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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Doctor of Philosophy

RECEPTIVITY AND TRANSITION TO TURBULENCE OF SUPERSONIC

BOUNDARY LAYERS WITH SURFACE ROUGHNESS

by Nicola De Tullio

A deeper understanding of the different factors that influence the laminar-turbulent

transition in supersonic boundary layers will help the design of efficient high-speed

vehicles. In this work we study the effects of surface roughness on the stability and

transition to turbulence of supersonic boundary layers. The investigation is car-

ried out by direct numerical simulations (DNS) of the compressible Navier-Stokes

equations and focuses on the modifications introduced in the transition process by

localised roughness elements, for Mach numbers M∞ = 6.0 and M∞ = 2.5, and

distributed slender pores at M∞ = 6.0. The first part of the investigation into

the effects of localised roughness deals with the receptivity and initial exponen-

tial amplification of disturbances in boundary layers subjected to small external

perturbations. Different transition scenarios are investigated by considering differ-

ent free-stream disturbances and roughness elements with different heights. The

results show that, for roughness heights approaching the local displacement thick-

ness, transition is dominated by the growth of a number of instability modes in the

roughness wake. These modes are damped by wall cooling and their receptivity

is found to be more efficient in the case of free-stream disturbances dominated by

sound. At M∞ = 6 the growth of Mack modes in the boundary layer is found

to play a crucial role in the excitation of the most unstable wake modes. An

investigation into the nonlinear stages of transition shows that the breakdown to

turbulence starts with nonlinear interactions of the wake instability modes. This

leads to the formation of a turbulent wedge behind the roughness element, which

spreads laterally following mechanisms similar to those observed for the evolution

of compressible turbulent spots. An oblique shock impinging on the transitional

boundary layer significantly accelerates the breakdown process and leads to a

wider turbulent wedge. The study ends with an analysis of porous walls as a

passive method for transition control, which is carried out using a temporal DNS

approach. The results show damping of both the primary, of second or Mack mode

type, and secondary instabilities and indicate that, despite the high Mack number,

first mode waves regain importance in this modified transition scenario.
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Chapter 1

Introduction

This thesis is concerned with transition to turbulence in high-speed flows. We

start with a general motivation for the study and then review the literature.

1.1 Motivation

In 1883 Osborne Reynolds (Reynolds, 1883) carried out the first detailed investi-

gation into the circumstances that lead to laminar-turbulent transition, providing

the basis for more than a century of research into the origins of turbulent motion

in fluid flow. Since then, our knowledge on this subject has advanced consider-

ably and, at the same time, we have also learned that transition to turbulence

is a complex phenomenon which shows great sensitivity to a myriad of factors

(e.g. Reynolds number, external disturbances, pressure gradient, wall roughness

or curvature). Morkovin (1991) summarised the known transition scenarios in his

transition roadmap, later updated by Morkovin et al. (1994) to include the effects

of a newly discovered phenomenon called transient growth (see later), in order to

obtain a general view of the different ways laminar boundary layers may become

turbulent. Morkovin’s roadmap, shown in figure 1.1, indicates that after the initial

stage of receptivity, which is the process by which external disturbances enter the

boundary layer, transition may take different paths depending on the amplitude

of the external perturbations. Small disturbances may give rise to boundary layer

eigenmodes of instability, which grow exponentially due to linear processes. The

most unstable of these modes represents the primary instability and drives the

initial stages of transition. These may then be followed by secondary instabilities

and/or nonlinear interactions. At low speeds the primary instability is represented

1



2 Chapter 1 Introduction

Figure 1.1: Morkovin’s roadmap to transition. The letters indicate the different
paths to transition. Taken from Morkovin et al. (1994).

by the well known Tollmien-Schlicting (TS) waves, whereas for high Mach num-

bers, typically M∞ > 4.0, Mack modes (see Mack, 1984), i.e. two-dimensional

inviscid instabilities of an acoustic nature, are the most unstable boundary layer

linear eigenmodes. The initial transition stages may also be dominated by tran-

sient growth, which is an algebraic disturbance growth followed by an exponential

decay, arising due to the non-normality of the linearised Navier-Stokes operator,

and can be explained in physical terms by the so called lift-up effect (Landahl,

1980). Transient growth may contribute to the excitation of primary instabilities,

or lead to secondary instabilities, or it may bypass the linear stages of transition

and lead directly to breakdown to turbulence. A bypass nature of the transition

process also appears in the presence of large amplitude external disturbances, in

which case the dominant mechanisms seem to be inherently nonlinear and transi-

tion occurs following the appearance and growth of elongated streaky structures

that give rise to turbulent spots (Emmons, 1951).

Experimental observations indicate that the dominant transition mechanisms in

boundary layers can be greatly modified by the presence of localised or distributed
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roughness, leading to a significant acceleration of the transition process both in

noisy and in quiet environments (Schneider, 2008). Over the years, a number

of possible scenarios have been postulated in order to explain these observations.

Roughness may enhance the receptivity of boundary layer modes or generate highly

unstable wakes thereby introducing new instabilities. Another possible mechanism

is the onset of strong transient disturbance growth in the vicinity of the roughness,

which might lead directly to nonlinear breakdown to turbulence. Despite numer-

ous research efforts, however, the underlying physical mechanisms responsible for

roughness-induced transition remain largely unknown. A deeper understanding of

the effects of roughness on the stability of boundary layers is particularly impor-

tant for high-speed applications, where transition leads to a significant increase

in both the skin friction and wall heat transfer, with obvious implications for the

design of high-speed vehicles.

Transition at high and low speeds present similarities but also numerous differ-

ences. The early experiments of Laufer & Vrebalovich (1960), Demetriades (1960)

and Kendall (1975) and the numerical work of Mack (1984) demonstrated that

transition mechanisms at high speeds are more complex than at low speeds. The

present contribution deals with transition to turbulence in supersonic boundary

layers under the effect of small external disturbances, focusing both on the physi-

cal mechanisms leading to early transition in the presence of roughness and on the

processes responsible for the stabilisation of high-speed boundary layers by the

use of porous coatings. An overview of the available literature on the subject of

transition in supersonic and hypersonic flows is presented in the following sections.

Some important results obtained in the framework of low speed transition will also

be considered in order to help the discussion.

1.2 Transition due to small external disturbances

Following the receptivity process, the early stages of boundary layer transition

to turbulence are dominated by the linear growth of unstable eigenmodes. The

existence of sinusoidal disturbances in the boundary layer prior to transition was

first postulated by Rayleigh (1878, 1880) and demonstrated experimentally by

Schubauer & Skramstad (1948). Meanwhile, the research efforts of Tollmien and

Schlichting led to the development of the viscous theory of boundary layer insta-

bility, so that, as already mentioned, the waves of the first unstable mode are

often referred to as Tollmien-Schlichting waves (see Schlichting & Gersten, 2000).
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In the framework of compressible flows the existence of instability modes was ex-

perimentally demonstrated by Laufer & Vrebalovich (1960). On this subject, the

theoretical investigations carried out by Lees & Lin (1946) are considered one of

the most important early advances. They developed a two-dimensional asymptotic

theory and, through inviscid calculations, discovered the importance of the gen-

eralised inflection point, defined as the point where ∂/∂y (ρ∂u/∂y) = 0. Inviscid

instability increases with Mach number as the generalised inflection point moves

away from the wall, while viscous instability decreases and eventually disappears

for two-dimensional waves at M∞ > 3, so that viscosity has a stabilising effect

in high speed flows (Mack, 1984). Mack (see Mack (1984) and references therein)

discovered the existence of higher acoustic modes appearing in supersonic bound-

ary layers. He showed that the first of the additional modes, a two-dimensional

wave known as the second (or Mack) mode, is the most unstable boundary layer

mode for M∞ > 4. For lower supersonic Mach numbers linear stability theory

(LST) predicts that three-dimensional (oblique) first-mode waves are more unsta-

ble than two-dimensional waves, whereas for subsonic compressible and incom-

pressible flows two-dimensional waves are the most unstable. Mack also analysed

the effect of wall temperature, showing that cooling damps the first mode growth,

in agreement with what was previously found by Lees (1947), while destabilising

the higher modes. Therefore cooling, in fact, destabilises the boundary layer at

high speeds. A complete review of the main results obtained by the compressible

LST along with its mathematical formulation can be found in Mack (1984).

The results obtained by analysis and computation of the linearised stability equa-

tions were validated through experiments and direct numerical simulations (DNS)

of the Navier-Stokes equations. For example, the higher modes of Mack were

found experimentally by Kendall (1975) and the theoretical prediction that the

second mode constitutes the primary instability for M∞ > 4 was corroborated by

experiments and DNS (Lysenko & Maslov, 1984; Erlebacher & Hussaini, 1990).

Lysenko & Maslov (1984) also verified the effect of wall cooling on the first and

second modes.

The use of experiments and accurate numerical simulations, however, is not lim-

ited to the assessment of LST predictions. A number of important discoveries on

transition in high-speed boundary layers came from temporal and spatial DNS

studies as well as from experiments. This is especially true for those stages of

the transition process dominated by nonlinear interactions, where linear theories

are no longer applicable. In a series of experiments in Mach 6 quiet wind tunnels

Chokani and co-workers (Chokani, 1999, 2005; Wilkinson, 1997) investigated the
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nonlinear evolution of Mach modes over flared cones using bispectral analysis. All

the measurements were carried out in the layer of the maximum r.m.s. voltage.

It was found that the Mack mode self interaction is the first nonlinearity aris-

ing, which enables energy exchange between the Mack mode and the mean flow

and leads to the first harmonic. However, the experiments of Bountin et al. (2008)

showed that low frequency nonlinear interactions at the edge of the boundary layer

are the first nonlinear processes taking place. These interactions are present before

any sign of nonlinearity appears in the layer of maximum r.m.s. voltage fluctu-

ation. Moreover, when nonlinear processes disappear from this layer nonlinear

interactions are still active above and below it.

At low supersonic Mach numbers nonlinear interactions of three-dimensional pri-

mary instability modes can be responsible for breakdown to turbulence without

resorting to a secondary instability. Kosinov et al. (1990); Fasel et al. (1993); Sand-

ham & Adams (1993), found that the most unstable eigenmode in aM∞ = 2.0 lam-

inar boundary layer is three-dimensional, in agreement with what was predicted

by the linear theory. This particular behaviour was further studied by Chang &

Malik (1994) and Sandham et al. (1995). It was found that the nonlinear interac-

tion of oblique primary instability waves sustains the growth of quasi-streamwise

vortices. These vortices generate high shear layers which roll-up into additional

vortices leading to breakdown to turbulence.

At higher Mach numbers nonlinear interactions of the two-dimensional primary in-

stability modes clearly cannot lead to a three-dimensional phenomenon like turbu-

lence, so that growth of less unstable oblique eigenmodes or excitation of additional

three-dimensional waves is needed. The question is whether the evolution of three-

dimensionality in high speed and incompressible flows follows similar paths, given

that both types of flow have two-dimensional primary instabilities. The late stages

of breakdown to turbulence in incompressible flows are now fairly well understood.

The secondary instability theory says that once the TS waves reach high ampli-

tudes the boundary layer becomes unstable to three-dimensional waves (Herbert,

1988). This stage of the transition process is characterised by the appearance of

Λ-shaped vortices located near the boundary layer edge. At this point, breakdown

to turbulence can occur in three possible scenarios, the fundamental or K -type,

the subharmonic or H -type and the detuned breakdown (Herbert, 1988). In the

fundamental breakdown the secondary instability waves have the same streamwise

wavenumber as the primary waves and the Λ-shaped vortices are aligned. In the

subharmonic breakdown the streamwise wavenumber of the secondary instability

doubles that of the primary wave and the Λ-shaped vortices are staggered. Finally,
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in the detuned breakdown the secondary instability is detuned from the primary

wave and presents streamwise wavelengths in between those of the fundamental

and subharmonic waves.

The secondary instability of supersonic and hypersonic laminar boundary layers

was first investigated by El-Hady (1992), Masad & Nayfeh (1990, 1991), Erlebacher

& Hussaini (1990) and Ng & Erlebacher (1992). Erlebacher & Hussaini (1990)

carried out temporal direct numerical simulations of the fundamental secondary

instability of the M∞ = 4.5 flow over a flat-plate. The results suggest that the

K -type breakdown to turbulence is possible in compressible boundary layers and

presents similarities with its incompressible counterpart. Overall, the effect of

Mach number is to reduce the subharmonic growth rate (Masad & Nayfeh, 1990,

1991; Ng & Erlebacher, 1992). The secondary instability growth rates increase

with an increasing amplitude of the primary instability and, at high Mach num-

bers (M∞ = 4.5), secondary instabilities growing from the second (Mack) mode

primary instability dominate those originating from the first mode primary insta-

bility (Ng & Erlebacher, 1992). At low supersonic Mach numbers the secondary

instability shifts from subharmonic to fundamental as the amplitude of the pri-

mary waves increases (Chang & Malik, 1994), following the same trend found for

incompressible flows.

A thorough numerical investigation on boundary layer transition atM∞ = 4.5 was

carried out by Adams & Kleiser (1996) using the temporal DNS approach. They

considered the secondary instability generated by a Mack mode primary wave with

streamwise wavenumber α = 2.52 together with white noise. In agreement with Ng

& Erlebacher (1992) no evidence of the fundamental type of transition was found,

so that the attention was focused on the subharmonic secondary instability. Flow

visualisations revealed the formation of Λ-shaped vortices close to the boundary

layer edge. The Λ-vortices generate Y -shaped shear layers, “located below and be-

tween two neighbouring vortices” (Adams & Kleiser, 1996), which break up to give

additional vortices above and below the critical layer, thereby being responsible

for the first stages of breakdown. A second type of shear layers is created by the

Λ-vortices at their symmetry plane and close to the boundary layer edge. The

break up of this shear layers is responsible for the last stages of breakdown.
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1.3 Receptivity mechanisms

Transition to turbulence starts when disturbances interact with the boundary layer

causing the appearance of eigenmodes of instability, a process called receptivity

which was first proposed by Morkovin in 1958 (see Morkovin, 1991). Sources of

disturbance can be found in the free-stream as entropy, vorticity or acoustic waves

(Kovasznay, 1953; Chu & Kovasznay, 1958), and on the wall as, for instance, lo-

calised roughness or curvature. In this section attention will be focused on the

interaction of free-stream disturbances with the boundary layer. Over the past

few decades, numerous fruitful investigations have been carried out into receptiv-

ity mechanisms and transition in general at low speeds (Kachanov, 1994; Saric

et al., 2002). In contrast, investigations carried out in the field of high speed flows

have been much less productive and the problem of receptivity and transition is

still open. This is mainly due to the level of complexity shown by the transition

mechanisms at high speeds. Moreover, the high background noise level of most

wind tunnels tends to promote bypass transition and makes the study of the lin-

ear receptivity mechanisms and the evolution of small internal disturbances, which

would take place during flight, difficult. Nevertheless, successful experiments have

been carried out which have helped in understanding some features of the recep-

tivity at high speeds. Kendall (1975) performed experiments on the stability of

supersonic and hypersonic boundary layers revealing the importance of sound ra-

diation as a source of disturbances at high speeds and found evidence of the higher

modes of instability discovered by Mack (see Mack, 1984), which were also found

experimentally by Kosinov et al. (1990) and Stetson & Kimmel (1992) among

others. Kendall (1975) and Demetriades (1989) reported that fluctuations of all

frequencies were found to grow in a region where no growth was expected, between

the leading edge and the predicted location of instability. More recently, Maslov

et al. (2001) studied the receptivity of a flat plate boundary layer at M∞ = 5.92

and found that acoustic waves interact with the leading edge and give rise to

boundary layer eigenmodes. The receptivity was found to be dependent on the

inclination angles of the acoustic radiation. Graziosi & Brown (2002) analysed

the stability and transition of an M∞ = 3.0 flat plate boundary layer and noted a

substantial similarity between the wavelengths of the free-stream acoustic waves

and the first unstable boundary layer mode. This feature may help the conversion

from forced disturbances to instability eigenmodes and is in contrast with what is

observed in low speed flows, where the wavelength of any TS wave is much shorter

than that of free-stream sound waves. Measurements in the region close to the

leading edge of the plate indicated that the amplitude of the excited eigenmodes
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in that region were from 6 to 10 times larger than the corresponding free-stream

disturbances.

Receptivity problems have also been approached theoretically and numerically.

In connection with the experiments of Kendall (1975) and Demetriades (1989),

Fedorov & Khokhlov (2001) analysed the growth of eigenmodes in the vicinity of

the leading edge of a flat plate in a hypersonic boundary layer using an asymp-

totic method. They found that there exist two discrete modes, mode F and mode

S as later denoted by Fedorov (2003), with phase speeds close to those of the

external fast and slow acoustic waves respectively, near the leading edge. This

synchronisation is considered to be responsible for the strong excitation of the

boundary layer instabilities in the leading edge region. Downstream of the leading

edge these two modes are synchronised with external entropy and vorticity waves,

which, therefore, can be responsible for the continued excitation of boundary layer

instabilities. Further downstream, a synchronisation between mode F and mode

S leads to the growth of either of these two modes, as one loses energy to the

other (inter-modal exchange). This growth was found to be associated with the

Mack mode instability. Leading edge receptivity mechanisms were found by Fe-

dorov (2003) to be influenced by the angle of incidence of the acoustic waves, in

accordance with Maslov et al. (2001).

The receptivity of high-speed boundary layers to free-stream acoustic waves was

also studied by Ma & Zhong (2003a,b) and Zhong & Ma (2006) using DNS and

LST. Their work suggests the existence of a number of stable modes (denoted as

mode I, mode II, etc) and a single unstable mode which comprises regions of first,

second and higher modes of instability. The stable modes can grow substantially by

resonating with the free-stream fast acoustic waves and, in particular, mode I was

found to play a crucial role in the Mack mode excitation, either by transferring

energy from the fast acoustic weaves to the Mack mode or by providing a link

between first and second instability modes, in a mechanism similar to the inter-

modal exchange proposed by Fedorov & Khokhlov (2001). A clear indication of

the importance of mode I in the receptivity process was provided by the results

obtained by Zhong & Ma (2006), which show that Mack modes do not grow

until becoming synchronised with mode I, despite being in a region of instability

according to LST. As pointed out by Forgoston & Tumin (2005), who showed that

Fedorov’s mode S also contains regions of the first, second and higher instability

modes, the unstable mode reported by Ma & Zhong (2003a,b) is equivalent to

mode S and modes I is equivalent to mode F.
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Boundary layer modes can also be excited by free-stream vortical disturbances.

This problem was analysed Ricco & Wu (2007), who concentrated on small am-

plitude convected-gust type perturbations. The results show that the interaction

of free-stream turbulence with the boundary layer gives rise to Klebanoff modes

and can lead to the excitation of TS waves.

1.4 Transient growth and bypass transition

In his roadmap to turbulence, Morkovin (1991) labelled as bypass transition all

the transition phenomena that do not show the slow linear amplification of dis-

turbances described in Section 1.2. Initially bypass transition was thought to be

an exclusively nonlinear process, caused by the excitation of high amplitude dis-

turbances, which grow nonlinearly having bypassed the linear stages (Reshotko,

2001). This point of view was abandoned when a number of studies demonstrated

that small disturbances can be substantially amplified by the transient growth

mechanism, leading directly to the nonlinear stages of transition, see for example

Butler & Farrel (1991). Transient growth arises from the so called lift-up effect

caused by slightly damped, highly oblique modes. This mechanism leads to alge-

braic disturbance growth followed by viscous exponential decay (Reshotko, 2001)

and is mathematically explained by the non-normal character of the incompress-

ible and compressible linearised Navier-Stokes operator. The lift-up effect was first

recognised by Landahl (1975, 1980) when studying the algebraic growth of stream-

wise disturbances in incompressible inviscid flows in the absence of an inflection

point, which was first discovered by Ellingsen & Palm (1975).

The literature on transient growth for compressible flows is very limited. The

first temporal analysis of transient growth in compressible flows under the parallel

flow approximation was carried out by Hanifi et al. (1995), who found that the

physical mechanism behind transient growth in compressible flows is Landhal’s

lift-up effect. In agreement with the incompressible results they found that the

maximum transient growth scales with Re2 and the time at which this happens

scales with Re, although the energy levels attained increase with increasing Mach

number. Their results show that contribution to transient growth comes mostly

from steady, slightly-damped streamwise vortices, in agreement with the result re-

ported in almost all optimal transient growth studies, suggesting that streamwise

vortices are the optimal initial disturbances for both incompressible and com-

pressible flows. Hanifi & Henningson (1998) showed that there is a compressible
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counterpart to the incompressible algebraic instability of streamwise disturbances

discovered by Ellingsen & Palm (1975), which is also caused by the lift-up effect.

A spatial theory of optimal disturbances in compressible flows was developed by

Tumin & Reshotko (2001), who then modified it to incorporate non-parallel ef-

fects (Tumin & Reshotko, 2003). They found that maximum transient growth is

associated with steady streamwise vortices and that cooling decreases the overall

amplification in parallel supersonic flows. When considering non-parallel effects

the overall energy amplification was found to be almost insensitive to wall temper-

ature. In subsonic flows cooling was found to destabilize parallel and non-parallel

boundary layers. Farrel & Ioannou (2000) studied non-modal growth of distur-

bances in compressible constant shear and found that compressibility can increase

transient growth in viscous flows. Recently, Zuccher et al. (2006) showed that the

choice of the energy norm used to evaluate transient growth, and hence define the

optimal disturbances, is critical in supersonic flows for Reynolds numbers (based

on the flat plate length) of the order of 103. Wall cooling was found to destabilise

the transient growth process in the flow over a sphere at M∞ = 6.

As already mentioned, transient growth can lead to high amplitude disturbances,

promoting the bypass transition scenario. One of the most notable characteristics

of bypass transition is the formation of turbulent spots preceding the final break-

down to turbulence. Merging of these spots finally leads to a turbulent boundary

layer, and hence it is important to understand how they evolve as they convect

downstream in order to be able to predict the length of the transition region. Mea-

surements of the propagation of turbulent spots in compressible boundary layers

showed that the effect of compressibility is to decrease the lateral spreading angle

(Clark et al., 1994; Mee, 2002; Fiala et al., 2006). The first numerical simulations

of the evolution and merging of turbulent spots in compressible boundary layers

were performed by Krishnan & Sandham (2006a,b). Their investigations provide

a detailed representation of the three-dimensional structure of compressible tur-

bulent spots, which are characterised by the presence of hairpin and streamwise

vortices. They also showed that compressibility decreases the lateral spreading

of the turbulent spot, thereby increasing the length of the transition region, in

agreement with experiments. In a recent study Redford et al. (2012) showed that

the main lateral turbulence spreading mechanisms in high speed spots are the

lateral displacement of core structures due to the presence of spanwise jets at the

sides of the spot and the destabilisation of the surrounding laminar fluid by the

instability of these jets. They also reported a reduction of spreading half angle

with increasing Mach number and decreasing wall temperature.
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1.5 Roughness-induced transition

Experiments have shown that localised and distributed roughness can cause early

transition to turbulence in both subsonic and supersonic boundary layers (Tani &

Sato, 1956; Klebanoff & Tidstrom, 1972; Corke et al., 1986; Fujii, 2006; Schneider,

2008). Recently, observations of boundary layer transition to turbulence occur-

ring on the Space Shuttle Endeavour during re-entry (Horvath et al., 2012) have

provided evidence of the importance of roughness effects on transition in high

speed applications. At M∞ = 5.8, wall thermography revealed the occurrence

of asymmetric transition on the windward side of the vehicle due to the pres-

ence of an isolated roughness element near the tip, while at higher Mach numbers

the boundary layer was found to remain fully laminar, despite the high Reynolds

numbers. The observations made over the observable part of the re-entry trajec-

tory suggested that boundary layer transition to turbulence was mainly driven by

roughness effects, highlighting the importance of roughness in transition at high

speeds.

