
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

School of Engineering Sciences

Integrating supply chain simulation, component geometry and

unit cost estimation

By

Stuart Jinks

Thesis for the degree of Doctor of Engineering

July 2012

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

SCHOOL OF ENGINEERING SCIENCES

DOCTOR OF ENGINEERING

INTEGRATING SUPPLY CHAIN SIMULATION, COMPONENT GEOMETRY AND

UNIT COST ESTIMATION

By Stuart Jinks

This thesis shows how utilising dynamic simulation to estimate unit costs and

manufacturing resources, can aid design decisions. A framework specification is

introduced that integrates Computer Aided Design (CAD), Discrete Event

Simulation (DES) and Activity Based Cost (ABC) methodology. The framework

aids a design team in understanding the consequences of design decisions in

terms of unit cost and manufacturing resources, by returning aggregated unit

cost and manufacturing based data, directly to the design team, within the

design environment.

Dynamic Resource Estimation System (DRES) has been developed to

implement the framework and conduct two case studies based on representative

aerospace components. The purpose of the first case study is to determine the

benefits and applications of integrating a dynamic supply chain simulation and

unit cost estimation. The second case study is used to show that the framework

is capable of handling significantly different components and to highlight the

effort required to implement a new component within the framework.

This thesis concludes that there are three primary benefits provided by the

framework, which are: firstly, the framework can accurately predict required

resources to fulfil a supply chain for a specific production rate, which can be

utilised by manufacturing engineers to aid production planning; secondly, the

framework increases refinement of a component unit cost estimate, by including

manufacturing time and dynamically determined resource requirements into an

ABC cost model; and thirdly, the framework has the ability to compare multiple

supply chain options and different supply chain types at the same time from

component geometry.

i

Contents

Contents ... i

List of figures .. v

List of tables... ix

Declaration of authorship .. xi

Acknowledgements ... xiii

Abbreviations .. xv

Chapter 1 Introduction.. 1

1.1 Motivation for this research ... 2

1.2 Statement of research .. 3

1.3 Research aims .. 4

1.4 Research scope .. 4

1.5 Layout of thesis .. 5

Chapter 2 Literature review .. 9

2.1 Cost estimation ... 10

2.1.1 Cost estimation methods ... 11

2.1.1.1 Analogy based costing .. 11

2.1.1.2 Parametric based costing ... 12

2.1.1.3 Feature based costing .. 13

2.1.1.4 Activity based costing ... 14

2.1.1.5 Knowledge based costing ... 15

2.1.2 Static or dynamic cost estimation ... 16

2.1.3 Summary ... 18

2.2 Dynamic modelling ... 18

2.2.1 Forms of simulation ... 19

2.2.1.1 System dynamic ... 20

2.2.1.2 Continuous ... 20

2.2.1.3 Agent based ... 21

ii

2.2.1.4 Discrete event... 21

2.2.2 Data driven generic modelling ... 22

2.2.3 Summary ... 24

2.3 Integrating geometry .. 25

2.3.1 Automated feature recognition ... 25

2.3.2 Computer aided process planning ... 26

2.3.2.1 CAPP system designs .. 27

2.3.3 Summary ... 29

2.4 Supply chains ... 29

2.4.1 Resource modelling ... 31

2.4.2 Inventory control .. 31

2.4.3 Manufacturing batch operations ... 32

2.4.4 Summary ... 32

2.5 Chapter summary ... 33

Chapter 3 Framework ... 35

3.1 Structure ... 35

3.1.1 Stage 1 – Geometry modification ... 37

3.1.2 Stage 2 – Determine manufacturing process 40

3.1.3 Stage 3 – Manufacturing process data generation 43

3.1.4 Stage 4 – Dynamic modelling .. 48

3.1.5 Stage 5 – Aggregated unit cost .. 55

3.1.6 Database ... 64

3.2 Chapter Summary ... 70

Chapter 4 Case studies .. 73

4.1 Case study 1 – Combustor outer case .. 74

4.1.1 Results .. 77

4.1.2 Summary of case study 1 .. 89

4.2 Case study 2 – Blisk ... 89

4.2.1 Results .. 91

iii

4.2.2 Summary of case study 2 .. 92

4.3 Chapter Summary ... 92

Chapter 5 Discussion ... 95

5.1 Case studies ... 95

5.2 Benefits against required effort ... 97

5.3 Validation .. 100

5.4 Framework improvements ... 100

5.4.1 Necessary improvements .. 101

5.4.2 Improvements that would add value .. 101

Chapter 6 Conclusions and future work.. 105

6.1 Conclusions .. 105

6.2 Contributions of research .. 108

6.3 Future research .. 109

6.4 Concluding remarks ... 111

Appendix A .. 113

A.1 Code to extract parameters using geometry API 113

A.2 Code to generate an operation time .. 114

A.3 Code to select and sort resources .. 116

A.4 Code to generate the process time for turning 118

A.5 Code to generate the batch size .. 119

A.6 Code to execute generic data driven dynamic model 121

A.7 Code to collect, calculate and order all data required for the

dynamic model .. 123

Appendix B .. 129

B.1 Surface finish .. 129

B.2 Hole tolerance ... 130

References .. 133

v

List of figures

Figure 1: Rolls-Royce Trent 900 (®Rolls-Royce) .. 2

Figure 2: Research scope ... 5

Figure 3: Layout of thesis .. 7

Figure 4: Product development process. Based on (Tammineni 2007) 10

Figure 5: Cost determination, cost incurred and ease of change against time.

Modified from (Dowlatshahi 1992; Miles and Swift 1998; Layer, Brinke et al.

2002) .. 11

Figure 6: Ways to study a system (Law and Kelton 1992) 19

Figure 7: Simulation classification and modelling methods. Modified from (Yu

2008) .. 20

Figure 8: Separate simulation model from model input and output data

(Robinson 2004) ... 23

Figure 9: Requirements of a knowledge base (Park 2003) 28

Figure 10: The supply chain process. Modified from (Beamon 1998; Min and

Zhou 2002) ... 30

Figure 11: Area of research contribution ... 34

Figure 12: Framework stages ... 36

Figure 13: Framework schematic .. 37

Figure 14: Framework stage 1 flow chart .. 37

Figure 15: State geometries .. 38

Figure 16: Screen shots of case study one component at three different states 38

Figure 17: Schematic of CAD implementation ... 39

Figure 18: Screen shot from case study one of implementation of schematic in

Figure 17 with overlays to shows different aspects of the screen shot. 39

Figure 19: Framework stage 2 flow chart .. 41

Figure 20: Production rate selection GUI .. 41

Figure 21: Supply chain option selection GUI ... 43

Figure 22: Supply chain option details GUI ... 43

Figure 23: Framework stage 3 flow chart .. 44

Figure 24: Resource use within an operation .. 48

Figure 25: Framework stage 4 flow chart .. 48

Figure 26: Schematic of the dynamic integration model 49

Figure 27: Experiment class logic ... 50

vi

Figure 28: Production rate against simulation time for case study one with a

production rate of six components an hour ... 52

Figure 29: Production rate against simulation time for case study one with a

production rate of half a component an hour ... 52

Figure 30: Screen shots of dynamic model implementation 54

Figure 31: Schematic of dynamic model implementation 54

Figure 32: Framework stage 5 flow chart .. 55

Figure 33: Operation level cost model – Inputs and outputs 56

Figure 34: Supply chain level cost model – Inputs and outputs 59

Figure 35: Results form – Results overview tab .. 61

Figure 36: Results form – Experiment data overview tab 62

Figure 37: Results form – Component data overview tab 62

Figure 38: Results form – Supply chain option manufacturing data tab 63

Figure 39: Results form – Supply chain option cost data 64

Figure 40: Framework database – Data linked to the experiment ID table 65

Figure 41: Framework database – Component version data tables 66

Figure 42: Framework database – Supply chain, fixture, machine and resource

data tables .. 67

Figure 43: Framework database – Simulation data tables 68

Figure 44: Framework database – Cost data tables .. 69

Figure 45: Manufacturing database – Material and machining data tables 69

Figure 46: Manufacturing database – Surface finish, dimensional tolerance, laser

cutting and powder HIP vessel data .. 70

Figure 47: Case study 1 component based on representative aerospace gas

turbine combustor case ... 75

Figure 48: Case study supply chain options .. 76

Figure 49: Graph showing percentage difference of dynamic process cost

compared with static process cost against internal radius parameters for HIP

supply chain type .. 78

Figure 50: Graph showing percentage difference of dynamic overhead cost

compared with static overhead cost against internal radius parameter for HIP

supply chain type .. 79

Figure 51: Graph showing percentage difference of dynamic process cost

compared with static process cost against internal radius parameters for Forged

supply chain type .. 79

vii

Figure 52: Graph showing percentage difference of dynamic overhead cost

compared with static overhead cost against internal radius parameters for

Forged supply chain type .. 80

Figure 53: Graph showing percentage difference of dynamic cost compared with

static cost against surface finish and tolerance parameters associated to the tri-

boss features for the HIP supply chain type .. 82

Figure 54: Graph showing percentage difference of dynamic process cost

compared with static process cost against internal radius for the HIP supply

chain type with Nickel 1 as the material and different numbers of available HIP

vessels ... 83

Figure 55: Graph showing percentage difference of dynamic overhead cost

compared with static overhead cost against internal radius for the HIP supply

chain type with Nickel 1 as the material and different numbers of available HIP

vessels ... 84

Figure 56: Graph showing percentage difference of dynamic process cost

compared with static process cost against production rate changes for HIP and

forged supply chain types ... 85

Figure 57: Graph showing percentage difference of dynamic overhead cost

compared with static overhead cost against production rate per year for the HIP

and forged supply chain types .. 85

Figure 58: Graph showing normalised mean resource utilisation against

production rate per year for the HIP supply chain type 86

Figure 59: Graph showing percentage difference of dynamic process cost from

static process cost against normalised mean resource utilisation for the HIP

supply chain type .. 87

Figure 60: Graph showing percentage difference of dynamic process cost

compared with static process cost against number of batch operations within a

supply chain .. 88

Figure 61: Graph showing percentage difference of dynamic overhead cost

compared with static process cost against number of batch operations within a

supply chain .. 88

Figure 62: Case study 2 component based on a representative aerospace gas

turbine blisk .. 90

Figure 63: Graph showing normalised process cost against number of blades for

a disc diameter of 220mm, Nickel 1 as the material and a production rate of 2

components an hour ... 92

Figure 64: Recommended implementation of the framework stage 5 101

viii

Figure 65: Area of research contribution ... 109

Figure 66: Graph of tolerance against dimension size for different manufacturing

methods and tolerance grades .. 131

ix

List of tables

Table 1: Supply chain definition, showing four defining levels for a forging

example .. 42

Table 2:Table showing all process time generation functions within the proof of

concept system DRES .. 47

Table 3: Table showing operations for both Forge and HIP supply chain types

with operation times from two case study experiments 76

Table 4: Case study 1 – default values of changing parameters 77

Table 5: HIP vessels used in experiment 3 ... 83

Table 6: Case study 1 – experiment five parameter setup 87

Table 7: Surface finish grade with description ... 129

Table 8: Manufacturing methods associated to achievable surface finish grades

 ... 130

Table 9: Hole tolerance grades with description .. 130

xi

Declaration of authorship

I, Stuart Jinks, declare that the thesis entitled “Integrating supply chain

simulation component geometry and unit cost estimation” and the work

presented in the thesis are both my own, and have been generated by me as the

result of my own original research. I confirm that:

 this work was done wholly or mainly while in candidature for a research

degree at this University;

 where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated;

 where I have consulted the published work of others, this is always

clearly attributed;

 where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

 I have acknowledged all main sources of help;

 where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have

contributed myself;

 parts of this work have been published as:

Journal papers that have been submitted and awaiting peer review

 Jinks, S. and J. P. Scanlan (?). "Integrating unit cost, dynamic supply chain
modelling and component geometry." International Journal of Advanced
Manufacturing Technology ?(?): ?

Journal papers

 Jinks, S. (2011). "Integrating simulation and geometry to determine cost." The
Journal of the Association of Cost Engineers 49(3): 4.

Conference Papers:

 Jinks, S., J. P. Scanlan, et al. (2010). Utilising Dynamic Factory Simulation To
Improve Unit Cost Estimation and Aid Design Decisions. 2010 Winter Simulation
Conference. B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan and E. Yucesan.
Baltimore, USA, IEEE.

 Jinks, S., J. Scanlan, et al. (2010). Improving unit cost analysis by generating
dynamic factory simulation from CAD geometry. 21st International Computer
Aided Process Engineering (CAPE). Edinburgh, GB.

xii

 Jinks, S., J. P. Scanlan, et al. (2009). Predicting Manufacturing Costs by
Generating a Factory Simulation From CAD Geometry. Fifteenth Post-Graduate
Conference in the Materials, BioEngineering and nCATS Research Groups at the
University of Southampton. Lyndhurst, GB.

 Jinks, S., J. P. Scanlan, et al. (2008). Near Net-shape Manufacturing Costs. 15th
ISPE International Conference on Concurrent Engineering. R. Curran, S.-Y. Chou
and A. Trappey. Belfast, Springer.

Signed:………………………………………………………………………

Date:…………………………………………………………………………

xiii

Acknowledgements

I need to thank many people for their help and support throughout this research.

Without them completing this work would have been an uphill struggle and

without some of my friends I probably would never have started it.

First I wish to thank my supervisors Prof Jim Scanlan, Prof Philippa Reed and Dr

Steve Wiseall. Without their advice, guidance and expertise I may have been

destined to struggle up that hill of research for much longer than I did; to them I

am very grateful.

A special thanks to my 'left hand' colleague Julie Cheung who I have been

through this process with from the very start. She has helped me by talking

through my problems and has been a sanity check for my ideas. I also need to

thank the Southampton University 'Crew' who made this process fun with some

banter and probably too many breaks on a Friday.

I need to thank the Computational Engineering Design Group of Southampton

University, Product Cost Systems of Rolls-Royce Plc and the REMAC project

(sponsored in part by the Technology Strategy Board) for their help, support and

funding because without it this project would never have happened.

I need to thank my friends and family because without their encouragement I

would never have started this research. Lastly, but not by least, I need to thank

my lovely wife Katie who has always been there supporting me through thick and

thin.

xv

Abbreviations

ABC Activity Based Costing

ABM Agent Based Modelling

AFR Automated Feature Recognition

API Application Programming Interface

AUC Aggregated Unit Cost

CAD Computer Aided Design

CAM Computer Aided Manufacture

CAPP Computer Aided Process Planning

CER Cost Estimation Relation

COS Condition Of Supply

DES Discrete Event Simulation

DRES Dynamic Resource Estimation System

GUI Graphical User Interface

JIT Just In Time

HIP Hot Iso-static Pressing

PCS Product Cost Systems

PDP Product Development Process

REMAC Resource Efficient Manufacture of high performance hybrid

Aerospace Components

SD System Dynamic

WIP Work In Process

1

Chapter 1

Introduction

Understanding the cost of a component can mean the difference between

making a profit or not. Cost estimation, a method of understanding cost, requires

knowledge, data and when these are not fully available, assumptions in the form

of a probability distribution. The cost of a component could be determined from

the geometry alone, however many assumptions would be required such as the

material and manufacturing process, therefore the distribution surrounding the

cost would be so significant as to render the estimate almost useless. If the

component material, manufacturing process sequence and process times were

supplied with the geometry, the reduced number of assumptions required would

result in a smaller distribution around the cost estimate. The primary assumption

required in this situation would be the process cost rates which, in most cost

estimation methods, are based on historical data (Tammineni 2007) that is

collected from similar processes.

Cost rates from historical data is collected, at a point in time, from components

and processes that are based on specific parameters. Therefore the scope of

relevance of historical data has a distribution around these parameters. As the

parameters change the applicability of the historical data reduces. Therefore the

crux of the problem is, if historical data is utilised within a cost estimation it must

be for components or processes with similar parameters and therefore within

scope of the historical data otherwise the cost estimation may diverge from

actual cost.

A method of mitigating this problem is to reduce the use of historical data and

build the cost estimate from a scientific base data. Hence instead of using a cost

rate of a machine or process determined from historical data it can be calculated

by determining the resource requirements from a model of the manufacturing

system. However a limitation of typical industry cost estimation methods is that

they are based on static models which have difficulty fully representing dynamic

system (Marsh, Jonik et al. 2010).A solution that addresses this limitation is to

utilise a modelling method that fully represents a dynamic system as it evolves

with time; dynamic modelling allows this (Law and Kelton 1992).Discrete Event

Simulation (DES) is a dynamic modelling technique which is accepted as

Chapter 1: Introduction

2

research and industry best practice for modelling manufacturing systems (See

2.2.1.4 Discrete event)

Integrating a DES model with a cost estimation method has complications. DES

models typically require skilled modellers to construct useful, flexible and well

structured models (Barton, Bryan et al. 2004; Pidd and Carvalho 2006). Also

DES models require substantial amounts of data (such as number and type of

manufacturing processes and required resources) and knowledge (such as logic

of how the supply chain works and rules to control it) to be embedded in to the

model before it can be used to produce meaningful results. Therefore the data

and knowledge must be gathered or determined using other tools before the

dynamic model can be built.

A framework is required to integrate all the tools necessary to bring together the

data and knowledge required to build the dynamic model and incorporate the

dynamic results into the cost estimation in real time. This research has

formalised the framework and created a system to implement it to prove the

concept.

1.1 Motivation for this research

Rolls-Royce plc provides integrated power systems in the aerospace, defence,

marine and energy markets. The company is the second largest manufacturer of

gas turbine engines (Figure 1) with annual sales of £10.9bn, of which civil

aerospace constitutes the largest area of sales at £4.9bn (45.3% of total sales)

in 2010 (Rolls-Royce Plc 2010).

Figure 1: Rolls-Royce Trent 900 (®Rolls-Royce)

Chapter 1: Introduction

3

Product Cost Systems (PCS) is a central group within Rolls-Royce that develops

and promotes cost estimation within the organisation and has supported this

research throughout its duration. Cost estimation within Rolls-Royce utilises the

knowledge based method (Tammineni, Scanlan et al. 2007) that combines

historical cost rates with features in a visual object orientated modelling

environment called Vanguard (Vanguard SoftwareTM Corporation 2011). PCS

has an active role in understanding the cost of manufacturing processes early in

their development so that cost drivers can be understood or developed to reduce

process cost.

Due to the active role of PCS this research was sponsored in part by the

Resource Efficient Manufacture of high performance hybrid Aerospace

Components (REMAC) development project (Jinks, Scanlan et al. 2008). The

REMAC project was developing a near net shape capability for manufacturing a

component through the use of the powder Hot Iso-static Pressing (HIP) process.

The powder HIP process is a batch process that produces a near net shape by

consolidating powder contained in a canister into a solid component.

There are three areas of industrial motivation and direction that the author took

into the research. Firstly, due to the lack of historical data for the HIP processes,

the dynamic interactions of batch processes and the distribution of possible

production rates of components, directed the author to investigate the integration

of dynamic modelling and static cost estimation. Secondly there was a

requirement to compare different manufacturing processes for a single

component to ensure that optimum cost is being achieved for the component.

Thirdly a requirement of the aerospace industry is to make geometry design

changes for multiple reasons, such as specification change, design optimisation

and design for the process. This third requirement can be described as real time

decision making.

1.2 Statement of research

The statement of hypothesis is:

“Integrating supply chain simulations with design geometry can assist in design

decision making”

Chapter 1: Introduction

4

1.3 Research aims

The aim of this research is to assist the design process by aiding decision

making by conducting real time cost estimations, incorporating a dynamic aspect

into unit cost estimation and allowing comparisons of manufacturing processes.

To do this a framework has been developed that integrates a dynamic model

with cost estimation. This provides the modelling capability to fully represent the

dynamic characteristics of the manufacturing supply chain. The results of the

dynamic model are utilised in two ways, within a cost estimation model and

directly to compare manufacturing methods. Also by integrating with design

geometry the consequences of design decisions can be linked directly to the

cost output. This will provide a design team with a real time cost estimation and

holistic manufacturing prediction which is intended to lead to more informed

design decisions.

1.4 Research scope

There are four general areas that cover the scope of this research as shown in

Figure 2. The four areas are: cost estimation, manufacturing process

technologies, dynamic modelling and components. Within each of these areas

are specific topics upon which this research will focus. Unit cost will be

considered within the cost estimation area. Forging, machining, electrochemical

machining and powder HIP are the manufacturing process technologies that will

be utilised. Discrete event simulation will be utilised in the dynamic modelling

area because it is used by industry for manufacturing and supply chain

simulation, as discussed in section 2.2. The framework will be applied to two

significantly different aerospace component types which are an aero engine case

and a blisk; these are described further in Chapter 4.

Chapter 1: Introduction

5

Figure 2: Research scope

1.5 Layout of thesis

This thesis consists of 6 chapters laid out as shown in Figure 3. The remaining

chapters include literature review, framework, case studies, discussion and

conclusions and future work.

Chapter 2, the literature review, presents a foundation for the research and

contains four sections. The first describes the main cost estimation methods and

their primary limitation. This section ends with a recommendation of integrating a

dynamic modelling capability with cost estimation to solve the limitation. The

second section describes the main dynamic modelling methods, recommending

discrete event simulation as a suitable option. The section finishes by discussing

data driven generic modelling. Integrating geometry is the third section and

discusses two methods, automated feature recognition and computer aided

process planning. These methods were determined unsuitable for complex

components, therefore alternative, less flexible, methods were proposed. The

last section, supply chains, defines a supply chain and aspects related to

modelling a supply chain.

Chapter 1: Introduction

6

A framework structure is proposed that integrates dynamic modelling with cost

estimation in Chapter 3. The framework structure is described in detail and

contains five stages, which include:

1. Geometry modification

2. Determine manufacturing process

3. Manufacturing process data generation

4. Dynamic modelling

5. Aggregated unit cost

The fourth chapter describes the results from two aerospace component case

studies, which are: a combustor outer case and a blisk. The first case study has

the purpose of determining if integrating a dynamic model with cost estimation

provides a difference in results compared to a cost estimation that does not have

an integrated dynamic model. Also it assesses, under which circumstances any

difference between the different modelling approaches occur. The purpose of the

second case study has two parts. The first is to show the flexibility of the

framework by implementing a different component type. The second is to

highlight the steps necessary to implement a component or supply chain within

the framework.

The fifth chapter, discussion, contains five sections. The first discusses the

findings from the case studies. The second discusses whether the framework

benefits are worth the required effort to set up the framework for a component.

The third discusses validation, for both of the case studies and future

implementation of the framework. The last discusses framework improvements.

The last chapter presents the significant conclusions of the research, followed by

key contributions to the research field. Recommendations of future research,

building on the findings, are discussed before concluding remarks.

Chapter 1: Introduction

7

Figure 3: Layout of thesis

9

Chapter 2

Literature review

This chapter presents a foundation for the research in the form of a literature

review of the relevant areas. The relevant areas have been categorised into four

sections which are: cost estimation, dynamic modelling, integrating geometry

and supply chains.

The first, cost estimation, highlights that cost estimation methods are based on

static modelling techniques. An argument is put forward that static modelling

techniques are unable to make sufficiently accurate predictions of dynamic

systems, therefore are a limitation to cost estimation methods. Utilising

dynamically derived data within cost estimation is recommended as a solution to

the limitation, which leads to the integration of dynamic modelling to generate the

dynamic data required.

The second section, dynamic modelling, discusses possible modelling methods.

A dynamic modelling method is suggested based on the requirement to model

manufacturing and supply chain systems. A generic modelling methodology is

also proposed as a way to reuse the model and store the required input and

output data.

The third section, integrating design geometry, discusses possible methods to

aid the integration of dynamic models with design geometry. Two methods are

discussed: the first automated feature recognition, the second computer aided

process planning. Both methods have limitations that resulted in a direct

approach being proposed as this increases automated capability, however at the

loss of flexibility.

The last section, supply chain, defines a supply chain within the scope of this

research. This section also defines three critical aspects of a supply chain which

are utilised when creating a dynamic model, these are:

 Resource modelling

 Inventory control

 Manufacturing batch operations

Chapter 2: Literature review

10

The chapter ends with a summary that incorporates the main conclusions and

findings from the four sections and proposes suggestions for achieving the

research aims.

2.1 Cost estimation

Cost estimation, as defined by Stewart et al. (1995), is “a process of predicting or

forecasting the cost of a work activity or work output” which can be used

throughout the Product Development Process (PDP) to aid understanding of

total unit cost. A PDP represents the life cycle of a product from conception

through design, manufacture, operation and finally disposal (Asiedu and GU

1998; Kim, Jeong et al. 2009). A PDP typically contains a number of stages,

which can be classified into categories, formal review procedures and decision

gates, as shown in Figure 4. This standardised process seeks to minimise risk

by systematically identifying and reducing uncertainties (Scanlan, Rao et al.

2006).

Figure 4: Product development process. Based on (Tammineni 2007)

Many authors believe that 70% - 80% of a product’s total cost is controlled by

early design decisions (Cooper 1990; Zeigler, Kim et al. 1999; Beck and Nowak

2000). The empirical evidence that supports this statement is questionable

(Forrester 1961; Ulrich and Pearson 1993), however, it is widely accepted that

design decisions, especially at early design stages, control total unit cost (Pidd

1992) therefore cost estimation is important at early design stages (Newnes,

Mileham et al. 2008).

Asiedu and Gu (1998) discuss how uncertainty of cost estimation results result in

the accuracy of the estimate being inversely proportional to the span of time

between the estimate and the event to which it refers. The graph in Figure 5

supports this thinking by showing how total unit cost of a product is not fully

understood until steady state production has been reached, as shown by cost

determination. However the duration of time to reach steady state production

Chapter 2: Literature review

11

depends on many aspects such as production rate and variability of the

manufacturing processes. When steady state production has been achieved

uncertainty can be removed from the data required by the cost estimate, which

at that point ceases to be an estimate and becomes a calculation. There are

many uncertainties when a new product design project is initiated, but as time

progresses decisions are made that narrow these uncertainties. This is shown by

the cost determination line in Figure 5, which shows how over time cost is

determined and eventually matches costs incurred.

A third aspect shown in Figure 5 is the ease with which changes can be made to

the product design as the project progresses through the PDP. At early stages of

the PDP designs can be changed easily, but as decisions are made throughout

the PDP the ease of making changes decreases due to implied constraints from

previous decisions.

Figure 5: Cost determination, cost incurred and ease of change against time. Modified from
(Dowlatshahi 1992; Miles and Swift 1998; Layer, Brinke et al. 2002)

2.1.1 Cost estimation methods

Asiedu et al (1998), Rush et al (2000), Curran et al (2004), Niazi et al (2006),

Tammineni (2007) and (García-Crespo, Ruiz-Mezcua et al. 2011) have

extensively reviewed cost estimation research and methods. The main cost

estimating methods include: analogy, parametric, feature, activity, and

knowledge based.

