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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

SCHOOL OF ENGINEERING SCIENCES 

DOCTOR OF ENGINEERING 

INTEGRATING SUPPLY CHAIN SIMULATION, COMPONENT GEOMETRY AND 

UNIT COST ESTIMATION 

By Stuart Jinks 

This thesis shows how utilising dynamic simulation to estimate unit costs and 

manufacturing resources, can aid design decisions. A framework specification is 

introduced that integrates Computer Aided Design (CAD), Discrete Event 

Simulation (DES) and Activity Based Cost (ABC) methodology. The framework 

aids a design team in understanding the consequences of design decisions in 

terms of unit cost and manufacturing resources, by returning aggregated unit 

cost and manufacturing based data, directly to the design team, within the 

design environment.  

Dynamic Resource Estimation System (DRES) has been developed to 

implement the framework and conduct two case studies based on representative 

aerospace components. The purpose of the first case study is to determine the 

benefits and applications of integrating a dynamic supply chain simulation and 

unit cost estimation. The second case study is used to show that the framework 

is capable of handling significantly different components and to highlight the 

effort required to implement a new component within the framework.  

This thesis concludes that there are three primary benefits provided by the 

framework, which are: firstly, the framework can accurately predict required 

resources to fulfil a supply chain for a specific production rate, which can be 

utilised by manufacturing engineers to aid production planning; secondly, the 

framework increases refinement of a component unit cost estimate, by including 

manufacturing time and dynamically determined resource requirements into an 

ABC cost model; and thirdly, the framework has the ability to compare multiple 

supply chain options and different supply chain types at the same time from 

component geometry. 
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Chapter 1  

Introduction 

Understanding the cost of a component can mean the difference between 

making a profit or not. Cost estimation, a method of understanding cost, requires 

knowledge, data and when these are not fully available, assumptions in the form 

of a probability distribution. The cost of a component could be determined from 

the geometry alone, however many assumptions would be required such as the 

material and manufacturing process, therefore the distribution surrounding the 

cost would be so significant as to render the estimate almost useless. If the 

component material, manufacturing process sequence and process times were 

supplied with the geometry, the reduced number of assumptions required would 

result in a smaller distribution around the cost estimate. The primary assumption 

required in this situation would be the process cost rates which, in most cost 

estimation methods, are based on historical data (Tammineni 2007) that is 

collected from similar processes. 

Cost rates from historical data is collected, at a point in time, from components 

and processes that are based on specific parameters. Therefore the scope of 

relevance of historical data has a distribution around these parameters. As the 

parameters change the applicability of the historical data reduces. Therefore the 

crux of the problem is, if historical data is utilised within a cost estimation it must 

be for components or processes with similar parameters and therefore within 

scope of the historical data otherwise the cost estimation may diverge from 

actual cost. 

A method of mitigating this problem is to reduce the use of historical data and 

build the cost estimate from a scientific base data. Hence instead of using a cost 

rate of a machine or process determined from historical data it can be calculated 

by determining the resource requirements from a model of the manufacturing 

system. However a limitation of typical industry cost estimation methods is that 

they are based on static models which have difficulty fully representing dynamic 

system (Marsh, Jonik et al. 2010).A solution that addresses this limitation is to 

utilise a modelling method that fully represents a dynamic system as it evolves 

with time; dynamic modelling allows this (Law and Kelton 1992).Discrete Event 

Simulation (DES) is a dynamic modelling technique which is accepted as 
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research and industry best practice for modelling manufacturing systems (See 

2.2.1.4 Discrete event) 

Integrating a DES model with a cost estimation method has complications. DES 

models typically require skilled modellers to construct useful, flexible and well 

structured models (Barton, Bryan et al. 2004; Pidd and Carvalho 2006). Also 

DES models require substantial amounts of data (such as number and type of 

manufacturing processes and required resources) and knowledge (such as logic 

of how the supply chain works and rules to control it) to be embedded in to the 

model before it can be used to produce meaningful results. Therefore the data 

and knowledge must be gathered or determined using other tools before the 

dynamic model can be built.  

A framework is required to integrate all the tools necessary to bring together the 

data and knowledge required to build the dynamic model and incorporate the 

dynamic results into the cost estimation in real time. This research has 

formalised the framework and created a system to implement it to prove the 

concept.  

1.1 Motivation for this research 

Rolls-Royce plc provides integrated power systems in the aerospace, defence, 

marine and energy markets. The company is the second largest manufacturer of 

gas turbine engines (Figure 1) with annual sales of £10.9bn, of which civil 

aerospace constitutes the largest area of sales at £4.9bn (45.3% of total sales) 

in 2010 (Rolls-Royce Plc 2010). 

 

Figure 1: Rolls-Royce Trent 900 (®Rolls-Royce) 
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Product Cost Systems (PCS) is a central group within Rolls-Royce that develops 

and promotes cost estimation within the organisation and has supported this 

research throughout its duration. Cost estimation within Rolls-Royce utilises the 

knowledge based method (Tammineni, Scanlan et al. 2007) that combines 

historical cost rates with features in a visual object orientated modelling 

environment called Vanguard (Vanguard SoftwareTM Corporation 2011). PCS 

has an active role in understanding the cost of manufacturing processes early in 

their development so that cost drivers can be understood or developed to reduce 

process cost.  

Due to the active role of PCS this research was sponsored in part by the 

Resource Efficient Manufacture of high performance hybrid Aerospace 

Components (REMAC) development project (Jinks, Scanlan et al. 2008). The 

REMAC project was developing a near net shape capability for manufacturing a 

component through the use of the powder Hot Iso-static Pressing (HIP) process. 

The powder HIP process is a batch process that produces a near net shape by 

consolidating powder contained in a canister into a solid component.  

There are three areas of industrial motivation and direction that the author took 

into the research. Firstly, due to the lack of historical data for the HIP processes, 

the dynamic interactions of batch processes and the distribution of possible 

production rates of components, directed the author to investigate the integration 

of dynamic modelling and static cost estimation. Secondly there was a 

requirement to compare different manufacturing processes for a single 

component to ensure that optimum cost is being achieved for the component. 

Thirdly a requirement of the aerospace industry is to make geometry design 

changes for multiple reasons, such as specification change, design optimisation 

and design for the process. This third requirement can be described as real time 

decision making. 

1.2 Statement of research 

The statement of hypothesis is: 

“Integrating supply chain simulations with design geometry can assist in design 

decision making” 
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1.3 Research aims 

The aim of this research is to assist the design process by aiding decision 

making by conducting real time cost estimations, incorporating a dynamic aspect 

into unit cost estimation and allowing comparisons of manufacturing processes. 

To do this a framework has been developed that integrates a dynamic model 

with cost estimation. This provides the modelling capability to fully represent the 

dynamic characteristics of the manufacturing supply chain. The results of the 

dynamic model are utilised in two ways, within a cost estimation model and 

directly to compare manufacturing methods. Also by integrating with design 

geometry the consequences of design decisions can be linked directly to the 

cost output. This will provide a design team with a real time cost estimation and  

holistic manufacturing prediction which is intended to lead to more informed 

design decisions. 

1.4 Research scope 

There are four general areas that cover the scope of this research as shown in 

Figure 2. The four areas are: cost estimation, manufacturing process 

technologies, dynamic modelling and components. Within each of these areas 

are specific topics upon which this research will focus. Unit cost will be 

considered within the cost estimation area. Forging, machining, electrochemical 

machining and powder HIP are the manufacturing process technologies that will 

be utilised. Discrete event simulation will be utilised in the dynamic modelling 

area because it is used by industry for manufacturing and supply chain 

simulation, as discussed in section 2.2. The framework will be applied to two 

significantly different aerospace component types which are an aero engine case 

and a blisk; these are described further in Chapter 4. 
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Figure 2: Research scope 

1.5 Layout of thesis 

This thesis consists of 6 chapters laid out as shown in Figure 3. The remaining 

chapters include literature review, framework, case studies, discussion and 

conclusions and future work.  

Chapter 2, the literature review, presents a foundation for the research and 

contains four sections. The first describes the main cost estimation methods and 

their primary limitation. This section ends with a recommendation of integrating a 

dynamic modelling capability with cost estimation to solve the limitation. The 

second section describes the main dynamic modelling methods, recommending 

discrete event simulation as a suitable option. The section finishes by discussing 

data driven generic modelling. Integrating geometry is the third section and 

discusses two methods, automated feature recognition and computer aided 

process planning. These methods were determined unsuitable for complex 

components, therefore alternative, less flexible, methods were proposed. The 

last section, supply chains, defines a supply chain and aspects related to 

modelling a supply chain. 



Chapter 1: Introduction 

6 

A framework structure is proposed that integrates dynamic modelling with cost 

estimation in Chapter 3. The framework structure is described in detail and 

contains five stages, which include:  

1. Geometry modification 

2. Determine manufacturing process 

3. Manufacturing process data generation 

4. Dynamic modelling 

5. Aggregated unit cost 

The fourth chapter describes the results from two aerospace component case 

studies, which are: a combustor outer case and a blisk. The first case study has 

the purpose of determining if integrating a dynamic model with cost estimation 

provides a difference in results compared to a cost estimation that does not have 

an integrated dynamic model. Also it assesses, under which circumstances any 

difference between the different modelling approaches occur. The purpose of the 

second case study has two parts. The first is to show the flexibility of the 

framework by implementing a different component type. The second is to 

highlight the steps necessary to implement a component or supply chain within 

the framework. 

The fifth chapter, discussion, contains five sections. The first discusses the 

findings from the case studies. The second discusses whether the framework 

benefits are worth the required effort to set up the framework for a component. 

The third discusses validation, for both of the case studies and future 

implementation of the framework. The last discusses framework improvements. 

The last chapter presents the significant conclusions of the research, followed by 

key contributions to the research field. Recommendations of future research, 

building on the findings, are discussed before concluding remarks. 
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Figure 3: Layout of thesis 
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Chapter 2  

Literature review  

This chapter presents a foundation for the research in the form of a literature 

review of the relevant areas. The relevant areas have been categorised into four 

sections which are: cost estimation, dynamic modelling, integrating geometry 

and supply chains. 

The first, cost estimation, highlights that cost estimation methods are based on 

static modelling techniques. An argument is put forward that static modelling 

techniques are unable to make sufficiently accurate predictions of dynamic 

systems, therefore are a limitation to cost estimation methods. Utilising 

dynamically derived data within cost estimation is recommended as a solution to 

the limitation, which leads to the integration of dynamic modelling to generate the 

dynamic data required.  

The second section, dynamic modelling, discusses possible modelling methods. 

A dynamic modelling method is suggested based on the requirement to model 

manufacturing and supply chain systems. A generic modelling methodology is 

also proposed as a way to reuse the model and store the required input and 

output data.  

The third section, integrating design geometry, discusses possible methods to 

aid the integration of dynamic models with design geometry. Two methods are 

discussed: the first automated feature recognition, the second computer aided 

process planning. Both methods have limitations that resulted in a direct 

approach being proposed as this increases automated capability, however at the 

loss of flexibility. 

The last section, supply chain, defines a supply chain within the scope of this 

research. This section also defines three critical aspects of a supply chain which 

are utilised when creating a dynamic model, these are:  

 Resource modelling 

 Inventory control 

 Manufacturing batch operations 
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The chapter ends with a summary that incorporates the main conclusions and 

findings from the four sections and proposes suggestions for achieving the 

research aims. 

2.1 Cost estimation 

Cost estimation, as defined by Stewart et al. (1995), is “a process of predicting or 

forecasting the cost of a work activity or work output” which can be used 

throughout the Product Development Process (PDP) to aid understanding of 

total unit cost. A PDP represents the life cycle of a product from conception 

through design, manufacture, operation and finally disposal (Asiedu and GU 

1998; Kim, Jeong et al. 2009). A PDP typically contains a number of stages, 

which can be classified into categories, formal review procedures and decision 

gates, as shown in Figure 4. This standardised process seeks to minimise risk 

by systematically identifying and reducing uncertainties (Scanlan, Rao et al. 

2006). 

 

Figure 4: Product development process. Based on (Tammineni 2007) 

Many authors believe that 70% - 80% of a product’s total cost is controlled by 

early design decisions (Cooper 1990; Zeigler, Kim et al. 1999; Beck and Nowak 

2000). The empirical evidence that supports this statement is questionable 

(Forrester 1961; Ulrich and Pearson 1993), however, it is widely accepted that 

design decisions, especially at early design stages, control total unit cost (Pidd 

1992) therefore cost estimation is important at early design stages (Newnes, 

Mileham et al. 2008). 

Asiedu and Gu (1998) discuss how uncertainty of cost estimation results result in 

the accuracy of the estimate being inversely proportional to the span of time 

between the estimate and the event to which it refers. The graph in Figure 5 

supports this thinking by showing how total unit cost of a product is not fully 

understood until steady state production has been reached, as shown by cost 

determination. However the duration of time to reach steady state production 
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depends on many aspects such as production rate and variability of the 

manufacturing processes. When steady state production has been achieved 

uncertainty can be removed from the data required by the cost estimate, which 

at that point ceases to be an estimate and becomes a calculation. There are 

many uncertainties when a new product design project is initiated, but as time 

progresses decisions are made that narrow these uncertainties. This is shown by 

the cost determination line in Figure 5, which shows how over time cost is 

determined and eventually matches costs incurred. 

A third aspect shown in Figure 5 is the ease with which changes can be made to 

the product design as the project progresses through the PDP. At early stages of 

the PDP designs can be changed easily, but as decisions are made throughout 

the PDP the ease of making changes decreases due to implied constraints from 

previous decisions. 

 

Figure 5: Cost determination, cost incurred and ease of change against time. Modified from 
(Dowlatshahi 1992; Miles and Swift 1998; Layer, Brinke et al. 2002) 

2.1.1 Cost estimation methods 

Asiedu et al (1998), Rush et al (2000), Curran et al (2004), Niazi et al (2006), 

Tammineni (2007) and (García-Crespo, Ruiz-Mezcua et al. 2011) have 

extensively reviewed cost estimation research and methods. The main cost 

estimating methods include: analogy, parametric, feature, activity, and 

knowledge based. 

2.1.1.1 Analogy based costing 

Analogy cost estimating is based on adjusting the cost of a similar product 

relative to the differences between the new and similar product (Taylor 1998). 
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This method requires complete historical data of similar components, and 

appropriate scaling parameters to be applied (Scanlan, Rao et al. 2006).  

There are risks associated with this method that relate to the amount and 

accuracy of historical data and the scaling parameters used which require an 

understanding of the product and involve expert judgement (Jenab and Liu 

2009). Analogy methods cannot be used for new component designs or 

manufacturing processes (Jaya Suteja, Prasad KDV et al. 2013) because there 

are no similar products to base the new component cost on. This limitation is 

also extended if the production volume of the new component is significantly 

different to the product it is based on. This is because a significant change in 

production volume may require changes in manufacturing process, tool and 

fixture design or equipment to enable the production volumes to be achieved.  

2.1.1.2 Parametric based costing 

A definition of parametric estimating is given by Dean (1995) as the “generation 

and application of equations that describe relationships between cost, schedule, 

and measurable attributes of systems that must be brought forth, sustained, and 

retired”. (Wright 1936) is one of the first published uses of parametric cost 

models in aerospace however it was the Rand Corporation in the 1950s that 

developed Cost Estimating Relations (CER) (Younossi, Arena et al. 2002). A 

CER is developed by determining a correlation between the dependent variable 

cost, and independent variables such as size. An example of a simple CER is 

the relationship between cost and mass of a component.  

CER’s are based on historical data which lead to two limitations. First, CER’s 

can have a limited range, for instance, if a new piston is designed, which is the 

same as a previous piston except for a small change in diameter, a CER utilising 

mass could be used to determine the unit cost of the piston. However if the 

change in diameter of the new piston was large enough to require a new 

manufacturing process or tool, the CER may no longer be valid. Secondly, a 

CER cannot be used for new components or novel technology because there is 

no historical data to create the CER (Rush and Roy 2001; Jaya Suteja, Prasad 

KDV et al. 2013). These limitations are the same as the analogy based method 

because of the reliance on historical data.  

A CER could be a simple scale factor, for example based on surface area, 

therefore the parametric method and the analogy method are, in a simple form, 
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the same. In practice the parametric method can utilise multiple complex scale 

factors to determine the cost of a component. However the reliance on scoped 

historical data limits the use of this and the analogy methods. 

2.1.1.3 Feature based costing 

A component can be described by a number of associated features such as: 

hole, pocket, slot and flange. Each feature has an associated process cost 

therefore the component process cost is the sum of all the feature process costs 

(Rush and Roy 2000). For simple components, where features are independent, 

this method allows a designer to understand which features drive the component 

unit cost. However, features are not always independent; they interact with each 

other affecting the cost and reducing the distinction between the features. Two 

reasons to use features as drivers of cost as described by Wierda (1991) are: 

 Cost functions can be derived for classes of similar objects that serve as 

key drivers of global cost estimation and are linked to the engineering 

domain 

 The designer expects to know the causes of costs so that when linked to 

design features, they are able to influence committed cost directly 

There are however two difficulties with the feature based method. First, there is 

no consensus for a standard set of features or methods to create them (Taylor 

1998). For instance a feature could be described by using either manufacturing 

or design parameters; see section 2.3.1. Companies are therefore required to 

create their own set of feature definitions. Secondly, linter-linked features which 

are connected or share parameters can cause complexity when calculating the 

cost (Srikantappa and Crawford 1994). For instance, if an interacting pocket, slot 

and hole were manufactured by machining, feature based costing could estimate 

the processing cost of each feature individually. However the order of 

manufacture would affect each feature cost because they are interacting and this 

could affect the total process cost. 

True feature based cost estimation, that is the ability to update the cost of the 

component when the component geometry is changed, requires an ability to 

either: assess the component features and all the different processing methods 

to achieve them; or requires a predefined manufacturing process for feature 

combinations. Both of these methods requires a connection to the component 

geometry which is discussed further in section 2.3 Integrating geometry. Without 
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either of these abilities a true feature based cost approach cannot be achieved. 

However a feature based cost model can be created that is a static 

representation of the component. This static feature based cost model would 

require an expert modeller to determine the necessary changes to the model 

based on any updates to the component geometry.  

2.1.1.4 Activity based costing 

The theory behind Activity Based Costing (ABC) is that virtually all a company’s 

activities exist to support the production and delivery of its products. By 

determining which activities and the amount of those activities the products 

consumes, a product unit cost can be determined (Cooper and Kaplan 1988; 

Cooper and Kaplan 1988; Liggett, Trevino  et al. 1992; Özbayrak, Akgün et al. 

2004). Activities can be classified into four categories(Cooper 1990), including: 

1. Unit level – Performed each time a unit is produced 

2. Batch level – Performed each time a batch of goods is produced 

3. Product level – Performed as needed to support the production of each 

type of product  

4. Facility level – Performed to sustain the factory’s performance such as 

rent, depreciation and insurance 

The unit level category of activities forms the majority of activities for most 

component unit costs because these activities include operations such as 

machining, inspection and cleaning. Batch level activities include heat treatment 

and HIP cycles. Product level activities may only happen infrequently such as 

tool specific setups. The facility level activity incorporates all the other none 

direct activities which would are difficult to quantify and assign to a specific 

product. It is this final activity level that reduces the ‘hidden’ factory cost, 

otherwise known as overhead cost, and can improve the accuracy of unit cost 

estimation (Asiedu and GU 1998; Mikko, Marko et al. 2007; Park and Simpson 

2007; Askarany, Yazdifar et al. 2010; Wang, Du et al. 2010).  

The disadvantages of ABC is that it requires substantial amounts of detailed data 

compared to analogy, parametric and feature based methods which results in 

more complex models requiring expert knowledge to complete the estimate 

(Spedding and Sun 1999). The requirement of less data is one reason why 

analogy and parametric methods are widely used. In certain instances such as 

single product settings there is little advantage over traditional costing systems 
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(Asiedu and GU 1998). In single product factories there is no need to determine 

which parts of the factory, equipment and labour need to be assigned to which 

products because it is all assigned. Therefore the total factory cost per year is 

divided by the number of products manufactured to determine the unit cost. 

Askarany et al's (2010) paper is a supply chain management study of the 

adoption of ABC within different size organisations. Askarany et al give multiple 

reasons why the adoption of ABC can provide improvements to any 

organisation, with the main points being: providing a clear picture of where 

resources are being spent; providing an alternative to volume based product 

costing; identifying value added activities allowing the reduction of non-value 

added activities; improving the accuracy of process and product cost estimation; 

and a method to obtain long term profit by exercising complete control over 

overheads. Askarany et al is among a growing community (Farrell and Simpson 

2009; Hammami, Frein et al. 2009; Wang, Du et al. 2010; Tsai, Shen et al. 2012) 

outside engineering that are utilising ABC to improve understanding of supply 

chains. For example an ABC approach was suggested by Tsai et al (2012) to 

solve the problem of environmental and cost evaluation. They utilised the ABC 

method to determined environmental cost by calculating the pollutants and 

energy usage per product, then converted this into a cost. 

2.1.1.5 Knowledge based costing 

The knowledge based system was developed by Tammineni (2007) to overcome 

two shortcomings of modelling environments and two limitations of cost 

estimation methods. The modelling environment limitations are considered to be:  

 Basic visualisation of data in the modelling environment 

 Little support to users with limited programming skills 

The cost estimation limitations are considered to be: 

 Uncertainties are applied in a black box approach and without sensitivity 

analysis capability 

 Minimal ways to present manufacturing knowledge to the user 

The system Tammineni developed utilises a generic modelling tool developed by 

Vanguard Software Corporation (2011) and is used by Rolls-Royce to conduct 

their unit cost estimation. The tool overcomes the modelling environment 

limitations by providing a method of building a cost model without programming 

and by using a visual tree structure. The tool has a web based view that allows 
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reuse of models by none modellers allowing them to modify the model inputs 

and viewing the output. This means the customer is not required to have expert 

knowledge in cost modelling and with the tool to conduct different scenarios 

within the constraints of the model inputs and logic. 

The cost estimation limitations were solved by allowing uncertainties to be 

applied to all inputs therefore allowing a Monte Carlo and sensitivity analysis to 

be conducted. The also tool presents the cost of the component in the same 

process order the component is manufactured, or by feature, therefore improving 

how manufacturing knowledge is presented to the user. This improves 

understanding of the model and consequently the unit cost by linking it to the 

design. The method also incorporates an object orientated approach that allows 

libraries of building blocks to be used in a parent child arrangement. This 

approach allows reuse of data, simplified maintenance and consistency of model 

structure. (Tammineni, Scanlan et al. 2007; Tammineni, Rao et al. 2009).  

In overcoming the limitations that Tammineni discovered in his research the 

developed tool Vanguard can combine any of the other cost estimating methods 

through the use of the object orientated approach. However the knowledge 

based approach does not introduce a new method of determining the cost of a 

component. What it does do is allow a cost modeller to create a cost model 

using the best costing method that fits the problem, with all the benefits of 

applying uncertainties and object orientated features without  programming skills. 

In Rolls-Royce Vanguard is used mostly to create top down process based cost 

models, however when it is appropriate analogy models and ABC models are 

used. All the different cost estimation models for the different components are 

then combined in to a whole engine model to determine a whole engine cost.  