The influence of discrete two-dimensional roughness elements on incompressible

boundary layers was investigated by Klebanoff & Tidstrom (1972) who provide

an explanation for the early transition observed based on the modified stability of

the tripped boundary layer. Experimental observations of transition induced by

three-dimensional roughness, however, could not be explained by a similar argu-

ment (see Reshotko & A. (2004) and reference therein). Recently, it was recognised

that the “bypass” nature of the transition to turbulence observed in the presence

of surface roughness may be linked to the transient growth of stable boundary

layer eigenmodes (Reshotko, 2001). The flow behind small three-dimensional lo-

calised roughness elements is characterised by the presence of counter-rotating

streamwise vortices (Gaster et al., 1994; Joslin & Grosch, 1995; Rizzetta & Vis-

bal, 2007), which can be seen as roughness induced disturbances originating from

a superposition of stable vorticity modes belonging to the continuous spectrum

of the linearised Navier-Stokes operator (Tumin & Reshotko, 2005). The non-

normality of these modes can potentially lead to strong algebraic growth and

breakdown to turbulence. The transient growth route to turbulence in the con-

text of roughness-induced transition has been investigated both numerically and

experimentally mainly for incompressible flows. Experiments have shown that the

disturbances introduced by roughness elements experience transient growth, al-

though their evolution does not agree well with the optimal disturbance theory

predictions (White, 2002; White, E. B. and Rice, J. M and Gökhan Ergin, F., 2005;
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Downs et al., 2008). Denissen & White (2009) showed that realisable roughness-

induced disturbances are neither optimal nor properly described by linear recep-

tivity theory. In the context of supersonic flows Wang & Zhong (2008) reported

DNS results of an M∞ = 5.92 flow over a flat plate with small three-dimensional

surface roughness, showing only weak transient growth. The occurrence of tran-

sient growth is not limited to roughness-induced disturbances. In fact, near abrupt

mean flow changes (i.e. near the roughness), the energy of boundary layer pertur-

bations becomes redistributed into the modes of the new basic flow. These modes

may then experience transient growth and lead to breakdown to turbulence.

Roughness can affect instability and transition by a number of different mech-

anisms. Balakumar (2008) has recently shown that the interaction of acoustic

waves with roughness elements can excite disturbances “tuned” with boundary

layer eigenmodes, following a mechanism originally proposed by Goldstein (1983,

1985) and studied theoretically by Crouch (1992) and Choudhari & Street (1992)

for incompressible flows. The influence of small two-dimensional roughness el-

ements on the stability of an M∞ = 3.5 boundary layer subjected to acoustic

disturbances was analysed by Balakumar (2009), who reported no amplification

of boundary layer modes by the roughness. In supersonic flows additional sources

of disturbances can also be the roughness induced shocks. Direct numerical sim-

ulations carried out by Marxen et al. (2010) for an M∞ = 4.8 boundary layer

flow over a two-dimensional isolated roughness element provide some evidence of

the excitation of additional stable modes downstream of the roughness, believed

by the authors to originate from the weak shock induced by the roughness. The

results show that two-dimensional roughness can amplify disturbances for certain

frequencies and make other frequencies stable. Examples of delayed transition due

to small roughness can be found in the literature for both supersonic (Fujii, 2006;

Saric et al., 2004) and subsonic (Fransson et al., 2005, 2006; Saric et al., 2008)

flows. Interest in the stabilising effect of roughness originated from the work of

Cossu & Brandt (2002) who showed that TS waves can be stabilised by artificially

generated finite amplitude optimal streaks.

As the height of the roughness increases different effects may become dominant.

Highly unstable wakes might form behind the roughness elements, the instability

of which can supersede the boundary layer instability. The importance of the

roughness-induced shear layers in the transition to turbulence of tripped boundary

layers was recognised both in experiments and DNS (Tani & Sato, 1956; Redford

et al., 2010). Redford et al. (2010) analysed the effects of smooth bumps on

transition in supersonic boundary layers using DNS and found that transition is
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promoted by localised roughness, provided the roughness Reynolds number Reh =

uhh/νh, where Uh and νh are the streamwise velocity and kinematic viscosity taken

at y = h in the corresponding clean flat plate boundary layer, exceeded a critical

value which increases as the parameterMkT∞/Tw increases, whereMk is the Mach

number calculated at the roughness edge. Their roughness-induced transition

map suggests a critical value of Reh = 300 for MkT∞/Tw = 0. These findings

were confirmed by Bernardini et al. (2012), who proposed a modified version of

roughness Reynolds number Re∗h = uhh/νw, with the kinematic viscosity taken

at the wall. This new criterion incorporates compressibility effects in a single

parameter and has a constant critical value of Re∗h = 460.

Choundhari and co-workers (Choudhari et al., 2009, 2010, 2012; Kegerise et al.,

2012) analysed the growth of instabilities in the wake of roughness elements with

heights of the order of the local boundary layer thickness, both experimentally

and through linear stability calculations. The results indicate the presence of

different instability modes, even (or varicose) and odd (or sinuous), which can grow

substantially and drive the transition process. Both sinuous and varicose modes

can be dominating under different flow conditions. LST results and experimental

data were found to be in good agreement.

For even larger roughness elements an absolute instability might take place in-

troducing high amplitude flow unsteadiness. This possibility was investigated by

Chang et al. (2010, 2011) who simulated the flow over large roughness elements

and cavities. Roughness elements with heights approaching the local boundary

layer thickness were found to introduce small oscillations in the wake region, while

for bigger heights these oscillations led to early breakdown to turbulence. The

results suggest that the origin of the wake oscillations might be an absolute insta-

bility developing in the separation bubble upstream of the roughness. Cavities, on

the other hand, were found to be less effective in destabilising the boundary layer.

1.6 Transition over porous surfaces

Porous surfaces represent a new passive method for transition control (Fedorov,

2011). Porous materials have been found to stabilise the boundary layer, especially

at supersonic and hypersonic speeds. The possibility of delaying transition in high-

speed flows is very appealing to the hypersonic community since it would mean

being able to design lighter thermal protection systems, with obvious advantages.
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The first linear stability calculations for hypersonic boundary layers over porous

surfaces were presented by Fedorov et al. (2001), using a model to account for the

flow inside the pores. Considering thin pores (about 10 to 20 pores per wavelength

of the Mack mode) and porosities up to n = 0.6 they were able to demonstrate the

damping effect of porous coatings on the Mack mode. They reported that this ef-

fect decreases as the wall temperature increases and is enhanced by increasing the

pore depth up to a value of d/δ∗ ≈ 0.3, above which the growth rate of the Mack

mode reached a limiting constant value. For M∞ = 6, Tw/Tad = 0.2, where Tad is

the adiabatic wall temperature, and n ≈ 0.2 they found that the growth rate of the

Mack mode reduces by about a factor of two. Boundary layer transition delay due

to effects of porosity was also observed experimentally by Rasheed et al. (2002)

for the M∞ = 5 boundary layer flow over a cone. Additional experimental and

theoretical studies were reported by Maslov (2003). These studies confirmed the

stabilizing effect of pores and predicted that the damping effect increases for in-

creasing Knudsen number. Fedorov et al. (2003) demonstrated that similar results

can be achieved with a fibrous absorbent material. Nonlinear mode interactions

were experimentally investigated by Chokani et al. (2005) for the M∞ = 6 flow

over a cone using bispectral analysis. The harmonic Mack mode resonance was

found to be completely suppressed, while the subharmonic resonance was drasti-

cally reduced. The amount of experimental results available for transition over

porous surfaces in high-speed flow is very limited. Theoretical models can help

understand the flow physics but first need to be verified against reliable results.

For this reason researchers have recently begun focusing on direct numerical sim-

ulations to study the effects of pores on boundary layer transition. Egorov et al.

(2007) carried out 2D direct numerical simulations on hypersonic transition over

a flat plate, a cone and a compression ramp, all with porous surfaces. The pores

were modeled using the boundary conditions proposed by Fedorov et al. (2001).

The results showed higher growth rates than those observed in experiments and

predicted by LST. In the flat plate case it was observed that the pores reduce

the amplitude of modes F and S, found by Fedorov and co-workers (Fedorov &

Khokhlov, 2001; Fedorov, 2003) in their receptivity studies. Brés et al. (2008)

investigated the interaction of acoustic disturbances with micro-cavities without

the external boundary layer flow and reported the appearance of near wall reso-

nant acoustic modes coming from the interaction of scattered waves. Sandham &

Lüdeke (2009) and Wartemann et al. (2009) carried out 2D and 3D temporal di-

rect numerical simulations of the M∞ = 6 flat plate boundary layer over a porous

surface, where the pores were resolved. They found that the calculated growth

rates differ from the LST predictions by about 6%. In agreement with Fedorov
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et al. (2001) they found that there is a limiting value of the pore depth, which

depends on the pore diameter, above which the Mack mode growth rate remains

unchanged.

1.7 Objectives and thesis outline

The effects of roughness on the laminar-turbulent transition at high speeds are

currently not well understood. The main objective of this study is to gain some

new insight into the mechanisms driving the different stages of small-disturbance

transition to turbulence in the presence of roughness. The following are more

detailed aims of the present work:

• To validate a high-order multi-block approach for the accurate numerical

simulation of transition and turbulence in sharp-edge geometries

• To capture the instability modes growing in the wake of roughness elements

using Navier-Stokes based simulations in connection with the use of Fourier

analysis

• To investigate the receptivity of small disturbances in the presence of rough-

ness in supersonic boundary layers

• To analyse numerically the structure of turbulent wedges developing down-

stream of the roughness element and to investigate the effect of an oblique

shock impingement on their evolution

• To follow the temporal evolution of disturbances in a M∞ = 6.0 porous wall

boundary layer all the way until the onset of weakly nonlinear interactions

The present contribution provides the first thorough numerical investigation of

roughness-induced receptivity, linear instability and breakdown to turbulence in

supersonic boundary layers. Mechanisms responsible for the receptivity of small

disturbances in the presence of roughness at M∞ = 6.0 and M∞ = 2.5 are clar-

ified, showing that the receptivity process can modify substantially the linear

instability of the wake behind the roughness element. Roughness wake modes are

classified and the most dangerous under different conditions are identified. A de-

tailed numerical investigation into the evolution of turbulent wedges downstream

of a roughness element is given. Finally, the damping effect of porous surfaces
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on the secondary instability growing from a Mack mode primary instability in an

M∞ = 6.0 boundary layer is shown for the first time.

The thesis is organised as follows. Chapter 2 deals with the mathematical formu-

lation and the numerical considerations. In particular, the governing equations

are introduced and the high-order multi-block strategy employed is explained and

validated. Chapter 3 gives a discussion of the results obtained for the paramet-

ric study of the receptivity of small disturbances in the presence of roughness.

It starts with the details of the numerical simulations carried out, followed by

a description of the stability characteristics of M∞ = 6.0 and M∞ = 2.5 clean

flat plate boundary layers. The M∞ = 6.0 and M∞ = 2.5 receptivity results are

presented after an analysis of the influence of grid resolution and level of filtering.

The nonlinear stages of the roughness-induced transition to turbulence are dis-

cussed in chapter 4, focusing on the breakdown mechanisms and the evolution of

a turbulent wedge downstream of the roughness element. This chapter also deals

with the effects of an oblique shock impingement onto the transitional boundary

layer. Finally, chapter 5 focuses on a new passive method for transition control

in high-speed boundary layers based on the use of porous materials to damp the

growth of Mack mode instabilities. The thesis ends with the conclusions drawn

from the results presented and with a list of suggestions for further study.
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Equations and methods

2.1 The Navier-Stokes equations

The Navier-Stokes equations for a Newtonian fluid with viscosity µ are obtained by

imposing conservation of mass, momentum and energy. The result is a system of

nonlinear partial differential equations which in dimensionless form can bewritten

as
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+
∂ρuj
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= 0
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The symmetric viscous stress tensor, τij , is defined as

τij =
µ

Re

(
∂uj
∂xi

+
∂ui
∂xj

− 2

3

∂uk
∂xk

δij

)
, (2.2)

where δij is the Kronecker delta function defined as δij = 1 for i = j and δij = 0

for i 6= j.

The properties of the fluid and the components of the heat flux vector (qj) are

calculated considering the equation of state and Fourier’s law of heat conduction,

given respectively by:

p = (γ − 1)

(
E − 1

2
ρuiui

)
=

1

γM2
r

ρT (2.3)

17
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and

qj = − µ

(γ − 1)M2
rPrRe

∂T

∂xj
. (2.4)

The non-dimensional parameters involved in the calculations are Reynolds number

(Re), Prandtl number (Pr), Mach number (Mr) and ratio of specific heats (γ),

defined as:

Re =
ρ∗ru

∗
rl

∗
r

µ∗
r

, P r =
C∗

pµ
∗

λ∗
, Mr =

u∗r√
γR∗T ∗

r

and γ =
C∗

p

C∗
v

, (2.5)

where C∗
p and C∗

v are the specific heats at constant pressure and constant volume,

R∗ is the specific gas constant and λ∗ is the thermal conductivity. Note that the

subscript r refers to reference values whereas the asterisks (*) denote dimensional

variables. The reference values for velocity (u∗r), density (ρ∗r), temperature (T ∗
r )

and dynamic viscosity (µ∗
r) are taken at the free stream. In the present work the

reference length (l∗r) is taken as the displacement thickness of the initial laminar

similarity profile. The principal non-dimensional variables are defined as follows,

t =
t∗u∗r
l∗r

, xi =
x∗i
l∗r
, ρ =

ρ∗

ρ∗r
, ui =

u∗i
u∗r
, (2.6)

p =
p∗

ρ∗ru
∗2
r

, E =
E∗

u∗2r
, T =

T ∗

T ∗
r

, µ =
µ∗

µ∗
r

. (2.7)

The molecular viscosity of a Newtonian fluid is, by definition, only dependent upon

temperature and pressure. Here, only its variation with temperature is taken into

account and is calculated by applying Sutherland’s law,

µ = T
3

2

1 + S∗/T ∗
r

T + S∗/T ∗
r

, (2.8)

where, S∗ = 110.4 K is the Sutherland constant for air. For all the numerical

simulations carried out in this work Pr = 0.72 and γ = 1.4 have been considered,

while T ∗
r = 273.15 K for the roughness -induced transition cases and T ∗

r = 216.65

K for the porous wall cases.
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2.2 Numerical strategy

2.2.1 The core of the SBLI code

The calculations were carried out using the Southampton in-house SBLI code,

a high order finite-difference code which solves the compressible Navier-Stokes

equations. The code employs a fourth-order central difference scheme to calculate

derivatives at internal points, while close to boundaries a stable boundary treat-

ment by Carpenter et al. (1999) is applied, giving overall fourth-order accuracy.

Time integration is based on a third-order compact Runge-Kutta method (Wray,

1986). An entropy splitting approach by Sandham et al. (2002) is used to split

the inviscid flux derivatives into conservative and non-conservative parts, thereby

improving stability. The code is made parallel using the MPI library. Details on

the implementation of the numerical schemes can be found in Li (2003) and Jones

(2008). A TVD shock capturing scheme and the artificial compression method

(ACM) of Yee et al. (1999), coupled with the Ducros sensor (Ducros et al., 1999),

are implemented in the code to handle shocks and contact discontinuities. Here,

we use a modified version of the Ducros sensor given by

Π =
(∇ · u)2

(∇ · u)2 + C(ω)2 + ǫ
, (2.9)

where ǫ = 10−10 is a small positive number used to avoid division by zero in regions

where both ∇ · u and ω are zero. As the sensor proposed by Ducros et al. (1999)

was not designed for boundary layers undergoing transition to turbulence, here we

add a parameter C that controls how deep inside the boundary layer the shock

capturing scheme is allowed to act. This modification is needed in order to capture

contact discontinuities occurring in the region of breakdown to turbulence, where

density gradients are high due to shear layer roll-up. A value of C = 0.1 was

found to lead to a good resolution of contact discontinuities while not introducing

noticeable numerical dissipation in regions of turbulent flow.

To model the sharp geometries considered, both roughnesses and pores, a multi-

block version of the code was used, which was extensively validated by Yao et al.

(2009). More details on the validation are provided at the end of this chapter.
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2.2.2 Computational geometry for the roughness cases

The geometry of the problem under consideration consists of a flat plate with a

sharp-edged rectangular isolated roughness element. The analysis of supersonic

roughness-induced transition is divided into two complementary parts. In the first

part, attention is focused on the receptivity and initial linear growth of distur-

bances, whereas in the second part we analyse the nonlinear stages of transition

leading to the development of a turbulent wedge downstream of the roughness.

Figure 2.1 shows a sketch of the configurations analysed. The difference in com-

putational requirements between the two stages of the investigation dictates the

use of two different numerical grids. Domain A was used for the simulations of

the complete transition process while domain B was used for the receptivity study.

Both computational domains are placed downstream of the flat plate leading edge

and do not include the associated weak shock.

The roughness element is placed at a non-dimensional distance xh = x∗h/δ
∗
0 = 50

from the inflow of domain A. Here, x∗h is the dimensional streamwise position of

the roughness leading edge in a reference frame positioned at the inflow of domain

A and δ∗0 is the laminar displacement thickness at the same streamwise position.

The laminar displacement thickness (δ∗) and the boundary-layer thickness (δ99)

grow in the streamwise direction according to the following

δ∗(x̃∗)

δ∗0
= ∆

√
2Rex̃∗

Reδ∗
0

,

δ99(x̃
∗)

δ∗(x̃∗)
=

∆99

∆
,

(2.10)
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Figure 2.1: Computational domain and boundary conditions. Domain A
is used for simulations of the complete transition process while Domain B
is used for the study of roughness receptivity.
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where

Rex̃∗ =
1

2

(
Reδ∗

0

∆

)2

+Reδ∗
0

x∗

δ∗0
. (2.11)

Equations 2.10 and 2.11 were derived from the similarity solution (see the section

on the Illingworth transformation in White, 1991). Note that x̃∗ is the dimensional

streamwise coordinate in a reference frame positioned at the flat plate leading edge.

The scaling factors ∆ and ∆99 vary with the Mach number and wall temperature.

For the hot wall cases we have ∆ = 9.071 and ∆99 = 11.858 for M∞ = 6.0

and ∆ = 2.897 and ∆99 = 5.874 for M∞ = 2.5, while for the cooled-wall cases

∆ = 6.183 and ∆99 = 9.037 for M∞ = 6.0 and ∆ = 2.286 and ∆99 = 5.283 for

M∞ = 2.5. All the lengths reported in the following are made non-dimensional

using δ∗0 , so that domain B is considered as a subset of domain A.

Domain A was designed to accommodate the turbulent wedge evolution in all direc-

tions and has dimensions Lx×Ly×Lz=250×20×60 for M∞ = 2.5 and 300×20×50

for M∞ = 6.0. In particular, the wall normal domain size is about four and six

times bigger than the turbulent boundary layer thickness at the outflow bound-

ary, for M∞ = 2.5 and M∞ = 6.0 respectively. The dimensions of domain B

are Lx×Ly×Lz=100×16×20 for M∞ = 2.5 and 150×16×20 for M∞ = 6.0. The

streamwise extent was chosen to obtain a significant linear growth of the most un-

stable disturbances, while the wall normal domain size was designed so that any

residual reflections coming from the top boundary would hit the outflow boundary

without affecting the stability characteristics of the flow. The spanwise domain

size for the M∞ = 2.5 cases was chosen to include the most unstable smooth flat

plate boundary layer mode, which has a spanwise wavelength of λz ≈ 20. The

same spanwise size was kept for the M∞ = 6.0 cases, allowing for the presence of

a number of unstable smooth flat plate first and second mode waves. Note that in

this case the most linearly unstable mode is the two-dimensional second (Mack)

mode.

Case Tw/T∞ Tw/Tad

M∞ = 6.0 (hot wall) 7.02 1.00
M∞ = 6.0 (cooled wall) 3.50 0.50
M∞ = 2.5 (hot wall) 2.05 1.00
M∞ = 2.5 (cooled wall) 1.00 0.49

Table 2.1: Wall temperatures used for the isothermal wall boundary condition
used in the different cases analysed.
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2.2.3 Boundary conditions for the roughness cases

The spanwise domain boundaries are treated with periodic boundary conditions,

while the walls are considered no-slip and isothermal. The wall temperatures

considered for the hot and cooled wall conditions are provided in table 2.1. The

reflection of waves from the domain external boundaries is minimised by using inte-

grated and standard characteristic conditions for the top and outflow boundaries,

respectively. The standard characteristic conditions used here are those originally

derived by Thomson (1987, 1990), whereby incoming characteristics are set to zero

at characteristic boundaries. The inflow is initialised with a compressible lami-

nar similarity solution and a pressure extrapolation boundary condition is then

applied, whereby in the subsonic region of the boundary-layer the inflow conserva-

tive variables are calculated by extrapolating the pressure from within the domain

using a linear approximation. The boundary condition at the inflow changes to a

prescribed time-varying condition when introducing inflow disturbances. To this

end, the time-converged inlet flow field obtained with the extrapolation boundary

condition is used as the base flow over which disturbances are superimposed. The

methodology used to introduce disturbances in the flow field is the subject of the

following section.