2.1.1.1 Analogy based costing

Analogy cost estimating is based on adjusting the cost of a similar product

relative to the differences between the new and similar product (Taylor 1998).

Chapter 2: Literature review

12

This method requires complete historical data of similar components, and

appropriate scaling parameters to be applied (Scanlan, Rao et al. 2006).

There are risks associated with this method that relate to the amount and

accuracy of historical data and the scaling parameters used which require an

understanding of the product and involve expert judgement (Jenab and Liu

2009). Analogy methods cannot be used for new component designs or

manufacturing processes (Jaya Suteja, Prasad KDV et al. 2013) because there

are no similar products to base the new component cost on. This limitation is

also extended if the production volume of the new component is significantly

different to the product it is based on. This is because a significant change in

production volume may require changes in manufacturing process, tool and

fixture design or equipment to enable the production volumes to be achieved.

2.1.1.2 Parametric based costing

A definition of parametric estimating is given by Dean (1995) as the “generation

and application of equations that describe relationships between cost, schedule,

and measurable attributes of systems that must be brought forth, sustained, and

retired”. (Wright 1936) is one of the first published uses of parametric cost

models in aerospace however it was the Rand Corporation in the 1950s that

developed Cost Estimating Relations (CER) (Younossi, Arena et al. 2002). A

CER is developed by determining a correlation between the dependent variable

cost, and independent variables such as size. An example of a simple CER is

the relationship between cost and mass of a component.

CER’s are based on historical data which lead to two limitations. First, CER’s

can have a limited range, for instance, if a new piston is designed, which is the

same as a previous piston except for a small change in diameter, a CER utilising

mass could be used to determine the unit cost of the piston. However if the

change in diameter of the new piston was large enough to require a new

manufacturing process or tool, the CER may no longer be valid. Secondly, a

CER cannot be used for new components or novel technology because there is

no historical data to create the CER (Rush and Roy 2001; Jaya Suteja, Prasad

KDV et al. 2013). These limitations are the same as the analogy based method

because of the reliance on historical data.

A CER could be a simple scale factor, for example based on surface area,

therefore the parametric method and the analogy method are, in a simple form,

Chapter 2: Literature review

13

the same. In practice the parametric method can utilise multiple complex scale

factors to determine the cost of a component. However the reliance on scoped

historical data limits the use of this and the analogy methods.

2.1.1.3 Feature based costing

A component can be described by a number of associated features such as:

hole, pocket, slot and flange. Each feature has an associated process cost

therefore the component process cost is the sum of all the feature process costs

(Rush and Roy 2000). For simple components, where features are independent,

this method allows a designer to understand which features drive the component

unit cost. However, features are not always independent; they interact with each

other affecting the cost and reducing the distinction between the features. Two

reasons to use features as drivers of cost as described by Wierda (1991) are:

 Cost functions can be derived for classes of similar objects that serve as

key drivers of global cost estimation and are linked to the engineering

domain

 The designer expects to know the causes of costs so that when linked to

design features, they are able to influence committed cost directly

There are however two difficulties with the feature based method. First, there is

no consensus for a standard set of features or methods to create them (Taylor

1998). For instance a feature could be described by using either manufacturing

or design parameters; see section 2.3.1. Companies are therefore required to

create their own set of feature definitions. Secondly, linter-linked features which

are connected or share parameters can cause complexity when calculating the

cost (Srikantappa and Crawford 1994). For instance, if an interacting pocket, slot

and hole were manufactured by machining, feature based costing could estimate

the processing cost of each feature individually. However the order of

manufacture would affect each feature cost because they are interacting and this

could affect the total process cost.

True feature based cost estimation, that is the ability to update the cost of the

component when the component geometry is changed, requires an ability to

either: assess the component features and all the different processing methods

to achieve them; or requires a predefined manufacturing process for feature

combinations. Both of these methods requires a connection to the component

geometry which is discussed further in section 2.3 Integrating geometry. Without

Chapter 2: Literature review

14

either of these abilities a true feature based cost approach cannot be achieved.

However a feature based cost model can be created that is a static

representation of the component. This static feature based cost model would

require an expert modeller to determine the necessary changes to the model

based on any updates to the component geometry.

2.1.1.4 Activity based costing

The theory behind Activity Based Costing (ABC) is that virtually all a company’s

activities exist to support the production and delivery of its products. By

determining which activities and the amount of those activities the products

consumes, a product unit cost can be determined (Cooper and Kaplan 1988;

Cooper and Kaplan 1988; Liggett, Trevino et al. 1992; Özbayrak, Akgün et al.

2004). Activities can be classified into four categories(Cooper 1990), including:

1. Unit level – Performed each time a unit is produced

2. Batch level – Performed each time a batch of goods is produced

3. Product level – Performed as needed to support the production of each

type of product

4. Facility level – Performed to sustain the factory’s performance such as

rent, depreciation and insurance

The unit level category of activities forms the majority of activities for most

component unit costs because these activities include operations such as

machining, inspection and cleaning. Batch level activities include heat treatment

and HIP cycles. Product level activities may only happen infrequently such as

tool specific setups. The facility level activity incorporates all the other none

direct activities which would are difficult to quantify and assign to a specific

product. It is this final activity level that reduces the ‘hidden’ factory cost,

otherwise known as overhead cost, and can improve the accuracy of unit cost

estimation (Asiedu and GU 1998; Mikko, Marko et al. 2007; Park and Simpson

2007; Askarany, Yazdifar et al. 2010; Wang, Du et al. 2010).

The disadvantages of ABC is that it requires substantial amounts of detailed data

compared to analogy, parametric and feature based methods which results in

more complex models requiring expert knowledge to complete the estimate

(Spedding and Sun 1999). The requirement of less data is one reason why

analogy and parametric methods are widely used. In certain instances such as

single product settings there is little advantage over traditional costing systems

Chapter 2: Literature review

15

(Asiedu and GU 1998). In single product factories there is no need to determine

which parts of the factory, equipment and labour need to be assigned to which

products because it is all assigned. Therefore the total factory cost per year is

divided by the number of products manufactured to determine the unit cost.

Askarany et al's (2010) paper is a supply chain management study of the

adoption of ABC within different size organisations. Askarany et al give multiple

reasons why the adoption of ABC can provide improvements to any

organisation, with the main points being: providing a clear picture of where

resources are being spent; providing an alternative to volume based product

costing; identifying value added activities allowing the reduction of non-value

added activities; improving the accuracy of process and product cost estimation;

and a method to obtain long term profit by exercising complete control over

overheads. Askarany et al is among a growing community (Farrell and Simpson

2009; Hammami, Frein et al. 2009; Wang, Du et al. 2010; Tsai, Shen et al. 2012)

outside engineering that are utilising ABC to improve understanding of supply

chains. For example an ABC approach was suggested by Tsai et al (2012) to

solve the problem of environmental and cost evaluation. They utilised the ABC

method to determined environmental cost by calculating the pollutants and

energy usage per product, then converted this into a cost.

2.1.1.5 Knowledge based costing

The knowledge based system was developed by Tammineni (2007) to overcome

two shortcomings of modelling environments and two limitations of cost

estimation methods. The modelling environment limitations are considered to be:

 Basic visualisation of data in the modelling environment

 Little support to users with limited programming skills

The cost estimation limitations are considered to be:

 Uncertainties are applied in a black box approach and without sensitivity

analysis capability

 Minimal ways to present manufacturing knowledge to the user

The system Tammineni developed utilises a generic modelling tool developed by

Vanguard Software Corporation (2011) and is used by Rolls-Royce to conduct

their unit cost estimation. The tool overcomes the modelling environment

limitations by providing a method of building a cost model without programming

and by using a visual tree structure. The tool has a web based view that allows

Chapter 2: Literature review

16

reuse of models by none modellers allowing them to modify the model inputs

and viewing the output. This means the customer is not required to have expert

knowledge in cost modelling and with the tool to conduct different scenarios

within the constraints of the model inputs and logic.

The cost estimation limitations were solved by allowing uncertainties to be

applied to all inputs therefore allowing a Monte Carlo and sensitivity analysis to

be conducted. The also tool presents the cost of the component in the same

process order the component is manufactured, or by feature, therefore improving

how manufacturing knowledge is presented to the user. This improves

understanding of the model and consequently the unit cost by linking it to the

design. The method also incorporates an object orientated approach that allows

libraries of building blocks to be used in a parent child arrangement. This

approach allows reuse of data, simplified maintenance and consistency of model

structure. (Tammineni, Scanlan et al. 2007; Tammineni, Rao et al. 2009).

In overcoming the limitations that Tammineni discovered in his research the

developed tool Vanguard can combine any of the other cost estimating methods

through the use of the object orientated approach. However the knowledge

based approach does not introduce a new method of determining the cost of a

component. What it does do is allow a cost modeller to create a cost model

using the best costing method that fits the problem, with all the benefits of

applying uncertainties and object orientated features without programming skills.

In Rolls-Royce Vanguard is used mostly to create top down process based cost

models, however when it is appropriate analogy models and ABC models are

used. All the different cost estimation models for the different components are

then combined in to a whole engine model to determine a whole engine cost.

2.1.2 Static or dynamic cost estimation

A definition of a 'static system is one where output is independent of past values

of input', therefore' determining the output of a static system requires no memory

of the input history' (Cassandras and Lafortune 2008). A similarity between the

cost estimation methods discussed in section 2.1 is that they are based on the

definition of a static system and use static models to determine output values.

Another definition of a static model is a model that represents a specific point in

time (Law and Kelton 1992). The definition of a 'dynamic system is one where

the output generally depends on past values of input' (Cassandras and Lafortune

2008) and dynamic systems evolve over time (Law and Kelton 1992; Marsh,

Chapter 2: Literature review

17

Jonik et al. 2010). In a static system the output is always the same when the

input is fixed, however the output of a dynamic system is not always the same

with a fixed input. A limitation of static models, and therefore the cost estimation

methods discussed, is that they are unable to fully represent dynamic systems. A

potential solution for this limitation is to use dynamic data. Two sources of

dynamic data are a real system or a modelled system.

Each cost estimation method discussed utilises historical data. Historical data is

collected from a real system, therefore can be categorised as dynamic data. A

problem is that historical data has a limited scope and is collected at a point in

time. For instance, a change in a system input variable (such as production rate,

operation times or number of operations) could cause changes to system

outputs and the collected data. Therefore a cost estimation model using

historical data of a component but requiring different parameter values would be

using historical data that was out of scope. Creating a dynamic model of the

system and generating the dynamic data is the second source. A dynamic model

can be used to represent the system, with the required input variables, as it

progresses over time, see dynamic modelling section 2.2.

Many authors have integrated ABC and dynamic modelling. Spedding et al

(1999), Savory et al (2001) and Savory et al (2010) use ABC approaches within

a dynamic model to address the time consuming, costly and difficult

implementation of ABC. They conclude that integration provides greater detail to

the cost estimate by incorporating the dynamic variations of a manufacturing

system. Costa et al (2010) integrated ABC with a dynamic model to quantify the

what if scenarios within the dynamic model. Beck et al (2000), Lee et al (2001)

and Andersson et al (2012) use dynamic modelling output within a ABC model to

improve accuracy. This is because resource requirements, therefore the costs,

are more accurate and arbitrary allocation is avoided. Lee et al suggests that

integration gives a greater understanding of the dynamic nature of the

component cost within a manufacturing system. Marsh et al (2010) created a

system that coupled a DES model with a generative cost model. Marsh et al

concluded that their system allowed sharing of data and results that enabled

informed decision making for process planning and more accurate results for

assembly costs.

Tse et al (Tse and Gong 2009) suggested a Time Driven Activity Based Costing

(TDABC) model to account for idle resources in resource pools. This is an

Chapter 2: Literature review

18

improvement over the traditional ABC models and in some simple cases may be

the correct approach; however it is still a static model therefore the dynamic

interactions of a system will not be taken into account. Which is why the

integration of a dynamic model with a ABC model is proposed.

2.1.3 Summary

A limitation of the main cost estimation methods is that they employ static

models which are unable to fully represent dynamic systems. A solution to this is

to utilise dynamic data. Two sources of dynamic data are: to collect it from a real

system or to generate it with a dynamic model. Improvements in ability and

model accuracy have been shown with the integration of a cost model to a

dynamic model within the literature. Therefore a dynamic model will be utilised,

in this research which is discussed in section 2.2.

ABC allocates all costs, including overheads, within a manufacturing system to

individual components. Many authors (Asiedu and GU 1998; Mikko, Marko et al.

2007; Askarany, Yazdifar et al. 2010; Costa, Montevechi et al. 2010; Savory and

Williams 2010; Wang, Du et al. 2010; Andersson, Bj et al. 2012) have shown

cost estimation improvements by utilising ABC over other cost estimation

methods However a disadvantage of ABC is that substantial amounts of

detailed data, concerning the manufacturing system and the manufacture of

components that utilise it, are required to complete the estimate. The dynamic

modelling method chosen also requires substantial amounts of detailed data

(section 2.2.1.4), it is therefore prudent to utilise ABC as the costing estimation

method, because the detailed data required for the dynamic model can also be

utilised by the ABC model.

2.2 Dynamic modelling

If a system does not exist a model can be created to replicate its behaviour in

order to experiment on it. There are two types of model shown in Figure 6,

mathematical and physical, as described by Law and Kelton (1992). In many

situations, and increasingly with computer utilisation, a mathematical model has

advantages over a physical model. For instance a physical model requires

manufacturing, and cannot be changed easily once created. There are two

categories of mathematical model, analytical and dynamic. Analytical represents

the use of mathematical methods to obtain an exact solution to a problem.

Chapter 2: Literature review

19

Dynamic modelling, often called simulation, usually refers to the modelling of a

system, which has stochastic elements, as it progresses through time.

Figure 6: Ways to study a system (Law and Kelton 1992)

2.2.1 Forms of simulation

Simulation can be classified into two forms as shown in Figure 7; these are:

 Time-driven simulation, where the model time progresses either

continuously, by fixed time points or by regular intervals, and the state

variables change continuously with respect to time

 Event-driven simulation, which progresses through time by advancing

from event to event resulting in variable time steps, and the state

variables change only at these discrete points in time

Also shown in Figure 7 are four modelling methods, two for each classification.

The modelling methods for time driven classification are: system dynamic and

continuous. For event driven classification they are: agent based and discrete

event. Each of these modelling methods will now be discussed.

Chapter 2: Literature review

20

Figure 7: Simulation classification and modelling methods. Modified from (Yu 2008)

2.2.1.1 System dynamic

System Dynamic (SD) modelling was developed by Forrester (1961) and is

defined as the study of information feedback to understand how organisational

structure, amplification and time delays interact to influence the system. SD is

typically used to model systems where abstraction is high and details are low,

examples include: water resource management (Winz, Brierley et al. 2009),

social epidemiology (Galea, Hall et al. 2009), ecological systems (Miller, Cable et

al. 2012), energy policy modelling (Qudrat-Ullah and Seong 2010) and charging

control of batteries (Huang, Hsu et al. 2010). Since the emergence of agent

based modelling (section 2.2.1.3) the use of SD modelling has reduced to

specific applications such as where there are flows, or the overall system

dynamics is required (Norling 2007). For these reasons SD is not a modelling

method normally used for manufacturing or supply chain simulation.

2.2.1.2 Continuous

Continuous modelling is used to model systems where state variables change

continuously with respect to time such as the depth of water in a container

(Sokolowski and Banks 2011). A computer cannot represent time in a truly

continuous manner therefore it simulates time passing continuously by utilising

very small fixed time steps (Yu 2008). The state variables of a continuous

simulation are re-evaluated at each time step, this can result in model run times

that grow with the increase in required model simulation time. Differential

equations are typically used within continuous models (Wainer 2009) and many

continuous models try to transfer the complex discrete parts of the model to the

continuous level because differential equations allow for fast simulation times. To

do this individual discrete elements are converted to dynamic flows for example

parts per unit time (D'Apice, Herty et al. 2010). A result of this is that some of the

Chapter 2: Literature review

21

fine details of the system are lost. For these reasons continuous simulation is not

normally used for detailed manufacturing simulation of components passing

through a series of manufacturing operations within a supply chain. Therefore

continuous modelling will not be used within this thesis.

2.2.1.3 Agent based

Agent Based Modelling (ABM) has no central control of the model unlike the

other modelling methods. Instead control is distributed among the agents which

have a well defined sphere of influence (Yu 2008). A defining characteristic of

agent-based modelling is the ability of individual agents to exhibit autonomous

action. This is possible because an agent is governed by rules that control its

behaviour, accept inputs from its environment, learn from previous experience,

adapt to future actions and to communicate with other agents (Yu 2008). A result

of the interactions between agents is a behaviour which is not explicitly

programmed and can be unpredictable.

In recent years ABM has seen increased use in many areas of research

including: geographical system simulation (Crooks and Heppenstall 2012), social

economic system simulation (Birkin and Wu 2012), transportation system

simulation and virus transmission (Cheng, Qiu et al. 2012), generative social

science modelling (Epstein 2011), ecosystem services modelling (Murray-Rust,

Dendoncker et al. 2011) and economic modelling (Farmer and Foley 2009). In

the manufacturing simulation area ABM has been utilised to develop

manufacturing control systems (Anosike and Zhang 2009; Leitão 2009) and

manufacturing schedules (Ouelhadj and Petrovic 2009). All these areas of

research have one similarity which is that they all model, in different levels of

abstraction, behaviour of systems that contain either humans or animals. The

ability of ABM to model behaviours with simple agents is the primary reason it is

used. This is also why it is not normally utilised to model the flow of products

through a manufacturing supply chain to determine bottlenecks and optimum

resource requirements. Agent based modelling is not suited to model

manufacturing systems to a detailed level.

2.2.1.4 Discrete event

A discrete-event model typically describes a logical sequence of activities. These

activities can, for instance, represent a process in a manufacturing system. From

an abstract point of view an activity represents a time delay. Entities move

through the model; in a manufacturing system entities could represent individual

Chapter 2: Literature review

22

components. When an entity enters an activity an event occurs instantaneously

in simulated time that acts on the entity changing its state, also the event can

trigger other events to occur. For these reasons DES is a widely used method for

studying the design and operation of manufacturing systems (Knoll and Heim

2000; Creighton and Nahavandi 2003; Venkateswaran, Young-Jun et al. 2004;

Cassandras and Lafortune 2008; Sharda and Bury 2008; Persson and Araldi

2009; Robinson, Brooks et al. 2010; Fischbein and Yellig 2011; Sajadi, Seyed

Esfahani et al. 2011; Wainer and Mosterman 2011; Chen, Mockus et al. 2012;

Turner, Madachy et al. 2012) and is industry best practice.

The primary disadvantage of a DES model is the detail required to build the

model, both in knowledge in the form of logic concerning the process flow and

decisions, and the data to populate each activity within the process flow (Caro,

Möller et al. 2010). However the level of data and knowledge required is similar

to that required to create a ABC model.

Advantages of using DES (Law and Kelton 1992; Robinson 2004; Jahangirian,

Eldabi et al. 2010) for simulating manufacturing systems, include:

 Complex systems can be described including stochastic elements

 Individual entities can be tracked, allowing performance data to be

collected

 The ability to integrate individual stages of a system allows a detailed

view to be taken (Kendall, Mangin et al. 1998; Denkena, Rudzio et al.

2006)

Any of the four methods of simulation could solve any problem, however each

method has an area of expertise that allows it to solve a problem with less

modelling complexity than the others. Pidd (2009) emphasises, throughout his

book, that all models should be kept simple and within scope of the problem. It is

therefore a logical step that discrete event simulation will be utilised as the

modelling method within this thesis as it is most suited to simulate a long time

duration logical process sequence system such as a manufacturing supply

chain.

2.2.2 Data driven generic modelling

Robinson (2004) suggests separating the data and results from a model (Figure

8). Holding model data, experimental factors and results separately from each

Chapter 2: Literature review

23

other and outside the simulation model, usually in a spreadsheet, database or

data file, has various advantages, including:

 Ease of use - understanding of the simulation code is not required by the

user as they are able to modify the input parameters and data from

outside the model

 Version control - a record of all experimental factors associated with the

results can be kept

 Further analysis - by storing the results outside the simulation, specialist

software can be used for further analysis

Figure 8: Separate simulation model from model input and output data (Robinson 2004)

Robinson’s suggestion is, in an abstract form, a description of a data driven

generic model. Pidd (1992) defines a generic model as a model with the ability to

cope with a range of structurally similar systems. Brown (2010) clarifies the

definition by adding that the generic model is logic only. Pidd defines a data

driven model as a model that has the ability to fully specify any instance of a

system without the need for programming. Therefore a generic model must first

be created then a data source can populate it for each instance required.

Tannock et al (2007) defines a data driven model as a model which is

constructed automatically by a model builder software program based on pre-

existing user data. These two definitions lead to the same result but are different

because Tannock’s definition uses data to construct the model, whereas Pidd’s

utilises a generic model which is populated with data for a particular system.

They both, from the user’s perspective, have some form of 'black box' elements

to their operation because the user only deals with data input and output.

Therefore the simulation model, either generic or created, does not have to be

seen by the user.

There are examples of use for both definitions. Many authors have developed

generic data driven simulation models: McLean et al (2002) developed one for

small machine shops; Kibira et al (2007) developed one for an automotive supply

Chapter 2: Literature review

24

chain; and Brown et al (Brown and Powers 2000) developed a military aircraft

resource maintenance model. This research will utilise Pidd and Brown's

definition by creating a generic model that is populated by a data source.

All data driven models require a data source; some sources utilised by authors

include: spreadsheets (Curran, Gomis et al. 2007; Nasereddin, Mullens et al.

2007), databases (Randell and Bolmsjo 2001; Son and Wysk 2001; Son, Wysk

et al. 2002; Neugebauer, Plonnigs et al. 2004; Cao, Farr et al. 2005), and CAD

layouts (Moorthy 1999; Paprotny, Zhao et al. 1999; AbouRizk and Mather 2000;

Kim, Jeong et al. 2009; Wy, Jeong et al. 2011). This research will utilise a

database due to the different data types that will be used, ease of integrating to

code and capabilities of searching and linking data.

A disadvantage of generic data driven models is the trade-off between flexibility

and scope (Brown and Powers 2000). A generic model needs to be flexible to

enable a user to complete necessary simulation experiments, yet a generic

model could never have the scope to cover all possible experiments without

becoming overly complex (Pidd 2009). Two other disadvantages of generic data

driven models is that they require: access to externally available structured data;

and the simulation tool must contain a code execution capability that can

dynamically create and configure complex models.

All the authors using generic data driven models agree that there are

advantages, including: reusability within the scope of the generic model or model

builder; and, models should contain fewer bugs than traditional methods

because a generic model or model builder requires validation of logic only.

Generic data driven models however are not a replacement for general purpose

simulation tools (Cao, Farr et al. 2005; Tannock, Cao et al. 2007) because they

require extra effort to build initially and in some cases may only be used once.

Also, the payback of creating a generic data driven model requires it to be used

many times to create models for a variety of solutions. The choice of which

method to utilise to create a generic data driven model is, it seems, dependent

on the situation, the data and the tools available.

2.2.3 Summary

Dynamic modelling is utilised because cost, time and practical considerations do

not allow experimentation with the actual system, or a physical model. DES is an

Chapter 2: Literature review

25

event driven dynamic modelling method that is typically utilised by research and

industry to model manufacturing systems. The other dynamic modelling methods

(SD, continuous and agent based) could be coerced into a functional model but

are not suited to the specific system and problem combination within this

research. For these reasons a DES model will be utilised within this research.

A generic data driven model combines the use of either a logic based model that

can cope with a range of structurally similar systems populated by external data,

or a model constructed from data via a model builder program. The main

disadvantages of generic data driven models include the trade-off between

flexibility and scope and access to structured data. The primary advantage is

reusability within the scope of the model.

It is proposed that the generic data driven modelling methodology will be used to

conduct supply chain simulations specified by the hypothesis. A DES

methodology will be used within the generic model. It is also proposed that the

generic model should be capable of optimising the input parameters and a

database should be the data source.

2.3 Integrating geometry

Data required by a dynamic model of a manufacturing system includes: a

manufacturing process plan (section 2.3.2) and process times for each stage of

the plan. Design geometry is the start and focal point for generating the data

required in a dynamic model. Integrating the design geometry should allow this

data to be determined automatically.

There are two methods that could aid the integration. The first, Automated

Feature Recognition (AFR) extracts design geometry in a recognisable format.

The second, Computer Aided Process Planning (CAPP), determines a

manufacturing process plan by, in most cases, utilising the output from AFR.

Each of these methods will be discussed in further detail.

2.3.1 Automated feature recognition

Shah (1991) gives a definition of a feature as a “representation of engineering

meaning of the geometry of a part or assembly”. However, an agreement on a

set of features that can represent all applications, has thus far eluded the feature

community (Han, Pratt et al. 2000; Marchetta and Forradellas 2010). A reason

for this is that specifying a feature “requires knowledge of the context or

Chapter 2: Literature review

26

application domain in which the geometry has a meaning and an interpreter”

(Brown, McMahon et al. 1995). There are many types of features for different

applications (Brown, McMahon et al. 1995) two of these are: design and

manufacturing. Design features are developed for a design engineer to use.

Manufacturing features represent a feature that a specific manufacturing process

would create, such as a hole or a slot. A combination of manufacturing features

can be used to create almost all design features. However it could be possible to

create design features that may be impossible to create via a specific

manufacturing process. Therefore design features should be specific to

manufacturing processes and follow rules that would ensure the design features

are always manufacturable. There are many challenges with creating a library of

features, however without this understanding AFR would not know what a

feature was (Xu, Wang et al. 2010).

The goal of AFR is to recognise features without intervention from a

manufacturing or design engineer (Babic, Nesic et al. 2008; Babic, Nesic et al.

2011; Brousseau and Eldukhri 2011). This goal is in line with Han et al (2000)

who believes that designers should be given flexibility to design and that AFR

systems should be used to convert designs into feature models for use in other

systems. Supplying recognised features in a valid format to required systems is

therefore an important secondary goal for AFR systems.

There are two tasks that limit AFR’s wider utilisation: interacting features,

otherwise known as component complexity, limits AFR ability to recognise

features (Fu, Ong et al. 2003; Gao, Zheng et al. 2004; Abouel Nasr and Kamrani

2006) (Chu, Tang et al. 2011); and the complexity and scalability of the

algorithms (Babic, Nesic et al. 2008; Verma and Rajotia 2010). The inability to

recognise features that are interacting limits the possible uses of AFR to

geometries that contain independent features. For these reasons an overall AFR

algorithm for complex component geometries with interacting features requiring

multiple manufacturing processes does not exist with little evidence that one will

emerge in the near future.

