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ABSTRACT
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Doctor of Philosophy

LOUDSPEAKER COMPRESSION-DRIVER PHASE-PLUG DESIGN

by Jack Oclee-Brown

This  thesis  is  concerned  with  the  linear  acoustical  performance  of  compression-driver 

loudspeakers.  The  general  principles  of  operation  of  electromagnetic  loudspeakers  are 

thoroughly introduced and a number of acoustical analysis methods are then presented that 

form the basis for modern loudspeaker behavioural simulation. The acoustical behaviour of  

the  compression-driver  phase  plug  and  compression  cavity  is  discussed  and  targets  are 

determined for the ideal behaviour. The Smith guidelines for the design of annular-channel 

compression drivers are outlined. It is demonstrated that, for realistic geometries, the Smith 

guidelines  do  not  lead  to  optimum  performance.  A new  channel-positioning  method  is 

outlined that  is  based on a  more realistic  representation of  the  compression driver.  This 

approach is further developed into a general channel-positioning methodology that may be 

applied using numerical techniques to compression drivers of arbitrary geometry. It is shown 

that the performance of a compression driver may be improved by careful shaping of the 

compression  cavity.  A number  of  methods  for  designing  optimally  shaped  compression 

cavities are described. A Smith-type approach to the design of radial-channel compression 

drivers is outlined, including methods specifically intended to ease the manufacture of such 

devices. A prototype driver using one of these methods is described and measurements of the  

performance of this prototype are compared with predictions of the driver performance. The 

behaviour of compression drivers with non-rigid radiating diaphragms is considered. It is 

shown that, if the mechanical diaphragm modes and acoustical cavity modes meet a certain  

condition,  then  the  diaphragm  non-rigidity  is  not  a  factor  that  limits  the  linear  driver  

response. An attempt is made to find geometries that meet this condition.
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1 Introduction

This thesis is concerned with loudspeakers and specifically with the design of compression 

drivers for horn loudspeakers. Compression drivers are widely used for professional sound 

reproduction  applications  because  of  their  extremely  high  efficiencies.  However,  they 

present a unique acoustical design challenge as the compression-driver arrangement, with 

coupled phase plug and compression cavity, results in a complex acoustical structure that is 

typically several times larger than the maximum wavelength to be radiated. Additionally, 

there is little dissipation in the acoustical structure other than the radiated energy. As a result, 

the performance of a compression driver is highly dependent upon the precise details of the  

geometry. Despite this interesting acoustical problem, there is relatively little published work 

on how to design the geometry of compression drivers. In this thesis the behaviour of the  

various parts of the compression driver are analysed. The presented analyses are illustrated  

with numerically-modelled examples and measured data from prototype drivers. Several new 

approaches  to  compression-driver  design  have  resulted  that,  particularly  if  used  in 

combination with one another, greatly improve the state of the art  of compression-driver  

design. In summary, the new contributions in the field of compression driver design are:

• the improvement of the channel-entrance geometry guidelines from those suggested 

by  Smith  in  1952,  which  are  universally  used  in  the  loudspeaker  industry.  This 

improvement is based on the realisation that the Smith geometry is not as effective if  

the radiating diaphragm has a curved surface. The new guidelines are based on a 

more accurate  geometric  representation of  the  compression driver,  including this 

curvature;

• the development of a general approach to determining compression-driver channel-

entrance geometry, independent of the specific geometry of the compression-driver 

radiating diaphragm and compression cavity;

• the concept of compression-driver cavity shaping to improve the suppression of the 

compression driver cavity modes;

• the application of a Smith-type approach to the design of radial-channel compression 

drivers;

• the  development  of  methods  to  allow optimal  radial-channel  phase  plugs  to  be 

designed within the practical constraints of current fabrication methods; and

• a detailed analysis of the behaviour of compression drivers with non-rigid radiating 

diaphragms and the description of an approach for designing non-rigid diaphragm 

and cavity combinations that result in improved acoustical performance.
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This  thesis  was completed  over  a  period  from 2006.  During this  period the author  was 

employed full time by the GP Acoustics group as a Research Engineer. The GP Acoustics 

group includes the loudspeaker brands KEF Audio and Celestion and, consequently, much of 

the work presented here has been used in the design of KEF Audio and Celestion products  

launched at various times in this period. Additionally, this thesis has resulted in a number of 

publications as outlined in the Author's declaration.

1.1 Outline of the thesis

This section contains a brief outline of the contents of this thesis. Three preliminary chapters  

are included in order to familiarise the reader with the concepts discussed and the analysis  

methods used. The four chapters following these describe new analyses and approaches to 

the design of compression drivers.

1.1.1 Chapter 2

Chapter  2 is  concerned with the  acoustical  behaviour  of  loudspeakers  and describes  the 

general  principles  of  operation  of  electromagnetic  loudspeakers.  Following  this,  the 

behaviour  of  direct-radiating  loudspeakers  is  considered.  Finally,  the  behaviour  of  horn-

loaded and compression-loaded loudspeakers is covered.

1.1.2 Chapter 3

In chapter 3, a number of acoustical analysis approaches are introduced that form the basis 

for the analysis of compression-driver behaviour in the following chapters. The first section 

in the chapter considers the solution to the homogeneous acoustical wave equation in a rigid-

walled  enclosure.  It  is  demonstrated  that  this  type  of  analysis  provides  rigid-walled 

eigenfrequencies and eigenfunctions that are unique to the enclosure geometry and these are 

extremely valuable for  subsequent driven-cavity behaviour analysis.

The  second section  outlines  the  general  Green-function  approach  to  the  solution  of  the 

inhomogeneous wave equation. This technique is the foundation of many types of acoustical 

analysis. Following this outline, a specific case of the Green-function approach is described:  

the driven sound field in a lightly-damped enclosure. Using the assumption that the Green 

function  within  the  acoustical  enclosure  may  be  described  in  terms  of  the  rigid-walled 

eigenfunctions, an expression for the acoustical pressure in the cavity is found in terms of the 

rigid-walled eigensolution and the distribution of acoustical volume velocity within, and on 

the bounding surface of, the enclosure. This technique is particularly relevant to the thesis as 
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it is the basis that was used by Smith to derive his phase-plug guidelines and it is also the  

basis that is repeatedly used herein to derive the outlined new phase-plug design methods. 

Following  this  section,  the  external  acoustical  problem  is  considered  with  particular 

reference to loudspeakers where the acoustical radiation into infinite and semi-infinite spaces 

is a very important consideration.

Finally, the last three sections are concerned with numerical solution techniques of both the 

homogeneous  and  inhomogeneous  wave  equation.  Firstly,  the  Rayleigh-Ritz  method  is 

outlined  as  an  introduction  to  the  subsequent  section  that  describes  the  Finite-Element 

Method (FEM). The Rayleigh-Ritz method is also of particular relevance to the following 

chapters as it forms the basis for the cavity-shaping techniques presented in chapter 6. The 

last  section  of  this  chapter  describes  the  Boundary-Element  Method  (BEM)  and  uses 

concepts introduced in both section  3.5 and 3.7 to outline a method that allows acoustical 

radiation problems from arbitrary radiator  geometries  to  be numerically  considered.  The  

FEM and BEM approaches are  widely used in  this  thesis  as  a  means of  evaluating the  

performance of various compression-driver phase-plug arrangements and also as a tool for  

performing acoustical experiments that would conventionally be very difficult to perform.

1.1.3 Chapter 4

The detailed behaviour of compression drivers, and specifically of the phase plug, is outlined 

in this section. The introduction presents numerically calculated examples that show various  

different aspects of compression-driver and horn-loaded loudspeaker behaviour. Following 

this discussion, the Smith method for the positioning of the compression channel entrances 

is described. The performance of the Smith geometry is demonstrated, compared to another 

channel positioning method, using FEM analysed examples. The desired behaviour of the 

phase-plug structure is then outlined based on a simplified 1-D duct model and the acoustics  

of the compression-driver phase plug as a whole is discussed, including its effect on the 

suppression methods outlined by Smith.

1.1.4 Chapter 5

In chapter  5,  a  new method for the  positioning of the  phase-plug channels  entrances  of  

annular-channel compression drivers is outlined. The compression cavity is considered as a 

narrow spherical-cap acoustical cavity whose driven behaviour may be accurately described 

in terms of its rigid-walled eigenfrequencies and eigenfunctions, as was outlined in section 

3.4. Using this representation, it is possible to derive locations at which the annular channels 
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should be attached to the compression cavity to avoid excitation of acoustical modes in the 

cavity in the driven case.

This  approach  is  the  exact  parallel  to  the  technique  outlined  by  Smith.  The  difference 

compared  to  the  Smith  case  is  the  geometry  of  the  problem.  Smith  considers  that  the 

compression-driver geometry is approximated with little error in a cylindrical geometry, in 

which  case  the  radiating  diaphragm  is  approximated  as  a  rigid-plane  circular  piston. 

However, this approximation has the effect that the radiating diaphragm does not excite any 

of the compression-cavity modes. It is shown that when a more realistic geometry is used for 

the compression cavity and diaphragm, the Smith phase-plug geometry does not prevent the 

excitation  of  the  acoustical  modes  of  the  compression  cavity  because  the  radiating 

diaphragm  does  contribute  to  the  excitation  of  the  acoustical  cavity  modes.  The  new 

analysis, using a more representative geometry, results in a different set of guidelines for the 

phase-plug  channel-entrance  geometry.  The  performance  of  these  new  guidelines  is 

compared to the original Smith guidelines using numerical theoretical models. A commercial 

compression driver based on these new guidelines is briefly described and measurements of  

this new compression driver are shown compared to FEM/BEM predictions.

The final part of the chapter describes a general approach to the positioning of the phase-

plug  channels,  independent  of  the  geometry  to  be  considered.  This  technique  is  a 

generalisation of both the Smith method and the new method. By using FEM techniques to 

provide the cavity eigenfrequencies and eigenfunctions, the consideration of compression-

cavity  geometries  that  are  thin  acoustical  cavities  with otherwise  arbitrary geometry  are 

permitted.  As  an  example  of  the  generalised  method,  a  common  compression-cavity 

geometry is considered, that of an axially extruded spherical cap, and the phase-plug channel 

positions  are  derived for  this  example.  The  performance  of  this  theoretical  compression 

driver  is  evaluated  using  a  FEM model.  This  model  interestingly  demonstrates  a  much 

improved modal suppression performance compared to the spherical-cap compression cavity 

despite the fact  that  the derived phase-plug channel  positions are extremely similar.  The 

reasons for this performance improvement are considered in the next chapter.

1.1.5 Chapter 6

The final result from chapter 5 serves as a motivation for more detailed consideration of the 

effect  of  the  cavity  geometry  on  the  compression  driver  performance.  Using  the 

orthogonality  of  the  compression-cavity  modes,  the  ideal  compression  cavity  shape  is 

derived for a rigid-radiating diaphragm and the performance of this ideal cavity shape is 
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shown using an idealised compression-driver FEM model. However, there are often some 

other practical constraints on the shape of the compression cavity that means that in many 

situations  the  derived  ideal  shape  cannot  be  used,  particularly  because  it  is  normally 

necessary to have a little extra space at the outside diameter of the compression cavity for the  

driver surround or voice coil to be positioned. This problem is considered in section 6.2 and 

it is demonstrated that by controlling the cavity shape in terms of only a few eigenfunctions, 

compared  to  a  conventional  constant-width  compression  cavity,  it  is  possible  to  make 

significant improvements in the modal suppression performance while still allowing a little 

additional space for these extra features. Ultimately, however, the conclusion of this section 

is that the cavity-shaping techniques are difficult to usefully implement as it is very hard to 

control the derived cavity shape. It is also inevitable that the resulting shaped cavity is of  

larger acoustical volume than the ideal cavity design method presented at the start of the 

chapter.

1.1.6 Chapter 7

The radial-channel  compression-driver  arrangement  uses  a  number  of  radially  extending 

channels, as opposed to the annular channels that have been considered up until this point. In 

chapter 7, the modal suppression problem is considered for the radial case and it is shown 

that  a similar  approach to the annular case is  possible.  An ideal  geometry for the radial  

channels is derived based on a spherical-cap compression cavity. The cavity-shaping method 

introduced in chapter  6 for the annular case is then also applied to the radial-channel case  

and results in a marked performance improvement.

The ideal radial geometry suffers from a practical problem. The derived geometry requires 

that the channels meet at the central axis of the phase plug with each channel covering an  

equal  angular  segment  of  the  radiating  diaphragm.  This  situation  cannot  be  realised  in 

practice  as  it  requires  the  channels  to  be  arbitrarily  narrow  in  the  centre.  Due  to  the  

manufacturing  constraints  on  the phase-plug  moulding,  this  is  clearly  not  possible.  In  a 

similar  analysis to that  which was presented in chapter  6.2, a less restrictive method for 

deriving the channel geometry is outlined based on controlling only the modal excitation for  

a few of the compression cavity modes.  The design of a commercial  loudspeaker driver  

using this approach is described in detail and culminates with measurements that shown the 

performance of the final produced driver.
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1.1.7 Chapter 8

Throughout the previous chapters, to simplify the analyses, the assumption has been made 

that  the  radiating  diaphragm  of  the  compression  driver  moves  rigidly.  It  is  firstly 

demonstrated that this is a poor assumption for many common compression-driver designs. 

To  discover  the  theoretical  performance  limits  of  compression  drivers  with  a  non-rigid 

radiating diaphragm, the vibration of the diaphragm is expanded in terms of the mechanical  

eigenfunctions and eigenfrequencies. Using this description of the diaphragm motion along 

with the figures of merit introduced in the previous chapters, it is demonstrated that if the 

mechanical  and  acoustical  eigenfunctions  meet  a  specific  set  of  conditions  then  the 

performance of the compression driver is not restricted by the diaphragm's non-rigidity. An 

attempt  is  made  to  find  diaphragm  and  cavity  geometries  that  approximately  meet  the 

outlined conditions for the acoustical and mechanical eigenfunctions. FEM models are used 

to  assess  the  performance  of  the  resulting  driver  geometries.  The  geometries  that  more 

closely meet the eigenfunction conditions have an improved acoustical performance. This is 

a very exciting result as it provides a clear approach to the design of the diaphragm, an area  

which is currently not well understood. The developments in this chapter works in harmony 

with the phase-plug design methods of the previous sections, and the more accurately the  

eigenfunction condition is  met,  the  better  the  performance of the approaches outlined in 

chapters  5 and  7. Additionally, as it  discussed in this chapter,  the eigenfunction criterion 

approach is also quite closely linked to the cavity-shaping methods of chapter 6.

1.2 Notation and nomenclature

Complex phasors

Loudspeakers  designed  for  audio  are  concerned  with  the  transduction  of  signals  with 

frequency  content  in  the  audio  bandwidth,  commonly  estimated  as  between  20Hz  and 

20kHz. The linear behaviour of loudspeakers is most readily and helpfully considered in the 

steady-state frequency domain. The complex exponential notation is used in this thesis as it 

allows concise formulation of the behavioural equations. The time dependence of oscillatory 

functions is defined to be e jω t , where j=√−1, ω is the frequency in radians per second and t  

is the temporal variable. Thus, a harmonic function x(t ) can be defined as

x(t )=ℜ ( A e jω t ) 1.1.

where A is the complex amplitude of the function and ω is the frequency of  oscillation. As 

indicated,  in  this thesis the implicit  convention that  the  real  part  of  the  complex phasor  
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represents the physical solution is assumed: this is not be stated explicitly with each result.  

Additionally, the oscillatory function e jω t  is generally omitted from expressions for clarity. 

Note  that  the  complex  amplitude  is  not  written  with  a  bold  typeface:  bold  typeface  is  

reserved for vectors (in lower-case) and matrices (in upper-case).

It  should  be  noted  that  this  convention  defines  complex  amplitude,  A,  to  be  a  peak 

amplitude. When calculating power transfer and dissipation, it is important that this is taken  

into account and these peak amplitudes are first  converted into root mean square (RMS)  

amplitudes. For a sinusoidal signal, as are considered in this case, this relationship is simple: 

Apeak=Arms √2. As power is proportional to the square of the circuit flux or potential, this √2 

term results in an additional division by 2. Thus, for example, the power dissipated in a  

resistor is calculated as

P=
∣V∣2

2 R 1.2.

where V  is the peak-voltage amplitude across the  terminals of the resistor of resistance R, 

and  P is  the  power  dissipated  in  the  resistor.  Similar  care  must  also  be  taken  when 

calculating decibels. The decibel scale is generally intended to be a comparable to power or  

intensity. Strictly only RMS amplitudes should be used when calculating decibel levels from 

harmonic signal amplitudes.

Eigenfrequencies, eigenfunctions, natural frequencies and modes

The  physical  behaviour  of  oscillating  fluid  and  mechanical  structures  is  described  by 

differential equations. For acoustical analysis, the full governing equations are approximated 

using  linear  partial  differential  equations  that  omit  the  higher-order  non-linear  terms,  

resulting in a description that is valid at small amplitudes. The homogeneous boundary-value 

acoustical problem is readily dealt with using eigenanalysis that provides a solution to the  

differential equations in terms of a characteristic set of eigenfunctions and eigenfrequencies. 

When  the  governing  differential  equations  are  formed  directly  in  terms  of  physically 

observable  dependent  variables,  such  as  acoustical  pressure  or  mechanical  displacement,  

then the solution to the mathematical description is indistinguishable from the behaviour of 

the  physical  system itself.  Consequently,  in this  thesis,  it  is  considered that  the physical 

system itself has characteristic eigenfrequencies and eigenfunctions and also that these are  

equivalent to the natural frequencies and modes of vibration of the physical system. The two 

sets  of  terminology  are  used  equivalently  and  interchangeably  when  referring  to  the 

characteristic behaviour of a physical system.





2 The acoustics of loudspeakers

2.1 Introduction

In this thesis many aspects of loudspeaker acoustics are considered. This chapter is provided 

as  a  review  of  the  relevant  fundamentals  of  loudspeaker  behaviour.  Most  generally,  a 

loudspeaker is a transducer that converts energy between electrical and acoustical forms.  

This  thesis  exclusively  considers  electromagnetic  loudspeakers  and,  in  this  case,  the 

magnetic and mechanical domains act as an intermediary in the energy chain from electrical 

to acoustical. Although other types of loudspeaker, such as piezoelectrical, eletrostatic and 

magnetostrictive are occasionally seen,  electromagnetic loudspeakers are by far  the most  

common type of loudspeaker.  This is  due to the fact  that  they can be relatively cheaply 

manufactured,  they  are  easily  designed  for  many  different  bandwidths,  powers  and 

efficiencies and they require only moderate partnering electronics.

The next section begins by looking in detail at the transduction path of an electromagnetic  

loudspeaker before then considering more specific types of loudspeaker. Firstly, the direct-

radiating loudspeaker is considered, followed by the horn-loaded loudspeaker and, finally the 

compression-loaded loudspeaker. Special attention is paid to the efficiency, bandwidth and 

size trade-offs in each case.

Initial suffix Domain

e electrical

m mechanical

a acoustical

Table 2.1: Variable initial suffix reference table.

The analysis of loudspeakers using lumped components can be very confusing for the reader  

because of the great number of variables that are used to represent the various impedances  

and components in the different domains. In order to aid the reader, a simple convention has  

been  adopted  for  the  variable  suffixes.  The  initial  suffix  denotes  to  which  domain  the 

variable refers, according to table 2.1.
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The second suffix  denotes  to  what  component  the  variable  refers  according to  table  2.2 

below.

Second suffix Component

d diaphragm

r radiation

s Infinite-baffle mounted loudspeaker

Table 2.2: Variable second suffix reference table.

Thus, the impedance Zms is the mechanical impedance of the infinite-baffle mounted system.

2.2 The electromagnetic transduction mechanism

The path of energy flow in an electromagnetic loudspeaker is always the same. Firstly, the 

drive signal for the loudspeaker is provided in the electrical domain. This drive signal is used 

to provide a mechanical force by arranging for electrical current to flow in a region of high 

magnetic-field  strength.  The  force  generated  is  used  to  drive  a  mechanical  system  that 

incorporates  one,  or  possibly  multiple,  acoustical  diaphragms  that  transfer  energy  as  

acoustical  pressure  waves  into  an  adjacent  medium.  For  a  loudspeaker  this  is  most  

commonly air. Indeed, two transduction processes are present in the transducer: the energy 

that begins in the electromagnetic domain is then transferred to the mechanical domain and 

then finally to the acoustical domain1. It is useful to summarise the transduction path into a 

circuit model as shown in figure 2.1.

Figure 2.1.Lumped circuit representation of a generic electromagnetic loudspeaker.

In each domain two physical quantities describe the state of the components. While other 

conventions are sometimes used, see Beranek [6], in the opinion of the author it is most clear 

1 Strictly, one could consider that a third transduction process is present and the electrical energy is  
transferred into the magnetic domain and then subsequently to the mechanical domain. For the 
purpose of this thesis, this is only considered as a single transduction step although the reader  
should  note  that  it  is  useful  to  make  this  separation  when  considering  non-linearities  in  the 
electromagnetic motor system.
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when  the  circuit  directly  represents  the  geometry  of  the  physical  situation  under 

consideration. The key to this is that the node connection rule follows the physical behaviour 

that  one  would  expect  when  connecting  real  components.  This  approach  results  in  the 

equivalence shown in table 2.3.

Electrical Mechanical Acoustical

Node 

connection rule

Kirchhoff's current law

∑
node

I=0

The sum of all currents 

entering a node is zero.

D'Alembert's principle

∑
node

F=0

The sum of all forces 

applied to a node is zero

Continuity Equation

∑
node

U=0

The sum of volume velocities 

entering a node is zero

Circuit Potential V  – voltage - volts ẋ - velocity - ms−1 p - pressure - Pa

Circuit Flux I  - current - amps F - force - newtons U  - volume velocity - m3 s−1

Electrical admittance

I
V
=Y e

Mechanical impedance

F
ẋ
=Z m

Acoustical admittance

U
p
=Y a

Electrical impedance

V
I
=Ze

Mechanical admittance

ẋ
F
=Y m

Acoustical Impedance

p
U
=Za

Table 2.3 Table of equivalence for circuit analysis in different domains.

In the circuit shown in figure 2.1, there are two transducing elements that interconnect the 

different domains. These are:

1. The loudspeaker motor system

◦ This is usually a coil of wire located in a magnetic field. The element 

obeys the transduction law F=BLI . This law describes how the flux of 

the mechanical side, F, is related to the flux of the electrical side, I , by 

the transduction coefficient BL;

◦ At frequencies in the audio band, BL can be considered as constant and 

is a physically meaningful parameter. It is the length of the coil wire, L, 

multiplied by the magnetic field strength in which the coil is located, B;

◦ The transduction law can be equivalently written as V=BL ẋ in terms of 

the  mechanical  potential,  ẋ,  and  the  electrical  potential,  V .   This 

relationship  between  velocity  and  voltage  is  familiar  as  a 

electromagnetic induction process;

◦ Taking the ratio of these two laws provides an expression that describes 

how an impedance on one side of  the transduction appears from the 
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other,  B
2 L2 /Zm=Z e.  The transduction in  this  case  is  said  to  be anti-

reciprocal as impedance in one domain is transferred to admittance in 

the other. For example, if the circuit on the mechanical side is a damper 

to ground with resistance Rm, the electrical impedance at the terminals 

of the electromechanical transduction component is B
2 L2 /Rm.

2. The diaphragm

◦ This is usually a lightweight rigid mechanical surface adjacent to the 

acoustical  medium to which energy is to be transduced.  The element 

obeys the transduction law U=Sd ẋ. This law describes how the flux of 

the acoustical side, U , is related to the potential of the mechanical side, 

ẋ, by the transduction coefficient Sd;

◦ Physically  Sd is  the  radiating  area  of  the  diaphragm  that  may  be 

considered constant only at low frequencies while the diaphragm moves 

rigidly;

◦ The law can be equivalently written in terms of the acoustical potential, 

p, and the mechanical flux, F, as F=Sd p;

◦ Taking the ratio of these two laws provides an expression that describes 

how an impedance on one side of the  transduction appears  from the 

other, Sd
2 Za=Z m. The transduction in this case is said to be reciprocal as 

impedance in one domain is transferred to impedance in the other. For 

example,  if  the  circuit  on  the  acoustical  side  is  composed  of  an 

acoustical  mass,  M a,  the  mechanical  impedance  of  the  transduction 

component is Sd
2 M a.

Also included in the circuit shown in figure  2.1 are three impedances, one in each of the 

domains. The positions of these impedances are typical for the majority of loudspeakers; 

however, for certain special cases the arrangement may be slightly different. In the electrical  

domain,  the  impedance  Zeb is  shown  in  series  with  the  input  to  the  electromechanical 

transaction component.

This electrical impedance is commonly called the blocked electrical impedance and is the 

electrical impedance of the voice coil when the mechanical side of the transducer is blocked 

and the voice coil is held stationary, defined as
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Zeb=
V
I ∣ẋ=0 2.1.

In the mechanical domain, the impedance Zmd is shown as a parallel branch connecting the 

both the electromechanical and mechanoacoustical transaction steps to ground. Implicit to  

this topology is that the voice coil and diaphragm are mechanically rigidly coupled and move 

with the same velocity,  ẋ.  At high frequencies, where some non-rigid motion may occur 

between or in the voice coil and diaphragm, or for the rare case of a loudspeaker designed 

with  a  compliant  mechanical  link  between  voice  coil  and  diaphragm,  a  more  complex 

mechanical model is required including some mechanical impedance in series between the  

electromechanical and mechanoacoustical transduction steps. The mechanical impedance as 

shown is commonly called the open-circuit  mechanical impedance and is the mechanical 

impedance of the moving parts of the loudspeaker without any loading from the electrical or  

acoustical parts of the circuit, defined as

Zmd=
F
ẋ ∣I=0, p=0 2.2.

In  the  acoustical  domain,  the  impedance  Zar is  shown  between  the  mechanoacoustical 

transduction stage and ground. This acoustical impedance is commonly called the acoustical 

radiation impedance and is the acoustical impedance of the acoustical  part of  the circuit  

when there is no loading from the mechanical domain, defined as

Zar=
p
U∣F=0 2.3.

It  is  very  common  practice  to  transform  the  acoustical  radiation  impedance  into  an 

equivalent mechanical impedance using the transformation

Zmr=Zar Sd
2

2.4.

where Zmr is referred to as the mechanical radiation impedance. This transformation allows 

the simpler circuit shown in figure 2.2 to be used.

More  generally,  this  transformation  can  be  considered  in  a  different  way  using  a  new 

mechanical impedance, Zms, the system mechanical impedance, defined as

Zms=
F
ẋ∣I=0 2.5.

Note that, compared to the expression for Zmd, p is not defined to be zero.
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Figure 2.2. Simplified circuit representation of a generic electromagnetic loudspeaker after  
transformation of the acoustical radiation impedance into the mechanical domain.

Whereas  Zmd is  the  mechanical  impedance  of  the  mechanical  parts  alone  without  the 

influence  of  the  acoustical  domain,  Zms includes  the  acoustical  effects.  This  is  a  useful 

generalisation as it encourages one to think of the mechanoacoustical system as intimately 

coupled rather than as two separate domains. The definition of  Zms in this way allows the 

easy  extension  of  the  lumped  parameter  approach  to  more  complex  mechanical  and 

acoustical systems.

Figure 2.3. Further simplified circuit representation of a generic electromagnetic loudspeaker using  

the system mechanical impedance Zms .

For the simple diaphragm transducer model it is possible to write the system mechanical 

impedance as

Zms=Zmd+ Zmr 2.6.

Traditional analysis of loudspeaker lumped model, such a that by Olsen [7] and in the works 

of  Thiele  [8,9]  and  Small  [10,11,12,13,14,15,16],  commonly  take  the  impedance 

transformation  approach  a  step  further  and  transform all  components  into  the  electrical 

domain.  The  relevance  of  this  is  primarily  historical:  much  of  the  early  analysis  of 

loudspeakers was performed on behalf  of  radio-set  manufacturers by electrical  engineers 

who  were  most  used  to  working  in  the  electrical  domain.  Additionally,  the  transformed 
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electrical circuit could be built using the transformed component values and could then be  

analysed using electrical circuit equipment such as signal generators and oscilloscopes. At 

the time, well before computers were available to calculate the lumped model behaviour, this  

was the simplest means of generating bode response graphs for specific lumped systems.  

This approach is  not  encouraged by the author as it  is  not  useful  to think of the whole  

loudspeaker  system  in  terms  of  isolated  lumped  electrical  components:  while  this  is  a  

reasonably good approximation for the components that exist in the electrical domain it is a 

poor starting point for considering the mechanical and acoustical parts of the loudspeaker 

that act in a more complex manner in all but most rudimentary of models. The presence of 

the  electromechanical  transduction  usefully  demarcates  where  the  lumped  component 

approach drops significantly in accuracy.

2.2.1 Loudspeaker electrical input impedance

The electrical part of the circuit in figure 2.3, above, consists of two components connected 

in  series,  the  blocked  electrical  impedance,  Zeb,  and  the  electromechanical  transduction 

component. The system input voltage can be described as the sum of the two voltages across  

each of these components, using the expressions above, as

V in=Zeb I+ BL ẋ 2.7.

The  force  on  the  mechanical  part  of  the  system  exerted  by  the  electromechanical  

transduction component is equal to

F=BLI 2.8.

The velocity with which the mechanical system reacts when this force is applied to it is 

described using the system mechanical impedance 

ẋ=
BLI
Zms 2.9.

Inserting this expression into the description of the input voltage above,  2.7, results in an 

expression for the electrical input impedance of the loudspeaker,

Zes=Z eb+
B2 L2

Zms 2.10.

2.2.2 Voltage driven loudspeaker voice coil velocity

The velocity of the mechanical side of the  electromechanical transduction component as a 

function of the electrical  current  flowing in the electrical  side of the circuit  is  given by  



30 Chapter 2, The acoustics of loudspeakers

expression 2.9. However, the majority of loudspeakers are driven by low output impedance 

voltage amplifiers. In this case, it is more useful to write the mechanical drive point velocity 

in terms of the loudspeaker input voltage. This is relatively straightforward as the electrical 

input  impedance that was outlined above, expression  2.10, can be used to determine the 

electrical current,  I , flowing in the voice coil due to the input voltage,  V . Substituting this 

into expression 2.9 provides an expression for the mechanical drive point velocity in terms of 

the loudspeaker input voltage as

ẋ
V
=

BL

Z ms Zeb+B2 L2
2.11.

It is instructive to extract the Zeb term in the denominator, using the blocked electrical 

admittance Y eb=Zeb
−1

 for conciseness, this results in the expression

ẋ
V
=

BLY eb

Z ms+B2 L2 Y eb 2.12.

This  expression is  quite  revealing.  When a  voltage source is  applied to  the  loudspeaker 

terminals it can be considered that the mechanical parts are driven with a force equal to 

V BLY eb and, assuming that the blocked electrical impedance Zeb is predominantly resistive, 

that there is an effective additional mechanical damper fixed between the mechanical drive 

point and mechanical ground of magnitude  B
2 L2 Y eb. Physically this is due to the induced 

electromotive force (EMF) that is generated by the motion of the voice coil in the magnetic 

gap. This induction is often called the “back EMF”.

2.2.3 Loudspeaker efficiency

The efficiency of a loudspeaker is defined as the useful power output as a proportion of the 

total  power  input.  The input  impedance of  a loudspeaker  was given in  expression  2.10, 

expanding  the  Zms term  as  the  sum  of  the  open-circuit  mechanical  impedance  of  the 

diaphragm, Zmd, and the mechanical radiation impedance, Zmr, results in

Zes=Z eb+
B2 L2

Zmd+Z mr 2.13.

The  dissipative part  of  the  electrical  impedance  is  represented  by  the  real  part  of  this 

complex expression, given by

ℜ (Z es)=ℜ (Zeb)+
B2 L2ℜ (Z md )

∣Zmd+Zmr∣
2
+

B2 L2ℜ (Z mr )

∣Zmd+Z mr∣
2

2.14.
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As the purpose of the loudspeaker is to convert energy into an acoustical form it shall be  

assumed that all of the power that is dissipated into the acoustical domain is useful power 

output. This may not always be the case. For example, acoustical output that is subsequently 

dissipated by absorbent material inside the loudspeaker cabinet may not be considered to be 

useful. However, in this case, the  ℜ (Z mr ) term represents the useful power output and the 

efficiency, η, can be written as

η=
ℜ (Zmr )

ℜ (Zeb )

B2 L2 ∣Zmd+Z mr∣
2
+ℜ (Zmd )+ℜ (Zmr )

2.15.

or slightly more compactly as

η=
ℜ (Zmr )

ℜ (Zeb )

B2 L2 ∣Zms∣
2
+ℜ (Z ms )

2.16.

This expression for transducer efficiency, written in terms of electrical impedance, has been 

widely used [7,p.126][17][18,p.405].

2.2.4 Nominal efficiency

In addition to the true efficiency described above, it is sometimes common to use “nominal  

efficiency” defined as the useful power output as a proportion of the power dissipated by a  

resistor  of  the  same  magnitude  as  the  voice-coil  resistance.  The  power  output  of  the  

loudspeaker, with the same assumptions regarding Zmr that were made above, is given by

Pout=
ℜ (Z mr )

2
∣ẋ∣

2

2.17.

In terms of the input voltage, the power output is given as

Pout=
ℜ (Z mr )

2 ∣ V BL

Zms Zeb+B2 L2∣
2

2.18.

The power dissipated by a resistance equal to ℜ (Z eb) is

Pnom=
∣V∣

2

2ℜ (Zeb ) 2.19.
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Dividing the output power by this “nominal input power” results in the definition for the 

nominal loudspeaker efficiency

ηnom=
B2 L2ℜ (Zmr )ℜ (Z eb)

∣Zeb∣
2 ∣ 1

Zms+B2 L2/Zeb
∣
2

2.20.

“Nominal efficiency” was popularised, although not first used [6], by Small in his seminal 

papers on loudspeaker efficiency and alignment. He outlines this definition in the first of the 

series [10]. The motivation for this alternative method of considering the efficiency is that it 

is  normal  for  a  loudspeaker  to  be  driven  with  an  electrical  voltage  source.  The  true 

efficiency, η, of a loudspeaker is extremely high at any resonance of the mechanical system 

because the system mechanical impedance, Zms, becomes very small. However, when driven 

with a voltage source, this high efficiency does not result in an increased output power, but  

rather a decreased power input: the damping effect of the back EMF manifests itself as a 

large  peak  in  the  electrical  input  impedance.  The  efficiency  at  this  peak  is  of  little 

significance  to  designs  intended  for  use  with  voltage  sources.  The  nominal  efficiency 

definition ignores the motional part of the electrical impedance and, as a result, the nominal 

efficiency  has  the  same  response  shape  as  the  power  output  of  the  voltage-driven 

loudspeaker.  The  nominal  efficiency  expression,  equation  2.20,  naturally  falls  into  the 

product of a response magnitude function, on the right hand side, and an efficiency term, on 

the left. For most loudspeakers the efficiency term on the left is approximately invariant of 

frequency. This was an important step in Theile and Small's work in using filter theory to 

describe loudspeaker behaviour and alignment: the efficiency term is a parallel concept to 

sensitivity ratio as used in filter analysis.

2.2.5 Standard low-frequency impedance models

The loudspeaker behavioural equations have been derived hitherto in terms of three abstract 

circuit  impedances,  Zeb,  Zmd and  Zmr.  The  standard  lumped  parameter  models  that  are 

commonly used to mimic the behaviour of a conventional electromagnetic loudspeaker at 

low frequencies are outlined in this section. The third of these impedances, Zmr, is discussed 

in  the  following  chapters  as  its  nature  depends  on  the  type  of  loudspeaker  under 

consideration.

Figure 2.4 shows a cross section through a generic paper cone low-frequency driver, the type 

of  loudspeaker  shown  is  very  common  in  high-fidelity  and  professional  applications. 

Although other shapes of diaphragm, magnet system arrangements and suspension locations 

are commonly found, for the vast majority of loudspeakers, the general arrangement of parts  
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is the same as shown in the figure  below. Thus, for the vast majority of electromagnetic 

loudspeakers, the same low-frequency approximations for Zeb and Zmd can be used.

Figure 2.4. Cross section of a paper-cone low-frequency electromagnetic loudspeaker.

Blocked electrical impedance models

Referring  to  figure  2.4,  the  motor  system  of  the  loudspeaker  consists  of  one  or  more 

permanent magnets that are glued to accompanying steel parts to form a magnetic circuit  

between the poles of the magnets. This circuit is broken only at a very narrow annular gap 

where  the  loudspeaker  voice  coil  is  located.  This  arrangement  results  in  a  concentrated 

magnetic field passing radially through the voice-coil wire such that when a current passess 

through the voice-coil wire, a mechanical force equal to BLI  is generated on the voice coil. 

Typically, with a high-quality loudspeaker, the magnet system and voice coil are designed so 

that for moderate displacements the transduction coefficient,  BL, does not change with too 

much severity. The arrangement shown in figure 2.4 is referred to as a short-gap, long-coil 

layout. Only part of the voice coil is positioned in the area of highest magnetic flux such that  

when some of the windings move axially out of the gap, others move into the other end of  

the gap and the BL remains approximately constant. The voice coil itself is a closely wound 

coil  of wire supported on a cylindrical  member known as the former. The very simplest  

model used for the blocked electrical impedance, Zeb, uses only a lumped resistance equal to 

the resistance of the wire in the coil windings, Re, and is written as

Zeb=Re 2.21.

Although extremely simple, this model is regularly used, particularly because it is simple to 

estimate  the  voice-coil  resistance  when  designing  the  voice  coil  and  it  is  a  reasonably 

accurate  approximation for  loudspeakers  that  are  only to  be used at  low frequencies.  In 



34 Chapter 2, The acoustics of loudspeakers

reality, the blocked impedance also has a significant inductive contribution because of the  

turns of the voice coil and the surrounding magnetically permeable media. In its simplest  

form this is approximated, in the impedance Zeb, as the series combination of a resistor,  Re 

equal to the wire resistance of the coil, and an inductance, Le, written as

Zeb=Re+ jω Le 2.22.

The inductive characteristic  of  the  blocked electrical  impedance reduces  the  loudspeaker 

output at high frequencies. For some designs, this output reduction is problematic and is one 

of the factors that  necessitates the use of small  diameter voice coils,  with few turns,  on 

designs intended to work to the top end of the audio bandwidth.

However, in reality the inductive rise of the voice coil does not follow the exact jω Le form 

of the ideal inductor, but instead has a somewhat slower rise and hence it is often called a 

semi-inductance. This semi-inductance results from the electromagnetic interaction between 

the voice coil and the magnet system. Some of the magnet system regions, such as the steel,  

are electrically conductive and, consequently, as the electrical current flows in the voice-coil 

electrical current is induced in these regions. These induced currents are commonly called 

eddy currents. The eddy current flow direction naturally opposes the flow of the voice coil  

and thus tends to reduce the apparent inductance of the voice coil. The induction of the eddy 

currents occurs by electromagnetic coupling, in the same way as an electrical transformer  

operates.  The  various  magnet  system  regions  have  different  magnetic  permeabilities, 

depending on their material and magnetic saturation, and this alters the effectiveness of the 

eddy current coupling and also the direct inductance of the voice coil itself. Additionally, as 

the various regions lie at different distances from the voice coil and the depth to which the  

eddy currents are induced is frequency dependent, the corresponding voice-coil impedance 

characteristic  can  be  quite  complex.  There  are  many  lumped  models  for  the  blocked 

electrical impedance that are used as a better fit to this semi-inductance [19,20,21]. However, 

few of these are based on the physical situation and, consequently, the parameters of these  

models have no physical significance. The most established of these is the “LR2” model that  

includes an additional resistor and inductor as shown in figure 2.5.

Figure 2.5. LR2 blocked electrical impedance.
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The electrical impedance of the LR2 model is given by the expression

Zeb=Re+ jω Le+
jω L2R2

R2+ jω L2 2.23.

Despite not giving the best match with real measurements compared to other Zeb models, the 

LR2 model is widely used as it  is easy to implement in circuit  simulation software and, 

because it can be written in the time domain, it may be used in non-linear lumped modelling 

[22].

Diaphragm mechanical impedance models

The  diaphragm  mechanical  impedance,  Zmd,  describes  the  mechanical  behaviour  of  the 

moving  parts  of  the  loudspeaker  when  there  is  no  coupling  from  either  the  electrical 

transduction step nor the acoustical  transduction.  Referring to figure  2.4, the mechanical 

system is composed of parts that are intended to remain rigid and move together, such as the 

diaphragm itself, the voice coil and the former, and parts that are intended to allow the rigid  

parts to move axially when a force is applied, but to prevent them from moving in other  

directions, such as the suspension and surround. The standard lumped model that is used to  

mimic this arrangement is a mass supported by a stiffness and resistance as depicted in figure 

2.6.

Figure 2.6. Simple lumped model of the driver mechanical parts.

The diaphragm mechanical impedance, Zmd, for this standard representation is given by the 

expression

Zmd= jωM md+ Rmd+
Kmd

jω 2.24.

The lumped mass of the system, M md, is the summed mass of all the rigid parts. Similarly, 

the  lumped  stiffness,  Kmd,  and  lumped  resistance,  Rmd,  is  the  sum of  the  stiffness  and 

resistance of all the supporting parts. In practice, the M md appears to be slightly higher than 

the  combined  mass  of  the  rigid  parts  because  there  is  a  small,  but  significant,  mass  
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contribution from the flexible parts, such as the suspension and surround. If this is accounted 

for,  by  estimation,  the  lumped  M md can  be  predicted  relatively  accurately  from  the 

loudspeaker part masses (from measurement or drawings). The stiffness, Kmd, and resistance, 

Rmd,  are  more  difficult  to  predict  without  more  detailed  modelling.  It  is  common  in 

loudspeaker  engineering to  use  the  mechanical  compliance,  the  inverse  stiffness.  This  is 

primarily historical and due to the fact that if using a force-current analogous circuit the 

stiffness transforms into a reciprocal inductance.

2.3 Direct-radiating loudspeakers

Direct-radiating loudspeakers  use  the  diaphragm to radiate  directly  into the  environment  

where the listener is located without any other acoustical devices in the radiation path. The 

majority of loudspeakers designed for use in domestic environments are direct radiating. To 

illustrate the typical behaviour of a direct-radiating loudspeaker, a rigid piston in an infinite 

baffle  is  used to  model  the  radiating behaviour.  This  infinite-baffle  mounted piston is  a 

common model for the mechanical radiation impedance, Zmr, of a loudspeaker which can be 

expressed as

Zmr=ρ0 c0π a2 [R1 (2k a)+ j X1 (2ka ) ] 2.25.

where
R1 ( x )=1−

2 J 1 (x )

x 2.26.

and
X 1 (x )=

2 H1 (x )

x 2.27.

In this expression ρo is the equilibrium density of the acoustical medium, c 0 is the speed of 

sound in the acoustical medium, a the piston radius and k  the wavenumber. J 1 ( x ) is a Bessel 

function of the first kind [23, p.27] and H1 (x ) the first-order Struve function [24, §12.1]. This 

expression  was  first  given  by  Rayleigh  [25,  Vol.2  p162].  In  a  previous  publication,  he 

mentions that the calculation technique was suggested to him by Maxwell [26, p. 102]. The 

derivation of this expression is described in this notation by Kinsler and Frey [18, pp.185-

187].

At low frequencies (ka≪1), the radiation impedance of the  baffle mounted piston can be 

approximated by the expression

Zmr≈ρ0cπa2 [ (k a)
2

2
+ j 8 k a

3π ] 2.28.
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The imaginary part of this expression is equivalent to the impedance of a mass of magnitude

M mr=ρ0 Sd
8a
3π 2.29.

and the radiation resistance is

Rmr=ρ0 Sd
2 ω2

2π c 2.30.

Combining these low frequency approximations with the standard mechanical diaphragm 

impedance  model,  described  in  section  2.2.5,  provides an  expression  for  the  system 

mechanical impedance, Zms, which can be written as

Zms= jωM ms+ Rms+
Kms

jω 2.31.

where M ms=M md+ M mr 2.32.

Rms=Rmd+ Rmr 2.33.

and Kms=Kmd 2.34.

This approximation of the acoustical load on the mechanical system is reasonable because in  

the case of a direct-radiating loudspeaker the mechanical radiation impedance is typically a 

factor of ten smaller than the diaphragm mechanical impedance.

The system mechanical  impedance,  Zms,  can also be written in  terms of  two normalised 

parameters:  the  mechanical  system natural  frequency,  ωs,  and the mechanical  system Q-

factor, Qms, defined as

ωs
2=

Kms

M ms and
Qms=ωs

M ms

Rms 2.35.

Using these two parameters, the system mechanical impedance is

Zms=ωs
2 Mms [ jω

ωs
2
+

1
Qmsωs

+
1

jω ] 2.36.

Pressure response

The far-field complex  pressure radiated by a rigid axially moving piston mounted in  an 

infinite baffle is given by the expression [18, p. 182]

pfar (r ,θ )= jω ẋ
ρ0S d

2πr [ 2J 1 (ka sinθ )
ka sinθ ]e− jkr

2.37.
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The term in the  square  brackets  describes  the  directivity  of  the  piston  source,  which  is 

dependent upon the angle of observation from the piston axis,  θ.  This directivity term is 

unity on-axis with the piston. From this it is clear that if the piston moves with a constant 

acceleration amplitude the axially radiated pressure response is even at all frequencies. The 

axial pressure response of the direct-radiating loudspeaker based on this radiation model may 

be written, with the help of expression 2.12, as

pax (r )=BLSd

ρ0

2π r [ jωV

Zms Zeb+B2 L2 ]e− jkr

2.38.

Choosing a simplified resistive  blocked impedance,  Zeb=Re, as described in section  2.2.5, 

and inserting the system mechanical impedance outlined above, the pressure response of the 

loudspeaker is

pax (r )=
ρ0

2πr

Sd

M ms

BL
Re [V .

ω2

ωs
2

ω2

ωs
2
−

jω
Qmsωs

−
jωB2 L2

Reωs
2 M ms

−1 ]
2.39.

The damping effect of the back emf can, similarly to the mechanical damping effect,  be 

written as a Q-factor, Qes, defined as

Qes=ωs

Mms Re

B2 L2 2.40.

Using this parameter, the axial pressure response of the direct radiating loudspeaker can be 

written

pax (r )=
ρ0

2πr
Sd

M ms

BL
Re [V .G( jω

ωs
)] 2.41.

where

G (s )=
s2

1+ s /Qts+ s2
2.42.

and

Qts=
Qes Qms

Qes+ Qms 2.43.

The expression for the pressure response of the direct-radiating loudspeaker in equation 2.41 

is in a very useful form, the shape of the frequency response is described by the second order 
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high pass function G (s ) and the voltage sensitivity is given by the other terms on the left of  

the expression. This reveals the useful observation that, above the natural frequency of the 

system mechanical  impedance,  the direct-radiating loudspeaker has an approximately flat 

response.  Figure  2.7 shows  the  magnitude  of  the  response  function  plotted  for  several 

different values of Qts. From the figure it is observed that a very low value of Qts results in a 

reduction in the output close to the loudspeaker natural frequency whereas an overly high 

value of Qts results in a peaking in the response close to the loudspeaker natural frequency. A 

Qts of  1/√2 gives  a high-pass  frequency response that  has  the  maximum low-frequency 

extension without any peaking, this type of response is known as a Butterworth alignment 

[27].

Figure 2.7. Direct-radiating loudspeaker response function ∣G ( j x )∣ plotted for different values of Qts.

The voltage sensitivity term is also instructive. From this it is clear to see that if the ratio  

Sd /M ms can be increased then the loudspeaker sensitivity is improved. Similarly, an increase 

in the ratio BL/Re  results in an increase in the voltage sensitivity. However, changes to these 

ratios have other effects. In practice, it becomes very difficult to maximise the ratio Sd /M ms 

as this requires that the mass per unit area of the diaphragm be minimised, a goal that at  

some point compromises the structural rigidity of the diaphragm. An increase of the ratio  

BL/Re not only necessitates a larger, more expensive magnet system, but  also inevitably 

results in a decrease in the Qes, as defined in 2.40, and correspondingly a decrease in the Qts 
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that  ultimately leads to an undesirable over-damped response function. Thus, in practice, 

these constraints restrict the voltage sensitivity achievable with direct-radiating designs.

Power response

As previously outlined in section 2.2.4, the power output of the loudspeaker can be described 

in terms of the input voltage using the expression

Pout=
ℜ (Z mr )

2 ∣ V BL

Zms Zeb+B2 L2∣
2

2.44.

Note that the factor 2 in the denominator of this expression is present because the complex 

amplitudes in the circuit are defined to be peak amplitudes. Using the same model for  Zeb 

and Zms as was used above to describe the axial pressure response, the power output can be  

written

Pout=
ℜ (Z mr )

2ω2

1

M ms
2

B2L2

Re
2 ∣V G( jω

ωs
)∣

2

2.45.

The real  part  of the mechanical  radiation impedance,  the mechanical radiation resistance 

ℜ (Z mr ), of the baffle mounted piston was given in expression  2.25. Using this mechanical 

radiation resistance, after a little manipulation, the power response expression can be written 

in terms of the far field axial pressure response, as defined in expression 2.41, as

Pout=
2πR1 (2k a )

ρ0 ck 2 a2 ∣r pax (r )∣
2

2.46.

In  this  expression  the  function  R1 was  defined  in  equation  2.26.  Figure  2.8 shows  a 

logarithmic plot  of  the function  2 R1 (2k a )k−2a−2
,  taken from the first  term of the power 

output expression above. From this it is clearly seen that at frequencies greater than ka=1, 

compared to the axial pressure response of the loudspeaker, the power response falls. This 

fall in power tends to an asymptotic rate of -6dB per octave. By implication, this means that,  

while the axial pressure response of the direct radiating loudspeaker may be approximately 

flat over a wide bandwidth,  the response drops off  in other directions once frequency is  

above ka=1.

The directional response of a infinite baffle mounted rigidly moving piston in the far field 

relative to the axial pressure is given given by the expression [18, p.182]

H (θ )=
2 J 1(ka sinϕ )

ka sinϕ 2.47.
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This directivity function is plotted at increments of 15 degrees from the piston axis in figure 

2.9. The increasing directivity is clearly seen with the responses furthest off axis dropping 

most rapidly as ka increases. In addition there are clear nulls visible in the off-axis responses 

indicating lobeing behaviour in the polar response at high frequencies.

Figure 2.8. Bode response plot of the function 2 R1 (2 k a )k−2a−2
, plotted in dB power relative to unity  

versus normalised frequency, ka.

Figure 2.9. Infinite baffle mounted piston far-field response magnitude relative to axial pressure.
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Diaphragm excursion

The diaphragm peak motion, or excursion, is a important consideration when designing a 

loudspeaker  driver  as  the  mechanical  parts  must  allow  enough  motion  to  produce  the 

required acoustical radiation levels while remaining intact and hopefully reasonably linear.  

The excursion of the diaphragm is easily derived using the expressions outlined above as

x= 1
M ms

BL
Re
[V .

G ( jω/ωs )

−ω2 ] 2.48.

This reveals that, unlike the pressure response, which exhibits a high-pass characteristic, the 

diaphragm excursion has a low pass characteristic, with the diaphragm moving most at low 

frequencies and reducing above the natural frequency of the system mechanical impedance. 

Additionally, it is observed that the magnitude of the excursion is to a first approximation 

invariant to the diaphragm radiating area. More precisely, there is a slight dependence as the  

mechanical system moving mass, M ms, has a small dependence upon the diaphragm surface 

area, Sd, as demonstrated at the beginning of this section. Figure 2.10 shows the variation of 

diaphragm excursion with frequency for loudspeakers with various values of  Qts.  In this 

figure the displacement amplitude is normalised by  BLM ms
−1ωs

−2 Re
−1

 and  ω /ωs is set as the 

abscissa.

Figure 2.10. Diaphragm normalised displacement amplitude versus normalised frequency.
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Sensitivity and efficiency

A well-designed direct-radiating loudspeaker frequency response has an approximately flat 

pass-band  axial  pressure  and  power  response  below  ka=1.  In  this  region  the  pressure 

voltage-sensitivity of the loudspeaker, given by the first few terms of expression 2.41, is

psens=
ρ0

2π
Sd

M ms

BL
Re 2.49.

This sensitivity value determines the pass-band pressure amplitude measured at 1m on axis 

with the loudspeaker when a voltage signal of amplitude 1v is applied to the loudspeaker 

terminals. Similarly the power voltage-sensitivity can be similarly written as

Psens=
ρ0

2c02π
Sd

2

Mms
2

B2 L2

Re
2

2.50.

This sensitivity value determines the pass band power output when a voltage signal of 1v is 

applied to  the  loudspeaker  terminals.  Note  that  there  is  an additional  factor  of  2  in  the 

denominator compared to the definition given by Small [10, p. 187] that is present as, with 

the convention outlined in section 2.1, voltage amplitude is a peak amplitude.

As discussed in section  2.2.3, there are several different definitions of efficiency that are 

commonly used for loudspeakers. In the pass band of the loudspeaker the input power is  

approximately

Pin=
∣V ∣2

2Re 2.51.

and the pass-band efficiency is simply

ηpass=
ρ0

2π c

Sd
2

M ms
2

B2 L2

Re 2.52.

Assuming that the system natural frequency is somewhat below ka=1  and the Qts is close to 

1/√2, this is a meaningful single value that describes the useful efficiency of the loudspeaker 

in the pass band. As was discussed in section 2.2.4, nominal efficiency is commonly used: 

ratio of the power output compared to the power input to a resistor of resistance Re. Small 

uses this definition in his paper on direct-radiating loudspeakers [10]  and, using the low 

frequency approximation for ℜ(Z mr) given in equation 2.28, he provides an expression for 

efficiency that includes the high-pass response shape that was introduced in equation 2.42
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η small=
ρ0

2π c

Sd
2

M ms
2

B2L2

Re ∣G(
jω
ωs
)∣

2

2.53.

Slightly more accurately, the nominal efficiency can be written without the low-frequency 

approximation of ℜ(Z mr) as

ηnom=
2R1 (2k a )

k 2 a2

ρ0

2π c

Sd
2

M ms
2

B2 L2

Re ∣G(
jω
ωs
)∣

2

2.54.

Finally the full efficiency for the loudspeaker considered here, including the reduction in the 

input power at the loudspeaker system resonance, ignored by the preceding definitions, is

η=
2 R1 (2k a)

k2 a2

ρ0

2π c

Sd
2

Mms
2

B2 L2

Re ∣G(
jω
ωs
)∣

2

(1+
1

ωs Qes

1

∣1+Qms ( jω/ωs+ωs / jω)∣
2) 2.55.

Figure  2.11 shows the differences between these four efficiency definitions on an example 

loudspeaker  system  with  ωs=0.1c /a (ka=0.1),  Qts=0.707 and  Qms=7.07.  The  plotted 

efficiencies are normalised by the pass-band efficiency as defined in equation 2.52. The pass 

band efficiency calculation, shown in red, has no frequency variation in the efficiency but 

does  agree  with  the  other  calculations  in  the  centre  of  the  pass  band  region  for  this 

loudspeaker, between ka=0.2 and ka=0.5. Small's nominal efficiency definition, shown in 

blue, includes the high-pass characteristic that was seen in the power and pressure responses 

derived in the previous sections.  The nominal  efficiency calculation including the piston 

directivity effects, shown in green, also includes a reduction in the efficiency at ka> 1 as the 

radiation beams on axis.

The full efficiency including the reduction in the power input because of the peak in the 

electrical  input  impedance, shown in purple, additionally shows a very large peak in the 

efficiency close to the mechanical system natural frequency. While the nominal efficiency 

definition is useful as it has the same response shape as the voltage-driven loudspeaker, it is 

important that this is not confused with the true efficiency, which is, as can be seen from 

figure 2.11, significantly different near the system natural frequency.
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Figure 2.11. Comparison of different approximations of direct-radiating loudspeaker efficiency.

Maximum pass-band efficiency

The  pass-band  efficiency  of  the  loudspeaker  was  above  shown  to  be  described  by  the 

expression

ηpass=
ρ0

2π c

Sd
2

M ms
2

B2 L2

Re 2.56.

This expression is composed of two ratios of physical parameters. The first is the ratio of the 

diaphragm area squared,  Sd
2
,  to the diaphragm effective moving mass squared,  M ms

2
.  This 

ratio  is  determined  by  the  physical  construction  of  the  loudspeaker  mechanical  parts.  

Loudspeakers commonly use cone- or dome-shaped diaphragms in an effort to maximise this 

ratio by enabling very thin materials to be formed into a reasonably stiff diaphragm. The 

cone and dome shapes attain their rigidity without relying on bending stiffness: resistance to 

deformation comes primarily from tensile and compressive stiffness in the material surface.  

This means that if the diameter of a diaphragm is increased in practice, it is not necessary to  

increase  the  thickness  of  the  cone  or  dome  by  as  great  a  proportion.  Additionally,  a 

significant part of the moving mass of the loudspeaker driver is in the voice coil and former  

– and the size of these parts are set by other considerations such as power handling, the BL 

requirement and the excursion requirement. These two effects mean that,  in practice, the  

ratio  Sd
2 /M ms

2
 is  almost  invariant  to driver size and is  primarily a function of the motor-

system design and the material  and shape of  the diaphragm. In practice,  it  is  extremely 
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difficult to achieve a value of Sd
2 /M ms

2
 greater than unity without seriously compromising the 

driver design in other areas. Similarly, the ratio B
2 L2 /Re is limited by practical constraints. 

An increase in  the  coil  resistance requires  the  use  of  thinner  wire  that  results  a greater  

number of turns in the motor-system gap and hence a higher value of BL. Conversely, a 

lower coil resistance requires a larger diameter wire with fewer turns in the gap and a lower 

BL.  Because of this effect,  for any particular motor design and winding height,  the ratio 

B2 L2 /Re is almost invariant of the coil resistance. In practice, without an overly large, and  

heavy,  voice  coil  and  motor  system  the  maximum  attainable  value  of  B
2 L2 /Re is 

approximately 30. Thus, it is very rare to find direct-radiating loudspeakers with a pass-band 

efficiency  greater  than  1%,  indeed  the  majority  of  direct-radiating  loudspeakers  have 

significantly lower pass-band efficiencies, particularly, since to achieve this efficiency would 

almost certainly necessitate compromise in other areas of the design.

Maximum bandwidth

The pass-band efficiency expression can be equivalently written as

ηpass=
V as

2π c3

ωs
3

Qes 2.57.

where
V as=ρ0 c2 Sd

2

Kms 2.58.

The parameter V as represents the volume of air that, when coupled to a piston of area Sd, has 

the same compliance as the mechanical parts of the loudspeaker driver. The electrical Q-

factor, Qes, is normally dominant to the extent that Qts≈Qes. Thus, if the designer is aiming 

for an overall high-pass alignment, such as one of those shown in figure 2.7, the target for 

Qes can be readily set. For the bandwidth of the direct-radiating loudspeaker system to be as  

large as possible, the natural frequency of the mechanical system,  ωs,  must be as low as 

possible. The form of the efficiency shown in expression  2.4 highlights that in effect this 

requirement has a negative effect on the efficiency of the system. Effectively, this is because  

of the dependence of ωs on M ms. The only way that this effect can be countered for a given 

alignment, and corresponding value of Qes, is by maximising V as, making the stiffness of the 

mechanical system as low as possible. Obviously, there is a practical limit to how low it is 

possible to push the value of Kms and still maintain a structurally stable mechanical system. 

This  bandwidth  trade-off  is  not  withstanding  the  practical  constraints  on  B
2 L2 /Re and 

Sd
2 /M ms

2
 discussed above.
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Above a frequency of ka=1 the power output from a direct radiating loudspeaker decreases 

due to the axial narrowing of the radiated pressure. Thus, a small diaphragm is preferable for  

reproducing  high  frequencies.  However,  the  mechanical  parts  of  the  loudspeaker  have  a 

finite excursion capability and, as the axially radiated sound pressure is directly proportional 

to  the  volume  acceleration generated  by  the  loudspeaker,  the  displacement-limited 

maximum output capability falls with the square of decreasing frequency as

pax,max=Sd xmax

−ω2ρ0

2π r 2.59.

Thus, for maximum output at low frequencies, a large diaphragm is preferable. In effect,  

there is a trade-off between the maximum output capability that the loudspeaker is required 

to have close to ωms, where driver excursion is a maximum, and the upper limit to the driver 

bandwidth at  ka=1. By increasing the maximum excursion capability of the loudspeaker, 

xmax, it is possible to offset this trade-off to some extent; however, designs with a particularly 

high xmax are inevitably expensive as they require a motor capable of driving the coil with a  

approximately constant BL over a large distance. Because of this trade-off, it is very difficult 

to design a single loudspeaker driver that is able to reproduce the whole audio bandwidth  

with sufficient output power for high-quality reproduction. For this reason, the vast majority 

of high-quality loudspeakers use multiple drivers of various sizes each operating in distinct 

bands.

2.4 Horn-loaded loudspeakers

In section  2.2.3 it  was demonstrated that  the efficiency of a general  loudspeaker can be 

written in the form

η=
ℜ (Zmr )

ℜ (Zeb )

B2 L2 ∣Zms∣
2
+ℜ (Z ms )

2.60.

The most effective way to increase the efficiency is by increasing the term in the numerator 

of this expression, ℜ (Z mr ), which is the real part of the acoustical radiation impedance or the 

radiation  resistance.  In  the  previous  sections,  direct-radiating  loudspeakers  have  been 

considered  and,  as  was  outlined  in  section  2.3,  the  practical  upper  limit  of  achievable 

efficiency  for  a  direct-radiating  loudspeakers  is  roughly  1%.  If  higher  efficiencies  are  

required a different type of approach must be used.
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Since the advent  of  electroacoustics,  horns have been used to  improve the efficiency of 

transducers. The physical principles of horn behaviour have been well understood for some 

time, with Webster's key work on the topic being published in 1919 [28]. Horn loading of the 

radiating  diaphragm  results  in  a  significant  increase  in  the  radiation  resistance  at  low 

frequencies, which, in turn, allows higher efficiencies to be achieved. In their 1924 paper  

[29], Hanna and Seplian were possibly the first to analyse thoroughly the behaviour of a horn 

loaded  loudspeaker.  They  drew  attention  to  the  significance  of  the  increased  motional 

resistance experienced by the radiating diaphragm due to the presence of the horn.

The radiation from simple sources, such as the direct-radiating diaphragm, is hampered by 

the large volume velocities required to generate  acoustical  pressure change.  This  can be  

explained by considering the expansion of the wave front: the action of the source causes the 

acoustical particles to move outward away from the source. The movement of these particles 

for the simple source at low frequencies is spherical or hemispherical in nature, depending 

upon whether a mounting baffle is present, and the particles are moved away from the source 

such that they momentarily occupy a larger volume. This increase in volume is accompanied 

by a corresponding drop in pressure that counters the pressure associated with the propagated 

sound. These two pressures – the hydrodynamic,  occurring because of the change in the 

volume  occupied  by  the  immediate  acoustical  particles,  and  the  propagating  pressure, 

associated with the sound propagation – are different in nature. The hydrodynamic pressure 

change is in phase with the source volume displacement; the propagating pressure is in phase 

with the source volume velocity. Thus, it is only the propagating pressure that carries energy 

away from the source. For the case of a plane-propagating wave, or a spherical wave in the 

far field, the hydrodynamic effect is zero because the motion of acoustical particles does not 

result in a change in the volume that they occupy. For example, considering the case of a  

pulsating spherical source of radius  a, or indeed a conical horn with a pulsating spherical 

segment at the throat, the complex acoustical radial particle velocity, u (r ) at a distance r from 

the centre of the sphere [18, p.171] is given by the expression

u (r )= p (a )
1
ρ0 c0

a
r

e− jk(r−a)
− p (a )

j
ρ0c 0

a

k r2
e− jk (r−a)

2.61.

where  p (a ) is the pressure at the surface of the sphere.  The first of these two terms is the 

propagating wave and the second, the hydrodynamic effect. In the far field, when kr≫1, the 

first term is dominant and the second term tends to zero as the wave-front rate of expansion 

tends to zero. When kr≪1, the second term is dominant. The transition from the near field 
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to the far field may be characterised by distance at which the hydrodynamic and propagating 

particle velocity magnitude are equal. For the spherical source this situation occurs at

kr=1 2.62.

At  the  radiator  surface,  r=a,  this  expression indicates  the  frequency  above  which  the 

radiation  efficiency  is  maximal  and  the  majority  of  source  volume  velocity  results  in 

propagated pressure, and the minority, hydrodynamic pressure. In the context of a horn, the 

frequency corresponding to this condition is called the cut-on frequency, f c. For the case of a 

conical horn

f c=
c 0

2πa 2.63.

However, with the conical horn the transition from hydrodynamic to propagation is very 

gentle.

The acoustical horn functions by controlling the wave front expansion in order to reduce the 

hydrodynamic pressure compared to the propagating pressure, thus allowing more energy to 

be radiated for a given volume velocity.  The behaviour of horns for loudspeakers is very 

nicely covered by Holland in [30, p.30].

Horns are commonly characterised by their flare rate, m (x ), which is defined as

m (x )=
1

S (x )

d S (x )

dx 2.64.

where S (x ) is the horn sectional area at axial position x. The flare rate is a measure of the 

rate of expansion along the length of the horn. For example, the flare rate of a conical horn is  

given by

m (x )=
2
x 2.65.

The exponential horn shape is commonly used and is characterised by the sectional area law

S ( x )=S (0) em x
2.66.

Unlike the conical horn, the exponential horn has a constant flare rate  irrespective of the 

radiator size. The cut-on frequency of a horn is related to the flare rate at the horn throat by 

the expression

f c=
mc0

4π 2.67.
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The exponential horn, with its constant flare rate, has a very sudden frequency transition 

from hydrodynamic dominated behaviour below  f c and propagation dominated behaviour 

above f c. This transition is very sudden because above f c the propagated pressure becomes 

dominant over the entire length of the horn at once.

Figure 2.12. Comparison of the radiation resistance of a direct-radiating rigid circular piston with a  
horn loaded rigid circular piston.

Figure  2.12 shows the normalised radiation resistance of  a  direct-radiating rigid circular 

piston compared to the radiation resistance of the same diaphragm placed at the throat of a 

finite exponential horn. In this case, the horn is exponential, with flare rate giving a cut-on 

frequency  of  ka=0.35,  and  terminates  smoothly  into  an  infinite  baffle.  The  radiation 

resistance is shown normalised to the radiation resistance of a pipe loaded rigid circular  

piston. An area of increased radiation resistance is clearly seen between the cut-on frequency 

of the horn, ka=0.35, and ka=2 where the radiation resistance of the direct radiator reaches 

a maximum.

The cut-on frequency of the horn is directly related to the flare rate. A low flare rate results in 

a low cut-on frequency,  f c. In order to create a horn with a low flare rate, it is inevitably 

necessary to have a physically large horn.  The flare rate of an exponential horn may be  

equivalently written as

m=
1
L

ln( S (L )

S (0 ) ) 2.68.

where L is the physical length of the horn.
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Additionally,  in  order  to  avoid  reflections  from the  acoustical  transition to  the  radiating 

environment as the propagated wave leaves the horn at the mouth, it is necessary for the horn 

mouth to have a circumference comparable in length to the lowest frequency to be radiated 

[31,32]. The result of these two requirements is that horn loudspeakers designed for low-

frequency sound reproduction must be physically large. As a result of this, they are seldom 

used over the full audio band except in professional installations.

Horns are also useful in controlling the directivity and power output of loudspeakers. As was 

outlined in  section  2.3,  the  directivity  of  a plane circular  piston radiator  is  wide at  low 

frequencies and then becomes very narrow at high frequencies. This gives the loudspeaker an 

uneven power response: the power output is high at lower frequencies and then falls above 

ka=2. The directivity of a horn loudspeaker is controlled, to a great degree, by the shape of  

the horn walls, which may be designed to achieve the required dispersion pattern and power 

output. For example, the constant-dispersion type horn design is frequently used [33] and 

provides a near constant angle of dispersion and an approximately flat power response over a 

wide bandwidth, albeit with compromises in other areas, such as response smoothness.

2.4.1 Compression loading

It is possible to increase the radiation resistance of a horn-loaded loudspeaker significantly 

by reducing the size of the horn throat while keeping the diaphragm diameter constant. In  

this  case,  the  acoustical  impedance  at  the  horn  throat  is  increased  but  the  transduction 

coefficient  between  the  mechanical  and  acoustical  systems,  the  diaphragm  area,  is  not  

affected. This results in an increase of the radiation resistance by the ratio of the diaphragm 

area to the horn throat area. In practice, this can be achieved by joining a large diaphragm to 

a small horn throat using a small acoustic volume, as depicted in figure 2.13. This concept is 

first suggested by Hanna and Slepian, who outline and analyse the benefits of using a large  

diaphragm and small horn throat to increase efficiency in their 1924 paper [29].  At low 

frequencies, the air chamber is effectively incompressible and the volume velocity on the 

input side, imparted by the diaphragm, is equal to the volume velocity on the exit side, at the 

horn  throat.  As  a  result,  compared  to  coupling  the  same  diaphragm  directly  into  an 

equivalent horn with larger throat diameter, the radiation resistance is increased by the ratio 

of  the  diaphragm  area  to  the  throat  area.  This  arrangement  is  often  referred  to  as  a  

“compression driver”, the acoustical volume as the “compression chamber” and the ratio of  

the areas the “compression ratio”, which is denoted by α in this thesis (precisely defined in 

Appendix X). The caveat to this approach is that the boost in radiation resistance is only seen 

while the compression cavity is of insignificant volume and behaves as a simple compliance.
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Figure 2.13. Schematic layout of a horn driver having a large diaphragm, of diameter d2, and small  
horn throat, of diameter d2, joined by a small acoustical volume.

Figure 2.14. The Wente and Thuras phase plug [17] “The throat of the horn is flared annularly to the  
point A”, note that this figure is rotated by 90 degrees anticlockwise compared with the orientation of  

figure 2.13.

In order to increase the frequency range of operation of the compression driver, Wente and 

Thuras [17] devised a “plug” to be placed in front of the radiating diaphragm. The plug  

keeps the effective volume of the compression cavity to a minimum. Furthermore it provides 

additional  geometric parameters such that the design might  be “tuned” in order to avoid 

some of  the  high-frequency irregularities  that  are  encountered  with  the  simple  example 

above.  In  an  appendix  of  the  same  work  they  describe  a  criterion  for  the  design  of 

compression drivers, relating the highest frequency of operation to the maximum difference 

in acoustical path from diaphragm to horn throat. This type of phase-plug design approach is  

commonly known as “path-length” based. The “phase plug” was subsequently patented by 

Wente  in  1936  [34].  Significantly,  with  the  introduction  of  a  phase  plug,  the  point  of 

coupling between the horn and the cavity is  moved away from the axis  of  rotation:  the  

eigenfunctions of the cavity all have a maximum at the axis of rotation.
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Figure 2.15. Illustration of a typical modern compression driver with three annular channels in the  
phase plug.

The phase plug of a modern compression driver is a complex acoustical structure. Typically,  

the phase plug has between two and five annular channels that lead from the compression 

cavity  to  the  horn  throat.  The  positions  at  which  the  channels  meet  the  cavity  and  the 

arrangement of the annular channels as they are joined at the horn throat are key design 

factors in achieving a smooth overall driver output. In 1953, Smith [35] published a paper 

describing how the phase-plug channels entrances can be positioned such that the modes in 

the compression cavity are suppressed. This is an important piece of work in compression 

driver development, but, surprisingly, it was largely ignored for a number of years before 

becoming popularised primarily through compression drivers produced by JBL with designs 

using Smith's method [36]. Most modern compression drivers, by design or inheritance, are 

based  on  Smith's  channel  position  guidelines.  The  majority  of  subsequent  work  on 

compression drivers has concentrated on the analysis and modelling of the acoustical non-

linearities that occur due to the very high sound pressure levels in the compression cavity  

and channels during use [37][38][39]. There are some publications that outline the design of 

particular commercial compression drivers [40], the most recent of these with the assistance 

of FEM and BEM analysis [41][42][43]. However, there are no publications, subsequent to 

Smith, that consider the methodology for the geometric design of the phase plug.
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2.4.2 Non-linearity in horn- and compression-loaded loudspeakers

For  a  given  acoustical  output  in  the  far  field,  the  horn-loaded  and  compression-loaded 

arrangements  result  in  higher  acoustical  pressures  in  the  regions  adjacent  to  the  driver  

diaphragm  when  compared  to  direct-radiating  designs.  The  regions  of  high  acoustical 

pressure are typically the compression cavity, the phase-plug channels and the horn throat. 

Additionally, due the their high efficiencies and directivity control, horn- and compression-

loaded loudspeakers are most commonly used for high sound pressure level applications. 

During normal operation the acoustical pressure within the driver and horn structures can 

reach  sufficiently  high  levels  that  acoustical  non-linearity  is  significant  and,  as  a  result,  

acoustically generated non-linear distortion is observable in the output of the device. The 

non-linear behaviour of acoustical horns and compression drivers has been widely studied 

[37][38][39]. In terms of the audio performance of a loudspeaker, significant non-linearity 

results in an audible deterioration in the reproduction quality.

With a linear time invariant system (LTI), the system response,  y(t ), to a sinusoidal input 

signal  x(t ) with frequency of oscillation ω and complex amplitude X  will take the general 

form

y (t )=Y e jω t
2.69.

Id est the system response is only at the same frequency as the input signal. Y  is the complex 

amplitude of  the  sinusoidal  response.  For  a non-linear  system,  the  response to the same 

single frequency input signal will result in a more complex output signal taking the general 

form

y (t )=∑
n=0

∞

Y n e j nω t

2.70.

