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ABSTRACT

Microvibrations are a critical concern on satellites equipped with instruments with high

stability requirements. Amongst many sources of microvibration onboard, reaction

wheel and momentum wheel assemblies are often considered the most significant. This

thesis presents the development and validation of microvibration models for a cantilever

configured wheel assembly designed with a soft-suspension system. Wheel assembly-

induced microvibrations under hard-mounted and coupled boundary conditions are

studied. In particular, the wheel assembly semi-analytical microvibration model in a

hard-mounted boundary condition is developed with harmonic excitations and the

traditionally ignored broadband noise excitations are included. Some peculiar dynamics

such as nonlinearity in the motor and high damping of the soft-suspension system are

observed from the hard-mounted measurements conducted on a bespoke dynamometer.

Modeling strategies for these peculiar dynamics are developed and implemented in the

wheel assembly microvibration modeling. This includes a systematic approach to

extract stiffness and damping values of the suspension system, considering nonlinearity

and high damping from measurements. The microvibrations produced by the wheel

assembly in a coupled boundary condition are studied using a seismic mass to support

the wheel assembly. A coupled microvibration measurement system, which allows the

wheel assembly interface loads to be reconstructed by measuring the response

accelerations on the seismic mass, is designed, built and validated. In addition, the

wheel assembly driving point static and dynamic accelerance are measured and

analytical expressions of the driving point dynamic accelerance are derived. The

coupled microvibrations are predicted with wheel assembly static accelerance, dynamic

accelerance and the standard method (i.e. no wheel accelerance). The predicted results

have shown that the method developed in this thesis which uses the wheel assembly

dynamic accelerance accurately simulates the microvibrations observed in practice.
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1. Introduction

1.1. Satellite Stability

Satellite microvibrations and related issues have interested satellite engineers and

researchers for more than four decades. In this context, we refer to microvibrations as

low level mechanical disturbances which affect payload performance. Microvibrations

are mostly a concern for optical/imaging missions such as space astronomy and earth

observation, where high levels of pointing accuracy are required. However

microvibration issues are not limited to optical instruments. Modern communication

satellites have also received attention regarding onboard microvibrations for inter-

space/space-ground communications; OICETS [1-3] is a typical example. Other

missions, such as the in-orbit scientific research satellite GOCE [4, 5], or microgravity

experiments on ISS Columbus module [6] and other spacelab [7], etc., all pose

challenging environments for microvibration control and mitigation. It has to be noted

that at times, microvibration issues are also referred to as microgravity issues when the

focus is on the disturbance of the microgravity environment in particular.

One clear example to illustrate the effects of satellite microvibrations is the image

quality of onboard telescopes or cameras where microvibrations may result in geometric

distortions in the image. In Figure 1-1 such distortions can be observed as zigzag

Figure 1-1 Effects of microvibrations on geometric distortions [8]
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patterns on geometrically straight features such as roads.

Figure 1-2 presents a computed star image output on the detector of the European Space

Agency (ESA)’s FIRST telescope model on SPOT 4 with and without microvibrations

from Reaction Wheel Assemblies (RWAs) and cryocoolers [9]. It is clear that

microvibration is a significant cause of distortion of the initially diffraction-limited star

image.

a) With microvibrations b) Without microvibrations

Figure 1-2 Effects of microvibrations on a telescope star image quality [9]

Microvibrations are usually in the range of micro-g’s (µg) typically occurring at

frequencies from a few Hz up to 1 kHz [10]. In some extreme cases microvibrations

below 1 to 2 Hz are also of concern [11]. Generally, microvibrations cannot be

controlled or reduced by the Attitude and Orbit Control System (AOCS) of satellites

because they usually involve the flexible modes of the satellite structure (rather than its

rigid body motion) and because the satellite AOCS usually has an upper controllable

frequency limit of a few Hz, whereas microvibrations generally occur at higher

frequencies [12].

The importance of microvibration in satellite engineering, and in particular the desire to

develop methods to deal effectively with these phenomena has been confirmed in 2010

by the ESA, who commissioned a study entitled: Methodology for Analysis of Structure-

Borne Micro-Vibration; and part of the research described in this thesis has contributed

to this study (see [8] for more detail). In 2012 a handbook was produced by the ESA

European Cooperation on Space Standardization (ECSS) which included a chapter on

satellite microvibrations and in particular the analysis methodologies (see [13] for more

detail). However this area still demands further development.



3

1.2. Microvibrations on Satellite

Onboard satellites there is a range of more frequently used equipment and/or events

which can generate low level mechanical vibrations, i.e. microvibration sources.

Amongst them are high speed rotation devices, e.g. RWAs and Momentum Wheel

Assemblies (MWAs) [14], cryocoolers [15-17] and pointing mechanisms [18, 19] which

are generally the most important sources. However other mechanisms such as tape

recorders [20], thrusters, switches [5], filter wheels [21] and some onboard events such

as solar-array thermal elastic bending [22], fuel-sloshing [23-25], thermal snaps in

structure and at joints [26], cracks in thermal insulation blankets [27, 28] and foil [29],

etc., are also microvibration sources. The microvibrations caused by these sources are

transmitted through the satellite structure and excite the structure or elements of the

instrument, influencing its performance. The items of interest excited by the

microvibrations are often termed as receivers [30]. The dynamics of the microvibration

sources will also couple with those of the satellite structure, making the microvibration

dynamics yet more complicated.

The propagation of microvibrations can be presented schematically as in Figure 1-3.

Note that in some cases the vibrations can be transmitted by some payload elements to

the satellite structure, thus in this case the payload is the source and also the vibration

receiver [31].

Figure 1-3 Propagation of microvibrations on satellites

Research on satellite microvibrations and its control started approximately in the early

1970’s driven mainly by the HST project (previously known as LST) [32-34]. HST had

a pointing stability requirement of 0.02 micro-radians, and a significant amount of work

was performed to improve its optical performance during its design and more than 22

years’ life in orbit. For example, the solar arrays and driving mechanisms of HST were

replaced in 1993 (STS-61) and 2002 (STS-109) primarily to reduce the disturbances

generated by their thermal bending and drive mechanisms. Other satellites in the early

Satellite Structure
Sources

RWAs, MWAs,
Cryocoolers, etc.

Receivers
Optical Payloads,

Scientific Instruments, etc.
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90’ such as the communication satellite OLYMPUS [35-39] and the SPOT earth

observation satellite family [40, 41] also have been affected by microvibrations. For

example, an accelerometer package (PAX) was installed on OLYMPUS to monitor the

satellite micro-dynamic performance produced by various mechanisms when the

satellite was on orbit.

Since the late 90’s microvibration analysis has become increasingly important in the

design of satellites carrying instruments with high stability requirements, ARTEMIS

[42-46], SPOT 4 [47-49], GOES [50] and SOHO [51] were just a few typical examples.

Microvibration research during that time was systematically developed and the field

gradually became more mature. Research techniques were largely based on the satellite

system level microvibration tests on the ground and analytical studies of satellite

structure dynamics. For example, satellite structure models were created using Finite

Element (FE) and Statistical Energy Analysis (SEA) methods for ARTEMIS

microvibration analysis and the simulated results were validated from on-ground

satellite microvibration tests. These techniques at the present time have been accepted

as the standard approach in satellite microvibration analysis and significant effort is still

spent to improve them analytically and experimentally, for example in [52-54].

Figure 1-4 shows the increased angular resolution (sharpness of images) of optical

payloads on some typical earth observation satellites launched between 1970 to 2010

[55]. Meanwhile, other research [56] shows that the angular resolution of earth

observation satellites improves roughly 10-times every decade.

Figure 1-4 Angular resolution of earth observation satellite (1970 to 2010) [55]
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At the present time, satellites’ telescopes and cameras angular resolutions have been

significantly improved and scientific instruments have become more complex, however

they are also more vibration-sensitive. Satellite microvibration analysis and control is

now a predefined step in almost all modern high precision satellite design, in many

cases they are critical to the mission success. For example GOCE [4, 5],  HINODE

(SOLAR-B) [57-59], SDO [18, 60, 61], and future satellites such as SOLAR-C [62] in

Japan, JWST [63, 64] in the United States, MTG [65] in Europe and recently canceled

TPF [66, 67] and SIM project [68-70].

Amongst them, SOLAR-B has a pointing stability requirement of 0.17 micro-radians

over 10 seconds. SOLAR-C will have a pointing stability requirement of 0.07 micro-

radians over 10 seconds. The JWST fine pointing requirement is 0.02 micro-radians

(similar to HST). SIM and TPF impose even more challenging requirements as for these

missions the payloads are interferometers. For SIM the allowable Optical Path

Difference (OPD) between the 2 collectors is approximately 10 nm. For TFP the OPD

requirement is tighter and there are 4 collectors. GOCE’s main instrument, the

gradiometer, on the other hand is particularly sensitive to micro-disturbance events

rather than the onboard mechanism-generated microvibrations.

Microvibration analysis of these satellites takes advantages of modern computer

technologies, in many cases using the “integrated modeling and simulation” which is a

technique capable of performing the complete satellite microvibration analysis (or

sometimes called jitter analysis, pointing error analysis) in one-off computation. Typical

examples such as [11, 71-75], where all potential microvibration sources and other

subsystems such as AOCS, pointing or guidance control, thermal control, payload

vibration isolation control system, sensor noises, etc., even external disturbances such as

solar radiation pressure are all integrated into one framework and analyzed by computer

(typically in the time domain). In this manner, the payload performance can be

simulated more closely to reality, i.e. the in orbit working condition. This analysis

technique is considered to be the mainstream for future large space projects. A typical

example of satellite microvibration integrated modeling analysis process is shown in

Figure 1-5. Note that the RWA-induced microvibrations are particularly important in

this process.



6

Figure 1-5 Typical example of satellite microvibration integrated modeling

process (here also called the pointing error analysis) [76]

Microvibration research in satellite design has become exceptionally important and this

trend is expected to continue. During all analysis, microvibration source

characterization is usually the first step in the analysis approach. The high speed

rotation devices, in particular the Wheel Assemblies (WAs), including RWAs and

MWAs, are considered one of the most important microvibration sources and thus far

have received the majority of attention [77]. Figure 1-6 shows two typical WAs with

mid-span configuration and cantilever configuration respectively.

a) Mid-span configuration b) Cantilever configuration

Figure 1-6 Typical RWA and MWA configurations

A large number of projects have been conducted on WA-induced microvibrations in

almost every aspect and also their influences to the satellite payload performance

analysis. However, the development of higher performance payload (thus stringent

structure stability) pushes further WA designs toward low microvibration emissions and

improvements in modeling capabilities to faithfully simulate the dynamics of the

physical hardware.

Structure
Model
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1.3. Open Issues in the State of the Art

Although WA dynamics have been studied for a considerable time, there are still open

issues which are briefly introduced below and will be further discussed in the relevant

chapters of this thesis.

Firstly, all the models the author encountered during his survey of the state of the art

described mid-span configurations (see Figure 1-6 a) for example) whereas the dynamic

analysis of the cantilever configured WAs (see Figure 1-6 b) for example) seem to have

been neglected or at least not published. Although the conceptual procedure to model

mid-span or cantilever configured WAs is the same, the cantilevered configuration has

some peculiarities that produce different dynamic characteristics which cannot be

observed in a mid-span configuration. In addition, most of the practical models consider

a flywheel supported by a suspension system rigid enough to push the WA resonances

beyond the rotation frequency (typically up to 5000 rpm or 80 Hz). For various reasons

it is possible to design WAs which includes a soft-suspension system, but it was not

possible to find publications discussing satellite WA implementing this type of design.

Secondly, the vibrations produced by a WA when spinning are dominated by the

flywheel mass imbalances and this can be accurately modeled from first principles;

higher harmonics can be modeled as multiples of fundamental harmonics and are also

well established in the literature. However, the functioning WA also produces

broadband (noise) excitations and they have often been ignored in the previous model

developments. Meanwhile, the only broadband excitation modeling method available in

the literature was not well developed with limited application. The desire to improve the

model accuracy now requires broadband frequencies and lower amplitude vibrations to

also be accurately modeled and implemented in the overall WA microvibration model.

Finally, most models simply considered the vibrations emitted by a WA rigidly

connected to the ground (this type of boundary condition is also called hard-mounted or

blocked, and corresponds to an infinitely rigid support), and then apply these loads to

the supporting structure. In reality when a source is coupled with a supporting structure,

which clearly cannot be infinitely rigid, the loads transmitted are different from those

produced by the source hard-mounted. This is due to the dynamic coupling between the
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structure of the source and that of the supporting structure, and to achieve accurate

simulations this effect has to be included. In practice, the effect of the coupling can be

modeled using a parameter termed accelerance (or its inverse, dynamic mass), which is

the ratio between the loads applied at the mounting point of the equipment and the

accelerations there. The main issues here are the practical difficulties in estimating this

parameter and the fact that the gyroscopic effects have not been included with any

reasonable degree of accuracy in the models developed within the literature.

To clarify the terminology, “rigid-suspended” and “soft-suspended” refer to the WA

internal suspension system, i.e. the configuration that links the flywheel to the rest of

the mechanism. In this thesis, rigid-suspension refers to the conventional rigid (ball)

bearing system; soft-suspension refers to the newly designed web-spring flexible

suspension system. The terminology “hard-mounted” and “coupled” refer to the

boundary configuration that WA base connects to the external structure. In particular, a

hard-mounted boundary condition refers to the WA rigidly connects to the structure, i.e.

no motion between the two bodies. A coupled boundary condition refers to the WA

connection to a movable structure.

1.4. Objectives of this Work

The main objective of this thesis is to provide a methodology to model the

microvibrations produced by a WA which somehow addresses the issues which still

remain open in the current state of the art, and hence delivers models which better

correlate with the dynamic behavior of the real hardware. In particular, the focus of this

thesis is on the microvibrations generated from a cantilever configured WA that

designed with a soft-suspension system, however the methodologies developed here

from modeling and testing can also be applied to the mid-span configured WAs and

with rigid supports (see [52, 78] for example).

In order to achieve the goal, the research methodology followed two stages:

i. Microvibration source characterization (i.e. analysis at WA subsystem level); this

part of the work involves modeling and testing of the WA in a hard-mounted

boundary condition and has been published by the author in [79-83].
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ii. Source-structure coupled microvibration analysis (i.e. analysis at WA-structure

system level); in this part of the work the WA is mounted on a rigid seismic mass,

which is used as the supporting structure. Coupled microvibrations induced by the

WA are measured and predicted with the consideration of their driving point

accelerance. This work has been published by the author in [79-82, 84].

i) The first task is thus to derive a mathematical model for the microvibrations emitted

by the cantilever configured WA. With respect to (w.r.t.) previous designs, here we

considered a WA with a soft-suspension system which has the advantage of producing

less vibration at high frequencies. A further improvement w.r.t. previous mathematical

model is that in addition to the main harmonics produced by flywheel and motor-

bearing system, here we also include the broadband excitations produced in the WA (i.e.

caused by internal components in the motor such as raceways, balls and cages, etc.).

To validate the mathematical model of the WA and extract some of the model

parameters, rather than using a commercially available dynamometric platform (e.g. a

Kistler table), we have developed a performance-competitive measurement platform

which uses simpler components. Due to the WA design and the consequent dynamic

characteristics such as nonlinearity in the motor and high damping of the soft-

suspension system, a new method is developed to extract the model parameters (e.g.

stiffness and damping) as a systematic procedure for WA microvibration modeling.

ii) The goal of this part of the work is to improve the existing coupled microvibration

analysis method described in the literature in order to improve the accuracy of the

system level WA-structure microvibration simulation. The work includes the

development of a coupled microvibration measurement system using common

accelerometers rather than the complex load cell used in the literature. A WA-seismic

mass coupled system is designed and its dynamic model is derived.

This part of the work also focuses on the development of methods to model the WA

driving point accelerance and their implementation in the coupled microvibration

predictions. In particular, several modeling cases of the WA accelerance (include those

available in the literature) are considered and are compared with each other to reveal the

advantages of the method developed in this thesis.
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1.5. Thesis Layout

The overall structure of the thesis is organized into eight chapters which are briefly

outlined in this section. The flow chart in Figure 1-7 on the next page summarizes the

work and shows the relationships between chapters. The first two chapters (Part 1) set

the scene for the development of the work, whereas the rest of the thesis can be split in

two parts (Part 2 and 3), which are consistent with the description of the tasks in the

previous section.

More in detail, following from the introduction presented in this chapter, in Chapter 2

WA microvibration studies in the literature are reviewed. This includes the commonly

accepted experimental and analytical microvibration analysis methods at both WA

subsystem and system levels. In particular, issues found in the current WA hard-

mounted and coupled microvibration analysis methods are discussed. Chapters 3 to 5

deal with WA hard-mounted microvibrations, i.e. to characterize WA at subsystem level.

In Chapter 3, the Equations of Motion (EoMs) of WA-induced microvibrations are

derived. The derivation process is based on an energy method and fundamental

harmonic excitations due to the flywheel mass imbalances in different conditions are

considered. In Chapter 4, a microvibration measurement system is designed to measure

the WA-induced microvibrations in a hard-mounted boundary condition. The measured

microvibrations are analyzed, including the peculiar nonlinearity and high damping

characteristics. Comparisons in microvibrations are also discussed between the soft-

suspended WA and the conventional rigid-suspended WA. Chapter 5 includes the

simulation of WA hard-mounted microvibrations and their validation with the test

results. Simulation processes for harmonic and broadband excitations are introduced.

The systematic approach that has been developed to extract the WA model parameters

is also explained.

Chapter 6 and 7 deal with WA-seismic mass coupled microvibrations, i.e. to

characterize the WA at system level. In Chapter 6, the WA-seismic mass coupled

microvibration model is derived primarily based on the hard-mounted case presented in

Chapter 3 but with slight modifications to the WA interface boundary condition. Next,

the design and calibration of a coupled microvibration measurement system is

introduced. The coupled microvibrations induced by the WA are measured and analyzed.
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Figure 1-7 Research approach and thesis structure
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Also the coupled microvibration model is validated. Chapter 7 focuses on the important

issues regarding WA driving point accelerance and improvements to the coupled

microvibration analysis methods developed in the literature. The WA driving point

accelerance in a static condition (i.e. a non-spinning flywheel) are first studied with a

WA accelerance measurement system and also from a WA FE model. The WA driving

point accelerance in a dynamic condition (i.e. considering gyroscopic effects in the

spinning flywheel) is studied next. In particular, analytical expressions of the WA

dynamic accelerance are derived from the WA microvibration model in a “free-free”

boundary condition, which is also presented. The microvibrations are predicted from the

coupled microvibration analysis method for different WA accelerance and results are

compared. Both hard-mounted test results presented in Chapter 3 and the coupled test

results presented in Chapter 6 are used during predictions. Finally, conclusions of the

work presented in this thesis and possible future work are inferred in Chapter 8.
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2. Wheel Assembly Microvibration Analysis

Background

In this chapter, the fundamentals of WAs and their microvibrations are introduced.

These well-established studies are the foundation in all WA microvibration analysis and

they are essential to the work presented in this thesis. The theories of previous WA

hard-mounted and coupled microvibration analysis methodologies are introduced. In

particular, some typical WA microvibration models are presented and most importantly,

the merits and issues in these models and the difficulties encountered in the current

analysis methodologies are discussed. The importance of the coupling effect between a

WA and its supporting structure is also demonstrated with a simple example.

2.1. Wheel Assemblies

Both RWAs and MWAs are part of the satellite AOCS. Electro-mechanically they are

similar and often use the same technology [85]. RWAs are used for satellite attitude

control and particularly useful when the satellite needs to be rotated precisely. MWAs

are used to store momentum and provide stability to the satellite. A typical RWA or

MWA consists of a flywheel mounted on a shaft suspended by bearings and driven by a

brushless Direct Current (DC) motor. The whole assembly is often protected by a

housing cover. The mechanical configuration of a RWA or MWA can be either mid-

span or cantilever configured (see Figure 2-1 a) and b) for example).

a) Mid-span with a

rigid suspension

b) Cantilevered with

a rigid suspension

c) Cantilevered with a

soft-suspension

d) WA under

study

Figure 2-1 Typical WA configurations and the WA under study

RWAs usually have a nominally zero speed (or several hundred rpm to avoid stiction

problems near zero speed [86]) and can spin in either direction. If the rotation speed can
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go up to 5000-10000 rpm and maintained, it can be used as a MWA to provide

momentum bias to the satellite. Some of them can have functions of both, especially for

small satellites [87]. Often they have more complex control system and structures

compared to typical WAs due to smart design [88].

The WA used in this thesis is cantilever configured. It is shown in Figure 2-1 c) and d).

In addition, the WA is designed with a soft-suspension system instead of the

conventional rigid suspension system (see Figure 2-1 for comparisons). The WA is

designed to allow utilization either as a RWA or MWA and it can spin up to

approximately 10000 rpm.

Note that in practice often three or four WAs are installed on a satellite and each tilt

with an angle, hence vibrations transmitted to the satellite may also influenced by their

installations [89]. In this thesis, microvibrations induced by a single WA are considered.

2.2. Wheel Assembly-induced Microvibrations

2.2.1. Harmonics and Broadband Noise

Due to their mode of operation, WA-induced microvibrations are continuous. In

particular, they generate high amplitude and high frequency microvibrations which are

tonal, occurring at known ratios of the angular speed of a spinning flywheel. Since

frequency and magnitude of microvibrations both change with angular speed, they may

interact with the WA internal flexibilities (i.e. structural modes) at some speeds in the

speed band (i.e. critical speeds) and greatly amplify response levels (i.e. resonances).

This effect is usually temporary, lasting only as long as the exciting frequency matches

a WA resonant frequency, but the resulting amplification is usually unacceptably large.

As first summarized in [14] and updated later in [90], typical sources of microvibration

from a WA can be broken down into three categories:

 Flywheel mass imbalances; from the modeling point of view, this includes static and

dynamic mass imbalances, which both generate microvibrations at fundamental

harmonics of the angular speed.
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 Bearing irregularities; they are caused by lubricant dynamics and irregularities in the

balls, races and cage, which generate microvibrations at sub- and higher harmonics

of the angular speed.

 Motor irregularities; brushless DC motor noise is usually due to the ripple and

cogging, which generate very high frequency microvibrations.

In addition, WA-induced microvibrations always have a low level broadband

vibrational characteristic accompanied with the tonal vibrations [61].

From the above discussion and in WA microvibration modeling, the total excitations

from the WA can be broken down into two types: harmonic excitations and broadband

excitations. If a linear assumption is applied, they can be superimposed as the total input

excitations to the WA structural model. The complete microvibration model allows

WA-induced loads to be predicted with the consideration of gyroscopic effects, WA

flexibilities and amplifications. This process is depicted in Figure 2-2.

Figure 2-2 WA microvibration modeling process

2.2.2. Wheel Assembly Structural Modes

WA structural modes depend largely on the WA’s configuration. Generally a typical

WA can be modeled as a single Degree of Freedom (DoF) system in axial translational

DoF, with a two-DoFs system in each radial (or in-plane) DoF, thus five DoFs are

included in the model. Note that torque vibrations are often ignored due to the flywheel

angular speed domination, i.e. the flywheel spin speed driven by the motor is much

larger than the perturbation angular speed in the torque DoF.

a) Harmonic
Excitations

b) Broadband
Excitations

c) WA Structural
Model

d) The Complete WA
Microvibration Model

e) Total Microvibration
Responses
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This WA model results in three dominant modes referred to respectively as the axial

translational mode, the radial translational mode and the radial rotational (or “rocking”)

mode. They are depicted respectively in Figure 2-3 for a mid-span configured WA.

a) Axial translational
mode

b) Radial translational
mode

c) Radial “rocking”
mode

Figure 2-3 Structural modes of a typical mid-span configured WA

Among the three structural modes in Figure 2-3 for a mid-span configured WA, the

axial and radial translational modes are speed-independent. The “rocking” mode is

speed-dependent and whirls are caused by the gyroscopic procession of the spinning

flywheel.

Figure 2-4 shows typical Campbell diagram of mid-span and cantilever configured WAs.

a) Mid-span configured WA b) Cantilever configured WA

Figure 2-4 Example of Campbell diagrams of mid-span and cantilever

configured WAs

In theory the “rocking” mode of an axisymmetric WA splits into two speed-dependent

natural frequencies (or whirls) from static (i.e. at zero rpm): backward (or precession)

whirl and forward (or nutation) whirl. The backward whirl decreases in frequency as

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

W
he

el
 S

pe
ed

 (R
P

M
)

Frequency (Hz)
0 20 40 60 80 100 120

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

W
he

el
 S

pe
ed

 (R
P

M
)

Frequency (Hz)

Radial
Translational

Mode

“Rocking” Mode
Mixed Modes

Forward
Whirl

Backward
Whirl

Axial translational DoF Radial translational DoF Radial rotational DoF



17

speed increases, while the forward whirl is opposite [91]. It is also clear from Figure 2-3

and Figure 2-4 a) that the three structural modes are decoupled from each other,

especially between the radial translational mode and the “rocking” mode. In contrast for

a cantilever configured WA, the two radial modes are coupled, thus it is no more

possible to speak of radial translational mode or “rocking” mode [92] (see Figure 2-4 b)

for example). The structural modes of a cantilever configured WA are depicted in

Figure 2-5.

a) Axial translational mode b) Mixed radial mode c) Alternative radial mode

Figure 2-5 Structural modes of a typical cantilever configured WA

In this case, the axial translational mode remains uncoupled from the radial modes, but

the radial translational mode and the “rocking” mode are combined into a mixed radial

mode in each radial DoF. Also, in this case the four radial modes are all speed-

dependent. In practice, these coupled motions in radial DoFs make the overall modeling

process much more complicated than that for a conventional mid-span configured WA.

2.3. Typical Microvibration Analysis Methodologies

In the traditional WA microvibration analysis, WA-induced loads are measured in a

hard-mounted configuration, in which the WA is mounted on a rigid surface and its

interface is constrained to have zero motion. As flywheel spins, load cells are used to

measure the resulting forces and moments at the interface. The dynamic models

developed under such boundary condition are called the WA hard-mounted

microvibration models. However in practice, the hard-mounted boundary condition is

not an accurate representation of the WA when it is mounted on a satellite structure. In

other words, the hard-mounted microvibrations differ from the coupled microvibrations

that would actually exist at the WA-structure interface if the two bodies are coupled

together. In order to improve the modeling accuracy, WA-structure coupled analysis

methodologies are developed.
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Although hard-mounted microvibration analysis methodologies have been well

developed in the literature, coupled cases have not. The literature shows only a few

works which lack maturity in both analysis theory and experimental work. In this

section, some typical WA microvibration analysis methodologies (hard-mounted and

coupled) developed in the literature are reviewed. Problems and difficulties encountered

in them are also discussed.

2.3.1. Wheel Assembly Internal Microvibration Source Characterization

In the earlier works of WA microvibration analysis such as [93-95], studies were

primarily based on the general WA microvibration test results and modeling for specific

vibrational features. Harmonic characteristics were well understood and some empirical

models were attempted. For example, WA-induced microvibrations were first modeled

assuming they consist of discrete and superimposed harmonics in [96]. Microvibrations

from the WA internal components such as bearing, motor and flywheel, etc. were

carefully characterized and modeled in a series of works published in [97-99] and later

similar works were also seen in [100-102] for another WA. Also during this time,

microvibration test platforms [103-106] and test methods [107-109] were greatly

developed for WA microvibration analysis. For example, the detailed microvibration

analysis of a typical WA ball bearing system at low frequencies were studied in [110-

112] by using a specially designed air floating vibration measurement platform in [113].

The complete harmonic analysis of a WA was published in [114], it was performed with

a customized vibration measurement system. Similar works in [115-117] should also be

noted. In [118] on the other hand, an envelope analysis technique was developed to

localize imperfections in the WA bearing, where the measured microvibration data were

used for condition monitoring of ball bearings in the WAs. By detecting the modulation

of the resonance frequency from imperfection signals, the technique could detect signals,

which were six times lower than the noise level. The measurement platform used in this

study was introduced in detail in [119], it was designed based on similar principles of a

Kistler table. As in general, microvibration measurement platforms are designed during

WA microvibration research.

In general, characterizations of WA internal components are very useful for

understanding their internal microvibration sources, and for this reason the results are
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mainly used for WA design purposes. For microvibration analysis at satellite system

level however, they are in general impractical to be used as the inputs to a satellite

model. In this case, the complete WA needs to be considered as a single source or

“black box” and being characterized as a whole, i.e. at subsystem level. WA-induced

microvibrations at subsystem level and system level are the main concerns in this thesis.

Reviews of their literature works are presented in the rest this chapter.

2.3.2. Wheel Assembly Hard-mounted Microvibration Analysis

When modeling a mechanism which causes vibrational energy to enter the system, there

are two fundamental approaches: the analytical approach and the empirical approach, as

defined from [120]:

 The analytical approach relies on physically modeling the mechanism that causes the

vibration and to assign realistic values to the physical parameters of the model.

 The empirical approach consists in creating an empirical model of its dynamic

response via the analysis of experimental test data.

Often, the two approaches need to be combined and refer to one another. In this case it

is known as the semi-empirical (or semi-analytical or hybrid) approach. The detailed

WA microvibration study at subsystem level were first reported in [121], in which an

empirical model of microvibrations induced by a mid-span configured WA in a hard-

mounted boundary condition was developed. In particular, programs were written based

on the developed modeling method to extract harmonic excitation parameters from test

results. Later, these parameters were used in the semi-analytical model development in

[122]. Gyroscopic effects derived from the analytical model were integrated with the

empirical model, thus the complete microvibration model was a hybrid.

In general, relationships between each model described above are depicted in Figure 2-6

on the next page.
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Figure 2-6 Relationships of WA hard-mounted microvibration models

This analysis approach generally has been accepted and widely used in the WA

microvibration analysis. Subsequently, similar WA microvibration models (either

analytical, empirical or hybrid) developed in the literature were based on this modeling

principle. For example, WA-induced microvibrations in radial DoFs were measured and

the closed-form harmonic response expressions were derived in [123]. Similar work

was also published in [124], but in this case frictions due to bearing system and

irregularities in motor, etc. were also included in the model. Responses were only

simulated in the time domain however. Similar WA microvibrations were modeled but

primarily used for the measurement platform design in [125], and also a similar one in

[126]. In order to improve the WA empirical model accuracy, an energy compensation

method was developed to correct the measured microvibration data in [127, 128], and

later harmonic parameters obtained from the improved test results were used in the

semi-analytical model development in [129, 130]. The closed-form harmonic response

expressions in each WA DoF was presented and simulated directly in the frequency

domain in [131], and also a similar one in [132]. Even simpler analytical expressions of

harmonic responses were derived in [133], in which the model considers resonances on

harmonics (include those from gyroscopic effects) to be the dynamic amplifications

such as in the conventional vibration problems, and thus avoid deriving the whole EoMs.

In [134] a complete WA microvibration analytical model was derived not only

considering the flywheel mass imbalances but also irregularities in the bearing system

(i.e. balls and raceway, etc.) were physically modeled.

Experimental Data

Tonal Disturbance Broadband Noise

WA Flexibility

Hybrid Model

Empirical Model

Analytical Model
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A WA broadband excitation modeling method was first introduced in [61], and it was

concluded that no purely analytical model was able to simulate broadband excitations

and they had to be modeled in other ways. Based on this work, a hybrid broadband

excitation model was developed in [135], where an arbitrary broadband forcing function

was realized as a speed dependent polynomial. This method assumes the broadband

noise was speed-dependent and requires both an analytical “shape function” of vibration

and test results at each speed. Apart from these examples, there seems to be no other

work has attempted the modeling of WA broadband noises.

In brief, WA-induced microvibrations in hard-mounted boundary conditions are well

studied up to the present. Various microvibration models, measurement platforms and

analysis methodologies have been developed or designed. The microvibrations

measured and simulated in this way can be used directly as the inputs in the satellite

model in order to predict the payload performance. This is the standard microvibration

analysis method and has been widely used in satellite system level microvibration

analysis. Studies in [61] and [136] are two typical examples.