2.2.4 Disturbance generation

To analyse how different upstream perturbations influence the transition process

we consider three different types of inflow disturbances, obtained as different vari-

ations of the following generic function

ψ(y, z, t) = a
(
1− exp

(
−yp/gl

)) M∑

m=0

N∑

n=1

cos (βmz + φm) cos (ωnt+ πn) , (2.12)

where M = 6 and N = 16 are the total number of spanwise wavenumbers and

frequencies, respectively. It should be noted that for the M∞ = 2.5 cases the

zero wavenumber spanwise modes were not included in the forcing signal. Ran-

dom phases φ and π are introduced to avoid spurious high amplitude peaks in the

forcing signal which might trigger undesirable local nonlinearities. The damping

function fd := 1 − exp
(
−yp/gl

)
, where p and l are coefficients, was used to con-

trol the disturbance location with respect to the boundary-layer. An additional

damping was employed to drive the forcing function to zero at the top domain
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boundary to avoid the onset of numerical oscillations. The three types of distur-

bances considered are obtained by using the above function to perturb the fixed

inflow boundary condition for different flow variables. The perturbations take the

following form

Type V: v′(y, z, t) = −∂ψ(y, z, t)/∂z;w′(y, z, t) = ∂ψ(y, z, t)/∂y; u′ = ρ′ = T ′ = 0

Type A: ρ′(y, z, t) = ψ(y, z, t); u′ = v′ = w′ = T ′ = 0

Type Æ: T ′(y, z, t) = ψ(y, z, t); u′ = v′ = w′ = ρ′ = 0

Note that, type V forcing introduces streamwise vorticity disturbances and re-

sults in a divergence free velocity disturbance field at the inflow boundary. This

methodology was used to analyse the effects of different types of disturbances on

the roughness-induced receptivity.

For the analysis of the turbulent wedge development downtream of the rough-

ness an alternative acoustic broadband disturbance was placed in the free-stream,

upstream of the roughness element, by adding the following forcing term to the

continuity equation

ρf (x, t) = a exp
(
−r̃2

) M∑

m=0

N∑

n=1

cos (βmz + φm) sin (ωnt+ φn) , (2.13)

with M = 20 and N = 16 for M∞ = 6.0 and M = 25 and N = 18 for M∞ = 2.5.

The coordinate r̃ is defined as r̃2 = [(x− xf )
2 + (y − yf)

2] /Lf , where Lf = 1.0

determines the radius of the forcing region and xf and yf its centre. Note that

xf = 12.0 and yf = 6.0 for M∞ = 6.0 and xf = 25.0 and yf = 10.0 for M∞ = 2.5.

This type of disturbance was included to mimic acoustic perturbations coming

from turbulent boundary-layers developing in the wind tunnel walls upstream of

the flat plate during experiments.

2.2.5 Multi-block grid configuration and sharp corner treat-

ment

The sharp edges of the roughness elements analysed in this work are resolved by

the grid by using the multi-block capabilities of the SBLI code, which allows the

specification of interface and boundary points at different locations in the commu-

nication plane between two blocks. A sketch of the multi-block configuration used
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is shown in figure 2.2. The grid is divided into six blocks, five of which are placed

around the sharp-edged roughness element and one (block 2 in figure 2.2) placed on

top of it. In the multi-block version of the code, boundary conditions are applied at

each block boundary. At inter-block boundary points placed above the roughness

element, interface boundary conditions are applied, which simply impose the use

of the fourth-order central difference-scheme for the calculation of derivatives. On

the other hand, for 0 ≤ y ≤ h, wall boundary conditions (no-slip and isothermal

wall) are imposed to construct the roughness geometry, with particular attention

paid to blocks 4 and 6 which contain the roughness edges. Finally, periodicity is

imposed by specifying interface conditions in the communication plane between

two spanwise neighbouring blocks.

The inclusion of sharp geometries in the multi-block grid introduces a problem in

the calculation of derivatives at the edges. In fact, the treatment of sharp corners

in compressible flows represents a challenge when using standard high-order finite

difference schemes. The problem is explained schematically in figure 2.3. At every

instant t the time derivative of density at the corner point C is calculated from

the continuity equation by using the mass fluxes obtained at the first six points

on the fluid side, following the Carpenter one sided stencil. The flow topology

roughness

wall b. c.

periodic (interf. block 1) periodic (interf. block 3)

periodic (interf. block 4)

Bl. 1 Bl. 2 Bl. 3

Bl. 4

Bl. 5

Bl. 6

interface b. c.

periodic (interf. block 6)

x

z

Bl. 1 Bl. 2 Bl. 3

x

y

Figure 2.2: Multi-block strategy. Side view in top figure, top view in bottom
figure.
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is such that at point C a negative ∂ρu/∂x combines with a positive ∂ρw/∂z to

determine the variation of density with time. For all the grids analysed here,

this combination gives a continuously increasing density at the corner points. An

additional problem appears at point P , where the ∂ρu/∂x contribution to the

density variation is zero, as the Carpenter stencil only uses wall points in this

case. This implies that also the ∂ρw/∂z term, which is the only non-zero term

in the right-hand-side of the continuity equation during transients, will be zero in

the final steady state solution. This seems to be prevented by the high density at

point C and density at point P decreases monotonically.

Very fine grids might alleviate this problem but at a prohibitive cost, both in

terms of number of grid points and time-step size, so that ultimately new high-

order boundary schemes consistent with the conservation laws will have to be

designed to resolve sharp corners in compressible flows. Here, the problem was

mitigated by calculating the density at the corner points as an average of the

neighbouring points belonging to the roughness surface, as depicted in figure 2.3,

effectively rounding off the sharp edges at the grid scale.

C P

roughness

∂(ρu)/∂x stencil

∂
(ρ
w
)/
∂
z
st
en

ci
l

∂(ρu)/∂x stencil

average

x

z

flow direction

Figure 2.3: Description of the corner problem.

a0 a1 a2 a3
11
16

+
5βf

8
15
32

+
17βf

16
−3
16

+
3βf

8
1
32

− βf

16

Table 2.2: Filter coefficients.
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Point a1,i a2,i a3,i a4,i a5,i a6,i a7,i

i=2 1

64
+

31βf

32

29

32
+

3βf

16

15

64
+

17βf

32

−5

16
+

5βf

8

15

64
−

15βf

32

−3

32
+

3βf

16

1

64
−

βf

32

i=3 −1

64
+

βf

32

3

32
+

13βf

16

49

64
+

15βf

32

5

16
+

3βf

8

−15

64
+

15βf

32

3

32
−

3βf

16

−1

64
+

βf

32

Table 2.3: Filter coefficients.

This corner treatment prevents simulation blow-up, however the presence of a

sharp-edged roughness element induces small spatial grid-to-grid-point oscillations

in the density field due to an inherent discontinuity in the derivatives at the rough-

ness edges. The computational grid was substantially refined near the roughness

element and the residual spurious oscillations were treated using a sixth order fil-

ter by Visbal & Gaitonde (2002). The filter is applied at each time step and the

conservative variables array (U = {ρ, ρu, ρv, ρw, ρE}T ) is updated as follows

U = U− σ (U−Uf) , (2.14)

where σ = 0.05 for M∞ = 2.5 and σ = 0.14 for M∞ = 6.0, so that only 5%

and 14% of the filtered field was used for the M∞ = 2.5 and M∞ = 6.0 cases

respectively. Following Visbal & Gaitonde (2002) the array of filtered conservative

variables (Uf) is calculated at internal points by solving the tridiagonal system

(for simplicity we consider a filter in the x-direction)

βfU
i−1
f +Ui

f + βfU
i+1
f =

Nf∑

n=0

an
2

(
Ui+n

f +Ui−n
f

)
, (2.15)

with i ∈ {4 . . .Nx − 3}. 2Nf gives the order of the filter (here Nf = 3), the

a0, a1, . . . , an coefficients are given in table 2.2 and βf is an adjustable (in the

range −0.5 < βf ≤ 0.5) filter parameter. Higher values of βf are associated with

less dissipative filters, here βf = 0.45. Boundary points are not filtered and at

near boundary points the filter formula reads

βfU
i−1
f +Ui

f + βfU
i+1
f =

7∑

n=1

an,iU
n
f i = 2, 3

βfU
i−1
f +Ui

f + βfU
i+1
f =

6∑

n=0

aNx−n,iU
Nx−n
f i = Nx − 2, Nx − 1.

(2.16)

The left boundary coefficients (an,i) are given in table 2.3, while the right boundary

coefficients can be obtained as aNs−n,i = an+1,Nx−i+1.
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Figure 2.4: Grid stretching using polynomials of high degree.

2.2.6 Grid generation

All the numerical grids employed in this work were stretched in the wall normal

direction using the following relation between the computational uniform grid

(0 < η < 1) and the physical non-uniform grid (0 < y < Ly)

y = Ly

sinh(byη)

sinh by
, (2.17)

where by is the stretching factor. In the cases including a roughness element the

value of by was iteratively determined (close to a target) by imposing an integer

number of grid points (nyr) below the roughness and y(nyr) = h, where h is the

non-dimensional height of the roughness.

The distribution of grid points in the streamwise and spanwise directions is uniform

in the cases involving clean flat plates, whereas for the roughness cases it was

designed to adequately resolve the laminar flow near the roughness element and

the turbulent flow downstream of it. The level of grid refinement necessary near

the roughness, both for stability reasons and because of the high gradients induced

by its sharp edges, requires the use of grid stretching in all directions in order to

maintain a reasonable computational effort. Therefore, in the horizontal directions

the computational grid presents regions of constant grid spacing with different

levels of grid refinement, which are linked together by polynomials of the ninth

degree. The procedure is sketched in figure 2.4, which shows an example of grid

stretching in the streamwise direction. The objective is to link two uniform grids

with different grid spacings using a polynomial function obtained by imposing C4
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continuity of the resulting stretching function at points x1 and x2. An important

parameter in this procedure is the distance ξ2 − ξ1, which determines whether the

polynomial is monotonic in the interval [ξ1, ξ2]. Here, for any given x2 − x1 the

distance ξ2 − ξ1 was determined by considering that points x1 and x2 are joined

by a straight line having a slope equal to the average between the coarse-grid and

the fine-grid slopes in figure 2.4.

2.2.7 Validation of the multi-block strategy

As already mentioned, the multi-block version of the SBLI code was extensively

validated in Yao et al. (2009). In this section we present results from a validation

test case involving the numerical computation of the Mack mode instability tem-

poral growth rate at M∞ = 6.0. The results presented here validate the numerical

implementation of the multi-block strategy, while cases involving more complex

geometries can be found in Yao et al. (2009). The numerical simulation is carried

out using the temporal DNS approach (see chapter 5 for details) and the results

will be compared with LST predictions. This represents a very good validation

case for any Navier-Stokes solver since instability growth rates and mode eigen-

functions are extremely sensitive to numerical errors. The case analysed here is

case R2S in table 5.1.

A comparison of the Navier-Stokes and LST results is provided in figure 2.5. The

calculated temporal Mack mode growth rate is ωi = 0.03413 against the LST

growth rate of ωi = 0.03414. A comparison between the two growth rates is shown

in figure 2.5(a), showing that the agreement is practically perfect. In addition,

figure 2.5(b) shows a comparison between the Navier-Stokes amplitude functions

and the LST eigenfunction. Again, the agreement is remarkable.
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Figure 2.5: Validation of the multi-block strategy employed. (a) Mack mode
growth rate comparison (Navier-Stokes against LST), (b) comparison between
Navier-Stokes amplitude function and LST eigenfunction for the Mack mode
primary instability (uf is the u-velocity Fourier mode amplitude function for
the Navier-Stokes result and the u-velocity eigenfunction for the LST result).





Chapter 3

Small disturbance receptivity due

to roughness1

This chapter and the next consider the effects of sharp-edged isolated roughness el-

ements on the stability and transition of high-speed boundary layers. In particular,

the investigation focuses on the breakdown of boundary layers in quiet environ-

ments, where the transition is initiated by the linear growth of small disturbances.

In the present chapter, we concentrate on the receptivity and initial linear growth

of disturbances by performing a parametric study focused on the effects of distur-

bance type and location (inside or outside the boundary layer), roughness height,

Mach number (M∞ = 6.0 and M∞ = 2.5) and wall temperature. The chapter

starts in section 3.3 with an introduction to the numerical simulations carried out

for an extensive parametric study, in section 3.1. The different inflow disturbances

considered are then characterised by looking at their behaviour in the free-stream,

in section 3.2, and their effect on smooth flat plate boundary layers at M∞ = 6.0

and M∞ = 2.5 in section 3.3. The laminar steady-state flow over the roughness is

analysed in section 3.5 under the different flow conditions and the results of the

M∞ = 6.0 and M∞ = 2.5 roughness-induced receptivity are discussed in sections

3.6 and 3.7 respectively. The chapter ends with a synthesis of the results obtained

in section 3.8. The study of roughness induced transition is completed in chapter 4

where the nonlinear stages of transition, leading to the development of a turbulent

wedge behind the roughness element, are discussed.

1Part of this chapter was presented at NATO-RTO-MP-AVT-200, Paper No 22 (De Tullio
& Sandham, 2012)
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3.1 The parametric study

The details of the numerical simulations carried out for the parametric study are

provided in Table 3.1. The computational domain dimensions considered for all

the cases analysed in this chapter are those of domain B in figure 2.1. For the

sake of clarity the cases are named using the following convention:

Case Mach Reδ∗
0

Reh Re∗h Tw
Disturbance forcing

Geomtery
Type Location

HSVI a 6.0 8200 - - 7.022 type V Internal Smooth
HSAI a 6.0 8200 - - 7.022 type A Internal Smooth
HSÆI a 6.0 8200 - - 7.022 type Æ Internal Smooth
HSVE a 6.0 8200 - - 7.022 type V External Smooth
HSAE a 6.0 8200 - - 7.022 type A External Smooth
HSÆE a 6.0 8200 - - 7.022 type Æ External Smooth
HR0.5AI a 6.0 8200 60 59 7.022 type A Internal h = 0.5
HR1.0VI a 6.0 8200 331 328 7.022 type V Internal h = 1.0
HR1.0AI a 6.0 8200 331 328 7.022 type A Internal h = 1.0
HR1.0ÆI a 6.0 8200 331 328 7.022 type Æ Internal h = 1.0
HR1.0VE a 6.0 8200 331 328 7.022 type V External h = 1.0
HR1.0SE a 6.0 8200 331 328 7.022 type A External h = 1.0
HR1.0ÆE a 6.0 8200 331 328 7.022 type Æ External h = 1.0
CR1.0AI a 6.0 4135 331 349 3.5 type A Internal h = 1.0

HSVI b 2.5 3300 - - 2.055 type V Internal Smooth
HSAI b 2.5 3300 - - 2.055 type A Internal Smooth
HSÆI b 2.5 3300 - - 2.055 type Æ Internal Smooth
HSVE b 2.5 3300 - - 2.055 type V External Smooth
HSAE b 2.5 3300 - - 2.055 type A External Smooth
HSÆE b 2.5 3300 - - 2.055 type Æ External Smooth
HR0.5AI b 2.5 3300 170 169 2.055 type A Internal h = 0.5
HR1.0VI b 2.5 3300 791 788 2.055 type V Internal h = 1.0
HR1.0AI b 2.5 3300 791 788 2.055 type A Internal h = 1.0
HR1.0ÆI b 2.5 3300 791 788 2.055 type AE Internal h = 1.0
HR1.0VE b 2.5 3300 791 788 2.055 type V External h = 1.0
HR1.0SE b 2.5 3300 791 788 2.055 type A External h = 1.0
HR1.0ÆE b 2.5 3300 791 788 2.055 type Æ External h = 1.0
CR1.0 b 2.5 1730 791 846 1.0 - - h = 1.0

Table 3.1: Cases included in the parametric study. Note that the wall tempera-
ture in the hot-wall cases (Tw = 2.055 and Tw = 7.022) is equal to the adiabatic
wall temperature.
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Case Block Nx Ny (nr
y) Nz by ∆x ∆z

HSa
B1 751 191 ( - ) 51 3.40 0.2 0.2
B2 751 191 ( - ) 49 3.40 0.2 0.2

HR0.5a

B1 234 191 ( 26 ) 119 3.38 [0.21, 0.06] 0.05
B2 99 166 ( - ) 119 3.38 0.06 0.05
B3 564 191 ( 26 ) 119 3.38 [0.06, 0.21] 0.05
B4 234 191 ( 26 ) 122 3.38 [0.21, 0.06] [0.05, 0.2, 0.05]
B5 99 191 ( 26 ) 122 3.38 0.06 [0.05, 0.2, 0.05]
B6 564 191 ( 26 ) 122 3.38 [0.06, 0.21] [0.05, 0.2, 0.05]

HR1.0a
CR1.0a

B1 234 205 ( 46 ) 119 3.20 [0.21, 0.06] 0.05
B2 99 160 ( - ) 119 3.20 0.06 0.05
B3 564 205 ( 46 ) 119 3.20 [0.06, 0.21] 0.05
B4 234 205 ( 46 ) 122 3.20 [0.21, 0.06] [0.05, 0.2, 0.05]
B5 99 205 ( 46 ) 122 3.20 0.06 [0.05, 0.2, 0.05]
B6 564 205 ( 46 ) 122 3.20 [0.06, 0.21] [0.05, 0.2, 0.05]

HSb
B1 501 191 ( - ) 51 3.40 0.2 0.2
B2 501 191 ( - ) 49 3.40 0.2 0.2

HR0.5b

B1 234 191 ( 26 ) 119 3.38 [0.21, 0.06] 0.05
B2 99 166 ( - ) 119 3.38 0.06 0.05
B3 326 191 ( 26 ) 119 3.38 [0.06, 0.21] 0.05
B4 234 191 ( 26 ) 122 3.38 [0.21, 0.06] [0.05, 0.2, 0.05]
B5 99 191 ( 26 ) 122 3.38 0.06 [0.05, 0.2, 0.05]
B6 326 191 ( 26 ) 122 3.38 [0.06, 0.21] [0.05, 0.2, 0.05]

HR1.0b

B1 234 205 ( 46 ) 119 3.20 [0.21, 0.06] 0.05
B2 99 160 ( - ) 119 3.20 0.06 0.05
B3 326 205 ( 46 ) 119 3.20 [0.06, 0.21] 0.05
B4 234 205 ( 46 ) 122 3.20 [0.21, 0.06] [0.05, 0.2, 0.05]
B5 99 205 ( 46 ) 122 3.20 0.06 [0.05, 0.2, 0.05]
B6 326 205 ( 46 ) 122 3.20 [0.06, 0.21] [0.05, 0.2, 0.05]

CR1.0b

B1 285 205 ( 46 ) 199 3.20 [0.21, 0.03] 0.03
B2 199 160 ( - ) 199 3.20 0.03 0.03
B3 340 205 ( 46 ) 199 3.20 [0.03, 0.21] 0.03
B4 285 205 ( 46 ) 144 3.20 [0.21, 0.03] [0.03, 0.2, 0.03]
B5 199 205 ( 46 ) 144 3.20 0.03 [0.03, 0.2, 0.03]
B6 340 205 ( 46 ) 144 3.20 [0.03, 0.21] [0.03, 0.2, 0.03]

Table 3.2: Computational grids. Nx, Ny and Nz are the number of points in
the streamwise, wall-normal and spanwise directions per block, while nr

y is the
number of points for 0 ≤ y ≤ h. The values of ∆x for the cases with roughness
indicate the grid spacing at the beginning and at the end of the block. The
multiple values of ∆z indicate spanwise grid spacings at the beginning, at the
centre and at the end of the domain.
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Figure 3.1: Position of non-zero inflow disturbances relative to the boundary
layer for internal and external disturbances.

• The first letter indicates a hot (H ) or a cold (C ) wall temperature. Here,

hot means adiabatic (Tw = Tad) and cold means cooler, T∞ ≤ Tw ≤ Tad.

• The second letter defines the configuration considered, rough (R) or smooth

(S ). When rough, the letter is followed by a number indicating the height of

the roughness.

• The third letter indicates the type of disturbances used (V, A or Æ ).

• The last letter indicates whether disturbances are internal (I ) or external

(E ) relative to the boundary layer. For internal disturbances the damping

function fd has g = 1.0, p = 3.0 and l = 1.0 in (2.12), whereas for external

disturbances g = 2.0, p = 12.0 and l = 22.0. Figure 3.1 shows schematically

how internal and external disturbances relate to the boundary layer 99%

thickness.

Subscripts (a) and (b) are added to the designation to indicate the M∞ = 6.0 and

the M∞ = 2.5 cases, respectively. The smooth wall cases are used as references

to evaluate the effects of roughness. Cases prefixed HR1.0 were carried out to

investigate the effects of different disturbances, while cases prefixed HR0.5 are

useful to understand the effect of roughness height. Finally the cold wall cases are

used to identify the influences of wall cooling on the boundary layer stability.

The simulation Reynolds numbers (Reδ∗
0
= 8200 for the M∞ = 6.0 cases and

Reδ∗
0
= 3300 for the M∞ = 2.5 cases) were chosen to obtain a unit Reynolds

number of Re/m = 106 when placing the roughness element at a distance of
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x̃∗h = 0.08 meters from the leading edge. The Reynolds number of the simulation

was reduced in the cold wall cases to Reδ∗
0
= 4135 for M∞ = 6.0 and Reδ∗

0
= 1730

for M∞ = 2.5 to keep a constant roughness Reynolds numbers of Reh = 331 and

Reh = 791 for the M∞ = 6.0 and the M∞ = 2.5 cases, respectively, thereby

minimising local Reynolds number effects. All cases consider forced perturbations

in the form of equation 2.12 for a frequency band F = 0.02− 0.32 and amplitude

a = 2× 10−6.

Details of the different computational grids used for the parametric study are

provided in Table 3.2. The number of points used for 0 ≤ y ≤ h in each case is

given by nr
y. In all cases the length L = 6.0 and width W = 6.0 of the roughness

are resolved using nr
x = 101 and nr

z = 121 points respectively.

3.2 Characterisation of the disturbances in the

free-stream

As shown by Chu and Kovasznay (Kovasznay, 1953; Chu & Kovasznay, 1958),

small perturbations present in a uniform flow can be divided into independent vor-

ticity, sound and entropy modes. The same framework is used here to characterise

the disturbances introduced using the procedure explained in section 2.2.4, with

the exception that entropy disturbances will be represented by internal energy.

The characterisation of the different disturbance fields is carried out by consid-

ering the behaviour of each of their Fourier coefficients after an expansion into

frequencies (F ) and spanwise wavenumbers (kz). We consider non-dimensional

frequencies defined as F = f ∗δ∗0/U
∗
∞, f ∗ being the dimensional frequency (cycles

per second), and a Fourier decomposition is carried out according to the discrete

Fourier transform (DFT) formula

Ŝη,ξ(x, y) :=
2

LJ

J−1∑

j=0

L−1∑

l=0

s(x, y, zl, tj)e
−2πi η

J
je−2πi ξ

L
l,

η = 0, 1, . . . , J − 1 and ξ = 0, 1, . . . , L− 1,

(3.1)

where J and L are the total time and space samples and s can be any flow variable.