2.3.2 Computer aided process planning

Process planning is defined as the preparation of a set of instructions, that detail

which manufacturing processes and machines should be used, in a specific

sequence, to manufacture a component design specification from raw material to

finished product (Marri, Gunasekaran et al. 1998; Kumar and Rajotia 2005;

Chapter 2: Literature review

27

Phanden, Jain et al. 2011). A process plan contains the following information

(Marri, Gunasekaran et al. 1998; Kumar and Rajotia 2005):

 Operation sequence

 Material specifications

 Cutting tools

 Manufacturing methods

 Processing times

 Setup details

CAPP is defined as a system that can interpret a component design in terms of

features and use knowledge bases to perform process planning tasks that can

optimise cost and time (Marri, Gunasekaran et al. 1998; Kang, Han et al. 2003;

Zhou, Qiu et al. 2007).

CAPP aims to provide a link between design and manufacturing by linking

Computer Aided Design (CAD) and process planning activities (Marri,

Gunasekaran et al. 1998; Feng 2003; Zhou, Qiu et al. 2007). The ultimate aim of

CAPP is to achieve automated process planning and remove human judgment

(Zhou, Qiu et al. 2007). A method to achieve this is to utilise AFR output data.

CAPP has multiple benefits (Giachetti 1998; Gupta, Chen et al. 2003; Kumar and

Rajotia 2005; Xu, Wang et al. 2010), such as:

 Reduced time between component design and manufacture

 Reduced clerical load of plan preparation on manufacturing engineers

and skilled process planners

 Optimised process plans

 Aiding design decisions about component geometry, manufacturing

processes and materials

2.3.2.1 CAPP system designs

Two classifications of CAPP system include (Marri, Gunasekaran et al. 1998;

Zhou, Qiu et al. 2007; Xu, Wang et al. 2010) variant and generative. Variant

approaches represent a method of retrieving data from a database. Data is

categorised into component families distinguished according to their

manufacturing characteristics, where standard process plans can be created for

a family. This approach is limited for new components because they must be

classified into families and other sub categories. Novel components that contain

unknown geometry or manufacturing processes may require new classifications

and data within the database.

Chapter 2: Literature review

28

The generative approach synthesises a process plan based on analysis of the

feature geometry and other factors that may influence the manufacturing

decision. Park (2003) suggests a third type, called knowledge based. However

his suggestion, in an abstract form, is an extended generative approach. He

suggests that a process planning framework should be controlled and

customised by dynamic rules as shown in Figure 9 (b) instead of a set of rules

that are structured in a program like form (Figure 9 (a)). Park also suggests that

the knowledge base should be constructed from four knowledge elements:

 Facts - which cover data objects

 Constraints - correspond to technical constraints of process planning

 Ways of thinking - which imitates intelligence

 Rules - represent key parameters that control the way of thinking

Figure 9: Requirements of a knowledge base (Park 2003)

The trend of CAPP is towards the generative approach coupled with a

knowledge base (Xu, Wang et al. 2010) because it allows a more automated

process therefore reducing the need for manufacturing engineers and reducing

the time to generate the process plan. Recent enhancements within the field see

the introduction of technologies to enable self learning and adaptation to new

data, aid integration to schedules and aid optimisation of parameters. Some of

the technologies utilised include: neural networks (Guangru and Xiaoliang 2010;

Deb, para-Castillo et al. 2011; Wang, Zhang et al. 2012), genetic algorithm

(Salehi and Bahreininejad 2011; Wei-jun and Yu-jin 2011) and agent based

simulation (Li, Zhang et al. 2010).

The limiting factor within CAPP is the inability of AFR to supply feature data of a

component in a format for CAPP systems to use which is more pronounced for

Chapter 2: Literature review

29

complex geometry containing interacting features. This is therefore a limit to the

generative approach as it relies on feature data from an AFR system.

2.3.3 Summary

Extracting data from design geometry is required to generate a process plan.

There are two technologies which can aid this, these are AFR and CAPP. AFR

interprets geometry by recognising features without intervention from a

manufacturing or design engineer. This is then supplied to a CAPP system which

aims to provide a link between design and manufacturing by automating process

planning activities.

There are two types of CAPP systems: variant and generative. Variant

approaches represent predefined family based process plans. Generative

approaches generate a process plan based on geometry, knowledge and

dynamic rules. However the generative approach is limited in terms of geometry

due to the limitations of AFR which has limited ability interpreting complex

geometry when features interact.

It is proposed that until AFR technology can extract the necessary data in a

suitable format a direct approach should be taken therefore bypassing AFR. This

direct approach will link directly to the geometry. This reduces the scope of

parameterised component geometry but will increase system automation by

reducing complexity. The direct approach will allow extracted data to be supplied

to the downstream CAPP system in a suitable format. To increase automation of

the system and allow real time decision making for the user a variant based

CAPP approach will be utilised.

2.4 Supply chains

Beamon (1998) defines a supply chain as “an integrated process wherein a

number of various business entities (i.e., suppliers, manufacturers, distributors,

and retailers) work together in an effort to: (1) acquire raw materials, (2) convert

these raw materials into a specified final component, and (3) deliver the final

components to retailers”. Beamon points out that although a supply chain is

comprised of multiple business entities, the supply chain is considered a single

entity. This definition of a supply chain allows it to be applied to multiple

companies or within a single company as an internal supply chain where the

suppliers are business units within the same company as within Rolls-Royce.

Chapter 2: Literature review

30

Beamon describes a supply chain that comprises two integrated processes: a

production planning and inventory control process, and a distribution and

logistics process. Min et al (2002) also combines two processes: a physical

distribution process (Bowersox and Closs 1996) which is similar to Beamons’

distribution process and a material management process (Johnson and Malucci

1999). A combination of these two supply chain descriptions is shown in Figure

10. Also shown in Figure 10 is the flow of components passing through the

supply chain and the flow of information which moves in an opposite direction to

the flow of components. A third flow is from third party suppliers, who do not

supply products that are used directly in the finished component, but which are

used to support its manufacture.

Figure 10: The supply chain process. Modified from (Beamon 1998; Min and Zhou 2002)

A building that contains a manufacturing process is called a factory. This factory

can be a part of a supply chain or can be thought of as a small supply chain in

itself. This small supply chain has all the characteristics of a large supply chain

but does not span multiple businesses or locations. The only distinguishing

aspect between a small and large supply chain is where the scope of the supply

chain ends. For instance a supply chain may encompass the manufacture of a

jet engine which contains thousands of components, or it may be for a single

component.

For this research a supply chain will be considered dedicated to the manufacture

of a single component from supply of the raw material, through manufacture, to

delivery of the finished component. Also the supply chain will not be constrained

to a single location, therefore the component may require transportation between

locations.

Chapter 2: Literature review

31

2.4.1 Resource modelling

Resources are items that are required by the supply chain to manufacture the

component, some examples include: machines, equipment, fixtures, and human

resources. Each resource has a utilisation maximum, where utilisation is the

amount of time spent working against the total available time. Rules concerning

resources within this research include:

 A finite amount of each resource is contained within a supply chain

 A manufacturing operation may use more than one resource, of the same

or different type, at a time

 A manufacturing operation cannot be started unless all required

resources are available

 Mean utilisation of a resource cannot exceed the utilisation maximum

value

Most resources are constrained to a single location such as a factory, where the

factory may manufacture many different components. Therefore resources in a

factory may not be constrained to the manufacture of a single component. In this

research however resources will only be utilised for the manufacture of the

component being considered. This represents a significant limitation, however it

is acceptable as a method to prove the concept of integrating a dynamic model

into a unit cost estimation so support design decision making.

2.4.2 Inventory control

Traditional manufacturing organisations have been based on a 'push system',

whereas many modern manufacturing organisations have endeavoured to

become efficient and lean by removing waste, such as inventory. One method of

achieving lean manufacturing is Just-In-Time (JIT) manufacturing which is a 'pull

system' developed by Toyota (Taiichi 1988). In a push system a production rate

is predetermined, and then materials are pushed through the system to achieve

it. In a pull system customer demands drive production rate. Demand for a

product from the customer pulls the necessary parts from the previous step to

fulfil the requirement. The pull signal propagates down through the system in

order to replenish the parts ready for the next demand signal; this is shown in

Figure 10 as the flow of information.

Kanban stands for card in Japanese (Aytug and Dogan 1998) because originally

Toyota used simple cards to implement a JIT manufacturing system by passing

them from one process to another to represent the information flow. A kanban

Chapter 2: Literature review

32

contains information about the type and quantity of the component it represents.

Kanbans are used to limit the level of Work In Process (WIP) and coordinate the

flow of information and material.

2.4.3 Manufacturing batch operations

The manufacturing stage of the supply chain is a combination of manufacturing

processes such as turning, milling and heat treatment. A manufacturing process

can be split up into operations, for instance a turning process entails a setup

operation, multiple turning operations to form the desired shape and a set-down

operation.

If a piece of equipment can conduct an operation on two or more components at

a time it is classed as a batch operation. Batch operations usually wait until there

are enough components available to fill the equipment by holding them in a

storage area until required. It is not operationally necessary to fill the batch

operation; however it is required for cost efficiency as it increases the utilisation

of the equipment which allows the costs associated with the operation to be

spread amongst the maximum number of components.

The resource requirements of a batch operation are difficult to calculate in a

static model due to the interactions between components entering the batch

operation, available batch operation resource and the requirement to fill the

resource. Also the batch flow of components leaving the batch operation can

affect the quantity of resources in the preceding operations.

2.4.4 Summary

A supply chain is an integrated process where a number of business entities

work together in an effort to fully manufacture and deliver a component. Some

supply chains encompass multiple components, however for this research a

supply chain will be considered dedicated to the manufacture of a single

component.

A resource is an item required by a manufacturing process to complete an

operation. Multiple resources of the same or different type may be required by a

manufacturing operation at a time and the operation cannot start until all

resources are available. Also a supply chain contains a finite amount of each

resource and for this research will be dedicated to a single supply chain.

Chapter 2: Literature review

33

Kanban is a term used to denote an implementation of a pull system within a

supply chain. Kanban controls the level of WIP and the flow of information. A

kanban system is proposed as a method to achieve a pull system within the

dynamic model.

Batch operations are a type of operation which can process more than one

component at a time. The resource requirements of a batch operation are

difficult to calculate in a static model due to interactions between components

entering the batch operation, available batch operation resource and the

requirement to fill the resource.

2.5 Chapter summary

Four areas have been reviewed these are: cost estimation, dynamic modelling,

integrating geometry and supply chains. The main conclusions from these

reviews were:

 Static models used within cost estimation have difficulty in fully

representing dynamic systems. Mitigation of this limitation is to integrate

a dynamic modelling capability that can supply dynamic data to a cost

estimation model. ABC is proposed as the cost estimation method to

utilise because it has the ability to utilise the detailed data from the

dynamic model therefore providing benefit over the other cost estimation

methods reviewed. Also the primary disadvantage of ABC, which is

substantial data requirement, would be lessened as the integration of a

dynamic modelling capability which also requires substantial data would

utilise the data.

 A generic data driven DES model is proposed for two reasons. First a

generic data driven model can be reused within the scope of the model

therefore reducing complexity of creating a model for each different

scenario. Second a DES model is recognised as best practice for

modelling manufacturing systems.

 Integrating geometry into an automated system requires extraction of

data. AFR is a technology that has aims in-line with this; however it has

limited ability to achieve it. CAPP systems are used to generate a

manufacturing process plan from geometry; however they also have

limited capabilities. Therefore a direct approach of integrating component

Chapter 2: Literature review

34

geometry to extract necessary data, and a variant based CAPP approach

of utilising predefined family based process plans is proposed.

 Some supply chains encompass multiple components, however for this

research a supply chain will be considered dedicated to the manufacture

of a single component consistent with high production rates. Also

resources required by the supply chain will be considered dedicated to

the supply chain. A kanban system is proposed as a method to achieve a

pull system within the dynamic model.

The literature review has shown that there has been extensive research in cost

estimation and dynamic modelling with some authors linking both areas. Other

authors have used geometry to automate the process of cost estimation and to

aid dynamic model generation. However no research has linked all three areas.

By integrating all three areas component geometry can be used in real time to

drive the creation and optimisation of a dynamic model to aid unit cost estimation

and therefore real time decision making.

Figure 11: Area of research contribution

35

Chapter 3

Framework

This section describes a working proof of concept framework that integrates a

dynamic model with an ABC based cost model for multiple supply chain options

from CAD geometry of a component. The framework is classed as semi-

automatic because user interaction is required to create the geometry, supply

production rate data and select supply chain options. The framework generates

an aggregated unit cost (AUC) and manufacturing data for each supply chain

option chosen by the user. The output from the framework can be used to aid

design decisions and compare supply chain options of a component. Reference

to parts of the integration code held in the appendix is given to clarify necessary

sections. The whole integration code is included on a CD because it contains

15,000 lines.

3.1 Structure

There are five stages within the framework, as shown in Figure 12, these are:

1. Geometry modification – allows the user to modify parameterised

geometry which the system extracts via the geometry engine

2. Determine manufacturing process – extracts production rate and supply

chain options from the user

3. Manufacturing process data generation – selects resources and

generates operation data

4. Dynamic modelling – conducts the dynamic simulations and optimises

the inputs

5. Aggregated unit cost – calculates the cost using an ABC based cost

model and outputs AUC and manufacturing data to the user

These five stages form the framework which sits within a design iteration loop.

This loop allows geometry parameters to be change until all specification

parameters are achieved, of which the framework can provide two: unit cost and

manufacturing data.

Chapter 3: Framework

36

Figure 12: Framework stages

The framework schematic in Figure 13 shows how the user and database

interact with the five stages that make up the core of the framework. The blue

arrows show data entering the core and the red arrows show data leaving the

core. Stages 3, 4 and 5 have an iteration loop which allows each supply chain

option chosen by the user to be processed. Each stage of the framework will

now be described including, where appropriate, reference to the code used. The

database will be discussed in its own section as it, along with the integration

code, forms a backbone to the framework.

Chapter 3: Framework

37

Figure 13: Framework schematic

3.1.1 Stage 1 – Geometry modification

The aim of this stage is to extract geometry data from the geometry engine into

the system database so the system can utilise it. To do this, stage one contains

three sub-stages as shown in Figure 14.

Figure 14: Framework stage 1 flow chart

Chapter 3: Framework

38

In the first sub-stage, 1.1, parameterised solid model geometry, based on the

family type of the component, is modified by the user, from within the CAD

engine. The CAD tool used was Siemens NX6 as this is used by Rolls-Royce,

however any CAD engine that can create parameterised geometry and contains

an Application Programming Interface (API) that allows extraction of the

geometry could be utilised. Linked to the parameterised component geometry,

are a series of parameterised state geometries that build up depending on rules

from one to the next to form a parameterised geometry that represents the

Condition Of Supply (COS). The COS represents the shape of raw material at

the start of manufacture. The state geometries represent states that the

component must pass through during manufacture from initial COS geometry to

finished geometry. Figure 15 shows three states of a component (S1, S2 and

S3), between each of these states is a transformation stage (T1 and T2), which

represent the multiple manufacturing options to transfer from one state to the

next. Figure 16 shows screen shots of case study one geometry at three

different states as described in Figure 15.

Figure 15: State geometries

Figure 16: Screen shots of case study one component at three different states

Different methods of manufacture, called supply chain types, have different COS

and intermediate state geometries. Therefore each supply chain type requires its

own COS and intermediate state geometries which are linked together in an

assembly. A schematic of the CAD implementation is shown in Figure 17 and a

screen shot of the implementation from case study one is shown in Figure 18

which also contains overlays to show the different aspects of the schematic on

Chapter 3: Framework

39

the screen shot . The user interacts with the supply chain collection, which holds

each supply chain type assembly; in Figure 17 there are two: powder Hot Iso-

static Pressing (HIP) (see section 4.1 for information on HIP) and Forging.

Contained within these linked assemblies are geometry states for each supply

chain type; HIP has three and forging has five. The user only interacts with the

component state through the component parameters via the supply chain

collection. When the geometry is updated the parameters are sent to the lowest

level, the component, then each level is updated in turn based on rules and the

previous level. This functionality is fully implemented within the geometry

engine, no additional code or capability was required.

Figure 17: Schematic of CAD implementation

Figure 18: Screen shot from case study one of implementation of schematic in Figure 17 with
overlays to shows different aspects of the screen shot.

Chapter 3: Framework

40

When the user has finished modifying the finished component geometry the user

executes sub-stage 1.2 by initiating the remainder of the framework from a menu

button within the geometry engine. The Framework executes automatically from

this point until the end of stage 5. In a production version of the framework the

vision is that the user would not see any change on their screen, except for

dialog boxes asking further questions from stage 2, until the framework had

finished executing.

Sub-stage 1.3 extracts all parameters from the geometry via the geometry

engines API. In NX6 the API allows any .net coding language, C++ or Java. The

author completed all coding work in C# utilising Microsoft Visual Studio 2008.

The code in Appendix A.1 forms part of the integration code and is used to

extract the parameters from the geometry engine utilising the API. The geometry

extraction code is hard coded to the geometry, therefore any fundamental

changes to the geometry, such as re-drawing aspects of the geometry, will likely

break the hard code links due to changes in how the code identifies geometry

features.

There are three categories of extracted parameters, these are: shape design

characteristics (lengths, radii, volumes, areas and number of features),

manufacturing grades (dimensional tolerance and surface finish), and

component data (family type, unique identification and material type). All

manufacturing grades and component data are checked for compliance against

predefined acceptable values contained within the database. In the proof of

concept specific geometry to an operation is extracted when the operation time

is being calculated as shown in the code in Appendix A.2. It must be noted that

sub-stage 1.1 and 1.3 as described in this thesis represent a method that

developed due to the use of NX. Other methods may exist, currently all extracted

data is required, resulting in all state geometries being required, however if a

CAM tool can be integrated into the process instead of stage 3 'manufacturing

process data generation' the required data to extract would be reduced.

3.1.2 Stage 2 – Determine manufacturing process

The aim of the second stage is to determine the manufacturing process. There

are two tasks in stage 2, as shown in Figure 19, which both involve the user,

extracted geometry data and knowledge from the database.

Chapter 3: Framework

41

Figure 19: Framework stage 2 flow chart

In stage 2.1, production rate selection, the user is required to provide the system

with a required minimum steady state production rate. This is achieved through a

Graphical User Interface (GUI) coded within the integration code, shown in

Figure 20, which allows the user to select previously used production rates or to

add new production rates. The production rate is converted into components per

minute for use within the dynamic model; see section 3.1.4 Stage 4 – Dynamic

modelling for further information.

Figure 20: Production rate selection GUI

Stage 2.2, supply chain option selection, requires the user to select, from a

predefined list held in the database, a supply chain option. The predefined list is

populated when the component is added to the framework; see section 4.2 Case

study 2 – Blisk for further information. The list is filtered based on component

family type, and can be further filtered by checking primary parameters such as

COS outer diameter and length against manufacturing application limitations.

A supply chain within the system has four levels as shown by the columns in

Chapter 3: Framework

42

Table 1. The first level is a supply chain type which is defined by the COS

manufacturing method, in

Table 1 the example is forging. The second level is a sub section of the family

type and denotes the different options within the supply chain type. In

Table 1 the supply chain option examples are option 1 and 2. Level three is a

sub section of the supply chain options and splits the option up into methods,

where each method represents a set up on a machine or series of operations.

Level four is a sub section of the methods level and represents the individual

operations that make up the methods. Each of the options produces the same

finished part from the same COS, but option 1 utilises ‘Inspect_turn’ and

‘Inspect_Mill’ methods which each incorporate an extra inspection operation.

Table 1: Supply chain definition, showing four defining levels for a forging

example

The data is held in the database which is discussed in section 3.1.6. A GUI,

shown in Figure 21, is used to select one or more supply chain options. First the

user must select, from a list populated by the system based on component family

type, a supply chain type. Then the user can select possible supply chain

options, which are linked to the supply chain type, by sending them to the right

side of the GUI. This is repeated until all options have been selected and are

shown on the right side of the GUI.

Chapter 3: Framework

43

Figure 21: Supply chain option selection GUI

Any of the supply chain options can be viewed in detail by highlighting the option

and selecting the 'view supply chain option details' button. Another window,

shown in Figure 22, shows the methods contained within the supply chain option

to the user. Also the operations contained within individual methods can be

viewed by highlighting the method and selecting the 'view method details' button.

Figure 22: Supply chain option details GUI

3.1.3 Stage 3 – Manufacturing process data generation

By utilising data extracted from the geometry and user, as well as knowledge in

the database and built into the integration code, stage 3 generates the

manufacturing process data required for stage 4. There are four sub-stages

Chapter 3: Framework

44

within stage 3 as shown in Figure 23. The four sub-stages must be completed for

each operation of each supply chain option selected by the user.

Figure 23: Framework stage 3 flow chart

The first sub-stage selects resources within each operation, because there is

usually more than one resource that can fulfil each resource requirement. The

definition of a resource in this research is given in section 2.4.1. There are three

categories required for resource selection: suitability, capability and cost.

Suitability represents the generic abilities for a resource to complete the

operation, for example a milling machine could, in some instances, complete a

turning operation but a lathe is better suited. The relation between operations

and suitable resources forms part of the knowledge captured within the database

described in section 3.1.6. This knowledge is captured, before the framework

can be utilised, by linking one or more machines to each operation within the

database. Capability represents specific capabilities of a resource to complete

the operation. For example any lathe can complete a turning operation but a

small lathe would not be able to turn a large component. Therefore the

capabilities of individual resources are compared against the component

requirements. This is completed by conducting a query on the database that

compare, for example, component current diameter with lathe maximum

envelope. These two categories result in a list of available resources that are

suitable and capable to complete the operation. The third category, cost, is used

when the first two categories result in more than one resource for a particular

Chapter 3: Framework

45

resource requirement. This category selects the lowest cost resource from the

down selected suitable and capable list, based on data held about the resource.

In the proof of concept system an overall cost rate for each resource is contained

within the knowledge which is utilised to select lowest cost; see appendix A.3

Code to select and sort resources

Sub-stages 2, 3 and 4 calculate data specifically related to the supply chain

operation and selected resources. Each sub-stage utilises extracted geometry

data, data from the database (feeds and speeds, material properties, surface

finish and dimensional tolerance manufacturing considerations and resource

capabilities) and knowledge in the integration code (operation time calculations,

operation batch calculations, resource use requirements).

To represent uncertainty of the setup, process and set down times of the current

operation sub-stage 2 applies one of two methods. When historical data is

available a probability density function is utilised, otherwise a subjective

probability, such as a triangular distribution is utilised (Law and Kelton 1992; Yee

Mey, Newnes et al. 2010). To do this a separate function located in the

integration code which contains knowledge for a specific part of the operation

generates a single time value for either: setup, process or set down. An example

of a process time generation function is machine turning which is shown in

Appendix A.4. Inputs into the turning process time generation function include:

 Mean diameter – Used along with surface speed to calculate the RPM

 Length of cut

 Cut type – Either: rough, medium or finishing. This affects the feed and

surface speed of the cut

 Material machinability value – This depends on the material. This affects

surface speed

 Tool life – This affects surface speed

The after extracting feed (by using cut type) and speed (by using material

machinability, cut type and tool life) from the database the equations governing

the turning process time generation function are equations 1 2 and 3:

 (1)

 (2)

Chapter 3: Framework

46

(3)

Each process time generation function within the proof of concept system is

shown in Table 2. It can be seen in the table that each function requires a

different set of inputs. Some of the functions in Table 2 are data extraction or

calculation steps required by the time calculation function; drilling is an example

of this. The drilling functions are an example that the system created is a proof of

concept because the functions could be combined into a single function.

These time generation functions replicate one capability of a CAM tool which is

to determine a time to complete an operation. As mentioned earlier the CAM tool

within NX6 was unable to complete this necessary capability automatically,

hence the development of the time generation functions. However any method

that resulted in operation times would be an acceptable alternative.

The integration code contains knowledge that collects and calculates the inputs.

When a process time has been generated a distribution is fitted to it by another

function which is based on knowledge about the specific operation held in the

database.

The third sub-stage is similar to sub-stage 2 but instead calculates the batch

requirements for a resource. For example a heat treatment process is a batch

operation, the quantity of components that can be processed by it depend on the

size of the oven, the external size of the component and a packing factor. The

necessary data is collected from the component or data base and the number of

components that can be processed at once within the batch operation is

calculated. The code for calculating the HIP vessel capacity is in Appendix A.5;

the equation used within the code is equation 4.

 (4)

Chapter 3: Framework

47

Table 2:Table showing all process time generation functions within the proof of concept system
DRES

The fourth sub-stage determines when the resource will be used within the

operation. For instance in Figure 24 the resource types: machine, fixture and

operator type 1 are used throughout the operation. However the operator type 2

resource is only used in the setup and set down phase of the operation,

therefore fewer operator type 2’s are required. This is completed by assigning

Function

type

Function name Inputs (Data type, Input name)

Turning double avgDia, double length, int cutType, int machinabilityNumber,

int speedType

Turning plunge double avgDia, double length, string toolWidth, int

machinabilityNumber

Milling string cutterType, double toolDia, double lengthOfCut, int

machinabilityNumber, int numCuts, string typeOfCut, int toolLife,

double MachFactor

Milling 2 string cutterType, double toolDia, double lengthOfCut, int

machinabilityNumber, int numCuts, string typeOfCut, int toolLife,

double MachFactor, int numTeeth

Machining factor string partRigidity, string toolRigidity, string adverseCutterForm,

string surfaceCondition

Drill traverse time double traverseDistance

drill type ID string drillType

Drill dia ID int drillTypeID, double drillDia

Drill dia type ID int drillDiaID, int drillTypeID

Drill Feed int machinabilityNumber, int diaTypeID

Drill speed int machinabilityNumber, int drillTypeID, string drillManfType

Drill number of

teeth

int drillDiaID, int drillTypeID

Drill cut time double speed, double drillDia, double feed, int drillTeeth, double

cutDepth, double leadIn

Pickel double depthToPickel

Pickel run time double depthToPickel, double pickelRate

Fill HIP canister run

time

double inputMass

Fill HIP canister run

time 2

double inputMass, double fillRate

Pressure tect

canister run time

double volume

Pressure test

canister run time 2

double volume, double volumeRate

Assemble

canister

Assemble canister

runt time

Weld run time double weldLength

Weld run time 2 double weldLength, double weldRate

Laser cut Laser cut run time double cutLength, string complexity, double materialThickness

HIP run time int vesselCapacity, double componentMass, double canisterMass

HIP setup time int vesselCapacity

HIP set down time int vesselCapacity

HIP argon mass

required

int vesselCapacity, double canisterVolume, double

pressureRequired, double temperatureRequired, double

canisterDia, double canisterHeight

Grinding double area

Grinding 2 double area, double feedAreaRate, double coverAreaMultiplier

Super finish double area

Super finish 2 double area, double feedAreaRate, double coverAreaMultiplier

ECM ECM double length, string type

Turning ops

Fill HIP

canister

Super finish

Grinding

HIP

Pressure test

canister

Weld

Milling

Pickel

Drilling

Chapter 3: Framework

48

necessary resources to each separate operation (setup, process and set down)

which is represented within the dynamic model as individual delays without

queues in between them.