Tackling Open Issues

 The Cantilevered Configuration

All microvibration models mentioned above and others in the literature were derived for

the mid-span configured WAs. In practice, there is another group of WAs with

cantilevered configurations, i.e. a flywheel and its Center of Mass (CoM) at one side of

the shaft, however their microvibration studies were not found. Due to the cantilevered

configuration, their structural models are very different from those of the mid-span

configured WAs, for example, the coupled motions in radial DoFs as mentioned earlier.

It is thus necessary to derive its EoMs and characterize its dynamics and later used for

the system level microvibration analysis. This can be considered as the problem in

Figure 2-2 part c) in a typical WA microvibration modeling.
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 The Generalized Harmonic Excitations

In previous WA microvibration modeling, there was generally no resonance on the

fundamental harmonics in the test speed band (say up to 4000 rpm) due to the rigid

suspension system used in the WAs which has their structural modes at relatively high

frequencies (e.g. above 200 Hz in Figure 2-4 a)). However in practice this is not always

true, for example, a MWA spins at 10000 rpm or for a relatively flexibly suspended WA.

In these cases, fundamental harmonics may severely interact with the WA structural

modes in the speed band analyzed and cause significant dynamic amplifications before

and after the resonances. If under such conditions, the traditional harmonics modeling

methods cannot model them precisely, since there are several aspects that were not

considered. For example, the extraction of harmonic parameters can only be performed

up to some speeds much earlier before the resonances due to resonance dynamic

amplifications. In contrast, the responses in the whole speed band were used in the

literature for extractions without considering resonance dynamic amplifications.

Damping values must also be taken care at the fundamental harmonic resonances since

they may exhibit very different values compared to those on higher harmonics (where

damping values were often extracted in the traditional modeling methods). Other

possible dynamics such as nonlinearity may also occur at fundamental harmonic

resonances due to the excessive loads transmitted in the motor.

In brief, typical issues and hence variables, in the simulation of generalized harmonic

excitations include:

 Flywheel mass imbalances are often not exactly known, but the minimum

performance values from manufacture are usually given (e.g. the typical static mass

imbalance is less than 5 g.mm for the WA under study).

 Fundamental harmonic responses severely interact with WA structural modes in the

speed band analyzed, thus a nonlinearity effect may also occur.

 In practice, amplitudes of harmonic responses are not exactly proportional to the

angular speed squared, such as also found in [137].
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 Influences of resonance dynamic amplifications must be considered in the modeling.

In addition, all above issues are interrelated hence making the simulation of generalized

harmonic excitations much more complicated than those shown in the literature. This

can be considered as the problem in Figure 2-2 part a).

 Broadband Excitations

Issues related to the continuous broadband excitations have recently become

increasingly important in WA microvibration analysis. From recent studies such as in

[13], there is a trend that microvibrations are becoming more concerned in the high

frequency band with even lower amplitudes. It is thus necessary to consider the

broadband type excitations onboard satellites. In general this includes sensor noises and

mechanism-generated noises that often accompanied with other vibrations. In previous

WA microvibration analysis, excitations due to broadband noises were generally

ignored, with only harmonic excitations were considered and thus responses.

As introduced earlier, very limited information is available on WA broadband

excitations and responses modeling in the literature. Traditionally, the broadband noises

need to be extracted from vibration test results at each speed, i.e. speed-dependent. In

the meantime, analytical expressions, i.e. “shape functions”, used to describe the general

response level of broadband noises must also be derived at each speed to capture the

broadband amplifications in the responses. This however, significantly increases the

simulation efforts especially if the analysis is performed at many speeds, thus the

method was not practical. It is therefore also necessary to develop an efficient and

accurate method for WA broadband excitations and responses modeling. This can be

considered as the problem in Figure 2-2 part b).

2.3.3. Wheel Assembly-Structure Coupled Microvibration Analysis

The following example is presented to demonstrate the importance of structure coupling

within a coupled system. Consider for example the maximum magnitude of the force

produced by the simple systems with two counter-rotating masses of two cases shown in

Figure 2-7 a) and b) respectively.
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a) mass: m; arm: l/2 b) mass: m/2; arm: l

Figure 2-7 Schematic of possible source of vibrations

In both cases, if the source is hard-mounted (i.e. base displacement, x, equals to zero

and in this case the supporting structure is rigid as stiffness, k, tends to infinity), the

maximum force is thus:

2
maxF ml (2.1)

where ω is the angular speed, m (or m/2 in Figure 2-7 b)) is the attached mass value, l/2

(or l in Figure 2-7 b)) is rotation arm of the mass.

While Eq. (2.1) is true for a hard-mounted boundary condition, when the source is

actually mounted on a flexible structure the system shown in Figure 2-7 b) can produce

twice the force as in Figure 2-7 a).

To demonstrate this, we examine the system in Figure 2-7 a) and allow movement of

the support (i.e. x ≠ 0), which in practice corresponds to the source supported by a

structure with a total finite stiffness equals to k. The vertical equilibrium can be

expressed as:

 22 sin 0
2
lm t x kx      

 
 (2.2)

where t is time, and the solution of this equation can be written as:

 
2

2 sin
2

mlx t
k m
 





with 0 2
k
m

   (2.3)
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where ω0 is the natural frequency of the system described.

Therefore for a high angular speed, i.e. ω ≥ ω0, the displacement x tends towards l/2 and

consequently the force transmitted to the support will be:

0
) 2a

klF
 

 (2.4)

If we now consider the system in Figure 2-7 b), the vertical equilibrium can be written

as:

  2 sin 0m l t x kx     (2.5)

and its solution:

 
2

2 sinmlx t
k m
 





with 0
k
m

   (2.6)

If we now consider for a high angular speed, i.e. ω ≥ ω0, the displacement x tends to l

and consequently the force transmitted to the support will be:

0
)bF kl
 

 (2.7)

The value is twice the force generated by the source in Figure 2-7 a).

In a coupled system, the loads exchanged at the interface between a source and its

supporting structure depend on the source internal dynamics (i.e. the forces and

moments in the blocked configuration, produced by mass imbalances and other possible

internal component irregularities) and the reactions due to the coupling (and consequent

motion of the interface).

Although the basic theory has been known for some time, the issues related to the WA-

structure coupled microvibrations were first reported in [138], where both the WA and
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structure were considered as rigid bodies with internal flexibilities. Concepts of the

coupled microvibration modeling were formulated and relationships between the loads

generated by the WA and performance of the structure were derived. It was also

realized that some frequency-dependent qualities (WA and supporting structure driving

point dynamic mass or accelerance) were critical in the coupled microvibration analysis.

The work was further developed in [139, 140], where an experimental method was

developed to measure the WA driving point dynamic mass in a static condition (here

static refers to a WA without the flywheel spinning). A six-DoF load cell was used to

measure the reaction loads and several accelerometers were used to measure

accelerations, both qualities were derived at the WA base interface, i.e. the driving

point. The coupled microvibrations predicted with WA static accelerance clearly

showed advantages over the standard one, however even this method had flaws, as it

only considered WA dynamic mass with the non-spinning flywheel and used it to

predict the coupled microvibrations at a broadband speed. In practice when the flywheel

is spinning this not only produces microvibrations (e.g. because of its mass imbalances,

etc.), but also the dynamic mass of the WA varies as functions of angular speed. Due to

gyroscopic effects, the WA dynamic mass becomes quite different from that of the non-

spinning case in a broadband speed.

This problem has been studied in [74, 141, 142]. In these works, an analytical method

was developed to obtain the WA accelerance with gyroscopic effects, i.e. the WA

driving point accelerance in a dynamic condition or WA dynamic accelerance.

Analytical expressions of the WA dynamic accelerance were derived from the WA

hard-mounted microvibration model. In this case however, the accelerance expressions

only considered the flywheel mass and inertias but ignored the stiffness and damping

values of the suspension system. The gyroscopic effects of the spinning flywheel (and

thus dynamic accelerance) derived were implemented in the coupled microvibration

analysis, and even though the predicted results were improved from previous ones.

Other related work involving WA-structure coupling issues was also seen in [143] and

[144], however it was not for WA coupled microvibration analysis but rather for WA

measurement platform and mounting bracket design respectively. Other than that, there

is no other method for WA-structure coupled microvibration analysis.
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Tackling Open Issues

 Accelerance Measurements

From the literature review, there was only one experimental method available to

measure the WA dynamic mass (or accelerance) and in the static condition only. In this

thesis, rather than using the complex load cell to measure forces and moments at the

WA interface, an alternative and simpler measurement method is introduced. The

method utilizes maximum two common unidirectional force sensors to measure the

input forces, and eight accelerometers to measure the response accelerations, both

applied directly at the WA base interface. In addition, the system is also used to

measure WA accelerance in the dynamic condition.

 Dynamic Accelerance

The method to derive the WA dynamic accelerance in the literature however, has some

fundamental approximations in the model. First of all, the WA-structure coupled

microvibration analysis requires the WA accelerance to be derived in a “free-free”

boundary condition, where forces and accelerations should be obtained at the WA base

interface, i.e. the driving point. Thus rather than using the WA hard-mounted

microvibration model, the model in the “free-free” boundary condition should be used.

Next, from WA static accelerance tests, the results have clearly shown the influence of

stiffness and damping within the suspension system, even when the flywheel is not

spinning, in other words, WA accelerance is not constant in the frequency domain at

any speed if the WA base interface is taken as the driving point. Therefore, rather than

completely ignoring the stiffness and damping of the suspension system in the dynamic

accelerance derivations, they should be included in the modeling. In doing so, this has a

significant impact in the WA dynamic accelerance calculated and also in the coupled

microvibrations predicted.

2.4. Summary

WAs as one of the most important microvibration sources have been studied by many

researchers and there is a relative wealth of publications. Aside from the analysis of the



28

WA internal components dynamics, WA-induced microvibrations were also widely

studied at subsystem level, both experimentally and analytically. In general, WA

microvibration analysis can be categorized into two group w.r.t. the WA boundary

condition: hard-mounted and coupled. Difficulties are still encountered in the currently

available analysis methods for both hard-mounted (where no cantilever configured WA

microvibration model exists, neither an accurate and efficient broadband noise modeling

method) and coupled analysis (with lack of a reliable method to include gyroscopic

effects in the WA driving point accelerance calculation), and require improvement for

future satellite design.
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3. Wheel Assembly Hard-mounted Microvibration

Model Derivation

In this chapter, an analytical microvibration model of cantilever configured WA with a

soft-suspension system due to flywheel mass imbalances is derived in the hard-mounted

boundary condition. The derivation is carried out using an energy (or Lagrangian)

method. The soft-suspension system is modeled as a combination of linear and torsional

springs and dashpots. Under linear assumptions, analytical expressions of kinetic energy,

potential energy and work done can be expressed for the flywheel mass balanced case

and subsequently for the statically and dynamically mass imbalanced cases. EoMs of

each case are derived in succession in this chapter. At the end of this chapter, the

linearized EoMs of a fully flywheel mass imbalanced WA are derived.

3.1. Energy Method

In the WA model the flywheel is assumed as a rigid disk, while rotations of a rigid body

can be described using Euler angles in an energy method. Generally, Euler angles are

used to define the rigid body rotations and relate one coordinate frame to another.

Consider the CoM of a balanced flywheel is O and is free to rotate about any axis as

shown in Figure 3-1.

Figure 3-1 Euler angles and transformations between each coordinate frame



30

Euler angles are formed in sequence by rotating each of the three orthogonal axes in the

corresponding frame termed the “Euler angles convention”. The commonly used

convention in rotordynamics is the Z-convention, since the Z-axis is usually defined as

the shaft pointing direction and also in this thesis. Let the ground-fixed inertial frame,

XYZ, and the body-fixed frame, xyz, coincide at the origin O before rotation starts.

Under Z-convention, the first rotation angle, φ, is formed by rotating the rigid body

about the Y-axis. This defines the first rotation frame, abc. The next rotation angle, θ, is

formed by rotating the rigid body about the a-axis. This defines the second rotation

frame, x'y'z'. The final rotation angle, ψ, is formed by rotating the rigid body about z'-

axis. The final rotation also represents the spinning of the flywheel (i.e. in torque DoF)

and defines the body-fixed frame, xyz.

After the final rotation, three angles: φ, θ and ψ, are formed, they are the Euler angles.

In other words, the initial body frame, xyz, is rotated through the three Euler angles w.r.t

the inertial frame, XYZ. Using this method, the complete rotation of a rigid body about

its CoM can be mathematically described. The transformation matrices between frames

are given in Appendix A.

EoMs of the WA microvibration model are derived using Lagrange’s equations. The

general form of Lagrange’s equations is:

i
n n

d L L Q
dt  
  

    
(3.1)

where ξn is the generalized coordinates, Qi is the work done and L is known as

“Lagrangian” and defined as the difference between the total kinetic energy, T, and the

total potential energy, U, of the system.

 1 1,  ,n nL t T U            (3.2)

The dot denotes the first derivative of the variable w.r.t. time, t.
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From Eq. (3.2) it is thus necessary to find the total kinetic energy, T, the total potential

energy, U, and the total work done, Qi, of the system. To derive the fully mass

imbalanced WA microvibration model, three cases are considered one after another:

 Mass balanced flywheel;

 Statically mass imbalanced flywheel;

 Dynamically mass imbalanced flywheel;

EoMs are derived for each case and then the final EoMs of the fully mass imbalanced

WA are derived. They are presented in the rest of this chapter.

3.2. Coordinate System

After some simplifications, the cantilever configured WA with the soft-suspension

system in the hard-mounted boundary condition can be considered as the model shown

in Figure 3-2. This model is able to capture the five structural modes of the WA and

also gyroscopic effects of the spinning flywheel.

Figure 3-2 Simplified model of cantilever configured WA with the soft-

suspension system in the hard-mounted boundary condition

Firstly, the WA is assumed axisymmetric about its shaft. Due to the cantilevered

configuration, the rigid flywheel (or rotor) is modeled at one side of the suspension
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system. The inertial (or fixed) frame, XwYwZw, and the body (or rotating) frame, xwywzw,

coincide at the flywheel CoM, O, while zw-axis (or Zw-axis) is defined as the shaft

pointing axis. Subscript “w” indicates “WA only” as for the hard-mounted boundary

condition. Rotations about the three axes are θw, φw and ψw. Assuming steady speed

rotation, i.e. Ω = w , Ω is the flywheel angular speed. As mentioned previously, the

flywheel is modeled as a rigid disk with mass Mw. It is connected by a massless and

rigid shaft with length d to the soft-suspension system.

The soft-suspension system is modeled as a combination in five DoFs. This includes

two pairs of linear spring and dashpot, two pairs of torsional spring and dashpot, each in

one of the two radial translational DoFs and a linear spring and dashpot in the axial

translational DoF. Due to axisymmetry of the suspension system, the linear spring

stiffness, kt, is the same in the two radial translational DoFs, and the torsional spring

stiffness, kr, as well the dashpot damping coefficients, ct and cr. In axial translational

DoF, linear spring stiffness and dashpot damping coefficient are kz and cz respectively.

In practice, the generalized coordinates in the WA microvibration model are five: xw, yw,

zw, θw and φw. The rotation angle, ψw, is not considered as a Lagrangian coordinate due

to the flywheel steady speed rotation assumption and thus domination over angular

speed perturbation in torque DoF (this assumption is used throughout the thesis, thus the

complete WA microvibration analysis presented is steady speed analysis rather than

transient speed analysis). Following this modeling approach there are thus five motions

in the microvibration model: two same radial translational motions; two same radial

rotational motions and one independent axial translational motion. All EoMs are

derived in terms of the body frame, xwywzw, or in other words, w.r.t. the inertial frame,

XwYwZw.

3.3. Kinetic Energy

For a mass balanced flywheel, the total kinetic energy, wT , is the sum of the total

translational kinetic energy,
twT , and the rotational kinetic energy,

rwT , of the flywheel.

t rw w wT T T  (3.3)
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Note that due to steady speed rotation and at typical angular speed, the kinetic energy of

the spinning flywheel (i.e. Ω related) dominates over the kinetic energy due to torsional

microvibrations (i.e. φw related). When ignoring the kinetic energy of torsional

microvibrations,
twT then includes the kinetic energy in the two radial translational DoFs

and axial translational DoF, while
rwT includes only those in the two radial rotational

DoFs.

3.3.1. Flywheel Displacement and Velocity

For a mass balanced flywheel, the geometric center of the flywheel coincides with its

CoM (i.e. no offset from the static mass imbalance) and the flywheel axis of symmetry

coincides with the spin axis (i.e. no axis misalignment from the dynamic mass

imbalance). In this case, the position of the flywheel CoM, O, at any instant time in the

rotational plane can be depicted as:

Figure 3-3 Position of the flywheel CoM during spinning (rotational plane)

Considering that in axial translational DoF, the total translational displacement vector,

uw, of the flywheel CoM can be expressed as:

w

w w

w

x
y
z

 
   
 
 

u (3.4)

The translational velocity vector, Vw, of the flywheel CoM is thus:

w

w w

w

x
y
z

 
   
 
 

V




(3.5)
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The angular velocity vector, ωw, of the flywheel CoM is computed as the sum of three

angular velocities acting in different directions: w about the Yw-axis, w about the aw-

axis, and w about the zw-axis. Using the appropriate transformation matrices given in

Appendix A, also let w   due to steady speed rotation, ωw in the body frame can be

expressed as:

2 1

0 0 cos cos sin
0 0 sin cos cos

0 0 sin

w w w w w w

w w w w w w w

w w w

     
     

  

       
                    
                 

ω R R

  
 

 
(3.6)

where the two transformation matrices, R1 and R2 are taken from Appendix A.

1
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0 cos sin
0 sin cos

w w

w w

 
 

 
   
  

R (3.7)

2

cos sin 0
sin cos 0

0 0 1
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w w

 
 

 
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R (3.8)

3.3.2. Translational and Rotational Kinetic Energy

Substituting the translational velocity vector Eq. (3.5) into the total translational kinetic

energy,
twT , thus:

 2 2 21 1
2 2t

T
w w w w w w w wT M M x y z   V V    (3.9)

where superscript “T” indicates the transpose of a vector. Substituting the rotational

velocity vector Eq. (3.6) into the rotational kinetic energy,
rwT , thus:

   2 2 2 2 2 21 1 cos sin 2 sin
2 2r

T
w w w w w w r w w w w zT I I              ω Iω     (3.10)
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where I is inertia tensor of the flywheel. Remembering that for an axisymmetric

flywheel, the transversal moments of inertia, Ir, about the two radial translational DoFs

are equal. Furthermore, if the flywheel is an infinite thin disc, the polar moment of

inertia, Iz = 2Ir. In general, the inertia tensor of the flywheel in body frame can be

expressed as:

0 0
0 0
0 0

r

r

z

I
I

I

 
   
  

I (3.11)

Finally, the total kinetic energy, wT , of a mass balanced WA is derived:

     2 2 2 2 2 2 2 2 21 cos sin 2 sin
2w w w w w w w w r w w w w zT M x y z I I                

      (3.12)

3.4. Potential Energy

The only internal forces and moments acting on the flywheel in the WA are due to the

elastic reactions and damping of the suspension system. For potential energy derivations,

the flywheel radial motions are assumed to be independent from the axial translational

motion, i.e. there is no dynamic coupling between axial and radial DoFs. Meanwhile

due to WA axisymmetry, dynamics in the two perpendicular radial DoFs (xw and yw) are

assumed equal. Under these assumptions, the differing sign convention in the two

perpendicular planes xwzw and ywzw compels the use of opposite signs for the off-

diagonal elements in the stiffness matrices of the two planes. This means if the stiffness

matrix in any of the two planes is derived, the stiffness matrix in the other plane can be

immediately obtained by altering the sign for the off-diagonal elements. The “virtual

displacement method” is used to derive the stiffness matrix of the suspension system.

The total potential energy, wU , is the sum of the potential energy,
w wx zU , in xwzw-plane

and,
w wy zU , in ywzw-plane. This includes the translational and rotational potential energy

in the two radial DoFs and in axial translational DoF, thus wU is expressed as:
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w w w w ww x z y z zU U U U   (3.13)

Derivation of each potential energy in Eq. (3.13) is shown as following.

3.4.1. Potential Energy in ywzw-plane

The WA model in ywzw-plane is depicted in Figure 3-4:

Figure 3-4 WA model in ywzw-plane

Firstly, apply a virtual displacement, yw, at the flywheel CoM, O, positively (i.e. upward

in yw-axis), the linear spring produces an extensive force,
wyF , and let the new CoM to

be O0. Next, apply a virtual rotation, θw, at O0 positively (i.e. anticlockwise), the

torsional spring then produces an extensive moment,
wxM . Since the rotational angle is

assumed to be small, then Δyw = θwd. Also, since only linear spring can produce

extensive or compressive forces, the total extension will be the sum of yw and Δyw.

Hence the total force,
wyF , in ywzw-plane can be expressed as:

wy t w t wF k y k d  (3.14)

The total moment,
wxM , also includes two components: one produced by the torsional

spring and the other one produced by the linear spring. The displacement of the linear
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spring is the sum of yw and Δyw, and the rotation of torsional spring is θw. Hence the

total moment,
wxM , in ywzw-plane can be expressed as:

 2
wx t w r t wM k dy k k d    (3.15)

Forming Eqs. (3.14) and (3.15) into a matrix, gives:

2
w

w

y t t w

t r t wx

F k k d y
k d k k dM 

     
           

(3.16)

The stiffness matrix in ywzw-plane,
w wy zK , is thus:

2w w

t t
y z

t r t

k k d
k d k k d
 
   

K (3.17)

The potential energy in ywzw-plane (radial DoFs only) is derived as the following:

 2 2 2 21 1 2
2 2w w w w

T
w w

y z y z t w t w w r w t w
w w

y y
U k y k d y k k d  

 
   

       
   

K (3.18)

This includes the translational component in yw-axis and rotational component about xw-

axis.

3.4.2. Potential Energy in xwzw-plane

The WA model in xwzw-plane is depicted in Figure 3-5:
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Figure 3-5 WA model in xwzw-plane

Similarly, apply a virtual displacement, xw, at the flywheel CoM, O, positively (i.e.

downward in xw-axis), the linear spring then produces a compressive force,
wxF . Let the

new CoM be O0. Next, apply a virtual rotation, φw, at O0 positively (i.e. anticlockwise),

torsional spring then produces an extensive moment,
wyM . Since the rotational angle is

assumed to be small, then Δxw = φwd. Since only linear spring can produce extensive or

compressive forces, the total extension is thus the sum of xw and Δxw. Note that in this

case xw and Δxw are in opposite directions. Hence the total force,
wxF , in xwzw-plane can

be obtained as:

wx t w t wF k x k d  (3.19)

The total moment,
wyM , can be obtained in a similar manner as that in ywzw-plane:

 2
wy t w r t wM k dx k k d     (3.20)

The stiffness matrix in xwzw-plane,
w wx zK , is thus:

2w w

t t
x z

t r t

k k d
k d k k d

 
    

K (3.21)
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Comparing Eqs. (3.17) and (3.21), the two stiffness matrices have opposite signs in the

off-diagonal elements and diagonal elements are the same, verifying the earlier

statement.

The total potential energy in xwzw-plane (radial DoFs only) is thus derived as:

 2 2 2 21 1 2
2 2w w w w

T
w w

x z x z t w t w w r w t w
w w

x x
U k x k dx k k d  

 
   

       
   

K (3.22)

Note that from Eqs. (3.18) and (3.22), the potential energy in radial DoFs in each plane

is contributed from three components: the linear spring, the torsional spring and their

coupled influences. In axial translational DoF, the potential energy,
wzU , is independent

from others and can be derived as:

21
2wz z wU k z (3.23)

The total potential energy of the flywheel, wU , is thus:

 2 2 2 2 2 2 2 2 21 2 2
2w t w t w w r w t w t w t w w r w t w z wU k x k dx k k d k y k d y k k d k z              (3.24)

3.5. Work Done

To complete the mass balanced WA microvibration model, the work done by the linear

and torsional dashpots must be included. For simplicity, the damping of the suspension

system is assumed to be viscous type. It is modeled as linear and torsional dashpots in

parallel to linear and torsional springs. Using the virtual displacement method, the

virtual work done by the soft-suspension system, δQ, can be written as:

i iQ F x  (3.25)
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where Fi are the forces or moments produced by dashpots; δxi are the corresponding

virtual displacements or rotations.

Since both linear and torsional dashpots are viscous type, the damping forces, Qi, are the

product of the damping coefficients and the corresponding velocities in each DoF.

Hence Eq. (3.25) can also be written as:

i i iQ c x x    (3.26)

where ci are the damping coefficients of dashpots.

From Figure 3-2, dashpots can be considered exhibiting “similar” effects to the system

as the springs, i.e. springs provide restoring forces with dashpots provide damping

forces. The work done expressions by the dashpots must also have similar forms as the

potential energy expressions.

3.5.1. Work Done in ywzw-plane

Examining Eqs. (3.14) and (3.15), the damping force and moment produced by the

linear and torsional dashpots can be obtained respectively as:

 '
wy t w t wF c y c d    (3.27)

  ' 2
wx t w r t wM c dy c c d      (3.28)

Writing Eqs. (3.27) and (3.28) into matrix form, gives:

'

2'
w

w

y t t w

t r t wx

F c c d y
c d c c dM 

     
           


 (3.29)

From Eq. (3.29), the virtual work done in ywzw-plane,
w wy zW , is thus:
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2w w

t t w w
y z

t r t w w

c c d y y
c d c c d




 
   

        
W


 (3.30)

and the damping matrix in ywzw-plane,
w wy zC , is:

2w w

t t
y z

t r t

c c d
c d c c d
 
   

C (3.31)

3.5.2. Work Done in xwzw-plane

Examining Eqs. (3.19) and (3.20), the damping force and moment produced by the

linear and torsional dashpots can be obtained respectively as:

 '
wx t w t wF c x c d    (3.32)

  ' 2
wy t w r t wM c dx c c d       (3.33)

Writing Eqs. (3.32) and (3.33) into matrix form, gives:

'

2'
w

w

x t t w

t r t wy

F c c d x
c d c c dM 

     
            




(3.34)

The virtual work done in xwzw-plane,
w wx zW , is thus:

2w w

t t w w
x z

t r t w w

c c d x x
c d c c d




 
   

         
W




(3.35)

and the damping matrix in xwzw-plane,
w wx zC , is:

2w w

t t
x z

t r t

c c d
c d c c d

 
    

C (3.36)
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In axial translational DoF, only linear dashpot exists, thus:

wz z w wW c z z    (3.37)

3.6. Equations of Motion in Physical Coordinates

The linearized Lagrangian, Lw, can be obtained by substituting the kinetic energy (i.e.

Eq. (3.12) in linearized form) and the potential energy (i.e. Eq. (3.24) in linearized form)

into Eq. (3.2), it gives:

     

 

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

1 2
2
1 2 2
2

w w w

w w w w w w r w w z

t w t w w r w t w t w t w w r w t w z w

L T U

M x y z I I

k x k dx k k d k y k d y k k d k z

   

     

 

          

        

     (3.38)

Considering, the five EoMs w.r.t. the five generalized coordinates: xw, yw, zw, θw and φw

can be written from Eq. (3.1) respectively as:

'

'

'

'

'

w

w

w

w

w

w w
x

w w

w w
y

w w

w w
z

w w

w w
x

w w

w w
y

w w

L Ld F
dt x x

L Ld F
dt y y

L Ld F
dt z z

L Ld M
dt

L Ld M
dt

 

 

   
     

         

        

         

        











(3.39)

The EoM w.r.t. xw is thus derived as:

    0w w t w t w t w t wM x c x c d k x k d       (3.40)

The EoM w.r.t. yw is thus derived as:
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    0w w t w t w t w t wM y c y c d k y k d       (3.41)

The EoM w.r.t. zw is thus derived as:

0w w z w z wM z c z k z    (3.42)

The EoM w.r.t. θw is thus derived as:

     2 2 0w r z w t w r t w t w r t wI I c dy c c d k dy k k d              (3.43)

The EoM w.r.t. φw is thus derived as:

     2 2 0w r z w t w r t w t w r t wI I c dx c c d k dx k k d              (3.44)

Collecting the generalized coordinates from Eqs. (3.40) to (3.44) and composing into

matrix form, gives:

2

2

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0

w ww t t

w wr t r t z

w ww t t

r z t r tw w

w zw w

x xM c c d
I c d c c d I

y yM c c d
I I c d c c d

M cz z

 

 

      
                       

             
            

 
 
 
 

 

2

2

0 0 0 0
0 0 0 0

                          0 0 0 0
0 0 0 0
0 0 0 0 0

wt t

wt r t

wt t

wt r t

t w

xk k d
k d k k d

yk k d
k d k k d

k z





     
                  

          
         

(3.45)

Remembering that for a mass balanced flywheel there are no excitations in the system,

thus the terms on the right-hand-side of Eq. (3.45) are zero. Note that in both stiffness

and damping matrices, the translational and rotational motion couples with each other

due to the WA cantilevered configuration, i.e. there are non-zero off-diagonal elements
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in the two matrices. This is the main difference from the conventional mid-span

configured WAs in which the motions in radial translational and rotational DoFs are

uncoupled, i.e. all off-diagonal elements are zero. The coupled motions in radial DoFs

make the microvibration analysis more complicated for the cantilever configured WA.

For example, the closed-form expressions of responses cannot be derived for each radial

DoF for the cantilever configured WA, and the five DoFs in Eq. (3.45) are best to be

solved numerically.

3.7. Equations of Motion in Complex Coordinates

Eq. (3.45) can be decomposed into radial motions (i.e. a biquadratic equation in radial

DoFs) and an independent equation in axial translational DoF. Complex coordinates can

be used to simplify Eq. (3.45) which allows the WA structural modes to be derived in

their analytical forms. Firstly, define the vector of complex coordinates, r and ϕ, as:

w w

w w

r x iy
i  

 
  

(3.46)

The real part of the coordinates refers to the motions in xwzw-plane and the imaginary

part refers to the motions in ywzw-plane. Note that the minus sign in front of θw remedies

the different conventions of sign in the two planes. Multiplying the yw translational

equation (i.e. Eq. (3.41)) by imaginary unit i and adding the xw translational equation

(i.e. Eq. (3.40)), it gives:

    0w t t t tM r c r c d k r k d       (3.47)

Multiplying the xw rotational equation (i.e. Eq. (3.43)) by –i and adding it to the yw

rotational equation (i.e. Eq. (3.44)), it gives:

     2 2 0r z r t t r t tI i I c c d c dr k k d k dr               (3.48)

Eqs. (3.47) and (3.48) can be written into a more compact form as:
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  0w w wi    Mq C G q Kq  (3.49)

where the vector of complex coordinates, qw, mass matrix, M, gyroscopic matrix, G,

stiffness matrix, K, and damping matrix, C, are derived respectively as:

2 2

0 0 0
,  ,  ,  ,

0 0
t t t tw

w
t r t t r tr z

k k d c c dMr
k d k k d c d c c dI I

        
                         

q M G K C (3.50)

Note that in this case all above matrices are symmetric about their diagonals when using

complex coordinates. In contrast, the gyroscopic matrix is skew-symmetric in physical

coordinates, remembering that from Eq. (3.45):

0
0

z

z

I
I
 

   
G (3.51)

The EoM in axial translational DoF is independent from others and can be simply

written as:

0w w z w t wM z c z k z    (3.52)

Natural frequencies of the WA can be obtained from the general solutions of the

homogeneous equation of the undamped and free system. Since the damping of

suspension system is usually very small, damped natural frequencies of the system are

not so different from the undamped ones. Thus to characterize flywheel structural

modes and their interactions with harmonics, an undamped and free system is used.