2.1.2 Static or dynamic cost estimation 

A definition of a 'static system is one where output is independent of past values 

of input', therefore' determining the output of a static system requires no memory 

of the input history' (Cassandras and Lafortune 2008). A similarity between the 

cost estimation methods discussed in section 2.1 is that they are based on the 

definition of a static system and use static models to determine output values. 

Another definition of a static model is a model that represents a specific point in 

time (Law and Kelton 1992). The definition of a 'dynamic system is one where 

the output generally depends on past values of input' (Cassandras and Lafortune 

2008) and dynamic systems evolve over time (Law and Kelton 1992; Marsh, 
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Jonik et al. 2010). In a static system the output is always the same when the 

input is fixed, however the output of a dynamic system is not always the same 

with a fixed input. A limitation of static models, and therefore the cost estimation 

methods discussed, is that they are unable to fully represent dynamic systems. A 

potential solution for this limitation is to use dynamic data. Two sources of 

dynamic data are a real system or a modelled system. 

Each cost estimation method discussed utilises historical data. Historical data is 

collected from a real system, therefore can be categorised as dynamic data. A 

problem is that historical data has a limited scope and is collected at a point in 

time. For instance, a change in a system input variable (such as production rate, 

operation times or number of operations) could cause changes to system 

outputs and the collected data. Therefore a cost estimation model using 

historical data of a component but requiring different parameter values would be 

using historical data that was out of scope. Creating a dynamic model of the 

system and generating the dynamic data is the second source. A dynamic model 

can be used to represent the system, with the required input variables, as it 

progresses over time, see dynamic modelling section 2.2. 

Many authors have integrated ABC and dynamic modelling. Spedding et al 

(1999), Savory et al (2001) and Savory et al (2010) use ABC approaches within 

a dynamic model to address the time consuming, costly and difficult 

implementation of ABC. They conclude that integration provides greater detail to 

the cost estimate by incorporating the dynamic variations of a manufacturing 

system. Costa et al (2010) integrated ABC with a dynamic model to quantify the 

what if scenarios within the dynamic model. Beck et al (2000), Lee et al (2001) 

and Andersson et al (2012) use dynamic modelling output within a ABC model to 

improve accuracy. This is because resource requirements, therefore the costs, 

are more accurate and arbitrary allocation is avoided. Lee et al suggests that 

integration gives a greater understanding of the dynamic nature of the 

component cost within a manufacturing system. Marsh et al (2010) created a 

system that coupled a DES model with a generative cost model. Marsh et al 

concluded that their system allowed sharing of data and results that enabled 

informed decision making for process planning and more accurate results for 

assembly costs. 

Tse et al (Tse and Gong 2009) suggested a Time Driven Activity Based Costing 

(TDABC) model to account for idle resources in resource pools. This is an 
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improvement over the traditional ABC models and in some simple cases may be 

the correct approach; however it is still a static model therefore the dynamic 

interactions of a system will not be taken into account. Which is why the 

integration of a dynamic model with a ABC model is proposed. 

2.1.3 Summary 

A limitation of the main cost estimation methods is that they employ static 

models which are unable to fully represent dynamic systems. A solution to this is 

to utilise dynamic data. Two sources of dynamic data are: to collect it from a real 

system or to generate it with a dynamic model. Improvements in ability and 

model accuracy have been shown with the integration of a cost model to a 

dynamic model within the literature. Therefore a dynamic model will be utilised, 

in this research which is discussed in section 2.2. 

ABC allocates all costs, including overheads, within a manufacturing system to 

individual components. Many authors (Asiedu and GU 1998; Mikko, Marko et al. 

2007; Askarany, Yazdifar et al. 2010; Costa, Montevechi et al. 2010; Savory and 

Williams 2010; Wang, Du et al. 2010; Andersson, Bj et al. 2012) have shown 

cost estimation improvements by utilising ABC over other cost estimation 

methods  However a disadvantage of ABC is that substantial amounts of 

detailed data, concerning the manufacturing system and the manufacture of 

components that utilise it, are required to complete the estimate. The dynamic 

modelling method chosen also requires substantial amounts of detailed data 

(section 2.2.1.4), it is therefore prudent to utilise ABC as the costing estimation 

method, because the detailed data required for the dynamic model can also be 

utilised by the ABC model. 

2.2 Dynamic modelling 

If a system does not exist a model can be created to replicate its behaviour in 

order to experiment on it. There are two types of model shown in Figure 6, 

mathematical and physical, as described by Law and Kelton (1992). In many 

situations, and increasingly with computer utilisation, a mathematical model has 

advantages over a physical model. For instance a physical model requires 

manufacturing, and cannot be changed easily once created. There are two 

categories of mathematical model, analytical and dynamic. Analytical represents 

the use of mathematical methods to obtain an exact solution to a problem. 
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Dynamic modelling, often called simulation, usually refers to the modelling of a 

system, which has stochastic elements, as it progresses through time. 

 

Figure 6: Ways to study a system (Law and Kelton 1992) 

2.2.1 Forms of simulation 

Simulation can be classified into two forms as shown in Figure 7; these are: 

 Time-driven simulation, where the model time progresses either 

continuously, by fixed time points or by regular intervals, and the state 

variables change continuously with respect to time 

 Event-driven simulation, which progresses through time by advancing 

from event to event resulting in variable time steps, and the state 

variables change only at these discrete points in time 

Also shown in Figure 7 are four modelling methods, two for each classification. 

The modelling methods for time driven classification are: system dynamic and 

continuous. For event driven classification they are: agent based and discrete 

event. Each of these modelling methods will now be discussed. 
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Figure 7: Simulation classification and modelling methods. Modified from (Yu 2008) 

2.2.1.1 System dynamic 

System Dynamic (SD) modelling was developed by Forrester (1961) and is 

defined as the study of information feedback to understand how organisational 

structure, amplification and time delays interact to influence the system. SD is 

typically used to model systems where abstraction is high and details are low, 

examples include: water resource management (Winz, Brierley et al. 2009), 

social epidemiology (Galea, Hall et al. 2009), ecological systems (Miller, Cable et 

al. 2012), energy policy modelling (Qudrat-Ullah and Seong 2010) and charging 

control of batteries (Huang, Hsu et al. 2010). Since the emergence of agent 

based modelling (section 2.2.1.3) the use of SD modelling has reduced to 

specific applications such as where there are flows, or the overall system 

dynamics is required (Norling 2007). For these reasons SD is not a modelling 

method normally used for manufacturing or supply chain simulation. 

2.2.1.2 Continuous 

Continuous modelling is used to model systems where state variables change 

continuously with respect to time such as the depth of water in a container 

(Sokolowski and Banks 2011). A computer cannot represent time in a truly 

continuous manner therefore it simulates time passing continuously by utilising 

very small fixed time steps (Yu 2008). The state variables of a continuous 

simulation are re-evaluated at each time step, this can result in model run times 

that grow with the increase in required model simulation time. Differential 

equations are typically used within continuous models (Wainer 2009) and many 

continuous models try to transfer the complex discrete parts of the model to the 

continuous level because differential equations allow for fast simulation times. To 

do this individual discrete elements are converted to dynamic flows for example 

parts per unit time (D'Apice, Herty et al. 2010). A result of this is that some of the 
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fine details of the system are lost. For these reasons continuous simulation is not 

normally used for detailed manufacturing simulation of components passing 

through a series of manufacturing operations within a supply chain. Therefore 

continuous modelling will not be used within this thesis. 

2.2.1.3 Agent based 

Agent Based Modelling (ABM) has no central control of the model unlike the 

other modelling methods. Instead control is distributed among the agents which 

have a well defined sphere of influence (Yu 2008). A defining characteristic of 

agent-based modelling is the ability of individual agents to exhibit autonomous 

action. This is possible because an agent is governed by rules that control its 

behaviour, accept inputs from its environment, learn from previous experience, 

adapt to future actions and to communicate with other agents (Yu 2008). A result 

of the interactions between agents is a behaviour which is not explicitly 

programmed and can be unpredictable. 

In recent years ABM has seen increased use in many areas of research 

including: geographical system simulation (Crooks and Heppenstall 2012), social 

economic system simulation (Birkin and Wu 2012), transportation system 

simulation and virus transmission (Cheng, Qiu et al. 2012),  generative social 

science modelling (Epstein 2011), ecosystem services modelling (Murray-Rust, 

Dendoncker et al. 2011) and economic modelling (Farmer and Foley 2009). In 

the manufacturing simulation area ABM has been utilised to develop 

manufacturing control systems (Anosike and Zhang 2009; Leitão 2009) and 

manufacturing schedules (Ouelhadj and Petrovic 2009). All these areas of 

research have one similarity which is that they all model, in different levels of 

abstraction, behaviour of systems that contain either humans or animals. The 

ability of ABM to model behaviours with simple agents is the primary reason it is 

used. This is also why it is not normally utilised to model the flow of products 

through a manufacturing supply chain to determine bottlenecks and optimum 

resource requirements. Agent based modelling is not suited to model 

manufacturing  systems to a detailed level. 

2.2.1.4 Discrete event 

A discrete-event model typically describes a logical sequence of activities. These 

activities can, for instance, represent a process in a manufacturing system. From 

an abstract point of view an activity represents a time delay. Entities move 

through the model; in a manufacturing system entities could represent individual 
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components. When an entity enters an activity an event occurs instantaneously 

in simulated time that acts on the entity changing its state, also the event can 

trigger other events to occur. For these reasons DES is a widely used method for 

studying the design and operation of manufacturing systems (Knoll and Heim 

2000; Creighton and Nahavandi 2003; Venkateswaran, Young-Jun et al. 2004; 

Cassandras and Lafortune 2008; Sharda and Bury 2008; Persson and Araldi 

2009; Robinson, Brooks et al. 2010; Fischbein and Yellig 2011; Sajadi, Seyed 

Esfahani et al. 2011; Wainer and Mosterman 2011; Chen, Mockus et al. 2012; 

Turner, Madachy et al. 2012) and is industry best practice. 

The primary disadvantage of a DES model is the detail required to build the 

model, both in knowledge in the form of logic concerning the process flow and 

decisions, and the data to populate each activity within the process flow (Caro, 

Möller et al. 2010). However the level of data and knowledge required is similar 

to that required to create a ABC model.  

Advantages of using DES (Law and Kelton 1992; Robinson 2004; Jahangirian, 

Eldabi et al. 2010) for simulating manufacturing systems, include: 

 Complex systems can be described including stochastic elements 

 Individual entities can be tracked, allowing performance data to be 

collected 

 The ability to integrate individual stages of a system allows a detailed 

view to be taken (Kendall, Mangin et al. 1998; Denkena, Rudzio et al. 

2006) 

Any of the four methods of simulation could solve any problem, however each 

method has an area of expertise that allows it to solve a problem with less 

modelling complexity than the others. Pidd (2009) emphasises, throughout his 

book, that all models should be kept simple and within scope of the problem. It is 

therefore a logical step that discrete event simulation will be utilised as the 

modelling method within this thesis as it is most suited to simulate a long time 

duration logical process sequence system such as a manufacturing supply 

chain. 

2.2.2 Data driven generic modelling 

Robinson (2004) suggests separating the data and results from a model (Figure 

8). Holding model data, experimental factors and results separately from each 
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other and outside the simulation model, usually in a spreadsheet, database or 

data file, has various advantages, including: 

 Ease of use - understanding of the simulation code is not required by the 

user as they are able to modify the input parameters and data from 

outside the model 

 Version control - a record of all experimental factors associated with the 

results can be kept 

 Further analysis - by storing the results outside the simulation, specialist 

software can be used for further analysis 

 

Figure 8: Separate simulation model from model input and output data (Robinson 2004) 

Robinson’s suggestion is, in an abstract form, a description of a data driven 

generic model. Pidd (1992) defines a generic model as a model with the ability to 

cope with a range of structurally similar systems. Brown (2010) clarifies the 

definition by adding that the generic model is logic only. Pidd defines a data 

driven model as a model that has the ability to fully specify any instance of a 

system without the need for programming. Therefore a generic model must first 

be created then a data source can populate it for each instance required. 

Tannock et al (2007) defines a data driven model as a model which is 

constructed automatically by a model builder software program based on pre-

existing user data. These two definitions lead to the same result but are different 

because Tannock’s definition uses data to construct the model, whereas Pidd’s 

utilises a generic model which is populated with data for a particular system. 

They both, from the user’s perspective, have some form of 'black box' elements 

to their operation because the user only deals with data input and output. 

Therefore the simulation model, either generic or created, does not have to be 

seen by the user. 

There are examples of use for both definitions. Many authors have developed 

generic data driven simulation models: McLean et al (2002) developed one for 

small machine shops; Kibira et al (2007) developed one for an automotive supply 
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chain; and Brown et al (Brown and Powers 2000) developed a military aircraft 

resource maintenance model. This research will utilise Pidd and Brown's 

definition by creating a generic model that is populated by a data source. 

All data driven models require a data source; some sources utilised by authors 

include: spreadsheets (Curran, Gomis et al. 2007; Nasereddin, Mullens et al. 

2007), databases (Randell and Bolmsjo 2001; Son and Wysk 2001; Son, Wysk 

et al. 2002; Neugebauer, Plonnigs et al. 2004; Cao, Farr et al. 2005), and CAD 

layouts (Moorthy 1999; Paprotny, Zhao et al. 1999; AbouRizk and Mather 2000; 

Kim, Jeong et al. 2009; Wy, Jeong et al. 2011). This research will utilise a 

database due to the different data types that will be used, ease of integrating to 

code and capabilities of searching and linking data. 

A disadvantage of generic data driven models is the trade-off between flexibility 

and scope (Brown and Powers 2000). A generic model needs to be flexible to 

enable a user to complete necessary simulation experiments, yet a generic 

model could never have the scope to cover all possible experiments without 

becoming overly complex (Pidd 2009). Two other disadvantages of generic data 

driven models is that they require: access to externally available structured data; 

and the simulation tool must contain a code execution capability that can 

dynamically create and configure complex models. 

All the authors using generic data driven models agree that there are 

advantages, including: reusability within the scope of the generic model or model 

builder; and, models should contain fewer bugs than traditional methods 

because a generic model or model builder requires validation of logic only. 

Generic data driven models however are not a replacement for general purpose 

simulation tools (Cao, Farr et al. 2005; Tannock, Cao et al. 2007) because they 

require extra effort to build initially and in some cases may only be used once. 

Also, the payback of creating a generic data driven model requires it to be used 

many times to create models for a variety of solutions. The choice of which 

method to utilise to create a generic data driven model is, it seems, dependent 

on the situation, the data and the tools available. 

2.2.3 Summary 

Dynamic modelling is utilised because cost, time and practical considerations do 

not allow experimentation with the actual system, or a physical model. DES is an 
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event driven dynamic modelling method that is typically utilised by research and 

industry to model manufacturing systems. The other dynamic modelling methods 

(SD, continuous and agent based) could be coerced into a functional model but 

are not suited to the specific system and problem combination within this 

research. For these reasons a DES model will be utilised within this research. 

A generic data driven model combines the use of either a logic based model that 

can cope with a range of structurally similar systems populated by external data, 

or a model constructed from data via a model builder program. The main 

disadvantages of generic data driven models include the trade-off between 

flexibility and scope and access to structured data. The primary advantage is 

reusability within the scope of the model.  

It is proposed that the generic data driven modelling methodology will be used to 

conduct supply chain simulations specified by the hypothesis. A DES 

methodology will be used within the generic model. It is also proposed that the 

generic model should be capable of optimising the input parameters and a 

database should be the data source. 

2.3 Integrating geometry 

Data required by a dynamic model of a manufacturing system includes: a 

manufacturing process plan (section 2.3.2) and process times for each stage of 

the plan. Design geometry is the start and focal point for generating the data 

required in a dynamic model. Integrating the design geometry should allow this 

data to be determined automatically.  

There are two methods that could aid the integration. The first, Automated 

Feature Recognition (AFR) extracts design geometry in a recognisable format. 

The second, Computer Aided Process Planning (CAPP), determines a 

manufacturing process plan by, in most cases, utilising the output from AFR. 

Each of these methods will be discussed in further detail. 

2.3.1 Automated feature recognition 

Shah (1991) gives a definition of a feature as a “representation of engineering 

meaning of the geometry of a part or assembly”. However, an agreement on a 

set of features that can represent all applications, has thus far eluded the feature 

community (Han, Pratt et al. 2000; Marchetta and Forradellas 2010). A reason 

for this is that specifying a feature “requires knowledge of the context or 
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application domain in which the geometry has a meaning and an interpreter” 

(Brown, McMahon et al. 1995). There are many types of features for different 

applications (Brown, McMahon et al. 1995) two of these are: design and 

manufacturing. Design features are developed for a design engineer to use. 

Manufacturing features represent a feature that a specific manufacturing process 

would create, such as a hole or a slot. A combination of manufacturing features 

can be used to create almost all design features. However it could be possible to 

create design features that may be impossible to create via a specific 

manufacturing process. Therefore design features should be specific to 

manufacturing processes and follow rules that would ensure the design features 

are always manufacturable. There are many challenges with creating a library of  

features, however without this understanding AFR would not know what a 

feature was (Xu, Wang et al. 2010). 

The goal of AFR is to recognise features without intervention from a 

manufacturing or design engineer (Babic, Nesic et al. 2008; Babic, Nesic et al. 

2011; Brousseau and Eldukhri 2011). This goal is in line with Han et al (2000) 

who believes that designers should be given flexibility to design and that AFR 

systems should be used to convert designs into feature models for use in other 

systems. Supplying recognised features in a valid format to required systems is 

therefore an important secondary goal for AFR systems.  

There are two tasks that limit AFR’s wider utilisation: interacting features, 

otherwise known as component complexity, limits AFR ability to recognise 

features (Fu, Ong et al. 2003; Gao, Zheng et al. 2004; Abouel Nasr and Kamrani 

2006) (Chu, Tang et al. 2011); and the complexity and scalability of the 

algorithms (Babic, Nesic et al. 2008; Verma and Rajotia 2010). The inability to 

recognise features that are interacting limits the possible uses of AFR to 

geometries that contain independent features. For these reasons an overall AFR 

algorithm for complex component geometries with interacting features requiring 

multiple manufacturing processes does not exist with little evidence that one will 

emerge in the near future.  

2.3.2 Computer aided process planning 

Process planning is defined as the preparation of a set of instructions, that detail 

which manufacturing processes and machines should be used, in a specific 

sequence, to manufacture a component design specification from raw material to 

finished product (Marri, Gunasekaran et al. 1998; Kumar and Rajotia 2005; 
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Phanden, Jain et al. 2011). A process plan contains the following information 

(Marri, Gunasekaran et al. 1998; Kumar and Rajotia 2005):  

 Operation sequence 

 Material specifications 

 Cutting tools 

 Manufacturing methods 

 Processing times 

 Setup details  

CAPP is defined as a system that can interpret a component design in terms of 

features and use knowledge bases to perform process planning tasks that can 

optimise cost and time (Marri, Gunasekaran et al. 1998; Kang, Han et al. 2003; 

Zhou, Qiu et al. 2007). 

CAPP aims to provide a link between design and manufacturing by linking 

Computer Aided Design (CAD) and process planning activities (Marri, 

Gunasekaran et al. 1998; Feng 2003; Zhou, Qiu et al. 2007). The ultimate aim of 

CAPP is to achieve automated process planning and remove human judgment 

(Zhou, Qiu et al. 2007). A method to achieve this is to utilise AFR output data. 

CAPP has multiple benefits (Giachetti 1998; Gupta, Chen et al. 2003; Kumar and 

Rajotia 2005; Xu, Wang et al. 2010), such as: 

 Reduced time between component design and manufacture 

 Reduced clerical load of plan preparation on manufacturing engineers 

and skilled process planners 

 Optimised process plans 

 Aiding design decisions about component geometry, manufacturing 

processes and materials 

2.3.2.1 CAPP system designs 

Two classifications of CAPP system include (Marri, Gunasekaran et al. 1998; 

Zhou, Qiu et al. 2007; Xu, Wang et al. 2010) variant and generative. Variant 

approaches represent a method of retrieving data from a database. Data is 

categorised into component families distinguished according to their 

manufacturing characteristics, where standard process plans can be created for 

a family. This approach is limited for new components because they must be 

classified into families and other sub categories. Novel components that contain 

unknown geometry or manufacturing processes may require new classifications 

and data within the database. 
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The generative approach synthesises a process plan based on analysis of the 

feature geometry and other factors that may influence the manufacturing 

decision. Park (2003) suggests a third type, called knowledge based. However 

his suggestion, in an abstract form, is an extended generative approach. He 

suggests that a process planning framework should be controlled and 

customised by dynamic rules as shown in Figure 9 (b) instead of a set of rules 

that are structured in a program like form (Figure 9 (a)). Park also suggests that 

the knowledge base should be constructed from four knowledge elements:  

 Facts - which cover data objects 

 Constraints - correspond to technical constraints of process planning 

 Ways of thinking - which imitates intelligence 

 Rules - represent key parameters that control the way of thinking 

 

Figure 9: Requirements of a knowledge base (Park 2003) 

The trend of CAPP is towards the generative approach coupled with a 

knowledge base (Xu, Wang et al. 2010) because it allows a more automated 

process therefore reducing the need for manufacturing engineers and reducing 

the time to generate the process plan. Recent enhancements within the field see 

the introduction of technologies to enable self learning and adaptation to new 

data, aid integration to schedules and aid optimisation of parameters. Some of 

the technologies utilised include: neural networks (Guangru and Xiaoliang 2010; 

Deb, para-Castillo et al. 2011; Wang, Zhang et al. 2012), genetic algorithm 

(Salehi and Bahreininejad 2011; Wei-jun and Yu-jin 2011) and agent based 

simulation (Li, Zhang et al. 2010). 

The limiting factor within CAPP is the inability of AFR to supply feature data of a 

component in a format for CAPP systems to use which is more pronounced for 
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complex geometry containing interacting features. This is therefore a limit to the 

generative approach as it relies on feature data from an AFR system.  

2.3.3 Summary 

Extracting data from design geometry is required to generate a process plan. 

There are two technologies which can aid this, these are AFR and CAPP. AFR 

interprets geometry by recognising features without intervention from a 

manufacturing or design engineer. This is then supplied to a CAPP system which 

aims to provide a link between design and manufacturing by automating process 

planning activities. 

There are two types of CAPP systems: variant and generative. Variant 

approaches represent predefined family based process plans. Generative 

approaches generate a process plan based on geometry, knowledge and 

dynamic rules. However the generative approach is limited in terms of geometry 

due to the limitations of AFR which has limited ability interpreting complex 

geometry when features interact. 

It is proposed that until AFR technology can extract the necessary data in a 

suitable format a direct approach should be taken therefore bypassing AFR. This 

direct approach will link directly to the geometry. This reduces the scope of 

parameterised component geometry but will increase system automation by 

reducing complexity. The direct approach will allow extracted data to be supplied 

to the downstream CAPP system in a suitable format. To increase automation of 

the system and allow real time decision making for the user a variant based 

CAPP approach will be utilised.  