The indices η and ξ represent the discretised frequencies and spanwise wavenum-

bers, respectively. Non-dimensional frequencies can then be obtained as F = η/τ ,

with η = 0, 1, . . . , J/2− 1, where τ = 50 is one sampling period, corresponding to

one forcing cycle. After reordering to place the zero-wavenumber component at
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the centre of the spanwise wavenumber spectrum, we obtain kz = 2πξ/Lz, with

ξ = −(L/2− 1), . . . ,−1, 0, 1, . . . , L/2− 1, where Lz = 20 is the spanwise length of

the computational domain. The normalisation factor 2/(LJ) gives unit amplitude

Fourier modes for a disturbance signal given by a sum of temporal and spatial

sinusoidal waves.

In addition to the amplitude of the single Fourier modes (|Ŝη,ξ(x, y)|), we define

the amplitude associated with each frequency as

Aη(x, y) :=

M∑

ξ=−M

|Ŝη,ξ(x, y)|. (3.2)

This definition is used to analyse the behaviour of disturbances at a particular

y-location (e.g. in the free-stream).

The amplitudes of vorticity, sound and internal energy in the free-stream, associ-

ated with the three disturbances considered, are shown in figure 3.2, where |ω|,
|∇ ·u| and |∇√

e| are plotted as a function of frequency. Note that the quantities

ω
∗, ∇∗ · u∗ and ∇∗

√
e∗ are dimensionally consistent. Type V and type A distur-

bances are dominated by vorticity and acoustic modes respectively, whereas type

Æ perturbations are, for the most part, formed by sound and internal energy waves,

the former being more energetic. The dominant free-stream acoustic disturbances

propagate downstream at the speed of the slow acoustic waves (cph = 1− 1/M∞)

for the two Mach numbers considered, as shown in figure 3.3 for case HSAI, where

the streamwise variation of phase divided by circular frequency (ω = 2πF ) is plot-

ted for a selection of ∇ · u modes. Note that, for constant cph = ω [dφ(x)/dx]−1

and ω, φ(x)/ω = x/cph + φ(0)/ω. The φ(x)/ω parameter is used instead of cph

to avoid differentiation, which amplifies the small oscillations appearing in the

Fourier transformed DNS results as a consequence of the superposition of modes

with same frequency but different cph, and gives a clear visualisation of the phase

speed of the dominant waves in the DNS signal.

The presence of fast acoustic waves in each case can be inferred from the pressure

disturbance amplitude plots shown in figure 3.4. The oscillatory character of the

mode amplitudes indicates that multiple modes with different phase speeds are

contributing to the pressure signal. Assuming there are two modes at play, once

the phase speed of the dominant wave is known, the oscillation period ∆x can be

used to calculate the phase speed of the additional wave by applying the following

formula

F∆x
∣∣caph − cbph

∣∣ = caphc
b
ph, (3.3)
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Figure 3.2: Streamwise averaged disturbance amplitudes for |ω|, |∇ · u| and
|∇√

e| in the free-stream. (a), (c), (e) M∞ = 6.0 and (b), (d), (f) M∞ = 2.5.

which holds for the superposition of two waves travelling at different speeds caph
and cbph. Equation (3.3) was obtained by noting that the amplitude of the signal

composed by two waves A1 exp(iω/c
a
phx) and A2 exp(iω/c

b
phx), with equal frequen-

cies but different phase speeds, varies in the streamwise direction according to the
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Figure 3.3: Streamwise φ(x)/ω evolution for a selection of free-stream ∇ · u
disturbances, showing the phase speed of the dominant free-stream acoustic
waves. (a) type A disturbances, M∞ = 6.0, (b) type A disturbances, M∞ = 2.5.
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Figure 3.4: Amplitude of pressure disturbances in the free-stream. (a) F = 0.32
and k = 0.314 at Mach 6.0, (a) F = 0.14 and k = 0.314 at M∞ = 2.5.

following

A(x) =
√
A2

1 + A2
2 + 2A1A2 cos[ω(1/caph − 1/cbph)x], (3.4)

which is a periodic function with period

∆x =
1

F
∣∣1/caph − 1/cbph

∣∣ . (3.5)

For simplicity we have assumed that the two waves have constant amplitudes and

we have considered only positive phase speeds. The amplitude of the oscillation
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in figure 3.4 also gives an indication of the relative amplitude of the two waves.

This analysis shows that for type A forcing the slow acoustic wave amplitudes

are about one order of magnitude higher than those of the fast acoustic waves.

In the case of type Æ disturbances fast and slow acoustic waves present similar

amplitudes. Type V disturbances present the lowest acoustic wave amplitudes of

the three disturbance fields considered.

3.3 Receptivity and stability of the clean flat

plate boundary layer

In this section we concentrate on the stability of the clean flat plate boundary

layer, which will be studied both by LST and through the analysis of the DNS

data obtained for the response of the boundary layer to the inflow disturbances

introduced in section 2.2.4. These results will be compared with those obtained

for the cases with rough flat plates to better understand the effects of roughness

on the boundary layer stability.

Figures 3.5(a) and 3.5(b) show the temporal stability diagrams for the adiabatic-

wall M∞ = 6.0 (with kz = 0) and M∞ = 2.5 (with kz = 0.314) boundary-layers

(a) (b)

Figure 3.5: Temporal LST stability diagrams. (a) M∞ = 6.0 (kz = 0), the
dashed contourlines indicate −αi = 0.010 to 0.025 with steps of 3 × 10−3, (b)
M∞ = 2.5 (kz = 0.314), the dashed contourlines show −αi = 0.0010 to 0.005
with steps of 8× 10−4.
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Figure 3.6: Spatial LST growth rates as a function of frequency. (a) M∞ = 6.0
(kz = 0), (b) M∞ = 2.5 (kz = 0.314).

respectively. AtM∞ = 6.0 the numerical simulations run from Rex̃∗

in
≈ 4.0×105 to

Rex̃∗

out
≈ 16.4 × 105, and the computational domain inflow is placed downstream

of the critical Reynolds number Rex̃∗

crit
≈ 4.5 × 104. First and second modes

are both unstable in the boundary layer region included in the domain. Two-

dimensional Mack modes are the most unstable waves, while the most unstable

first mode (not shown) is oblique (kz ≈ 0.85). The M∞ = 2.5 cases show a

region of first mode instability starting from Rex̃∗

crit
= 1.0× 105, while the second

modes remain stable for all Reynolds numbers. The computational domain spans

Reynolds numbers in the range Rex̃∗ = 5.5− 9.8× 105. Figures 3.6(a) and 3.6(b)

show the spatial LST growth rates as a function of frequency at different equally-

spaced streamwise locations for a two-dimensional (kz = 0) Mack mode in an

M∞ = 6.0 boundary layer and a three-dimensional first (kz = 0.314) mode in an

M∞ = 2.5 boundary layer, respectively. The blue line shows the spatial stability

diagram for the boundary layer at the inlet of the computational domain, while the

red line refers to the outflow boundary. The well known tuning of Mack modes

with the boundary layer thickness can be observed in figure 3.6(a), while the

frequency of the most unstable first mode remains nearly constant. At M∞ = 6.0

the frequencies of unstable Mack modes are contained in the frequency range of the
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inflow disturbances, while for theM∞ = 2.5 cases one forcing frequency (F = 0.02)

falls within the frequency range of unstable first modes. The most unstable Mack

mode for M∞ = 6.0 at x = 70 has F = 0.18 and −αi = 0.024. At M∞ = 2.5 the

most unstable first mode has F ≈ 0.013 and −αi ≈ 0.0075, while the only unstable

mode included in the simulation has F = 0.02 and −αi = 0.005, according to LST.

The results obtained from the direct solution of the Navier-Stokes equations show

that, inside the boundary layer, type V perturbations lead to a transient dis-

turbance growth immediately downstream of the inflow boundary, due to the v-

velocity oscillations imposed by the forcing. The v′ perturbations give rise to the

non-modal growth of ρ′, u′ and T ′ at the edge of the boundary layer through a

suboptimal lift-up mechanism, which is more effective at the low frequencies, as

shown in figures 3.7(a) and 3.7(b) forM∞ = 6.0 andM∞ = 2.5 respectively. Cases

with type A disturbances also show small amplitude perturbations at the edge of

the boundary layer. Here, the boundary-layer response to the different inflow

disturbances is analysed by considering an integrated norm for the disturbance

amplitudes, defined as

Iη(x) :=

∫ δ99

0

Aη(x, y)dy. (3.6)

At M∞ = 6.0, the three types of forced disturbances also give rise to a number of

instability modes which grow and decay at different streamwise positions as they

convect through their regions of instability. Figures 3.8(a) and 3.8(b) show that

the amplitude functions of two growing Fourier modes with (F = 0.06, kz = 0.314)

and (F = 0.18, kz = 0.314) respectively, extracted from the M∞ = 6.0 DNS data

at x = 100, match closely the eigenfunctions of a first mode with cph = 0.88 and a

second mode with cph = 0.92. The M∞ = 2.5 DNS data shows only one unstable

mode, corresponding to (F = 0.02, kz = 0.314). The LST eigenfunction of this

mode is compared with the DNS amplitude function in figure 3.8(c), showing good

agreement.

Contours of the real part of p̂w (the Fourier transformed wall pressure) reveal that

atM∞ = 6.0 the disturbance field in the case of type A and type Æ disturbances is

dominated by ξ = 0 (i.e. two-dimensional) first and second modes, while for type

V perturbations the dominant modes are oblique. An example of this behaviour is

given in figure 3.9, which shows the growth of the ξ = 0 Mack mode of instability

for case HSAI a and a more three-dimensional disturbance field for case HSVI a,

characterised by the presence of oblique Mack modes, as will be shown later.

The excitation of unstable modes atM∞ = 6.0 is registered for forcing frequencies

F ≤ 0.22, while at M∞ = 2.5 for F ≥ 0.04 all boundary layer disturbances are



42 Chapter 3 Small disturbance receptivity due to roughness

0 50 100 150
10

−6

10
−5

10
−4

10
−3

x

I η
(x

)
F

(a)

0 20 40 60 80 100
10

−6

10
−5

10
−4

10
−3

x

I η
(x

)

F

(b)

Figure 3.7: Transient growth of u′ disturbances in the case of internal type V
disturbances, sowing the boundary layer response for all the frequencies con-
tained in the forcing signal (0.02 ≤ F ≤ 0.32). (a) M∞ = 6.0, (b) M∞ = 2.5.

stable. When the stable boundary layer modes decay the free-stream fast acoustic

waves tend to dominate the near wall disturbance field, as shown in figure 3.10.

This happens for F > 0.28 at M∞ = 6.0 and for F > 0.12 at M∞ = 2.5 and is

more evident in the case of type Æ disturbances, since the perturbations present

in the boundary layer edge, in the case of type V and type A disturbances, decay

slowly downstream. The free-stream fast acoustic waves penetrate deeper inside

the boundary layer than slow acoustic, vortical and entropy waves and excite

boundary layer modes belonging to the fast acoustic continuous spectrum.

For inflow disturbances placed outside the boundary-layer, excitation of boundary-

layer perturbations is weaker. This is shown in figures 3.11(a) and 3.11(b), where

|Iη(·)|∞ := max
0≤x≤Lx

[Iη(x)] (3.7)

is plotted for each forcing frequency and for the different inflow disturbances con-

sidered, giving the highest amplitude attained by the v′ boundary-layer distur-

bances in each case. Internal type V and type A perturbations lead to higher

amplitude disturbances compared to type Æ forcing, both at M∞ = 6.0 and

M∞ = 2.5. The boundary-layer disturbance amplitudes obtained for type V forc-

ing decrease about two orders of magnitude at M∞ = 6.0 and more than three

orders of magnitude at M∞ = 2.5 when considering external disturbances. A

similar, but lower magnitude effect, can also be noted for external type A and
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Figure 3.8: Comparison of DNS and LST eigenfunctions. (a) mode F =
0.06 and k = 0.314 at M∞ = 6.0, (b) mode F = 0.18 and kz = 0.314 at
M∞ = 6.0, (c) mode F = 0.02 and kz = 0.314 at M∞ = 2.5.

type Æ inflow perturbations, the trends being the same for the two Mach numbers

considered.

To understand how the total disturbance amplitude is distributed over the span-

wise modes we consider the parameter

Λη,ξ := max
0≤x≤Lx




∫ δ99

0

|Ŝη,ξ(x, y)|dy

Iη(x)


 . (3.8)
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Figure 3.9: Contours of the real part of p̂w for F = 0.18 showing the
development of a Mack mode instability. (a) case HSAI a (contour limits
ℜ{p̂w} = ±9.5 × 10−5), (b) case HSVI a (contour limits ℜ{p̂w} = ±2.2 ×
10−5).
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Figure 3.10: Streamwise φ(x)/ω evolution for p′ disturbances at the wall, show-
ing that fast acoustic waves dominate the near wall disturbance field for certain
frequencies. (a) F = 0.28 at M∞ = 6.0, (b) F = 0.12 at M∞ = 2.5.
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Figure 3.11: Maximum total amplitude of boundary-layer disturbances for the
different forcing frequencies. (a) M∞ = 6.0, (b) M∞ = 2.5.
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Figure 3.12: Contribution of single spanwise modes to the total amplitude of
disturbances inside the boundary-layer for the different forcing frequencies. (a)
M∞ = 6.0, (b) M∞ = 2.5.

Figures 3.12(a) and 3.12(b) show Λv
η,ξ for the different frequencies and inflow dis-

turbances considered for M∞ = 6.0 and M∞ = 2.5, respectively. At M∞ = 6.0,

the ξ = 0 mode plays a crucial role for internal and external type A and type

Æ perturbations. In particular, a peak is visible for frequencies in the range

0.14 ≤ F ≤ 0.24, corresponding to the frequency range of the unstable Mack

modes. The Mack mode amplitudes decrease for these two types of disturbances

in the case of external forcing. These cases also show dominant ξ = 0 modes at

the low frequencies as a consequence of the excitation of ξ = 0 first modes. As

can be seen, the contribution of the ξ = 0 mode for internal and external type V

disturbances is insignificant. For case HSVI a high amplitude ξ = 1 modes, relative

to the total disturbance amplitude inside the boundary layer, appear for frequen-

cies in the range of the unstable Mack modes. This behaviour correlates with
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the presence of unstable Mack modes for ξ = 1, already shown in figure 3.8(b).

On the other hand, external type V disturbances do not lead to any significant

Mack modes inside the boundary layer. At M∞ = 2.5 the ξ = 1 modes have high

relative amplitudes at the low frequencies for type A and type Æ disturbances.

However, due to the absence of unstable boundary layer modes, with the exception

of the unstable first mode at F = 0.02, the total disturbance energy is more evenly

spread among the different spanwise wavenumbers, particularly in the case of type

V disturbances.

The same disturbances used here to perturb the smooth flat plate boundary layer

are also employed to study the stability of the steady-state laminar flow over

isolated roughness elements under different conditions, the details of which are

presented in section 3.5.

3.4 Grid convergence study and influence of fil-

tering

In this section, we test the effects of different grid resolutions and choice of fil-

tering parameter σ in equation 2.14. The test is carried out for cases HR1.0AI a

and HR1.0AI b which, as will be shown later, are the cases showing the highest

disturbance amplification. The effects of grid resolution are considered by testing

Case Block Nx Ny (nr
y) Nz by ∆x ∆z

HR1.0a

B1 128 103 ( 31 ) 74 3.80 [0.4, 0.1] 0.08
B2 59 73 ( - ) 74 3.80 0.10 0.08
B3 299 103 ( 31 ) 74 3.80 [0.10, 0.40] 0.08
B4 128 103 ( 31 ) 66 3.80 [0.40, 0.10] [0.08, 0.40, 0.08]
B5 59 103 ( 31 ) 66 3.80 0.10 [0.08, 0.40, 0.08]
B6 299 103 ( 31 ) 66 3.80 [0.10, 0.40] [0.08, 0.40, 0.08]

HR1.0b

B1 128 103 ( 31 ) 74 3.80 [0.4, 0.1] 0.08
B2 59 73 ( - ) 74 3.80 0.10 0.08
B3 174 103 ( 31 ) 74 3.80 [0.10, 0.40] 0.08
B4 128 103 ( 31 ) 66 3.80 [0.40, 0.10] [0.08, 0.40, 0.08]
B5 59 103 ( 31 ) 66 3.80 0.10 [0.08, 0.40, 0.08]
B6 174 103 ( 31 ) 66 3.80 [0.10, 0.40] [0.08, 0.40, 0.08]

Table 3.3: Coarse computational grids used to to quantify the effects of different
grid resolutions.
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two grids; the reference grid (details of which can be found in table 3.2 on page

33) and a coarse grid (given in table 3.3) for each case. The filtering parameters

considered for the analysis of the effects introduced by filtering are σ = 0.14 and

σ = 0.28 for M∞ = 6.0 and σ = 0.05 and σ = 0.10 for M∞ = 2.5. Two quantities

will be considered for the test; the streamwise evolution of the Fourier transformed

pressure amplitude at the wall (Ap
η(x, 0)) and the same quantity integrated in the
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Figure 3.13: Effect of grid resolution on the streamwise evolution of distur-
bances downstream of the roughness element. (a) HR1.0AI a, (b) HR1.0AI b
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Figure 3.14: Effect of grid resolution on the overall boundary layer response to
the incoming disturbances. (a) HR1.0AI a, (b) HR1.0AI b
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streamwise direction (
∫
Lx

Ap
η(x, 0)dx). Figures 3.13(a) and 3.13(b) show the ef-

fect of grid resolution on Ap
η(x, 0) for a selection of frequencies at M∞ = 6.0 and

M∞ = 2.5 respectively. It can be seen that the different grid resolutions do not

lead to significant differences in the growth rates of disturbances developing down-

stream of the roughness element. Some differences in disturbance amplitudes can

be observed, particularly for F = 0.12 at M∞ = 6.0 starting from x = 100 and for

F = 0.06 at M∞ = 2.5 for x > 90 (note that the growth of F = 0.06 disturbances

for x > 90 in this case is associated with weakly nonlinear interactions which are

not of interest in this part of the study). The effect of grid resolution over the

entire frequency range of inflow disturbances is given in figures 3.14(a) and 3.14(b)

forM∞ = 6.0 andM∞ = 2.5 respectively. It can be seen that, overall, the response

of the laminar flow to the forced disturbances is well captured by the two grids

considered, both at M∞ = 6.0 and M∞ = 2.5.

The effect of filtering is shown in figures 3.15(a) and 3.15(b) for M∞ = 6.0 and

M∞ = 2.5 respectively. The boundary layer response to the incoming disturbances

is practically identical for the two levels of filtering considered. This was also the

case for the streamwise variation of disturbance amplitude (not shown).

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

8
x 10

−4

F

∫ L
x

A
p η
(x

,0
)d

x

 

 

M∞ = 6.0

σ = 0.14
σ = 0.28

(a)

0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7
x 10

−3

F

∫ L
x

A
p η
(x

,0
)d

x

 

 

M∞ = 2.5

σ = 0.05
σ = 0.10

(b)

Figure 3.15: Effect of filtering parameter on the overall boundary layer response
to the incoming disturbances. (a) HR1.0AI a, (b) HR1.0AI b
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3.5 Analysis of the basic flow in the presence of

roughness

The steady-state laminar flow over the roughness element is analysed here by

comparison with the flow over a clean flat plate. Our interest is to highlight

the modifications induced by the roughness element, which will determine the

stability characteristics of the laminar flow, and how these vary with Mach number,

roughness height and wall temperature.

The roughness element induces two regions of separated flow, located immediately

upstream and downstream of it, as can be seen in figure 3.16 for cases HR1.0 a

(M∞ = 6.0) and HR1.0 b (M∞ = 2.5) through isosurfaces of small negative stream-

wise velocity in blue. The centreline bubble lengths for the three configurations are

provided in Table 3.4. Cases with h = 1.0 show comparable upstream and down-

stream bubble lengths, with the downstream bubble being only slightly longer. A

reduction of roughness height by a factor of two leads to an upstream bubble length

(a)

(b)

Figure 3.16: Flow topology around the roughness element: (a) HR1.0 a, (b)
HR1.0 b. Isosurfaces of small negative u show the separated flow regions in
blue. Grey isosurfaces of ωx, positive on the right and negative on the left part
of the computational domain looking downstream, show the roughness-induced
vortices.
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Figure 3.17: Contours of uS :=
√

(∂u/∂y)2 + (∂u/∂z)2 showing the localised
shear generated by the roughness-induced counter-rotating vortices. (a) M∞ =
6.0, h = 1.0 at x = 120, (b) M∞ = 6.0, h = 0.5 at x = 120, (c) M∞ = 2.5,
h = 1.0 at x = 80, (d) M∞ = 2.5, h = 0.5 at x = 80.

reduction of about 62% for M∞ = 2.5 and about 61% for M∞ = 6.0. The length

of the separation bubble induced downstream of the roughness element reduces by

about 25% for M∞ = 2.5 and about 73% for M∞ = 6.0. For both Mach numbers

wall cooling seems to only affect the downstream separation bubble and reduces

its length slightly. As will be discussed later, no steady solution was obtained for

case HR1.0 b, hence the bubble lengths were time averaged.

The roughness wake is characterised by the presence of regions of high streamwise

vorticity. A pair of streamwise vortices are generated at the roughness edges due

to a small difference in pressure between the top (lower) and the sides (higher) of

Case Lsep (Upstream) Lsep (Downstream)

HR1.0a 5.9 9.9
HR0.5a 2.3 2.7
CR1.0a 6.0 9.0
HR1.0b 7.7 9.6
HR0.5b 2.9 7.2
CR1.0b 7.7 9.3

Table 3.4: Separation bubble lengths for the three different configurations con-
sidered.
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Figure 3.18: Contours of u. Separated flow regions and reattachment shock
shown as u = 0 (red line) and negative ∇ · u (black line) respectively. (a) case
HR1.0 a, (b) case CR1.0 b.

the roughness, as shown in figure 3.16(a) for case HR1.0 a, which appear in all the

cases analysed. Cases HR1.0 b and CR1.0 b show, in addition to the edge vortices, a

pair of strong counter-rotating streamwise vortices forming as the flow reattaches

downstream of the roughness. These vortices can be observed in figure 3.16(b) near

the roughness mid-plane for case HR1.0 b. The vortices present in the roughness

wake lift-up low momentum fluid from the near wall region, generating a low

velocity streak away from the wall, and induce regions of localised high ∂u/∂y and

∂u/∂z shear, shown in figure 3.17 as contours of uS :=
√

(∂u/∂y)2 + (∂u/∂z)2

for the different Mach numbers and roughness heights considered. Convective

instabilities may easily develop in high detached shear layers.

The flow displacement caused by the roughness induces a compression in the up-

stream region of the flow, which for the M∞ = 6.0 cases eventually develops into

an oblique shock further downstream, followed by an expansion as the flow turns

over the top of the roughness. When the flow reattaches downstream a fan of com-

pression waves forms and merges into a weak oblique shock both for M∞ = 2.5

and M∞ = 6.0. The roughness induced shocks are shown in figure 3.18 for cases

HR1.0 a and CR1.0 b. The strength of these shocks decreases with the height of the

roughness and with increasing wall temperature due to local Mach number effects.