As mentioned previously, radial translational DoFs are elastically coupled with

rotational DoFs in each plane. The free whirling of the undamped system can be solved

from the homogeneous equation associated with Eq. (3.49) in an undamped form. By

introducing a solution of the type:

0

0

i trr
e 

 
  
   

   
(3.53)
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As solution of the Eigen-problem are imaginary, it is useful to directly use a real

frequency, ω, as an unknown rather than complex frequency, λ (defined as λ = σ ± iω,

where σ is the decay rate). Placing their first and second time derivative vectors into Eqs.

(3.47) and (3.48), the following algebraic linear equations are readily obtained:

   
   

2
0 0

2 2
0 0

0

0

t w t

t r t z r

r k M k d

r k d k k d I I

 

  

    

      

(3.54)

Its characteristic equation is derived as:

2

2 2det 0t w t

t r t z r

k M k d
k d k k d I I


 
  

     
(3.55)

Therefore the cross-product of Eq. (3.55) gives expressions of natural frequencies or the

WA structural modes in radial DoFs as:

2
4 3 2 0t r t t z t rz

r w r w r w r

k k k d k I k kI
I M I M I M I

   
 

      
 

(3.56)

Eq. (3.56) includes four solutions and thus four structural modes of the WA: two radial

translational modes and two “rocking” modes. The four solutions in Eq. (3.56) are all

speed-dependent qualities, and as expected they are coupled and very difficult to be

solved analytically. Instead, its numerical solutions can be easily computed and the

results are presented as Campbell diagrams.

The natural frequency in axial translational DoF is simply derived as:

z
z

w

k
M

 = (3.57)

Validation of the EoM is discussed in Chapter 5.
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Interactions between the forward whirl and the fundamental harmonic yield the

condition for forward synchronous critical speed. By inserting ω = Ω into Eq. (3.56),

the following quadratic equation can be obtained:

     4 2 2 0w z r z r t w r t t rM I I I I k M k k d k k          (3.58)

The synchronous critical speed is thus derived from Eq. (3.58) as:

         
 

22 2 4

2
t z r w r t t z r w r t w z r t r

cr
w z r

k I I M k k d k I I M k k d M I I k k

M I I

           


(3.59)

Note that in Eq. (3.59), if Iz > Ir (i.e. a thin disc), one of the solution is imaginary and

only one synchronous critical speed exists.

3.8. Statically Mass Imbalanced Flywheel

To derive the EoMs of a fully mass imbalanced flywheel, the statically mass

imbalanced case is first considered and the dynamically mass imbalanced case next. The

static mass imbalance can be modeled as a point mass, ms, placed at radius, rs, on the

flywheel (see Figure 3-2 for detail). Note that amplitudes of the imbalance force are

defined as the values proportional to the radial distance from the mass imbalance to the

shaft axis. This radial distance however, does not have to be the flywheel radius in

practice. In the modeling, the radial distance is expressed as rs rather than the flywheel

radius, although they are the same in Figure 3-2. The same argument applies to the

dynamic mass imbalances presented in the Section 3.9.

From Figure 3-2, the point mass is placed in yw-axis, the position of the point mass can

be written in the body frame as:

0

0
sm sr
 
   
 
 

u (3.60)
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Since the analysis is carried out w.r.t. the inertial frame, Eq. (3.60) needs to be

transformed from the body frame to the inertial frame. Using the transformation matrix

given in Appendix A, the position of point mass can be written in the body frame as:

 
 

 
_

cos sin sin sin cos
cos cos

sin sin cos sin cos
s rotational

w w w s

m w s

w w w s

t t r
t r

t t r

  


  

    
   
    

U (3.61)

Eq. (3.61) describes the total rotational displacement of the point mass w.r.t. inertial

frame.

Consider that flywheel is also free to move in the three translational DoFs, the total

translational displacement vector of the point mass can be written as:

_s translational

w

m w

w

x
y
z

 
   
 
 

U (3.62)

Hence the total displacement vector,
smU , of the point mass is expressed as the sum of

rotational and translational displacements:

 
 

 

cos sin sin sin cos
cos cos

sin sin cos sin cos
s

w w w s w

m w s w

w w w s w

t t r x
t r y

t t r z

  


  

     
    
     

U (3.63)

The point mass velocity vector,
smV , can be obtained by differentiating Eq. (3.63) w.r.t.

time. Thus the kinetic energy expression of the point mass can be derived:
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 
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   
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
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 

(3.64)

With the kinetic energy of the mass balanced WA (i.e. Eq. (3.9)), the total kinetic

energy of the statically mass imbalanced flywheel can be derived. It is expressed in

compact form as:

    
 
   


2 2 2 2 2 2

2 2 2 2 2 2 2

2 2
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
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                     cos cos sin sin sin
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w s s w w s s w w z

s s w w w w w w w

w w w w w

t t

m r t t m r I

m r z t t t

t t

    
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 




 

(3.65)

Eq. (3.65) can be simplified considering that small angle assumption, small mass

imbalance assumption, also the fact that the flywheel spin speed (i.e. Ω) is much larger

than any perturbation speed in the five DoFs. The detailed simplification process is

given in Appendix B. The final expression is shown as:

 


2 2 2 2 2 21 2 sin
2

2 cos 2

sw m w w w w w r w r z s s w

s s w w w z

T M x y z I I I m r y t
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 

 


        

    

   


(3.66)
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The potential energy and work done expressions derived for the mass balanced WA are

not changed in the statically mass imbalanced flywheel model. Hence the linearized

Lagrangian of the statically mass imbalanced flywheel model can be derived as:

 


 

2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 2 sin
2

2 cos 2
1 2 2
2

s sw m w m w
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t w t w w r w t w t w t w w r w t w
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     
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       

   


(3.67)

The EoMs of the statically mass imbalanced flywheel can be derived for the five DoFs

as:

 
 

  
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(3.68)

When composing in matrix form:

2
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0 0 0 0 0 0 0 0
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(3.69)
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As seen from Eq. (3.69), the addition of the static mass imbalance on the flywheel

produces a forcing term in each of the two radial translational DoFs. The two forcing

terms have amplitudes proportional to angular speed squared with frequencies of

angular speeds. Although the radial translational mode and the “rocking” mode couples

with each other for a cantilever configured WA, static mass imbalance does not

influence the flywheel radial rotational motions. From the definition of the static mass

imbalance, this only causes the flywheel CoM offsets from its spin axis (although does

not appear in Eq. (3.69) due to the small mass imbalance assumption), thus it only

excites the radial translational modes. Note also that the static mass imbalance on the

flywheel does not change the flywheel total mass if small mass assumption is used. This

left the left-hand-side of the equation unchanged as in the mass balanced model.

3.9. Dynamically Mass Imbalanced Flywheel

To complete the WA microvibration model, dynamic mass imbalances must be added to

the flywheel to capture its radial moment microvibrations. Physically, dynamic mass

imbalances are caused by misalignment of the principle axis of flywheel and its spin

axis. Dynamic mass imbalances are modeled using two identical point masses, md,

placed 180° apart at a radial distance, rd, and a shaft distance, 2h, on flywheel (see

Figure 3-2 for detail). The two point masses create a moment when flywheel spins.

Positions of the two point masses can be described in the body frame as:

1

0

dm dr
h

 
   
  

u (3.70)

2

0

dm dr
h

 
   
 
 

u (3.71)

Eq. (3.70) and (3.71) define the position of dynamic mass imbalances. Using the same

transformation matrix given in Appendix A, the rotational displacements of the two

dynamic mass imbalances w.r.t. the inertial frame can be derived. Furthermore, the two
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point masses can also move in the three translational DoFs, the total displacement

vector of the two mass imbalances,
1dmU and

2dmU , can be derived respectively as:

 
 

 
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The two velocity vectors can be obtained by differentiating Eqs. (3.72) and (3.73) w.r.t.

time. The total kinetic energy of the two dynamic mass imbalances can be derived as:
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(3.74)

The total kinetic energy of the fully mass imbalanced flywheel is the sum of the mass

balanced WA with both statically and dynamically mass imbalanced cases. It is derived

to be Eq. (3.75) that is shown on the next page.

The same assumptions used for simplifying the statically mass imbalanced case are also

applied to Eq. (3.75). The simplified total kinetic energy of the fully mass imbalanced

flywheel is derived. Details are shown in Appendix B with the final result is derived to

be Eq. (3.76) that is shown on the next page.
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The total potential energy and work done remain unchanged, thus the linearized

Lagrangian of the fully mass imbalanced flywheel can be derived as:
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(3.77)

EoMs of the fully mass imbalanced flywheel can be expressed by inserting Eq. (3.77)

into Eq. (3.39). In order to get the simplest form, small displacement and small mass

imbalance assumptions, etc. are also applied to the rotational EoMs, the results are

shown as Eq. (3.78) on the next page.

Eq. (3.78) is composed into matrix form and shown in Eq. (3.79). Note that due to small

mass assumption, the left-hand-side of Eq. (3.79) remains unchanged.
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On the right-hand-side however, moment excitations from the two dynamic mass

imbalances appear in radial rotational DoFs. The two moment excitations also have

magnitudes proportional to the angular speed squared with frequencies equal to angular

speeds. Note that in practice, the exponent on angular speed on right-hand-side of Eq.

(3.79) might be slightly different from two. This is further discussed in Chapter 5.
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3.10. The Complete Model

Although Eq. (3.79) captures the WA structural modes, gyroscopic effects, fundamental

harmonics and their amplifications, the model does not include sub- and higher

harmonics, neither the broadband excitations. The methods for modeling these extra

excitations in this thesis are based on an empirical approach. Their model parameters

are extracted from WA microvibration test results, while their physical causes are not

modeled. Sub- and higher harmonics are assumed as integer multiples of fundamental

harmonics for each DoF. Parameters for harmonic excitations modeling include the

amplitude coefficients, Ci, and harmonic number, hi, where i in this case is the number

of harmonics considered in each DoF.
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Broadband excitations on the other hand are expressed as W at this stage. The detailed

modeling of harmonics and broadband noises are presented in Chapter 5. At this stage,

they can be superimposed with harmonics in the excitation vector on the right-hand-side

of Eq. (3.79), thus:
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where superscripts “rt”, “rr” and “at” indicate radial translational DoF, radial rotational

DoF and axial translational DoF respectively; n is the total number of harmonics. Note

that if for fundamental harmonics (i.e. n=1, h1 =1), C1 are then the mass imbalances.

3.11. Summary

In this chapter, the analytical microvibration model of the cantilever configured WA

with a soft-suspension system in a hard-mounted boundary condition has been derived.

An energy method was used throughout the derivation process. The linearized EoM of

the mass balanced microvibration model was derived first. This initial model (or the

WA structure model) was able to capture the WA structural modes and gyroscopic

effects but not excitations. Statically and dynamically mass imbalanced microvibration

models were then derived respectively by introducing fundamental harmonic excitations

to the WA structural model. The two models have successfully captured the

microvibrations due to the mass imbalances. By also obtaining higher harmonics and

broadband excitations (they will be discussed in detail in Chapter 5), the EoMs of the

complete WA microvibration model is obtained.
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4. Wheel Assembly Hard-mounted Microvibration

Test

In this chapter, the WA microvibration measurements in the hard-mounted boundary

condition are introduced. Microvibrations generated by the WA are measured using a

specially designed platform. From the test results, the measured microvibrations of the

soft-suspended WA are more complex than those generated from conventional designs

(i.e. flywheel mid-span configured with a rigid suspension system). It is found that

nonlinearity in the motor and high damping of the soft-suspension system severely

affect the induced microvibrations in WA radial DoFs, especially at the fundamental

harmonic resonances. Therefore extractions of model parameters such as stiffness and

damping values of the suspension system from the test results and strategies for

implementing them in the response simulation must be addressed carefully. In addition,

comparisons between the soft-suspended WA and the conventional rigid-suspended

design are also given through microvibration test results. Signal processing techniques

that are commonly used in this thesis are also briefly introduced.

4.1. Test Setup

A microvibration measurement platform has been designed as part of this work to

measure the WA-induced microvibrations in the hard-mounted boundary condition. The

detailed introductions and calibrations of the platform are given in Appendix C. The

platform is able to measure the WA-induced forces from the three installed force

sensors. The six resulting reaction forces and moments: Fx, Fy, Fz, Mx, My and Mz, are

reconstructed from the measured forces. In order to achieve this, it requires three

independent test setups between the WA and platform (see Figure 4-1 for each setup).

Tests and test setups are explained as following:

 The normal setup; the WA was mounted on the platform vertically, i.e. the flywheel

spin axis (zw-axis) was parallel to the measurement platform vertical axis (zp-axis)

(see Figure 4-1 a)). The measurement platform was fixed on the top of a mass cube
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which was fixed on a shaker bench. This setup was to measured Fz, Mx and My

simultaneously.

 The xw-axis orientated setup; WA was mounted on the back plate of the platform. In

this case, the WA xw-axis was parallel to the platform zp-axis. The platform itself

(with WA) was mounted on one vertical side of the mass cube (see Figure 4-1 b)).

This setup was primarily to measure Fx.

 The yw-axis orientated setup; this setup was similar to the Fx test setup. The WA was

oriented by 90° clockwise about its spin axis, thus the WA yw-axis was parallel to

platform zp-axis (see Figure 4-1 c)). This setup was primarily to measure Fy.

Note that in all tests, the shaker bench was lifted by air cushions to isolate from ground-

borne noise. Mz was calculated from Fx and Fy, it did not require a particular test setup.

a) Normal b) xw-axis orientated c) yw-axis oriented

Figure 4-1 Test setups for WA hard-mounted microvibration measurements

In addition, the WA had a device implemented which allowed the soft-suspension

system to be blocked so that the WA behaves like rigid suspended (see Figure 4-2 a) for

detail). In contrast, a web-spring (i.e. the soft-suspension system) was used in the soft-

suspended WA (see Figure 4-2 b)).

With each test setup, microvibrations were measured for both soft- and rigid-suspended

WAs. In each test, the speed step was set at 60 rpm (or 1 Hz) in order not to lose any

useful information (i.e. mainly to capture amplifications at fine frequencies). The
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a) Rigid-suspended WA b) Soft-suspended WA

Figure 4-2 Rigid- and soft-suspended WAs (suspension system only)

flywheel was controlled to spin from 60 to 6000 rpm and signals were acquired for 5s at

each speed. Signals from the force sensors were sampled at 2048 Hz with a block size

of 2048, giving the frequency resolution of 1 Hz and the useful frequency band up to

1000 Hz (with anti-aliasing filter considered).

4.2. Signal Processing

Generally, dynamic analysis of rotational machinery is performed in the frequency

domain. Signal processing techniques in the frequency domain such as Power Spectral

Density (PSD), Amplitude Spectrum (AS), spectral map, Root Mean Square (RMS)

value, Cumulative Root Mean Square (CRMS) value plot, waterfall plot and order

tracking plot, etc., are the common analysis tools. Introductions of the signal processing

techniques used in this thesis are given in Appendix E. In brief, most signals have been

processed in the time domain first and then transformed into the frequency domain

using Fast Fourier Transformation (FFT). The transformed signals were further

processed to generate the PSD, AS and RMS value, etc. The software package M+P

Smart Office was used to acquire signals and MATLAB was used to process all signals

and generate plots throughout the thesis unless mentioned otherwise.

 In the time domain, the mean value in the signal was first removed as they were often

measured with offsets from the zero lines. In addition, in order to produce the

frequency resolution to be 1 Hz, five segments were chosen and thus 2048 samples

per segment with a length of each segment to be 1s, 50% overlap was also applied.

 In the frequency domain, FFT was performed on the processed time domain signals.

Hanning window was applied to each segment. PSD, AS, RMS value and CRMS

value, etc. were then calculated from the FFT results accordingly.
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For example, PSD and CRMS value plot of Fx at 1800 rpm for the soft- and rigid-

suspended WAs are shown in Figure 4-3.

a) Soft-suspended WA b) Rigid-suspended WA

Figure 4-3 PSD and CRMS value plots of the soft- and rigid-suspended WAs

(Fx at 1800 rpm)

In Figure 4-3 a) and b), the largest spike in each plot is at 1800 rpm (or 30 Hz) due to

the fundamental harmonic. They are also clearly seen in the CRMS value plots where

the largest step occurs at 30 Hz in both cases indicating the largest energy contribution

at these frequencies.

Comparing the measured microvibrations from the two WAs, the soft-suspended WA

has much smaller response amplitudes in PSD in general, especially beyond 200 Hz.

Also the corresponding CRMS value plot is approximately flat after the fundamental

harmonic indicating there is no significant energy variation. However this is not the

case for the rigid-suspended WA. There are two distinct “mound” shaped amplifications

around 220 Hz and 690 Hz respectively. These are the modes of the motor-bearing

system that have been constantly excited by broadband noise. Note that the two modes

are also seen in the soft-suspended WA microvibrations, but their influences are

significantly reduced. Because the interested frequency band in this study is up to 500

Hz, microvibrations beyond 500 Hz are ignored and are not discussed further. The

detailed discussions on the soft- and rigid-suspended WAs are presented in Section 4.8.
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According to Parseval’s theorem (shown in Appendix E), the total power of a signal in

the time and frequency domain must be the same. This statement can also be used to

assess the quality of the signal processing techniques that have been used to transform

the signal between the two domains. For example, the total RMS value of Fx in the time

and frequency domain were calculated at all speeds for the soft- and rigid-suspended

WAs. They are shown in Figure 4-4 a) and b) respectively.

a) Soft-suspended WA b) Rigid-suspended WA

Figure 4-4 Total RMS value of Fx in the time and frequency domain

Firstly from Figure 4-4, the identical RMS values in the time and frequency domain for

each WA at each speed indicate the good signal processing that has been performed. In

Figure 4-4 a), the RMS value first increases from 60 rpm with a parabola shape up to

about 2500 rpm and reaches the maximum value at resonance. The curve then steady

decreases and finally becomes comparatively flat from about 4000 rpm. This can also be

seen from Figure 4-5 shown on the next page where WA fundamental harmonic

responses are plotted up to 8000 rpm (the figures are taken from another set of

microvibration tests for the same WA that was performed by the author and his

colleague in [81]). Note that the relatively round resonant peaks in the soft-suspended

WA (i.e. “spring”) are due to the coarse speed rate (per 120 rpm) tested.

These observed dynamic characteristics have shown one important design feature of the

WA: to produce relatively steady and quiet vibrations at high spin speeds. This is clear

if comparing to the conventional WA in Figure 4-4 b) and also in Figure 4-5, where the

resonance of rigid case is much higher (beyond 8000 rpm) and accompanied with some

abrupt and small amplifications at lower speeds. Results in Figure 4-4 a) indicate that
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the soft-suspended WA has a greater potential to work at very high speeds (e.g. above

4000 rpm) with good performance in terms of induced microvibrations.

a) Radial force b) Radial moment

Figure 4-5 Fundamental harmonic response forces and moments generated by

the soft- and rigid-suspended WA (0 to 8000 rpm) [81]

It should be mentioned that WA resonances or any amplification information, e.g.

resonant frequencies and amplitudes, as well harmonic responses, cannot be revealed

from the total RMS value plots such as shown in Figure 4-4. The total RMS value of a

signal at a spin speed is defined as the total energy contributed from all vibration

features in the frequency band at that speed. For a WA this typically includes harmonic

responses, broadband noise and all resonant amplifications. In order to accurately

analyze the WA-induced microvibrations, other signal processing techniques must be

used, such as PSD waterfall plots and spectral maps. The total RMS value plot however,

is very useful for broadband excitations modeling. These signal processing techniques

are frequently applied to the vibration signals studied in the thesis.

4.3. Background Noise

All vibration tests presented in this thesis were performed in the Astronautics Dynamics

Laboratory of the University of Southampton. In order to minimize the environmental

influences on measured data, the commonly accepted procedures and treatments for

space system microvibration tests have been followed. Some of them are:

 All tests were conducted at nights and weekends;

 Air cushions (of shaker) were used to isolate the ground-borne noise;
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 Aluminum foil was wrapped over power cables to avoid electromagnetic interactions;

 Human activities (speaking, walking and typing, etc.) were restricted;

The typical background noise of the three force sensors is plotted in the time domain in

Figure 4-6 a). Background noise of Fz and vibration responses of Fz at 600 rpm for the

two WAs is plotted in the frequency domain in Figure 4-6 b).

a) Background noise of the three force sensors (in the time domain)

b) Background noise and vibrations of Fz at 600 rpm (in the frequency domain)

Figure 4-6 Typical background noise of force sensors

With reference to Appendix C, force sensor 1 is an order of magnitude more sensitive

(~100 mv/N) than the other two force sensors (~10 mv/N), thus its background noise

amplitudes (with electronics switched on) is much smaller as shown in Figure 4-6 a),

the 0-p amplitude is about 0.5 mN compared to 2.5 mN.

In Figure 4-6 b), the total RMS value of the background noise of Fz for the soft-

suspended WA is about 3.5 mN up to 1000 Hz. This mainly arises from the

amplifications at 50 Hz (and its integer multiples) due to the UK mains frequency. In

practice these amplifications cannot be completely avoided and significant efforts have

been made to reduce them. In summary, the background noise shows no significant

influence to the WA-induced microvibrations and they can be ignored.
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On the other hand in Figure 4-6 b), the spikes around 44 Hz and 220 Hz for the soft-

and rigid-suspended WAs respectively are the WA structural modes excited by

broadband noise. Compare the two types of WAs, the soft-suspension system

effectively shifts the natural frequency of rigid-suspended WA to a lower value, hence

microvibrations of the soft-suspended WA are much quieter from 200 Hz; a useful

observation for broadband excitations modeling (shown in Chapter 5).

4.4. Soft-suspended Wheel Assembly Microvibration Force Test
Results

Figure 4-7 shown on the next page presents spectral maps and PSD waterfall plots of

the three measured microvibration forces, Fx, Fy and Fz, for the soft-suspended WA.

Note that in order to correctly present the color in spectral maps, amplitudes are scaled

as 10log (amplitudes). PSD waterfall plots are plotted in a linear scale in amplitude with

a maximum frequency up to 500 Hz and a maximum speed up to 5000 rpm.

Typical dynamic characteristics of WA-induced microvibrations are observed in each

DoF. For example in Figure 4-7 a), different harmonic responses and structural modes

are clearly present. In particular, the red line is the fundamental harmonic with the

largest responses from flywheel mass imbalances. Other speed-varying lines are higher

harmonics and have shown much smaller responses and are due to irregularities in the

motor-bearing system. There are approximately twelve harmonics can be identified in

the figure, but only the first four or five are relatively important.

There are also non-speed-varying (or vertical) lines presented in the figure which are

identified to be WA structural modes and natural frequencies of the motor-bearing

system. First of all, the broadband vertical line around 220 Hz (±10 Hz) is a mode due

to the motor-bearing system in the WA. The vertical line begins at 50 Hz is identified to

be the WA radial translational mode. Similar observations are also seen in Fy in Figure

4-7 b) and Fz in Figure 4-7 c). In these cases, the WA structural mode starts at about 50

Hz (radial translational mode) and 44 Hz (axial translational mode) respectively.
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a) Fx spectral map d) Fx PSD waterfall plot

b) Fy spectral map e) Fy PSD waterfall plot

c) Fz spectral map f) Fz PSD waterfall plot

Figure 4-7 Spectral maps and PSD waterfall plots of measured forces (soft-

suspended WA)

Note that the platform natural frequencies are not shown in the frequency band as they

are much higher than 500 Hz (see Appendix C for detail). Also, another relatively faint

2280 rpm

Region 1

Region 2
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vertical line at 150 Hz is from the background noise as introduced earlier in Section 4.3.

Meanwhile, the 50 Hz vertical line from the background noise coincides with the WA

radial translational mode at 50 Hz and slightly larger than the axial translational mode at

44 Hz. In practice, although the mains frequencies appear in the spectral maps and

coincide with WA structural modes, their responses have much smaller amplitudes (see

also Section 4.3) and do not significantly influence the WA microvibration test results.

Aside from the typical WA dynamic characteristics introduced above, some peculiar

dynamic features of the WA are seen in Figure 4-7. From spectral maps of Fx and Fy in

Figure 4-7 a) and b), it is observed that higher harmonic responses are not clearly

present until 2280 rpm and then suddenly appear with very high responses. This causes

two distinct regions along the speed axis which separates at about 2280 rpm in radial

DoF microvibrations.

The zoomed spectral map of Fx at approximately 2280 rpm is shown in Figure 4-8 a).

The largest spike in Fx is identified at resonance and at approximately 2460 rpm (or 41

Hz) on the fundamental harmonic (also with reference to Figure 4-7 d)). A similar

observation is found in Fy and at approximately 2400 rpm (or 40 Hz). The zoomed

spectral map of Fz is shown in Figure 4-8 b) with the largest spike occurring at

resonance at 2640 rpm (or 44 Hz).

a) Fx b) Fz

Figure 4-8 Zoomed spectral maps of Fx and Fz around 2280 rpm for the soft-

suspended WA
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Note that in Figure 4-8 a) after the resonance, a vaguely speed-varying line appeared

from 2460 rpm (or 41 Hz) in place of the constant radial translational mode at low

speeds. This speed-varying line is in fact one of the whirls of the WA “rocking” mode.

Similar observations are also seen in Fy. In brief, the sudden structural mode changes in

radial DoFs are due to nonlinearity in the responses. For this reason, the speed (i.e. 2280

rpm) where the two regions separate is called the “separation speed” in this thesis. The

nonlinear region in radial DoF is found between 38 to 50 Hz and approximately

centered around 40 Hz at the resonance. Further discussions on nonlinearity in WA

microvibrations are shown in Section 4.6.

In Fz, the WA axial translational mode starts at 44 Hz and remains unchanged in the

speed band (see Figure 4-7 c) for detail). Note that nonlinearity has much less

influences in Fz and the axial translational mode is not influenced by it before and after

2280 rpm (see Figure 4-8 b) for detail).

a) Fundamental harmonic responses

b) “Force tube” (normal view) c) “Force tube” (top view)

Figure 4-9 Fx and Fy fundamental harmonic responses (measurements)
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Next we compare Fx and Fy responses to assess the WA axisymmetry. Firstly from

Figure 4-7, they produce similar microvibrations in the speed band. The fundamental

harmonic responses of Fx and Fy are extracted from the test results and plotted in Figure

4-9 a). They are also plotted as the “force tube” in Figure 4-9 b) and c).

Generally in Figure 4-9 a), the two curves of Fx and Fy have a similar shape. At the

starting speed (60 rpm), both curves increase approximately with the proportion of

angular speed squared into parabola shapes before resonances. Resonance occurs at

2460 rpm (or 41 Hz) in Fx, while at 2400 rpm (or 40 Hz) in Fy. After the resonance, Fx

amplitudes are approximately 1.1 times higher than Fy, but both curves decrease at a

similar rate.

Figure 4-9 b) an c) present the “force tube” plots which provide a clear view of the

evolution of the fundament harmonic response amplitudes in the speed band. At each

speed, Fx and Fy fundamental harmonic response amplitudes are used as the length of

the semi-major and semi-minor axes of an ellipse respectively. Ellipses at each speed

are generated and plotted together along the speed axis.

In Figure 4-9 b), the “force tube” starts from 60 rpm in both directions and increases to

the maximum values at resonances. Up to this point, the circumference of the tube is

approximately circular, while an ellipse circumference is clearly formed at resonances

and afterwards until approximately 4000 rpm. This can be clearly seen in Figure 4-9 c).

The tendency of another circular circumference starts from approximately 4000 rpm

with slowly decreasing response amplitudes and is reasonably formed at the end of test

speed. This is due to the self-centering effect of rotational machinery at high speeds.

In practice, the difference in the harmonic response amplitudes in radial DoFs may be

due to many reasons, e.g. different degrees of irregularities in the motor-bearing system

or the influences of bearing friction and damping, etc. These influences generally have

major impacts on the higher harmonic responses due to their causes. For fundamental

harmonic amplitudes such as those seen in Figure 4-9, the main reason may arise from

the motor harnesses in the WA (see Figure 4-10 for detail).
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a) Suspension system b) WA base

Figure 4-10 Motor harnesses in the WA

In this case, the motor harnesses can be considered as a single DoF spring-dashpot

system and thus adding extra stiffness and damping in both radial DoFs due to its

orientation w.r.t. the WA coordinate system (see the yellow arrow in Figure 4-10 a)).

Therefore the resonant frequencies and amplitudes in the two radial DoFs are slightly

different. In the microvibration modeling, stiffness and damping values of the

suspension system in the two radial DoFs can be tuned to match the test results, so in

this way the influences of harnesses to the harmonic responses can be included.

Alternatively, they can be estimated from the test results or physically modeled.

On the other hand in Figure 4-7, Fz generally has much smaller amplitudes in the speed

band apart from the resonance at 2640 rpm compared to responses in radial DoFs. The

total RMS values of Fx and Fz are calculated and plotted together in Figure 4-11 a). The

fundamental harmonic response amplitudes of Fz are also extracted from the

microvibration test results and plotted in Figure 4-11 b).

a) Total RMS values of Fx and Fz b) Fz fundamental harmonic responses

Figure 4-11 RMS values and fundamental harmonic responses of Fz
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Remembering that in the WA hard-mounted microvibration model derived in Chapter 3,

harmonic excitations only appear in radial DoFs, if so, the static and dynamic mass

imbalances assumed in the model have no influence in axial translational DoF. However,

this is not true as seen from Fz test results. From Figure 4-7 c) and Figure 4-11,

fundamental harmonic responses are clearly present in Fz. In practice microvibrations in

axial translational DoF arise for various reasons such as uneven distribution of flywheel

mass imbalances (thus fundamental harmonics) and/or irregularities in bearing and

motor components (thus higher harmonics). Also from Chapter 3, it is assumed that

motion in axial translational DoF is uncoupled from those in radial DoFs, but in practice

it may be influenced by them. In the WA microvibration modeling, dynamics in axial

translational DoF are simply considered as an independent one DoF mass-spring-

dashpot system, with all harmonic excitations modeled empirically. Note that in many

cases, resonance amplitudes of Fz can be more significant than those of Fx and Fy,

although responses elsewhere could be much smaller.

4.5. Soft-suspended Wheel Assembly Microvibration Moment Test
Results

Figure 4-13 presents spectral maps and PSD waterfall plots of the measured

microvibration moments, Mx, My and Mz, of the soft-suspended WA respectively.

Similar to the microvibration forces shown in Section 4.4, harmonic responses and

amplifications in the microvibration moments are also clearly present. In addition, the

WA “rocking” mode is captured in radial moments Mx and My (see Figure 4-13 a) and

b)). The “rocking” mode starts around 27 Hz from static and a “V” shape is formed as

speed increases. The zoomed plot of the “rocking” mode is shown in Figure 4-12.

Figure 4-12 WA “rocking” mode in Mx

“Rocking” Mode
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In Figure 4-12, the two branches of the “rocking” mode are the forward and backward

whirls respectively. In addition, the radial translational mode at 50 Hz is also captured

in Mx due to the “side effects” of the flywheel “rocking” motion (note that the reverse is

not true since radial translational motions do not necessarily excite the “rocking” mode

which only appears in Mx and My). Since microvibration moment test results (such as

Figure 4-12) capture all WA structural modes in radial DoFs, they are preferred as the

inputs for the microvibration model validations in radial DoFs (details are presented in

Chapter 5). Also nonlinearity is more significant in the measured moments. The two

distinct regions (separate at 2280 rpm) are clearly seen in Figure 4-13 a) and b).

a) Mx spectral map d) Mx PSD waterfall plot

b) My spectral map e) My PSD waterfall plot

2280 rpm

Region 1

Region 2
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c) Mz spectral map f) Mz PSD waterfall plot

Figure 4-13 Spectral maps and PSD waterfall plots of measured moments (soft-

suspended WA)

At this point of the study, the stiffness of the soft-suspension system can be determined

for the WA microvibration modeling. The final stiffness and natural frequencies are

given in Table 4-1. They are determined from both microvibration test results presented

in this chapter and results calculated from the WA FE model (with sine-sweep tests

verified, details are shown in Appendix D).