2.4 Supply chains 

Beamon (1998) defines a supply chain as “an integrated process wherein a 

number of various business entities (i.e., suppliers, manufacturers, distributors, 

and retailers) work together in an effort to: (1) acquire raw materials, (2) convert 

these raw materials into a specified final component, and (3) deliver the final 

components to retailers”. Beamon points out that although a supply chain is 

comprised of multiple business entities, the supply chain is considered a single 

entity. This definition of a supply chain allows it to be applied to multiple 

companies or within a single company as an internal supply chain where the 

suppliers are business units within the same company as within Rolls-Royce.  
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Beamon describes a supply chain that comprises two integrated processes: a 

production planning and inventory control process, and a distribution and 

logistics process. Min et al (2002) also combines two processes: a physical 

distribution process (Bowersox and Closs 1996) which is similar to Beamons’ 

distribution process and a material management process (Johnson and Malucci 

1999). A combination of these two supply chain descriptions is shown in Figure 

10. Also shown in Figure 10 is the flow of components passing through the 

supply chain and the flow of information which moves in an opposite direction to 

the flow of components. A third flow is from third party suppliers, who do not 

supply products that are used directly in the finished component, but which are 

used to support its manufacture. 

 

Figure 10: The supply chain process. Modified from (Beamon 1998; Min and Zhou 2002)   

A building that contains a manufacturing process is called a factory. This factory 

can be a part of a supply chain or can be thought of as a small supply chain in 

itself. This small supply chain has all the characteristics of a large supply chain 

but does not span multiple businesses or locations. The only distinguishing 

aspect between a small and large supply chain is where the scope of the supply 

chain ends. For instance a supply chain may encompass the manufacture of a 

jet engine which contains thousands of components, or it may be for a single 

component. 

For this research a supply chain will be considered dedicated to the manufacture 

of a single component from supply of the raw material, through manufacture, to 

delivery of the finished component. Also the supply chain will not be constrained 

to a single location, therefore the component may require transportation between 

locations. 
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2.4.1 Resource modelling 

Resources are items that are required by the supply chain to manufacture the 

component, some examples include: machines, equipment, fixtures, and human 

resources. Each resource has a utilisation maximum, where utilisation is the 

amount of time spent working against the total available time. Rules concerning 

resources within this research include: 

 A finite amount of each resource is contained within a supply chain 

 A manufacturing operation may use more than one resource, of the same 

or different type, at a time 

 A manufacturing operation cannot be started unless all required 

resources are available 

 Mean utilisation of a resource cannot exceed the utilisation maximum 

value 

Most resources are constrained to a single location such as a factory, where the 

factory may manufacture many different components. Therefore resources in a 

factory may not be constrained to the manufacture of a single component. In this 

research however resources will only be utilised for the manufacture of the 

component being considered. This represents a significant limitation, however it 

is acceptable as a method to prove the concept of integrating a dynamic model 

into a unit cost estimation so support design decision making. 

2.4.2 Inventory control 

Traditional manufacturing organisations have been based on a 'push system', 

whereas many modern manufacturing organisations have endeavoured to 

become efficient and lean by removing waste, such as inventory. One method of 

achieving lean manufacturing is Just-In-Time (JIT) manufacturing which is a 'pull 

system' developed by Toyota (Taiichi 1988). In a push system a production rate 

is predetermined, and then materials are pushed through the system to achieve 

it. In a pull system customer demands drive production rate. Demand for a 

product from the customer pulls the necessary parts from the previous step to 

fulfil the requirement. The pull signal propagates down through the system in 

order to replenish the parts ready for the next demand signal; this is shown in 

Figure 10 as the flow of information.  

Kanban stands for card in Japanese (Aytug and Dogan 1998) because originally 

Toyota used simple cards to implement a JIT manufacturing system by passing 

them from one process to another to represent the information flow. A kanban 
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contains information about the type and quantity of the component it represents. 

Kanbans are used to limit the level of Work In Process (WIP) and coordinate the 

flow of information and material. 

2.4.3 Manufacturing batch operations 

The manufacturing stage of the supply chain is a combination of manufacturing 

processes such as turning, milling and heat treatment. A manufacturing process 

can be split up into operations, for instance a turning process entails a setup 

operation, multiple turning operations to form the desired shape and a set-down 

operation.  

If a piece of equipment can conduct an operation on two or more components at 

a time it is classed as a batch operation. Batch operations usually wait until there 

are enough components available to fill the equipment by holding them in a 

storage area until required. It is not operationally necessary to fill the batch 

operation; however it is required for cost efficiency as it increases the utilisation 

of the equipment which allows the costs associated with the operation to be 

spread amongst the maximum number of components.  

The resource requirements of a batch operation are difficult to calculate in a 

static model due to the interactions between components entering the batch 

operation, available batch operation resource and the requirement to fill the 

resource. Also the batch flow of components leaving the batch operation can 

affect the quantity of resources in the preceding operations. 

2.4.4 Summary 

A supply chain is an integrated process where a number of business entities 

work together in an effort to fully manufacture and deliver a component. Some 

supply chains encompass multiple components, however for this research a 

supply chain will be considered dedicated to the manufacture of a single 

component. 

A resource is an item required by a manufacturing process to complete an 

operation. Multiple resources of the same or different type may be required by a 

manufacturing operation at a time and the operation cannot start until all 

resources are available. Also a supply chain contains a finite amount of each 

resource and for this research will be dedicated to a single supply chain. 
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Kanban is a term used to denote an implementation of a pull system within a 

supply chain. Kanban controls the level of WIP and the flow of information. A 

kanban system is proposed as a method to achieve a pull system within the 

dynamic model. 

Batch operations are a type of operation which can process more than one 

component at a time. The resource requirements of a batch operation are 

difficult to calculate in a static model due to interactions between components 

entering the batch operation, available batch operation resource and the 

requirement to fill the resource. 

2.5 Chapter summary 

Four areas have been reviewed these are: cost estimation, dynamic modelling, 

integrating geometry and supply chains. The main conclusions from these 

reviews were: 

 Static models used within cost estimation have difficulty in fully 

representing dynamic systems. Mitigation of this limitation is to integrate 

a dynamic modelling capability that can supply dynamic data to a cost 

estimation model. ABC is proposed as the cost estimation method to 

utilise because it has the ability to utilise the detailed data from the 

dynamic model therefore providing benefit over the other cost estimation 

methods reviewed. Also the primary disadvantage of ABC, which is 

substantial data requirement, would be lessened as the integration of a 

dynamic modelling capability which also requires substantial data would 

utilise the data. 

 A generic data driven DES model is proposed for two reasons. First a 

generic data driven model can be reused within the scope of the model 

therefore reducing complexity of creating a model for each different 

scenario. Second a DES model is recognised as best practice for 

modelling manufacturing systems. 

 Integrating geometry into an automated system requires extraction of 

data. AFR is a technology that has aims in-line with this; however it has 

limited ability to achieve it. CAPP systems are used to generate a 

manufacturing process plan from geometry; however they also have 

limited capabilities. Therefore a direct approach of integrating component 
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geometry to extract necessary data, and a variant based CAPP approach 

of utilising predefined family based process plans is proposed. 

 Some supply chains encompass multiple components, however for this 

research a supply chain will be considered dedicated to the manufacture 

of a single component consistent with high production rates. Also 

resources required by the supply chain will be considered dedicated to 

the supply chain. A kanban system is proposed as a method to achieve a 

pull system within the dynamic model. 

The literature review has shown that there has been extensive research in cost 

estimation and dynamic modelling with some authors linking both areas. Other 

authors have used geometry to automate the process of cost estimation and to 

aid dynamic model generation. However no research has linked all three areas. 

By integrating all three areas component geometry can be used in real time to 

drive the creation and optimisation of a dynamic model to aid unit cost estimation 

and therefore real time decision making. 

 

Figure 11: Area of research contribution 
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Chapter 3  

Framework 

This section describes a working proof of concept framework that integrates a 

dynamic model with an ABC based cost model for multiple supply chain options 

from CAD geometry of a component. The framework is classed as semi-

automatic because user interaction is required to create the geometry, supply 

production rate data and select supply chain options. The framework generates 

an aggregated unit cost (AUC) and manufacturing data for each supply chain 

option chosen by the user. The output from the framework can be used to aid 

design decisions and compare supply chain options of a component. Reference 

to parts of the integration code held in the appendix is given to clarify necessary 

sections. The whole integration code is included on a CD because it contains 

15,000 lines. 

3.1 Structure 

There are five stages within the framework, as shown in Figure 12, these are:  

1. Geometry modification – allows the user to modify parameterised 

geometry which the system extracts via the geometry engine 

2. Determine manufacturing process – extracts production rate and supply 

chain options from the user 

3. Manufacturing process data generation – selects resources and 

generates operation data 

4. Dynamic modelling – conducts the dynamic simulations and optimises 

the inputs 

5. Aggregated unit cost – calculates the cost using an ABC based cost 

model and outputs AUC and manufacturing data to the user 

These five stages form the framework which sits within a design iteration loop. 

This loop allows geometry parameters to be change until all specification 

parameters are achieved, of which the framework can provide two: unit cost and 

manufacturing data. 
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Figure 12: Framework stages 

The framework schematic in Figure 13 shows how the user and database 

interact with the five stages that make up the core of the framework. The blue 

arrows show data entering the core and the red arrows show data leaving the 

core. Stages 3, 4 and 5 have an iteration loop which allows each supply chain 

option chosen by the user to be processed. Each stage of the framework will 

now be described including, where appropriate, reference to the code used. The 

database will be discussed in its own section as it, along with the integration 

code, forms a backbone to the framework. 
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Figure 13: Framework schematic 

3.1.1 Stage 1 – Geometry modification 

The aim of this stage is to extract geometry data from the geometry engine into 

the system database so the system can utilise it. To do this, stage one contains 

three sub-stages as shown in Figure 14.  

 

Figure 14: Framework stage 1 flow chart 
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In the first sub-stage, 1.1, parameterised solid model geometry, based on the 

family type of the component, is modified by the user, from within the CAD 

engine. The CAD tool used was Siemens NX6 as this is used by Rolls-Royce, 

however any CAD engine that can create parameterised geometry and contains 

an Application Programming Interface (API) that allows extraction of the 

geometry could be utilised. Linked to the parameterised component geometry, 

are a series of parameterised state geometries that build up depending on rules 

from one to the next to form a parameterised geometry that represents the 

Condition Of Supply (COS). The COS represents the shape of raw material at 

the start of manufacture. The state geometries represent states that the 

component must pass through during manufacture from initial COS geometry to 

finished geometry. Figure 15 shows three states of a component (S1, S2 and 

S3), between each of these states is a transformation stage (T1 and T2), which 

represent the multiple manufacturing options to transfer from one state to the 

next. Figure 16 shows screen shots of case study one geometry at three 

different states as described in Figure 15. 

 

Figure 15: State geometries 

 

Figure 16: Screen shots of case study one component at three different states 

Different methods of manufacture, called supply chain types, have different COS 

and intermediate state geometries. Therefore each supply chain type requires its 

own COS and intermediate state geometries which are linked together in an 

assembly. A schematic of the CAD implementation is shown in Figure 17 and a 

screen shot of the implementation from case study one is shown in Figure 18 

which also contains overlays to show the different aspects of the schematic on 
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the screen shot . The user interacts with the supply chain collection, which holds 

each supply chain type assembly; in Figure 17 there are two: powder Hot Iso-

static Pressing (HIP) (see section 4.1 for information on HIP) and Forging. 

Contained within these linked assemblies are geometry states for each supply 

chain type; HIP has three and forging has five. The user only interacts with the 

component state through the component parameters via the supply chain 

collection. When the geometry is updated the parameters are sent to the lowest 

level, the component, then each level is updated in turn based on rules and the 

previous level. This functionality  is fully implemented within the geometry 

engine, no additional code or capability was required. 

 

Figure 17: Schematic of CAD implementation 

 

Figure 18: Screen shot from case study one of implementation of schematic in Figure 17 with 
overlays to shows different aspects of the screen shot. 
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When the user has finished modifying the finished component geometry the user 

executes sub-stage 1.2 by initiating the remainder of the framework from a menu 

button within the geometry engine. The Framework executes automatically from 

this point until the end of stage 5. In a production version of the framework the 

vision is that the user would not see any change on their screen, except for 

dialog boxes asking further questions from stage 2, until the framework had 

finished executing. 

Sub-stage 1.3 extracts all parameters from the geometry via the geometry 

engines API. In NX6 the API allows any .net coding language, C++ or Java. The 

author completed all coding work in C# utilising Microsoft Visual Studio 2008.  

The code in Appendix A.1 forms part of the integration code and is used to 

extract the parameters from the geometry engine utilising the API. The geometry 

extraction code is hard coded to the geometry, therefore any fundamental 

changes to the geometry, such as re-drawing aspects of the geometry, will likely 

break the hard code links due to changes in how the code identifies geometry 

features. 

There are three categories of extracted parameters, these are: shape design 

characteristics (lengths, radii, volumes, areas and number of features), 

manufacturing grades (dimensional tolerance and surface finish), and 

component data (family type, unique identification and material type). All 

manufacturing grades and component data are checked for compliance against 

predefined acceptable values contained within the database. In the proof of 

concept specific geometry to an operation is extracted when the operation time 

is being calculated as shown in the code in Appendix A.2. It must be noted that 

sub-stage 1.1 and 1.3 as described in this thesis represent a method that 

developed due to the use of NX. Other methods may exist, currently all extracted 

data is required, resulting in all state geometries being required, however if a 

CAM tool can be integrated into the process instead of stage 3 'manufacturing 

process data generation' the required data to extract would be reduced. 

3.1.2 Stage 2 – Determine manufacturing process 

The aim of the second stage is to determine the manufacturing process. There 

are two tasks in stage 2, as shown in Figure 19, which both involve the user, 

extracted geometry data and knowledge from the database.  
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Figure 19: Framework stage 2 flow chart 

In stage 2.1, production rate selection, the user is required to provide the system 

with a required minimum steady state production rate. This is achieved through a 

Graphical User Interface (GUI) coded within the integration code, shown in 

Figure 20, which allows the user to select previously used production rates or to 

add new production rates. The production rate is converted into components per 

minute for use within the dynamic model; see section 3.1.4 Stage 4 – Dynamic 

modelling for further information. 

 

Figure 20: Production rate selection GUI 

Stage 2.2, supply chain option selection, requires the user to select, from a 

predefined list held in the database, a supply chain option. The predefined list is 

populated when the component is added to the framework; see section 4.2 Case 

study 2 – Blisk for further information. The list is filtered based on component 

family type, and can be further filtered by checking primary parameters such as 

COS outer diameter and length against manufacturing application limitations.  

A supply chain within the system has four levels as shown by the columns in  
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Table 1. The first level is a supply chain type which is defined by the COS 

manufacturing method, in  

Table 1 the example is forging. The second level is a sub section of the family 

type and denotes the different options within the supply chain type. In  

Table 1 the supply chain option examples are option 1 and 2. Level three is a 

sub section of the supply chain options and splits the option up into methods, 

where each method represents a set up on a machine or series of operations. 

Level four is a sub section of the methods level and represents the individual 

operations that make up the methods. Each of the options produces the same 

finished part from the same COS, but option 1 utilises ‘Inspect_turn’ and 

‘Inspect_Mill’ methods which each incorporate an extra inspection operation. 

Table 1: Supply chain definition, showing four defining levels for a forging 

example 

 

The data is held in the database which is discussed in section 3.1.6. A GUI, 

shown in Figure 21, is used to select one or more supply chain options. First the 

user must select, from a list populated by the system based on component family 

type, a supply chain type. Then the user can select possible supply chain 

options, which are linked to the supply chain type, by sending them to the right 

side of the GUI. This is repeated until all options have been selected and are 

shown on the right side of the GUI.  
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Figure 21: Supply chain option selection GUI 

Any of the supply chain options can be viewed in detail by highlighting the option 

and selecting the 'view supply chain option details' button. Another window, 

shown in Figure 22, shows the methods contained within the supply chain option 

to the user. Also the operations contained within individual methods can be 

viewed by highlighting the method and selecting the 'view method details' button. 

 

Figure 22: Supply chain option details GUI 

3.1.3 Stage 3 – Manufacturing process data generation 

By utilising data extracted from the geometry and user, as well as knowledge in 

the database and built into the integration code, stage 3 generates the 

manufacturing process data required for stage 4. There are four sub-stages 
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within stage 3 as shown in Figure 23. The four sub-stages must be completed for 

each operation of each supply chain option selected by the user. 

 

Figure 23: Framework stage 3 flow chart 

The first sub-stage selects resources within each operation, because there is 

usually more than one resource that can fulfil each resource requirement. The 

definition of a resource in this research is given in section 2.4.1. There are three 

categories required for resource selection: suitability, capability and cost. 

Suitability represents the generic abilities for a resource to complete the 

operation, for example a milling machine could, in some instances, complete a 

turning operation but a lathe is better suited. The relation between operations 

and suitable resources forms part of the knowledge captured within the database 

described in section 3.1.6. This knowledge is captured, before the framework 

can be utilised, by linking one or more machines to each operation within the 

database. Capability represents specific capabilities of a resource to complete 

the operation. For example any lathe can complete a turning operation but a 

small lathe would not be able to turn a large component. Therefore the 

capabilities of individual resources are compared against the component 

requirements. This is completed by conducting a query on the database that 

compare, for example, component current diameter with lathe maximum 

envelope.  These two categories result in a list of available resources that are 

suitable and capable to complete the operation. The third category, cost, is used 

when the first two categories result in more than one resource for a particular 
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resource requirement. This category selects the lowest cost resource from the 

down selected suitable and capable list, based on data held about the resource. 

In the proof of concept system an overall cost rate for each resource is contained 

within the knowledge which is utilised to select lowest cost; see appendix A.3 

Code to select and sort resources 

Sub-stages 2, 3 and 4 calculate data specifically related to the supply chain 

operation and selected resources. Each sub-stage utilises extracted geometry 

data, data from the database (feeds and speeds, material properties, surface 

finish and dimensional tolerance manufacturing considerations and resource 

capabilities) and knowledge in the integration code (operation time calculations, 

operation batch calculations, resource use requirements).  

To represent uncertainty of the setup, process and set down times of the current 

operation sub-stage 2 applies one of two methods. When historical data is 

available a probability density function is utilised, otherwise a subjective 

probability, such as a triangular distribution is utilised (Law and Kelton 1992; Yee 

Mey, Newnes et al. 2010). To do this a separate function located in the 

integration code which contains knowledge for a specific part of the operation 

generates a single time value for either: setup, process or set down. An example 

of a process time generation function is machine turning which is shown in 

Appendix A.4. Inputs into the turning process time generation function include: 

 Mean diameter – Used along with surface speed to calculate the RPM 

 Length of cut 

 Cut type – Either: rough, medium or finishing. This affects the feed and 

surface speed of the cut 

 Material machinability value – This depends on the material. This affects 

surface speed 

 Tool life – This affects surface speed 

The after extracting feed (by using cut type) and speed (by using material 

machinability, cut type and tool life) from the database the equations governing 

the turning process time generation function are equations 1 2 and 3: 

 
    

             

               
 (1)  

                    (2)  
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(3)  

Each process time generation function within the proof of concept system is  

shown in Table 2. It can be seen in the table that each function requires a 

different set of inputs. Some of the functions in Table 2 are data extraction or 

calculation steps required by the time calculation function; drilling is an example 

of this. The drilling functions are an example that the system created is a proof of 

concept because the functions could be combined into a single function. 

These time generation functions replicate one capability of a CAM tool which is 

to determine a time to complete an operation. As mentioned earlier the CAM tool 

within NX6 was unable to complete this necessary capability automatically, 

hence the development of the time generation functions. However any method 

that resulted in operation times would be an acceptable alternative. 

The integration code contains knowledge that collects and calculates the inputs. 

When a process time has been generated a distribution is fitted to it by another 

function which is based on knowledge about the specific operation held in the 

database. 

The third sub-stage is similar to sub-stage 2 but instead calculates the batch 

requirements for a resource. For example a heat treatment process is a batch 

operation, the quantity of components that can be processed by it depend on the 

size of the oven, the external size of the component and a packing factor. The 

necessary data is collected from the component or data base and the number of 

components that can be processed at once within the batch operation is 

calculated. The code for calculating the HIP vessel capacity is in Appendix A.5; 

the equation used within the code is equation 4. 

 
                      

             

               
                  (4)  
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Table 2:Table showing all process time generation functions within the proof of concept system 
DRES 

 

The fourth sub-stage determines when the resource will be used within the 

operation. For instance in Figure 24 the resource types: machine, fixture and 

operator type 1 are used throughout the operation. However the operator type 2 

resource is only used in the setup and set down phase of the operation, 

therefore fewer operator type 2’s are required. This is completed by assigning 

Function 

type

Function name Inputs (Data type, Input name)

Turning double avgDia, double length, int cutType, int machinabilityNumber, 

int speedType

Turning plunge double avgDia, double length, string toolWidth, int 

machinabilityNumber

Milling string cutterType, double toolDia, double lengthOfCut, int 

machinabilityNumber, int numCuts, string typeOfCut, int toolLife, 

double MachFactor

Milling 2 string cutterType, double toolDia, double lengthOfCut, int 

machinabilityNumber, int numCuts, string typeOfCut, int toolLife, 

double MachFactor, int numTeeth

Machining factor string partRigidity, string toolRigidity, string adverseCutterForm, 

string surfaceCondition

Drill traverse time double traverseDistance

drill type ID string drillType

Drill dia ID int drillTypeID, double drillDia

Drill dia type ID int drillDiaID, int drillTypeID

Drill Feed int machinabilityNumber, int diaTypeID

Drill speed int machinabilityNumber, int drillTypeID, string drillManfType

Drill number of 

teeth

int drillDiaID, int drillTypeID

Drill cut time double speed, double drillDia, double feed, int drillTeeth, double 

cutDepth, double leadIn

Pickel double depthToPickel

Pickel run time double depthToPickel, double pickelRate

Fill HIP canister run 

time

double inputMass

Fill HIP canister run 

time 2

double inputMass, double fillRate

Pressure tect 

canister run time

double volume

Pressure test 

canister run time 2

double volume, double volumeRate

Assemble 

canister

Assemble canister 

runt time

Weld run time double weldLength

Weld run time 2 double weldLength, double weldRate

Laser cut Laser cut run time double cutLength, string complexity, double materialThickness

HIP run time int vesselCapacity, double componentMass, double canisterMass

HIP setup time int vesselCapacity

HIP set down time int vesselCapacity

HIP argon mass 

required

int vesselCapacity, double canisterVolume, double 

pressureRequired, double temperatureRequired, double 

canisterDia, double canisterHeight

Grinding double area

Grinding 2 double area, double feedAreaRate, double coverAreaMultiplier

Super finish double area

Super finish 2 double area, double feedAreaRate, double coverAreaMultiplier

ECM ECM double length, string type

Turning ops

Fill HIP 

canister

Super finish

Grinding

HIP

Pressure test 

canister

Weld

Milling 

Pickel

Drilling
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necessary resources to each separate operation (setup, process and set down) 

which is represented within the dynamic model as individual delays without 

queues in between them. 

 

Figure 24: Resource use within an operation 

3.1.4 Stage 4 – Dynamic modelling 

The aim of stage 4, dynamic modelling, is to determine the optimised steady 

state capacity and kanban (see section 2.4.2) values required for each resource 

while meeting production rate and resource utilisation constraints. Figure 25 

shows that there is a single sub-stage which executes the dynamic integration 

model for each supply chain option. 