Figure 24: Resource use within an operation

3.1.4 Stage 4 – Dynamic modelling

The aim of stage 4, dynamic modelling, is to determine the optimised steady

state capacity and kanban (see section 2.4.2) values required for each resource

while meeting production rate and resource utilisation constraints. Figure 25

shows that there is a single sub-stage which executes the dynamic integration

model for each supply chain option.

Figure 25: Framework stage 4 flow chart

A tool called Anylogic was utilised to create the dynamic integration model,

however any DES software that is batch capable and linked with an optimisation

tool, or has an optimiser within the tool could be used. The Anylogic tool has an

internal optimiser, however the author utilised his own shown in Figure 26. The

dynamic integration model was compiled into a java executable and executed via

a batch file from the integration code; see Appendix A.6. A schematic of the

dynamic integration model is shown in Figure 26; it contains two parts: the

experiment class, which optimises the parameters; and the simulation model,

which simulates the supply chain option for a particular set of parameters.

Chapter 3: Framework

49

Figure 26: Schematic of the dynamic integration model

The purpose of the experiment class is to optimise the simulation model input

parameters by conducting simulation experiments. Figure 27 shows a flow chart

of the experiment class logic which contains three stages: initial run, reduce

kanban value and determine solution.

Chapter 3: Framework

50

Figure 27: Experiment class logic

Stage 1, initial run, requires the simulation model to be executed with initial data

from the database. Input parameters include:

 Minimum steady state production rate for the component

 Process plan detailing each operation of each method from COS to

finished geometry

 Associated resources for each operation

 Associated with each resource:

o Operation time with triangular distribution; if operation time is less

than another resource for the same operation then a start time

within the operation is required

Chapter 3: Framework

51

o Initial resource capacity shown in equation 5. See appendix A.7

for code.

o Maximum steady state utilisation

o If the resource is batch capable then batch size is required

 Kanban initial value shown in equation 6. See appendix A.7 for code

(5)

 (6)

Where n = number of resources in supply chain and i = the current resource.

There are two methods to achieve statistically valid output data from a simulation

model (Law and Kelton 1992; Robinson 2004), either: the model needs to be

executed many times (replications) with different random numbers to achieve

mean output values; or a model needs to be executed with a long run time,

which allows the model to reach steady state, with mean values of the output

taken from the model. The long model run time method is utilised within the

dynamic model to aid automated optimisation.

Production rate against simulation time for case study one with production rates

of six components an hour and half a component an hour are shown in Figure 28

and Figure 29 respectively. Figure 28 represents the best case because it shows

a higher production rate which achieves steady state in a shorter period of time,

whereas Figure 29 represents the worst case because it shows a lower

production rate which takes longer to achieve steady state. These figures show

that 1.5 years is a suitable duration for model run time because both reach

steady state in that time duration. The Figures also show that 0.25 years is a

suitable duration for initialisation bias, described as the warm-up period by Law

and Kelton (1992). The warm-up period allows the simulation model to achieve

steady-state behaviour before results are collected. When model execution has

completed mean utilisation of resources and production rate results are passed

to the experiment class. The results from stage 1 are representative of the initial

supply chain setup.

Chapter 3: Framework

52

Figure 28: Production rate against simulation time for case study one with a production rate of six
components an hour

Figure 29: Production rate against simulation time for case study one with a production rate of half
a component an hour

For a specific set of resource capacities increasing the kanban value increases

the production rate and resource utilisation. Therefore a balance is required

between meeting production rate and resource utilisation. These values are

controlled through the kanban value and resource capacities. Stage 2 reduces

the kanban value so that the value of each resource utilisation is below their

required maximum.

Chapter 3: Framework

53

Stage 3, determine solution, modifies kanban and resource capacity values

individually to meet production rate and resource utilisation requirements. To do

this the simulation output values are assessed. There are three outcomes of the

assessment, as shown in Figure 27, these are:

 Outcome 1, increase kanban value - If both production rate and resource

utilisations have not been met then the kanban value is increased. The

kanban value is updated and the simulation model is executed again.

 Outcome 2, increase resource capacities - If production rate has not

been met and resource utilisation has been exceeded by one or more

resources, or if production rate has been met and resource utilisation has

been exceeded by one or more resources, then resource capacity values

will be increased for each resource where utilisations have exceeded

their requirement. The resource capacity values are updated and the

simulation model is executed again.

 Outcome 3, end - If production rate and resources utilisation

requirements are met the experiment class updates the database with

the relevant output data from the dynamic model.

The second part of the dynamic integration model is the simulation model which

is a generic data driven DES model, see section 2.2.2. An analogy for a generic

data driven model is a large open plan building where the logic represents the

building structure. The data represents the fittings which can remodel the

building’s interior allowing it to serve many purposes but are within the

constraints of the building. The simulation model is able to represent a supply

chain with any number of operations. An operation is either batch or non-batch

capable and can have any number of resources applied to it for any period of

time within the total operation time, as shown in Figure 24.

To achieve this generic ability an object oriented approach was taken. Generic

objects, which can be described as template blocks, were created to represent

different levels within the supply chain and to complete replicated actions. The

template blocks can be seen in Figure 30 which is a screen shot of the top level

of the dynamic model. Figure 31 shows a schematic of dynamic model

implementation with three levels: supply chain, operation and detail operation.

Also Figure 31 shows three objects that complete replicated actions: route to

resource, resource release and resource allocate. These objects are arrayed to

represent multiple versions of the same object, therefore allowing any number of

Chapter 3: Framework

54

operations to be represented by a single object. Entities, which represent

components, flow through the objects. If an entity reaches the end of the object it

is passed on to the next object in the array which represents the next stage of

the supply chain. If the entity reaches the end of the array object it is passed up

one level and on to the next arrayed object. This process continues until the

entity has passed through all the objects within the model. A disadvantage of this

method is that there will always be some redundant arrayed object elements

held in memory. However no processing power is lost cycling through these

redundant elements because only active elements are cycled through.

Figure 30: Screen shots of dynamic model implementation

Figure 31: Schematic of dynamic model implementation

Chapter 3: Framework

55

The simulation model is required to output data after execution. The data is used

by the experiment class to optimise the inputs into the next iteration of the

simulation model. Outputs from the simulation model include:

 Steady state production rate achieved

 Mean duration an entity stays within each operation

 Mean utilisation of each resource

Once the integration model has completed the optimisation is sends the outputs

of the simulation model, plus the input values of capacities for each resource, to

the database.

3.1.5 Stage 5 – Aggregated unit cost

The aim of this stage is to calculate the AUC and display it, along with

manufacturing data, to the user via a GUI. The AUC is calculated utilising data

from the dynamic model and cost knowledge about each resource. The flow

chart in Figure 32 shows there are four sub-stages with two iteration loops within

stage 5. The first sub-stage and iteration loop allows each operation - known as

an activity in ABC - to be calculated. When all operations have been calculated a

data collation process takes place that is used to populate sub-stage 3; the

supply chain calculation. The second iteration loop repeats the previous steps for

each supply chain option chosen by the user.

Figure 32: Framework stage 5 flow chart

Chapter 3: Framework

56

Sub-stages 5.1 and 5.3 are generic data driven ABC based cost models. The

proof of concept utilises generic models built in Vanguard and accessed by the

framework via web service provided by the host server. However any form of

cost model which can be used in batch, therefore can receive inputs and export

outputs, could be used; an example being implementation of the cost model

within a function of the integration code. Sub-stage 5.1 is used to calculate the

cost of an operation. Figure 33 shows the inputs and outputs of the operation

level cost model. The shaded input boxes show which data comes from the

dynamic model, as determined necessary to achieve the production rate, these

are:

 Number of machines

 Manufacturing time total

 Operator total man hours

 Number of tools

Figure 33: Operation level cost model – Inputs and outputs

The other inputs are gathered from the database by using the base data. The

following inputs are based on the machine resource:

 Capital equipment individual investment cost

 Capital equipment depreciation time years

 Consumable cost rate

 Footprint area of machine

 Energy cost rate – cost energy used by the machine per hour

 Gangway factor – percentage of foot print area required for operators

 Storage area – required to hold tools and fixtures

 Maintenance cost per machine – per year

The remaining inputs include:

 Total units manufactured a year

Chapter 3: Framework

57

 Operator cost rate

 Tool depreciation time

 Tool individual cost

 Footprint cost rate

 Scrap cost rate

 Exchange rate

The operation level cost model contains equations 7 to 17.

(7)

Where 'Operation cost' variables are:

(8)

(9)

Where 'Fixed cost' variables are:

 (10)

(11)

(12)

(13)

Where 'Variable cost' variables are:

Chapter 3: Framework

58

(14)

(15)

 (16)

 (17)

The input ‘Foot print cost rate’ is a fixed value (per meter squared) in the current

implementation of the framework but should be linked to worldwide location of

the operation; this is discussed further in section 5.4.

It can be seen from the inputs that the operation cost model can only cope with

three resources: machine, tool and an operator. This implementation of the

framework was suitable for the case studies and the proof of concept, but for the

framework to be fully flexible a resource cost model is required; this is discussed

further in section 5.4.

In sub-stage 5.3 the output data from all the operation level models of the supply

chain option, is collated. The summed outputs from each operation model

become the inputs for the supply chain level cost model which is shown in Figure

34, where the shaded areas are inputs from operation level cost model. For

example Equation 18 shows that the sum of each operation cost becomes the

total operation cost which is the unit process cost at the supply chain level; this is

implemented with a for loop.

Chapter 3: Framework

59

Figure 34: Supply chain level cost model – Inputs and outputs

 (18)

The supply chain level cost model contains equations 19 to 25.

 (19)

Where 'Supply chain level cost' variables are:

(20)

 (21)

Where 'Indirect cost' variables are:

(22)

(23)

Chapter 3: Framework

60

(24)

Where 'Direct cost' variables are:

(25)

Sub-stage 5.4 displays the manufacturing and cost results to the user. The cost

results are represented by outputs from each cost model. The output from the

dynamic model represents manufacturing data, such as:

 Type, quantity and utilisations of machines and their resources (labour

and fixtures for example)

 Number of components produced and production rate achieved

 Mean time a component spends waiting within the supply chain

Presentation of the results is completed by using a GUI, built into the integration

code, with five tabs (Figure 35 to Figure 39), which are:

 Results overview

 Experiment data overview

 Component data overview

 Supply chain manufacturing data

 Supply chain option cost data

Chapter 3: Framework

61

The results overview tab, shown in Figure 35, displays to the user a list of

completed experiments from the last run of the system. Associated with the

experiment ID is the supply chain option and calculated unit cost. The system

ranks the experiments in terms of unit cost. By highlighting an experiment and

selecting the button at the bottom, manufacturing and cost details for the

selected experiment are loaded into the other tabs for interrogation by the user.

Figure 35: Results form – Results overview tab

The experiment data overview tab, shown in Figure 36, contains two sections.

The first, shown at the top of the form, shows the high level parameters

associated to all the experiments conducted in the latest system execution. The

second section, shown at the bottom of the form, displays the experiment ID and

the associated supply chain option. A button allows the user to load the

highlighted experiment ID into the other tabs.

Chapter 3: Framework

62

Figure 36: Results form – Experiment data overview tab

The component data overview table, shown in Figure 37, contains two sections

with the first showing high level component data. The second lists all the

component parameters by name with their associated value and unit.

Figure 37: Results form – Component data overview tab

The supply chain option manufacturing data tab, shown in Figure 38, first

requires the user to select an experiment ID unless one has been loaded by

pressing a button on another tab. The first section, at the top of the form,

contains high level data for the selected experiment ID and a button to allow the

user to view cost data for it. The second section at the bottom of the form

Chapter 3: Framework

63

contains three viewing areas, two drop down boxes and two buttons. The first

viewing area on the left lists the methods contained within the experiment ID.

The user can select a method, via the first drop down box at the top of the

section, that list the operations contained within the method through the second

viewing area. The list of operations contains associated operation time and, if

appropriate, batch size. The user can also view cost details of the selected

method by selecting a button on the right. When a method has been selected the

second drop down box is populated with the operations it contains allowing the

user to select one and view the resources for the operation in the third viewing

area. The resource list displays: name of the resource, quantity required and

mean utilisation achieved within the dynamic model. The second button allows

the user to view costs for the selected operation.

Figure 38: Results form – Supply chain option manufacturing data tab

The supply chain option cost data tab, shown in Figure 39, requires the user to

select an experiment ID, if it has not been loaded previously by pressing a button

in another tab that loads the experiment ID. The first section, at the top of the

form, displays high level data and a button to view manufacturing data of the

selected experiment ID. The second section, bottom left of the form, displays the

input and output cost parameters with associated values for the supply chain

level. The third section, bottom right, requires the user to select an operation, via

a drop down box, unless it has been previously populated by another tab. The

input and output parameters are listed with their values in two separate areas.

Chapter 3: Framework

64

Figure 39: Results form – Supply chain option cost data

3.1.6 Database

A relational database was utilised due to findings in section 2.2.2 which

discussed the benefit of separating the data from the models. In this proof of

concept Microsoft Access has been utilised, but any database software could be

used. The layout and relationships of data and tables within the database were

created during the development of the framework, however there are many

layouts and relationships that could be implemented to gain the same result.

The database holds data which can be classified into two categories: data that is

specific to an experiment and base data. Experiment specific data represents

data that is directly required by an experiment, such as: component geometry

data, material type, operation times, production rate, supply chain options

chosen, experiment setup details, and experiment results. This data is collected

or calculated during execution and stored for later use. Base data represents

generic data that does not change often, such as: manufacturing speeds and

feeds that are associated with material machinability, possible supply chains,

material data, and resource data.

There are two databases within the framework: a manufacturing database that

holds base manufacturing data and a framework database that holds all the

other data which is connected to the component and experiment. The two

databases have been split into seven sections, shown in Figure 40 to Figure 46,

which are:

Chapter 3: Framework

65

 Links to experiment ID

 Component version data

 Supply chain and associated data

 Simulation data

 Cost data

 Material and machining data

 Surface finish, dimensional tolerance, laser cutting and powder HIP

vessel data

The experiment table, shown in Figure 40, forms the core of the framework

database where all other data tables’ link to it. The experiment ID is a unique

identifier contained within the experiment table that links together:

 A component version

 Simulation data

 A production rate

 Cost data

 A specific supply chain option

Figure 40: Framework database – Data linked to the experiment ID table

When the framework is executed it checks attributes of previously completed

experiments against the new attributes, if they are different it creates a new

experiment ID, otherwise it informs the user of the match. As an experiment ID is

Chapter 3: Framework

66

related to a specific supply chain option the check is completed for each supply

chain option chosen by the user.

The component version table contains a component version ID which forms the

centre of the component data, as shown in Figure 41. The component version ID

is a unique identifier which links together all the component parameters and

attributes. The framework performs checks to maintain the data with the first

check concerning the component parameters. If a new component is required a

new component version ID is created.

Figure 41: Framework database – Component version data tables

The supply chain data is shown in the centre of Figure 42. Four tables contain

lists of supply chain types, options, methods and processes, which are linked

together with four link tables. This structure allows any supply chain to be

created. Machine, fixture and resource data is linked to the appropriate

manufacturing operation. The supply chain options are linked to the rest of the

database via the component and simulation link tables.

Chapter 3: Framework

67

Figure 42: Framework database – Supply chain, fixture, machine and resource data tables

The simulation data tables, Figure 43, store input and output data for the

dynamic model. Also the tables have the ability to store the required data for the

dynamic model optimisation. For instance the ‘Sim_Resource_Allocation’ table

contains columns that store the value for static and dynamic resource capacities.

The static value represents the initial data and the dynamic value represents the

dynamically generated data which is used to store the data during the dynamic

model optimisation and results.

Chapter 3: Framework

68

Figure 43: Framework database – Simulation data tables

The cost data tables are split into two sections, as shown in Figure 44, the

operation level and the supply chain level tables. Each section contains the cost

model parameters with default values, framework generated input values, and

cost model calculated output values. The output values are separated into two

tables: static and dynamic. The static and dynamic cost model inputs are both

contained within a single table. This method of splitting the outputs into different

tables was utilised for ease of results publishing.

Chapter 3: Framework

69

Figure 44: Framework database – Cost data tables

The majority of the data held in the manufacturing database is related to

component material and machining, as shown in Figure 45. This is because the

supply chains implemented within the framework all contain machining and is a

significant part of the manufacturing process. There are three machining

sections (turning, drilling and milling) which are linked to component material via

a material machinability value. These data tables contain feed and speed data

which are utilised by specific time generation functions.

Figure 45: Manufacturing database – Material and machining data tables

Chapter 3: Framework

70

The remainder of the manufacturing database contains four sections, shown in

Figure 46, which are: surface finish, dimensional tolerance, laser cutting and

powder HIP vessel. The surface finish and dimensional tolerance data tables

supply a manufacturing method to the framework which is then used to

determine a time, via a time generation function, to complete a specific

operation. The laser cutting section supplies a feed rate and the powder HIP

vessel section supplies vessel size data to calculate the batch size for a HIP

operation based on other vessel requirements.

Figure 46: Manufacturing database – Surface finish, dimensional tolerance, laser cutting and
powder HIP vessel data

3.2 Chapter Summary

The framework contains five stages that combine the tools necessary to

integrate a dynamic modelling capability with unit cost. The first stage allows the

user to modify the component geometry via a parameterised solid geometry

model. The parameters from the geometry are extracted via the geometry

engines API. The second stage extracts production rate and predefined supply

chain option information from the user via GUIs. The third stage calculates or

determines data for each supply chain operation, including: resource selection;

setup, process and set-down time generation; and batch requirements. The

fourth stage executes and optimises a dynamic supply chain model to generate

dynamic data to be utilised in the cost model. The fifth stage calculates unit cost

for each supply chain option selected by the user by utilising an ABC

methodology. The last part of stage five, and of the framework, displays all

results to the user via a GUI with multiple tabs.

Two databases form a significant part of the framework because they contain

base manufacturing data that enables the framework to generate new

Chapter 3: Framework

71

manufacturing data for specific aspects of the supply chain. Also all data

generated by the framework is stored within the database.

The software tools utilised within this proof of concept have been used to create

a working proof of concept system. However other software could be used and

the relevant characteristics required by the software to fulfil the requirements of

the framework have been discussed.

73

Chapter 4

Case studies

Design Resource Estimation System (DRES) is a system that has been created

by the author to implement the framework and conduct case studies as a proof

of concept. The case studies utilise representative aerospace component

geometry to show the framework can cope with complex geometry, however the

unit cost results outputted by DRES are not directly validated for the following

reasons:

 A representative geometry was created for the case studies because:

the original geometry is confidential to Rolls-Royce; was not fully

parameterised; and contains un-required attributes for Rolls-Royce

internal processes.

 COS geometry is not representative. A COS is created for each supply

chain type connected to the geometry by using knowledge based rules.

The full utilisation of the necessary rules to create a validated COS was

determined to be out of scope for this research.

 Supply chains containing methods and operations that focus on the

primary manufacturing stages are utilised as a proof of concept case

study. Representing the full manufacturing process for each supply chain

type for both case studies was deemed outside the scope of this

research.

 Each resource contained within the database has data associated with it

which is required to populate and execute the dynamic supply chain

model and the AUC. However this represents a time consuming data

collection exercise that was out of scope of this research. Therefore

when resource data was unavailable representative data was created

which was based on similar resources.

 The component used within the first case study is manufactured with a

production rate of hundreds of components a year compared to 4,000 to

17,000 components a year within the framework case studies. This

difference in production rate results in non-similar characteristics

between the component manufacturing requirements; therefore they

should not be directly compared.

Chapter 4: Case studies

74

Unit cost values are not directly validated due to the reasons above, however by

using the same base data for static and dynamic costs a comparison between

the two can be made. To allow the comparison an extra cost calculation step

was added to the framework. This step was placed directly before the dynamic

simulation and utilises the initial base data, which is destined for the dynamic

model, to calculate the static costs using the same cost models as the dynamic

cost. Any difference will be due to changes in the number of resources required

to achieve the production rate or because of the distributions applied throughout

the framework. The percentage difference of dynamic cost data from the static

cost data is utilised in the results. Equation 26 shows the how the percentage

difference is calculated.

 (26)

Material cost is based on static data therefore it has the same value in the static

results as the dynamic results. This causes a bias towards the static results

based on the percentage that the material cost makes towards the total unit cost.

The overhead and process costs are unaffected by material cost bias, therefore

these are used to calculate the percentage difference. Also as a form of

validation against input error and anomalies within the proof of concept each

experiment was completed at least two times, with the mean value of the

experiments used in the results.

4.1 Case study 1 – Combustor outer case

Case study one is based on a representative large civil aerospace gas turbine

combustor case, shown in Figure 47. The purpose of this case study is to show

the difference between static and dynamic costs for different supply chain types,

materials and component parameter changes.

Chapter 4: Case studies

75

Figure 47: Case study 1 component based on representative aerospace gas turbine combustor
case

For the purpose of the case study two supply chain types will be used, these are

Forging and powder HIP which are shown in Figure 48. Forging represents a

supply chain that machines a ring rolled forged COS to the finished component

shape and then conducts finishing operations such as cleaning and dimensional

inspection methods.

Loh (1992) described the powder HIP process as "the simultaneous application

of iso-static pressure and elevated temperature to a work piece, which results in

the work piece (usually powder) becoming consolidated”. In this case study the

powder HIP supply chain type produces a near net shape COS by manufacturing

a canister to hold powder material in the required shape during the HIPing

process. The COS is removed from the canister by a combination of machining

and pickling. The near net COS is machined to its finished shape then finishing

operations, similar to those in the Forge supply chain type, are completed as

shown in Figure 48. Table 3 shows the operations for both supply chains.

Chapter 4: Case studies

76

Figure 48: Case study supply chain options

Table 3: Table showing operations for both Forge and HIP supply chain types with operation times
from two case study experiments

OP

sequence

Supply chain

option
Method Process Op Time

1 Turn_PF020 Turn small end 29

2 Turn_PF030 Turn large end 436

3 Turn_PF040 Turn external 225

4 Mill_PF060 Mill bosses 765

5 Turn_PF075 Turn small end 19

6 Turn_PF080 Turn lage end 250

7 Turn_PF090 Turn internal 116

8 Drill_PF095 Drill large end flange holes 43

9 DrillMill_PF100
Mill bosses and drill small end

flange holes and bosses
429

10 Etch 12

11 Clean 16

1 Laser cut 5

2 Drill holes 8

3 Machine canister small plate Laser cut 5

4 Turn small end 64

5 Turn large end 19

6 Turn small end 70

7 Turn large end 21

8 Mill external surfaces 228

9 Assemble canister Assemble and weld 332

10 Pressure test canister Pressure test 444

11 Fill canister Fill with powder 113

12 HIP HIP 447

13 Machine excess internal 75

14 Machine excess external 444

15 Pickel canister Pickel canister 80

16 Turn internal 266

17 Turn external 43

18 Mill 20

19 Drill holes 18

20 Etch 12

21 Clean 16

Finish machine component

Finishing operations

Forge

HIP

Finishing operations

Machine excess of canister

Machine canister internal

Machine canister large Plate

Machine canister external

Chapter 4: Case studies

77

Three materials will be used in the case study. Two Nickel based alloys which

are representative of the material used for the real component, and mild steel,

which is very different and is used here to show a difference in results and

system capability. The material called Nickel 1 has a higher cost rate and

machinability factor than Nickel 2. The geometry contains 30 parameters but for

the purpose of the case study only the parameters shown in the specific

experiments will be modified and when not in use are set to a default value as

shown in Table 4.

Table 4: Case study 1 – default values of changing parameters

Five experiments have been completed within the first case study. The first two

experiments vary geometrical design parameters, material type and supply chain

type to mimic how a user might utilise the system. An example of this is how

material selection might affect the supply chain and unit cost. The last three

experiments vary supply chain parameters such as available resources,

production rate and batch operation characteristics to understand how these

affect the results. These parameters may not be directly changeable by the user

but an understanding of their effect is required to determine under which

circumstances the framework provides maximum benefit.

4.1.1 Results

The first experiment varies the internal radius, material type and supply chain

type. The internal radius is varied from 275mm to 400mm which represents the

minimum and maximum values outside of which other geometric parameters

must be changed to maintain component geometry feasibility. Three materials

and two supply chain types, discussed above, are used.

Figure 49 and Figure 50 show graphs of the percentage difference of dynamic

process and overhead costs compared with static process and overhead costs

Parameters Default value
Internal radius 300 mm

Production rate 2 components per hour

Triangular boss large hole surface

finish
N12

Triangular boss large hole

dimensional tolerance
D12

Triangular boss top flat surface

finish
N12

Material Nickel 1

Chapter 4: Case studies

78

respectively, against the geometric parameter internal radius for the powder HIP

supply chain type and three materials.

The graph in Figure 49 shows that the process cost for the HIP supply chain type

at 400mm internal radius has a percentage difference of 4.1%, 3.5% and 4.2%

for Nickel 1, Nickel 2 and Mild steel respectively. As the internal radius reduces

the percentage difference increases to 9.9%, 9.2% and 12.4% for the same

materials respectively. The same trend is replicated for the overhead cost in

Figure 50 with a mean value lower than the process cost percentage difference

of 0.7%, 2.1%, 1.2% and 0.5% for 275mm, 300mm, 350mm and 400mm

respectively.

Figure 49: Graph showing percentage difference of dynamic process cost compared with static
process cost against internal radius parameters for HIP supply chain type

Chapter 4: Case studies

79

Figure 50: Graph showing percentage difference of dynamic overhead cost compared with static
overhead cost against internal radius parameter for HIP supply chain type

Figure 51 and Figure 52 show the same graphs as Figure 49 and Figure 50

except they are for the forged supply chain type. The graphs show that for the

forged supply chain type the difference is below 1.4% for both process and

overhead costs.

Figure 51: Graph showing percentage difference of dynamic process cost compared with static
process cost against internal radius parameters for Forged supply chain type

Chapter 4: Case studies

80

Figure 52: Graph showing percentage difference of dynamic overhead cost compared with static
overhead cost against internal radius parameters for Forged supply chain type

The higher percentage difference seen for the HIP supply chain type compared

to the forged supply chain type is due to two outcomes of the dynamic model.

The first is the dynamic model increasing the capacity values for the batch

operations within the HIP supply chain type during the resource and kanban

optimisation. The second is an increase in the total manufacturing time, which is

due to an increase in waiting time for resources of operations to become

available, which is higher for batch operations.

The decrease in the difference of the HIP supply chain as the internal radius

increases is also attributed to the reasons above. However there is a bias

towards the fixed costs of the batch operation compared to the other processes

which are dependent on the geometry. The batch operations are affected by

component size but in this case study the change in internal radius does not

affect the number of components per batch, therefore the cost for the HIP

operation is fixed. However the other processes, such as machining, are

dependent on the volume of raw material required to be removed which varies

as internal radius changes. Therefore a bias towards the fixed batch operation

costs results in a higher percentage difference for a component with smaller

internal radius compared to a component with a larger internal radius.