WA Structural Mode Natural Frequency Stiffness
Radial Translational mode 50 Hz 6.9×104 N/m

“Rocking” mode 27 Hz (at static) 15 Nm/rad
Axial Translational mode 44 Hz 5.8×104 N/m

Table 4-1 Stiffness and natural frequencies of the WA soft-suspension system

Next, comparing the PSD waterfall plots of Mx and My in Figure 4-13 d) and e), it is

clear that there are also some differences in the fundamental harmonic responses. The

Mx and My fundamental harmonic responses are extracted from the test results and are

plotted in Figure 4-14 a). The “moment tube” is also generated and plotted in Figure

4-14 b) and c).
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a) Fundamental harmonic responses

b) “Moment tube” (normal view) c) “Moment tube” (top view)

Figure 4-14 Mx and My fundamental harmonic responses (measurements)

In Figure 4-14 a), the two curves are almost identical at low speeds and grow into

parabola shapes until resonances. Similar to Fx and Fy, the two resonances have

different resonant frequencies (2400 rpm (or 40 Hz) for Mx and 2460 rpm (or 41 Hz) for

My) and resonant amplitudes. After the resonances, Mx decreases at a slightly faster rate

than My, while response amplitudes of My are approximately 1.2 times larger than those

of Mx.

The torque microvibrations, Mz, in Figure 4-13 c) and f) have much smaller response

amplitudes compared to those of Mx and My. In practice, Mz are often ignored for typical

WA microvibration analysis, but they are the relatively dominant microvibrations at

very low speeds, e.g. in crossing-zero microvibration analysis. In this thesis, Mz are

ignored and thus the number of DoFs studied reduces to five.
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4.6. Nonlinearity

In order to investigate nonlinearity observed in the WA microvibration test results, high

and low level input sine-sweep tests were performed to the hard-mounted WA. The

detailed introduction of the tests, results and discussions are presented in Appendix D.

In this section, the results from the high level input sine-sweep tests in WA radial xw-

DoF are presented as they are more representative and reveal the nonlinearity in the WA.

The test setup and results are shown in Figure 4-15.

Figure 4-15 High level input sine-sweep test (WA radial xw-DoF)

In this test, the WA was excited by the shaker from 5 to 250 Hz with an input level 0.25

g. This input level was high enough to excite the nonlinearity in the WA. Forward and

backward sine-sweep tests were performed. Three accelerometers were attached to the

flywheel. Accelerometer no. 2 and 3 were attached in xw-axis to measure the radial

translational mode, while accelerometer no. 4 was attached on the flywheel top surface

in zw-axis to primarily measure the “rocking” mode. Results are plotted as solid and

dashed lines for the forward and backward sine-sweep tests respectively in Figure 4-15.

Firstly, in the forward sine-sweep test results the radial translational mode is detected at

about 50 Hz from accelerometer no. 2 and 3, while in the backward sine-sweep test

results it is detected at about 46 Hz. All other modes are almost identical such as the

“rocking” mode around 27 Hz, the axial translational mode at 44 Hz and the two modes

above 200 Hz due to the motor-bearing system. This difference in the forward and

backward sine-sweep test results is due to nonlinearity. The region between 46 to 50 Hz

is the nonlinear (response) region. Note that in practice, as in the flywheel spinning

condition, the nonlinear region in the test results may be slightly different (e.g. from 38

to 50 Hz as in our case as shown in Section 4.4 and 4.5). Meanwhile, the sudden decline

of responses in each plot after the resonance also indicates nonlinearity occurred there.
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The physical causes of nonlinearity are not studied in this thesis however, it was found

from WA microvibration test results that it was due to the bearing system inside the

motor (here also referred as the motor-bearing system). Nonlinearity influences in the

WA microvibration analysis are discussed throughout this thesis however.

4.7. Higher Harmonic Responses

Responses of any harmonic can be extracted from the WA microvibration test results,

their plots in the speed band are called the “order tracking plot of harmonics”. In WA

microvibration analysis, harmonics are usually expressed as fundamental harmonic (H1),

second harmonic (H2), half harmonic (H0.5), H2.3, etc. Responses of the first five

integer higher harmonics, i.e. H2 to H6, in Fx, My and Fz are extracted and plotted in

Figure 4-16 a), b) and c) respectively.

Generally, the amplitudes of higher harmonic responses are much smaller compared to

those of the fundamental harmonics. They also grow approximately with the square of

the angular speed until the “separation speed” at 2280 rpm, and large amplifications

occur due to nonlinearity (see H2 responses around 2500 rpm for example). Afterwards,

the responses in radial DoFs decline at slower rates and became approximately flat from

3500 rpm as the flywheel self-centering effects become influential. Note that higher

harmonic responses of Fz are much smaller compared to those of Fx as expected (except

H2 around 2500 rpm due to nonlinearity).

Apart from harmonic responses, WA structural modes can also be identified from

higher harmonics, e.g. resonances on H2 in Fx and My at 1500 rpm, and on H3 at 1000

rpm, etc., are the radial translational mode (50 Hz); resonances in Fz on H2 at 1320 rpm

and on H3 at about 900 rpm, etc., are the axial translational mode (44 Hz).
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b) My

c) Fz

Figure 4-16 Order tracking plots of the soft-suspended WA (H2 to H6)

Order tracking plots are useful for higher harmonic excitations modeling, model

parameters are extracted from them. Detailed work is presented in Chapter 5.

4.8. Rigid-suspended Wheel Assembly Microvibration Test Results

In this thesis the microvibration test results of a rigidly-suspended WA (see Figure 4-2

b)) are also presented but only used to compare and assess the design of the soft-

suspended WA in terms of microvibrations generated. A microvibration model of the

rigid-suspended WA is beyond the scope of this thesis. Microvibration test results are

plotted in Figure 4-17 for the spectral maps and PSD waterfall plots of Fx, Fz and My.

Firstly from Figure 4-17 a), b) and c), WA structural modes have disappeared in the

frequency band as they are beyond the maximum frequency plotted due to the rigid

suspension used in the WA. Therefore for the rigid-suspended WA, the fundamental

harmonic responses grow in the speed band without amplifications with the WA

structural modes (see Figure 4-17 d), e) and f) for detail). The dynamic characteristics

shown in Figure 4-17 are the typical patterns for conventional WA designs. In addition,

two distinct horizontal “belts” between 2100 to 2340 rpm and 4440 to 4860 rpm appear

in each DoF are from the motor-bearing system but their causes are unknown and are

beyond the scope of this thesis.
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a) Fx spectral map d) Fx PSD waterfall plot

b) Fz spectral map e) Fz PSD waterfall plot

c) My spectral map f) My PSD waterfall plot
Figure 4-17 Spectral maps and waterfall plots of measured microvibrations

(rigid-suspended WA)

Figure 4-17 also shows one important conclusion concerning the nonlinearity observed

in the WA microvibration test results. Remembering that in the rigid-suspended WA,
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the soft-suspension system is completely locked, thus the nonlinearity observed in

Figure 4-17 is caused by the internal components of the motor (or the motor-bearing

system) rather than the web-spring of the soft-suspension system. However the study of

motor-bearing system dynamics is beyond the scope of this thesis.

Figure 4-18 shows the zoomed CRMS value plots of Fx at 1800 rpm for the soft- and

rigid-suspended WAs between 100 to 1000 Hz (its complete plot is shown in Figure

4-3). Note that RMS values of the two types of WAs are matched at 100 Hz in order to

provide a clear comparison in the frequency band.

Figure 4-18 CRMS value plots of Fx at 1800 rpm for the soft- and rigid-

suspended WAs (100 to 1000 Hz)

From Figure 4-18, microvibrations induced by the soft-suspended WA have much lower

amplitudes in the frequency band between 200 to 1000 Hz. The blue curve (i.e. the soft-

suspended case) is almost constant indicating no significant energy contribution in the

response in this frequency band. On the green curve (i.e. the rigid-suspended case)

however, the first major step occurs at about 220 Hz (between 200 to 260 Hz) due to the

natural frequency of the motor-bearing system. It is stabilized from approximately 260

Hz and remained effectively flat until the second major step at about 690 Hz (between

640 to 700 Hz) due to also the motor-bearing system. Note that there are also some

smaller steps on the green curve that are generated from the motor-bearing system since

the microvibration forces and moments are not sufficiently damped because the rigid

suspension used in the WA. These microvibrations are transmitted almost entirely

through the rigid-suspension system and to the WA base and are thus being measured.
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The comparison presented in Figure 4-8 indicates that the soft-suspended WA has

improved dynamic performances at high frequencies in terms of microvibrations

generated. Remembering that structural modes of the WA under study are designed at

low frequencies (below 70 Hz), if at typical angular speeds, e.g. 2400 rpm (or 40 Hz)

for RWAs, or 6000 rpm (or 100 Hz) for MWAs, there is no significant amplification on

the fundamental harmonics in these bands, i.e. microvibrations induced by the soft-

suspended WA are much quieter. This shows one of advantages of the soft-suspended

WA over the conventional rigid designs.

4.9. Summary

In this chapter the WA-induced microvibrations in six-DoFs have been measured and

analyzed. Apart from the typical dynamic characteristics such as harmonics and WA

structural modes, nonlinearity and high damping were also seen in the responses and

they are particularly influential in WA radial DoFs. Nonlinearity occurs at

approximately 2280 rpm and causes the primary resonances (those on fundamental

harmonics) in radial DoFs to be somewhat shifted. Responses after the resonances also

grow at higher levels accompanied with amplitude fluctuations. It was also seen the

fundamental harmonic responses in radial DoFs are significantly damped by the soft-

suspension system. While in axial translational DoF, nonlinearity was not significant

and harmonic responses present low damping. WA microvibration modeling strategies

are briefly discussed, particularly regarding harmonic excitations modeling with

consideration of nonlinearity and high damping of the WA. In particular, a systematic

approach has been presented to extract suspension system stiffness and damping values

(details are given in Appendix D). The measured results and modeling strategies are

used in the next chapter for the WA microvibration response simulation. In addition, the

soft-suspended WA exhibits much lower microvibration responses at frequencies above

200 Hz when compared to the conventional designs, which is one of its design

advantages.
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5. Wheel Assembly Hard-mounted Microvibration

Model Validation and Response Prediction

In this chapter, the WA hard-mounted microvibration model derived in Chapter 3 is

validated with the hard-mounted microvibration test results measured in Chapter 4, the

full microvibration responses are predicted from the validated model. WA structural

modes are first validated through Campbell diagram. Nonlinearity in the motor and high

damping characteristics of the soft-suspension system are further discussed with the

validation results. The detailed modeling of harmonic and broadband excitations is also

introduced in this chapter. In particular, a parameter “trade-off” method is developed to

estimate parameters for the harmonic excitations modeling. Linear harmonic responses

are simulated from the WA microvibration model with damping values obtained in

linear and nonlinear conditions. The frequently ignored broadband excitations are

modeled empirically utilizing bandstop filters and applied to vibrations at different WA

angular speeds to assess its modeling accuracy and efficiency in practice.

5.1. Wheel Assembly Structural Modes

The validation of WA structural modes is carried out by comparing the structural modes

calculated from the WA hard-mounted microvibration model to the WA hard-mounted

microvibration test results. If assuming an undamped and free system in Eq. (3.45), the

classic Eigenvalue problem is solved. If damping values are small, natural frequencies

of a damped system do not differ significantly from those in an undamped condition.

For example in our case, damping ratios of the suspension system is about 0.02 in WA

axial translational DoF (see Appendix D for detail), which is small enough such that the

undamped natural frequencies are calculated to be the WA structural modes.

Remembering that from Chapter 3 the dynamics in the four radial DoFs are coupled for

a cantilever configured WA, the closed-form expression of harmonic response cannot be

derived for each radial DoF. The four radial EoMs need be solved simultaneously and

numerically. The axial translational DoF on the other hand is independent from the four

radial DoFs and its EoM is solved independently. Comparisons of analytical structural
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modes and microvibration test results are plotted as Campbell diagrams (up to 120 Hz)

in Figure 5-1 a) and b) for the radial and axial translational DoFs respectively. In each

figure, WA structural modes are plotted as black lines. The first five integer harmonics

(H1 to H5) and one fractional harmonic (H2.7) are also plotted. They are highlighted as

white lines in Figure 5-1 a).

a) Radial DoFs (Mx) b) Axial translational DoF (Fz)

Figure 5-1 Campbell diagrams of WA structural modes compared to the

microvibration test results

In general from Figure 5-1, all simulated WA structural modes are correlated well to the

test results. In Figure 5-1 a), four whirls (two Forward Whirls (FW1 and FW2) and two

Backward Whirls (BW1 and BW2)) are calculated from the WA hard-mounted

microvibration model. It is clear that none of them are constant with speed due to the

coupled translational and “rocking” motions in each radial DoF. Since the flywheel

CoM is very close to the soft-suspension system, mathematically BW2 becomes

approximately a vertical line and thus identified to be the radial translational mode.

BW1 on the other hand is hardly seen in the test results with only several “points”

presented, however the microvibration model has precisely captured this whirl. FW1

has clearly presented below 500 rpm and above 2400 rpm in the test results. FW1 and

BW1 are together identified to be the “rocking” mode of WA. It begins at about 27 Hz

from static and splits into two whirls as speed increases and eventually a “V” shape is

formed. FW2 on the other hand is clearly present below 1200 rpm and above 2280 rpm

(i.e. the “separation speed”). In particular, FW2 grows at a much higher rate when

joined by H2 after the “separation speed”. In the low speed region, FW2 are excited by
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several close higher harmonics and thus large responses. In axial translational DoF in

Figure 5-1 b), the independent axial translational mode starts from 44 Hz and as

expected, remains constant in both simulated and test results.

Mathematically, the well correlated WA structural modes shown in Figure 5-1 have

verified the undamped and free EoMs of the model. This includes the model parameters

such as suspension stiffness and flywheel properties (mass and moment of inertias, etc.).

5.2. Nonlinearity and High Damping

Remembering that from Chapter 4 the WA harmonic responses exhibit nonlinearity and

high damping at resonances, particularly in radial DoFs. With reference to the WA

structural modes shown in Figure 5-1, these peculiar dynamic characteristics are further

explained and modeling strategies are presented in this section. The development of the

peculiar harmonic responses is first explained graphically in Figure 5-2.

Figure 5-2 Development of nonlinear and highly damped harmonic responses

Firstly, from the Campbell diagram shown in Figure 5-1 a), it is clear that the two

whirls FW1 and BW2 approach to each other as angular speed increases from static and

later intersected by H1. The consequence of the interaction produces large

amplifications in that region (high-lighted with a red circle) where H1 responses are

significantly amplified by the two WA structural modes almost simultaneously. These

large amplifications produce large input loads to the motor-bearing system and thus

cause nonlinearity. In practice however, these amplifications do not show sharp spikes
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at resonances in radial DoFs since they are significantly reduced by the damping of the

soft-suspension system, thus producing relatively flat shapes (see Figure 4-9 a) and

Figure 4-11 b) for comparison). Consequently, fundamental harmonic responses in

radial DoFs are highly damped at resonances.

In contrast, for the higher harmonic responses in radial DoFs in Figure 5-1 a), although

BW2 and FW2 are excited by a number of close higher harmonics below 1200 rpm but

the resonant amplitudes are not significantly damped. This is due to the fact that in

general, higher harmonic responses have much smaller amplitudes, i.e. small inputs to

the motor-bearing system, and also in this case the intersecting region is located at low

speeds (high-lighted with a yellow circle in the figure). After the resonances, harmonic

responses become nonlinear but are still not significantly damped (see Figure 4-16 a)

and b) for example). In practice these dynamic characteristics make the modeling of

higher harmonic excitations much more complicated than those in traditional cases, and

this is mainly due to the different damping characteristics observed in the test results.

Nonlinearity also causes other issues in the WA microvibration response modeling. For

example in Figure 5-1 a), there is a slight difference in the primary resonant frequencies

between the simulated results (2680 rpm or 45 Hz) and test results (2400 rpm or 40 Hz),

that is also caused by nonlinearity. Since the WA microvibration model is derived based

on linear assumptions, it cannot precisely simulate the nonlinear influences such as the

resonance shifting introduced here. The WA microvibration model presented in this

thesis is able to closely simulate WA dynamics when compared to the experimental data.

The work presented in this section is used as the basis for harmonic excitations

modeling in Section 5.3 and for determining WA suspension system damping values in

Appendix D. Both results are used to simulate WA harmonic responses in Section 5.4.

5.3. Harmonic Excitations

Remembering that from Chapter 3 harmonics can be broken down into fundamental

harmonics and higher harmonics. The fundamental harmonic excitations are derived as

sinusoidal functions in each DoF (see also the complete derivation in Appendix B).

Higher harmonic excitations due to irregularities in the motor however, are not
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physically modeled. They are assumed, for simplicity, as integer multiples of

frequencies of fundamental harmonics and their amplitudes are modeled empirically by

extracting parameters from the WA microvibration test results. Therefore the full

harmonic excitation in each DoF is in fact the superposition of all harmonics considered.

In this section the simulation of harmonic excitations is introduced. Due to WA

axisymmetry, harmonic responses, Fy, Fz and Mx, are used for the WA microvibration

model validation.

The harmonic excitations modeling method developed in this thesis is based on the

microvibration test results, i.e. an empirical method. A program was first written to find

a quantity termed as the “cut-off speed” from fundamental harmonic responses test

results for each DoF. The “cut-off speed” is defined as the maximum speed where

dynamic amplification caused by resonance on harmonics has not yet significantly

influenced the response amplitudes in the test results. The rest can be considered as a

“trade-off” process between the speed power and mass imbalances (both are variables in

this process) until the simulated harmonic excitations (or inputs) closely correlate to the

test results up to the “cut-off speed”. This modeling process is presented in detail in

Figure 5-3.

Figure 5-3 Harmonic excitation simulation process

The first step is to locate the “cut-off speed” for each DoF. This is primarily performed

on the fundamental harmonics. Initially, the trial amplitude coefficients of harmonics
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are taken as the mass imbalances from the WA specification (i). Assume also the trial

speed power to be square (or two) (ii), and the harmonic amplitudes can be estimated

(iii). This process is repeated at every speed and the fundamental harmonic amplitudes

in the speed band are simulated (iv). After comparing the simulated inputs to the

corresponding test results for each DoF (v), adjustments are made in the trial amplitude

coefficients and trial speed powers until they match each other from static, and the

suitable speed range or the “cut-off speed” can be found for each DoF (v). The average

value of “cut-off speed” of all DoFs is used as the final value and it is used constantly in

the rest of modeling process for simulation of harmonics in all DoFs. Note that during

the parameter adjustment process in Figure 5-3, the speed power is limited within the

defined tolerance (i.e. ±15% from two). The final “cut-off speed” is found to be 1500

rpm. Finally, the same simulation process is applied to the higher harmonics, and in this

case only up to the “cut-off speed” as it is already determined before. The speed power

and amplitude coefficients of harmonic inputs are adjusted until the simulated inputs

and the test results are closely correlated up to this speed (vii).

a) Fx b) My

c) Fz

Figure 5-4 Simulated fundamental harmonic excitations
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Figure 5-4 shows the final simulated fundamental harmonic excitations for Fx, My and

Fz (plotted up to 3000 rpm only for clear views). The corresponding test results of

fundamental harmonic responses are also plotted. In later modeling (Section 5.4), the

harmonic inputs curves shown here are implemented to the WA structural model, and

the harmonic responses can be simulated. Since the “cut-off speed” is found to be 1500

rpm, the simulated fundamental harmonic excitations correlated well to the test results

up to this speed in each DoF. After the “cut-off speed”, the test results begin to be

significantly amplified by resonances, while the simulated harmonic excitations

continue to grow with the speed power defined.

The simulation results of H5 harmonic excitations of Fx, My and Fz are shown in Figure

5-5 for example.

a) Fx b) My

c) Fz

Figure 5-5 Simulated H5 harmonic excitations
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In general in Figure 5-5, the simulated higher harmonic excitations have also correlated

well with the general response levels of the test results up to approximately 1500 rpm

apart from resonances in the low speed region. The appearance of resonances at low

speeds on higher harmonics is the reason why the “cut-off speed” is only estimated

from the fundamental harmonic response test results.

The complete simulation of harmonic excitations of Fx, My and Fz are plotted as AS

waterfall plots in Figure 5-6. They are used as the harmonic inputs to the WA structural

model. Note that higher harmonic excitations have much smaller amplitudes when

compared to those of the fundamental harmonics.

a) Fx b) My

c) Fz

Figure 5-6 The complete simulated harmonic excitations (H1 to H5)

The final amplitude coefficients and speed powers of harmonic excitations obtained

from this simulation method are given in Table 5-1.
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Harmonic
Number

Amplitude
Coefficient

(kg.m)

Speed
Power

Amplitude
Coefficient

(kg.m2)

Speed
Power

Amplitude
Coefficient

(kg.m)

Speed
Power

Fx My Fz

H1 4.5 × 10-6

2.12

3.26 × 10-7

2.25

1.35 × 10-7

2.24
H2 4 × 10-8 1 × 10-9 8× 10-9

H3 1 × 10-8 3 × 10-10 2 × 10-9

H4 5 × 10-9 1 × 10-10 1 × 10-9

H5 4 × 10-9 2 × 10-10 8 × 10-10

Table 5-1 Amplitude coefficients and speed powers of the simulated harmonic

excitations

Note that the trial mass imbalance of fundamental harmonic excitation in Fz is assumed

to be 3% of the static mass imbalance. Amplitude coefficients of higher harmonic

excitations are extracted from order tracking plots of test results shown in Figure 4-16.

Note also that the estimated speed powers are well retained within the tolerance defined

(i.e. ±15% from two). Model parameters of harmonic excitations in Table 5-1 are

applied in the WA microvibration model in order to simulate the harmonic responses.

5.4. Linear Harmonic Responses

Linear harmonic response forces and moments are simulated from the WA

microvibration model using the state space approach in MATLAB. In general:

       t t t t  Mx Cx Kx Q  (5.1)

If the system is linear, its state space form can be derived. Let    1 t tx x and

   2 t t x x , Eq. (5.1) then becomes:

 
 

 
   1 1

1 1 1
2 2

0 0t t
t

t t  

      
             

x xI
= + Q

x xM K M C M



(5.2)
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 
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x

x
(5.3)
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Using the linear dynamic system simulation function in MATLAB, the response

displacements,  tx , and velocities,  tx , can be simulated in the time domain for each

DoF. After that, the linear harmonic response forces and moments can be calculated

using the following equations:

x t wF k x (5.4)

y r wM k  (5.5)

z z wF k z (5.6)

where all stiffness values are obtained previously.

5.4.1. Harmonic Responses with Linear Damping Parameters

In the WA microvibration model, harmonic responses are simulated for two conditions

based on the suspension system damping. Remembering that from microvibration test

results, the resonant amplitudes of fundamental harmonics are damped very differently

in radial and axial DoFs by the soft-suspension system. Therefore rather than testing the

damping values randomly to match the corresponding test results for each harmonic, in

this thesis a systematic approach of calculating and implementing the damping values in

the WA microvibration model is developed. The detailed introductions of obtaining

damping values are presented in Appendix D. In this and the proceeding section, the

implementation of damping values in the WA microvibration model is introduced.

Remembering that from the Fz microvibration test results presented in Chapter 4 (see

Figure 4-7 f) for example), light damping is exhibited in axial translational DoF. This

indicates the damping value estimated from the sine-sweep test must be performed with

a low level input in order not to raise the high damping characteristics in the soft-

suspension system, which should be the normal working condition.

From the low level input sine-sweep tests introduced in Appendix D, the damping ratio

obtained is estimated approximately 0.02. Since nonlinearity is not raised in this case,



89

this damping value is called the “linear damping” value for simplicity. Using the state

space approach, the fundamental harmonic responses of Fx, My and Fz are simulated

from Eq. (3.79). The simulated results are presented in Figure 5-7 and are also

compared to the test results.

In Figure 5-7, the simulated fundamental harmonic responses have correlated well to the

test results in Fz (see Figure 5-7 c)), however presenting a large disparity at the resonant

amplitudes in the other two DoFs. Clearly, the damping value applied in radial DoFs is

too small and is required to be increased. Rather than randomly increasing them in the

model, i.e. a trial approach, a reliable and accurate method is introduced to obtain a high

degree of damping values. They are discussed in Section 5.4.2.

a) Fx b) My

c) Fz

Figure 5-7 Simulated fundamental harmonic responses (linear damping values

used)
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Spectral map and AS waterfall plot of the simulated harmonic responses of Fz (H1 to

H5) are presented in Figure 5-8.

a) Fz spectral map b) Fz AS waterfall plot

Figure 5-8 Spectral map and AS waterfall plot of the simulated harmonic

responses of Fz

The simulated higher harmonic responses and PSD waterfall plot of Fz are presented in

Figure 5-9 a) and b) respectively.

a) Fz higher harmonics (H2 to H5) b) Fz PSD waterfall plot

Figure 5-9 Simulated Fz harmonic responses

Remembering from the test results that the dynamics in axial translational DoF are not

significantly influenced by nonlinearity and the amplitudes of harmonic responses grow
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the case for higher harmonic responses. From the test results such as those shown in

Figure 5-9 a), several unidentified responses are observed at speeds above 2400 rpm.

For example, a large amplification at approximately 2400 rpm abruptly appears on H2,

and afterwards, the responses generally maintain at much higher levels. Note also that

several unidentified amplifications which appear horizontally at approximately 4100

rpm, this is similar to the horizontal response belts seen in Figure 4-17. They are

generated from unknown sources in the motor and are beyond the scope of this thesis.

The linear WA microvibration model however, cannot simulate these unidentified

higher harmonic responses, but it has accurately captured the dynamics at low speeds.

This includes the harmonic responses, structural modes and their interactions. Therefore

the linear damping value from low level input sine-sweep tests is also proved to be

suitable for the modeling of higher harmonic responses in axial translational DoF. PSD

waterfall plot of the simulated harmonic responses of Fz is presented in Figure 5-9 b).

These are almost identical to the test results in Figure 4-7 f).

5.4.2. Harmonic Responses with Nonlinear Damping Parameters

Remembering that from high level input sine-sweep tests introduced in Appendix D, the

input accelerations are large enough to raise nonlinearity in the WA suspension system,

the damping values obtained in the tests are called “nonlinear damping” values for

simplicity. The damping ratio estimated is approximately 0.15 in radial DoFs. The

damping value is calculated and applied in the WA microvibration model. The

fundamental harmonic responses are simulated for Fx and My and compared to the test

results. These are shown in Figure 5-10 a) and b) respectively.

In Figure 5-10 a) and b), the simulated fundamental harmonic responses in both cases

are much better correlated to the test results compared to those with linear damping

values applied in Figure 5-7 a) and b), especially at resonances. As mentioned earlier,

the slight differences in resonant frequencies between model and test results are due to

resonance frequency shifting observed in the test results that the linear WA

microvibration model cannot simulate. Aside from this, the fundamental harmonic

responses are well simulated by the model.
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a) Fx b) My

Figure 5-10 Simulated fundamental harmonic responses in radial DoFs

(nonlinear damping values used)

Higher harmonic responses in radial DoFs are also simulated from the WA

microvibration model using nonlinear damping value however it failed to capture their

resonant amplitudes correctly. Since the nonlinear damping value is constantly used in

all harmonic response simulations in radial DoFs, it not only affects the fundamental

harmonics but also higher harmonics and thus shows relatively flat shaped spikes such

as those in Figure 5-10. This contradicts the observations in the test results such as in

Figure 4-16 a) and b), where sharp resonant spikes appear on every higher harmonic

response.

Technically one possible approach to solve this problem is to use the linear damping

value for higher harmonic response simulations in radial DoFs, but the overall process

becomes more complicated since different damping values would be used in different

harmonics in each radial DoF and the complete EoM must be solved simultaneously as

introduced earlier. However, the modeling method introduced in this thesis would

become inefficient from the practical point of view, although all harmonic responses

can be accurately simulated in this way.

AS waterfall plots and spectral maps of the simulated harmonic responses of Fx and My

are plotted in Figure 5-11.
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a) Fx spectral map c) Fx AS waterfall plots

b) My spectral map d) My AS waterfall plots
Figure 5-11 Spectral maps and AS waterfall plots of Fx and My

In Figure 5-11 a) and b) since only fundamental harmonic responses are simulated from

the WA microvibration model, the four WA structural modes intersect with it. For the

AS waterfall plots in Figure 5-11 c) and d), it is clear that resonant amplitudes are

significantly reduced by the high damping values applied in the model, and they also

closely simulate the test results.

Note that in practice for this WA, higher harmonic responses are too small and unlikely

contribute significant amount of energy to the overall microvibrations at any speed (see

Figure 4-7 and Figure 4-13 for example), thus for simplicity higher harmonic response

simulations can be ignored in the WA microvibration modeling. In contrast, all dynamic

characteristics of the fundamental harmonic responses have been accurately simulated

by the model (provided that ignoring nonlinearity influences).
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In summary the method of applying damping values in the WA microvibration

harmonic response simulations in this section is depicted in the following figure.

Figure 5-12 Damping implementation in the WA harmonic response simulation

 Linear damping values from low level input sine-sweep tests are used for

fundamental harmonic response simulations in WA axial translational DoF.

 Nonlinear damping values from high level input sine-sweep tests are used for

fundamental harmonic response simulations in WA radial DoFs.

 Linear damping values from low level input sine-sweep tests are used for

higher harmonic response simulations in WA axial DoF, but with limitations in

WA radial DoFs.

5.5. Broadband Noise Excitations

Generally, broadband noise is generated in the motor and bearing system and the

amplitudes of broadband noise are much smaller compared to those of harmonics except

at very low spin speeds. For a typical WA, they constantly accompany harmonics as

long as the flywheel spins and exist in the entire frequency band analyzed. The WA and

also the satellite structure are also continually excited by broadband noise. Due to their

dynamic characteristics, broadband excitations in the WA are similar at all speeds, i.e.

speed-independent. However their responses are speed-dependent as they are amplified

by gyroscopic effects and structure modes the WA. Figure 4-6 b) is shown here again to
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demonstrate the significance of the broadband noise in typical WA-induced

microvibrations.

Figure 4-6 b) Examples of background noise and WA responses of Fz at 600 rpm

Firstly, broadband noise is clearly seen in the entire frequency band in both soft- and

rigid-suspended WAs, but those induced by the rigid-suspended WA are the best

examples. Remembering that the two broadband “mound” shaped peaks centered at 220

Hz and 690 Hz respectively are identified as the motor-bearing system natural

frequencies. The two peaks are clearly excited by broadband noise, while the traditional

WA microvibration modeling method ignores them completely. In contrast, the soft-

suspended WA is much quieter due to its design. Note that the background noise is very

close to the broadband noise of the soft-suspended WA in the figure.

Generally, the broadband excitation simulation method introduced in this section

utilizes bandstop filters to block the identified spikes (harmonics and resonances) in a

typical microvibration signal. The rest of the signal is thus the broadband noise.

Therefore the modeling process mainly includes two parts: identify spikes and design

filtering process. This can be presented in the following chart:

Figure 5-13 Broadband excitation simulation process
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5.5.1. Spike Identification

Firstly, spikes such as harmonics and resonances in a raw microvibration force or

moment signal are identified. The method shown here is based on the use of CRMS

value plot produced from microvibration test results (see Chapter 4). For example, PSD

and CRMS value plot of Fz at 1800 rpm is presented in Figure 5-14 a) between 0 to 500

Hz, its zoomed plot between 50 to 500 Hz is shown in Figure 5-14 b).