 

Figure 25: Framework stage 4 flow chart 

A tool called Anylogic was utilised to create the dynamic integration model, 

however any DES software that is batch capable and linked with an optimisation 

tool, or has an optimiser within the tool could be used. The Anylogic tool has an 

internal optimiser, however the author utilised his own shown in Figure 26. The 

dynamic integration model was compiled into a java executable and executed via 

a batch file from the integration code; see Appendix A.6. A schematic of the 

dynamic integration model is shown in Figure 26; it contains two parts: the 

experiment class, which optimises the parameters; and the simulation model, 

which simulates the supply chain option for a particular set of parameters. 
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Figure 26: Schematic of the dynamic integration model 

The purpose of the experiment class is to optimise the simulation model input 

parameters by conducting simulation experiments. Figure 27 shows a flow chart 

of the experiment class logic which contains three stages: initial run, reduce 

kanban value and determine solution.    
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Figure 27: Experiment class logic 

Stage 1, initial run, requires the simulation model to be executed with initial data 

from the database. Input parameters include: 

 Minimum steady state production rate for the component  

 Process plan detailing each operation of each method from COS to 

finished geometry 

 Associated resources for each operation 

 Associated with each resource:  

o Operation time with triangular distribution; if operation time is less 

than another resource for the same operation then a start time 

within the operation is required 
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o Initial resource capacity shown in equation 5.  See appendix A.7 

for code. 

o Maximum steady state utilisation 

o If the resource is batch capable then batch size is required 

 Kanban initial value shown in equation 6.  See appendix A.7 for code 

 

                    
 
                         

                   
 

              
  

(5)  

 
                                         

 

   

 (6)  

Where n = number of resources in supply chain and i = the current resource. 

There are two methods to achieve statistically valid output data from a simulation 

model (Law and Kelton 1992; Robinson 2004), either: the model needs to be 

executed many times (replications) with different random numbers to achieve 

mean output values; or a model needs to be executed with a long run time, 

which allows the model to reach steady state, with mean values of the output 

taken from the model. The long model run time method is utilised within the 

dynamic model to aid automated optimisation.  

Production rate against simulation time for case study one with production rates 

of six components an hour and half a component an hour are shown in Figure 28 

and Figure 29 respectively. Figure 28 represents the best case because it shows 

a higher production rate which achieves steady state in a shorter period of time, 

whereas Figure 29 represents the worst case because it shows a lower 

production rate which takes longer to achieve steady state. These figures show 

that 1.5 years is a suitable duration for model run time because both reach 

steady state in that time duration. The Figures also show that 0.25 years is a 

suitable duration for initialisation bias, described as the warm-up period by Law 

and Kelton (1992). The warm-up period allows the simulation model to achieve 

steady-state behaviour before results are collected. When model execution has 

completed mean utilisation of resources and production rate results are passed 

to the experiment class. The results from stage 1 are representative of the initial 

supply chain setup. 
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Figure 28: Production rate against simulation time for case study one with a production rate of six 
components an hour  

 

Figure 29: Production rate against simulation time for case study one with a production rate of half 
a component an hour  

For a specific set of resource capacities increasing the kanban value increases 

the production rate and resource utilisation. Therefore a balance is required 

between meeting production rate and resource utilisation. These values are 

controlled through the kanban value and resource capacities. Stage 2 reduces 

the kanban value so that the value of each resource utilisation is below their 

required maximum. 
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Stage 3, determine solution, modifies kanban and resource capacity values 

individually to meet production rate and resource utilisation requirements. To do 

this the simulation output values are assessed. There are three outcomes of the 

assessment, as shown in Figure 27, these are: 

 Outcome 1, increase kanban value - If both production rate and resource 

utilisations have not been met then the kanban value is increased. The 

kanban value is updated and the simulation model is executed again. 

 Outcome 2, increase resource capacities - If production rate has not 

been met and resource utilisation has been exceeded by one or more 

resources, or if production rate has been met and resource utilisation has 

been exceeded by one or more resources, then resource capacity values 

will be increased for each resource where utilisations have exceeded 

their requirement. The resource capacity values are updated and the 

simulation model is executed again. 

 Outcome 3, end - If production rate and resources utilisation 

requirements are met the experiment class updates the database with 

the relevant output data from the dynamic model. 

The second part of the dynamic integration model is the simulation model which 

is a generic data driven DES model, see section 2.2.2. An analogy for a generic 

data driven model is a large open plan building where the logic represents the 

building structure. The data represents the fittings which can remodel the 

building’s interior allowing it to serve many purposes but are within the 

constraints of the building. The simulation model is able to represent a supply 

chain with any number of operations. An operation is either batch or non-batch 

capable and can have any number of resources applied to it for any period of 

time within the total operation time, as shown in Figure 24. 

To achieve this generic ability an object oriented approach was taken. Generic 

objects, which can be described as template blocks, were created to represent 

different levels within the supply chain and to complete replicated actions. The 

template blocks can be seen in Figure 30 which is a screen shot of the top level 

of the dynamic model. Figure 31 shows a schematic of dynamic model 

implementation with three levels: supply chain, operation and detail operation. 

Also Figure 31 shows three objects that complete replicated actions: route to 

resource, resource release and resource allocate. These objects are arrayed to 

represent multiple versions of the same object, therefore allowing any number of 
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operations to be represented by a single object. Entities, which represent 

components, flow through the objects. If an entity reaches the end of the object it 

is passed on to the next object in the array which represents the next stage of 

the supply chain. If the entity reaches the end of the array object it is passed up 

one level and on to the next arrayed object. This process continues until the 

entity has passed through all the objects within the model. A disadvantage of this 

method is that there will always be some redundant arrayed object elements 

held in memory. However no processing power is lost cycling through these 

redundant elements because only active elements are cycled through. 

 
Figure 30: Screen shots of dynamic model implementation 

 

Figure 31: Schematic of dynamic model implementation 
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The simulation model is required to output data after execution. The data is used 

by the experiment class to optimise the inputs into the next iteration of the 

simulation model. Outputs from the simulation model include: 

 Steady state production rate achieved 

 Mean duration an entity stays within each operation 

 Mean utilisation of each resource 

Once the integration model has completed the optimisation is sends the outputs 

of the simulation model, plus the input values of capacities for each resource, to 

the database. 

3.1.5 Stage 5 – Aggregated unit cost 

The aim of this stage is to calculate the AUC and display it, along with 

manufacturing data, to the user via a GUI. The AUC is calculated utilising data 

from the dynamic model and cost knowledge about each resource. The flow 

chart in Figure 32 shows there are four sub-stages with two iteration loops within 

stage 5. The first sub-stage and iteration loop allows each operation - known as 

an activity in ABC - to be calculated. When all operations have been calculated a 

data collation process takes place that is used to populate sub-stage 3; the 

supply chain calculation. The second iteration loop repeats the previous steps for 

each supply chain option chosen by the user. 

 

Figure 32: Framework stage 5 flow chart 
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Sub-stages 5.1 and 5.3 are generic data driven ABC based cost models. The 

proof of concept utilises generic models built in Vanguard and accessed by the 

framework via web service provided by the host server. However any form of 

cost model which can be used in batch, therefore can receive inputs and export 

outputs, could be used; an example being implementation of the cost model 

within a function of the integration code. Sub-stage 5.1 is used to calculate the 

cost of an operation. Figure 33 shows the inputs and outputs of the operation 

level cost model. The shaded input boxes show which data comes from the 

dynamic model, as determined necessary to achieve the production rate, these 

are:  

 Number of machines 

 Manufacturing time total 

 Operator total man hours 

 Number of tools 

 

Figure 33: Operation level cost model – Inputs and outputs 

The other inputs are gathered from the database by using the base data. The 

following inputs are based on the machine resource:  

 Capital equipment individual investment cost 

 Capital equipment depreciation time years 

 Consumable cost rate 

 Footprint area of machine 

 Energy cost rate – cost energy used by the machine per hour  

 Gangway factor – percentage of foot print area required for operators 

 Storage area – required to hold tools and fixtures 

 Maintenance cost per machine – per year 

The remaining inputs include: 

 Total units manufactured a year 
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 Operator cost rate 

 Tool depreciation time 

 Tool individual cost 

 Footprint cost rate 

 Scrap cost rate 

 Exchange rate 

The operation level cost model contains equations  7 to 17. 

 
                     

                        

                
 

(7)  

Where 'Operation cost' variables are: 

                                                

                         
(8)  

                                                  

                         
(9)  

Where 'Fixed cost' variables are: 

                                                  (10)  
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(13)  

Where 'Variable cost' variables are: 
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(15)  

 
             

                                      

                      
 (16)  

                                                     (17)  

The input ‘Foot print cost rate’ is a fixed value (per meter squared) in the current 

implementation of the framework but should be linked to worldwide location of 

the operation; this is discussed further in section 5.4.  

It can be seen from the inputs that the operation cost model can only cope with 

three resources: machine, tool and an operator. This implementation of the 

framework was suitable for the case studies and the proof of concept, but for the 

framework to be fully flexible a resource cost model is required; this is discussed 

further in section 5.4. 

In sub-stage 5.3 the output data from all the operation level models of the supply 

chain option, is collated. The summed outputs from each operation model 

become the inputs for the supply chain level cost model which is shown in Figure 

34, where the shaded areas are inputs from operation level cost model. For 

example Equation 18 shows that the sum of each operation cost becomes the 

total operation cost which is the unit process cost at the supply chain level; this is 

implemented with a for loop. 
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Figure 34: Supply chain level cost model – Inputs and outputs 

                                        (18)  

The supply chain level cost model contains equations 19 to 25. 

                                                   (19)  

Where 'Supply chain level cost' variables are:  

 

              

                            
                           
                          

                     
 

(20)  

                                                (21)  

Where 'Indirect cost' variables are: 
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(24)  

Where 'Direct cost' variables are: 

                                                       

                                             
(25)  

Sub-stage 5.4 displays the manufacturing and cost results to the user. The cost 

results are represented by outputs from each cost model. The output from the 

dynamic model represents manufacturing data, such as:  

 Type, quantity and utilisations of machines and their resources (labour 

and fixtures for example) 

 Number of components produced and production rate achieved 

 Mean time a component spends waiting within the supply chain 

Presentation of the results is completed by using a GUI, built into the integration 

code, with five tabs (Figure 35 to Figure 39), which are:  

 Results overview 

 Experiment data overview 

 Component data overview 

 Supply chain manufacturing data 

 Supply chain option cost data 
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The results overview tab, shown in Figure 35, displays to the user a list of 

completed experiments from the last run of the system. Associated with the 

experiment ID is the supply chain option and calculated unit cost. The system 

ranks the experiments in terms of unit cost. By highlighting an experiment and 

selecting the button at the bottom, manufacturing and cost details for the 

selected experiment are loaded into the other tabs for interrogation by the user. 

 

Figure 35: Results form – Results overview tab 

The experiment data overview tab, shown in Figure 36, contains two sections. 

The first, shown at the top of the form, shows the high level parameters 

associated to all the experiments conducted in the latest system execution. The 

second section, shown at the bottom of the form, displays the experiment ID and 

the associated supply chain option. A button allows the user to load the 

highlighted experiment ID into the other tabs. 
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Figure 36: Results form – Experiment data overview tab 

The component data overview table, shown in Figure 37, contains two sections 

with the first showing high level component data. The second lists all the 

component parameters by name with their associated value and unit. 

 

Figure 37: Results form – Component data overview tab 

The supply chain option manufacturing data tab, shown in Figure 38, first 

requires the user to select an experiment ID unless one has been loaded by 

pressing a button on another tab. The first section, at the top of the form, 

contains high level data for the selected experiment ID and a button to allow the 

user to view cost data for it. The second section at the bottom of the form 
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contains three viewing areas, two drop down boxes and two buttons. The first 

viewing area on the left lists the methods contained within the experiment ID. 

The user can select a method, via the first drop down box at the top of the 

section, that list the operations contained within the method through the second 

viewing area. The list of operations contains associated operation time and, if 

appropriate, batch size. The user can also view cost details of the selected 

method by selecting a button on the right. When a method has been selected the 

second drop down box is populated with the operations it contains allowing the 

user to select one and view the resources for the operation in the third viewing 

area. The resource list displays: name of the resource, quantity required and 

mean utilisation achieved within the dynamic model. The second button allows 

the user to view costs for the selected operation. 

 

Figure 38: Results form – Supply chain option manufacturing data tab 

The supply chain option cost data tab, shown in Figure 39, requires the user to 

select an experiment ID, if it has not been loaded previously by pressing a button 

in another tab that loads the experiment ID. The first section, at the top of the 

form, displays high level data and a button to view manufacturing data of the 

selected experiment ID. The second section, bottom left of the form, displays the 

input and output cost parameters with associated values for the supply chain 

level. The third section, bottom right, requires the user to select an operation, via 

a drop down box, unless it has been previously populated by another tab. The 

input and output parameters are listed with their values in two separate areas. 
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Figure 39: Results form – Supply chain option cost data 

3.1.6 Database 

A relational database was utilised due to findings in section 2.2.2 which 

discussed the benefit of separating the data from the models. In this proof of 

concept Microsoft Access has been utilised, but any database software could be 

used. The layout and relationships of data and tables within the database were 

created during the development of the framework, however there are many 

layouts and relationships that could be implemented to gain the same result. 

The database holds data which can be classified into two categories: data that is 

specific to an experiment and base data. Experiment specific data represents 

data that is directly required by an experiment, such as: component geometry 

data, material type, operation times, production rate, supply chain options 

chosen, experiment setup details, and experiment results. This data is collected 

or calculated during execution and stored for later use. Base data represents 

generic data that does not change often, such as: manufacturing speeds and 

feeds that are associated with material machinability, possible supply chains, 

material data, and resource data.  

There are two databases within the framework: a manufacturing database that 

holds base manufacturing data and a framework database that holds all the 

other data which is connected to the component and experiment. The two 

databases have been split into seven sections, shown in Figure 40 to Figure 46, 

which are:  
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 Links to experiment ID 

 Component version data 

 Supply chain and associated data 

 Simulation data 

 Cost data 

 Material and machining data 

 Surface finish, dimensional tolerance, laser cutting and powder HIP 

vessel data 

The experiment table, shown in Figure 40, forms the core of the framework 

database where all other data tables’ link to it. The experiment ID is a unique 

identifier contained within the experiment table that links together:  

 A component version 

 Simulation data 

 A production rate 

 Cost data 

 A specific supply chain option 

 

Figure 40: Framework database – Data linked to the experiment ID table 

When the framework is executed it checks attributes of previously completed 

experiments against the new attributes, if they are different it creates a new 

experiment ID, otherwise it informs the user of the match. As an experiment ID is 
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related to a specific supply chain option the check is completed for each supply 

chain option chosen by the user. 

The component version table contains a component version ID which forms the 

centre of the component data, as shown in Figure 41. The component version ID 

is a unique identifier which links together all the component parameters and 

attributes. The framework performs checks to maintain the data with the first 

check concerning the component parameters. If a new component is required a 

new component version ID is created. 

 

Figure 41: Framework database – Component version data tables 

The supply chain data is shown in the centre of Figure 42. Four tables contain 

lists of supply chain types, options, methods and processes, which are linked 

together with four link tables. This structure allows any supply chain to be 

created. Machine, fixture and resource data is linked to the appropriate 

manufacturing operation. The supply chain options are linked to the rest of the 

database via the component and simulation link tables. 
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Figure 42: Framework database – Supply chain, fixture, machine and resource data tables 

The simulation data tables, Figure 43, store input and output data for the 

dynamic model. Also the tables have the ability to store the required data for the 

dynamic model optimisation. For instance the ‘Sim_Resource_Allocation’ table 

contains columns that store the value for static and dynamic resource capacities. 

The static value represents the initial data and the dynamic value represents the 

dynamically generated data which is used to store the data during the dynamic 

model optimisation and results. 
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Figure 43: Framework database – Simulation data tables 

The cost data tables are split into two sections, as shown in Figure 44, the 

operation level and the supply chain level tables. Each section contains the cost 

model parameters with default values, framework generated input values, and 

cost model calculated output values. The output values are separated into two 

tables: static and dynamic. The static and dynamic cost model inputs are both 

contained within a single table. This method of splitting the outputs into different 

tables was utilised for ease of results publishing. 
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Figure 44: Framework database – Cost data tables 

The majority of the data held in the manufacturing database is related to 

component material and machining, as shown in Figure 45. This is because the 

supply chains implemented within the framework all contain machining and is a 

significant part of the manufacturing process. There are three machining 

sections (turning, drilling and milling) which are linked to component material via 

a material machinability value. These data tables contain feed and speed data 

which are utilised by specific time generation functions. 

 

Figure 45: Manufacturing database – Material and machining data tables 
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The remainder of the manufacturing database contains four sections, shown in 

Figure 46, which are: surface finish, dimensional tolerance, laser cutting and 

powder HIP vessel. The surface finish and dimensional tolerance data tables 

supply a manufacturing method to the framework which is then used to 

determine a time, via a time generation function, to complete a specific 

operation. The laser cutting section supplies a feed rate and the powder HIP 

vessel section supplies vessel size data to calculate the batch size for a HIP 

operation based on other vessel requirements. 

 

Figure 46: Manufacturing database – Surface finish, dimensional tolerance, laser cutting and 
powder HIP vessel data 

3.2 Chapter Summary 

The framework contains five stages that combine the tools necessary to 

integrate a dynamic modelling capability with unit cost. The first stage allows the 

user to modify the component geometry via a parameterised solid geometry 

model. The parameters from the geometry are extracted via the geometry 

engines API. The second stage extracts production rate and predefined supply 

chain option information from the user via GUIs. The third stage calculates or 

determines data for each supply chain operation, including: resource selection; 

setup, process and set-down time generation; and batch requirements. The 

fourth stage executes and optimises a dynamic supply chain model to generate 

dynamic data to be utilised in the cost model. The fifth stage calculates unit cost 

for each supply chain option selected by the user by utilising an ABC 

methodology. The last part of stage five, and of the framework, displays all 

results to the user via a GUI with multiple tabs. 

Two databases form a significant part of the framework because they contain 

base manufacturing data that enables the framework to generate new 
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manufacturing data for specific aspects of the supply chain. Also all data 

generated by the framework is stored within the database. 

The software tools utilised within this proof of concept have been used to create 

a working proof of concept system. However other software could be used and 

the relevant characteristics required by the software to fulfil the requirements of 

the framework have been discussed. 
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Chapter 4  

Case studies 

Design Resource Estimation System (DRES) is a system that has been created 

by the author to implement the framework and conduct case studies as a proof 

of concept. The case studies utilise representative aerospace component 

geometry to show the framework can cope with complex geometry, however the 

unit cost results outputted by DRES are not directly validated for the following 

reasons: 

 A representative geometry was created for the case studies because: 

the original geometry is confidential to Rolls-Royce; was not fully 

parameterised; and contains un-required attributes for Rolls-Royce 

internal processes. 

 COS geometry is not representative. A COS is created for each supply 

chain type connected to the geometry by using knowledge based rules. 

The full utilisation of the necessary rules to create a validated COS was 

determined to be out of scope for this research. 

 Supply chains containing methods and operations that focus on the 

primary manufacturing stages are utilised as a proof of concept case 

study. Representing the full manufacturing process for each supply chain 

type for both case studies was deemed outside the scope of this 

research. 

 Each resource contained within the database has data associated with it 

which is required to populate and execute the dynamic supply chain 

model and the AUC. However this represents a time consuming data 

collection exercise that was out of scope of this research. Therefore 

when resource data was unavailable representative data was created 

which was based on similar resources.  

 The component used within the first case study is manufactured with a 

production rate of hundreds of components a year compared to 4,000 to 

17,000 components a year within the framework case studies. This 

difference in production rate results in non-similar characteristics 

between the component manufacturing requirements; therefore they 

should not be directly compared. 
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Unit cost values are not directly validated due to the reasons above, however by 

using the same base data for static and dynamic costs a comparison between 

the two can be made. To allow the comparison an extra cost calculation step 

was added to the framework. This step was placed directly before the dynamic 

simulation and utilises the initial base data, which is destined for the dynamic 

model, to calculate the static costs using the same cost models as the dynamic 

cost. Any difference will be due to changes in the number of resources required 

to achieve the production rate or because of the distributions applied throughout 

the framework. The percentage difference of dynamic cost data from the static 

cost data is utilised in the results. Equation 26 shows the how the percentage 

difference is calculated. 

 
   

           

            
      (26)  

Material cost is based on static data therefore it has the same value in the static 

results as the dynamic results. This causes a bias towards the static results 

based on the percentage that the material cost makes towards the total unit cost. 

The overhead and process costs are unaffected by material cost bias, therefore 

these are used to calculate the percentage difference. Also as a form of 

validation against input error and anomalies within the proof of concept each 

experiment was completed at least two times, with the mean value of the 

experiments used in the results. 

4.1 Case study 1 – Combustor outer case 

Case study one is based on a representative large civil aerospace gas turbine 

combustor case, shown in Figure 47. The purpose of this case study is to show 

the difference between static and dynamic costs for different supply chain types, 

materials and component parameter changes. 
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Figure 47: Case study 1 component based on representative aerospace gas turbine combustor 
case 

For the purpose of the case study two supply chain types will be used, these are 

Forging and powder HIP which are shown in Figure 48. Forging represents a 

supply chain that machines a ring rolled forged COS to the finished component 

shape and then conducts finishing operations such as cleaning and dimensional 

inspection methods.  

Loh (1992) described the powder HIP process as "the simultaneous application 

of iso-static pressure and elevated temperature to a work piece, which results in 

the work piece (usually powder) becoming consolidated”. In this case study the 

powder HIP supply chain type produces a near net shape COS by manufacturing 

a canister to hold powder material in the required shape during the HIPing 

process. The COS is removed from the canister by a combination of machining 

and pickling. The near net COS is machined to its finished shape then finishing 

operations, similar to those in the Forge supply chain type, are completed as 

shown in Figure 48. Table 3 shows the operations for both supply chains. 
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Figure 48: Case study supply chain options 

Table 3: Table showing operations for both Forge and HIP supply chain types with operation times 
from two case study experiments  

 

OP 

sequence

Supply chain 

option
Method Process Op Time

1 Turn_PF020 Turn small end 29

2 Turn_PF030 Turn large end 436

3 Turn_PF040 Turn external 225

4 Mill_PF060 Mill bosses 765

5 Turn_PF075 Turn small end 19

6 Turn_PF080 Turn lage end 250

7 Turn_PF090 Turn internal 116

8 Drill_PF095 Drill large end flange holes 43

9 DrillMill_PF100
Mill bosses and drill small end 

flange holes and bosses
429

10 Etch 12

11 Clean 16

1 Laser cut 5

2 Drill holes 8

3 Machine canister small plate Laser cut 5

4 Turn small end 64

5 Turn large end 19

6 Turn small end 70

7 Turn large end 21

8 Mill external surfaces 228

9 Assemble canister Assemble and weld 332

10 Pressure test canister Pressure test 444

11 Fill canister Fill with powder 113

12 HIP HIP 447

13 Machine excess internal 75

14 Machine excess external 444

15 Pickel canister Pickel canister 80

16 Turn internal 266

17 Turn external 43

18 Mill  20

19 Drill holes 18

20 Etch 12

21 Clean 16

Finish machine component

Finishing operations

Forge 

HIP

Finishing operations

Machine excess of canister

Machine canister internal

Machine canister large Plate

Machine canister external
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Three materials will be used in the case study. Two Nickel based alloys which 

are representative of the material used for the real component, and mild steel, 

which is very different and is used here to show a difference in results and 

system capability. The material called Nickel 1 has a higher cost rate and 

machinability factor than Nickel 2. The geometry contains 30 parameters but for 

the purpose of the case study only the parameters shown in the specific 

experiments will be modified and when not in use are set to a default value as 

shown in Table 4. 