Chapter 4: Case studies

81

Experiment two varies surface finish and hole diameter tolerances. Three

individual parameters with two combinations of these parameters have been

modelled. The three parameters are: triangular boss top flat surface finish (TB

SF) which was set to grade N2, from default value N12; triangular boss large

hole surface finish (TB LgHole SF) which was set to grade N7, from default value

N12; and triangular boss large hole tolerance (TB LgHole Tol) which was set to

grade H7, from default value D12. The two combinations were TB SF with TB

LgHole SF and all three parameters together. More details on surface finish and

dimensional tolerance grades are contained in Appendix B.

There is no specific equation that calculates the affect that a change in tolerance

or surface finish has. Instead knowledge is and logic is utilised to select a

method of manufacture based on the tables and graphs in Appendix B that can

achieve the required tolerance and surface finish. The geometry data is then

used by the selected method of manufacture to generate an operation time.

The graph in Figure 53 shows the percentage difference of dynamic cost

compared with static costs against different surface finish and tolerance

parameters associated with the triangular boss features as discussed above.

The graph shows that there is between 5.3% - 6.5% difference for the process

cost and between 3.1% - 4.5% difference for the overhead cost.

The graph shows there is no noticeable change in the percentage difference as

more surface finish and tolerances are applied. There are two reason for this.

The first is because there is little change in the operation times between the

different method of manufactures required to achieve the tolerance and surface

finishes. The second is that any changes are insignificant compared to the total

cost and therefore do not considerable affect the percentage difference.

Chapter 4: Case studies

82

Figure 53: Graph showing percentage difference of dynamic cost compared with static cost against
surface finish and tolerance parameters associated to the tri-boss features for the HIP supply chain

type

Experiment three shows the effect of having different available resources for the

system to select when varying the internal radius. The graphs in Figure 54 and

Figure 55 show how available resources affect the difference between static and

dynamic costs. In this example the experiments represented by the red bars only

had access to a single large diameter HIP vessel which is the default vessel

used in all the other experiments and has a diameter of 1.1m.

It is explained in experiment 1 why the percentage difference is larger when the

component is smaller and reduces with increasing internal radius which is also

seen here. The experiments represented by the blue bars had access to three

different diameter sized HIP vessels, but with the same vessel length, that had

running and investment costs relative to their size as shown in Table 5. The

system selects an appropriate vessel for the component size; therefore the small

vessel is chosen for the 275mm internal radius, the medium vessel for the

300mm internal radius, and the large vessel for the 400mm radius. It must be

noted that the number of components each vessel can hold is the same for all

the vessels, as this is based on the vessel length which is the same for each

vessel.

Chapter 4: Case studies

83

Table 5: HIP vessels used in experiment 3

It can be seen in Figure 54 that a weighting towards the batch operations for

smaller components is still present with the same trend as previous experiments

(percentage difference decreases as internal radius increases), but less

significant because the capital costs of the smaller vessels are lower than the

larger vessel. However, in Figure 55 the overhead cost difference, of the three

vessel study, increases with increasing internal radius instead of decreases as

with a single vessel. This is because the overhead cost is based on capital cost

which is less for the smaller vessel.

Figure 54: Graph showing percentage difference of dynamic process cost compared with static
process cost against internal radius for the HIP supply chain type with Nickel 1 as the material and

different numbers of available HIP vessels

M
a
c
h
in

e

N
a
m

e

S
e
tu

p
 T

im
e

X
 A

x
is

Y
 A

x
is

Z
 A

x
is

In
v
e
s
tm

e
n
t

C
o
s
t

D
e
p
re

c
ia

tio
n

T
im

e
 Y

r

F
o
o
t
P

ri
n
t

A
re

a

E
n
e
rg

y
 C

o
s
t

R
a
te

C
o
n
s
u
m

a
b
le

C
o
s
t
R

a
te

G
a
n
g
w

a
y

F
a
c
to

r

HIP vessel small 60 0.8 0.8 3 5000000 15 200 80 80 1.1

HIP vessel

medium
75 0.9 0.9 3 7500000 15 200 90 90 1.1

HIP vessel Large 90 1.1 1.1 3 10000000 15 200 100 100 1.1

Chapter 4: Case studies

84

Figure 55: Graph showing percentage difference of dynamic overhead cost compared with static
overhead cost against internal radius for the HIP supply chain type with Nickel 1 as the material

and different numbers of available HIP vessels

Experiment four shows the effect of modifying production rate for both supply

chain types. The graphs in Figure 56 and Figure 57 show the percentage

difference of dynamic costs compared with respective static costs against

production rate for both supply chain types for a fixed internal radius of 300mm

and material type of Nickel 1. It can be seen that the percentage difference for

the forged supply chain type is stable to within 1.2% for both process and

overhead costs, which is expected due to there being no batch operations within

the supply chain.

However for the HIP supply chain type the process cost percentage difference

decays following an exponential curve from 79.7% to 1.3% as production rate

increases from 365 to 52,560 components a year. The reason for this is that as

production rate increases the utilisations of individual resources achieve their

maximum value. Therefore the cost of the resource is spread amongst the

optimum number of components, reducing unit process cost.

For the overhead cost in Figure 57 the overhead cost difference is seen to be

between 0% and 3.75% up to 2950 components a year. At 4380 components per

year it jumps to 11.5% then reduces following a non-linear decay curve to 1.4%

at 52560 components per year. The decay curve is a result of overhead cost

being a percentage of capital cost divided by the number of components per

year. For example if a new resource is required to meet production rate

Chapter 4: Case studies

85

requirements the overhead cost will increase, falling as the resource meets its

maximum utilisation. However this effect is reduced as production rate increases

because the addition of a single resource becomes insignificant compared to the

total capital cost.

Figure 56: Graph showing percentage difference of dynamic process cost compared with static

process cost against production rate changes for HIP and forged supply chain types

Figure 57: Graph showing percentage difference of dynamic overhead cost compared with static

overhead cost against production rate per year for the HIP and forged supply chain types

Chapter 4: Case studies

86

Analysing the HIP supply chain type experiment data further produced two

graphs, Figure 58 and Figure 59. Figure 58 shows normalised mean utilisation of

all the resources within the supply chain against the production rate per year.

The graph is an exponential curve up to 0.7, which is logical because the

dynamic model optimises the number of resources so that the individual

resource utilisations do not go above 0.7.

Figure 58: Graph showing normalised mean resource utilisation against production rate per year

for the HIP supply chain type

The second graph, Figure 59, shows an almost linear relationship between

process cost percentage difference and normalised mean utilisation. These two

graphs show the relationship between production rate, resource utilisation and

percentage difference of process cost. They could be used to determine when

this framework is most useful.

Chapter 4: Case studies

87

Figure 59: Graph showing percentage difference of dynamic process cost from static process cost

against normalised mean resource utilisation for the HIP supply chain type

Experiment five modifies the number and size of batch operations within a

supply chain. To complete this experiment the forging supply chain was utilised

as a default then sub experiments were conducted by changing necessary non-

batch operations to batch operations with a size using the procedure shown in

Table 6. Therefore sub-experiment 1 required op1 to become a batch op of size

2, whereas sub-experiment 23 required ops1-5 to become batch ops with a size

of 10.

Table 6: Case study 1 – experiment five parameter setup

The graphs in Figure 60 and Figure 61 show how the number and size of batch

operations affect the percentage difference of dynamic cost compared with static

cost for a production rate of four components an hour. Figure 60 shows the

process cost difference and Figure 61 shows the overhead cost difference. Both

graphs show the difference increasing as the number of batch operations

increases within the supply chain. They also show that the size of the batch

operation affects the difference. The results may be exaggerated due to the

Chapter 4: Case studies

88

batch operations being sequential within the supply chain, and the fact that some

operations have short process times as shown in Table 3.

Figure 60: Graph showing percentage difference of dynamic process cost compared with static
process cost against number of batch operations within a supply chain

Figure 61: Graph showing percentage difference of dynamic overhead cost compared with static
process cost against number of batch operations within a supply chain

Chapter 4: Case studies

89

4.1.2 Summary of case study 1

All the results show there is a difference between static and dynamic cost for

supply chains that contain batch operations with the size of the percentage

difference increasing when:

 Quantity and size of batch operations is increased

 Batch operations are more heavily weighted compared to other

operations within the supply chain due to batch operation being a fixed

cost and most other process costs are dependent on component

geometry

 Different resources are utilised to complete an operation

 Production rate decreases which reduces resource utilisation resulting in

increased process cost

4.2 Case study 2 – Blisk

The purpose of this case study is to highlight two points. Firstly, the framework is

capable of being used on a wide variety of components. Secondly, to illustrate

the steps necessary to implement a new component within the framework.

The component for this case study is a blisk, shown in Figure 62, which

combines blades and a disk into a single component. The combination into a

single component has various advantages, reduced mass being one. The

reduced mass is achieved by removing the blade and disc joining mechanisms

by either producing the blisk from a solid piece of metal or by welding the blades

onto the disc.

Chapter 4: Case studies

90

Figure 62: Case study 2 component based on a representative aerospace gas turbine blisk

Only one supply chain type has been applied to this component, which machines

a solid forging but does not complete finishing operations such as grinding. For

this reason the supply chain type contains three methods. The first method turns

the drive arm side of the disc by completing seven separate turning operations.

The second method turns the non-drive arm side by completing two operations.

The third method utilises Electro-Chemical Machining (ECM) (Zhan, Zhao et al.

2000) to roughly remove the material between each blade, then shapes each

blade with a finishing ECM operation.

Implementing the framework for a new component requires work in three areas:

creation of the component and state geometries within the geometry engine;

input of data into the database; and addition of code to cope with the new

component and supply chain type. Specific steps required to be completed within

the geometry engine include:

1. Create parameterised component geometry

2. Create parameterised state geometries utilising rules to build upon each

state, starting at the component geometry and ending with the COS for

the supply chain type

3. Create top level assemble file that holds all supply chain types required

4. Add and link component expressions to the top level assemble file

including component identification, type and material

Chapter 4: Case studies

91

Determining the details of the parameterised component geometry and

understanding the rules required to create the state geometries, represent the

majority of the effort within the geometry engine. Specific steps required to be

completed within the database include:

1. Add component identification and type to appropriate tables

2. Add supply chain type data including: options, methods and operations

3. Add machines, fixtures and resources when relevant data is required

4. Link new data together with link tables

Understanding the supply chain type and gathering data for required resources

are the main steps to be completed within the database. Specific steps required

to be completed within the integration code include:

1. Add code to retrieve measurement data for supply chain type

2. Add code for each method within the supply chain type for operation

time generation, setup time generation and batch calculation

3. Add code to calculate the extent of the COS boundary limits for machine

selection

Other than data collection the code required to generate the process time for

each operation within a supply chain represents the majority of the effort

required for all of the steps to integrate a new component into the framework.

However this effort has substantially reduced compared to the first case study.

This is because most of the generic functionality and data required was created

for the first case study which can be reused by any subsequent case studies.

4.2.1 Results

The graph in Figure 63 shows normalised cost against number of blades for a

disc diameter of 220mm, Nickel 1 as the material and a production rate of 2

components an hour. The number of blades on the blisk is modified for three

different blade lengths. The results show how cost increases as the number of

and length of the blade increases; this is because the ECM operations contribute

the majority of process cost and are dependent on the number and length of the

blades.

Chapter 4: Case studies

92

Figure 63: Graph showing normalised process cost against number of blades for a disc diameter of
220mm, Nickel 1 as the material and a production rate of 2 components an hour

4.2.2 Summary of case study 2

The second case study has shown that integrating different components into the

framework is possible. It highlighted that an understanding of the geometry,

supply chain type and specific operations within the methods is required. Also,

other than data collection, a significant amount of effort is spent creating code to

calculate process times for each operation.

4.3 Chapter Summary

The first case study has shown that there is a difference between static and

dynamic process and overhead costs for components with supply chains that

contain batch operations. The percentage difference depends on many factors,

but increases when:

 Quantity and size of batch operations is increased

 Batch operations are more heavily weighted compared to other

operations within the supply chain due to batch operation being a fixed

cost and most other process costs are dependent on component

geometry

 Different resources are utilised to complete an operation

 Production rate decreases which reduces resource utilisation resulting in

increased process cost

Chapter 4: Case studies

93

It could be seen from experiment 4 that a 10% percentage difference was the

result of a 65% mean resource utilisation, which equates to between 10,000 and

15,000 components per year. The percentage difference continues to increase

by 10% for every 5% decrease in mean resource utilisation.

By implementing a Blisk the second case study has shown that different

component types can be utilised by the framework. It also highlighted that after

data and knowledge capture, which is a non-trivial task, a significant portion of

the effort required to integrate a component into the framework is related to

creating the time generation code for the manufacturing operations.

95

Chapter 5

Discussion

There are four sections in this chapter; the first discusses the findings from the

case studies. The second discusses the benefits and required effort to achieve

them. The third discusses validation, both case studies and future

implementation of the framework. The last discusses, in two parts, improvements

to the framework: first, improvements that should be implemented, and second,

improvements that would add value.

5.1 Case studies

The first case study conducted five experiments, two that mimic how the user

might conduct “what if” studies with different design choices and three

experiments to understand the effect that production rate, available resources

and batch operation characteristics have on the results. This case study had a

high level purpose of determining if a percentage difference of dynamic cost

compared with static cost existed, and to show if and when a benefit can be

gained from the framework. The parameters affecting the results are discussed

but will not be quantified with a value, because the size of the benefit depends

on the interactions of all the parameters within the framework.

It can be clearly seen in the results from all experiments, that the inclusion of

batch operations within a low volume supply chain, can affect the results from a

static cost model due to an underestimation of the resources required.

The inclusion of a dynamic model allowed the resources to be determined

dynamically which resulted in an increase in unit cost, compared to the static

calculation of unit cost, this is due to the increase of resources required.

Experiments one and two show how different component design parameters

(internal radius, tolerances, surface finish and component material) coupled with

the supply chain affect the percentage difference. Experiment one highlighted

the cost bias within components, in this case how the fixed cost of the HIP cycle

becomes a larger bias as the component becomes smaller, and how this can

increase any unit cost error due to a error in resource calculation. In experiment

one this resulted in the percentage difference increasing as internal radius

decreased.

Chapter 5: Discussion

96

In experiment three it is shown how the availability of different resources affects

the percentage difference results. By selecting the lowest cost resource that is

capable of completing the desired operation the percentage difference can be

reduced as shown in Figure 54 and Figure 55. It would therefore be good

practice to ensure there are different resources available for each operation

when populating the database during the implementation of a new component or

supply chain option. Also this ability is particularly useful for manufacturing

engineers to determine the effect of resources on both the unit cost and the

supply chain.

In experiment four it is seen that as production rate increases, the percentage

difference decreases (shown in Figure 56 Figure 57) because all resources

within the supply chain reach their utilisation maximum values seen in Figure 58.

Therefore the resources and overhead costs are spread across the optimum

number of components, which is an assumption of the static based cost

estimation methods, hence the percentage difference reduces. To gain

maximum benefit from the framework a high percentage difference is required,

for experiment four the graph in Figure 59 shows that a normalised mean

resource utilisation of less than 0.65 is required to gain a percentage difference

of greater than 10%.

This creates two problems in understanding when to implement the framework.

The first is to understand how the trend in Figure 59 changes with different

supply chains. If this is understood a decision of when to implement the

framework can be made. The second is based on the current framework

requirement of resources being dedicated to a single supply chain; which is not

always the case. Therefore there is scope for future work to determine how to

incorporate multiple components utilising resources.

In experiment five the number and size of batch operations within a supply chain

affects the percentage difference as shown in Figure 60 and Figure 61. As the

number of or the size of the batch operations increases so does the percentage

difference. These results may have been artificially exaggerated because the

batch operations were sequentially placed within the supply chain, this means

there were no non-batch operations in-between the batch operations to smooth

the flow of components through the supply chain. However this further highlights

how operations dynamically interact in unpredictable ways further adding to the

evidence that the inclusion of a dynamic model is beneficial.

Chapter 5: Discussion

97

The second case study was a blisk component; its purpose was to highlight two

points: firstly to show that widely different components could be implemented

within the framework; secondly to illustrate the steps necessary to implement a

new component within the framework. Integrating different component types into

the framework highlighted that a detailed understanding of the geometry, supply

chain type and manufacturing operations is required before the integration into

the framework can be complete. It also highlighted that after data collection,

which is a non-trivial task, a significant portion of the effort is spent creating code

to calculate process times for each operation. The amount of effort required to

add a new component or supply chain to the framework should reduce as more

general manufacturing functions, manufacturing data, supply chains and

components are incorporated in to the framework because data and methods

can be reused.

5.2 Benefits against required effort

Deciding whether to implement the framework or not requires a trade off to be

conducted between the benefits that will be delivered against the effort required

to achieve them. This section discusses the benefits, the requirements to

achieve the benefits and under which circumstances the benefits are worth the

effort.

There are three primary benefits provided by the framework, which are:

 The framework can dynamically predict required resources to fulfil a

supply chain for a specific production rate. This data is used in the

second benefit but can also be utilised by manufacturing engineers to aid

production planning.

 An increase in refinement of component unit cost estimate. This is

completed by including the manufacturing time and dynamically

determined resource requirements into an ABC cost model.

 The ability to compare multiple supply chain options and different supply

chain types, at the same time, directly from component geometry.

There are two categories of requirements to achieve the framework benefits,

these are: initial requirements to implement the framework; and requirements for

each component and supply chain to be applied to the framework. The first

category involves substantial effort to create the integration code, database and

the generic data driven models. The integration code forms the backbone of the

Chapter 5: Discussion

98

framework and needs to be tailored to the tools. Also the database and generic

data driven models need to be created.

The second category is concerned with the knowledge, data and effort

requirements to apply a new component or supply chain to the framework, these

include:

 Knowledge concerning the rules required to create the parameterised

component, state and COS geometries. This knowledge must ensure the

geometry parameters of the component are what the user requires and

that the component geometry is able to cope with the scope of required

parameter changes

 Material data with understanding of the effect on manufacturing feeds

and speeds

 Operation level understanding of the manufacturing sequence

 Understanding of which resources, in what quantities are utilised for each

operation

 Resource data for resource selection process and cost calculations (data

required includes: maximum operating envelope, consumable

requirements, auxiliary equipment, total foot print, operator requirements

and special to resource fixtures and tooling)

 For each new manufacturing process, knowledge of the logic to calculate

the process times and manufacturing data (speeds, feeds and

capabilities) which form the scientific basis of the process time

 Effort to create and implement the manufacturing process logic into the

integration code

There are requirements in effort, knowledge and data before any benefit can be

achieved by the framework. However this is true of any model, therefore three

comparisons can be made between the requirements of sections of the

framework and an individual 1) cost estimation model, 2) dynamic model and 3)

geometry model. Each of these comparison models require effort, knowledge

and data to build. It could be argued that if these comparison models were built

there would be no need to go to the same level of detail as the framework, for

instance creating the stage models in the geometry. However if an

understanding of the machining sequence was required the stage models would

be necessary. Aspects of the framework that require extra effort are centred

around integration of the modelling tools, however utilisation of generic data

Chapter 5: Discussion

99

driven models reduces the modelling effort compared to the individual cost and

dynamic comparison models. Extra knowledge and data is required by the

framework compared to all the comparison models because the comparison

models are based on a single instance, whereas the framework needs to cope

with variation of component and supply chain parameters. Therefore the amount

of effort, knowledge and data required is arguably similar to any collection of

individual models, however the framework requires all of it to be complete before

any benefit can be achieved through integration.

There are four factors that result in maximum benefit from the framework; these

are:

 Components that are process cost biased, instead of material cost

biased, result in higher percentage difference because the framework

benefits only apply to the dynamic aspects of a unit cost which are

process and overhead costs.

 Supply chains that contain more batch operations and large quantity

batch operations result in a higher percentage difference. This is because

the dynamic modelling can determine the correct resource quantity to

achieve the production rate.

 A production rate that results in the mean utilisation of the resources

within a dedicated supply chain to be below 0.65. This is based on the

supply chain in case study one and should ensure that the process cost

percentage difference is above 10%. This result is because the resource

utilisations are not achieving their maximum values, in this case 0.7.

 When there are two or more possible resources for an operation the

framework can select a resource. This reduces the percentage difference

however this selection ability is not seen in most cost modelling tools.

If the component and supply chain do not contain these requirements to achieve

maximum benefit there are still opportunities to gain benefit by removing

unknowns. This is because the framework can determine the cost effect of

different parameter changes. Two examples of this are: components where

material choice may change during the design process which can affect the

results, therefore comparisons need to be conducted to determine the optimal

supply chain selection; and when required production rate is unknown, because

production rate affects unit cost and the amount of required resources.

Chapter 5: Discussion

100

The framework is designed to be a tool to aid design decisions however there

are two situations where this will not happen. Novel component design or

processes where an understanding of time taken or equipment is unknown

cannot be applied to the framework because the required knowledge and data is

not available. Also geometry parameterisation may inhibit designer creativity as it

is limited in flexibility and scope. In these situations other tools are required until

greater understanding is gained and can be applied to the framework.

5.3 Validation

There are approximately 15,000 lines of integration code and 1,000 lines of code

within the dynamic model. Validating the code fully by completing multiple test

cases or an expert review, is out of scope for this research. However the results

and logic within critical functions that aid process time generation within the

integration code, were subject to trend evaluation that confirmed the correct

working of the functions within case study parameters.

No commercially sensitive data has been utilised within the framework, where

possible publically available data has been used, otherwise appropriate values

for the case studies were created. This means that the data utilised within the

case studies has not been fully validated against actual manufacturing data for

real components. However, by utilising the same base data for both static and

dynamic costs calculation, the need for fully validated case studies was avoided,

which would not have been possible for the data reasons above and the reasons

given in Chapter 4.

For future implementation it is recommended that a detailed validation exercise

against a known component takes place for any new component and supply

chain type added to the framework. This exercise would determine a known set

of results for a set of parameters for a specific component supply chain

combination.

5.4 Framework improvements

The framework, in its current form, has shown that there are benefits to be

gained under certain circumstances. However, based on the case studies the

author has identified improvements that can be made to the framework to

increase its flexibility and scope. These improvements fall into two categories:

improvements that in ‘hindsight’ are deemed necessary to enhance the

framework and improvements that would add value.

Chapter 5: Discussion

101

5.4.1 Necessary improvements

The following is recommended by the author as necessary to increase the cost

modelling flexibility to the same level as the dynamic model. The current cost

model implementation utilises three predefined resource types within the

operation cost model. To ensure the cost model is fully flexible and can cope

with any number of resources a third generic data driven cost model should be

created. This resource level cost model, shown in Figure 64 stage 5.1, calculates

the cost of a resource. Once each resource cost has been calculated the results

are collated and used within the operation level cost model, then the process

continues as described in section 3.1.5. Without this change the amount of

resource types is limited to the three predefined ones, utilised within the proof of

concept case studies, with this change the cost model is not limited and

therefore matches the dynamic model capability.

Figure 64: Recommended implementation of the framework stage 5

5.4.2 Improvements that would add value

There are a number of improvements that would add value to the framework.

Five general areas within the framework that could be improved are:

 Cost

 Resource utilisation type selection

 Dynamic model

Chapter 5: Discussion

102

 Optimisation

 Technology integration

By implementing the cost calculation within the integration code execution time

could be reduced. Currently cost is implemented within Vanguard as purpose

built generic data driven cost models, which are accessed over a network. By

implementing the cost equations within the integration code this would decrease

cost calculation execution time because data is not transferred over a network. A

disadvantage of this is an increase to the code validation process and any

required update to the cost calculation may require more effort because it will be

contained internally within the integration code instead of externally as in the

case of the generic data driven cost models. However the reduced execution

time would be beneficial when completing holistic optimisations.

Another cost based improvement would include extra data and functionality to

allow more cost rates to be dynamic. For instance if a user was given a choice of

worldwide locations for the supply chain, or if the choice was a part of an

optimisation, different cost rates would apply to parameters such as factory foot

print, consumables and wages as the location of the supply chain changes.

Each resource has a utilisation maximum value that is held in the database. This

functionality can be extended to allow a user to select a type of utilisation

maximum. For instance there could be three types: min, standard and max. Min

would represent the minimum utilisation value that the company is willing to

accept. Standard would represent what the company believes is the normal

utilisation. Max represents the industry best value. The user could utilise this

functionality to gain the best, normal and worst case scenarios or different

utilisation types could be applied throughout the simulation to act as a learning

curve.

Extra functionality could be applied to the dynamic model such as:

 Applying a distribution to each operation that represents the probability

of scrap. This would be used by the scrap cost rate in the operation level

cost model.

 Implementing a schedule for maintenance and a distribution for

unscheduled maintenance would remove the requirement for a resource

utilisation maximum to be utilised. This is because the utilisation would

then become an output of the dynamic model instead of an input.

Chapter 5: Discussion

103

However this could only be implemented if knowledge of scheduled and

un-scheduled maintenance was available as well as other necessary

factors.

 The dynamic model can only represent a supply chain where the

resources contained within it are utilised by the component being

considered. A method to overcome this is to block out a percentage of

resource capacity by reducing the individual resource utilisations.

Another method is to use a two step approach discussed in the next

point.

 The dynamic model determines an idealised supply chain. If data

concerning resources within current supply chains and components

passing through those supply chains were available, a second stage

holistic simulation could be conducted. This simulation would determine

if the new supply chain could be accommodated within the current

capabilities of a company at the holistic level.

 The dynamic model could determine the risk associated with the supply

chain. For instance there could be a choice between two resources

where resource 1 requires a quantity of two to meet the production rate

and resource 2 requires a quantity of one. The supply chain utilising

resource 1 would results in a higher unit cost, because more resource is

required, and a lower risk. Whereas the supply chain utilising resource 2

results in a lower unit cost but a higher risk because it is a single point

failure within the supply chain. In that situation the supply chain utilising

resource 1 may be more appropriate due to the lower risk.

An optimisation loop could be utilised to select resources. Currently suitable and

capable resources are selected by resource cost attributes. However resources

could be selected based on results of the supply chain as a whole and utilise

other attributes such as risk.

The framework currently calculates operation process time through the utilisation

of generic manufacturing time generation functions held within the integration

code. A method of utilising the Computer Aided Manufacturing (CAM) tool with

the CAD tool UGS NX 6 to complete this task was determined to be incapable

because the CAM tool was unable to cope with the addition and removal of

features automatically. However the ability of CAM tools to complete this task will

change as their capabilities increase, which could result in improved time

Chapter 5: Discussion

104

generation accuracy and aid optimisation. As the CAM tool should be able to

simulate the tool paths more realistically.