From the definition of CRMS value, if a spike exists at a frequency in the

microvibration signal, a corresponding step jump appears in the CRMS value plot. The

spike in this case could be either harmonic or resonance as long as it contributes

“noticeable” energy to the signal. The difference in the amplitudes between steps

indicates the amount of energy contributed, while the amplitude itself indicates the total

amount of energy that has been accumulated so far. The CRMS value plot is often used

for this purpose, i.e. to exam energy variation in a signal as shown in Chapter 4. It can

also be used to identify spikes in a signal with extremely high accuracy, however this

method has not been found in the literature.

a) 0 to 500 Hz b) 50 to 500 Hz

Figure 5-14 PSD and CRMS value plot of Fz at 1800 rpm

On the other hand, due to the different spike amplitudes in a signal, some will not be

immediately blocked by the filters and an iteration filtering process must be performed.

As the filtering iteration proceeds, the number of spikes is gradually reduced until the
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method, it is guaranteed that all “noticeable” spikes are blocked or removed, while the

defined critical value determines if the spike is “noticeable” or not.

As mentioned previously, the general background noise is very close to the broadband

noise for the soft-suspended WA. In this work the critical value is obtained from the

CRMS value plot of background noise. Figure 5-15 presents a segment of PSD and

CRMS value plot of background noise between 200 to 500 Hz.

Red arrows in the figure show some of the spikes used to calculate the critical value.

From the figure, the frequency difference between the two neighboring spikes is

approximately 20 Hz (identified manually), the difference in RMS values between them

is calculated for a set of selected neighboring spikes and the average value is used. Note

that the fact that the background noise CRMS value plot steady accumulates as speed

increases indicates no significant amplification occurs as expected, thus this calculation

process can be programmed and automatically performed. In this case, the critical RMS

value is found approximately 1.5 × 10-5 N.

Figure 5-15 PSD and CRMS value of the background noise (200 to 500 Hz)

Following the process introduced above, the identified harmonics and resonances in Fz

at 1800 rpm are shown in Figure 5-16 with red circles.
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Figure 5-16 Identified spikes and broadband noise of Fz (1800 rpm)

Once the desired spikes are identified, one bandstop filter is assigned to each spike and
filtering process begins. These are introduced in the following section.

5.5.2. Filtering Process

Typical Butterworth bandstop filters are used to block the identified spikes in the

simulation of broadband excitations and are already programmed in MATLAB.

Characteristics of the filter mainly depend on the frequency of spike that needs to be

blocked and some pre-defined parameters. For example, filter parameters for the spike

at 258 Hz are given in Table 5-2.

Parameters Values
Passband corner frequency 257.9 Hz
Stopband corner frequency 258.1 Hz
Passband ripple 1
Stopband attenuation 3
The lowest order 1
normalized cut-off frequency band 257.5 to 258.5 Hz

Table 5-2 Parameters of the bandstop filter for the spike at 258 Hz

Note that frequencies in Table 5-2 need to be converted into radians for filter design.

The resulting magnitude and phase of the filter for the spike at 258 Hz are plotted in

Figure 5-17 a).
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a) Butterworth bandstop filter at 258 Hz b) Comparison of raw and filtered time

signal at 1800 rpm (0 to 5 s only)

Figure 5-17 Bandstop filter and the filtered time history of Fz at 1800 rpm

From Figure 5-17 a), the bandstop filter has been designed with a narrow cut-off

frequency band, in this example ± 0.5 Hz. The filter thus only blocks the identified

spikes with very little influences to the surrounding responses. Note also that the

maximum magnitude of the filter is defined at -36 dB. It is designed so that the resulting

filtered amplitudes do not overshoot the general response level, however they are large

enough to immediately block spikes with smaller amplitudes (e.g. spikes at 100 Hz and

276 Hz in Figure 5-16), while only partially reducing those with large amplitudes (e.g.

spikes at 30 Hz and 44 Hz in Figure 5-16). An iteration filtering process mentioned

earlier is therefore performed until all remaining responses in the signal are outside the

critical value.

The finally filtered Fz microvibrations (i.e. broadband noise of Fz) at 1800 rpm are

plotted in both frequency and time domain and compared to the raw microvibrations;

they are shown in Figure 5-16 and Figure 5-17 b) respectively. In the frequency domain,

it is clear that all identified spikes have been blocked and the remaining signal has

approximately the same amplitudes; the same results are also seen in the time domain.

The broadband noise obtained at any speed using this method can be applied as the

universal broadband excitations to the WA microvibration model. In the microvibration

model, since a linear assumption is used, they can be superimposed with harmonic

excitations, such as in Eq. (3.80). The simulation of the complete WA microvibration

responses under harmonic and broadband excitations are presented in the next section.
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5.6. Full WA Microvibration Response Simulation

In this section, harmonic and broadband excitations are superimposed as the complete

excitation to the WA microvibration model and their responses are simulated. The

simulated results are compared to the test results.

Fz at 1800 rpm is first used as the demonstration example. In this case, all harmonics

identified in Figure 5-16 are simulated using the method introduced in Section 5.3,

including the integer and fractional higher harmonics. The broadband excitations are

taken from Figure 5-17 b). The full responses are simulated from the WA

microvibration model using the state space approach presented in Section 5.4. First of

all, the simulated responses under harmonic excitations are presented; shown in Figure

5-18 a) on the next page. Next, the complete responses under harmonic and broadband

excitations are presented; shown in Figure 5-18 b). Both simulated responses are

compared with the same test results of Fz at 1800 rpm.

It is clear from Figure 5-18 a) if only harmonic excitations are considered in the model,

frequency regions where no harmonic excitation modeled remain unexcited, i.e. “quiet

regions”. The general response level of these “quiet regions” is only raised for a very

small amount by the dynamic amplification of the WA structural mode (in this case the

axial translational mode only and at 44 Hz). Note also that the resonant amplitude is

slightly lower than the test results due to the lack of broadband excitations, although

harmonic responses have been well simulated, as also presented in previous sections.

Figure 5-18 a) also demonstrates the importance of broadband excitations in the WA

microvibration modeling. Both results in the figure are plotted in logarithmic scale in

PSD and show large differences between the model and test results in the “quiet

regions”. Note that they are hardly noticed in linear scale (see Section 4) and are

generally ignored if the requirements of modeling accuracy limited, i.e. the traditional

modeling method in the literature. Figure 5-18 b) presents the simulated responses

under both harmonic and broadband excitations. In this case, the previous “quiet regions”

have disappeared since responses are excited in the complete frequency band. In other

words, the “quiet regions” are leveled up by broadband noise. Note that the resonant

amplitude is accurately matched to the test results in this case, while harmonic
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responses are also increased slightly, however due to the small amplitudes of broadband

noise responses in general, they are not significant.

a) Harmonic responses only

b) Full responses

Figure 5-18 Simulated full responses of Fz at 1800 rpm

As an example to demonstrate the speed-independent characteristic of broadband noise

for this WA, harmonic responses are simulated at 3000 rpm of the WA spin speed and

broadband excitations shown above (i.e. extracted from 1800 rpm) are superimposed
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with them under the linear assumption. The same simulation process and treatments are

applied and the results are shown in the following figure.

Figure 5-19 Simulated full responses of Fz at 3000 rpm

From Figure 5-19 firstly it is clear that the general broadband responses are simulated

well compare to the test results, indicating the broadband noise is indeed speed-

independent. Since broadband noise is random in nature, there are no identical

broadband responses between any WA spin speeds, and therefore differences that are

seen in the broadband responses in the figure. The overall RMS values for simulated

and test results are 0.112 and 0.11 N (the error is about 1.8%). Harmonics and the WA

axial translational mode are also simulated and are very close to the test results as

expected.

5.7. Summary

The validation of the WA microvibration model and simulation of WA microvibration

responses have been presented in this chapter. WA structural modes were first validated

through Campbell diagrams. The peculiar dynamic characteristics of nonlinearity and

high damping observed in the microvibration test results were discussed further.

Harmonic excitation modeling strategies were also explained. A new systematic

approach was developed to simulate the harmonic excitations from the test results based

on several parameters and factors. The implementation of damping in the
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microvibration model was also discussed. Linear and nonlinear damping values were

obtained from low and high level input sine-sweep tests respectively, and were applied

to simulate the harmonic responses in different WA DoFs. The simulation of the

traditionally ignored broadband excitations w introduced. Broadband excitations were

obtained using an empirical method by identifying and blocking undesired spikes in the

microvibration signal using typical bandstop filters. The complete WA responses were

simulated at two WA spin speeds (1800 rpm and 3000 rpm). Both results show that the

full WA microvibration responses simulated were very close to the test results, thus the

modeling methods developed for WA microvibration analysis in a hard-mounted

boundary condition were also validated.
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6. Wheel Assembly-Seismic Mass Coupled

Microvibration Analysis

In this chapter, a method is developed to measure the WA-induced microvibrations in a

coupled boundary condition. The ultimate goal of the WA-structure coupled

microvibration study is to establish the reaction loads (forces and moments) induced by

the WA at its connection interface with the supporting structure (i.e. the driving point).

This is achieved experimentally and analytically. Experimentally, a measurement

system is designed that couples the WA to a rigid seismic mass which is used as the

supporting structure in this study. When the flywheel spins, seismic mass response

accelerations are measured while the interface forces and moments are calculated

through a load-acceleration transfer matrix. Analytically, the coupled WA-seismic mass

microvibration model is derived using the similar method as for the hard-mounted case

shown in Chapter 3. Interface forces and moments induced by the WA in the coupled

boundary condition are calculated from the model and validated with the coupled

microvibration test results.

6.1. Coupled Microvibration Model Derivation

The measurement system developed for the WA-seismic mass coupled microvibration

measurement is called the “Seismic Mass Vibration Measurement System” or

“SMVMS”, it is presented in Figure 6-1 a). Its simplified model is presented in Figure

6-1 b). The WA is mounted upside-down on a seismic mass. The seismic mass is made

of stainless steel and is thus a rigid body in the frequency band considered (up to 500

Hz). The only flexible component in this system is the WA soft-suspension system that

connects the two rigid bodies (flywheel and seismic mass, while the WA base is

considered as part of the seismic mass since they are rigidly connected). The whole

system is suspended using elastic cords from a ground-fixed steal frame to simulate the

“free-free” boundary condition.
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a) Test setup b) Simplified model

Figure 6-1 The SMVMS and its simplified model

In Figure 6-1, the seismic mass coordinate system is defined as xcyczc with origin C at

the seismic mass CoM. θc, φc and ψc are the corresponding rotations of the seismic mass

about the three orthogonal axes shown in the figure. Note that in torsional DoF, the

seismic mass perturbation speed is much smaller compared to the flywheel angular

speed, thus ignored. Mc is the mass of seismic mass; Ic_xx and Ic_yy are its moment of

inertias about xc-axis and yc-axis respectively. The vertical distance from the soft-

suspension system to the seismic mass CoM is l. By assuming small angles of rotations,

the linearized kinetic energy, Tc, of the seismic mass is derived:

 2 2 2 2 2
_ _

1
2c c c c c c xx c c yy cT M x y z I I       

    (6.1)

Since the soft-suspension system connects the two rigid bodies in the model, the

potential energy of the system involves both WA and seismic mass. Therefore the soft-

suspension system somehow acts as a load transfer link between the two rigid bodies,

thus to derive the potential energy and work done of the system, the relative

displacements and velocities of springs and dashpots are required. The linearized

potential energy of the system, Uc, in this case can be derived as:

a1 a2
a3

a4

a5

a6

zs

xs
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(6.2)

The work done is also derived and has a similar form to Eq. (6.2), it is not presented

here. EoMs of the coupled microvibration model is also derived using an energy method.

The system in this case has ten DoFs, five from WA and the other five from seismic

mass. The linearized EoMs of the coupled system in matrix form is expressed as:

 s s s s s s s s  M q C +G q K q F  (6.3)

All matrices in Eq. (6.3) are listed in Appendix F. Note that if the seismic mass is fixed

to ground, i.e. in a hard-mounted boundary condition, only five DoFs of WA are left in

Eq. (6.3) and eventually the equation reduces to Eq. (3.79). Note that Eq. (6.3) also

needs to be solved numerically due to the large number of unknowns and the coupled

dynamics in WA radial translational and rotational DoFs as in the hard-mounted case.

6.2. The Coupled Microvibration Measurement System

WA-seismic mass coupled microvibration tests are performed using the SMVMS. The

SMVMS utilizes several accelerometers mounted on the seismic mass to measure its

response accelerations under the spinning flywheel. The measured accelerations allow

microvibration forces and moments at their interface to be reconstructed. This can be

considered as an indirect method to measure WA-induced microvibrations in a coupled

boundary condition. In this section, the relationship between the response accelerations

on seismic mass and interface loads, i.e. a transfer matrix between the two quantities, is

derived and verified with test and numerical simulation results.

6.2.1. Seismic Mass Rigid Body Dynamics

The seismic mass is constructed from four stainless steel layers stacked together and

connected by aluminum bars at its four corners; see Figure 6-2.



107

Figure 6-2 Seismic mass model

The coordinate system of the seismic mass is defined at its CoM. Note that the z-axis is

defined positive as downwards. The six EoMs under the action of the generic force, Fi,

and moment, Mi, exerted at its CoM can be written in the following classic form:

( )

                  ( )

( )

x x xx y z zz yyx

y y y yy x z xx zz

z z z zz x y yy xx

M I I IF mx
F my M I I I
F mz M I I I

  

  

  

    
     

     





(6.4)

The three force equations describe the translational motions and the three moment

equations (known as Euler’s equations) describe the rotational motions of a rigid body.

Remembering that in theory both WA and seismic mass are axisymmetric, thus only

one principle plane is necessary for this dynamics study. In this thesis the yz principle

plane is used, so only Fy, Fz and Mx in Eq. (6.4) are necessary. Furthermore, there is no

rotation about z-axis in the principle yz plane, thus ωz is zero in Mx in Eq. (6.4). If the

applied force is a sinusoidal excitation in y direction and the phase is assumed to be zero,

the following relationship is derived from Fy and Mx:

0 sin(2 )x xx yI F d ft   (6.5)

where d0 is the moment arm from the applied sinusoidal force in y direction to the

seismic mass CoM; f is the excitation frequency; t is time. The angular velocity about x-

axis, ωx, under the excitation force can therefore be solved numerically from Eq. (6.5).

z

yx
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Next, consider expressions relating the position, velocity and acceleration at any points

A and B, particularize them to points of a rigid body, for example:

Figure 6-3 Rigid body motion representation

/

/

/

B A B A

B A B A

B A B A

 
  
  

r r r
v v v
a a a

(6.6)

where /B Ar is the position vector of B relative to A, /B Av is the velocity vector of B

relative to A, and /B Aa is the acceleration vector of B relative to A.

Consider also that the rigid body moves in a plane, thus every movement of a rigid body

can be decomposed as a translation of the vector /B Ar and a rotation around a point (A,

for example). For a rigid body, the distance between any two points on the body is

constant, thus the relative position vector has a constant modulus. As a consequence, the

relative velocity is that associated with the rotation around A and can be written as:

/ /B A B A v r (6.7)

where is the angular velocity, a vector that is perpendicular to the plane of movement

of the rigid body. With the aid of this equation, the velocity of B can be written as:

/B A B A  v v r (6.8)

The acceleration is the first derivative of velocity w.r.t. time, thus:

 / /B A B A B A
d
dt

     a a r r   (6.9)
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The first term on the right-hand-side of the equation is the translational acceleration, the

second term is the tangential acceleration and the third one is the normal component of

the relative acceleration of the point B w.r.t. A. For the seismic mass, applying the

properties of the vectorial product, the following equation is derived:

2d d
dt dt
   a r r   (6.10)

Remembering that ωx is solved from Eq. (6.5), thus Eq. (6.10) can be used to predict

accelerations at any point on the seismic mass in yz plane.

6.2.2. System Dynamics Validation Test

Vibration tests were performed to the seismic mass to validate Eq. (6.10). Figure 6-4 a)

and b) show the test setup and the seismic mass model in yz plane. Positions of

accelerometers on the seismic mass are also shown.

a) Validation test setup b) Seismic mass model

Figure 6-4 Seismic mass dynamics validation test

The complete test setup comprised of a seismic mass, a proof mass mini-shaker with a

stinger, a force sensor, four accelerometers, bungee cords/wires and a ground-fixed steal

frame. Both mini-shaker and seismic mass were lifted from the frame to simulate a

“free-free” boundary condition. The attaching point from the bungee cords/wires to the

seismic mass was placed at a position (red point C in Figure 6-4 b)) so that the system

natural frequency in each of the six-DoFs was less than 1 Hz. The mini-shaker was used

zs

xs

ys
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to generate input forces (and thus moments) to the seismic mass. The attaching point of

the mini-shaker was chosen at the lower bottom surface of seismic mass, i.e. in practice

where the WA was attached or the driving point. A stinger was used to connect the

mini-shaker head and seismic mass, a calibrated force sensor was placed between them

to measure the input forces. Response accelerations were measured from the four

accelerometers. Accelerometers a1 and a2 were used to measure vertical response

accelerations in z-axis, a3 and a4 were used to measure radial response accelerations in

y-axis. Model parameters used in this analysis are listed in Table 6-1.

Stainless Steel Seismic Mass Parameters Values
4 Layers Mass, mc 10.58 kg (10.52 kg)

Radial moment of inertia, Ic_xx 0.0216 kgm2 (0.0213 kgm2)
Radial moment of inertia, Ic_yy 0.0214 kgm2 (0.0213 kgm2)
Polar moment of inertia, Ic_zz 0.0215 kgm2 (0.0213 kgm2)
Height 0.11 m
Width 0.11 m

Piezoelectric Accelerometers
a1 and a2 (PCB 333B50) Sensitivity 1011 mv/g, 1017 mv/g

Contact radius, ra 0.0072 m
a3 and a4 (Endevco 752A13) Sensitivity 1001 mv/g, 988.3 mv/g

Contact radius, ra 0.0072 m
Force Sensor
PCB 208C02 Sensitivity 11.31 mv/N

Contact Diameter 0.01588 m
Sensor Position w.r.t. system CoM

Force Sensor to system CoM
distance, d0

0.0471 m

a1 distance, d1 0.0493 m
a2 distance, d2 0.0493 m
a3 distance, d3 0.0478 m
a4 distance, d4 0.0478 m

Table 6-1 SMVMS parameters

Note that mass, mc, and moment of inertia, Ic_xx, Ic_yy and Ic_zz, of the seismic mass

include those of accelerometers and force sensors although they do not change the

seismic mass properties significantly (see values in brackets for values of the seismic

mass only). However, transducers dimensions are sensitive to the simulated results, and

they must be included in the model to obtain their positions w.r.t the seismic mass CoM,

i.e. d1, d2, d3 and d4 in the table.
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Several input forces levels were applied by the mini-shaker in the test. They were

sampled at 100 Hz from 0.1 to 1 N with an increasing step of 0.1 N hence ten tests were

performed. In each test, five channels of signals (one force input and four acceleration

responses) were acquired. Since only signals in the time domain were of interest in this

case, the sampling frequency was set at 8192 Hz in order to obtain relatively smooth

input and response plots, 10s data were acquired for each test.

6.2.3. System Dynamics Parameter Validation

From Eq. (6.10), acceleration expression of each accelerometer can be derived as

following:

2
1 1 1

x
x

da d d
dt
   (6.11)

2
2 2 2

x
x

da d d
dt
    (6.12)

2
3 3 3

sin(2 )y x
x

c

F ft da d d
m dt
     (6.13)

2
4 4 4

sin(2 )y x
x

c

F ft da d d
m dt
     (6.14)

Since there was no excitation applied in z-axis in the tests, only rotational terms exist in

a1 and a2, but both translational and rotational terms exist in a3 and a4. With the system

parameters given in Table 6-1 and ωx obtained from Eq. (6.5), the theoretical

accelerations of each accelerometer on the seismic mass can be obtained.

Background noise was measured for each test. Figure 6-5 presents the typical

background noise in the frequency domain of all transducers.
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Figure 6-5 Background noise (PSDs) of transducers in SMVMS validation tests

Note that the spike at 50 Hz is due to the UK mains frequency. They cannot be

completely avoided and efforts have been attempted to reduce them. The spikes at every

100 Hz up to 600 Hz might due to the electronics frequencies in the acquisition board or

from transducers. They have small influences to the results and can be ignored.

Comparisons between the theoretical and experimental results were made for each input

force test and each accelerometer channel. For example, Figure 6-6 shows the four

theoretical accelerations calculated from Eqs. (6.11) to (6.14) superimpose with the

corresponding test results for the 0.5 N input force test.

Figure 6-6 Comparisons of theoretical and experimental acceleration responses

(0.5 N input force test)

In Figure 6-6, theoretical and experimental results have matched very well in each

accelerometer, including magnitudes and phases. Figure 6-7 on the other hand presents

quantitatively the disparity between theoretical and experimental results for all tests.
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Figure 6-7 Comparisons of theoretical and experimental acceleration responses

for all input force tests

In Figure 6-7, magnitudes of accelerations from both theory and test are clearly

presented for each input force test. As expected from their positions on the seismic mass,

accelerations a1 and a2 are almost identical for each test, while a3 has the least

magnitudes and a4 has maximum magnitudes. In general, the largest error between the

theory and test results occurs in a4. This may be due to the accelerometer in the tests not

being installed exactly at the position as it is defined in theory, and thus the disparate

theory and test results. Meanwhile results have shown that theoretical values of a4 are

slightly lower than the test results in all cases, but the error in a4 (the largest one is

about 4%) is low enough to be accepted as experimental errors and can be ignored. For

the other three accelerometers, errors are much smaller than a4 (except at low input

forces such as 0.1 N and 0.2 N). At low input forces, the signal-to-noise ratio is also

very low, in these cases background noise is superimposed with the harmonic responses

making estimations more difficult and thus relatively large uncertainties and errors. The

common method is to calculate the average value between the upper and lower limits of

each response curve as shown in Figure 6-7. Errors between theory and test results at

low speeds are still low (less than 6%); these errors are also accepted.

In conclusion, the good agreements between the theory and test results shown that the

analytical model (Eqs. (6.11) to (6.14)) was able to predict accelerations on the seismic

mass accurately. The seismic mass was also validated with a model analyzed in MSC

ADAMS. Results also correlate well with the rest results and thus to the analytical

model presented in this section. The validated analytical model was used to derive the
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transfer matrix relating accelerations on the seismic mass to the forces and moments at

the WA-seismic mass interface.

6.2.4. System Dynamics Transfer Matrices

The common approach to characterize WA-induced microvibrations in both hard-

mounted and coupled boundary condition is to use the microvibration forces and

moments either measured or predicted at the WA interface. These microvibration loads

generally include three forces and three moments as shown in previous sections. In

order to obtain them at the WA-seismic mass interface in SMVMS, response

accelerations measured on the seismic mass must be transferred to the interface forces

and moments.

It is found the dominant terms in Eqs. (6.11) to (6.14) are the linear and angular

acceleration terms, but the second order term, 2r  , has little influence to the predicted

acceleration amplitudes and can thus be ignored. If so, Fy and Mx can be written from

Eq. (6.13) and (6.14) as:

4 3

3 4 3 4 3

_ _ 4

3 4 3 4

c c

y

c xx c xxx

m d m d
F d d d d a

I I aM
d d d d

 
                 

(6.15)

Remembering that Fy and Mx are taken at the seismic mass CoM, they need to be

transferred to the forces and moments at the interface, Fy’ and Mx’, thus:

   

4 3
'

3 4 3 4 3

'
_ 4 4 _ 3 4 4

3 4 3 4

c c

y

c xx c a c xx c ax

m d m d
d d d dF a

I m d d r I m d d r aM
d d d d

 
                    

  

(6.16)

where ra is the radius of the accelerometer.
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In practice, once response accelerations are measured from a3 and a4, the radial force at

the interface, Fy’, and moment, Mx’, can be obtained using Eq. (6.16). Due to SMVSM

and WA axisymmetry, the other radial force, Fx’, and moment, My’, can also be

obtained with response accelerations measured in the other principle plane (i.e. xz plane)

using the same equation, they are not presented.

In practice, the WA also generates forces in z-axis and only translational terms exist in

Eqs. (6.11) and (6.12). Axial translational force at the WA-seismic mass interface, Fz’,

can be simply derived as:

'
1 2( )

2
c

z
mF a a   (6.17)

The two matrices between accelerations and forces/moments in Eqs. (6.16) and (6.17)

are the transfer matrices of the SMVMS.

6.2.5. System Dynamic Performance

The practical minimum detectable force in the WA radial translational DoFs was found

by attaching a 0.2 g point mass on the flywheel and spinning the flywheel from static

with 10 rpm step increase until a distinct spike due to the point mass appears in the

signal in the frequency domain. With the consideration of background noise, the first

distinct spike, i.e. the fundamental harmonic of the 0.2 g point mass, was found at 140

rpm with amplitude of approximately 8 ×10-4 N; see Figure 6-8.

Figure 6-8 Minimum detectable force of SMVMS in radial DoF at 140 rpm

In axial translational DoF, the minimum detectable force was the same as in radial

translational DoFs. The minimum detectable moment in radial DoFs was about 8 ×10-5
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Nm, however usually the minimum detectable force is used to assess a microvibration

measurement system dynamic performance.

6.3. Coupled Microvibration Test

WA-seismic mass coupled microvibration tests were performed to demonstrate the new

method of measuring WA-induced microvibrations in a coupled boundary condition.

The transfer matrix derived in Section 6.2.4 was used to transfer the response

accelerations on the seismic mass into the interface loads. In other words, this method is

an indirect method to measure WA-induced forces and moments in a coupled boundary

condition. In contrast, in traditional methods the interface loads are measured directly

by a multi-DoF load cell typically installed between the two bodies.

The WA was mounted upside-down at the seismic mass bottom surface. The whole

system was lifted by bungee cords/wires to simulate the “free-free” boundary condition

(see Figure 6-9). The zoomed plot is shown in Figure 6-1 a) though.

Figure 6-9 WA-seismic mass coupled microvibration test setup

Six accelerometers were used to measure the response accelerations on the seismic mass.

The six accelerometers had the same sensitivity around 1000 mV/g. Among the six

accelerometers in Figure 6-1 a), a1 and a2 were to measure accelerations in z-axis, a3

and a4 were to measure accelerations in y-axis. This setup replicated accelerometer

positions in the calibration tests and Eqs. (6.16) and (6.17) were used directly for

analysis without transferring the coordinate system in loads calculations. a5 and a6 were

similar to a3 and a4 but installed in x-axis, they were used to measure radial
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microvibration forces and moments in xz principle plane. Using the transfer matrix, the

five interface loads, include three forces (Fx’, Fy’ and Fz’) and two moments (Mx’ and

My’), could be measured simultaneously as WA spins.

In the test, the WA was spun from 240 to 4980 rpm with an increase step of 60 rpm.

Microvibrations at speeds lower than 240 rpm were not stable due to WA control issues

and were not shown. The sampling frequency was set at 2048 Hz and 5s of data were

acquired for each channel. Background noise was also measured and results were

similar to those shown in Figure 6-5. The coupled microvibration test results are shown

in the next section.

6.4. Coupled Microvibration Test Results

WA-seismic mass coupled microvibrations were measured using the SMVMS. The

measured accelerations were input into Eqs. (6.16) and (6.17) to obtain the interface

forces and moments. Test results were analyzed in a similar manner as for the hard-

mounted case. Results of Fy, Mx and Fz are plotted as spectral maps and PSD waterfall

plots in Figure 6-10 on the next page, for examples.

Since the WA boundary condition has changed in the coupled system, it is expected that

WA structural modes have also changed from those in a hard-mounted boundary

condition. Meanwhile, since sine-sweep tests cannot be performed to the WA in the

coupled system, natural frequencies of WA structural modes can only be determined

from the coupled microvibration test results.

In Figure 6-10 a), the radial translational mode is identified at approximately 65 Hz,

which is slightly higher than that in a hard-mounted boundary condition (50 Hz), while

the vertical mode at 220 Hz due to the motor-bearing system has not changed. The “V”

shaped “rocking” mode is clearly present in Figure 6-10 b). Due to lack of test results

below 240 rpm, the “rocking” mode is estimated starting at approximately 28 Hz; this is

almost identical to that in the hard-mounted boundary condition (27 Hz). In axial

translational DoF in Figure 6-10 c), the axial translational mode is identified at 46 Hz,

which is also somewhat higher than that in the hard-mounted boundary condition (44

Hz).
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a) Fy spectral map d) Fy PSD waterfall plot

b) Mx spectral map e) Mx PSD waterfall plot

c) Fz spectral map f) Fz waterfall plot

Figure 6-10 Spectral maps and waterfall plots of coupled microvibrations

The influence of nonlinearity in axial translational DoF is not significant as also in the

hard-mounted boundary condition case. In contrast, significant nonlinearity has also

been observed in radial DoFs and is more severe than that in the hard-mounted



119

boundary condition case. For example, from Figure 6-10 a) and b), primary resonances

occur at approximately 51 Hz rather than the value that the radial translational mode

interacted with fundamental harmonics. This is similar to that in the hard-mounted

boundary condition where nonlinearity causes resonant frequencies to be shifted.

Fundamental harmonic responses of Fy, Mx and Fz are extracted from the microvibration

test results and shown in Figure 6-12. In the figure, the test results of fundamental

harmonic responses have shown similar dynamic characteristics as in the hard-mounted

boundary condition case. Responses grow smoothly and exponentially before

resonances and then slowly decrease. Note that fluctuated responses after resonances are

due to unknown sources such as also seen in Figure 6-10 a), b) and c). Meanwhile,

resonant amplitudes in WA radial DoFs are limited by the high damping of soft-

suspension system, e.g. a sharp spike appears in Fz due to the low damping while in Fy

is relatively flat. This is also similar to those in the hard-mounted boundary condition

case.

Higher harmonics and broadband noise are not considered for the coupled

microvibration modeling. Modeling methods of these additional excitations and

responses have been validated for the hard-mounted boundary condition case shown in

Chapter 5. In the next section, validation of the coupled WA microvibration model due

to mass imbalances is presented, including structural modes with gyroscopic effects and

simulation of fundamental harmonic responses.

6.5. Coupled Microvibration Model Validation

Coupled WA structural modes are first validated with microvibration test results. The

theoretical structural modes are calculated from Eq. (6.3) under the free and undamped

condition. Among the ten variables in the equation, the first five are from WA and the

rest are from the seismic mass (see Appendix F for detail). Mx and Fz test results are

used for structural modes validation in radial and axial translational DoFs respectively.

They are presented in Figure 6-11.
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a) Radial DoFs (Mx) b) Axial translational DoF (Fz)

Figure 6-11 Coupled WA structural modes in radial and axial DoFs

In Figure 6-11 a) and b), all theoretical structural modes have matched well with test

results. The four speed-dependent whirls are clearly shown in Figure 6-11 a). Similar

nonlinearity influences on structural modes are also seen in the coupled boundary

condition, these are not discussed.

Fundamental harmonic excitations of Fy, Mx and Fz were simulated using the method

presented in Section 5.3, they were implemented into Eq. (6.3). Fundamental harmonic

response forces and moments were calculated and they are superimposed with the

corresponding test results shown in Figure 6-12.

Since damping values in the coupled boundary condition could not be obtained from

sine-sweep tests, in this case the simulated harmonic responses were matched to

microvibration test result and damping values were obtained using the traditional trial

method. Damping ratios used in Fy, Mx and Fz harmonic response simulations are 0.2,

0.15 and 0.02 respectively. Damping ratios of Mx and Fz remain the same as those in the

hard-mounted case, but slightly higher in Fy. Note that the coupled microvibration

model shown in this chapter could neither accurately predict the harmonic responses

after the resonances in WA radial DoFs as also in the hard-mounted case, but their

general dynamics have been modeled well.
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a) Fy b) Mx

c) Fz

Figure 6-12 Validations of coupled fundamental harmonic responses (Fy, Mx and

Fz)

6.6. Summary

In this chapter an alternative method to measure WA-induced microvibrations in a

coupled boundary condition has been introduced. The WA-seismic mass coupled

microvibration model was derived based on the method used for the hard-mounted case.