Shock-waves can interact with the incoming disturbance field and influence the

development of instability modes downstream of the roughness.
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3.6 Roughness receptivity at M∞ = 6.0

This section focuses on the results obtained for roughness-induced receptivity and

transition at M∞ = 6.0. The analysis starts with a discussion of the effects of

roughness height on the boundary layer stability under the action of type A dis-

turbances. The analysis of the results obtained for the different inflow disturbances

in the presence of a roughness element with h = 1.0 follows and the section ends

with a discussion of the effects of wall cooling on the flow stability in the case of

type A inflow disturbances.
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Figure 3.19: Streamwise evolution of u′ disturbances inside the boundary-layer
for cases HSAI a, HR0.5AI a and HR1.0AI a. (a) F = 0.02, (b) F = 0.06, (c)
F = 0.14, (d) F = 0.18.



Chapter 3 Small disturbance receptivity due to roughness 53

3.6.1 Effect of roughness height

The influence of roughness height on the boundary-layer stability is analysed by

comparing cases HSAI a, HR0.5AI a and HR1.0AI a, which consider the effects

of type A perturbations for a smooth flat plate and for two different roughness

heights. The boundary-layer response to frequencies F = 0.02, F = 0.06, F = 0.14

and F = 0.18 is shown in figure 3.19 for the three cases considered. The distur-

bances enter the boundary-layer near the inflow boundary and are weakly amplified

in the upstream separation bubble. In the region immediately downstream of the

roughness element the boundary-layer disturbances redistribute into the modes of

the new basic flow, leading to a short amplification or decay depending on the

frequency considered. For the frequencies shown in figure 3.19 this results in an

overall disturbance amplification which is more prominent for the taller roughness

elements. Further downstream, the disturbance evolution for case HR0.5AI a tends

to follow the same behaviour shown by the smooth flat plate case, indicating that

the small roughness element mainly acts as a disturbance amplifier. Inspection of

the boundary-layer disturbance field in the presence of the small roughness element

reveals that the disturbance amplification observed is mainly due to an increased

receptivity of the boundary-layer modes developing away from the roughness wake.
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Figure 3.20: Contours of |û| in a crossflow plane at x = 140 showing the shape of
the instability modes developing in the roughness wake for case HR1.0AI a. The
red dashed line indicates the roughness position. (a) F = 0.02, (b) F = 0.06,
(c) F = 0.12, (d) F = 0.14.
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The boundary layer disturbances for case HR0.5AI a have higher amplitudes than

those observed in case HSAI a but show the same growth rates.

A different scenario appears for h = 1.0. The difference in disturbance growth rates

registered between case HR1.0AI a and HSAI a, particularly for F ≤ 0.16, reveals

the presence of additional instability modes induced by the localised roughness

element. At low frequencies (see for example F = 0.02 in figure 3.19a), distur-

bances experience a strong amplification, reminiscent of algebraic growth, and as

a result low frequency modes are the most energetic in the boundary-layer region

spanned by the computational domain. On the other hand, disturbances grow

faster at higher frequencies, hence the final stages of transition are more likely to

be driven by these more unstable modes. In particular, two linear growth rate

maxima appear for F = 0.06 and F = 0.14, shown in figures 3.19(b) and 3.19(c)

respectively. The disturbance amplification observed for F = 0.18 in all cases is

associated with a Mack mode instability developing in the lateral boundary layer

regions away from the roughness wake with a growth rate of −αi ≈ 0.024, which

(a) (b)

(c) (d)

Figure 3.21: Isosurfaces of ℜ{v̂} showing the three-dimensional structure of
the wake modes for case HR1.0AI a. (a) F = 0.02, (b) F = 0.06, (c) F = 0.12,
(d) F = 0.14.



Chapter 3 Small disturbance receptivity due to roughness 55

agrees well with the LST prediction for the Mack mode growth rates at x = 70, as

already discussed in the previous section. Both the h = 0.5 and h = 1.0 roughness

elements lead to an amplitude boost and a shortening of the region of instability

for disturbances with F = 0.18 and F = 0.20. The amplitude boost seems to be

associated with an enhanced receptivity of the Mack modes. At higher frequencies

boundary-layer disturbances are damped by the roughness.

The nature of the instability modes developing downstream of the roughness for

case HR1.0AI a is shown in figures 3.20 and 3.21 for some of the most amplified

frequencies. The plots in figure 3.20 show contours of |û| in a crossflow plane at

x = 140, while figure 3.21 shows the three-dimensional structure of the modes

through isosurfaces of the real part of v̂ (the Fourier transformed v-velocity). For

F = 0.02, high disturbance amplitudes are registered near the lateral shear layer

at (y ≈ 1.0, z ≈ 7.0) in figure 3.20(a) and the instability mode manifests itself

as a sinuous deformation of the low velocity streak, as can be inferred from figure

3.21(a). For F = 0.06 disturbances grow in the two lateral shear layers at (y ≈ 1.0,

z ≈ 7.0) and (y ≈ 1.0, z ≈ 14.0) in figure 3.20(b). The non-zero u′ disturbances

at the roughness mid-plane reveal the presence of a varicose instability mode for

this frequency, and this is corroborated by the isosurfaces of ℜ{v̂} = ±1.5× 10−4

in figure 3.21(b). At higher frequencies, a different type of instability mode, which

is associated with a near wall amplitude maximum at the roughness mid-plane,

develops in the wake of the roughness. This mode starts becoming visible for

F = 0.12 in figures 3.20(c) and 3.21(c), and dominates the instability of the wake

at F = 0.14, as shown in figure 3.20(d), and at F = 0.16, leading to a varicose

streak deformation.

The sinuous and varicose modes observed for F = 0.02 and F = 0.06 respectively,

are a consequence of instabilities growing in the lateral shear layers induced by the

roughness in its wake. In this case, sinuous and varicose modes seem to develop

when the shear layer instabilities, developing on opposite sides of the roughness

wake, are in or out of phase, respectively. For future reference, we name the

F = 0.02 and F = 0.06 modes as Sinuous Lateral (SL) and Varicose Lateral

(VL), respectively. The varicose mode observed for F = 0.14 seems to be of a

different nature. Its amplitude function shows similarities with that of mode VL,

with amplitude maxima at the edges of the streak. However, it also shows a near

wall amplitude maximum at the centre of the roughness wake. The origin of this

mode, which will be referred to as Varicose Centred (VC), is unclear, however

it seems to be closely linked with the development of Mack mode instabilities

inside the boundary layer, as will be better explained later. Interestingly, figure
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Figure 3.22: Streamwise evolution of v′ disturbances inside the boundary-layer
for cases HR1.0VI a, HR1.0AI a and HR1.0ÆI a. (a) F = 0.06, (b) F = 0.14.

3.21(c) shows that the near wall maximum first grows and later decays towards

the end of the computational domain, where the lateral maxima continue growing.

This seems to indicate that the range of unstable frequencies for modes VC and

VL overlap and in some cases the amplitude functions observed might be the

result of superpositions of multiple modes. Mode superposition may also explain

the asymmetric amplitude functions observed for certain modes, as for example

in figure 3.20(a), as it can potentially lead to destructive and/or constructive

interferences and cause local amplitude maxima and minima.
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Figure 3.23: Streamwise evolution of v′ disturbances inside the boundary-layer
for cases HR1.0VE a, HR1.0AE a and HR1.0ÆE a. (a) F = 0.06, (b) F = 0.14.
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Figure 3.24: Contours of |û| in a crossflow plane at x = 140 showing the
shape of the instability modes developing in the roughness wake for different
inflow disturbances. The red dashed line indicates the roughness position. (a)
F = 0.06 for case HR1.0VE a, (b) F = 0.06 for case HR1.0AE a, (c) F = 0.14
for case HR1.0VE a, (d) F = 0.14 for case HR1.0AE a.

3.6.2 Effect of disturbance type and position

The effect of different inflow disturbances on the flow instability is analysed here for

a roughness element with h = 1.0. We consider both the effects of forcing functions

with zero (external) and nonzero (internal) amplitudes inside the boundary-layer.

Figure 3.22 shows the boundary-layer response to internal disturbances of type

V, A and Æ for F = 0.06 and F = 0.14, through the streamwise evolution of v′

disturbances inside the boundary-layer. Differences appear in the initial excita-

tion of disturbances, with cases HR1.0VI a and HR1.0AI a showing considerably

higher disturbance amplitudes inside the boundary-layer than those observed for

case HR1.0ÆI a. Although growth of instability modes for case HR1.0VI a can be

seen in figure 3.22(b) from x ≈ 120, this tends to be buried inside the weakly

damped v′ perturbations introduced at the edge of the boundary-layer. Interest-

ingly, these perturbations, and the associated algebraic growth of ρ′, u′, w′ and

T ′, seem to have little effect on the receptivity of downstream instability modes,

which are more amplified in case HR1.0AI a, despite the total disturbance ampli-

tudes upstream of the roughness being lower than for case HR1.0VI a. Far enough

downstream of the roughness the three cases show similar disturbance growth rates
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for certain frequencies (i.e. F = 0.14 in figure 3.32(d)), while for other frequen-

cies (i.e. F = 0.06 in figure 3.22(a)) lower growth rates are registered for case

HR1.0VI a. An inspection of the û amplitude functions indicates that mode SL is

the dominant instability at F = 0.06 for case HR1.0VI a, while for cases HR1.0AI a

and HR1.0ÆI a mode VL drives the wake instability at the same frequency. The

different growth rates are then explained by the different dominant modes and

indicate that mode VL is more unstable than mode SL.

The effect of disturbance position is analysed by comparing the previous results

for internal disturbances with cases HR1.0VE a, HR1.0AE a, HR1.0ÆE a, which

are initially external to the boundary layer. The results show that type A and

type Æ perturbations penetrate the boundary-layer and excite the boundary-layer

modes to higher amplitudes than in the case of type V disturbances. This in turn

affects the receptivity of shear layer modes in the region downstream of the rough-

ness. The overall picture shows that the range of unstable frequencies is the same

for internal and external perturbations, while the disturbance amplitudes inside

the boundary-layer are smaller for the case of external forcing. This behaviour

correlates with the excitation of boundary-layer instability modes upstream of the

roughness, which was found to be weaker in the case of external disturbances. The

three forcing functions considered show similar disturbance growth downstream of

the roughness. However, there are differences between case HR1.0VE a and the

other two cases in the disturbance growth rates for some frequencies, as can be

noted in figure 3.23 for F = 0.06 and F = 0.14. Amplitude functions in a cross-

flow plane at x = 140, shown in figure 3.24 for cases HR1.0VE a and HR1.0AE a,

reveal that the growth of disturbances registered behind the roughness for case

HR1.0VE a is associated with a mode SL instability, while for cases HR1.0AE a

and HR1.0ÆE a the wake instability is driven by modes VL and VC for F = 0.06

and F = 0.14, respectively. It is interesting to note that for internal type V dis-

turbances the dominant wake mode for F = 0.14 is mode VC, while mode SL

dominates for external disturbances of the same type. The streamwise evolution

of Iv
η , shown in figures 3.22 and 3.23, can be used to estimate the growth rates

of the most unstable wake modes. The growth rate of mode VL at F = 0.06 is

−αi ≈ 0.029 while for mode VC at F = 0.14, −αi ≈ 0.027. On the other hand, the

growth of mode SL is −αi ≈ 0.012 for F = 0.06 and −αi ≈ 0.010 for F = 0.14.

Sinuous and varicose instability modes were also found recently by Choudhari

et al. (2009, 2012) growing in the wakes of an array of ramp trips and diamond

shaped roughness elements in a M∞ = 6.0 boundary layer. Contrary to what was

found in this work, their bi-global eigenvalue analysis shows that sinuous modes
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are more unstable than varicose ones. The roughness Reynolds number considered

by Choudhari et al. (2012) in the case of diamond shaped trips was Reh = 567

(for a hot wall), higher than that considered here. As will be shown in chapter 4,

for Reh = 726 the dominant linear instability seems to be of sinuous type.

A possible explanation for the excitation of different wake instability modes (modes

SL, VL and VC) under different disturbance fields is provided in figure 3.25, which

gives contour plots of the real part of û in a x-z plane at y = 0.9. The excitation of

varicose modes, found to be dominant for internal and external type A and type Æ

disturbances, seems to be related to the high amplitude two-dimensional (ξ = 0)

x

z

0 50 100 150

0

10

20

(a)

x

z

0 50 100 150

0

10

20

(b)

x

z

0 50 100 150

0

10

20

(c)

x

z

0 50 100 150

0

10

20

(d)

Figure 3.25: Contours of the real part of û showing the excitation of wake
instability modes. The white squares indicate the roughness location. (a) F =
0.06 for case HR1.0VI a at y = 0.88, (b) F = 0.06 for case HR1.0AI a at y = 0.88,
(c) F = 0.14 for case HR1.0VE a at y = 1.2, (d) F = 0.14 for case HR1.0AE a

at y = 1.2.
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boundary-layer modes observed in these cases. At F = 0.06, boundary layer dis-

turbances with high spanwise wavenumbers dominate for case HR1.0VI a upstream

of the roughness and the wake instability downstream is sinuous, see figure 3.25(a).

The two-dimensional disturbances observed in figure 3.25(b) are ξ = 0 first mode

instabilities, which dominate at the low frequencies for type A and type Æ distur-

bances, as already shown in Section 3.3. These modes seem to be responsible for

the preferred excitation of varicose modes, as they tend to force a symmetric wake

response. A similar scenario appears for F = 0.14, as show in figures 3.25(c) and

3.25(d). This time, however, the dominant two-dimensional perturbations found

for type A and type Æ disturbances are manifestations of unstable ξ = 0 Mack

modes growing inside the boundary layer. Sinuous and varicose lateral (SL and

VL) wake modes share the same range of unstable frequencies and one mode may

be dominant over the other depending on the disturbance field upstream of the

roughness. Generic three-dimensional disturbances lead to the excitation of mode

SL, while two-dimensional disturbance fields force the wake response towards mode

VL. Mode VC, found to play an important role for 0.12 ≤ F ≤ 0.16 in the case of

disturbances dominated by sound (type A and type Æ perturbations), is closely

linked to the growth of Mack modes inside the boundary-layer. In fact, this mode

was observed in all cases except for the vortical case HR1.0VE a, which showed no

Mack mode excitation.

3.6.3 Wall temperature effects

Wall temperature effects were analysed by considering a cooled-wall flat plate with

a constant wall temperature of Tw = 3.5 and a roughness element with height

h = 1.0. The Reynolds number of the simulation (Reδ∗
0
= 4135) was reduced

compared to the hot wall cases to keep a constant roughness Reynolds number

of Reh = 331. The effects of wall cooling on the receptivity to internal type

A perturbations are analysed by comparing the growth of disturbances in cases

HR1.0AI a and CR1.0AI a. Figure 3.26 shows a comparison of the downstream

disturbance evolution inside the boundary-layer for a selection of frequencies. For

modes developing in the roughness wake, both cases show two distinct maximum

growth rates at the lower and at the higher end of the frequency spectrum. The

low frequency maximum, shown in figure 3.26(b), is obtained for F = 0.06 in

both cases, while at higher frequencies the maximum growth rate, shown in figure

3.26(c), is registered for F = 0.14 and F = 0.10 for cases HR1.0AI a and CR1.0AI a

respectively. At the low frequencies the growth rates of the modes developing in the
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Figure 3.26: Streamwise evolution of v′ disturbances inside the boundary-layer
for cases HR1.0AI a and CR1.0AI a. (a) F = 0.02, (b) F = 0.06, (c) F = 0.14
for case HR1.0AI a and F = 0.10 for case CR1.0AI a, (d) F = 0.18 for case
HR1.0AI a and F = 0.14 for case CR1.0AI a.

roughness wake are comparable in the two cases, as shown in figures 3.26(a) and

3.26(b) for F = 0.02 and F = 0.06, however the wake mode amplitudes are lower

in the cooled-wall case. The amplitude functions associated with these frequencies

reveal that modes SL and VL dominate for F = 0.02 and F = 0.06, respectively, in

both the hot and cooled cases. Mode VC drives the wake instability for F = 0.14

in the hot case and F = 0.10 in the cooled case, however the measured mode VC

growth rate for case CR1.0AI (−αi ≈ 0.018) is lower than for case HR1.0AI. It

seems that wall cooling leads to a more stable shear layer, with a linear stability

curve centred at a frequency lower than that obtained for the hot-wall case.

The disturbance growth observed for F = 0.14 for case CR1.0AI a and for F = 0.18

for case HR1.0AI a in figure 3.26(d) is associated with Mack mode instabilities

developing in the lateral laminar boundary-layer away from the roughness wake
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and follow a trend similar to that observed in the smooth flat plate case, growing

and decaying as they enter and leave their regions of instability. Cooling has a

damping effect on these modes, in agreement with theory. In the cooled wall case

the Mack mode growth rate is higher than the growth rate of the most unstable

wake mode (found for F = 0.06).

3.7 Roughness receptivity at M∞ = 2.5

As in the M∞ = 6.0 case, this section starts with a discussion of the results

obtained for two different roughness heights. The analysis of the effects of different

disturbances follows and the section ends with a discussion of the effects of cooling

on the stability of the flow over a roughness element with h = 1.0.

3.7.1 Effect of roughness height

The influence of roughness height on the M∞ = 2.5 boundary layer stability is

analysed by comparing cases HSAI b, HR0.5AI b and HR1.0AI b, where the effects
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Figure 3.27: Streamwise evolution of u′ disturbance amplitude for cases HSAI b,
HR0.5AI b and HR1.0AI b.
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Figure 3.28: Growth of u′ disturbances inside the boundary layer as a function
of frequency for case HR1.0AI b. (a) amplitude of boundary layer disturbances
at different streamwise positions, (b) maximum disturbance growth rate in the
region 73 < x < 75, calculated from Iu

η (x).

of type A perturbations on the laminar flow over roughness elements with different

heights are considered. Figure 3.27 shows the boundary layer response to frequen-

cies F = 0.02, F = 0.1 and F = 0.24. After the initial boundary-layer receptivity,

taking place immediately downstream of the inflow boundary, near-wall distur-

bances enter the upstream separation bubble and amplify. This amplification is

not evident from the wall-normal integrated norm used in figure 3.27, but might

play a role in the development of disturbances downstream of the roughness. In the

downstream separation bubble a secondary receptivity process takes place as the

mean flow changes abruptly, leading to a redistribution of disturbance energy into

modes of the new basic flow. This can be seen as a sudden amplification at about

x = 40, noticeable for F = 0.02 in figure 3.27, which is more pronounced for the

low frequencies and for the taller roughness. Both this and the subsequent linear

growth rate increase with roughness height. As the frequency increases the effect

of the small roughness weakens until it becomes completely negligible. In fact, the

F = 0.1 and F = 0.24 disturbances experience the same amplitude decay for cases

HSAI b and HR0.5AI b. The effect of the small roughness on the boundary-layer

stability is weak and is limited to F ≤ 0.04. For F > 0.04 disturbance amplitudes

decay in both cases at a rate which increases with frequency.

The roughness wake response to the incoming disturbances is drastically differ-

ent in the case of a roughness element with h = 1.0. Disturbances grow quickly
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in this region of the boundary layer, showing a growth of more than three or-

ders of magnitude between inflow and outflow boundaries, so that some of the

most unstable modes have already reached finite amplitudes before the end of the

computational domain. This leads to the increased growth rate of F = 0.02 and

F = 0.24 modes for x > 80 for case HR1.0AI b, which is due to nonlinear interac-

tions of F = 0.10, F = 0.12 and F = 0.14 disturbances. The roughness wake is

receptive to a broad frequency band, as can be seen in figure 3.28(a), which shows

the disturbance amplitude associated with the different forcing frequencies at dif-

ferent streamwise locations. At x = 30 (blue line in figure 3.28a) the disturbance

amplitudes inside the boundary layer are high at F = 0.02, corresponding to the

only unstable boundary layer mode excited, and decrease with frequency. Imme-

diately downstream of the roughness element (x = 50), low frequencies experience

a sudden amplification while the high frequencies are either damped by the rough-

ness or keep decreasing due to their inherent stability. At x = 60 a peak centred

at F = 0.08 appears in figure 3.28(a), which indicates that the roughness wake

mode with F = 0.08 has the highest receptivity. However, further downstream

higher frequencies start to grow quickly and by x = 90 disturbances in the range

0.08 ≤ F ≤ 0.14 are the most amplified. The high amplitudes shown in figure

3.28(a) at the low and high end of the frequency spectrum are a consequence of

nonlinear interactions between the most amplified linear modes. Figure 3.28(b)

gives the maximum linear growth rate, calculated form the function Iu
η (x) in the

region 60 ≤ x ≤ 80, for each frequency. Disturbances with F = 0.14 are the most

unstable, with a maximum growth rate of −αi ≈ 0.25. This is more than thirty

times higher than the smooth flat plate primary instability for the same Mach and

Reynolds numbers, for which F ≈ 0.013.

The excitation of instability modes downstream of the roughness is visualised in

figures 3.29(a) and 3.29(b), which show contours of the real part of û for the

F = 0.04 and F = 0.10 disturbance fields, for cases HR0.5AI b and HR1.0AI b

respectively. The contours are taken in x−z planes at two different distances from

the wall, y ≈ 0.75 for case HR0.5AI b and y ≈ 1.1 for case HR1.0AI b, in order to

better visualise the disturbance development in the roughness wake for the two

cases. For h = 0.5 the boundary-layer disturbances affect the lateral regions of the

roughness wake, with relatively high ∂u/∂z shear. These disturbances seem to be

neutral or slightly unstable. In case HR1.0AI b the disturbances first enter a region

of shear surrounding the downstream separation bubble and excite the highly

unstable wake modes. An interesting feature can be noted in figure 3.29(b), where

the wavelength of the disturbances upstream of the roughness increases, starting
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Figure 3.29: Contours of ℜ{û} showing the excitation of instabilities down-
stream of the roughness. The white squares indicate the roughness position.
(a) case HR0.5AI b for F = 0.04 at y = 0.75, (b) case HR1.0AI b for F = 0.1 at
y = 1.1. The two horizontal planes show the region of maximum disturbance
amplitude in the two cases.

from x ≈ 20. Generic three-dimensional boundary layer disturbances dominate

near the inflow boundary, while further downstream the disturbance field shows

the effect of the free-stream fast acoustic waves, which are able to penetrate the

boundary layer.