The system response is not a single frequency signal but will also have harmonic frequency 

components at integer multiples of the input frequency. Y n is the complex amplitude of the 

nth harmonic.  The  levels  of  the  generated  harmonics  Y n (ω) are  commonly  used  to 

characterise the degree of distortion of the audio signal.

Loudspeakers are specifically designed to produce audio signals with reasonably low levels 

of non-linear distortion. This is achieved by such precautions as ensuring that the diaphragm 

area  is  sufficient  that  the  motion  is  not  excessively  large,  ensuring  that  the  motor  and 

mechanical  parameters  are  approximately  invariant  of  diaphragm  position,  the  use  of  

multiple  drivers  for  different  frequency  bands  and,  for  particularly  high  pressure  level 

systems, the use of arrays of drivers. As a result, though significant distortion products are 
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generated to be of concern in term of fidelity, during normal operation the linear  response of  

the loudspeaker is dominant.

Figure 2.16. Linear, 2nd and 3rd harmonic distortion pressure level response measurement of a  
Celestion CDX1.4 compression driver connected to B&C ME10 horn measured 1m on-axis at 1watt  

(2.83V RMS).

Figure 2.17. Linear, 2nd and 3rd harmonic distortion pressure level response measurement of a  
Celestion CDX1.4 compression driver connected to B&C ME10 horn measured 1m on-axis at 10watts  

(8.94V RMS).
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Figures  2.16 and  2.17 show  linear,  2nd and  3rd harmonic  pressure  level  response 

measurements of a Celestion CDX1.4 compression driver connected to a  B&C ME10 horn. 

The measurements are taken at a distance of 1m directly on-axis with the horn at a input  

signal  level  of  1watt  and 10 watts  respectively.  At 10watts,  high levels of  distortion are  

observed however, in the passband of the driver (in this case between approximately 2kHz 

and 20kHz) the linear response is dominant.

Figure 2.18 shows the 1watt and 10watt linear response plotted on the same chart, the 10watt  

curve is reduced in level by 10dB to allow easy comparison of the response shape. Both 

responses are extremely similar even in the region below the passband, where extremely  

high distortion levels were seen in the 10watt measurements shown in figure 2.17.

Figure 2.18. Comparison of the linear response of  of a Celestion CDX1.4 compression driver  
connected to B&C ME10 horn measured 1m on-axis at 1watt and 10watts (10 watt shifted -10dB).

In this thesis the acoustical behaviour of compression drivers is modelled exclusively using 

linear theory. Consequently the models are unable to predict the level of non-linear distortion 

generated by the driver. However, these LTI models are able to accurately approximate the 

linear, Y 0 (ω), response even when the real devices exhibit moderate levels of non-linearity 

(For  example  see  figure  5.23).  Indeed,  even  under  extreme  levels  of  excitation,  with 

significant non-linearity, the linear model is still a useful first approximation to the  Y 0 (ω) 

behaviour.
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2.5 Conclusions

The principles of operation of the electrodynamic loudspeaker are introduced in this chapter 

in order to prepare the reader for the main body of this thesis, where compression drivers are 

considered  in  more  detail.  Particular  reference  was  made  to  the  underlying  efficiency  

limitations as  the raison d'etre  of the  compression-driver arrangement is  to improve this 

aspect of the loudspeaker performance.





3 Acoustical analysis techniques

3.1 Introduction

The methods of acoustical analysis used in this thesis are introduced in this chapter. The  

contents is loosely divided in two halves: the first concerned with analytical methods and the 

second,  with  numerical  methods.  The  chapter  begins  by  considering  the  solution  of  the  

homogeneous wave equation in a rigid-walled enclosure. The Green-function approach to 

solution of the inhomogeneous wave equation is then outlined. The two subsequent chapters  

look at specific implementations of the general Green-function approach, firstly, for the case 

of a lightly damped acoustical enclosure and, secondly, for the problem of radiation from 

bodies of arbitrary shape into infinite and semi-infinite spaces. The first three topics provide 

the foundation that is required for Smith's phase-plug geometry derivation, which is outlined 

in chapter  4.  The fourth topic provides the foundation required for understanding of the 

Boundary-Element Method (BEM).

By  means  of  an  introduction  to  numerically  based  methods,  section  3.6 outlines  the 

Rayleigh-Ritz method for a simple acoustical pipe. This is followed by two sections that  

describe  the  Finite  Element  and  Boundary-Element  Methods  for  acoustical  problem 

respectively.

These first  four sections follow, somewhat less comprehensively,  the detailed description 

given by Nelson and Elliot [44] and Williams [45]. The forth, fifth and sixth section are 

based on the presentation given by Fahy and Gardonio [46].

3.2 The eigenfunctions and eigenfrequencies of an enclosure

The pressure  field  in  a  rigid-walled acoustical  enclosure,  with no  sources  or  dissipation 

present inside the walls, must obey the homogeneous Helmholtz equation, such that

∇2 p (x )+ k2 p (x )=0 3.1.

where p (x ) is the pressure at the position x in the enclosure, k  is the acoustical wavenumber 

and  ∇2 is the Laplacian operator [23]. The spatial pressure function must also satisfy the 

rigid-walled boundary condition

∇ p ( x) .n=0 3.2.

where  n is a unit vector normal to the enclosure boundary and  ∇ is the gradient operator 

[47, p. 598]. Solution of this expression for the sound field, conventionally performed by 

finding a form for ∇2 that fits nicely into the geometry of the enclosure in consideration such 
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that the boundary consideration is easy to apply, provides an infinite set of solutions to the 

pressure field

p (x )=Ψn ( x) 3.3.

The functions Ψn (x ) are the eigenfunctions of the homogeneous Helmholtz equation and are 

associated with a set of eigenvalues, k n, such that

∇2Ψn (x )+ kn
2Ψn ( x)=0 3.4.

The  eigenfunctions  correspond  to  the  mode  shapes  of  the  acoustical  enclosure.  The 

eigenfunctions satisfy the orthogonality relationship

∫
V

Ψn ( x)Ψm ( x )dV=0∣n≠m 3.5.

As the Helmholtz equation is linear, and the eigenfunctions are solutions to the Helmholtz 

equation, the magnitude of the eigenfunctions is arbitrary. Commonly the normalisation of 

the eigenfunctions is chosen to be

∫
V

Ψn
2 ( x) dV=V

3.6.

where the volume integral of the squared eigenfunction is equal to the enclosure volume. The 

above two conditions are neatly summarised by the expression

∫
V

Ψn ( x)Ψm ( x )dV=V δnm
3.7.

where δnm is the Kronecker delta function [47, p.692], which has the property that

δnm={0, m≠n
1, m=n 3.8.

3.3 Green-function solution of the inhomogeneous wave equation

In order  to  derive  the  driven behaviour  of  a  sound field,  it  is  necessary  to  formulate  a  

solution to the inhomogeneous Helmholtz equation. The inhomogeneous Helmholtz equation 

is defined to be

(∇ y
2+ k 2) p ( y )=−Qvol ( y ) 3.9.

where y  is a vector position within the enclosure and the function Qvol ( y ) describes  source-

strength distribution within the acoustical medium. This section outlines the Green-function 

based approach to the solution of the inhomogeneous wave equation.  This is  a powerful  
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technique that forms the basis for many different methods of acoustical analysis. Unlike the 

case  considered  above  for  the  homogeneous  Helmholtz  equation  used  to  derive  the 

eigenfrequencies and functions, the right-hand side of the equation is non-zero. The right-

hand  term,  Qvol,  defines  source-strength  distribution  within  the  acoustical  medium.  For 

example, it could consist of a combination of monopole and dipole sources where

Qvol= jωρ0 q vol ( y )−∇ . f vol ( y ) 3.10.

with  qvol ( y ) the complex volume velocity distribution per unit volume,  f vol ( y ) the complex 

force distribution per unit volume applied to the medium and ∇ . is the divergence operator. 

For example in Cartesian coordinates operating on a vector s

∇ . s=
∂ s x

∂ x
+
∂ s y

∂ y
+
∂ sz

∂ z 3.11.

The general solution of the  inhomogeneous Helmholtz equation can be readily dealt with 

using a Green-function approach. The Green function, G ( y | x ), satisfies the equation

(∇2+ k 2)G ( y |x )=−δ ( y−x ) 3.12.

where δ ( y−x ) is the Dirac delta function. In other words, the Green function is proportional 

to the complex pressure field at a point y  produced by a harmonic point-monopole source at 

position x. Indeed, the complex pressure at a point y  in the medium due to a point monopole 

at a position x is given by p ( y )= jωρ0 G ( y |x ). An important property of the Green function 

is the principle of reciprocity. That is to say that for all possible functions satisfying equation 

3.12 the relation  G (x | y )=G ( y |x ) is true. The interested reader is directed to Nelson and 

Elliot for proof of this property [44, pp.277-279].

The inhomogeneous Helmholtz equation, expression  3.9, is first multiplied by  G ( y | x ) and 

expression 3.12 multiplied by p ( y ) is then subtracted, this gives

G ( y | x )∇ y
2 p ( y )−p ( y )∇ y

2 G ( y | x)=−Q vol ( y ) G ( y |x )+ p ( y )δ ( y−x ) 3.13.

Performing a volume integration over both sides and using the sifting property of the delta 

function, results in the expression

∫
V

G ( y |x )∇ y
2 p ( y )− p ( y )∇ y

2 G ( y | x )dV+∫
V

Q vol ( y )G ( y |x )dV={p ( x ) , x withinV
0, x outsideV } 3.14.
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Green's theorem states that if S is the surface that encloses the volume V , and a  and b are 

scalar functions then

∫
V

(a∇ 2 b−b∇2 a ) dV=∫
S

(a∇ b−b∇ a) .ndS
3.15.

where n is the unit vector pointing out of the volume V .

This allows the first volume integral in equation 3.14 to be converted to a surface integral 

and, with the additional substitution of  G (x | y )=G ( y |x ),  allows the pressure at a point  x 

within the acoustical volume V  to be expressed as

p (x )=∫
V

Q vol ( y ) G ( x | y )dV+∫
S
[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y )] .ndS

3.16.

The pressure in the volume V  is found by the sum of two integrals. The first of these is an 

integration over the whole volume for all acoustical sources inside the volume. The second is 

an integral over the bounding surface of the volume and is dependent upon the pressure and 

pressure gradient, ∇ y p ( y ), at the surface. Both integrals include the Green function G (x | y ). 

However, the only requirement for the Green function is that it is well defined inside the 

entire volume V  and that it satisfies equation  3.12. This makes the expression particularly 

powerful, especially if one considers that in some cases it may be feasible to choose Green 

functions that satisfy the condition  ∇ y G (x | y )=0, which permits further simplification of 

expression 3.16.

3.4 The sound field in a lightly-damped enclosure

Much of this thesis is concerned with controlling the acoustical behaviour of lightly-damped 

acoustical cavities or enclosures. There are several different approaches for the analysis of 

the acoustical  behaviour of a lightly-damped enclosure.  For example,  the image and ray 

methods [48] or the direct inhomogeneous Finite-Element Method described in section 3.7. 

However, the modal description is particularly useful when considering the low frequencies  

of an enclosure. The behaviour of the acoustical enclosure over the first few modes may be  

written concisely with only a few parameters. The modal description is especially powerful  

when the aim is some type of control of the global sound field because it clearly illustrates 

how the presence of sources at various positions in the enclosure effects the sound field over 

the entire acoustical interior.

The rigid-walled enclosure eigenfunctions form a complete orthonormal set [49, p. 267] and 

so any well-behaved function of enclosure position x can, within the bounds of the enclosure 

volume V , be approximated by a linear combination of the eigenfunctions.
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Thus, the Green function used to determine the solution of the inhomogeneous Helmholtz 

equation  and  determine  the  sound  field  in  the  enclosure  is  constructed  from  a  linear  

summation of the eigenfunctions

G (x | y )=∑
m=0

∞

bmΨm (x )
3.17.

To  determine  the  complex  coefficients,  bm,  this  expression  for  the  Green  function  is 

substituted into expression 3.12, along with the relation ∇
2Ψm (x )=−km

2 Ψm (x ), resulting in

∑
m=0

∞

bm (k
2
−km

2 )Ψm ( x)=−δ (x− y )
3.18.

Multiplying this by Ψn (x ) and integrating over the volume, V , results in

∑
m=0

∞

bm (k
2
−km

2 )∫
V

Ψm ( x)Ψn ( x )dV=∫
V

−δ ( x− y )Ψn (x )dV
3.19.

Recalling  the  sifting  property  of  the  delta  function  and  the  orthogonality  of  the 

eigenfunctions, expressed in 3.7, this simplifies to

∑
m=0

∞

bm (k
2
−km

2 )V δmn=−Ψn ( y )
3.20.

and reveals that bn=Ψn ( y ) /(V (k n
2
−k 2)). Consequently the Green function can be written as

G (x | y )=∑
n=0

∞ Ψn ( x )Ψn ( y )

V (kn
2−k 2) 3.21.

This Green function is now used in the general solution to the inhomogeneous Helmholtz 

equation,  expression  3.16 in  the  previous  section.  Assuming  that  the  pressure  in  the 

enclosure is only generated by the motion of the enclosure walls, and not because of any 

acoustical  sources  within  the  enclosure,  the  term  Qvol ( y ) is  zero.  Additionally,  as  the 

boundary  condition  for  the  initial  calculation  of  the  eigenfunctions  was  that  of  a  rigid 

boundary, the spatial derivative of the Green function at the enclosure surface, ∇ y G (x | y ), is 

also zero. This results in a simplified expression for the acoustical pressure in the enclosure  

given by

p (x )=∫
S

G (x | y )∇ y p ( y ) .ndS
3.22.

The pressure gradient term ∇ y p ( y ) can only arise because of some normal surface velocity, 

u i ( y ) . n at the enclosure boundaries. The momentum equation [44, p. 23] allows the surface 
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velocity to be related to the pressure gradient and the expression for pressure in the enclosure 

to be written as

p (x )=∫
S

G (x | y ) jωρ0u i ( y ) .ndS
3.23.

or in full including the Green-function summation derived above as

p (x )=∑
n=0

∞ jωρ0Ψn(x)

V [k n
2−k2 ]

∫
s

Ψn( y )u i( y). ndS
3.24.

For situations where the acoustical medium within an enclosure is approximately lossless 

this is a very useful description. It is used in many places in this thesis.  It forms the basis of  

the Smith phase-plug geometry derivation, outlined in chapter  4, and also the basis of the 

new phase-plug geometry derivations.

3.5 Radiation of sound from sources of arbitrary geometry

The radiation of sound is  a key topic in loudspeaker analysis.  In section  2.3, the simple 

model of a rigid planar-circular piston mounted in an infinite baffle was used to approximate 

the radiation behaviour of a loudspeaker. While this is a useful model to use to outline the 

radiation  characteristics  of  the  direct-radiating  loudspeaker,  few  real  loudspeakers  have 

exactly  this  geometry  and  it  is  thus  useful  to  have  an  analysis  method  that  allows  the 

radiation  from  an  arbitrary  geometry  to  be  considered.  The  acoustical  problem  can  be 

generally formulated as the sound field radiated into an unbounded infinite region V a  from a 

surface of arbitrary shape, Sa, as shown in figure 3.1.

Figure 3.1. Schematic representation of the exterior problem.
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In  section  3.3,  the  Green-function  method of  solution  of  the  inhomogeneous  Helmholtz 

equation for a point x in the acoustical field was found to be

p (x )=∫
V a

Q vol ( y ) G ( x | y )dV+∫
Sa

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y )] .ndS
3.25.

This approach is equally valid for the situation at hand where the bounding surface defines 

an exterior volume within which the behaviour is described by either the homogeneous or  

inhomogeneous  Helmholtz  equation.  Considering  the  first  the  case,  when  the  bounded 

region, V a, is described by the homogeneous Helmholtz equation, with no sources within the 

volume and excitation only applied via the boundary conditions at the surface Sa, the volume 

integral is zero and the simplified integral equation is

p (x )=∫
Sa

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y ) ] .ndS
3.26.

The Green functions must be carefully chosen so that there is a well-defined single solution. 

Only  outward-travelling  acoustical  waves  are  allowed.  This  requirement  can  be  met  by 

ensuring that at an infinite distance from Sa the acoustic pressure p (x ) tends to zero,

lim
∣x∣→∞

∣x∣(∂ p ( x )

∂∣x∣
+ j k p (x ))=0

3.27.

This requirement can be reposed as a condition on the Green function as

lim
∣x− y∣→∞

∣x− y∣(∂G ( x | y )

∂∣x− y∣
+ j k G (x | y ))=0

3.28.

This condition guarantees that the integral over the surface at infinity, which bounds the 

volume V a, is zero and need not be included in the integral over the bounding surface. For  

the consideration of radiation problems, it is common to define G (x | y ) as the “free space” 

Green function,

G (x | y )=
e− jk∣x− y∣

4π∣x− y∣ 3.29.

However, this choice must be treated with some caution as at the point x= y  the free space 

Green function is undefined. This problem is managed by ensuring that an infinitesimally 

small  region  around  the  point  x= y  is  excluded  from  the  fluid  region.  This  is 

diagrammatically  shown  in  figure  3.2.  The  surface,  Sa,  bounding  the  volume  has  been 

extended with  a  narrow canal  to  include  a  small  spherical  surface,  Sx,  surrounding the 

evaluation point  x. The canal joining the main part of the surface  Sa to  Sx is vanishingly 
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narrow and, as the normal along one side of the canal is the exact opposite of the normal on 

the other side of the canal, it effectively disappears from the surface integrals.

Figure 3.2. Schematic representation of the exterior problem with infinitesimal excluded region at  
evaluation point x.

The new system has a total surface of  St=Sa∪S x and the pressure in the new volume  V t, 

which excludes the sphere around x, bounded by this surface may be described by the same 

integral expression discussed above as

p (x )=∫
S t

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y ) ] .ndS
3.30.

The surface integral over the new surface St is simply the sum of the integrals over the two 

bounding surfaces Sa and Sx,

p (x )=∫
Sa

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y ) ] .ndS

+∫
S

x

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y )] .ndS
3.31.

The pressure evaluation point x lies outside of the volume V t bounded by the new surface St 

and,  thus,  as  defined in  section  3.3 equation  3.14,  the  integral  over  St is  equal  to  zero. 

Accordingly the sum of the integrals over Sa and Sx must also be zero and

∫
Sa

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y ) ] .ndS=

−∫
Sx

[G (x | y )∇ y p ( y )− p ( y )∇ y G (x | y ) ] .ndS
3.32.
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Considering the integral over the excluded spherical surface Sx, the point bold x lies at the 

centre of the sphere and it is simple to calculate the integral over the spherical surface to be,

∫
Sx

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y ) ] .ndS

=−∫
0

2π

∫
0

π

[R1
e− jkR x

4π
∇ y p ( y ) .n+ p ( y ) (1+ jkR x )

e− jkR1

4π ] sinθdθdϕ
3.33.

in the limiting case as the sphere radius  Rx→ 0, the pressure at the surface of the sphere 

p ( y )→ p ( x ), and the integral

lim
Rx→ 0
∫
S x

[G ( x | y )∇ y p ( y )−p ( y )∇ y G ( x | y ) ] . ndS

=−∫
0

2π

∫
0

π

p (x )
sinθ
4π

d θdϕ=− p (x )
3.34.

This means that for the case where the sphere lies completely in the volume  V a ,  as the 

radius of the sphere tends to zero the pressure in the volume is again given by the original  

integral expression,

p (x )=∫
Sa

[G (x | y )∇ y p ( y )−p ( y )∇ y G (x | y ) ] .ndS
3.35.

The situation when x lies on the surface  Sa must also be considered. In this case, it is not 

possible to use an entire sphere surrounding x to exclude the point x= y  from the volume. If 

the surface is Sa is smooth then as the radius, Rx, of the spherical surface Sx tends to zero, Sx 

becomes a hemispherical region as depicted in figure 3.3.

Figure 3.3. Schematic representation of the exterior problem with infinitesimal excluded region at  
evaluation point x when x lies on the surface Sa.
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Again,  the  behaviour  in  the  new  volume  V t is  given  by  the  same  integral  expression, 

expression 3.30, which excludes this hemispherical region around x, and the surface integral 

of expression  3.30 is zero, because  x lies outside of the volume bounded by  St=Sa∪S x. 

Thus, the sum of the integral over Sa and the integral over Sx must equal zero.

In the limiting case, as the hemisphere radius Rx tends to zero, the pressure at the surface of 

the hemisphere p ( y ) tends to p (x ), and the integral

lim
Rx→ 0
∫
S x

[G ( x | y )∇ y p ( y )−p ( y )∇ y G ( x | y ) ] . ndS

=−∫
0

2π

∫
0

π/2

p (x )
sin θ
4π

d θdϕ=−
1
2

p (x )
3.36.

Note that the limits of the integral in θ are now from 0 to π /2. This result indicates that, in 

this case, the original integral expression over  Sa returns half of the actual pressure at the 

point x,

1
2

p (x )=∫
Sa

[G ( x | y )∇ y p ( y )− p ( y )∇ y G ( x | y ) ] .ndS
3.37.

The surface-normal complex acoustical-particle-velocity,  u ( y Sa) .n, is related to the surface 

normal gradient of the pressure by the expression

∇ y p ( y ) . n=− jωρ0u ( y Sa
) .n 3.38.

This, along with the other outcomes above, results in an overall description of the pressure in 

the volume, V a, of

c (x ) p ( x )=∫
Sa

[G (x | y ) jωu ( y )ρ0+ p ( y )∇ y G (x | y ) ] . ndS
3.39.

where c (x ) is defined to be

c (x )={
−1 x∈V a

0 x∉V a

−1 /2 x∈Sa 3.40.

This expression is commonly known as the Kirchoff-Helmholtz integral equation that states 

for any sound field that satisfies the homogeneous Helmholtz equation and the Sommerfeld 

radiation condition, the sound field at any point x is determined by the pressure and normal 

velocity of the bounding surface. Note also that if the bounding surface Sa is not smooth then 

as Rx→ 0 the excluded region Sx may not necessarily become a hemisphere when x lies on 
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the surface  Sa. For example, if  x  lies on an exterior 90 degree apex of the surface then 

c (x )=−3 /4.

The inhomogeneous solution is found by an extension of the above to allow sources within 

the volume V a resulting in the integral expression

p (x )=∫
V a

Q vol ( y ) G ( x | y )dV+
1

c (x )
∫
Sa

[G ( x | y ) jω u ( y )ρ0+ p ( y )∇ y G (x | y )] .ndS
3.41.

This expression is commonly called the “direct boundary integral formulation”. Although in 

this case, the exterior problem was considered, the derivation is equally valid for an interior 

region.  Indeed,  the treatment above is  simply a special  case of the more general  Green-

function approach to the solution of the Helmholtz equation as described in section 3.3. The 

additional considerations required here occur as a result of the choice of Green function.

3.6 The Rayleigh-Ritz method

The Rayleigh-Ritz method is illustrated through a simple example: the acoustical behaviour 

of the one-dimensional acoustical pipe shown in figure 3.4.

Figure 3.4. Acoustical pipe with closed ends.

It is assumed that the pipe only carries plane waves and that the ends of the pipe are perfectly  

rigid walled.  The Rayleigh-Ritz  method makes the assumption that  the  solution may be 

approximated by a finite series expansion. In this case, it is assumed that the solution can be 

written as

ϕ ( x ,t )=∑
i=1

n

di (x )ϕi ( t )
3.42.

where ϕ ( x ,t ) is the velocity potential and x is the axial position in the pipe, d i (x ) are a set of 

prescribed  functions  that  describe  the  spatial  variation  of  ϕ,  and  ϕi ( t ) are  unknown 

coefficients that must be determined. For plane-wave propagation, the velocity potential is 

related to  the  acoustical  pressure,  p (x , t ),  and acoustical  particle  velocity,  u ( x ,t ),  by the 

expressions

p (x , t )=−ρ0

dϕ ( x , t )
dt and

u ( x ,t )=
dϕ (x ,t )

dx 3.43.
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In assuming that the solution is accurately described by the summation in expression 3.42, 

the continuous acoustical system has been reduced to an equivalent discrete system with n 

degrees  of  freedom.  The  discrete  system  approximately  describes  the  solution  to  the 

continuous original up to a certain point where there are insufficient degrees of freedom for 

an accurate representation.

The unknown coefficients,  ϕi ( t ), are determined using Hamilton's principle [50], which for 

this problem can be stated as

∫
t1

t2

[δ (T+ U )+ δW ]dt=0
3.44.

where T  is the kinetic energy of the system, U  is the potential energy of the system, δW  is 

the virtual work performed by external forces on the system and t1 and t2 are the closed time 

interval over which the system is considered. With the closed-pipe system currently under  

consideration, there is no external excitation and thus δW  is equal to zero. The kinetic- and 

potential-energy densities for small-amplitude oscillations  in  fluids  are  given by the two 

expressions

T
dV
=

1
2
ρ0∣u∣

2

and      

U
dV
=

1
2

1

ρ0 c0
2

p2

3.45.

The system kinetic and potential energy can be found by integrating these densities over the 

length of the pipe, resulting in the expressions

T=∫
0

L
1
2
ρ0 u2 (x ,t ) A dx

3.46.

and

U=∫
0

L
1
2

1

ρ0 c0
2

p2 ( x ,t ) A dx
3.47.

These can both be written in terms of the velocity potential,  , as

T=∫
0

L
1
2
ρ0 (∂ϕ (x ,t )

∂ x )
2

A dx
3.48.

and

U=∫
0

L
1
2

ρ0

c 0
2 (∂ϕ (x , t )

∂ t )
2

A dx
3.49.
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The set of prescribed functions d i (x ) must be carefully chosen to satisfy the following four 

conditions [51,52]:

1. they are linearly independent;

2. they are compatible with the governing equations, i.e.  if the governing equations 

require the pth differential then it must be possible to differentiate  d i (x ) at least p 

times;

3. they satisfy the system's geometric boundary conditions;

4. they form a complete series such that

lim
n→∞

∫0
L [ϕ ( x ,t )−∑i=1

n di (x )ϕi ( t ) ]
2 dx=0

3.50.

Several common function families are complete series including polynomials in the power of  

x, trigonometric functions, Legendre polynomials [53, p.233] and Tchebycheff polynomials 

[53, p.270]. For the acoustical pipe under consideration, the prescribed functions are chosen 

to be

d i (x )=x i
3.51.

with i≥0. This is a suitable choice2 as it allows evaluation of the derivative in equation 3.49 

and also satisfies the boundary conditions, which are

p (−L /2)≠0 and p (L /2 )≠0 3.52.

or in terms of velocity potential

ϕ (−L/2 )≠0 and ϕ ( L/2)≠0 3.53.

This choice of the prescribed functions means that the velocity potential for the system as a 

whole  is  approximated  as  a  n-th  order  polynomial  with  coefficients  ϕi ( t ).  The  finite 

summation for ϕ is compactly written as the product of two vectors as

ϕ ( x ,t )=d ( x)Tϕ(t )=[
d1 ( x )

d2 ( x )
⋮

dn ( x )
]
T

[
ϕ1 (t )

ϕ2 (t )
⋮
ϕn (t )

]
3.54.

2 In  [46]  the  set  of  prescribed  functions  for  this  example  is  chosen  with  i≥1.  However,  this 
restriction  prevents  any  velocity  potential  occurring  at  x=0 and  subsequently  is  unable  to 
correctly predict the odd order eigensolution. Nonetheless, in including the  i=0 term in the set 
extra care must be taken in calculating the matrix  H ,  according to expression  3.59, as zeros 
appear in both the numerator and denominator.
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The expressions for the system kinetic and potential energy can now be rewritten in terms of 

the discrete ϕ ( x ,t ) as

T=
1
2
ρ0ϕ(t )

T H ϕ(t)
3.55.

and

U=
1
2
ρ0 ϕ̇(t )

T Q ϕ̇(t )
3.56.

where

H=A ∫
−L/2

L /2
∂ d(x)
∂ x

∂d (x)T

∂ x
dx

3.57.

and

Q=
A

c 0
2 ∫
−L /2

L/ 2

d ( x)d( x )T dx
3.58.

The vector  ϕ̇(t)is used to indicate the time derivative of each element of the vector  ϕ(t). 

The integrals in the two matrix definitions are readily evaluated for the choice of prescribed 

function, d i (x )=x i
, to give the elemental matrix components as

H k ,s=A
k s

k+ s−1 [( L
2 )

k+ s−1

−(−L
2 )

k+ s−1

] 3.59.

and
Qk ,s=

A

c0
2

1
k+ s+ 1 [( L

2 )
k+ s+ 1

−(−L
2 )

k+ s+ 1

] 3.60.

Using these definitions of the system kinetic and potential energy, Hamilton's principle gives

∫
t1

t2

δ(12 ρ0ϕ(t)
T H ϕ(t )+ 1

2
ρ0 ϕ̇(t)

T Q ϕ̇(t ))dt=0
3.61.

After integration by parts, this can be written

∫
t1

t2

δϕ(t )T (ρ0 Hϕ(t )+ ρ0Qϕ̈(t ))dt=0
3.62.

The term in brackets must be zero to satisfy this expression. The system behaviour can thus 

be given by

ρ0 Hϕ(t)+ ρ0 Qϕ̈(t )=0 3.63.
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or, using the relation pi=−ρ0∂ϕ /∂ t, equivalently as

H p(t )+ Q p̈(t )=0 3.64.

The  vector  p (t ) directly  describes  the  pressure  in  the  pipe  in  terms  of  the  prescribed 

functions and, combining expressions 3.54 and 3.43, the pressure at any point in the pipe can 

be calculated from

p (x , t )=[
d1 ( x )

d2 ( x )
⋮

dn ( x )
]
T

[
p1 ( t )

p2 ( t )
⋮

pn ( t )
]

3.65.

The  equations  of  motion  have  been  derived  in  a  homogeneous  form,  considering  only 

harmonic variation of the pressure in the pipe such that p (t )=ℜ (a e jω t ). By rearranging the 

system equations into the form

[H−ω2Q ] p(t )=0 3.66.

the system eigenfrequencies can be found and occur at the values of ω at which the matrix 

within  the  square  braces  has  a  determinant  of  zero  [47,  p.427].  Once  the  system 

eigenfrequencies  have  been  found,  the  corresponding  eigenvectors  are  identified  by 

reinserting the eigenfrequency values in to the expression [47, p.461]. The eigenfrequencies 

and eigenfunctions are shown in figure 3.5 for a 0.5-meter-long closed pipe calculated using 

the  Rayleigh-Ritz  method  with  4  and  6  prescribed  functions  alongside  the  exact 

eigensolution. The Matlab [54] code to calculate these results is given in Appendix II.

The accuracy of the Rayleigh-Ritz method depends upon the ability of the set of prescribed  

functions to describe the pressure variation of the exact solution. At low frequencies, where 

the  pressure  variation  is  spatially  slow,  both  the  n=4 and  n=6 results  can  predict  the 

eigenfrequencies and eigenfunctions with good accuracy. At higher frequencies, where there 

is greater spatial variation in pressure in the pipe, the eigensolution prediction is worse. It 

may  also  be  observed  that  the  Rayleigh-Ritz  prediction  always  overestimates  the  exact  

eigenfrequency. This is because the continuous acoustical system has been approximated by 

a stiffer discrete system with a finite number of degrees of freedom.

Unfortunately, practical uses of the Rayleigh Ritz method are limited as, despite the fact that 

it provides a straightforward means of creating an approximate equivalent discrete system 

equivalent  without  the  use  of  a  Green  function  or  calculation  of  the  Laplacian,  it  is 

nevertheless difficult to apply the method to a problem with arbitrary geometry because of 

the restrictions placed on the prescribed functions. Indeed, the prescribed functions must 
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obey the enclosure's boundary conditions make the method extremely hard to implement for 

anything but simple geometries and boundary conditions.

Mode 1: Exact solution, 343Hz. Rayleigh-Ritz, n=4, 343.094Hz Rayleigh-Ritz, n=6, 343.000Hz

Mode 2: Exact solution, 686Hz. Rayleigh-Ritz, n=4, 688.484Hz Rayleigh-Ritz, n=6, 686.012Hz

Mode 3: Exact solution, 1029Hz Rayleigh-Ritz, n=4, 1424.060Hz Rayleigh-Ritz, n=6, 1042.803Hz

Mode 4: Exact solution, 1372Hz Rayleigh-Ritz, n=4, 2128.974Hz Rayleigh-Ritz, n=6, 1414.790Hz

Figure 3.5. The first four modes of the exact eigenfunction and eigenfrequencies of a closed 0.5m long  
pipe compared to the Rayleigh-Ritz approximate solution using 4 and 6 prescribed functions.
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3.7 The Finite-Element Method

The  Finite-Element  Method  (FEM)  allows  the  analysis  of  systems  with  complex  and 

arbitrary  shape  by  geometric  discretisation  into  small  regions  or  elements.  The  global 

prescribed functions required in the Rayleigh-Ritz method are automatically generated as a 

series of elemental shape functions. The Finite Element (FE) approach follows a well defined 

algorithmic method that makes it ideally suited for implementation on a computer.

The  FE  method  is  illustrated  in  this  section  using  the  same  acoustical  pipe  that  was 

considered in the previous section where the Rayleigh-Ritz method was used.

Figure 3.6. FEM discretised  acoustical pipe.

The geometry of the pipe is first broken up into a finite number of elements as depicted in 

figure  3.6. In this case, the elements are one dimensional, they allow pressure variation in 

only one direction, and each element has two nodes, one at either end. The elements are  

joined  to  one  another  at  the  nodes.  Interconnected  elements  share  the  node  along  the  

coincident edge.

Within each element the velocity potential ϕ ( x ,t ) is given by a first order polynomial that is 

described in terms of a local element normalised coordinate axis ζ 1. The coordinates ζ 1 are 

normalised for each element so that ζ 1=−1 at the left-hand node of the element and ζ 1=1 at 

the right-hand node.

Figure 3.7. Diagram showing the local coordinate system within a single 1D element.

The velocity potential within element e is then described by the expression

ϕ (ζ 1, t )=
1
2
(1−ζ 1)ϕ1 ( t )+

1
2
(ζ 1+ 1 )ϕ2 ( t ) 3.67.
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where ϕ1 (t ) is the velocity potential at the node on the left-hand side of the n th element and 

ϕ2 (t ) is  the velocity potential at  the node on the right-hand side of the n th element. This 

function is known as a shape function. Globally, these functions compose the equivalent 

prescribed functions used in the Rayleigh-Ritz method. The equivalent prescribed functions 

may be found as the combination of all the element shape functions when all nodes have 

zero velocity potential  with the exception of a single node with unity velocity potential. 

Thus,  this  defines  Nn prescribed  functions  where  Nn is  the  number  of  nodes  in  the 

approximated discrete system. In the same way as the prescribed functions for the Rayleigh-

Ritz method must be carefully constructed to meet specific conditions, similar constraints 

apply  to  the  choice  of  the  element  shape-functions.  Most  importantly  that  they  are 

compatible with the governing equations. For the case of the acoustical situation at hand, a 

first order polynomial is sufficient to permit the single spatial derivative required to calculate 

the acoustical kinetic energy.

The shape function in expression 3.67 can equivalently be written in matrix form as

ϕ (ζ1, t )=⌊G1(ζ 1) G2(ζ 1) ⌋[ϕ1 (t )
ϕ2 (t )]=g (ζ1)

Tϕe(t )
3.68.

where the coefficients G are defined to be

G1 (ζ 1)=
1
2
(1−ζ 1) , G2( ζ1)=

1
2
(1+ ζ 1) 3.69.

For each element, the kinetic energy, T e, can be calculated using the same integral expression 

as was used in the Rayleigh-Ritz method with the alteration that the limits are adjusted to be 

from xs, the left-hand limit of the element, to xe, the right-hand limit of the element,

T e=∫
xs

xe
1
2
ρ0 (∂ϕ ( x, t )

∂ x )
2

A dx
3.70.

By substitution this can be rewritten in terms of the local coordinates, ζ 1, as

T e=∫
−1

1
1
2
ρ0(∂ϕ (ζ 1, t )

∂ ζ1
)
2

A
a1

dζ 1
3.71.

Similarly, the potential energy for each element can be written as

U e=∫
−1

1
1
2
ρ0(
∂ϕ (ζ 1, t )
∂ ζ 1

)
2

A
c 0

2
a1dζ 1

3.72.
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In  both  these  expressions,  A is  the  cross-sectional  area  of  the  pipe.  Using  the  matrix 

expression  for  the  velocity  potential,  given  in  equation  3.68,  the  kinetic  and  potential 

energies can be written

T e=
1
2
ρ0ϕe(t)

T H e ϕe(t ) 3.73.

and

U e=
1
2
ρ0 ϕ̇e(t )

T Qe ϕ̇e(t) 3.74.

where

H e=
A
a1
∫
−1

1
∂ g (ζ1)

∂ζ 1

∂ g (ζ 1)
T

∂ ζ 1

dζ 1=
A
a1
[ 1/2 −1/2
−1 /2 1 /2 ] 3.75.

and

Qe=
A a1

c0
2 ∫

−1

1

g (ζ 1)g(ζ 1)
T dζ 1=

A a1

c0
2 [2 /3 1 /3

1 /3 2 /3] 3.76.

These  two matrices,  H e and  Qe,  are  known as  the  element-stiffness  and element-inertia 

matrices respectively. As the elemental velocity-potential prescribed functions are defined in  

terms  of  the  nodal  velocity  potentials,  consequently,  the  elemental  potential  and  kinetic 

energy is also described in terms of the nodal velocity potential.  The integration is only 

performed once when formulating the element, thereafter expressions  3.73 and  3.74 along 

with the element-stiffness and element-inertia matrices may be used to very easily find the 

element energies for an element of any size and shape.

The velocity potentials at all  nodes in the whole system are  defined to be members of a 

vector ϕ̄ (t ),

ϕ̄(t)=[ϕ1 ( t ) ϕ2 (t ) ϕ3 (t ) ... ϕNn
(t ) ]

T

3.77.

The velocity potential vectors for each element, ϕe(t ), can be retrieved from this vector with 

an indexing matrix, A e. For example, considering the first element, the elemental velocity 

potential vector is

ϕ1(t )=[ϕ1 ( t )

ϕ2 ( t ) ] 3.78.



78 Chapter 3, Acoustical analysis techniques

which may be retrieved from the system velocity potential vector using the indexing matrix 

A1 as

ϕ1(t )=A1 ϕ̄(t ) 3.79.

where

A1=[1 0 0 ... 0
0 1 0 ... 0] 3.80.

The  system  kinetic  and  potential  energy  is  approximated  as  the  sum  of  the  individual  

elemental kinetic- and potential-energies as were defined above. This summation is neatly 

expressed by defining global acoustical stiffness and acoustical inertia matrices, which are 

constructed from the elemental-stiffness and elemental-inertia matrices using the indexing 

matrices, Ae, as

H̄=∑
e=1

N e

Ae
T H e Ae and

Q̄=∑
e=1

N e

Ae
T Qe Ae 3.81.

where Ne is the number of elements in the system. Effectively, the multiplication A e
T H e Ae 

simply sums the elemental matrices consecutively into the global matrix, H̄ , such that their 

rows and columns are located according to the global indexing of their nodes. In practice, the 

matrices A e need not be formed. It is generally computationally more efficient to directly add 

the elemental terms directly to the global matrices by row and column index. Once the global  

acoustical  stiffness  and  acoustical  inertia  matrices  are  formed,  the  system  kinetic  and 

potential energy are given by the expressions

T=
1
2
ρ0 ϕ̄(t )

T H̄ ϕ̄(t )
3.82.

and
U=

1
2
ρ0
˙̄ϕ(t )T Q̄ ˙̄ϕ(t )

3.83.

The system is now expressed in the same form as expressions 3.55 and 3.56 in the previous 

section and the last few steps to generate the system equations of motion follow. From this 

point, the same path as the Rayleigh-Ritz method. This results in the equations of motion for 

the system

H p(t )+ Q p̈(t )=0 3.84.

where p (t )=−ρ0∂ϕ(t )/∂ t. As in the previous section, the FE method is demonstrated for a 

0.5m-long closed pipe. The calculated and exact  eigenfrequencies and eigenfunctions for 

pipe  discretised  into  10  and  20  elements,  creating  systems  with  11  and  21  nodes, 
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respectively,  are  shown  below.  The  Matlab  code  to  calculate  these  results  is  given  in  

Appendix III.

Mode 1: Exact solution, 343Hz. FEM, Nn=11, 344.412Hz FEM, Nn=21, 343.353Hz

Mode 2: Exact solution, 686Hz. FEM, Nn=11, 697.333Hz FEM, Nn=21, 688.824Hz

Mode 3: Exact solution, 1029Hz FEM, Nn=11, 1067.376Hz FEM, Nn=21, 1038.546Hz

Mode 4: Exact solution, 1372Hz FEM, Nn=11, 1462.985Hz FEM, Nn=21, 1394.665Hz

Figure 3.8. The first four modes of the exact eigenfunction and eigenfrequencies of a closed 0.5m long  
pipe compared to the FEM approximate solution using 10 and 20 linear finite elements.

As was seen with the Rayleigh-Ritz method, the accuracy of the solution decreases if the 

prescribed functions are unable to describe the pressure variation. This means that the FE 

method is most accurate at low frequencies, where the spatial variation in pressure is low, 
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and that  it  becomes  increasingly  less  accurate  with  increasing  frequency.  Increasing  the 

number of elements has the effect of increasing the number of prescribed functions that are  

used and makes the FE method more accurate as the variation in pressure is more easily  

imitated by the element shape functions. The shape functions that have been used for these 

simple elements allows only a linear variation in pressure within each element. With the 

Rayleigh-Ritz method in the previous section, for the first few eigenfunctions only a few 

prescribed functions were required for a good match with the exact solution. For example,  

for a good approximation of the fourth mode (at  686Hz), it was only necessary to use 6 

prescribed  functions,  whereas,  with  the  FEM  solution  more  prescribed  functions  are 

required.  The fourth mode is  predicted less  accurately even when 20 elements  are  used 

(which is equivalent to 21 prescribed functions, one per node). The reason for this is that the 

exact eigenfunction solution in this case is a sinusoid, which is a function with continuous 

curvature and no linear regions, the linear shape functions of the simple elements are very 

poor  at  approximating  this  solution  and  hence  many  elements  are  required  for  a  good 

convergence.

Figure 3.9. 1D three-noded element function.

This problem can be overcome by using finite elements with a higher order shape function 

and a greater number of nodes. For example, consider the three-noded element shown in 

figure 3.9. For this element, a quadratic shape function is defined as

ϕ (ζ 1, t )=
ζ 1

2 (1−ζ 1)ϕ1 ( t )+ (1−ζ 1
2)ϕ2 ( t )+

ζ 1

2 (ζ 1+ 1 )ϕ3 ( t ) 3.85.

This can be written in terms of the multiplication of two vectors

ϕ (ζ 1, t )=[
G1( ζ1 )
G2( ζ1 )
G3 (ζ1 )

]
T

[
ϕ1 ( t )

ϕ2 ( t )

ϕ3 ( t )
]=g (ζ1)

Tϕe (t )

3.86.

where the coefficients G are defined to be

G1 (ζ 1)=
ζ 1

2 (ζ 1−1) , G2 (ζ 1)= (1−ζ1
2 ) , G3 (ζ 1)=

ζ 1

2 (1+ ζ 1) 3.87.
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The elemental-stiffness and elemental-inertial matrices are then calculated as

H e=
A
a1
∫
−1

1 ∂ g (ζ1)

∂ζ 1

∂ g (ζ 1)
T

∂ ζ 1

dζ 1=
A
a1 [

7 /6 −4 /3 1 /6
−4 /3 8 /3 −4 /3
1 /6 −4 /3 7 /6 ]

3.88.

and

Qe=
A a1

c0
2 ∫

−1

1

g (ζ 1)g(ζ 1)
T dζ 1=

A a1

c0
2 [

4 /15 2 /15 −1/15
2/15 16 /15 2 /15
−1 /15 2 /15 4 /15 ] 3.89.

Using  these  matrices  to  analyse  the  same  0.5m pipe  results  in  the  eigenfrequency  and 

eigenfunction  approximations  shown in  figure  3.10.  The  Matlab  code  to  calculate  these 

results is given in Appendix III.

The results are shown for the pipe discretised into 5 and 10 quadratic elements resulting in 

systems with 11 and 21 nodes. Compared to the two FEM systems shown in figure 3.8, with 

the linear shape function elements but the same number of nodes, the results are closer to the 

exact solution in all cases. As before, the same trend is observed that for eigenfunctions that 

vary slowly with respect  to  x the  FEM-approximated solution is  most  accurate.  At high 

frequencies, where the variation of the eigenfunction with respect to  x is high, the FEM 

approximated  system  diverges  from  the  exact  solution  and  the  approximated 

eigenfrequencies overestimate the exact solution. The choice of geometric discretisation is 

very important when using the finite element and care must be taken that enough elements 

are used so that the discrete-system solution converges with the exact solution. The type of  

element is an important consideration. As a general guideline for elements with linear shape 

functions, at least 20 elements per acoustical wavelength are required and for elements with 

a quadratic shape function, at least 6 elements per acoustical wavelength are required.

The Finite-Element Method is outlined for a one dimensional acoustical system. However, 

the approach is applicable to two-dimensional and three-dimensional cases and, additionally, 

for many other physical domains including mechanical and magnetic. The details of these 

applications are not described in this thesis. The interested reader is referred to Fahy for a  

description of three-dimensional acoustical and mechanical FEM formulations [46].
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Mode 1: Exact solution, 343Hz. FEM, Nn=11, 343.036Hz FEM, Nn=21, 343.002Hz

Mode 2: Exact solution, 686Hz. FEM, Nn=11, 687.099Hz FEM, Nn=21, 686.073Hz

Mode 3: Exact solution, 1029Hz FEM, Nn=11, 1036.632Hz FEM, Nn=21, 1029.539Hz

Mode 4: Exact solution, 1372Hz FEM, Nn=11, 1400.148Hz FEM, Nn=21, 1374.197Hz

Figure 3.10. The first four modes of the exact eigenfunction and eigenfrequencies of a closed 0.5m 
long pipe compared to the FEM approximate solution using 5 and 10 quadratic finite elements.

The  Finite-Element  Method  is  a  powerful  tool  for  analysis  of  real-world  engineering 

problems and it is used extensively in this thesis to provide approximate solutions for the 

behaviour of various parts of loudspeakers. While it is instructive to work through the FEM 

formulation for simple cases, for the analysis of full acoustical and mechanical systems, the 

author has chosen to use a commercially available FEM package. PAFEC-FE [55] is used 
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throughout  this  thesis  for  the  solution of  mechanoacoustical  FEM problems.  PAFEC-FE 

provides many element types including 2D linear and quadratic plane and shell mechanical 

elements, 2D mechanical and acoustical axisymmetric elements, and 3D linear and quadratic  

mechanical  and  acoustical  elements.  Additionally,  several  material  models  are  permitted 

including  acoustical  materials  with  complex  sound  speed  and  mechanical  viscoelastic 

materials.  PAFEC also permits  fully-coupled mechanoacoustical  models  that  include full 

approximation  of  the  fluid-structure  interaction.  As  was  outlined  in  section  2.2.5,  the 

acoustic loading of the mechanical parts of the loudspeaker is an important consideration.

Figure 3.11 shows the PAFEC calculated eigenfrequencies and eigenfunctions for the same 

closed-acoustical-pipe problem posed above. This FEM model was defined by hand directly 

into the PAFEC dat file, which is provided in Appendix IV. Ten 2D axisymmetric quadratic 

elements were used and the pipe was given a diameter of 10mm. Comparison of these results 

with figure 3.10 show that they are extremely close to the Matlab FEM results.

343.0023Hz 686.0727Hz

1029.53901Hz 1374.1975Hz

Figure 3.11. PAFEC-FE calculated eigenfrequencies and eigenfunctions of a 0.5m closed narrow 
acoustical pipe using 10 2D axisymmetric quadratic elements.
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3.8 The Boundary-Element Method

The Boundary-Element Method (BEM) is  a numerical  approach to solving the boundary 

integral formulation that was introduced in section 3.5. The BEM approach is similar to the 

FEM approach in that the geometry is approximated by discretisation. However, compared to 

the FEM, which requires the acoustical volume to be discretised into finite elements joined at 

nodes,  the  BEM  requires  the  bounding  surface  of  the  geometry  to  be  discretised  into 

boundary element “patches” joined at  nodes. Like the boundary integral  formulation, the 

acoustical  field  in  the  bounded  volume  is  completely  characterised  by  the  acoustical 

behaviour on the bounding surface. Although it is possible to apply the BEM to both interior 

and exterior problems, generally the BE method is less efficient than the FE method for 

interior problems. As is outlined below, formation of the BEM matrices requires the patch 

pressure and normal velocity to be numerically integrated several times for each patch in the  

boundary element. The FEM-system matrices, by comparison, are constructed directly from 

predetermined element matrices that require only minimal processing before inclusion in the 

system. Additionally, the FEM-system matrices only hold non-zero values either at locations 

on the diagonals or at locations that correspond to nodes shared by two or more elements.  

Consequently, the FEM matrices are sparse and this characteristic can be used to improve the 

memory consumption and speed of matrix manipulations. The BEM-system matrices are not 

sparse, every location is non-zero, and such performance optimisations cannot be applied. In 

most cases, as BEM only requires the bounding surface to be discretised, it is simpler to  

generate a mesh for  BEM analysis than FEM analysis. However, the real advantage of the 

BEM compared  to  the  FEM is  that  it  allows  an  infinite,  or  semi-infinite  regions  to  be 

considered.

The first  stage of the method is  to discretise the bounding surface of the geometry into  

boundary element “patches”, that are joined at nodes. The term “patch” is used in a BEM 

context to refer to an individual discretised region; whereas, in the FEM these regions were 

called elements. For the BEM case, the entire set of patches forms a single boundary element  

which defines  the  complete  bounding surface.  The reason for  this  distinction is  that  the 

boundary element formulation is valid only for the complete set of patches. This is not like 

the FEM case where an additional element is easily added to extend the geometry without 

requiring complete recalculation of the behavioural equations for rest of the geometry.

Within each patch the acoustical parameters, pressure p and surface normal particle velocity 

u . n, are described using shape functions in a similar way as was used for the FE method.  

Unlike the FE method, the boundary integral formulation, equation 3.41, does not require the 
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computation of any spatial pressure derivatives (in directions perpendicular to the surface 

normal)  and hence the simplest  possible shape function that  could be used is  a uniform 

function. The uniform function results in a so-called “constant-pressure Boundary-Element 

patch” and, in this case, each patch has a single degree of freedom. However, the constant-

pressure patch is infrequently used as it requires a great number of patches for an accurate  

approximation to the solution.

In  this  case  a  four-noded  planar  patch  using  linear  shape  functions  is  formulated,  as  

illustrated in figure 3.12.

Figure 3.12. Four-noded planar-rectangular Boundary-Element patch.

The  surface  of  the  patch  is  geometrically  parametrised  by  the  two  normalised  local 

coordinate variables ζ 1 and ζ 2. These are normalised so that the nodal positions correspond 

to the locations ζ 1=±1 and ζ 2=±1.

The surface pressure on the patch is described in terms of the four nodal pressures as

p (t ,ζ 1,ζ 2)=
1
4

p1 ( t ) (1−ζ 1) (1−ζ 2)+

1
4

p2 ( t ) (1−ζ 1) (1+ ζ 2)+

1
4

p3 ( t ) (1+ ζ 1) (1+ ζ 2)+

1
4

p4 (t ) (1+ ζ1 ) (1−ζ 2) 3.90.

where pi (t ) is the pressure at the i-th node. Similarly the surface normal velocity is written in 

terms of the four nodal normal velocities as

un(t ,ζ1,ζ 2)=
1
4

un1 (t )(1−ζ1 )(1−ζ 2)+

1
4

un2 ( t )(1−ζ 1) (1+ ζ 2)+

1
4

un3 ( t )(1+ ζ 1) (1+ ζ 2)+

1
4

un4 ( t )(1+ ζ 1) (1−ζ 2) 3.91.
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where uni is the normal velocity, u . n, at the i-th node.

These two expressions can be written as the multiplication of two vectors as

p (t ,ζ 1,ζ 2)=[
B1( ζ1, ζ2 )
B2( ζ1, ζ2 )
B3 (ζ1, ζ2 )
B4 (ζ1, ζ2 )

]
T

[
p1 ( t )

p2 (t )

p3 (t )

p4 (t )
]=b (ζ1, ζ2)

T p p(t )

3.92.

and

un (t ,ζ 1, ζ 2)=[
B1 (ζ 1, ζ 2)
B2 (ζ 1, ζ 2)
B3 ( ζ1, ζ 2 )
B4 (ζ1, ζ2 )

]
T

[
un1 ( t )

un2 ( t )

un3 ( t )

un4 ( t )
]=b(ζ 1,ζ 2)

T unp(t )

3.93.

where the coefficients of the vector b (ζ1, ζ2 ) are

B1 (ζ 1,ζ 2)=
1
4 (1−ζ 1) (1−ζ 2) , B2 (ζ 1,ζ 2)=

1
4 (1−ζ 1) (1+ ζ 2 )

B3 (ζ 1,ζ 2)=
1
4 (1+ ζ 1) (1+ ζ 2) , B4 (ζ1, ζ2 )=

1
4 (1+ ζ1 ) (1−ζ2 ) 3.94.

At this stage, the pressure at any point in the acoustical volume may be approximated with  

the expression

c (x ) p ( x )=∑
p=1

N p

h p(x)
T p p+ jωρ0 g p(x)

T unp 3.95.

which is a discrete equivalent to the Kirchoff Helmholtz integral, given in expression 3.39. 

The summation is performed over each patch  with the vectors  h p(x) and  g p(x) uniquely 

defined for each patch. Each element of these vectors correspond to a node on the p-th patch 

and are calculated from the integrals

h pj ( x )=∫
−1

1

∫
−1

1

∇ x
pj
G (x | x pj ) . nB j (ζ 1, ζ 2)d ζ1 d ζ2

3.96.

and

gpj ( x)=∫
−1

1

∫
−1

1

G (x |x pj )B j (ζ 1, ζ 2)d ζ1d ζ 2
3.97.

The  coefficient  c (x ) was  encountered  in  the  boundary  integral  formulation  and  is  the 

correction factor  resulting from the proportion of  the  excluded geometry that  lies in the 
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acoustical  volume  V b.  If  the  pressure sampling location,  x,  lies in  the fluid region then 

c (x )=−1. If the pressure sampling location lies on the boundary element surface then c (x ) 

must be calculated  and is defined by the expression

c (x )=1+ 1
4π
∑
p=1

N p

∫
−1

1

∫
−1

1

∇ xpj[ 1

∣x−x pj∣] .nd ζ 1 d ζ 2

3.98.

However,  rather  than  directly  evaluating  this  expression,  c (x ) is  commonly  interpreted 

geometrically as minus the proportion of the solid angle at  x that lies within the modelled 

region. Using this definition,  c (x ) may be calculated quickly by inspection of the meshed 

geometry.

Typically,  the  two  integrals  in  the  calculation  of  the  members  of  h p(x) and  g p(x) are 

evaluated using Gauss-Legendre quadrature  [47,  p.571].  The patch face-normal,  n,  must 

point out of the fluid volume. As is described in more detail below, in order to form the  

system equations  for  the boundary element these integrals are evaluated  4 Nn N p times, 

where Nn is the number of system nodes, N p is the number of patches and the 4 occurs as 

each patch has four nodes. This means that this integration step is a critical stage in the BE 

computation and typically has the most significant impact on the run time in formulating the  

full  behavioural  equations.  Gauss-Legendre  quadrature  is  an  appropriate  method  as  it 

provides an optimal accuracy of integral  approximation for a given number of integrand 

evaluations [56]. In this form it is relatively difficult to handle the equations of motion of the 

system because the individual node pressures and normal velocities appearing in the patch 

pressure and normal velocity vectors, p p and unp, appear four times in the summation as each 

node should be used by four different patches. The pressures and normal velocities at all  

nodes in the whole system are defined to be members of the vectors p and un,

pT
=[p1 ( t ) p2 ( t ) p3 (t ) ... pN n

(t )] 3.99.

and

un
T
=[un1 ( t ) un2 ( t ) un3 ( t ) ... unN n

( t ) ] 3.100.

The patch pressure and normal velocity vectors, p p and unp, may be retrieved from the global 

pressure and normal velocity vectors by use of an indexing matrix Ap.
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For example, considering a patch that uses the first four global nodes in descending order the 

patch pressure vector is

p1=[
p4 ( t )

p3 ( t )

p2 ( t )

p1 (t )
]

3.101.

that may be retrieved from the global pressure matrix using the indexing matrix matrix A1 as

p1=A1 p 3.102.

where

A1=[
0 0 0 1 ... 0
0 0 1 0 ... 0
0 1 0 0 ... 0
1 0 0 0 ... 0

]
3.103.

Similarly the patch normal velocity vector may be retrieved from the global normal velocity 

matrix using the same indexing matrix as

un1=A1un 3.104.

Using these indexing matrices  it is easy to form global vectors containing the appropriate 

coefficients from h p (x ) and g p (x ) resulting in

c (x ) p ( x )=h (x )
T p+ jωρ0 g (x )

T un 3.105.

where
h ( x )=∑

p=1

N p

Ap
T h p (x )

3.106.

and
g ( x )=∑

p=1

N p

Ap
T g p (x )

3.107.

As  with  the  FEM  case,  although  the  indexing  matrices,  Ap,  are  useful  for  the  precise 

definition of the mapping from  g p (x ) and  h p (x ) to  g ( x ) and  h ( x ), in practice this stage is 

commonly implemented by indexing the patch vectors directly into the global vectors, which 

is generally a more computationally efficient approach.

Before  expression  3.105 can  be  used  to  approximate  the  acoustical  pressure  within  the 

bounded volume,  it  is  first  necessary  to  solve  for  the  acoustical  fields  at  the  nodes 

themselves so that the vectors unp and p p are known. By evaluating expression 3.105 at the 
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location  of  each  node  in  turn,  the  field  pressure  p (x ) is  eliminated  and  the  resulting 

expression relates the node pressures, p p, to the node normal velocities, unp, as

C p=H p+ jωρ0Gun 3.108.

This stage is commonly called collocation. The rows of the Nn by Nn matrix, H , are given 

by the vector h (xi), as defined above, where xi is the location of the i-th node such that

H=[
h ( x1)

T

h ( x2)
T

⋮

h (xNn
)
T ]

3.109.

Similarly the rows of the   Nn by Nn matrix,  G, are given by the vector  g x i  ,  as defined 

above, such that

G=[
g (x1)

T

g (x2)
T

⋮

g (xN n
)
T ]

3.110.

The matrix C  is Nn by Nn  and diagonal holding the correction factors for each node,

C=[
c (x1) 0 … 0

0 c (x2) … 0
⋮ ⋮ ⋱ ⋮
0 0 … c (xNn

)] 3.111.

It is quite common for this expression to be rearranged slightly to give

A p= jωρ0Gun 3.112.

where

A=C−H 3.113.

Typically, either the surface pressures, p, or the surface velocities, un, are prescribed and, by 

evaluation of expression 3.112, the other acoustical surface quantity is easily determined. It 

is common for the FEM and BEM to be combined so that the FEM approach can be used to  

model finite regions or interior regions of the geometry and the BEM method can be used for 

infinite regions. Despite this common combination, it is relatively rare to find commercial 

solvers  that  allow complete  FEM to  BEM coupling.  For  many applications  this  lack of  

complete coupling is not a significant problem. In many industries the acoustical load on the 
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mechanical  structure  is  insignificant.  However  for  loudspeakers  where  the  mechanical 

radiation impedance is a significant proportion of the mechanical moving mass, it is critical  

that the BEM is fully coupled to the FEM.

The BEM formulation for interior modelling is approached in exactly the same manner as 

the method above, which was assumed to be for the exterior case, with the exception that the 

normal direction must be adjusted accordingly. The result of this is that if the exterior case is 

considered, then the governing equations for the interior case are identical save for a change 

in  sign  of  the  elements  of  H i=−H and  a  reversal  of  the  solid  angle  proportions 

ci (x )=1−c (x ). Consequently, both the internal and the external matrix equations are singular 

at  the  acoustical  modes of  the  interior  problem.  As  a result,  the  standard exterior  BEM 

formulation suffers from the so called “characteristic-frequency problem” where the solution 

cannot be determined close to the interior modal frequencies. There are two commonly used 

methods  to  remove  the  characteristic-frequency  problem.  Burton  and  Miller  [57] 

reformulated the standard boundary integral equation taking its derivative with respect to n. 

This  alternative  formulation  can  still  be  used  for  both  interior  and  exterior  problems;  

however, the interior modes are present at different frequencies compared to the standard 

formulation.  By  also  formulating  the  standard  BEM  equations,  it  is  possible  to  find  a 

solution at  a  given frequency by choosing the most  well  conditioned of  the two sets  of  

equations. Another method used to remove the characteristic frequency problem is described 

by [58] in which Nc  additional points are included in the collocation stage. The additional 

points  should lie outside of  the  fluid region where evaluation of  expression  3.95 should 

return zero. This condition is enforced on the solution by the addition of  Nc rows in the 

system matrices defined by

0=h(xci ) p+ jωρ0 g (xci )un 3.114.

where  xci is the position of the i-th additional collocation point.  This results  in an over-

determined problem where the dimensions of H  and G are Nn+ N c by Nn. Consequently, the 

solution cannot be computed using a matrix inverse; however, a other methods can be used,  

for example, the Moore-Penrose pseudoinverse [59]. This technique is commonly known as 

the Combined Helmholtz Integral Equation Formulation, or CHIEF method. The position 

and  number  of  the  additional  collocation  points  is  a  critical  consideration  for  the 

performance of the CHIEF method. Ideally, they should not coincide with the nodes of the 

internal modes, as otherwise they are ineffective at damping the interior normal modes, but 

rather be placed at location where the interior solution has a pressure maximum.
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Included in Appendix V is a simple Matlab [54] based BEM formulation that has been used 

to calculate the exterior boundary element solution to a simple acoustical problem by means 

of an illustration. The Matlab BEM code was developed based on the description above in 

conjunction  with  the  very  clear  Matlab  BEM  implementation  provided  in  the  Masters 

dissertation  of  Holmström [60].  The  formulation  uses  planar,  quadrilateral  patches  with 

linear  shape-functions,  the  integrals  required  to  form  the  vectors  h p (x ) and  g p (x ) are 

calculated using a Gauss-Legendre quadrature with 2 Gauss points in each local coordinate 

direction. The formulation allows the inclusion of additional interior collocation points as 

required by the CHIEF method described above.

Using this BEM formulation a simple example problem is considered, the acoustical pressure 

field  generated  by  a  pulsating  sphere  is  considered.  This  acoustical  problem  has  been 

selected as the radiated acoustical field from a pulsating sphere is easily solved analytically,  

this makes it easy to assess the accuracy of the BEM solutions. 

The sphere considered has a radius of 100mm, all points on the surface of the sphere move  

with equal normal velocity such that the sphere approximately pulsates. The total volume 

velocity of the sphere surface is unity. The radiated pressure field is evaluated at a point 1m 

from the centre of the sphere.  The analytical  solution to  this  acoustical  problem is well 

known [18, p.171] and is given by the expression

p (r )=unρ0 c0 [ (kr )2

1+ (kr )2
+ j

kr

1+ (kr)2 ] ar e− jk (r−a)

3.115.

where a is the radius of the sphere, r is the observation distance from the sphere. The mesh 

used to analyse the problem using the Boundary-Element Method is shown in figure 3.13.

Figure 3.13. BEM mesh used to approximate the pulsating sphere. Black mesh shows the full mirrored  
geometry, red mesh shows the symmetry reduced mesh that is modelled. Face normals of the red mesh  

patches are shown.
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As the sphere is a symmetrical geometry, and the prescribed velocity is also symmetrical, it 

is not necessary to form the full BEM matrices for the entire sphere as pressure field solution 

shares the same symmetry. Consequently the BEM matrices are only formed for the portion 

of the sphere shown in red. This has a significant effect on the efficiency and stability of the  

solution. The figures also show the patch normals for the red region. The total number of  

patches in the entire sphere is 96. Figure 3.14 shows the calculated pressure at 1m from the 

sphere versus frequency for the analytical solution and two BEM approximations.

Figure 3.14. 100mm pulsating sphere radiation at 1m, analytical solution and BEM approximations.

The  first  BEM  approximation  is  for  the  standard  BEM  formulation  without  any 

consideration for the characteristic frequency problem. It is observed that at low frequencies 

the agreement between this approximation and the analytical solution is good. However there 

are  clear  problem  frequencies  in  the  solution  where  the  BEM  approximation  is  very 

inaccurate.  This  is  the  characteristic frequency problem and the frequencies of  the large  

response deviations coincide with the modal frequencies of the internal spherical acoustical  

cavity.  It  should  also  be  observed that  the  frequency area  affected  by  the  characteristic 

frequency problem is relatively wide.

The second BEM approximation is for the same geometry, but the solution method includes 

four additional collocation points in the interior of the sphere, as required by the CHIEF 

method.  It  can be seen that  this  approximation is  much improved and the characteristic  

frequency problem is almost completely, although not totally, eliminated. However, at very 
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high frequencies the BEM approximation fails to accurately describe the analytical solution.  

This occurs as the discretised geometry and patch shape-functions are unable to accurately 

describe the acoustical solution. For a more accurate solution either more elements, elements  

with  a  higher  order  shape  function  or  higher  degrees  of  quadrature  for  the  element 

integrations should be used.

A second example, computed with the same Matlab BEM formulation, is also provided in 

Appendix VII.

3.8.1 BEM illustration: calculation of radiation impedance using BEM

In section  2.3, the radiation impedance of an infinite-baffle-mounted planar circular piston 

was used in the discussion of the efficiency of direct-radiating loudspeakers. There are only 

few arrangements of radiator for which the radiation impedance can be explicitly described 

[61].  For  rigid  infinite-baffle  mounted  radiators  of  other  shapes,  there  are  a  number  of 

publications that describe methods of calculating the radiation impedance typically using a 

numerical  integration to perform the last  step in  the calculation [62,63,64].  However,  in 

order to more generally calculate the radiation impedance, with arbitrary radiator geometry, 

arbitrary radiation environment  and more complex radiator-surface velocities,  a  different 

approach is required. It is possible to use the BEM to calculate the radiation impedance of 

radiators  of  arbitrary  shape,  arbitrary  motion  and  in  an  arbitrary  environment.  To 

demonstrate this, the simple case of a circular piston in an infinite baffle is considered using 

the commercial FEM and BEM package PAFEC-FE [55]. The analytical  solution to this 

acoustical problem was described in section 2.3.

PAFEC-FE FEM and BEM analyses are defined in a single text file that is then passed to the 

PAFEC-FE  software  for  processing  and  solution.  This  text  file,  hereafter  the  dat  file,  

irrespective of the type of analysis, always outlines the same information for the solver to  

process:

1. a definition of the type of problem to be solved;

2. a  description  of  the  meshed  geometry  to  be  considered.  Achieved  by  definition 

firstly of nodal coordinates and secondly element topology and type;

3. the prescription of boundary conditions.

This  three  stage  outline  will  be  familiar  to  readers  with  experience  of  FEM and  BEM 

analysis.  PAFEC-FE is a very versatile software tool  and allows many different solution  

types, and several different methods to outline the geometry. When complex geometries are  
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involved, it is common to use an external program, such as [65,66,67], to provide nodal 

coordinates and element topology directly into the PAFEC-FE dat file. It is feasible to use an 

alternative method of defining the geometry in the dat file by hand for simple geometries.  

The full, commented text of the dat file for this problem definition is given in Appendix VIII. 

Figure 3.15 illustrates the layout of the PAFEC-FE model.

Figure 3.15. Geometry of PAFEC-FE model: rigid piston in an infinite baffle.

The problem under consideration is rotationally symmetric (axisymmetric). Because of this 

symmetry, it is not necessary to create a full, three-dimensional meshed representation of the 

geometry,  but  instead  an  axisymmetric  modelling  approach  may  be  used.  PAFEC-FE 

provides element formulations of one- and two-dimensional finite and boundary elements 

that  have rotational symmetry mathematically defined.  Using these elements, only a half 

section through the model need be defined. When using an axisymmetric solution type, the 

PAFEC-FE convention is  for the  x axis to be the axis of  rotation.  The infinite  baffle  is 

included in the formulation by using a plane of symmetry defined in the dat file and applied  

to the BE. Because of this symmetry condition, the modelling approach must be slightly 

adjusted.  The  BE  in  combination  with  any  planes  of  symmetry  must  form  a  complete 

enclosed  surface.  PAFEC-FE  does  not  allow  BE  patches  to  lie  directly  on  planes  of  

symmetry. This means that the BE region must extend away from the infinite baffle. The 

cavity left  between the rigid mechanical  piston and the BE is bridged using a region of 

axisymmetric FE acoustic elements.  The piston is  constructed from one-dimensional thin 

shell-of-revolution  elements.  The  formulation  of  these  finite  elements  includes  both 

thickness  and  mechanical  rotation.  They  are  only  valid  for  use  when  the  region  to  be 

modelled is of minimal thickness. In the case of the piston, which is constrained to move 

rigidly, the validity of this approximation is not of concern. The rigidity of the piston is 

applied by instructing PAFEC-FE to consider the x-direction motion of all the nodes on the 
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piston to be the same variable: in PAFEC-FE terminology “repeating the freedoms”. The 

PAFEC-FE solver is sufficiently advanced so that it is able to fully model each of the three 

regions: structural FE piston, acoustical FE air “bubble” and acoustical BE, and, additionally,  

the coupling between the regions. The piston is set to move with harmonic velocity of unit  

amplitude. Once solved, the total mechanical impedance may be calculated by extracting the  

PAFEC-FE result for the force,  F, applied to the driving point on the piston: this force is  

equal to the mechanical impedance because the piston is driven with unit velocity,  u. This 

impedance is equal to the sum of mechanical impedance of the piston itself,  Zm, and the 

mechanical impedance due to the presence of the acoustical load, Zr,

Zm+ Zr=
F
u 3.116.

The mechanical impedance of the piston is, in this case, simply the impedance due to the 

piston mass, M .

Zm= jωM 3.117.

As the piston mechanical impedance,  Zm, is purely imaginary, it follows that the radiation 

resistance, Rr , is equal to the real part of the force applied to the piston.

Rr=ℜ (F ) 3.118.

In this way, the radiation resistance of a circular piston mounted in an infinite baffle can be  

numerically calculated using PAFEC-FE. Indeed, there is no restriction to this simple case; it  

is clear that a similar approach can be taken to analyse radiators of other geometries.

Figure 3.16 shows the PAFEC-FE calculated radiation resistance compared to the analytical 

solution.  The  plotted  radiation  resistances are  normalised  in  magnitude  by  the  radiation 

resistance of a tube mounted piston,

Rr=ρ0cπ a2
3.119.

The  frequency  axis  of  the  plotted  results  is  given  in  normalised  wavenumber,  k a.  The 

PAFEC-FE approximation of the radiation resistance is very good. There is a very small 

deviation that occurs at  ka=12. Other than this slight error, the two results are extremely 

close.

Clearly, the major advantage of the numerical BEM approach is that it is possible to analyse 

radiators  of  arbitrary  shape.  For  example,  figure  3.18 shows  the  PAFEC-FE  calculated 

radiation resistance of an infinite-baffle mounted rigid spherical-cap diaphragm (as depicted 

in figure  3.17) along with the analytical calculation of the rigid circular piston previously 
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shown. The spherical-cap diaphragm is a common geometry for high-frequency loudspeaker 

drivers given its mechanical rigidity. No analytical formulation for the radiation resistance of 

a rigid spherical-cap diaphragm in an infinite baffle exists. PAFEC-FE is used throughout 

this thesis for numerical solutions to acoustical problems.

Figure 3.16. Radiation resistance of a circular piston mounted in an infinite baffle calculated by  
analytical method and FE/BE using PAFEC-FE.

Figure 3.17. Illustration showing an infinite-baffle mounted rigid spherical-cap diaphragm.
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Figure 3.18.  Radiation resistance of a rigid circular piston mounted in an infinite baffle analytically  
calculated and 45 degree rigid spherical-cap diaphragm mounted in an infinite baffle calculated  

using PAFEC-FE.

3.9 Conclusions

In this chapter a number of methods for the analysis and modelling of acoustical behaviour 

of various situations were outlined. The various techniques form the theoretical basis for the 

work in  subsequent  chapters  which consider  the  specific  problem of  compression-driver 

design in more detail.





4 The acoustics of compression-driver phase plugs

4.1 Introduction

The basic compression driver principle is illustrated in figure 4.1. The radiating diaphragm is 

connected to one face of a narrow acoustical cavity and on the opposite face the loudspeaker 

horn is connected to the cavity via a small hole. At low frequencies, the compression cavity  

is  effectively  incompressible  and unit  volume-displacement  applied  to  the  cavity  by  the 

diaphragm results in unit volume-displacement leaving the compression cavity through the  

hole to the horn. As the diaphragm area is larger than the hole area, unit displacement of the 

radiating diaphragm causes a much greater than unit displacement of the acoustical particles  

at  the  entrance  to  the  horn.  The  compression  arrangement  behaves  like  a  transformer  

converting relatively low displacements or velocities at the diaphragm into larger acoustical  

velocities at the horn throat.

Figure 4.1. Schematic layout of a horn driver with a large diaphragm, of diameter d2, and small horn  
throat, of diameter d2, joined by a small acoustical volume.

