with discussion).Statist. Sci. 19 333–369.

GALTON, F. (1877). Typical laws of heredity.Nature 15 492–495,
512–514, 532–533.

GALTON, F. (1886). Family likeness in stature.Proc. Roy. Soc.
London 40 42–73.

GAUSS, C. F. (1809/1963).Theoria Motus Corporum Coelestium
(C. H. Davis, transl.). Dover, New York, reprinted 1963.

GELMAN , A., CARLIN , J. B., STERN, H. S. and RUBIN, D. B.
(1995).Bayesian Data Analysis. Chapman and Hall, London.

HALD , A. (1998).A History of Mathematical Statistics from 1750
to 1930. Wiley, New York.

HALD , A. (1999). On the history of maximum likelihood in re-
lation to inverse probability and least squares.Statist. Sci. 14
214–222.

HINKLEY, D. V. (1980a). Theory of statistical estimation: The
1925 paper.R. A. Fisher: An Appreciation. Lecture Notes in
Statist. 1 85–94. Springer, New York.

HINKLEY, D. V. (1980b). Fisher’s development of conditional in-
ference.R. A. Fisher: An Appreciation. Lecture Notes in Statist.
1 101–108. Springer, New York.

HOOKER, R. H. (1907). Correlation of the weather and crops.
J. Roy. Statist. Soc. 70 1–51.

HOTELLING, H. (1940). The selection of variates for use in predic-
tion with some comments on the general problem of nuisance
parameters.Ann. Math. Statist. 11 271–283.

HOTELLING, H. (1948). Review ofThe Advanced Theory of Sta-
tistics 2, by M. G. Kendall.Bull. Amer. Math. Soc. 54 863–868.

HOWIE, D. (2002). Interpreting Probability: Controversies and
Developments in the Early Twentieth Century. Cambridge
Univ. Press.

KALBFLEISCH, J. (1982). Ancillary statistics.Encyclopedia of Sta-
tistical Sciences 1 77–81. Wiley, New York.

KENDALL , M. G. (1946).The Advanced Theory of Statistics 2.
Griffin, London.

KENDALL , M. G. (1951). Regression, structure and functional re-
lationship. I.Biometrika 38 11–25.

KOŁODZIEJCZYK, S. (1935). On an important class of statistical
hypotheses.Biometrika 27 161–190.

KOOPMANS, T. C. (1937).Linear Regression Analysis of Eco-
nomic Time Series. Bohn, Haarlem, Netherlands.

LANCASTER, H. O. (1969).The Chi-Squared Distribution. Wiley,
New York.

LEHMANN, E. L. (1999). ‘Student’ and small-sample theory.Sta-
tist. Sci. 14 418–426.

MCMULLEN, L. (1970).Letters from W. S. Gosset to R. A. Fisher
1915–1936: Summaries by R. A. Fisher with a Foreword by
L. McMullen, 2nd ed. Printed by Arthur Guinness for private
circulation and placed in a few libraries.

MERRIMAN, M. (1884/1911).A Textbook on the Method of Least
Squares. Wiley, New York. References are to the eighth edi-
tion, 1911.

MILLER, J., ED. (1999–2005). Earliest uses of symbols in prob-
ability and statistics. Available at http://members.aol.com/
jeff570/stat.html.

MORGAN, M. S. (1990).The History of Econometric Ideas. Cam-
bridge Univ. Press.

NEYMAN , J. (1934). On the two different aspects of the representa-
tive method: The method of stratified sampling and the method
of purposive selection (with discussion).J. Roy. Statist. Soc. 97
558–625.

NEYMAN , J. and PEARSON, E. S. (1928). On the use and inter-
pretation of certain test criteria for purposes of statistical infer-
ence. I, II.Biometrika 20A 175–240, 263–294.

NEYMAN , J. and PEARSON, E. S. (1933). On the problem of the
most efficient tests of statistical hypotheses.Philos. Trans. Roy.
Soc. London Ser. A 231 289–337.

OLKIN , I. (1989). A conversation with Maurice Bartlett.Statist.
Sci. 4 151–163.

PEARSON, E. S. (1926). Review ofStatistical Methods for Re-
search Workers, by R. A. Fisher.Science Progress 20 733–734.

PEARSON, E. S. (1990). ‘Student’, A Statistical Biography of
William Sealy Gosset (R. L. Plackett, ed.; G. A. Barnard, as-
sist.). Oxford Univ. Press.

PEARSON, K. (1895). Contributions to the mathematical theory of
evolution. II. Skew variation in homogeneous material.Philos.
Trans. Roy. Soc. London Ser. A 186 343–414.

http://members.aol.com/jeff570/stat.html
http://members.aol.com/jeff570/stat.html


FISHER AND REGRESSION 417

PEARSON, K. (1896). Mathematical contributions to the theory
of evolution. III. Regression, heredity and panmixia.Philos.
Trans. Roy. Soc. London Ser. A 187 253–318.

PEARSON, K. (1899). Mathematical contributions to the theory of
evolution. V. On the reconstruction of the stature of prehistoric
races.Philos. Trans. Roy. Soc. London Ser. A 192 169–244.

PEARSON, K. (1900). On the criterion that a given system of de-
viations from the probable in the case of a correlated system
of variables is such that it can be reasonably supposed to have
arisen from random sampling.Philosophical Magazine (5) 50
157–175.