The nature of the instability modes developing in the roughness wake for case

HR1.0AI b is shown for F = 0.08 and F = 0.26 in figure 3.30, which gives the |û|,
|v̂| and |ŵ| amplitude functions in a crossflow plane at x = 70. The different shapes

observed for the two frequencies suggest the presence of two different instability

modes which dominate at different frequencies. For F = 0.08 the wake instability

is driven by an instability mode developing in the ∂u/∂y shear layer induced

by the pair of counter-rotating streamwise vortices at the roughness mid-plane,

while at F = 0.26 the amplitude function can be interpreted as the effect of an

instability growing in the lateral ∂u/∂z shear layers located at the edges of a

low-speed streak. Contour plots of the real part of ŵ at a y = 1.4 plane, shown

in figure 3.31, reveal that the dominant mode at F = 0.08 is characterised by

an antisymmetric w′ disturbance field, consistent with the growth of a Kelvin-

Helmholtz instability on the top part of the shear layer, leading to a varicose

deformation of the streak. In contrast, the disturbance field at F = 0.26 shows a
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Figure 3.30: Shear layer instability amplitude functions for F = 0.08 and
F = 0.26 in a crossflow plane at x = 70 (case HR1.0AI b). The red dashed line
indicates the roughness position. (a) |û| for F = 0.08, (b) |û| for F = 0.26, (c)
|v̂| for F = 0.08, (d) |v̂| for F = 0.26, (e) |ŵ| for F = 0.08, (f) |ŵ| for F = 0.26

symmetric w′, suggesting that an additional sinuous mode grows on the edge of

the streak. We refer to the mode developing in the ∂u/∂y shear layer as Varicose

Top (VT) and, by analogy with the results obtained for M∞ = 6.0, the mode

developing at the edges of the streak will be called Sinuous Lateral (SL). These

two modes appear for all frequencies, however amplitude functions indicate that

mode VT dominates for frequencies in the range 0.08 ≤ F ≤ 0.14, while mode

SL drives the transition at the higher frequencies (F > 0.14). Similarly to what

was found for M∞ = 6.0, for certain frequencies the two modes present similar

amplitudes, in which case the amplitude function becomes asymmetric. This shows

that the unstable frequency ranges for the two modes overlap and the asymmetric

shape of the amplitude function can be understood as a result of the phase-locked

superposition of the two modes, which may lead to a destructive interference on one

side and a constructive interference on the other. Choudhari et al. (2010); Kegerise

et al. (2012) recently found similar varicose and sinuous modes in the wake of a
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Figure 3.31: Showing the nature of the shear layer and the streak modes.
Contours of ℜŵ at y = 1.4. (a) F = 0.08, where the shear layer mode is
dominant, (b) F = 0.26, dominated by the streak instability, shows the sinuous
nature of the mode.

localised diamond-shaped roughness element at M∞ = 3.5. They analysed the

stability of the wake by solving the bi-global eigenvalue problem and found that

initially varicose modes have higher growth rates than sinuous modes, however the

latter become more unstable than the former further downstream. Their results

also show that sinuous modes become dominant as the roughness Reynolds number

decreases. Varicose and sinuous modes with amplitude functions similar to those

of the two-dimensional eigenfunctions were also found experimentally (Kegerise

et al., 2012).

3.7.2 Effect of disturbance type and position

Case HR1.0AI, analysed in the previous section, shows that a roughness element

with h = 1.0 promotes transition by introducing a highly unstable wake. The most

dangerous instability modes are characterised by frequencies about one order of

magnitude higher than the most unstable smooth flat plate boundary layer modes

and their grow rate is more than thirty times higher. In this section we consider

the same flow configuration (HR1.0 b) to analyse the modifications introduced by

the different inflow disturbances on the flow instability.



68 Chapter 3 Small disturbance receptivity due to roughness

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

x

Iu η
(x

)

 

 

F = 0.08

HR1.0VI b

HR1.0AI b

HR1.0ÆI b

HR1.0VE b

HR1.0AE b

HR1.0ÆE b

(a)

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

x

Iu η
(x

)

 

 

F = 0.10

HR1.0VI b

HR1.0AI b

HR1.0ÆI b

HR1.0VE b

HR1.0AE b

HR1.0ÆE b

(b)

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

x

Iu η
(x

)

 

 

F = 0.12

HR1.0VI b

HR1.0AI b

HR1.0ÆI b

HR1.0VE b

HR1.0AE b

HR1.0ÆE b

(c)

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

x

Iu η
(x

)

 

 

F = 0.14

HR1.0VI b

HR1.0AI b

HR1.0ÆI b

HR1.0VE b

HR1.0AE b

HR1.0ÆE b

(d)

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

x

Iu η
(x

)

 

 

F = 0.18

HR1.0VI b

HR1.0AI b

HR1.0ÆI b

HR1.0VE b

HR1.0AE b

HR1.0ÆE b

(e)

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

x

Iu η
(x

)

 

 

F = 0.24

HR1.0VI b

HR1.0AI b

HR1.0ÆI b

HR1.0VE b

HR1.0AE b

HR1.0ÆE b

(f)

Figure 3.32: Streamwise evolution of disturbance amplitude for cases
HR1.0VI b, HR1.0AI b and HR1.0EI b. (a) F = 0.08, (b) F = 0.1, (c) F = 0.12,
(d) F = 0.14, (e) F = 0.18, (f) F = 0.24.
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Figure 3.33: Comparing the growth rates of mode VT and mode SL. The
plot gives growth rate as a function of streamwise distance, calculated at the
roughness centreline plane.

Figure 3.32 shows the u′ disturbance amplitude growth for a selection of frequencies

inside the boundary layer for cases HR1.0VI b, HR1.0AI b, HR1.0ÆI b, HR1.0VE b,

HR1.0AE b and HR1.0ÆE b. Case HR1.0VI b does not show earlier transition de-

spite the initial transient growth, which induces vortical waves near the boundary

layer edge and takes the total disturbance amplitude to levels considerably higher

than those obtained in the other cases. These waves affect the near wall region

only marginally, as they follow the boundary layer edge while travelling down-

stream. In addition, their distance from the wall and rate of decay both increase

with frequency. There seems to be a correlation between this behaviour and the

decay of shear layer mode amplitudes with frequency seen in case HR1.0VI b, es-

pecially since the shear layer instability for case HR1.0VE b, where no transient

growth is recorded, does not show a strong frequency dependence. For frequencies

F < 0.14 the boundary layer response downstream of the roughness element is

similar in all cases, with the exception of case HR1.0VE b, despite the different up-

stream disturbance amplitudes. This aspect can be explained by considering that

the wall-normal integrated norm takes into account the amplitude of disturbances

developing near the boundary layer edge. The wake response, however, seems to

be driven mainly by the near wall disturbances. Despite the similar amplitudes,

subtle differences can be observed in the growth rates of disturbances downstream

of the roughness for this frequency range, which will be analysed in more detail

later.

A clear discrepancy in the amplitude of disturbances developing in the roughness
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wake appears for F ≥ 0.14, where type A perturbations always lead to higher

amplitudes, followed by type Æ and type V disturbances. Interestingly, this hap-

pens with frequencies for which the near wall disturbance field is dominated by

the free-stream fast acoustic waves in all cases. In addition, in the case of type

A and type Æ disturbances the wake response is identical for external and inter-

nal perturbations when F > 0.14, although the total boundary layer disturbance

amplitudes are different upstream of the roughness. Therefore, for the high fre-

quencies, the excitation of wake instability modes is determined by the level of

fast acoustic waves in the free-stream. This, in fact, explains the different wake

mode amplitudes recorded for the different cases. At the high frequencies, the fast

acoustic waves lead to the excitation of mode SL.

Overall, the range of unstable frequencies is the same for all cases. A deeper

analysis of the boundary layer response to the different disturbances for F ≤ 0.14,

however, shows differences in the growth rates of some of the most unstable modes,

which may be explained as the influence of the superposition of modes VT and SL

on the Fourier amplitudes calculated from the DNS data. For example, at F = 0.6

the disturbance growth rate is slightly higher for cases HR1.0VI b and HR1.0ÆI b

compared to case HR1.0AI b, while at F = 0.14 disturbances grow faster for cases

HR1.0VI b and HR1.0AI b than for case HR1.0ÆI b. This behaviour correlates

with the different amplitudes of modes VT and SL found for the different cases,

and indicates that these two modes grow at different rates. Growth rates can be

extracted by comparing the growth of v′ and w′ disturbances at the roughness

mid plane, which is also the symmetry plane for mode VT. In this region w′

disturbances follow the growth of mode SL and are not affected by the mode VT,

which, on the other hand, determines the v′ disturbance field. The growth rates

of both modes peak at F ≈ 0.14. As shown in figure 3.33, at F = 0.14 mode

VT grows, on average, about 17% faster than mode SL. It seems that any generic

boundary layer disturbance leads to the excitation of both mode SL and mode

VT. Contrary to what was found for M∞ = 6.0, no excitation of mode VL can

be observed for M∞ = 2.5. This seems to be due to the absence of ξ = 0 modes

in the forced disturbances in this case and indicates that the wake tends to select

mode SL over mode VL, as was already suggested during the discussion of the

M∞ = 6.0 results.
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3.7.3 Wall temperature effects

Wall temperature effects were analysed by considering a flat plate with a constant

wall temperature equal to the free-stream temperature and a roughness element

with height h = 1.0. The Reynolds number of the simulation (Reδ∗
0
) was reduced

in this case to keep the same roughness Reynolds number (Reh) of the hot-wall

cases. The computation of the laminar flow around the roughness element be-

comes particularly challenging under these flow conditions. This is because the

cold temperature near the wall leads to high local Mach numbers, which trans-

lates for example into a stronger shock developing at the roughness leading edge.

Therefore, to resolve both the shock and the high gradients dictated by the sharp

roughness, the grid was substantially refined both in the streamwise and spanwise

directions compared to the hot-wall cases. Despite this, no steady laminar solu-

tion was found. In fact, the boundary layer undergoes a strong transition process

without the need for external disturbances. Close inspection of the flow field shows

the development of self-sustained oscillations in the roughness-induced upstream

separation bubble, shown in figure 3.34 as contours of v-velocity at y = 0.4. These

propagate downstream and feed the instability of the shear layer induced by the

roughness. The same qualitative behaviour was found for two different wall tem-

peratures, namely Tw = T∞ (reported in figure 3.34) and Tw = 1.5× T∞, whereas

for Tw = Tad = 2.055×T∞ the flow was steady in the absence of the inflow distur-

bances. It is likely that the disturbances developing in the upstream bubble in the

cooled wall cases come from the development of an absolute instability developing

in the separated region, which might be seen as an upstream near wall heated

jet. However, further analysis would be needed before definite conclusions can be

drawn.

3.8 Synthesis and discussion of receptivity re-

sults

The parametric study performed in the previous sections has shed some light onto

the mechanisms driving the initial (linear) stages of the transition to turbulence

of M∞ = 6.0 and M∞ = 2.5 boundary layers in the presence of localised sharp-

edged roughness elements of two different heights and under the action of small

external disturbances of different types. The main study considers a fixed wall

temperature of Tw = Tad. The influence of wall cooling has also been analysed with
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Figure 3.34: Oscillations in the upstream separation bubble, shown by v-
velocity contours at y = 0.4.

one additional case per Mach number, where the roughness Reynolds number was

kept fixed to Reh = 331 and Reh = 791 for M∞ = 6.0 and M∞ = 2.5 respectively.

At the two Mach numbers considered, the roughness elements introduce changes

in the mean flow, which can lead to a drastic modification of the stability char-

acteristics of the flow depending on the roughness height considered. Of particu-

lar importance is the generation of pairs of counter-rotating streamwise vortices,

which, through the lift-up of low momentum fluid from the near wall region, give

rise to a low velocity streak surrounded by regions of high wall-normal and lateral

shear, forming the roughness wake. Separation bubbles are induced upstream and

downstream of the roughness, opening the possibility for the onset of absolute

instabilities.

The two small roughness elements considered have h = 0.5 when normalised with

the displacement thickness at the inflow of the computational domain. This cor-

responds to h/δ∗h ≈ 0.35 and h/δh ≈ 0.27 for the M∞ = 6.0 cases and h/δ∗h ≈ 0.45

and h/δh ≈ 0.22 at M∞ = 2.5. Here, δ∗h and δh are, respectively, the displacement

thickness and boundary layer thickness at the roughness streamwise location for a

clean flat plate. For both Mach numbers the results show that the effects of these

small roughness elements are weak. At M∞ = 6.0 the roughness mainly leads to

a slight enhancement of the receptivity of boundary layer modes developing away

from the wake. On the other hand, for M∞ = 2.5 roughness effects are only visi-

ble at low frequencies, for which oscillations developing in the lateral shear layers

surrounding the streak contribute to the boundary layer disturbance amplitudes.
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In both cases the effects of roughness are negligible and early transition is not

expected.

The scenario changes drastically when considering the taller roughness elements.

AtM∞ = 6.0 the roughness height compares to the local boundary layer as h/δ∗h ≈
0.71 and h/δh ≈ 0.54. For this case the computational domain encloses a region

of the boundary layer where both first and second mode instabilities develop.

In addition to these, the results highlight the presence of three unstable modes

developing in the roughness wake, named here as modes SL (Sinuous Lateral),

VL (Varicose Lateral) and VC (Varicose Centred). Both modes SL and VL are

characterised by the growth of instabilities in the lateral shear layers induced by

the roughness in its wake and lead to a sinuous and a varicose deformation of the

streak, respectively. Mode VC also leads to a varicose streak deformation, however

its origin is not clear. Generic three-dimensional boundary layer disturbances

lead to the excitation of mode SL. In the presence of two-dimensional boundary

layer modes, however, the roughness wake response is forced towards the varicose

modes, which are also more unstable. Mode VC appears for 0.12 ≤ F ≤ 0.16 and

seems to be closely linked to the Mack modes developing in the undisturbed flow

regions away from the roughness wake. Mode VL for F = 0.06 and mode VC for

F = 0.14 grow at similar rates and are the most unstable modes observed, with

−αi ≈ 0.029 and −αi ≈ 0.027 respectively. Their excitation is more effective in

the case of disturbances dominated by sound (type A and type Æ), which are also

the perturbations leading to the highest amplitudes of two-dimensional first and

second modes. On the contrary, streamwise vorticity disturbances (type V) do

not lead to significant two-dimensional boundary layer modes, hence, in this case,

mode SL dominates. Sinuous and varicose modes were also found at M∞ = 6.0

by Choudhari et al. (2009, 2012) by eigenvalue analysis, although in their case

sinuous modes are dominant.

At M∞ = 2.5 the wake behind the roughness is highly unstable (in this case

h/δ∗h ≈ 0.89 and h/δh ≈ 0.44). Instability modes grow in the roughness wake

for all frequencies of the forcing, the most unstable of which has a frequency

F = 0.14 and growth rate −αi ≈ 0.25, which is about one order of magnitude

higher than that of the most unstable wake mode at M∞ = 6.0. A more unstable

behaviour was expected given the difference in Reh. An inspection of the mode

amplitude functions reveals that the driving instabilities grow in the lateral shear

layers placed at the sides of the low velocity streak, leading to the sinuous mode

SL, and in the shear layer along the roughness centreline, which lead to a varicose

deformation of the streak (mode VT). Contrary to what was found for M∞ =
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6.0, no VL modes have been observed, which seems to be due to the absence of

ξ = 0 modes in the inflow forcing signal. The range of unstable frequencies of

modes SL and VT overlap, however, mode VT is the most unstable and drives the

instability of the wake for 0.08 ≤ F ≤ 0.14. An important finding was that, in

the absence of boundary layer modes, the free-stream fast acoustic waves are the

only disturbances able to penetrate the boundary layer and trigger the instability

of the wake. Similar wake modes to those found in this work were also found

experimentally by Kegerise et al. (2012) at M∞ = 3.5.

Finally, all the main flow configurations analysed (HR0.5, HR1.0 and CR1.0 for

M∞ = 6.0 and M∞ = 2.5) are shown in figures 3.35(a) and 3.35(b) in the context

of the transition criteria proposed by Redford et al. (2010) and Bernardini et al.

(2012) respectively. The transition-map plane is divided into two regions by the

two black lines (critical lines) in figure 3.35, one where roughness does not have

an effect on transition (left) and one where transition is dominated by roughness

effects (right). Relative to the results obtained in this work, both the transition

criteria predict well the effect of roughness for the cases with h = 0.5 and for case

HR1.0 b. The results obtained here for case HR1.0 a suggest that early transition

is promoted by the roughness element considered. This case, however, lies well

on the left part of the transition map in figure 3.35(b) and very close to the

critical line when using the criterion proposed by Redford et al. (2010). Wall

cooling was found to lead to a more stable behaviour of the roughness wake at

M∞ = 6.0 (case CR1.0 a). This effect is predicted by the Redford’s criterion,

while Bernardini’s criterion, in fact, predicts a small destabilisation. Note that

this criterion always predicts a destabilising effect of cooling. It is interesting to

note that the predictions made by the two roughness-induced transition criteria

discussed here are mostly based on the stability characteristics of the flow behind

the roughness. However, as suggested by the results obtained here for case CR1.0 b,

additional mechanisms like for example the onset of absolute instabilities in the

separation bubble induced upstream of the roughness element can take over and

drive the transition to turbulence under certain conditions.
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Figure 3.35: Position of the numerical simulations carried out for the receptiv-
ity study relative to the transition criteria proposed by Redford et al. (2010) (a)
and Bernardini et al. (2012) (b). Circles indicate hot wall cases with h = 1.0,
triangles indicate cooled wall cases with h = 1.0 and squares indicate hot wall
cases with h = 0.5. Red symbols are for the M∞ = 6.0 cases and blue symbols
for the M∞ = 2.5 cases.





Chapter 4

Nonlinear stages in supersonic

roughness-induced transition1

The parametric study carried out in the previous chapter has clarified the mecha-

nisms responsible for the receptivity and initial linear growth of instability modes

in the roughness wake. As these modes grow, reaching finite amplitudes, nonlinear

interactions become important and disturbances start interacting with each other

and with the mean flow, leading to a breakdown into turbulence. In this chapter

we concentrate on the final stages of transition to turbulence, where nonlinear

processes dominate. We analyse the mechanisms responsible for the breakdown to

turbulence and study the development of a turbulent wedge behind the roughness

element by performing direct numerical simulations of the compressible Navier-

Stokes equations (2.2). The study also analyses how the breakdown process and

the turbulent wedge evolution may be modified by the interaction between the

boundary layer and an impinging oblique shock. The chapter starts with a de-

scription of the numerical simulations carried out, given in section 4.1, followed

by a discussion of the results obtained for the roughness induced breakdown to

turbulence at M∞ = 6.0 and M∞ = 2.5, provided in sections 4.2 and 4.3 respec-

tively. Finally, a comparison between the M∞ = 6.0 and M∞ = 2.5 results and a

discussion of the main findings are provided in section 4.4.

1Part of this chapter was presented at 28th International Symposium on Shock Waves, 2011
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NL6.0 NL6.0S NL2.5 NL2.5S

Mach number 6.0 6.0 2.5 2.5
Reδ∗

0
14000 14000 3300 3300

Reh 726 726 791 791
Re∗h 719 719 788 788
Wall temperature, Tw 7.022 7.022 2.055 2.055
Shock generator angle (degrees) 0.0 1.70 0.0 1.93
Lx×Ly×Lz 300×20×50 300×20×50 250×20×60 250×20×60
Grid resolution, ∆x+, ∆y+min, ∆z

+ 4.0, 0.50, 1.70 6.6, 0.8, 2.8 6.3, 0.7, 2.6 7.5, 0.9, 3.1
Observation period, Ts = T ∗

s U
∗
∞/δ

∗
0 2100 2100 2100 2100

Sampling frequency, fs = f ∗
s δ

∗
0/U

∗
∞ 0.075 0.1 0.1 0.1

Time step, ∆t = ∆t∗U∗
∞/δ

∗
0 0.015 0.02 0.02 0.02

Table 4.1: Flow conditions, simulation parameters, grid resolution and sampling information. Note that the wall temperature is equal
to the laminar adiabatic wall temperature in all cases. The asterisk in Re∗h indicates that the kinematic viscosity is taken at the wall.
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4.1 Numerical simulations

In this second part of the study of supersonic roughness-induced transition to tur-

bulence we perform a set of direct numerical simulations in which the boundary

layer undergoes all the transition stages, from the initial linear evolution of distur-

bances to the final breakdown to turbulence. As for the receptivity study presented

in chapter 3, the investigations are carried out for M∞ = 6.0 and M∞ = 2.5 flat

plate boundary layers, with an isolated roughness element of height h = 1.0. In

order to follow the boundary layer all the way to turbulence, we use a large compu-

tational domain (domain A in figure 2.1), the dimensions of which are provided in

Table 4.1 along with additional details of the numerical simulations carried out for

this part of the study. As explained in section 2.2.2, the domain sizes were chosen

to accomodate the turbulent wedge growth in all directions. A total of four cases

were carried out for the analysis presented here. Cases NL6.0 and NL2.5 deal

with the breakdown to turbulence at M∞ = 6.0 and M∞ = 2.5 respectively, while

the effects of a shock-wave/boundary-layer interaction (SBLI) in the transitional

region of the boundary layer are analysed with cases NL6.0S and NL2.5S. For

the M∞ = 6.0 cases the simulation Reynolds number Reδ∗
0
= 14000 was increased

compared to the receptivity study in order to obtain breakdown to turbulence

within the computational domain. This leads to a roughness Reynolds number of

Reh = 726. The flow conditions for the M∞ = 2.5 cases are the same as those

considered for the receptivity study, for which Reh = 791.

The numerical grids employed were designed to resolve both the laminar flow

around the sharp-edged roughness element and the wedge of turbulence developing

in the downstream region. Computational domain sizes and grid resolution in

viscous wall units are reported in Table 4.1, while a more detailed description of

the numerical grids employed in the different cases is given in Table 4.2. Grid

generation follows the procedure explained in section 2.2.6, whereby regions of

constant grid spacing are joined by ninth degree polynomials. Streamwise and

spanwise grid spacings around the roughness element are the same as those used

for the receptivity study. The values of ∆x+, ∆y+min and ∆z+, calculated near the

roughness mid-plane and the outflow boundary of the computational domain, in a

region of turbulent flow, are better than most fully resolved DNS studies (see for

example Pirozzoli et al., 2004; Muppidi & Mahesh, 2012). The small ∆x+, ∆y+min

and ∆z+ values obtained for case NL6.0S are due to the fact that the boundary

layer does not reach a fully turbulent state by the end of the computational domain,

as will be shown later. As reported in Table 4.1, case NL6.0S also requires a
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Case Block Nx Ny (nr
y) Nz by ∆x ∆z

NL6.0
NL6.0S

B1 245 205 ( 57 ) 119 3.96 [0.30, 0.06] 0.05
B2 99 149 ( - ) 119 3.96 0.06 0.05
B3 2062 205 ( 57 ) 119 3.96 [0.06, 0.12] 0.05
B4 245 205 ( 57 ) 361 3.96 [0.30, 0.06] [0.05, 0.15, 0.05]
B5 99 205 ( 57 ) 361 3.96 0.06 [0.05, 0.15, 0.05]
B6 2062 205 ( 57 ) 361 3.96 [0.06, 0.12] [0.05, 0.15, 0.05]

NL2.5
NL2.5S

B1 245 222 ( 61 ) 119 3.94 [0.30, 0.06] 0.05
B2 99 162 ( - ) 119 3.94 0.06 0.05
B3 1645 222 ( 61 ) 119 3.94 [0.06, 0.12] 0.05
B4 245 222 ( 46 ) 428 3.94 [0.30, 0.06] [0.05, 0.15, 0.05]
B5 99 222 ( 46 ) 428 3.94 0.06 [0.05, 0.15, 0.05]
B6 1645 222 ( 46 ) 428 3.94 [0.06, 0.12] [0.05, 0.15, 0.05]

Table 4.2: Computational grids. Nx, Ny and Nz are the number of points in
the streamwise, wall-normal and spanwise directions per block, while nr

y is the
number of points for 0 ≤ y ≤ h. The values of ∆x indicate the grid spacing at
the beginning and at the end of the block. The multiple values of ∆z indicate
spanwise grid spacings at the beginning, at the centre and at the end of the
domain respectively.

smaller time step than that used for the other three cases due to the appearance

of strong contact discontinuities in the initial breakdown region near the sides of

the turbulent wedge. A TVD scheme (Yee et al., 1999), coupled with the modified

Ducros (Ducros et al., 1999) sensor given in 2.9, was used starting from x = 70, in

the numerical simulations presented here in order to capture contact discontinuities

occurring in the transitional region of the boundary layer shortly after breakdown

to turbulence and to resolve the imposed shocks in the cases with SBLI.