Using  the  numerical  methods  outlined  in  chapter  3,  it  is  possible  to  determine  the 

performance of a few different compression-driver arrangements in order to highlight some 

of the caveats of  the approach and the issues encountered during the design.  Figure 4.2 

shows the radiation resistance of an axially-driven dome-diaphragm placed directly at the 

throat of a truncated exponential horn in comparison to the same dome diaphragm driving a 

narrow acoustical cavity, which is then connected via a central hole to an exponential horn.  

This is very similar to the situation depicted in figure 4.1. Both of these horn radiators are 

modelled using PAFEC-FE. The mechanical diaphragm and the air in the horn are modelled 

using finite elements and the FE horn region is coupled to a boundary element at the horn 

mouth to permit the horn to radiate into a 2π space.
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Figure 4.2. Comparison of the radiation resistance of a horn-loaded rigid spherical-cap diaphragm 
with and without a simple compression chamber. The cap surface is 45 degrees from axis to edge in  

cross section. The horns are truncated exponential with cut-on frequency ka≈0.35. For the case with 
compression α=10.

Both horns have the same flare rate and termination. Above the horn cut-on frequency of 

ka=0.35, the driver with the compression cavity shows an area of significantly increased 

radiation  resistance.  However,  at  frequencies  ka> 1.5,  the  radiation  resistance  of  the 

compression  loaded  driver  is  very  erratic.  This  is  because  at  these  frequencies  the 

compression cavity is not behaving as a simple acoustical compliance. Consequently this 

compression driver arrangement is of little practical use.

Figure 4.3. Simple unoptimised phase-plug geometry using evenly spaced phase-plug channels..
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The performance of the compression driver may be improved by introducing a simple phase 

plug. The phase plug is positioned between the compression cavity and the horn throat, and 

carries  a number of  acoustical  channels between the two. The design of  the  channels is  

critical to the performance of the driver. A very simple phase plug was constructed with three 

evenly positioned annular channels of unoptimised length and shape, as shown in figure 4.3. 

The FEM/BEM analysed result for this simple phase-plugged compression driver is shown 

in figure 4.4 in comparison to the compression driver with the single exit hole (as shown in 

figure  4.2).  As  with  the  previous  comparison,  both  drivers  have  the  same dome-shaped 

diaphragm, the same compression ratio and the same truncated exponential horn. Even with 

this very approximate phase-plug design, the radiation resistance is improved. In particular, 

the area of increased radiation resistance is extended to higher frequency and the magnitude 

of the response deviations have been significantly reduced, albeit not completely eliminated.

Figure 4.4. Comparison of the radiation resistance of a horn-loaded rigid spherical-cap diaphragm  
with and without a simple phase plug. The cap surface is 45 degrees from axis to edge in cross  

section.

This type of annular phase plug is widely used. The cross section of a typical compression  

driver is shown in figure  4.5. In this illustration, there are three annular channels, each of 

which leads from the compression cavity to the horn throat. With this arrangement, there is  

plenty of  scope for  adjusting the exact  geometry  of  the  channels  to  try  to  optimise  the  

compression-driver response. The channel geometry has a critical effect on the compression-

driver performance. The cavity and the channels are typically several times larger than the 

highest  wavelength  to  be  radiated  and  there  is  little  acoustical  damping  in  the  system. 
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Consequently, there is great  potential for acoustical  resonance in this complex acoustical  

structure. During operation, the pressure in the phase-plug structure is extremely large, sound 

pressure levels exceeding 120dB are common. The non-linearity of the acoustical system is a 

significant  cause  of  audible  distortion  in  the  driver.  This  non-linearity  problem  is 

significantly worsened by the presence of acoustical resonance in the phase-plug structure, 

which can typically cause pressure peaks in the channels 20 to 25dB higher than the horn 

throat pressure.

Figure 4.5. Illustration of a typical modern compression driver with three annular channels in the  
phase plug.

The  desired  behaviour  of  the  phase  plug  is  relatively  simple  to  outline.  Motion  of  the 

radiating diaphragm causes air to leave the compression cavity with equal velocity through 

each of the exit channels. This motion of air causes an acoustical wave to propagate down 

each of the annular channels. The propagated acoustical wave in each channel arrives at the 

horn throat at the same time and with the same strength such that the individual propagated 

waves merge, without reflection, to form a single coherent wave. This wave continues into 

the  horn  and  is  propagated  to  the  listener.  Realising  this  simple  behaviour  is  not 

straightforward.

Smith's analysis is a critical piece of work that leads towards the ideal behaviour. Figure 4.6 

shows the radiation resistance of two phase-plugged compression drivers loaded by the same 

truncated exponential horn and with the same domed radiating diaphragm. The first of these 

drivers is the simple unoptimised design already shown in figure 4.4. The other, has channel 
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entrance geometry in accordance with Smith's guidelines, as shown in figure 4.7. It can be 

observed that  the  irregularity  in the  radiation resistance is  greatly  reduced by the Smith 

design and the potential output bandwidth is extended significantly.  Smith's analysis of the 

compression cavity, based on the modal description of the acoustics, showed that, by careful  

choice of the geometry at the phase-plug entrance, it is possible in principle to generate equal  

acoustical velocities at the channels. Smith's analysis method is outlined in the next section.

Figure 4.6. Comparison of the radiation resistance of a horn-loaded rigid spherical-cap diaphragm  
with two designs of phase plug: one based on an equal path-length approach, the other designed  

according to Smith's guidelines.

Figure 4.7. Simple unoptimised phase-plug geometry using Bob Smith's channel entrance geometry.
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4.2 Smith's channel-positioning methodology

In this section, Smith's optimum phase-plug geometry derivation is outlined, as described in 

his 1953 paper [35]. Smith describes the behaviour of the compression driver cavity as a 

boundary value problem. The presentation and notation used by Smith is not consistent with 

modern  acoustics  texts.  Additionally  he  presents  little  derivation  or  background  to  the 

expressions  that  he  uses.  The  terminology  and  notation  used  in  this  section,  although 

ultimately equivalent to that presented by Smith, should hopefully be more familiar to the 

reader. The analysis also forms a foundation for much of the work in the following chapters.

Figure 4.8. A cross section through the cylindrical representation of the compression cavity used by  
Smith.

Smith suggests that “the compression cavity, being only slightly curved, may be analysed,  

with  only  small  error,  in  a  cylindrical  coordinate  system”.  Figure  4.8 shows  the 

approximated cavity in cylindrical coordinates with a single exit channel, i.

The cylindrical coordinate system in this thesis is given in the notation of Beyer [68] as 

depicted in Figure 4.9.

Figure 4.9. The cylindrical coordinate system.
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The  first  stage  of  the  analysis  is  to  derive  the  rigid-walled  eigenfrequencies  and 

eigenfunctions  of  the  compression  cavity.  These  are  found  as  the  solution  to  the 

homogeneous Helmholtz equation, which is given by the expression

∇2 p+
ω2

co
2

p=0
4.1.

In cylindrical coordinates, the Laplacian can be written in the form [23, p.12]

∇
2
= ∂2

∂ r2
+

1
r
∂
∂ r
+

1

r2
∂2

∂θ2
+ ∂2

∂ z2 4.2.

Solutions can be found using the method of separation of variables [45 p.116]. Thus in this 

case it is assumed that the pressure in the cavity may be described as

p (r ,θ , z , t )=R (r )Θ (θ )Z (z )T ( t ) 4.3.

with temporal dependence given by

T ( t )=T 1e− jω t+ T 2e jω t
4.4.

the dependence on the circumferential-angular coordinate, θ, given by 

Θ (θ )=Θ1 e− jm θ+ Θ2 e j mθ
4.5.

the dependence on the radial coordinate, r, given by

R (r )=R1 J m (k r r )+ R2 Y m (k r r ) 4.6.

and the dependence on the axial coordinate, z, given by 

Z ( z )=Z1 e− jk z z
+ Z2 e j k z z

4.7.

In these equations, T 1 ,T 2 , Z1 , Z2 ,Θ1 ,Θ2 , R1 and R2 are arbitrary constants. The functions J m 

and  Y m appearing  in  equation  4.6 are  Bessel  functions  of  the  first  and  second  kind, 

respectively [23, p.27]. To effectively apply this general solution of the wave equation to the 

situation at hand some simplifications are made. Selecting a convention for time dependence,  

T 1 is set to be zero. The compression cavity is small in  z and in the frequency band of 

interest only trivial behaviour is observed in this direction. It is therefore assumed that k z=0 

and  Z1+ Z2=1.  The Bessel  function of the second kind,  Y m ( kr r ),  appearing in the radial 

function, is singular at k r r=0. Consequently, to ensure the solution  is finite in the cavity, R2 

is set to be zero. 
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The  simplified  solution  of  the  wave  equation  in  the  rigid-walled  compression  cavity is 

therefore given by

p (r ,θ , t )=A1 J m (k r r ) (e
− j mθ+ e j mθ )e jω t

4.8.

The pressure must obey the rigid wall boundary condition (Neumann [46, p.228]), at the 

diameter of the compression cavity, given by

dp
dr
=0∣

r=a 4.9.

Inserting the solution to the wave equation into to this condition results in

dJm ( jmn )
dr

=0∣
r=a where

kmn=
jmn

r0 4.10.

Values of jmn that satisfy equation 4.10 are available from mathematical tables [68, pp. 370-

374]. The homogeneous wave equation in the rigid-walled compression cavity has solutions 

only at district values of k . These values of k nm give the eigenfrequencies of the system

ωnm=k nm c0 4.11.

The  indices  n and  m refer  to  the  radial  and  circumferential  order  of  the  eigenfunctions 

respectively. The eigenfunctions of the cavity are found by inserting the values of k nm in to 

the expression for the spatial pressure variation in the cavity, given in equation  4.8. This 

results in 

Ψmn (r ,θ)=Anm J m (kmnr ) (e
− j mθ+ e j mθ ) 4.12.

The normalisation constant, Anm in equation 4.12 is chosen to satisfy the condition 

∫V
Ψnm

2 (r ,θ ) dV=V 4.13.

where V  is the volume of the compression cavity.

4.2.1 Analysis of the driven behaviour of the cavity

As outlined in section  3.4, the pressure in a lightly-damped acoustical  cavity excited by 

motion  of  its  walls  can  be  described  in  terms  of  the  rigid-walled  eigenfunctions  and 

eigenfrequencies

p(x ,ω)=∑
n=0

∞ jωρ0Ψn(x)

V [kn
2−k2 ]

∫
s

Ψn ( y )u( y ). ndS
4.14.
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In this expression, u ( y) .n is the surface-normal velocity of the cavity wall at vector position 

y  and  ρ0 is  the  ambient  fluid  density.  In  the  case  of  the  compression  cavity,  the 

eigenfunctions and eigenfrequencies are indexed by two indices,  m and  n.  As a result  a 

slightly adapted expression must be used

p ( x ,ω )=∑
n=0

∞

∑
m=0

∞ jωρ0Ψnm(x )

V [knm
2 −k 2]

∫
s

Ψnm( y)u( y). ndS
4.15.

The summation is thus performed over all calculated eigenfunctions.

For this application, the integral on the right of this expression can be written as the sum of 

three integrals each over a separate regions of the cavity surface, as shown in equation 4.16.

∫
r=0

a

∫
θ=0

2π

Ψnm(r ,θ)ud (r ,θ)r dθdr+ ∫
r=0

a

∫
θ=0

2π

Ψnm(r ,θ)ue(r ,θ)r dθdr

+ ∫
z=0

μ

∫
θ=0

2π

Ψnm(r ,θ)uz ( z ,θ)a d θdz
4.16.

The first double integral is performed over the diaphragm side of the compression-cavity 

surface,  the  function  ud(r ,θ) describes  the  normal  velocity  of  this  surface.  The  second 

double  integral  is  performed  over  the  exit  side  of  the  compression-cavity  surface,  the 

function  ue(r ,θ) describes the normal velocity of this surface. Finally, the third integral is 

performed over  the  small  cylindrical  surface at  the  outside diameter  of  the  compression 

cavity,  the  function  uz (z ,θ) describes  the  normal  velocity  of  this  surface.  Conventional 

annular-channel compression-driver and phase-plug geometries, including that considered in 

this  case,  are  completely  rotationally  symmetrical  about  the  z axis.  Additionally,  the 

mechanical  parts  that  form  and  support  the  radiating  diaphragm  are  also  rotationally 

symmetrical  about  the  z axis.  The result  of  this  “axisymmetry” is  that  the three surface 

normal-velocity functions introduced above are invariant to circumferential angle, θ, and can 

be written

ud (r ,θ)=ud(r) 4.17.

ue(r ,θ)=ue(r) 4.18.

and 

uz (r ,θ)=u z(r) 4.19.
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These simplifications to the velocity functions allow the three integrals in equation 4.16 to be 

rewritten

∫
r=0

a

ud (r )r ∫
θ=0

2π

Ψnm(r ,θ)d θdr+ ∫
r=0

a

ue (r )r ∫
θ=0

2π

Ψnm(r ,θ)d θdr

+ ∫
z=0

μ

uz (z)a∫
θ=0

2π

Ψnm(r ,θ)dθdz
4.20.

with all the velocity functions now appearing outside of the second circumferential angle 

integral. The same integral

∫
θ=0

2π

Ψnm(r ,θ)d θ
4.21.

appears  three  times,  once  in  each  of  the  double  integrals.  Inserting  the  calculated 

eigenfunctions, Ψnm (r ,θ), into this integral gives 

∫
θ=0

2π

Ψnm(r , θ)d θ=Anm Jm (k mnr )∫
θ=0

2π

(e− j m θ
+ e j mθ )dθ

4.22.

From this expression, it is immediately clear that the integral is only non-zero for the case  

m=0. Effectively, this means that a reduced set of eigenfrequencies and eigenfunctions may 

be used,

Ψn (r )=An J 0 (k n r ) 4.23.

4.2.2 Cavity behaviour without exit channels

First, the behaviour of the compression cavity is considered for the case when there are no 

exit channels and the cavity is only excited by the radiating diaphragm. The surface velocity 

is  zero  at  all  locations  on  the  enclosure  walls  except  for  the  surface  occupied  by  the  

diaphragm. Consequently, it is only necessary to perform the integral on the right-hand side 

of equation 4.15. This can be written as

∫
r=0

a

∫
θ=0

2π

Ψn (r)ud(r)r dθ dr
4.24.

where  ud (r ) is  a  function describing the normal  velocity  of  the  circular  diaphragm.  The 

diaphragm is rigid and the surface of integration is perpendicular to the diaphragm direction 

of motion, hence the normal velocity function is simply 

ud (r )=u0 4.25.
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The eigenfunctions form an orthonormal set that obey the orthogonality relationship

∫
V

Ψn( y )Ψm ( y )dV=V δnm
4.26.

In the case of this compression cavity the orthogonality relationship can be written as

∫
r=0

a

∫
θ=0

2π

∫
z=0

μ

Ψn(r)Ψm(r)r drd θdz=V δnm
4.27.

which, performing the integration in z, becomes

∫
r=0

a

∫
θ=0

2π

Ψn (r)Ψm(r)r dr d θ=
V
μ
δnm≡π a2δnm

4.28.

Within the limits of the integrals in this expression, the diaphragm normal-velocity function 

ud (r ) can be described in terms of the zeroth eigenfunction as

ud (r )=u0≡u0Ψ0(r) 4.29.

After inserting this expression into equation 4.24, comparison with equation 4.28 reveals that 

the solution to the surface-velocity integral is

∫
r=0

a

∫
θ=0

2π

Ψn(r)u0Ψ0 (r)r d θdr=u0πa2δn 0
4.30.

The integral is only non-trivial for the case n=0. The pressure in the cavity in this case is, 

from equation 4.15, simply

pd=u0πa2 ρ0 c 0
2

jωV 4.31.

The pressure in the cavity is the same as an ideal acoustical compliance. This result has an 

interesting  implication.  Using  this  geometric  representation,  excitation  of  the  acoustical 

modes  in  the  compression  cavity  only  occurs  due  to  the  presence  of  the  channels, and 

specifically because of the motion of air at their entrances.

4.2.3 Cavity behaviour with exit channels

The arrangement of the compression driver, as shown in figure  4.8, is to have not only a 

radiating diaphragm on one face of the cavity, but also a number of exit channels on the  

opposite face through which sound is radiated. It is most common for these exit paths to be 

annular channels, having the same rotationally symmetry about the  z axis as the radiating 

diaphragm  and  the  compression  cavity.  The  modal  description  of  the  behaviour  in  the 

compression cavity, given in equation  4.15, is used to analyse this situation. As the same 
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rotational symmetry is present, the same reduced set of eigenfunctions and eigenfrequencies,  

given in equation 4.23, is again used.

It is not necessary to reanalyse the effect of the radiating diaphragm. Instead, it is assumed 

that the pressure in the cavity can be described as the linear superposition of two pressure 

contributions: one occurring because of the velocity of the diaphragm,  pd,  and the other 

because of the velocity of air entering and leaving the cavity at the exit channels, pe,

p=pd+ pe 4.32.

From the analysis above, the pressure due to the diaphragm motion, pd, is given by

pd=
ρ0 c0

2

V

u0π a2

jω 4.33.

The exit-surface normal  velocity  is  described by the function  ue(r).  The pressure  in the 

compression cavity due to this velocity can, making use of equation 4.15, be written as

pe(r ,ω)=∑
n=0

∞ jωρ0Ψn(r)

V [k n
2−k2 ]

∫
ŕ=0

a

Ψn( ŕ)ue( ŕ)2π ŕ d ŕ
4.34.

The exit-surface normal velocity is zero except for the locations where a channel exit  is 

positioned. The channel exits are narrow in r and, in the frequency range of operation, the 

surface normal velocity exiting the compression cavity into the channels may be accurately 

considered as constant over each channel entrance. To simplify the integral in equation 4.34, 

the approximation is made that each channel acts on the cavity at one distinct point. This  

behaviour is defined using the Dirac delta function [69, pp.144-148],

ue(r)=w1 u1δ(r−r1)+ w2 u2δ(r−r2)+ ...+ wN uN δ(r−rN) 4.35.

where w i is the width of the  ith channel entrance,  r i is the radial position of the  ith channel 

entrance and u1 is the cavity-surface normal velocity at the entrance to the  ith channel. On 

initial inspection, this expression may appear dimensionally inconsistent because of the  w i 

terms. However, the integral of the normal velocity over the cavity surface

∫
r=0

a

ue(r)2πr dr=qe
4.36.

is equal to the volume velocity entering the cavity, qe. Considering this integral for a single 

thin annular channel, the channel-entrance volume velocity is approximately equal to

qi=ui A i≈ui wi2π ri 4.37.

where Ai is the entrance area of the ith channel.
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Using the Dirac delta function to define the channel position, it follows that

∫
r=0

a

K iδ(r−r i)2π r dr=qi≈ui wi 2π r i
4.38.

which, recalling the sifting property of the delta function [69, p.146, eq.8], indicates that

K i≈ui wi 4.39.

Using the approximate expression for ue(r), in equation 4.35, the integral in equation 4.34 is 

easily evaluated using the sifting property of the Dirac delta. This results in

∫
r=0

a

Ψn(r)ue(r)2π r dr=∑
i=1

N

Ψn(r i)A i ui
4.40.

where N  is the total number of channel entrances on the exit side of the compression cavity. 

The expression for the cavity pressure due to the velocity of air in the channel entrances is  

then given by

pe(r )=∑
n=0

∞

[ jωρoΨn(r )

V [kn
2−k2 ]

∑
i=1

N

Ψn(ri)A i ui]
4.41.

The total cavity pressure, both due to the velocity of the diaphragm and the velocity of air in  

the channels, is thus given by

p(r)=
ρ0 c0

2

V

u0π a2

jω
+∑

n=0

∞

[ jωρ0Ψn(r)

V [kn
2−k 2 ]

∑
i=1

N

Ψn(r i)A iui ] 4.42.

4.2.4 Suppression of modal excitation by channel arrangement

Equation 4.42 is used as a starting point to derive a channel geometry which minimises the 

excitation of the compression-cavity modes. Extracting the n=0 term from the summation in 

4.42, the excitation of the zeroth mode is separated from the other modes, giving

p(r)=
ρ0 c0

2

jωV (u0π a2+∑
i=1

N

A i ui)+∑
n=1

∞

[ jωρ0Ψn(r)

V [k n
2−k 2]

∑
i=1

N

Ψn(ri )A i ui] 4.43.

This is a very useful manipulation as it separates the desired lumped behaviour from the  

undesirable higher order behaviour. From this expression, it is clear that in order to suppress 

excitation of the nth mode it is required that

∑
i=1

N

Ψn(ri )A i ui=0
4.44.
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The approach taken by Smith is to make the assumption that the velocities in the channel 

entrances are identical. This simplifies the condition to

∑
i=1

N

Ψn(ri )A i=0
4.45.

This is a fair simplification and can be justified as follows. Firstly, assuming that the final 

design provides good suppression of the modes in the compression cavity, the compression-

driver behaviour is described by the zeroth mode terms in equation  4.43. In this case, the 

pressure in the cavity is simply related to the total volume velocity at the chamber walls,

p=
ρ0 c0

2

jωV (u0πa2+∑
i=1

N

A i ui) 4.46.

The  channel-entrance  velocities  can  be  related  to  the  channel-entrance  pressure  by  the 

acoustic impedance of the channels, zi,

ui=
p
zi

4.47.

By implication, in order to assume that the channel-entrance velocities are identical, Smith 

assumes that the acoustical impedance of each of the channels is identical. The condition set  

in equation 4.45 can be met for specific modes by careful selection of the channel positions, 

r i, and entrance areas, Ai. If there are N  channels, it is possible to meet the condition for N  

modes.  Logically,  the  lowest  N  modes  of  the  compression chamber  are  chosen for  two 

reasons: firstly, to extend the bandwidth of the driver as high as possible in frequency and, 

secondly,  because  the  suppression  is  only  effective  if  simple  lumped  behaviour  of  the 

compression driver results.

The condition outlined in equation 4.45 can be written in matrix form as

[
Ψ0 (r1) Ψ0(r2) ⋯ Ψ0 (rN)

Ψ1 (r1) Ψ1(r2) ⋯ Ψ1 (rN)

Ψ2 (r1) Ψ2(r2) ⋯ Ψ2 (rN)
⋮ ⋮ ⋱ ⋮

ΨN (r1) ΨN (r2) ⋯ ΨN (rN)
][

A1/ AT

A2/ AT

⋮
AN / AT

]=[
1
0
0
⋮
0
]

4.48.

The first equation of this set is trivial, but must be present to ensure that the sum of the area  

ratios is equal to unity. The matrix on the left of the expression containing the eigenfunction 

terms is of dimensions N  by N+ 1 and thus not invertible in this form. Additionally, there are 

two sets of unknowns, r i and Ai. To solve this problem the variables r i are set so that they 
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make one row of the matrix trivial, which results in a square and invertible matrix. This can 

be achieved by setting the values of r i to meet the condition

N ri=0 4.49.

In  other  words,  the  channel  positions  are  set  to  coincide  with  the  nodes  of  the  Nth 

eigenfunction. This results in a slightly different set of equations given by

[
Ψ0(r1) Ψ0(r2) ⋯ Ψ0(rN )

Ψ1(r1) Ψ1(r2) ⋯ Ψ1(rN)

Ψ2(r1) Ψ2(r2) ⋯ Ψ2(rN)
⋮ ⋮ ⋱ ⋮

ΨN−1(r1) ΨN−1(r2) ⋯ ΨN−1 (rN )
][

A1 / AT

A2 / AT

⋮
AN / AT

]=[
1
0
0
⋮
0
]

4.50.

The matrix on the left is now determined and invertible. The set of equations can be solved 

to find a vector of channel area ratios. For example, for the case N=3, the nodes of the 3rd 

mode of the are located at

r=0.238a , r=0.543a , r=0.853a 4.51.

Thus, the channel positions are set to be

r1=0.238a , r2=0.543a , r3=0.853 a 4.52.

Solving the simultaneous equations, as described above, gives the channel area ratios 

[
A1/ AT

A2/ AT

A3/ AT
]=[0.13975

0.32682
0.53343] 4.53.

The areas can be equivalently written as width ratios, using the approximation

Ai≈w i 2πr i 4.54.

This gives us approximate width ratios of

w3

w1

≈1.065 ,
w2

w1

≈1.025
4.55.

Smith thus shows that the N channels should be located at the nodes of the Nth radial mode 

of the compression cavity and that  the channels should all  have approximately the same 

width.
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4.2.5 Discussion

In  his  paper,  Smith  graphically  illustrated  the  suppression  technique  for  a  three-channel 

phase plug using two plots reproduced below.

Figure 4.10. Reproduction of Smith's illustration of his suppression technique for the eigenfunction  
n=1.

Figure 4.10 shows the excitation of the first eigenfunction resulting from the velocity in each 

channel entrance separately. The vector locations indicate the position of the channels and 

the vector magnitude indicates the strength of the excitation from that channel, given by

Ψn
2(r i)A i 4.56.

It can be easily appreciated from these illustrations that the contributions from the individual  

channels sum to zero, which indeed was the condition set in equation 4.45.

The  same type  of  illustration  is  shown for  the  second eigenfunction  in  figure  4.11.  No 

illustration is given by Smith for the third eigenfunction because, for a the three-channel 

phase plug, none of the channels excite the third  eigenfunction as

Ψ3(r i)A i=0 4.57.

There have been few further published works on the details of compression-driver phase-

plug design since Smith. Indeed there are a number of subsequent papers and patents that 

ignore Smith's work and incorrectly interpret the behaviour of the compression cavity, most 

choosing instead to use the Wente and Thuras path-length interpretation [70][71][40][72]. 

The reason for the lack of publications is possibly attributable to commercial interests, with 

manufacturers  unwilling  to  share  the  secrets  of  their  designs.  Additionally,  numerical 

methods, such as FEM and BEM, allow the designer to simply draw the shape of phase plug 
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and see the simulated results without having to worry about whether the fundamental design 

approach is correct. However, although the numerical simulation process has many benefits,  

for a complex acoustical structure with many design parameters, it can be extremely difficult  

to disseminate the underlying physical behaviour using FEM and BEM data.

Figure 4.11. Reproduction of Smith's illustration of his suppression technique for the eigenfunction  
n=2.

Using  Smith's  approach,  modes  above  the  N th  may  still  be  excited  in  the  final  driver. 

Commonly the number of channels is chosen so that the  N th eigenfrequency is above the 

intended bandwidth of operation of the driver. However, as can be seen from equation 4.14, 

the pressure contribution from an individual mode decreases at a relatively gentle 6dB per  

octave  on  either  side  of  the  associated   eigenfrequency.  Consequently,  modes  having 

eigenfrequencies above the intended bandwidth of the driver may still  effect  the in-band 

behaviour if they are heavily excited. In chapters 6 and 8 this problem is encountered. For 

idealised  situations,  such  as  the  rigid-body  diaphragm motion  that  is  considered  in  this 

section, the modal excitation tends to decrease with increasing mode number. As will be  

shown in the next section, under these ideal conditions, the final driver pressure response 

remains smooth even above the N th eigenfrequency. However, for real designs it is often not 

easy to determine what number of channels is optimal other than by trial and error.

4.3 Numerical modelling of Smith's phase plug

A simple FEM model  was constructed to confirm Smith's  compression-driver phase-plug 

analysis. The geometry of this model is illustrated in figure  4.12. It  simply consists of a 

cylindrical compression cavity, driven by a rigid diaphragm on the left-hand side, with three  

exit channels located on the right-hand side. The exit channels are kept very narrow and are  

terminated at their right-hand end with a  ρ0 c 0 specific acoustical impedance. This ensures 
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that  there  are  no  reflections  from  these  terminations  provided  that  plane  waves  alone 

propagate in the channels. As the channels are narrow, only plane-wave propagation occurs 

within them in the frequency range of interest. This arrangement satisfies Smith's assumption 

that the channels all have the same specific acoustical impedance.

This model  was geometrically  constructed in  Cedrat's  Flux2D Preprocessor  [73] and the 

mesh  was  exported  to  PAFEC-FE  [55]  for  solution  using  two-dimensional  quadratic 

axisymmetric  acoustic  finite  elements.  Flux2D allows  the  geometry  of  the  model  to  be 

parametrised. Using this feature it is very easy to move the positions and adjust the areas of  

the channels as desired. The pressure-magnitude response was extracted from the model in 

each of the three channels.  As the narrow channels only carry a plane wave the precise  

location at which the pressure is sampled within each channel is not critical.

Figure 4.12. Cross section of the geometry used in simple equal area compression-driver FEM model.

The  geometry  shown in  figure  4.12 is  based  on  an  equal-area  approach  to  the  channel 

geometry. This is a methodology that has previously been suggested for compression-driver 

phase-plug  design  [72].  All  three  channel  entrances  are  of  area  π a2/45,  giving  a  total 

compression ratio of 15. The outer channels, being at a larger diameter, are of a narrower 

width to maintain this equal area. The position of the channels is also based on equal area.  

The circular cross section of the compression cavity is divided into three equal area parts and 

the channels are positioned to be at the areal centroid of each. The left-hand surface of the  

compression cavity is driven harmonically with a unit velocity as if excited by a rigid piston.  

The  calculated  pressure  response  in  each  of  the  channels  is  shown in  figure  4.13.  The 

pressure is sampled halfway between the start of the channel and the impedance termination 

at the right hand channel end.

The pressure levels shown are normalised by the specific acoustical impedance of a tube,
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Lnorm=20log10∣ p
ρ0 c0

∣ 4.58.

such that  at  low frequencies  a  normalised  pressure  level  of  23.5dB is  seen  in  all  three  

channels. This level corresponds directly to the compression ratio of 15. Above ka≈3.3, the 

pressure in the channels is very dissimilar from one another.

Figure 4.13. Normalised channel-pressure level response for simple compression driver arrangement  
based on equal area design methodology.

Figure 4.14 shows the sectional geometry of a similar FEM model, again constructed using 

Cedrat's Flux2D software and solved using PAFEC-FE. This time the channel positions and 

sizes are arranged according to Smith's methodology.

Figure 4.14. Sectional geometry used in simple Smith methodology compression driver FEM model.
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The normalised channel pressure-level responses are plotted in figure 4.15, again normalised 

by the specific acoustical impedance of a plane wave. This time the channel pressures remain 

at 23.5dB until  ka≈8 and even above this frequency the three channel pressures are very 

similar to one another. It is clear that Smith's guidelines are working as he anticipated.

Figure 4.15.  Normalised cavity-pressure level response for simple compression driver arrangement  
based on Smith design methodology.

The analysis presented by Smith concentrates on controlling the acoustical modes of the 

compression  cavity  itself,  as  opposed  to  resonances  occurring  in  the  entire  acoustical 

structure. In a complete driver the problematic acoustical modes occur in the full acoustical  

structure, including the cavity, the phase-plug and horn throat. Indeed, they cannot be simply 

separated into those occurring in the cavity and those occurring in the phase plug. The two 

parts of the driver are well coupled and combined modes are observed. However, the results 

of the FEM analysis above indicate that if the channels all have the same specific acoustical 

impedance then it is possible to derive a channel-entrance arrangement that causes the same 

acoustical velocity to be generated at the entrance to each channel over a wide range of 

frequencies. The remaining design challenge is then to find a geometry for the result of the 

phase plug that gives the same specific acoustical impedance at each channel entrance. This 

is a problem that is outlined in the next section.
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4.4 The phase-plug channel behaviour

The phase-plug channels are very narrow and, consequently, it may be considered that, in the 

bandwidth of operation, each carry a single parameter propagating wave. The channels must 

be routed from their entrance positions to meet at the horn throat. This normally means that 

they must follow a somewhat curved path. It is also sometimes the case that the sectional  

area of the channels is not constant, but instead increases along the length of the channel.  

However, for simplicity of analysis, it is assumed that each channel may be represented as a  

one  dimensional  narrow  duct  of  constant  sectional  area.  Within  each  narrow  duct,  the  

complex acoustical pressure is described by the expression

p( x )=A e− jkx+ B e jkx
4.59.

where x is the position in the duct measured from one end. This expression defines that the 

pressure in the duct is composed of two plane waves propagating in opposite directions with 

complex amplitudes  A and  B. The acoustical pressure is related to the acoustical particle 

velocity by the linear Euler equation

ρ0
∂u
∂ t
−∇ p=0

4.60.

As p is only a function of the spatial coordinate x, in this case the relationship is simply

u (x)=
−1
ρ0
∫
∂ p
∂ x

dt
4.61.

Consequently, the acoustical particle velocity in the duct can be described in terms of the 

same two complex wave amplitudes as

u (x )=
A e− jkx−B e jkx

ρ0 c0 4.62.

The narrow ducts are of constant sectional area, S, and the volume velocity at any position 

along the duct length is related to the acoustical particle velocity by the expression

U ( x)=Su ( x) 4.63.

A three-channel  phase  plug  may be  approximately  represented  using  four  of  these  one- 

dimensional ducts, connected as shown in figure  4.16. Three ducts represent the channels 

and a fourth represents the throat of the horn. The four ducts are connected at the end of the 

phase plug. The opposite end of each of the phase-plug channel ducts are driven by a volume 

velocity that represents the excitation from the compression cavity. This simple model allows 
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the behaviour of the phase plug to be considered in terms of these three excitation volume 

velocities.  From this,  one can deduce the situation required for an acoustical wave to be 

propagated into the horn throat without any other disturbance occurring.

Figure 4.16. Simplified 1-D duct representation of a compression driver phase plug.

The acoustical pressures in each duct are described by the expressions

p1(x)=A1 e− jk (x+ L1)+ B1 e jk(x+ L1) 4.64.

p2(x)=A2 e− jk (x+ L2)+ B2 e jk(x+ L2) 4.65.

p3(x)=A3 e− jk(x+ L3)+ B3 e jk (x+ L3) 4.66.

and

pt( x )=A t e
− jkx

4.67.

The coordinate system is arranged so that x=0 is the junction where the four ducts meet. L1, 

L2 and  L3 are the lengths of the first, second and third channel respectively. The fourth of 

these expressions, that for the pressure in the horn throat duct, only includes a term for a 

forward-propagating  acoustical  wave.  This  is  because,  for  simplicity,  the  throat  duct  is  

considered to be semi-infinite  and,  consequently,  no wave propagation is  allowed in the 

reverse direction. The volume velocities within the ducts are written as

U1 (x )=S1

A1 e− jk (x+ L1)−B1 e jk (x+ L1)

ρ0 c0 4.68.

U2x =S2

A2 e− jk xL2−B2 e jk xL2

0 c0 4.69.

U3 (x )=S3

A3 e− jk (x+ L3)−B3 e jk (x+ L3)

ρ0 c 0 4.70.
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and

U t ( x)=St

A t e
− jkx

ρ0c 0 4.71.

where S1, S2 and S3 are the sectional areas of each of the channel ducts and St is the sectional 

area of the horn throat duct.

The  solution  to  the  duct  system  is  derived  in  terms  of  the  volume  velocities  at  the 

compression cavity end of each of the three channel ducts, which are given the notation

U1 (−L1)=q1 4.72.

U2 (−L2)=q2 4.73.

and

U3 (−L3 )=q3 4.74.

Equating these volume velocities at the starts of the ducts to the expressions for the volume 

velocity over the length of the ducts results in the conditions,

q1=
S1

ρ0 c0
( A1−B1 )

4.75.

q2=
S2

ρ0 c0
( A2−B2 )

4.76.

and

q3=
S3

ρ0 c0
( A3−B3)

4.77.

At the junction of the four ducts, the principle of continuity of volume velocity applies. In 

this case this results in the relationship

U1 (0)+ U2(0)+ U3 (0)=U t(0) 4.78.

In terms of the wave amplitudes, this is written

S1( A1e− jk L1−B1e jk L1 )+ S2 (A2 e− jk L2−B2e jk L2)+ S3 ( A3 e− jk L3−B2 e jk L3 )−St A t=0 4.79.

Additionally, at the junction, the principle of continuity of pressure is applied resulting in the 

relationship

p1 (0)=p2(0)=p3(0)= pt (0) 4.80.
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In terms of the wave amplitudes this is written as

A1 e− jk L1+ B1 e jk L1=A t 4.81.

A2 e− jk L2+ B2 e jk L2=A t 4.82.

and

A3 e− jk L3+ B3e jk L3=At 4.83.

Combining these expressions, the pressure amplitude in the throat duct can be written in 

terms of the three entrance volume velocities as

At=ρ0c0

q1

cosk L1

+
q2

cos k L2

+
q3

cos k L3

St+ j S1

sin k L1

cos k L1

+ j S2

sink L2

cosk L2

+ j S3

sin k L3

cos k L3 4.84.

It is clear from this expression that there is plenty of opportunity for irregularity in the throat 

pressure. However, if the lengths of the channels are equal then this simplifies to

At=
(q1+ q2+ q3)ρ0 c0

St cosk L+ (S1+ S2+ S3) j sin k L 4.85.

Further to this, if the area of the horn throat is set to be the same as the sum of the channel  

areas, S t=S1S2S3 , the expression further simplifies to

At=(q1+ q2+ q3)
ρ0c0

St

e− j k L

4.86.

Which, recalling expression 4.71, is equivalent to

U t (0)=(q1+ q2+ q3) e
− j k L

4.87.

This indicates that, if the channels have the same length and the horn throat area is equal to 

the combined area of the individual channels then, the volume velocity at the horn throat is 

equal to the summed volume velocity at the channel entrances delayed by the propagation 

distance along the channels. This is a very well-behaved situation. Clearly this simple model 

provides  a  target  for  the  ideal  behaviour  of  the  phase-plug  channels.  However,  it  also 

highlights  that  if  the  target  is  not  met,  then  the  acoustical  behaviour  of  the  phase-plug 

channels is complex and potentially the horn throat pressure will  be very irregular.
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The  specific  acoustical  impedance  at  the  entrance  to  the  nth  channel  is  given  by  the 

expression

Zn=Sn

pn(−Ln)

Un(−Ln) 4.88.

Considering the first channel, the entrance volume velocity, U1(−L1), is known to be q1 and 

so to determine the specific acoustical impedance it is necessary to determine the pressure at  

the entrance to the channel. The pressure at the entrance of the first channel is given by the  

expression

p1 (−L1)=A1+ B1 4.89.

Using the relationships in expressions 4.75, 4.68 and 4.80, the coefficients A1 and B1 may be 

defined in terms of the horn throat pressure, pt(0)=A t, and the channel entrance pressure as

p1(0)=
A t

cos k L1

+ ρ0 c0

q1

S1

j sin k L1

cos k L1 4.90.

For the case when the channels are equal length and the throat area is equal to the sum of the 

channel areas, the channel entrance pressure becomes

p1(0)=ρ0 c0 [ q1+ q2+ q3

S1+ S2+ S3
(1− j sink L

cosk L )+
q1

S1

j sink L
cosk L ] 4.91.

and, consequently, the channel entrance specific acoustical impedance is

Z1=S1

ρ0 c0

q1
[ q1+ q2+ q3

S1+ S2+ S3
(1− j sin k L

cos k L )+
q1

S1

j sin k L
cos k L ] 4.92.

The other channels may be analysed in a similar manner resulting in expressions for the  

channel-entrance specific acoustical impedance at all three channels,

Z2=S2

ρ0 c0

q2
[ q1+ q2+ q3

S1+ S2+ S3
(1− j sin k L

cos k L )+
q2

S2

j sin k L
cos k L ] 4.93.

and

Z3=S3

ρ0 c0

q3
[ q1+ q2+ q3

S1+ S2+ S3
(1− j sin k L

cos k L )+
q3

S3

j sin k L
cos k L ] 4.94.

In order to  derive the optimum channel  geometry,  Smith makes the assumption that  the 

channel entrance specific acoustical impedances are identical. The three expressions reveal  

that even when the phase plug is designed perfectly it is not necessarily the case that the  

channel  entrance  specific  acoustical  impedances  are  the  same.  However,  if  the  channel-
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entrance acoustical particle velocities are all identical and equal to u, then the source volume 

velocities are  q1=uS1,  q2=u S2 and  q3=u S3,  and the channel-entrance specific acoustical 

impedances all simplify to

Zn=ρ0 c0 4.95.

i.e., they have the same specific acoustical impedance as the horn throat, which was, in this  

case, simply assumed to be the plane-wave impedance.

This  results  in  an  interesting  situation.  Smith's  suppression  method  assumes  that  the 

compression channels all present the same specific acoustical impedance to the compression 

cavity. However this is only the case when, firstly, the phase plug is correctly designed and, 

secondly, the channel entrance acoustical velocities are all identical. However, the channel 

entrance  acoustical  velocities  are  only  identical  when  the  cavity  modal  suppression  is 

working perfectly. Altogether, in order the realise the ideal compression driver behaviour, it 

is necessary for both the phase-plug design and the channel entrance geometry to be correct. 

If one of these two aspects is not correct the performance of the other suffers, for example  

using Smith's  exact  geometry along with a poorly designed phase plug will  not  provide 

modal suppression in the compression cavity.

4.5 Conclusions

The  target  behaviour  for  the  compression  driver  is  relatively  simple.  However,  as  the 

geometry is typically several times larger than the shortest wavelength to be radiated, it is 

quite a challenge to meet the simple target behaviour in practice. To separate the design 

problem into two parts that may be analysed effectively, it is useful to consider the cavity  

modal suppression problem separately from the phase-plug design problem. For example, the 

results shown in figure 4.15, with all three channel pressures identical when terminated into 

ρ0 c 0 specific acoustical impedances, are an indication that the channel-entrance acoustical  

velocities are identical. A design exhibiting this behaviour has the possibility that, provided a 

correctly designed phase plug is used with it, the final compression driver may be free from 

acoustical  resonance.  However,  should  this  type  of  analysis  result  in  even  a  moderate 

dissimilarity in the channel pressures, then it should be kept in mind that the performance in  

the full  compression driver is likely to be significantly worse because the overall  design 

cannot meet the assumption that the channel specific acoustical impedances are identical. In 

order for the final driver to function correctly, both the cavity modal suppression and the  

phase-plug channel design must be correct.



5 A new channel-positioning methodology for annular 

compression drivers

5.1 The effect of curving the compression cavity

In section  2.4.1, compression drivers were introduced to the reader as an arrangement that 

allows the efficiency of mid and high-frequency horn loaded loudspeakers to be increased. 

The  Smith  phase-plug  geometry  derivation  was  then  subsequently  outlined  in  chapter  4 

along with a series of figures that  demonstrate the importance of the compression-driver 

phase-plug geometry on the smoothness of the radiation resistance, and hence the response.

In these discussions it was implicitly assumed that the mechanical radiating diaphragm was 

rigid over  the  whole  bandwidth of  the  transducer.  In  practice,  this  is  a  difficult  goal  to 

achieve. Modern compression-driver diaphragms are typically constructed from thin metal 

foils, commonly of aluminium or titanium. These materials have very high values of specific 

modulus: the ratio of Young's modulus to density. As specific modulus is proportional to 

wave speed, a high specific modulus material can be used to push the eigenfrequencies of a 

structure high in frequency. The radiating diaphragm must be kept as light as possible in  

order to maximise transducer efficiency and so it is necessary to use a very small amount of 

material, especially considering the relatively high density of Titanium and Aluminium. The 

metal foils used in modern radiating diaphragms are very thin indeed, typically 50μm for 

Aluminium or 30μm for Titanium. These foils are so thin that, despite having high Young's 

modulus, they have very little mechanical resistance to bending. To make the diaphragm 

approximately rigid over the bandwidth of the transducer, it must be formed into a shape that  

does not rely on bending resistance for rigidity. This is achieved by forming the diaphragm 

surface into a compound curve, and typically a domed geometry is used.

Figure 5.1 shows a cross section of a modern compression driver with a radiating diaphragm 

shaped as a spherical cap, or dome. The compression cavity follows the curvature of the 

radiating diaphragm in order  to  keep the volume of  the  compression cavity as  small  as 

possible. The result is that the geometry of real compression drivers is slightly different from 

the idealised geometric description that was used by Smith (shown in figure 4.8).
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Figure 5.1. Cross-sectional view of a modern compression driver.

The acoustic importance of this departure from Smith's geometry can be demonstrated using 

a FEM model.  Figure  5.2 shows the geometry used to investigate the effect of a curved 

radiating  diaphragm.  The  channel  positions  and  sizes  are  set  using  Smith's  criterion.  

However  the  radiating  diaphragm is  not  planar,  but  is  domed.  The  radiating  diaphragm 

curvature is 55 degrees, measured from axis of rotational  symmetry to the outside edge. The 

compression ratio is 15. The channels are gently curved so that the right hand extent of each 

is a simple annular channel that is terminated with a ρ0 c 0 specific acoustical impedance. The 

area of each channel is constant along its length to avoid any sudden change of acoustical 

impedance in the channels.

Figure 5.2. Half-section geometry of FE-modelled simplified compression driver using Smith's  
channel guidelines and a domed diaphragm.
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The channel-pressure level responses are plotted in figure 5.3. These are normalised by the 

specific  acoustical  impedance  of  a  plane  wave  (as  in  equation  4.58).  While  the  three 

pressures are not as dissimilar as the equal area case, which was considered in figure 4.13, 

the  pressures  are  significantly  more  dissimilar  than  was  seen  for  the  idealised  Smith  

geometry (shown in figure 4.15). Despite this divergence, the three responses in figure  5.3 

are smooth. However, these simple models do not include the rejoining of the compression 

channels at the throat of the horn. As was outlined in section 4.4, this rejoining is a critical 

part of the design, an imbalance in the contributions from each channel is likely to result in 

large amplitude resonances in the rejoined case.

Figure 5.3. Normalised channel pressure-level response of FE-modelled simplified compression  
driver using Smith's channel guidelines and a domed diaphragm.

To demonstrate the problems that the unequal channel pressures can cause in a full design  

when the channels are joined at the horn throat, a simple phase plug was designed to join  

these three channels  to  a  single  semi-infinite  pipe.  The geometry of  the  FEM model  to  

analyse this situation is shown in figure 5.4. The three channels are routed to a single central 

pipe that is terminated on the right-hand side using an infinite-pipe impedance condition as 

implemented  by  PAFEC-FE  [55].  This  termination  uses  a  series  approximation  for  the 

acoustical boundary condition in order to mimic the effect of a semi-infinite pipe. The phase-

plug channel design is very basic. The area of the channels as they join to the pipe is the 

same  as  the  areas  of  the  channels  as  they  leave  the  compression  cavity.  The  apparent  

expansion is due to the decreasing radius of the channels as they are routed towards the pipe. 

The channels are all straight edged and they have been arranged such that the length of each  
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channel, measured along the centroid from the compression cavity to a point in the pipe, is 

the same for each channel. The design is very rudimentary, for example, there is no attempt 

to smooth the channel paths. However, the channels are approximately the same length and 

the  throat  area  is  equal  to  the  sum of  the  channel  areas.  This  approximately  meets  the 

requirements found in section 4.4.

Figure 5.4. Half-section of geometry used in simple Smith methodology compression-driver FEM  
model with domed diaphragm with channels joined by rudimentary phase plug.

The normalised pressure response in the semi-infinite pipe is shown in figure 5.5. There are 

several very sharp “glitches” that can be seen on this response curve. In order to consider 

what is happening at these frequencies, figure  5.6 shows the acoustical intensity pattern at 

the third of these glitches, occurring at  ka≈5.5. It can be seen from this figure that, rather 

than all channels carrying acoustical energy from the diaphragm to the pipe, the two inner 

channels  carry  acoustical  energy  in  the  reverse  direction.  The  behaviour  seen  here  is  a 

standing wave where energy circulates around the phase plug rather than propagating in the 

pipe. This figure is in contrast to the vectors shown in figure 5.7, which are for a frequency 

position where there is no glitch on the response curve, in this case, at  ka=5. This result 

shows the desired behaviour with all  channels carrying acoustical  energy away from the 

compression cavity and summing in the tube to a plane wave travelling from left to right.

The glitches on the response curve shown in figure  5.5 may, on first consideration, seem 

relatively benign as they are very narrow in frequency and primarily cause a reduction in the 

response magnitude. The perceptual consequences may be considered as relatively benign,  

particularly as Bücklein [74] demonstrates that narrow band notches are particularly difficult 

to hear. However, what must also be considered is that the acoustical pressure magnitude in 

the compression driver channels is extremely high under normal operation and the linearity 
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of the channel acoustics is often a problem even at frequencies where the driver is well  

behaved [39][38]. 

Figure 5.5. Normalised pressure magnitude evaluated at the start of the infinite pipe region.

Figure 5.6. Vectors of acoustical intensity direction showing energy movement in simple phase-
plugged curved Smith model at 7427Hz.
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Figure 5.7. Vectors of acoustical intensity direction showing energy movement in simple phase-
plugged curved Smith model at 7000Hz.

The linearity problem is severely exacerbated by the presence of the standing waves in the 

phase plug For example in the FEM model above at ka=5.5, where the third glitch is seen, 

the pressure in the inner channel is approximately 23dB greater than the pressure propagated 

in the pipe.

In conclusion, in contradiction to Smith, the velocity of the diaphragm itself does excite the 

compression cavity modes and, although the channel pressure deviation for the simplified 

model, without the channels joined, is only a few decibels in the full compression driver  

geometry this is sufficient to cause severe resonance.

The motivation for searching for an improved channel-positioning method

Modern  transducer  design  relies  heavily  on  the  Finite-Element  Method  and  Boundary-

Element Method for performance predictions [75]. The application of these techniques to 

compression-driver  phase-plug  design  is  now  relatively  common  [76,43].  Typically  the 

vibroacoustical design is completed with the help of a fully coupled FEM analysis of the 

moving mechanical parts, the compression chamber, the phase-plug channels, an appropriate 

horn, the radiating environment and often the air in the rear chamber behind the radiating 

diaphragm.  During  such  analysis,  the  technique  of  parametrisation  is  frequently  used  to 
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allow  the  geometry  to  be  quickly  manipulated  and  a  range  of  different  geometric  

perturbations  investigated.  These geometric  parameters may be used in  conjunction with 

optimisation techniques [55]. This is a powerful tool and, if used effectively, can result in 

significant improvements. During the course of the design of a compression driver having a  

76.2mm diameter titanium dome diaphragm, it was observed that the optimisation routine 

would consistently alter the geometry away from the Smith channel  arrangement. It  was 

generally observed that the optimiser suggested narrower outer channels than Smith's theory. 

This observation was the catalyst for this thesis on compression-driver phase-plug design. 

While the parametrised FEM approach is a very powerful tool, for the compression driver 

geometry there are a great number of parameters that may be varied and, consequently, it is  

extremely difficult to assesss when an optimum solution is reached. This work, on deriving  

an  analytical  solution  to  for  the  optimum  geometry,  was  begun  with  the  goal  of  fully 

understanding the limits of what can be achieved with the compression-driver arrangement.

5.2 An improved design methodology

To improve upon Smith's method for setting channel geometry, it is first necessary to analyse 

the behaviour of the diaphragm, cavity and channels in a spherical coordinate system. This 

allows  a  closer  geometric  representation of  a  real  compression  driver.  Conceptually,  the 

approach is similar  to Smiths. All excitation of the cavity modes is  arranged so that  the  

overall pressure variation in the cavity is zero.

Figure 5.8.  A cross section through the spherical representation of the compression cavity used for  
the analysis.

The  geometry  of  the  compression  driver  is  approximated  as  shown  in  figure  5.8.  The 

common notation used to describe a spherical coordinate system is that of Zwillinger [77]
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[47, p.355], shown in figure 5.9. However, in this thesis the symbol for the radial coordinate 

r is replaced with h in order to avoid confusion with the radial coordinate in the cylindrical 

coordinate system.

Figure 5.9. Spherical coordinate system notation.

The eigenfunctions and eigenfrequencies of the curved cavity are found by considering the 

homogeneous Helmholtz equation [45 p.18]

∇2 p+
ω2

co
2

p=0
5.1.

In spherical coordinates, the Laplacian can be written as [23, p.25]

∇
2 p=

∂2 p

∂h2
+

2
h
∂ p
∂h
+

1

h2 sin2ϕ
∂2 p

∂θ2
+

1

h2

∂2 p

∂ϕ2
+

cosϕ
h2sinϕ

∂ p
∂ϕ 5.2.

Solutions can be found using the method of separation of variables [45 p.185]. One can thus 

assume that

p(h,θ ,ϕ , t )=H (h )Θ(θ)Φ(ϕ)T (t) 5.3.

with temporal dependence given by

T ( t )=T 1 e− jω t+ T 2 e jω t
5.4.

the dependence on the polar angular coordinate, ϕ, given by 

Φ (ϕ)=Φ1 Pl
m (cosϕ)+ Φ2 Ql

m (cosϕ) 5.5.

the dependence on the radial coordinate, h, given by 

H (h)=H1 j l(k h)+ H 2 y l(k h) 5.6.

and the dependence on the circumferential angular coordinate, θ, given by 

Θ (θ)=Θ1 e− j mθ+ Θ2e jm θ 5.7.
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In these equations T 1, T 2, Φ2, Φ2, Θ1, Θ2, H1 and H2 are arbitrarily constants. Pl
m and Ql

m, in 

equation  5.5, are associated Legendre functions of the first and second kinds respectively 

[23, p.27].  jl  and yl in equation 5.6 are spherical Bessel functions of the first and second 

kind respectively [23, p.27]. Selecting a convention for time dependence,  T 1 is set to zero. 

The compression cavity is small in  h and, in the frequency band of interest,  only trivial 

behaviour is observed in this direction. It is therefore assumed that H (h)=1. The Legendre 

function of the second kind, Ql
m, appearing in the polar function, is singular at cosϕ=1. The 

solution is constrained to be finite by setting Φ2=0.

The  simplified  solution  of  the  wave  equation  in  the  rigid-walled  compression  cavity  is  

therefore given by

p(θ ,ϕ , t )=A1 P l
m(cosϕ ) (e− jm θ+ e j m θ) e− jω t 5.8.

The cavity pressure  must  obey the rigid-wall  boundary condition at  the  diameter  of  the 

cavity as described by equation 5.9.

dp
dϕ

=0∣
ϕ=ϕ0

5.9.

To resolve this condition, it is required that 

dPl
m (cosϕ)
dϕ

=0∣
ϕ=ϕ0

5.10.

This requirement is met by choice of  l. It should be noted that these values are, in most 

circumstances, non-integer. Therefore,  it  cannot be assumed that the associated Legendre  

functions,  Pl
m, can be simplified to associated Legendre polynomials as is usually the case 

with spherical harmonic expansions. This is because the angle of the cavity may not be a  

factor  of  2π.  Because  of  this,  the  eigenfunctions  are  a  little  challenging  to  describe 

analytically. Hoersch [78]  demonstrates that a Legendre function of the first kind may be 

approximately described as a summation of Bessel functions. Using his expression for the 

Legendre function it is, in principle, possible to derive analytically an infinite set of values of 

lnm satisfying equation 5.10 in terms of a summation of Bessel function zeros.

Associated Legendre functions of the first and second kind are the solutions to the associated 

Legendre differential equation [47, p.676] which can be written

−m2

sin2ϕ
y+

d2 y

dϕ2
+

cosϕ
sinϕ

dy
dϕ
+ l (l+ 1 ) y=0

5.11.
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The acoustical wave equation written in spherical coordinates is

∂2 p

∂h2
+

2
h
∂ p
∂h
+

1

h2 sin2ϕ
∂2 p

∂θ2
+

1

h2

∂2 p

∂ϕ2
+

cosϕ
h2 sinϕ

∂ p
∂ϕ
+ k2 p=0 5.12.

The simplified solution to the wave equation in the compression cavity was described above 

to be

p=A1 Pl
m (cosϕ) (e− j mθ+ e j mθ )e− jω t 5.13.

In order to reduce the complexity of the next few expressions, this solution is abbreviated to

p(ϕ ,θ , t )=A1Φ(ϕ)Θ (θ)T (t ) 5.14.

Inserting the abbreviated solution into the wave equation given in equation 5.12, after a little 

simplification, this results in the expression

Φ(ϕ)
sin2ϕ

d2Θ(θ)
d θ2

+ Θ (θ)[ d
2Φ(ϕ)
dϕ2

+
cosϕ
sinϕ

dΦ(ϕ)
dϕ

+ h0
2 k2Φ(ϕ)]=0

5.15.

where h0 is the radius of curvature of the diaphragm, which can be evaluated from the other 

geometric parameters as h0=
a

sinϕ
0 . The differential of the theta function can be performed

d2Θ(θ)
d θ2

=−m2Θ(θ)
5.16.

This allows further simplification giving

−m2

sin2ϕ
Φ (ϕ)+

d 2Φ(ϕ)
dϕ2

+
cosϕ
sinϕ

dΦ(ϕ)
dϕ

+ h0
2 k2Φ (ϕ)=0

5.17.

Comparison  of  this  expression  with  the  associated  Legendre  differential (equation  5.11) 

reveals that the eigenvalues of the system are given by

ωnm=k nm c0 5.18. 

where

k nm
2
=

1

h0
2

lnm (lnm+ 1)
5.19.

The eigenfunctions of the cavity are found by inserting the values of lnm into the expression 

for the spatial pressure variation in the cavity, this results in

Ψnm(ϕ ,θ)=Anm Plnm

m (cosϕ) (e− j mθ+ e j mθ ) 5.20.

The normalisation term, Anm , is chosen to satisfy the condition

∫V
Ψnm (ϕ ,θ)

2 dV=V 5.21.

where V  is the volume of the compression cavity.
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5.2.1 Numerical calculation of eigenfrequencies and eigenfunctions

Hoerch's  Legendre approximation is  only valid  for a small  range of  x and  l.  Therefore, 

numerically calculated values of ωnm and Ψnm(ϕ ,θ) were used in the derivation of channel 

position and width. These calculations were performed using the Finite-Element Method, as 

was described in section 3.7, making use of the PAFEC-FE solver. The approach is described 

in more detail below.

In section 4.2, the eigenfrequencies and eigenfunctions for an acoustical cavity shaped like a 

thin disc were derived, and can be exactly expressed as

Ψmn (r ,θ)=Anm J m (kmnr ) (e
− j mθ+ e j mθ ) 5.22.

and

ωnm= jmn
c0

r0 5.23.

where jmn are the zeros of the Bessel function of the first kind

J m+ 1( jmn)=0 5.24.

This is a useful test case for the numerical approach to determining the eigenfrequencies and 

eigenfunctions of a rigid-walled acoustical cavity using PAFEC-FE. A thin-disc cavity with 

outer radius,  r0,  of 40mm was meshed using Cedrat's Flux2D Preprocessor [73] and then 

exported  to  PAFEC-FE  [55]  for  calculation.  This  mesh  is  shown  in  figure  5.10.  The 

PAFEC .dat file for this analysis is summarised in  Appendix IX. Table  5.1 compares the 

FEM calculated eigenfrequencies to those calculated using the analytical expressions above. 

The agreement between the two sets of values is very good. Similarly, figure 5.11 shown on 

page  137, compares the analytically calculated eigenfunctions with those calculated using 

the FE method. Again, the agreement between the two sets of functions is extremely good.

Figure 5.10. FEM Mesh used for the numerical calculation of the eigenfrequencies
 and eigenfunctions of a thin disc of air.
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n m Analytically calculated 

eigenfrequencies

FEM calculated 

eigenfrequencies

0 0 0 Hz 0.41 Hz

1 0 5229.33 Hz 5229.34 Hz

2 0 9574.57 Hz 9574.61 Hz

3 0 13884.32 Hz 13884.47 Hz

4 0 18183.57 Hz 18184.01 Hz

5 0 22478.31 Hz 22479.27 Hz

Table 5.1: Comparison of FEM calculated eigenfrequencies with analytically calculated  
eigenfrequencies.

The FEM approach to determining the rigid-walled eigenfrequencies and eigenfunctions is a 

very useful alternative for situations where the cavity is not of a geometry that allows easy 

analytical solution.
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Figure 5.11. Comparison between the analytically calculated eigenfunctions, solid red line, and  
eigenfunctions calculated numerically using FEM, blue circles. The first six eigenfunctions are shown  

for m=0 and n=0,1,2,3,4,5 (ordered left to right and from top to bottom).
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5.2.2 Analysis of the driven behaviour of the cavity

As outlined in section  3.4, the pressure in a lightly-damped acoustical  cavity excited by 

motion  of  its  walls  can  be  described  in  terms  of  the  rigid-walled  eigenfunctions  and 

eigenfrequencies.

p(x ,ω)=∑
n=0

∞ jωρ0Ψn(x)

V [kn
2−k2 ]
∫

s

Ψn( y)u ( y ) .ndS
5.25.

In this expression, u ( y) .n is the surface-normal velocity of the cavity wall at vector position 

y  and  ρ0 is  the  ambient  fluid  density.  In  the  case  of  the  compression  cavity,  the 

eigenfunctions and eigenfrequencies are indexed by two indices,  m and  n.  As a result  a 

slightly adapted expression must be used

p ( x ,ω )=∑
n=0

∞

∑
m=0

∞ jωρ0Ψnm(x)

V [ kn ,m
2 −k 2]

∫
s

Ψnm( y)u( y). ndS
5.26.

The summation is thus performed over all calculated eigenfunctions.

For this application, the integral on the right of this expression can be written as the sum of 

three integrals each over a separate regions of the cavity surface, as shown in equation 5.27.

∫
s

Ψnm( y)u( y ). ndS=∫
ϕ=0

ϕ0

∫
θ=0

2 π

Ψnm(ϕ ,θ)ud(ϕ ,θ)h0
2 sinϕ dθdϕ

+ ∫
ϕ=0

ϕ0

∫
θ=0

2 π

Ψnm(ϕ ,θ)ue(ϕ ,θ) (h0−μ )
2sinϕd θdϕ

+ ∫
h=h0

h0+ μ

∫
θ=0

2π

Ψnm(ϕ ,θ)uh(h,θ)h2 sinϕ0 d θdh
5.27.

The first double integral is performed over the diaphragm region of the compression-cavity 

surface,  the  function  ud (ϕ ,θ) describes  the  normal  velocity  of  this  surface.  The second 

double  integral  is  performed  over  the  exit  side  of  the  compression  cavity  surface,  the 

function ue(ϕ ,θ) describes the normal velocity of this surface. Finally, the third integral is  

performed  over  the  small  truncated  conical  surface  at  the  outside  diameter  of  the 

compression  cavity,  the  function  uh(h,θ) describes  the  normal  velocity  of  this  surface. 

Conventional annular-channel compression-driver and phase-plug geometries, including that 

considered  in  this  case,  are  completely  rotationally  symmetrical  about  the  z axis. 

Additionally, the mechanical parts that form and support the radiating diaphragm are also 

rotationally symmetrical about the z axis.
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The  result  of  this  “axisymmetry”  is  that  the  three  surface-normal  velocity  functions 

introduced above are invariant of circumferential angle, θ, and can be written

ud (ϕ ,θ)=ud(ϕ) 5.28.

ue(ϕ ,θ)=ue (ϕ) 5.29.

and

uh(h,θ)=uh(h) 5.30.

These simplifications allow three integrals in equation 5.27 to be rewritten

∫
s

Ψnm( y)u( y).ndS=∫
ϕ=0

ϕ0

ud (ϕ)h0
2sinϕ∫

θ=0

2π

Ψnm(ϕ ,θ)dθdϕ

+ ∫
ϕ=0

ϕ0

ue(ϕ) (h0−μ )
2 sinϕ∫

θ=0

2π

Ψnm(ϕ ,θ)d θdϕ

+ ∫
h=h0

h0+ μ

uh(h)h
2 sinϕ0∫

θ=0

2π

Ψnm(ϕ ,θ)d θdh
5.31.

with all the velocity functions now appearing outside of the second circumferential angle 

integral. The same integral

∫
θ=0

2π

Ψnm(ϕ ,θ)d θ
5.32.

appears  three  times,  once  in  each  of  the  double  integrals.  Inserting  the  calculated 

eigenfunctions, Ψnm (ϕ ,θ ), into this integral gives

∫
θ=0

2π

Ψnm(ϕ ,θ)dθ=Anm Plnm

m (cosϕ)∫
θ=0

2π

(e− j mθ+ e j mθ)d θ
5.33.

From this expression, it is immediately clear that the integral is only non-zero for the case  

m=0. Effectively, this means that a reduced set of eigenfrequencies and eigenfunctions may 

be used,

Ψn(ϕ)=An P ln

0(cosϕ) 5.34.

The three surface integrals in 5.31 can also be simplified to

∫
s

Ψn( y)u( y).ndS=∫
ϕ=0

ϕ0

2πΨn(ϕ)ud(ϕ )h0
2 sinϕdϕ

+ ∫
ϕ=0

ϕ0

2πΨn(ϕ)ue(ϕ) (h0−μ )
2 sinϕ dϕ+ ∫

h=h0

h0+ μ

2πΨn(ϕ)uh(h)h
2 sinϕ0 dh

5.35.
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5.2.3 Cavity behaviour without exit channels

First, the behaviour of the compression cavity is considered for the case when there are no 

exit channels and the cavity is only excited by the radiating diaphragm. Only the diaphragm 

normal  velocity  ud,  appearing   in  the  surface  integrals  of  equation  5.35,  is  non  zero. 

Assuming that the diaphragm is rigid, the normal velocity can be written as

ud (ϕ )=u0 cosϕ 5.36.

and the surface integral correspondingly as

∫
s

Ψn( y)u ( y ).n dS=u0

π a2

sin2ϕ0

∫
ϕ=0

ϕ0

Ψn(ϕ) sin (2ϕ) dϕ
5.37.

For the particular case n=0, this integral is easily evaluated since Ψ0 (ϕ)=1, and therefore

u0

πa2

sin2ϕ0

∫
ϕ=0

ϕ0

Ψ0(ϕ)sin (2ϕ) dϕ=u0πa2

5.38.

Inserting equations 5.38 and 5.37 into 5.25, the cavity pressure is given by

pd(ϕ)=u0π a2 ρ0 c0
2

jωV
+∑

n=1

∞ jωρ0Ψn (ϕ)

V [k n
2
−k2 ]

u0π a2

sin2ϕ0

∫
ϕ̂=0

ϕ̂0

Ψn(ϕ̂)sin (2 ϕ̂ )d ϕ̂
5.39.

It  is useful  to separate the zeroth order terms from the summation in this way,  as these  

describe the desired lumped behaviour. Comparison of this expression with the equivalent 

for  the  Smith cylindrical  geometry,  equation  4.31,  reveals  an important  detail.  With  the 

cylindrical approximation of the geometry, the diaphragm velocity does not excite any of the 

cavity modes (with the exception of the desired zeroth mode). In section  4.2.2, the Smith 

channel-geometry derivation continues  assuming that  cavity-mode excitation only occurs 

because of acoustic velocity at the channel entrances. However, this result indicates that in  

the spherical case the motion of the diaphragm itself also excites the compression cavity 

modes.

5.2.4 Cavity behaviour with exit channels

In addition to the radiating diaphragm on the entrance face of the compression cavity, there 

are also a number of exit channels on the opposite face through which sound is radiated. It is 

most  common for  these  exit  paths  to  be  annular  channels  having  the  same  rotationally 

symmetry about the  z axis as the radiating diaphragm and compression cavity. The modal 

description of the compression cavity is once again used to represent this situation. As the  
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same rotational symmetry about the z axis is present, the reduced set of eigenfunctions and  

eigenfrequencies (given in equation 5.34) may be used.

It is not necessary to re-analyse the effect of the radiating diaphragm. The pressure in the 

cavity is described as the linear sum of two pressure contributions: one occurring due to the  

velocity of the diaphragm, pd, and the other due to the acoustical velocity of air entering and 

leaving the cavity at the exit channels, pe

p=pd+ pe 5.40.

The pressure occurring because of the velocity of the diaphragm is given in equation 5.39. 

The exit  surface normal velocity is  described by the function  ue(ϕ),  the pressure in the 

compression cavity due to this  velocity  can,  making use of equations  5.25 and  5.35,  be 

written as

pe(ϕ)=∑
n=0

∞ jωρ0Ψn(ϕ)

V [k n
2
−k 2]

∫
ϕ̂=0

ϕ0

2πΨn(ϕ̂)ue(ϕ̂) (h0−μ )
2 sinϕ d ϕ̂

5.41.

The exit  surface normal velocity is zero except for the locations where a channel exit  is 

positioned. The channel exits are narrow in ϕ and, in the frequency range of operation, the 

surface-normal acoustical velocity exiting the cavity into the channels may be accurately 

considered constant across each channel entrance. In order to simplify the integral, the Dirac  

delta function [47, p.147] is used to define that the cavity surface velocity is only non-zero at 

an infinitesimal locations where each channel is located. The exit-surface normal velocity 

function is thus approximated as

ue(ϕ)≈
w1

h0−μ
u1δ(ϕ−ϕ1)+

w2

h0−μ
u2δ(ϕ−ϕ2)+ ...+

wN

h0−μ
uN δ(ϕ−ϕN)

5.42.

where w i is the width of the ith channel entrance, ϕi is the angular position of the ith channel 

entrance, ui is the cavity surface normal velocity at the entrance to the ith channel and 
wi

h0−μ  is 

the angular width of the ith channel in radians. On initial inspection, this expression may 

appear dimensionally inconsistent because of the angular width terms. However, the integral  

of the normal velocity over the cavity surface

∫
ϕ=0

ϕ0

2πue(ϕ) (h0−μ )
2sinϕ dϕ=qe

5.43.

is equal to the volume velocity entering the cavity, qe. Considering this integral for a single 

thin annular channel, the channel entrance volume velocity is approximately equal to



142 Chapter 5, A new channel-positioning methodology for annular compression drivers

qi=ui A i≈2πui w i (h0−μ )sinϕi 5.44.

where Ai is the entrance area of the ith channel. Defining the position of the cavity using the 

Dirac delta function, it follows that

∫
ϕ=0

ϕ0

2πK i δ(ϕ−ϕi) (h0−μ )
2 sinϕdϕ=qi

5.45.

which,  recalling  the  sifting  property  of  the  delta  function,  ∫ A (ϕ )δ(ϕ−a)dϕ=A (a), 

indicates  that

qi=2πK i (h0−μ )
2 sinϕ≈2πui w i (h0−μ )sinϕi 5.46.

and

K i≈ui

wi

h0−μ 5.47.

Using this approximation of ue(ϕ) the integral in equation 5.41 may be simplified to

∫
ϕ̂=0

ϕ0

2πΨn (ϕ̂ )ue(ϕ̂) (h0−μ )
2sinϕd ϕ̂=∑

i=1

N

Ψn(ϕi) A i ui
5.48.

where N is the total number of channel entrances on the exit side of the compression cavity.  

Inserting 5.48 into 5.41 provides an expression for the pressure in the cavity excited by the 

motion of air in the channel entrances,

pe(ϕ)=∑
n=0

∞

[ jωρ0Ψn(ϕ)

V [k n
2−k 2]

∑
i=1

N

Ψn(ϕi) Ai ui ] 5.49.

The full pressure due to the channel air motion and the diaphragm motion is consequently 

given by

p(ϕ)=∑
n=0

∞ jωρ0Ψn(ϕ)

V [k n
2
−k2 ] [

u0πa2

sin2ϕ0

∫
ϕ̂=0

ϕ̂0

Ψn(ϕ̂)sin (2 ϕ̂ )d ϕ̂+∑
i=1

N

Ψn (ϕi) A i ui] 5.50.

5.2.5 Suppression of modal excitation by channel arrangement

Equation 5.50 provides a means of deriving a channel geometry that minimises the excitation 

of the acoustical modes in the compression cavity. From equation  5.50, it is clear that in 

order to suppress the excitation of the mth mode it is required that

ζm
d+∑

i=1

N

Ψm (ϕi) A i ui=0
5.51.
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where

ζm
d=

u0πa2

sin2ϕ0

∫
ϕ̂=0

ϕ̂0

Ψm(ϕ̂)sin (2 ϕ̂ ) d ϕ̂
5.52.

The  superscript  d denotes  diaphragm.  This  condition  is  quite  similar  to  that which  was 

encountered for the case of the cylinder compression cavity (equation  4.44) but  with an 

additional ζm
d
 term. The ζm

d
 term represents the amplitude of excitation of the mth mode that 

occurs  because  of  the  motion  of  the  diaphragm.  In  the  cylindrical  case,  there  was  no 

excitation of the modes, except for the zeroth, and, consequently, this term was not seen. The 

integral expression giving ζm
d
 can be calculated explicitly for each mode of the cavity. This 

could be done analytically, using the Hoersch description of the Legendre functions to give  

Ψm(ϕ) [78]. Alternatively, the computed eigenfunctions, determined as described in  5.2.1, 

can be numerically integrated.

Equation 5.51 requires knowledge of both the diaphragm velocity,  u0, and also the channel 

velocities, ui. A similar situation was encountered for the Smith derivation and, in this case, it  

was assumed that the acoustical velocities at the entrance to each channel were identical. It is  

possible to take a parallel approach and make the assumption that the cavity of the final  

compression driver behaves like the lumped terms in expression 5.50:

p=
ρ0 c0

2

jωV [u0π a2+∑
i=1

N

A iui ] 5.53.

The  channel-entrance  velocities  can  be  related  to  the  channel-entrance  pressure  by  the 

acoustic impedance of the channels, zi,

ui=
p
zi 5.54.

Unfortunately, unlike the cylindrical case, it is not sufficient to only assume that the channel 

impedances are all the same. In addition to the assumption that the channel velocities are 

identical, in order to satisfy the condition in expression 5.51, the ratio of the channel velocity 

to the diaphragm velocity must be known. Consequently, the channel impedances must be 

known. This is a little problematic. The channel impedances are dependent upon the horn to 

which the driver is connected and the precise geometry of the phase plug. However, at this 

stage of the design the phase-plug and horn geometry is not determined. Nevertheless, while  

the acoustical  impedance of the channel  is  likely to vary at  the lower end of the driver  

bandwidth, given the cut-on characteristics of an attached horn (see section  2.4), at higher 
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frequencies, the specific acoustical impedance in the narrow channel is very close to  ρ0 c 0. 