Parameterisation of the component geometry has been utilised within the

framework as the method of generating the required geometry. This combined

with a direct link to the geometry and a variant CAPP approach allowed a

process plan populated with process times and initial resource requirements to

be generated. A combination of AFR and generative CAPP methods was the first

choice to complete these tasks. However, as discussed in sections 2.3.1 and

2.3.2, the current capabilities of these methods are limited, but as they develop

they would offer greater flexibility and extended scope to the framework.

105

Chapter 6

Conclusions and future work

This chapter presents the significant conclusions of this research, followed by

key contributions to the research field. Recommendations of future research

building on findings from this work are discussed before the concluding remarks.

6.1 Conclusions

A framework has been created that integrates a dynamic modelling capability

with component geometry and unit cost estimation. A system called DRES

embodies the framework by integrating three primary tools: a dynamic modelling

tool, a geometry engine and cost modelling tool. The primary purpose of DRES

was a proof of concept and to conduct two case studies. The first case study

was to determine if and when a benefit could be gained from the framework. The

second case study highlighted that different components could be implemented

within the framework and the steps necessary to complete it.

Integration of the three tools gives three direct benefits. First, the integration of a

dynamic modelling capability allows optimised resource requirements to be

utilised within unit cost estimation, therefore producing an AUC estimate. The

integration of component geometry facilitates the second and third direct

benefits. The second is that the integration allows a user to understand the

consequences of design changes on unit cost. The Third, integration allows real

time decision making to take place.

By utilising a direct method of extracting geometry data and a variant CAPP

method to determine a manufacturing process, the framework allows the user to

select multiple supply chain types and multiple options within each type. This

flexibility supplies the user with a benefit that allows unit cost comparison of

multiple supply chains.

The goal of the dynamic model is to determine required resource of a supply

chain for a component so that it can be utilised in a cost estimation model. A

secondary benefit is to utilise required resource data to reduce time and effort

required by manufacturing engineers to develop the supply chain for

manufacture.

Chapter 6: Conclusions and future work

106

There are two application requirements that must be taken into consideration

before a component is applied to the framework, these are: manufacturing

production rate, and availability of knowledge and data. An assumption of the

dynamic model, in its current form, is that all resources within a supply chain are

dedicated to the manufacture of the component; see section 5.4 for possible

improvements. Due to this assumption production rate affects the amount of

benefit that can be gained from the system. For example if production rate is

high (52,560 components a year for experiment 4 of case study 1 Figure 56) the

potential benefit against a static cost estimation is low (1.3% in experiment 4

case study 1). However, as the production rate decreases (365 components a

year for experiment 4 case study 1 Figure 56) the potential benefit increases

(79.7% in experiment 4 case study 1). Therefore production rate needs to be

considered to determine if a benefit will be gained from the framework. The

second requirement to consider is availability of knowledge and data. It was

discussed in section 5.2 that the amount of knowledge and data required by the

framework is similar to building the necessary models individually. However the

knowledge and data is all required before a component is applied to the

framework because without it the framework will not deliver any output for that

component. This constitutes a considerable upfront commitment to the

framework because it is an all or nothing situation.

Four characteristics have been found from the cases studies that provide the

most benefit from the framework. The first is delivered by components with a unit

cost that is process cost biased instead of material cost biased. Optimising

resource requirements only affects the dynamic aspects of unit cost – process

and overhead costs – therefore components that are process cost biased will

see more benefit than components which are not (see experiment 1 case study

1, section 4.1.1). The second characteristic concerns components with supply

chains that contain batch operations. Static cost models have difficulty

determining resource requirements for batch operations, therefore more benefit

can be gained from supply chains that contain many large quantity batch

operations (see experiment 5 case study 1, section 4.1.1). The third

characteristic is production rate required. For a dedicated supply chain as

production rate decreases resource utilisation decreases which exaggerates any

errors in resource quantity calculation, therefore effecting the unit cost and, in

experiment 4, the percentage difference. The fourth characteristic is selection of

possible resources which the framework completes automatically.

Chapter 6: Conclusions and future work

107

During the design process there are situations when some design parameters

and decisions are either unknown or have multiple possible choices. These

design decisions can affect many aspects of the design including the

manufacturing process and unit cost. An example of this is component material

choice which could affect supply chain selection. A second example is when

required production rate is unknown or is different to known historical data; this

can affect supply chain selection and unit cost. The framework can be utilised to

understand different situations to aid design decision making, by allowing a

design team to investigate the affects of deign decisions.

The framework can deliver benefits as discussed above, however there are

disadvantages. The majority of effort required to implement the initial framework

is up front, due to two reasons:

 Integration of the five stages and necessary tools for the framework. The

integration process is a considerable task especially because the user

does not see the integration as each tool is linked within the framework to

work automatically. All aspects of tool integration, user interaction

through the GUI's and data manipulation must be handled by the

integration code through a series of error checking routines which further

increase the complexity of the integration.

 Generic ability of the framework to cope with different components and

supply chain types. Creating a robust parametric geometry is a technical

challenge, the framework however takes this a step further by requiring

that the generic ability is represented throughout each stage of the

framework including: data handling, manufacturing process time

generation, dynamic modelling and cost modelling.

Once the initial effort of creating the framework integration has been completed

substantial data and knowledge is required to implement a component and

supply chain type within the framework as discussed in Case study 2 – Blisk

section 4.2.

Novel components, a new component design not seen before, or processes,

new manufacturing process, cannot be applied to the framework in its current

form. This is because the framework is based on a generic parameterised

component geometry that is linked to multiple known manufacturing processes

that is linked to data and knowledge about every aspect of its manufacture. A

novel design or process, by definition, does not have all the necessary data or

Chapter 6: Conclusions and future work

108

knowledge to populate the database or equations to determine the process

operation times. The topic of including novel design or manufacturing process is

discussed in future research.

The hypothesis for this research was “Integrating supply chain simulations with

design geometry can assist in design decision making”. The conclusions from

this research prove that the hypothesis is correct when the component and

supply chain characteristics that produce maximum benefit are partly achieved.

DRES the proof of concept implementation of the framework has achieved the

aim of this research, which was to assist the design process by aiding decision

making by conducting real time cost estimation, incorporating a dynamic aspect

into unit cost estimation and allowing comparisons of manufacturing processes.

6.2 Contributions of research

It was determined in section 2.1, cost estimation, of the literature review that cost

estimation methods were based on static models that were unable to fully

represent dynamic systems. This research has shown that there are benefits of

utilising dynamic modelling to provide dynamic data to cost estimation methods.

This research also discovered characteristics when the most benefit can be

achieved; these are:

 A process cost biased component

 Supply chains that contain batch operations

 Production rates that result in mean resource utilisation below 0.65 for

dedicated supply chains

 Multiple possible resources for operations.

The literature review also showed that some researchers have integrated

dynamic modelling and cost estimation, section Error! Reference source not

found., some have integrated geometry and cost estimation, section Error!

Reference source not found., and some have integrated dynamic modelling

and geometry, section 2.2.2. However no research has focused on the

integration of the three areas for the purpose of aiding design decisions. This

research has integrated all three areas, as shown in Figure 65, within a

framework and has implemented the framework with a system called DRES.

Chapter 6: Conclusions and future work

109

Figure 65: Area of research contribution

6.3 Future research

Implementing the recommendations in section 5.4, framework improvements,

provide value but are not research questions. The rest of this section discusses

those research questions that have come to light and areas of research that are

not fully understood and would be required to achieve the vision the author has

for the framework.

Fully understanding the benefits of integrating a dynamic modelling capability

into cost estimation and under which criteria the benefits occur, will provide a

comprehensive guide of when to apply the framework. Determining this will

require experimentations with different supply chain types to understand the

dynamic interaction of operations by varying:

 Size of operation process times and the sequence of operations within

the supply chain

 Sequence of batch and non-batch operations as well as batch sizes

 The amount of different resources per operation and the quantity of

those resources

Understanding these interactions will provide a greater understanding of when to

implement the framework for components, which is a necessity to create a

business case due to the investment that this framework requires before use in a

production design environment.

Chapter 6: Conclusions and future work

110

Understanding and quantifying the risk of different supply chain options is a

research area that will allow a user to make an informed decision about the

selection of a supply chain option. For instance when comparing two supply

chain options one may result in a lower unit cost but may present a higher risk,

therefore the second supply chain option may be a better choice. To understand

risk the following areas need investigation:

 What constitutes a risk within the supply chain, an example of this is the

utilisation of a single resource in conjunction with un-planned

maintenance and the fact that this represents a single point of failure

 How risk is quantified and presented to the user

 Is extra data or capability required within the dynamic model logic to

cope with determining risk

The research in to quantifying risk of different supply chain options is required to

aid design decisions for people who do not fully understand the manufacturing

process and the implications one supply chain has over another.

Optimisation that combines this framework with other analysis systems such as

finite element analysis and computational fluid dynamics could be used to

optimise the geometry directly. The combination of these systems would allow a

multi-objective optimisation for a component or set of components such as a gas

turbine engine or subsystem. This research would try to understand how the

analysis outputs would interact, and how these affect geometry parameter

values. This would allow the framework to truly achieve its aim by being fully

incorporated into the design optimisation.

The framework determines the idealised supply chain requirements for the

component and the selected supply chain. However this could be the first stage

of a two stage optimisation. For instance the second stage could determine if the

idealised supply chain can be incorporated into a company’s current supply

chain capabilities, and if not, could determine what extra resources are required.

This would also force an understanding of all the supply chain capabilities within

a company as all the data and knowledge would be required to complete the

second stage optimisation. Creating a generic data driven dynamic model that

can represent multiple supply chains and multiple components where resources

are not dedicated to a single supply chain would be required for this work. Also

how the results would be viewed by the user needs consideration.

Chapter 6: Conclusions and future work

111

If a company was to use this two stage optimisation, to determine what extra

capacity is required, would be the ultimate aim of the framework. This is because

this would force the company to completely model its manufacturing capacity

which could be used to optimise each year's load and capacity incorporating the

new component volumes.

The use of novel components or processes within the framework is difficult

because not all data or knowledge is available. However, an understanding of

what data and knowledge is required, what makes a component ‘novel’, and how

the lack of data can be overcome would aid the inclusion of novel components

and processes within the framework. Without this understanding the framework

will be limited to families of components and known processes, which is a

limitation for aiding design decisions.

6.4 Concluding remarks

The integration of multiple systems is becoming more common place as multi-

objective problems are been solved. The inclusion of dynamic modelling in these

integrations is also becoming more common, especially with increasing

computer capability that allows dynamic models to execute in a short time.

The capability of creating generic data driven dynamic models is allowing

researchers to utilise the models to solve and understand problems instead of

building models. Commercial dynamic modelling tools are now capable of

combining multiple dynamic modelling methods (DES, continuous, system

dynamic and ABC) into a single model. This will aid researchers to apply

different dynamic modelling methods to different parts of a single problem,

allowing them to focus on finding a solution.

The next step of cost estimation is encompassed partly in this research. It is not

about supplying a cost service to a design team or even a tool that requires extra

effort and time on their part. It is about supplying a design team with a tool that

aids them to understand cost in terms of their design decisions in real time. To

do that it needs: to be automated, to include the geometry, to include the

manufacturing process, to be optimised at all levels, and to be based on

scientific data.

113

Appendix A

There are approximately 16,000 lines of code within the framework, which has

many repeated sections therefore this appendix contains extracts from the

framework integration code that was directly discussed within the thesis. The

code extracts are:

 Extracting parameters using the geometry engine API

 Generating a process time for turning

 Executing the generic data driven dynamic model

The code in A.1 is specific to the geometry engine which is Siemens Unigraphics

NX 6.0. All the code has been written in C# using MS Visual Studio.

A.1 Code to extract parameters using geometry API

Below is the code required to extract parameters from the top level assemble file

for the component geometry. The geometry engine calls the parameters

expressions, hence the use of the word expressions throughout the code. Each

parameter name, value and unique tag number are extracted and put into a data

table for storage until required later in the framework. As some parameters are

strings, for example N7 as a tolerance, and some are number values they

represent different types of data, therefore they need to be handled and stored

differently within the code.

/// <summary>
/// <para>Retrieves the expressions data from the NX work part (eg the assembly)</para>
/// <para>Returns DataTable</para>
/// </summary>
private DataTable retrieveComponentExpressions()
{
 Session theSession = Session.GetSession(); // Retrieves the current sessions
 Part workPart = theSession.Parts.Work; // Retrievs the current work part
 PartLoadStatus partLoadStatus1;
 NXOpen.Assemblies.Component nullAssemblies_Component = null; // Loads assemble
 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1); // Sets the work
component to the assemble

 workPart = theSession.Parts.Work; // Retrievs the new work part
 partLoadStatus1.Dispose();

 DataTable dt = new DataTable(); // Initiates a new datatable
 dt.TableName = "Component_Expressions";
 dt.Columns.Add("Tag", typeof(int)); // Creates new column in dt
 dt.Columns.Add("Value", typeof(double)); // Creates new column in dt
 dt.Columns.Add("Value_String", typeof(string)); // Creates new column in dt
 dt.Columns.Add("Name", typeof(string)); // Creates new column in dt
 dt.Columns.Add("Description", typeof(string)); // Creates new column in dt

 // Loads all expressions in work part and iterates through each
 foreach (Expression expression in workPart.Expressions)
 {
 if (!expression.Name.StartsWith("p"))//Ignores expressions starting with p
 {
 double value = 0;
 string value_string = "";
 if (expression.Type.Equals("Number"))// If expression is a number

Appendix A

114

 {
 value = expression.Value;// Assigns expression value to variable

 }
 if (expression.Type.Equals("String")) // If expression is a string
 {
 // Removes unecessary characters from the string
 value = 0;
 int start = expression.Equation.IndexOf("=\"") + 2;
 int end = expression.Equation.Length - 1;
 // Assigns expression string to variable
 value_string = expression.Equation.Substring(start, end - start);
 }
 // Applies extracted data to a datatable
 dt.Rows.Add(expression.Tag, value, value_string, expression.Name, expression.Description);
 }
 }
 return dt;
}

A.2 Code to generate an operation time

Below is the code that extracts geometry data related to operation then

calculates the operation time based on the geometry information and cutting

parameters based on speed and feed data from the database.

 #region Turn_PF020 (Uses PF010) - Complete - PF010 to PF020 - Hold sm end - machining large flange end, face
and internal profile
 /// <summary>
 /// <para>Returns the time taken to machine the PF010 stage to the PF020 stage uses PF010</para>
 /// <para>PF010 to PF020 - machining large flange end, face and internal profile</para>
 /// </summary>
 /// <returns></returns>
 public double machine_PF010_to_PF020()
 {
 double timeTotalForPF010_TO_PP020 = 0;
 int location = 0;
 double SubLocation = 0;
 double SubSubLocation = 0;
 try
 {
 #region Extracts Depth of cut, Length of face, length of internal profile
 location = 1;
 SubLocation = 1;
 Session theSession = Session.GetSession();
 Part workPart = theSession.Parts.Work;
 Part displayPart = theSession.Parts.Display;

 NXObject nullNXObject = null;
 MeasureDistanceBuilder measureDistanceBuilder1;
 measureDistanceBuilder1 =
 workPart.MeasureManager.CreateMeasureDistanceBuilder(nullNXObject);
 measureDistanceBuilder1.Mtype = NXOpen.MeasureDistanceBuilder.MeasureType.Minimum;

 NXOpen.Assemblies.Component component1 =
 (NXOpen.Assemblies.Component)displayPart.ComponentAssembly.RootComponent.FindObject("
 COMPONENT COC_PF010 1");
 Unit nullUnit = null;
 DisplayableObject[] objects1 = new DisplayableObject[1];
 MeasureLength measureLength1;

 // ********* Depth of cut ***********
 SubLocation = 2;
 Line line1 = (Line)component1.FindObject("PROTO#.Sketches|SKETCH_007|Curve Line43"); // Depth of
cut line
 objects1[0] = line1;
 measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1);
 double depthOfCut = measureLength1.Value;

 // ********* length of face ************
 SubLocation = 3;
 Line line2 = (Line)component1.FindObject("PROTO#.Sketches|SKETCH_007|Curve Line41");
 objects1[0] = line2;
 measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1);
 double lengthOfFace = measureLength1.Value;

 // ********* AvgDia of face ***************
 SubLocation = 4;
 Edge edge1 = (Edge)component1.FindObject("PROTO#.Features|LINKED_BODY(1)|EDGE * 784
REVOLVED(6) [CURVE 2 0] {(299.4999999999999,299.0385719267667,-

Appendix A

115

 172.65)(299.4999999999999,0,345.3)(299.4999999999999,-299.0385719267666,-
 172.6500000000002) LINKED_BODY(1)}");

 DisplayableObject objects2 = edge1;
 MeasureDistance measureDistance1;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,objects2);
 double ExternalRadOfFace = measureDistance1.Value;

 SubLocation = 5;
 edge1 = (Edge)component1.FindObject("PROTO#.Features|REVOLVED(6)|EDGE * [CURVE 0
0] * [CURVE 2 0] {(299.4999999999999,279.2931927204815,-
 161.2499999999999)(299.4999999999999,0,322.4999999999999)(299.4999999999999,-
 279.2931927204814,-161.2500000000001) LINKED_BODY(1)}");
 objects2 = edge1;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2);
 double InternalRadOfFace = measureDistance1.Value;

 double avgDiaOfFace = (((ExternalRadOfFace - InternalRadOfFace)/2) + InternalRadOfFace) *
2;

 // ********* Length of internal profile stage 2 *********
 SubLocation = 6;
 SubSubLocation = 1;
 Line line5 = (Line)component1.FindObject("PROTO#.Sketches|SKETCH_007|Curve Line43"); //
Short line at top which represents the bulk material sticking out from the flange face
 SubSubLocation = 2;
 objects1[0] = line5;
 SubSubLocation = 3;
 measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1);
 double lengthOfInternalProfile2 = measureLength1.Value;
 SubSubLocation = 0;

 // ********* Length of internal profile stage 1 ***********
 SubLocation = 7;
 SubSubLocation = 1;
 Array.Resize(ref objects1, 4);
 Line line3 = (Line)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE
54 {3 (295.6918708717893,0,323.5)}");
 objects1[0] = line3;
 SubSubLocation = 2;
 Arc arc1 = (Arc)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE 57
{5 (290.8205505282297,-0,324.2466210044534)}");
 SubSubLocation = 2.1;
 objects1[1] = arc1;
 SubSubLocation = 3;
 Line line4 = (Line)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE
58 {3 (287.9933302293619,0,324.5)}");
 objects1[2] = line4;
 SubSubLocation = 4;
 Arc arc2 = (Arc)component1.FindObject("PROTO#.Features|INTERSECTION_CURVES(3)|CURVE 60
{5 (286.07869500536,0,324.4151502696375)}");
 objects1[3] = arc2;
 SubSubLocation = 5;
 measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1);
 SubSubLocation = 6;
 double lengthOfInternalProfile1 = measureLength1.Value;

 // ************ End of data collection ****************
 SubLocation = 8;
 measureLength1.Dispose();
 measureDistance1.Dispose();
 measureDistanceBuilder1.LengthObjects.Clear();
 measureDistanceBuilder1.Destroy();
 displayPart.FacetedBodies.DeleteTemporaryFacesAndEdges();

 #endregion

 #region Calculation of time
 location = 2;
 SubLocation = 1;
 clsMachiningTimeGen machTime = new clsMachiningTimeGen();
 int speedType = 30;

 // Turning data for face op
 double timeFace = machTime.turning(avgDiaOfFace, lengthOfFace, 3, machinabilityNumber,
speedType);
 // Turning data for internal profile op
 double timeInternalProfile = machTime.turning(InternalRadOfFace * 2, lengthOfInternalProfile1 +
lengthOfInternalProfile2, 3, machinabilityNumber, speedType);

 #endregion

 #region Calculation of tool changes and totals
 location = 3;
 SubLocation = 1;
 int toolChangesFace = (int)Math.Ceiling(timeFace / speedType);
 int toolChangesInternalProfile = (int)Math.Ceiling(timeInternalProfile / speedType);

Appendix A

116

 // **** Totals

 double toolChangeTotal = toolChangesFace + toolChangesInternalProfile + 1; // Changes durning
machining and initial

 double timeTotalForToolChanges = toolChangeTotal * toolChangeTime;

 timeTotalForPF010_TO_PP020 = timeFace + timeInternalProfile +
 timeTotalForToolChanges;

 #endregion

 #region Message
 location = 4;
 string message = "";
 message += "***** Data for PF010 to PF 020 *****";
 message += "\nDepth of cut (should be 1mm) = " + depthOfCut;
 message += "\nFace edge length (should be 22.8) = " + lengthOfFace;
 message += "\nExternal Rad of face (should be 354.3) = " + ExternalRadOfFace;
 message += "\nInternal Rad of face (should be 322.5) = " + InternalRadOfFace;
 message += "\nAvgDia of face = " + avgDiaOfFace;
 message += "\nLength of internal profile stage 1 (should be 13.85) = " +
 lengthOfInternalProfile1;
 message += "\nLength of internal profile stage 2 (should be 6.288) = " +
 lengthOfInternalProfile2;
 message += "\n\n ***** Times *****";
 message += "\nTime of face op = " + timeFace;
 message += "\nTime of internal profile op = " + timeInternalProfile;
 message += "\nTool changes total = " + toolChangeTotal;
 message += "\nTime total = " + timeTotalForPF010_TO_PP020;

 //MessageBox.Show(message, "Extraction data for 'machine_PF010_To_PF020()'");

 MachiningDataString += message;
 #endregion
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in machine_PF010_to_PF020()\nLocation: " + location
 + "\nSublocation: "+ SubLocation+"\nSubSubLocation: " + SubSubLocation + "\n\n";
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 return timeTotalForPF010_TO_PP020;
 }
 #endregion

A.3 Code to select and sort resources

This function determines the maximum size of the component at the current

time, the component size changes with each op therefore needs checking, then

it extracts all the resources related to the current operation that have large

enough working envolpes, then it sorts them based on reource cost rate.

 /// <summary>
 /// <para>This function uses a process ID to select usable machines and orders them in a datatable
 which is returns</para>
 /// <para>****************** Needs checking *******************</para>
 /// <para> Created on 14/09/11 - Last modified on 15/09/11 - last check on 15/09/11</para>
 /// </summary>
 /// <param name="processID"></param>
 /// <param name="supplyChainOption"></param>
 /// <returns></returns>
 private DataTable selectMachine(int processID, string supplyChainOption)
 {
 string sql, message;
 double xAxis = 0, yAxis = 0, zAxis = 0, location = 0, subLocation = 0 ;
 DataTable dtMachine = new DataTable();
 try
 {
 #region NX stuff
 location = 1;
 NXOpen.Assemblies.Component nullAssemblies_Component = null;
 Session theSession = Session.GetSession();
 PartLoadStatus partLoadStatus1;
 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out
 partLoadStatus1);

Appendix A

117

 Part workPart = theSession.Parts.Work;

 Part displayPart = theSession.Parts.Display;

 Unit nullUnit = null;
 DisplayableObject[] objects1 = new DisplayableObject[1];
 DisplayableObject objects2;
 DisplayableObject objects4;
 IBody[] objects3 = new IBody[1];

 MeasureDistance measureDistance1;
 MeasureLength measureLength1;
 Edge edge1;

 #endregion

 if (supplyChainOption.StartsWith("Forged"))
 {
 #region Forged x,y,z
 NXOpen.Assemblies.Component component2 =
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COM
 PONENT COC_PF010 1");
 theSession.Parts.SetWorkComponent(component2, out partLoadStatus1);
 location = 2;
 subLocation = 1;
 edge1 = (Edge)component2.FindObject("PROTO#.Features|LINKED_BODY(1)|EDGE * 784
REVOLVED(6) [CURVE 2 0] {(301.4999999999999,384.7750869014261,-
 222.1499999999999)(301.4999999999999,0,444.3)(301.4999999999999,-
 384.7750869014259,-222.1500000000002) LINKED_BODY(1)}");
 objects2 = edge1;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,
 objects2);
 xAxis = ((measureDistance1.Value) * 2) / 1000; // External canister dia
 yAxis = xAxis; // Outer radius of forged component when internal rad = 400 is
444.3

 // Length = 301.5
 subLocation = 2;
 Array.Resize(ref objects1, 2);
 Face face1 =
 (Face)component2.FindObject("PROTO#.Features|LINKED_BODY(1)|FACE 795 {(-
 3,0,0.0000000000001) LINKED_BODY(1)}");
 objects2 = face1;
 Face face2 = (Face)component2.FindObject("PROTO#.Features|REVOLVED(6)|FACE [CURVE 2 0]");
 objects4 = face2;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2, objects4);
 zAxis = (measureDistance1.Value) / 1000; // Canister length
 subLocation = 2.6;

 //MessageBox.Show("xAxis is(444.3*2): " + xAxis + " YAxis is(444.3*2):" + yAxis + " ZAxis
is(301.5):" + zAxis);
 #endregion Forged x,y,z
 }
 else if (supplyChainOption.StartsWith("HIP"))
 {
 #region HIP x,y,z
 NXOpen.Assemblies.Component component1 =
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COM
 PONENT HIP_02 1");
 location = 3;
 theSession.Parts.SetWorkComponent(component1, out partLoadStatus1);
 workPart = theSession.Parts.Work;
 subLocation = 1;
 // ***** External rad
 edge1 = (Edge)component1.FindObject("PROTO#.Features|REVOLVED(20)|EDGE * [CURVE 8
0] * [CURVE 9 0] {(357.17,366.6890123687919,-
 211.7079999999999)(357.17,0,423.416)(357.17,-366.6890123687918,-211.7080000000002)
 REVOLVED(20)}");
 objects2 = edge1;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit,
 objects2);
 double canisterDia = ((measureDistance1.Value) * 2) / 1000; // External canister
dia
 xAxis = canisterDia;
 yAxis = canisterDia;

 subLocation = 2;
 // ***** Canister length
 Line line1 =
 (Line)component1.FindObject("PROTO#.Sketches|SKETCH_001|Curve Line18");
 objects1[0] = line1;
 measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1);
 zAxis = (measureLength1.Value) / 1000; // Canister length

 subLocation = 3;
 //***** Resets the workpart back to the top assembly

Appendix A

118

 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out
 partLoadStatus1);

 partLoadStatus1.Dispose();
 #endregion HIP x,y,z
 }
 else if (supplyChainOption.StartsWith("Blisk"))
 {
 #region Forged x,y,z
 NXOpen.Assemblies.Component component1 =
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COM
 PONENT Blisk1_COS 1");
 location = 4;
 subLocation = 1;
 theSession.Parts.SetWorkComponent(component1, out partLoadStatus1);
 double cosBaseWidth = 0, cosExternalWidth = 0, cosExternalRadius = 0;
 foreach (Expression expression1 in workPart.Expressions)
 {
 if (!expression1.Name.StartsWith("p"))
 {
 if (expression1.Name.Equals("COS_Base_Width"))
 cosBaseWidth = expression1.Value;
 if (expression1.Name.Equals("COS_External_Width"))
 cosExternalWidth = expression1.Value;
 if (expression1.Name.Equals("COS_External_Radius"))
 cosExternalRadius = expression1.Value;
 }
 }
 xAxis = cosBaseWidth + cosExternalWidth; // Lath bed length therefore the width of the cos
 zAxis =cosExternalRadius; // the dia of the cos
 yAxis = zAxis; // dia of the cos
 #endregion Forged x,y,z
 }
 else
 {
 MessageBox.Show("Error in selectmachine() the supply chain does not start with Forged or HIP");
 throw new Exception();
 }
 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out
 partLoadStatus1);
 workPart = theSession.Parts.Work;
 partLoadStatus1.Dispose();
 location = 5;
 sql = "SELECT * FROM Type_Manf_Machines WHERE ID IN "
 + "(SELECT Machine_ID FROM Link_Process_To_Machine WHERE Process_ID = " + processID
 + ") AND X_Axis > " + xAxis + " AND Y_Axis > " + yAxis + " AND Z_Axis >" + zAxis + " AND Use
= true "
 + " ORDER BY Cost_Rate ASC, Investment_Cost ASC, Foot_Print_Area_Machine ASC,
Maintenance_Cost_Annual ASC"; // before order need AND X_Axis > dim AND Y_Axis > dim AND Z_Axis > dim
 dtMachine = completeSQL(sql);
 if (dtMachine.Rows.Count < 1) // Checks if the sql has returned somthing
 {
 MessageBox.Show(message = "There is no machine avaiable in the database that can be used to
complete this selectMachine() function.\nThe process ID is: " + processID + "\nThe last sql was: " + sql +
"\nPlease update the data base 'Type_Manf_Machines' table.\n\nThanks", "Error");
 writeToFile("log", message, "\n");
 throw new Exception();
 }
 }
 #region catch
 catch (Exception)
 {
 message = "There has been an error in selectMachine() function.\nLocation is: " + location +
"\nSublocation is: " + subLocation;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception(message);
 }
 #endregion
 return dtMachine;
 }