In all cases the transition process is initiated by subjecting the laminar flow to an

acoustic disturbance given by equation (2.13). For both the Mach numbers con-

sidered, the frequency band of the forced perturbations (F = 0.06− 0.4) includes

the range of most unstable frequencies identified during the receptivity study. The

amplitude of the forcing function was increased to a = 6×10−5 (from a = 2×10−6

used in the previous chapter) in order to move the point of breakdown to turbu-

lence upstream, while having a clear linear stage of disturbance growth in both

cases.
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4.2 Roughness-induced breakdown to turbulence

at M∞ = 6.0

The discussion of the results obtained for the M∞ = 6.0 case begins with a de-

scription of the boundary layer transition to turbulence. This will be followed by

an investigation into the mechanisms leading to breakdown to turbulence after

the linear growth of disturbances in the roughness wake and a discussion aimed at

clarifying the main features of the lateral spreading of turbulence after breakdown.

Finally we present results that shed some light into the flow dynamics leading to

an acceleration of the transition process in the presence of an interaction between

an oblique shock wave and a transitional boundary layer.

4.2.1 Main features of the laminar-turbulent transition pro-

cess

Before entering upon a discussion of the main feature of the boundary layer after

breakdown to turbulence, it is instructive to analyse the modifications introduced

by the Reynolds number increase from Reδ∗
0
= 8200 (Rek = 331) considered for

the receptivity study to Reδ∗
0
= 14000 (Rek = 726) considered here, on the lami-

nar flow around the roughness, given that small changes in the laminar basic flow

may greatly affect the linear growth of disturbances. The main basic flow modifi-

cation introduced by the variation of Reynolds number is shown in figures 4.1(a)

and 4.1(b), which show shaded contours of streamwise vorticity superimposed by

line contours of uS :=
√
(∂u/∂y)2 + (∂u/∂z)2 highlighting regions of high de-

tached shear, for cases NL6.0 and HR1.0 a (the equivalent case from the previous

chapter) respectively. The pair of counter-rotating streamwise vortices induced by

the roughness leads, in both cases, to a redistribution of the vorticity field and

the generation of regions of high detached shear. As evidenced by the receptivity

study, the shear layers forming the roughness wake play a crucial role in the linear

stages of transition as they sustain the growth of convective instabilities. In the

high Reynolds number case the roughness-induced vortices are stronger than in

the low Reynolds number case and lead to thinner and more intense (and hence

more unstable) shear layers. Based on these observations, the linear growth of

disturbances is expected to be faster for case NL6.0 than for case HR1.0 b. In

addition to this, an increase in Reynolds number also leads to larger separation
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Figure 4.1: Contours of streamwise vorticity (ωx) in a crossflow plane placed
40 displacement thicknesses downstream of the roughness (shaded contours),
showing the modifications introduced on the roughness wake by the Reynolds
number increase. Contours of uS (white lines) show regions of high detached
shear. (a) case NL6.0 (Reh = 726, uS = 0.38, 0.74, 1.1), (b) case HR1.0 b

(Reh = 331, uS = 0.65, 1.025, 1.4). Different uS levels were used to highlight
the structure of the high shear layers in the two cases.

bubbles immediately upstream and downstream of the roughness. Large separa-

tion bubbles may lead to the onset of absolute instabilities, although this was not

the case here.

Having indentified the main differences in the basic laminar flow between cases

NL6.0 and case HR1.0 a we now focus on case NL6.0 alone. Figures 4.2(a)

and 4.2(b) give instantaneous temperature contours in a vertical plane along the

roughness centreline and in a horizontal plane at y = 1.2, respectively, showing

a general view of the full transition to turbulence for case NL6.0. Finite ampli-

tude disturbances, indicating the nonlinear development, are visible starting from

x ≈ 150. Further downstream, mixing of hot and cold fluid increases gradually,

indicating that the initially laminar boundary layer transitions to a chaotic state.

The state of the boundary layer at different streamwise positions is given more

quantitatively in figure 4.3 through the time averaged skin friction, calculated

using non-dimensional variables as

cf :=
2µw

Reδ∗
0

∂u

∂y
|w, (4.1)

and plotted at three different locations across the span. Breakdown to turbulence

leads to a gradual rise in skin friction, visible in figure 4.3 for x > 200, which is

similar at all three spanwise positions and continues up to the end of the com-

putational domain, indicating that transition is not complete. The differences in

cf registered between the sides and the centre of the roughness are the effect of

the roughness induced streamwise vortices, which lift-up low momentum near-wall
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Figure 4.2: Contours of instantaneous temperature. The red squares indicate
the roughness position. (a) side view at the roughness mid-plane (z = 25), (b)
top view in a horizontal plane at y = 1.2.

0 50 100 150 200 250 300
−1

0

1

2
x 10

−3

x

c f

 

 
z = 23
z = 25
z = 27

Figure 4.3: Streamwise evolution of time-averaged skin friction at three posi-
tions across the span.

fluid at the roughness mid-plane and push fast moving flow towards the wall near

the sides of the wake. The effect of these vortices on the mean flow is more promi-

nent in the laminar regions, however it appears to remain significant also after

breakdown to turbulence, as can be observed more clearly in figure 4.4 showing

contours of the time-averaged v-velocity in a crossflow plane at x = 292, and leads

to a thicker boundary layer at the roughness mid-plane (see the u = 0.99 contour

in figure 4.4).

Figures 4.5(a) and 4.5(b) show contours of wall normal velocity gradient and tem-

perature gradient at the wall (y = 0), giving an indication of the effects introduced

by the isolated roughness element on the wall heat transfer. The increased wall

shear stress induced by the pair of counter-rotating streamwise vortices at the sides

of the roughness wake (see high ∂u/∂y regions near z = 23 and z = 27) takes the
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Figure 4.4: Contours of time averaged v-velocity (green for negative and red
for positive) in a crossflow plane at x = 292 showing how the upwash generated
by the roughness induced streamwise vortices near the roughness mid-plane
(z = 25) persists after breakdown to turbulence. The white line indicates the
local boundary layer thickness (u = 0.99) and the dashed yelow square shows
the roughness position.

near wall fluid to temperatures higher than the laminar adiabatic-wall temperature

(see high ∂T/∂y regions near z = 23 and z = 27), used here for the constant tem-

perature wall boundary condition. As expected, transition to turbulence leads to

a temperature increase near the wall, visible as high ∂T/∂y near x = 230 in figure

4.5(b), associated with the increased friction caused by the breakdown to turbu-

lence. In the same transitional boundary layer regions, unsteady pressure loads

are also high, as expected. This is shown in figure 4.5(c) as contours of the rms of

the fluctuating pressure at the wall, normalised by the free-stream pressure. Peak

values are found at about x = 230 and z = 28, immediately downstream of the

beginning of breakdown to turbulence, where the mean wall-pressure fluctuations

reach amplitudes of about 15% of the free-stream pressure, and decay down to

about 8% of the free-stream pressure as the flow evolves towards a turbulent state

(note that the flow behind the roughness is still transitional at the computational

domain outflow boundary).

4.2.2 Mechanisms responsible for the breakdown to tur-

bulence

As shown in the previous section, the interaction of small disturbances with the

laminar flow around a sharp-edged isolated roughness element at M∞ = 6.0 leads

to a breakdown to turbulence characterised by the generation of a turbulent wedge

behind the roughness element. More insight into the mechanisms leading to the

laminar-turbulent transition can be gained by looking more closely at the evolution

(both linear and nonlinear) of disturbances in the roughness wake. Figures 4.6(a)
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Figure 4.5: Effect of the isolated roughness, and the induced transition to
turbulence, on the wall heat transfer and wall pressure fluctuations. (a) con-
tours of wall-normal mean velocity gradient, (b) contours of wall-normal mean
temperature gradient, (c) contours of the rms of the fluctuating wall-pressure
normalised by free-stream pressure.

to 4.6(c) show, respectively, the streamwise variation of the maximum u′rms, v
′
rms

and w′
rms inside the boundary layer at three different positions across the span,

namely z = 23, z = 25 (the roughness mid-plane) and z = 27. Shortly after enter-

ing the roughness wake, disturbances grow in the lateral wake regions, particularly

u′ and v′-velocity fluctuations. While significant growth of u′rms and v
′
rms appears

from about x = 70 at z = 27 and about x = 80 at z = 23, at the roughness

mid-plane (z = 25) disturbance growth is only registered for x > 100. Growth

rates are found to be higher at z = 27 than at the other two spanwise positions

considered for x < 130, particularly for the u′ and v′ fluctuations. The absence

of u′ and v′ disturbance growth for x < 100, together with the growth of w′
rms at

the same spanwise position for 60 < x < 85, seen in figure 4.6(c), suggests that

the initial instability is dominated by a sinuous wake mode (this aspect will be

shown more clearly later). The growth of disturbances slows down for x ≥ 130
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at z = 27 and saturation is reached at about x = 150. Further downstream, near

x = 200, all the disturbances growing in the wake of the roughness saturate, in-

dicating the breakdown to turbulence. Disturbance saturation divides the linear

and weakly nonlinear stages of transition from the final stage before turbulence,

dominated by nonlinear interactions. The beginning of this final stage (x ≈ 200)

coincides with the beginning of the skin friction rise towards the fully turbulent

value, as shown in figure 4.3. Figure 4.6(d) gives a comparison of the streamwise

growth of the maximum (over y and z) u′, v′ and w′ disturbances inside the rough-

ness wake. Fluctuations of the u-velocity component are dominant throughout

the transition region. For x < 200, in the linear and weakly nonlinear transition

stages, v′rms > w′
rms. In fact, u′ and v′ disturbances grow at a higher rate than

w′ fluctuations. In the strongly nonlinear stage (x > 200), however, the ampli-

tude of w′ fluctuations becomes higher than that of v′ fluctuations. The pattern

u′rms > w′
rms > v′rms, typical of fully developed turbulent flows, indicates that the

boundary layer is approaching a fully turbulent state.

The flow dynamics leading to breakdown to turbulence are visualised in figure

4.7, which shows contours of u′ = u − u and u′rms at different crossflow planes

along the streamwise direction. As already reported during the receptivity study

in Chapter 3, disturbances enter the wake of the roughness and excite instability

modes growing in regions of high detached shear surrounding the roughness in-

duced low velocity streak. This aspect can be inferred from figure 4.7(a) by noting

that u′rms maxima appear in regions of high uS. At the same streamwise position

the antisymmetric u′ disturbance field shown in figure 4.7(b) suggests that the

linear instability of the boundary layer is driven by a sinuous mode growing in

the wake of the roughness. The shape of the wake changes as it evolves down-

stream, while disturbances grow in amplitude, see figure 4.7(c), and at x = 94.5

the dominant wake mode is still of the sinuous type, as shown in figure 4.7(d).

Further downstream, the sequence provided in figures 4.7(e), 4.7(g) and 4.7(i),

indicates that a u′rms peak develops near z = 27 and y = 0.9 and quickly grows in

the streamwise direction, eventually leading to breakdown to turbulence. As can

be observed in figures 4.7(f), 4.7(h) and 4.7(j), starting from about x = 115 the

instantaneous u′ disturbance field can be seen to clearly depart from the antisym-

metric behaviour shown further upstream. As already seen in figure 4.6, the high

amplitude u′ disturbances developing in the lateral wake region near z = 27 grow

faster than disturbances developing in other regions of the wake. This behaviour

may be understood as the effect of the linear superposition of non-normal wake
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Figure 4.6: Linear and nonlinear evolution of disturbances in the roughness
wake. The grey rectangle indicates the roughness position. (a) maximum u′rms

inside the boundary layer, (b) maximum v′rms inside the boundary layer, (c)
maximum w′

rms inside the boundary layer, (d) maximum (over y and z) rms
velocity fluctuations inside the roughness wake.



88 Chapter 4 Nonlinear stages in supersonic roughness-induced transition

z

y

 

 
u′

rms × 102

20 22 24 26 28 30
0

1

2

3

4

0 0.1 0.2 0.3

(a) x = 82.5

z

y

 

 

u′ × 102

20 22 24 26 28 30
0

1

2

3

4

−0.5 0 0.5

(b) x = 82.5

z

y

 

 
u′

rms × 102

20 22 24 26 28 30
0

1

2

3

4

0 0.2 0.4 0.6

(c) x = 94.5

z

y
 

 

u′ × 102

20 22 24 26 28 30
0

1

2

3

4

−0.5 0 0.5

(d) x = 94.5

z

y

 

 
u′

rms × 102

20 22 24 26 28 30
0

1

2

3

4

0.5 1 1.5 2

(e) x = 115.5

z

y

 

 

u′ × 102

20 22 24 26 28 30
0

1

2

3

4

−2 0 2

(f) x = 115.5

z

y

 

 
u′

rms × 102

20 22 24 26 28 30
0

1

2

3

4

0 2 4 6

(g) x = 142.5

z

y

 

 

u′ × 102

20 22 24 26 28 30
0

1

2

3

4

−5 0 5

(h) x = 142.5

z

y

 

 
u′

rms × 102

20 22 24 26 28 30
0

1

2

3

4

0 5 10

(i) x = 184.5

z

y

 

 

u′ × 102

20 22 24 26 28 30
0

1

2

3

4

−10 0 10

(j) x = 184.5

Figure 4.7: Visualisation of the downstream development of roughness wake
instabilities. (a), (c), (e), (g), (i) contours of u′rms (shaded), superimposed by
uS = 0.65, 1.025, 1.4 contours and (b), (d), (f), (h), (j) contours of u′.
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modes, but it could also be a consequence of the onset of weakly nonlinear inter-

actions of localised perturbations. In practice, the former mechanism may quickly

lead to the latter. We also note that the quick change in wake shape observed

from x = 82.5 to x = 94.5 (see figures 4.7a and 4.7c) may introduce considerable

non-parallel flow effects, which can favour the onset of algebraic growth by induc-

ing a redistribution of the disturbance energy into the modes of the modified basic

flow.

An insight of the onset of significant nonlinear interactions, leading to a modifi-

cation of the basic laminar flow, can be gained by making use of the asymmetric

growth of disturbances observed in the roughness wake, together with the perfect

symmetry of the basic laminar flow about the roughness mid-plane. The idea is

to calculate the streamwise variation of an asymmetry parameter, defined here as

Sφ(x) := max
0≤y≤δ99

{∣∣∣∣
∫ Lz

0

|φ (x, y, z) | cos(zπ/Lz)dz

∣∣∣∣
}
, (4.2)

where φ can be any time-averaged flow variable, which becomes greater than zero

in regions where the time-averaged flow becomes asymmetric about the roughness

mid-plane. In other words, Sφ grows as the mean flow departs from the basic

laminar flow. Figure 4.8 shows the streamwise variation of Sφ for φ = ρ, u, v, w,

with the streamwise variation of maximum v′rms inside the roughness wake (blue

line) plotted for reference. The asymmetry parameter rises from zero as the forced

disturbances hit the boundary layer near x = 25 and remains approximately con-

stant until about x = 100, where it starts a fast growth before reaching another

plateau near x = 200. Figure 4.8 suggests that nonlinear interactions become

significant only after x ≈ 100, considerably downstream of the initial growth of

disturbances in the roughness wake (see the evolution of maximum v′rms in figure

4.8). It is argued that the linear instability of the wake is driven by the growth of a

sinuous wake mode and that the asymmetry in the disturbance field initially grows

due to linear effects (e.g. non-parallel flow effects followed by a superposition of

non-normal modes), which give way to nonlinear interactions as the disturbances

reach finite amplitudes further downstream.

The growth of sinuous instability modes in the wake of the roughness was also

observed in the receptivity study presented in section 3.6. The investigation, how-

ever, also revealed the presence of varicose instability modes (i.e. modes VL and

VC), which are closely linked to the presence of two-dimensional first modes and

second (Mack) modes in the disturbance field surrounding the roughness wake.

At least for Reδ∗
0
= 8200, varicose modes are slightly more unstable than sinuous
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indication of the onset of considerable nonlinear interactions. The blue line
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Figure 4.9: Development of two-dimensional waves inside the boundary layer.
Contours of fluctuating v′-velocity in a horizontal plane at y = 0.3.

Figure 4.10: Isosurfaces of Q = 0.0055, coloured by streamwise velocity, show-
ing the flow structures appearing during breakdown to turbulence.

ones. In the case considered here, visualisations of the disturbance field inside the

boundary layer reveal the presence of two-dimensional waves, see the contours of

v′ shown in figure 4.9, which, judging from the dominant streamwise wavenum-

bers, may well be the sign of Mack mode instabilities. These, however, are only
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evident starting from about x = 140 and do not seem to interfere with the initial

instability of the wake. This observation highlights the important role played by

the receptivity mechanisms in the laminar-turbulent transition.

The dominant flow structures appearing in the flow during the final transition

stages are shown in figure 4.10 through isosurfaces of the second invariant of the

velocity gradient tensor (Q-criterion Chong et al., 1990), given by

Q :=
∂u

∂x

∂v

∂y
+
∂u

∂x

∂w

∂z
+
∂v

∂y

∂w

∂z
−
(
∂u

∂y

∂v

∂x
+
∂u

∂z

∂w

∂x
+
∂v

∂z

∂w

∂y

)
. (4.3)

The breakdown to turbulence starts with the roll-up of the lateral shear layer at

z ≈ 27. As a result, a series of vortices become visible in figure 4.10 starting

from about x = 110, the legs of which form strong quasi-streamwise vortices and

quickly drive the flow to an unpredictable chaotic state. The opposite side of the

wake goes through a similar process, with roll-up of the lateral shear layer visible

from x ≈ 150. By about x = 200 strong quasi-streamwise vortices appear also

in this region of the wake. Further downstream strong vortex interactions lead to

the development of a wedge of transitional/turbulent flow, the features of which

will be discussed in the following section.

4.2.3 Turbulent wedge development

Following the breakdown to turbulence described above, a region of turbulent

flow appears downstream of the roughness element, forming a wedge of turbulence

which expands laterally with increasing streamwise distance. The lateral spread-

ing of turbulence in turbulent wedges is currently not well understood and the

literature on this subject is limited (Schubauer & Klebanoff, 1955; Gad-el Haq

et al., 1981; Clark et al., 1993; Zhong et al., 2003; Fiala & Hillier, 2005). The

aim of this section is to present results which will shed some new light into the

processes leading to the lateral growth of a turbulent wedge at M∞ = 6.0.

The turbulent wedge is visualised in figure 4.11(a) through an isosurface plot of

Q = 0.02. It can be seen that the edges of the wedge are populated mostly

by elongated streamwise vortices, while smaller structures can be found near the

core of the wedge. Top and crossflow views of turbulent kinetic energy (TKE)

contours, respectively at y = 1.17 and x = 281, showing the extent of the turbulent

wedge, are provided in figures 4.11(b) and 4.11(c). As expected, high TKE values

are found at the edges of the turbulent wedge, in regions where laminar flow
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(a)

(b)

(c)

Figure 4.11: Visualisation of the turbulent wedge developing downstream of
the roughness. The solid and dashed contourlines in (b) and (c) indicate, respec-
tively, TKE = 0.08 and TKE = 0.007. (a) Isosurfaces of Q = 0.02, coloured
by streamwise velocity, (b) TKE contours in the horizontal plane at y = 1.1,
(c) crossflow TKE contours at x = 281.

undergoes transition to turbulence, and in the near wall region. The solid and

dashed contourlines indicate, respectively, TKE = 0.07 and TKE = 0.008 and

clearly show the existence of a region of intermittent flow bounding the core of the

wedge. Regions of intermittent flow near the sides of turbulent wedges have been
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Figure 4.12: Measuring the lateral spreading half angle of the turbulent wedge.
The solid blue, dashed black and solid red lines are inclined at α = 2.8◦, α = 3.0◦

and α = 3.2◦ to the horizontal, respectively. (a) contours of TKE ≥ 0.07 at
y = 1.1, (b) contours of 0.06 ≤ |ωy| ≤ 0.08 at y = 1.1.

found experimentally, both at low (Schubauer & Klebanoff, 1955; Clark et al.,

1993; Zhong et al., 2003) and high speeds (Fiala & Hillier, 2005). The rate at

which the turbulent wedge grows laterally is measured as the half angle of the

wedge, which is estimated here to be α = 3.0±0.2◦. This value was obtained after

measuring the spreading angle in two different ways. The first method entails

visually measuring the lateral growth of a region of TKE ≥ 0.07 in a plan view

at y = 1.17 (where TKE is maximum) while the second method looks at the

lateral spreading of instantaneous plots of 0.06 ≤ |ωy| ≤ 0.08. The TKE and |ωy|
cut-off values were chosen since they are representative of the values attained in

the core of the wedge. The procedures are shown in figures 4.12(a) and 4.12(b),

where the solid blue, dashed black and solid red lines are inclined, respectively, at

α = 2.8◦, α = 3.0◦ and α = 3.2◦ to the horizontal. The value obtained here for the

spreading half angle of the turbulent wedge lies within the interval proposed by

Fischer (1972) for the spreading half angle of compressible turbulent spots, which

was derived from experimental data. In addition, our result agrees well with the
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spreading half angle reported by Redford et al. (2012) for a turbulent spot in a

hot wall (Tw = Tad) M∞ = 6.0 boundary layer. It is interesting to note that the

intermittent flow region (defined by TKE ≥ 0.008) surrounding the turbulent core

of the wedge grows laterally with a spreading half angle of α = 4.0 ± 0.4◦, close

to the upper limit proposed by Fischer (1972) for the Mach number considered

here. Differences in lateral growth rates between the intermittent and the fully

turbulent regions of the wedge were found in a number of experiments (Schubauer

& Klebanoff, 1955; Gad-el Haq et al., 1981; Clark et al., 1993; Zhong et al., 2003;

Fiala & Hillier, 2005). Here, the intermittent region is associated with the presence

of a mean spanwise flow from the core of the wedge to the surrounding laminar

flow, a feature which will be analysed later.