This is a satisfactory approximation as the eigenfrequencies of the cavity are likely to be at  

the upper end of the driver bandwidth.

Inserting this acoustical impedance assumption into equation 5.53 results in the relationship 

between the diaphragm and channel entrance velocities

ui( jωV

c0π a2
−

AT

π a2)=u0 5.55.

where

AT=∑
i=1

N

A i
5.56.

The  real  part  of  the  diaphragm-  and  channel-entrance  velocities  are  related  by  the 

compression ratio as might be expected. The imaginary part is a little more problematic. The 

acoustical  modes of the cavity are excited by the motion of the diaphragm and also the 

acoustical velocity at the channel entrances. The intention is to arrange these velocities such 

that the modal excitation occurring because of the diaphragm motion is compensated by the 

excitation occurring because of the channel air motion. This is only feasible when these two 

velocities  are  in  phase  with  each  other.  There  is  nothing  that  can  be  done  to  suppress 

excitation from the dome that occurs in quadrature to the excitation from the channels. The 

quadrature component is a result of the compliance of the air in the compression cavity. This 

is an effect that is also problematic in other areas. When the compliance becomes significant 

the channel velocity magnitude is reduced compared to the dome motion and the output of 

the  driver  is  reduced.  Typically,  the  compliance  sets  the  upper  bandwidth  limit  on  the 

compression driver output.  This effect  is  well  known [30].  The practical  solution to this 

problem is to minimise the compression-cavity volume. Equation 5.55 can be approximately 

written in terms of the width of the compression cavity, μ, as

ui( jωμ
co

−
AT

πa2 )≈uo
5.57.

Modern  compression  drivers,  built  with  carefully  designed  and  constructed  parts,  have 

extremely small cavity widths to keep the acoustical compliance problem to a minimum. 

Typically,  μ is in the range 0.3 - 0.6mm, and, within the bandwidth of the driver, equation 

5.55 is dominated by the real term. In this case, the approximation is made that the velocities 

are related by only the real part,
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ui≈
−a2uo

AT

≡
0

d

AT 5.58.

Substituting this  expression into equation  5.51,  the condition for suppression of the mth 

mode can be written as

AT

ζm
d

ζ0
d
−∑

i=1

N

Ψm(ϕi)A i=0
5.59.

The suppression condition is  now in a  form where it  is  only dependent  upon geometric  

parameters  of  the  compression  driver.  The  condition  can  be  met  for  specific  modes  by  

careful selection of the channel positions, ϕi, and channel areas, Ai. As with the Smith case, 

the  first  N  modes  should  be  suppressed  to  extend  the  lumped  behaviour  to  a  higher 

frequency. The condition is a set of N  simultaneous equations that can be written in matrix 

form as

[
Ψ0 (ϕ1) Ψ0(ϕ2) ⋯ Ψ0(ϕN )

Ψ1 (ϕ1) Ψ1(ϕ2) ⋯ Ψ1(ϕN )

Ψ2 (ϕ1) Ψ2(ϕ2) ⋯ Ψ2(ϕN )
⋮ ⋮ ⋱ ⋮

ΨN (ϕ1) ΨN (ϕ2) ⋯ ΨN (ϕN)
][

A1/ AT

A2/ AT

⋮
A N /AT

]=[
ζ0

d
/ζ0

d

ζ1
d
/ζ0

d

ζ2
d
/ζ0

d

⋮

ζN
d
/ζ0

d
]

5.60.

The equation in the first row of the matrix is trivial. This is necessary in order to force the 

sum of the area ratios to equal unity. The matrix on the left of the expression containing the  

eigenfunction  terms  is  of  dimensions  N  by  N+ 1 and  thus  not  invertible  in  this  form. 

Additionally, there are two sets of unknowns, ϕi and Ai. To solve this problem the variables 

ϕi are set so that they make one row of the matrix trivial, resulting in a square and invertible 

matrix with only the areas unknown. This is achieved by setting the values of ϕi to meet the 

condition

ΨN (ϕi)=ζN
d /ζ0

d 5.61.

This results in a reduced set of equations given by

[
Ψ0(ϕ1) Ψ0(ϕ2) ⋯ Ψ0(ϕN)

Ψ1(ϕ1) Ψ1(ϕ2) ⋯ Ψ1(ϕN)

Ψ2(ϕ1) Ψ2(ϕ2) ⋯ Ψ2(ϕN)
⋮ ⋮ ⋱ ⋮

ΨN−1(ϕ1) ΨN−1(ϕ2) ⋯ ΨN−1(ϕN )
][

A1 /AT

A2 /AT

⋮
AN / AT

]=[
ζ0

d
/ζ0

d

ζ1
d
/ζ0

d

ζ2
d
/ζ0

d

⋮

ζN−1
d
/ζ0

d]
5.62.
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The matrix on the left is now determined and invertible. The set of equations can be solved 

to find the vector of area ratios.

A worked example

As a demonstration of how to determine the positions and sizes of the channel entrances  

using this process, a compression driver with a domed diaphragm of ϕ0=55o
 is considered. 

Provided  that  the  width  of  the  compression  cavity,  μ,  remains  small  compared  to  a 

wavelength, it is not necessary to specify the dimensions of the compression cavity that is  

being considered as the results can be simply scaled to suit a driver of any diaphragm radius, 

a.

Figure 5.12. PAFEC calculated eigenfrequencies and eigenfunctions for a 55° compression cavity  
normalised to have maximum value of unity.

The first stage in the process is to determine the eigenfunctions and eigenfrequencies of the  

compression cavity. The eigenfunctions of the spherical cavity cannot be easily determined 

analytically,  as  discussed  in  section  5.2.  It  is  preferable  to  determine the eigenfunctions 

numerically using the method outlined in section 5.2.1. In order to perform this calculation, a 

simple  axisymmetric  mesh was  constructed  in  Flux  [73]  using  geometric  parameters  of 

μ=0.3mm, a=40mm and ϕ0=55o
. The mesh was imported into PAFEC-FE [55] and set up 

as a “modes and frequencies” analysis. The first four eigenfrequencies and eigenfunctions  

for this cavity are shown in figure 5.12 as a function of the cavity angle ϕ. 
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Unfortunately,  the  convention  for  the  PAFEC  solver  is  to  provide  the  eigenfunctions 

normalised such that their maximum value is unity, whereas for use in expression 5.25 the 

eigenfunctions must be normalised according to the expression

∫
V

Ψn (ϕ )
2 dV=V

5.63.

For  the  spherical  coordinate  system  in  which  the  compression  cavity  is  described  this  

condition can be re-written as

∫
ϕ=0

ϕ0

∫
θ=0

2π

∫
h=h0−μ

h0

Ψn (ϕ)
2h2sinϕ dh dθdϕ=V

5.64.

Performing the integrals with respect to θ and h, this simplifies to

2π(μ
3

3
+ h0

2μ−h0μ
2) ∫
ϕ=0

ϕ0

Ψn (ϕ )
2 sinϕ dϕ=V

5.65.

The spherical-cap cavity volume can be determined as the difference between the volume of 

two spherical sectors [47, p.106], which gives the volume to be

V=2π (1−cosϕ0 )( μ
3

3
+ h0

2μ−h0μ
2) 5.66.

Inserting this into equation 5.65 the correct normalisation for the eigenfunctions with respect 

to ϕ alone is

∫
ϕ=0

ϕ0

Ψn (ϕ )
2 sinϕ dϕ=(1−cosϕ0 )

5.67.

Matlab  [54]  was  used  to  numerically  integrate  the  raw  PAFEC  results  and  scale  the 

eigenfunctions to correct the normalisation. The resulting functions are shown in figure 5.13. 

Using these eigenfunctions, the value of the coefficient  ζn
d
 can be calculated according to 

equation 5.52, again using Matlab to perform the numerical integration of the FEM derived 

eigenfunctions.

The calculated values are

ζ0
d /ζ0

d=1 , ζ1
d /ζ0

d=0.356271 , ζ2
d /ζ0

d=−0.129868 , ζ3
d /ζ0

d=0.0727257 5.68.

For a three-channel phase-plug design, the channel positions are set according to equation 

5.61. This results in channel positions of

ϕ1=0.2350ϕo , ϕ2=0.5431ϕo , ϕ3=0.8476ϕo 5.69.
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Figure 5.13. PAFEC calculated eigenfrequencies and eigenfunctions for a 55 degree compression  
cavity. Normalised according to equation 5.67.

Once the channel positions are fixed, the matrix in equation 5.62 can be determined using the 

values of ζn
d
 above along with the calculated eigenfunctions

[
1 1 1

4.6023 0.9598 −2.0557
4.3768 −4.2344 1.5341 ][

A1/ AT

A2/ AT

A3/ AT
]=[ 1

0.356271
−0.129868] 5.70.

This expression can be solved by inversion of the matrix which results in the channel area 

ratios

[
A1/AT

A2/AT

A3/AT
]=[0.189356

0.381768
0.428875 ] 5.71.

Equivalently the area ratios can be written as channel width ratios,

[w2 /w1

w3 /w1
]=[0.9056

0.6973 ] 5.72.
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5.2.6 Discussion

The results  above for  the case of the  ϕ=55 degree compression cavity may be directly 

compared to the  results in section  4.2.4 for the simplified cylindrical compression cavity. 

Tables 5.2 and 5.3 compare the results of two methods.

Smith Positioning 

Method

New Positioning 

Method

ϕ1 or r1 0.238a 0.2350ϕ0

ϕ2 or r2 0.543a 0.5431ϕ0

ϕ3 or r3 0.853a 0.8476ϕ0

Table 5.2: Comparison of channel positioning for the case of a 55 degree compression cavity using  
two methods, i) Smith method using a cylindrical model of the compression cavity and ii) new method  

using a spherical cap compression cavity.

It can be seen from table 5.2 that if the r and ϕ coordinates are interpreted to be equivalent, 

there is  very little  difference between the new channel  positions  compared to the Smith  

method. This is not perhaps surprising as the channels are positioned in both cases close the  

nodes of the third mode and in both cases and the cavity eigenfunctions are very similar. 

Smith Positioning 

Method

New Positioning 

Method

w2/w1 1.065 0.9056

w3 /w1 1.025 0.6973

Table 5.3: Comparison of channel widths a for the case of a 55 degree compression cavity using two  
methods, i) Smith method using a cylindrical model of the compression cavity and ii) new method  

using a spherical cap compression cavity.

Table 5.3 shows the difference between the channel widths using the two methods. A distinct 

difference is seen here: the Smith method results in all channels having approximately the 

same width; with the new method the channels decrease in width towards the outer diameter  

of the cavity.

In  his  paper,  Smith  graphically  illustrated  the  suppression  technique  for  a  three-channel 

phase plug with plots that were recreated in section 4.2.5. Figure 5.14 shows the excitation of 

the first eigenfunction resulting from the velocity in each channel entrance separately. The 

vector locations indicate the position of the channels and the vector magnitude indicates the 

strength of the excitation from that channel, given by

Ψn
2(ϕi)A i 5.73.
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Additionally, unlike figures 4.10 and 4.11, this time there is a fourth black line on the plot 

without an attached vector that indicates the excitation due to the diaphragm motion, given 

by

−Ψn(ϕ)AT

ζn
d

ζ0
d 5.74.

where AT  is the summed area of the channels as defined in equation 5.56.

Figure 5.14. Illustrative plot showing new suppression technique for the first mode with compression  
cavity of ϕ=55. Red curve is the excitation due to the inner channel, the green curve is the excitation  
due to the middle channel, the blue curve is the excitation due to the outer channel, the black curve  

shows the excitation due to the diaphragm motion.

Figure 5.15.  Illustrative plot showing new suppression technique for the second mode with  
compression cavity of ϕ=55. Red curve is the excitation due to the inner channel, the green curve is  
the excitation due to the middle channel, the blue curve is the excitation due to the outer channel, the  

black curve shows the excitation due to the diaphragm motion.
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Figures 5.15 and 5.16 show similar plots for the second and third modes respectively. It is 

easily seen from these illustrations that the contributions from the individual channels, along 

with the excitation from the diaphragm motion, sum to zero, which indeed was our condition 

in equation 5.51.

In section 4.2.5, the suppression plot was not shown for the third mode as the result is trivial. 

In the Smith case, there is no excitation of the third mode as the channels are placed on the 

nodes. For the analysis with a curved diaphragm and compression cavity, this is not the case. 

There is excitation of the third mode by the diaphragm and the channels are positioned such 

that their combined excitation compensates for this.

Figure 5.16. Illustrative plot showing new suppression technique for the third mode with compression  
cavity of ϕ=55. Red curve is the excitation due to the inner channel, the green curve is the excitation  
due to the middle channel, the blue curve is the excitation due to the outer channel, the black curve  

shows the excitation due to the diaphragm motion.

However, the position of the channels is still very close to the nodes of the third mode. This  

is because, firstly, the value of the coefficient ζn
d
 reduces as the modes increase in order and, 

secondly, because the modal excitation from all three channels is in the same polarity and  

only a small excitation from each is enough to compensate for the diaphragm. In practice, it 

is  debatable whether modal  suppression is  achievable for the Nth mode:  the suppression 

shown  in  Figure  5.16 is  very  sensitive  to  slight  errors  in  the  position  and  area  of  the 

channels. An alternative approach is to position the channels of the phase plug exactly at the 

nodal positions of the Nth mode to attempt to isolate the channels from this mode. The only 

difference in the process outlined above is that the channel positions ϕi are set to meet the 

condition ΨN (ϕi )=0 instead of that outlined in equation 5.61.
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The channel areas can be found by forming the matrix equation,  5.62, and then inverting 

exactly as before. However, this slightly modified derivation results in channel positions and 

area which are  extremely close  to  those derived using the first  positioning method.  For 

example with,  the 55-degree compression cavity considered in section  5.2.5, the channel 

positions and widths derived using both channel positioning methods is shown in tables 5.4 

and  5.5.  There is  a  very small  change in  both the position and a correspondingly small  

change in the channel widths.

Original Positioning 

Method

Nodal Channel 

Positioning

ϕ1 0.2350ϕ0 0.2360ϕ0

ϕ2 0.5431ϕ0 0.5417ϕ0

ϕ3 0.8476ϕ0 0.8493ϕ0

Table 5.4: Comparison of channel positioning for the case of a 55-degree compression cavity using  
two methods: i) attempted suppression of the Nth mode and ii) isolation of channels from the Nth  

mode by positioning at nodes.

Original Positioning 

Method

Nodal Channel 

Positioning

w2/w1 0.9056 0.9177

w3 /w1 0.6973 0.7008

Table 5.5: Comparison of channel width for the case of a 55-degree compression cavity using two  
positioning methods: i) attempted suppression of the Nth mode and ii) isolation of channels from the  

Nth mode by positioning at nodes.

This small difference is likely in practice to be swamped by other factors. For example, in  

the derivation the channels are assumed to connect only at distinct positions, defined using 

the Dirac delta, whereas this is clearly not the reality with real channels of a definite entrance 

width. 

A simple  FEM  model  was  constructed  to  confirm  the  derived  channel  geometry.  The 

geometry  of  this  model  is  illustrated  in  figure  5.17.  The  compression  ratio  is  15.  The 

channels are terminated with a ρ0 c 0 specific acoustical impedance to avoid reflections. The 

channels are gently curved so that the termination is a simple annular channel in each case.  

Throughout the channel, the area is continuous to avoid any sudden change of acoustical 

impedance.

The  normalised  channel  pressure  level  responses  are  plotted  in  figure  5.18.  At  low 

frequencies,  a  normalised  pressure  level  of  23.5dB  is  seen  in  all  three  channels  

corresponding directly to the compression ratio of 15. This plot is directly comparable to 
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figure  5.3, which has exactly the same compression cavity geometry but  uses the Smith 

channel positions and areas. The pressure responses in the three channels are very similar  

and flat up to approximately ka=5. This is a distinct improvement over the responses using 

the Smith channel geometry. Above ka=5, there is some separation of the pressure responses 

with a maximum spread of 3.6dB.

Figure 5.17. Half-section of geometry used in simple compression driver FEM model with domed  
diaphragm.

Figure 5.18. Normalised channel-pressure level response for simple compression-driver arrangement  
having a domed radiating diaphragm using the new channel-geometry design methodology.

The Smith channel arrangement combined with a cylindrical compression cavity, as assumed 

in the Smith channel derivation, resulted in channel-pressure responses that were virtually 

identical over the whole analysed range (shown in figure 4.15). However, the pressure results 

in  this  case,  with  the  new  derivation  and  spherical  cap  cavity,  do  not  have  the  same 

consistency. This is an interesting difference. It is believed that the spread in the channel-
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pressure responses above ka=5 is attributable to the imaginary part of the velocity transfer 

function between the diaphragm motion and the channel-entrance acoustical velocity which 

it is not possible to suppress. This issue was discussed in detail on page 144.

The variation of the channel derivation with cavity angle

To investigate how the channel geometry varies with cavity angle, 18 FEM models with 

cavity angle from 5 degrees to 90 degrees in 5-degree increments were set-up in FLUX, and 

PAFEC-FE was used to determine the eigenfrequencies and functions for each. The channel 

geometry  for  a  N=3 phase  plug  was  then  designed  for  each  cavity  using  the  method 

demonstrated in  5.2.5. The resulting channel geometry variation with compression cavity 

angle is shown in figures 5.19 and 5.20.

Figure  5.19 indicates that  the calculated positions of the phase-plug channels are almost  

invariant of cavity angle. This is because the target for their location, outlined in equation 

5.61, places them close to the nodal positions of the third mode of the cavity. The nodal  

positions are approximately invariant to the cavity angle.

Figure 5.19. Normalised calculated channel position variation with compression-cavity angle ϕ0 for a  

N=3 channel phase plug. Channel positions are normalised by ϕ0.
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Figure 5.20. Normalised calculated channel area variation with compression-cavity angle ϕ0 for a  

N=3 channel phase plug. Channel areas are normalised by AT .

Figure  5.20 reveals  that,  at  low  cavity  angles,  the  channel  areas  tend  towards  Smith's 

originally  derived  results,  as  given  in  table  5.5.  This  is  logical  because  the  spherical 

geometry approaches the cylindrical representation as the cavity angle is decreased to zero.  

As the cavity angle is increased from zero, the derived channel areas diverge from the Smith  

values: the outer channel decreases in area while the inner channels both increase in area. It  

is helpful to plot the same results in terms of the channel widths that can be calculated from 

the channel positions and areas using the relation

w i=
Ai

2 πa

sinϕ0

sinϕi 5.75.

The normalised widths calculated for a range of cavity angles are shown in figure 5.21. From 

this figure, it is easier to recognise the trend that as the dome angle is increased the outer 

channel narrows while the inner channel widens. This is perhaps a logical result, bearing in 

mind that the volume velocity of the channels is in the opposite polarity to the diaphragm 

velocity. The diaphragm normal velocity is lower at the periphery and so correspondingly the 

outer channels must be smaller, the velocity must also be lower at the periphery on the exit  

side of the compression cavity in order to suppress undesirable modal excitation.
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Figure 5.21. Normalised calculated channel-width variation with compression cavity angle ϕ0 for a  

N=3 channel phase plug. Channel positions are normalised by AT /2πa.
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5.3 A practical design based on the new methodology

The  theory  outlined  above  was  used  as  the  basis  for  a  commercial  compression-driver  

design, the Celestion CDX1.4. The driver has a 3 inch (76.2mm) diameter titanium dome of 

55-degrees  curvature and is  designed to connect  to  a  horn-throat  diameter  of  1.4 inches 

(38.1mm). The design was developed using a great deal of FEM and BEM modelling. The 

final overall modelling was performed by Mark Dodd, head of research at GP Acoustics.

Figure 5.22. FEM/BEM axisymmetric model of the mechanical and acoustical parts of the CDX1.4  
with instantaneous acoustical pressure at 7.6kHz indicated by colour shading.

In order to predict the frequency response function of a loudspeaker it is necessary to model 

the driver behaviour in all the active physical domains: mechanical, acoustical, magnetic and 

electrical. The strategy commonly used by the Author, and his colleagues at GP Acoustics, is 

to separate the mechanoacoustical domain from the electrical and the magnetic domain and 

then to join the results using a single degree of freedom coupling. This approach is outlined 

in more detail by Dodd [76]. Separation of the domains in this way is quite a useful as it  

allows models to be developed independently in the various domains and then subsequently  

linked to mimic the overall behaviour.

The new geometry guidelines were used as a starting point for the design of the CDX1.4 and 

subsequently  FEM  simulations  were  used  to  fine  tune  the  positions  and  sizes  of  the 

compression driver channel entrances. This process was partly performed using automated 

optimisation of the FEM geometry with PAFEC's built in optimisation facility. In this case  
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the gradient descent method was used [47, p.875] and the objective function based upon the 

maximum deviation  in  pressure  between the  three  ρ0 c 0 terminated  channels.   The  final 

positions  of  the  channels  are  not  far  from  the  theoretical  ideals.  Considering  the  other 

significant differences between the very simplified models that were used in the previous 

section, such as the additional acoustical volume at the outside diameter of the compression 

cavity where the voice coil  gap is located and the non rigid radiating diaphragm, this is 

encouraging.

Smith  method New method CDX1.4 optimised

ϕ1 0.238a 0.2350ϕ0 0.2363ϕ0

ϕ2 0.543a 0.5431ϕ0 0.5454ϕ0

ϕ3 0.853a 0.8476ϕ0 0.8727ϕ0

Table 5.6: Comparison of channel positioning for the case of a 55-degree compression cavity using  
three methods: i) Smith method using a cylindrical model of the compression cavity; ii) new method  
using a spherical cap compression cavity; and iii) optimised final positions for the CDX1.4 driver.

Smith method New method CDX1.4 optimised

w2/w1 1.065 0.9056 0.8852

w3 /w1 1.025 0.6973 0.5851

Table 5.7: Comparison of channel widths a for the case of a 55-degree compression cavity using three  
methods: i) Smith method using a cylindrical model of the compression cavity; ii) new method using a  

spherical cap compression cavity; and iii) optimised final positions for the CDX1.4 driver.

The final channel geometry is compared to the Smith and the new positioning method in 

tables 5.6 and 5.7. Indeed, the final positions for the CDX1.4 are even more of a departure 

from the original Smith geometry than the new positions derived in the previous sections. 

This may be a result of the additional volume at the outside diameter of the compression 

cavity of the CDX1.4 where the voice coil gap is located. This region is effectively undriven 

by the dome diaphragm and, consequently, may require a greater departure from the Smith 

than suggested by the derived new channel geometry. The large imbalance in the width of the 

inner and outer cavity is extreme, requiring special attention during both the design of the 

phase-plug channels and the mechanical construction of the driver.

Figure 5.23 shows a comparison of the FEM/BEM predicted and measured linear frequency 

response of the final compression driver. The agreement between the two is excellent. The 

compression  driver  was  able  to  achieve  a  smooth  response  up  to  a  frequency  of 

approximately 10kHz (ka≈6.9).
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Figure 5.23. Comparison of predicted and measured frequency response function of the CDX1.4  
Celestion compression driver on an axisymmetric horn, measured at 1m on-axis at an input level of  

2.83V rms.

For easy comparison with the results given in the previous sections, an axisymmetric FEM 

model was constructed of the final CDX1.4 compression driver geometry, but with the phase 

plug truncated just before where  the channels join. The truncated channels are terminated 

with a  ρ0 c 0 specific acoustical  impedance.  The geometry of the truncated CDX1.4 FEM 

model is shown in figure 5.24.

Figure 5.24. FEM axisymmetric model of the mechanical and acoustical parts of the CDX1.4, phase-
plug channels truncated into ρ0 c 0 impedance before the channels are joined.

The pressure response at the ends of the three channels are shown in figure  5.25 for the 

situation when the voice coil moves with unity velocity amplitude at all frequencies.  The 
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pressures levels are normalised by the specific acoustical impedance of a plane wave given 

by

Lnorm=20log10∣ p
ρ0 c0

∣ 5.76.

At low frequencies a normalised pressure level of approximately 13.5dB is seen in all three 

channels corresponding directly to the compression ratio of 6.5. The compression ratio of the 

driver was intentionally kept low for this design in an attempt to reduce the non-linearities  

resulting from the large pressure levels occurring in the phase-plug channels. This figure is 

directly comparable to that shown for the idealised compression driver in figure  5.18. The 

three channel  responses are relatively similar up to a frequency of approximately  ka=4, 

above  this  frequency the  pressures  diverge.  In  particular,  the  outer  channel  is  markedly 

different from the inner two, which remain quite similar.  The region of separation of the 

three  responses  occurs  at  a  lower  frequency and is  much larger  than that  shown in  the  

idealised compression driver, shown in figure 5.18.

Figure 5.25. Normalised channel pressure-level response of FEM model of the CDX1.4 driver, shown 
in figure 5.24, with separated channels terminated with ρ0 c0 specifics acoustical impedance.

The compression cavity of  the  CDX1.4 is  of  a  slightly  larger  physical  volume than the 

idealised compression driver and this would be expected to result  in a deteriorate in the 

modal suppression performance due to the assumption made in section 5.2.5 that the cavity 

compliance  is  negligible.  Additionally,  whereas  with  the  idealised  models  the  radiating 

diaphragm was constrained to move rigidly, in the real compression driver this is not the 
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case. Above 10kHz (ka≈7) the responses become more erratic as the dome behaves non-

rigidly.

Figure  5.26 shows the FEM-modelled velocity at the centre of the radiating diaphragm in  

comparison to the drive point velocity at the voice coil. From this, it is clear that there is a  

mechanical resonance in the radiating parts at 10kHz (ka≈7). This resonance coincidences 

with  the  peaks  in  the  pressure  responses  shown in  figure  5.25 and also  in  the  radiated 

pressure response shown in figure  5.23. The mechanical behaviour of the diaphragm is a 

limiting factor in the high frequency response of the driver.  The idealised models of the 

compression drivers that were considered in the previous sections indicate that one would 

expect that the high-frequency limit of the driver because of acoustical effects to be around  

ka≈8,  whereas,  in  this  case,  the  response  becomes  erratic  around  ka≈6.9 close  to  the 

frequency when the dome begins to move non-rigidly. The case when the diaphragm is rigid 

was exclusively considered in the previous sections.  These results  highlight the need for 

more  careful  consideration  of  the  radiating  diaphragm motion.  The  CDX1.4  driver  is  a 

commercially available unit and it is currently widely used in the professional audio market.

Figure 5.26. CDX1.4 velocity difference at centre of radiating diaphragm compared to drive point.
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5.4 A generalised method

Two derivations have been presented to determine the optimal geometry for compression-

driver  annular-channel  positions  and  areas  in  compression  cavities  of  cylindrical  and 

spherical-cap  shape.  In  this  section,  a  general  approach  for  positioning  and  sizing  of 

“narrow” phase-plug channels is described for a cavity with arbitrary shape. The method is 

generally applicable to any phase-plug design where the channel entrances are arranged so 

that they are narrow with respect to the effective cavity modes and can be considered to act  

on the cavity at a discrete location.

The acoustical pressure in an arbitrary compression cavity is described as the summation of 

the modal contributions as

p(x ,ω)=∑
n=0

∞ jωρ0Ψn(x)

V [kn
2−k2 ]

∫
S

Ψn ( y )u( y ). ndS
5.77.

It is assumed that the compression cavity is directly driven by a mechanical diaphragm that  

occupies some part of the cavity surface and that elsewhere on the cavity surface there are  

some  exit  channels  through  which  the  sound  is  radiated.  All  other  locations  on  the 

compression cavity surface have zero normal velocity. The surface integral in equation 5.77 

only need be performed over these two active regions

p(x ,ω)=∑
n=0

∞ jωρ0Ψn(x)

V [kn
2−k2 ] [∫Sd

Ψn( y)ud( y).ndS+∫
Se

Ψn( y)ue ( y )dS] 5.78.

In this expression,  Sd is the cavity surface occupied by the diaphragm, the function  ud ( y) 

describes the velocity of the diaphragm. Se is the cavity surface occupied by the various exit 

channels, and the function ue( y) describes the normal acoustical-particle velocity over this 

region.

The condition for the suppression of excitation for a particular mode, n, is clearly given by

∫
Sd

Ψn( y)ud ( y).ndS+∫
Se

Ψn (y)ue( y)dS=0
5.79.

As before, it is assumed that the channels are “narrow”, acting upon the compression cavity 

at discrete locations, and the exit normal velocity function can be described accurately using 

N  delta functions.
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The surface integral over the channels in expression 5.79 can then be simply evaluated to

∫
Se

Ψn( y)ue( y )dS=∑
i=1

N

Ψn( yi) A iui
5.80.

where  Ai is the area of the i-th channel entrance and  ui is the acoustical particle-velocity 

normal to the cavity surface at the entrance to the i-th channel. Using this expression 5.79 

can be written as

∫
Sd

Ψn( y)ud( y ). ndS+∑
i=1

N

Ψn( yi )A iui=0
5.81.

In order to clarify the expressions a parameter, ζn
d
, is introduced and defined as

ζn
d=∫

Sd

Ψn( y)ud ( y).ndS
5.82.

The reader will notice that this parameter is equivalent that used in section  5.2.5.  ζn
d
 is a 

measure of how severely the motion of the diaphragm excites each cavity mode.

Assuming that  it  is desirable for the lumped cavity behaviour to be extended as high in 

frequency as possible, the phase plug should be designed to ensure that the first  N  modes 

meet the suppression condition above. While the compression driver is well behaved, the 

normal  acoustical  particle-velocity  at  the  channel  entrances,  ui,  can  be  related  to  the 

diaphragm velocity function, ud( y)  by

ζ0
d+∑

i=1

N

A iui=0
5.83.

i.e.,  the  volume velocity entering the cavity is  equal  to the volume velocity  leaving the  

cavity. Assuming that the acoustical impedances of the channel entrances are the same, this 

simplifies to

ζ0
d+ AT ue=0 5.84.

where AT  is the total combined area of the exit channels. Note that the acoustical velocity, ue, 

in  each  channel  entrance  is  identical.  Inserting  equations  5.84 and  5.82 into  5.81,  the 

condition for suppression of the nth mode is expressed as

AT

ζn
d

ζ0
d
−∑

i=1

N

Ψn( yi) A i=0
5.85.
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This can be written in matrix form for the first N modes of the compression cavity

[
Ψ0( y1) Ψ0( y2) ⋯ Ψ0( yN)

Ψ1( y1) Ψ1( y2) ⋯ Ψ1( yN)

Ψ2( y1) Ψ2( y2) ⋯ Ψ2( yN)
⋮ ⋮ ⋱ ⋮

ΨN ( y1) ΨN ( y 2) ⋯ ΨN ( yN )
][

A1 / AT

A2 / AT

⋮
AN / AT

]=[
ζ0

d
/ζ0

d

ζ1
d
/ζ0

d

ζ2
d
/ζ0

d

⋮

ζN
d
/ζ0

d
]

5.86.

The values of  y i are set such that the bottom row of this matrix expression is trivial, one 

suitable condition to achieve this is

ΨN ( yi )=
ζN

d

ζ0
d

5.87.

Alternative channel positioning approaches are possible, as was briefly discussed in section 

5.2.6 on page  152.  Irrespective  of  the  positioning approach,  the  method is  the  same.  A 

reduced set of equations defined with a square invertible matrix on the left-hand-side,

[
Ψ0( y1) Ψ0( y2) ⋯ Ψ0( yN)

Ψ1( y 1) Ψ1( y2) ⋯ Ψ1( yN )

Ψ2( y 1) Ψ2( y2) ⋯ Ψ2( yN )
⋮ ⋮ ⋱ ⋮

ΨN−1( y1) ΨN−1( y2) ⋯ ΨN−1( yN)
][

A1/ AT

A2/ AT

⋮
A N /AT

]=[
ζ0

d
/ζ0

d

ζ1
d
/ζ0

d

ζ2
d
/ζ0

d

⋮

ζN−1
d
/ζ0

d
]

5.88.

From this expression the area ratios can be found by inversion of the matrix on the left-hand 

side. Comparison of this matrix expression with the two derived, firstly, for the Smith case 

(section  4.2.4 equation  4.50) and, secondly, for the spherical cavity representation (section 

5.2.5 equation 5.62) clearly reveal that they are both more specific examples of this general 

approach. The general approach is a useful addition as it is derived independently from the 

geometry of the compression cavity. In this case no assumptions have been made about the 

geometry other than there are a number of narrow exit channels from the compression cavity 

and that the compression cavity a narrow shell of minimal volume. The matrix,  Ψ, on the 

left of expression 5.88 is composed of eigenfunction values. These may be determined using 

an FEM model of the cavity under consideration as described in 5.2.1. The vector, Α, on the 

left  of  the  expression  is  the  unknown  vector  of  channel  area  ratios  which  must  be 

determined. The vector,  ζnorm
d

, on the right of the expression contains the modal excitation 

factors  that  describe  the  extent  to  which  the  motion  of  the  diaphragm  excites  each 

compression-cavity  mode.  These  excitation  factors,  ζn
d
 defined  in  equation  5.82 are 

dependent upon the cavity eigenfunctions and the normal velocity of the diaphragm. So far 
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only  the  case  when  the  diaphragm  is  rigid  has  been  considered.  In  this  situation  the  

diaphragm normal velocity is easy to determine from the geometry of the diaphragm and 

may be defined in terms of the drive point velocity,  U0.  As a general method, it is most 

straightforward to perform the integral in equation 5.82 numerically using the FEM modelled 

eigenfunctions.

5.4.1 An applied example of the generalised method

As discussed in section  5.2.5, it is important to keep the compression cavity volume to a 

minimum in order to both maximise the compression driver bandwidth and, secondly, to 

ensure that the modal suppression techniques, introduced in the preceding sections, work as 

well as possible.

Figure 5.27. Schematic comparison of cavity cross section for concentric cavity design approach and  
shifted cavity design approach.

The most common geometry for the compression driver diaphragm is a thin foil spherical  

cap. In previous sections, a compression cavity with a constant thickness driven by this type 

of  diaphragm  was  considered.  Both  the  diaphragm  and  the  exit  side  of  the  cavity  are  

concentric and are easily described in terms of a spherical coordinate system. However, it is 

common for a slightly different geometry to be used where the exit  surface is an axially  

shifted version of the input surface. This arrangement is preferred as it results in a smaller  

cavity volume for the same mechanical clearance,  μ. The shifted cavity design volume is 

smaller than the concentric design by 1 / (1+ tan (ϕ0 /2) ) for the same mechanical clearance. A 

schematic comparison between the two geometries is shown in figure 5.27.

An important difference between the two cavity designs is that, while the concentric cavity 

design that  was previously considered may be described easily in a spherical  coordinate  

system,  the  shifted  cavity  design  does  not  readily  fit  into  a  simple  coordinate  system. 

Because of this,  it  is  not easily possible to determine an analytical solution to the wave  

equation in the cavity.  For this case,  it  is  more straightforward to numerically apply the 
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generalised approach introduced above. This is achieved by firstly using a FEM model to 

determine  the  cavity  eigenfrequencies  and  eigenfunctions.  From  this  FEM  model  the 

coefficients of the  matrix  Ψ and vector  ζnorm
d

 in equation 5.88 are determined. In order to 

calculate  the  ζn
d
 coefficients,  as  defined  in  equation  5.82,  a  numerical  integration  is 

performed over the radiating diaphragm surface. This capability was implemented as a small  

extension to a Matlab-based FEM post-processing programme named Projector that has been 

developed  by  the  author  for  other  uses.  For  simplicity  and  generalisation,  the  process 

developed using Projector takes the diaphragm motion from a second FEM model. The steps 

to  determine the  channel  geometry are  as  follows,  firstly  this  secondary  FEM model  is 

loaded in Projector and a small routine is run that:

1. identifies solid element faces and nodes that are coupled to fluid element faces and 

nodes (denoted the set M );

2. calculates the surface-normal direction for each node identified (nm);

3. calculates the area of each structure-fluid coupling face and from this an effective  

area for each node in the identified set (am);

4. stores this information along with the FEM calculated nodal displacement (xm).

The modal analysis model, holding the calculated eigenfunctions and eigenfrequencies, is 

loaded in Projector at this stage. It is necessary for this mesh to have the same node locations  

as the model outlining the the diaphragm motion along the fluid-structure interface. Using 

the stored data, the ζn
d
 coefficients are approximately calculated using the summation

ζn
d≈∑

m∈M

Ψ̃n ,m am nm .xm 5.89.

where Ψ̃n, m is the value of the FEM calculated nth eigenfunction at the m-th node. Provided 

the FEM mesh is sufficiently fine, this expression converges with the integral in equation 

5.82 for low values of n.

The channel positions are set by manually finding the nodal positions on the exit side of the 

compression cavity of the calculated Nth eigenfunction. Once the positions are set the matrix 

Ψ is formed using the FEM calculated eigenfunction values.

As a test of this implemented method, a FEM model of a compression cavity with a spherical  

cap  geometry  of  a  concentric  type  design  was  made  and  solved  using  PAFEC-FE. 

Additionally, a second model outlining a rigidly moving diaphragm occupying one face of 

the compression cavity was made and solved, again using PAFEC-FE. Geometric parameters 
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of  μ=0.3mm,  a=40mm and  ϕ0=55 were used making this compression-cavity geometry 

directly comparable to that considered in section  5.2.5. The two FEM models were used, 

along with the tools developed for the Projector post-processing software, to calculate the  

values of  ζn
d
 corresponding to this cavity and diaphragm arrangement. Table  5.8 shows a 

comparison of the two sets of derived values.

Analytical Values Numerically 

Calculated Values

Analytical/Numerical 

Ratio

ζ0
d /ζ0

d=1 ζ0
d /ζ0

d=1 1.000000

ζ1
d /ζ0

d=0.356271 ζ1
d /ζ0

d=0.354678 1.004491

ζ2
d /ζ0

d=−0.129868 ζ2
d /ζ0

d=−0.127144 1.021425

ζ3
d /ζ0

d=0.0727257 ζ3
d /ζ0

d=0.0735582 0.988682

Table 5.8: Comparison of  ζn
d
/ζ0

d
 calculated analytically in section 5.2.5 with values of  calculated 

numerically using the method described above.

The third column of  the  table  shows the ratio  difference between the two methods,  the  

agreement  is  good  between  the  two  methods.  The  channel  areas  calculated  with  the 

generalised method are given in table 5.9, the agreement with the analytical method is again 

very good.

Analytical Values Numerically 

Calculated Values

Analytical/Numeri

cal Ratio

A1 / AT 0.189356 0.188061 1.006886

A2 / AT 0.381768 0.382330 0.998530

A3 / AT 0.428875 0.429609 0.998291

Table 5.9: Comparison of the channel areas calculated analytically in section 5.2.5 with those 
calculated using the generalised method described above.

With some confidence  in  the  approach,  the  case  of  the  compression cavity  with  shifted 

geometry, as described on page  165, is considered. The approach is the same, two FEM 

models are created one to describe the diaphragm excitation the other in order to calculate  

the eigenfrequencies and eigenfunctions. Geometric parameters of μ=0.3mm, a=40mm and 

ϕ0=55 are again used. The calculated values of ζn
d
 for the shifted cavity design are shown in 

table 5.10 alongside those for the concentric cavity found above.
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Concentric Cavity Shifted Cavity

ζ0
d /ζ0

d=1 ζ0
d /ζ0

d=1

ζ1
d /ζ0

d=0.354678 ζ1
d /ζ0

d=0.012463

ζ2
d /ζ0

d=−0.127144 ζ2
d /ζ0

d=0.013385

ζ3
d /ζ0

d=0.0735582 ζ3
d /ζ0

d=−0.015633

Table 5.10: Comparison of values of ζn
d
/ζ0

d
 calculated numerically for a concentric compression cavity  

geometry and a shifted compression cavity geometry.

The  channel  area  ratios  calculated  using  the  generalised  method  for  the  shifted  cavity 

geometry are shown in table 5.11.

Concentric Cavity Shifted Cavity

A1 / AT 0.189356 0.186524

A2 / AT 0.381768 0.397768

A3 / AT 0.428875 0.415707

Table 5.11: Comparison of the channel areas calculated numerically using the generalised method for  
the case of the concentric compression cavity and the shifted compression cavity.

There is a large difference between the two cavity geometries in the calculated values of  

ζn
d /ζ0

d
. For the shifted cavity design all are much lower except n=0 which is remains unity. 

However there is only a small difference in the computed values of the channel areas. The  

lower values of ζn
d /ζ0

d
 implies that the excitation of the compression cavity modes other than 

n=0 is much lower for the shifted cavity than the concentric cavity. This should result in an 

improved cavity mode suppression performance compared to the concentric design because 

it  is  less  necessary for  the  channel  entrance velocities  to  compensate  for  the  diaphragm 

velocity modal excitation. Consequently the problems associated with the compliance of the 

cavity, discussed on page 144, are greatly alleviated.

A simple FEM model was constructed to assess the performance of the generalised method 

for the shifted compression cavity case. The model is directly comparable to that used in 

section 5.2.5 and illustrated in figure  5.17. The channel geometry given in tables  5.11 and 

5.10, above, was used with a compression ratio of 15 for the construction of the model. The 

other geometric parameters are the same as was used in the channel geometry derivation,  

μ=0.3mm, a=40mm and ϕ0=55.

Figure 5.28 shows the computed channel pressures for the shifted cavity case. The pressures 

are  normalised  by  the  specific  acoustical  impedance  of  a  plane  wave.  Thus,  at  low 

frequencies, they have a value of 23.5dB corresponding to the compression ratio of 15. This 

result may be directly compared with figure 5.18 and 4.15 which show equivalent results for 
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the channel geometry derived analytically for the concentric spherical-cap cavity and the 

smith flat-disc cavity respectively. The three pressure responses are all very similar indeed,  

the  result  is  much  closer  to  the  Smith  disc  case.  As  anticipated  there  is  a  distinct  

improvement compared to the concentric cavity design.

Figure 5.28. Normalised cavity-pressure level response for simple compression driver arrangement  
having a domed radiating diaphragm and a “shifted” compression cavity geometry using the  

generalised channel geometry design methodology.

This improvement is a result of the fact that,  other than the zeroth mode, the diaphragm 

excites the compression cavity modes very little.  The suppression condition can be more 

easily realised as it does not rely on the cavity width being vanishingly small. This is the 

same physical situation that was seen in the Smith channel-geometry derivation where the 

diaphragm excitation was only of the zeroth mode.  The vector on the right-hand side of 

equation 4.48 is comparable to the vector ζnorm
d

 in equation 5.88. It may be seen that there is 

only one non-zero entry in this vector, that which is equivalent to the ζ0
d
 term.

From the result outlined above, it is clear that in order for the compression-cavity modal-

suppression techniques to work to their full potential it is very important that the shape of the 

compression cavity is carefully designed in order to minimise the values of ζn
d
 for n> 0. This 

is  an  exciting  development.  Initially,  it  was  believed that  the  Smith  result  could  not  be 

replicated  with  a  realistic  diaphragm  and  compression-cavity  geometry  and  that  modal  

control to the extent shown in figure 5.18 was limit of what could be practically achieved. 

The results using the shifted compression cavity design have revealed that this is not the case  
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and that by control of the ζn
d
 parameters it appears that results approaching the performance 

of the ideal Smith case are achievable in practice. The following chapter discusses the reason 

that the combination of shifted cavity geometry and rigid axially moving dome result in low 

values of  ζn
d
 for n> 0 and outlines a cavity design criterion by which this may be achieved 

for other diaphragm shapes.

5.5 Conclusions

In this chapter a more general approach to the positioning and sizing of the annular channels  

of compression driver phase-plug was outlined which builds upon the work of Smith. This 

allows  the  calculation  of  optimal  channel  geometries  for  arbitrary  rigid  diaphragm and 

compression  cavity  geometry,  provided  the  geometry  is  axisymmetric  and  that  the 

compression cavity closely follows the diaphragm surface. This is a useful extension upon 

the Smith method as the vast majority of real drivers are significantly different from the  

simple planar geometry used by Smith. It has been demonstrated that, for the case of the 45° 

spherical cap cavity, the new method results in improved performance. However, the method 

does  not  account  for  non-rigidly  of  the  radiating  diaphragm.  Non-rigidity  results  in  a 

reduction in the modal suppression performance. Clearly further work is required to tackle 

this problem. Additionally there is some variation in the resulting performance of different  

cavity and diaphragm geometries, this effect is considered in more detail in the next chapter.



6 Improved compression-driver modal suppression by 

cavity shaping

6.1 Introduction

In  the  previous  chapter,  the  parameter  ζn
d
 was  introduced  as  a  measure  of  the  modal 

excitation  by  the  compression  driver  radiating  diaphragm.  It  is  defined  by  the  integral 

expression 

ζn
d=∫

Sd

Ψn( y)ud ( y ).ndS
6.1. 

It was also demonstrated that if the values of  ζn
d /ζ0

d
 are zero for all except the rigid body 

mode, i.e. ,

∫
Sd

Ψn( y)ud( y).n dS=δ0n
6.2.

where δnm is the Kronecker delta function. Then optimal suppression of the cavity modes in 

the  driven  compression  driver  is  achievable.  It  is  relatively  straightforward  to  outline 

guidelines for the compression cavity geometry in order to achieve this goal for a particular 

driving  diaphragm  by  using  the  orthogonality  of  the  compression-cavity  modes.  The 

compression-cavity modes form an orthonormal set, they obey the orthogonality relationship

∫
V

Ψn( y)Ψm (y)dV=V δnm
6.3.

For maximum bandwidth of operation, it is necessary for the compression cavity volume to  

be kept to a minimum and, consequently, commonly the cavity follows the geometry of the  

radiating diaphragm closely and is a thin shell. In this case, it is useful to separate the volume 

integral into two as

∫
Sd

∫
h

Ψn( y)Ψm ( y )dhdS=V δnm
6.4.

where the first integral is over the surface of the radiating diaphragm and the second is in the 

perpendicular direction through the cavity thickness at each point on the diaphragm. h is a 

geometric coordinate defining the position through the thickness of the cavity. Provided that  

the  compression  cavity  is  small  in  h,  the  cavity  eigenfunctions  Ψn( y) are  very  nearly 

invariant to h and it is possible to make the approximation

∫
Sd

Ψn( y)Ψm ( y)μ ( y )dS≈V δnm
6.5.
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where  μ( y ) is  a  function  that  describes  the  thickness  of  the  cavity  in  a  direction 

perpendicular to the diaphragm surface at the location y . Setting m=0, recalling Ψ0( y)=1, 

dividing both sides by V  results in the expression

∫
Sd

Ψn( y )
μ( y )

V
dS≈δ0n

6.6.

Comparison of this with expression 6.2 shows that, in order for ζn
d /ζ0

d=δ0n , then the cavity 

normal thickness function should be

μ( y)∝ud ( y). n 6.7.

In other words, the thickness in the cavity-normal direction should be proportional to the 

normal velocity of the radiating diaphragm.

It is now clear exactly why the shifted cavity design considered in section 5.4.1 nearly had 

ideal values of  ζn
d
: the compression cavity geometry very nearly meets the criterion set in 

equation 6.7. The only reason that the condition is not perfectly met is that there is a very  

slight error at the outside diameter of the cavity when constructed by shifting the diaphragm 

in the axial direction.

Figure 6.1. Illustration of cavity edge difference in section of i) concentric cavity design ii) shifted  
cavity design and iii) cavity design with cavity shaping method.

To demonstrate this, the FEM model used to numerically determine the values of ζn
d
 for the 

shifted cavity geometry, given in table  5.10, was adjusted at the outside diameter and re-

solved. The calculated values of ζn
d
, using the method described in section 5.4.1, for the new 

shaped  cavity  geometry  are  shown  in  table  6.1.  It  can  be  observed  that  this  slight 

modification has resulted in values of ζn
d
, which are indeed closer to the target of ζn

d /ζ0
d=δ0n. 

The values of ζn
d /ζ0

d
 for n=1,2 and 3 are very small and likely to be lower than the accuracy 

of the approximate integral used in their calculation, see section 5.4.1.
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Shifted Cavity Shaped Cavity

ζ0
d /ζ0

d=1 ζ0
d /ζ0

d=1

ζ1
d /ζ0

d=0.012463 ζ1
d /ζ0

d=−0.002008

ζ2
d /ζ0

d=0.013385 ζ2
d /ζ0

d=0.000410

ζ3
d /ζ0

d=−0.015633 3
d
/0

d
=0.000404

Table 6.1: Comparison of values of ζn
d
/ζ0

d
 calculated numerically for a shifted compression-cavity  

geometry and a shaped compression-cavity geometry as outlined above.

For completeness, the generalised channel-positioning method described in section 5.4 was 

used to determine the positions and areas of a three-channel phase plug for the new shaped  

cavity.  A simple  FEM  model  was  constructed  to  assess  the  performance  of  the  modal 

suppression. The resulting channel pressures are shown in figure 6.2. This is comparable to 

the result shown in figure 5.28 that provides the identical result for the shifted compression-

cavity design. It is observed that there is a very slight improvement in the similarity of the  

pressures in each channel, as is anticipated by the slightly closer to ideal values of ζn
d /ζ0

d
.

Figure 6.2. Normalised cavity-pressure level response for a simple compression-driver arrangement  
having a domed radiating-diaphragm and a “shaped” compression-cavity geometry using the  

generalised channel-geometry design methodology.

6.2 Practical considerations

In a practical design, there are additional constraints on the shape of the compression cavity  

arising because of the construction and assembly of the driver and/or due to the presence of  
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other supporting components such as the surround and voice coil gap. The ideal cavity shape 

introduced above is designed to meet the condition

ζn
d

ζ0
d
=δ0n

6.8.

To  make  this  condition  less  restrictive,  so  that  there  is  the  possibility  of  approximately 

suppressing modal excitation from the diaphragm motion while still remaining within any 

practical constraints that might exist for a particular driver, the condition is only set for the  

first few cavity modes. This can be expressed as

ζn
d=0∣(n> 0)∧(n≤N c) 6.9.

Provided that the eigenfrequency corresponding to Nc is above the operational bandwidth of 

the compression driver,  it  is  anticipated that within the bandwidth of operation a similar  

improvement in the modal suppression will be seen.

In order to meet the condition in expression 6.9, the cavity shape must be adjusted to affect 

the eigenfunctions, Ψn( y). It is assumed that the cavity entrance-surface Se, which is either 

completely  or  partially  occupied  by  the  radiating  diaphragm,  is  known  and  fixed.  The 

radiating diaphragm does not occupy any other face of the cavity. The eigenfunctions may be 

altered by adjusting the thickness profile of the cavity, μ( y ), to try to meet the condition for 

modal suppression, 6.9.

6.2.1 Calculation of the cavity eigenfunctions using a prototype cavity

To optimise the cavity thickness function  μ( y ),  it  is necessary to quickly and efficiently 

determine the eigenfunctions. In this section, it is demonstrated that the eigenfunctions of a 

thin compression cavity may be described using a prototype cavity. The prototype cavity is 

simply a narrow cavity that shares the same entrance geometry as the cavity for which the  

eigenfunctions  and  eigenfrequencies  are  being  calculated  (the  subject  cavity).  It  is 

approximated that the eigenfunctions of the prototype and subject cavity are only a function 

of the position on the entrance surface and that the eigenfunctions do not vary through the 

thickness  of  the  compression  cavity.  For  this  approximation  to  be  accurate,  both  the 

prototype  and  the  subject  cavity  must  be  thin  in  the  direction  h.  Geometrically,  as  the 

prototype and subject cavity share the same entrance surface, the two cavities only differ in 

their cavity thickness function, μ( y ).
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The prototype-cavity eigenfunctions have the orthogonality condition

∫
V p

Ψ
p

n( y)Ψ
p

m ( y )dV=V pδnm
6.10.

where Ψ
p

n( y) is the n-th eigenfunction of the prototype cavity at position y . As the cavity is 

narrow in  a  direction  perpendicular  to  the  fixed  entrance  surface,  this  integral  may  be 

approximated as an integral over the entrance surface of the cavity, Se,

∫
Se

Ψ
p

n( y)Ψ
p

m ( y)μ p( y )dSe≈V pδnm
6.11.

The function μp ( y) describes the thickness of the prototype cavity in the direction normal to 

the entrance surface as a function of position on the entrance surface y . The eigenfunctions 

and  eigenfrequencies  of  the  prototype  cavity  are  known,  either  by  analytical  or  FEM 

calculation.

Using a Rayleigh-Ritz approach, as was outlined in section 3.6, the velocity potential in the 

subject cavity,  ϕ ( y), is described by the linear sum of a number of the pressure modes of 

the prototype cavity, Ψ
p

n( y), such that

ϕ ( y )=∑
i=0

N ϕ−1

Ψ
p

i ( y )ϕi
6.12.

where  ϕi are  coefficients  that  indicate  the  proportions  of  each  of  the  prototype  cavity 

eigenfunctions. This can also be written as the multiplication of two vectors

ϕ ( y )=ψ p( y)
Tϕ=[Ψ

p

0 ( y ) Ψ
p

1 ( y ) ... Ψ
p

Nϕ−1 ( y ) ][
ϕ0

ϕ1

⋮
ϕN ϕ−1

]
6.13.

The kinetic and potential energy densities for small-amplitude oscillations in fluids are given 

by the two expressions

T
dV
=

1
2
ρ0∣u∣

2

and      

U
dV
=

1
2

1

ρ0c0
2

p2

6.14.

The system kinetic and potential energy can be found by integrating these densities over the 

volume of the cavity, resulting in the expressions

T=
ρ0

2 ∫V
∣u ( y)∣2 dV

6.15.
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and

U=
1

2ρ0 c 0
2∫

V

p2
( y )dV

6.16.

In terms of the velocity potential, these energies are

T=
ρ0

2 ∫V
∇2ϕ ( y )dV

6.17.

and

U=
ρ0

2c 0
2∫

V

∂2ϕ ( y )

∂ t2
dV

6.18.

In terms of the matrix notation for ϕ ( y) these energies can be written as

T=
1
2
ρ0ϕ

T H ϕ
6.19.

and

U=
1
2
ρ0 ϕ̇

T Q ϕ̇
6.20.

where the elemental components of H  and Q are

H i , j=∫
V

∇Ψ
p

i−1( y).∇Ψ
p

j−1( y)dV
6.21.

and

Qi , j=
1
c0

2∫
V

Ψ
p

i−1 ( y )Ψ
p

j−1( y)dV
6.22.

Given  the  narrow  compression-cavity  geometry,  these  two  volume  integrals may  be 

approximated using an integral over the cavity entrance surface.

H i , j≈∫
Se

∇Ψ
p

i−1( y ).∇Ψ
p

j−1( y )μ( y )dSe
6.23.

and
Qi , j≈

1
c 0

2∫
Se

Ψ
p

i−1( y )Ψ
p

j−1 ( y)μ ( y)dSe
6.24.

As is described in section 3.6, the H  and Q matrices may be used to calculate the pressure 

eigenfrequencies and eigenfunctions of the subject cavity. This allows the eigenfunctions of 

the subject cavity to be calculated quickly from the prototype eigenfunctions and the cavity 

thickness function.
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Example 1

To test this method of eigenfunction calculation, two FEM models were created (the meshed 

geometries are shown in figure 6.3). The first model is of a constant 0.5mm thickness disc 

cavity that serves as the prototype in this case. The second model has the same entrance (left)  

surface as the prototype cavity, but has a thickness defined by the function

μ(r)=0.5(2− r
a ) 6.25.

where  a is  the radius of the disc cavity,  equal  to 40mm. Both cavities are meshed with 

axisymmetric finite elements and PAFEC was used to calculate the first ten eigenfunctions 

and eigenfrequencies in each case.

Figure 6.3. Illustration of the prototype cavity (left) and the subject cavity (right),the geometry is  
exaggerated for clarity. Both models are axisymmetric.

Using the eigenfunctions of the prototype cavity, along with the thickness profile for the 

subject cavity, the matrices H  and Q were formed using the integrals given in expressions 

6.23 and  6.24.  The differential  ∂Ψ
p

m(r)/∂ r was computed numerically  using the Matlab 

function “gradient” [54], which uses a three point difference calculation [47, p. 505]. The 

integrals  in  expressions  6.23 and  6.24 were  computed  numerically  using  the  trapezium 

method [47, p.568]. The matrices were formed using the full ten computed eigenfunctions of 

the prototype cavity.
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Prototype Cavity 

(FEM)

Subject Cavity (FEM) Subject Cavity RR 

method

Subject cavity RR 

deviation from FEM

0.01 Hz 0.01 Hz 0.00 Hz

5229.34 Hz 5172.30 Hz 5172.29 Hz -0.0003%

9574.61 Hz 9529.85 Hz 9528.70 Hz -0.012%

13884.47 Hz 13847.45 Hz 13842.97 Hz -0.032%

18184.01 Hz 18152.19 Hz 18141.09 Hz -0.061%

22479.27 Hz 22451.18 Hz 22429.10 Hz -0.098%

26772.52 Hz 26747.24 Hz 26708.54 Hz -0.145%

31064.92 Hz 31041.83 Hz 30980.14 Hz -0.199%

35357.24 Hz 35335.91 Hz 35242.87 Hz -0.263%

39650.17 Hz 39630.27 Hz 39512.26 Hz -0.298%

Table 6.2: Comparison of the first ten eigenfrequencies for the FEM model of the prototype cavity, the  
FEM model of the profiled cavity and the Rayleigh-Ritz approximation to the profiled cavity.

The calculated eigenfrequencies for the FEM model of the prototype cavity, the FEM model 

of the subject cavity and the Rayleigh-Ritz approximation of the subject cavity using the 

FEM eigenfunctions of the prototype cavity are given in table 6.2. The Rayleigh-Ritz (RR) 

approximation using the prototype cavity eigenfunctions is a very good match with the FEM 

calculated results for all eigenfrequencies. However, it should be noted that, particularly for 

the high eigenfrequencies, the values are very similar for both cavity geometries. For the 

purposes of modal suppression, the predicted eigenfunctions are of more relevance as these 

appear directly in the modal suppression condition. The first six eigenfunctions for all three 

cavity models are shown in figure 6.4. It may be observed from these charts that the mode 

shapes  in  both  cavities  are  similar  in  overall  shape  but  have  distinct  differences  in  the 

detailed shape. For example, note that the anti-node magnitudes and the nodal positions are 

different. The RR approximation to the subject cavity performs extremely well providing a 

very good match with the FEM model of the subject cavity.

Example 2

As a second test of the method a more complex geometry was chosen with a more typical 

geometry for the compression cavity prototype. Figure 6.5 shows both the prototype cavity, 

with a  constant  thickness,  and  a  subject  cavity,  which shares  the  same entrance surface 

geometry. The entrance surface of both cavities consists of a region that has a spherical-cap  

geometry connected to a cylindrical region at the outside diameter.
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Figure 6.4. Comparison of the first six eigenfunctions for the FEM model of the prototype cavity  
(blue), the FEM model of the subject cavity (red) and the Rayleigh-Ritz approximation to the subject  

cavity from the eigenfunctions of the prototype cavity (green circles).
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Figure 6.5. FEM mesh of prototype curved cavity (left) and subject curved cavity (right). Both models  
are axisymmetric, the axis of rotation is located at the bottom of the meshes in both instances.

The eigenfunctions of the subject cavity are approximated using the  eigenfunctions of the 

prototype cavity,  as outlined described above.  These approximate eigenfunctions may be 

compared to the direct FEM model of the subject cavity. The thickness of the subject cavity  

is given by the expression

μ( s)=0.5+ 0.25sin (4π s
se
) 6.26.

where s is a linear coordinate that is measured from the axis of rotation along the entrance 

surface profile.  se is the value of the coordinate  s at the intersection of the cylindrical and 

spherical cap regions. The matrices H  and Q are formed using the integrals in s

H i , j≈2π∫
s=0

s
a ∂Ψ

p

i−1(s)

∂ s

∂Ψ
p

j−1(s)

∂ s
r(s)μ(s)ds

6.27.

and

Qi , j≈
2π
c 0

2 ∫
s=0

sa

Ψ
p

i−1(s)Ψ
p

j−1( s)r (s)μ(s)ds
6.28.

where sa is the value of the coordinate s at the extremity of the entrance surface.

Both  cavities  are  analysed  using  FEM  in  order  to  determine  the  eigenfrequencies  and 

eigenfunctions. Following this the subject cavity eigenfrequencies and eigenfunctions are 

approximated using the Rayleigh-Ritz-based approach using the first 10 eigenfunctions from 

the prototype cavity. This approximation can be compared to the FEM results for the subject  

compression cavity. Table  6.3 shows the eigenfrequencies and eigenfunctions for each of 

these solutions. The accuracy of the Rayleigh-Ritz approximation of the subject cavity is 
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reasonably good, although they appear a little less accurate than the simple cavity examined 

in example 1.

Prototype Cavity 

(FEM)

Subject Cavity (FEM) Subject Cavity RR 

method

Subject cavity RR 

deviation from FEM

-0.02 Hz -0.02 Hz 0.00 Hz

4078.67 Hz 3865.97 Hz 3842.08 Hz -0.618%

7462.71 Hz 5899.66 Hz 5859.35 Hz -0.683%

10817.87 Hz 11239.39 Hz 11185.68 Hz -0.478%

14162.02 Hz 14465.08 Hz 14388.36 Hz -0.530%

17498.77 Hz 17790.24 Hz 17746.40 Hz -0.246%

20829.57 Hz 21184.00 Hz 21129.44 Hz -0.258%

24156.02 Hz 24344.56 Hz 24312.50 Hz -0.132%

27480.52 Hz 27635.33 Hz 27563.64 Hz -0.259%

30806.08 Hz 30963.63 Hz 30871.58 Hz -0.297%

Table 6.3: Comparison of the first ten eigenfrequencies for the FEM model of the prototype cavity, the  
FEM model of the subject cavity and the Rayleigh-Ritz approximation to the subject cavity.

The FEM and Rayleigh-Ritz-based approximations of the cavity eigenfunctions are plotted 

in figure 6.6. As a result of the undulating cavity thickness, the eigenfunctions of the subject 

cavity have  a  slightly  peculiar  shape.  The Rayleigh-Ritz-based approximation is  a  good 

match with the FEM model. However, as with the eigenfrequency approximation, it appears 

that the method is slightly less accurate for the first  few modes with this more complex  

geometry compared to that considered in example 1. There are several possible causes of this 

slight drop in accuracy. Firstly, the integral over the cavity volume, required by the Rayleigh-

Ritz method to determine the system kinetic and potential energies, is approximated with an 

integral over the entrance surface of the cavity multiplied by the thickness of the cavity.  

When the cavity is very thin these integrals converge with the required volume integrals. For 

this particular geometry, where the cavity curvature means that the right-hand surface of the 

compression  cavity  is  of  a  smaller  area  than  the  left-hand  surface,  the  integral  

approximations  are  less  accurate  than  the  disc  cavity  of  example  1.  Secondly,  at  the 

intersection between the spherical cap region and the cylindrical region the cavity-entrance 

surface  is  not  smooth  and  it  is  difficult  to  determine  the  surface  normal  at  this  point.  

Consequently, it is also difficult to define the cavity thickness at this point. As a result of this, 

it  is  expected that  the approximation to the volume integral  is  relatively poor.  However,  

irrespective  of  these  problems  caused  by  a  very  challenging  geometry,  the  predicted 

eigenfrequencies and eigenfunctions using the Rayleigh-Ritz-based method are reasonably 

accurate.
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Figure 6.6. Comparison of the first six eigenfunctions for the FEM model of the prototype curved  
cavity (blue), the FEM model of the subject curved cavity (red) and the Rayleigh-Ritz approximation  

to the subject cavity from the first ten eigenfunctions of the prototype cavity (green circles).
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6.2.2 Calculation of the driven cavity behaviour using a prototype cavity

The matrices H  and Q, calculated above to derive the eigenfunctions of the subject cavity 

from the eigenfunctions of the prototype cavity, may also be used to approximate the driven 

behaviour of the subject cavity by using the expression

[H−ω2Q ] p= jωρ0ζ
dp

6.29.

The  vector  p describes  the  cavity  pressure  in  terms  of  the  Rayleigh-Ritz  prescribed 

functions, which are, in this case, the eigenfunctions of the prototype cavity. The complex 

pressure amplitude at a position  y  in the subject cavity is given by  p ( y )=ψp( y)
T p. The 

vector  ζdp describes the excitation of the subject cavity due to the motion of  the radiating 

diaphragm in terms of the eigenfunctions of the prototype cavity. The elemental coefficients 

are defined as

ζ i
dp=∫

Sd

Ψ
p

i−1( y )ud( y).ndS
6.30.

For  a  given diaphragm  velocity, it  is  possible  to  determine  the  subject  cavity  pressure 

response by inversion of the matrix on the left side of expression 6.29 resulting in

p= jωρ0 [H−ω
2 Q]−1ζdp

6.31.

Example 1

To test this technique for approximating the driven response, the two cavities introduced in 

example 2 of section 6.2.1 were modelled directly using the Finite-Element Method (FEM). 

The driven cavity response to a rigid axially moving radiating diaphragm occupying the 

entirety  of  the  entrance  surface  was  calculated.  These  direct cavity-pressure  response 

calculations may then be compared to the driven approximation of the subject compression-

cavities  using  the  Rayleigh-Ritz  approach  described  above.  For  the  Rayleigh-Ritz-based 

calculation,  the  first  ten  eigenfunctions  of  the  prototype  cavity  are  used.  The  pressure 

response at the outside extremity of the cavity is shown for each of the three cases in figure 

6.7. It  is obvious from these responses that the driven behaviour of the  subject cavity is 

markedly different  from the prototype cavity as a result  of  the different  cavity-thickness 

profile and the resulting change to the eigenfunctions and eigenfrequencies. The Rayleigh-

Ritz  approximation  of  the  subject-cavity  driven  response  is  a  good match  for  the  FEM 

model. On close inspection, there is a slight deviation in the frequencies of the maxima and 

minima. This inaccuracy results from the truncation of the Rayleigh-Ritz prescribed-function 



184 Chapter 6, Improved compression-driver modal suppression by cavity shaping

set in addition to the simplification of the integrals discussed in the previous section. All 

three systems have no damping and, consequently, the response maxima and minima are 

extremely sharp. As a result of this, there is an apparent difference in the height of the peaks  

comparing  the  FEM and RR calculations,  which  is,  in  fact,  due  to  the  finite  frequency 

resolution of the responses and the slight shift in the frequencies of the maxima and minima.

Figure 6.7. Rigid diaphragm driven cavity pressure response at the outside extremity for the prototype  
cavity FEM calculation (red), the subject cavity FEM calculation (blue) and the Rayleigh-Ritz based  

approximation to the subject cavity (green).

The accuracy of the Rayleigh-Ritz-based approximation to the subject-cavity response is 

impressive and is certainly accurate enough that it may be usefully applied to the problem of 

optimising the cavity thickness profile to minimise the modal excitation.

6.2.3 Suppression of modal excitation using cavity thickness shape functions

As discussed in the previous section,  the driven behaviour of the profiled cavity can be 

approximated using the eigenfunctions of a prototype cavity by the expression

[H−ω2Q ] p= jωρ0ζ
dp

6.32.

where the vector ζdp describes the cavity excitation in terms of the prototype eigenfunctions, 

with the elemental components given by the expression

ζ i
dp=∫

Sd

Ψ
p

i−1( y)ud( y).ndS
6.33.

The function μ( y ), which appears in the integrals defining the components of H  and Q, sets 

the thickness of the cavity profile. The intention is that this function is adjusted in order to 
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minimise the diaphragm excitation of the cavity modes. The thickness function is defined to 

be a linear combination of Nμ candidate functions such that

μ( y )=∑
n=1

N μ

bnμn( y )
6.34.

where bn are coefficients which describe the proportions of each candidate thickness function 

μn( y). This expression can also be written as as the multiplication of two vectors as

μ( y )=bT μ( y ) 6.35.

Using this definition of the thickness function, the matrix H  may be expanded as the linear 

sum of Nμ matrices such that

H=∑
n=1

Nμ

bnH n
6.36.

where the elemental components of H n are approximated to be

Hn ,i, j≈∫
Se

∇Ψ
p

i−1( y ).∇Ψ
p

j−1( y)μn ( y )dSe
6.37.

Similarly, the matrix Q may be written as

Q=∑
n=1

N μ

bnQn
6.38.

with the elements of Qn approximated to be

Qn , i , j≈
1
c0

2∫
Se

Ψ
p

i−1( y )Ψ
p

j−1( y )μn( y)dS e
6.39.

The driven cavity behaviour, in terms of these expanded H and Q matrices, is

∑
n=1

N μ

bn H n p−ω
2∑

n=1

N μ

bn Qn p= jωρ0ζ
dp

6.40.

The target behaviour for the cavity is that only rigid-body pressure variation occurs in the 

bandwidth of the driver. Although the final eigenfunctions are as yet unknown, because the 

rigid-body eigenfunction is always unity, the target pressure in the resulting cavity can be set 

in terms of the prototype eigenfunctions to be

pT=[ ρ0 c 0
2ζ0

dp

jωV
0 0 … 0] 6.41.
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where V  is the desired volume of the resulting compression cavity. Assuming that this target 

pressure is achieved, the system driven behaviour may be expressed as

∑
n=1

N μ

bnhn−ω
2∑

n=1

Nμ

bnqn=
−ω2 V

c0
2

ζdp

ζ0
dp

6.42.

where the vector hn is the first column of H n and the vector qn is the first column of Qn. As a 

result of the  ∇Ψ
p

i−1( y ) term appearing in expression  6.37, the vector  hn is all-zero. This 

allows further simplification to

∑
n=1

Nμ

bn qn=
V
c0

2

ζdp

ζ 0
dp

6.43.

Introducing the matrix

Q̃= [q1 q2 … qN μ ] 6.44.

with coefficients approximated from the integral

Q̃i , j≈
1
c 0

2∫
Se

Ψ
p

i−1( y)μ j( y )dSe
6.45.

and recalling the definition of b, given in expression 6.35, the profiled cavity is described by 

the matrix equation

Q̃ b=V
c0

2

ζdp

ζ0
dp

6.46.

From this expression, a set of coefficients b may be found that minimise the appearance of 

the  prototype-cavity  eigenfunctions  in  the  pressure  response  of  the  profiled  cavity.  The 

number of prototype-cavity eigenfunctions included in the set of equations must be truncated 

in order to solve the system. Simply, in terms of the solubility of the problem, there are a 

number  of  possibilities.  The  most  straightforward  option  is  to  truncate  the  number  of 

prototype eigenfunctions to the first  Nμ, in which case  Q̃ is square and invertible. In this 

case,  unless  the  system is  ill-conditioned,  there  is  a  single  well-defined  solution  for  b. 

Alternatively, the number of eigenfunctions can be chosen to be greater than the number of 

candidate cavity thickness functions, Nμ, in which case the matrix Q̃ has a greater number of 

rows than columns and the matrix equation is overdetermined. In this case, there is likely to  

be no exact solution to the set of equations, however it is possible to solve for b in a least 

squares sense. Finally the number of eigenfunctions may be chosen to be lower than Nμ, in 
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which  case  there  are  a  greater  number  of  columns  than  rows  in  Q̃ and  the  system of 

equations  is  under-determined  and,  in  general,  there  are  an  infinite  number  of  possible 

solutions for b. It is likely that the most interesting case is the first where Nμ eigenfunctions 

are considered.

The  underlying  method  is  based  on  the  Rayleigh-Ritz  approach.  The  more  prototype 

eigenfunctions that are included, the better the underlying Rayleigh-Ritz approximation is  

able to describe the profiled cavity and the better the modal suppression is likely to be in the  

profiled  cavity.  However,  at  the  same  time,  the  greater  the  number  of  prototype 

eigenfunctions  that  are  included,  the  greater  the  extent  to  which the cavity excitation is  

controlled.  Including  too  many  prototype  eigenfunctions  terms  is  likely  to  result  in  the 

solution  converging  on  the  ideal  cavity  shape.  Clearly  this  is  undesirable  as  the  entire 

premise  of  the  method  is  to  try  to  find  alternative  cavity  shapes.  However,  as  was 

demonstrated in  section  3.6,  the accuracy of  the Rayleigh-Ritz method is  not  dependent 

simply upon the number of prescribed functions, but also upon the ability of the prescribed  

functions to describe the solution. For example, if the eigenfunctions of the prototype cavity 

are  very  similar  to  the  eigenfunctions  of  the  profiled  cavity  then  the  Rayleigh-Ritz 

approximation will be very good even if only a few prototype eigenfunctions are considered 

in calculating b. Additionally, if this is the case then the number of  prototype eigenfunctions 

used in calculating b will be approximately equal to the number of modes controlled in the 

profiled cavity. Naturally, by implication this requires that the geometry of the prototype  

cavity is  close to the geometry of the profiled cavity.  However, as will  be demonstrated 

below, it is possible to arrive at this situation by an iterative approach. The profiled cavity is  

first approximately calculated using an arbitrary prototype cavity, most likely a cavity with  

constant  thickness. This approximate cavity may then be used as the prototype cavity to  

allow a more accurate calculation of the final cavity. These iteration steps may be repeated in  

order to improve the performance of the final cavity.

Example 1

To test  this  method for  calculating the profiled cavity geometry,  the  same spherical  cap 

cavity that was used at the start of the chapter is considered. An FEA model of the prototype 

cavity  is  shown  in  figure  6.8.  This  model  was  used  to  calculate  the  prototype  cavity 

eigenfunctions  required  to  determine  the  coefficients  for  the  matrix  Q̃.  The  diameter  of 

cavity is 80mm and the curvature of the cavity is 55 degrees measured from axis of rotation  

to cavity edge. It is assumed that the radiating diaphragm occupies the entire left hand side of 

the compression cavity and that it moves axially and rigidly.
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Figure 6.8. Mesh used for eigenfunction and eigenfrequencies FEA solution of spherical cap  
prototype cavity. The model is axisymmetric with the axis of rotational symmetry at the lower extent of  

the mesh.