A.4 Code to generate the process time for turning

Below is the code that generates the operation process time for a turning

operation. The output is given as a double value and the input parameters are:

 avgDia – the median diameter for the turning cut

 length – the length of the cut in total

Appendix A

119

 cutType – the type of cut with rough, medium or finish to be inputted as 1,

2, 3 respectively

 machinabilityNumber – the machinability of the material

 speedType – the duration in min of tool life, either 10 for 10 min or 30 as

30 min

/// <summary>

/// <para>Calculates turning cut time in min.</para>

/// <para>CutType: 1 = Rough, 2 = Medium, 3 = Finish, Default = Rough.</para>

/// <para>MachinabilityNumber: 1 to 24, Default = 22.</para>

/// <para>SpeedType: 10 = 10 min tool life, 30 = 30 min tool life, Default =

30.</para>

/// </summary>

/// <param name="avgDia"></param>

/// <param name="length"></param>

/// <param name="cutType"></param>

/// <param name="machinabilityNumber"></param>

/// <param name="speedType"></param>

/// <returns></returns>

public double turning(double avgDia, double length, int cutType, int

machinabilityNumber, int speedType)

{

 string speedTypeString, sql;

 double speed, RPM, feedRate, cutTime;

 // Sets the speedTypeString to given value otherwise to default

 if (speedType == 10)

 speedTypeString = "Speed10min";

 else if (speedType == 30)

 speedTypeString = "Speed30min";

 else

 {

 speedTypeString = "Speed30min";

 }

 // Set the default machinability number to 22, if non specified

 if (machinabilityNumber < 1 || machinabilityNumber > 24)

 machinabilityNumber = 22;

 // sets the cuttype default, if non specified

 if (cutType < 1 || cutType > 3)

 cutType = 1;

 //Selects the feed from the database

 sql = "SELECT Feed FROM Data_TurningDocFeed WHERE TurningDoCFeedID = " +

 cutType;

 DataTable dtFeed = completeSQL(sql);

 // selects the speed for the given machinability number and cut type

 sql = "SELECT Speed10min, Speed30min FROM Data_TurningSurfaceSpeed WHERE

 MachinabilityNumber = "

 + machinabilityNumber + " AND DepthOfCutID = " + cutType;

 DataTable dtSpeed = completeSQL(sql);

 // Calculates data for final cut time

 speed = 1000 * Convert.ToDouble(dtSpeed.Rows[0][speedTypeString]);

 RPM = speed / (Math.PI * avgDia);

 feedRate = RPM * Convert.ToDouble(dtFeed.Rows[0]["Feed"]);

 cutTime = length / feedRate;

 return cutTime;

}

A.5 Code to generate the batch size

This function generates the batch size for batch the batch operations Pickel_001

and HIP_001.

Appendix A

120

 /// <summary>
 /// <para>When passed a process name this function will calculate and return the batch size for the process, otherwise it

 returns a default value of 1</para>
 /// </summary>
 /// <param name="process"></param>
 /// <param name="machineID"></param>
 /// <returns></returns>
 private int batchSize(string process, int machineID)
 {
 messageMain = "Entered batchSize()";
 double location = 0;
 string sql = "SELECT * FROM Type_Manf_Machines WHERE ID = " + machineID + " AND Use = true";
 DataTable dtmachine = completeSQL(sql);

 //MessageBox.Show("Entered batchsize()");
 #region NX stuff
 NXOpen.Assemblies.Component nullAssemblies_Component = null;
 Session theSession = Session.GetSession();
 PartLoadStatus partLoadStatus1;
 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1);

 Part workPart = theSession.Parts.Work;
 Part displayPart = theSession.Parts.Display;

 Unit nullUnit = null;
 DisplayableObject[] objects1 = new DisplayableObject[1];
 DisplayableObject objects2;
 IBody[] objects3 = new IBody[1];

 MeasureDistance measureDistance1;
 MeasureLength measureLength1;

 #endregion
 clsMachiningTimeGen machTime = new clsMachiningTimeGen();
 int batchSize = 0;

 sql = "SELECT * FROM test"; // Experimenting purposes
 DataTable dt1 = completeSQL(sql); // Experimenting purposes
 int size = (int)dt1.Rows[0]["BatchSize"]; // Experimenting purposes

 try
 {
 #region Switch
 switch (process)
 {
 case "Pickel_001":
 #region calculation of batch size

 // ***** External rad
 NXOpen.Assemblies.Component component1 =
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COMPONENT
 HIP_02 1");
 theSession.Parts.SetWorkComponent(component1, out partLoadStatus1);
 Edge edge1 = (Edge)component1.FindObject("PROTO#.Features|REVOLVED(20)|EDGE * [CURVE 8 0] *
 [CURVE 9 0] {(357.17,366.6890123687919,-211.7079999999999)(357.17,0,423.416)(357.17,-
 366.6890123687918,-211.7080000000002) REVOLVED(20)}");
 objects2 = edge1;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2);
 double canisterDia = ((measureDistance1.Value) * 2) / 1000; // External canister dia in meters

 //***** Resets the workpart back to the top assembly
 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1);
 partLoadStatus1.Dispose();

 //batchSize = machTime.pickel_Capacity(canisterDia);
 //MessageBox.Show("pickel cpacity = " + batchSize);

 double pickelEnvolope_X = (double)dtmachine.Rows[0]["X_Axis"];
 double pickelEnvolope_Y = (double)dtmachine.Rows[0]["Y_Axis"];

 double canisterArea = Math.PI * (Math.Pow(canisterDia / 2, 2)); //1.13
 double pickelEnvolope_Area = pickelEnvolope_X * pickelEnvolope_Y; // 16

 double allowanceFactor = 0.9;
 int capacity = (int)Math.Floor((pickelEnvolope_Area / canisterArea) * allowanceFactor);
 batchSize = capacity;
 break;
 #endregion
 case "HIP_001":
 #region calculation of batch size
 int vesselCapacity = 0;
 try
 {
 location = 1;
 // ***** External rad

Appendix A

121

 NXOpen.Assemblies.Component component2 =
 (NXOpen.Assemblies.Component)workPart.ComponentAssembly.RootComponent.FindObject("COMPONENT

 HIP_02 1");
 theSession.Parts.SetWorkComponent(component2, out partLoadStatus1);
 workPart = theSession.Parts.Work;
 edge1 = (Edge)component2.FindObject("PROTO#.Features|REVOLVED(20)|EDGE * [CURVE 8 0] *
 [CURVE 9 0] {(357.17,366.6890123687919,-211.7079999999999)(357.17,0,423.416)(357.17,-
 366.6890123687918,-211.7080000000002) REVOLVED(20)}");
 objects2 = edge1;
 measureDistance1 = workPart.MeasureManager.NewDistance(nullUnit, objects2);
 canisterDia = ((measureDistance1.Value) * 2) / 1000; // External canister dia

 location = 2;
 // ***** Canister length
 Line line1 = (Line)component2.FindObject("PROTO#.Sketches|SKETCH_001|Curve Line18");
 objects1[0] = line1;
 measureLength1 = workPart.MeasureManager.NewLength(nullUnit, objects1);
 double canisterHeight = (measureLength1.Value) / 1000; // Canister length

 location = 3;
 //***** Resets the workpart back to the top assembly
 theSession.Parts.SetWorkComponent(nullAssemblies_Component, out partLoadStatus1);
 partLoadStatus1.Dispose();

 //double pressureRequired = 138000000; // The temperature is material and canister dependant not vessel
 dependant; // Not used any more but keep
 //double temperatureRequired = 1173; // The temperature is material and canister dependant not vessel
 dependant // Not used any more but keep

 // vesselCapacity = machTime.HIP_VesselCapacity(canisterDia, canisterHeight, pressureRequired,
 temperatureRequired); // Old way of doing it
 double vesselHeight = 0;
 double packingFactor = 0.8;
 vesselHeight = (double)dtmachine.Rows[0]["Z_Axis"];

 vesselCapacity = (int)Math.Floor((vesselHeight / canisterHeight) * packingFactor);
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in batchSize() - HIP_001 switch statement.\n\nLocation: " +
 location;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion

 batchSize = vesselCapacity;
 break;
 #endregion
 default:
 batchSize = 1;
 break;
 }
 #endregion
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in batchSize() switch statement\nThe process name that has entered this
 function is: " + process + "\n\n";
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 //MessageBox.Show("batch size = " + batchSize + "\nThe process is: " + process);
 return batchSize;
 }

A.6 Code to execute generic data driven dynamic model

Below is the code that executes the generic data driven dynamic model. First the

integration code executes a batch file which executes the dynamic model within

a Java applet viewer that has all necessary permissions to access the database.

It then waits until the dynamic model has completed it optimisation after which

the integration code continues.

Appendix A

122

public void runAnylogic()

{

 try

 {

 string name = RunSim_Uni.bat";

 string processName = "appletviewer";

 Process.Start(path + name);

 System.Threading.Thread.Sleep(500); // wait 0.5 seconds

Process[] processes = Process.GetProcessesByName(processName);// Check for

bat file

 if (processes.Length == 0 || processes.Length > 1)

 {

MessageBox.Show("Function runAnylogic(), batProcess not loaded\nNumber of

processes is: "+ processes.Length, "Error");

 Exception ex = new Exception();

 }

 System.Threading.Thread.Sleep(1000); // wait one second

string windowName = "Applet Viewer:

dres_v2/Search_Resource_Capacities$Applet.class"; // window name

IntPtr hWndPtr = FindWindow(IntPtr.Zero, windowName); // find window

handle

 ShowWindow(hWndPtr, SW_MAXIMIZE); // maximise window

 System.Threading.Thread.Sleep(500); // Wait 0.5 seconds

 windowName = "Message"; // Window name

 hWndPtr = FindWindow(IntPtr.Zero, windowName); // find window handle

 SendMessage(hWndPtr, WM_SYSCOMMAND, SC_CLOSE, 0); // close window

 int loop = 0;

 bool initialLoop = false, checking = true;

 while (checking == true)

 {

 System.Threading.Thread.Sleep(1000);

 if (initialLoop == true || loop > 5)// Wait 5 second before checking

 {

 initialLoop = true;

 processes = Process.GetProcessesByName(processName);

 System.Threading.Thread.Sleep(1000); // wait one second

 if (processes.Length == 0)

 {

 break;

 }

 }

 loop++;

 }

 }

 #region catch

 catch (Exception e)

 {

 string message = "There has been an error in runAnylogic()\n\n";

 MessageBox.Show(message, "Error");

 writeToFile("log", message, "\n");

 throw new Exception("Error occurred", e);

 }

 #endregion

}

The batch file holds two lines, the first changes the directory that holds the

dynamic model and the second executes the dynamic model within a Java

applet viewer that contains permissions required by the dyanmic model to

access the database.

cd C:\.....Insert directory of dynamic model here

start appletviewer.exe -J-Djava.security.policy=allpermissions.txt

DRES_V2_Model_V13.html

Appendix A

123

A.7 Code to collect, calculate and order all data required for

the dynamic model

This code collects and calculates if necessary the data necessary for the

dynamic model. It then puts it into a table within the database so that the

dynamic model can use it. The Kanban equations are highlighted towards the

end of the code.

 /// <summary>
 /// <para>Populates Experiment_Op_Time_Data, Sim_Delay, Sim_Delay_Resource_Release, Sim_Resource_Allocation,
Sim_Resource_Release and Sim_Run tables in DB</para>
 /// </summary>
 private void sendDataToDBSection3()
 {
 double location = 0;
 double sublocation = 0;
 string sql = "" ;
 DataTable dt = new DataTable();
 DataTable dtMachineResourceQuantity = new DataTable();
 DataTable dtMachineResource = new DataTable("Machine_Resource");
 DataTable dtProcessFixture = new DataTable("Process_Fixture");
 int ID_Op_Ex = 0;
 int Kanban = 0;
 double Cycle_Time = 0;
 int batchQuantity = 1;
 int Kanban2 = 0;
 double productionRateSim = (double)ds.Tables["Production_Rate"].Rows[0]["Production_minutes"]; // the number of
components per minute
 //displayDataTable(ds.Tables["Op_Time"], "Op_Time");
 foreach (DataRow drTime in ds.Tables["Op_Time"].Rows)
 {
 #region Experiment_Op_Time_Data table population
 try //Try 1 - For Experiment_Op_Time_Data
 {
 sql = "INSERT INTO Experiment_Op_Time_Data (Experiment_ID, Op_Number, Op_Name, Supply_Chain_ID,
Supply_Chain_Option_ID, Method_ID, Process_ID, Machine_ID) VALUES ("
 + (int)drTime["Experiment_ID"] + " ,"
 + (int)drTime["Op_Number"] +", \""
 + drTime["Op_Name"].ToString() +"\", "
 + (int)drTime["Supply_Chain_ID"] +", "
 + (int)drTime["Supply_Chain_Option_ID"] +", "
 + (int)drTime["Method_ID"] + ", "
 + (int)drTime["Process_ID"] + ", "
 + (int)drTime["Machine_ID"] +")";
 executeNonSql(sql);
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 1. \nThe SQL
statement is: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

 #region Extraction of ID_Op_Ex
 try //Try 1-1 - extract ID_Op_Ex
 {
 sql = "SELECT ID FROM Experiment_Op_Time_Data WHERE Experiment_ID = " + (int)drTime["Experiment_ID"]
+ " AND Op_Number = " + (int)drTime["Op_Number"] + " ORDER BY ID ASC";
 dt = completeSQL(sql);
 ID_Op_Ex = (int)dt.Rows[0]["ID"];
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 1-1 extract ID_Op_Ex.
\nThe SQL statement is: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

Appendix A

124

 #region Extracts the number of resources connected to the machine and puts in to ds table

 try // Try block 1-2
 {
 sql = "SELECT * FROM List_Resources WHERE ID IN "
 + "(SELECT Resource_ID FROM Link_Machines_To_Resources WHERE ID IN "
 + "(SELECT Resource_Requirement_ID FROM Type_Manf_Machines WHERE Use = true AND ID = " +
drTime["Machine_ID"].ToString() + " ORDER BY Cost_Rate ASC))";
 dtMachineResource = completeSQL(sql);
 ds.Tables.Add(dtMachineResource);
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 1-2 extract Extracts the
number of resources connected to the machine. \nThe SQL statement is: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

 int numResourcesConnectedToMachine = dtMachineResource.Rows.Count; // the number of resources connected to
the chosen machine

 #region Extracts the number of fixtures connected to the process and puts in to ds table
 try
 {
 sql = "SELECT * FROM Type_Fixture WHERE ID IN "
 + "(SELECT Fixture_ID FROM Link_Process_To_Machine WHERE Process_ID = " +
drTime["Process_ID"].ToString() + " AND Machine_ID = " + drTime["Machine_ID"].ToString() + ")";
 dtProcessFixture = completeSQL(sql);
 ds.Tables.Add(dtProcessFixture);
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 1-3 Extracts the
number of fixtures connected to the process. \nThe SQL statement is: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

 int numProcessFixture = dtProcessFixture.Rows.Count; // the number of fixtures for process

 int NumberOfResources = 1 + numResourcesConnectedToMachine + numProcessFixture; // total number of
resources for the OP, Machine, resources connected to machine, fixtures connected to process

 #region Sim_Resource table population
 try // For Sim_Resource_Allocation
 {
 location = 0;
 sublocation = 0;
 for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for this OP
 {
 string Resource_Type = "";
 int Resource_ID = 0;
 int Resource_Quantity = 0;
 if (r == 1)
 {
 location = 1;
 sublocation = 0;
 Resource_Type = "Machine";
 Resource_ID = (int)drTime["Machine_ID"];
 Resource_Quantity = 1;
 }
 else if (r > 1 & r <= (numResourcesConnectedToMachine + 1))
 {
 location = 2;
 sublocation = 0;
 Resource_Type = "Machine_Resource";
 Resource_ID = (int)dtMachineResource.Rows[r - 2]["ID"];

 sql = "SELECT * FROM Link_Machines_To_Resources WHERE ID IN "
 + "(SELECT Resource_Requirement_ID FROM Type_Manf_Machines WHERE Use = true AND ID = " +
drTime["Machine_ID"].ToString() + ")";
 sublocation = 1;
 dtMachineResourceQuantity = completeSQL(sql);
 sublocation = 2;
 /*RQ = (int)dtMachineResourceQuantity.Rows[0]["Number_of_resources"];
 sublocation = 3;*/
 //displayDataTable(dtMachineResourceQuantity, "number of resources for machine resources");

Appendix A

125

 sublocation = 4;

 Resource_Quantity = Convert.ToInt32(dtMachineResourceQuantity.Rows[0]["Number_of_resources"]);//
stupid program is not recognising the column name
 //MessageBox.Show(Resource_Quantity.ToString());

 }
 else if (r > (numResourcesConnectedToMachine + 1))
 {
 location = 3;
 sublocation = 0;
 Resource_Type = "Fixture";
 Resource_ID = (int)dtProcessFixture.Rows[r - (numResourcesConnectedToMachine + 2)]["ID"];
 Resource_Quantity = 1;
 }

 location = 4;
 sublocation = 0;
 sql = "Insert INTO Sim_Resource (ID_Op_Ex, Resource_Number, Resource_Type, Resource_ID,
Resource_Quantity) VALUES ("
 + ID_Op_Ex + ", "
 + r + ", \""
 + Resource_Type + "\", "
 + Resource_ID + ", "
 + Resource_Quantity + ")";
 executeNonSql(sql);
 }
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() - For Sim_Resource. \nThe last
SQL statement used was: " + sql;
 message += "\nlocation: " + location + "\nSubloaction: " + sublocation;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

 double OpTime = 0;
 int NumberOfDelays = 3; //**** this is where the number of delays per op can be controled - currently set at 3 for
setup, run, setdown
 for (int delay = 1; delay <= NumberOfDelays; delay++) // ************** Need to populate the for num of loops in the for
block
 {
 // ********************************
 // This is where the code would need to be if i want to have different delay bits to allow release and allocation of
resources
 // The little bit of code below does it for setup and run currently
 // ********************************

 #region Determineation of time for delay
 double timeMode = 0;
 string delayType = "";
 if (delay == 1)
 {
 timeMode = (double)drTime["Op_Setup_Time"];
 OpTime += timeMode;
 delayType = "Setup";
 }
 if (delay == 2)
 {
 timeMode = (double)drTime["Op_Run_Time"];
 OpTime += timeMode;
 delayType = "Run";
 }
 if (delay == 3)
 {
 timeMode = (double)drTime["Op_Setup_Time"];
 OpTime += timeMode;
 delayType = "Set down";
 }

 batchQuantity = (int)drTime["OP_Batch_Size"]; // ************** Need to check this
 double timeMinChange = 0.95; // ************** Need to populate this
 double timeMin = timeMode * timeMinChange;

 double timeMaxChange = 1.05; // ************** Need to populate this
 double timeMax = timeMode * timeMaxChange;
 #endregion

 #region Sim_Delay table population
 try //Try 2 - For Sim_Delay
 {

Appendix A

126

 sql = "INSERT INTO Sim_Delay (ID_Op_Ex, Delay_Number, Batch_Quantity, Delay_Time_Mode,
Delay_Time_Min, Delay_Time_Max, Description) VALUES ("

 + ID_Op_Ex + ", " // ID
 + delay + ", " // Delay num
 + batchQuantity + ", " // batch quantity
 + timeMode + ", " // time mode
 + timeMin + ", " // time min
 + timeMax + ", \"" // time max
 + delayType + "\")";
 executeNonSql(sql);
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 2 - For Sim_Delay.
\nThe SQL statement is: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

 #region Sim_Delay_Resource_Release and sim_delay_resource_allocation tables population
 bool anyResourceToRelease = true; //**************** This need to be determined automaticllay
 if (anyResourceToRelease)
 {
 location = 0;
 sublocation = 0;
 //****
 // There needs to be a for block here so that more that one resource can be released
 // Also this is the location where resources can be set here
 // ****
 try //Try 3 - For Sim_Delay_Resource_Release and Sim_Delay_Resource_Allocation
 {
 location = 1;
 DataTable dtSimDelay = new DataTable();
 sql = "SELECT ID FROM Sim_Delay WHERE ID_Op_Ex = " + ID_Op_Ex + " AND Delay_Number = " +
delay;
 dtSimDelay = completeSQL(sql);
 sublocation = 1;
 int ID = Convert.ToInt32(dtSimDelay.Rows[0]["ID"]);
 sublocation = 1.1;
 // Sim delay resource allocation
 for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for
this OP
 {
 sublocation = 1.2;
 // need function here to determine the quantity of resource to apply
 // resource number and delay ID (and maybe ID_OP_EX) would be the inputs
 int rQuantity = resourceQuantity(ID_Op_Ex, r);
 sublocation = 1.3;
 sql = "INSERT INTO Sim_Delay_Resource_Allocation (ID_Delay, Resource_Number, Resource_Quantity)
VALUES ("
 + ID + ", " // ID
 + r + ", " // Resource number
 + rQuantity + ")"; // Resource quantity
 sublocation = 1.4;
 executeNonSql(sql);
 }
 location = 2;
 // sim delay resource release
 for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for
this OP
 {
 sublocation = 2.1;
 // need function here to determine if the resource needs releaseing at this point.
 // the resource number and the delay ID would be the inputs to the function
 int resourceNumToRelease = (int)dtSimDelay.Rows[0]["ID"];
 if (resourceNumToRelease > 0)
 {
 sql = "INSERT INTO Sim_Delay_Resource_Release (ID_Delay, Resource_Num_To_Release) VALUES
("
 + (int)dtSimDelay.Rows[0]["ID"] + ", " // ID
 + r + ")"; // Resource num to release
 executeNonSql(sql);
 }
 }
 location = 3;
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 3 - For
Sim_Delay_Resource_Release. \nThe SQL statement is: " + sql;
 message += "\nLocation: " + location + "\nSublocation: " + sublocation;

Appendix A

127

 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");

 throw new Exception("Error occurred", e);
 }
 #endregion
 }
 #endregion
 }

 #region Sim_Resource_Allocation
 try //Try 4 - For Sim_Resource_Allocation
 {
 double utilMaxStatic = 0.7; //************** Need to populate this

 int capStatic = (int)(Math.Ceiling(productionRateSim * OpTime) / utilMaxStatic / batchQuantity); // Replaced
BatchQuantity
 if (capStatic < 1)
 {
 capStatic = 1;
 }
 Kanban += capStatic
 Cycle_Time += OpTime;

 for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for this OP
 {
 capStatic = capStatic * resourceQuantity(ID_Op_Ex, r);

 sql = "INSERT INTO Sim_Resource_Allocation (ID_Op_Ex, Resource_Number, Resource_Cap_Dynamic,
Resource_Cap_Static, Resource_Utilisation, Resource_Util_Max_Static) VALUES ("
 + ID_Op_Ex + ", " // ID
 + r + ", " // Resource number
 + 0 + ", " // Cap dynamic iniate to zero
 + capStatic + ", " // Cap static
 + 0 + ", " // Util dynamic, iniate to zero
 + utilMaxStatic + ")"; // Util max static
 executeNonSql(sql);
 }
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 4 - For
Sim_Resource_Allocation. \nThe last SQL statement used was: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion

 #region Sim_Resource_Release table population
 try //Try 5 - For Sim_Resource_Release
 {
 for (int r = 1; r <= NumberOfResources; r++)// This need to be a foreach loop of the resources required for this OP
 {
 sql = "INSERT INTO Sim_Resource_Release (ID_Op_Ex, Resource_Num_To_Release) VALUES ("
 + ID_Op_Ex + ", " // ID
 + r +")"; // Resource num to release
 executeNonSql(sql);
 }
 }
 #region catch
 catch (Exception e)
 {
 string message = "There has been an error in section 3 sendDataToDBSection3() try block 5 - For
Sim_Resource_Release. \nThe SQL statement is: " + sql;
 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion
 }

 #region Sim_Run table population
 try //Try 6 - Sim Run Kanban value
 {
 Kanban2 = (int)Math.Ceiling(Cycle_Time / (1 / productionRateSim));
 //MessageBox.Show("cycle time is: " + Cycle_Time + "\nKanban value2 is: " + Kanban2);
 sql = "UPDATE Sim_Run SET Kanban_Static = " + Kanban +", Kanban_Static_Two = " + Kanban2;
 executeNonSql(sql);
 }
 #region catch
 catch (Exception e)
 {

Appendix A

128

 string message = "There has been an error in section 3 sendDataToDBSection3() try block 6 - Sim Run Kanban
value. \nThe SQL statement is: " + sql;

 MessageBox.Show(message, "Error");
 writeToFile("log", message, "\n");
 throw new Exception("Error occurred", e);
 }
 #endregion
 #endregion
 }

129

Appendix B

This appendix contains data for surface finish and hole tolerance grades and the

associated manufacturing methods that can achieve the grades. All the data

contained in this appendix section has been collected from public sources.