A coupled microvibration measurement system, i.e. SMVMS, was designed and

calibrated with a transfer matrix derived from SMVMS rigid body dynamics. The WA-

induced loads at the interface could be accurately measured using this system. Coupled

microvibration tests have been carried out and results have been analyzed. Structural

modes were slightly different from those obtained in the hard-mounted boundary

condition due to the different WA boundary conditions. Nonlinearity and high damping

were also observed in coupled microvibration test results, similar dynamic
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characteristics were also seen here as in the hard-mounted case. The WA coupled

microvibration model was validated from the structural modes and fundamental

harmonic responses. The microvibration model was able to accurately simulate the WA

dynamics before nonlinearity, but errors become large at and beyond resonances. The

general WA dynamics behavior however, has been well modeled.
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7. Wheel Assembly Accelerance and Coupled

Microvibration Prediction

In this chapter, the coupled microvibration predictions, and especially the WA driving

point accelerance calculations are discussed. Analytical and experimental methods are

developed to find the WA driving point accelerance. The coupled microvibrations are

predicted in the speed band considered. WA accelerance are obtained from two

conditions: flywheel not spinning (i.e. static accelerance) or spinning (i.e. dynamic

accelerance). A FE model of the WA is created and frequency response analysis is

conducted in MSC NASTRAN for accelerance study. Experimentally, static and

dynamic accelerance are measured using a designed measurement system utilizing

common accelerometers and force sensors. Analytically, accelerance are derived from

the WA microvibration model in a “free-free” boundary condition. WA static and

dynamic accelerance are compared and used to predict the coupled microvibrations.

Both predicted results are also compared to the traditional methods in the literature.

7.1. The Coupled Microvibration Analysis Theory

The WA-structure coupled microvibration analysis theory developed in the literature

[140] is briefly introduced in this section. Generally, the relationship between the

coupled and hard-mounted microvibrations is described mathematically as:

1
c b w

 f f A x (7.1)

where fc and fb are 6×1 load vectors, each includes three forces and three moments. fc is

the coupled forces generated by the WA at the interface. fb are those from hard-mounted

boundary condition, either measured from WA grounded microvibration tests or

predicted from WA hard-mounted microvibration model. x is a 6×1 acceleration vector,

due to WA-structure interface coupled motion. wA is the 6×6 WA driving point

accelerance matrix.

Meanwhile for the satellite structure, the following equation can be expressed:



124

s c x A f (7.2)

where sA is the driving point accelerance on the satellite structure.

If substituting Eq. (7.2) into Eq. (7.1) for x , the following equation can be derived.

11
c b w s b f

    f f I A A f G (7.3)

where fG is termed the “load filter” between the coupled and hard-mounted loads:

      11, ,f w s  
     G I A A (7.4)

If writing Eq. (7.3) into matrix form, the following equation is obtained:

       _ _, , , ,H
FF coupled f FF grounded f       G G  (7.5)

ΦFF_grounded and ΦFF_coupled are both 6 × 6 complex matrices of WA-induced forces and

moments written in spectral density form and corresponds to the hard-mounted and

coupled loads, fb and fc, respectively. The work extended in the coupled WA-structure

microvibration analysis by the author is presented in the rest of this chapter.

7.2. Wheel Assembly Accelerance in Static Condition

As demonstrated in Chapter 2, accelerance of the WA and that of the supporting

structure are crucial in the coupled microvibration analysis. While accelerance of the

supporting structure is traditionally obtained from its FE model, for a spinning WA the

process is much more complicated. In this section, WA accelerance in a static condition

(or WA static accelerance) are obtained using analytical and experimental methods.

Analytically, WA accelerance are obtained from frequency response analysis on a FE

model of the WA analyzed in MSC NASTRAN. Experimentally, a measurement system

is designed to measure the WA (static and dynamic) accelerance using common

accelerometers and force sensors. WA static accelerance obtained from the two methods
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are compared and the results are used for further studies in this chapter.

7.2.1. Experimental Method

In general, the complete representation of the 6×6 WA accelerance matrix can be shown

as following:
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(7.6)

Previous studies [141] have shown the diagonal elements (or the direct driving point

accelerance): Aw11, Aw22, Aw33, Aw44, Aw55, Aw66, are the most important in the accelerance

matrix. The four cross-DoF elements: Aw15, Aw24, Aw51 and Aw42 are also important

especially when Cross Spectral Densities (CSDs) are considered in the microvibration

loads. These elements are highlighted in red in Eq.(7.6). Other off-diagonal elements are

not as important thus usually being ignored. Since the matrix is symmetric about its

diagonal and due to WA axisymmetry, Aw15 and Aw24 are the same and also for Aw42 and

Aw51, i.e. the four cross-DoF elements are the same. In addition, diagonal elements Aw11

and Aw22 are the same and also Aw44 and Aw55. Hence for simplicity, five elements in the

matrix are chosen for the coupled microvibration analysis in this thesis. They are high-

lighted using blue circles in Eq. (7.6).

Experimentally, three independent tests were conducted to find the five elements in the

accelerance matrix. Test setups are shown in Figure 7-1 b), c) and d) respectively. A

mounting bracket was designed and rigidly connected to the WA in these tests. The

detailed introductions on the mounting bracket are presented in Section 7.2.2.

Accelerometer positions on the mounting bracket are shown in Figure 7-1 a).

In each test, the WA was rigidly attached to the mounting bracket and together hung

“free-free” by bungee cords and nylon wires from a ground-fixed steel frame. The

suspension was designed such that its natural frequency was less than 1 Hz in any of the

six DoFs. Input forces and/or moments were applied by one or two mini-shakers and
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measured by the force sensors directly, while response accelerations were measured by

eight accelerometers. The frame was verified previously by tap test and shown no

influence in the frequency band of interest in accelerance tests.

a) Accelerometer positions b) Aw11 and Aw51 test setup

c) Aw33 and Aw44 test setup d) Aw66 test setup

Figure 7-1 WA accelerance tests

Figure 7-2 shows force sensor positions in detail and force directions being applied, as

well the accelerometer positions and response acceleration directions being measured.

a) xy-plane b) yz-plane
Figure 7-2 Transducer positions and directions of forces being applied and

accelerations being measured
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The complete linear and angular accelerations at the driving point (high-lighted as red

dots in Figure 7-2) can be calculated using the following set of equations.

 3 4
1
2

x a a  (7.7)

 1 2
1
2

y a a  (7.8)

 5 6 7 8
1
4

z a a a a     (7.9)

 7 8 5 6
67

1
2

a a a a
d

     (7.10)

 6 7 5 8
56

1
2

a a a a
d

     (7.11)

 4 3
34

1 a a
d

   (7.12)

where d67, d56 and d34 are the distances between the two corresponding accelerometers

in the defined coordinate system (see Figure 7-2 for detail). Note that accelerometer

dimensions must be included in above equations due to their relative large size

compared to the accelerometer distances between. Note that due to axisymmetry, only

Eqs. (7.7), (7.9), (7.10) and (7.12) are required in this study.

In each test, mini-shaker(s) were controlled in open loop mode, i.e. a constant voltage of

1 V was applied. Force sensor(s) were inserted between mini-shaker(s) and the

mounting bracket to directly measure the input forces, while moments were calculated

subsequently. Sine-sweep tests were performed from 10 to 500 Hz and all signals were

sampled at 2048 Hz. Each test is discussed in detail as following:

 Figure 7-1 b) depicts the setup for Aw11 and Aw51 tests. The WA was excited in

positive x-axis using one mini-shaker. Linear and angular accelerations at the driving

point were calculated using Eqs. (7.7) and (7.11) respectively. The driving point

accelerance was calculated as the ratio of linear (or angular) acceleration to force (or

moment). Note that both quantities were complex numbers.
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 Figure 7-1 c) depicts the setup for Aw33 and Aw44 tests. For Aw33 test, two mini-shakers

were controlled in-phase, thus the total force in axial translational DoF was the sum

of the two forcing signals. Linear accelerations at the driving point were calculated

using Eq. (7.9). For Aw44 test, two mini-shakers were controlled anti-phase and a

moment at the driving point was produced. Angular accelerations at the driving point

were calculated using Eq. (7.10).

 Figure 7-1 d) depicts the setup for Aw66 test. The two mini-shakers were attached in

positive x-axis and controlled anti-phase and a moment about z-axis at the driving

point was produced. Eq. (7.12) was used to calculate the angular acceleration.

7.2.2. Analytical Method

Firstly, the 6×6 WA static accelerance matrix was first obtained from a FE model of the

WA. Detailed modeling and validation of the WA FE model is shown in Appendix D.

In addition, the WA was rigidly connected to a mounting bracket and suspended

together to simulate the “free-free” boundary condition. The mounting bracket is shown

in Figure 7-3 a). In the complete FE model in Figure 7-3 b), the mounting bracket was

modeled using shell elements as also for the WA, the WA was attached to the mounting

bracket using Rigid Body Element (RBE) elements (high-lighted as red lines). The

mounting bracket was designed such that the system modal frequency in any of the six

DoFs was much higher than the frequency band of interest in the accelerance study (700

Hz compared to 200 Hz for example), thus the mounting bracket did not influence

accelerance test results.

a) Mounting bracket CAD model b) WA attached to the mounting bracket

Figure 7-3 FE model of the WA with mounting bracket

A

B

Fx

Fz
Mx

Mz
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In the frequency response analysis, a unit force or moment was applied at a selected

node (the driving point “A” or “B” as high-lighted in Figure 7-3 b)) in one of the six

DoFs, accelerations were calculated at the same node in the six DoFs, thus a 6×1 vector

of accelerance at the driving point (one direct accelerance and five cross-DoF

accelerance) was obtained. This process was repeated for the other five DoFs, and a 6×6

matrix was eventually obtained. The following calculations were performed using the

modal frequency response analysis in MSC NASTRAN:

 1 N Fx was applied at node A in positive x-axis; six accelerations and thus six

accelerance were calculated;

 1 N Fz was applied at node B in positive z-axis; six accelerations and thus six

accelerance were calculated;

 1 Nm Mx was applied at node B about positive x-axis; six accelerations and thus six

accelerance were calculated;

 1 Nm Mz was applied at node B about positive z-axis, six accelerations and thus six

accelerance were calculated;

The frequency step was set at 1 Hz and frequency band was set between 0 to 500 Hz.

WA parameters such as mass, inertia, stiffness and damping values, etc. were taken

from the sine-sweep tests as shown in Appendix D. MSC NASTRAN results and test

results are compared and discussed. They are shown in the next section.

7.2.3. Model Validation

The direct driving point accelerance elements, Aw11, Aw33, Aw44 and Aw66, from the FE

model and tests are compared first. They are shown in Figure 7-4.

In Figure 7-4, accelerance results obtained from the two methods are matched well in

the frequency band considered. Results from the FE model and tests have accurately

captured WA structural modes in each DoF. Note that due to the “free-free” boundary

condition of WA in the tests, structural modes are slightly different from those observed

in the hard-mounted microvibration tests. They will be further addressed in Section 7.3.

Results of cross-DoF accelerance element, Aw51, are shown in Figure 7-5.
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a) Radial translation DoF (Aw11) b) Axial translation DoF (Aw33)

c) Radial rotational DoF (Aw44) d) Axial rotational DoF (Aw66)

Figure 7-4 WA direct driving point accelerance from FE Model and tests

Figure 7-5 WA cross-DoF driving point accelerance (Aw51) from FE Model and

test results
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The driving point accelerance of the other three cross-DoF elements in Eq. (7.6) were

also calculated and checked against Aw51. They were similar and matched well for the

FE and test results in each case. Results from Figure 7-4 and Figure 7-5 show that the

test method introduced in this section is able to accurately obtain the WA driving point

accelerance. Note also that WA properties in the FE model were not updated with the

accelerance test results and were taken directly from those used in the hard-mounted

microvibration case, thus it has proved the consistency of the model used in different

studies in this thesis.

Note that in Figure 7-4 a), c) and d) and Figure 7-5, in accelerance in radial DoFs, a

small spike between 25 to 35 Hz was measured in each case. This spike has magnitude

5 to 6 times smaller than that of the WA structural mode in each DoF. Although in

practice this spike can be ignored due to its much smaller amplitudes, however it was

not expected in this frequency band and further investigations were carried out. It was

found the spike was due to influences of mini-shaker stinger(s). The test setup of this

investigation is shown in the Figure 7-6 a) for Aw11, while the updated test results are

plotted in Figure 7-6 b).

a) Test to investigate stinger and WA

harnesses influences
b) Test results using an extended stinger

with and without WA harnesses connected

Figure 7-6 Tests to investigate stinger and WA harnesses influences (Aw11)

In this test, the stinger was extended and thus it was more flexible and in theory its

natural frequency was reduced. Results were plotted in Figure 7-6 b) and show that the

spike has been removed. In addition, WA external harnesses were plugged to the WA
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during the test. This was to investigate the influence of external harnesses to the

accelerance measurements when flywheel spinning (i.e. the dynamic accelerance

measurements, results are shown in Section 7.3). Test results in Figure 7-6 b) indicate

WA harnesses do not show influences in the frequency band considered and are thus

ignored.

In conclusion, WA structural modes at static condition in both FE and test results have

been accurately captured, hence any method can be used for the coupled microvibration

predictions in the traditional sense. However it must be noted that the WA accelerance

obtained in static condition is flawed in that they do not take account of the gyroscopic

effects of the flywheel. In other words, the coupled microvibrations predicted with the

WA static accelerance matrix are only accurate when flywheel is static or spins at very

low speeds (say up to 600 rpm). It is thus necessary to develop a method to include the

gyroscopic effects so that the WA accelerance matrix can be used for the coupled

microvibration analysis in broadband speeds.

7.3. Wheel Assembly Accelerance in Dynamic Condition

7.3.1. Gyroscopic Effects in Accelerance

Remembering that in Section 7.1, Gf (ω, Ω) is known as the “load filter”. In addition, if

microvibration test results are used as ΦFF_grounded and ΦFF_coupled, it is called the

“empirical load filter”. The general form of ΦFF_grounded and ΦFF_coupled is:

 ,
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
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Traditionally, the coupled microvibration spectra, ΦFF_coupled, can be measured directly

by inserting a load cell, for example, at the interface between the WA and the

supporting structure. On the other hand, the hard-mounted microvibration spectra,
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ΦFF_grounded, can be measured using a grounded Kistler table, for example.

Microvibrations measured in both cases can be written as 6×6 spectral density matrices,

where diagonal terms as PSDs and off-diagonal terms as CSDs such as in the matrix

shown above. In order to study the gyroscopic effects in WA accelerance,

microvibrations measured from the WA-seismic mass coupled system in Chapter 6 are

used. Remembering also that in SMVMS, forces and moments that obtained at the

interface between the WA and seismic mass directly represent those for ΦFF_coupled. The

hard-mounted microvibrations are taken from Chapter 4.

For simplicity, only the microvibrations in the decoupled axial translational DoF are

considered to demonstrate the “empirical load filter”. From Eq. (7.5), if only

considering axial translational DoF, the root of the ratio of the two microvibrations, i.e.

z zF F of coupled and grounded cases, is directly the “empirical load filter” in axial

translational DoF. If it is calculated for all speeds in the speed band considered, the

complete decoupled “empirical load filter” can be obtained for axial translational DoF.

Results are plotted as spectral maps shown in Figure 7-7.

Figure 7-7 “Empirical load filter” (axial translational DoF)

From Figure 7-7 two important characteristics of WA driving point accelerance can be

seen:

 Harmonic responses are almost eliminated in each DoF. Since amplitudes of the

measured harmonic responses of hard-mounted and coupled microvibrations are very

close to each other at each frequency each speed, their ratio is close to unity (see blue

Abrupt Responses
Region



134

lines of harmonics in the figure). This observation indicates harmonics produced by

the spinning WA are not part of the WA accelerance, which is as expected.

 The abrupt responses due to unknown sources also appear in the WA accelerance at

high speeds (above 3000 rpm). Since influences of such responses are not modeled

analytically in this thesis they cannot be included in the accelerance simulations, also

the predicted coupled microvibrations at high speeds cannot be used for data

comparison; this is shown in Section 7.2.3.

Both observations are used later in WA dynamic accelerance simulations and the

coupled microvibration predictions. However the experimental method to obtain the

“empirical load filter” introduced in this section cannot be used to directly predict

accelerance in in-plane DoFs due to non-zero off-diagonal elements that cannot be

ignored in the accelerance matrix. On the other hand, the fully populated “empirical

load filter” is very difficult or impossible to be obtained experimentally.

The WA dynamic accelerance (i.e. accelerance with gyroscopic effects while flywheel

spins) was measured at some selected speeds (1200 rpm to 3000 rpm at an step increase

of 300 rpm) using the same test setup for static accelerance measurements (see Figure

7-1 for detail). In this case, the flywheel spun during sine-sweep tests that were

performed by shakers, while forces and accelerations were measured simultaneously.

Dynamic accelerance, Aw11, Aw33, Aw44 and Aw66, at the selected speeds are plotted in

Figure 7-8 respectively. Note that only magnitudes are plotted and signals are smoothed

to reduce the broadband noise. The maximum speed was set at 3000 rpm as data were

not reliable at higher speeds due to unknown sources.

Influences of gyroscopic effects are clearly shown in each measured dynamic

accelerance. For example in Figure 7-8 a) and c), the WA “rocking” mode (27 Hz)

appears and changes with speeds, thus Aw11 and Aw44 are also speed-dependent. Other

structural modes such as the radial translational mode (100 Hz in Figure 7-8 a) and c)),

the axial translational mode (63 Hz in Figure 7-8 b)) and the torque mode (14 Hz in

Figure 7-8 d)) do not show significant sensitivity to speed. Another peak around 10 Hz

in the test results is due to the overall natural frequency of the flywheel-base system.

This is further discussed in Section 7.3.2.1. It is also noticed that the “rocking” mode
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decreases as speed increases (see red arrows in Figure 7-8 a) and c)). It was verified this

decreasing trend follows the backward whirl of the “rocking mode”.

a) Radial translational DoF (Aw11) b) Axial translational DoF (Aw33)

c) Radial rotational DoF (Aw44) d) Axial rotational DoF (Aw66)

Figure 7-8 WA dynamic accelerance at some selected speeds

It should be mentioned that the measurement method introduced above is not practical

due to several reasons. Firstly, dynamic accelerance were measured with the WA alone

in “free-free” boundary condition and with a spinning flywheel. In this case,

fundamental harmonics were also detected (see blue arrows in Figure 7-8 a) and c)).

Remembering that from the “empirical load filter” in Figure 7-7, harmonics do not

show significant influences in WA accelerance. This is as expected since harmonics are

not accelerance by definition and should be avoided in calculating or measuring

accelerance. This contradiction in the two experimental methods was mainly due to the

different boundary conditions in the two types of test, however there is no difference at

static. In practice, although harmonics influences in Figure 7-8 can be filtered out by
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appropriate signal post processing, it significantly increases the overall efforts, for

example, this needs to be done at all speeds. Meanwhile, the direct measurement of

dynamic accelerance requires that the WA spins at every speed while sine-sweep

excitations are applied by shakers. This process is extremely time consuming and is not

always reliable. In addition, the fundamental theory of coupled microvibration analysis

shown in Section 7.1 also needs to be modified for accurate experimental measurements.

In conclusion, the two experimental methods introduced above to measure WA driving

point dynamic accelerance are not practical in the coupled microvibration study.

However, both results have clearly shown the difference between the WA static and

dynamic accelerance, i.e. the gyroscopic effects must be included in WA dynamic

accelerance. The most efficient approach is to obtain them analytically, an analytical

method to calculate the WA driving point accelerance is introduced in the next section.

7.3.2. Analytical Method

Remembering that the accelerance of a mechanical system is the property of the system

regardless of its boundary conditions, but the driving point accelerance depend on

locations of input forces and response accelerations applied and measured on the system.

The “driving point” for a typical WA is at its base interface and the mounting structure

shares the same interface as the driving point. As WA and the mounting structure are

usually rigidly connected (sometimes through vibration isolators), microvibrations

induced by the WA are directly transmitted through the interface. The coupled WA-

seismic mass system is depicted in the following figure and the driving point in this

system is high-lighted.

Figure 7-9 Coupled WA-seismic mass system

Driving Point
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In previous work, analytical expressions of WA dynamic accelerance were derived

considering the flywheel alone in the model, i.e. flywheel mass and moment of inertias

only, but stiffness and damping values of the suspension system were not included.

Thus at the static condition, WA accelerance calculated in the literature work were

constant in all six DoFs in the frequency band, i.e. either flywheel mass or moment of

inertias. This however, contradicts to those seen from the test results such as those

shown in Figure 7-8 for example. This is because such a model did not correctly

represent the WA driving point neither included properties of the suspension system,

thus the coupled microvibrations predicted were inaccurate. For this reason, a new

method must be developed to calculate the WA driving point dynamic accelerance.

7.3.2.1. WA Dynamic Accelerance Model

Remembering that microvibration models have been derived and validated for the WA

in both hard-mounted boundary condition (see Chapter 3) and coupled with a seismic

mass boundary condition (see Chapter 6). For WA accelerance derivation however, the

hard-mounted model has been proved incorrectly predicts the quality in previous

sections, while the WA-seismic mass coupled model can nether be used due to the

seismic mass involved in the system. In this section, the WA driving point accelerance

(either static or dynamic) is obtained when the WA is in a “free-free” boundary

condition such as those in WA accelerance tests and its FE model introduced preciously.

The WA in the “free-free” boundary condition can be depicted as in the following figure.

Figure 7-10 WA model in the “free-free” boundary condition

Similar to those previously introduced microvibration models, the flywheel is

considered as a rigid and rotating disc and can be idealized as a point mass with

moment of inertias, while the suspension system is modeled as a combination of springs

and dashpots. If the WA is in a “free-free” boundary condition, the WA base must be

considered in the model. The WA base can be modeled as a rigid point mass with its
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moment of inertias at its CoM. The model in Figure 7-10 is called the flywheel-base

system unless mentioned otherwise.

Mathematically, the analytical expressions of the WA driving point dynamic

accelerance can be derived from the WA microvibration model in the “free-free”

boundary condition. In general, the EoM of a WA microvibration model can be written

in the frequency domain as:

              Mq C +G q Kq F  (7.13)

Assuming zero initial conditions, the relationship between  q ,  q and  q is:

     2j      q q q  (7.14)

where j is the imaginary unit. Hence Eq. (7.13) can also be written as:

         2

1 1
j

   
 

   Mq C G q K q F   (7.15)

and WA dynamic accelerance (with subscript “ss” for the flywheel-base system) can be

expressed from Eq. (7.15) as:

   
1

2

1 1,w ss ss ss ssj


 


 

     
 

A M C G K (7.16)

Eq. (7.16) is both frequency-dependent (ω) and speed-dependent (Ω). The mass matrix,

Mss, damping matrix, Css, gyroscopic matrix, Gss, and stiffness matrix, Kss, include those

of the flywheel and base. F is the excitation vector, q is the response vector, they are

taken at the CoM of the flywheel and base respectively.

Since the torque accelerance can be ignored, the dimension of each matrix is 10×10; the

dimension of each vector is 10×1. The EoM of the flywheel-base system can be derived



139

following the same approach as for the WA-seismic mass coupled system. In this case,

properties of the base are used, such as in the kinetic and potential energy expressions

(see Eqs. (6.1) and (6.2)), thus giving the final EoM for the flywheel-base system.

Elements of each matrix and vector in Eq. (7.16) are given in Appendix F. Values of

each element are taken from previous microvibration models.

The definition of the driving point accelerance states that excitations and responses must

be taken at the same point. In the flywheel-base system in Figure 7-10, the only

microvibrations produced by WA are from its internal irregularities and are idealized at

the flywheel CoM in the model. In order to find the driving point accelerance of the WA,

forced motion must be applied at the base interface and its response accelerations are

calculated there. Unit force or moment can be applied at the WA base interface (point A

in the model in Figure 7-10 b)), they are required to be transferred to the base CoM

(point B) in order to use as the forcing vector, F, in the equation. The responses, q , are

then calculated at the base CoM (point B) but are required to be transferred back to the

base interface (point A). The transfer functions of the two processes are the exactly

opposite for a rigid body (i.e. the WA base), thus Eq. (7.16) does not ultimately change.

It also worth mentioning that Aw(ω, Ω) calculated from Eq. (7.16) is a 10×10 matrix at

each speed (see Appendix F for its general form), if the unit load method is used to find

accelerance at the base CoM, only the 25 elements from the WA base DoFs are

eventually required. These elements are also highlighted in Appendix F. The 25

elements form a fully populated matrix (except the independent base axial translational

DoF), thus the driving point accelerance of the flywheel-base system is a 5×5 symmetric

matrix with non-zero off-diagonal terms, which is as expected. From the discussions so

far, the analytical method introduced is more powerful than the two experimental

methods shown in Section 7.3.1, since it is able to provide the fully populated WA

accelerance rather than only diagonal elements in the accelerance matrix.

7.3.2.2. The Simulated Wheel Assembly Dynamic Accelerance

Eq. (7.16) is simulated in MATLAB in the frequency band between 1 to 500 Hz and

speed band between 1 to 5000 rpm. Figure 7-11 shows comparisons of magnitudes of
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Aw33 and Aw44 from analytical expressions and test results at static and 2400 rpm, for

examples.

In Figure 7-11, analytical and test results are matched well for Aw33, the accelerance

simply reveals the speed-independent axial translational mode in the frequency band.

Aw44 on the other hand have shown some differences between the two results, but the

“rocking” mode due to gyroscopic effects has been successfully predicted and the

general trend follows the test results quite well. The speed-independent mode around

100 Hz in Aw44 have also quite well matched. Therefore the results shown in Figure 7-11

indicate that the analytical method introduced can be used to calculate the WA driving

point dynamic accelerance.

a) Axial translational DoF (Aw33) b) Radial rotational DoF (Aw44)

Figure 7-11 Experimental and analytical WA accelerance comparison

Analytical results of the three WA direct driving point dynamic accelerance elements,

Aw11, Aw33 and Aw44 and one selected cross-DoF driving point dynamic accelerance

element, Aw14, are simulated in the speed band and results are shown in Figure 7-12

(magnitudes only).

From Figure 7-12 all speed-dependent and/or speed-independent modes of the WA are

clearly seen in each plot. In Figure 7-12 a) and c), the forward and backward whirls of

the “rocking mode” are clearly presented in radial DoFs, but unlike in the

microvibration test results shown in Chapter 6, the forward whirl in accelerance is not

as clear as the backward whirl. This observation matches the measured accelerance

shown in Figure 7-8. This confirmation indicates that the backward whirl is much more
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important in WA dynamic accelerance, in other words, as speed increases gyroscopic

effects mainly shift the “rocking” mode to lower frequencies in the dynamic accelerance.

It is also seen that the speed independent modes around 100 Hz in Figure 7-12 a) and c)

are not always constant. They are in fact a composition of the forward whirl (above

2700 rpm) and the radial translational mode (below 2700 rpm). Both modes are constant

with speeds in the two speed bands, thus together are considered as the radial

translational mode of the WA for modeling purpose.

a) Radial translational DoF (Aw11) b) Axial translational DoF (Aw33)

c) Radial rotational DoF (Aw44) d) Cross DoF (Aw14)

Figure 7-12 Analytical results of the WA driving point dynamic accelerance

Another speed-dependent mode up to approximately 10 Hz is due to the overall natural

frequency of the flywheel-base system. This mode is also influenced by gyroscopic

effects as expected and also in the test results (see Figure 7-8), but it is not the major

concern in accelerance in the frequency band of interest as it only grows up to 10 Hz.
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It is also expected that in Figure 7-12 b), the axial translational mode is uncoupled from

the four radial DoFs and speed-independent; also Aw14 in Figure 7-12 d) include all

modes in radial DoFs.

7.3.3. The Coupled Microvibration Prediction

The driving point accelerance of the mounting structure, As(ω), can be obtained from

the structure FE model. In this case, the seismic mass is a rigid body in the frequency

band between 1 to 500 Hz and all elements in its accelerance matrix are constant values.

The 5×5 accelerance matrix of the seismic mass was calculated from FE model in MSC

NASTRAN, results are not shown here. The simulated results of the “analytical load

filters”, Gf (ω, Ω), between hard-mounted and coupled microvibrations in Eq. (7.5) are

neither shown here, as they are not very different from Aw(ω, Ω) due to the constant

As(ω), except that some modes are shifted and amplitudes are slightly changed.

The coupled microvibrations, ΦFF_coupled, of the WA-seismic mass system are predicted

using two methods. First of all, the coupled microvibrations are obtained using the

traditional method, where the WA static accelerance, Aw(ω), is used in Eq. (7.5). On the

other hand, the coupled microvibrations are obtained using the WA dynamic

accelerance, Aw(ω, Ω). Both predicted coupled microvibrations in the speed band are

compared to the test results. RMS values of ΦcFxFx, ΦcFzFz and ΦcMyMy in the ΦFF_coupled

matrix at each speed are calculated in the speed band, results of ΦcFzFz and ΦcMyMy are

shown in Figure 7-13 for examples.

a) RMS value of ΦcFzFz b) RMS value of ΦcMyMy

Figure 7-13 Comparisons of RMS values of coupled microvibrations
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In Figure 7-13 a), the predicted coupled microvibrations with static accelerance and

dynamic accelerance are the same in the independent axial translational DoF as

expected. Also, since nonlinearity is not significant in axial translational DoF, both

predicted results match well with the test results in the whole speed band (up to 5000

rpm). Note that the small peak at approximately 3200 rpm in the test results are due to

abrupt responses from unknown sources and are not captured in the analytical model

(see Figure 7-7 for detail). In Figure 7-13 b) on the other hand, the predicted coupled

microvibrations in radial DoFs have shown some divergence compared to the test results

(performed up to 3000 rpm in radial DoFs). Nevertheless, the results predicted with

dynamic accelerance are closer to the test results.

As an example, the predicted results of ΦcMyMy at 2400 rpm are extracted and compared

to the corresponding coupled microvibration test results. Also the microvibrations

predicted using the traditional method (i.e. hard-mounted test results are used directly as

inputs to the coupled system) is plotted for comparison. They are shown in Figure 7-14.

Figure 7-14 Predicted and test results of ΦcMyMy at 2400 rpm

Generally, the coupled microvibrations predicted with static and dynamic accelerance

match better to the coupled microvibration test results compared to those predicted with

hard-mounted test results that are directly used as the inputs. In particular, results

predicted with dynamic accelerance are most closely matched to the coupled test results,

especially at low frequencies before fundamental harmonic (see the zoomed plot
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to 20 Hz and 40 to 60 Hz (the zoomed plot is not shown here)). They are identified to be

the regions where gyroscopic effects are present at 2400 rpm (see Figure 7-12 c) for

reference). First of all, the “rocking” mode amplifies the hard-mounted test results (i.e.

the inputs) between 10 to 20 Hz and thus the predicted coupled results. In the frequency

region between 40 to 60 Hz however, amplifications are caused by the (beginning)

interaction of the “rocking” mode and the radial translational mode, but its influences

are not as obvious (see Figure 7-12 c) for reference). These additional amplifications are

also the reason that the total RMS value of coupled microvibrations predicted with WA

dynamic accelerance is larger than those predicted the WA static accelerance case (see

Figure 7-13 b) at 2400 rpm for example).

Comparing both predicated results with WA accelerance to the hard-mounted

microvibrations that are used directly as the inputs in the traditional method, not only

are the amplifications below 20 Hz missed due to lack of the speed-dependent

gyroscopic effects, but also those between 60 to 75 Hz due to lack of the “speed-

independent” WA radial translational mode (see Figure 7-12 c) for detail). At high

frequencies however, the two predicted coupled microvibrations and those predicted

with hard-mounted are the same as there are no WA modes, neither gyroscopic effects.