In the first instance, the cavity thickness shape functions were chosen to be

μn(s)=cos [(n−1)θ ] 6.47.

The coefficients of the vector ζ p
d
 were found using the numerical method described in section 

5.4.1. The coefficients of the matrix  Q̃ were found using the method described in section 

6.2.1. The cavity was first considered using five shape functions from n=1 to n=5 and the 

first 5 eigenfunctions of the prototype cavity were used as prescribed functions. Resulting in 

a square matrix Q̃ and a fully determined system of equations defining b uniquely. For this 

situation, the cavity thickness shape function coefficients, according to equation 6.46, were 

found to be

bT
=

V
Ss

[3.869 −5.107 3.492 −1.165 0.182 ]
6.48.

where Ss is the area of the cavity entrance surface, given by the integral

Ss=2π∫
s=0

sa

r (s)ds
6.49. 

From  these  coefficients,  it  is  straightforward  to  calculate  the  profiled  cavity-thickness 

function using the matrix expression μ( s)=bT μ(s). Inspection of this function reveals that 

the resulting cavity thickness is extremely close the ideal profiled cavity as described in the  

introduction to this chapter,
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μ( s)
S s

V
=[1+ tan2(θ0

2 )]cos (θ(s) )
6.50.

Figure  6.9 shows both the ideal and the newly derived profiled cavity-thickness functions. 

The two profiles are extremely similar to one another.

Figure 6.9. Comparison of derived profiled cavity thickness function using RR based method (solid  
line) with the ideal cavity profile (circles), function ordinate normalised by V /S s, abscissa normalised  

by sa.

It is interesting that the thickness function converges to the ideal solution with so few terms 

included in  Q̃.  The  calculated  thickness  function  is  highly  dependent  upon the  selected 

thickness shape functions, μn(s). In this case, the shape functions are closely related to the 

ideal solution and the approximate Rayleigh-Ritz-based derivation quickly converges with 

the ideal solution.

A more interesting test  of  the method,  which does not  so quickly converge on the ideal 

solution, was devised using the shape functions

μn(s)=cos[(n−1)
s
sa

π] 6.51.

Choosing these shape functions means that the thickness function of the profiled cavity is 

equivalent to a truncated Fourier-cosine-series with Nμ terms. Using these shape functions, 

the resulting profiled cavity shape was calculated from the same spherical cap prototype 

cavity  for  several  different  numbers  of  thickness  functions  Nμ.  In  each  instance,  the 

calculation is performed using the method described above, forming the matrix Q̃ with Nμ 
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prototype cavity eigenfunctions resulting in a square matrix and a fully determined set of 

equations  with  a  unique  single  solution  of  b.  A sinusoidally  driven  FEM  model  was 

constructed for each derived cavity-thickness profile in order to allow assesssment of the 

degree to which the cavity eigenfunctions are excited. The FEM models have a sinusoidally-

driven  spherical-cap  rigid  radiating-diaphragm  located  on  the  left  side  of  the  cavity.  

Otherwise, the cavity is completely closed without exit channels on the right-hand side. The 

radiating diaphragm moves sinusoidally with unit axial harmonic velocity. The pressure at  

the outside diameter of the cavity is used in order to assess how much the eigenfunctions are 

excited.  Figure  6.10 shows the resulting profiled-cavity thickness function derived under 

these conditions for the case when there are 1, 2, 3 and 4 thickness functions. The pressure  

response of the corresponding driven FEM model is shown in each case. It is seen that as the 

number of thickness functions are increased, the solution converges on the ideal solution. 

Considering the pressure responses shown on the right-hand side, it is observed that as the 

number  of  thickness  functions  are  increased  the  eigenfunction  excitation  is  reduced, 

indicated by the large peaks on the response. In each instance the (N μ−1)th eigenfunction is 

almost completely controlled.

The  slight  remaining “glitches”  seen  at  the  frequencies  corresponding to  the  suppressed 

eigenfunctions are likely be due to the approximations in the profile derivation method and 

specifically because of inaccuracies in the approximation of the volume integral that was 

introduced in expression 6.11 in addition to the truncation of the Rayleigh-Ritz summation. 

These glitches are especially obvious because the system has no energy dissipation: at each 

suppressed eigenfunction, one can consider that, in terms of the Laplace transform of the 

system, the pole present as a result of the eigenfunction and corresponding eigenfrequency is 

covered by a zero. If the pole and the zero lie exactly upon one another, then the resonance is  

completely suppressed. However if there is even a minute difference in the position of the 

pole and the zero then perfect suppression does not occur. For the case when there is no 

dissipation in  the  system, the pole lies on the imaginary axis of  the s-plane and even a 

vanishingly small offset of the zero results in a sharp frequency response glitch. The width of 

the glitch is very narrow especially if the pole/zero offset is small. With the addition of any 

energy dissipation into the system, the glitches very quickly disappear. This occurs because 

the pole and zero move away from the jω axis into the negative real area of the plane. The 

offset of the pole and the zero is then much smaller than their distance to a point on the jω 

axis. The behaviour of modal control in terms of Laplace pole and zero positions is discussed 

in some detail in [79].
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Nμ=1

Nμ=2

Nμ=3

Nμ=4

Figure 6.10. Normalised derived profiled cavity thickness function, compared to the ideal profile  
(dashed red) and resulting diaphragm excited pressure response at outside diameter of cavity for  

different numbers of shape functions from 1 to 4.
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Example 2

The geometry of the radiating diaphragm has a very significant effect on the mechanical 

performance of the driver. For drivers with metal radiating diaphragms, the upper limit of the 

usable bandwidth is usually set by the first mechanical eigenfrequency. Because there is very 

little loss in the mechanical structure, it is extremely difficult to usefully operate a metal  

radiating diaphragm once it has begun to “break up”. The typical shape of the radiator used 

for high frequencies is a spherical cap or dome. This geometry is particularly suitable as even 

with a very thin material the “break-up” can be very high in frequency. The geometry of the 

edge of the dome is critical for optimum performance. The dome edge is usually the first part 

of the dome to bend in a conventional design. Anthony and Wright describe an elliptical 

section dome that they find is near optimal in terms of the first break-up mode [75]. Figure 

6.11 shows the first break-up mode of their dome.

All the phase-plug analyses presented so far have made the assumption that the dome moves 

rigidly. Clearly, it is important that the shape of the diaphragm can be adjusted in order to 

maximise the rigidity of the diaphragm over the operating bandwidth. The elliptical shape is 

particularly difficult to handle in terms of the acoustical performance as the surface normal at 

the outside diameter of the diaphragm is perpendicular to the axis of motion. The result of 

this  geometric  problem  is  that  if  a  constant  thickness  compression  cavity  is  used,  the 

excitation of the acoustical cavity modes resulting from axial motion of the diaphragm is 

very severe.

Figure 6.11. Reproduction of Wright and Anthony elliptical dome-shaped radiating-diaphragm modal  
analysis, “first break-up of elliptical dome, 31kHz”, reproduced from [75].

To demonstrate this, an FEA model of a constant-thickness compression cavity with elliptical 

shape was constructed. The meshed geometry is shown in figure 6.12. The elliptical section 
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has a  semi-major  axis  of  40mm and a  semi-minor  axis  of  20.825mm. The cavity has  a 

constant thickness of 0.3mm.

Figure 6.12. FEM mesh of elliptical compression driver cavity with constant thickness, axis of  
rotational symmetry is indicated with a grey line at the lower edge of the model.

Using this model, the generalised method, described in section 5.4, was used to compute the 

values of the parameter ζn
d for the case when the left-hand side of the elliptical section cavity 

is  excited  with  a  rigid  axially-moving  radiating  diaphragm.  These  computed  values  are 

shown in table  6.4 in comparison to the values presented in section  5.4.1 for the simpler 

spherical-cap  geometry.  It  may  be  observed  for  these  results  that,  although  the  first  

compression cavity mode is excited slightly less strongly, the second and third mode are  

excited more strongly by the elliptical diaphragm than the spherical-cap cavity.

Spherical Cap Cavity Elliptical Section Cavity

ζ0
d /ζ0

d 1 1

ζ1
d /ζ0

d 0.354678 0.299834

ζ2
d /ζ0

d −0.127144 −0.178592

ζ3
d /ζ0

d 0.0735582 0.112861

Table 6.4: Comparison of values of ζn
d
/ζ0

d
 calculated numerically for a spherical-cap concentric  

compression-cavity geometry and the elliptical section compression cavity geometry.



194 Chapter 6, Improved compression-driver modal suppression by cavity shaping

These values of ζn
d were then used to design a three channel compression driver, as described 

in section 5.4.1, the channels are positioned at the nodes of the third acoustical mode of the 

compression cavity, resulting in calculated channel areas of

[
A1/ AT

A2/ AT

A3/ AT
]=[0.205421

0.465484
0.329094 ] 6.52.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and  A3 is the area of the outer most channel. These areas can equivalently be written as  

channel width ratios as

[w2 /w1

w3 /w1
]=[1.0096

0.4919] 6.53.

Comparison of these values with those for the spherical-cap compression cavity, that was 

originally considered in section  5.2.5, shows that the outer channel width is significantly 

lower in this  case,  whereas the middle channel  width is  slightly larger.  This  situation is 

indicative of the behaviour on the input side where the surface-normal velocity due to the 

motion of the radiating diaphragm is higher in the centre and much lower at the outside 

diameter compared to the spherical-cap geometry.

Using these geometric parameters, a simple compression-driver model was constructed using 

the same basic compression-cavity geometry as above. The model has a compression ratio of  

15 and the three channels are terminated with a ρ0 c 0 specific-acoustical-impedance boundary 

condition.

The FEM computed normalised pressures in the three channels are shown in figure 6.13. The 

results are directly comparable to those which were previously presented for the other simple 

compression driver models, such as those shown in figures 5.18, 5.28 and 6.2. Compared to 

the previously presented results, the performance of the elliptical-section cavity is very poor 

with a large difference in the pressure responses in each of the three channels. This poor  

performance is a direct result of the sub optimal ζn
d values presented earlier in this section.

The  elliptical-section  cavity  presents  a  particular  problem  because  the  ideal  cavity 

construction method, described at the start of this chapter, is totally unsuitable as the cavity 

entrance surface normal is perpendicular to the axis of symmetry at the outside edge. This 

results in a cavity with thickness that vanishes at this point. 
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Figure 6.13. Normalised channel pressure level response for constant thickness elliptical-section  
compression-cavity with phase-plug geometry computed using the generalised method introduced in  

section 5.4.1.

The constant-thickness elliptical section cavity is now used as a prototype cavity for the  

shaping method described in this section in order to try to improve the performance of the  

resulting  compression-driver  channel  arrangement  while  still  maintaining  a  practical  

geometry. In an attempt to force the derived cavity thickness profile to have a non zero 

thickness at the outside diameter, the cavity thickness functions were chosen to be

μn(s)=cos[(n−1)
s
sa

π] 6.54.

The resulting profiled compression cavity is to have a three-channel idealised phase plug 

attached to the exit surface. The three-channel design permits control of the cavity modes up  

to the third. To also consider the cavity modes up to the third it is necessary to use at least 4  

thickness shape functions.

A profiled cavity shape using five thickness functions, with n=1 to 5, was calculated from 

constant-thickness elliptical-section prototype cavity. The calculation was performed over 

two iterations. The second iteration using the eigenfunctions of the profiled cavity resulting 

from the first iteration as the shape functions for the Rayleigh-Ritz approximation. For each 

iteration, the calculation is performed using the method described above forming the matrix 

G̃ with  Nμ prototype-cavity  eigenfunctions,  resulting  in  a  square  matrix  and  a  fully 

determined set  of  equations with a  unique single  solution of  b.  After  each iteration,  the 
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derived cavity-thickness function was used to construct a sinusoidally driven FEA model to 

assess  the  degree  to  which  the  pressure  eigenfunctions  are  excited.  The  models  have  a 

sinusoidally-driven rigid radiating-diaphragm located on the left side of the cavity and are 

otherwise completely closed without exit channels on the right-hand side of the cavity. The 

radiating diaphragm moves sinusoidally with unit axial velocity. The pressure at the outside 

diameter of the cavity is used as a indicator of how much the eigenfunctions are excited.

Figure  6.14 shows  the  resulting  cavity-thickness  function  derived  with  the  conditions 

described above along with the pressure response of the corresponding FEA model. In this 

case, the excitation of the cavity modes is very severe in the constant-thickness cavity. After  

one  iteration,  the  excitation  of  the  first  four  cavity  modes  in  the  profiled  cavity  is  

significantly reduced.  However,  there is  still  significant  irregularity present  in  the  cavity 

pressure. This remaining irregularity indicates that the Rayleigh-Ritz approximation is poor 

in this instance and the four eigenfunctions of the prototype cavity are unable to accurately 

describe the solution in the profiled case. After a second iteration, using the profiled cavity 

from the first iteration as the prototype cavity, the excitation of the eigenfunctions of the 

profiled  cavity  is  almost  completely  suppressed.  This  results  from  the  fact  that  the 

eigenfunctions of the profiled cavity after the first iteration are better able to describe the 

solution to the profiled cavity and, consequently, the Rayleigh-Ritz-based approximation is 

more accurate.

Clearly, there are some conditions associated with the convergence of the iterative approach. 

If, for example, the first prototype cavity is very dissimilar from the final profiled cavity then 

one can conceive that the eigenfunctions of the profiled cavity after the first iteration may be 

no more suitable  to  describe the behaviour  of  the  final  profiled cavity than the original 

eigenfunctions of the first prototype. In this situation, it is possible that subsequent iterations 

do not converge to describe the final profiled result. However, the small number of cases that  

have been considered by the author have all converged to a well-performing profiled cavities 

after only one or two iterations. The criterion for convergence is not included in this thesis.

It should be noted that, as a result of the careful selection of the shape functions, the cavity  

width at the outside diameter is finite.  However, in several areas the derived cavity is very 

narrow, notably at the centre. This is a significant problem; it is necessary to leave space  

between  the  diaphragm  and  the  phase-plug  so  that  the  diaphragm  may  move  during 

operation. To maintain the same clearance for the derived shape as the ideal cavity shape it  

would  be  necessary  to  increase  the  compression  cavity  volume  significantly  and,  as 

discussed in section 2.4.1, this would reduce the bandwidth of the device.
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Constant thickness cavity

After iteration 1

After iteration 2

After iteration 3

Figure 6.14. Normalised profiled cavity thickness function, compared to the ideal profile (dashed red)  
and resulting diaphragm excited pressure response at outside diameter of cavity for constant thickness  

prototype cavity, cavity after first iteration, cavity after second iteration and after third.
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Using this derived cavity shape the generalised method was used to compute the values of  

the parameter ζn
d for the case when the left-hand side of the elliptical-section cavity is excited 

with a rigid axially-moving radiating diaphragm. These computed values are shown in table 

6.5 in comparison to the values calculated previously for the prototype cavity. It is clear from 

these values that the profiled cavity has much more favourable values of ζn
d.

Prototype Cavity Final Cavity

ζ0
d /ζ0

d 1 1

ζ1
d /ζ0

d 0.299834 −0.000823

ζ2
d /ζ0

d −0.178592 −0.000692

ζ3
d /ζ0

d 0.112861 0.000521

Table 6.5: Comparison of values of ζn
d
/ζ0

d
 calculated numerically for the prototype constant thickness  

elliptical compression cavity and the derived profiled compression cavity.

These values of ζn
d were then used to design a three-channel compression driver, as described 

in section 5.4.1. The channels are positioned at the nodes of the third acoustical mode of the 

profiled compression cavity resulting in calculated channel areas of

[
A1/ AT

A2/ AT

A3/ AT
]=[0.252270

0.459635
0.288095 ] 6.55.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and A3 is the area of the outer most channel.

These areas can be equivalently written as channel width ratios,

[w2 /w1

w3 /w1
]=[0.853752

0.385079] 6.56.

Using these geometric parameters, a simple compression-driver model was constructed using 

the same basic compression-cavity geometry as above. The model has a compression ratio of  

15 and each channel is terminated with a  ρ0 c 0 specific acoustical impedance. The FEM-

computed normalised pressures in the three channels are shown in figure 6.15.

This  figure  is  directly  comparable  to  the  results  shown  in  figure  6.3,  which  used  the 

prototype constant-thickness compression cavity. In comparison the three channel pressures 

are much more even in the profiled cavity case. The three pressure responses are very similar  

up to a frequency of ka=5 and, even above this frequency, they remain smooth individually 

despite diverging by around 5dB from one another.
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Figure 6.15. Normalised channel-pressure-level response for a profiled thickness elliptical-section  
compression cavity, as outlined above, with phase-plug geometry computed using the generalised  

method introduced in section 5.4.1.

6.3 Conclusions

Overall, the Rayleigh-Ritz based shaping method appears to have the potential to improve 

the  compression-driver  performance compared to  the  use  of  a  constant  thickness  cavity.  

However,  the  results  fall  a  little  short  of  the  performance  seen  with  the  ideal  cavity 

construction method described at the start of the chapter. The main advantage of the method 

is that there is some degree of control over the shape of the final cavity and this provides the 

potential  to  overcome  practical  problems  that  can  occur  with  the  ideal  cavity  shaping  

method. There are a number of other considerations. If too many thickness functions are used 

in the calculation then the resulting cavity very quickly converges with the ideal shape. On 

the  other  hand  if  too  few  thickness  functions  are  used  then  the  suppression  of  modal 

excitation from the radiating diaphragm will  not  occur over the whole bandwidth of the  

compression driver and the full performance benefit will not be seen. It is also very hard to  

influence the shape of the final cavity. The only means of control are the number and choice 

of the thickness functions. Additionally, there is no guarantee that the derived profiled cavity 

shape is practical. For example, the derived profile may approach zero thickness or even a  

negative thickness.

In  the  final  driver,  there  must  be  a  practical  clearance  between  the  compression-driver 

diaphragm and the opposite face of the compression cavity. Inevitably, compared to a ideal  
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cavity  design,  the  profiled  cavity  requires  closer  clearance  in  some  places.  It  may  be 

necessary to increase the volume of the compression cavity in order to maintain practical 

clearances. This is undesirable as it increases the volume of the compression cavity. It may 

be preferable to have a larger, but well controlled compression cavity, than a smaller, but  

poorly  controlled  compression  cavity.  However,  the  conventional  wisdom,  based  on  the 

lumped  behaviour  of  the  compression  driver,  is  that  a  smaller  compression  cavity  will  

provide a wider bandwidth.

An extension to the cavity shaping method presented above was also devised that allows the 

thickness of some regions of the compression cavity to be fixed. This method is outlined in  

Appendix XI. The intention is that the regions where the ideal-cavity approach results in a  

cavity thickness which is too small may be fixed and the surrounding regions adjusted to 

achieve the modal-suppression. Very similar issues were encountered using this approach: 

the final shape of the cavity is hard to control, the resulting cavity is not guaranteed to be  

practical  and inevitably the acoustical  volume of the cavity is  larger than with the ideal 

cavity construction method, described at the beginning of the chapter.

The ideal cavity construction method is a very neat solution providing the optimal set of  

ζn
d /ζ0

d for a given diaphragm and, additionally, the minimum possible cavity volume for a  

given mechanical clearance. The further shaping approaches that have been subsequently 

presented are very interesting, but, as has been highlighted, have practical and performance 

shortcomings compared to the ideal cavity construction method. In practice, the author feels  

that it is likely the best approach to attempt to design compression-driver diaphragms that 

permit the use of the ideal cavity construction method and avoid those that result in non-

realisable  cavities,  such  as  the  elliptical-section.  The  design  of  the  compression-driver  

diaphragm itself for optimal performance is a subject that is considered in detail in chapter 8.



7 A new channel-positioning methodology for radial 

compression drivers

7.1 Introduction

An alternative arrangement for the phase plug was described by Blackburn [80] in his 1939 

patent. In this embodiment, the channels between compression cavity and horn throat are 

arranged radially, extending from the centre of the diaphragm to the perimeter. One of the  

early cited advantages for this arrangement is that the phase plug may be constructed with a 

single  cavity  moulding  tool,  whereas  the  more  common  annular-plug  design  requires  a 

number  of  annular  parts  to  form  the  channels.  The  radial-channel  phase  plug  is  also  

subsequently the subject of other patents [81][82].

Figure 7.1. Schematic illustration of a radial-channel compression driver with a domed radiating  
diaphragm and compression cavity.

Surprisingly, the only published work on the acoustical behaviour is by Henricksen [71][70] 

in his two comparisons to annular phase plugs. However, the analysis of this arrangement 

presented in these papers uses an equivalent technique to the equal path-length approach,  

which was originally proposed by Wente [17] and superseded by Smith [35]. In this chapter, 

the design considerations for this type of compression driver are discussed and, as with the  

annular  phase  plug,  a  new methodology  for  optimal  design  of  the  channel  entrances  is 

described.
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7.1.1 Comparison with the annular plug layout

Figure 7.2. Comparison of annular channel arrangement (left) with radial channel arrangement  
(right) viewed from the diaphragm side of the phase plug. The channel entrances shown in grey.

The geometry of a radial-plug compression driver is similar to the annular layout, which was 

described in chapter  4. The driver has a rotationally symmetric radiating diaphragm that 

drives one face of a compression cavity and there are a number of exit  channels on the  

opposite face that lead to a horn. These similarities make much of the approach applied to 

the annular case applicable to the radial geometry. However, there are significant differences 

that  must  be  considered.  The  annular-channel  phase-plug  geometry  is  rotationally 

symmetrical, whereas the radial-channel phase plug has a geometry that is circumferentially  

periodic.  When  considering  the  annular  design  it  was  possible  to  discard  the  non-

axisymmetric  compression  cavity  modes  (see  section  4.2.1).  As  is  demonstrated  in  the 

following  sections,  with  the  radial-channel  design  this  cannot  be  assumed.  A second 

difference  is  that  with  the  annular  design,  irrespective  of  the  detailed  shape  of  the  

axisymmetric compression cavity, the geometry of each channel entrance is a narrow annular 

ring lying on a plane. It is obvious that if the entrance is extruded along the axis of the driver,  

an annular channel is created which, when pressure variation is constant over the entrance 

surface, carries a plane propagating-wave. Further to this, if the channel is constructed to  

gently curve and expand a little, while still remaining rotationally symmetrical, as was seen 

in section  5.3,  this  has a little  impact  on the wave propagation or the impedance of the 

channel at the entrance. Thus, the separate channels of the annular design can be routed as 

required to constructively sum at the horn throat. The radial-channel entrance geometry is 

more complex. For example, with a dome radiator and cavity, the channel entrances lie on a  

spherical surface, not a plane. Clearly, in this case, it is necessary for the channels to flare in  

order  to  allow  spherical  wave  propagation  in  the  channels.  It  is  less  obvious  how  the 

channels are to be routed to meet at the horn throat.
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For the radial geometry,  rather than try to use the routing of the phase-plug channels to 

provide the required pressure at the horn throat,  it is much simpler to use a horn that is  

matched to the shape of the diaphragm. This would be done to create a situation where the 

wave-front shape carried by the channel is very close to the wave-front shape that the horn 

naturally carries. Then the channels can be gently blended into horn without the need for any 

routing to ensure correct summation. The most obvious case where this approach can be  

applied is to a dome-shaped radiating diaphragm. Dodd describes a driver that is composed 

of  a  dome  radiator  and  matching  horn,  and  reports  extremely  good  response  at  high 

frequency when the dome angle and the horn throat angle are matched [83]. This type of 

driver is a perfect candidate for the radial-channel phase plug. The phase plug occupies part 

of the horn in front of the dome and does not try to adjust the wave front shape. If the phase 

plug  is  working  correctly,  a  constant  pressure  over  the  channel  entrance  results  in  a 

spherically expanding wave that travels smoothly down the channels and into the horn, as 

depicted in figure 7.3.

Figure 7.3. Schematic showing the section through the Dodd based driver arrangement with dome  
diaphragm, radial-channel phase plug, horn and indication of the direction of wave propagation.

7.1.2 Prior radial-channel geometries

Radial-channel phase plugs are much less common than their annular counterparts. However, 

there have been a number of attempts to use this phase-plug arrangement. Figures  7.4 and 

7.5 are reproduced from the patents of Matsuoka [81] and Henricksen [82], respectively, and 

both outline relatively similar arrangements of the channels, diaphragm and the compression 

cavity. In both figures, the radial channels are of a constant width and do not extend all the  

way to the central driver axis. Henricksen also described an alternative arrangement with  
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channels  entrances  that  narrow  towards  the  central  axis  of  the  driver.  Additionally,  he 

outlines the importance of flaring the channels towards the throat of the horn. Neither of 

these two designs appear to consider the compression-cavity modal excitation and neither 

describe channel and horn arrangements that  obviously allow wave propagation over the 

whole bandwidth of the driver.

Figure 7.4. Figures taken from Matsuoka's radial phase-plug patent showing his channel entrance  
geometry.



Chapter 7, A new channel-positioning methodology for radial compression drivers 205

Figure 7.5. Figures taken from Henricksen's radial phase-plug patent showing his channel entrance  
geometry and flare in channel from cavity to horn throat.
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7.1.3 Dodd's dome and horn geometry

The radial phase plug that is outlined in this chapter is based on the geometry described by 

Dodd  for  optimum  performance  of  a  dome  radiating  directly  into  a  horn  [83].  Dodd 

demonstrates that a dome of moderate angle placed at the throat of a horn behaves almost as  

a pulsating spherical source provided that the dome edge intersects the horn wall at a close to 

perpendicular  angle.  In  order  to  demonstrate  this  effect,  a  simple  FEM  model  was 

constructed, the mesh of which is shown in figure  7.6. The model is of a rigid 45 degree 

dome, meshed in axisymmetric shell of revolution elements and placed at the throat of an 

infinite  conical  horn.  The infinite conical  horn is  created using a mesh of  axisymmetric 

acoustical finite elements to model the first 100mm of the horn. This region is then coupled 

to a region of 100mm length meshed in axisymmetric wave-envelope elements [55]. The 

wave-envelope elements have a shape function that includes an oscillating decay along the 

long edge of the elements. In this way they are able to approximately model the effect of an 

infinite conical expansion.

Figure 7.6. FEM mesh used to demonstrate Dodd dome and horn arrangement. The shell of  
revolution dome is located at the far left of the mesh at the horn throat. The red area is composed of  

axisymmetric acoustical finite elements. The blue region consists of axisymmetric wave-envelope  
elements to continue the conical flare infinitely.

The rigid-dome radiator is driven with harmonic velocity of unit amplitude. The pressure 

response at three points in the horn at the transition between the acoustical finite elements 

and the wave-envelope elements is shown in figure 7.7.
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These pressures are normalised in magnitude by

z sph[1+ tan2 (ϕ0

2 )] h0

hmeas 7.1.

where  ϕ0 is the angle of curvature of the dome,  h0 is the radius of curvature of the dome 

surface,  hmeas is the radial distance at which the pressures are taken and z sph is the specific 

acoustical impedance of a spherically spreading wave of curvature  h0 defined as [18, page 

128]

z sph=ρ0 c0( k2h0
2

1+ k2h0
2
+ j

k h0

1+ k 2 h0
2 ) 7.2.

The term in the square brackets of equation  7.1 is required because the effective radiating 

area of the axially moving rigid dome is smaller than that of a pulsating sphere, which would 

be the ideal source of spherically spreading waves.

Figure 7.7. Normalised pressure response of a ϕ0=45 degree dome driven infinite conical horn as  
described by Dodd, plotted versus normalised frequency for three sampling locations 100mm down  

the horn.

The acoustical pressure responses shown in figure  7.7 are reasonably similar. If a perfect 

spherically  spreading  wave  were  propagating  in  the  horn,  there  would  be  no  difference 

between the three pressure responses. At ka=3.3 there is a 3dB difference between the axial 

and horn wall pressure-responses.
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7.1.4 Dodd's geometry with constant-angle radial-channel phase plug

Henricksen describes a radial-channel phase plug with channels of constant circumferential 

angle in his 1978 paper [71]. A FEM model was constructed to investigate the combination 

of this phase plug with the Dodd dome and horn arrangement. The model is based on the 

same geometry as that described above to demonstrate the Dodd dome and conical horn 

arrangement (shown in figure  7.6). The model is of a 10-degree segment of an idealised 

radial-channel compression driver. It is only necessary to model a 10-degree section of the 

full geometry because of the circumferential periodicity of the arrangement.

Figure 7.8. Detail from the idealised Henricksen-style constant-circumferential-angle radial-channel  
compression driver using the Dodd dome and horn arrangement.

In this model, a detail of which is shown in figure 7.8, a rigid axially moving dome radiator 

(turquoise) is coupled to a thin compression cavity (red). Both of these regions occupy the 

full 10-degree segment. The blue area is a channel that is coupled to the compression cavity, 

this region occupies only a 5-degree segment of the model. The channel is terminated with 

infinite  wave-envelope  elements  such  that  it  approximates  a  5-degree  segment  from an 

infinite conical horn. In effect, this is a model of an idealised radial-channel compression 

driver  with 18 radial  channels  of  constant  circumferential  angle,  a  compression  ratio  of 

1.7071 (as defined in Appendix X) and with a perfect termination to the channels.
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The normalised pressure responses at a distance of 100mm down the conically expanding 

channel at three different angles across the channel are shown in figure  7.9. The pressures 

are again normalised by the expression given in equation  7.1. It may be observed that the 

responses are very similar indeed to those which were shown in figure  7.7. The level is 

increased by 6dB as a result  of  the compression effect.  Once again, there is a region at  

approximately  ka=3.3 where  the  three  pressures  are  dissimilar  by  approximately  3dB 

maximum.

Figure 7.9. Normalised pressure response of an idealised Henricksen style constant circumferential  
angle channel radial compression driver using the Dodd dome and horn arrangement, plotted versus  

normalised frequency for three sampling locations 100mm down the horn.

The result  is  very interesting.  The driver  with  the  phase plug  is  almost  identical  to  the 

performance without the plug, save for the 6 dB increase in pressure level.

7.2 Analysis of a radial-channel compression driver in spherical 

coordinates

The behaviour of the radial-channel case is now analysed in order to derive an improved 

channel geometry. As before, for the case of the annular-channel phase plug presented in  

section  5.2,  initially an idealised compression driver  that  fits  into a  spherical  coordinate 

system is considered. The compression cavity geometry is identical to that analysed for the 

annular channel compression driver.
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The cavity eigenfrequencies and eigenfunctions are, from the derivation given on pages 132 

to 134,

k nm
2
=

1

h0
2

lnm (lnm+ 1)
7.3.

and

Ψnm(ϕ ,θ)=Anm Plnm

m (cosϕ) (e− j mθ+ e j mθ ) 7.4.

As before, the normalisation term, Anm, is chosen to satisfy the condition

∫V
Ψnm (ϕ ,θ)

2 dV=V 7.5.

where V  is the volume of the compression cavity.

7.2.1 Analysis of the driven behaviour of the cavity

The analysis continues in the same vein as that for the annular channel compression driver.  

The pressure in a lightly-damped acoustical cavity excited by motion of its walls can be 

described in terms of the rigid-walled eigenfunctions and eigenfrequencies.

p ( x ,ω )=∑
n=0

∞

∑
m=0

∞ jωρ0Ψnm(x)

V [knm
2 −k 2]

∫
s

Ψnm( y)u( y). ndS
7.6.

In this expression, u ( y) .n is the surface normal velocity of the cavity wall at vector position 

y , and ρ0 is the ambient fluid density.  For this application, the integral on the right of this 

expression can be written as the sum of three integrals each over a separate part of the cavity  

surface, as shown in equation 7.7.

∫
s

Ψnm( y)u( y ). ndS=∫
ϕ=0

ϕ0

∫
θ=0

2 π

Ψnm(ϕ ,θ)ud(ϕ ,θ)h0
2 sinϕ dθdϕ

+ ∫
ϕ=0

ϕ0

∫
θ=0

2 π

Ψnm(ϕ ,θ)ue(ϕ ,θ) (h0+ μ )
2sinϕd θdϕ

+ ∫
h=h0

h0+ μ

∫
θ=0

2π

Ψnm(ϕ ,θ)uh(h,θ)h2 sinϕ0 d θdh
7.7.

The first double integral is performed over the diaphragm side of the compression-cavity 

surface,  where  the  function  ud (ϕ ,θ) describes  the  normal  velocity.  The  second  double 

integral is performed over the exit side of the compression cavity surface, where the function 

ue(ϕ ,θ) describes the normal velocity. Finally the third integral is performed over the small 

truncated-conical  surface  at  the  outside  diameter  of  the  compression  cavity,  where  the 

function uh(h,θ) describes the normal velocity.



Chapter 7, A new channel-positioning methodology for radial compression drivers 211

For  the  annular-channel  compression-driver  analysis  on  page  139,  it  was  possible  to  to 

reduce  the  set  of  relevant  eigenfunctions  because  each  of  these  three  normal  velocity 

functions were shown to be invariant to circumferential angle. It is a little more complex in  

this case. The diaphragm,  ud (ϕ ,θ),  and edge velocity,  uh(h,θ),  functions are once again 

invariant  to  circumferential  position.  However,  the  exit-side  normal-velocity  function,  

ue(ϕ ,θ), is not circumferentially invariant, but rather circumferentially periodic, such that it  

follows the expression

ue (ϕ ,θ )=ue (ϕ ,θ+ 2π /N ) 7.8.

where  N  is  the number of radial  channels in the phase plug.  However,  reduction of the  

eigenset is still possible and can be most easily demonstrated by writing the circumferential  

variation of the exit surface velocity using a Fourier series [47, p.692] as

ue (ϕ ,θ )=∑
m=0

∞

U e ,m (ϕ )e jmθ

7.9.

For a phase plug with N  radial channels then clearly

U e , m (ϕ )=0 ∣ 0<∣m∣< N 7.10.

which allows the summation range in equation 7.9 to be reduced to

ue (ϕ ,θ )=U e ,0 (ϕ)+ ∑
m=N

∞

U e ,m (ϕ) e jmθ

7.11.

While it is a little trivial to do so, it should be noted the it  is also possible to write the  

diaphragm or edge normal-velocities in this form with the same terms. The integral on the 

right of 7.6, over the exit surface, can be written as

∫
Se

Ψnm( y)u( y).ndS=∫
Se

Anm P lnm

m
(cosϕ) ( e− j mθ

+ e j mθ ) ∑
m=0,±N

±∞

U e ,m (ϕ ) e
jmθdS

7.12.

It is clear that, by the orthogonality of the set of functions e
j mθ∣ m∈z, the result is trivial when 

0<∣m∣< N .  Thus,  it  is  possible  to  use  a  reduced  the  set  of  eigenfrequencies  and 

eigenfunctions excluding this range of m.

Indeed  the  strategy  taken  in  this  case  is  to  set  N  to  be  high  enough  that  the  first 

circumferential  eigenfunction  has  a  corresponding eigenfrequency that  is  well  above the 

desired  bandwidth  of  the  compression  driver.  Consequently,  the  same  reduced  set  of  

eigenfrequencies and eigenfunctions with m=0 is used,

Ψn(ϕ)=An P ln

0(cosϕ) 7.13.
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7.2.2 Suppression of modal excitation by channel geometry

For the case of the compression driver with radiating diaphragm occupying one spherical cap 

face of the cavity and with exit  channels occupying the opposite spherical  cap face,  the 

integral on the right of expression 7.6 can be written as

2π h0
2 ∫
ϕ=0

ϕ0

Ψn(ϕ)ud (ϕ)sinϕ dϕ+ 2π(h0+ μ)
2∫
ϕ=0

ϕ0

Ψn(ϕ )ue(ϕ) A (ϕ)sinϕ dϕ
7.14.

The first integral is over the diaphragm surface; the second is over the exit  surface. The  

function ud (ϕ ) describes the normal velocity of the radiating diaphragm. The function ue(ϕ) 

describes the acoustical velocity normal to the cavity surface in the channel openings. The 

function  A(ϕ) describes the proportion of the circumference that  is  open to the channel 

entrances: this function determines the shape of the compression channels and, effectively, is 

proportional to the angular width of the compression cavity. In order to suppress the m-th 

compression cavity mode, it is clear that the sum of these two integrals must be zero.

If the radiating diaphragm is moving rigidly and axially, the normal velocity function ud (ϕ ) 

is given by the expression

ud (ϕ )=u0 cosϕ 7.15.

where u0 is the axial velocity of the diaphragm. Provided that the following conditions are 

met:

– the compression cavity is small in volume;

– the channels leaving the compression cavity are of a geometry which allows wave 

propagation  with  wave-front  shape  coincident  with  the  exit  surface  of  the 

compression cavity;

– the modal behaviour of the compression cavity is suppressed;

then it may be assumed that within the bandwidth of the driver the channel entrance velocity 

function, ue(ϕ), may be related to the volume velocity of the diaphragm radiator as

ue≈
−π ro

2

AT

uO
7.16.
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where  AT  is the total open area of the channels on the output surface of the compression 

cavity, given by the expression

∫
ϕ=0

ϕo

A (ϕ)dS=AT
7.17.

In other words, within the bandwidth of the compression driver, the compression cavity is 

incompressible and the input volume velocity is equal to the output volume velocity. Using 

these  relationships,  in  order  to  avoid  modal  excitation  in  the  compression  cavity  it  is  

necessary for the condition

h0
2∫
ϕ=0

ϕ0

Ψn(ϕ)cosϕsinϕdϕ−(h0+ μ)
2π ro

2

AT
∫
ϕ=0

ϕ0

Ψn(ϕ) A(ϕ)sinϕdϕ=0
7.18.

to be met. From which it is obvious that the compression-channel-entrance area function 

A(ϕ) should be

A(ϕ)=
h0

2

(h0+ μ)
2

AT

π ro
2

cosϕ
7.19.

Typically, μ≪h0 and the approximation may be made that

A(ϕ)≈
AT

π ro
2

cosϕ
7.20.

In any case, this approximation only introduces an inaccuracy in the compression ratio, not 

the  derived  channel  shape.  This  indicates  that  the  cavity  exit  channels  should  have  a 

circumferential  angular  width  that  is  proportional  to  the  cosine of  the  polar  angle.  This 

results in more of the dome being covered at the outside edge compared to the centre. This is  

perhaps intuitive.  The dome has  a higher  normal  velocity  at  the  centre  compared to the 

outside edge. The channel exit velocity naturally acts upon the cavity modes in the opposite 

direction to the dome motion as while the dome moves into the cavity air flows out of the 

cavity in to the channels. The cosine weighting distributes this mirror velocity on the exit  

surface in exactly the same way that the normal velocity is arranged on the input surface.

In order to investigate this conclusion, an idealised compression-driver model was developed 

using the same construction and basic geometry as that introduced in section 7.1.4, shown in 

figure 7.8. The channel angular width is this time set according to equation 7.20. As before, 

the model is of a 10-degree section of an idealised radial-channel compression driver. It is 

only  necessary  to  model  a  10-degree  section  of  the  full  geometry  because  of  the 

circumferential periodicity of the arrangement. In this model, a detail of which is shown in 
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figure  7.10.  A  rigid  axially  moving  dome  radiator  (turquoise)  is  coupled  to  a  thin 

compression cavity (red). Both of these regions occupy the full 10-degree section. The blue 

area  is  a  channel  which  is  coupled  to  the  compression  cavity,  this  region  has  a 

circumferential angular width as outlined by equation 7.20. The channel is terminated with 

infinite wave-envelope elements such that it approximates a segment from an infinite conical  

horn. In effect, this is a model of an idealised radial-channel compression driver with 18 

channels,  a  compression  ratio  of  1.7071  (as  defined  in  Appendix  X)  and  an  perfect 

termination to the channels.

Figure 7.10. Detail from the idealised cos(ϕ) weighted channel style radial compression driver model  
using the Dodd dome and horn arrangement.

Compared to the constant angular width version, shown in figure 7.8, it may be observed that 

the  blue  channel  width  is  visibly  narrower  at  the  outside  diameter  of  the  model.  The 

performance of the compression driver can be assesssed by looking at the pressure response 

in the channels of the driver to see how the pressure varies at different angles. If the channel  

is  carrying  a  spherically  spreading  wave  the  pressure  amplitude  is  constant  at  a  given 

distance from the compression cavity. The pressures in the channel of the model are shown 

in figure 7.11 at comparable positions to those shown for the Dodd dome horn arrangement, 

(figure 7.7) and for the Henricksen-style constant circumferential-angle channel arrangement 

(figure  7.9).  As  before,  the  pressures  have  been  normalised  by  the  expression  given  in 

equation  7.1. The three pressures are within 1dB up to a frequency of  ka=4.2. This is a 

significant  improvement  compared to  the  Henricksen style  plug where the  pressures  are 
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within 1dB up to  ka=2.58. However, as was seen with the Henricksen and the unplugged 

Dodd case, at high frequencies the pressures become less consistent.

Figure 7.11. Normalised pressure response of an 18-channel idealised cos(ϕ) weighted channel style 
radial compression driver  using the Dodd dome and horn arrangement, plotted versus normalised  

frequency for three sampling locations 100mm down the horn.

7.2.3 A practical driver based on the cos-weighted radial-channel phase plug

The cos(ϕ) weighted radial-channel approach was developed into a fully-working prototype 

in 2008. The prototype was part of a larger project to develop a coincident-source two-way 

mid- and high-frequency transducer [5]. This coincident source driver prototype was then 

subsequently used in the KEF Concept Blade loudspeaker, a one off prototype loudspeaker 

demonstrated at numerous events internationally [84].

A sectional drawing of the complete coincident source driver is shown in figure  7.12. The 

tweeter is located in the centre closest to the axis of rotational symmetry at the bottom edge  

of the half section. The tweeter dome is constructed from 25μm titanium and has an angle of 

curvature of approximately 35 degrees. The rigidity of the dome is increased by the use of a  

voice coil former, also in 25μm titanium, with an extended top edge that forms a triangular 

strut  when assembled with the titanium dome as illustrated in  7.13. This arrangement of 

dome and former is described by Dodd in his 2005 patent [85]. Without the extended former 

the  mechanical  “breakup” mode occurs  at  21.2kHz,  while  with the  extended former  the 

mechanical  “breakup” mode occurs at  33.7kHz. This tweeter  and former were originally  

designed for a direct radiating tweeter first introduced in 2006. The dome and former were 

chosen as the high frequency of the “break up” mode is ideal for our purposes given that the  



216 Chapter 7, A new channel-positioning methodology for radial compression drivers

theory outlined in the previous section assumes that the dome is perfectly rigid. The high 

break-up mode at least means that this is a reasonable assumption in the audio band.

Figure 7.12. Half-sectional drawing of the complete prototype coincident source driver

Figure 7.13. 3D CAD sectional views of the tweeter dome and extended former.

During  the  development  of  this  driver,  it  was  quickly  realised  that  there  is  a  practical 

difficulty with the new radial-channel phase-plug geometry. From the FEM modelling of this 

driver,  it  was  determined  that  the  minimum  number  of  channels  required  to  avoid 

circumferential  pressure  variation  is  twelve.  As  the  twelve  cosine-weighted  channels 

approach the central axis of the phase plug, the distance between them becomes vanishingly 

small  and  results  in  a  geometry  that,  in  reality,  is  impossible  construct.  The  most 

straightforward practical solution to this problem is to combine the channels at the centre of 

the plug into a single opening. However, FEM analysis of this approach highlighted severe 

performance degradation. Eventually, a solution was found. The number of radial channels 
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may be reduced at  the very centre of the plug without  any obvious problem because of 

circumferential  pressure  variation  in  the  compression  cavity.  The  resulting  geometry  is 

shown in figure 7.14. The outer diameters of the phase plug have 12 radial channels, while at 

the very centre the number of channels is reduced to 6. The cos(ϕ) channel-weighting is still 

followed for both the 12-channel and 6-channel regions of the phase plug.

Figure 7.14. 3D CAD rendering of the practical implementation of the cos weighted radial-channel  
phase plug showing inner area with fewer radial channels.

The frequency response of the tweeter measured at 2.83 V rms in a large wall at 1m on axis  

with the driver is shown in figure 7.15 both with the radial-channel phase plug and with a 

smooth horn without a phase plug. On both measurements the large peak at approximately  

33kHz corresponds to  the  breakup of  the  dome.  Both responses  are  smooth.  The gentle 

downward slope from 2kHz to 20kHz is a result of the horn loading of the diaphragm. The 

diaphragm itself moves with approximately constant acceleration amplitude in this frequency 

range.  There are two encouraging observations about  the version with the radial-channel 

phase  plug  in  place.  Firstly,  the  response  is  increased  in  level  over  a  reasonably  wide  

frequency band from 5.5kHz to 20kHz by a maximum of 4.5dB. Secondly, there appears to  

be  a  slight  improvement  of  the  smoothness  of  the  response  below  15kHz  (ka≈3.5). 

However, the efficiency boost ends relatively abruptly at the top of the frequency response 

above 20kHz (ka≈4.65).  This  ties in  very well  with the  idealised models  shown in the 

previous chapters. Firstly, figure 7.9 shows irregularity occurring at ka≈3 for the idealised 

case of the Dodd dome and horn geometry. This is approximately the same frequency range 

area that appears to be smoother on the real driver with the radial-channel phase plug in  
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place. Secondly, figure  7.11 shows irregularity occurring above  ka≈4.5 for the idealised 

model  of  the  cos-weighted  radial-channel  compression  driver.  This  is  roughly  the  same 

frequency above which the increased efficiency is no longer seen in the real driver.

Figure 7.15. Measured tweeter performance of prototype loudspeaker with Dodd smooth horn  
geometry and cosine weighted phase plug.

The performance of the prototype driver was largely a success for the radial-channel phase 

plug  concept.  However,  it  does  highlight  that  further  work  is  required  to  maintain  the 

efficiency increase to higher frequencies.

7.3 Improved modal suppression by cavity shaping for the radial-

channel phase plug

The cos(ϕ) channel weighting improved the behaviour of the idealised compression driver 

considered in section 7.2.2. However, there is clearly some progress still to be made at the 

top end of the response above ka=4. The high-frequency limit is set by the lowest of either 

the circumferential periodicity becoming significant or the compliance of the compression 

cavity becoming significant.  The reader may recall  that the eigenset that was used when 

determining the cos(ϕ) channel weighting was reduced by making the assumption that the 

circumferential periodicity of the geometry is sufficiently high that circumferential pressure 

variation would not occur in the bandwidth of the driver. The compliance of the compression 

cavity was assumed to be insignificant when it was approximated in equation 7.16 that the 

cavity input volume velocity was equal to the cavity output volume velocity.
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Figure 7.16. Normalised pressure response of a 24 channel idealised cos(ϕ) weighted channel style  
radial compression driver using the Dodd dome and horn arrangement, plotted versus normalised  

frequency for three sampling locations 100mm down the horn.

The  first  of  these  possibilities  is  most  easily  eliminated  by  re-running  the  idealised 

compression-driver  model  with  a  different  circumferential  periodicity.  The  equivalent  

pressure results for a 7.5-degree segment model, corresponding to a 24 channel compression 

driver,  are  shown  in  figure  7.16.  The  results  of  the  compression  driver  with  higher 

circumferential  periodicity are extremely close to the original  18 channel  model  up to a  

frequency of ka=7. Above this frequency the pressures from the 24 channel driver model are 

generally more consistent than the 18 channel model. This would seem to indicate that the 

variations in the pressure responses seen above ka=4 are not as a result of the periodicity 

effect and are likely to occur because of the compliance of  the compression cavity.

It  was  found  in  chapter  6,  for  the  case  of  the  annular  compression  driver,  that  modal 

suppression performance could be greatly improved by shaping the cavity thickness such 

that the rigid body mode of the compression cavity is identical to the normal velocity profile  

of the radiating diaphragm. This adjustment makes the normal velocity function of the dome 

orthogonal to the higher-order eigenfunctions. The dome itself does not then excite these 

modes. Cavity shaping in this way greatly reduces the modal suppression deterioration at  

higher frequencies due to the compliance effect as it is no longer necessary that the cavity  

exit velocity modal excitation compensates for the diaphragm modal excitation.

The cavity shaping approach should be equally applicable to the radial case and would be 

expected to improve the modal suppression. In order to investigate this, a FEM model was  
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constructed using the cavity shape outlined on page  172. The required shape for the exit 

channels is unaffected by this change, the derivation of the cos(ϕ) area weighting on page 

213 does not make any assumption about the thickness-profile of the compression cavity 

other than that it is narrow in h.

The FEM model is again of an idealised compression driver with rigid axially moving dome 

diaphragm a 0.5mm cavity thickness, measured at the axis of rotation, and infinite conically 

expanding radial channels. The normalised pressure response at the same three positions in 

the horn are shown in figure  7.17 for the cavity shaped  cos(ϕ)-weighted idealised radial-

channel compression driver. The pressure responses are within 1dB up to ka=8.5. This is a 

significant improvement over the comparable responses without cavity shaping, which were 

shown in figure 7.16.

Figure 7.17. Normalised pressure response of a 24-channel idealised cos(ϕ)-weighted channel style  
radial compression driver  using the Dodd dome and horn arrangement with cos(ϕ) cavity thickness  

shaping, plotted versus normalised frequency for three sampling locations 100mm down the horn.

It took several attempts to find the horn and cavity arrangement that gave this response. The 

cavity width is arranged to be in proportion to the normal velocity of the rigidly moving  

dome. Thus, in this case, the width of the cavity,  μ( y ) is  μ0cos(ϕ), where μ0 is the cavity 

width at the axis of rotation.

Geometrically, this means that the dome and exit surface have the same surface curvature 

radius,  equal  to  h0=a /sin (ϕ0),  and  are  offset  along  the  axis  of  rotation  by  μ0.  It  was 

previously found that  for  the  best  results  the  edge of  the  compression cavity should be 
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perpendicular to the radiator surface (see page 172). This arrangement naturally results in the 

exit side of the compression cavity having a greater angle of curvature than the radiator. This 

is shown schematically in figure 7.18 and given the notation ϕ̂0.

Figure 7.18. Schematic showing shaped compression cavity geometry.

The waveguide attached to the exit side must carry a wave which has wave-front coincident 

to the exit surface, thus the horn wall angle is equal to ϕ̂0. The radial-channel area weighting, 

however, must be in terms of the entrance surface angle, not the exit surface angle, for the 

suppression to correctly function. On the other hand, it is important that the area weighting is  

constant for any given angle in the exit horn. For example, if the area weighting is defined in 

the spherical coordinate system centred at the focus of the entrance side of the compression  

cavity, this would result in an area weighting at the horn wall that would vary down the horn 

length. The solution is to arrange the weighting in a spherical coordinate system centred at  

the focus of the exit side and to map the horn angle, ϕ̂, to the equivalent radiator angle at the 

exit surface using the expression

tanϕ=
h0 sin ϕ̂

h0 cos ϕ̂+ μ0 7.21.

This equivalent radiator angle should be used in the weighting function. Only after these fine  

adjustments to the geometry was it possible to obtain the performance seen in figure 7.17.
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7.4 Practical problems with the radial-channel phase-plug 

geometry

The practical  problems of  the  cosine-weighted  radial-channel  phase-plug  geometry  were 

discussed  briefly  in  section  7.2.3.  The  derived  radial-channel  geometry  requires  that  all 

channels extend to the very centre of the phase-plug cavity and meet at the axis of rotation, 

each  covering  an  equal  angular  proportion  of  the  dome.  The  width  of  the  channels  is 

vanishingly small at the axis of rotation. As the number of channels is increased, in order to 

counter the circumferential pressure variation problem, the angle that each channel covers in 

the centre of the phase plug becomes smaller and the vanishing channel width problem more 

severe. Ideally, the phase-plug geometry would permit either a small hole or a small post in 

the very centre of the construction to avoid the vanishing channel-width problem. However,  

there is no room for manoeuvre with the channel-geometry derivation as described. Rather 

than suppressing the excitation of all  compression cavity modes, instead only the first  N 

modes are suppressed. This allows alternative radial-channel geometries, which overcome 

these practical problems with the pure cosine geometry.

7.4.1 Alternative radial-channel geometries

In the same way as for the annular-channel phase plug, the cavity behaviour is described by a 

modal decomposition and the criterion for suppression of the cavity mode  n is as before 

given by the expression

∫
Sd

Ψn( y)ud ( y).ndS+∫
Se

Ψn (y)ue( y)dS=0
7.22.

where the first integral is over the diaphragm surface,  Sd, and the second is over the open 

area of the cavity connecting to the phase-plug, Se: the grey regions shown in figure 7.2.

In section  5.4, the parameter  ζn
d
 was introduced to describe the cavity excitation from the 

diaphragm and is defined as

ζn
d=∫

Sd

Ψn( y)ud( y).ndS
7.23.

Assuming that modal suppression is working well, the cavity-exit normal velocity is constant 

over the open part of the compression cavity. Thus ue( z) is defined to be

ue A ( z) 7.24.
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where  ue is the constant channel entrance normal-velocity and  A( z) is an area weighting 

function that  is  unity at positions where the compression cavity is connected to the exit  

channels and zero at positions where the compression cavity is closed. It is assumed that the  

compression channels have a high order of periodicity in the circumferential direction. If this  

is true, modes with pressure variation in the circumferential direction can be ignored (as was 

outlined in section  7.2.1). The function  A( z) is defined to be composed of  M  functions, 

Am ( z),  whose linear combination in the proportions  bm describe the entrance area of the 

channels.

A( z)=∑
m=1

M

bm Am( z)
7.25.

To simplify the notation of the following expressions, the parameter ζnm
e

 is defined to be

ζnm
e =∫

Se

Ψn( z) Am( z)dS
7.26.

This parameter describes the modal excitation contribution of each of the functions Am ( z). 

This allows the condition for the suppression of mode n to be written as

ζn
d+ ue∑

m=1

M

bmζnm
e =0

7.27.

While the compression driver is well behaved, the acoustical velocity  ue is related to the 

diaphragm velocity by

ζ0
d+ ue∑

m=1

M

bmζ0m
e =0

7.28.

In other  words,  the  volume velocity  entering the cavity is  equal  to  the  volume velocity 

exiting the cavity. This is can be simplified to

ζ0
d+ ue AT=0 7.29.

where AT  is the total exit channel area.

Inserting this into 7.28, the condition for the suppression of the nth mode can be written as

ζn
d

ζ0
d
−∑

m=1

M bm

AT

ζnm
e =0

7.30.
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In turn, this can be written in matrix form for the first N modes as

[
ζ01

e ζ02
e

⋯ ζ0M
e

ζ11
e ζ12

e
⋯ ζ1M

e

ζ21
e ζ22

e
⋯ ζ2M

e

⋮ ⋮ ⋱ ⋮

ζN1
e ζN2

e ⋯ ζNM
e
][ b1 / AT

b2 / AT

⋮
bM / AT

]=[
ζ0

d
/ζ0

d

ζ1
d
/ζ0

d

ζ2
d
/ζ0

d

⋮

ζN
d /ζ0

d
]

7.31.

Using this formulation, it is possible to construct phase-plug designs where the radial exit 

channels only cover part of the exit side of the compression cavity. This is easily achieved by 

choosing the area functions Am ( z) so that they all exclude the area where the channels are 

not  to  be  placed.  Having  determined  these  coefficients,  the  channel  geometry  may  be 

calculated using the summation

A( z)=∑
m=1

M

bm Am( z)
7.32.

The exact shape of the phase plug which results from this derivation is dependent upon the 

choice of the functions Am ( z). It should be noted that there is no guarantee that the phase-

plug design that results from the process described above is either practical or physically 

possible.  For example,  the combined area profile calculated from the summation in  7.32 

could give negative area results. So the designer must take care in order for the resulting  

design to be of practical use.

Radial-channel phase plug with part open area

Another option to make a more practical radial-channel phase plug is to only partially cover 

the radiating diaphragm and introduce an open hole to avoid the problematic central region. 

In this situation, the excitation of the compression cavity is considered to come from three 

separate volume velocities on the various parts of the surface of the cavity. Sd the radiating 

diaphragm surface, Se the exit side of the compression cavity where the phase plug is located 

and  Sh the  part  of  the  exit  side  that  is  totally  open.  In  this  case,  the  condition  for  the 

suppression of the cavity modes is

∫
Sd

Ψn( y)ud( y ). ndS+∫
Se

Ψn( y )ue( y)dS+∫
Sh

Ψn( y)uh( y)dS=0
7.33.
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The first of these three integrals is now very familiar and, once again, the parameter  ζn
d
 is 

used to describe the excitation from the dome

ζn
d=∫

Sd

Ψn( y)ud( y).ndS
7.34.

This parameter may be computed either analytically or numerically for a particular radiating  

diaphragm.

The second term is handled in exactly the same manner as for the complete radial-channel  

phase plug in the preceding section. The parameter ζnm
e

 is used to decompose the integral into 

a weighted summation of these determined integrals as

∫
Se

Ψn( y)ue( y)dS=ue∑
m=1

M

bmζnm
e

7.35.

where

ζnm
e =∫

Se

Ψn( z) Am( z)dS
7.36.

and  ue is  the  constant  surface-normal  acoustical  velocity  over  the  open  parts  of  the 

compression-cavity exit surface.

Finally,  the third integral  may be directly evaluated as the velocity over this part  of  the  

surface should also be constant and equal to ue when the compression driver is behaving well

∫
Sh

Ψn( y)uh (y)dS=ue∫
Sh

Ψn( y)dS=ueζn
h

7.37.

The condition for the suppression of the nth mode in the compression cavity is now

ζn
d+ uê(ζn

h+∑
m=1

M

bmζnm
e )=0

7.38.

While the compression driver is behaving well, the channel exit acoustical velocity is related 

to the volume velocity of the radiating diaphragm and the total open area of the exit side of 

the plug, AT , as

ζ0
d+ ue AT=0 7.39.

Using this expression to eliminate ue the condition for suppression of the nth mode is

ζn
d

ζ0
d
−
ζn

h

AT

−∑
m=1

M bm

AT

ζnm
e =0

7.40.
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This can be written in matrix form for the first N modes as

[
ζ01

e ζ02
e

⋯ ζ0M
e

ζ11
e ζ12

e
⋯ ζ1M

e

ζ21
e ζ22

e
⋯ ζ2M

e

⋮ ⋮ ⋱ ⋮

ζN1
e ζN2

e ⋯ ζNM
e
][ b1 / AT

b2 / AT

⋮
bM / AT

]=[
ζ0

d
/ζ0

d
−ζ0

h
/ AT

ζ1
d
/ζ0

d
−ζ1

h
/ AT

ζ2
d
/ζ0

d
−ζ2

h
/ AT

⋮

ζN
d /ζ0

d−ζN
h / AT

]
7.41.

This formulation can now be used to design radial-channel phase plugs with an alternative  

channel shape to the pure cosine weighting. The next section follows the design of a radial-

channel phase plug in its entirety including use of both the alternative radial-channel phase-

plug construction approaches. This section serves to highlight some of the considerations in 

applying these two new techniques.

7.5 The design of a radial-channel compression driver

This  section  outlines  the  design  of  a  radial-channel  compression  driver  from  the  FEM 

modelling stage through to prototyping.  The driver in question is  a 25mm dome tweeter 

designed for use in high-fidelity products. The basic tweeter driver assembly shown in figure 

7.19. A full description of the driver is given in Appendix XII. The tweeter design is almost 

fully complete in this figure and, indeed, is a working design in this form. However, a radial-

channel phase plug was added to increase the sensitivity and improve dispersion.

Figure 7.19. CAD drawing of the basic tweeter assembly before the design of the phase plug.
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7.5.1 The design of the compression cavity

The normalised zeta parameters are critical to the performance of a compression driver. The 

closer these parameters are to the ideal of

ζn
d

ζ0
d
=δ0n

7.42.

the better the performance of the compression-cavity modal-suppression methods. With the 

compression driver design considered now, there is the added complication that, although it 

is  very well  behaved,  the diaphragm is not  perfectly rigidly moving.  This makes it  very 

difficult  to directly apply the techniques of the previous chapter.  The diaphragm velocity 

results that were calculated in the mechanoacoustical FEM model of the tweeter without the  

phase plug, presented in Appendix XII, were used to approximately calculate the zeta values 

of  several  different  candidate  compression-cavity  designs.  To  perform  this  calculation, 

besides the velocity of the diaphragm, it is necessary to know the mode shapes of the cavity.  

These were computed using FEM models of the various candidate designs. As the dome 

moves non-rigidly, it is possible that the zeta parameters vary with frequency. To show this in 

the  results,  the  zeta  parameters  were  calculated  for  every  solution  frequency  of  the  

mechanoacoustical  FEM  model.  This  effectively  redefines  the  zeta  parameters  to  be 

functions of frequency

ζn
d
(ω)=∫

Sd

Ψn( y )ud ( y ,ω) .ndS
7.43.

Four candidate compression cavities are shown in figure 7.20, given the labels J019, J020, 

J021 and J022. 

Figure 7.20. Four candidate compression-driver cavity geometries with subtle variations to the  
construction of the exit surface.
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The first of the cavities, J019, is already a little way into the design process: the exit side of 

this cavity is constructed with a single radius that follows the shifted design approach being a 

0.5mm axially displaced copy of the radius of the dome. The edge of this cavity, covering the 

surround, is relatively bluntly constructed with a straight join between the radius and the 

cavity outer diameter. J020 has the same basic construction as J019 with a refinement to the 

outer  diameter of the cavity, which is constructed from a curve tangent  to the main exit 

surface curve. Additionally, the width of the cavity fades to zero at the very outside diameter.  

The motivation for this change is to try to reduce the cavity volume over the surround. The 

basis for this is in chapter 6, that suggests that the cavity thickness should be proportional to 

the normal-velocity profile of the diaphragm. The normal velocity falls across the surround 

to zero at the clamped outer diameter and, consequently, it follows that the thickness profile 

should also fall to zero. Thirdly, J021 uses a cavity profile of a constant thickness. In other  

terms the exit surface of the cavity is constructed from a single arc that is concentric with the 

main arc of the dome. The edge construction is similar to J020. Finally, J022 is a blend of 

J020 and J021 with the single curve of the exit side neither purely concentric or shifted. The 

following four figures show the normalised zeta functions, ζn
d (ω)/ζ0

d(ω), calculated for each 

of these candidate geometries.

Figure 7.21. Computed ζn
d
(ω)/ζ0

d
(ω) functions for the candidate compression cavity geometry J019.

The four normalised zeta functions of the first cavity, J019, have approximately the same 

value at low frequencies. This is also the case over a wide range of the audio band up to  



Chapter 7, A new channel-positioning methodology for radial compression drivers 229

approximately  8kHz.  The  level  of  the  functions  increases  quite  dramatically  at  high 

frequencies.

The  second  cavity,  J020,  has  completely  different  proportions  of  the  functions  at  low 

frequencies, with the higher terms in particular at a much lower level than J019. In all four of  

the shown functions, there is a clear dip at high frequencies. The trend at the top of the  

computed range is  quite similar  to the previous result,  with all  four functions increasing 

dramatically.

Figure 7.22. Computed ζn
d
(ω)/ζ0

d
(ω) functions for the candidate compression cavity geometry J020.

Figure 7.23. Computed ζn
d
(ω)/ζ0

d
(ω)functions for the candidate compression cavity geometry J021.
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The third geometry, J021, exhibits some features of each of the previous two: there is a clear 

dip in three of the four shown functions. However, no dip is seen in the function n=1. Again, 

the same upward trend is visible at high frequencies. At low frequencies, the functions are of 

quite a similar level to one another. Interestingly, the level is lower than J019: this is perhaps 

not what would have been expected given that J019 is based on a shifted cavity design, 

whereas J021 is a concentric design. This hints that the detail of the outside diameter of the 

cavity is very important, an area that was given little consideration in J019.

Finally, the functions computed for J022 are similar to J021, with three of the four shown 

functions  having  a  dip  in  the  response  and the  same upward  trend at  high  frequencies. 

However, the levels of the functions are slightly different at low frequencies.

Figure 7.24. Computed ζn
d
(ω)/ζ0

d
(ω)functions for the candidate compression cavity geometry J022.

From visual inspection of the computed ζn
d (ω)/ζ0

d(ω) functions, design J020 was chosen as 

the  most  promising.  The decision  is  not  completely  clear  cut.  However,  there  are  some 

distinct  reasons  for  selecting  this  option.  Firstly,  J020  has  the  lowest  level  of  the 

ζn
d (ω)/ζ0

d(ω) functions at low frequencies. All four of the results show a general upward 

trend at high frequencies. This appears to be the influence of the first breakup mode of the 

dome on the functions, which is extremely undesirable from a modal control point of view as 

the modal suppression methods require that the relative excitation of the acoustical cavity 

modes does not vary with frequency. Given that it is not possible to find a cavity geometry 

that avoids this upward trend, then it is thought most sensible to choose the geometry with 

the lowest values of  ζn
d (ω)/ζ0

d(ω) corresponding to the least excitation of the cavity modes 
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from the diaphragm motion. From  this point of view the dips in some of the ζn
d (ω)/ζ0

d(ω) 

functions are quite helpful in lowering the responses at high frequencies. For geometry J020, 

the four ζn
d (ω)/ζ0

d(ω) functions remain below -20dB up to a frequency of 25.3kHz compared 

to 14.6kHz, 17.1kHz and 21.4kHz for geometries J019, J021 and J022, respectively.

7.5.2 The design of the compression-driver channel entrances

Having settled on a geometry for the compression cavity, the next stage in the design process 

is to find the shape of the phase-plug channel entrances. To separate this stage in the design 

from the next step, which is to work on the flaring and blending of the channels, rather than 

modelling the complete driver with the MF cone and infinite-baffle radiation, the tweeter 

assembly with full mechanical parts and rear acoustical arrangement was instead modelled 

with the radiation from the front of the dome coupled to an infinite conical region. This may 

be  achieved  using  wave-envelope  finite  elements,  as  already  introduced  earlier  in  this 

chapter.  For  example,  figure  7.25 shows  the  finite  element  axisymmetric  mesh  of  the 

underlying tweeter design without phase plug and with the front radiation from the dome 

coupled to an infinite conical horn. The angle of the infinite conical horn is the same as the 

throat angle of the small horn indicated in figure 7.19.

Figure 7.25. 2D axisymmetric mechanical and acoustical FEM model of the tweeter prior to phase-
plug design coupled to an infinite conical horn.

The  light-blue  area  of  the  model  is  a  finite  element  mesh  of  acoustical  elements  with 

properties for air without any losses. The yellow region represents a region of acoustical  

absorption in the rear venting tube and is composed of acoustical finite elements having a 

complex bulk modulus and density in order approximate the lossy acoustical behaviour of 

foam. The green region at the front of the driver is a region of wave-envelope elements that 
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have the same acoustical properties as the blue region and model the infinite continuation of 

the conical horn.

The acoustical  pressures  at  three  positions  in  the  infinite  conical  horn,  for  this  2D case 

without any phase plug, are shown in figure 7.26. These pressure responses are sampled at 

the intersection between the finite element and wave-envelope regions at the axis of rotation, 

the wall of the horn and a third position half-way between the other two sampling points.  

The mechanoacoustical model is driven with unit harmonic acceleration. The pressures at the 

three locations are similar to one another, within 1dB up to a frequency of 19kHz and within 

3dB up to 25kHz, indicating that a close to ideal spherically spreading wave is propagating 

in the horn.

Figure 7.26. Acoustical pressure response at three positions in the infinite conical horn of the FEM  
model shown in figure 7.25 for unit axial harmonic acceleration of the voice coil region.

Modelling the tweeter in this manner allows various different geometries for the channel  

entrance to be examined independently from the effect of the channel flare and termination 

by simply expanding the channel-entrance geometry along the conical horn. The simplest 

channel geometry for the radial phase plug is a constant-angle design with each channel  

occupying a constant circumferential portion of the compression cavity exit surface. Figure 

7.27 shows the geometry of an FEM model with infinite conically expanding channels, using 

the technique described above, with each channel occupying a constant-angle of the cavity 

exit surface. In this case, due to the symmetry of the situation, only a 20-degree segment of 

the tweeter is modelled, the angle of the region representing the channel is 9 degrees.
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Figure 7.27. FEM model of tweeter with infinite conical termination and constant-angle radial phase-
plug with 9 channels (wave-envelope region is not shown).

Figure  7.28 shows the  pressure  at  three  positions  in  the  infinite  conical  channel  at  the 

intersection between the FEM and wave-envelope elements. Compared to the plots shown 

for the case without any phase plug, the level of the responses has increased as a result of the 

area reduction in the conical  horn.  There is  also a degradation in the consistency of the 

pressures across the horn. For example, the pressure difference between the axis of rotation  

and the horn wall positions at 14kHz is 1.3dB on this model compared to 0.7dB on the case 

without the phase plug. There is also a large dip in the pressure at the axis of rotation which  

occurs at 26.9kHz.

Figure 7.28. Acoustical pressure response at three positions in the infinite conical horn of the FEM  
model shown in figure 7.27 for unit axial harmonic-acceleration of the voice-coil region.

In section 7.2, the cosine weighting was demonstrated to be the ideal geometry for the radial  

channels when the diaphragm is a rigidly moving spherical cap. In this case, the domed 
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tweeter diaphragm is a relatively good approximation to this ideal. An infinite conical horn 

model of the tweeter was constructed with a cosine weighting applied to the radial channels. 

The geometry of this model is shown in figure 7.29. The channel pressure results are shown 

in figure 7.30 at the same three locations as for the previous infinite conical results.

Figure 7.29. FEM model of tweeter with infinite conical termination and cosine weighted radial  
phase plug with 9 channels (wave-envelope region is not shown).

Figure 7.30. Acoustical pressure response at three positions in the infinite conical horn of the FEM  
model shown in figure 7.29 for unit axial harmonic acceleration of the voice coil region.

Interestingly, the pressures are significantly less consistent in this case, although the dip in 

the axial pressure response is avoided. The cosine weighting is correct for the case when the 

diaphragm is an axially-moving rigid spherical cap. In the previous models exemplary results 

were  shown  using  this  weighting.  In  this  case,  there  is  significant  radiation  from  the 

diaphragm  surround.  In  addition,  the  exit  surface  directly  opposite  the  surround  is 

completely covered and does not form part of the channel entrances. As the open area of the  
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channels mirrors the volume velocity profile of the radiating diaphragm, it seems natural that  

this extra radiation from the surround would require the channels to be wider towards the  

outside diameter  of  the  cavity than the theoretical  cosine weighting.  This is  perhaps the 

reason that the constant-angle cavity outperforms the cosine cavity in this case.

The final phase plug for the tweeter is to be incorporated into a small injection moulded horn 

positioned at the neck of the midrange cone and the combined part is to be manufactured in a  

single-piece  injection  moulding.  It  is  vital  that  the  geometry  of  the  phase  plug  is  

manufacturable. This requires that the thickness of the mechanical parts be kept above a  

sensible minimum, that sudden changes in the wall thickness be avoided and, additionally,  

that the final complete part can be ejected from the moulding tool without any requirement 

for  side  actions.  Neither  the  constant-angle  design  nor  the  cosine-weighted  design  are 

suitable for manufacture in this manner as the channel width tends to zero at the central axis  

of the driver.

Figure 7.31. FEM model of tweeter with infinite conical termination and constant-angle radial phase  
plug with 9 channels with central 5mm diameter hole (wave-envelope region is not shown).

The most straightforward way to ensure a geometry that may be suitable for moulding is for 

a small region at the central axis of the driver to be excluded from the radial channels. This 

may be achieved either by a central open hole in the phase plug or a central peg in the phase 

plug. As an example of the effect of such a change, the FEM model shown in figure  7.27, 

with constant-angle infinitely-conically-expanding channels, was adapted to have a 5mm-

diameter open hole in the centre of the geometry. The geometry of this model is shown in  

figure 7.31 and the corresponding channel pressure results in figure 7.32. Compared to the 

FEM model without the centre hole (figure 7.28) both the consistency of the pressure across 

the channels and also the severity of the dip in pressure at the central axis has severely  

deteriorated.
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In section  7.4 of this chapter, two methods were outlined that allow the geometry of the 

radial channels to be derived in terms of a set of area-weighting functions in order to avoid 

the  excitation  of  the  first  few  compression  cavity  modes.  The  two  approaches  have 

significant advantages over the simple cosine-shaping method. Firstly, whereas the simple 

cosine shaping is only valid for the ideal situation when the radiating diaphragm is a rigidly 

moving  spherical  cap,  the  two  new  channel-geometry  derivation  techniques  use  the 

parameter  zeta  to  characterise  the  excitation  of  the  compression  cavity  by  the  radiating 

diaphragm.  Secondly,  by  carefully  choosing  the  area-weighting  functions,  the  channel 

geometry may be controlled, to an extent. In particular, if all of the area-weighting functions 

are zero over a particular region of the exit surface, then the derived geometry is closed in 

that region. This is particularly helpful at the central axis of the driver where the channels  

inevitably become vanishingly narrow. Alternatively, a second technique was outlined that 

permits the calculation of radial-channel geometries with some part of the diaphragm not 

covered by the phase plug. Again this may be particularly helpful at the central axis of the 

driver.

Figure 7.32. Acoustical pressure response at three positions in the infinite conical horn of the FEM  
model shown in figure 7.31 for unit axial harmonic-acceleration of the voice coil region.

Both  of  the  techniques  were attempted  on  the tweeter  in  question.  The  normalised  zeta 

parameters, ζn
d (ω)/ζ0

d(ω), required for the geometry calculations were already approximated 

for this driver in section 7.5.1.
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After some experimentation, the set of area weighting functions

Am (ϕ)=cos (ϕ (m−1)) 7.44.

was  chosen,  where  ϕ is  the  the  polar angular  position  on  the  channel  entrance  surface 

measured from the axis of rotation. Using these parameters for calculation, two geometries 

were constructed, one with a 5mm-diameter central hole in the compression driver and the 

other, with a central solid plug in the compression driver. The same infinite-channel FEM 

modelling approach was used so that the results are comparable to others in this section.  