B.1 Surface finish

Table 7 contains a list of surface finish grades and Table 8 contains a list of

manufacturing processes and the associated surface finish grades that they can

achieve. The green area represents normally achievable surface grades and the

gray areas represent surface grades that can be achieved under the correct

circumstances. All this data is contained within the manufacturing database.

Table 7: Surface finish grade with description

Surface finish Grade

N1 Small Tight / fine surface finish

N2

N3

N4

N5

N6

N7 Mid

N8

N9

N10

N11

N12 Large Loose / Rough surface finish

Description

Appendix A

130

Table 8: Manufacturing methods associated to achievable surface finish grades

B.2 Hole tolerance

Table 9 contains a list of hole tolerance grades. A graph of tolerance (mm)

against dimension size (mm) for different manufacturing methods and tolerance

grades is shown in Figure 66. All this data is contained within the manufacturing

database.

Table 9: Hole tolerance grades with description

50 25 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.05 0.025

N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1

Sawing

Planning

Drilling

Chemical milling

Electrical discharge machine

Milling

Broaching

Reaming

Electron Beam

Laser

Electro-chemical

Boring

Turning

Grinding

Honing

Electro-polish

Polishing

Lapping

Super finishing

Sand casting

Hot rolling

Forging

Investment casting

Extruding

Cold rolling

Drawing

Die casting

Manufacturing process

Surface finish (Micro m / Grade)

Hole tolerance grade

H6 Small Tight tolerance

H7

H8

H9

H10 Mid

E9

D9

D10 Large Loose tolerance

Description

Appendix A

131

Figure 66: Graph of tolerance against dimension size for different manufacturing methods and
tolerance grades

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

To
le

ra
n

ce
 (

m
m

)

Dimensioin size (mm)

Manufacturing method and tolerance grade plotted on a graph of tolerance vs
dimension size

Drilling method

Milling method

Boring and turning

method
Reaming method

D10 tolerance

D9 tolerance

E9 tolerance

H10 tolerance

H9 tolerance

H8 tolerance

H7 tolerance

H6 tolerance

133

References

Abouel Nasr, E. S. and Kamrani, A. K. (2006). "A new methodology for extracting
manufacturing features from CAD system." Computers & Industrial
Engineering 51(3): 389-415.

AbouRizk, S. and Mather, K. (2000). "Simplifying Simulation Modelling through
Integration with 3D CAD." Journal of Construction Engineering and
Management 126(6): 475-483.

Andersson, J., Bj, et al. (2012). Framework for ecolabeling using discrete event
simulation. Proceedings of the 2012 Symposium on Emerging
Applications of M&S in Industry and Academia Symposium. Orlando,
Florida, Society for Computer Simulation International: 1-8.

Anosike, A. I. and Zhang, D. Z. (2009). "An agent-based approach for integrating
manufacturing operations." International Journal of Production
Economics 121(2): 333-352.

Asiedu, Y. and GU, P. (1998). "Product life cycle cost analysis: state of the art
review." International Journal of Production Research 36(4): 883-908.

Askarany, D., Yazdifar, H., et al. (2010). "Supply chain management, activity-
based costing and organisational factors." International Journal of
Production Economics 127(2): 238-248.

Aytug, H. and Dogan, C. A. (1998). "A framework and a simulation generator for
kanban-controlled manufacturing systems." Computers & Industrial
Engineering 34(2): 337-350.

Babic, B., Nesic, N., et al. (2008). "A review of automated feature recognition
with rule-based pattern recognition." Computers in Industry 59(4): 321-
337.

Babic, B. R., Nesic, N., et al. (2011). "Automatic feature recognition using
artificial neural networks to integrate design and manufacturing: Review
of automatic feature recognition systems." Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 25: 289-304.

Barton, P., Bryan, S., et al. (2004). "Modelling in the economic evaluation of
health care: selecting the appropriate approach." Journal of Health
Services Research & Policy 9(2): 110-118.

Beamon, B. M. (1998). "Supply chain design and analysis:: Models and
methods." International Journal of Production Economics 55(3): 281-294.

Beck, U. v. and Nowak, J., W (2000). The merger of discrete event simulation
with activity based costing for cost estimation in manufacturing
environments.

Birkin, M. and Wu, B. (2012). A Review of Microsimulation and Hybrid Agent-
Based Approaches. Agent-Based Models of Geographical Systems. A. J.
Heppenstall, A. T. Crooks, L. M. See and M. Batty, Springer Netherlands:
51-68.

Bowersox, D. J. and Closs, D. J. (1996). Logistical management: The integrated
supply chain process. New York, McGraw-Hill.

Brousseau, E. and Eldukhri, E. (2011). "Recent advances on key technologies
for innovative manufacturing." Journal of Intelligent Manufacturing 22(5):
675-691.

Brown, K. N., McMahon, C. A., et al. (1995). "Features, aka the semantics of a
formal language of manufacturing." Research in Engineering Design 7(3):
151-172.

References

134

Brown, N. and Powers, S. (2000). Simulation in a box (a generic reusable
maintenance model). Winter Simulation Conference 2000. Orlando USA.
1: 1050-1056 vol.1051.

Brown, N. A. (2010). Model flexibility: Development of a generic data-driven
simulation. Winter Simulation Conference 2010. Baltimore USA: 10.

Cao, B., Farr, R., et al. (2005). Data-driven Simulation of the Extended
Enterprise. 18th International Conference on Production Research.

Caro, J. J., Möller, J., et al. (2010). "Discrete Event Simulation: The Preferred
Technique for Health Economic Evaluations?" Value in Health 13(8):
1056-1060.

Cassandras, C. G. and Lafortune, S. (2008). Introduction to Discrete Event
Systems - Second edition, Springer.

Chen, Y., Mockus, L., et al. (2012). "Simulation-optimization approach to clinical
trial supply chain management with demand scenario forecast."
Computers & Chemical Engineering 40(0): 82-96.

Cheng, Z., Qiu, X., et al. (2012). An Agent-Based Artificial Transportation
System Framework for H1N1 Transmission Simulation. System
Simulation and Scientific Computing. T. Xiao, L. Zhang and S. Ma,
Springer Berlin Heidelberg: 313-321.

Chu, X., Tang, C., et al. (2011). "Identification of machining features based on
available resources of cutting tools." International Journal of Production
Research 50(15): 4141-4157.

Cooper, R. (1990). "Cost classification in unit based activity based manufatcuring
cost systems." Journal of Cost Management for the Manufacturing
Industry.

Cooper, R. and Kaplan, R., S (1988). "How cost accounting distorts product
costs " Management Accounting 69(10): 20-27.

Cooper, R. and Kaplan, R., S (1988). Measure costs right: Make the right
decisions. Harvard Business Review: 97-98.

Costa, R. F. d. S., Montevechi, J. A. B., et al. (2010). Discrete Event Simulation
and Activity Based Costing to aid the decision making process in a
manufacturing cell. The Internacional Workshop on Applied Modeling &
Simulation. Rio de Janeiro.

Creighton, D. and Nahavandi, S. (2003). "Application of discrete event simulation
for robust system design of a melt facility." Journal of Robotics and
computer integrated manufacturing 19: 469 - 477.

Crooks, A. and Heppenstall, A. (2012). Introduction to Agent-Based Modelling.
Agent-Based Models of Geographical Systems. A. J. Heppenstall, A. T.
Crooks, L. M. See and M. Batty, Springer Netherlands: 85-105.

Curran, R., Gomis, G., et al. (2007). "Integrated digital design for manufacture for
reduced life cycle cost." International Journal of Production Economics
109(1-2): 27-40.

Curran, R., Raghunathan, S., et al. (2004). "Review of aerospace engineering
cost modelling: The genetic causal approach." Progress in Aerospace
Sciences 40(8): 487-534.

D'Apice, C., Herty, M., et al. (2010). Modeling, Simulation, and Optimization of
Supply Chains: A Continuous Approach, SIAM.

Dean, E., B (1995). Parametric Cost Deployment. Proceedings of the Seventh
Symposium on Quality Function Deployment, MI, USA.

Deb, S., para-Castillo, J. R., et al. (2011). "An Integrated and Intelligent
Computer-Aided Process Planning Methodology for Machined
Rotationally Symmetrical Parts." International Journal of Advanced
Manufacturing Systems 13(1).

References

135

Denkena, B., Rudzio, H., et al. (2006). "Methodology for Dimensioning
Technological Interfaces of Manufacturing Process Chains." CIRP Annals
- Manufacturing Technology 55(1): 497-500.

Dowlatshahi, s. (1992). "Product design in a concurrent engineering
enviroment:an optimization approach." Journal of Production Research
30(8): 1803-1818.

Epstein, J. M. (2011). Generative Social Science: Studies in Agent-Based
Computational Modeling, Princeton University Press.

Farmer, J. D. and Foley, D. (2009). "The economy needs agent-based
modelling." Nature 460(7256): 685-686.

Farrell, R. S. and Simpson, T. W. (2009). "Improving cost effectiveness in an
existing product line using component product platforms1." International
Journal of Production Research 48(11): 3299-3317.

Feng, S. C. (2003). "A machining process planning activity model for systems
integration." Journal of Intelligent Manufacturing 14(6): 527-539.

Fischbein, S. A. and Yellig, E. (2011). Why Is It So Hard to Build and Validate
Discrete Event Simulation Models of Manufacturing Facilities?

Planning Production and Inventories in the Extended Enterprise. K. G. Kempf, P.
Keskinocak and R. Uzsoy, Springer New York. 152: 271-288.

Forrester, J., W (1961). Industrial Dynamics. Cambridge, Massachusetts, The
MIT Press.

Fu, M. W., Ong, S. K., et al. (2003). "An approach to identify design and
manufacturing features from a data exchanged part model." Computer-
Aided Design 35(11): 979-993.

Galea, S., Hall, C., et al. (2009). "Social epidemiology and complex system
dynamic modelling as applied to health behaviour and drug use
research." International Journal of Drug Policy 20(3): 209-216.

Gao, J., Zheng, D., et al. (2004). "Mathematical representation of feature
conversion for CAD/CAM system integration." Journal of Robotics and
Computer-Integrated Manufacturing 20(5): 457-467.

García-Crespo, Á., Ruiz-Mezcua, B., et al. (2011). "A review of conventional and
knowledge based systems for machining price quotation." Journal of
Intelligent Manufacturing 22(6): 823-841.

Giachetti, R. E. (1998). "A decision support system for material and
manufacturing process selection." Journal of Intelligent Manufacturing
9(3): 265-276.

Guangru, H. and Xiaoliang, F. (2010). An Intelligent Approach of Obtaining
Feasible Machining Processes and Their Selection Priorities for Features
Based on Neural Network. Computational Intelligence and Software
Engineering (CiSE), 2010 International Conference on.

Gupta, S. K., Chen, Y., et al. (2003). "A system for generating process and
material selection advice during embodiment design of mechanical
components." Journal of Manufacturing Systems 22(1): 28-45.

Hammami, R., Frein, Y., et al. (2009). "A strategic-tactical model for the supply
chain design in the delocalization context: Mathematical formulation and
a case study." International Journal of Production Economics 122(1):
351-365.

Han, J., Pratt, M., et al. (2000). "Manufacturing feature recognition from solid
models: a status report." Robotics and Automation, IEEE Transactions on
16(6): 782-796.

Huang, B. J., Hsu, P. C., et al. (2010). "System dynamic model and charging
control of lead-acid battery for stand-alone solar PV system." Solar
Energy 84(5): 822-830.

References

136

Jahangirian, M., Eldabi, T., et al. (2010). "Simulation in manufacturing and
business: A review." European Journal of Operational Research 203(1):
1-13.

Jaya Suteja, T., Prasad KDV, Y., et al. (2013). "A Framework for Life Cycle Cost
Estimation of a Product Family at the Early Stage of Product
Development." Advanced Materials Research.

Jenab, K. and Liu, D. (2009). "A graph-based model for manufacturing
complexity." International Journal of Production Research 48(11): 3383-
3392.

Jinks, S., Scanlan, J. P., et al. (2008). Near Net-shape Manufacturing Costs.
15th ISPE International Conference on Concurrent Engineering. R.
Curran, S.-Y. Chou and A. Trappey. Belfast, Springer.

Johnson, G. A. and Malucci, L. (1999). Shift to supply chain reflects more
strategic approach. APICS - The performance advantage. October: 28-
31.

Kang, M., Han, J., et al. (2003). "An approach for interlinking design and process
planning." Journal of Materials Processing Technology 139(1-3): 589-
595.

Kendall, K., Mangin, C., et al. (1998). "Discrete event simulation and cost
analysis for manufacturing optimization of an automotive LCM
component." Composites, Part A 29(A)(7): 711-720.

Kibira, D. and McLean, C. R. (2007). Generic simulation of automotive assembly
for interoperability testing. Proceedings of the 39th conference on Winter
simulation: 40 years! The best is yet to come. Washington D.C., IEEE
Press: 1035-1043.

Kim, B.-I., Jeong, S., et al. (2009). "A Layout- and Data-Driven Generic
Simulation Model for Semiconductor Fabs." Semiconductor
Manufacturing, IEEE Transactions on 22(2): 225-231.

Knoll, J. M. and Heim, J. A. (2000). Ensuring the successful adoption of discrete
event simulation in a manufacturing environment. Winter Simulation
Conference.

Kumar, M. and Rajotia, S. (2005). "Development of a generative CAPP system
for axisymmetric components for a job shop environment." The
International Journal of Advanced Manufacturing Technology 27(1): 136-
144.

Law, A., M and Kelton, W., David (1992). Simulation Modeling and Analysis.
Singapore, Mc Graw Hill.

Layer, A., Brinke, E. T., et al. (2002). "Recent and future trends in cost
estimation." International Journal of Computer Integrated Manufacturing
15: 499-510.

Lee, T.-R. and Kao, J.-S. (2001). "Application of simulation technique to activity-
based costing of agricultural systems: a case study." Agricultural
Systems 67(2): 71-82.

Leitão, P. (2009). "Agent-based distributed manufacturing control: A state-of-the-
art survey." Engineering Applications of Artificial Intelligence 22(7): 979-
991.

Li, X., Zhang, C., et al. (2010). "An agent-based approach for integrated process
planning and scheduling." Expert Systems with Applications 37(2): 1256-
1264.

Liggett, P., H, R, Trevino , J., et al. (1992). "Activity-based cost management
systems in an advanced manufacturing enviroment." Economic and
Financial Justification of Advanced Manufacturing Technologies.

Loh, N. L. and Sia, K. Y. (1992). "An overview of hot isostatic pressing." Journal
of Materials Processing Technology 30(1): 45-65.

References

137

Marchetta, M. G. and Forradellas, R. Q. (2010). "An artificial intelligence
planning approach to manufacturing feature recognition." Computer-
Aided Design 42(3): 248-256.

Marri, H. B., Gunasekaran, A., et al. (1998). "Computer-aided process planning:
A state of art." The International Journal of Advanced Manufacturing
Technology 14(4): 261-268.

Marsh, R., Jonik, M., et al. (2010). "Modelling an assembly process using a close
coupled generative cost model and a discrete event simulation."
International Journal of Computer Integrated Manufacturing 23(3): 257-
269.

McLean, C., Jones, A., et al. (2002). An architecture for a generic data-driven
machine shop simulator. 2: 1108-1116.

Mikko, V., Marko, S., et al. (2007). "Detailed cost modelling: a case study in
warehouse logistics." International Journal of Physical Distribution and
Logistics Management 37(3).

Miles, B. L. and Swift, K. (1998). "Design for Manufacture and Assembly."
Manufacturing Engineering: 221-224.

Miller, G. R., Cable, J. M., et al. (2012). "Understanding ecohydrological
connectivity in savannas: a system dynamics modelling approach."
Ecohydrology 5(2): 200-220.

Min, H. and Zhou, G. (2002). "Supply chain modeling: past, present and future."
Computers & Industrial Engineering 43(1-2): 231-249.

Moorthy, S. (1999). Integrating the CAD model with dynamic simulation:
Simulation Data Exchange. Winter Simulation Conference.

Murray-Rust, D., Dendoncker, N., et al. (2011). "Conceptualising the analysis of
socio-ecological systems through ecosystem services and agent-based
modelling." Journal of Land Use Science 6(2-3): 83-99.

Nasereddin, M., Mullens, M. A., et al. (2007). "Automated simulator
development: A strategy for modelling modular housing production."
Journal of Automation in Construction 16(2): 212-223.

Neugebauer, M., Plonnigs, J., et al. (2004). Automated modelling of LonWorks
building automation networks. IEEE International Workshop on Factory
Communication Systems.

Newnes, L. B., Mileham, A. R., et al. (2008). "Predicting the whole-life cost of a
product at the conceptual design stage." Journal of Engineering Design
19(2): 99-112.

Niazi, A., Dia, J. S., et al. (2006). "Product cost estimation: Technique
classification and methodology review." Journal of Manufacturing Science
and Engineering 128: 563-575.

Norling, E. (2007). Contrasting a System Dynamics Model and an Agent-Based
Model of Food Web Evolution. Multi-Agent-Based Simulation VII. L.
Antunes and K. Takadama, Springer Berlin Heidelberg. 4442: 57-68.

Ouelhadj, D. and Petrovic, S. (2009). "A survey of dynamic scheduling in
manufacturing systems." Journal of Scheduling 12(4): 417-431.

Özbayrak, M., Akgün, M., et al. (2004). "Activity-based cost estimation in a
push/pull advanced manufacturing system." International Journal of
Production Economics 87(1): 49-65.

Paprotny, I., Zhao, W., et al. (1999). Reducing model creation cycle time by
automated conversion of a CAD AHMS layout design. Winter Simulation
Conference.

Park, J. and Simpson, T. W. (2007). "Toward an activity-based costing system
for product families and product platforms in the early stages of
development." International Journal of Production Research 46(1): 99-
130.

References

138

Park, S. C. (2003). "Knowledge capturing methodology in process planning."
Computer-Aided Design 35(12): 1109-1117.

Persson, F. and Araldi, M. (2009). "The development of a dynamic supply chain
analysis tool—Integration of SCOR and discrete event simulation."
International Journal of Production Economics 121(2): 574-583.

Phanden, R. K., Jain, A., et al. (2011). "Integration of process planning and
scheduling: a state-of-the-art review." International Journal of Computer
Integrated Manufacturing 24(6): 517-534.

Pidd, M. (1992). "Guidelines for the design of data driven generic simulators for
specific domains." Simulation 59(4): 237-243.

Pidd, M. (2009). Tools for thinking: modelling in management science.
Chichester, John Wiley.

Pidd, M. and Carvalho, A. (2006). "Simulation software: not the same yesterday,
today or forever." Journal of simulation 1(1).

Qudrat-Ullah, H. and Seong, B. S. (2010). "How to do structural validity of a
system dynamics type simulation model: The case of an energy policy
model." Energy Policy 38(5): 2216-2224.

Randell, L. G. and Bolmsjo, G. S. (2001). Database driven factory simulation: a
proof-of-concept demonstrator. Winter Simulation Conference.

Robinson, S. (2004). Simulation: The practice of model development and use.
Chichester, John Wiley and Sons, Ltd.

Robinson, S., Brooks, R., et al. (2010). Conceptual Modeling for Discrete-Event
Simulation, CRC Press, Inc.

Rolls-Royce Plc (2010). Annual report 2010 - Teamwork and Technology.
London, Rolls-Royce Group Plc.

Rush, C. and Roy, R. (2000). Analysis of cost estimation processes used within
a concurrent engineering environment throughout a product life cycle.
Seventh ISPE International Conference on Concurrent Engineering:
Research and Application, Lyon, France, Technomic.

Rush, C. and Roy, R. (2001). "Expert judgement in cost estimating: modelling
the reasoning process." Concurrent Engineering Research Application
9(4).

Sajadi, S., Seyed Esfahani, M., et al. (2011). "Production control in a failure-
prone manufacturing network using discrete event simulation and
automated response surface methodology." The International Journal of
Advanced Manufacturing Technology 53(1): 35-46.

Salehi, M. and Bahreininejad, A. (2011). "Optimization process planning using
hybrid genetic algorithm and intelligent search for job shop machining."
Journal of Intelligent Manufacturing 22(4): 643-652.

Savory, P. and Williams, R. (2010). "Estimation of cellular manufacturing cost
components using simulation and activity-based costing." Journal of
Industrial Engineering and Management 3(1).

Savory, P. A., Williams, R. E., et al. (2001). "Combining Activity-Based Costing
with the Simulation of a Cellular Manufacturing System." Journal of
Design and Manufacturing Automation 1(3): 221-229.

Scanlan, J., Rao, A., et al. (2006). "DATUM project: cost estimating environment
for support of aerospace design decision making." Journal of Aircraft
43(4): 1022-1028.

Shah, J. J. (1991). "Conceptual development of form features and feature
modelers." Research in Engineering Design 2: 93-108.

Sharda, B. and Bury, S. J. (2008). A discrete event simulation model for
reliability modeling of a chemical plant. Simulation Conference, 2008.
WSC 2008. Winter.

References

139

Sokolowski, J. A. and Banks, C. M. (2011). Principles of Modeling and
Simulation: A Multidisciplinary Approach, John Wiley & Sons.

Son, Y. J. and Wysk, R. A. (2001). "Automatic simulation model generation for
simulation-based, real-time shop floor control." Journal of Computers in
Industry 45(3): 291-308.

Son, Y. J., Wysk, R. A., et al. (2002). "Simulation-based shop floor control:
formal model, model generation and control interface." Journal of IIE
Transactions 35: 20.

Spedding, T. A. and Sun, G. Q. (1999). "Application of discrete event simulation
to the activity based costing of manufacturing systems." International
Journal of Production Economics 58(3): 289-301.

Srikantappa, A., B and Crawford, R., H (1994). "Automatic part coding based on
inter-feature relationship." 215-237.

Stewart, R. D., Wyskida, R. M., et al., Eds. (1995). Cost Estimator's Reference
Manual. Johan Wiley & sons Inc. New York.

Taiichi, O. (1988). Toyota production system - beyond large scale production,
Productivity Press.

Tammineni, S. V. (2007). Designer driven cost modelling Doctor of Philosophy
Ph.D., University of Southampton.

Tammineni, S. V., Rao, A. R., et al. (2009). "A knowledge-based system for cost
modelling of aircraft gas turbines." Journal of Engineering Design 20(3):
289 - 305.

Tammineni, S. V., Scanlan, J. P., et al. (2007). Knowledge based system for cost
modelling. 7th AIAA Aviation Technology, Integration and Operations
Conference (ATIO), Belfast, Northern Ireland, AIAA.

Tannock, J., Cao, B., et al. (2007). "Data-driven simulation of the supply-chain--
Insights from the aerospace sector." International Journal of Production
Economics 110(1-2): 70-84.

Taylor, I. (1998). Cost engineering: A feature based approach. 85th Meeting of
the AGARD Structures and Material Panel, Aalborg,Denmark.

Tsai, W.-H., Shen, Y.-S., et al. (2012). "Integrating information about the cost of
carbon through activity-based costing." Journal of Cleaner Production
36(0): 102-111.

Tse, M. and Gong, M. (2009). "Recognition of idle resources in time-driven
activity-based costing and resource consumption accounting models."
Journal of applied management accounting research 7(2): 13.

Turner, R., Madachy, R., et al. (2012). Modeling kanban processes in systems
engineering. Software and System Process (ICSSP), 2012 International
Conference on.

Ulrich, K., T and Pearson, S., A (1993). Does product design really determine
80% of manufacturing cost?, Cambridge, MA : Alfred P. Sloan School of
Management, Massachusetts Institute of Technology. .

Vanguard SoftwareTM Corporation. (2011). "Vanguard Software." Retrieved 1st
December 2011, from www.vanguardsw.com.

Venkateswaran, J., Young-Jun, S., et al. (2004). Hierarchical production
planning using a hybrid system dynamic-discrete event simulation
architecture. Winter Simulation Conference.

Verma, A. K. and Rajotia, S. (2010). "A review of machining feature recognition
methodologies." International Journal of Computer Integrated
Manufacturing 23(4): 353-368.

Wainer, G. A. (2009). Discrete-Event Modeling and Simulation: A Practitioner's
Approach, CRC Press.

Wainer, G. A. and Mosterman, P. J. (2011). Discrete event modeling and
simulation - Theory and applications, Taylor and Francis Group.

References

140

Wang, J., Zhang, H., et al. (2012). "Manufacturing Knowledge Modeling Based
on Artificial Neural Network for Intelligent CAPP." Applied Mechanics and
Materials 127.

Wang, P., Du, F., et al. (2010). "The Choice of Cost Drivers in Activity-Based
Costing: Application at a Chinese Oil Well Cementing Company."
International Journal of Management Reviews 27(2).

Wei-jun, H. and Yu-jin, H. (2011). Hybrid evolutionary multi-objective approaches
to process planning global optimization for complex parts. Industrial
Engineering and Engineering Management (IE&EM), 2011 IEEE 18Th
International Conference on.

Wierda, L., S (1991). "Linking design, process planning and cost information by
feature-based modelling." Journal of Engineering Design 2(1): 3-19.

Winz, I., Brierley, G., et al. (2009). "The Use of System Dynamics Simulation in
Water Resources Management." Water Resources Management 23(7):
1301-1323.

Wright, T. P. (1936). "Factors affecting the cost of airplanes." Journal of
Aeronautical Sciences 3: 122-128.

Wy, J., Jeong, S., et al. (2011). "A data-driven generic simulation model for
logistics-embedded assembly manufacturing lines." Computers &
Industrial Engineering 60(1): 138-147.

Xu, X., Wang, L., et al. (2010). "Computer-aided process planning – A critical
review of recent developments and future trends." International Journal of
Computer Integrated Manufacturing 24(1): 1-31.

Yee Mey, G., Newnes, L. B., et al. (2010). "Uncertainty in Through-Life Costing -
Review and Perspectives." Engineering Management, IEEE Transactions
on 57(4): 689-701.

Younossi, O., Arena, M., V, et al. (2002). Military Jet Engine Acquisition:
Technology Basics and Cost-Estimating Methodology. U. S. A. Force,
RAND: 153.

Yu, T.-T. (2008). The Development of a Hybrid Simulation Modelling Approach
Based on Agents and Discrete-Event Modelling. PhD Thesis, University
of Southampton.

Zeigler, B. P., Kim, D., et al. (1999). Distributed supply chain simulation in a
DEVS/CORBA execution environment. Proceedings of the 31st
conference on Winter simulation: Simulation---a bridge to the future -
Volume 2. Phoenix, Arizona, United States, ACM: 1333-1340.

Zhan, H., Zhao, W., et al. (2000). "Manufacturing turbine blisks." Aircraft
Engineering and Aerospace Technology: An International Journal 72(3):
247-252.

Zhou, X., Qiu, Y., et al. (2007). "A feasible approach to the integration of CAD
and CAPP." Computer-Aided Design 39(4): 324-338.