Table 4: Case study 1 – default values of changing parameters 

 

Five experiments have been completed within the first case study. The first two 

experiments vary geometrical design parameters, material type and supply chain 

type to mimic how a user might utilise the system. An example of this is how 

material selection might affect the supply chain and unit cost. The last three 

experiments vary supply chain parameters such as available resources, 

production rate and batch operation characteristics to understand how these 

affect the results. These parameters may not be directly changeable by the user 

but an understanding of their effect is required to determine under which 

circumstances the framework provides maximum benefit. 

4.1.1 Results 

The first experiment varies the internal radius, material type and supply chain 

type. The internal radius is varied from 275mm to 400mm which represents the 

minimum and maximum values outside of which other geometric parameters 

must be changed to maintain component geometry feasibility. Three materials 

and two supply chain types, discussed above, are used. 

Figure 49 and Figure 50 show graphs of the percentage difference of dynamic 

process and overhead costs compared with static process and overhead costs 

Parameters Default value
Internal radius 300 mm

Production rate 2 components per hour

Triangular boss large hole surface 

finish
N12

Triangular boss large hole 

dimensional tolerance
D12

Triangular boss top flat surface 

finish
N12

Material Nickel 1
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respectively, against the geometric parameter internal radius for the powder HIP 

supply chain type and three materials.  

The graph in Figure 49 shows that the process cost for the HIP supply chain type 

at 400mm internal radius has a percentage difference of 4.1%, 3.5% and 4.2% 

for Nickel 1, Nickel 2 and Mild steel respectively. As the internal radius reduces 

the percentage difference increases to 9.9%, 9.2% and 12.4% for the same 

materials respectively. The same trend is replicated for the overhead cost in 

Figure 50 with a mean value lower than the process cost percentage difference 

of 0.7%, 2.1%, 1.2% and 0.5% for 275mm, 300mm, 350mm and 400mm 

respectively. 

 

Figure 49: Graph showing percentage difference of dynamic process cost compared with static 
process cost against internal radius parameters for HIP supply chain type 
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Figure 50: Graph showing percentage difference of dynamic overhead cost compared with static 
overhead cost against internal radius parameter for HIP supply chain type 

Figure 51 and Figure 52 show the same graphs as Figure 49 and Figure 50 

except they are for the forged supply chain type. The graphs show that for the 

forged supply chain type the difference is below 1.4% for both process and 

overhead costs. 

 

Figure 51: Graph showing percentage difference of dynamic process cost compared with static 
process cost against internal radius parameters for Forged supply chain type 
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Figure 52: Graph showing percentage difference of dynamic overhead cost compared with static 
overhead cost against internal radius parameters for Forged supply chain type 

The higher percentage difference seen for the HIP supply chain type compared 

to the forged supply chain type is due to two outcomes of the dynamic model. 

The first is the dynamic model increasing the capacity values for the batch 

operations within the HIP supply chain type during the resource and kanban 

optimisation. The second is an increase in the total manufacturing time, which is 

due to an increase in waiting time for resources of operations to become 

available, which is higher for batch operations.  

The decrease in the difference of the HIP supply chain as the internal radius 

increases is also attributed to the reasons above. However there is a bias 

towards the fixed costs of the batch operation compared to the other processes 

which are dependent on the geometry. The batch operations are affected by 

component size but in this case study the change in internal radius does not 

affect the number of components per batch, therefore the cost for the HIP 

operation is fixed. However the other processes, such as machining, are 

dependent on the volume of raw material required to be removed which varies 

as internal radius changes. Therefore a bias towards the fixed batch operation 

costs results in a higher percentage difference for a component with smaller 

internal radius compared to a component with a larger internal radius. 
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Experiment two varies surface finish and hole diameter tolerances. Three 

individual parameters with two combinations of these parameters have been 

modelled. The three parameters are: triangular boss top flat surface finish (TB 

SF) which was set to grade N2, from default value N12; triangular boss large 

hole surface finish (TB LgHole SF) which was set to grade N7, from default value 

N12; and triangular boss large hole tolerance (TB LgHole Tol) which was set to 

grade H7, from default value D12. The two combinations were TB SF with TB 

LgHole SF and all three parameters together. More details on surface finish and 

dimensional tolerance grades are contained in Appendix B. 

There is no specific equation that calculates the affect that a change in tolerance 

or surface finish has. Instead knowledge is and logic is utilised to select a 

method of manufacture based on the tables and graphs in Appendix B that can 

achieve the required tolerance and surface finish. The geometry data is then 

used by the selected method of manufacture to generate an operation time. 

The graph in Figure 53 shows the percentage difference of dynamic cost 

compared with static costs against different surface finish and tolerance 

parameters associated with the triangular boss features as discussed above. 

The graph shows that there is between 5.3% - 6.5% difference for the process 

cost and between 3.1% - 4.5% difference for the overhead cost.  

The graph shows there is no noticeable change in the percentage difference as 

more surface finish and tolerances are applied. There are two reason for this. 

The first is because there is little change in the operation times between the 

different method of manufactures required to achieve the tolerance and surface 

finishes. The second is that any changes are insignificant compared to the total 

cost and therefore do not considerable affect the percentage difference.   
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Figure 53: Graph showing percentage difference of dynamic cost compared with static cost against 
surface finish and tolerance parameters associated to the tri-boss features for the HIP supply chain 

type 

Experiment three shows the effect of having different available resources for the 

system to select when varying the internal radius. The graphs in Figure 54 and 

Figure 55 show how available resources affect the difference between static and 

dynamic costs. In this example the experiments represented by the red bars only 

had access to a single large diameter HIP vessel which is the default vessel 

used in all the other experiments and has a diameter of 1.1m.  

It is explained in experiment 1 why the percentage difference is larger when the 

component is smaller and reduces with increasing internal radius which is also 

seen here. The experiments represented by the blue bars had access to three 

different diameter sized HIP vessels, but with the same vessel length, that had 

running and investment costs relative to their size as shown in Table 5. The 

system selects an appropriate vessel for the component size; therefore the small 

vessel is chosen for the 275mm internal radius, the medium vessel for the 

300mm internal radius, and the large vessel for the 400mm radius. It must be 

noted that the number of components each vessel can hold is the same for all 

the vessels, as this is based on the vessel length which is the same for each 

vessel.  
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Table 5: HIP vessels used in experiment 3 

 

It can be seen in Figure 54 that a weighting towards the batch operations for 

smaller components is still present with the same trend as previous experiments 

(percentage difference decreases as internal radius increases), but less 

significant because the capital costs of the smaller vessels are lower than the 

larger vessel. However, in Figure 55 the overhead cost difference, of the three 

vessel study, increases with increasing internal radius instead of decreases as 

with a single vessel. This is because the overhead cost is based on capital cost 

which is less for the smaller vessel.  

 

Figure 54: Graph showing percentage difference of dynamic process cost compared with static 
process cost against internal radius for the HIP supply chain type with Nickel 1 as the material and 

different numbers of available HIP vessels 

M
a
c
h
in

e
 

N
a
m

e

S
e
tu

p
 T

im
e

X
 A

x
is

Y
 A

x
is

Z
 A

x
is

In
v
e
s
tm

e
n
t 

C
o
s
t

D
e
p
re

c
ia

tio
n
 

T
im

e
 Y

r

F
o
o
t 
P

ri
n
t 

A
re

a
 

E
n
e
rg

y
 C

o
s
t 

R
a
te

C
o
n
s
u
m

a
b
le

 

C
o
s
t 
R

a
te

G
a
n
g
w

a
y
 

F
a
c
to

r

HIP vessel small 60 0.8 0.8 3 5000000 15 200 80 80 1.1

HIP vessel 

medium
75 0.9 0.9 3 7500000 15 200 90 90 1.1

HIP vessel Large 90 1.1 1.1 3 10000000 15 200 100 100 1.1
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Figure 55: Graph showing percentage difference of dynamic overhead cost compared with static 
overhead cost against internal radius for the HIP supply chain type with Nickel 1 as the material 

and different numbers of available HIP vessels 

Experiment four shows the effect of modifying production rate for both supply 

chain types. The graphs in Figure 56 and Figure 57 show the percentage 

difference of dynamic costs compared with respective static costs against 

production rate for both supply chain types for a fixed internal radius of 300mm 

and material type of Nickel 1. It can be seen that the percentage difference for 

the forged supply chain type is stable to within 1.2% for both process and 

overhead costs, which is expected due to there being no batch operations within 

the supply chain.  

However for the HIP supply chain type the process cost percentage difference 

decays following an exponential curve from 79.7% to 1.3% as production rate 

increases from 365 to 52,560 components a year. The reason for this is that as 

production rate increases the utilisations of individual resources achieve their 

maximum value. Therefore the cost of the resource is spread amongst the 

optimum number of components, reducing unit process cost.  

For the overhead cost in Figure 57 the overhead cost difference is seen to be 

between 0% and 3.75% up to 2950 components a year. At 4380 components per 

year it jumps to 11.5% then reduces following a non-linear decay curve to 1.4% 

at 52560 components per year. The decay curve is a result of overhead cost 

being a percentage of capital cost divided by the number of components per 

year. For example if a new resource is required to meet production rate 
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requirements the overhead cost will increase, falling as the resource meets its 

maximum utilisation. However this effect is reduced as production rate increases 

because the addition of a single resource becomes insignificant compared to the 

total capital cost. 

 
Figure 56: Graph showing percentage difference of dynamic process cost compared with static 

process cost against production rate changes for HIP and forged supply chain types 

 
Figure 57: Graph showing percentage difference of dynamic overhead cost compared with static 

overhead cost against production rate per year for the HIP and forged supply chain types 
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Analysing the HIP supply chain type experiment data further produced two 

graphs, Figure 58 and Figure 59. Figure 58 shows normalised mean utilisation of 

all the resources within the supply chain against the production rate per year. 

The graph is an exponential curve up to 0.7, which is logical because the 

dynamic model optimises the number of resources so that the individual 

resource utilisations do not go above 0.7. 

 
Figure 58: Graph showing normalised mean resource utilisation against production rate per year 

for the HIP supply chain type 

The second graph, Figure 59, shows an almost linear relationship between 

process cost percentage difference and normalised mean utilisation. These two 

graphs show the relationship between production rate, resource utilisation and 

percentage difference of process cost. They could be used to determine when 

this framework is most useful.  
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Figure 59: Graph showing percentage difference of dynamic process cost from static process cost 

against normalised mean resource utilisation for the HIP supply chain type 

Experiment five modifies the number and size of batch operations within a 

supply chain. To complete this experiment the forging supply chain was utilised 

as a default then sub experiments were conducted by changing necessary non-

batch operations to batch operations with a size using the procedure shown in 

Table 6. Therefore sub-experiment 1 required op1 to become a batch op of size 

2, whereas sub-experiment 23 required ops1-5 to become batch ops with a size 

of 10. 

Table 6: Case study 1 – experiment five parameter setup 

 

The graphs in Figure 60 and Figure 61 show how the number and size of batch 

operations affect the percentage difference of dynamic cost compared with static 

cost for a production rate of four components an hour. Figure 60 shows the 

process cost difference and Figure 61 shows the overhead cost difference. Both 

graphs show the difference increasing as the number of batch operations 

increases within the supply chain. They also show that the size of the batch 

operation affects the difference. The results may be exaggerated due to the 
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batch operations being sequential within the supply chain, and the fact that some 

operations have short process times as shown in Table 3. 

 

Figure 60: Graph showing percentage difference of dynamic process cost compared with static 
process cost against number of batch operations within a supply chain 

 

Figure 61: Graph showing percentage difference of dynamic overhead cost compared with static 
process cost against number of batch operations within a supply chain 
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4.1.2 Summary of case study 1 

All the results show there is a difference between static and dynamic cost for 

supply chains that contain batch operations with the size of the percentage 

difference increasing when: 

 Quantity and size of batch operations is increased 

 Batch operations are more heavily weighted compared to other 

operations within the supply chain due to batch operation being a fixed 

cost and most other process costs are dependent on component 

geometry 

 Different resources are utilised to complete an operation 

 Production rate decreases which reduces resource utilisation resulting in 

increased process cost 

4.2 Case study 2 – Blisk 

The purpose of this case study is to highlight two points. Firstly, the framework is 

capable of being used on a wide variety of components. Secondly, to illustrate 

the steps necessary to implement a new component within the framework. 

The component for this case study is a blisk, shown in Figure 62, which 

combines blades and a disk into a single component. The combination into a 

single component has various advantages, reduced mass being one. The 

reduced mass is achieved by removing the blade and disc joining mechanisms 

by either producing the blisk from a solid piece of metal or by welding the blades 

onto the disc.  
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Figure 62: Case study 2 component based on a representative aerospace gas turbine blisk 

Only one supply chain type has been applied to this component, which machines 

a solid forging but does not complete finishing operations such as grinding. For 

this reason the supply chain type contains three methods. The first method turns 

the drive arm side of the disc by completing seven separate turning operations. 

The second method turns the non-drive arm side by completing two operations. 

The third method utilises Electro-Chemical Machining (ECM) (Zhan, Zhao et al. 

2000) to roughly remove the material between each blade, then shapes each 

blade with a finishing ECM operation. 

Implementing the framework for a new component requires work in three areas: 

creation of the component and state geometries within the geometry engine; 

input of data into the database; and addition of code to cope with the new 

component and supply chain type. Specific steps required to be completed within 

the geometry engine include: 

1. Create parameterised component geometry 

2. Create parameterised state geometries utilising rules to build upon each 

state, starting at the component geometry and ending with the COS for 

the supply chain type 

3. Create top level assemble file that holds all supply chain types required 

4. Add and link component expressions to the top level assemble file 

including component identification, type and material 
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Determining the details of the parameterised component geometry and 

understanding the rules required to create the state geometries, represent the 

majority of the effort within the geometry engine. Specific steps required to be 

completed within the database include: 

1. Add component identification and type to appropriate tables 

2. Add supply chain type data including: options, methods and operations 

3. Add machines, fixtures and resources when relevant data is required 

4. Link new data together with link tables 

Understanding the supply chain type and gathering data for required resources 

are the main steps to be completed within the database. Specific steps required 

to be completed within the integration code include: 

1. Add code to retrieve measurement data for supply chain type 

2. Add code for each method within the supply chain type for operation 

time generation, setup time generation and batch calculation 

3. Add code to calculate the extent of the COS boundary limits for machine 

selection 

Other than data collection the code required to generate the process time for 

each operation within a supply chain represents the majority of the effort 

required for all of the steps to integrate a new component into the framework. 

However this effort has substantially reduced compared to the first case study. 

This is because most of the generic functionality and data required was created 

for the first case study which can be reused by any subsequent case studies. 

4.2.1 Results 

The graph in Figure 63 shows normalised cost against number of blades for a 

disc diameter of 220mm, Nickel 1 as the material and a production rate of 2 

components an hour. The number of blades on the blisk is modified for three 

different blade lengths. The results show how cost increases as the number of 

and length of the blade increases; this is because the ECM operations contribute 

the majority of process cost and are dependent on the number and length of the 

blades. 
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Figure 63: Graph showing normalised process cost against number of blades for a disc diameter of 
220mm, Nickel 1 as the material and a production rate of 2 components an hour 

4.2.2 Summary of case study 2 

The second case study has shown that integrating different components into the 

framework is possible. It highlighted that an understanding of the geometry, 

supply chain type and specific operations within the methods is required. Also, 

other than data collection, a significant amount of effort is spent creating code to 

calculate process times for each operation.  

4.3 Chapter Summary 

The first case study has shown that there is a difference between static and 

dynamic process and overhead costs for components with supply chains that 

contain batch operations. The percentage difference depends on many factors, 

but increases when:  

 Quantity and size of batch operations is increased 

 Batch operations are more heavily weighted compared to other 

operations within the supply chain due to batch operation being a fixed 

cost and most other process costs are dependent on component 

geometry 

 Different resources are utilised to complete an operation 

 Production rate decreases which reduces resource utilisation resulting in 

increased process cost 
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It could be seen from experiment 4 that a 10% percentage difference was the 

result of a 65% mean resource utilisation, which equates to between 10,000 and 

15,000 components per year. The percentage difference continues to increase 

by 10% for every 5% decrease in mean resource utilisation. 

By implementing a Blisk the second case study has shown that different 

component types can be utilised by the framework. It also highlighted that after 

data and knowledge capture, which is a non-trivial task, a significant portion of 

the effort required to integrate a component into the framework is related to 

creating the time generation code for the manufacturing operations. 
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Chapter 5  

Discussion 

There are four sections in this chapter; the first discusses the findings from the 

case studies. The second discusses the benefits and required effort to achieve 

them. The third discusses validation, both case studies and future 

implementation of the framework. The last discusses, in two parts, improvements 

to the framework: first, improvements that should be implemented, and second, 

improvements that would add value. 

5.1 Case studies 

The first case study conducted five experiments, two that mimic how the user 

might conduct “what if” studies with different design choices and three 

experiments to understand the effect that production rate, available resources 

and batch operation characteristics have on the results. This case study had a 

high level purpose of determining if a percentage difference of dynamic cost 

compared with static cost existed, and to show if and when a benefit can be 

gained from the framework. The parameters affecting the results are discussed 

but will not be quantified with a value, because the size of the benefit depends 

on the interactions of all the parameters within the framework. 

It can be clearly seen in the results from all experiments, that the inclusion of 

batch operations within a low volume supply chain, can affect the results from a 

static cost model due to an underestimation of the resources required.                                                                  

The inclusion of a dynamic model allowed the resources to be determined 

dynamically which resulted in an increase in unit cost, compared to the static 

calculation of unit cost, this is due to the increase of resources required.  

Experiments one and two show how different component design parameters 

(internal radius, tolerances, surface finish and component material) coupled with 

the supply chain affect the percentage difference. Experiment one highlighted 

the cost bias within components, in this case how the fixed cost of the HIP cycle 

becomes a larger bias as the component becomes smaller, and how this can 

increase any unit cost error due to a error in resource calculation. In experiment 

one this resulted in the percentage difference increasing as internal radius 

decreased.   
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In experiment three it is shown how the availability of different resources affects 

the percentage difference results. By selecting the lowest cost resource that is 

capable of completing the desired operation the percentage difference can be 

reduced as shown in Figure 54 and Figure 55. It would therefore be good 

practice to ensure there are different resources available for each operation 

when populating the database during the implementation of a new component or 

supply chain option. Also this ability is particularly useful for manufacturing 

engineers to determine the effect of resources on both the unit cost and the 

supply chain. 

In experiment four it is seen that as production rate increases, the percentage 

difference decreases (shown in Figure 56 Figure 57) because all resources 

within the supply chain reach their utilisation maximum values seen in Figure 58. 

Therefore the resources and overhead costs are spread across the optimum 

number of components, which is an assumption of the static based cost 

estimation methods, hence the percentage difference reduces. To gain 

maximum benefit from the framework a high percentage difference is required, 

for experiment four the graph in Figure 59 shows that a normalised mean 

resource utilisation of less than 0.65 is required to gain a percentage difference 

of greater than 10%.  

This creates two problems in understanding when to implement the framework. 

The first is to understand how the trend in Figure 59 changes with different 

supply chains. If this is understood a decision of when to implement the 

framework can be made. The second is based on the current framework 

requirement of resources being dedicated to a single supply chain; which is not 

always the case. Therefore there is scope for future work to determine how to 

incorporate multiple components utilising resources. 

In experiment five the number and size of batch operations within a supply chain 

affects the percentage difference as shown in Figure 60 and Figure 61. As the 

number of or the size of the batch operations increases so does the percentage 

difference. These results may have been artificially exaggerated because the 

batch operations were sequentially placed within the supply chain, this means 

there were no non-batch operations in-between the batch operations to smooth 

the flow of components through the supply chain. However this further highlights 

how operations dynamically interact in unpredictable ways further adding to the 

evidence that the inclusion of a dynamic model is beneficial. 
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The second case study was a blisk component; its purpose was to highlight two 

points: firstly to show that widely different components could be implemented 

within the framework; secondly to illustrate the steps necessary to implement a 

new component within the framework. Integrating different component types into 

the framework highlighted that a detailed understanding of the geometry, supply 

chain type and manufacturing operations is required before the integration into 

the framework can be complete. It also highlighted that after data collection, 

which is a non-trivial task, a significant portion of the effort is spent creating code 

to calculate process times for each operation. The amount of effort required to 

add a new component or supply chain to the framework should reduce as more 

general manufacturing functions, manufacturing data, supply chains and 

components are incorporated in to the framework because data and methods 

can be reused.  

5.2 Benefits against required effort 

Deciding whether to implement the framework or not requires a trade off to be 

conducted between the benefits that will be delivered against the effort required 

to achieve them. This section discusses the benefits, the requirements to 

achieve the benefits and under which circumstances the benefits are worth the 

effort. 

There are three primary benefits provided by the framework, which are: 

 The framework can dynamically predict required resources to fulfil a 

supply chain for a specific production rate. This data is used in the 

second benefit but can also be utilised by manufacturing engineers to aid 

production planning.  

 An increase in refinement of component unit cost estimate. This is 

completed by including the manufacturing time and dynamically 

determined resource requirements into an ABC cost model.  

 The ability to compare multiple supply chain options and different supply 

chain types, at the same time, directly from component geometry.   

There are two categories of requirements to achieve the framework benefits, 

these are: initial requirements to implement the framework; and requirements for 

each component and supply chain to be applied to the framework. The first 

category involves substantial effort to create the integration code, database and 

the generic data driven models. The integration code forms the backbone of the 
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framework and needs to be tailored to the tools. Also the database and generic 

data driven models need to be created.  