Figure 7.33 shows the FEM model of the case with the 5mm central hole in the phase plug.  

Figure  7.34 shows  the  case  with  the  5mm central  plug.  Both  geometries  use  five  area 

weighting functions, have a compression ration of 1.8 and are of a 18-degree segment of the 

driver, equating to a 10-channel phase plug.

Figure 7.33. FEM model of tweeter with infinite conical termination and radial phase plug with  
central 5mm-diameter hole. Channel design method as described in section 7.4.1 (wave-envelope 

region is not shown).

Figure 7.34. FEM model of tweeter with infinite conical termination and radial phase plug with  
central 5mm-diameter plug. Channel design method as described in section 7.4.1 (wave-envelope 

region is not shown).

With these parameters  and area-weighting functions,  both approaches result  in realisable  

channel geometries. The geometry derived for the case with the central plug is particularly  
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interesting: adjacent to the horn wall, the channel width is much greater than on any of the 

previous geometries.

The corresponding channel pressure responses for the case with the central hole are shown in 

figure  7.35.  The  three  channel  pressures  are  similar  to  one  another.  All  three  pressures 

remain within 1dB of each other up to 20kHz and within 3dB of each other up to 23kHz. A 

slight dip is seen in the pressure response at the axis of rotation of the driver. Overall, this is 

a  more  consistent  set  of  channel  pressure  results  than  any of  the  previously  considered 

geometries.

Figure  7.36 shows  the  channel  pressure  results  for  the  case  with  the  central  plug.  The 

channel pressures are extremely close to one another and are within 1dB up to 24.5kHz. The 

three pressure responses are within 3dB up to a frequency of 30.5kHz. This result clearly 

outstrips the performance of any of the previous infinite conical horn models including the 

uncovered dome shown at the beginning of the section.

Figure 7.35. Acoustical pressure response at three positions in the infinite conical horn of the FEM  
model shown in figure 7.33 for unit axial harmonic acceleration of the voice coil region.

The  results  from  applying  the  technique  described  in  section  7.4 are  very  satisfying. 

However, it is interesting to ponder why the version with the open hole in the centre of the 

phase plug was still some way from the performance of the version with the central plug. Up 

to a frequency of 20kHz, the version with the central hole has equally good performance  

compare to the version with the central plug. It is in the frequency region 20kHz to 28kHz  

where the performance of the central hole version is poor. The main issue is seen at the axis 
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of rotation where there is a small dip in the pressure response at 25kHz. A similar dip was 

also seen on some of the previous models.  It  was observed that the depth of this  dip is  

effected by the number of channels in the compression driver.

Figure 7.36. Acoustical pressure response at three positions in the infinite conical horn of the FEM  
model shown in figure 7.34 for unit axial harmonic acceleration of the voice coil region.

Figure 7.37. Comparison of the channel pressure at the axis of rotation of the FEM model shown in  
figure 7.33 for unit axial harmonic-acceleration of the voice-coil region with an equivalent mode  

having 9 radial channels.
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Figure 7.37 shows a detailed comparison of the pressure a the central axis of the channels for 

a 9-channel and 10-channel design. Other than the change to the number of channels, the 

area weighting and compression ratio are kept identically the same. There is a small, but 

clear change in the magnitude of the 25kHz dip. This indicates that the performance loss in  

this region, for the design with the central hole, is largely due to circumferential pressure  

variation.

The  reader  may  recall  that  early  in  the  analysis  of  the  radial-channel  geometry,  the 

assumption was made that the circumferential periodicity was sufficiently high that pressure 

variation in the circumferential  direction could be ignored.  This assumption was used in 

section  7.2 in order to reduce the set of modes that  needed to be included in the driven 

analysis of the compression cavity. What is particularly interesting in this case is that for the 

geometry that has the central plug, this assumption appears to be valid to a higher frequency 

than the version with the central hole.

To understand why there is a difference it  is helpful to visualise the first  circumferential 

mode of the compression cavity in the periodic geometry. As discussed in section  7.2, the 

first  circumferential  mode  that  may  be  excited  in  the  compression  cavity  has  a  

circumferential  order equal to the circumferential periodicity of the driver geometry.  For  

simplicity, it is helpful to consider a thin cylindrical compression cavity geometry that was 

first discussed in section 4.2. The cavity modes in this case are given by the expression

Ψmn (r ,θ)=Anm J m (kmnr ) (e
− j mθ+ e j mθ ) 7.45.

the values of kmn found from the roots of the differentiated Bessel functions of the first kind

dJ m ( jmn )
dr

=0∣
r=a where

kmn=
jmn

r0 7.46.

For the case of the 9-channel radial compression driver, the first excitable circumferential  

mode has a circumferential order of  m=9. The lowest of these modes occurs when  n=1, 

which results in kmn=10.711. 

Figure 7.38 shows this cavity mode with the two horizontal axis the spatial position in the  

cavity and the vertical axis denoting the normalised modal pressure. At the outer diameter of 

the  cavity,  the  mode  has  18  maxima  oscillating  circumferentially  between  positive  and 

negative pressure. In a large section at the centre of the cavity, the mode is approximately 

zero.
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Figure 7.38. First excitable circumferential cavity mode of a thin cylindrical compression cavity when  
the driver has a periodicity of 9.

In terms of the phase-plug design, the extent to which such a mode is excited depends largely 

on the channel geometry at the very outside diameter. The modal excitation due to normal 

velocity at the enclosing surface of the compression cavity is found by the integral

∫
s

Ψnm( y)u( y).ndS
7.47.

When the radial compression driver is working well, the normal acoustical velocity over the 

open regions of the cavity exit surface is approximately constant. The worst-case situation 

for excitation of the cavity mode shown in figure  7.38 occurs when the channels at  the 

outside diameter of the phase plug occupy half of the periodic circumferential angle. In this 

case,  the  circumferential  mode is  likely to  be heavily excited.  However,  if  the  channels  

occupy more than half of the circumference, then the excitation of the circumferential mode 

is not as severe.

For the phase-plug design above with the central hole, at the outside diameter the channels  

occupy a 0.55 proportion of the circumferential segment. For the case with the central plug,  

the channels occupy 0.77 proportion of the circumferential segment. It seems highly likely 

that this is the reason for the better performance of the case with the central plug.

This interesting result raises the possibility of specifically designing channels that have a 

large open area at the outside diameter of the driver. However, this idea raises some practical  

difficulties: in this instance, for the phase plug and horn to be manufactured in a single part,  

it is necessary for there be sufficient material joining the central region, which forms the  

channels,  with the  horn walls.  Additionally,  a  very  wide  open proportion at  the  outside 
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diameter makes avoiding undercuts difficult when flaring the channels into the horn. Given 

these difficulties, this idea has not been pursued further in this thesis.

Naturally,  it  is  possible  to  improve  the  performance  of  the  case  with  the  hole  if  more 

channels are permitted in the phase-plug design. However, the fewer the channels the easier 

the geometry is to incorporate into a moulded part. As a consequence of these results, the 

radial-channel geometry with the central post was selected. In the next section, the design of  

the channel flare is described.

7.5.3 The design of the channel flare

The channels in the previous tweeter models expand in a conical coordinate system and are  

infinite in length. The final tweeter design sits at the centre of a mid-range driver and the 

cone of  the  mid-range driver  acts  as  a  horn for  the  tweeter.  The currently separate  and 

infinite channels must be expanded smoothly into this single horn flare without degradation 

to the smooth responses seen in the infinite channel models. The key to the final design  

working well lies in two key issues. Firstly, in the infinite channel case, a pressure change 

over the entrance surface of the channel causes a single parameter wave to travel down the  

infinite  conical  horn.  Secondly,  the  specific  acoustical  impedance at  the  entrance  to  the 

channels is constant over the coupling surface. These two acoustical characteristics of the 

current infinite channels must be preserved in order for the cavity modal suppression to be 

effective and for a clean wide-band travelling wave to form in the horn.

The majority  of  the  design of  the  channel  flares  was done using FEM models  with the 

channel radiation coupled into an infinite conical horn. It would have equally been possible  

to perform this design work with the channel radiation coupled into the actual MF cone and  

then to use a BE region to model the full tweeter in an infinite baffle. However, this stage in 

the design of the tweeter is performed purely by manual iteration and manipulation of the 

geometry. Consequently it is vital that the solution time of the behavioural models is as short  

as  possible.  This  allows  relatively  fast  iterations  of  candidate  designs,  which  makes  the 

process  much  more  manageable.  The  relatively  small  infinite  conical-horn  terminated 

models take between 10 and 15 minutes to run over a suitable frequency range, whereas a  

full BEM model of the tweeter takes at least one hour to run. This solution-time difference is  

extremely  important.  For  example,  with  a  10-minute  solution  time,  one  can  reasonably 

expect to iterate over roughly 30 designs in a working day. With a one hour solution time, 

only around five or  six  iterations  at  best  can be made and,  additionally,  because of  the 
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waiting time between solutions, it takes a much greater effort to maintain clarity of purpose  

in the task.

In  the  design  of  the  channel  flares,  very  careful  attention  must  be  paid  to  the 

manufacturability of the final design. Following the previous section, the channel entrance 

geometry  has  been determined.  This  final  geometry is  shown in  figure  7.39.  The white 

regions of this figure are solid parts that must be formed in the combined phase plug and 

horn  moulding.  Based  purely  on  this  entrance  geometry,  the  most  difficult  part  of  the 

moulding is at the intersection between the central 5mm-diameter plug and the solid fins that 

form the walls of the channels. In this region the white solid part becomes very narrow.

The moulding is  formed by injection moulding.  In  the  process  of  injection moulding,  a 

negative of the part to be constructed is cut into a steel mould tool. During production, hot 

molten plastic is injected into the tool cavity to form the part.  Once the part has cooled  

slightly and is solid, it must be removed from the mould tool. To allow this, the tool is made 

in two parts that slide apart in a single line of draw. The surface where the two halves of the  

tool meet forms a “split-line”. In order for it to be possible to eject the part from the tool, it is 

necessary for the geometry of the part to monotonically decrease from the split line in the 

direction of the line of draw. If this is not the case, then this results in an undercut that  

prevents ejection and renders the tool useless. Under some circumstances, it is possible to  

design a tool with multiple sliding cores that allows undercuts to be moulded. However, the 

process is most robust and the tooling most cost effective when the part has no undercuts.

Figure 7.39. Plan view of the radial phase plug channel entrance geometry determined in section  
7.5.2, the open regions are shaded, the white regions must be formed by the moulding.
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Figure 7.40. Illustration of the combined horn and phase-plug moulding.

Figure  7.40 shows an illustration of the layout of the horn and phase-plug moulding. The 

tooling split line is shown in red. Clearly, the geometry of the central plug and the horn wall  

are very easy to control to avoid an undercut. The side wall of the channel is much more  

difficult.

Figure 7.41. Illustration of the combined horn and phase-plug moulding showing first suggested side  
wall parametrisation coordinates.

From the starting geometry illustrated in figure  7.39, the channels must expand to fill the 

entire horn. Geometrically, this is quite tricky as the channel walls are curved at the entrance,  

but clearly at the exit each channel should occupy an equal full segment of the horn and the 

channel wall is effectively a straight radial edge. The most acoustically sympathetic way to 
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geometrically construct the channel flare is to parametrise the side wall into a coordinate 

system that  approximately  follows  the  natural  path  of  the  acoustical  wave  fronts  in  the 

channel.

Figure 7.41 illustrates this idea using the parameter coordinates ϕ, which is the polar angle in 

the dome coordinate system and  f ,  which is  a normalised radial  coordinate system. The 

parameter f  is normalised such that it has a value of 0 at the entrance surface and 1 at the 

exit surface. Using this approach, the geometry of the side wall may be parametrised by an  

expression of the form

A flare(ϕ , f )=
2π
N

{F (f )+ A (ϕ) (1−F( f )) }
7.48.

where A flare(ϕ , f ) is the circumferential angular width of the  channel,  A(ϕ) is the channel 

entrance  area  function  and  N  is  the  number  of  radial  channels  in  the  phase  plug.  The 

function  F (f ) controls  the  flare  of  the  side walls  and must  have a  value of  zero at  the  

channel entrance surface and a value of unity at the channel-exit surface. Provided this is the  

case  then  at  the  entrance  surface  the  circumferential  angular  width  of  the  channel  is 

2π A (ϕ)/N  and at the exit surface the circumferential angular width of the channel is 2π /N .

Unfortunately,  although  this  parametrisation  approach  seems  ideally  suited  from  an 

acoustical point of view, it is extremely difficult to avoid undercuts in the side walls of the 

channels. For instance, with the area-weighting function that is the basis for figure 7.39, the 

channel is significantly wider at the outside diameter and, effectively, the side wall has a  

bulge approximately three quarters of the way from the central axis. Expanding this profile  

in a spherical coordinate system, as suggested by the above parametrisation, causes the bulge 

to propagate away from the central  axis as the channel flares.  Depending upon the flare  

function and the length of the plug, this is highly lightly to result in an undercut.

In order to better control the geometry and avoid undercuts in the side wall, the side wall  

parametrisation scheme was slightly adapted to force the lines of constant ϕ to be parallel to 

the tool draft as shown in figure 7.42. With the previous parametrisation, ϕ was equal to the 

polar  coordinate  in  the  channel-entrance  spherical  coordinate  system.  With  the  adjusted 

scheme ϕ is the given by

ϕ=sin−1( r
h0
) 7.49.

where h0 is the radius of curvature of the channel entrance surface and r is the radial distance 

from the centre of rotation. To ensure that ϕ remains in the defined range of the channel area 
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weighting function, A(ϕ), for r> r0 the value sin−1
(r0 /h0) is given, where 2r0 is the outside 

diameter  of  the  channel  entrance  surface.  The  f  coordinate  varies  linearly  in  the  axial 

direction. On the entrance surface, f  again has a value of zero, and, on the exit surface, f  has 

a value of unity.

Figure 7.42. Illustration of the combined horn and phase-plug moulding showing alternative side wall  
parametrisation coordinates.

The same expression for the channel angular width, given in 7.48, may be used with the new 

parametrisation  scheme.  Using  this  approach  the  designer  has  three  different  means  of  

adjusting  the  geometry  at  this  stage:  firstly,  the  location  and shape  of  the  channel  exit  

surface; secondly, the geometry of the central plug; and, thirdly, the flare function F (f ).

The flare function must have a value of zero when f=0 and a value of unity when f=1, the 

family of functions

F (f )=f a
7.50.

was used to investigate the effect of the flare on the tweeter response. The parameter a is a 

positive real valued coefficient that controls the shape of the flare as indicated in figure 7.43. 

Based on this flare function, numerous variations to the channel geometry were evaluated 

using  FEM models.  Approximately  80  different  permutations  of  the  channel  flare  were 

evaluated before a combination of central plug shape, exit surface and flare function were 

found that resulted in satisfactory performance.
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Figure 7.43. Channel flare function, given in equation 7.50, for various different values of a.

The geometry of the central plug and channel-exit surface of model J112 is shown in figure 

7.44. The flare function, F (f ), in J112 is f 0.4, which results in a flare that expands quickly at 

the beginning of the channels and then more slowly towards the channel exit. 

Figures  7.45 and  7.46 show the meshed geometry of model J112. This model is of a 20-

degree segment from the tweeter corresponding to a phase plug with 9 radial channels. All  

regions of  the  model  occupy the full  20-degree segment  and are  axisymmetric  with the 

exception of the air in the radial channel, shown in detail in figure 7.46. 

Figure 7.44. Geometry of the central plug and channel exit surface used in model J112.
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Figure 7.45. FEM model J112 of tweeter with 9 finite length radial channels terminating in an infinite  
conical horn (wave-envelope region is not shown).

Figure 7.46. FEM model J112 of tweeter with 9 finite length radial channels terminating in an infinite  
conical horn. Detailed view of mesh in radial channel. Red stroked line indicates the exit of the  

channel, i.e., at this surface, the green air region occupies the full 20-degree sweep of the model.

The model is excited with unit axial harmonic acceleration applied to the voice-coil region.  

The performance of the this and the other candidate channel-flare geometries were evaluated 

by plotting the pressure responses at a number of positions in the conical-terminating horn at 

the beginning of the wave-envelope region.

Figure  7.47 shows the pressure  response at  10-degree intervals in the conical  horn.  The 

responses at all positions are smooth with little ripple. The slight spreading of the responses,  

with the axial response a little stronger than the others, is due to the short horn region that is  

not a perfect cone but has a slight flare so that, when the tweeter is incorporated in the full  

driver, the flare rate is continuous between the small horn and the midrange cone.
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Figure 7.47. The pressure response at 10 degree intervals in the conical horn of model J112 at the  
intersection between the FE and wave-envelope regions.

Model J112 is almost a completed design for the phase plug. However, on close inspection,  

there  are  a  couple  of  remaining  manufacturability  issues  which  need  to  be  considered. 

Firstly, the horn flare function f 0.4 that was found to work acoustically very well is not ideal 

for manufacture as it results in a very thin region in the horn and phase-plug moulding at the 

beginning of the channels. Secondly, in J112 it has been assumed that the channel walls may 

flare to an infinitely fine edge at the end of the phase plug. This is not achievable in practice.

In order to deal with the first of these problems, a slightly adjusted horn-flare function was 

developed

F (f )=
(f + c)d−c d

(1+ c )
d
−c

d
7.51.

with c and d  real-valued coefficients that control the flare shape. With c=0.1 and d=0.001, 

the new flare function is similar in shape to f 0.4 for 0.5< f < 1, but has a much lower angle at 

the start of the flare, as seen in figure 7.48.
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Figure 7.48. Comparison of modified flare function, which results in a lower flare start-angle, to the  
simple f a flare that was originally used.

In order to address the second issue, that of the indefinitely fine edges created at the end of  

the channels, the expression for the circumferential channel angular width is augmented to 

include an additional term

A flare(ϕ , f )=
2π
N

{F (f )+ A (ϕ) (1−F( f )) }−f w
2r 7.52.

where  w  is the finite width of the edge between neighbouring channels and r is the radial 

position on the channel side wall.

With these slight  adjustments applied,  another FEM model  with an infinite conical  horn 

termination was constructed. The geometry of the FEM model is shown in figure 7.49. 

Figure 7.49. Adjusted version of J112 model incorporating alternative flare function and finite  
channel edges to make moulding possible.
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The horn pressure responses in the same locations as were shown for model J112 are shown 

in  figure  7.50.  Compared  to  those  demonstrated  for  J112 (figure  7.47)  there  is  a  slight 

deterioration, particularly in the axial response that now crosses over with the 10-, 20- and 

30-degree responses in the region between 20kHz and 30kHz. However,  this is, by quite a 

margin, the best performing practically realisable geometry that was found.

Figure 7.50. The pressure response at 10-degree intervals in the conical horn of the adjusted version  
of model J112 at the intersection between the FE and wave-envelope regions.

This design of phase plug was incorporated into a fully coupled FEM/BEM model of the 

tweeter  with  the  full  horn,  incorporating  the  section  that  is  formed  from  the  midrange 

diaphragm,  modelled  in  an  infinite  baffle.  This  model  is  directly  comparable  to  that  

described at the end of Appendix XII for the tweeter without any phase plug. The geometry 

of  the  model  is  shown in  figure  7.51.  The  voice-coil  region  is  driven axially  with unit 

harmonic force.  The pressure radiated into the BEM region is shown in figure  7.52 at a 

distance of 1m from the infinite baffle and at a number of polar angles from the axis of the 

driver.
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Figure 7.51. FEM/BEM model of the final tweeter design in the full MF cone horn mounted in an  
infinite baffle.

Figure 7.52. FEM/BEM simulated far field pressure of the final tweeter design in the full MF cone  
horn mounted in an infinite baffle at a distance of 1m from the baffle and at a number of polar angles.

Figure 7.53 shows the directivity index of the tweeter computed from this FEM/BEM model 

in comparison with the directivity index of the simulated tweeter without the phase plug. Up 

to a frequency of 20kHz, the directivity index is almost identical to the version without the 

phase plug. However, between 20 and 30kHz, the tweeter with the radial-channel phase plug 



Chapter 7, A new channel-positioning methodology for radial compression drivers 253

is less directional, although arguably the directivity index of the tweeter without the phase 

plug is slightly smoother.

Figure 7.53. Comparison of the simulated directivity index of the tweeter with and without the radial-
channel phase plug.

Figure 7.54. Simulated 1m axis pressure response of the tweeter when driven with a constant unit  
harmonic acceleration with and without phase plug.

Figure 7.54 shows the simulated 1m axial pressure response of the tweeter when the voice-

coil  region  is  driven  with  a  constant  amplitude  harmonic  acceleration  compared  to  the  

simulated tweeter without the phase plug. Between 6kHz and 28kHz the pressure response of  

the  tweeter  with the  phase  plug is  higher  than the tweeter  without  the  phase plug.  The 
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maximum increase in the pressure level occurs at 20kHz where the tweeter with the phase 

plug is 3.8dB louder than the tweeter without the phase plug, over a wide frequency range, 

from 13kHz to  27.45kHz,  the  phase  plug provides  at  least  3dB of  gain  in  the  pressure 

response. In addition the pressure response of the tweeter without the phase plug has a point 

of inflection at around 17.6kHz which is markedly improved on the tweeter with the phase 

plug.

7.5.4 The final tweeter design

At this stage of the design, the tweeter was developed into a working prototype. From the 

FEM models of the tweeter a full set of engineering drawings were generated by the KEF 

Audio research and development drawing-office engineers. Small adjustments were made to 

the basic geometry as necessary for manufacture, such as the addition of minimum radii:  

which are absolutely necessary on real parts but tricky to mesh on an FEM model. However,  

a  great  deal  of  care  was  taken  to  follow  the  FEM  geometry  as  closely  as  possible,  

particularly on the horn and phase-plug moulding.

Figure  7.55 shows a photograph of the injection moulded combined horn and phase-plug 

part. This photograph shows the final moulded part. For the initial prototyping stages rapid 

prototype parts  were made in  SLA to test  the design prior  to tooling.  The shape of  the  

channel entrance is quite clearly seen, and is familiar from the illustration in figure 7.39.

Figure 7.55. Off-tool injection-moulded combined horn and phase plug of the tweeter.
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Figure 7.56. Main tweeter assembly with the phase plug removed.

Figure 7.56 shows a photograph of the main tweeter assembly with the phase plug removed. 

The rear-venting tube, which is manufactured as an ABS injection moulding, the metal work 

of the magnet system, the surround and the dome are clearly visible.

Figure 7.57. Horn and phase-plug moulding in position on the tweeter.

Figure  7.57 shows a photograph of the horn and phase-plug moulding in position on the 

tweeter, the yellow surround and silver dome are visible down the radial channels of the 

phase plug. In order to test the tweeter in exactly the same conditions that were modelled  

above, a CNC aluminium test horn was made and is shown in figure 7.58.
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Figure 7.58. Tweeter placed in test horn.

To mimic the 2π steradians radiating space that was used in the FEM/BEM tweeter models, 

the test horn is mounted flush centrally into the wall of a large room (approx 20m square). 

This facility, at KEF Audio (UK) research and development centre, allows approximately 

free-field measurements to be taken by truncating the measured impulse response before the  

first acoustical reflection from the room boundaries. A photograph of this facility, called the 

“Transient Room”, is shown in figure 7.61. Approximately 16ms of impulse response may be 

captured  prior  to  the  arrival  of  the  first  reflection.  This  provides  a  frequency-response 

resolution of 62.5Hz. Figure 7.59 shows the 1m-axial tweeter frequency-response measured 

in  these  conditions  for  a  2.83  RMS  harmonic  input  voltage.  The  simulated  frequency 

response at the same position is also shown. The voltage driven tweeter simulated frequency 

response is calculated from the FEM/BEM model of the final tweeter described above. This 

is done by incorporating the drive point mechanical impedance, derived from the FEM/BEM 

model, into a linear-circuit analysis program. The circuit used to calculate the voltage-drive 

response of the tweeter is shown in figure 7.60 and incorporates a simple lumped model of 

the blocked electrical impedance of the driver,  Zeb and the electromechanical transduction 

stage, with BL=1.54. In addition, in order to obtain the best match between measured and 

simulated tweeter, it was necessary to add a mechanical damper to the drive point of the 

FEM/BEM  model.  This  is  quite  common  when  comparing  modelled  and  measured 

responses, as the model does not include any damping due of air flow in the narrow magnetic 

gap of the driver. In this case, the problem is exacerbated as the tweeter uses a magnetic fluid  
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to seal the gap. This adds significant damping which is not accounted in the FEM/BEM 

modelling.

The  match  between  the  measured  and  modelled  results  is  extremely  good,  the  tweeter 

appears to be working as intended.

Figure 7.59. Measured 1m-axial response of the production driver in the test horn in comparison to  
the simulated frequency response and electrical impedance.

Figure 7.60. Circuit used for full simulation of the tweeter voltage response.

The phase-plug design described in this section was originally developed for the KEF Audio 

Q-series range of loudspeakers, which were launched in 2010. However, as a result of the 

performance of the phase-plug design, the same combined horn and phase-plug moulding 

has subsequently been used in a number of other products including the R-series range of  

loudspeakers and the Blade loudspeaker.
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Figure 7.61. Photograph of the Transient Room measurement facility at the KEF Audio (UK) research  
and development centre. The room measures 20m in all directions. The test horn is visible in the  

centre of the wall opposite the camera. The microphone is positioned on the tall stand and located  
mid-way up the height of the room in order to ensure maximum possible window time.
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7.6 Conclusions

The Smith type approach outlined in this chapter is shown to be equally effective in the 

radial arrangement as the more traditional annular compression driver arrangement. Indeed,  

the same parameters used for the annular case, such as ζn
d, are also used in the radial case and 

additionally the same cavity shaping approaches are applicable. From this chapter it is easy  

to appreciate how other channel arrangements, for example the pepper-pot style phase plug, 

could benefit from a Smith approach to the channel design. Compared to the annular case  

there are some additional considerations in the radial arrangement. Firstly, that the channels 

cannot be easily used to manipulate the wave path from compression cavity to horn throat.  

Secondly, due to the congestion which occurs at the centre of the radial geometry. However, 

it was demonstrated that these problems can be overcome for a particular diaphragm and 

horn arrangement based on a Dodd geometry and the resulting devices show significant  

improvements compared to the non phase-plugged situation.





8 Considerations for non-rigid radiating diaphragms

8.1 Introduction

Prior to  this  chapter,  it  has  been assumed that  the  compression-driver diaphragm moves  

rigidly over the entire working bandwidth. This is a rather convenient assumption and has 

allowed  a  great  deal  of  simplification  in  the  analyses  thus  far.  However,  it  is  a  poor  

assumption for the majority of real compression drivers. In a typical wide-band compression 

driver,  the diaphragm moves approximately rigidly only at  low frequencies, and the first 

structural  modes  of  the  diaphragm  assembly  are  well  within  the  compression-driver 

bandwidth. These modes are typically heavily excited and, at the upper end of the driver 

response, the diaphragm motion is far from rigid. It has been demonstrated in this thesis that, 

at the upper end of the compression-driver bandwidth, the cavity geometry is larger than an 

acoustical wavelength and it is in this region that the acoustical behaviour is hard to control.  

It  is  particularly  inconvenient  that  in  the  same  region  the  mechanical  behaviour  also 

deteriorates.

The displacement amplitude of a compression-driver diaphragm is extremely small and  falls  

with increasing frequency at a rate of approximately 12dB per octave in the mass-controlled  

passband. Consequently, it  is impossible to see the non-rigid behaviour of the diaphragm 

with the naked eye.  However,  there are  a number  of methods that  allow the vibrational 

motion to be captured. Figure 8.1 shows a laser doppler vibrometer scan of a 76.2mm voice-

coil  diameter  compression-driver  diaphragm.  The  geometry  of  this  compression  driver 

diaphragm  is  a  spherical  cap,  of  angle  55  degrees  measured  from  axis  of  rotation  to  

diaphragm  edge.  The  upper  image  shows  the  static  geometry  of  the  diaphragm  for 

comparison with the scanned result. The lower image shows the same geometry with the 

measured surface velocity superimposed. The surface velocity was measured in the axial  

direction for a harmonic excitation of 2.83V RMS at a frequency of 12.8kHz. The velocity in 

the plot is shown for one instant in the input sine signal corresponding to a phase angle of  

201 degrees.  The  amplitude  of  the  displayed surface velocity  is  exaggerated to  make it 

clearly visible. The laser scan was performed at KEF Audio using a laser scanner system 

developed in house. This particular scan was performed by, and reproduced with the kind 

permission of, George Perkins, KEF Research Engineer. The scan shows quite clearly the 

extent  to  which  a  real  compression-driver  diaphragm  bends  at  the  upper  extent  of  the 

bandwidth. Some regions of the dome have a positive axial velocity at this instant, while 

others  move in the  opposite  direction.  Additionally,  there  is  a  relatively clear  pattern of  

vibration at this frequency with three ring regions where little velocity is seen separating 
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annular regions that move in opposite directions. Clearly, the assumption that the diaphragm 

moves rigidly over the entire bandwidth is a very poor simplification in this case.

Figure 8.1. Laser Dopper vibrometer axial-velocity scan of a 76.2mm voice-coil diameter  
compression driver diaphragm at a frequency of 12.8kHz: upper image shows the static geometry for  

comparison, the lower image shows the measured axial velocity superimposed upon the static  
geometry.

In order to investigate the high-frequency diaphragm behaviour, and its  impact upon the 

behaviour of the compression driver, a typical compression-driver diaphragm assembly, with 

a  30μm titanium dome  diaphragm and  a  copper  voice  coil  attached  to  the  skirt  of  the 

diaphragm, was analysed using FEM. The geometry of the diaphragm assembly is shown in 

figure  8.2. The concave side of the diaphragm shares the same surface as the compression 



Chapter 8, Considerations for non-rigid radiating diaphragms 263

cavity analysed in  Appendix XI, in  Example 1. The voice-coil region of the FE model is 

driven with a sinusoidally varying force of amplitude jω such that, in the mass controlled 

region, the voice-coil velocity is of approximately constant aplitude. The model was solved 

at 400 frequencies beginning at 200Hz and increasing with an equal logarithmic spacing to 

20kHz. This model is of the dome in isolation. There is no acoustic fluid adjacent to the  

diaphragm surface and consequently the motion calculated from this model differs from the 

fluid-loaded case. This difference is discussed in more detail later in this chapter.

Figure 8.2. drawing of the compression-cavity diaphragm geometry used for the analysis, dimensions  
are in mm.

Figure  8.3 shows  the  calculated  diaphragm  displacement  at  an  excitation  frequency  of 

200Hz. At this frequency, the diaphragm assembly is rigid and simply translates along the  

axis of rotation.

Figure 8.3. FEM calculated diaphragm displacement with 200Hz harmonic force applied to voice  
coil, results shown at input phase of 180 degrees. Undeformed geometry shown in light grey. The  

amplitude of the displacement is exaggerated to 2mm to clearly show the behaviour.
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Figure  8.4 shows the FEM-calculated diaphragm displacement at 15kHz, at this frequency 

the diaphragm is bending severely. In particular, it is interesting to note that the outer part of 

the dome is displaced with the opposite phase to the inside part. In addition, the voice-coil  

region is displaced significantly in the radial direction.

Figure 8.4. FEM calculated diaphragm displacement with 15000Hz harmonic force applied to voice  
coil, results shown at input phase of 180 degrees. Undeformed geometry shown in light grey. The  
maximum amplitude of the displacement is exaggerated to 2mm to clearly show the behaviour.

The  importance  of  the  diaphragm non-rigidity,  in  terms  of  the  acoustical  design  of  the 

compression driver, is the effect upon the parameter ζn
d, which describes the excitation of the 

cavity  due  to  the  motion  of  the  diaphragm.  The  parameter  ζn
d is  calculated  from  the 

diaphragm velocity and the cavity eigenfunctions using the expression

ζn
d=∫

Sd

Ψn( y)ud ( y).ndS
8.1.

In the previous chapters, it has been assumed that the diaphragm velocity, ud( y), is invariant 

to frequency. This effectively means that the diaphragm must move with the same shape of  

deformation over the entire bandwidth of the driver. Note that the analysis is still valid if the 

diaphragm velocity is dependent upon frequency, provided that the same transfer function 

applies to all points on the diaphragm surface. This can occur, for example, when there is 

some electrical filtering on the input of the driver or as a result of the mechanical impedance 

of the drive point. In the equations for modal suppression, the parameter ζn
d never appears in 

isolation, but always as the ratio ζn
d /ζ0

d. Any overall response characteristic appears in both 

numerator and denominator.
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For the non-rigid case, it is not possible to consider ud ( y) to be invariant to frequency. This 

is a problem in terms of the design of the compression driver because the cavity shaping and 

channel-positioning methods outlined in the preceding chapters are only valid for frequency 

invariant ζn
d /ζ0

d.

To assess the level of non-rigid motion in terms of the modal excitation of the compression 

cavity,  even  though  it  is  of  no  practical  use  in  the  modal  suppression  techniques,  it  is  

instructive to consider the parameter ζn
d as a function of frequency. The functions ζn

d (ω) may 

be approximated using FEM-calculated in-vacuo diaphragm velocity results such as those 

presented at the start of this section. ζn
d (ω) is defined by the expression

ζn
d (ω)=∫

Sd

Ψn( y )ud ( y ,ω). ndS
8.2.

which may be approximated by estimating the integral, using the same method as described 

in  section  5.4.1,  for  each  solved  frequency  in  the  mechanical  FEM analysis  of  the 

diaphragm.

The approximated functions ζn
d (ω) for the combination of the diaphragm shown in figure 8.2 

and the constant-thickness cavity, shown in figure XI.1, are given in figure 8.5.

Figure 8.5. Decibel level of calculated functions ζn
d
(ω) for in-vacuo FEM-calculated non-rigid 

diaphragm and simple constant-thickness cavity described in figure XI.1.
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The normalised functions ζn
d (ω)/ζ0

d(ω) are also shown in figure 8.6. It should be noted that 

these  are  complex  response  functions  giventhat  the  diaphragm  velocity  is  a  complex 

function. At low frequencies, the values of ζn
d (ω) are identical to those for a rigid diaphragm. 

At higher frequencies, where the diaphragm begins to flex, a large peak is seen in all the 

ζn
d (ω) responses at 10kHz. Interestingly, on the figure showing the normalised zeta results,  

ζn
d (ω)/ζ0

d(ω),  this  peak  disappears  in  the  normalisation  process  and  the  more  obvious 

irregularity is then the large peak at 14.5kHz. Comparing the two figures, it is clear that the  

peak at 14.5kHz on the normalised results corresponds to the large dip in the ζ0
d (ω) function.

Figure 8.6. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in-vacuo FEM-calculated non-rigid 

diaphragm and simple constant-thickness cavity described in figure XI.1.

Considering the normalised figure, the variation in the ζn
d (ω)/ζ0

d(ω) functions is severe, for 

example, the n=1 function varies by around 53dB over the calculated range.

The functions ζn
d (ω) and ζn

d (ω)/ζ0
d(ω) may also be approximated for other cavity geometries 

using the same process described above. In chapter  6, a cavity geometry was derived that 

minimised the excitation of the first four cavity modes for the special case where the same 

driver  diaphragm as  shown in figure  8.2 was constrained to  move rigidly.  The resulting 

cavity  geometry  was  shown  in  figure  XI.2.  Using  the  same  in-vacuo  FEM-computed 

diaphragm velocities, the approximated functions ζn
d (ω) for this cavity are shown in figure 

8.7, the functions ζn
d (ω)/ζ0

d(ω) are also given in figure 8.8.
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Figure 8.7. Decibel level of calculated functions ζn
d
(ω) for in-vacuo FEM-calculated non-rigid 

diaphragm and shaped cavity described in figure XI.2.

Figure 8.8. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in-vacuo FEM-calculated non-rigid  

diaphragm and shaped cavity described in figure XI.2.

It is again interesting to note that there is a large peak in all of the ζn
d (ω) functions at around 

10kHz,  which  disappears  in  the  normalised  ζn
d (ω)/ζ0

d(ω) functions.  The  levels  of  the 

normalised functions ζn
d (ω)/ζ0

d(ω) tend to zero at low frequencies where the velocity of the 
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non-rigid  diaphragm,  used  for  this  calculation,  converges  with  the  velocity  of  the  rigid 

diaphragm which, was used for the cavity geometry derivation. Comparing the functions 

ζn
d (ω)/ζ0

d(ω) for  this  shaped cavity to the same results  for the constant-thickness cavity,  

figure 8.6, the level of modal excitation is lower in the shaped case for the entire bandwidth  

below 14kHz and more than 3dB lower below 5kHz. At first  consideration, this level of 

suppression  is  relatively  impressive.  However,  in  the  high-frequency  region,  where  the 

compression-driver and phase-plug acoustics are most difficult to control, the ζn
d (ω)/ζ0

d(ω) 

function are not improved compared to the constant thickness cavity.

With the rigid diaphragm, the excitation of the first  few acoustical  cavity modes can be 

almost completely suppressed when using the cavity-shaping approach (see figure XI.2). It is 

interesting to now take the derived shaped cavity and, rather than using a rigid diaphragm, to 

excite it  using the FEM-calculated in-vacuo diaphragm velocities.  This provides a useful  

illustration of how much deterioration can be expected when the diaphragm is not  rigid. 

Figure 8.9 shows this result in comparison to the rigid diaphragm situation. The pressure at  

the outside diameter of the compression cavity is shown as an illustration of the extent of 

acoustical modal excitation.

Figure 8.9. Diaphragm excited pressure response at the outside diameter of optimised compression  
cavity described in Appendix XI, example 1, for rigid diaphragm motion (as assumed in cavity shape  

derivation) and non-rigid diaphragm velocity approximated by in-vacuo FEM.

In both cases the diaphragm is driven with the same excitation force at the voice-coil region 

of the assembly. The extent of the deterioration in the modal suppression performance is 
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quite startling: the peaks in the pressure response are greater than those for the rigidly driven 

un-optimised cavity, which was shown in figure XI.2.

The first few acoustical eigenfunctions of the compression cavity occur at frequencies of  

0Hz, 4279Hz, 7156Hz, 12859Hz and 16222Hz. Each of these, with the exception of the 

zeroth, may be seen on the rigid-diaphragm plot as a small excursion where the mode is not 

quite completely suppressed. For the non-rigid case, there are large peaks at each of these  

frequencies and, in addition, there are also peaks at approximately 10250Hz and 16200Hz.  

These two frequencies correspond quite neatly to the two peaks seen in figure  8.7. This 

confirms that,  rather than being because of acoustical resonance in the cavity, these two  

peaks are a result of resonance of the mechanical assembly, which in turn results in a huge 

increase in the excitation of the acoustical system.

Figure 8.10. Normalised channel pressure level response of simplified compression driver previously  
shown in figure XI.3 for an ideal rigid diaphragm now driven by the computed in-vacuo response of  

the diaphragm described in figure 8.2.

In  Appendix  XI,  the  shaped  cavity  and  rigid  diaphragm  are  further  developed  into  a 

simplified compression driver model. Figure  XI.3 shows the calculated acoustical pressure 

responses in each of the three phase-plug channels. For comparison, this model was re-run 

using  the  in-vacuo  diaphragm  velocities  to  excite  the  compression  cavity.  The  channel 

pressure responses are shown in figure 8.10 with the same axis limits as in figure XI.3. There 

is a clear and severe deterioration in the consistency and smoothness of the three channel  

responses.
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The FEM model of the simplified compression driver was solved a third time and, in this  

instance, the mechanical structure and fluid regions were fully coupled. The channel pressure 

results for the fully coupled simplified compression driver are shown in figure 8.11. In this 

case, a similar deterioration is seen compared to the rigid diaphragm case. However, the 

difference  between in-vacuo diaphragm-velocity  excitation  and the  fully  coupled  case  is 

large. It is clear that the fluid load on the mechanical structure is very significant and cannot 

be dismissed.

Figure 8.11. Normalised channel pressure level response of simplified compression driver previously  
shown in figure XI.3 for an ideal rigid diaphragm now driven by the diaphragm described in figure  

8.2, note that the fluid and structural regions are fully coupled in this model.

In both the in-vacuo and fully coupled case, the amplitudes with which the acoustical modes 

of the cavity are excited by the diaphragm are completely different from the rigid case, and it 

is this which causes the deterioration in the compression driver performance compared to 

figure XI.3. In this chapter, the possibility of accounting for the non-rigid behaviour of the 

compression driver diaphragm is considered.

8.2 The diaphragm as a modal mechanical structure

The compression driver diaphragm has little mechanical damping and it is most convenient 

to use a modal description of its vibrational behaviour. The approach is extremely similar in 

concept  to  the  modal  approach  to  the  driven  behaviour  of  a  lightly-damped  acoustical  

enclosure that  was introduced in  3.4. A full  introduction to this approach is  provided in 

Appendix XIII.
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The mechanical structure has an infinite set of natural modes, or eigenfunctions, which are 

the solutions to the homogeneous wave equation in the structure, corresponding to each of 

these natural modes is a natural frequency, or eigenfrequency, which is the frequency for  

which the solution to the homogeneous wave equation is valid. The mechanical modes of the 

diaphragm structure, Φn (x ), are scaled to be orthonormal such that

∫
V d

ρ(x)Φn ( x) .Φm (x ) dV=δnm
8.3.

where  ρ(x) is the density of the mechanical structure at the location  x,  V d is the volume 

occupied by the diaphragm mechanical structure, and δnm is the Kronecker delta [47, p.692], 

which has the property that

δnm={0, m≠n
1, m=n 8.4.

The resulting harmonic velocity of the mechanical  structure when driven by a harmonic 

force, f i ( y ), may be expressed as a summation of contributions from each of the mechanical  

modes as

ud ( x )=∑
k=0

∞ jωΦk (x )

ωk
2−ω2 ∫

V d

Φk( y). f i ( y )dV
8.5.

where ωk is the natural frequency corresponding to the nth mode and V d is the volume of the 

mechanical  structure.  One  important  consideration  in  applying this  technique  is  that  the 

boundary  conditions  required  for  the  driven  case  must  be  the  same  as  the  boundary 

conditions for the eigensolution.

Using PAFEC-FE, the modes and natural frequencies of the diaphragm structure described at 

the beginning of this section were analysed. The first twenty natural frequencies are given in  

table 8.1 below.

From this table, it  is  clear that nineteen of these modes lie in the audio bandwidth.  The 

frequency distribution of the natural  frequencies is  interesting.  The first  three modes are 

widely spaced in frequency but the other seventeen are very densely packed. This is clearly  

shown if the natural frequency values are plotted against mode number, as shown in figure 

8.12.
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Mode Number Frequency (Hz)

0 0

1 10225

2 15511

3 16230

4 16976

5 17188

6 17283

7 17344

8 17399

9 17460

10 17535

11 17633

12 17765

13 17940

14 18166

15 18452

16 18806

17 19236

18 19748

19 20349

Table 8.1: Lowest twenty mechanical natural frequencies computed using PAFEC-FE for the  
diaphragm structure shown in figure 8.2.

Figure 8.12. Lowest twenty mechanical natural frequencies computed using PAFEC-FE for the  
diaphragm structure shown in figure 8.2 plotted against mode number.
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This modal distribution is typical of a thin shell like structure: because the material is very 

thin, there is little resistance to bending and the majority of the structural rigidity is derived  

from the  in-plane  stiffness  of  the  shell.  This  shell  stiffness  is  only  effective  where  the  

curvature of the geometry is significant compared to a bending wavelength. As a result, the  

first  modes are widely spaced as they derive a lot of  stiffness from the curvature of the 

geometry. The higher modes ones are closely spaced as the curvature has little effect.

The modal  summation approximation  ignores  damping.  However  light  damping may be 

approximated by adding an additional imaginary term to the quadratic on the denominator in  

the summation, resulting in the expression

ud ( x )=∑
k=0

∞ jωΦk (x )

[ωk
2+ j

ωωk

Qk

−ω2]
∫
V d

Φk( y ). f i ( y)dV

8.6.

where  Qk is a quality factor coefficient that controls the degree of damping of each mode 

[46,  page  95].  This  damping  approximation  is  only  valid  when  the  system  under 

consideration is weakly damped.

Figure 8.13.  Axial displacement level at the axis of rotation of the dome diaphragm illustrated in  
figure 8.2 calculated using a summation of the FEM-calculated modes assuming a Q of 200 in  

comparison to the direct FEM-calculated acceleration a the same position

The in-vacuo axial displacement at the centre of the dome diaphragm was calculated using a  

summation of the FEM-calculated modes and natural frequencies, and is shown in figure  

8.13 in comparison to the direct FEM calculated displacement at the same position. Damping 



274 Chapter 8, Considerations for non-rigid radiating diaphragms

was approximated in the modal summation by using a quality factor of 200 for all modes in 

the summation. The agreement between the two methods is extremely good, the curves are 

separated by 5dB in the figure for clarity.

The parameter  ζn
d has been widely used in the previous sections to quantify the degree to 

which the diaphragm motion excites the compression cavity acoustical modes, and in the 

previous section it was extended as a function of frequency defined as 

ζn
d (ω)=∫

Sd

Ψn (x )ud ( y ,ω) .ndS
8.7.

This extension made it possible to use the parameter to assess the level of diaphragm non-

rigidity  in  terms  of  the  cavity  modal  excitation.  The  function  ud ( y ,ω) is  the  complex 

harmonic  diaphragm  velocity  at  the  point  y  and  frequency  ω.  Substituting  the  modal 

description of the dome velocity, as given in equation 8.5, into the expression for ζn
d gives

ζn
d (ω)=∫

S
d

Ψn(x ){∑k=0

∞ jωΦk(x)

[ωk
2+ j

ωωk

Qk

−ω2]
∫
V

d

Φk( y ). f i ( y)dV }.ndS

8.8.

where the symbol k  is used to index the mechanical modes. Note that the volume integral is 

over  the  mechanical  structure  V d, whereas  the  surface  integral  is  over  the  part  of  the 

compression cavity surface which is occupied by the mechanical structure, Sd.

The  volume  integral  over  the  mechanical  mode  shapes  results  in  an  scalar  excitation 

amplitude for  each mechanical  mode.  Additionally,  it  is  only the acoustical  mode shape 

function,  Ψn (x ),  and the first  of the mechanical mode shape functions,  Φk (x ),  which are 

dependent upon the position on the surface Sd. The expression may be rearranged to give

ζn
d (ω)=∑

k=0

∞ jω

[ωk
2+ j

ωωk

Q k

−ω2 ]
∫
Sd

Ψn (x )Φk(x). ndS∫
V d

Φk( y). f i( y)dV

8.9.

This expression indicates that each of the ζn
d (ω ) functions may be described by a summation 

over the mechanical modes with each term in the summation a rational quadratic function of  

jω. The magnitude of each rational quadratic term is determined by the two integrals, the  

first integral characterises the coupling between the mechanical mode in question and the nth 

acoustical mode.  The second integral calculates the mechanical excitation of the mechanical  

mode in question.
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For clarity, the modal forcing parameter Fk is defined to be the result of the volume integral

Fk=∫
V d

Φk ( y ). f i( y )dV
8.10.

Fk describes  the  forced  excitation  of  each  mechanical  mode.  Additionally,  the  modal  

coupling factor γnk is defined to be

γnk=∫
Sd

Ψn (x )Φk(x). ndS
8.11.

γnk describes how effectively the nth acoustical mode couples to the kth mechanical mode. 

These two parameters allow the expression for ζn
d (ω ) to be written a little more concisely as

ζn
d (ω)=∑

k=0

∞ jωFkγnk

[ωk
2
+ j

ωωk

Q k

−ω2 ] 8.12.

8.3 Optimal diaphragm behaviour for acoustical modal suppression

In the previous section of this chapter, it was shown that ζn
d may be described in terms of the 

mechanical modes of the compression driver radiating diaphragm as outlined in expression 

8.9. Using this expression, the normalised zeta parameters are

ζn
d(ω)

ζ0
d
(ω)

=

∑
k=0

∞ Fk γnk

[ωk
2
+ j

ωωk

Qk

−ω2]
∑
k=0

∞ Fkγ0k

[ωk
2+ j

ωωk

Qk

−ω2] 8.13.

Ideally, for optimal compression-driver behaviour, the parameters  ζn
d /ζ0

d are all zero except 

for n=0. For this to occur, the numerator of 8.13 must be zero when n≠0.

Excluding the case when the terms in the summation cancel one another, each term in the 

summation over k  on the numerator must be zero. This may be achieved if for each term if  

either

Fk=0 or γnk=0 8.14.

Additionally, once again considering  8.13, it is important that there is no frequency at which 

the denominator approaches zero. The reader may recall that this problem was encountered 

in the analysis at the start of this chapter: the ζ0
d (ω) function shown in figure 8.5 has a deep 
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dip  at  14.5kHz,  which  subsequently  appears  as  a  large  peak  in  all  of  the  normalised 

ζn
d (ω)/ζ0

d(ω) functions in figure 8.6.

Concentrating first on the numerator, based on the natural frequencies computed in table 8.1, 

for control of the compression driver  behaviour over the entire audio bandwidth it seems 

likely that it is necessary to control these parameters for at least  0< k< 10. This virtually 

rules out the possibility of using the Fk term to set the numerator to zero. Assuming that the 

compression driver diaphragm is driven approximately with a point force at a position  y d 

then the forcing term Fk may be simplified from equation 8.10 to

Fk≈Φk ( y d) .f i( yd ) 8.15.

In order for Fk to be zero,  then Φk ( y d) must be zero, this implies that the position y d is a 

node of vibration of the k th mode. It is extremely rare for nodes of vibration to lie in the same 

positions for consecutive modes and, additionally, if  Fk is zero for every ωk  in the audio 

bandwidth, except for k=0, this implies that the diaphragm moves rigidly, which has already 

seen to be a poor assumption for a realistic diaphragm.

Thus,  in  order to  optimise  the normalised zeta functions  for  optimal compression driver 

behaviour, it is necessary that

γnk=∫
Sd

Ψn (x )Φk(x).ndS=A δ0nδ0k
8.16.

where A is the coupling factor between the zeroth acoustical and mechanical mode.

With the  exception of  the  zeroth acoustical  and mechanical  mode,  the  acoustical  cavity 

modes should be orthogonal to the mechanical modes over the radiating surface.

This  orthogonality  requirement  appears  in  addition  to  the  natural  orthogonality  of  the 

acoustic and mechanical modes, which are, as previously stated,

∫
V d

ρ(x)Φn ( x) .Φm (x ) dV=δnm
8.17.

and

∫
Sd

Ψn( y )Ψm ( y )μ ( y)dS≈V δnm
8.18.
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These three orthogonality  conditions are very similar  to the  definition of a biorthogonal 

system [47, p.286]. A set of functions,  gn( x) and hn( x), is termed a complete biorthogonal 

system over the closed interval R if they meet the five conditions

∫
R

gm( x)gn(x)dx=cmδmn
8.19.

∫
R

hm (x )hn( x)dx=d mδmn
8.20.

∫
R

gm( x)hn(x)dx=0
8.21.

∫
R

gm( x)dx=0
8.22.

and

∫
R

hm (x )dx=0
8.23.

The most common example of a bi-orthogonal set of functions are

gm(x)=sin (m x) 8.24.

and

hm(x)=cos(m x) 8.25.

with 0< m< ∞ and R=[−π ,π ], which are recognisable as the basis functions of the Fourier 

Series [47, p.292].

Although  this  indicates  that  mathematically  it  is  possible  to  find  functions  that 

simultaneously obey  8.16,  8.17 and  8.18,  what  is  not  immediately clear is  whether it  is 

possible to synthesise a cavity and diaphragm combination whose modes are able meet all  

three of these conditions at least for the first few values of k .
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8.3.1 Fluid-structure coupling

The above  analysis  and  discussion  of  the  compression-driver  diaphragm behaviour  as  a 

modal structure independent from the acoustical compression cavity is an oversimplification. 

The fluid and mechanical structure are coupled along the entire shared surface between the 

diaphragm and the compression cavity. Due to the compression loading arrangement, the 

mechanical  impedance presented by the fluid on the radiating surface of  the  diaphragm, 

often called the radiation impedance, is much larger than on the direct radiating diaphragm 

discussed  in  section  2.3.  In  addition,  to  further  complicate  the  situation,  the  exact  fluid 

loading on the diaphragm may not be fully known at the time of diaphragm design as it is, to 

an extent, dependent upon the horn to which the compression driver is connected and also 

the arrangement of the phase-plug channels.

In section  8.2, a description of the diaphragm motion was outlined in terms of the natural 

frequencies  and  modes  of  the  mechanical  structure.  For  a  lightly  damped  mechanical 

structure, the velocity may be accurately approximated with the summation

ud ( x )=∑
k=0

∞ jωΦk(x)

[ωk
2+ jω

ωk

Qk

−ω2 ]
∫
V d

Φk ( y ). f i( y )dV

8.26.

The integral in each term of the summation may be considered a forcing term that determines 

how  severely  each  mechanical  mode  is  excited.  The  acoustical  pressure  adjacent  the 

diaphragm exerts a force on the diaphragm surface. Including this in addition to the direct  

forcing term gives an expression for the diaphragm velocity, which incorporates the fluid 

loading on the radiating face

ud ( x )=∑
k=0

∞ jωΦk(x)

[ωk
2+ jω

ωk

Qk

−ω2 ] [
∫
V d

Φk ( y) .f i ( y )dV−∫
Sd

Φk ( y) .n p ( y)dS ]
8.27.

Note that the negative is due to the fact that the force is exerted in the opposite direction to 

the face normal. Considering the situation when the diaphragm moves with velocity exactly 

equal to the m-th mechanical mode such that

ud ( y )=
jω

[ωm
2+ jω

ωm

Qm

−ω2 ]
Φm (x )

8.28.
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In this case, in the absence of any other acoustical sources, the cavity pressure is

pm (x )=
jω

[ωm
2+ jω

ωm

Qm

−ω2]
∑
n=0

∞ jωρ0Ψn(x)

V [k n
2−k2 ]

∫
Sd

Ψn( y)Φm( y ). ndS

8.29.

or, using the definition of γnk

pm (x )=
jω

[ωm
2+ jω

ωm

Qm

−ω2]
∑
n=0

∞ jωρ0 γnmΨn(x)

V [k n
2−k 2]

8.30.

The pressure pm (x) adjacent to the surface of the diaphragm exerts a force on the structure  

that excites the k-th mechanical mode with an excitation amplitude of

−∫
Sd

Φk(x).n pm(x)dS=
− jω

[ωm
2+ jω

ωm

Qm

−ω2]
∫
Sd

Φk (x ).n∑
n=0

∞ jωρ0γnmΨn(x)

V [kn
2−k 2 ]

dS

8.31.

which, once again using the definition of γnk, is equivalent to

−∫
Sd

Φk(x).n pm(x)dS=
− jω

[ωm
2
+ jω

ωm

Qm

−ω2]
∑
n=0

∞ jωρ0γnk γnm

V [k n
2−k 2]

8.32.

Inserting the expression for the integral, 8.32, and the expression for the diaphragm velocity, 

8.28, into the modal description of the mechanical velocity, expression 8.27, results in

jωΦm (x )

[ωm
2+ jω

ωm

Qm

−ω2]
=

8.33.

∑
k=0

∞ jωΦk (x)

[ωk
2+ jω

ωk

Q k

−ω2] [∫V d

Φk( y). f i ( y)dV−
jω

[ωm
2+ jω

ωm

Qm

−ω2 ]
∑
n=0

∞ jωρ0 γnk γnm

V [kn
2
−k2 ] ]

From this expression, it is clear that in order to excite the mechanical system in this manner 

it is necessary for the forcing integral to be

∫
V d

Φk ( y ). f i ( y)dV=δkm+
jω

[ωm
2
+ jω

ωm

Qm

−ω2]
∑
n=0

∞ jωρ0γnk γnm

V [k n
2−k 2]

8.34.
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For comparison, when there is no fluid-loading the forcing integral required for the same 

diaphragm velocity, as given in expression 8.28, is

∫
V d

Φk ( y). f i ( y)dV=δkm
8.35.

The interesting result from this exercise is that expression 8.34 indicates that as the modal 

coupling  factors,  γnk,  are  minimised  the  velocity  of  the  fully-coupled  diaphragm  tends 

towards that of the in-vacuo diaphragm.

8.4 The search for the ideal compression-driver diaphragm

In the previous section, a criterion was outlined for the ideal compression driver diaphragm 

in terms of the mechanical mode shapes of the diaphragm structure. Unfortunately, there is 

no straightforward way to determine the ideal structure meeting this criterion. Indeed, it is  

entirely possible that no structure is exactly able to meet the required conditions. There are a  

great number of possible variations of geometry that may be considered as candidates. Thus, 

it makes sense prior to beginning an exhaustive search to first consider the most practical and 

likely options.

The prototypical example of a biorthogonal set of functions is  sin (nx) and  cos(nx). For a 

particular  order  n,  where  one  of  these  functions  is  zero  the  other  has  a  maxima.  The 

acoustical modes of the compression cavity are subject to a rigid-walled boundary condition 

and,   consequently,  at  the  bounding surface the pressure  gradient  in  the  surface normal 

direction is zero. As a result, the acoustical modes of the cavity have maxima at both the 

centre and the outer diameter. Is likely that the ideal diaphragm is simply supported at the 

outside diameter such that the mechanical modes are zero at this location. Practically this is 

difficult to achieve and a fully clamped mechanical termination is a more practical option.  

Such a diaphragm would not have a rigid body mode and the net volume velocity providing 

acoustical output must come from the first mode of the structure. The natural frequency of  

this first mode would determine the natural frequency of the driver F s.

This arrangement is quite convenient in some respects as it potentially allows the diaphragm 

to be directly connected to the phase-plug structure. This is a very nice mechanical situation 

in  terms  of  controlling  the  relative  positions  of  the  diaphragm  and  the  phase  plug. 

Additionally, it is important that the compression cavity is completely closed in order for the 

channel-positioning methodology in sections  4.2 and  5 to  be valid.  With a  conventional 

compression driver, this is often achieved by using a ferromagnetic fluid to seal the voice-

coil  gap  (see  figure  2.15).  However,  it  is  not  always  possible  or  desirable  to  use 
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ferromagnetic fluid in the gap. This is clearly not a problem if the diaphragm is directly 

connected to the phase plug.

For optimal compression-driver performance to high frequencies, it is vital that the volume 

of the compression cavity is minimised. The compression cavity always exhibits a rigid-body 

mode with unity magnitude. This allows the acoustical cavity shape required for a given 

diaphragm to be established in a deterministic manner by applying a similar logic to the 

analysis at the start of chapter 6 as follows.

Recalling that the acoustical cavity modes form an orthogonal set of functions and obey the 

orthonormal relationship

∫
V

Ψn( y )Ψm ( y )dV=V δnm
8.36.

Provided that the compression cavity is a thin shell that closely follows the compression  

driver diaphragm, this integral may be approximated as

∫
Sd

∫
h

Ψn( y)Ψm (y)dhdS=V δnm

8.37.

where the first integral is over the surface of the compression driver diaphragm, which must  

form one full face of the compression cavity, and the second integral is through the thickness 

of  the  compression  cavity  in  a  direction  perpendicular  to  the  driver  diaphragm surface. 

Provided that the compression cavity is small in the direction h, the acoustical modes Ψn( y) 

are very nearly invariant of h and it may be approximated that

∫
Sd

Ψn( y)Ψm (y)μ ( y)dS≈V δnm
8.38.

where  μ( y ) is  a  function  that  describes  the  thickness  of  the  cavity  in  a  direction 

perpendicular to the diaphragm surface at the location y .

Setting m=0, recalling Ψ0( y)=1, dividing both sides by V  results in the expression

∫
Sd

Ψn( y)
μ( y)

V
dS≈δ0n

8.39.

The  expression  describing  the  condition for  optimal  compression  driver  diaphragm 

behaviour was given in 8.16 to be,

γnk=∫
Sd

Ψn (x )Φk(x). ndS=A δn0δ0k
8.40.
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For the case k=0 this simplifies to

∫
Sd

Ψn(x)Φ0(x ). ndS=Aδn0
8.41.

Comparison of 8.39 with 8.41 reveals that the compression-cavity thickness function should 

be  proportional  to  the  zeroth  diaphragm  eigenfunction  in  the  direction  normal  to  the 

compression cavity entrance surface.

μ( y)∝Φ0( y).n 8.42.

This is very convenient on two counts. Firstly, the low-frequency motion of the compression 

driver diaphragm is dominated by the rigid body mode and, consequently, using the first 

mechanical eigenfunction as the thickness-profile for the compression cavity generates an 

almost constant mechanical clearance over the entire diaphragm surface. This ensures that  

the  acoustical  volume  of  the  compression  cavity  is  minimised  for  a  given  mechanical  

clearance. Secondly, the search scope is greatly reduced as for each candidate compression-

driver diaphragm there is a single unique cavity geometry.

Based on the discussion above, a global search approach was devised in order to try and find 

a compression-driver diaphragm that approximately meets the condition in expression 8.16. 

Each step of the global search consists of the following steps:

1. construct  a  PAFEC-FE  mechanical  modal  analysis  model  of  a  candidate 

compression-driver  diaphragm  based  on  geometric  parameters,  such  as  the 

diaphragm curvature angle, which are under optimisation;

2. construct  a  PAFEC-FE  acoustical  modal  analysis  model  of  the  complimentary 

compression  cavity  with  geometry  determined  using  the  method  outlined  above 

along with the modal results from step 1;

3. approximately compute the integral  γnk from the results of step 1, and 2, using the 

same method as was outlined in section 5.4.1 in order to approximate the integral;

4. calculate the value of an objective function based on the computed approximation to 

γnk.

The relationship between the geometric parameters and the objective function is  complex 

and,  as  a  consequence,  a simple  grid approach was used in  order  to  search for  optimal 

diaphragm geometries.  An iterative  minimisation approach is  unlikely to  find the global 

minimum:  however,  minimisation  may  be  a  useful  approach  to  locally  fine-tune  the 

geometry once the global minimum has been located.
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If one considers that the value of the zeroth modal coupling coefficients, γ00, represents the 

desirable  coupling  between  the  acoustical  and  mechanical  systems  then  it  is  helpful  to  

express each coupling term in decibels as 

Γnk=20 log10( γnk

γ00
) 8.43.

For each step of the search a single valued objective function must be calculated from the 

computed values of Γnk. The objective function used for the initial search was the maximum 

value of  Γnk over the range  0≤n≤4 and  0≤k≤3 with the value for  n=0∧k=0 excluded. 

The acoustical cavity was created for each step with 1mm thickness at the axis of rotation. In 

order  to  ensure  that  modal  model  of  the  cavity  is  soluble,  the  minimum thickness  was  

restricted to 0.025mm. It should be noted that this does not necessarily result in a practical 

cavity.

Figure 8.14. Computed values of Γnk for the compression driver diaphragm and cavity combination  
for which the driven cavity response was given in figure 8.9.

Figure 8.15. Computed values of Γ nk for the compression-driver diaphragm and cavity combination  
for which the driven cavity response was given in figure 8.11.
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For reference, figure 8.14 and 8.15 show the first few values of Γnk for the two example non-

rigidly driven compression cavities, previously shown in figures 8.9 and 8.11, respectively. 

The red outlined region depicts the area to be controlled in the search. In both of the figures,  

some of the modes within the audio bandwidth couple almost as effectively as the desired 

zeroth mode coupling. Indeed, in the case shown in figure 8.15, one of the modal coupling 

factors in the audio band is 3dB more effective than the Γ00 factor.

In both of the examples, it can be seen that there is a clear diagonal band where the coupling  

between the acoustical and mechanical modes is most effective. It is also interesting to note 

that, in the case shown in figure 8.14 the values of Γnk are extremely low for the excitation of 

the first  four  acoustical  modes by the rigid-body mechanical  mode.  This is  because this 

particular  cavity  was  designed  using  the  cavity-shaping  methodology,  as  described  in 

Appendix XI, and was based on controlling the excitation of the first four acoustical modes 

for the case when this diaphragm is perfectly rigid.

8.4.1 Global search A

A first attempt to find a compression-driver diaphragm approximately meeting the condition 

on  γnk using the global search approach was performed based on the geometry shown in  

figure 8.16. This geometry was chosen for a number of reasons. Firstly, the inverted roll at  

the outside diameter of the spherical cap section ensures that, in the first mode shape of the 

structure, the main body of the diaphragm translates along the axis of rotation and a useful  

net volume velocity is generated. Secondly, the diaphragm shape is very practical to form 

and  is  quite  commonly  used.  The  outside  diameter  of  the  diaphragm  structure  is  fully 

restrained as if it is glued to a solid structure. The diaphragm geometry was modelled with a 

25μm titanium construction and an outside diameter of 76.2mm.

Figure 8.16. Spherical cap with inverted-roll surround compression-driver diaphragm geometry used  
for global search of γnk .
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The  global  search  was  initially  performed  on  a  regular  grid  of  the  two  geometrical  

parameters “angle” and “roll width”. The parameter “angle” was varied in increments of 2.5 

degrees starting from 30 degree to a maximum of 70 degrees. The parameter “roll width”  

was varied in increments of 0.25mm starting from 2mm to a maximum of 20mm. In each 

step  of  the  search,  in  addition  to  the  maximum  value  of  Γnk as  discussed  above,  the 

diaphragm mass was also recorded.

Figure 8.17 graphically shows the values of Γnk in the global search space. There is a clear 

area of minimum Γnk for large dome angles and when the roll width is approximately 8.5mm.

Figure 8.17. Objective function, Γnk, over first global optimisation parameter space.

Table  8.2 shows the ten geometries with the lowest  objective function.  The very lowest 

objective function found was -11.6dB, which indicates that the greatest coupling factor in the  

range  0≤n≤4 and  0≤k≤3 was 11.6dB lower  than the coupling factor  n=0∧k=0.  The 

coupling factors for this geometry, with angle 70 degrees and roll width 8.5mm, are shown  

graphically in figure  8.18. Comparison of this figure with those shown in figures 8.14 and 

8.15 reveal that in the controlled region, outlined in red, the modal coupling parameter Γnk is 

much lower.

It is also interesting to note that just outside of the controlled region some of the coupling  

factors are extremely high. For example, for the mechanical mode k=1, the coupling factors 

with the acoustical modes n=5 and n=6 are 1.9dB and 5.2dB, respectively. The acoustical 

modes in this case lie right on the top end of the audio band. However, as they severely 

couple to the mechanical modes, the influence may be seen within the audio band.
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Angle (deg) Roll Width (mm) Mass (g) max (Γnk ) (dB)

70.00 8.50 0.726369 -11.628800

70.00 8.25 0.727536 -10.507300

65.00 8.50 0.690432 -10.439400

67.50 8.75 0.706926 -10.358200

67.50 8.25 0.708705 -10.323500

67.50 8.50 0.707900 -10.269200

70.00 8.75 0.725597 -10.230100

65.00 8.75 0.689687 -9.977990

70.00 9.00 0.724598 -9.433200

67.50 9.00 0.706074 -9.030350

Table 8.2: Ten compression driver diaphragm geometries with the lowest objective function resulting  
from the global search, sorted in order of lowest objective function and then lowest mass.

Figure 8.18. Computed values of Γnk for the compression driver diaphragm with geometry according  
to figure 8.16 with the geometric parameters angle=70, radius=76.2/2 and roll width=8.5.

To test the extent to which the acoustical modes are excited by the cavity, a sinusoidally 

driven FEM model was constructed to compute the approximate the in-vacuo mechanical 

velocities of this diaphragm. In this case, the diaphragm was driven axially at the intersection 

of the spherical cap and reverse roll region. However, it should be noted that this position is  

chosen arbitrarily. Indeed, there may be a more suitable location (see the discussion of Fk in 

section 8.2 for more detail). The diaphragm velocities computed in the in-vacuo mechanical 

FEM  model  were  then  used,  along  with  the  FEM  modal  acoustical  analysis  of  the 

compression cavity, to calculate the functions ζn
d (ω)/ζ0

d(ω). The first four terms are shown in 

figure  8.19.  These are  intentionally  placed on the same scale as figures  8.6 and  8.8 for 
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comparison. The computed values of  ζn
d (ω)/ζ0

d(ω) seem quite encouraging as, comparing 

these with figures 8.6 and 8.8, there is a clear reduction in the level of the functions in the 

high-frequency region. However, at the top of the audio bandwidth the level is much higher.

Figure 8.19. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in vacuo FEM calculated non-

rigid diaphragm and cavity found in first global search.

The in-vacuo diaphragm velocities were also used to drive an acoustical sinusoidal FEM 

model  of  the  compression  cavity  with  no  exit  channels  in  order  to  assess  the  level  of  

acoustical modal excitation by looking at the pressure response in the cavity. The results are 

shown in figure  8.20. For comparison, the cavity pressure response previously shown in 

figure 8.9 for a diaphragm and cavity combination that made no attempt to account for the 

non-rigidity  of  the  diaphragm  is  also  shown  (red).  Below  approximately  12kHz  the 

optimised geometry is significantly better than the unoptimised. The three “glitches” on the  

response  occurring  at  4.3kHz,  8kHz  and  12kHz  correspond  to  the  first  three  acoustical  

modes of the cavity, which are given in the axes labels of figure 8.18. These are relatively 

well suppressed. The peak in the pressure response at 14kHz and 15.2kHz correspond to the  

first two mechanical modes of the diaphragm.

Considering figure  8.19, the  ζn
d (ω)/ζ0

d(ω) functions all clearly show glitches at these two 

frequencies  that  have  the  characteristic  close  peak  and  dip  of  a  suppressed  pole.  The 

ζn
d (ω)/ζ0

d(ω) functions have an upward trend and the level of the functions is close to 0dB in 

the region of the glitches, seemingly due to the superposition on the upward trend. To further 
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improve the driven pressure performance it seems that it is necessary to extend the region of  

control of the γnk parameters to include the mechanical modes at the limit of the audio band.

Figure 8.20. In-vacuo diaphragm velocity excited pressure response of an unoptimised compression  
driver diaphragm and cavity combination, previously described in figure 8.9, compared to the cavity  

and diaphragm combination resulting from global search A.

The performance of the diaphragm in a simple driver

To give  an  overall  indication  of  the  performance  of  this  compression  driver  and  cavity 

combination, a fully coupled FEM model was developed including a simple compression 

driver with channels terminated into ideal ρ0 c 0 specific acoustical impedance conditions. As 

was highlighted previously, the compression-driver design method summarised in section 5.4 

requires a single, frequency-invariant  value for the normalised zeta parameters  ζn
d /ζ0

d.  As 

figure  8.19 attests,  the derived geometry does not  provide frequency invariant  values of 

ζn
d /ζ0

d.

For an ideally behaving compression diaphragm and cavity, the ζn
d /ζ0

d parameters are

ζn
d(ω)

ζ0
d(ω)

=δ0n
8.44.

The phase-plug was designed based on these ideal ζn
d /ζ0

d parameters.
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The three channels are placed in the nodal diameters of the third compression cavity mode 

resulting in the computed channel areas

[
A1/ AT

A2/ AT

A3/ AT
]=[0.2399

0.3797
0.3804 ] 8.45.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and  A3 is the area of the outer most channel.  These areas can equivalently be written as  

channel width ratios as

[w2 /w1

w3 /w1
]=[0.7507

0.5673] 8.46.

Using these geometric parameters, a simple compression-driver FEM model was constructed 

with a compression ratio of 15 and with the three channels terminated with a ρ0 c 0 specific 

acoustical  impedance.  The  diaphragm  was  driven  at  the  same  point  as  in  the  above 

calculation of the  ζn
d /ζ0

d functions. The FEM-computed pressures in the three channels are 

shown in figure  8.21. The  pressure levels shown are normalised by the specific acoustical 

impedance of a tube,

Lnorm=20log10∣ p
ρ0 c0

∣ 8.47.

At low frequencies all three channels have a normalised pressure level of 21.4dB. This is 

slightly  lower  than  is  seen  on  the  preceding  simple  compression-driver  models.  This  is 

because this compression-driver diaphragm does not radiate with a rigid-body mode,  but 

rather the first  bending mode and, consequently, the volume velocity for unit  drive-point  

velocity is slightly lower.

The channel pressures are very similar indeed up to ka=2. Above this they begin to diverge 

a little, but even at ka=6  all three channels are within 3dB. Above ka=6, there are distinct 

frequencies where the channel pressures are significantly different. For example, at ka=6.95 

and at  ka=7.92, there is a spread of 12.5dB and 9dB, respectively. However, the general 

shapes of the responses continue to follow the same pattern and between the glitches the 

pressures are relatively close. For example, at ka=7.5 and at ka=8.8 the spread is 3dB and 

4dB, respectively.

The channel pressures in figure 8.21 are directly comparable to those which were previously 

shown  in  figure  8.11.  Comparing  these  two  figures,  it  is  obvious  that  there  is  a  clear 
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improvement  in  the  performance  in  this  case  with  the  pressure  difference  between  the 

channel responses much closer with this geometry. Additionally, it is interesting to observe 

that the channel pressures at the top end of the driver response are higher in this case.

Figure 8.21.Normalised channel-pressure level response for diaphragm and cavity geometry found  
with global search A, with phase-plug geometry computed using the generalised method introduced in  

section 5.4.1, note that the fluid and structural regions are fully coupled.

8.4.2 Global search B & C

The geometry used in the first global search is composed only of a thin titanium membrane. 