These results are therefore also very close to the measured coupled microvibrations as

expected. Similar observations are also seen at other speeds and their results are plotted

as the total RMS values in the speed band in Figure 7-13.

From the results and discussions presented in this section, it is clear that the coupled

microvibration analysis method with WA dynamic accelerance has an advantage over

the traditional method and the method with static accelerance. From the practicality

point of view, since WA driving point dynamic accelerance are derived from the

verified WA microvibration model, the complete analysis process can be programed

following a systematic approach and easily to be modified for any type of WA.

7.4. Summary

In this chapter, microvibrations of coupled WA with its mounting structure are

discussed in detail. Modeling and validation of the important WA driving point

accelerance are studied in detail. Due to lack of the gyroscopic effects, the predicted
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microvibrations with WA static accelerance have been proved inaccurate. On the other

hand, the method in the literature of including gyroscopic effects in WA accelerance

derived from hard-mounted microvibration model does not correctly represent the

boundary condition at its driving point. A new method for WA driving point dynamic

accelerance modeling is thus developed. The method is based on the WA microvibration

model in a “free-free” boundary condition by considering stiffness and damping of the

suspension system. The modeling method has been validated with the coupled

microvibration test results and have shown improved results, especially in regions where

speed-dependent gyroscopic effects taken place. Also for practicality, the method is

more efficient and accurate than any other available, thus it can be argued that it is the

most advanced method to date.
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8. Conclusion

The work presented in this thesis has focused on the development and validation of

microvibration models for a satellite Wheel Assembly (WA). The particular WA which

was analyzed consisted of a cantilevered configuration with the flywheel supported by a

soft-suspension system. The peculiar WA dynamic characteristics such as nonlinearity

in the motor and high damping of the soft-suspension system, as well as the more

general dynamics not studied for the soft-suspended WA in the literature such as the

coupled motion in WA radial directions and broadband excitations, etc., which are here

considered, make the overall microvibration analysis significantly more complicated.

On the other hand, the WA-structure coupled microvibrations are more representative

than the hard-mounted ones. In particular, the WA driving point dynamic accelerance

are often the most important and yet difficult parameters to obtain. These issues have

been studied in this thesis for the state of the art of WA microvibration research and the

conclusions are given this chapter. Furthermore, although the work presented in this

thesis is considered as a complete microvibration analysis for a WA, some suggestions

are also given for areas where future developments may be beneficial.

8.1. Main Achievements

Although satellite microvibrations and related issues have interested satellite engineers

and researchers for more than four decades, the increasing structure stability

requirements of satellites carrying highly sensitive payloads (i.e. receivers) such as

cameras, telescopes, sensors and scientific instruments, etc., still pose challenges.

Even though there are many devices and events on board satellites which can generate

microvibrations (i.e. sources), the high speed rotational mechanisms such as Reaction

Wheel Assemblies (RWAs) and Momentum Wheel Assemblies (MWAs) are usually

considered as one of the most significant.

The initial step in the satellite system level microvibration analysis (i.e. to predict the

receiver performance or structure stability under microvibration environments) is to

characterize the microvibration sources. The next step is to integrate the source-
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generated microvibrations as the input disturbances to the satellite structure model and

to predict the receiver performance. In this thesis our research has focused on these two

steps for a cantilever configured WA designed with a soft-suspension system. Main

achievements are summarized as following.

 WA Hard-mounted Boundary Condition

 The analytical model of microvibrations has been derived for the cantilever

configured WA designed with a soft-suspension system.

To the best of the author’s knowledge, only microvibration models of flywheel mid-

span configuration of satellite WAs have been presented in literature. Here, based on

standard assumptions such as linearity, small perturbation angles, small mass

imbalances, WA (flywheel and base) symmetry and steady speed rotation, etc., an

analytical model of the microvibrations produced by the flywheel mass imbalances

has been derived by using the energy method for the cantilever configured WA with

a soft-suspension system. This linearized analytical model accurately captures WA-

induced fundamental harmonics, WA structural modes and gyroscopic effects of the

spinning flywheel.

 Higher harmonic excitations have been modeled empirically using a more efficient

and accurate method developed in this thesis.

Due to the dynamics observed in the hard-mounted microvibration test results of the

WA, such as nonlinearity in the motor and high damping in the soft-suspension

system, harmonic excitations have been modeled empirically by retrieving values for

the three related variables on each harmonic: amplitude coefficients, damping values

and speed exponent. The modeling strategy was based on a “trade-off” process of

these variables for each harmonic and an algorithm was developed to automate this

process for practical use. In particular, a critical value termed the “cut-off speed” was

estimated (in this case it was found at approximately 1500 rpm for the WA) from the

fundamental harmonic responses of the test results. Amplitudes of all harmonic

excitations were simulated up to this speed before the resonant dynamic

amplifications began severely influence the harmonic responses in the test results.
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The advantage of this method with respect to (w.r.t.) those previously proposed by

other researchers was that it has covered the more general situations where resonance

and its influences were not only limited to higher harmonics in the test speed band

(usually no resonance appeared on the WA-induced fundamental harmonic responses

in the speed band analyzed (e.g. up to 5000 rpm) in the literature for conventional

WA designs due to rigid suspension systems used), but also on the fundamental

harmonics, thus the method was more practical. Also, the speed exponent in the

harmonic excitation amplitudes was considered as a variable (i.e. here it was not

considered to be exactly the square of flywheel angular speed, which was true in

practice), and thus the simulated harmonic excitations were more accurate.

 Broadband (noise) excitations have been simulated using an empirical method

developed in this thesis.

The inclusion of the broadband excitations in the WA microvibration model

completed the general excitation modeling under linear assumptions (including

harmonic excitations and broadband excitations and they could be superimposed).

The broadband excitations were simulated empirically by taking the typical WA-

induced microvibrations at any speed in the test results and applying a number of

designed bandstop filters to them, which were used to isolate the broadband noises

from other disturbances.

The important issues of this part of the work were to identify the potential spikes

(include harmonics and resonances) and design the filtering process. Spikes were

identified using an energy variation method (also developed here) from the

Cumulative Root Mean Square (CRMS) value plots of responses. These spikes were

removed from the raw microvibrations by using a programed iteration filtering

process. One of the improvements w.r.t. the previous work was that the simulated

empirical broadband excitations in this thesis was a universal one, i.e. speed-

independent, they could be applied to microvibrations at any speed due to their

common broadband dynamic characteristics observed from the test results. Also the

method did not require a specific analytical shape function of microvibrations for

each speed, thus the efficiency of overall WA microvibration modeling process has

been significantly improved.
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 A microvibration measurement platform has been designed for hard-mounted WA-

induced microvibration measurements, and from the peculiar dynamics observed in

the test results, such as nonlinearity and high damping in the responses, modeling

strategies have been developed and implemented in the WA microvibration modeling.

The platform was designed from similar principles of a Kistler table, and in our case

three common force sensors were used as the transducers and mounted on an

aluminum platform. This relatively simple platform was able to simultaneously

measure three WA-induced microvibration loads in the hard-mounted boundary

condition. Assembling the payload in different orientations, it was possible to

measure all six components of the reactions. The platform was much simpler to use

and its performance was comparable to that of the much more expensive hardware

(e.g. a Kistler table or a load cell) normally employed for these measurements.

In general, the limitations of the methods developed in this thesis for hard-mounted WA

can be summarized as following:

 The microvibration model was able to accurately simulate the dynamics in WA axial

Degree of Freedom (DoF) for all harmonics, but only for fundamental harmonics in

WA radial DoFs. This was mainly due to different damping values of suspension

system required for each harmonic in radial DoFs, and the consideration of overall

modeling efficiency in practice.

 The platform designed was not able to simultaneously measure WA-induced reaction

loads in its six DoFs, i.e. three forces and three moments. The change of WA

orientations w.r.t platform in the tests may introduce undesired errors such as gravity

effects to the spinning flywheel in the responses in xw-axis and yw -axis orientated

tests (see Figure 4-1 for detail).

 Although the broadband excitation simulation method developed was a universal one

for this WA, for conventional designs where structural modes appear at relatively

high frequencies, it may require additional shape functions to describe their general

response levels (due to excitations) by broadband noise (see Figure 4-3 for example).
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 WA-Structure Coupled Boundary Condition

 A WA-seismic mass coupled microvibration measurement system, the “Seismic

Mass Vibration Measurement System” or “SMVMS”, has been designed.

This measurement system implemented an indirect method to simultaneously

measure the six components of microvibration loads induced by the WA. The six

WA-seismic mass interface loads (three forces and three moments) were

reconstructed from the system rigid body dynamics. With respect to the standard

measurement systems, e.g. using a load cell or Kistler table, the measurement system

developed here had the advantage to utilize simple hardware, like accelerometers and

a seismic mass. It also had the benefit to be naturally isolated from the ground-borne

noise, as the system was suspended using elastic cords. The accuracy of the system

has been validated experimentally and its performance was similar to that of the

considerably more expensive hardware normally employed for these measurements.

 An accelerance measurement system has been designed and measurement method

has been developed to measure the WA driving point (static or dynamic) accelerance.

This system primarily consisted of a specially designed mounting bracket attached to

the WA and common accelerometers and force sensors for the measurements. The

system was easy to setup compared to the one in the literature and able to provide the

complete 6×6 WA accelerance matrix. It also had the advantage to measure the WA

dynamic accelerance, which was the first time this has been performed in this

research field. Furthermore, the direct application of input loads at the WA interface

has reduced the unwanted modes in other DoFs, consequently the post-processing

work and the accuracy of test results has improved.

 The WA driving point dynamic accelerance have been thoroughly studied from both

experimental and analytical approaches.

Firstly, to the best knowledge of the author, it was the first time that WA driving

point dynamic accelerance were measured, i.e. an experimental analysis, for the

coupled WA-structure microvibration analysis. Secondly and most importantly in
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this thesis, analytical expressions of the WA driving point dynamic accelerance have

been derived and validated with the test results. The method presented here was more

accurate than the only one available in the literature. In particular, the WA

accelerance model has been developed from a new approach, i.e. from the WA

microvibration model in a “free-free” boundary condition. In this case, the

accelerance model not only included the gyroscopic effects but also the WA

flexibilities, and this was verified with the WA accelerance test results. By using this

model in the WA-structure coupled microvibration analysis, the accuracy of the

predicted results has been improved w.r.t. all other available methods, especially at

low frequencies where the backward whirl of the WA “rocking” mode (caused by

gyroscopic effects) was more influential in the accelerance. This method was a

universal one and has been applied to conventional WA designs with accurate results

compared to the traditional method.

Although the WA-structure coupled microvibration analysis methods presented in this

thesis significantly extended the work in the literature, some limitations can still be

addressed:

 The measurement method developed for the WA driving point dynamic accelerance

measurements need to be used carefully. Although it has been concluded that

dynamic accelerance measured using this method was not able to be implemented

into the coupled microvibration model due to the spinning flywheel (where

unwanted harmonic responses were also measured along with WA structural modes),

the fundamental coupled microvibration analysis theory need to be modified in order

to obtain meaningful results.

8.2. Recommendations for Future Work

The recommendations for future work can be grouped into three main areas:

 Improvements of the WA hard-mounted microvibration model in its prediction

accuracy and efficiency;

 Further developments in WA-structure coupled microvibration analysis methods;
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 More application examples and thus, evidence of reliability and practicality of the

WA microvibration analysis methods developed in this thesis;

They are briefly introduced as following:

 Improvements of the WA Hard-mounted Microvibration Modeling

 An analytical model of broadband excitations could be derived for the WA

microvibration modeling.

Although similar works have been attempted in the literature and failed in capturing

the general dynamics of broadband noise, its modeling can still be developed.

Generally, in order to obtain an analytical model of the low level broadband

excitations, two factors of the model must be considered: a shape function to

describe the general response level caused by response resonance amplifications and

simulated random broadband vibrations (such as white noise defined in an analyzed

frequency band). Under a linear assumption, the simulated random vibrations (with

the more or less constant noise peak-peak amplitudes in the frequency band) can be

brought up by an accurately modeled response shape function at that speed, and this

will ensure the simulated broadband noise best matches to the test results. The

difficulty here is to derive an analytical and universal shape function based on

several factors, such as WA angular speed, response dynamic amplification and

general response level, etc.

Alternatively, the modeling of broadband noise can be considered from their causes,

i.e. to physically model all irregularities and other dynamics which are sources of

broadband excitations in the motor and bearing system, thus a completely analytical

broadband noise model can be obtained.

 Further Extensions of the Coupled Microvibration Analysis Methods

Although in this thesis the presented method to calculate the WA driving point dynamic

accelerance been improved from the previous methods, the process is not as efficient as

it could ultimately be. For example as it has been presented in the thesis, WA driving
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point accelerance in six DoFs are required to be measured independently (i.e. one test in

each DoF and a 6×1 accelerance vector is obtained in each test). The same process also

applies in the analytical dynamic accelerance expressions (unit force needs to be applied

six times at the WA interface). This process makes the overall microvibration analysis

exceptionally time-consuming, especially in the experiments. Also the hard-mounted

microvibrations must be included, which need to be measured or simulated

independently, as also in the traditional methods.

During the WA-structure coupled microvibration research, we have also attempted

several alternative methods to tackle the issues regarding WA driving point accelerance.

These works are still in the progress of researching and details of the work have been

provided in Appendix G. Some of them are briefly introduced below.

From Chapter 7, the WA-induced microvibration loads and the coupling accelerations

between the WA and structure can be expressed in either vector form (in either time

domain or frequency domain) or spectral density matrices form (in the frequency

domain only). Starting from the fundamental equation of the coupled WA, i.e. Eq. (7.1):

1
c b w

  f f A x (7.1)

In an alternative theory the WA accelerance, Aw, can be calculated as following: first of

all, suspending the WA in a “free-free” boundary condition (i.e. in this case fc is zero in

the equation and fb, when WA is alone can be expressed in terms of the coupling

accelerations, x ). Next, by mounting the WA on the seismic mass, the coupled forces, fc,

can be measured. In both cases, if the flywheel spins and measurements are taken then

the only unknown, Aw in the equation can be calculated.

If the loads and coupling accelerations are expressed in vector form (see Eq. (8.1)), the

problem then lies in the inversion of a vector, which mathematically does not have a

unique solution.

 1 1
s c w c f
    A x = A x x (8.1)
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If they are expressed in matrix form, the difficulty then is to calculate the inverse of the

6 ×6 complex matrix, Aw, from the multiplication of the matrix with its Hermitian (even

if Aw is a symmetric matrix by assuming the WA is axisymmetric). The resulting

equation is shown as following:

 1 1 1 1H H

s c s w c f w
                   
  A X A A X X A (8.2)

 Apart from the further developments of analytical methods, alternative WA

accelerance measurement system may be designed to simultaneously measure all

elements in the 6×6 WA driving point dynamic accelerance matrix, or at least to

reduce the work that has been conducted in this thesis.

All these research works are being conducted in the Astronautics Research Group at the

University of Southampton at present.

 More Test Applications to the Presented Modeling Methods

The modeling methods (hard-mounted and coupled) introduced in this thesis can also be

applied to the conventional WA designs, e.g. the WA is mid-span configured with

flywheel supported by a rigid system. In practice, the supporting structure is often

flexible, i.e. with many DoFs, while in our case a rigid seismic mass has been used

throughout the study. It is thus also necessary to verify the microvibration analysis

methods developed in this thesis using a more representative flexible structure, e.g.

strut-boom type structure or panel, to support the WA.

These two concerns have been applied in another project that the author and his

colleagues are currently working on [8, 52-54]. In this case, a conventional mid-span

configured RWA with a rigid system is used as the microvibration source and a real-life

satellite panel (where the RWA is mounted at in practice) is used as its supporting

structure.
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8.3. Summary

Overall, this thesis has presented the microvibration research of a WA that has a

cantilevered configuration designed with a soft-suspension system. WA-induced

microvibrations have been modeled in hard-mounted and couple boundary conditions

using methods developed in this thesis. This includes the implementation of several

(microvibration and accelerance) measurement systems and analytical models of the

WA. In general this study considers several aspects that have not been well addressed in

the literature such as WA-induced broadband noise, general harmonic responses, WA

driving point dynamic accelerance, etc. The methods proposed in this thesis have been

shown to produce more accurate results and more efficient in practical applications than

the previous techniques. Limitations of the methods are also addressed and future

developments are given.
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Appendix A Euler Rotation Transformation Matrices

Order: XYZ  abc  x’y’z’  xyz
From To Transformation Matrices (Z-Convention)

XYZ abc
ˆ ˆcos 0 sin
ˆ ˆ0 1 0

ˆˆ sin 0 cos

a X

b Y

Zc

u u
u u

uu

 

 

    
        
        

abc x’y’z’
ˆ ˆ1 0 0
ˆ ˆ0 cos sin

ˆ0 sin cosˆ

x a

y b

cz

u u
u u

uu
 
 







    
        
        

x’y’z’ xyz
ˆ ˆcos sin 0
ˆ ˆsin cos 0

0 0 1ˆ ˆ

x x

y y

z z

u u
u u
u u

 
 







    
         
        

XYZ x’y’z’
ˆ ˆcos 0 sin
ˆ ˆsin sin cos sin sin

ˆcos sin sin cos cosˆ

x X

y Y

Zz

u u
u u

uu

 
    
    







     
        
        

XYZ xyz

ˆ ˆcos cos sin sin sin cos sin sin cos cos sin sin
ˆ ˆcos sin sin sin cos cos cos sin sin cos sin cos

ˆsin cos sin cos cosˆ

x X

y Y

Zz

u u
u u

uu

           
           

    

       
           
        

abc xyz
ˆ ˆcos cos sin sin sin
ˆ ˆsin cos cos sin sin

ˆ0 sin cosˆ

x a

y b

cz

u u
u u

uu

    
    

 

    
         
        

Table A- 1 Transformations from inertial frame (XYZ) to body frame (xyz)
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Order: XYZ  abc  x’y’z’  xyz
From To Transformation Matrices (Z-Convention)

abc XYZ

ˆˆ cos 0 sin
ˆ ˆ0 1 0
ˆ ˆsin 0 cos

aX

Y b

Z c

uu
u u
u u

 

 

    
        
        

x’y’z’ abc
ˆ ˆ1 0 0
ˆ ˆ0 cos sin
ˆ 0 sin cos ˆ

a x

b y

c z

u u
u u
u u

 
 







    
         

        

xyz x’y’z’
ˆ ˆcos sin 0
ˆ ˆsin cos 0

0 0 1ˆ ˆ

x x

y y

z z

u u
u u
u u

 
 







    
        
        

x’y’z’ XYZ

2 ˆˆ cos sin cos sin
ˆ ˆ0 cos sin
ˆ 0 sin cos cos cos ˆ

xX

Y y

Z z

uu
u u
u u

   
 

   







   
         

         

xyz XYZ

ˆˆ cos cos sin sin sin cos sin sin sin cos sin cos
ˆ ˆcos sin cos cos sin
ˆ sin cos cos sin sin sin sin cos sin cos cos cos ˆ

xX

Y y

Z z

uu
u u
u u

           
    

           

      
         

          

xyz abc
ˆ ˆcos sin 0
ˆ ˆcos sin cos cos sin
ˆ sin sin sin sin cos ˆ

a x

b y

c z

u u
u u
u u

 
    
    

    
         

        

Table A- 2 Transformations from body frame (xyz) to inertial frame (XYZ)
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Appendix B Wheel Assembly Kinetic Energy

B1 Kinetic Energy of Statically Mass Imbalanced Flywheel

From the total displacement vector of the static mass imbalance given in Chapter 3, i.e.

Eq. (3.63), by differentiating the equation w.r.t. time t, the resulting velocity vector is

inserted into the following kinetic energy expression.

1
2s s s

T
m s m mT m V V (B1-1)

This gives the kinetic energy expression as:

 2 2 2

2

2

1 2 cos cos 2 sin sin sin
2

2 cos sin 2 cos sin sin 2 cos sin

2 cos cos sin 2 cos sin
12 cos cos cos

sm s s s w w s w w w w

s w w w s w w w s w w

w s w w w w s w w w

s w w w w

T m r r x t r x t x

r y t y r z t r z t

z r x t r y t

r z t

  

   

    

  

        

         

    

  

  

   
  

 2 2 2 2 2 2 2 2

2

2

2 2 2 2 2

1 1cos sin
2 2 2

2 sin 2 cos cos sin 2 sin sin

2 cos sin 2 cos sin sin 2 cos cos sin
3 1 1cos
4 4 4

s w s w s w

s w w s w w w w s w w w

s w w w s w w w w s w w w

s w s w

r r t r t

r r x t r x t

r z t r z t r t t

r r t r

  

      

       

 

   

     

      

   

  

   
   

  2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1cos cos cos sin
4 4

1 1 1 1cos sin sin cos sin sin sin
4 4 4 4

s w w s w w s w

s w w s w w s w w s w w

r t r t

r t r r t r t

    

       

   

       


  

   

(B1-2)

Eq. (B1-2) can be further simplified using the typical trigonometric properties. Due to

the complexity, it is first broken down into the following form:
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


2 2 2 2 2

2

1 2 cos cos 2 sin sin sin
2

                   2 cos sin 2 cos cos sin 2 cos sin (1)

2 sin 2 cos cos sin 2

sm s w w w s s w w s w w w

s w w s w w w w s w w w

s w w s w w w w

T m x y z r r x t r x t

r y t r x t r y t

r r x t r

  

     

    

          

       

     

   

   

 
2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2

sin sin

                2 cos cos sin (2)

1 1 1cos cos cos sin cos (3)
4 4 4

1 1cos sin
4 4

s w w w

s w w w

s w w s w w s w w

s w w

x t

r t t

r t r t r

r t r

 

  

     

 



   

        
 

  



 

  

 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1sin sin sin (4)
4

1 1 3sin cos (5)
4 4 4
1 1 1cos sin (6)
2 2 2

2 cos sin sin 2 cos sin 2 cos cos

s w w s w w

s w s w s w

s w s w s w

s w w w w w w

t r

r t r t r

r r t r t

r z t t t

   

  

  

    

    
 
       
 
       
 

        

 

  

  

 


cos

2 cos sin 2 cos sin sin (7)

w

w w w w wt t



         

In this form, some of the terms (or sub-equations numbered with (1), etc.), can be

simplified. Amongst them, (1), (2) and (7) are not changed.

 (3) is simplified as:

 

 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

1 1 1cos cos cos sin cos
4 4 4
1 cos cos cos 1 cos cos
4
1 2cos cos
4

1 cos cos
2

s w w s w w s w w

s w w w w

s w w

s w w

r t r t r

r t t

r t

r t

     

   

 

 

    

        

  

  

  







 (4) is simplified as:
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 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2

1 1 1cos sin sin sin sin
4 4 4

1 sin cos sin 1
4
1 sin cos
2
1 1cos cos cos
2 2

s w w s w w s w w

s w w

s w w

s w s w w

r t r t r

r t t

r t

r t r t

     

 

 

  

   

    

 

   

  





 

 Summing the simplified (3) and (4) with (5), it gives:

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

1 1 1cos cos cos cos cos
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 (6) is simplified as:
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   
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By summing all terms, the following equation is obtained:
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From Chapter 3, the total kinetic energy of the mass balanced flywheel is:

     2 2 2 2 2 2 2 2 21 cos sin 2 sin
2w w w w w w w w r w w w w zT M x y z I I                 

     

Thus, the total kinetic energy of the statically mass imbalanced flywheel is derived as:

  
 
 
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       cos cos sin sin sin (v)
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    

     

        

 


 


cos cos

2 cos sin 2 cos sin sin (vii)

w w

w w w w w

t

t t

 

         

(B1-3)

The terms numbered with (i) etc. in Eq. (B1-3) can be further simplified if applying the

following assumptions:
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 small (perturbation) angle assumption;

 small mass imbalance assumption;

 flywheel angular speed domination assumption;

The detailed simplification process is introduced as following:

 (i) term; The magnitude of flywheel moment of inertia is much larger than that of the

mass imbalance, thus this term is simplified as: 2
w rI .

 (ii) term; similarly to (i), the two mass imbalance terms and the two inertia terms are

in the same bracket, ignoring mass imbalances, the term reduces to:

 2 2 2cos sinw w r w zI I   . Using the small angle assumption, i.e. cos 1  , it is

further simplified as:  2 2 2 2cos 1 cosw w r w z w rI I I       .

 (iii) term; similar to (ii), it can be simplified as: 2
zI .

 (iv) term; in practice since the flywheel angular speed Ω is much larger than

disturbance velocity terms, the term is simplified as: 2 sins s wm r y t   .

 (v) term; similar to (iv), if the flywheel angular speed dominates in the bracket, using

a small angle assumption, the second order rotational angles term:

sin sin sint    , is very small compares to other terms thus can be ignored.

Hence (v) is simplified as following:

 2 cos cos sin sin sin 2 coss s w w w w s s wm r x t t m r x t           .

 (vi) term; the mass imbalance term is very small thus can be ignored. Also using the

small angle assumption, the term can be simplified as: 2 w w zI   .

 (vii) term; the following process shows it is simplified to be zero.
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
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 
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

 





From the above discussions, the simplified kinetic energy of the statically mass

imbalanced flywheel is thus:

 


2 2 2 2 2 21 2 sin
2

2 cos 2

sw m w w w w w r w r z s s w

s s w w w z

T M x y z I I I m r y t

m r x t I

 

 


        

    

   



B2 Kinetic Energy of Dynamically Mass Imbalanced Flywheel

In this section, discussions of the kinetic energy of the dynamically mass imbalanced

flywheel are introduced. From the two displacement vectors of dynamic mass

imbalances given in Chapter 3, i.e. Eqs. (3.72) and (3.73), by differentiating the two

vectors respectively w.r.t. time t, the resulting velocity vectors are inserted into the

following kinetic energy expression:

1 1 2 2

1 1
2 2d d d dmd

T T
d m m d m mT m m V V V V (B1-4)

This gives the kinetic energy expression as:
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2 2 2 2 2 2 2 2 2 2 2 2
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2 2 2 2 2
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2

1 3 12 sin sin
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

         

    

     

   

     2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2
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4 4 4
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r t r t r t hr t

h r r t r t

   

       

       

  

       

      


 

   

   

(B1-5)

Eq. (B1-5) can also be simplified using the typical trigonometric properties. It is first

broken down into the following form:




2 2 2 2 2 2 2

2 2
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 
     
 

 

  

  

  

 2 2 2 2 2 21cos sin (6)
2w d wt r t        

 

Similarly, some terms in the above equation can be simplified. In this case, (1) is not

changed.

 (2) is simplified as:
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 (3) is simplified as:

 

  
 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2

1 1 1cos sin sin sin sin
4 4 4

1 sin cos sin 1
4
1 sin cos 1 cos 1
4
1 1 cos cos
2
1 1cos cos cos
2 2

d d w w d d w w d d w w

d d w w

d d w w

d d w w

d d w d d w

m r t m r t m r

m r t t

m r t t

m r t

m r t m r t

     

 

 

 

  

   

    

     

  

   

  







  w

 The sum of the simplified (2) and (3) is:
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by adding (4), it gives:
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 (5) is simplified as:
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 (6) is simplified as:
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B3 Kinetic Energy of Fully Mass Imbalanced Flywheel

Summing all simplified terms with (1), the following expression of the total kinetic

energy of the two dynamic mass imbalances is obtained:
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Remembering that the kinetic energy of the statically mass imbalanced flywheel was

derived in Section B1 and thus the kinetic energy of the fully mass imbalanced flywheel,

i.e. the sum of
sw mT  and

dmT , gives:
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Similarly, each term in the above equation can be further simplified, details are shown

as following:

 (i) term; since the magnitude of flywheel moment of inertia is much larger than that

of the mass imbalances, it is simplified as: 2
w rI .

 (ii) term; similar to (i), since inertia terms dominate, it can be simplified as:

 2 2 2cos sinw w r w zI I   . Also using the small angle assumption, it can be further

simplified as: 2
w rI .

 (iii) term; the magnitude of flywheel moment of inertia is much larger than that of

mass imbalances, thus the term is simplified as: 2
zI .

 (iv) term; since the flywheel angular speed dominates in the bracket, using the small

angle assumption; it can be simplified as: 2 sins s wm r y t   .
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 (v) term; since the flywheel angular speed dominates, using the small angle

assumption and the second order rotation terms are ignored, thus: 2 coss s wm r x t   .

 (vi) term; since the flywheel angular speed dominates and the magnitude of flywheel

moment of inertia is much larger than that of mass imbalances, also using the small

angle assumption, it is simplified as: 2 w w zI   .

 (vii) term; since the flywheel speed dominates, it is simplified as:

4 sind d wr m h t   .

 (viii) term; since the flywheel angular speed is the common term, using the small

angle assumption, it is simplified as:  4 cosd w d d w dr m r m h t     .

 (ix) term; it is simplified to be zero as for the statically mass imbalance case.

Finally, the kinetic energy of the fully mass imbalanced flywheel includes those of the

statically mass imbalanced and dynamically mass imbalanced cases, it is:

 
 

2 2 2 2 2 2 2 sin 2 cos

2 4 sin 4 cos
s dw m m w w w w w r w r z s s w s s w

w w z d d w d w d d w d

T M x y z I I I m r y t m r x t

I r m h t r m r m h t

 

    

             

        

    
 
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Appendix C Hard-mounted Microvibration

Measurement Platform

C1 Introduction

In this section, a microvibration measurement platform is designed to measure WA-

induced microvibrations in the hard-mounted boundary condition. The platform is

shown in Figure C- 1 a).

a) Platform model b) Top plate (bottom view)

Figure C- 1 WA hard-mounted microvibration measurement platform

The platform utilizes three unidirectional force sensors: one PCB 208C01 force sensor

at position 1 and two PCB 208C02 force sensors at position 2 and 3 respectively. They

are installed between the top and base plates, see Figure C- 1 b). The three forces

sensors form an equilateral triangle shape. If the platform coordinate system is defined

at the triangle geometric center, O, the three force sensors measure forces in the positive

z-axis. The resulting forces and moments at O can be calculated from the three force

sensor measurements as:

1 2 3z z z zp
F F F F   (C1-1)

 1 2 3y z z zp
M F a F F b    (C1-2)

2 3x z zp
M F c F c   (C1-3)

Force SensorsBase Plate

Top Plate

Back Plate

Side Plate

123
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   2 3 1 2 3z x x y y yp
M F F c F a F F b     (C1-4)

where a = 50 mm, b = 25 mm, c = 43.3 mm; subscript ‘p’ indicates the “platform” local

coordinates. Note that Eq. (C1-1) is also used to calculate Fx and Fy but requires the WA

to be installed in orthogonal w.r.t the platform.

Therefore, the WA-induced microvibration forces and moments in all six DoFs can be

measured using this platform.

C2 Platform Dynamics Calibration

In the platform dynamics calibration process, one of the tests was to verify if there were

undesired motions of force sensors during the microvibration measurements. In this test,

one accelerometer (Endevco 256-100) was attached near each force sensor. Another test

was to verify Eqs. (C1-1) to (C1-4), as they were used to calculate microvibration forces

and moments induced by the WA. Three verification test setups were designed, see

Figure C- 2. The force test was to verify Fz or Eq. (C1-1), and the two moment tests

were to verify My or Eq. (C1-2) and Mx or Eq. (C1-3). The other forces and moments, i.e.

Fx, Fy and Mz were verified indirectly from these verifications.

a) Fz verification test b) My verification test c) Mx verification test

Figure C- 2 Microvibration measurement platform dynamics calibration tests

x
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y
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y
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In all tests, a LDS V201 shaker was suspended “free-free” using flexible bungee cords

from a ground-fixed steal frame. The shaker generated input forces and/or moments to

the platform. A unidirectional force sensor (PCB 208C03) was attached between the

shaker stinger and the platform to measure the input forces. Constant sinusoidal forces

at three input levels: 0.5 N, 1 N and 1.5 N (all sampled at 100 Hz) were applied

respectively and the response accelerations and forces were measured. Note that in

practice these input forces were the typical WA-induced microvibrations.