The second category is concerned with the knowledge, data and effort 

requirements to apply a new component or supply chain to the framework, these 

include: 

 Knowledge concerning the rules required to create the parameterised 

component, state and COS geometries. This knowledge must ensure the 

geometry parameters of the component are what the user requires and 

that the component geometry is able to cope with the scope of required 

parameter changes 

 Material data with understanding of the effect on manufacturing feeds 

and speeds  

 Operation level understanding of the manufacturing sequence  

 Understanding of which resources, in what quantities are utilised for each 

operation 

 Resource data for resource selection process and cost calculations (data 

required includes: maximum operating envelope, consumable 

requirements, auxiliary equipment, total foot print, operator requirements 

and special to resource fixtures and tooling) 

 For each new manufacturing process, knowledge of the logic to calculate 

the process times and manufacturing data (speeds, feeds and 

capabilities) which form the scientific basis of the process time 

 Effort to create and implement the manufacturing process logic into the 

integration code 

There are requirements in effort, knowledge and data before any benefit can be 

achieved by the framework. However this is true of any model, therefore three 

comparisons can be made between the requirements of sections of the 

framework and an individual 1) cost estimation model, 2) dynamic model and 3) 

geometry model. Each of these comparison models require effort, knowledge 

and data to build. It could be argued that if these comparison models were built 

there would be no need to go to the same level of detail as the framework, for 

instance creating the stage models in the geometry. However if an 

understanding of the machining sequence was required the stage models would 

be necessary. Aspects of the framework that require extra effort are centred 

around integration of the modelling tools, however utilisation of generic data 
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driven models reduces the modelling effort compared to the individual cost and 

dynamic comparison models. Extra knowledge and data is required by the 

framework compared to all the comparison models because the comparison 

models are based on a single instance, whereas the framework needs to cope 

with variation of component and supply chain parameters. Therefore the amount 

of effort, knowledge and data required is arguably similar to any collection of 

individual models, however the framework requires all of it to be complete before 

any benefit can be achieved through integration. 

There are four factors that result in maximum benefit from the framework; these 

are:   

 Components that are process cost biased, instead of material cost 

biased, result in higher percentage difference because the framework 

benefits only apply to the dynamic aspects of a unit cost which are 

process and overhead costs.  

 Supply chains that contain more batch operations and large quantity 

batch operations result in a higher percentage difference. This is because 

the dynamic modelling can determine the correct resource quantity to 

achieve the production rate.  

 A production rate that results in the mean utilisation of the resources 

within a dedicated supply chain to be below 0.65. This is based on the 

supply chain in case study one and should ensure that the process cost 

percentage difference is above 10%. This result is because the resource 

utilisations are not achieving their maximum values, in this case 0.7. 

 When there are two or more possible resources for an operation the 

framework can select a resource. This reduces the percentage difference 

however this selection ability is not seen in most cost modelling tools.  

If the component and supply chain do not contain these requirements to achieve 

maximum benefit there are still opportunities to gain benefit by removing 

unknowns. This is because the framework can determine the cost effect of 

different parameter changes. Two examples of this are: components where 

material choice may change during the design process which can affect the 

results, therefore comparisons need to be conducted to determine the optimal 

supply chain selection; and when required production rate is unknown, because 

production rate affects unit cost and the amount of required resources.  
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The framework is designed to be a tool to aid design decisions however there 

are two situations where this will not happen. Novel component design or 

processes where an understanding of time taken or equipment is unknown 

cannot be applied to the framework because the required knowledge and data is 

not available. Also geometry parameterisation may inhibit designer creativity as it 

is limited in flexibility and scope. In these situations other tools are required until 

greater understanding is gained and can be applied to the framework.  

5.3 Validation 

There are approximately 15,000 lines of integration code and 1,000 lines of code 

within the dynamic model. Validating the code fully by completing multiple test 

cases or an expert review, is out of scope for this research. However the results 

and logic within critical functions that aid process time generation within the 

integration code, were subject to trend evaluation that confirmed the correct 

working of the functions within case study parameters. 

No commercially sensitive data has been utilised within the framework, where 

possible publically available data has been used, otherwise appropriate values 

for the case studies were created. This means that the data utilised within the 

case studies has not been fully validated against actual manufacturing data for 

real components. However, by utilising the same base data for both static and 

dynamic costs calculation, the need for fully validated case studies was avoided, 

which would not have been possible for the data reasons above and the reasons 

given in Chapter 4. 

For future implementation it is recommended that a detailed validation exercise 

against a known component takes place for any new component and supply 

chain type added to the framework. This exercise would determine a known set 

of results for a set of parameters for a specific component supply chain 

combination. 

5.4 Framework improvements 

The framework, in its current form, has shown that there are benefits to be 

gained under certain circumstances. However, based on the case studies the 

author has identified improvements that can be made to the framework to 

increase its flexibility and scope. These improvements fall into two categories: 

improvements that in ‘hindsight’ are deemed necessary to enhance the 

framework and improvements that would add value. 
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5.4.1 Necessary improvements 

The following is recommended by the author as necessary to increase the cost 

modelling flexibility to the same level as the dynamic model. The current cost 

model implementation utilises three predefined resource types within the 

operation cost model. To ensure the cost model is fully flexible and can cope 

with any number of resources a third generic data driven cost model should be 

created. This resource level cost model, shown in Figure 64 stage 5.1, calculates 

the cost of a resource. Once each resource cost has been calculated the results 

are collated and used within the operation level cost model, then the process 

continues as described in section 3.1.5. Without this change the amount of 

resource types is limited to the three predefined ones, utilised within the proof of 

concept case studies, with this change the cost model is not limited and 

therefore matches the dynamic model capability. 

 

Figure 64: Recommended implementation of the framework stage 5 

5.4.2 Improvements that would add value 

There are a number of improvements that would add value to the framework. 

Five general areas within the framework that could be improved are:  

 Cost 

 Resource utilisation type selection 

 Dynamic model 
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 Optimisation  

 Technology integration 

By implementing the cost calculation within the integration code execution time 

could be reduced. Currently cost is implemented within Vanguard as purpose 

built generic data driven cost models, which are accessed over a network. By 

implementing the cost equations within the integration code this would decrease 

cost calculation execution time because data is not transferred over a network. A 

disadvantage of this is an increase to the code validation process and any 

required update to the cost calculation may require more effort because it will be 

contained internally within the integration code instead of externally as in the 

case of the generic data driven cost models. However the reduced execution 

time would be beneficial when completing holistic optimisations. 

Another cost based improvement would include extra data and functionality to 

allow more cost rates to be dynamic. For instance if a user was given a choice of 

worldwide locations for the supply chain, or if the choice was a part of an 

optimisation, different cost rates would apply to parameters such as factory foot 

print, consumables and wages as the location of the supply chain changes.  

Each resource has a utilisation maximum value that is held in the database. This 

functionality can be extended to allow a user to select a type of utilisation 

maximum. For instance there could be three types: min, standard and max. Min 

would represent the minimum utilisation value that the company is willing to 

accept. Standard would represent what the company believes is the normal 

utilisation. Max represents the industry best value. The user could utilise this 

functionality to gain the best, normal and worst case scenarios or different 

utilisation types could be applied throughout the simulation to act as a learning 

curve. 

Extra functionality could be applied to the dynamic model such as: 

 Applying a distribution to each operation that represents the probability 

of scrap. This would be used by the scrap cost rate in the operation level 

cost model.  

 Implementing a schedule for maintenance and a distribution for 

unscheduled maintenance would remove the requirement for a resource 

utilisation maximum to be utilised. This is because the utilisation would 

then become an output of the dynamic model instead of an input. 
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However this could only be implemented if knowledge of scheduled and 

un-scheduled maintenance was available as well as other necessary 

factors.  

 The dynamic model can only represent a supply chain where the 

resources contained within it are utilised by the component being 

considered. A method to overcome this is to block out a percentage of 

resource capacity by reducing the individual resource utilisations. 

Another method is to use a two step approach discussed in the next 

point. 

 The dynamic model determines an idealised supply chain. If data 

concerning resources within current supply chains and components 

passing through those supply chains were available, a second stage 

holistic simulation could be conducted. This simulation would determine 

if the new supply chain could be accommodated within the current 

capabilities of a company at the holistic level. 

 The dynamic model could determine the risk associated with the supply 

chain. For instance there could be a choice between two resources 

where resource 1 requires a quantity of two to meet the production rate 

and resource 2 requires a quantity of one. The supply chain utilising 

resource 1 would results in a higher unit cost, because more resource is 

required, and a lower risk. Whereas the supply chain utilising resource 2 

results in a lower unit cost but a higher risk because it is a single point 

failure within the supply chain. In that situation the supply chain utilising 

resource 1 may be more appropriate due to the lower risk. 

An optimisation loop could be utilised to select resources. Currently suitable and 

capable resources are selected by resource cost attributes. However resources 

could be selected based on results of the supply chain as a whole and utilise 

other attributes such as risk.  

The framework currently calculates operation process time through the utilisation 

of generic manufacturing time generation functions held within the integration 

code. A method of utilising the Computer Aided Manufacturing (CAM) tool with 

the CAD tool UGS NX 6 to complete this task was determined to be incapable 

because the CAM tool was unable to cope with the addition and removal of 

features automatically. However the ability of CAM tools to complete this task will 

change as their capabilities increase, which could result in improved time 
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generation accuracy and aid optimisation. As the CAM tool should be able to 

simulate the tool paths more realistically. 

Parameterisation of the component geometry has been utilised within the 

framework as the method of generating the required geometry. This combined 

with a direct link to the geometry and a variant CAPP approach allowed a 

process plan populated with process times and initial resource requirements to 

be generated. A combination of AFR and generative CAPP methods was the first 

choice to complete these tasks. However, as discussed in sections 2.3.1 and 

2.3.2, the current capabilities of these methods are limited, but as they develop 

they would offer greater flexibility and extended scope to the framework. 

 



 

105 

Chapter 6  

Conclusions and future work 

This chapter presents the significant conclusions of this research, followed by 

key contributions to the research field. Recommendations of future research 

building on findings from this work are discussed before the concluding remarks. 

6.1 Conclusions 

A framework has been created that integrates a dynamic modelling capability 

with component geometry and unit cost estimation. A system called DRES 

embodies the framework by integrating three primary tools: a dynamic modelling 

tool, a geometry engine and cost modelling tool. The primary purpose of DRES 

was a proof of concept and to conduct two case studies. The first case study 

was to determine if and when a benefit could be gained from the framework. The 

second case study highlighted that different components could be implemented 

within the framework and the steps necessary to complete it. 

Integration of the three tools gives three direct benefits. First, the integration of a 

dynamic modelling capability allows optimised resource requirements to be 

utilised within unit cost estimation, therefore producing an AUC estimate. The 

integration of component geometry facilitates the second and third direct 

benefits. The second is that the integration allows a user to understand the 

consequences of design changes on unit cost. The Third, integration allows real 

time decision making to take place.  

By utilising a direct method of extracting geometry data and a variant CAPP 

method to determine a manufacturing process, the framework allows the user to 

select multiple supply chain types and multiple options within each type. This 

flexibility supplies the user with a benefit that allows unit cost comparison of 

multiple supply chains. 

The goal of the dynamic model is to determine required resource of a supply 

chain for a component so that it can be utilised in a cost estimation model. A 

secondary benefit is to utilise required resource data to reduce time and effort 

required by manufacturing engineers to develop the supply chain for 

manufacture. 
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There are two application requirements that must be taken into consideration 

before a component is applied to the framework, these are: manufacturing 

production rate, and availability of knowledge and data. An assumption of the 

dynamic model, in its current form, is that all resources within a supply chain are 

dedicated to the manufacture of the component; see section 5.4 for possible 

improvements. Due to this assumption production rate affects the amount of 

benefit that can be gained from the system. For example if production rate is 

high (52,560 components a year for experiment 4 of case study 1 Figure 56) the 

potential benefit against a static cost estimation is low (1.3% in experiment 4 

case study 1). However, as the production rate decreases (365 components a 

year for experiment 4 case study 1 Figure 56) the potential benefit increases 

(79.7% in experiment 4 case study 1). Therefore production rate needs to be 

considered to determine if a benefit will be gained from the framework. The 

second requirement to consider is availability of knowledge and data. It was 

discussed in section 5.2 that the amount of knowledge and data required by the 

framework is similar to building the necessary models individually. However the 

knowledge and data is all required before a component is applied to the 

framework because without it the framework will not deliver any output for that 

component. This constitutes a considerable upfront commitment to the 

framework because it is an all or nothing situation. 

Four characteristics have been found from the cases studies that provide the 

most benefit from the framework. The first is delivered by components with a unit 

cost that is process cost biased instead of material cost biased. Optimising 

resource requirements only affects the dynamic aspects of unit cost – process 

and overhead costs – therefore components that are process cost biased will 

see more benefit than components which are not (see experiment 1 case study 

1, section 4.1.1). The second characteristic concerns components with supply 

chains that contain batch operations. Static cost models have difficulty 

determining resource requirements for batch operations, therefore more benefit 

can be gained from supply chains that contain many large quantity batch 

operations (see experiment 5 case study 1, section 4.1.1). The third 

characteristic is production rate required. For a dedicated supply chain as 

production rate decreases resource utilisation decreases which exaggerates any 

errors in resource quantity calculation, therefore effecting the unit cost and, in 

experiment 4, the percentage difference. The fourth characteristic is selection of 

possible resources which the framework completes automatically.  
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During the design process there are situations when some design parameters 

and decisions are either unknown or have multiple possible choices. These 

design decisions can affect many aspects of the design including the 

manufacturing process and unit cost. An example of this is component material 

choice which could affect supply chain selection. A second example is when 

required production rate is unknown or is different to known historical data; this 

can affect supply chain selection and unit cost. The framework can be utilised to 

understand different situations to aid design decision making, by allowing a 

design team to investigate the affects of deign decisions. 

The framework can deliver benefits as discussed above, however there are 

disadvantages. The majority of effort required to implement the initial framework 

is up front, due to two reasons:  

 Integration of the five stages and necessary tools for the framework. The 

integration process is a considerable task especially because the user 

does not see the integration as each tool is linked within the framework to 

work automatically. All aspects of tool integration, user interaction 

through the GUI's and data manipulation must be handled by the 

integration code through a series of error checking routines which further 

increase the complexity of the integration. 

 Generic ability of the framework to cope with different components and 

supply chain types. Creating a robust parametric geometry is a technical 

challenge, the framework however takes this a step further by requiring 

that the generic ability is represented throughout each stage of the 

framework including: data handling, manufacturing process time 

generation, dynamic modelling and cost modelling. 

Once the initial effort of creating the framework integration has been completed 

substantial data and knowledge is required to implement a component and 

supply chain type within the framework as discussed in Case study 2 – Blisk 

section 4.2.  

Novel components, a new component design not seen before, or processes, 

new manufacturing process,  cannot be applied to the framework in its current 

form. This is because the framework is based on a generic parameterised 

component geometry that is linked to multiple known manufacturing processes 

that is linked to data and knowledge about every aspect of its manufacture. A 

novel design or process, by definition, does not have all the necessary data or 
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knowledge to populate the database or equations to determine the process 

operation times. The topic of including novel design or manufacturing process is 

discussed in future research. 

The hypothesis for this research was “Integrating supply chain simulations with 

design geometry can assist in design decision making”. The conclusions from 

this research prove that the hypothesis is correct when the component and 

supply chain characteristics that produce maximum benefit are partly achieved. 

DRES the proof of concept implementation of the framework has achieved the 

aim of this research, which was to assist the design process by aiding decision 

making by conducting real time cost estimation, incorporating a dynamic aspect 

into unit cost estimation and allowing comparisons of manufacturing processes. 

6.2 Contributions of research 

It was determined in section 2.1, cost estimation, of the literature review that cost 

estimation methods were based on static models that were unable to fully 

represent dynamic systems. This research has shown that there are benefits of 

utilising dynamic modelling to provide dynamic data to cost estimation methods. 

This research also discovered characteristics when the most benefit can be 

achieved; these are: 

 A process cost biased component 

 Supply chains that contain batch operations 

 Production rates that result in mean resource utilisation below 0.65 for 

dedicated supply chains 

 Multiple possible resources for operations. 

The literature review also showed that some researchers have integrated 

dynamic modelling and cost estimation, section Error! Reference source not 

found., some have integrated geometry and cost estimation, section Error! 

Reference source not found., and some have integrated dynamic modelling 

and geometry, section 2.2.2. However no research has focused on the 

integration of the three areas for the purpose of aiding design decisions. This 

research has integrated all three areas, as shown in Figure 65, within a 

framework and has implemented the framework with a system called DRES.  
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Figure 65: Area of research contribution 

6.3 Future research 

Implementing the recommendations in section 5.4, framework improvements, 

provide value but are not research questions. The rest of this section discusses 

those research questions that have come to light and areas of research that are 

not fully understood and would be required to achieve the vision the author has 

for the framework. 

Fully understanding the benefits of integrating a dynamic modelling capability 

into cost estimation and under which criteria the benefits occur, will provide a 

comprehensive guide of when to apply the framework. Determining this will 

require experimentations with different supply chain types to understand the 

dynamic interaction of operations by varying: 

 Size of operation process times and the sequence of operations within 

the supply chain 

 Sequence of batch and non-batch operations as well as batch sizes 

 The amount of different resources per operation and the quantity of 

those resources 

Understanding these interactions will provide a greater understanding of when to 

implement the framework for components, which is a necessity to create a 

business case due to the investment that this framework requires before use in a 

production design environment. 
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Understanding and quantifying the risk of different supply chain options is a 

research area that will allow a user to make an informed decision about the 

selection of a supply chain option. For instance when comparing two supply 

chain options one may result in a lower unit cost but may present a higher risk, 

therefore the second supply chain option may be a better choice. To understand 

risk the following areas need investigation: 

 What constitutes a risk within the supply chain, an example of this is the 

utilisation of a single resource in conjunction with un-planned 

maintenance and the fact that this represents a single point of failure 

 How risk is quantified and presented to the user 

 Is extra data or capability required within the dynamic model logic to 

cope with determining risk 

The research in to quantifying  risk of different supply chain options is required to 

aid design decisions for people who do not fully understand the manufacturing 

process and the implications one supply chain has over another.  

Optimisation that combines this framework with other analysis systems such as 

finite element analysis and computational fluid dynamics could be used to 

optimise the geometry directly. The combination of these systems would allow a 

multi-objective optimisation for a component or set of components such as a gas 

turbine engine or subsystem. This research would try to understand how the 

analysis outputs would interact, and how these affect geometry parameter 

values. This would allow the framework to truly achieve its aim by being fully 

incorporated into the design optimisation. 

The framework determines the idealised supply chain requirements for the 

component and the selected supply chain. However this could be the first stage 

of a two stage optimisation. For instance the second stage could determine if the 

idealised supply chain can be incorporated into a company’s current supply 

chain capabilities, and if not, could determine what extra resources are required. 

This would also force an understanding of all the supply chain capabilities within 

a company as all the data and knowledge would be required to complete the 

second stage optimisation. Creating a generic data driven dynamic model that 

can represent multiple supply chains and multiple components where resources 

are not dedicated to a single supply chain would be required for this work. Also 

how the results would be viewed by the user needs consideration.  
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If a company was to use this two stage optimisation, to determine what extra 

capacity is required, would be the ultimate aim of the framework. This is because 

this would force the company to completely model its manufacturing capacity 

which could be used to optimise each year's load and capacity incorporating the 

new component volumes. 

The use of novel components or processes within the framework is difficult 

because not all data or knowledge is available. However, an understanding of 

what data and knowledge is required, what makes a component ‘novel’, and how 

the lack of data can be overcome would aid the inclusion of novel components 

and processes within the framework. Without this understanding the framework 

will be limited to families of components and known processes, which is a 

limitation for aiding design decisions. 

6.4 Concluding remarks 

The integration of multiple systems is becoming more common place as multi-

objective problems are been solved. The inclusion of dynamic modelling in these 

integrations is also becoming more common, especially with increasing 

computer capability that allows dynamic models to execute in a short time.  

The capability of creating generic data driven dynamic models is allowing 

researchers to utilise the models to solve and understand problems instead of 

building models. Commercial dynamic modelling tools are now capable of 

combining multiple dynamic modelling methods (DES, continuous, system 

dynamic and ABC) into a single model. This will aid researchers to apply 

different dynamic modelling methods to different parts of a single problem, 

allowing them to focus on finding a solution. 

The next step of cost estimation is encompassed partly in this research. It is not 

about supplying a cost service to a design team or even a tool that requires extra 

effort and time on their part. It is about supplying a design team with a tool that 

aids them to understand cost in terms of their design decisions in real time. To 

do that it needs: to be automated, to include the geometry, to include the 

manufacturing process, to be optimised at all levels, and to be based on 

scientific data. 
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Appendix A 

There are approximately 16,000 lines of code within the framework, which has 

many repeated sections therefore this appendix contains extracts from the 

framework integration code that was directly discussed within the thesis. The 

code extracts are:  

 Extracting parameters using the geometry engine API 

 Generating a process time for turning 

 Executing the generic data driven dynamic model 

The code in A.1 is specific to the geometry engine which is Siemens Unigraphics 

NX 6.0. All the code has been written in C# using MS Visual Studio. 

A.1 Code to extract parameters using geometry API 

Below is the code required to extract parameters from the top level assemble file 

for the component geometry. The geometry engine calls the parameters 

expressions, hence the use of the word expressions throughout the code. Each 

parameter name, value and unique tag number are extracted and put into a data 

table for storage until required later in the framework. As some parameters are 

strings, for example N7 as a tolerance, and some are number values they 

represent different types of data, therefore they need to be handled and stored 

differently within the code.  

/// <summary> 
/// <para>Retrieves the expressions data from the NX work part (eg the assembly)</para> 
/// <para>Returns DataTable</para> 
/// </summary> 
private DataTable retrieveComponentExpressions() 
{ 
    Session theSession = Session.GetSession(); // Retrieves the current sessions 
    Part workPart = theSession.Parts.Work; // Retrievs the current work part 
    PartLoadStatus partLoadStatus1; 
    NXOpen.Assemblies.Component nullAssemblies_Component = null; // Loads assemble 
    theSession.Parts.SetWorkComponent(nullAssemblies_Component, out         partLoadStatus1); // Sets the work 
component to the assemble 
    
    workPart = theSession.Parts.Work; // Retrievs the new work part 
    partLoadStatus1.Dispose();  
 
    DataTable dt = new DataTable(); // Initiates a new datatable 
    dt.TableName = "Component_Expressions"; 
    dt.Columns.Add("Tag", typeof(int)); // Creates new column in dt 
    dt.Columns.Add("Value", typeof(double)); // Creates new column in dt 
    dt.Columns.Add("Value_String", typeof(string)); // Creates new column in dt 
    dt.Columns.Add("Name", typeof(string)); // Creates new column in dt 
    dt.Columns.Add("Description", typeof(string)); // Creates new column in dt 
 
    // Loads all expressions in work part and iterates through each 
    foreach (Expression expression in workPart.Expressions) 
    { 
        if (!expression.Name.StartsWith("p"))//Ignores expressions starting with p 
        { 
            double value = 0; 
            string value_string = ""; 
            if (expression.Type.Equals("Number"))// If expression is a number 
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            { 
                value = expression.Value;// Assigns expression value to variable 

            } 
            if (expression.Type.Equals("String")) // If expression is a string 
            { 
   // Removes unecessary characters from the string 
                value = 0; 
                int start = expression.Equation.IndexOf("=\"") + 2; 
                int end = expression.Equation.Length - 1; 
   // Assigns expression string to variable 
                value_string = expression.Equation.Substring(start, end - start); 
            } 
       // Applies extracted data to a datatable 
            dt.Rows.Add(expression.Tag, value, value_string, expression.Name,   expression.Description); 
        } 
    } 
    return dt; 
} 

A.2 Code to generate an operation time 

Below is the code that extracts geometry data related to operation then 

calculates the operation time based on the geometry information and cutting 

parameters based on speed and feed data from the database. 