There  is  no  voice-coil  region  on  this  particular  geometry.  During  the  global  search  no 

assumptions were made about the location of the drive point and, additionally, the driven 

analyses  were  performed with  an  ideal  point  force  applied  arbitrarily  to  a  point  on  the 

structure.  In  practice  a  voice-coil  structure  must  be  connected  to  some  position  on  the 

diaphragm  membrane.  The  mass  and  stiffness  of  the  voice-coil  assembly  modifies  the 

structural modes of the mechanical system. Consequently, it is not strictly accurate to leave 

the  voice-coil  structure  from the  mechanical  system during  the  global  search.  In  global 

search A the quality function was based only on  the values of coupling parameters γnk. The 

definition of the normalised zeta functions, in terms of the mechanical modes, is

ζn
d (ω)

ζ0
d
(ω)

=

∑
k=0

∞ Fk γnk

[ωk
2+ jωωk Qk

−1−ω2 ]

∑
k=0

∞ Fkγ0k

[ωk
2+ jωωk Qk

−1−ω2 ] 8.48.
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If the drive location is known then the excitation amplitude of each mechanical mode,  Fk, 

may be computed for each candidate geometry in the search. For the case when the structure  

is driven with a point force at a position y d, then the forcing term Fk may be simplified to

Fk=Φk( y d). f i 8.49.

where f i is a point forcing vector. The parameter Γnk
f  is defined to be

Γnk
f =20 log10( Fk γnk

F0 γ00
) 8.50.

and a quality function may then be based on the minimisation of the  Γnk
f  parameters for 

n≠0∧k≠0 . It is possible to plot the Γnk
f  in the same way to the contours of Γnk. Figure 8.22 

shows the  Γnk
f  coefficients for the optimal geometry found in search A for an axial point-

force excitation at the junction between the spherical cap and half roll surround.

Figure 8.22. Computed values of Γ nk
f  for the compression driver diaphragm with geometry according  

to figure 8.16 with the geometric parameters angle=70, radius=76.2/2 and roll width=8.5, driven  
with an axial force at the junction between the spherical cap and the reverse roll regions.

Comparing this figure to  8.18, for this particular drive point generally, the level of the  Γnk
f  

factors are reduced compared to the Γnk factors. It is also interesting to observe that some of 

the factors are now substantially lower, for example, the mechanical mode at 15.2kHz has 

extremely low values of Γnk
f . This indicates that for this particular drive point this mechanical 

mode is weakly excited.
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For comparison figure 8.23 shows the values of Γnk
f  for the situation when the diaphragm is 

driven at the centre on the axis of rotation. For this drive position, the values of  Γnk
f  are 

clearly much worse than for the drive position shown in figure 8.22.

Figure 8.23. Computed values of Γnk
f  for the compression driver diaphragm with geometry according  

to figure 8.16 with the geometric parameters angle=70, radius=76.2/2 and roll width=8.5, driven  
with an axial force centre of the geometry.

A global search based on the same diaphragm geometry described above with the addition of 

a voice coil region was performed using a objective function based on the forced parameters  

Γnk
f .  Although the resulting diaphragm geometric  parameters  were slightly different  from 

those found above, the performance of a simple compression driver using the diaphragm 

showed only moderate improvement compared to the results in figure 8.21. The full details 

are given in Appendix XIV.
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8.4.3 Global search D

The diaphragm geometry used in global search A is fully restrained at the outer diameter. 

This configuration was chosen as the acoustical modes of the cavity had maxima at this 

location.  It  similarly  seems logical  that  at  the  centre  of  the  cavity,  where  the  acoustical  

modes are also maxima, the diaphragm should also be fully restrained.

Figure 8.24 shows the geometry used in global search D. The voice-coil assembly is located 

between two annular radiating regions. Both the outer and the inner region are constructed of 

two tangential curves the ends of which are mechanically fully restrained. The geometry is  

controlled by numerous parameters that permit an extremely wide variation in the diaphragm 

geometry. In itself this presents a significant challenge: computation of the forced coupling  

factors Fkγnk requires the solution of, firstly, a mechanical modal FEM model, then solution 

of the matching acoustical cavity FEM model, finally, the integrals are approximated in order 

to estimate Fk γnk. This process takes approximately 1 second on the solver machine3.

Figure 8.24. Compression-driver diaphragm geometry D used for global search of Fk γnk.

3 The solver computer has two Intel Xeon 5140 2.33GHz dual core processors and 8 GiB 667MHz 
synchronous RAM. PAFEC uses a single core for computation and the iterations were run serially.
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Assuming that the diaphragm outside diameter is fixed, there are potentially 10 parameters 

for variation in the global search. If, for example, it is chosen to solve a full grid of these 

parameters with 10 variations of each, then this requires  1010 computations of the forced 

coupling factors Fkγnk. Given the 1-second solution time of the solver machine, then this full 

analysis would take approximately 317 years to complete. Clearly it is necessary, at least 

initially, to limit the search.

It was decided that the number of active parameters should be reduced to 5, for clarity given 

the notation  p1,  p2,  p3,  p4 and  p5.  These search parameters are related to the geometric 

parameters shown in figure 8.24 by the expressions

R1=5mm 8.51.

R5=
76.2

2
mm

8.52.

R4=R5−2 mm 8.53.

R2=R1+ 2 mm 8.54.

R3=R2+ p1 (R4−R2) mm 8.55.

A5= p4 deg 8.56.

A6= p5 deg 8.57.

A1=(135−A6)(1− p2) deg 8.58.

A2=(135−A6)(p2) deg 8.59.

A3=(135−A5)(p3) deg 8.60.

and

A4=(135−A5)(1− p3) deg 8.61.

The  effect  of  this  parametrisation  is  that  the  inner  diameter  and  outer  diameter  of  the  

diaphragm are fixed and in addition the radii R2 and R4 are fixed at 2mm from the inner and 

outer diameter, respectively. The angle of the diaphragm at the inner and outer diameter is  

fixed to be 45 degrees from the y-axis. The position of the voice coil is permitted to vary as  

are angles A5 and A6. The curvature of the inner and outer annular diaphragm regions may 

also vary with the radios  p2  and  p3, which control the amount of curvature in the inner 

regions,  A2 and  A3, compared to the outer regions,  A1 and A4. The geometry of the voice 
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coil is  fixed with a coil  wind height of  3.5mm, a former length of 7mm and a winding  

thickness of 0.35mm.

Based on this parametrisation an initial  global  search of  the  geometry was run over the  

parameter values

p1=[0.35 0.40 0.45 0.50 0.55 0.60 0.65 ] 8.62.

p2=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ] 8.63.

p3=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ] 8.64.

p4=[30 40 50 60 70 ] 8.65.

p4=[30 40 50 60 70 ] 8.66.

A full grid search in of these parameter values results in 14175 permutations of the geometry,  

which is around a 4 hour solution time.

For this search, two objective functions were evaluated for each step, both are based on the 

forced coupling parameters Γnk
f  which are defined to be

Γnk
f =20 log10( Fk γnk

F0 γ00
) 8.67.

Firstly, the maximum value of  Γnk
f  in the range   0≤n≤4 and  0≤k≤3 with the value for 

n=0∧k=0 not  included and secondly the maximum value of  Γnk
f  for  all  acoustical  and 

mechanical  modes  with  natural  frequencies  <30kHz with  the  value  for  n=0∧k=0 not 

included. The reason for this change is that it  was quickly found that the spacing of the 

mechanical modes for this geometry follows a slightly different pattern from the previous 

geometries with a greater number of modes occurring at low frequencies. The first objective 

function is included for comparison with the previous searches.

Tables 8.3 and 8.4 show the ten geometries found from this search with the lowest primary 

and secondary objective function, respectively. The primary objective function is directly 

comparable to those shown in tables XIV.1 and XIV.2 for geometry B and C. The primary 

objective function is significantly lower in all cases shown in both tables for this geometry. 

Interestingly the geometries that provide the lowest primary objective function are different 

from those that provide the lowest secondary objective function. The geometry that seems to 

be the best compromise between the two objective functions is the last shown in table 8.3.
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p1 p2 p3 p 4 p5 Mass(g) Obj fun (dB) Obj fun 2 (dB)

0.45 0.3 0.1 40 70 1.16219962 -33.726749 -16.307957

0.45 0.3 0.2 40 70 1.12726545 -33.57473 -17.868168

0.4 0.3 0.3 30 70 1.11889648 -32.747311 -17.272783

0.45 0.3 0.3 40 70 1.10171556 -32.417145 -18.171526

0.5 0.3 0.1 50 70 1.13639247 -32.416424 -16.203581

0.5 0.4 0.2 30 60 1.22873569 -31.880079 -18.478706

0.4 0.3 0.2 30 70 1.16684115 -31.856867 -17.453962

0.5 0.3 0.2 50 70 1.11845601 -31.751837 -16.574821

0.6 0.4 0.1 50 60 1.20875919 -31.691792 -10.282484

0.5 0.4 0.3 30 60 1.186885 -31.36709 -19.10997

Table 8.3: Ten compression-driver diaphragm geometries with the lowest primary objective function  
resulting from the global search.

p1 p2 p3 p 4 p5 Mass(g) Obj fun (dB) Obj fun 2 (dB)

0.65 0.3 0.4 50 50 1.23387718 -21.812588 -21.812588

0.6 0.2 0.1 30 40 1.39049864 -20.905472 -20.905472

0.6 0.1 0.1 30 40 1.40781558 -20.898106 -20.898106

0.5 0.5 0.6 30 50 1.13147926 -22.716904 -20.535938

0.5 0.4 0.6 30 40 1.14957571 -21.007446 -20.501404

0.6 0.4 0.3 30 40 1.28177118 -20.899002 -20.462214

0.45 0.8 0.6 30 60 1.08826494 -20.927742 -20.404894

0.45 0.5 0.6 30 50 1.09397531 -22.205452 -20.36969

0.65 0.1 0.5 40 40 1.30630064 -20.362864 -20.362864

0.65 0.2 0.5 40 40 1.28679204 -20.332348 -20.332348

Table 8.4: Ten compression-driver diaphragm geometries with the lowest secondary objective function  
resulting from the global search.

Figure 8.25 and figure 8.26 show the forced coupling factors Γnk
f

 for the geometries with the 

lowest primary and secondary objective functions respectively. Both of the geometries show 

much improved attenuation of the coupling factors compared to previous results. The red 

box indicates the region over which the primary objective function is calculated, figure 8.25 

shows extremely low coupling factors in this region. However the coupling factors for other 

mechanical modes, for example the one occurring at 16.2kHz, are significantly higher.

Figure  8.26 by  contrast  shows  an  extremely  low  level  of  coupling  for  high-frequency 

mechanical  modes at  the  expense of  the  coupling factors  over  the  first  four  mechanical 

modes.  It  is  not  immediately  obvious  from the  Γnk
f

 values  which  of  these  is  the  better 

performing geometry.
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Figure 8.25. Computed values of Γ nk
f  for the compression-driver diaphragm with geometry according  

to figure 8.24 with the parameters p=[0.45 0.3 0.1 40 70 ] corresponding to the lowest  
discovered primary objective function.

Figure 8.26. Computed values of Γ nk
f  for the compression driver diaphragm with geometry according  

to figure 8.24 with the parameters p=[0.65 0.3 0.4 50 50 ] corresponding to the lowest  
discovered secondary objective function.

The normalised zeta functions for each of the geometries were approximated from the in-

vacuo FEM-computed diaphragm velocities in combination with the FEM modal analyses of 

the compression cavity. The results are shown in figure 8.27 and figure 8.28 for the geometry 

with the lowest primary and secondary objective functions, respectively.
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Figure 8.27. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in-vacuo FEM-calculated non-

rigid diaphragm and cavity found with geometry according to figure 8.24 with the parameters 
p=[0.45 0.3 0.1 40 70]corresponding to the lowest discovered primary objective function.

Figure 8.28. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in-vacuo FEM-calculated non-

rigid diaphragm and cavity found with geometry according to figure 8.24 with the parameters 
p=[0.65 0.3 0.4 50 50 ] corresponding to the lowest discovered secondary objective function.

Comparing these with one another the same pattern as was observed in the figures showing 

the forced coupling factors  Γnk
f

 is  seen.  The geometry with the lowest  primary objective 

function has lower levels of  ζn
d (ω)/ζ0

d(ω) over the first four mechanical mode frequencies, 
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but high levels above this. Again, it is not immediately obvious from these figures which is 

the better performing geometry. The nature of the results is slightly different from those in 

the previous sections. In this case, the individual mechanical modes are clearly visible on 

each of the ζn
d (ω)/ζ0

d(ω) functions.

The two sets of results above are slightly contradictory as the forced coupling factors for the  

two geometries found from search D appear to be significantly improved compared to those 

previously presented. However, the ζn
d (ω)/ζ0

d(ω) are a little more difficult to interpret and do 

not show a clear improvement.

The performance of the diaphragm in a simple driver

To get a clear picture of the overall performance of the two new geometries, a three channel  

phase plug was designed and a fully-coupled FEM model of a simple compression driver 

with  channels  individually  ideally  terminated  with  a  ρ0 c 0 specific  acoustical  impedance 

condition was generated for each geometry. In the calculation of the channel positions and 

sizes, ideal values of ζn
d (ω)/ζ0

d(ω)=δ0n were assumed.

For the geometry with lowest primary objective function, this results in channel areas of

[
A1/ AT

A2/ AT

A3/ AT
]=[0.2690

0.2939
0.4371 ] 8.68.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and  A3 is the area of the outer most channel.  These areas can equivalently be written as  

channel width ratios as

[w2 /w1

w3 /w1
]=[0.6576

0.7207] 8.69.

For the geometry with lowest secondary objective function, this results in channel areas of

[
A1/ AT

A2/ AT

A3/ AT
]=[0.1920

0.3075
0.5005 ] 8.70.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and A3 is the area of the outer most channel.
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These areas can equivalently be written as channel width ratios as

[w2 /w1

w3 /w1
]=[0.9013

1.0377] 8.71.

The  resulting  normalised  channel-pressure  levels  are  shown  for  the  primary  objective 

function in figure 8.29 and for the secondary objective function in figure 8.30. The pressure 

levels shown are normalised by the specific acoustical impedance of a tube,

Lnorm=20log10∣ p
ρ0 c0

∣ 8.72.

From these figures, it is quite obvious that the geometry with the lowest primary objective 

function is  clearly  the  better  performer.  Indeed,  the  performance  of  this  geometry  is 

extremely good and the channel pressures show a much greater consistency than the other  

similar results presented in this section with all three channel pressures within 5dB below 

ka=10 (14.3kHz). There are clear “glitches” on the pressure responses at ka of 5.9, 7.0, 8.2 

and  9.5  (8.45,  10,  11.7,  and  13kHz).  While  these  would  seem  to  correspond  to  the 

mechanical  modes of the diaphragm, it  is  interesting to note that  the frequencies do not 

correlate with the in-vacuo natural frequencies of the diaphragm visible in figure 8.25.

Figure 8.29. Normalised channel-pressure level response for diaphragm and cavity geometry found  
with global search D with lowest primary objective function, with phase-plug geometry computed  

using the generalised method introduced in section 5.4.1, note that the fluid and structural regions are  
fully coupled.
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Figure 8.30. Normalised channel-pressure level response for diaphragm and cavity geometry found  
with global search D with lowest secondary objective function, phase-plug geometry computed using  

the method introduced in section 5.4.1, note that the fluid and structural regions are fully coupled.

The simplified  compression driver results  from this and the previous global  searches are 

extremely encouraging  as  they suggest  a  direct  correlation between low modal-coupling 

factors and increased compression driver performance. However, the correlation is not fully 

understood and the results  above raise two clear  points  for further  investigation.  Firstly,  

further consideration is needed to determine the best way of forming an objective function  

from the coupling factors that more directly correlates to a well-performing diaphragm and 

cavity combinations. This would permit the geometric optimisation and search approaches to 

more quickly  identify  diaphragm and cavity combinations  that  correspond to  good final  

driver  performance.  Secondly,  the  inconsistency  between  the  calculated  ζn
d (ω)/ζ0

d(ω) 

functions and the performance of the geometry in the simplified driver models. Improved 

understanding in this area may result in additional methods to improve driver performance.
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8.5 Further consideration of the normalised zeta functions

The excitation of the cavity modes resulting from the diaphragm motion is characterised by 

the functions ζn
d (ω). Optimal behaviour occurs when the normalised functions ζn

d (ω)/ζ0
d(ω) 

are minimised for n≠0. In the previous section, it was shown that this may be achieved if the 

modal coupling factors,  γnk, are minimised for  n≠0∧k≠0. Additionally, using some basic 

analysis, it was demonstrated that if the coupling factors, γnk, are minimised, then the fluid-

loading of the structure is also minimised. Based on this result,  the in-vacuo mechanical  

velocities  have been used in  the  computation of  ζn
d (ω) for  the  various  examples  above. 

However, it is instructive now to take the mechanical velocities from the final simplified 

compression-driver models given at the end of the previous section and recompute  ζn
d (ω) 

based on these. Figure  8.31 shows the functions  ζn
d (ω) for the geometry with the lowest 

primary objective function found in search D computed using the diaphragm velocity taken 

from the in-vacuo FEM analysis.  This  figure  effectively shows the same information as 

figure 8.27, which demonstrated the normalised versions of the same functions ζn
d (ω)/ζ0

d(ω). 

Figure 8.31. Decibel level of calculated functions ζn
d
(ω) for in vacuo FEM-calculated non-rigid 

diaphragm and cavity found with geometry according to figure 8.24 with the parameters 
p=[0.45 0.3 0.1 40 70]corresponding to the lowest discovered primary objective function.
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Figure 8.32 shows the functions ζn
d (ω) for the same diaphragm geometry computed using the 

mechanical velocities from in the fully-coupled simple compression driver model, the results 

of which were shown in figure 8.29.

Figure 8.32. Decibel level of calculated functions ζn
d
(ω) for diaphragm and cavity found with 

geometry according to figure 8.24 with the parameters p=[0.45 0.3 0.1 40 70]corresponding to  
the lowest discovered primary objective function. In this case, the mechanical velocities for the  

diaphragm are taken from the fully-coupled simple compression driver model given in figure 8.29.

There is an obvious and large change in the level of the first mechanical mode. This mode 

provides the volume velocity from the radiator and, consequently, the modal coupling factor 

γ00 is not minimised in the global search. As a result, the first mechanical mode couples very 

effectively to the zeroth acoustical modal of the cavity and the fluid-structure coupling has a 

large effect. The phase-plug channels carry energy out of the system and this has the effect of  

dramatically increasing the apparent damping of the first mechanical mode. Less anticipated 

is  that  there is also a significant  change to the zeta parameters for the other mechanical  

modes. The entire mechanical system behaves like there is significantly more damping than 

in the in-vacuo case. In addition, the frequency of some of the peaks in the zeta function is 

slightly different.

Figure 8.33 shows the functions ζn
d (ω) for the geometry with the lowest secondary objective 

function  found in search  D computed  using  the  in-vacuo calculated  diaphragm velocity.  

Figure 8.34 shows the functions ζn
d (ω) using the diaphragm velocity taken from the simple 

compression-driver model, the results of which were shown in figure 8.30.
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Figure 8.33. Decibel level of calculated functions ζn
d
(ω) for in vacuo FEM calculated non-rigid 

diaphragm and cavity found with geometry according to figure 8.24 with the parameters 
p=[0.65 0.3 0.4 50 50 ] corresponding to the lowest discovered secondary objective function.

Figure 8.34. Decibel level of calculated functions ζn
d
(ω) for diaphragm and cavity found with  

geometry according to figure 8.24 with the parameters p=[0.65 0.3 0.4 50 50 ] corresponding 
to the lowest discovered secondary objective function. In this case, the mechanical velocities for the  
diaphragm are taken from the fully coupled simple compression driver model given in figure 8.30.
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Again, the large increase in damping on the first mechanical mode is seen and, additionally, 

the higher mechanical modes also show an increased damping.

It is easier to correlate these fully-coupled ζn
d (ω) results with the performances of the simple 

compression drivers given at the end of the previous section. One of the highlighted issues 

with the global search methods was the difficulty in correlating the γnk parameters with well-

performing designs. Ideally, with approximation to the fully-coupled mechanical velocity, 

based purely on the mechanical and acoustical modes of the compression driver, it would be  

feasible to estimate the  ζn
d (ω) functions on each step of the search. An objective function 

could then be based upon the estimated  ζn
d (ω) functions, rather than the more abstract  γnk 

parameters. The author has begun working on this approach. However, although the initial  

results are promising, the current approximation to the fluid-loaded mechanical velocity is 

poorer than is required as the basis of a reliable objective function.

8.5.1 The effect of mechanical damping upon the zeta functions

In section 8.2, a description of the zeta functions in terms of the modal coupling factors was 

outlined and described by

ζn
d
(ω)=∑

m=0

∞ jω Fmγnm

[ωm
2+ j

ωωm

Qm

−ω2 ] 8.73.

The  derivation  of  this  expression  does  not  include  any  fluid  loading  of  the  mechanical 

structure. Consequently, the summation is able to closely match the calculations of ζn
d (ω) for 

the cases when in-vacuo driver-velocity FEM results were used. For example, figure  8.35 

shows a comparison of the function  ζ1
d (ω) calculated by integral approximation and using 

this expression.

As is discussed above, the in-vacuo zeta functions give a poor indication of the performance 

of  the  final  driver  so  this  approximation  is  of  limited  use.  However,  this  expression 

highlights that if the mechanical damping of the diaphragm is increased, the Qm parameters 

are reduced and then the ζn
d (ω) functions become less erratic. In addition, in section 8.3.1 the 

fluid-loaded mechanical  behaviour  was  briefly  considered.  The  analysis  in  section  8.3.1 

considered the applied force required on the diaphragm in order for the diaphragm to deform 

purely into a single in-vacuo mode. In summary, in order for the mechanical velocity of the  

diaphragm to be
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ud ( y )=
jω

[ωk
2
+ jω

ωk

Qk

−ω2]
Φm(x)

8.74.

it is necessary for the mechanical excitation of the dome to be

∫
V d

Φk ( y). f i ( y)dV=δkm+
jω

[ωm
2
+ jω

ωm

Qm

−ω2]
∑
n=0

∞ jωρ0γnk γnm

V [k n
2−k 2]

8.75.

At the frequency ωm, the term preceding the summation on the right side of the expression 

simplifies to

Qm

ωm 8.76.

If Qm is large, then the fluid loading at the frequency ωm may be significant, even if the γnk 

parameters have been minimised. Consequently, if the mechanical losses in the  diaphragm 

are increased, the fluid-loading of the mechanical structure is reduced. This is advantageous 

as  the  the  global  search  approaches,  presented  in  the  previous  sections,  attempt  to  find 

structures  where  the  uncoupled  mechanical  and  acoustical  modes  are  approximately 

orthogonal.

Figure 8.35. Comparison of the function ζ1
d(ω) calculated by approximation of the integral  

expression 8.59 using in-vacuo FEM-calculated non-rigid diaphragm velocities with the same  
function calculated using a modal summation approach as given in expression 8.73. In both cases, the 

geometry is of the compression driver as shown in figure 8.24 with the parameters 
p=[0.45 0.3 0.1 40 70 ], corresponding to the lowest discovered primary objective function.
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If there is significant fluid-loading of the diaphragm, then the acoustical and mechanical  

modes  will  not  remain  approximately  orthogonal.  As  a  result,  the  performance  of  the  

compression  driver  will  be  reduced.  It  seems  likely  that  an  increase  in  the  mechanical  

damping will have a very large performance benefit in terms of the overall compression-

driver performance.

To test this hypothesis,  the FEM model of the compression-driver  design found with the 

lowest primary objective function from global search D, with results shown in figure 8.29, 

was  remodelled  with  the  mechanical  damping  coefficient  of  the  diaphragm  structure 

increased from  Qm=200 to  Qm=20. The resulting channel  pressures are shown in figure 

8.36. These results are very encouraging. The channel pressures are much more consistent 

than any of the previously presented non-rigid compression drivers.  Figure  8.37 shows the 

accompanying geometry of the FEM model.

Figure 8.36. Normalised channel-pressure level response for diaphragm and cavity geometry found  
from global search D with lowest primary objective function, with phase-plug geometry computed  
using the generalised method introduced in section 5.4.1. Note that the fluid and structural regions  

are fully coupled. The diaphragm structure has a damping coefficient Qm=20 in this model.

The increase in the mechanical damping is quite significant, but not so drastic that it seems 

unachievable.  High  damping  is  desirable  for  mid-range  direct-radiating  loudspeaker 

diaphragms as they often operate in partial breakup at the upper end of the response. As a  

consequence,  there  are  plenty  of  materials  that  are  commonly  used  in  loudspeaker 

diaphragms that have intentionality high damping. In addition, it was seen at the start of this  
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section that the acoustical coupling between the diaphragm and the compression cavity is 

effective enough to dramatically affect the diaphragm velocity. The effect, in this case, was 

to increase the apparent level of damping in the mechanical structure. This occurred because 

vibrational energy from the dome structure was radiated into the cavity and then through the 

phase-plug channels and out from the system. The diaphragm also radiates from the rear. It is 

conceivable  that  the  mechanical  structure  of  the  compression  driver  may  be  effectively 

damped using  the  rear  radiation.  Most  likely  this  approach would  require  some  closely 

spaced acoustical absorbent material to be placed close to the rear of the dome. Naturally,  

this effect would have to  be accounted for during the design of the diaphragm in order to 

ensure that the  γnk parameters were correctly minimised. This would possibly also provide 

another means of adjusting the modes of the diaphragm, which may help this minimisation.

Figure 8.37.FEM model of a simple compression driver based on the diaphragm and cavity geometry 
found from global search D with lowest primary objective function. Axis of rotation is at the bottom of  

the figure.

8.6 Conclusions

In this chapter the problem of the non-rigid motion of the compression driver diaphragm has  

been considered. It was demonstrated that if the mechanical modes of the diaphragm are 

orthogonal to the acoustical modes of the cavity over the coupling surface then the overall  

acoustical output of the driver is not affected by the non-rigid motion. In addition several  

geometries  were  found,  using  an  optimisation  approach,  which  approximately  meet  this 

criterion.  The  resulting  geometries  show  greatly  improved  performance  in  simple 

compression driver models when compared to designs which take no account of the non-
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rigid  behaviour.  Increasing  the  mechanical  damping  of  the  diaphragm  structure  further 

improves the performance. This is a very exciting development in compression driver design 

and  it  merits  further  work  to  fully  understand  how  to  effectively  search  for  suitable 

geometries and to identify suitable diaphragm arrangements.





9 Conclusions

The linear acoustical operation of compression drivers has been thoroughly analysed in this 

thesis. Several different aspects of the acoustical behaviour have been considered in detail.

Ideal targets for the acoustical behaviour were outlined with the aid of simplified models. It  

was  demonstrated  that,  theoretically,  the  only  additional  fundamental  linear-performance 

restriction on the arrangement, compared to other electromechanical loudspeaker types, is  

the volume of the compression cavity,  which must  be small  in order to maintain a high  

bandwidth. However, in practice it is very challenging to design real devices that do not have 

frequency-response aberrations. This difficulty partly arises because many different aspects 

of the design are dependent upon one another working correctly so that the overall device 

performs  well.  In  addition,  while  in  theory  it  is  easy  to  set  particular  targets  for  the 

compression-driver geometry, in practice these targets are hard to meet. For example, the 

target that the phase-plug channels are all of the same length is difficult to achieve in practice 

because the channels are of different areas, they begin and end in different locations, in most  

circumstances they must  follow curved paths and they must fit  in a finite space without 

intersecting  one  another.  Consequently,  this  thesis  is  largely  concerned  with  developing 

methods,  and figures  of  merit,  which may be used during the design of  real  devices  to 

overcome these practical issues.

The compression-cavity behaviour was considered for annular-channel drivers and it  was  

demonstrated that the conventional guidelines for the channel positioning and sizing, based 

on work by Smith [35], are not optimal with realistic compression-cavity geometries. As a 

first  step  towards  establishing  guidelines  more  suitable  for  practical  compression-driver  

geometries, a similar analysis to that presented by Smith was outlined based on a spherical  

geometry. The spherical geometry is better suited as it more closely matches the geometry  

used by many real  compression drivers.  It  was shown that  this  resulted in an improved  

performance compared to using Smith's guidelines for the spherical case.

A general design methodology was then presented for determining optimal annular-channel 

positions and sizes for compression drivers with arbitrary cavity geometry. This method is 

based  upon  numerical  simulation  techniques  and,  consequently,  accounts  for  the  exact  

geometry of any particular compression-driver design.

During these analyses it was observed that the detailed geometry of the compression cavity, 

and not  just  the  channel  positions and sizes,  had a large impact  upon the overall  driver  

performance. Examination of this effect revealed that certain compression-cavity geometries 

result  in  better  performance as a  result  of  the  manner in which the radiating diaphragm 
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excites the cavity modes. A parameter, ζn
d, was devised to quantify this effect and, using this 

parameter, a target was found for the ideal compression-cavity and diaphragm behaviour.

A method was presented that allows the compression-cavity geometry providing ideal values 

of ζn
d to be determined for drivers that have ideal rigidly moving radiating diaphragms. The  

resulting compression-driver geometries show extremely good performance. However, there 

is a one-to-one mapping between the rigid-body diaphragm and the cavity geometry. With 

some commonly used diaphragm geometries this results in cavities which are impractical. To 

overcome this issue, a method was presented for the design of compression cavities, again  

for rigidly moving radiating diaphragms, which approximately meet the target for  ζn
d only 

within the bandwidth of operation. This method is able to generate alternative geometries for  

the  compression  cavity  that  also  result  in  improved  performance,  but  may  be  of  more 

practical  geometry.  Unfortunately,  as  was  discussed  towards  the  end  of  chapter  6,  this 

method has limitations because it is difficult to control the shape of the resulting cavity and 

also it inevitably requires a cavity of larger acoustical volume.

The channel geometry problem was also considered for compression drivers with a radial-

channel arrangement. An optimal geometry for the radial-channel arrangement was presented 

using a Smith-type approach to the design. However, this optimal geometry suffers from 

practical issues that make the manufacture of such a device nearly impossible. Consequently, 

two methods were described allowing designs to be found that are optimal only over a the 

bandwidth within which the driver operates. These methods allow a greater flexibility in the 

final  geometry of  the radial-channel  arrangement.  As with the  channel-shaping methods,  

there  is  some  difficultly  in  controlling  the  resulting  geometry.  However,  despite  these 

challenges in applying the method, a working driver was developed based on one of the 

methods.  The  resulting  device  showed  extremely  good  performance  and  is  now  used 

commercially in several loudspeaker designs.

Finally, the problem of non-rigid radiating diaphragms was considered. The analyses up to 

this stage in the thesis have ignored the issue of the diaphragm's non-rigid behaviour. It was 

demonstrated, with measured and modelled results, that the non-rigidity of the diaphragm is  

a  significant  issue  for  many  compression  drivers.  Based  on  a  modal  analysis  of  the 

diaphragm structure, a target was outlined, based on a devised parameter γnk that quantifies 

the degree of orthogonality of the mechanical and acoustical modes, in order to give close to 

optimal values of the parameter  ζn
d. If this target is achieved, then the non-rigidity of the 

diaphragm is not  a  limitation on the compression-driver  performance.  In  addition,  if  the 
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target is achieved, the same generalised method for setting the annular-channel positions and 

sizes may be applied to the non-rigid case. Several different simple diaphragm geometries 

were found with favourable values of  γnk. It was shown, using numerical models, that the 

performance  of  simple  compression  drivers  based  on  these  identified  diaphragms 

demonstrated improved performance compared to other non-rigid cases.

To  maximise  the  performance,  many  aspects  of  the  compression-driver  design  must  be 

correct. As a result of the work in this thesis, a clear framework has emerged that may be  

followed during the design process:

 a diaphragm geometry, and accompanying cavity geometry, is found that provides 

favourable values of γnk;

 the channel-entrance geometry is computed, based on the parameters  ζn
d for  low-

frequency diaphragm motion;

 a simple driver model, using separate and ideally terminated channels, may be used 

to assess the performance at this stage;

 assuming the performance is satisfactory, the channel paths are then designed to join 

the compression driver to the horn throat.

The framework is perhaps best illustrated in the example design described in section 7.5. It 

may be appreciated from this section that applying the framework is not simply a case of 

going through the stages. There is a great deal of engineering work to be done at each stage  

to ensure that the overall driver meets the particular required specification. However, it does 

allow the engineer to concentrate, at each stage, on the design of one particular aspect and  

not to end up chasing some particular effect whose source cannot be located. This is often a  

problem that  is  encountered with numerical  modelling of  complex light-weight  radiating 

structures.

There is still a great deal of work to be done in order to fine-tune this framework into a really  

powerful  design  approach.  Perhaps  the  most  important  of  these  is  to  find  a  method  to 

estimate  the  fluid-loaded  functions  ζn
d(ω) from  the  in-vacuo  mechanical  and  acoustical 

modes  of  the  diaphragm  and  cavity.  This  would  allow  the  performance  of  candidate 

compression-driver diaphragms to be quickly and accurately assessed in terms of the overall  

driver performance. In addition to this, the presented targets for ζn
d(ω) and γnk are absolute. It 

seems feasible to approximate the level of performance degradation in the final compression  

driver based on the values of these parameters. This would be a very useful addition, and 

allow the designer to make informed choices at each stage of the design.
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Appendix I Loudspeaker Enclosures

In  this  appendix  the  behaviour  of  enclosure-mounted  direct-radiating  loudspeakers  is 

outlined.

The loudspeaker lumped circuits that were presented in section 2.2 only show mechanical to 

acoustical transduction on one side of the radiating diaphragm; however, in reality, both sides 

of the diaphragm radiate with equal and opposite volume velocity. In section 2.3, above, the 

direct-radiating loudspeaker was considered in an infinite baffle, which acted as a barrier  

between the two radiating sides, preventing the equal and opposite radiation from interfering.  

This “infinite baffle” arrangement is seldom found in reality, the exception being when a 

loudspeaker is mounted in the wall of a room with a very large acoustical volume on the rear 

side.  It  is  much  more  common  for  a  direct-radiating  loudspeaker  to  be  mounted  in  a 

loudspeaker enclosure to separate the rearward radiation. There are many different types of 

loudspeaker  enclosure  design.  In  this  section  the  closed-box  and  vented-box  types  are  

introduced.

The lumped-circuit description of a loudspeaker including mechanoacoustical transduction 

from the rear of the diaphragm coupled to an enclosure of some kind is shown in figure I.1. 

In this figure the volume velocity at the rear of the diaphragm is equal to the volume velocity  

at the front, but with the polarity opposite and the acoustical impedance of the rear enclosure  

is Zab.

Figure I.1. Lumped-circuit representation of a generic electromagnetic loudspeaker including  
mechanoacoustical transduction from the rear of the diaphragm.

In the same way as the acoustical radiation impedance,  Zar,  is commonly described as a 

mechanical radiation impedance, Zmr as defined in equation 2.4, it is also helpful to consider 

the  effect  of  the  box  on  the  mechanical  system  directly  by  transferring  the  enclosure  

acoustical impedance  Zab to the other side of the mechanoacoustical transduction step and 

define the enclosure mechanical impedance, Zmb, to be

Zmb=Zab Sd
2

I.1.
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Overall,  the  enclosure-mounted  lumped-system  mechanical  impedance,  Zmc,  can  be 

described as the sum of three mechanical impedances

Zmc=Z md+ Zmr+ Z mb I.2.

Using this definition, the enclosure-mounted loudspeaker behaviour may be analysed using 

the expressions outlined in section 2.2.

AI.i The effect of the enclosure on acoustical radiation

The direct-radiating loudspeaker analysed in section 2.3 was assumed to have a very specific 

radiating situation – that of a rigidly moving circular diaphragm mounted into an infinite 

baffle. Typically, a cabinet-mounted loudspeaker is not flush mounted into an infinite baffle,  

but  is  placed  directly  into  the  acoustical  radiation  environment.  Acoustically,  this  is  a 

somewhat more complex situation. The infinite baffle situation is commonly referred to as a 

2π radiation environment because the solid angle into which the loudspeaker radiates is 2π 

steradians,  when  the  cabinet-mounted  loudspeaker  is  placed  directly  into  the  radiation 

environment the situation is commonly referred to as a 4π radiation environment. In the 4π 

situation, at high frequencies, where the acoustical wavelength is small compared to the size 

of the cabinet baffle into which the loudspeaker driver is mounted, there is little difference 

observed compared to the 2π situation. However, at low frequencies, when the wavelength is 

much larger than the cabinet dimensions, the loudspeaker cabinet is an insignificant barrier  

to the radiation, and the dispersion of the loudspeaker becomes omnidirectional. Compared 

to  the  2π situation close  to  half  the  pressure  magnitude  is  observed on  the  axis  of  the 

loudspeaker. In between these two extremes there is a transition region. In this region the 

detailed shape of the cabinet and the driver mounting position determines the shape of the 

response. This cabinet effect is commonly called the “diffraction” effect. Olsen studied this 

effect extensively and published axial-response measurements of the transition region for  

some common loudspeaker cabinet shapes [7, p.23], shown in figure  I.2, these results are 

widely reproduced [30, p.318][86, p.347].
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Figure I.2. Reproduction of Olsen's classic loudspeaker enclosure baffle-diffraction experiment..
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The  diffraction  effect  clearly  also  has  an  effect  on  the  acoustical  radiation  impedance  

experienced by the diaphragm; however, this effect rarely considered in detail when simple 

lumped  models  are  used.  The  reason  for  this  that  the  commonly  available  models  for 

diffraction, such as the edge source methods [87,88,89,90], are not suitable for predicting the 

pressure in the near field of the diaphragm and are hence also not  ideally suited for the 

calculation of the effect of the diffraction upon the radiation impedance. Additionally, as was 

discussed  in  section  2.3,  for  a  direct-radiating  loudspeaker,  the  mechanical  radiation 

impedance is very small compared to the mechanical impedance of the driver parts and the 

enclosure  and thus  very tolerant  to  approximation.  It  is  common to assume that  at  low 

frequencies the mechanical radiation impedance is approximately half of that of the infinite-

baffle mounted diaphragm, and can be approximated as

Zmr≈
ρ0 cπ a2

2 [ (k a)
2

2
+ j 8k a

3π ] I.3.

AI.ii The closed-box enclosure

The simplest type of loudspeaker enclosure is the closed-box design with the rear radiation 

from  the  loudspeaker  completely  enclosed  by  a  solid  cabinet.  This  arrangement  is 

schematically shown in figure I.3. This type of loudspeaker enclosure was comprehensively 

analysed by Small [11].

Figure I.3. Schematic of the closed-box enclosure showing a single loudspeaker driver with the rear  
radiation completely enclosed by the cabinet.

At low frequencies, when the dimensions of the cabinet are small compared to the acoustical  

wavelength, the behaviour of the cabinet is simple and, provided that the walls of the cabinet 

are sufficiently rigid, the volume of air trapped in the enclosure behaves like an acoustical  

compliance. It  is common for the enclosure to be partially filled or lined with acoustical 

damping material, such as fibreglass wool, in order to reduce the magnitude of acoustical 

modes at higher frequencies. The result of this is, firstly, to introduce an acoustical resistance 

and,  secondly,  depending  upon  the  quantity  and  type  of  material  used  for  damping,  to 
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slightly increase the apparent acoustical compliance. The additional resistance can also be  

used to mimic the effect of slight flexure of the cabinet walls. The acoustical impedance of  

the enclosure, Zab, can be written as

Zab=
1

jωCab

+ Rab
I.4.

where Cab is the acoustical compliance of the enclosure and Rab is the acoustical resistance of 

the loudspeaker enclosure. The acoustical compliance, Cab, can be equivalently expressed as 

a volume, V ab, using the relation

V ab=ρ0 c0
2Cab I.5.

If there is only a small amount of acoustical damping material, the apparent volume, V ab, is 

approximately equal to the net internal physical volume of the enclosure, V b. The term ρ0 c 0
2
 

in this expression is known as the bulk modulus.

As discussed above, the enclosure acoustical impedance can be  equivalently written as a 

mechanical impedance Zmb defined as

Zmb=
Kmb

jω
+ Rmb

I.6.

where Kmb is the mechanical stiffness equivalent to the acoustical compliance Cab, defined as

Kmb=
Sd

2

Cab I.7.

and Rmb is the mechanical stiffness equivalent to the acoustical resistance Rab, defined as

Rmb=S d
2 Rab I.8.

The overall enclosure-mounted system mechanical impedance,  Zmc, is found by the sum of 

the enclosure impedance, Zmb, and the driver mechanical impedance Zms. Overall, this can be 

written as

Zmc= jωM mc+ Rmc+
Kmc

jω I.9.

In this case the system moving mass M mc is the same as the infinite-baffle system,

M mc=M md+ M mr I.10.
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the system mechanical resistance Rmc is defined as

Rmc=Rmd+ Rmr+ Rmb I.11.

and the system mechanical stiffness Kmc is defined as

Kmc=K md+ K mb I.12.

The terms M md, Rmd and Kmd are the effective mass, damping and stiffness of the mechanical 

parts of the loudspeaker driver, as was discussed in section 2.2.5. The terms M mr and Rmr are 

the  additional  effective  mass  and  damping  due  to  radiation  from  the  front  side  of  the 

diaphragm and, as was discussed for the enclosure-mounted case at the beginning of this  

section, these are slightly different from the infinite-baffle case. Comparison with the system 

mechanical impedance for the infinite-baffle mounted direct-radiating loudspeaker, given in 

equation 2.31, reveals that the closed-box mechanical system has the same structure exactly. 

Because of this,  the behaviour of the closed-box loudspeaker shares many characteristics 

with the infinite-baffle mounted case considered in section 2.3.

Introducing the parameter ωc, the system natural frequency, defined as

ωc
2=

Kmc

M mc I.13.

and the parameter Qmc, the mechanical system Q factor at ωc defined as

Qmc=ωc

M mc

Rmc I.14.

the closed-box system mechanical impedance can be written as

Zmc=ωc
2 M mc [ jω

ωc
2
+

1
Qmcωc

+
1
jω ] I.15.

It is common to define the cabinet losses as a Q factor independently from the driver, usually 

given the name Qmb defined as

Qmb=ωc

Mmc

Rmb I.16.

This is particularly common in enclosure design software primarily because it is easy for the  

designer to set the value, a typical loudspeaker enclosure with reasonably rigid and well-

sealed walls has a Qmb of between 7 and 15.
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The low-frequency axial pressure response of the closed-box loudspeaker is

pax (r )=
ρ0

4πr
Sd

M mc

BL
Re [V G( jω

ωc
)] I.17.

where the function G(s) is defined to be

G (s )=
s2

1+ s/Qtc+ s2
I.18.

and the Q-factor of the system, Qtc, is found from the expression

Qtc=
Q ecQmc

Qec+ Qmc I.19.

where Qec is the electrical Q-factor at the system natural frequency, defined as 

Qec=ωc

M mc Re

B2 L2 I.20.

In comparison to the  infinite-baffle mounted piston, the nature of the response is identical 

except for the halving in the pressure output because of the  4π radiation conditions. The 

effect of the closed-box enclosure is to increase the system natural frequency by the square  

root ratio change in mechanical stiffness, because of the compliance of the air trapped in the 

cabinet,

ωc
2

ωs
2
=

Kms+ K mb

K ms I.21.

This shift in the system natural frequency also has an effect on the system Q-factor which  

increases in approximate proportion to the shift in natural frequency compared to the case 

without enclosure,

Q tc

Qts

≈
ωc

ωs I.22.

This expression is a good approximation unless the cabinet is heavily filled with absorbent 

materials,  in  which case the  Q-factor  contribution from the box is  more significant  and  

restricts this system Q increase.

The other figures of merit of the closed-box loudspeaker follow the same form as the direct-

radiating loudspeaker in section 2.3 and are summarised below. Notice the change from 2π 

radiation conditions to  4π radiation conditions indicated in the denominator of many of 

these expressions.
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The diaphragm excursion is given by the expression

x= 1
M mc

BL
Re
[V G ( jω/ωc )

−ω2 ] I.23.

The pressure sensitivity given by the expression

psens=
ρ0

4 π
Sd

M mc

BL
Re I.24.

The low-frequency power sensitivity given by the expression

P sens=
ρ0

2c 4π
S d

2

M mc
2

B2 L2

Re
2

I.25.

The pass-band efficiency is given by the expression

ηpass=
ρ0

4π c

Sd
2

M mc
2

B2 L2

Re I.26.

AI.ii.i Maximum bandwidth

The expression for the pass-band efficiency, in expression I.5, may be equivalently written

ηpass=
V ac

4π c3

ωc
3

Qec I.27.

where V ac is the volume of air having the same stiffness as the system mechanical stiffness 

Kmc, given by the expression

V ac=ρ0 c2 Sd
2

K mc I.28.

For  minimum cabinet  volume and maximum bandwidth  and efficiency,  the  loudspeaker 

system is usually designed so that the driver suspension stiffness, Kmd, is a small fraction of 

the overall system mechanical stiffness, Kmc. In this case, V ac is approximately equal to the 

effective enclosure volume V ab and the efficiency relationship becomes

ηpass≈
V ab

4π c3

ωc
3

Q ec I.29.

This  expression  neatly  outlines  the  compromises  that  are  present  when  designing  a 

loudspeaker  system.  The  electrical  Q  factor,  Qec,  should  be  minimised  for  maximum 

efficiency.  Qec has a dominant effect on the shape of the system response so, in practice, it is 
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usual to try and minimise other losses in the system, such as the mechanical loss Rmd and the 

acoustical cabinet loss  Rab, so that  Qec can be as small as possible for the desired overall 

system Q-factor,  Qtc. The other parameters must be set by the loudspeaker designer for the 

best  compromise  between  box  volume,  efficiency  and  low-frequency  extension,  for  the 

particular application they are considering.

Figure  I.4 shows  the  simulated  1m  axial  sound  pressure  level  response  of  an  example 

loudspeaker driver driven with an input voltage of 1v, radiating into a 2π environment. Both 

these simulations use the rigid planar circular piston radiation model, as was described in  

section  2.3.  The response is shown for the situation when there is no rear loading on the 

diaphragm and when the rear surface of the diaphragm is attached to a lossless closed-box of  

14L  internal  volume.  The  simulated  driver  has  a  purely  resistive  blocked  electrical  

impedance with a voice coil resistance of  Re=3.2 Ohms. Measured in free air, the driver 

mechanical parameters are  ωs=2π 45 rads-1,  Qms=12,  Qts=0.38,  BL=6 NA-1 and  Sd=200 

cm2. The other mechanical parameters of the driver, such as the M ms, can be calculated from 

these values.

Figure I.4. Simulated sound pressure level response of a loudspeaker driver radiating into a 2pi  
environment for the situation when there is no read loading on the diaphragm (blue) and when the  

rear is loaded with a 14L lossless closed box.
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Both responses are 2nd order high-pass functions, but there is a clear difference in the shape 

of  the  responses.  The  effect  of  the  closed-box  rear  loading  is  to  increase  the  system 

resonance frequency from 45 Hz to 92.3 Hz, and to increase the response Q factor from 0.38 

to 0.779.

AI.iii The vented-box enclosure

Figure I.5. Schematic of the vented-box enclosure showing a single loudspeaker driver with the rear  
radiation enclosed by a cabinet that has a single vent connecting the inside of the enclosure to the  

radiating environment.

The vented-box loudspeaker  enclosure  is  very common.  With this  type of  enclosure  the 

driver is mounted in one face of a rigid-walled cabinet that is completely sealed with the 

exception of  a  vent  –  a  narrow constriction  that  connects  the  inside  of  the  loudspeaker  

enclosure  to  the  radiating  environment.  This  layout  is  depicted  in  figure  I.5.  This 

arrangement was first analysed by Thiele [8][9] and later by Small in a comprehensive series 

of  papers  [13][14][15][16].  The  vent  from  the  inside  of  the  enclosure  to  the  radiating 

environment behaves as a Helmholtz resonator [18, pp. 284-286].

The enclosure loads the radiating diaphragm with a mechanical impedance, Zmb, given by the 

expression

Zmb=Rmb+
K mb

jω
−

(Rmb+
K mb

jω )
2

jωM mv+ Rmb+
Kmb

jω I.30.

The terms are familiar from the closed-box enclosure analysis with the exception of  M mv, 

which is the mechanical dual of the enclosure vent acoustical inertance. The loudspeaker 

system mechanical impedance at the drive point of the loudspeaker driver is given by the 

sum of the cabinet impedance with the impedance of the driver.
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This results in the overall vented-box mechanical impedance given by the expression

Zmc= jωM ms+ Rms+
Kms

jω
+ Rmb+

K mb

jω
−

(Rmb+
Kmb

jω )
2

jωM mv+ Rmb+
K mb

jω I.31.

where  M ms,  Rms and  Kms are  the  loudspeaker  driver  diaphragm  mechanical  part  mass, 

resistance and stiffness respectively inclusive of acoustical loading on the front surface due 

to acoustical radiation. From this expression, the voltage driven diaphragm velocity may be 

found using the relation

ẋ d

V
=

BL

Z mc Z eb+B2L2
I.32.

as was outlined in section 2.2.2, expression 2.11. The volume velocity at the exit of the vent 

can be expressed in terms of the diaphragm velocity as

U p

ẋd

=−S d

Rmb+
Kmb

jω

jωMmv+ Rmb+
Kmb

jω I.33.

Note the negative in front of the Sd term that occurs because forward motion of is considered 

positive and the enclosure is driven from the back of the radiating surface. For both of these  

radiating components, it is assumed that the pressure radiated may be found from the volume 

velocity using the low-frequency far-field approximation

p (r )= jωU
ρ0

4πr
e− jkr

I.34.

Notice that this expression is for radiation into a  4π environment. Assuming that the vent 

and the diaphragm are located close to one another such that they can be considered to be at 

the same distance,  r, from the listener, then the total pressure from the loudspeaker can be 

expressed in terms of the volume accelerations of the two radiators as,

p (r )= jω(U d+ U v )
ρ0

4 πr
e− jkr

I.35.

After a little manipulation this can be written as

p(r)=
ρ0

4πr
Sd

M mc

BL
Re [V G( jω

ωv

,
jω
ωs
)]

I.36.
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where the response function G is defined as

G(s s , sv)=
sv

2 s s
2

(sv
2
+

sv

Qav

+ 1)(s s
2
+

ss

Qts

+ 1)+ α sv
2 ( sv

Qav

+ 1) I.37.

where  ωs is the natural frequency of the loudspeaker driver including the radiation load,  

defined as

ωs
2=

Kms

M ms I.38.

 ωv is the natural frequency of the vent when the diaphragm is stationary, calculated as

ωv
2=

K mb

M mv I.39.

The parameter Qav is the Q-factor of the vent at ωv, defined as

Qav=ωv

Mmv

Rmb I.40.

the parameter  Qts is  the total  Q-factor of the driver,  including mechanical  and electrical  

damping, at the natural frequency ωs, as defined in equation 2.43.

The parameter α is the ratio of the stiffness of the box to the stiffness of the driver, defined 

as

α=
Kmb

K ms I.41.

Small shows that the response function G  may be written in the form of a general fourth 

order high pass with filter coefficients a1, a2, and a3 as

G(s)=
s4

s4+ a1 s3+ a2s2+ a3 s+ 1 I.42.

where the variable s is defined to be

s=
jω

√ωsωv I.43.
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The filter coefficients are found by comparison with the denominator of I.4 to be4

a1=
hQav+ (h2+ α )Qts

h3 /2Qts Qav I.44.

a2=
h+ (α+ 1+ h2 )Qts Qav

hQ tsQav I.45.

and
a3=

hQav+ Qts

h1/2 Qts Qav I.46.

where the parameter h is the ratio of the two natural frequencies, h=ωv/ωs.

In this form, it is easy to see that, at low frequencies, the frequency response of the vented-

box loudspeaker has a forth order high-pass characteristic,  with an asymptotic roll-off of 

24dB  per  octave.  The  parameters  a1,  a2 and  a3 are  equivalent  to  the  analogue  filter 

coefficients  used  in  signal  processing  theory  [27],  many  different  response  shapes  are 

possible with the 4th-order high-pass function each characterised by these coefficients. The 

breakthrough of Small [13] and Thiele [8] was to realise that it was possible to write the 

equations  of  motion  for  the  enclosure  mounted  loudspeaker  in  a  form  that  allows  the 

loudspeaker designer to specify a response in terms of these well-known filter coefficients;  

such  as  those  published  describing  the  Butterworth  response  [91][92],  the  Tchebychev 

response [93] and less common filter types [94][95]; and then to quickly arrive at physical 

targets for the mechanical and acoustical parameters of the loudspeaker system to achieve 

that response. Figure I.6 shows a comparison of several of these high-pass alignments with 

x-axis normalised so that ωs=1. For the Butterworth alignment, the two natural frequencies 

are equal, ωv=ωs=1. For the alignments to the right of the Butterworth, the tuning frequency 

of the vent, ωv is greater than the tuning frequency of the driver ωs. For the alignments to the 

left  of  the Butterworth,  the  reverse  is  true and  ωv< ωs.  The choice of response shape is 

largely  down  to  the  preference  of  the  designer,  with  smoothness  of  the  response,  low-

frequency extension and the practicality of the required parameters important considerations.

4 Note that expression I.3 is slightly different from that published by Small [13]. This results from a 
term in the denominator his equation 13 that  he has either neglected or  omitted.  The term in  
question, using Small's notation, is s

3αT v
3/Q L. The effect of this term is very small if there is little 

acoustical damping – as was the case for much of Small's study.
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Figure I.6. Comparison of several possible vented-box high-pass alignments frequency normalised so  
that ωs=1.

Figure I.7 shows the normalised diaphragm displacement for a lossless vented enclosure in 

comparison to to a closed-box design having the same sensitivity, -3dB point and diaphragm 

area. At the natural frequency of the vent, ωv, the excursion of the driver goes to zero and the 

excursion is reduced over a wide frequency region in comparison to the closed box.

An additional important difference between the closed and vented system is that, while the  

driver free air resonant frequency, ωs, for a closed-box system must be at a lower frequency 

than the system cut-off frequency, for many alignments the free air resonance can be higher 

or equal to the system cut-off frequency. This is a much easier target for the driver designer.

Figure  I.8 shows the normalised pressure output  of a lossless 4th order Butterworth (B4) 

vented-box enclosure design including the individual contributions from the vent and the 

diaphragm radiation. At the natural frequency of the vent, ωv, the diaphragm radiation is zero 

and the entire loudspeaker output is from the vent.  At frequencies below the vent tuning 

frequency,  the system response falls  off a 24dB per octave.  The diaphragm and the port  

radiation both have a asymptotic roll off of 12dB per octave, the increased rate of the system 

compared to the vent and diaphragm is as a result of a π phase difference between the two 

radiations – at very low frequencies the volume velocity output from the vent is equal and 

opposite to the volume velocity output from the diaphragm.
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Figure I.7. Comparison of driver excursion of vented-box enclosure with a closed-box enclosure with  
the same -3dB frequency, sensitivity and diaphragm area. Frequency is normalised so that -3dB point  

is unity, amplitude is normalised so that pass-band acceleration amplitude is unity.

Figure I.8. Normalised sound pressure level amplitude dB versus normalised frequency, diaphragm 
radiation compared to vent radiation and overall combined radiation for a lossless B4 alignment.

AI.iii.i Maximum bandwidth

The bandwidth and efficiency of the vented box is dependent upon the target alignment and 

the level of acoustic losses in the system. A full discussion for lossy enclosures and arbitrary 

system response shapes is beyond the scope of this thesis (the interested reader is directed to  
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Small's first paper on vented enclosures [13]). The lossless B4 alignment is a useful case to 

consider in order to gain a comparison between the vented-box and the closed-box case,  

whose efficiency and bandwidth was surmised in equation I.2.

For the case of a lossless vented enclosure, as described by Thiele [8], the system parameters 

may be found in a straightforward manner from the three filter coefficients a1,  a2 and a3 in 

equation I.1, using the three relationships:

h=
a1

a3 I.47.

α=a2 h– h2−1 I.48.

and
Qts=

1

√a1 a3 I.49.

For a B4 alignment this results in

h=1 I.50.

α=√2 I.51.

Qts=(4+ 2√2 )
−1/2
≈0.382 I.52.

Assuming that the mechanical driver losses are negligible, the approximation may be made 

that

Qts≈ωs

M ms Re

B2 L2 I.53.

After a little manipulation the expression for the system pass band efficiency, given in a 

basic form in equation 2.52, may be expressed as

ηpass≈α
V ab

4π c3

ωs
3

Qts I.54.

where V ab is the volume of air having the same stiffness as the enclosure stiffness Kmb, given 
by the expression

V ab=ρ0 c2 Sd
2

Kmb I.55.

As the box has insignificant losses it is safe to assume that this volume is approximately the  

physical net volume of the air inside the loudspeaker cabinet.

In summary, the pass band efficiency of the lossless vented-box loudspeaker system with a 

B4 alignment has an efficiency that, compared to a lossless closed-enclosure with a Q of 
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1/√2 and with the same volume and -3dB frequency, is  1/0.382=2.6178≡4dB higher. It 

should be emphasised that the B4 alignment is not the most efficient of the vented-enclosure 

alignments:  the  most  efficient  has  a  value  of  α of  approximately  0.6.  However,  more 

efficient alignments have ripple in the pass band and are inferior to the B4 alignments in  

terms  of  the  transient  response,  and  so  are  infrequently  used.  Additionally,  because  the 

vented enclosure has a fundamental roll-off of 24dB per octave compared to the 12dB per  

octave of the closed-box, at frequencies below the -3dB point, the closed-box design is more 

sensitive than the vented-box design.





Appendix II Matlab Rayleigh-Ritz acoustical pipe model

The script below calculates the pressure eigenfunctions of a closed-closed pipe using the 

Rayleigh-Ritz method, it can be used to generate the result given in section 3.6.

AII.i RRpipe.m

% This script generates the Rayleigh-Ritz Example
L = 0.5; % the length of the pipe
A = pi*10e-3^2; % the area of the pipe
c0=343; % the sound speed
n=4; % the eigenfunction for plotting

N = 6; % the number of prescribed functions

[s,k]=meshgrid(0:N,(0:N)'); % create matrices of k and s

H = A*k.*s./(k+s-1).*((L/2).^(k+s-1) - (-L/2).^(k+s-1)); % calc matrix H
Q = A/c0^2./(k+s+1).*((L/2).^(k+s+1) - (-L/2).^(k+s+1)); % calc matrix Q

H(isnan(H))=0; % remove NAN (because x^0 has a zero differential in x)

[V,D] = eig(Q\H); % compute the eigen functions and freqs

[freqs,I]=sort(sqrt(diag(D))/2/pi); % sort the eigenfreqs and convert to freq 
(Hz)
V=V(:,I); % sort the eigenfunctions in order of increasing eigenfreq

x = linspace(-L/2,L/2,200); % vector of positions in x to show the resulting 
pressure

% calc the pressure eigenfunction
pRR = zeros(size(x));
for k=0:N
  pRR=pRR + V(k+1,n+1)*x.^k;
end
pRR=pRR/pRR(1); % normalise eigenfunction

% calc the exact solution for comparison
fExact=c0/L/2*(0:N-1);
pExact=cos((x+L/2)/L*pi*n);

% plot the results
plot(x,pRR,x,pExact);



Appendix III Matlab FEM acoustical pipe model

The  two scripts  in  this  appendix  compute  the  eigenfrequencies  and  eigenfunctions  of  a 

straight  closed-closed pipe using the FE method.  The first  script,  FEMpip1.m,  uses  two 

noded linear elements. The second script, FEMpipe2.m uses three-noded quadratic elements. 

These two scripts can be used to recreate the results shown in section 3.7.

AIII.i FEMpipe1.m

L = 0.5; % the length of the pipe
A = pi*10e-3^2; % the area of the pipe
c0=343; % the sound speed
N = 21; % the number of nodes
i=2; % the mode to plot
x = linspace(-L/2,L/2,N); % the x location of the nodes
a = 0.5*L/(N-1); % half length of each element
He = A/a*[0.5 -0.5;-0.5 0.5]; % element stiffness matrix
Qe = A*a/c0^2*[2/3 1/3;1/3 2/3]; % element inertia matrix
 
% map the element matrices into the global matrices
H = zeros(N,N);
Q = zeros(N,N);
for n=1:N-1
  H((n-1)+(1:2),(n-1)+(1:2))=H((n-1)+(1:2),(n-1)+(1:2))+He;
  Q((n-1)+(1:2),(n-1)+(1:2))=Q((n-1)+(1:2),(n-1)+(1:2))+Qe;
end
 
% solve the eigen problem
[V,D] = eig(Q\H); % compute the eigen functions and freqs
 
[freqs,I]=sort(sqrt(diag(D))/2/pi); % sort the eigenfreqs and convert to freq 
(Hz)
V=V(:,I); % sort the eigenfunctions in order of increasing eigenfreq
 
% calc the exact solution for comparison
xExact=linspace(-L/2,L/2,500);
fExact=c0/L/2*(0:N-1);
pExact=cos((xExact+L/2)/L*pi*i);
 
pRR=interp1(x,V(:,i+1)/V(1,i+1),xExact,'linear'); % normalise eigenfunctions 
and interpolate nodal results.
 
plot(xExact,pExact,xExact,pRR)

AIII.ii FEMpipe2.m

L = 0.5; % the length of the pipe
A = pi*10e-3^2; % the area of the pipe
c0=343; % the sound speed
Ne = 10; % the number of elements
i = 2; % the mode to plot
N = 2*Ne+1; % the number of nodes
x = linspace(-L/2,L/2,N); % the x location of the nodes
a = L/(N-1); % half length of each element
 
He = A/a*[7/6 -4/3 1/6;-4/3 8/3 -4/3; 1/6 -4/3 7/6]; % element inertia matrix
Qe = A*a/c0^2*[4 2 -1;2 16 2;-1 2 4]/15; % element stiffness matrix
 
% map the element matrices into the global matrices
H = zeros(N,N);
Q = zeros(N,N);
for n=1:Ne
  I = 2*(n-1)+(1:3);
  H(I,I)=H(I,I)+He;
  Q(I,I)=Q(I,I)+Qe;
end
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[V,D] = eig(Q\H); % compute the eigen functions and freqs
% calc the exact solution
xExact=linspace(-L/2,L/2,Ne*19+1);
fExact=c0/L/2*(0:N-1);
pExact=cos((xExact+L/2)/L*pi*i);
 
[freqs,I]=sort(sqrt(diag(D))/2/pi); % sort the eigenfreqs and convert to freq 
(Hz)
V=V(:,I); % sort the eigenfunctions in order of increasing eigenfreq
pNodes=V(:,i+1)/V(1,i+1); % normalise he eigenfunctions
% interpolate the nodal pressure results using the element shape functions
pInterp=zeros(1,Ne*19+1);
for n=1:Ne
  I = 2*(n-1)+(1:3);
  Ix = (n-1)*19+(1:20);
  xElem = linspace(-1,1,20);  
  pInterp(Ix) = pNodes(I(1))*xElem/2.*(xElem-1)...

+ pNodes(I(2))*(1-xElem.^2)...
+ pNodes(I(3))*xElem/2.*(xElem+1);

end
plot(xExact,pExact,xExact,pInterp)



Appendix IV PAFEC-FE: eigenanalysis of a rigid-walled 

pipe

CONTROL
c Every pafec dat file begins with a control module which defines job options
AXISYMMETRIC c Informs the solver that the geometry is axisymmetric
HARMONIC.NUMBER=0 c The Fourier axisymmetric elements should not model any 
circumferential variation
CONTROL.END
PARAMETERS c The parameters module enables us to create some variables to use 
in the dat file
'rho'=1.19 c Acoustic density
'c'=343 c Sound speed
'r' = 10e-3 c the diameter of the pipe
'L' = 0.5 c the length of the pipe
'N' = 10 c the number of elements along the length of the pipe
NODES 
c The nodes module is used to directly define the position of nodes. For this 
job we only need to define a few nodes at key positions
NODE X Y 
1       0       0 
2       0       <'r'/2> 
3       'L'     0 
4       'L'     <'r'/2> 
MATERIALS
C the material for the pipe region is defined in this module 
MATE RO       BULK 
11   'rho'    <'c'*'c'*'rho'> 
PAFBLOCKS 
c PAFBLOCKS modules allow simple,easy definition of regularly shaped blocks of 
nodes and elements. Each row defines a block. The shape of the block is defined 
in the type column, the element type for the block defined in the Element 
column. The group and properties for the elements is defined in the 
corresponding columns. N1, N2 and N3 define mesh densities along edges of the 
pafblock. Finally the topology of the block is defined in the last column, 
these numbers refer to the nodes defined above.
TYPE    ELEMENT GROUP   PROPERIES       N1      N2      N3      TOPOLOGY 
1       29220   1       11              'N'     1       0       1 3 2 4 
MODES
c the modes module defines that we require 10 modes to be found starting with 
the first. 
MODES    START
10       1 
END.OF.DATA 



Appendix V Matlab BEM formulation

The  following  Matlab  code  outlines  a  simple  BEM  formulation  with  plane  four  noded 

straight edged patches using a Gauss integration of order 2 to form the patch matrices. The 

two scripts sphere.m and cube.m run the examples given in section 3.8. In order to run this 

code it is also necessary to include the vector routines provided in Appendix VI This code 

was developed with considerable reference to the Masters dissertation of Holmström [60].

AV.i sphere.m

% This script runs the BEM analysis on a pulsating sphere.
a = 100e-3; % radius of sphere
A = 4*pi*a^2; % area of sphere
% nodal coordinates
X=[1.0000         0         0
  0.9239    0.3827         0
  0.8534    0.3687    0.3687
  0.9239         0    0.3827
  0.6587    0.3727    0.6587
  0.7071         0    0.7071
  0.3687    0.3687    0.8534
  0.3827         0    0.9239
  0    0.3827    0.9239
  0         0    1.0000
  0.7071    0.7071         0
  0.6587    0.6587    0.3727
  0.5774    0.5774    0.5774
  0.3727    0.6587    0.6587
  0    0.7071    0.7071
  0.3827    0.9239         0
  0.3687    0.8534    0.3687
  0    1.0000         0
  0    0.9239    0.3827]*100e-3;
% patch topology
patches = [
  1     2     3     4
  2    11    12     3
  11    16    17    12
  16    18    19    17
  4     3     5     6
  3    12    13     5
  12    17    14    13
  17    19    15    14
  6     5     7     8
  5    13    14     7
  14    15     9     7
  8     7     9    10];
% symmetry definitions, each line defines a mirroring of the original
% geometry.
symmetry = [
  1  1  1
  1 -1  1
  -1  1  1
  -1 -1  1
  1  1  -1
  1 -1  -1
  -1  1  -1
  -1 -1  -1];
% prescribed unit vol velocity on the surface (unit volume velocity)
vNorm = ones(size(X,1),1)/A;
% additional points for collocation
Xcolloc=[0 0 0;0.2 0.1 0.8;0.7 0.4 0.2;0.1 0.6 0.1;]*100e-3;
% locations at which the pressure should be evaluated
Xeval=[0 0 1];
% frequencies for analysis
f = logspace(log10(20),log10(10000),300);
Nf=length(f);
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% prepare vector to hold the pressure results at the eval point
pEval = zeros(Nf,1);
% loop over the BEM solver and solve for each frequency.
for n=1:length(f);
  fprintf(1,'freq: %0.2f\n',f(n))
  pEval(n) = BEMsolve(X,patches,symmetry,vNorm,Xcolloc,Xeval,f(n));
end

AV.ii cube.m

% This script runs the cube BEM example.
a = 200e-3; % side length of the cube
Na = 6; % the number of patches along each half edge
A=(a/Na/2)^2; % the area of a patch
% face 1 (front)
[x1,y1]=meshgrid(linspace(0,a/2,Na+1),linspace(0,a/2,Na+1));
z1=repmat(0,Na+1,Na+1);
patches1 = fliplr(repmat([(1:Na)' (2:Na+1)' Na+1+(2:Na+1)' Na+1+(1:Na)'],Na,1)+
(Na+1)*repmat(reshape(repmat(0:Na-1,Na,1),[],1,1),1,4));
% face 2 (right)
[z2,y2]=meshgrid(linspace(0,-a,2*Na+1),linspace(0,a/2,Na+1));
x2=repmat(a/2,2*Na+1,Na+1);
patches2 = max(patches1(:))+fliplr(repmat([(1:Na)' (2:Na+1)' Na+1+(2:Na+1)' 
Na+1+(1:Na)'],2*Na,1)+(Na+1)*repmat(reshape(repmat(0:2*Na-1,Na,1),
[],1,1),1,4));
% face 3 (back)
[x3,y3]=meshgrid(linspace(a/2,0,Na+1),linspace(0,a/2,Na+1));
z3=repmat(-a,Na+1,Na+1);
patches3 = max(patches2(:))+fliplr(repmat([(1:Na)' (2:Na+1)' Na+1+(2:Na+1)' 
Na+1+(1:Na)'],Na,1)+(Na+1)*repmat(reshape(repmat(0:Na-1,Na,1),[],1,1),1,4));
% face 4 (top)
[z4,x4]=meshgrid(linspace(0,-a,2*Na+1),linspace(0,a/2,Na+1));
y4=repmat(a/2,Na+1,2*Na+1);
patches4 = max(patches3(:))+repmat([(1:Na)' (2:Na+1)' Na+1+(2:Na+1)' 
Na+1+(1:Na)'],2*Na,1)+(Na+1)*repmat(reshape(repmat(0:2*Na-1,Na,1),[],1,1),1,4);
% create global node list (note that this includes duplicates on every apex)
X = [x1(:),y1(:),z1(:);x2(:),y2(:),z2(:);x3(:),y3(:),z3(:);x4(:),y4(:),z4(:)];
patches = [patches1;patches2;patches3;patches4];
% collapse out coincident nodes
Nnodes=size(X,1);
for n=2:Nnodes;
  I=X(1:(n-1),1)==X(n,1)&X(1:(n-1),2)==X(n,2)&X(1:(n-1),3)==X(n,3);
  if any(I)
    replacement = find(I,1,'first');
    patches(patches==n)=replacement;
  end
end
% remove repetitions
[usedNodes]=unique(patches);
index(usedNodes)=1:length(usedNodes);
patches=index(patches);
X=X(usedNodes,:);
Nnodes=size(X,1);
% symmetry conditions
symmetry = [
  1  1  1
  1 -1  1
  -1  1  1
  -1 -1  1];
% prescribed velocity on the surface
vNorm = zeros(Nnodes,1);
% additional points for collocation
Xcolloc=a*[
  0 0 -0.5
  0.3 0.45 -0.9
  0.35 0.4 -0.3
  0.1 0.2 -0.6
  ];
% locations at which the pressure should be evaluated
Xeval=[0 0 1];
f = logspace(log10(100),log10(5000),100);
Nf=length(f);
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pEval = zeros(Nf,1);
for n=1:length(f);
  w=2*pi*f(n);
  vNorm(1)=1./(1i*w*A);
  fprintf(1,'freq: %0.2f\n',f(n))
  pEval(n) = BEMsolve(X,patches,symmetry,vNorm,Xcolloc,Xeval,true,f(n));
end

AV.iii BEMsolve.m

function [pEval,pSurf] = BEMsolve(X,patches,symmetry,vNorm,Xcolloc,Xeval,f)
% function [pEval,pSurf] = BEMsolve(X,patches,symmetry,vNorm,Xcolloc,Xeval,f)
%
% Function to form the BEM matrices, find the BE surface pressure for a
% given node normal velocity field and to evaluate the pressure at points
% in the modelled fluid region.
%
% Inputs:
%   X - node coordinates, Nnx3
%   patches - patch definitions Npx4
%   symmetry - mirror definitions for jobs with symmetry Nsx3
%   vNrom - normal velocity at each node on the BE, Nnx1
%   Xcolloc - additional points for collocation for CHIEF method Ncx3
%   Xeval - points in the modelled region for eval of pressures Npx3
%   f - frequency in Hz for analysis
%
% Outputs:
%   pEval - the computed pressures at the points Xeval, Npx1
%   pSurf - the computed pressures at the points X, Nnx1

% acoustical properties
rho0=1.19;
c0=343;
omega=2*pi*f;
const=[omega c0 rho0];
Nsymmetry=size(symmetry,1);
Npatches = size(patches,1);
Nnodes = size(X,1);
Ncolloc = size(Xcolloc,1);
Neval = size(Xeval,1);
% total number of iterations required to form the equations
Ntot = (Nnodes+Ncolloc)*Nsymmetry*Npatches;
count = 0 ;
lastStat=-1;
tic;
% construct the behavioural matricies
H=zeros(Ncolloc+Nnodes,Nnodes);
G=zeros(Ncolloc+Nnodes,Nnodes);
for n=1:Nnodes % loop over colloc points
  for s=1:Nsymmetry % loop over symmetries
    for p=1:Npatches % loop over patches
      if toc-lastStat>0.5
        fprintf(1,repmat(char(8),1,count));
        count=fprintf(1,'%0.2f%%',...
          100*((n-1)*Nsymmetry*Npatches+(s-1)*Npatches+p)/Ntot);
        lastStat=toc;
      end
      [He,Ge]=calcPatchHG(X(n,:),...

repmat(symmetry(s,:),4,1).*X(patches(p,:),:),...
const,...
isodd(sum(symmetry(s,:)==-1)));

      H(n,patches(p,:))=H(n,patches(p,:))+He;
      G(n,patches(p,:))=G(n,patches(p,:))+Ge;
    end
  end
end
% add the additional CHIEF collocation points
for n=1:Ncolloc
  for s=1:Nsymmetry % loop over symmetries
    for p=1:Npatches % loop over patches
      if toc-lastStat>0.5
        fprintf(1,repmat(char(8),1,count));



346 Appendix V

        count=fprintf(1,'%0.2f%%',...
          100*(Nnodes*Nsymmetry*Npatches+(n-1)*Nsymmetry*Npatches+(s-
1)*Npatches+p)/Ntot);
        lastStat=toc;
      end
      [He,Ge]=calcPatchHG(Xcolloc(n,:),...

              repmat(symmetry(s,:),4,1).*X(patches(p,:),:),...
              const,isodd(sum(symmetry(s,:)==-1)));

      H(Nnodes+n,patches(p,:))=H(Nnodes+n,patches(p,:))+He;
      G(Nnodes+n,patches(p,:))=G(Nnodes+n,patches(p,:))+Ge;
    end
  end
end
fprintf(1,repmat(char(8),1,count));
fprintf(1,'100%%\n');
% calculate the coefficients C for each node
C = zeros(Ncolloc+Nnodes,Nnodes);
c = calcC(X,patches,symmetry);
C(1:Nnodes,1:Nnodes) = diag(c);
% calculate the pressure on the surface
pSurf = (C-H)\(1i*rho0*omega*G*vNorm);
% construct the matrices for the eval points
Heval=zeros(Neval,Nnodes);
Geval=zeros(Neval,Nnodes);
for n=1:Neval
  for s=1:Nsymmetry % loop over symmetries
    for p=1:Npatches % loop over patches
      [He,Ge]=calcPatchHG(Xeval(n,:),...

              repmat(symmetry(s,:),4,1).*X(patches(p,:),:),...
              const,isodd(sum(symmetry(s,:)==-1)));

      Heval(n,patches(p,:))=Heval(n,patches(p,:))+He;
      Geval(n,patches(p,:))=Geval(n,patches(p,:))+Ge;
    end
  end
end
% calculate the pressure at the eval points
pEval = Heval*pSurf+1i*rho0*omega*Geval*vNorm;
end

AV.iv isodd.m

function o=isodd(x)
% function o=isodd(x)
%
% Returns true if x is odd
o=2*round(x/2)~=x;
end

AV.v calcC.m

function C = calcC(X,patches,symmetry)
% C = calcC(X,patches,symmetry)
%
% This function calculates the pressure weighting coefficients C for each
% node on the boundary element. A geometrical method is used to calculate
% the solid angle in the fluid at each nodal position. This calculation is
% performed on the full mirrored geometry, with symmetry removed, to ensure
% that the correct values are found. The process is simple:
% 1. The node normal is found as the average of the face normals to which
%    it is attached.
% 2. For each patch attached to the node the edges which use the node in
%    question are found and two edge vectors pointing away from the node
%    along the patch edges are found.
% 3. The solid angle contained by these three vectors is found using the
%    solid angle calculation for the apex of a trapezium.
% 4. The solid angles from all attached patches are summed to give the
%    total.
%
% inputs:
%    X - Cartesian coordinate vectors for all nodes in the unmirrored
%        system , Nnodesx3
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%    patches - the node index forming the patch faces, Npatchesx4.
%    symmetry - a matrix defining all reflections required to construct the
%               full geometry.
Nnodes=size(X,1);
% get the full geom including the symmetric mesh (reduced so no repeated nodes)
[fullX,fullPatches] = mirrorGeom(X,patches,symmetry);
% calc face norms for all patches
faceNorms = vunit(vcross(fullX(fullPatches(:,1),:)-
fullX(fullPatches(:,2),:),...
  fullX(fullPatches(:,4),:)-fullX(fullPatches(:,1),:)));
C=zeros(Nnodes,1);
for n=1:Nnodes
  % find all patches which share this node.
  [i,j]=find(fullPatches==n);
  % the average face normal is the surface normal at this node.
  normal = vunit(mean(faceNorms(i,:),1));
  attachedPatches=fullPatches(i,:);
  % shift so that the node is at the start.
  for m=1:length(j)
    p=circshift(attachedPatches(m,:),[1 -j(m)+1]);
    edge1 = vunit(fullX(p(2),:)-fullX(n,:));
    edge2 = vunit(fullX(p(4),:)-fullX(n,:));
    C(n) = C(n) - tetrahedronAngle(-normal,edge1,edge2)/4/pi;
  end
end
  function angle=tetrahedronAngle(a,b,c)
    det = abs(vdot(a,vcross(b,c)));
    div = 1 + vdot(a,b) + vdot(a,c) + vdot(b,c);
    at = atan2(det,div);
    if at<0
      at = at + pi;
    end
    angle = 2*at;
  end
end

AV.vi mirrorGeom.m

function [fullX,fullPatches,X2fullX] = mirrorGeom(X,patches,symmetry)
% [fullX,fullPatches,X2fullX] = mirrorGeom(X,patches,symmetry)
%
% Function to return the full mirrored geometry given the node and patch
% definitions of the segment of the geometry for modelling and a matrix
% defining the symmetry conditions.
%
% Inputs:
%          X - matrix of node coordinates, Nnx3
%          patches - matrix of patch definitions, Npx4
%          symmetry - matrix of symmetries, Nsx3
%
% Outputs:
%          fullX - matrix of nodes supplimented with additional nodes
%          required to define the full geometry.
%          fullPatches - matrix of patches suplimented with additional
%          patches as required to define the full geometry.
%          X2fullX - vector of length size(fullX,1) showing mapping X to
%          fullX, this can be used to map the results onto the full
%          geometry.