 For Fz verification test, the input forces were applied directly at O in negative z-axis,

see Figure C- 2 a).

 For My verification test, a small stainless steel cube was placed at O, the shaker was

attached to the cube along the positive x-axis thus producing the positive My, see

Figure C- 2 b).

 For Mx verification test, the shaker was attached on right side plate of the platform

along positive y-axis thus producing a negative Mx, see Figure C- 2 c).

Moment arms between the input forces and force sensors were 0.05 m (including force

sensor dimension and top plate thickness), the corresponding theoretical moments were

therefore 0.025 Nm, 0.05 Nm and 0.075 Nm respectively for the three input forces. All

response signals were measured with a sampling frequency of 2048 Hz and a block size

of 2048. This gives the frequency resolution as 1 Hz. 5 s data were acquired for each

test.

C3 Results and Discussions

As an example, Figure C- 3 presents the background noise (i.e. the platform in static

condition) compared to the response accelerations during shaker excitations (i.e. the

platform in working condition) from the Fz verification test.
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Figure C- 3 Response accelerations and background noise of Fz verification test

RMS values were also calculated for each curve, results are listed in Table C- 1.

Accelerometer
No.

Noise Level
(RMS/g)

0.5 N Input
(RMS/g)

1 N Input
(RMS/g)

1.5 N Input
(RMS/g)

Comparison
(Largest)

1 0.00103 0.00103 0.00100 0.00103 3%

2 0.00105 0.00109 0.00110 0.00109 5%

3 0.00102 0.00106 0.00105 0.00105 4%
Table C- 1 Total RMS values of accelerations and background noise of Fz

verification test

From Table C- 1, RMS values of all accelerations were very close to each other and also

to that of the background noise, regardless accelerometers or input force level. The

largest difference (or error) between acceleration signals and the background noise was

about 5%. These errors were mainly from the small input forces being detected by

accelerometers during vibrations, e.g. peaks at 100 Hz in Figure C- 3. These errors

could not be completely avoided in practice, but their amplitudes were very small thus

had no significant influences to the measured signals. The two moment verification tests

have shown similar results. Therefore the three force sensors were considered fixed

during microvibration measurements, i.e. the measured microvibrations were not

contaminated from this point of view.
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Figure C-4 presents the 1.5 N input force and the three response forces from Fz

verification test. Force signals are plotted for the first 0.05 s and 0-P amplitudes of all

force signals are given in Table C- 2.

Figure C- 4 Input forces and response

forces from Fz verification test (1.5 N input

case)

Table C- 2 0-P amplitudes of the

input and response forces from Fz

verification test (1.5 N input case)

Force
Channels

Values

Input 1.5 N

Fz1 0.50 N

Fz2 0.49 N

Fz3 0.49 N

In Table C- 2, the sum of the three response forces is 1.48 N which was about 1.3%

different from the input force of 1.5 N. For the other two input forces (0.5 N and 1 N),

the differences are about 1% and 1.1% respectively. These differences were due to the

small offsets of force sensors being installed slightly away from their defined positions

in theory. Thus they are considered as experimental errors and Eq. (C1-1) is verified.

Figure C- 5 a) and b) present the results of My and Mx verification tests of the 1.5 N

input case.

a) My
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b) Mx

Figure C- 5 Input and responses of verification test (1.5 N input)

My and Mx were calculated using Eqs. (C1-2) and (C1-3) respectively and compared to

the input moments. For My test, errors are about 0.8%, 0.9% and 1% for the three input

forces 0.5 N, 1 N and 1.5 N respectively. For Mx test, errors are about 0.3%, 1% and

0.8%. Note that in Figure C- 5 b), small responses in Fz1 are detected (which in theory

should be zero). They were mainly due to small offsets of force sensor 1 being installed

slightly distant from its defined position in theory along x-axis, thus very small

responses were detected. Fz1 responses were included in the above error calculations

and clearly shown no significant influences to the results, thus Eqs. (C1-2) and (C1-3)

were also verified.

In addition, the FE model of the platform was created for the normal and xw-axis

oriented test setups. In each model, the WA was modeled as a point mass at its CoM

and rigidly connected to the platform model. Modal analyses were performed in MSC

NASTRAN. Frequencies of the first mode were 930 Hz and 913 Hz for the normal and

x-orientated setup respectively. These frequencies were distant from the coarse

frequency band of interest (from several Hz to 500 Hz) and the fine frequency band of

interest (from several Hz to 200 Hz) in this study. Thus the platform would not

influence the measured microvibrations from this view point.
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Appendix D WA Suspension System Stiffness and
Damping Value Estimation

In this appendix, the estimations of WA suspension system stiffness (kt, kz and kr) and

damping values (ct, cz and cr) are introduced. Estimations were carried out using both

experimental and analytical methods. Experimentally, grounded sine-sweep tests were

performed to the WA. In the test, in order to investigate the nonlinearity that was

observed in the WA microvibration test results, sine-sweep tests were performed with

high and low level inputs respectively. Analytically, a WA FE model was first created

using solid elements, i.e. a full WA FE model. Modal analyses were performed and

natural frequencies of the suspension system in all six DoFs were obtained. Next, a

simplified WA FE model was created using shell elements. Frequency response

analyses were performed to extract the suspension system damping values, along with

the high and low level input sine-sweep test results.

D1 Wheel Assembly Sine-sweep Tests

Grounded sine-sweep tests were performed to estimate the suspension system stiffness

and damping values. Low level input sine-sweep tests were performed first. Due to the

low level inputs, nonlinearity in the WA did not appear, and the test results could be

used to estimate the stiffness and damping values of the suspension system in linear

condition. Next, high level input sine-sweep tests were performed. In this case,

nonlinearity became apparent and stiffness and damping values of the suspension

system in nonlinear condition were obtained. In addition, sine-sweep tests were

performed in forward and backward directions for each input case to investigate the

nonlinearity.

Both high and low level input sine-sweep tests were performed in WA radial DoF (or

horizontal in x-axis) and axial DoF (or vertical in z-axis); see Figure D- 1 for the test

setups. The WA was fixed on a shaker and the input accelerations were applied. Note

that an aluminum cube was used as the adaptor in the test. The cube shown no

influences to the test results in the frequency band interested (5 to 100 Hz in this case).
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a) Radial DoF b) Axial DoF
Figure D- 1 WA grounded sine-sweep tests

Note that the freely rotating flywheel must be constrained during sine-sweep tests,

meanwhile the setup has to maintain the suspension system properties in order to reveal

WA structural modes from the test results. The flywheel was thus externally taped (see

Figure D- 1 a) for detail). In this way, certain flexibilities in tapes were allowed and the

flywheel was able to excite the WA structural modes but did not rotate.

Three accelerometers (no. 2, 3 and 4) were attached on the “non-spinning” flywheel; see

Figure D- 1 a) and b). Another accelerometer (no. 1) was used as control signals in both

cases. In radial DoF tests, two accelerometers no. 2 and 3 were attached on the flywheel

peripheral surface in x-axis and opposite to each other. Both accelerations were used to

measure the radial translational mode. Accelerometer no. 4 was attached on the

flywheel top surface near its edge in positive z-axis. It was primarily used to measure

the “rocking” mode. In axial DoF tests, accelerometer no. 2 was attached in positive z-

axis to measure the axial translational mode.

D1.1 Low Level Input Sine-sweep Test Results

During the low level input sine-sweep tests it was found that the lowest possible

acceleration inputs were 0.008 g and 0.015 g in WA radial and axial DoFs respectively

in order to retain the suspension system behaves linear. Test results in radial and axial

DoFs are presented in Figure D- 2 a) and b) respectively.
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Firstly, control signals in both cases follow the defined profiles very well indicating

both tests were successfully performed. Forward and backward sine-sweep test results

are almost identical between each other in the frequency band in each case, indicating

nonlinearity is not raised. Note also that all major spikes are sharp, indicating

suspension system shows low damping characteristic.

a) Radial DoF (0.008 g input)

b) Axial DoF (0.015 g input)

Figure D- 2 Low level input sine-sweep test results

WA natural frequencies of structural modes identified from low level input sine-sweep

tests are listed in Table D- 1.
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Natural Frequency (Test)

ft 50.4 Hz

fr 28.9 Hz

fz 43.8 Hz
Table D- 1 WA natural frequencies (low level input sine-sweep tests)

D1.2  High Level Input Sine-sweep Test Results

High level input sine-sweep tests were performed in order to raise nonlinearity in the

WA. The input forces used were 0.25 g and 0.1 g in WA radial and axial DoFs

respectively. Results are presented in Figure D- 3.

a) Radial DoF (0.25 g input)

b) Axial DoF (0.1 g input)

Figure D- 3 High level input sine-sweep test results
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Nonlinearity is clearly presented in each case in Figure D- 3. For example, the response

accelerations in Figure D- 3 a) have shown the typical nonlinear dynamic characteristics,

e.g. a sudden response decline after 50 Hz. Furthermore, forward and backward sine-

sweep test results are not matched at some resonances in frequencies and amplitudes in

the figure. For example, the frequency of the WA radial translational mode at 50 Hz that

appeared in the forward test shifts to 47 Hz in the backward test; the peak amplitudes

are reduced.

If comparing the sine-sweep test results to the microvibration test results presented in

Chapter 4, nonlinearity in the microvibration tests starts at about 38 Hz (or 2280 rpm),

which is lower than the sine-sweep test results shown above (47 to 50 Hz). This is

primarily due to the different WA test conditions, in one case the WA spins and reaction

loads are measured but in the other case, it is at static and sine-sweep tests are

performed. In WA axial DoF in Figure D- 3 b), nonlinearity is not as influential as that

in radial DoFs. Forward and backward test results have matched well for all

accelerometers.

The strong nonlinearity observed in high level input sine-sweep test results makes it

difficult to estimate the natural frequencies of the suspension system in this condition,

especially in radial DoFs. Due to this reason, the results obtained from low level input

sine-sweep tests (shown in Table D- 1) are used as the experimental natural frequencies

of the WA suspension system. The results obtained from high level input sine-sweep

tests on the other hand, are used for damping value extractions in nonlinear condition.

They are discussed in detail in Section D3.

D2 Wheel Assembly FE Model (Solid Elements)

After some simplifications, the WA model includes four main parts: WA base,

suspension system, motor and flywheel. They are made from aluminum, Delrin, steel

and brass respectively. Note that the motor is first assumed as steel, its density in the

model is then tuned so that its model mass is the same as its physical mass. The WA

base and suspension system together are considered as the stator, while motor and

flywheel are considered as the rotor. Each component was modeled using solid element.

WA FE model was created in FEMAP (see Figure D- 4 a) for detail). Note that the web-
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spring has been partitioned from the suspension system and it is modeled with a finer

mesh (see Figure D- 4 b) for detail).

a) The complete model b) The web-spring model

Figure D- 4 WA FE model (solid elements)

Modal analysis was performed to the FE model in MSC NASTRAN. The WA base

interface was fixed to simulate the hard-mounted boundary condition as in the sine-

sweep tests. Figure D- 5 shows the three major mode shapes: the WA “rocking” mode,

radial and axial translational mode respectively.

a) “Rocking” mode b) Radial translational mode c) Axial translational mode

Figure D- 5 Mode shapes of the WA

Frequencies calculated from the modal analysis are listed in Table D- 2.

Natural Frequency (FE Model)

ft 50 Hz

fr 30 Hz

fz 46 Hz
Table D- 2 WA suspension system natural frequencies (FE results)
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The analytical results of the WA suspension system stiffness, kt, kz and kr, were

calculated using Eqs. (D2-1) to (D2-3). The rotor mass, mw, is 0.75 kg (including

flywheel and motor). Rotor radial moment of inertia about the suspension system CoM,

Ir, is about 5.1×10-4 kgm2.

 22t t wk f m (D2-1)

 22z z wk f m (D2-2)

 22r r rk f I (D2-3)

By comparing to the WA microvibration test results and Table D- 1, the final WA

natural frequencies are determined and their corresponding stiffness are calculated. They

are listed in Table D- 3. These values are used as the model parameters in the WA

microvibration model development.

Natural Frequency Stiffness

ft 50 Hz kt 6.9×104 N/m

fr 27 Hz kr 15 Nm/rad

fz 44 Hz kz 5.8×104 N/m
Table D- 3 WA stiffness for microvibration modeling

D3 Wheel Assembly FE Model (Shell Elements)

WA FE model was also created using shell elements (i.e. the simplified WA FE model).

This model was created for damping values extraction purpose and later also used for

WA driving point accelerance study. The simplified WA FE model is shown in Figure

D- 6 a). The WA suspension system was modeled using a CBUSH element (which has a

six DoF stiffness and damping property). It is high-lighted as the red point in Figure D-

6 b). The six stiffness values were taken from Table D- 3. Frequency response analyses

were performed to the simplified WA FE model in MSC NASTRAN. The results output

nodes were chosen to be the accelerometer positions in the corresponding sine-sweep

tests (see Figure D- 1 for detail).
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a) Full model b) Cross-section

Figure D- 6 WA simplified FE model

Damping values were tuned with low and high level input sine-sweep test results

respectively. In damping value extractions, only damping values in WA radial and axial

translational DoFs (i.e. ct and cz) were extracted. Note that the total damping of the

“rocking” mode, cR, was assumed to be same as ct. The damping value of the torsional

spring, cr, was directly related to cR from the following equations.

2
R t rd    (D3-1)

2
R t rc d c c  (D3-2)

where d is the distance from rotor CoM to suspension system, it is 0.008 m. Note that

R r  if t is small. The final curve-fittings between the FE model and test results are

shown in Figure D- 7; damping ratios are also given.

From Figure D- 7, curves of FE model and test results have matched very well in most

cases. In Figure D- 7 c) however, since nonlinearity has been raised in WA radial DoFs,

forward and backward test results are very different in frequencies and amplitudes at the

resonances. Thus an exact estimation of the damping value was not possible. In our case,

damping value in high level input sine-sweep tests was first estimated from the value

obtained in WA axial translational DoF, i.e. Figure D- 7 d). It was then assumed that the

damping value in WA radial DoF was the same (this can be proved from Figure D- 7 a)

and b) of low level input sine-sweep tests). Therefore the curve produced in Figure D- 7

c) was a compromise between the forward and backward test results.
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a) Low level input sine-sweep: radial DoFs

( t = 0.02 )

b) Low level input sine-sweep: axial
translational DoF ( z = 0.02 )

c) High level input sine-sweep: radial DoFs

( t = 0.15)

d) High level input sine-sweep: axial

translational DoF ( z = 0.15)

Figure D- 7 WA suspension system damping value extractions

Damping values were calculated using the following equations:

2t t t wc k m (D3-3)

2z z z wc k m (D3-4)

2r r r rc k I (D3-5)
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In practice, WA microvibration test results have shown that the dynamics in WA axial

translational DoF was mostly linear, however that in WA radial DoFs are highly

nonlinear. It was therefore decided to use the damping values obtained from low input

level sine-sweep tests for WA axial translational DoF microvibrations modeling, while

damping values obtained from high level input sine-sweep test for WA radial DoF

microvibration modeling. They are discussed in the thesis.

The final damping ratios and damping values for WA microvibration modeling are

listed in Table D- 4.

Damping Ratio Damping Value

ζt 0.15 ct 68.2 kg/s

ζz 0.02 cz 8.3 kg/s

ζr 0.15 cr 0.026 kg m2/s/rad
Table D- 4 WA damping values for microvibration modeling
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Appendix E Signal Processing Techniques

E1 Data Processing

Generally, the microvibration measurements normally involves large amounts of data,

thus specific attention has to be given to automation of the entire signal acquisition,

management and analysis.

Regarding the basic structure of relevant vibration signatures and the corresponding

signal treatment, the following classification is recommended particularly for

satellite/mechanism microvibration analysis.

 Stationary (or quasi-stationary) signals; including special cases like

cyclostationary signals (e.g. generated by WA, cryocooler, rotating or translating

device-generated microvibrations, continuously operating scanners, etc.). The signal

statistics remain constant, or they are only slowly varying over time. Stationary

signals are typically analyzed in the frequency domain.

 Non-stationary signals; including transient signals (e.g. generated by waveguide

switches, valves, piezoelectric thruster, thermal snap, etc.). The signal statistics may

change rapidly, and computing a spectral density for a transient signal is not

mathematically correct since the pulsing sequence is neither random (ergodic) nor

periodic in nature, thus non-stationary signals are typically analyzed in the time

domain.

For stationary signals such as those generated by WAs, several analysis methods have

been established and various parameters have been used, for instance:

 Time domain: signal statistics, e.g. variance, standard deviation and higher order

central moments (skewness and kurtosis), histogram-based estimation of probability

density functions, (auto-) correlation function, etc.
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 Frequency domain: PSD and AS (also known as magnitude Fourier transformation),

considering the effects of spectral averaging and window functions as well as higher

order spectra (e.g. bispectrum, trispectrum and spectral maps), etc. RMS values and

CRMS value plots are also commonly used.

 Further processing for automated feature extraction, e.g. identification and estimation

of spectral and order peaks, dedicated filtering, etc.

For non-stationary signals, the scope of available analysis tools may be extended by:

 Time-frequency analysis, including Short-Time Fourier Transform, Spectrogram,

Wigner-Ville Distribution, Continuous Wavelet Transform & Scalogram, etc.

The best approach of analyzing transient microvibration data is to use the spectrogram,

which is a graph of time versus frequency where the FFT amplitude is represented by

the color intensity. The spectrogram is more accurate than the spectral density plot for

assessing the time varying spectral content of transient microvibrations.

 Further processing for automated feature extraction, e.g. order analysis, Campbell

diagram, etc.

For WA-induced microvibrations, measurements are usually analyzed in the frequency

domain. In particular, algorithms are written in this thesis to calculate the FFT, PSD, AS,

RMS value and CRMS value of forces and moments. Singles are also analyzed in the

time domain. All algorithms are compiled in MATLAB. Theories and equations

implemented in the algorithms are introduced in the rest of this chapter.

E2 Energy in Signal

The energy in a signal can be determined by its RMS value, which is a useful metric in

microvibration analysis. In general, there are three approaches to define the RMS value

of a signal:

 Statistical approach (time and frequency domain).
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 Energy approach (time and frequency domain).

 PSD approach (frequency domain).

In the time domain, the expected value of a continuous signal x(t) is the same as the

signal’s mean value, ( )x t :

 ( ) ( )x t E x t  (E2-1)

The variance, 2( )x t , of the signal is then:

 22 ( ) ( ) ( )x xt E x t t     (E2-2)

The square root of Eq. (E2-2), i.e. ( )x t , is the standard derivation of the time signal.

The mean square of the signal is the expected value of the square of the time signal and

can be expressed in terms of the signal mean and variance through Eq. (E2-2) as:

2 2 2 2( ) ( ) ( ) ( )x x xr t E x t t t      (E2-3)

The square root of the mean square, ( )xr t , is referred as the RMS value of the time signal.

It is easy to see from Eq. (E2-3) that for a zero-mean process, i.e. ( ) 0x t  , the RMS

value simply equals to the square root of the variance. For simplicity, the assumption is

made in this thesis that all stochastic microvibrations in this thesis are zero-mean,

otherwise singles are corrected to have zero-mean.

The RMS value definition in Eq. (E2-3) is based on the statistical approach and

regardless the domain in which they are analyzed. As long as the signal (in either time

or frequency domain) has a finite number of data, its RMS value can be calculated.

However, this approach of estimating RMS value is generally not used for estimating

the energy in the signal. An alternative approach of calculating the area under the

discretized (or digitized) signal curve is commonly used for calculating the energy in

the signal. It is introduced as following.
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In the time domain, the energy of a signal, Et, can be defined as:

2( )tE x t dt



  (E2-4)

and the power of discretized time domain signal, Pt, can be derived from as:

1
2

0

1 ( )
N

t
n

P x n
N





  (E2-5)

where x(n) is the discretized time domain signal of x(t); N is the total number of data in

the signal; n is the data index. The power of discretized frequency domain signal can be

written in a similar way, it gives:

1
2

2
0

1 ( )
N

f
k

P x k
N





  (E2-6)

where x(k) is the discretized frequency domain signal of x(f); k is the data index; f is

frequency in Hz.

According to Parseval’s theorem, the power (and thus energy) of a signal in the time

domain equals to the power of the same signal in the frequency domain. From Eqs. (E2-

5) and (E2-6), it gives:

1 1
22

2
0 0

1 1( ) ( )
N N

n k
x n x k

N N

 

 

  (E2-7)

By definition, the RMS value of a signal in the time domain is the square root of the

power of the signal, thus:

 
1

2

0

1 ( )
N

x
n

r t x n
N





  (E2-8)

The same argument applies to the RMS value in the frequency domain, thus:
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 
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r f x k
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

  (E2-9)

This also means that the RMS values of the signal are the same in the time and

frequency domain. This definition of the RMS value from the energy approach reveals

its physical meaning. Therefore in the microvibration data processing, Eq. (E2-8) is

usually used to present the energy of the signal in the time domain and Eq. (E2-9) to

present the energy of the signal in the frequency domain. An equivalent definition of the

RMS value is based on the PSD of the signal. In addition, the CRMS value plot can be

produced from this approach. It is introduced in Section E6.

In general, the different RMS values introduced above can be applied in a typical

microvibration data processing as following.

Figure E- 1 WA microvibration data processing process and RMS values

Eq. (E2-8) is commonly used to define the target RMS value of a signal, since it is

based on the raw time domain data without any pre-signal processing. In the general

signal processing process, the initially acquired time signals are usually transformed

into the frequency domain using the Fourier transform (or FFT more precisely) and then

can be calculated as PSDs, for example. The RMS values calculated from PSDs can be

compared to those calculated in the time domain, and they should be similar for the

same signal. In this manner, RMS values can be used to access the quality of the

transformation process, including sampling size, window (size and type), overlapping

and averaging, etc., which are commonly applied in this process.

RMS (Energy)

RMS (Energy)

FFT

Signal (Time domain)

Signal (Frequency domain)

RMS (PSD)

Pre-signal Processing
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E3 Fourier Transformation

Fourier transformation is used to transform the time signals into frequency domain. This

process is performed by FFT function built in MATLAB. The FFT results can be used

to calculate other functions such as AS, PSD, CSD, RMS value and CRMS value.

The forward Fourier transform of a time domain signal, x(t), is defined as:

( ) ( ) i tX x t e dt
 


  (E3-1)

where X(ω) is complex and ω = 2πf.

A limitation of Eq. (E3-1) is that it integrates over infinite time, and does not hold for

stationary signals since they are not completely integratable. Also in practice it is

impossible to measure an infinitely-long signal x(t). Instead, it is useful to define the

finite Fourier transform of x(t) over the interval (0,T) as:

0
( , ) ( )

T i tX T x t e dt   (E3-2)

where T is the length of the time of the signal.

E4 Amplitude Spectrum

A useful frequency domain representation of a stochastic process with FFT results is the

AS of the signal. It provides an estimate of the signal amplitude as a function of

frequency. It is defined in continuous form as:

2

0

1( ) ( )
T i ft

xA f x t e dt
T

  (E4-1)

The discretized form of Eq. (E4-1) can be expressed as:
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( )
( )x

x k
A f

N
 (E4-2)

Unlike the Fourier transform, the AS is a real-valued function and gives a direct view of

the amplitude distribution in a signal in the frequency domain. Note that due to two-side

characteristics of FFT results, Eq. (E4-2) needs to be halved. Also in practice, a

correction factor may be applied to the AS.

E5 Auto- and Cross-correlation Function

Generally, a signal can be characterized as either purely deterministic or stochastic

(random). A deterministic signal is exactly predictable over the time period of interest.

For example:

   sinx t A t  (E5-1)

where A is the amplitude (0-peak) of the signal, ω is the angular frequency.

A stochastic signal, on the other hand, is one that has some random elements associated

with it. In addition, a stochastic signal can be further characterized as deterministic or

non-deterministic. For example:

   sinx t A t    (E5-2)

where φ is the random phase evenly distributed between 0 and 2π. This example is a

deterministic stochastic process because it is deterministic in form but has a random

element, φ. Pure white noise, on the other hand, is a non-deterministic stochastic

process, since it is purely determined by chance and has no particular structure at all.

RWA-induced microvibrations are generally modeled as deterministic random

processes similar to the example of Eq. (E5-2). Such a process can be characterized by

its auto-correlation and cross-correlation functions. Both functions contain information

about the frequency content of the process.
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Auto-correlation function describes how well a signal is correlated with itself at two

different times and is defined as:

     1 2 1 2,xR t t E x t x t    (E5-3)

and cross-correlation function measures the correlation between two different sign, it is

defined as:

     1 2 1 2,xyR t t E x t y t    (E5-4)

A weakly stationary process is one whose mean and variance are time invariant and

whose auto-correlation and cross-correlation functions depend only on the difference, τ,

between t1 and t2, so that:

       ,x xR R t t E x t x t        (E5-5)

and

       ,xy xyR R t t E x t y t        (E5-6)

All signals presented in this thesis are considered weakly stationary, zero-mean

microvibrations, so the auto-correlation and cross-correlation functions will be written

as Eq. (E5-5) and (E5-6), the variance is considered to be constant.

E6 Power Spectrum Density

The PSD of a time signal is a frequency domain variable often employed in

microvibration analysis. It has two equivalent definitions. The first one is based on the

time history of the signal, defined as the Fourier transform of the signal’s auto-

correlation function. For example, taking the Fourier transform of Eq. (E5-5), the PSD

can be derived as:
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2( ) ( ) i f
x xS f R e d  

 


  (E6-1)

Remembering that the RMS value of a signal in the frequency domain can be derived

from the signal’s PSD. Since the power in a signal is the area under the signal, the area

under the discretized PSD curve gives the RMS value of the signal (the square root of

the area). In general, the power in a signal in the frequency domain can be defined as:

( )f xP S f df



  (E6-2)

Applying the trapezium rule to Eq. (E6-2), its discretized form is obtained:

/ 2 1

0
( )

N

f x
k

P S k f




  (E6-3)

On the other hand, according to the Parseval’s theorem and also the two-side

characteristics of PSD due to FFT, Eq. (E2-6) can be written as:

/ 2 1
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2 ( )
N

f
k

P x k
N





  (E6-4)

From Eqs. (E6-3) and (E6-4), it gives:

/ 2 1 /2 1
2

2
0 0
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N N
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S k f x k
N

 
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   (E6-5)

The PSD of a time signal in discretized form is thus obtained as:

2
2

2( ) ( )xS k x k
N f



(E6-6)
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For any stationary, zero-mean signal, the RMS value can be computed as the square

root of the area under the PSD curve. Therefore from Eq. (E6-6), an alternative

definition of the RMS value can be obtained as:

/ 2 1

0
( ) ( )

N

x x
k

r f S k f




  (E6-7)

In practice, Eqs. (E6-6) and (E6-7) can be programmed as they are in discretized form.

In this thesis they are used for estimating PSD and RMS values of signals in the

frequency domain.

A useful extension of this result is the CRMS value function. It is defined in continuous

form as:

0

min
0( ) 2 ( )

f

cx xf
r f S f df


  (E6-8)

where  0 min max,f f f and minf and maxf are the upper and lower limits of the frequency

band considered. In practice, the CRMS value function of a signal can be calculated

using the build-in function in MATLAB. In such case, the PSD of the signal is first

divided into smaller segments. RMS values of these segments are calculated by

integrating over the frequency band of each segment respectively and the cumulative

sum is computed for all segments.

The CRMS value function represents a cumulative contribution of the total RMS value

in a signal as a function of frequency. Usually, the CRMS value function is plotted with

the corresponding PSD of the signal. Any value change in the CRMS value plot

represents a determined amount of energy contributed to the signal. Thus CRMS value

plot is a useful tool in this study because it allows one to visualize the variation of

vibrational modes and responses in terms of energy. It can also be used to identify these

changes w.r.t. frequency, such as for identifying spikes in a signal in broadband

excitation modeling.
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E7 Sampling Techniques

The fidelity of all frequency domain metrics introduced so far are dependent on the

quality of data acquisition in the time domain. One of the key rules in this matter is that

the digital sampling frequency must be greater than at least twice the frequency band

interested, known as the Nyquist frequency, fnq, in order to avoid aliasing of the data.

The sampling frequency, fs, should be 2.56 times greater than Nyquist frequency in

addition to compensate the roll-off effect of the anti-aliasing filter.

2.56s nqf f (E7-1)

For example, if the desired frequency bandwidth is [0, 400] Hz, then the recommended

sampling frequency is 1024 Hz.

Other parameters involve in a signal sampling process include time length T, number of

sampling points, N, frequency resolution, f , and time resolution, t . They are also

related to one another, their relationships are listed in Table E- 1.

Sampling Parameters Relationship

Sampling frequency 1
s

Nf
t T

 


Frequency resolution 1sff
N T

  

Time length
s

NT N t
f

  

Time resolution 1

s

Tt
N f

  

Table E- 1 Relationships of signal sampling parameters
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Appendix F Matrices of Coupled System

F1 Wheel Assembly-Seismic Mass Coupled System
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F2 Flywheel-Base Coupled System
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Appendix G Alternative Methods to Calculate Wheel
Assembly Accelerance

Some alternative methods to calculate the WA driving point dynamic accelerance which

are still being developed are presented in this appendix. They are summarized as

following:

 With reference to the Eqs. (7.1) to (7.5) in Section 7.1, the relationship between the

WA coupled and hard-mounted loads is:

1
c b w

  f f A x (7.1)

If instead we let the WA alone to be suspended in a “free-free” boundary condition

and spinning while measurements are taken (where accelerometers can be attached at

its base interface), fc then equals zero in the above equation, i.e. there are no coupled

forces, and an expression for fb can be expressed:

1
b w f

  f A x (G.1)

where subscript f indicates the WA is in the “free-free” boundary condition.

On the other hand, if the WA is mounted on the seismic mass, the WA-induced

coupled loads can be directly measured using the methods developed in this thesis,

so from the following equation:

1
c s c

 f A x (G.2)

Substituting Eqs. (G.1) and (G.2) into Eq. (7.1), the following equation can be

derived:

 1 1
s c w c f
    A x = A x x (G.3)
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where the only unknown in the equation is the WA driving point accelerance, Aw.

However, the problem here lies in the inversion of a vector, which mathematically

does not have a unique solution.

 If expressing Eq. (7.1) into vector and matrix spectral density form:

1 1 H

c b w c w
         
A X A  (G.4)

Applying the same derivation procedure, the following equation can be obtained:

 1 1 1 1H H

s c s w c f w
                   
  A X A A X X A (G.5)

where again the only unknown is the WA driving point accelerance, Aw, and the

problem here lies in the calculation of Hermitian matrix cross-product with the

matrix itself as unknowns.

The above two methods require the WA to be measured in a “free-free” boundary

condition and coupled with the structure.

 Another method involves using different supporting structure (in our case, the

seismic mass with different layers assembled) and the measurements of their coupled

microvibrations at their interface. It is introduced as following:

The relationship between the coupled forces and hard-mounted forces for the two

measurements (with different layers) can be expressed respectively as:

   1 1 1

1 11 1
H

c w s b w s

          I A A I A A  (G.6)

   2 2 2

1 11 1
H

c w s b w s

          I A A I A A  (G.7)
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If dividing the two equations, the hard-mounted loads matrix b is eliminated, thus:

  
  

1 1
1

2
2 2

1 11 1

1 11 1

H

w s w sc
H

c
w s w s

  

  

       

       

I A A I A A

I A A I A A




(G.8)

Again, the only unknown is the WA driving point accelerance, Aw, and the same

problem lies in the Hermitian matrix calculation.
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