        #region Turn_PF020 (Uses PF010) - Complete - PF010 to PF020 - Hold sm end - machining  large flange end, face 
and internal profile 
        /// <summary> 
        /// <para>Returns the time taken to machine the PF010 stage to the PF020 stage uses  PF010</para> 
        /// <para>PF010 to PF020 - machining large flange end, face and internal  profile</para> 
        /// </summary> 
        /// <returns></returns> 
        public double machine_PF010_to_PF020() 
        { 
            double timeTotalForPF010_TO_PP020 = 0; 
            int location = 0; 
            double SubLocation = 0; 
            double SubSubLocation = 0; 
            try 
            { 
                #region Extracts Depth of cut, Length of face, length of internal profile 
                location = 1; 
                SubLocation = 1; 
                Session theSession = Session.GetSession(); 
                Part workPart = theSession.Parts.Work; 
                Part displayPart = theSession.Parts.Display; 
 
                NXObject nullNXObject = null; 
                MeasureDistanceBuilder measureDistanceBuilder1; 
                measureDistanceBuilder1 =  
 workPart.MeasureManager.CreateMeasureDistanceBuilder(nullNXObject); 
                measureDistanceBuilder1.Mtype =  NXOpen.MeasureDistanceBuilder.MeasureType.Minimum; 
 
                NXOpen.Assemblies.Component component1 =       
  (NXOpen.Assemblies.Component)displayPart.ComponentAssembly.RootComponent.FindObject("
 COMPONENT COC_PF010 1"); 
                Unit nullUnit = null; 
                DisplayableObject[] objects1 = new DisplayableObject[1]; 
                MeasureLength measureLength1; 
 
                // ********* Depth of cut *********** 
                SubLocation = 2;                 
                Line line1 = (Line)component1.FindObject("PROTO#.Sketches|SKETCH_007|Curve  Line43"); // Depth of 
cut line 
                objects1[0] = line1;                 
                measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1); 
                double depthOfCut = measureLength1.Value; 
                 
                // ********* length of face ************ 
                SubLocation = 3; 
                Line line2 = (Line)component1.FindObject("PROTO#.Sketches|SKETCH_007|Curve   Line41"); 
                objects1[0] = line2; 
                measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1); 
                double lengthOfFace = measureLength1.Value; 
 
                // ********* AvgDia of face *************** 
                SubLocation = 4; 
                Edge edge1 = (Edge)component1.FindObject("PROTO#.Features|LINKED_BODY(1)|EDGE   * 784 
REVOLVED(6) [CURVE 2 0] {(299.4999999999999,299.0385719267667,- 
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 172.65)(299.4999999999999,0,345.3)(299.4999999999999,-299.0385719267666,- 
 172.6500000000002) LINKED_BODY(1)}"); 

                DisplayableObject objects2 = edge1; 
                MeasureDistance measureDistance1; 
                measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,objects2); 
                double ExternalRadOfFace = measureDistance1.Value; 
 
                SubLocation = 5; 
                edge1 = (Edge)component1.FindObject("PROTO#.Features|REVOLVED(6)|EDGE *   [CURVE 0 
0] * [CURVE 2 0] {(299.4999999999999,279.2931927204815,- 
 161.2499999999999)(299.4999999999999,0,322.4999999999999)(299.4999999999999,- 
 279.2931927204814,-161.2500000000001) LINKED_BODY(1)}"); 
                objects2 = edge1; 
                measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2); 
                double InternalRadOfFace = measureDistance1.Value; 
 
                double avgDiaOfFace = (((ExternalRadOfFace - InternalRadOfFace)/2) +   InternalRadOfFace) * 
2; 
 
                // ********* Length of internal profile stage 2 ********* 
                SubLocation = 6; 
                SubSubLocation = 1; 
                Line line5 = (Line)component1.FindObject("PROTO#.Sketches|SKETCH_007|Curve   Line43"); // 
Short line at top which represents the bulk material sticking   out from the flange face 
                SubSubLocation = 2; 
                objects1[0] = line5; 
                SubSubLocation = 3; 
                measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1); 
                double lengthOfInternalProfile2 = measureLength1.Value; 
                SubSubLocation = 0; 
 
                // ********* Length of internal profile stage 1 *********** 
                SubLocation = 7; 
                SubSubLocation = 1; 
                Array.Resize(ref objects1, 4); 
                Line line3 =   (Line)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE 
54 {3   (295.6918708717893,0,323.5)}"); 
                objects1[0] = line3; 
                SubSubLocation = 2; 
                Arc arc1 =   (Arc)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE 57 
{5   (290.8205505282297,-0,324.2466210044534)}"); 
                SubSubLocation = 2.1; 
                objects1[1] = arc1; 
                SubSubLocation = 3;                 
                Line line4 =   (Line)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE 
58 {3   (287.9933302293619,0,324.5)}"); 
                objects1[2] = line4; 
                SubSubLocation = 4;                 
                Arc arc2 =   (Arc)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE 60 
{5   (286.07869500536,0,324.4151502696375)}"); 
                objects1[3] = arc2; 
                SubSubLocation = 5;                 
                measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1); 
                SubSubLocation = 6;                 
                double lengthOfInternalProfile1 = measureLength1.Value; 
 
                // ************ End of data collection **************** 
                SubLocation = 8; 
                measureLength1.Dispose(); 
                measureDistance1.Dispose(); 
                measureDistanceBuilder1.LengthObjects.Clear(); 
                measureDistanceBuilder1.Destroy();                 
                displayPart.FacetedBodies.DeleteTemporaryFacesAndEdges(); 
                                 
                #endregion 
 
                #region Calculation of time 
                location = 2; 
                SubLocation = 1; 
                clsMachiningTimeGen machTime = new clsMachiningTimeGen();                 
                int speedType = 30; 
   
                // Turning data for face op 
                double timeFace = machTime.turning(avgDiaOfFace, lengthOfFace, 3,   machinabilityNumber, 
speedType); 
                // Turning data for internal profile op 
                double timeInternalProfile = machTime.turning(InternalRadOfFace * 2,   lengthOfInternalProfile1 + 
lengthOfInternalProfile2, 3, machinabilityNumber,    speedType);                                                
 
                #endregion 
 
                #region Calculation of tool changes and totals 
                location = 3; 
                SubLocation = 1; 
                int toolChangesFace = (int)Math.Ceiling(timeFace / speedType); 
                int toolChangesInternalProfile = (int)Math.Ceiling(timeInternalProfile /   speedType); 
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                // **** Totals 

                double toolChangeTotal = toolChangesFace + toolChangesInternalProfile + 1; //   Changes durning 
machining and initial 
 
                double timeTotalForToolChanges = toolChangeTotal * toolChangeTime; 
 
                timeTotalForPF010_TO_PP020 = timeFace + timeInternalProfile +   
 timeTotalForToolChanges; 
 
                #endregion 
 
                #region Message 
                location = 4; 
                string message = ""; 
                message += "***** Data for PF010 to PF 020 *****"; 
                message += "\nDepth of cut (should be 1mm) = " + depthOfCut; 
                message += "\nFace edge length (should be 22.8) = " + lengthOfFace; 
                message += "\nExternal Rad of face (should be 354.3) = " + ExternalRadOfFace; 
                message += "\nInternal Rad of face (should be 322.5) = " + InternalRadOfFace; 
                message += "\nAvgDia of face = " + avgDiaOfFace; 
                message += "\nLength of internal profile stage 1 (should be 13.85) = " +  
 lengthOfInternalProfile1; 
                message += "\nLength of internal profile stage 2 (should be 6.288) = " +  
 lengthOfInternalProfile2; 
                message += "\n\n ***** Times *****"; 
                message += "\nTime of face op = " + timeFace; 
                message += "\nTime of internal profile op = " + timeInternalProfile; 
                message += "\nTool changes total = " + toolChangeTotal; 
                message += "\nTime total = " + timeTotalForPF010_TO_PP020; 
                 
                //MessageBox.Show(message, "Extraction data for 'machine_PF010_To_PF020()'"); 
 
                MachiningDataString += message; 
                #endregion 
            } 
            #region catch 
            catch (Exception e) 
            { 
                string message = "There has been an error in   machine_PF010_to_PF020()\nLocation: " + location  
                    + "\nSublocation: "+ SubLocation+"\nSubSubLocation: " + SubSubLocation +   "\n\n"; 
                MessageBox.Show(message, "Error"); 
                writeToFile("log", message, "\n"); 
                throw new Exception("Error occurred", e); 
            } 
            #endregion 
            return timeTotalForPF010_TO_PP020; 
        } 
        #endregion 

A.3 Code to select and sort resources 

This function determines the maximum size of the component at the current 

time, the component size changes with each op therefore needs checking, then 

it extracts all the resources related to the current operation that have large 

enough working envolpes, then it sorts them based on reource cost rate. 

 /// <summary> 
        /// <para>This function uses a process ID to select usable machines and orders them in a datatable  
 which is returns</para> 
        /// <para>****************** Needs checking *******************</para> 
        /// <para> Created on 14/09/11 - Last modified on 15/09/11 - last check on 15/09/11</para> 
        /// </summary> 
        /// <param name="processID"></param> 
        /// <param name="supplyChainOption"></param> 
        /// <returns></returns> 
        private DataTable selectMachine(int processID, string supplyChainOption) 
        {            
            string sql, message; 
            double xAxis = 0, yAxis = 0, zAxis = 0, location = 0, subLocation = 0 ; 
            DataTable dtMachine = new DataTable(); 
            try 
            { 
                #region NX stuff 
                location = 1; 
                NXOpen.Assemblies.Component nullAssemblies_Component = null; 
                Session theSession = Session.GetSession(); 
                PartLoadStatus partLoadStatus1; 
                theSession.Parts.SetWorkComponent(nullAssemblies_Component, out   
 partLoadStatus1); 
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                Part workPart = theSession.Parts.Work; 

                Part displayPart = theSession.Parts.Display; 
                 
                Unit nullUnit = null; 
                DisplayableObject[] objects1 = new DisplayableObject[1]; 
                DisplayableObject objects2; 
                DisplayableObject objects4; 
                IBody[] objects3 = new IBody[1]; 
 
                MeasureDistance measureDistance1; 
                MeasureLength measureLength1; 
                Edge edge1; 
 
                #endregion 
 
                if (supplyChainOption.StartsWith("Forged")) 
                { 
                    #region Forged x,y,z 
                    NXOpen.Assemblies.Component component2 =    
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COM 
 PONENT COC_PF010 1"); 
                    theSession.Parts.SetWorkComponent(component2, out partLoadStatus1); 
                    location = 2; 
                    subLocation = 1; 
                    edge1 = (Edge)component2.FindObject("PROTO#.Features|LINKED_BODY(1)|EDGE   * 784 
REVOLVED(6) [CURVE 2 0] {(301.4999999999999,384.7750869014261,- 
 222.1499999999999)(301.4999999999999,0,444.3)(301.4999999999999,-  
 384.7750869014259,-222.1500000000002) LINKED_BODY(1)}"); 
                    objects2 = edge1; 
                    measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,    
 objects2); 
                    xAxis = ((measureDistance1.Value) * 2) / 1000; // External canister dia 
                    yAxis = xAxis; // Outer radius of forged component when internal rad =    400 is 
444.3           
 
                    // Length = 301.5 
                    subLocation = 2; 
                    Array.Resize(ref objects1, 2); 
                    Face face1 =   
 (Face)component2.FindObject("PROTO#.Features|LINKED_BODY(1)|FACE 795 {(-
 3,0,0.0000000000001) LINKED_BODY(1)}"); 
                    objects2 = face1; 
                    Face face2 =  (Face)component2.FindObject("PROTO#.Features|REVOLVED(6)|FACE [CURVE 2 0]"); 
                    objects4 = face2; 
                    measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,   objects2, objects4);                     
                    zAxis = (measureDistance1.Value) / 1000; // Canister length 
                    subLocation = 2.6; 
 
                    //MessageBox.Show("xAxis is(444.3*2): " + xAxis + " YAxis is(444.3*2):" +   yAxis + " ZAxis 
is(301.5):" + zAxis); 
                    #endregion Forged x,y,z 
                } 
                else if (supplyChainOption.StartsWith("HIP")) 
                { 
                    #region HIP x,y,z                     
                    NXOpen.Assemblies.Component component1 =   
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COM 
 PONENT HIP_02 1"); 
                    location = 3; 
                    theSession.Parts.SetWorkComponent(component1, out partLoadStatus1); 
                    workPart = theSession.Parts.Work; 
                    subLocation = 1; 
                    // ***** External rad 
                    edge1 = (Edge)component1.FindObject("PROTO#.Features|REVOLVED(20)|EDGE *   [CURVE 8 
0] * [CURVE 9 0] {(357.17,366.6890123687919,-  
 211.7079999999999)(357.17,0,423.416)(357.17,-366.6890123687918,-211.7080000000002)  
 REVOLVED(20)}"); 
                    objects2 = edge1; 
                    measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,    
 objects2); 
                    double canisterDia = ((measureDistance1.Value) * 2) / 1000; // External    canister 
dia 
                    xAxis = canisterDia; 
                    yAxis = canisterDia; 
 
                    subLocation = 2; 
                    // ***** Canister length 
                    Line line1 =    
 (Line)component1.FindObject("PROTO#.Sketches|SKETCH_001|Curve Line18"); 
                    objects1[0] = line1; 
                    measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1); 
                    zAxis = (measureLength1.Value) / 1000; // Canister length 
 
                    subLocation = 3; 
                    //***** Resets the workpart back to the top assembly 
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                    theSession.Parts.SetWorkComponent(nullAssemblies_Component, out   
 partLoadStatus1); 

                    partLoadStatus1.Dispose(); 
                    #endregion HIP x,y,z 
                } 
                else if (supplyChainOption.StartsWith("Blisk")) 
                { 
                    #region Forged x,y,z 
                    NXOpen.Assemblies.Component component1 =   
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COM 
 PONENT Blisk1_COS 1"); 
                    location = 4; 
                    subLocation = 1; 
                    theSession.Parts.SetWorkComponent(component1, out partLoadStatus1); 
                    double cosBaseWidth = 0, cosExternalWidth = 0, cosExternalRadius = 0; 
                    foreach (Expression expression1 in workPart.Expressions) 
                    { 
                        if (!expression1.Name.StartsWith("p")) 
                        { 
                            if (expression1.Name.Equals("COS_Base_Width")) 
                                cosBaseWidth = expression1.Value; 
                            if (expression1.Name.Equals("COS_External_Width")) 
                                cosExternalWidth = expression1.Value; 
                            if (expression1.Name.Equals("COS_External_Radius")) 
                                cosExternalRadius = expression1.Value; 
                        } 
                    } 
                    xAxis = cosBaseWidth + cosExternalWidth; // Lath bed length therefore the   width of the cos                              
                    zAxis =cosExternalRadius; // the dia of the cos 
                    yAxis = zAxis; // dia of the cos                      
                    #endregion Forged x,y,z 
                } 
                else 
                { 
                    MessageBox.Show("Error in selectmachine() the supply chain does not start   with Forged or HIP"); 
                    throw new Exception(); 
                } 
                theSession.Parts.SetWorkComponent(nullAssemblies_Component, out   
 partLoadStatus1); 
                workPart = theSession.Parts.Work; 
                partLoadStatus1.Dispose(); 
                location = 5; 
                sql = "SELECT * FROM Type_Manf_Machines WHERE ID IN " 
                    + "(SELECT Machine_ID FROM Link_Process_To_Machine WHERE Process_ID = " +   processID 
                    + ") AND X_Axis > " + xAxis + " AND Y_Axis > " + yAxis + " AND Z_Axis >"   + zAxis + " AND Use 
= true " 
                    + " ORDER BY Cost_Rate ASC, Investment_Cost ASC, Foot_Print_Area_Machine   ASC, 
Maintenance_Cost_Annual ASC"; // before order need AND X_Axis > dim AND   Y_Axis > dim AND Z_Axis > dim 
                dtMachine = completeSQL(sql); 
                if (dtMachine.Rows.Count < 1) // Checks if the sql has returned somthing 
                { 
                    MessageBox.Show(message = "There is no machine avaiable in the database   that can be used to 
complete this selectMachine() function.\nThe process ID   is: " + processID + "\nThe last sql was: " + sql + 
"\nPlease update the data   base 'Type_Manf_Machines' table.\n\nThanks", "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception();                    
                } 
            } 
            #region catch 
            catch (Exception) 
            { 
                message = "There has been an error in selectMachine() function.\nLocation is:   " + location + 
"\nSublocation is: " + subLocation; 
                MessageBox.Show(message, "Error"); 
                writeToFile("log", message, "\n"); 
                throw new Exception(message); 
            } 
            #endregion 
            return dtMachine; 
        } 

A.4 Code to generate the process time for turning 

Below is the code that generates the operation process time for a turning 

operation. The output is given as a double value and the input parameters are: 

 avgDia – the median diameter for the turning cut 

 length – the length of the cut in total 
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 cutType – the type of cut with rough, medium or finish to be inputted as 1, 

2, 3 respectively 

 machinabilityNumber – the machinability of the material 

 speedType – the duration in min of tool life, either 10 for 10 min or 30 as 

30 min 

/// <summary>  

/// <para>Calculates turning cut time in min.</para> 

/// <para>CutType: 1 = Rough, 2 = Medium, 3 = Finish, Default = Rough.</para> 

/// <para>MachinabilityNumber: 1 to 24, Default = 22.</para> 

/// <para>SpeedType: 10 = 10 min tool life, 30 = 30 min tool life, Default = 

30.</para> 

/// </summary> 

/// <param name="avgDia"></param> 

/// <param name="length"></param> 

/// <param name="cutType"></param> 

/// <param name="machinabilityNumber"></param> 

/// <param name="speedType"></param> 

/// <returns></returns> 

public double turning(double avgDia, double length, int cutType, int 

machinabilityNumber, int speedType) 

{ 

    string speedTypeString, sql; 

    double speed, RPM, feedRate, cutTime; 

 

    // Sets the speedTypeString to given value otherwise to default 

    if (speedType == 10) 

        speedTypeString = "Speed10min"; 

    else if (speedType == 30) 

        speedTypeString = "Speed30min"; 

    else 

    { 

        speedTypeString = "Speed30min"; 

    } 

 

    // Set the default machinability number to 22, if non specified 

    if (machinabilityNumber < 1 || machinabilityNumber > 24) 

        machinabilityNumber = 22; 

 

    // sets the cuttype default, if non specified 

    if (cutType < 1 || cutType > 3) 

        cutType = 1; 

 

    //Selects the feed from the database 

    sql = "SELECT Feed FROM Data_TurningDocFeed WHERE TurningDoCFeedID = " +  

        cutType; 

    DataTable dtFeed = completeSQL(sql);             

 

    // selects the speed for the given machinability number and cut type 

    sql = "SELECT Speed10min, Speed30min FROM Data_TurningSurfaceSpeed WHERE 

        MachinabilityNumber = "  

        + machinabilityNumber + " AND DepthOfCutID = " + cutType;                 

    DataTable dtSpeed = completeSQL(sql);             

 

    // Calculates data for final cut time 

    speed = 1000 * Convert.ToDouble(dtSpeed.Rows[0][speedTypeString]); 

    RPM = speed / (Math.PI * avgDia); 

    feedRate = RPM * Convert.ToDouble(dtFeed.Rows[0]["Feed"]); 

    cutTime = length / feedRate; 

 

    return cutTime; 

} 

A.5 Code to generate the batch size 

This function generates the batch size for batch the batch operations Pickel_001 

and HIP_001. 
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        /// <summary> 
        /// <para>When passed a process name this function will calculate and return the batch size for the process, otherwise it 

  returns a default value of 1</para> 
        /// </summary> 
        /// <param name="process"></param> 
        /// <param name="machineID"></param> 
        /// <returns></returns> 
        private int batchSize(string process, int machineID)  
        { 
            messageMain = "Entered batchSize()"; 
            double location = 0; 
            string sql = "SELECT * FROM Type_Manf_Machines WHERE ID = " + machineID + " AND Use = true"; 
            DataTable dtmachine = completeSQL(sql); 
             
            //MessageBox.Show("Entered batchsize()"); 
            #region NX stuff 
            NXOpen.Assemblies.Component nullAssemblies_Component = null; 
            Session theSession = Session.GetSession(); 
            PartLoadStatus partLoadStatus1; 
            theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1); 
                         
            Part workPart = theSession.Parts.Work; 
            Part displayPart = theSession.Parts.Display;                                                
 
            Unit nullUnit = null; 
            DisplayableObject[] objects1 = new DisplayableObject[1]; 
            DisplayableObject objects2; 
            IBody[] objects3 = new IBody[1]; 
 
            MeasureDistance measureDistance1; 
            MeasureLength measureLength1; 
                         
            #endregion 
            clsMachiningTimeGen machTime = new clsMachiningTimeGen(); 
            int batchSize = 0; 
             
            sql = "SELECT * FROM test"; // Experimenting purposes 
            DataTable dt1 = completeSQL(sql); // Experimenting purposes 
            int size = (int)dt1.Rows[0]["BatchSize"]; // Experimenting purposes 
 
            try 
            { 
                #region Switch 
                switch (process) 
                { 
                    case "Pickel_001":  
                        #region calculation of batch size                        
 
                        // ***** External rad 
                        NXOpen.Assemblies.Component component1 = 
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COMPONENT 
  HIP_02 1"); 
                        theSession.Parts.SetWorkComponent(component1, out partLoadStatus1); 
                        Edge edge1 = (Edge)component1.FindObject("PROTO#.Features|REVOLVED(20)|EDGE * [CURVE 8 0] * 
  [CURVE 9 0] {(357.17,366.6890123687919,-211.7079999999999)(357.17,0,423.416)(357.17,-
  366.6890123687918,-211.7080000000002) REVOLVED(20)}"); 
                        objects2 = edge1; 
                        measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2); 
                        double canisterDia = ((measureDistance1.Value) * 2) / 1000; // External canister dia in meters 
 
                        //***** Resets the workpart back to the top assembly                         
                        theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1); 
                        partLoadStatus1.Dispose(); 
                         
                        //batchSize = machTime.pickel_Capacity(canisterDia); 
                        //MessageBox.Show("pickel cpacity = " + batchSize); 
 
                        double pickelEnvolope_X = (double)dtmachine.Rows[0]["X_Axis"]; 
                        double pickelEnvolope_Y = (double)dtmachine.Rows[0]["Y_Axis"]; 
 
                        double canisterArea = Math.PI * (Math.Pow(canisterDia / 2, 2)); //1.13 
                        double pickelEnvolope_Area = pickelEnvolope_X * pickelEnvolope_Y; // 16 
 
                        double allowanceFactor = 0.9; 
                        int capacity = (int)Math.Floor((pickelEnvolope_Area / canisterArea) * allowanceFactor); 
                        batchSize = capacity; 
                        break; 
                        #endregion 
                    case "HIP_001":  
                        #region calculation of batch size 
                        int vesselCapacity = 0; 
                        try 
                        { 
                            location = 1; 
                            // ***** External rad 
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                            NXOpen.Assemblies.Component component2 =    
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COMPONENT 

  HIP_02 1"); 
                            theSession.Parts.SetWorkComponent(component2, out partLoadStatus1); 
                            workPart = theSession.Parts.Work; 
                            edge1 = (Edge)component2.FindObject("PROTO#.Features|REVOLVED(20)|EDGE * [CURVE 8 0] * 
  [CURVE 9 0] {(357.17,366.6890123687919,-211.7079999999999)(357.17,0,423.416)(357.17,-
  366.6890123687918,-211.7080000000002) REVOLVED(20)}"); 
                            objects2 = edge1; 
                            measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2); 
                            canisterDia = ((measureDistance1.Value) * 2) / 1000; // External canister dia 
 
                            location = 2; 
                            // ***** Canister length 
                            Line line1 = (Line)component2.FindObject("PROTO#.Sketches|SKETCH_001|Curve Line18"); 
                            objects1[0] = line1; 
                            measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1); 
                            double canisterHeight = (measureLength1.Value) / 1000; // Canister length 
 
                            location = 3; 
                            //***** Resets the workpart back to the top assembly 
                            theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1); 
                            partLoadStatus1.Dispose(); 
                                                                                     
                            //double pressureRequired = 138000000; // The temperature is material and canister dependant not vessel 
  dependant;  // Not used any more but keep 
                            //double temperatureRequired = 1173; // The temperature is material and canister dependant not vessel 
  dependant // Not used any more but keep 
 
                           // vesselCapacity = machTime.HIP_VesselCapacity(canisterDia, canisterHeight, pressureRequired, 
  temperatureRequired); // Old way of doing it 
                            double vesselHeight = 0; 
                            double packingFactor = 0.8; 
                            vesselHeight = (double)dtmachine.Rows[0]["Z_Axis"]; 
 
                            vesselCapacity = (int)Math.Floor((vesselHeight / canisterHeight) * packingFactor); 
                        } 
                        #region catch 
                        catch (Exception e) 
                        { 
                            string message = "There has been an error in batchSize() - HIP_001 switch statement.\n\nLocation: " + 
  location; 
                            MessageBox.Show(message, "Error"); 
                            writeToFile("log", message, "\n"); 
                            throw new Exception("Error occurred", e); 
                        } 
                        #endregion 
                             
                        batchSize = vesselCapacity; 
                        break; 
                        #endregion 
                    default: 
                        batchSize = 1; 
                        break; 
                } 
                #endregion 
            } 
            #region catch 
            catch (Exception e) 
            { 
                string message = "There has been an error in batchSize() switch statement\nThe process name that has entered this 
  function is: " + process + "\n\n"; 
                MessageBox.Show(message, "Error"); 
                writeToFile("log", message, "\n"); 
                throw new Exception("Error occurred", e); 
            } 
            #endregion 
            //MessageBox.Show("batch size = " + batchSize + "\nThe process is: " + process); 
            return batchSize; 
        } 

A.6 Code to execute generic data driven dynamic model 

Below is the code that executes the generic data driven dynamic model. First the 

integration code executes a batch file which executes the dynamic model within 

a Java applet viewer that has all necessary permissions to access the database. 