% find the sizes of the inputs
Nnodes=size(X,1);
Npatches=size(patches,1);
Nsymmetry=size(symmetry,1);
% prepare the outputs
fullX = zeros(Nnodes*Nsymmetry,3);
fullPatches = zeros(Npatches*Nsymmetry,4);
X2fullX = zeros(Nnodes*Nsymmetry,1);
% mirror the geometry
for n=1:Nsymmetry
  fullX((n-1)*Nnodes+(1:Nnodes),:) = repmat(symmetry(n,:),Nnodes,1).*X;
  X2fullX((n-1)*Nnodes+(1:Nnodes),:) = 1:Nnodes;
  if isodd(sum(symmetry(n,:)==-1)) % correct the face direction
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    fullPatches((n-1)*Npatches+(1:Npatches),:) = fliplr(patches)+(n-1)*Nnodes;
  else
    fullPatches((n-1)*Npatches+(1:Npatches),:) = patches+(n-1)*Nnodes;
  end
end
% remove repetitions from fullX.
for n=Nnodes+1:Nsymmetry*Nnodes;
  X = fullX(n,:);
  I=fullX(1:(n-1),1)==X(1,1)&fullX(1:(n-1),2)==X(1,2)&fullX(1:(n-1),3)==X(1,3);
  if any(I)
    replacement = find(I,1,'first');
    fullPatches(fullPatches==n)=replacement;
  end
end
% adjust fullPatches to index the reduced fullX set
[usedNodes]=unique(fullPatches);
index(usedNodes)=1:length(usedNodes);
fullPatches=index(fullPatches);
fullX=fullX(usedNodes,:);
X2fullX=X2fullX(usedNodes,:);
end

AV.vii calcPatchHG.m

function [He,Ge]=calcPatchHG(Xe,Xn,const,normFlip)
% [He,Ge]=calcPatchHG(Xe,Xn,const,n)
%
% This function calculates the patch He and Ge vectors for a single patch
% for a given pressure evaluation point. The normal to the patch face is
% calculated within this function, there is the option to flip the
% calculated normal which can be very handy particularly when using
% geometries with symmetry.
%
% Xe - pressure evaluation point, cartesian vector 1x3
% Xn - patch node positiongs, cartesian vectors 4x3
% const - vector of acoustical constants [omega, c0, rho0]
% normFlip - boolean to flag if the normal of this patch requires inverting

% calc the wavenumber
k=const(1)/const(2);
%% calc face normal
n = vunit(vcross(Xn(1,:)-Xn(2,:),Xn(4,:)-Xn(1,:)));
if normFlip;
  n = -n;
end
% use the helper function to find the coefficients for the Gauss integration
[Bg,A]=gaussHelper(Xn);
% calc global coords of the gauss points
Xg=Bg*Xn;
Xge = repmat(Xe,4,1)-Xg; % vectors from gauss points to eval point
r = vabs(Xge); % distance from gauss points to eval point
% make Ge vector
g = exp(-1i*k*r)./(4*pi*r);
Ge = zeros(1,4);
Ge(:) = Bg*(A.*g);
% make He vector
h = vdot(Xge,n).*(1i*k+1./r).*exp(-1i*k*r)./(4*pi*r.^2);
He = zeros(1,4);
He(:) = Bg*(A.*h);
end

AV.viii gaussHelper.m

function [Bg,A]=gaussHelper(Xn)
% function [Bg,A]=gaussHelper(Xn)
%
% This function provides the shape functions and area weightings at the
% Gauss points which allows integration to be quickly performed. In this
% case the Gaussian Quadrature has order N=2 for both the integral in the
% local patch coordinate system.
%
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% Inputs
%   Xn: cartesian coordinate vector with patch node positions 4x3
%
% Outputs
%   Bg: shape function coefficients for each gauss point 4x4
%       rows - gauss point
%       columns - shape function coefficient
%
%   A: area weightings for each gauss point (equal if pathc is rectangular)

%% Calc weightings and areas for quadrature
% gauss points in normalised coords (a=xi1,b=xi2)
a=[-1; 1; 1;-1]./sqrt(3);
b=[-1;-1; 1; 1]./sqrt(3);
% shape function values at gauss points
Bg=zeros(4,3);
Bg(:,1)=(1-a).*(1-b)/4;
Bg(:,2)=(1+a).*(1-b)/4;
Bg(:,3)=(1+a).*(1+b)/4;
Bg(:,4)=(1-a).*(1+b)/4;
% differential of shape function wrt local coord a at each gauss point
dBda=zeros(4,3);
dBda(:,1)= (b-1)/4;
dBda(:,2)= (1-b)/4;
dBda(:,3)= (1+b)/4;
dBda(:,4)=-(1+b)/4;
% differential of shape function wrt local coord b at each gauss point
dBdb=zeros(4,3);
dBdb(:,1)=-(1-a)/4;
dBdb(:,2)=-(1+a)/4;
dBdb(:,3)= (1+a)/4;
dBdb(:,4)= (1-a)/4;
% convert to differentials of global coords wrt local coords
dXda=dBda*Xn;
dXdb=dBdb*Xn;
% area weightings for each shape function
A=vabs(vcross(dXda,dXdb));
end



Appendix VI Matlab vector utility functions

In this appendix four Matlab utility functions are outlined which perform simple common 

manipulations to vectors. These functions are required by the code for the BEM formulation 

in Appendix V

AVI.i vabs.m

function o=vabs(s)
% function o=vabs(s)
% Compute the absolute value of a vector
%
% Inputs:
%          s - array of vectors Nx3
% Outputs:
%          o - column vector of absolute values Nx1
if isempty(s)
  o=[];
else
  if size(s,2) ~= 3
    error('Incompatible dimensions.');
  end
  o=sqrt(sum(real(conj(s).*s),2));
end
end

AVI.ii vcross.m

function o=vcross(s,t)
% function o=vcross(s,t)
% Compute the cross product of two vectors
% 
% Inputs:
%          s - array of vectors Nx3
%          t - array of vectors Nx3
% Outputs:
%          o - array of vectors Nx3
%
% s and t can be arrays with multiple vectors provided that hold the same
% number of vectors.
if isempty(s) || isempty(t)
  o=[];
else
  if size(s,2)~=3 || size(t,2)~=3 || size(s,1)~=size(t,1)
    error('Incompatible dimensions.');
  end
  o=[s(:,2).*t(:,3)-s(:,3).*t(:,2)...

s(:,3).*t(:,1)-s(:,1).*t(:,3)...
s(:,1).*t(:,2)-s(:,2).*t(:,1)];

end
end

AVI.iii vdot.m

function o=vdot(s,t)
% function o=vdot(s)
% Compute the dot product of two vectors
% 
% Inputs:
%          s - array of vectors Nx3 or 1x3
%          t - array of vectors Nx3 or 1x3
% Outputs:
%          o - vector of dot proucts Nx1
%
% s and t can be arrays with multiple vectors provided that hold the same
% number of vectors. Alternatively if one of the inputs is an array of
% vectors and the other is a single vector then the dot product of the
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% single vector with each entry in the array is returned.
if isempty(s) || isempty(t)
  o=[];
else
  if size(s,2) ~= 3 || size(t,2) ~= 3
    error('Incompatible dimensions.');
  end
  if numel(s) == 3
    d=size(t,1);
    o=sum(repmat(conj(s),d,1).*t,2);
  elseif numel(t) == 3
    d=size(s,1);
    o=sum(conj(s).*repmat(t,d,1),2);
  elseif size(s,1)~=size(t,1)
    error('Incompatible dimensions.');
  else
    o=sum(conj(s).*t,2);
  end
end
end

AVI.iv vunit.m

function o=vunit(s)
% function o=vunit(s)
% Compute the equivalent unit vector
% 
% Inputs:
%          s - array of vectors Nx3
% Outputs:
%          o - array of vectors Nx3
if isempty(s)
  o=[];
else
  if size(s,2) ~= 3
    error('Incompatible dimensions.');
  end
  a=vabs(s);
  o=zeros(size(s));
  o(a~=0,:) = s(a~=0,:)./repmat(a(a~=0),1,3);
end
end



Appendix VII A second BEM example

In this appendix a second example of the BEM is presented:  that of a simple acoustical 

volume velocity source, U s, located in the centre of one the face of a cube, of side length a, 

as illustrated in figure VII.1. Unlike the pulsating sphere in section 3.8, an analytical solution 

is not known for this geometry.

The BEM mesh used to approximate the geometry is shown in figure VII.2.

Figure VII.1. Illustration of the acoustical problem to be solved using the Boundary-Element Method.

Figure VII.2. BEM mesh with 384 patches used to approximate the rigid cube.

As with the sphere example, the symmetry of the problem can be used to reduce the size of 

the matrices to be solved. The area shown in red is the region over which the behavioural 

matrices are constructed. The normal velocity at all the nodes, with the exception of a single 

node at the centre of the closest face to the view shown in figure  VII.2.a, is zero. At the 

driven node the normal velocity is set to 1 / jω Ap, where  Ap is the area of a patch. In this 

way, due to the linear shape functions, the driven node has an imposed volume acceleration 

of unity. The cube edge dimension is set as 200mm.
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In appendix AI.i, the effect of the enclosure on loudspeaker radiation is discussed including 

the effect of the finite baffle size on the the axial pressure radiation. There are a number of  

methods  described  that  approximate  the  cabinet  diffraction  effect  by  placing  secondary 

sources along the edges of the front face of the loudspeaker enclosure  [87,88,89,90]. The 

most recent of these methods is that described by Urban et al. [90] who show that the baffle-

diffraction  problem may  be  simulated  with  increased  accuracy  if  the  secondary  sources 

placed on the edges of the front face have a dipole directivity characteristic. The dipole null  

must be arranged to be in the plane of the baffle and the negative polarity lobe directed away 

from the enclosure perpendicular to the front face.

The rationale for the Urban diffraction model is based on an approximate solution to the 

Kirchoff Helmholtz integral equation. The approximation is thus: the front surface of the box 

is  considered  as  a  thin,  rigid,  acoustical  baffle  in  isolation  without  the  presence  of  the 

remainder of the enclosure. It is assumed that only the pressure on the front of the baffle is 

significant and that it is only necessary to perform the integrals of the Kirchoff Helmholtz  

equation over the front surface. This is an assumption that has been previously shown to be 

valid when the observation point is in front of the baffle [96]. It further is assumed that the 

pressure on the surface of the baffle is accurately approximated as the pressure at the same  

position on an infinite baffle. It is assumed that this infinite-baffle pressure is known, either  

by measurement of a loudspeaker driver in 2π conditions or by the use of a model such as 

the rigid piston model outlined in section 2.3. These assumptions provide a known pressure 

field and normal  velocity  field on the surface of  the  baffle  and the far-field pressure  is  

approximated using the Kirchoff  Helmholtz integral  over  the front  surface.  For the  case 

when the baffle is a finite circular disc and the source is a point source, Urban et al. show 

that,  by  geometric  approximation  for  a  point  in  the  far  field  that  lies  close  to  an  axis  

perpendicular to the baffle passing through the source, the pressure can be approximately 

described as the sum of two pressures. The first is a direct pressure term equal to the pressure  

radiated to the same observation point by the infinite-baffle case modified by an additional  

cardioid directivity term. The second is a diffracted pressure term from a dipole line source  

along the edge of  the  baffle  with strength proportional  to  the  same directivity  modified 

infinite-baffle pressure. This can be written as

pfar (x)≈pdrive (x )−
n⋅x
∣x∣

2π
L ∫edge

pdrive( y)
e− j k∣x− y∣

2π∣x− y∣
d y

VII.1.
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where the function pdrive(x) is defined to be

pdrive(x)=pinf (x)[12+ n⋅x
2∣x∣] VII.2.

pinf (x) is the pressure at position x generated by the same source placed in an infinite baffle, 

n is the unit normal pointing out of the front baffle, L is the total length of the baffle edges. 

Note that the term  n⋅x /∣x∣ returns the cosine of the angle between the vector  x and unit 

vector n and, consequently, defines that the edge line source has a dipole directivity. While 

the approximation is only strictly valid for points in the far field directly in front of the 

baffle, Urban shows with experimental results that the predicted pressure accuracy is good 

even when the observation point is behind the plane of the front baffle.

In the absence of an analytical solution to the problem of a point source on the face of a 

cube, it is interesting to compare the BEM results to simulations using the Urban method. 

For the Urban simulation,  the infinite-baffle pressure from a point  source located on the 

baffle is given by

pinf (x )=
e− j k∣x∣

2π∣x∣ VII.3.

The line integral in expression VII.1 was approximately performed by discretisation of the 

four edges into 40 edge dipole sources. 

Figure VII.3. Unit volume-acceleration source located on in the centre of the front surface of a  
200mm cube pressure response at 1m on axis, approximate calculation using the edge-source method  

described by Urban et al. [90] (red), BEM calculation using 864 linear patches in full geometry  
(blue).
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The approximated pressure response magnitude at 1m directly in front of the face that holds 

the  point  source  is  shown  in  figure  VII.3 for  both  the  Urban  method  and  the  BEM 

approximation described above.  The agreement  between the two methods is  remarkable, 

particularly considering the rudimentary nature of the Urban model.



Appendix VIII PAFEC-FE: piston in an Infinite Baffle

CONTROL
c Every pafec dat file begins with a control module which defines job options
AXISYMMETRIC c Informs the solver that the geometry is axisymmetric
HARMONIC.NUMBER=0 c The Fourier axisymmetruc elements should not model any 
circumferential variation
FRONTAL.SINUSOIDAL.SOLUTION c The solve type that we require – direct solution 
of the equations of motion in the frequency domain
CONTROL.END
PARAMETERS c The parameters module enables us to create some variables to use 
in the dat file
'rho'=1.19 c Acoustic density
'c'=343 c Sound speed
'a'=38.2e-3 c Piston radius
'Fmin'=20 c Lowest frequency for analysis
'Fmax'=20000 c Highest frequency for analysis
'Nf'=200 c Number of frequencies for analysis
'elemSize'=<'c'/(6*'Fmax')> c Element size (6 elements per wavelength at Fmax)
'Nelem'=INT <'a'/'elemSize'+1> c Number of elements across the piston
NODES 
c The nodes module is used to directly define the position of nodes. For this 
job we only need to define a few nodes at key positions
NODE X Y 
1 0 0
2 0 'a' 
3 'elemSize' 0 
4 'elemSize' 'a' 
5 0 <'a'+'elemSize'> 
10 0 <'a'+'elemSize'> 
<10+2> 'elemSize' 'a' 
<10+2+'Nelem'*2> 'elemSize' 0 
PAFBLOCKS 
c PAFBLOCKS modules allow simple,easy definition of regularly shaped blocks of 
nodes and elements. Each row defines a block. The shape of the block is defined 
in the type column, the element type for the block defined in the Element 
column. The group and properties for the elements is defined in the 
corresponding columns. N1, N2 and N3 refer to entries in the MESH module which 
defines mesh densities along edges of the pafblock. Finally the topology of the 
block is defined in the last column, these numbers refer to the nodes defined 
above.
TYPE ELEMENT GROUP PROPERIES N1 N2 N3 TOPOLOGY 
1 29220 1 11 1 2 0 1 2 3 4 c FE 
acoustic 2D elements (block A)
2 29210 1 11 2 2 2 2 5 4 c FE acoustic 
2D elements (block B)
6 42130 2 1 1 0 0 1 2 c FE acoustic 
1D elements (block C)
LINE.NODES 
c LINE.NODES is used to position nodes on a straight line. The position of the 
start and end node must be defined elsewhere, the nodes between are created 
along the line in equally spaced locations. A shorthand notation is used “X,-
1,Y” is a list beginning at X and incrementing by 1 until Y is reached.
LIST 
10,-1,<10+2> 
<10+2>,-1,<10+'Nelem'*2+2> 
ELEMENTS
c The elements of the BE are created directly using a single entry in the 
elements module. The number column sets the element number, the group column 
the element group. The Topology entry defines the nodes which are used by this 
element using the same list shorthand as seen in LIST.NODES
NUMBER GROUP PROPERTY ELEMENT TOPOLOGY 
1 3 11 23610 10,-1,<10+'Nelem'*2+2>
MESH 
c The MESH module is used by the PAFBLOCKS module to define the mesh density 
for pafblock edges
REFERENCE SPACING 
1 'Nelem' 
2 1 
COLLAPSE 
c The nodes of the BE, the acoustical FE and the structural FE must have 
distinct separate nodes. The collapse module is normally used to merge nodes 
but in this case, with couplingtype=3 it will separate any common nodes shared 
between the groups GR1 and GR2. Here the structural FE, group 1, is separated 
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from the acoustical FE, group 2, and also the BE, group 3. New nodes are 
created on GR2 the acoustical FE and BE.
COUPLINGTYPE=3 
GR1 GR2 
1 2 
1 3 
PLATES.AND.SHELLS 
c The plates.and.shells module is used by 2D and 1D structural FE elements to 
define thickness and associate the elements with a material definition. Plate 
refers to the properties setting of the elements, mate to the material number 
used in the material modules. In this case we have one entry for the structural 
FE thin shell of revolution elements used to model the rigid piston.
PLATE MATE THICKNESS 
 1     1     0.01 
RESTRAINTS
c The nodes of the structural FE are constrained so that the piston can only 
move axially. This is done by selecting all the nodes on a plane of constant x 
passing through node 1, at the centre of the piston. The nodes are restrained 
in directions 2,3 and 6: y motion, x motion and rotation about the x axis.
NODE PLANE DIRE 
 1   1   236 
REPEATED.FREEDOMS 
c The nodes of the structural FE are constrained to move rigidly in the x 
direction. This is done by selecting all the nodes on a plane of constant x 
passing through node 1, at the centre of the piston. The nodes have their 
“freedoms” repeated in direction 1, the x direction.
N1 PLANE DIRE 
1 1 1 
MATERIALS 
c This module defines the material characteristics of the acoustical regions. 
The material number is refered to by the element properties setting.
MATE RO BULK 
 11 'rho' <'c'*'c'*'rho'> 
ENFORCED.HARMONIC.MOTION 
c Motion is defined on the piston. Type 1 defines velocity, node 1 at the 
centre of the piston will have motion enforced, the rest of the piston will 
follow due to the repeated.freedoms module. Direction 1 is the x-direction. The 
variation of the velocity with frequency is defined in table 1, below.
TYPE NODE DIRE TABLE 
2 1 1 1 
TABLES 
c This module holds a table of piston velocity variation with frequency.
TABLE=1 
BASIS VALUE 
'Fmin' 1 0 
'Fmax' 1 0 
MASTERS
c The driven node and direction must be defined as a master. Masters are 
freedoms which are retained in the solution and not eliminated during the 
reduction of the equations of motion.
NODE DIRE 
1 1 
MODES
c By default PAFEC will calculate eigenvalues and vectors for the discretised 
system. We do not wish to use a modal decomposition method, this module 
instructs PAFEC not to calculate any modes nor to assign any automatic masters.
MODES AUTO 
0 0 
RESPONSE 
c Response type 0 defines a sinusoidal response with no damping
TYPE 
0 
FREQUENCIES.FOR.ANALYSIS 
c Here we define the frequencies for analysis, type 3 sets logarithmically 
spaced frequency points
TYPE START FINISH NUMBER 
3 'Fmin' 'Fmax' 'Nf' 
ACOUSTICS 
c The acoustics module defines the type of solution used for the boundary 
element module. Solution type 3, by  default, defines a pure surface Helmholtz 
formulation which does suffer from the characteristic frequency problem. 
However for this geometry and frequency range defined in the parameters module, 
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the first eigenvalue of the internal acoustical space defined by the BE 
geometry is sufficiently above the highest frequency range of interest.
SOLUTION.TYPE ELEMENT 
3 1 
SYMMETRY
c The infinite baffle in which the piston is mounted is defined by applying a 
symmetry condition on the boundary element formulation.
ELEMENT AXIS SYMMETRY 
1 1 1 
END.OF.DATA



Appendix IX PAFEC-FE: eigenanalysis of a rigid-walled 

cavity

C The mesh for this FEM analysis was generated in Flux, the PAFEC dat file was 
created
C using an automated mesh translation program from PACSYS called Mesh2paf.
C
C File name J001.DAT 
C Converted from J001.TRA 
C by MESH2PAF version 1.6 
C at 14:21 on  19th June 2009     
C 
C  Group    Name           Number of elements 
C 
C      1    AIR                          40 
CONTROL
c Every pafec dat file begins with a control module which defines job options 
TRACE.LEVEL=2 
TIME.STAGES 
COMPUTE.RADIUS 
AXISYMMETRIC c Informs the solver that the geometry is axisymmetric
HARMONIC.NUMBER=0 c The Fourier axisymmetric elements should not model any 
circumferential variation. This is equivalent to m=0 in the analysis of section 
5.2.1
SKIP.COLLAPSE c skip any collapsing of nodes – flux has already done this
SKIP.CHECK c skip any checking of the geometry – flux has already done this.
PHASE=1 
TOLERANCE=10E-4 
BASE=4000000 
PHASE=2 
BASE=20000000 
PHASE=4 
BASE=20000000 
PHASE=7 
CLEAR.FILES 
BASE=20000000 
CONTROL.END 

MATERIALS C the acoustics elements are given the properties of air by this 
module. 
MATE RO BULK 
101 1.19    <343*343*1.19> 

NAMES C this is a useful utility module to associate groups of element with 
names. 
TYPE=1 
NUMBER NAME 
     1 "AIR" 

ELEMENTS c the elements converted from the flux mesh. 
PROPERTY=   101 
NUMBER GROUP ELEMENT TOPOLOGY 
     1     1 29220       2      4      8      6      1      7      3      5 
     2     1 29220       8      6     13     11      5     12      9     10 
     3     1 29220      13     11     18     16     10     17     14     15 
     4     1 29220      18     16     23     21     15     22     19     20 
     5     1 29220      23     21     28     26     20     27     24     25
..... continues for 35 more elements

NODES c the nodes converted from the flux mesh 
NODE X Y Z 
     1  0.2500000E-03   0.000000       0.000000    
     2   0.000000       0.000000       0.000000    
     3  0.5000000E-03  0.5000000E-03   0.000000    
     4  0.5000000E-03   0.000000       0.000000    
     5  0.2500000E-03  0.1000000E-02   0.000000    
     6  0.5000000E-03  0.1000000E-02   0.000000    
     7   0.000000      0.5000000E-03   0.000000    
     8   0.000000      0.1000000E-02   0.000000    
     9  0.5000000E-03  0.1500000E-02   0.000000    
    10  0.2500000E-03  0.2000000E-02   0.000000    
..... continues for 193 more nodes
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MODES.AND.FREQUENCIES c defines which modes (eigenfunctions and frequencies) to 
evaluate
MODES AUTO 
  20     200 

END.OF.DATA



Appendix X On the definition of compression ratio

The common definition of compression ratio is the ratio of the radiating diaphragm area, Am, 

to the summed area of the phase-plug channel entrances, AT ,

α=
Am

AT X.1.

Although  simple,  this  is  not  a  sufficiently  precise  definition  and  it  is  open  to  be 

misinterpreted. Under normal operation, the volume velocity entering the compression cavity 

is equal to the volume velocity leaving the compression cavity. The actual acoustical velocity 

at the channel entrance is dependent upon the area of the channel entrances: as the area is  

decreased, the acoustical velocity is increased. It is this increase in acoustical velocity that  

facilitates the increased acoustical loading experienced by the radiating diaphragm and hence 

leads  to  higher  efficiencies.  The  increase  in  loading  experienced  by  the  diaphragm  is 

proportional to the ratio of the channel-entrance acoustical velocity,  uE,  to the diaphragm 

drive velocity, um, and this is equal to the compression ratio,

α=
−uE

um X.2.

The negative sign occurs because the polarity of both velocities is defined to be positive  

toward the interior of the compression cavity.

Much of  the  analysis  work  on  compression  drivers  uses  a  simplified  planar  diaphragm. 

However,  most  real  drivers  do  not  have  planar  diaphragms.  Clearly,  with  a  non-planar 

diaphragm the volume velocity generated for a given axial vibration is the same as a planar 

diaphragm of the same diameter. Because the diaphragm velocity is constrained to be axial,  

in our original definition, the diaphragm area,  Am, should not refer to the surface area, but 

rather the projected area in the direction of vibration.

The channel-entrance acoustical velocity, unlike the diaphragm velocity, is not constrained to 

be axial. The channel-entrance velocity direction is dependent upon the channel in question. 

In general, the channel carries the acoustical wave away from the compression cavity in a  

direction perpendicular to the cavity surface, and so this is the relevant direction. Thus, the 

compression ratio is precisely defined to be the diaphragm area projected in the direction of 

vibration to the open area of the exit surface of the compression cavity,

α=
π a2

AT X.3.

This definition of compression ratio is assumed throughout this thesis.



Appendix XI Suppression of modal excitation using range-

limited cavity-thickness shape functions

In  chapter  6,  it  was  shown  that  using  a  Rayleigh-Ritz  approximation,  along  with 

eigenfunctions from a prototype compression cavity,  it  is  possible to describe the driven 

acoustical behaviour of a subject compression-cavity with arbitrary thickness profile. Using 

this approximate description of the compression cavity, along with a set of thickness-profile 

candidate functions, it was demonstrated that it is possible to derive geometries that suppress 

the  diaphragm excitation  of  the  first  few cavity  modes.  However,  one  of  the  problems 

encountered with this approach is that there is very little control over the shape of the final  

compression cavity. This is of  great  importance when designing a compression driver as 

there are typically some regions of the cavity that, due to practical constraints, must have a  

fixed pre-determined geometry. The most obvious example of such a region is the area at the 

outside  diameter  of  the  compression  driver  where  the  cavity  is  formed  by  part  of  the 

magnetic gap. This region not only forms a section of the enclosing surface of the cavity, but 

must also be of the correct geometry to function as part of the magnetic circuit from which 

the the driving force on the diaphragm is generated.

The  Rayleigh-Ritz  approximation  describes  the  compression  cavity  in  terms  of  two 

matrices, H  and Q. Given the narrow compression-cavity geometry, these two matrices are 

approximately constructed using the expressions

H i , j≈∫
Se

∇Ψ
p

i−1( y ).∇Ψ
p

j−1( y )μ( y )dSe
XI.1.

and
Qi , j≈

1
c 0

2∫
Se

Ψ
p

i−1( y )Ψ
p

j−1 ( y)μ ( y)dSe
XI.2.

The driven behaviour is then given by the expression

[H−ω2Q ] p= jωρ0ζ
dp

XI.3.

To accommodate an area of the compression cavity geometry that is known and fixed, the 

matrices  H  and  Q are  each  described  as  the  sum  of  two  matrices:  one  governing  the 

behaviour in the fixed region and, the other, in the region which may vary:

H=H fix+ H var XI.4.

and
Q=Qfix+ Qvar XI.5.
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The entrance surface of the compression cavity, Se, is correspondingly split into two regions, 

one  over  which  the  geometry  is  fixed,  Se
fix,  and  the  other,  over  which  the  geometry  is 

permitted to vary  Se
var. The union of these two surfaces must form the complete entrance  

surface of the compression cavity

Se=Se
fix∪Se

var
XI.6.

The elemental component of the matrices H fix, H var, Q fix and Q var are given by the integral 

expressions

H i , j
fix≈∫

S
e
fix

∇Ψ
p

i−1 ( y).∇Ψ
p

j−1( y )μ
fix( y)dSe

fix

XI.7.

H i , j
var≈∫

S
e
var

∇ Ψ
p

i−1( y ).∇Ψ
p

j−1 ( y)μ
var( y )dS e

var

XI.8.

Qi , j
fix≈

1
c 0

2∫
S

e
fix

Ψ
p

i−1( y)Ψ
p

j−1( y )μ
fix( y)dS e

fix

XI.9.

and
Qi , j

var
≈

1

c0
2∫

S e
var


p

i−1 y 
p

j−1 y 
var
 ydSe

var

XI.10.

Where the function μ fix( y ) describes the thickness of the cavity in the fixed region and the 

function μvar( y) describes the thickness of the cavity in the region which may vary.

The driven behaviour of the cavity is now given by the expression

[H fix+ H var−ω2 (Q fix+ Q var ) ] p= jωρ0ζ
dp

XI.11.

In the same manner as was outlined in section 6.2.3, the cavity-thickness function in the part 

of  the  cavity  permitted  to  vary,  μvar( y),  is  defined  to  be  the  linear  combination  of  Nμ 

candidate functions such that

μvar
( y)=∑

n=1

N μ

bnμn
var
( y)

XI.12.

where bn are coefficients that describe the proportions of each candidate thickness function 

μn
var( y). This expression can also be written as as the multiplication of two vectors as

μvar( y)=bTμvar( y) XI.13.

The matrix H var may be expanded as the linear sum of Nμ matrices such that



364 Appendix XI

H var
=∑

n=1

N μ

bn H n
var

XI.14.

where the elemental components of H n
var are approximated to be

Hn ,i, j
var ≈∫

Se

∇Ψ
p

i−1( y ).∇Ψ
p

j−1( y)μn
var( y )dSe

var

XI.15.

Similarly the matrix Q var may be written as

Q var
=∑

n=1

N μ

bnQn
var

XI.16.

with the elements of Qn
var approximated to be

Qn ,i , j
var ≈

1
c0

2∫
Se

Ψ
p

i−1 ( y)Ψ
p

j−1( y)μn
var( y)dS e

var

XI.17.

The driven cavity behaviour, in terms of these expanded H var and Q var matrices, is

H
fix

p+∑
n=1

N μ

bn Hn
var

p−ω2(Qfix
p+∑

n=1

Nμ

bn Qn
var

p)= jωρ0ζ
dp

XI.18.

The target behaviour for the cavity is that only rigid-body eigenfunction excitation occurs in 

the bandwidth of the driver. Although the final eigenfunctions are as yet unknown, because 

the rigid-body eigenfunction is always unity, the target pressure in the resulting cavity can be 

set in terms of the prototype eigenfunctions to be

pT=[ ρ0 c 0
2ζ0

dp

jωV
0 0 … 0] XI.19.

where V  is the desired volume of the resulting compression cavity. Assuming that this target  

pressure is achieved, the system driven behaviour may be expressed as

h fix+∑
n=1

N μ

bn hn
var−ω2(qfix+∑

n=1

Nμ

bnqn
var)=−ω

2 V

c0
2

ζdp

ζ0
dp

XI.20.

where the vector h fix is the first column of H fix, the vector hn
var is the first column of H n

var, the 

vector qfix is the first column of Q fix, and the vector qn is the first column of Qn. 

From expressions  XI.7 and  XI.8,  it  is  obvious  that,  as  Ψ
p

0( y)=1 and,  correspondingly, 

∇Ψ
p

0( y)=0, the vectors  h fix and  hn
var

 contain only zeros. Equation  XI.20 may be simply 

written as
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qfix
+∑

n=1

N μ

bnqn
var
=

V

c0
2

ζdp

ζ0
dp

XI.21.

Introducing the matrix

Q̃ var
=[q1

var q2
var

… qN μ

var ] XI.22.

with coefficients approximated from the integral

Q̃i , j
var≈

1
c0

2∫
Se

Ψ
p

i−1( y)μ j
var ( y)dSe

XI.23.

and recalling the definition of b, given in expression XI.13, the profiled cavity is described 

by the matrix equation

Q̃ var b=V
c0

2

ζdp

ζ0
dp
−qfix

XI.24.

From this expression, a set of coefficients b  may be found that minimise the appearance of 

the  prototype  cavity eigenfunctions  in  the  pressure  response of  the  profiled cavity.  This 

expression is very similar to 6.46, derived in the previous section for the situation where the 

entire compression cavity thickness was permitted to vary. The only difference being the  

addition of the term qfix that represents the region where the cavity profile is fixed. Clearly, if 

the region where the cavity is fixed is reduced to nothing then the qfix term disappears from 

the expression and it simplifies to 6.46.

Solution of  6.46 is performed in the same manner as is discussed for  6.46 on page  186. 

However, there is a significant difference; previously, it was possible to solve for  bS s/V  

where Ss is the area of the cavity entrance surface, given by the integral

Ss=2π∫
s=0

sa

r (s)ds
XI.25. 

In  other  words,  rather  than a  single,  absolutely defined solution for  the  cavity-thickness 

profile, expression 6.46 provides the shape of the cavity thickness profile. The overall cavity 

volume is  not  prescribed.  For  the  new expression  where  part  of  the  cavity  has  a  fixed 

thickness profile,  because of the additional  qfix term, this is  not  possible and solution of 

expression  XI.24 results  in  a  single  absolutely-defined  solution  for  the  cavity-thickness 

profile.
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Example 1

Figure XI.1 shows an FEM mesh of the geometry chosen to demonstrate the technique. The 

compression cavity in this case consists of two regions: a small cylindrical annulus at the 

outside diameter  of  the  geometry and a  spherical  cap region.  The cylindrical  annulus  is 

typical of the the magnetic gap region of a compression cavity. The length of the cylinder is  

1.5mm  and  the  outside  diameter  is  76.2mm.  The  spherical  cap  region  has  a  angle  of 

curvature of 55 degrees from axis of rotation to outside edge. The thickness of the cavity is 

0.3mm.  This  prototype  cavity  mesh  was  analysed  using  PAFEC-FE  in  order  to 

approximately calculate the eigenfrequencies and eigenfunctions. An additional PAFEC-FE 

model  was constructed having a  rigid piston region occupying the left  hand side of  the 

compression cavity as an indicator of the extent to which the pressure modes are excited 

without any cavity shaping.

Figure XI.1. Mesh used for eigenfunction and eigenfrequencies FEA solution of prototype cavity. The  
model is axisymmetric with the axis of rotational symmetry at the lower extent of the mesh.

The very outer diameter of the geometry, at diameter 72.6mm or greater, is not permitted to  

vary  in  the  the  calculation  of  the  cavity-thickness  shaping.  Five  cavity-thickness  shape 

functions were used in the calculations. In this case, the thickness functions are chosen to be 

a number of rectangular functions defined as

μn
var(s)={1 w s (n−1)≤s< w s n

0 otherwise XI.26.

where the variable w s is the width of the rectangular regions, s is the linear coordinate along 

the entrance surface of the compression cavity. The value of w s is set to be st /Nμ, where st is 

the value of s corresponding to a diameter of 72.6mm above which the cavity thickness is  
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fixed. Five thickness shape functions were used for the calculation of the cavity shape. To 

maximise the performance of the cavity shaping, several iterations were performed as was  

described in section 6.2.3.

The resulting cavity shapes are shown in figure XI.2. The calculated thickness profile is quite 

different  from that  presented  in  the  previous  section.  This  is  a  result  of  the  choice  of  

rectangular functions as the candidate thickness functions. After each iteration a model of the  

driven cavity was created and the pressure at  the outer  diameter is  shown alongside the  

thickness profiles as a measure of the extent of modal excitation. It is interesting that, in this  

case, after only one iteration there is already a significant reduction in the irregularity of the  

pressure  response  in  the  cavity  and  the  subsequent  iterations  make  only  small  further  

improvements.  It  is  not  clear  if  this  fast  convergence  is  due  to  the  thickness  candidate 

functions chosen or as a result of the entrance surface geometry. In all three iterations the 

calculated thickness profile is the same in the region 0.9< s/ sa< 1, which corresponds to the 

region that was designated to remain fixed.

This example illustrates that the method outlined in this section to only adjust part of the  

compression-cavity geometry appears to work successfully for a realistic cavity geometry.  

However, in common with the previous, unconstrained, method there is no guarantee that the 

calculated thickness profile is achievable. For instance, it is very easy to derive thickness 

profiles with negative regions. Clearly, these cannot be practically used. Additionally, there 

remains the issue that by profiling the compression cavity, it is inevitable that, in order to  

maintain a reasonable minimum thickness of cavity, the overall volume of the compression 

cavity is larger than an unprofiled cavity. This is significant as in order to maximise the 

bandwidth of the compression driver, the cavity volume must be minimised. Nonetheless it is  

reiterated that this volume/bandwidth relation is based on a simple lumped description of the  

compression driver and, hence, is only valid when the compression cavity is behaving simply 

as a basic acoustical compliance. This is clearly not the case in the constant thickness model 

shown in figure XI.2.
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Constant thickness cavity

After iteration 1

After iteration 2

After iteration 3

Figure XI.2. Normalised derived profiled cavity-thickness function, compared to the ideal profile  
(dashed red) and resulting diaphragm-excited pressure-response at outside diameter of cavity for  

constant-thickness prototype cavity, cavity after first iteration, cavity after second iteration and after  
third.
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For completeness, a three-channel phase plug was designed for the derived profiled cavity. 

The computed values of  ζn
d /ζ0

d, using the generalised method described in section  5.4, are 

given in table XI.1.

ζ0
d /ζ0

d 1

ζ1
d /ζ0

d 0.354678

ζ2
d /ζ0

d −0.127144

ζ3
d /ζ0

d 0.0735582

Table XI.1: Values of ζn
d /ζ0

d
 calculated numerically for the profiled cavity given in figure XI.2 when 

driven with a rigid axially-moving diaphragm on the left hand side of the cavity.

The three channels are placed in the nodal diameters of the third compression cavity mode 

resulting in the computed channel areas

[
A1/ AT

A2/ AT

A3/ AT
]=[0.247353

0.450323
0.302324 ] XI.27.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and  A3 is the area of the outer most channel.  These areas can equivalently be written as  

channel width ratios as

[w2 /w1

w3 /w1
]=[0.818646

0.390653 ]. XI.28.

Using these geometric parameters, a simple compression driver FEM model was constructed 

using the same basic compression-driver  diaphragm and cavity geometry,  a  compression 

ratio of 15 and with the three channels terminated with a ρ0 c 0 specific acoustical-impedance. 

The FEM-computed pressures in the three channels are shown in figure XI.3. The pressure 

levels shown are, once again, normalised by the specific acoustical impedance of a tube.

The pressures in the inner two channels are very similar to one another. The outer channel is  

also very close to a frequency of ka=5, corresponding to 7.16kHz in this case. Above this 

point, the pressure in the outer channel is a little lower than the other two channels. If the 

values of  ζn
d /ζ0

d were absolutely ideal,  i.e.  ζn
d /ζ0

d=δn0,  then the phase-plug channel-design 

methods would be expected to work perfectly. The fact that there is some pressure difference  

in the outer channel indicates that in this instance it is necessary to control the  ζn
d /ζ0

d to a 

greater extent if the final result is to be improved. This could be achieved by including more 
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shape functions  in  the  calculation of  the  cavity  profile  in  order  to  meet  the  ideal  ζn
d /ζ0

d 

parameters for mode cavity modes. However, as more terms are included then the derived 

cavity shape either converges with the ideal cavity solution or, if the controlled areas prevent  

this, then it is likely that a non-physical thickness functions result (with zero or negative 

thickness over some part of the cavity).

Figure XI.3. Normalised channel pressure-level response for shaped-cavity compression driver with  
fixed cavity outer geometry with phase-plug geometry computed using the generalised method  

introduced in section 5.4.1.



Appendix XII Outline of the basic tweeter design

Prior to the design of the phase plug, the other parts of the tweeter were designed using FEM 

modelling resulting in the basic tweeter driver assembly shown in figure XII.1. This design 

work was carried out by the author as part of his role as an engineer working for KEF Audio 

(UK) Ltd.

Figure XII.1. CAD drawing of the basic tweeter assembly before the design of the phase plug.

The geometry shown in figure XII.1 was arrived at as a result of several modelling stages.  

The  motor  system  is  designed  with  the  aid  of  magneto  static  FEM  simulation  using 

CEDRAT Flux2D. The simulated flux in the final model of the motor system is shown in 

figure XII.2. As the tweeter uses a neodymium magnet, the magnetic flux in the steel parts is  

high. This helps to improve the linearity of the motor system by reducing modulation of the 

static magnetic field by the dynamic magnetic field generated by the voice coil.

Figure XII.2. FEM computed magnetic flux magnitude in the tweeter motor system parts. The motor  
orientation is at 90 degrees compared with figure XII.1. The white line is in the centre of the magnetic  

gap. The axis of rotation is at the left hand extent of the figure.
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Figure XII.3. FEM computed radial magnetic flux magnitude in the centre of the motor system gap.

The computed radial magnetic flux along a line in the centre of the magnet gap is shown in 

figure XII.3. The radial magnetic flux is approximately 1.5 Tesla over a 2mm region at the 

centre  of  the  gap.  The  same  radial  flux  plot  is  also  shown  with  the  abscissa  reversed,  

indicating that the radial flux profile is very symmetrical in the region close to the gap.

Using the FEM computed radial magnetic flux, it is possible to approximate the BL(x) of the 
tweeter using the integral

BL(x)=∫
y

B( y)L( x)dy
XII.1.

where the function  B(x) is the computed gap radial-flux profile as shown in figure  XII.3, 

and  L( x ) is  the  wire-length density  profile,  in  meters  of  wire  per gap length.  The wire 

density  is  approximated  using  the  a  voice-coil  winding  calculator  that  simply  uses  the 

geometrical wire data from the manufacturer to approximate the physical parameters of the 

voice coil, such as the number of turns, the height of the windings and the mass of the wire. 

The estimated parameters of the voice coil are shown in table XII.1.

Total length of wire 1.04m

Number of turns in coil 13.05

Winding height 1.835mm

Mass of wire 0.08g

Table XII.1: Approximated tweeter voice-coil parameters.

Using the assumption that the wire-length density, L( x ), is constant over the winding height 

of the voice coil, the BL(x) is calculated as shown in figure XII.4. The BL when the voice 
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coil is in the centre of the motor-system gap is predicted to be 1.54 NA−1. The BL drops by 

approximately 10% when the voice coil is displaced by 1mm from the centre of the gap.

Figure XII.4. Computed tweeter BL using FEM approximated gap flux.

The diaphragm of the tweeter is designed in 30μm titanium and has the basic structure of a 

spherical cap, as required by the Dodd diaphragm and horn geometry. The former is also  

designed in 30μm titanium and, instead of the more usual straight cylinder, it has a elliptical 

profile at the top such that a triangular strut is formed at the junction with the dome. This 

arrangement of dome and former is described by Dodd in his 2005 patent [85]. Compared to 

an unsupported spherical cap dome of the same angle and diameter this arrangement results 

in  a  substantial  increase  in  the  first  natural  frequency  of  the  diaphragm  structure.  The 

surround is thermoformed from a thin polyimide film, which provides a low stiffness with a 

small radial width: the minimisation of the surround width is very important for optimal  

performance of the Dodd dome and horn geometry. The rear radiation from the diaphragm is 

coupled into a large diameter venting tube that passess through the centre of the magnet  

system. The purpose of this tube is to increase the acoustical volume behind the tweeter and 

avoid large acoustical  pressures on the rear face of the diaphragm. This is  an important  

aspect of the design. If only the volume between the diaphragm and the magnet system is 

used to load the rear of the diaphragm then the acoustical pressure in the rear cavity is high 

enough for  acoustical  non-linearities  to  be significant  during normal  use.  The acoustical 

configuration  of  the  front  surface  of  the  diaphragm  and  the  adjacent  horn  follows  the 

guidelines of Dodd [83] with the horn approximately perpendicular to the dome. The tweeter 
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is designed to be placed at the centre of a midrange cone driver, with the midrange cone 

tangential to, and forming a continuation of, the horn.

Figure XII.5. 2D axisymmetric mechanical and acoustical FEM and BEM model of the tweeter prior  
to phase-plug design.

The spherical cap dome is significantly deeper than is typically used on this type of tweeter.  

In the  Dodd arrangement this has  the advantage of  wide dispersion at  high frequencies. 

However,  the  penalty  for  this  deep  diaphragm  structure,  and  for  the  complex  former 

arrangement, is that the moving mass of the mechanical parts is high. As a result, at this 

stage the performance of the tweeter is very good, but the sensitivity is a little lower than 

required between 10 and 20kHz. The acoustical design of the tweeter to this state has been 

performed with FEM and BEM modelling using PAFEC-FE. As all the parts described above 

are  rotationally  symmetric,  axisymmetric  acoustical  models  were  used  to  predict  the 

performance. The FEM mesh of the final 2D axisymmetric model prior to the start of the  

phase-plug design is shown in figure XII.5.

The yellow region on the left  of the figure is the rear-venting tube that is filled with an 

acoustical absorbent material to prevent standing waves forming in the tube. The blue region 

to the right of the figure is the air in front of the tweeter diaphragm. The shape of the horn 

and cone are clearly visible. The tweeter is modelling in a 2π steradians radiation space with 

the end of the horn flare terminated in a flat infinite baffle. This infinite baffle and radiation 

into the 2π space is modelled using a BEM region that is fully coupled to the FEM region 

shown in the figure. The voice-coil FEM region is driven with a harmonic axial force of unit 
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amplitude. The axial pressure response at 1m from infinite baffle in the region modelled 

using the BEM is shown in figure XII.6.

Figure XII.6.  The axial pressure response of the mechanoacoustical FEM/BEM model of the infinite-
baffle-mounted tweeter prior to phase-plug design at 1m from the baffle when the voice coil is driven  

with harmonic force of 1N RMS.

This response plot gives some indication of the frequency response of the design. In the real  

tweeter, the voice coil is not driven directly with a force, but instead with a voltage signal. In 

order to take this into account,  the drive point  mechanical  impedance of the FEM/BEM 

model was calculated from the drive point axial velocity. This mechanical impedance is a  

very good approximation for the driver mechanical impedance  Zms, which was outlined in 

detail  in  chapter  2.  Having calculated the driver  mechanical  impedance it  is  possible  to 

include the FEM/BEM model in a lumped-circuit model and to approximate the effect of  

voltage drive with the motor system described above. As part of his work at KEF Audio, the 

author has, for several years, been developing software that is dedicated to this combined 

FEM/BEM and lumped-modelling approach. With this software, the FEM/BEM model of the 

mechanical and acoustical parts are driven using an actuator component, which follows the  

transduction rule for a electromagnetic motor system as outlined in chapter 2. This actuator 

component is connected to a voltage source in series with a passive electrical component that  

models the blocked electrical impedance,  Zeb,  using the LR2 model [22]. The full  circuit 

layout is shown in figure XII.7.
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Figure XII.7. Schematic of the lumped circuit used in order to approximate the voltage-driven  
response of the tweeter from the FEM/BEM model of the mechanical and acoustical parts.

In the circuit simulation, the tweeter's voice-coil is driven with a harmonic voltage of 2.83V 

RMS. The resulting 1m axial pressure is shown in figure XII.8 along with the electrical input 

impedance of the driver as predicted by the circuit simulation.

This result is much easier to interpret, as it shows exactly the same data that can be readily  

measured from a real loudspeaker. Comparison of this figure with  XII.6 clearly shows the 

damping effect that occurs when the loudspeaker diaphragm is excited with a voltage driven 

electrodynamic  motor  system.  The  large  peak  at  730Hz  is  completely  controlled  in  the 

voltage drive case. Note that the large peak in the electrical impedance at this frequency is as  

a result of the reflection of the driver mechanical impedance to the electrical side of the 

electromagnetic transduction. 

Figure XII.8. The simulated 1m axial pressure response (blue upper curve) and electrical input  
impedance(green lower curve) of the tweeter for a harmonic drive voltage of 2.83V RMS.

The response of the tweeter is very smooth over a wide range. The efficiency of the tweeter  

is extremely high at the lower end of its range. This is a result of acoustical loading of the  

diaphragm: the gentle and continuous flare of the horn and  midrange cone are sufficient to 

provide a useful horn-loading effect that begins at approximately 1.5kHz. As a consequence 
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of this horn loading, and the corresponding approximately constant radiation resistance, the  

driver  response  falls  gently  between  3kHz  and  20kHz.  When  this  tweeter  is  used  in  a  

loudspeaker system, the response characteristic is compensated in the system crossover to 

create  a  flat  passband between approximately  2kHz and 20kHz.  At  the  very  top  of  the 

modelled frequency response, a large peak is  seen, at approximately 37.7kHz. This peak 

corresponds to the first natural frequency of the tweeter diaphragm, which has very little  

mechanical damping due to its construction in titanium. The peak frequency is sufficiently 

above the audio band that it is of little concern, moreover it is high enough that one would 

expect the diaphragm motion to be approximately rigid over the entire audio bandwidth. This 

is a prerequisite for the radial-channel design methods outlined at the start of this chapter.

An additional effect of the horn and midrange cone is the control of the directivity of the  

tweeter.  The Uni-Q driver  arrangement  [97],  with the  tweeter  placed at  the  apex of  the 

midrange cone, is motivated by the desire to unify both the position and directivity of the 

tweeter and the midrange driver. In chapter  3, the directivity of a rigidly moving circular 

piston was discussed and it  was demonstrated that above  ka=1 the directivity of such a 

radiator  begins  to  narrow.  The  rigid  piston  is  a  good  approximation  to  the  radiating 

behaviour of a loudspeaker diaphragm. The tweeter is, by necessity (see chapter 2), smaller 

than  the  midrange  driver  and  as  a  consequence,  if  both  are  simple  direct-radiating  

transducers,  they  have  badly  miss-matched  directivity  at  the  crossover  frequency.  At 

crossover, the tweeter directivity is typically close to omnidirectional whereas the midrange  

driver  directivity  is  significantly  narrower.  The  horn  and  adjacent  cone  in  the  tweeter  

described above are designed to control the directivity of the tweeter so that it is matched to 

the midrange driver directivity at the crossover point and well controlled and consistent up to 

the  top  of  the  audio  band.  Figure  XII.9 shows  the  simulated  voltage-driven  frequency 

response at 1m from the baffle in 15 degree intervals from on-axis with the driver round to 

the plane of the baffle. From this figure, it may be seen that the off-axis response of the 

tweeter is very smooth and consistent without any nulls as were seen on the rigid-piston  

directivity plot shown in chapter 2 (figure 2.9).

The directivity index (DI) of the tweeter was also computed and is shown in figure XII.10 in 

comparison to a rigid circular piston of the same size. At low frequencies both radiators have 

a  directivity  index  of  3dB  indicating  that  they  are  radiating  omnidirectionally  into  2π-

steradian  space.  However,  while  the  rigid  piston  remains  omnidirectional  up  to  

approximately  4.5kHz  and  then  narrows  rapidly,  the  simulated  tweeter  is  moderately 

directional at around the crossover frequency of 2kHz and then narrows very slowly above 
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this.  Above  12kHz,  the  rigid  piston  is  more  directional  than  the  horn-  and cone-loaded 

tweeter.

Figure XII.9. The simulated 1m pressure response of the tweeter for a harmonic drive voltage of  
2.83V RMS at 15 degree polar integrals.

Figure XII.10. Comparison of the simulated DI of the tweeter described above and a infinite baffle  
mounted piston of the same diameter.
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In summary, the tweeter prior to the design of the phase plug is relatively complete and  

exhibits a well controlled frequency response and dispersion. The high peak frequency of the  

dome breakup is also a positive sign that the diaphragm is likely to be approximately rigid in 

the audio band. The main issue with the tweeter at this stage is that the voltage sensitivity is  

a little lower than ideal at the upper end of the response, above 10kHz. Unfortunately this is 

not an easy problem to solve by conventional means. A reduction in the mass is not possible  

without compromising the high rigidity of the diaphragm arrangement. An increase in  BL 

requires  additional  magnet  material  that  would add extra  cost  to  the design.  In the  next 

section, the process of designing a radial-channel phase plug is outlined in order to increase 

the sensitivity at high frequencies.



Appendix XIII Forced vibration of a lightly damped 

continuous mechanical system

The  forced  vibrational  behaviour  of  a  lightly-damped  mechanical  structure  may  be 

approached in a similar manner to that described for an acoustical enclosure in section 3.4: 

by  considering  that  the  forced  structural  displacement  is  a  linear  sum  of  the  structural  

eigenfunctions.  The behavioural  equations  for a  general  continuous mechanical  body are 

outlined with reference to Irgens [98].

The  fundamental  laws of  motion  for  any  body of  continuous material  are  given  by  the 

Cauchy equations of motion which may be expressed as [98, §3.2.5]

∇ .T (x)+ f (x)=ρ
∂2 h(x)

∂ t2
XIII.1.

x is the vector position in the body, f (x ) is the vector field of external force per unit volume 

applied to the body,  ρ is the mass density of the body and h (x ) is the displacement vector 

field. T (x) is the stress tensor field, for example in Cartesian coordinates

T (x)=[
σxx (x ) σxy (x ) σxz (x)
σ yx(x) σ yy(x ) σ yz(x)
σ zx(x) σzy(x) σ zz(x)

]
XIII.2.

where σxx(x), σ yy(x ) and σ zz(x) are normal stresses and σ xy(x), σxz (x ) and σ yz(x) are shear 

stresses (note that T (x)=T (x)T). ∇ . is the divergence operator [98, §4.4.2], for example in 

Cartesian coordinates with a second order tensor field S

∇ . S=[
∂ s xx

∂ x
+
∂ s yx

∂ y
+
∂ szx

∂ z
∂ s xy

∂ x
+
∂ s yy

∂ y
+
∂ szy

∂ z
∂ sxz

∂ x
+
∂ s yz

∂ y
+
∂ s zz

∂ z
]

XIII.3.

Considering  the  small  amplitude  vibrational  behaviour  of  the  body,  harmonic  time 

dependence is assumed and the mechanical displacement, h (x), and stress tensor, T (x), are 

complex valued amplitudes.

For linear elastic materials, the stress tensor is linearly related to the strain tensor, E(x ), by

T (x)=S: E(x ) XIII.4.
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S is the elasticity tensor [98, §7.2.1] which is a 4th order tensor, the symbol “:” denotes the 

tensor contraction operation.  In this case the tensor contraction operation is  equivalently  

expressed as

T ij=∑
k=1

3

∑
l=1

3

Sijkl Ekl
XIII.5.

The linear elastic behaviour of the material is defined by the tensor  S which contains 81 

elastic coefficients. However, due to the symmetry of the stress, strain and elasticity tensor  

only a maximum of 21 of these coefficients are independent. Indeed, for many materials  

models there are even fewer independent coefficients. For example, using the more compact 

Voigt  notation in  place of  the  stress  and strain tensors,  the  Hookean relationship for  an 

isotropic material, with Young's modulus E and Piosson's ratio ν, in Cartesian coordinates is

[
σ xx

σ yy

σ zz

σ yz

σ zx

σ xy

]= E
(1+ ν)(1−2 ν) [

1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2 ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2 ν

][
ϵxx

ϵ yy

ϵzz

ϵyz

ϵzx

ϵxy

]
XIII.6.

where ϵij are the Cartesian components of the strain tensor, E(x).

For infinitesimal deformations, the strain tensor is related to the  mechanical displacement 

gradient, H=∇ h(x), by the expression [98, §5.3.2]

E=
1
2
[H+ HT ]

XIII.7.

∇ is the gradient operator [98, §2.4], for example in Cartesian coordinates

∇ h(x )=[
∂hx(x)

∂ x

∂hx(x)

∂ y

∂ hx(x)

∂ z
∂hy(x)
∂ x

∂hy (x)
∂ y

∂ hy (x)
∂ z

∂hz (x )

∂ x

∂hz (x )

∂ y

∂hz (x)

∂ z
]

XIII.8.

The  stress  tensor,  T (x),  is  in  effect  a  linear  function  of  the  mechanical  displacement. 

Consequently the equations of motion for the vibration of the system are a linear partial  

differential equation in h (x) and, when there are no external forces, may be written

∇ .T (h(x))+ ρω2 h(x)=0 XIII.9.
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In addition,  the  mechanical  structure  may also be subject  to  boundary conditions  which 

frequently  restrain  the  mechanical  displacement  or  velocity  over  some  regions  of  the 

structure.

There  are  various  different  approaches  to  the  solution  of  equation  XIII.9.  For  some 

geometries  it  is  possible  to  solve  directly  by  separation  of  variables,  for  more  complex 

structures it is frequently the case that no analytical solution is possible and a numerical  

approximate approach must be used such as the finite element method (FEM).

In  general,  for  the  homogeneous  case  there  are  an  infinite  set  of  functions  which  are 

solutions to XIII.9

h (x)=Φn(x) XIII.10.

The vector functions Φn(x) are the eigenfunctions of the mechanical system. Each of these 

eigenfunctions is associated with a corresponding eigenfrequency, ωn, which is the frequency 

at which the solution is valid

∇ .T (Φn(x))+ ρωn
2Φn (x )=0 XIII.11.

As with the acoustical eigenfunctions introduced in section 3.2, the scale of the mechanical 

eigenfunctions is arbitrary. Additionally, the mechanical eigenfunctions form an orthogonal 

set.  A common  scheme  for  normalisation  of  the  eigenfunctions  is  summarised  by  the 

orthonormal integral expression

∫
V

ρΦn (x ) .Φm ( x )dV=δnm
XIII.12.

where V  is the volume occupied by the mechanical body and δnm is the Kronecker delta [47, 

p.692], which has the property that

δnm={0, m≠n
1, m=n XIII.13.

AXIII.i General solution to the forced case

The inhomogeneous equation of motion of the mechanical structure is given by

∇ .T (h(x))+ ρω2 h(x)=−f (x) XIII.14.

where  f (x ) is  a complex vector field which defines the amplitude of external  harmonic  

forces applied to the system.
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To outline a general solution for  h (x) it is helpful to first consider the particular situation 

when the system is driven with a unit point force at position y  in direction û f . In this case

f (x)=δ(x− y) ûf XIII.15.

The structure mechanical displacement to this excitation force, h f (x ), may be described as a 

linear combination of the eigenfunctions

h f (x )=∑
m=0

∞

bmΦm (x ) XIII.16.

To determine the complex coefficients, bm, this expression is first substituted into expression 

XIII.14

∑
m=0

∞

bm [∇ .T (Φm(x))+ ρω
2Φm (x )]=−δ(x− y)û f

XIII.17.

Using the eigensolution to the homogeneous equation, expression XIII.11, the stress tensor 

term may be eliminated leaving

∑
m=0

∞

ρbmΦm(x) [ωm
2
−ω2 ]=δ(x− y )û f

XIII.18.

Taking the dot product of both sides by Φn(x) and integrating over the volume results in

∑
m=0

∞

bm [ωm
2
−ω2 ]∫

V

ρΦn (x).Φm (x )dV=∫
V

δ(x− y )Φn(x). û f dV
XIII.19.

The shifting  property of  the  dirac  delta  allows the  right  hand  side integral  to  be  easily 

evaluated.  In  addition,  comparison  of  the  left  hand side  with  expression  XIII.12 allows 

further simplification resulting in

∑
m=0

∞

bm [ωm
2−ω2]δnm=Φn ( y ). ûf

XIII.20.

from which it is clear that the complex amplitude coefficients are given by

bn=
Φn( y ). û f

ωn
2−ω2

XIII.21.

and the mechanical displacement is

h f (x )=∑
m=0

∞ Φm (x)

ωm
2−ω2

Φm( y ). û f
XIII.22.

The solution for am arbitrary harmonic force applied the  structure  may be easily inferred 

from this  special  case  by  considering  any applied  force  density  distribution,  f (x ),  as  a 
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continuum of point forces. The mechanical displacement is the linear superposition of the 

response from each point  force,  this  is  calculated by integrating over the volume of  the 

structure which results in the concise expression

h (x )=∑
m=0

∞ Φm(x)

ωm
2−ω2∫

V

Φm( y). f (x)dV
XIII.23.



Appendix XIV Global search B & C

In an attempt to incorporate both the effect of the voice-coil region on the mechanical modes  

and also to  account for the  difference between the raw coupling parameters  γnk and the 

forced coupling parameters Fkγnk during the global search, the diaphragm geometry used for 

the first global search was augmented to include a voice-coil region. Based on the results 

shown in figure 8.22 and 8.23, the voice-coil region is located approximately at the junction 

between the spherical cap and the roll surround.

Figure XIV.1. Compression-driver diaphragm geometry B composed of a spherical cap with inverted  
roll surround, driving voice coil and former assembly as used for global search B of Fk γnk.

The geometry for the second global search is shown in figure  XIV.1. The geometry of the 

front surface of the compression driver diaphragm is the same as was used for the initial 

geometry search with the addition of a voice coil and former assembly added at the junction 

between the roll and the spherical cap region. The coil height and former gap parameters are  

both fixed during the search at 3.5mm.

In addition to this quite conventional diaphragm and voice-coil arrangement, a third global 

search was also performed on a slightly different diaphragm geometry, figure XIV.2 shows 

the geometry used for global search C.
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Figure XIV.2. Compression-driver diaphragm geometry B composed of a  spherical cap with inverted  
roll surround, driving voice coil and former assembly connected for radiation from concave side as  

used for global search C of Fk γnk.

Geometry C is quite similar to B with the exception that the acoustical radiation is taken 

from the concave side of the compression-driver diaphragm. This is of some advantage as it 

permits more space for the phase plug and, as typically the phase-plug channels must join at  

a small-diameter horn throat, it is generally easier to route the phase-plug channels from the 

concave side in such a way that they have the same effective length to the horn throat.

Both  geometry  C  and  geometry  B  were  subject  to  a  global  search  over  the  geometric  

parameters “angle” and “roll width” using the same parameter ranges as global search A. In 

the mechanical FEM models, the voice-coil region is given material properties of aluminium 

and the voice-coil former material properties of 25μm titanium.

The objective function used for search B and C was the maximum value of  Γnk
f

 over the 

range 0≤n≤4 and 0≤k≤3 with the value for  n=0∧k=0 not included. In addition to this 

objective function, a second objective function was also computed as the maximum value of 

Γnk
f

 over the range  0≤n≤5 and 0≤k≤11 to try to determine if it is feasible to control  Γnk
f

 

over a wider range of modes.

The results of global searches B and C are presented in figure  XIV.3, figure  XIV.4, table 

XIV.1 and table XIV.2. There are a number of interesting observations. Firstly it seems that 

geometry B  performs slightly better that geometry C. However, the practical advantage of  

geometry C may still prove this to be the better choice.
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Figure XIV.3. Objective function over global optimisation B parameter space.

Angle (deg) Roll Width (mm) Mass (g) Obj fun (dB) Obj fun 2 (dB)

62.5 7.25 1.5405 -13.8344 -13.8344

62.5 7.50 1.5323 -13.2635 -13.2635

60.0 7.50 1.5184 -13.1758 -13.1758

62.5 7.00 1.5487 -13.0187 -13.0187

65.0 6.50 1.5807 -12.9622 -12.9622

65.0 6.75 1.5723 -12.8296 -12.8296

67.5 6.00 1.6146 -12.7620 -12.7620

60.0 7.75 1.5102 -12.5074 -12.5074

65.0 7.00 1.5640 -12.2825 -12.2825

62.5 7.75 1.5240 -12.2613 -12.2613

Table XIV.1: Ten compression-driver diaphragm geometries with the lowest objective function  
resulting from the global search B, sorted in order of lowest objective function.

Secondly, the geometries found with the lowest objective function for both B and C have 

identical values of the additionally computed objective function. This implies that the worst  

values of Γnk
f

 occur in the range  0≤n≤4 and  0≤k≤3. It is also interesting as one of the 

conclusions from the analysis of the resulting geometry from global search A was that it is  

necessary to control the modal coupling parameter over a wider frequency range. The third 

interesting difference in the returned results is that the optimum geometrical parameters are 

slightly different from A. The reason for this comes from both the change in the mechanical 

modes resulting from the addition of the voice coil and former to the mechanical structure  

and also because the objective function is slightly different in this instance as it is based on  

Γnk
f

 rather than Γnk.
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Figure XIV.4. Objective function over global optimisation C parameter space.

Angle (deg) Roll Width (mm) Mass (g) Obj fun (dB) Obj fun 2 (dB)

65 7.5 1.51371 -11.634 -11.634

62.5 7.75 1.48681 -11.0715 -11.0715

57.5 8.5 1.42923 -10.6381 -10.6381

67.5 7.25 1.54212 -10.4611 -10.4611

57.5 7.5 1.46004 -10.3061 -10.3061

45 9.5 1.32995 -10.2363 2.00809

60 7.25 1.48461 -10.1158 -10.1158

50 9.5 1.35522 -10.0076 -2.64182

55 8.75 1.40604 -9.86877 -7.78871

60 8.25 1.45344 -9.79548 -9.79548

Table XIV.2: Ten compression-driver diaphragm geometries with the lowest objective function  
resulting from the global search C, sorted in order of lowest objective function.

Figure  XIV.5 and  figure  XIV.6 show  the  forced  coupling  factors  Γnk
f

 for  the  optimal 

geometries resulting from search B and C, respectively. These are directly comparable to the 

coupling  factors  shown  in  figure  8.22 for  the  optimal  geometry  from  search  A.  The 

difference  between  the  coupling  factors  for  geometry  A and  geometries  B  and  C  are 

interesting  as  the  coupling  factors  of  A are  lower  in  the  controlled  range  0≤n≤4 and 

0≤k≤3; however, B and C are substantially lower for higher mechanical modes.
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Figure XIV.5. Computed values of Γnk
f  for the compression driver-diaphragm with geometry according  

to figure XIV.1 with the geometric parameters angle=62.5deg, radius=76.2/2mm and roll  
width=7.25mm.

Figure XIV.6. Computed values of Γ nk
f  for the compression-driver diaphragm with geometry according  

to figure XIV.2 with the geometric parameters angle=65, radius=76.2/2 and roll width=7.5.

The normalised zeta functions for each of the geometries were approximated from the in-

vacuo FEM-computed diaphragm velocities in combination with the FEM modal analyses of 

the  compression  cavity.  The  results  are  shown for  geometry  B  in  figure  XIV.7 and for 

geometry  C  in  figure  XIV.8.  In  comparison  with  figure  8.19,  which  shows  the  same 

calculation for the geometry found in global search A, the most obvious difference is that the 

level of the functions is reduced at 20kHz. There is also a slight reduction in the level of the  

functions at approximately 10kHz. The results for geometry C are particularly interesting as  
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the  glitches  at  15kHz  and  17kHz,  corresponding  to  the  first  mechanical  modes  of  the 

diaphragm, are significantly smaller than on both geometry A and geometry B. 

Figure XIV.7. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in-vacuo FEM-calculated non-

rigid diaphragm and cavity found in global search B.

Figure XIV.8. Decibel level of calculated functions ζn
d
(ω)/ζ0

d
(ω) for in-vacuo FEM-calculated non-

rigid diaphragm and cavity found in global search B.
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It is interesting to now see if  these seemingly improved zeta functions result in improved 

performance for a fully coupled compression driver. For both geometry B and geometry C, a 

simple phase plug was designed and in the same was as was done for geometry A, in the 

calculation  of  the  channel  positions  and  sizes  ideal  values  of  ζn
d (ω)/ζ0

d (ω)=δ0n were 

assumed. For the geometry found in global search B this results in channel areas of 

[
A1/ AT

A2/ AT

A3 / AT
]=[0.2091

0.3874
0.4035] XIV.1.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and  A3 is the area of the outer most channel.  These areas can equivalently be written as  

channel width ratios as

[w2 /w1

w3 /w1
]=[0.8421

0.6303 ] XIV.2.

For the geometry found in global search C, this results in channel areas of 

[
A1/ AT

A2/ AT

A3/ AT
]=[0.2247

0.3879
0.3874 ] XIV.3.

where A1 is the area of the inner of the three channels, A2 is the area of the middle channel 

and  A3 is the area of the outer most channel.  These areas can equivalently be written as  

channel width ratios as

[w2 /w1

w3 /w1
]=[0.7922

0.5790 ] XIV.4.

The resulting normalised channel-pressure levels are shown for geometry B in figure XIV.9 

and for geometry C in figure  XIV.10.  The  pressure levels shown are normalised by the 

specific acoustical impedance of a tube,

Lnorm=20log10∣ p
ρ0 c0

∣ XIV.5.

Compared to figure 8.20, which shows the equivalent pressure level responses for geometry 

A, the two pressure response figures are very similar and show a similar level of uniformity 

between the three channels.  From these results,  it can be seen that geometry B performs 

slightly better in the region 5< ka< 8, whereas the channel pressures of geometry C are more 

similar in the region above  ka=10. The differences are, however, relatively small and the 
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overall  trend  in  the  channel-pressure  levels  in  geometry  A,  B and C are  similar.  For  a  

significant improvement in the compression driver performance, it seems that it is necessary 

to consider less conventional compression-driver diaphragm geometries.

Figure XIV.9. Normalised channel-pressure level response for diaphragm and cavity geometry found  
with global search B, with phase-plug geometry computed using the generalised method introduced in  

section 5.4.1, note that the fluid and structural regions are fully coupled.

Figure XIV.10. Normalised channel-pressure level response for diaphragm and cavity geometry found  
with global search C, with phase-plug geometry computed using the generalised method introduced in  

section 5.4.1, note that the fluid and structural regions are fully coupled.