PEARSON, K. (1902a). On the systematic fitting of curves to ob-
servations and measurements. I, II.Biometrika 1 265–303,2
1–23.

PEARSON, K. (1902b). On the mathematical theory of errors of
judgment, with special reference to the personal equation.Phi-
los. Trans. Roy. Soc. London Ser. A 198 235–299.

PEARSON, K. (1905). On the general theory of skew correlation
and non-linear regression.Drapers’ Company Research Mem-
oirs, Biometric Series II. Cambridge Univ. Press.

PEARSON, K., ED. (1914).Biometrika Tables for Statisticians and
Biometricians. Cambridge Univ. Press.

PEARSON, K. (1916). On the application of ‘goodness of fit’ tables
to test regression curves and theoretical curves used to describe
observational or experimental data.Biometrika 11 239–261.

PEARSON, K. (1920). Notes on the history of correlation.Bio-
metrika 13 25–45.

PEARSON, K. (1923). Notes on skew frequency surfaces.Bio-
metrika 15 222–230.

PEARSON, K. (1925). Further contributions to the theory of small
samples.Biometrika 17 176–200.

PEARSON, K. (1926). Researches on the mode of distribution of
the constants of samples taken at random from a bivariate nor-
mal population.Proc. Roy. Soc. London Ser. A 112 1–14.

PEARSON, K., ED. (1931).Tables for Statisticians and Biometri-
cians, Part II. Cambridge Univ. Press.

PEARSON, K., ED. (1934). Tables of the Incomplete Beta-
Function. Cambridge Univ. Press.

PEARSON, K. (1935). Thoughts suggested by the papers of Messrs.
Welch and Kołodziejczyk.Biometrika 27 227–259.

PEARSON, K. and FILON, L. N. G. (1898). Mathematical contri-
butions to the theory of evolution. IV. On the probable errors of
frequency constants and on the influence of random selection
on variation and correlation.Philos. Trans. Roy. Soc. London
Ser. A 191 229–311.

REID, N. (1994). A conversation with Sir David Cox.Statist. Sci.
9 439–455.

REID, N. (1995). The roles of conditioning in inference (with dis-
cussion).Statist. Sci. 10 138–157, 173–196.

SAMPSON, A. R. (1974). A tale of two regressions.J. Amer. Statist.
Assoc. 69 682–689.

SAVAGE, L. J. (1962). Subjective probability and statistical prac-
tice. InThe Foundations of Statistical Inference: A Discussion
(L. J. Savage et al., eds.) 9–35. Methuen, London.

SCHULTZ, H. (1929). Applications of the theory of error to the
interpretation of trends: Discussion.J. Amer. Statist. Assoc.
Suppl. 24 86–89.

SEAL, H. (1967). The historical development of the Gauss linear
model.Biometrika 54 1–24.

SENETA, E. (1988). Slutsky (Slutskii), Evgenii Evgenievich.Ency-
clopedia of Statistical Sciences 8 512–515. Wiley, New York.

SLUTSKY, E. E. (1913). On the criterion of goodness of fit of the
regression lines and on the best method of fitting them to the
data.J. Roy. Statist. Soc. 77 78–84.

STIGLER, S. M. (1986).The History of Statistics. The Measure-
ment of Uncertainty before 1900. Belknap, Cambridge, MA.

STIGLER, S. M. (2001). Ancillary history. InState of the Art in
Probability and Statistics: Festschrift for Willem R. van Zwet
(M. deGunst, C. Klaassen and A. van der Vaart, eds.) 555–567.
IMS, Beachwood, OH.

STUDENT (1908a). The probable error of a mean.Biometrika 6
1–25.

STUDENT (1908b). Probable error of a correlation coefficient.Bio-
metrika 6 302–310.

STUDENT (1926). Review ofStatistical Methods for Research
Workers, by R. A. Fisher.Eugenics Review 18 148–150.

TOLLEY, H. R. and EZEKIEL, M. J. B. (1923). A method of han-
dling multiple correlation problems.J. Amer. Statist. Assoc. 18
993–1003.

WELCH, B. L. (1935). Some problems in the analysis of regression
amongk samples of two variables.Biometrika 27 145–160.

WELCH, B. L. (1939). On confidence limits and sufficiency, with
particular reference to parameters of location.Ann. Math. Sta-
tist. 10 58–69.

WORKING, H. and HOTELLING, H. (1929). Applications of the
theory of error to the interpretation of trends.J. Amer. Statist.
Assoc. Suppl. 24 73–85.

YULE, G. U. (1897). On the theory of correlation.J. Roy. Statist.
Soc. 60 812–854.

YULE, G. U. (1899). An investigation into the causes of changes in
pauperism in England, chiefly during the last two intercensal
decades (part I).J. Roy. Statist. Soc. 62 249–295.

YULE, G. U. (1907). On the theory of correlation for any number
of variables, treated by a new system of notation.Proc. Roy.
Soc. London Ser. A 79 182–193.

YULE, G. U. (1909). The applications of the method of correla-
tion to social and economic statistics.J. Roy. Statist. Soc. 72
721–730.

YULE, G. U. (1911).An Introduction to the Theory of Statistics.
Griffin, London.

ZABELL , S. (1992). R. A. Fisher and the fiducial argument.Statist.
Sci. 7 369–387.