It then waits until the dynamic model has completed it optimisation after which 

the integration code continues. 
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public void runAnylogic() 

{ 

    try 

    { 

        string name = RunSim_Uni.bat"; 

        string processName = "appletviewer";                 

        Process.Start(path + name); 

        System.Threading.Thread.Sleep(500); // wait 0.5 seconds 

 

Process[] processes = Process.GetProcessesByName(processName);// Check for    

bat file 

        if (processes.Length == 0 || processes.Length > 1) 

        { 

MessageBox.Show("Function runAnylogic(), batProcess not loaded\nNumber of 

processes is: "+ processes.Length, "Error"); 

            Exception ex = new Exception(); 

        } 

        System.Threading.Thread.Sleep(1000); // wait one second 

string windowName = "Applet Viewer: 

dres_v2/Search_Resource_Capacities$Applet.class"; // window name 

IntPtr hWndPtr = FindWindow(IntPtr.Zero, windowName); // find window 

handle                         

        ShowWindow(hWndPtr, SW_MAXIMIZE); // maximise window 

         

        System.Threading.Thread.Sleep(500); // Wait 0.5 seconds 

        windowName = "Message"; // Window name 

        hWndPtr = FindWindow(IntPtr.Zero, windowName); // find window handle 

        SendMessage(hWndPtr, WM_SYSCOMMAND, SC_CLOSE, 0); // close window 

 

        int loop = 0; 

        bool initialLoop = false, checking = true; 

 

        while (checking == true) 

        { 

            System.Threading.Thread.Sleep(1000); 

            if (initialLoop == true || loop > 5)// Wait 5 second before checking 

            { 

                initialLoop = true; 

                processes = Process.GetProcessesByName(processName); 

                System.Threading.Thread.Sleep(1000); // wait one second 

                if (processes.Length == 0) 

                { 

                    break; 

                } 

            } 

            loop++; 

        } 

    } 

    #region catch 

    catch (Exception e) 

    { 

        string message = "There has been an error in runAnylogic()\n\n"; 

        MessageBox.Show(message, "Error"); 

        writeToFile("log", message, "\n"); 

        throw new Exception("Error occurred", e); 

    } 

    #endregion 

} 

The batch file holds two lines, the first changes the directory that holds the 

dynamic model and the second executes the dynamic model within a Java 

applet viewer that contains permissions required by the dyanmic model to 

access the database. 

cd C:\.....Insert directory of dynamic model here 

start appletviewer.exe -J-Djava.security.policy=allpermissions.txt 

DRES_V2_Model_V13.html 
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A.7 Code to collect, calculate and order all data required for 

the dynamic model 

This code collects and calculates if necessary the data necessary for the 

dynamic model. It then puts it into a table within the database so that the 

dynamic model can use it. The Kanban equations are highlighted towards the 

end of the code. 

        /// <summary> 
        /// <para>Populates Experiment_Op_Time_Data, Sim_Delay, Sim_Delay_Resource_Release, Sim_Resource_Allocation, 
Sim_Resource_Release and Sim_Run tables in DB</para> 
        /// </summary> 
        private void sendDataToDBSection3() 
        { 
            double location = 0; 
            double sublocation = 0; 
            string sql = "" ; 
            DataTable dt = new DataTable(); 
            DataTable dtMachineResourceQuantity = new DataTable(); 
            DataTable dtMachineResource = new DataTable("Machine_Resource"); 
            DataTable dtProcessFixture = new DataTable("Process_Fixture"); 
            int ID_Op_Ex = 0; 
            int Kanban = 0; 
            double Cycle_Time = 0; 
            int batchQuantity = 1; 
            int Kanban2 = 0; 
            double productionRateSim = (double)ds.Tables["Production_Rate"].Rows[0]["Production_minutes"]; // the number of 
components per minute 
            //displayDataTable(ds.Tables["Op_Time"], "Op_Time"); 
            foreach (DataRow drTime in ds.Tables["Op_Time"].Rows) 
            { 
                #region Experiment_Op_Time_Data table population 
                try //Try 1 - For Experiment_Op_Time_Data 
                {                      
                    sql = "INSERT INTO Experiment_Op_Time_Data (Experiment_ID, Op_Number, Op_Name, Supply_Chain_ID, 
Supply_Chain_Option_ID, Method_ID, Process_ID, Machine_ID) VALUES (" 
                        + (int)drTime["Experiment_ID"] + " ," 
                        + (int)drTime["Op_Number"] +", \"" 
                        + drTime["Op_Name"].ToString() +"\", " 
                        + (int)drTime["Supply_Chain_ID"] +", " 
                        + (int)drTime["Supply_Chain_Option_ID"] +", " 
                        + (int)drTime["Method_ID"] + ", " 
                        + (int)drTime["Process_ID"] + ", " 
                        + (int)drTime["Machine_ID"] +")"; 
                    executeNonSql(sql); 
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() try block 1. \nThe SQL 
statement is: " + sql; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
 
                #region Extraction of ID_Op_Ex 
                try //Try 1-1 - extract ID_Op_Ex 
                { 
                    sql = "SELECT ID FROM Experiment_Op_Time_Data WHERE Experiment_ID = " + (int)drTime["Experiment_ID"] 
+ " AND Op_Number = " + (int)drTime["Op_Number"] + " ORDER BY ID ASC"; 
                    dt = completeSQL(sql); 
                    ID_Op_Ex = (int)dt.Rows[0]["ID"]; 
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() try block 1-1 extract ID_Op_Ex. 
\nThe SQL statement is: " + sql; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
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                #region Extracts the number of resources connected to the machine and puts in to ds table 

                try // Try block 1-2 
                { 
                    sql = "SELECT * FROM List_Resources WHERE ID IN " 
                        + "(SELECT Resource_ID FROM Link_Machines_To_Resources WHERE ID IN " 
                        + "(SELECT Resource_Requirement_ID FROM Type_Manf_Machines WHERE Use = true AND ID = " + 
drTime["Machine_ID"].ToString() + " ORDER BY Cost_Rate ASC ))"; 
                    dtMachineResource = completeSQL(sql); 
                    ds.Tables.Add(dtMachineResource);                     
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() try block 1-2 extract Extracts the 
number of resources connected to the machine. \nThe SQL statement is: " + sql; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
 
                int numResourcesConnectedToMachine = dtMachineResource.Rows.Count; // the number of resources connected to 
the chosen machine                 
 
                #region Extracts the number of fixtures connected to the process and puts in to ds table 
                try 
                { 
                    sql = "SELECT * FROM Type_Fixture WHERE ID IN " 
                        + "(SELECT Fixture_ID FROM Link_Process_To_Machine WHERE Process_ID = " + 
drTime["Process_ID"].ToString() + " AND Machine_ID = " + drTime["Machine_ID"].ToString() + ")"; 
                    dtProcessFixture = completeSQL(sql); 
                    ds.Tables.Add(dtProcessFixture); 
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() try block 1-3 Extracts the 
number of fixtures connected to the process. \nThe SQL statement is: " + sql; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
 
                int numProcessFixture = dtProcessFixture.Rows.Count; // the number of fixtures for process 
 
                int NumberOfResources = 1 + numResourcesConnectedToMachine + numProcessFixture; // total number of 
resources for the OP, Machine, resources connected to machine, fixtures connected to process 
 
                #region Sim_Resource table population 
                try // For Sim_Resource_Allocation 
                { 
                    location = 0; 
                    sublocation = 0; 
                    for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for this OP 
                    { 
                        string Resource_Type = ""; 
                        int Resource_ID = 0; 
                        int Resource_Quantity = 0;                         
                        if (r == 1) 
                        { 
                            location = 1; 
                            sublocation = 0; 
                            Resource_Type = "Machine"; 
                            Resource_ID = (int)drTime["Machine_ID"]; 
                            Resource_Quantity = 1; 
                        } 
                        else if (r > 1 & r <= (numResourcesConnectedToMachine + 1)) 
                        { 
                            location = 2; 
                            sublocation = 0; 
                            Resource_Type = "Machine_Resource"; 
                            Resource_ID = (int)dtMachineResource.Rows[r - 2]["ID"]; 
 
                            sql = "SELECT * FROM Link_Machines_To_Resources WHERE ID IN " 
                                + "(SELECT Resource_Requirement_ID FROM Type_Manf_Machines WHERE Use = true AND ID = " + 
drTime["Machine_ID"].ToString() + " )"; 
                            sublocation = 1; 
                            dtMachineResourceQuantity = completeSQL(sql); 
                            sublocation = 2; 
                            /*RQ = (int)dtMachineResourceQuantity.Rows[0]["Number_of_resources"]; 
                            sublocation = 3;*/ 
                            //displayDataTable(dtMachineResourceQuantity, "number of resources for machine resources"); 
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                            sublocation = 4; 
                             

                            Resource_Quantity = Convert.ToInt32(dtMachineResourceQuantity.Rows[0]["Number_of_resources"]);// 
stupid program is not recognising the column name 
                            //MessageBox.Show(Resource_Quantity.ToString()); 
                             
                        } 
                        else if (r > (numResourcesConnectedToMachine + 1)) 
                        { 
                            location = 3; 
                            sublocation = 0; 
                            Resource_Type = "Fixture"; 
                            Resource_ID = (int)dtProcessFixture.Rows[r - (numResourcesConnectedToMachine + 2)]["ID"];  
                            Resource_Quantity = 1; 
                        } 
 
                        location = 4; 
                        sublocation = 0; 
                        sql = "Insert INTO Sim_Resource (ID_Op_Ex, Resource_Number, Resource_Type, Resource_ID, 
Resource_Quantity) VALUES (" 
                            + ID_Op_Ex + ", " 
                            + r + ", \"" 
                            + Resource_Type + "\", " 
                            + Resource_ID + ", " 
                            + Resource_Quantity + ")"; 
                        executeNonSql(sql); 
                    } 
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() - For Sim_Resource. \nThe last 
SQL statement used was: " + sql; 
                    message += "\nlocation: " + location + "\nSubloaction: " + sublocation; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
 
                double OpTime = 0; 
                int NumberOfDelays = 3; //**** this is where the number of delays per op can be controled - currently set at 3 for 
setup, run, setdown 
                for (int delay = 1; delay <= NumberOfDelays; delay++) // ************** Need to populate the for num of loops in the for 
block 
                { 
                    // ******************************** 
                    // This is where the code would need to be if i want to have different delay bits to allow release and allocation of 
resources 
                    // The little bit of code below does it for setup and run currently 
                    // ******************************** 
 
                    #region Determineation of time for delay 
                    double timeMode = 0; 
                    string delayType = ""; 
                    if (delay == 1) 
                    { 
                        timeMode = (double)drTime["Op_Setup_Time"]; 
                        OpTime += timeMode; 
                        delayType = "Setup"; 
                    } 
                    if (delay == 2) 
                    { 
                        timeMode = (double)drTime["Op_Run_Time"]; 
                        OpTime += timeMode; 
                        delayType = "Run"; 
                    } 
                    if (delay == 3) 
                    { 
                        timeMode = (double)drTime["Op_Setup_Time"]; 
                        OpTime += timeMode; 
                        delayType = "Set down"; 
                    } 
 
                    batchQuantity = (int)drTime["OP_Batch_Size"]; // ************** Need to check this 
                    double timeMinChange = 0.95; // ************** Need to populate this             
                    double timeMin = timeMode * timeMinChange; 
 
                    double timeMaxChange = 1.05; // ************** Need to populate this 
                    double timeMax = timeMode * timeMaxChange; 
                    #endregion 
 
                    #region Sim_Delay table population 
                    try //Try 2 - For Sim_Delay 
                    { 
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                        sql = "INSERT INTO Sim_Delay (ID_Op_Ex, Delay_Number, Batch_Quantity, Delay_Time_Mode, 
Delay_Time_Min, Delay_Time_Max, Description) VALUES (" 

                            + ID_Op_Ex + ", " // ID 
                            + delay + ", " // Delay num 
                            + batchQuantity + ", " // batch quantity 
                            + timeMode + ", " // time mode 
                            + timeMin + ", " // time min 
                            + timeMax + ", \"" // time max 
                            + delayType + "\")"; 
                        executeNonSql(sql); 
                    } 
                    #region catch 
                    catch (Exception e) 
                    { 
                        string message = "There has been an error in section 3 sendDataToDBSection3() try block 2 - For Sim_Delay. 
\nThe SQL statement is: " + sql; 
                        MessageBox.Show(message, "Error"); 
                        writeToFile("log", message, "\n"); 
                        throw new Exception("Error occurred", e); 
                    } 
                    #endregion 
                    #endregion 
 
                    #region Sim_Delay_Resource_Release and sim_delay_resource_allocation tables population 
                    bool anyResourceToRelease = true; //**************** This need to be determined automaticllay  
                    if (anyResourceToRelease) 
                    { 
                        location = 0; 
                        sublocation = 0; 
                        //**** 
                        // There needs to be a for block here so that more that one resource can be released 
                        // Also this is the location where resources can be set here 
                        // **** 
                        try //Try 3 - For Sim_Delay_Resource_Release and Sim_Delay_Resource_Allocation 
                        { 
                            location = 1; 
                            DataTable dtSimDelay = new DataTable(); 
                            sql = "SELECT ID FROM Sim_Delay WHERE ID_Op_Ex = " + ID_Op_Ex + " AND Delay_Number = " + 
delay; 
                            dtSimDelay = completeSQL(sql); 
                            sublocation = 1; 
                            int ID = Convert.ToInt32(dtSimDelay.Rows[0]["ID"]); 
                            sublocation = 1.1; 
                            // Sim delay resource allocation 
                            for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for 
this OP 
                            { 
                                sublocation = 1.2; 
                                // need function here to determine the quantity of resource to apply 
                                // resource number and delay ID ( and maybe ID_OP_EX) would be the inputs 
                                int rQuantity = resourceQuantity(ID_Op_Ex, r); 
                                sublocation = 1.3; 
                                sql = "INSERT INTO Sim_Delay_Resource_Allocation (ID_Delay, Resource_Number, Resource_Quantity) 
VALUES (" 
                                    + ID + ", " // ID 
                                    + r + ", " // Resource number 
                                    + rQuantity + ")"; // Resource quantity 
                                sublocation = 1.4; 
                                executeNonSql(sql); 
                            } 
                            location = 2; 
                            // sim delay resource release 
                            for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for 
this OP 
                            { 
                                sublocation = 2.1; 
                                // need function here to determine if the resource needs releaseing at this point. 
                                // the resource number and the delay ID would be the inputs to the function 
                                int resourceNumToRelease = (int)dtSimDelay.Rows[0]["ID"]; 
                                if (resourceNumToRelease > 0) 
                                { 
                                    sql = "INSERT INTO Sim_Delay_Resource_Release (ID_Delay, Resource_Num_To_Release) VALUES 
(" 
                                        + (int)dtSimDelay.Rows[0]["ID"] + ", " // ID 
                                        + r + ")"; // Resource num to release 
                                    executeNonSql(sql); 
                                } 
                            } 
                            location = 3; 
                        } 
                        #region catch 
                        catch (Exception e) 
                        { 
                            string message = "There has been an error in section 3 sendDataToDBSection3() try block 3 - For 
Sim_Delay_Resource_Release. \nThe SQL statement is: " + sql; 
                            message += "\nLocation: " + location + "\nSublocation: " + sublocation; 
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                            MessageBox.Show(message, "Error"); 
                            writeToFile("log", message, "\n"); 

                            throw new Exception("Error occurred", e); 
                        } 
                        #endregion 
                    } 
                    #endregion 
                } 
 
                #region Sim_Resource_Allocation 
                try //Try 4 - For Sim_Resource_Allocation 
                {                     
                    double utilMaxStatic = 0.7; //************** Need to populate this                     
 
                    int capStatic = (int)(Math.Ceiling(productionRateSim * OpTime) / utilMaxStatic / batchQuantity); // Replaced 
BatchQuantity  
                    if (capStatic < 1) 
                    { 
                        capStatic = 1; 
                    } 
                    Kanban += capStatic 
                    Cycle_Time += OpTime; 
                     
                    for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for this OP 
                    { 
                        capStatic = capStatic * resourceQuantity(ID_Op_Ex, r); 
 
                        sql = "INSERT INTO Sim_Resource_Allocation (ID_Op_Ex, Resource_Number, Resource_Cap_Dynamic, 
Resource_Cap_Static, Resource_Utilisation, Resource_Util_Max_Static) VALUES (" 
                            + ID_Op_Ex + ", " // ID 
                            + r + ", " // Resource number 
                            + 0 + ", " // Cap dynamic iniate to zero 
                            + capStatic + ", " // Cap static 
                            + 0 + ", " // Util dynamic, iniate to zero 
                            + utilMaxStatic + ")"; // Util max static 
                        executeNonSql(sql); 
                    } 
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() try block 4 - For 
Sim_Resource_Allocation. \nThe last SQL statement used was: " + sql; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
 
                #region Sim_Resource_Release table population 
                try //Try 5 - For Sim_Resource_Release 
                { 
                    for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for this OP 
                    { 
                        sql = "INSERT INTO Sim_Resource_Release (ID_Op_Ex, Resource_Num_To_Release) VALUES (" 
                            + ID_Op_Ex + ", " // ID 
                            + r +")"; // Resource num to release 
                        executeNonSql(sql); 
                    } 
                } 
                #region catch 
                catch (Exception e) 
                { 
                    string message = "There has been an error in section 3 sendDataToDBSection3() try block 5 - For 
Sim_Resource_Release. \nThe SQL statement is: " + sql; 
                    MessageBox.Show(message, "Error"); 
                    writeToFile("log", message, "\n"); 
                    throw new Exception("Error occurred", e); 
                } 
                #endregion 
                #endregion 
            } 
 
            #region Sim_Run table population 
            try //Try 6 - Sim Run Kanban value 
            {                 
                Kanban2 = (int)Math.Ceiling(Cycle_Time / (1 / productionRateSim)); 
                //MessageBox.Show("cycle time is: " + Cycle_Time + "\nKanban value2 is: " + Kanban2); 
                sql = "UPDATE Sim_Run SET Kanban_Static = " + Kanban +", Kanban_Static_Two = " + Kanban2; 
                executeNonSql(sql); 
            } 
            #region catch 
            catch (Exception e) 
            { 
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                string message = "There has been an error in section 3 sendDataToDBSection3() try block 6 - Sim Run Kanban 
value. \nThe SQL statement is: " + sql; 

                MessageBox.Show(message, "Error"); 
                writeToFile("log", message, "\n"); 
                throw new Exception("Error occurred", e); 
            } 
            #endregion 
            #endregion 
        } 
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Appendix B 

This appendix contains data for surface finish and hole tolerance grades and the 

associated manufacturing methods that can achieve the grades. All the data 

contained in this appendix section has been collected from public sources. 

B.1 Surface finish 

Table 7 contains a list of surface finish grades and Table 8 contains a list of 

manufacturing processes and the associated surface finish grades that they can 

achieve. The green area represents normally achievable surface grades and the 

gray areas represent surface grades that can be achieved under the correct 

circumstances. All this data is contained within the manufacturing database. 

Table 7: Surface finish grade with description 

 

Surface finish Grade

N1 Small Tight / fine surface finish

N2

N3

N4

N5

N6

N7 Mid

N8

N9

N10

N11

N12 Large Loose / Rough surface finish

Description
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Table 8: Manufacturing methods associated to achievable surface finish grades 

 

B.2 Hole tolerance 

Table 9 contains a list of hole tolerance grades. A graph of tolerance (mm) 

against dimension size (mm) for different manufacturing methods and tolerance 

grades is shown in Figure 66. All this data is contained within the manufacturing 

database. 

Table 9: Hole tolerance grades with description 

 

 

50 25 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.05 0.025

N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1

Sawing

Planning

Drilling

Chemical milling

Electrical discharge machine

Milling

Broaching

Reaming

Electron Beam

Laser

Electro-chemical

Boring

Turning

Grinding

Honing

Electro-polish

Polishing

Lapping

Super finishing

Sand casting

Hot rolling 

Forging

Investment casting

Extruding

Cold rolling

Drawing

Die casting

Manufacturing process

Surface finish (Micro m / Grade)

Hole tolerance grade

H6 Small Tight tolerance

H7

H8

H9

H10 Mid

E9

D9

D10 Large Loose tolerance

Description
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Figure 66: Graph of tolerance against dimension size for different manufacturing methods and 
tolerance grades 
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