The agreement between the lateral growth rates of turbulent wedges and turbu-

lent spots makes it interesting to understand whether the mechanisms dictating

the growth of turbulent wedges are similar to those responsible for the lateral

growth of turbulent spots. Redford et al. (2012) investigated the evolution of tur-

bulent spots inM∞ = 3.0 andM∞ = 6.0 boundary layers and found, in agreement

with previous studies (see for example Gad-el Haq et al., 1981), that the dominant

lateral spreading mechanisms are twofold; destabilisation of the surrounding lami-

nar flow and lateral convection of turbulent structures from the centre of the spot

outwards. The destabilisation mechanism was found to be dominant atM∞ = 3.0,

while at M∞ = 6.0 the spot was found to grow mainly by convection. Hence, the

well documented reduction of spreading angle with Mach number was attributed

to the damping of the growth by destabilisation mechanism. Redford et al. (2012)

found that the destabilisation of the surrounding laminar flow is due to the in-

stability of lateral jets present at the edges of the spot, forced continuously by

the turbulent core of the spot. These jets are also responsible for the convection

of turbulent structures out into the laminar region of the boundary layer, and

hence play an important role in the lateral spreading of turbulence. The spanwise

flow observed by Redford et al. (2012) was characterised by lateral velocities that

reached up to 10% of the free-stream velocity. Such lateral flows near the spot

tips are generally believed to be a consequence of fluid entering the spot core at

the top and rear of the spot and exiting sideways.

The present results show that the mean flow inside the turbulent wedge is charac-

terised by the presence of quasi-streamwise vortices, believed to be responsible for

the spanwise distribution of turbulent structures. The appearance of large vortices

in the mean velocity field is shown in figure 4.13, where the time-averaged crossflow

velocity vectors are plotted over w = ±5 × 10−3 contours at different streamwise
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positions. In order to provide a more detailed visualisation the figures only show

half of the turbulent wedge. As the roughness wake breaks down into turbulence,

the pair of counter rotating streamwise vortices induced by the roughness, one of

which can be seen in figure 4.13(a) near z = 24, gain strength and two secondary

streamwise vortices appear at the two edges of the newly formed turbulent wedge.

One of these vortices is visible in figure 4.13(a) near z = 21. Further downstream,

the roughness induced streamwise vortices lose strength as the core of the wedge
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Figure 4.13: Contours of w = ±5×10−3 (red for positive and blue for negative),
superimposed by mean crossflow velocity vectors. (a) x = 241, (b) x = 277, (c)
x = 289.
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Figure 4.14: Isosurfaces of mean Q = 0.001, coloured by wall-normal distance.
The light grey lines are inclined at α = 3.0◦ to the streamwise direction.

evolves towards a fully turbulent state. Meanwhile, the two secondary vortices

become stronger and drift laterally outwards. For increasing streamwise distance

new quasi-streamwise vortices appear in succession near the edges of the turbulent

wedge, each counter rotating with respect to its neighbour. The generation of a

new vortex of opposite sign can be observed in figure 4.13(b) at about z = 18.5 and

the initial stages of the roll up of an additional vortex can be seen in figure 4.13(c)

near z = 16.5. A better visualisation of the development of large mean vortical

structures inside the turbulent wedge is given in figure 4.14 through isosurfaces

of mean Q = 0.001, coloured by wall-normal distance. The quasi-streamwise vor-

tices found at the sides of the wedge are inclined laterally at aproximately 1◦ to

the streamwise direction and sit at the boundary between turbulent and laminar

flow. It seems clear from figure 4.14 that the lateral displacement of these vortices

and the generation of new vortices both contribute to the spanwise growth of the

turbulent wedge. In fact, using the development of these structures to calculate

the lateral spreading rate of turbulence gives α ≈ 3.0◦ (see light grey line in figure

4.14), which agrees with measurements obtained from the TKE and instantaneous

vertical vorticity contours discussed earlier. The lateral drift of the secondary

vortices suggests the presence of considerable spanwise mean flow from the core
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of the wedge outwards. Some evidence of this secondary flow can be observed for

example in figure 4.13(b) near z = 23 and y = 1.0 and z = 16.5 and y = 1.0.

However, the mean lateral velocities observed here are lower than those reported

in turbulent spots studies (Wygnanski et al., 1982; Redford et al., 2012). It should

be noted that, since the wedge under consideration is transitional, the observation

period (Ts = 2100) used here for the computation of the time averages, might

not be sufficient to capture the full details of the time-averaged flow. In fact,

as will be shown in the next section and for the M∞ = 2.5 case, mean lateral

flow clearly appears in crossflow mean w-velocity contour plots in regions where

the turbulent wedge is fully developed. The other dominant mechanism of lateral

spreading observed, that is, the generation of new steady quasi-streamwise vortices

at the sides of the wedge, seems here to be simply due to the roll-up of streamwise

vorticity generated by the action of the above mentioned lateral mean flow, com-

bined with the upwash or downwash induced by the steady vortex placed at the

edge of the wedge. This mechanism always leads to the formation of successive

counter-rotating vortices.
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Figure 4.15: Flow features induced by the SBLI. (a) contours of√
(∂ρ/∂x)2 + (∂ρ/∂y)2 at the roughness mid-plane, (b)contours of instanta-

neous temperature in a horizontal plane at y = 1.2. The red squares indicate
the roughness position and the blue line shows regions of separated flow (u = 0
at the first grid point above the wall).
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Figure 4.16: Streamwise evolution of time-averaged skin friction at the rough-
ness mid-plane, showing the effect of the SBLI on the breakdown to turbulence.

4.2.4 Effects of a shock wake impinging on the transitional

boundary layer

Although interactions between shock-waves and boundary layers are a common

feature of high-speed flight, our current knowledge of the fundamental physical

mechanisms involved in unsteady shock-wave/boundary-layer interactions (SBLI)

is far from complete and a number of aerospace applications would benefit from

a deeper understanding of the subject. Most of the research efforts in this field

have been directed to the analysis of shock-waves interacting with nominally two-

dimensional turbulent boundary layers (Dolling, 2001), mainly to explain the onset

of large unsteady thermal and pressure loads induced by SBLI and the charac-

teristic low frequency unsteadiness associated with such interactions (Touber &

Sandham, 2009, 2011). However, flows over high-speed vehicles and, in particular,

inside the intakes of their air-breathing propulsion systems are very complex and

include interactions of shock-waves with three-dimensional transitional boundary

layers. The transition process at high speeds may be greatly affected by the in-

teraction with shock-waves through mechanisms that are largely unknown. The

limited number of studies available in the literature on transitional SBLI show

that for strong interactions (in the convective instability regime) small-amplitude

disturbances experience strong amplification across the shock-induced separation

bubble due to the instability of the separated shear layer (Yao et al., 2007). In ad-

dition, transitional interactions induce higher levels of unsteadiness and stronger

thermal loads than in the fully turbulent case (Benay et al., 2006; Murphree et al.,

2006).

The results presented here are aimed at shedding some light on the modifications

introduced by a relatively weak oblique shock impingement on a boundary layer
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undergoing the final stages of transition to turbulence. The interaction analysed

is highly unsteady, as the shock impinges onto the boundary layer immediately

downstream of the initial breakdown to turbulence, in a region of three-dimensional

transitional flow. As reported in table 4.1, we consider a shock generator angle

of θ = 1.70 and the shock is set to reach the wall at ximp = 180 by imposing the

appropriate jump conditions on the upper boundary of the computational domain

at x = 74.15.

Figure 4.15 provides a visualisation of the flow features induced by the SBLI. An

oblique shock can be seen to reach the edge of the boundary layer near x = 165 in

figure 4.15(a), which shows contours of
√

(∂ρ/∂x)2 + (∂ρ/∂y)2 at the roughness

mid-plane. The shocks associated with the upstream and downstream roughness

induced separation bubbles are also visible for x > 60. Figure 4.15(b) shows

temperature contours (shaded contours) on the horizontal plane at y = 1.2, su-

perimposed by u = 0 contours (blue line) at the first grid point above the wall,

showing regions of mean separated flow. The shock system is strong enough to

lead to a small separation bubble in the laminar boundary layer away from the

roughness wake, with a bubble length varying from about 30 inflow displacement

thicknesses at the edges of the computational domain to about 40 close to the

transitional region. On the other hand, the transitional region of the boundary

layer remains mostly attached, with the exception of a small region of separated

flow near the roughness mid-plane, visible near x = 160.

By comparing figure 4.15(b) with figure 4.2(b) one can already notice that the

shock moves the transition point upstream and leads to a wider turbulent wedge.

This observation is supported by the streamwise evolution of skin friction coef-

ficient, shown in figure 4.16 for three different positions across the span. It can

be seen that the shock leads to a significant reduction of the transition region

length. This effect is more evident for the two lateral positions considered, where

the skin friction rise can be seen to occur considerably further upstream (about

30 displacement thicknesses) than for the case without a shock. The skin friction

rises sharply from x ≈ 170, roughly starting from the centre of the separation

bubble, and reaches a maximum before decreasing again near the outflow bound-

ary, indicating that transition is complete. At the roughness mid-plane transition

to turbulence occurs faster than in the case without a shock, however the skin

friction rise in this region is more gradual than in the lateral positions. The

effects of the shock/boundary layer interaction on heat transfer and unsteady

pressure loads at the wall are shown in figure 4.17. Regions of high wall-normal

temperature gradient and wall pressure fluctuations appear for case NL6.0S in
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figures 4.17(b) and 4.17(d), respectively, near the sides of the roughness wake at

x ≈ 200, which are not present for case NL6.0 (see figures 4.17(a) and 4.17(c))

and correlate with the strong skin friction increase shown in figure 4.16 at the

same spanwise locations. Overall, peak values of ∂T/∂y and p′rms/p∞ registered

for case NL6.0S in the breakdown region are comparable to those observed in case

NL6.0. In the case with shock interaction the breakdown to turbulence seems to

be fixed by the shock impingement point and occurs immediately downstream of

x

z

 

 
∂T/∂y

0 50 100 150 200 250 300

0

10

20

30

40

50

−1 0 1 2 3

(a)

x

z

 

 
∂T/∂y

0 50 100 150 200 250 300

0

10

20

30

40

50

−1 0 1 2 3

(b)

x

z

 

 
p′rms/p∞

0 50 100 150 200 250 300

0

10

20

30

40

50

0 0.05 0.1 0.15

(c)

x

z

 

 
p′rms/p∞

0 50 100 150 200 250 300

0

10

20

30

40

50

0 0.05 0.1 0.15

(d)

Figure 4.17: Effects of SBLI on heat transfer and unsteady pressure loads at
the wall. Blue lines show regions of separated flow (u = 0 at the first grid point
above the wall). (a) ∂T/∂y for case NL6.0, (b) ∂T/∂y for case NL6.0S, (c)
p′rms/p∞ for case NL6.0, (d) p′rms/p∞ for case NL6.0S.
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Figure 4.18: Effect of the SBLI on the growth of disturbances inside the rough-
ness wake. White lines in (a) and (b) show uS = 0.65, 1.025, 1.4. (a), (c), (e)
case NL6.0S and (b), (d), (f) case NL6.0.
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Figure 4.19: Pressure probe at x = 210 and z = 25 showing the amplification
of low frequencies by the shock system. (a) NL6.0, (b) case NL60S.
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(d)

Figure 4.20: Comparison of the turbulent wedge structure for cases NL6.0 and
NL6.0S. The solid and dashed contourlines in (c) and (d) indicate, respectively,
TKE = 0.07 and TKE = 0.008. (a) TKE contours in the horizontal plane at
y = 1.1 for case NL6.0, (b) TKE contours in the horizontal plane at y = 1.1
for case NL6.0S, (c) crossflow TKE contours at x = 281 for case NL6.0, (c)
crossflow TKE contours at x = 281 for case NL6.0S.

the shock-induced separation bubble.

More insight into the mechanisms leading to early transition in the presence of

SBLI can be gained by analysing how the shock modifies the flow inside the wake
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Figure 4.21: Crossflow contours of mean lateral velocity. Red and green con-
tourlines show respectively w = +5 × 10−3 and w = −5 × 10−3. The dashed
white line indicates the roughness position. (a) x = 250, (b) x = 280.

of the roughness. Figure 4.18 shows crossflow contours of u′rms at three differ-

ent positions along the shock-induced separation bubble, giving a comparison be-

tween cases NL6.0S (left) and NL6.0 (right) for the growth of disturbances in the

roughness wake. It can be seen that the shock system changes the shape of the

roughness wake. By comparing figures 4.18(a) and 4.18(b), one can note that the

shock leads to the generation of lateral shear layers near the sides of the wake (see

figure 4.18(a) near z = 21.8 and z = 28.2), which appear due to the separation

induced in the surrounding laminar boundary layer. Disturbances grow rapidly in

these lateral shear layers for increasing streamwise distance, as shown in figures

4.18(c) and 4.18(e). On the other hand, figures 4.18(d) and 4.18(f) show that

in the absence of shock impingement the wake instability is contained within the

shear layers bounding the roughness induced streamwise vortices. It is therefore

believed that the lateral shear layers induced by the shock system play an active

role in the acceleration of the transition process by the SBLI. Pressure signals reg-

istered by numerical probes located at x = 210 and z = 25 (roughness mid-plane)

are shown in figures 4.19(a) and 4.19(b) for case NL6.0 and NL6.0S respectively.

The shock leads to the amplification of a rage of frequencies, however a distinctive

tone appears for F ≈ 0.02, which corresponds to the ∆F of the forced acoustic

disturbances. Flow visualisations suggest that this peak is associated with the

vortex shedding from the edge of the separation bubble. A mechanism involving

the amplification of low frequencies by the shock system was proposed by Touber
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& Sandham (2011) for turbulent SBLI. The observation made here for transitional

SBLI would need to be studied in more detail in the future.

Finally, we analyse the effects of SBLI on the development of the turbulent wedge

forming downstream of the roughness element. Figure 4.20 gives top and crossflow

views of the TKE contours, respectively at y = 1.1 and x = 281, for cases NL6.0

and ML6.0S, showing a comparison of the turbulent wedge structure. It can be

seen that the lateral spreading of turbulence is higher for case NL6.0S in a region

immediately downstream of the separation bubble (from x ≈ 190 to x ≈ 220 in

figure 4.20b), while further downstream the turbulent wedge recovers the spread-

ing rate of the case without a shock (see the fixed red line in figures 4.20a and

4.20b). The net result is a wider turbulent wedge for case NL6.0S. The agreement

in lateral growth rates between a transitional turbulent wedge (case NL6.0 ) and a

fully developed turbulent wedge (case NL6.0S ) is somewhat surprising. However,

a similar result was reported by Clark et al. (1993) for incompressible turbulent

wedges. As shown in figures 4.20(c) and 4.20(d), at x = 281 the region of intermit-

tent flow bounding the core of the wedge protrudes deeper into the surrounding

laminar boundary layer for case NL6.0S, suggesting the presence of a stronger lat-

eral flow than that observed for case NL6.0. Figures 4.21(a) and 4.21(b), showing

crossflow contours of mean lateral velocity respectively at x = 250 and x = 280

for case NL6.0S, provide evidence that, in fact, lateral jets clearly form near the

edges of the turbulent wedge as it evolves from a transitional to a fully turbu-

lent state. The average w-velocities observed in this case are about 1% of the

free-stream velocity, with instantaneous peaks reaching up to 3%. Visualisations

of the instantaneous velocity field show that lateral jets with w-velocities of the

order of 10% of the free-stream velocity appear sporadically near the edges of the

wedge. These jets, however, do not seem to contribute significantly to the lateral

spreading of turbulence. It is interesting to note that, in the case analysed in this

section, the mean lateral jets lead to the generation of steady co-rotating vortices

(see near z = 16, z = 18, z = 31 and z = 34 in figure 4.21b), similar to those one

would expect to arise from a crossflow instability.

In the light of the results presented in this section, it appears that the mechanisms

responsible for the lateral growth of turbulent wedges and turbulent spots inM∞ =

6.0 boundary layers present some similarities but also differences. In both cases,

the spanwise displacement of turbulent structures due to the presence of a lateral

flow from the turbulent core out into the laminar boundary layer seems to be the

dominant mechanism. Moreover, the results analysed here did not show any strong

evidence of the spreading by destabilisation of lateral jets, which was also found
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by Redford et al. (2012) to be almost entirely suppressed at M∞ = 6.0 (as will be

shown later, this mechanism is active atM∞ = 2.5). The present investigation also

sheds some new light into the lateral spreading mechanisms of turbulent wedges.

It appears that in the transitional stages of the wedge steady quasi-streamwise

vortices, placed at the boundary between laminar and transitional flow, play an

active role in the growth of the wedge. It is found that the mean spanwise flow

from the core of the wedge outwards induces a lateral drift of these vortices and

also participates in the generation of new structures. On the other hand, as

noted above, the appearance of steady co-rotating vortices near the sides of fully

developed turbulent wedges suggest that crossflow instability could contribute to

the lateral growth of the wedge.

4.3 Roughness-induced breakdown to turbulence

at M∞ = 2.5

In this section we discuss the results obtained for the roughness-induced transition

to turbulence in a M∞ = 2.5 boundary layer. As for the M∞ = 6.0 case discussed

in the previous sections, we first provide a description of the main features of

the time-averaged flow, followed by a discussion of the mechanisms leading to

breakdown to turbulence and a study of the evolution of the turbulent wedge

induced downstream of the roughness element as a result of the breakdown to

turbulence. The section ends with a discussion of the results obtained for an

investigation into the modifications introduced by an oblique shock impinging on

the transitional boundary layer developing downstream of the roughness element.

4.3.1 Mean flow features

In the absence of upstream disturbances, the case analysed in this section is iden-

tical to case HR1.0 b, considered for the receptivity study (see section 3.5). The

laminar flow around the roughness in this case is characterised by strong counter-

rotating streamwise vortices which give rise to a highly unstable, three-dimensional

detached shear layer, as seen in figure 3.17(c), in the wake of the roughness el-

ement. When subjected to external perturbations, the roughness wake develops

instabilities which eventually lead to breakdown to turbulence. Figure 4.22 gives

plan and side views of the transitional flow through contours of temperature. Re-

gions of high (near the roughness centreline) and low (at the sides of the wake)
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Figure 4.22: Contours of instantaneous temperature. The red squares indicate
the roughness position. (a) side view at the roughness mid-plane, (b) top view
in a horizontal plane at y = 1.2.

temperature fluid downstream of the roughness show the lift-up effect created by

the strong counter-rotating streamwise vortices. Judging from the mixing of hot

and cold fluid, breakdown to turbulence can be seen to start in the wake of the

roughness at x ≈ 110. Turbulent flow spreads laterally for increasing downstream

distance, leading to the generation of a turbulent wedge downstream of the rough-

ness.

Figure 4.23 shows the streamwise variation of the time-averaged skin friction co-

efficient at three positions across the span, namely z = 27, z = 30 (the mid-span

location) and z = 33, chosen here to represent the transitional flow behaviour at

the centre (z = 30) and at the sides (z = 27 and z = 33) of the roughness wake.

In the roughness mid-plane, the skin friction rises sharply starting from x ≈ 100

due to the breakdown to turbulence; it peaks at x ≈ 125 and decays further down-

stream as the turbulent boundary layer grows. At z = 27 and z = 33 breakdown to

turbulence leads to a gradual skin friction increase starting from x ≈ 110. The cf

values attained at these two lateral wake positions after breakdown to turbulence

are higher than those obtained at the roughness mid-plane, which indicates that

the effect of the streamwise vortices on the mean flow persists after transition,

similarly to what was found for case NL6.0.

Figures 4.24(a) to 4.24(c) show contours of, respectively, ∂u/∂y, ∂T/∂y and p′∞/p∞

at the wall. An increase in skin friction near the wall translates into an increased
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Figure 4.23: Streamwise evolution of time-averaged skin friction at the different
positions across the span.

wall-normal temperature gradient. Figures 4.24(a) and 4.24(b) show the footprints

of the pair of counter-rotating streamwise vortices induced by the roughness el-

ement (near z = 27 and z = 33) and the location of the initial breakdown to

turbulence, visible near x = 110 where ∂T/∂y reaches its peak. A relatively

large region of negative wall-normal temperature gradient, which can be seen near

x = 130 in figure 4.24(b), appears as cold free-stream fluid is pushed towards the

wall by the breakdown of the boundary layer. Breakdown to turbulence also leads

to a local increase of unsteady pressure loads, as shown in figure 4.24(c). The rms

of the fluctuating wall pressure peaks in regions placed immediately downstream

of the initial breakdown to turbulence, near x = 110 and z = 30, reaching values

of about 8% of the free-stream pressure. In the fully developed turbulence region

further downstream, the mean wall-pressure fluctuations decay to about 3% of the

free-stream pressure.

4.3.2 Mechanisms responsible for the breakdown to tur-

bulence

The results presented in the previous section show that the linear evolution of dis-

turbances in the roughness wake eventually gives way to a nonlinear breakdown

into turbulence. In this section, we look more closely at the evolution of distur-

bances in the roughness wake during the weakly and strongly nonlinear stages of

transition, which drive the boundary layer to a turbulent state. Figure 4.25 shows

contours of u′ = u− u and u′rms at different crossflow planes along the streamwise

direction. The plots illustrate a sequence of events which describe the development

of wake instability modes from the linear stages of transition until breakdown to

turbulence. Figures 4.25(a) to 4.25(d) show that, as already discussed during the
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Figure 4.24: Effect of the isolated roughness, and the induced transition to
turbulence, on the wall heat transfer and wall pressure fluctuations. (a) con-
tours of wall-normal mean velocity gradient, (b) contours of wall-normal mean
temperature gradient, (c) contours of the rms of the fluctuating wall-pressure
normalised by free-stream pressure.

receptivity study in section 3.7, during the linear stages of transition the wake

sustains the growth of sinuous and varicose modes. The varicose mode can be

observed in the fluctuating u′-velocity field in figure 4.25(b) (notice the symmetric

u′ field), while the sinuous mode can be seen to appear shortly downstream in

figure 4.25(d) (notice the nearly antisymmetric u′ field). The contours of u′rms in

figures 4.25(a) and 4.25(c), on the other hand, show that the varicose mode is

dominant at all streamwise locations, in agreement with the findings reported for

the receptivity study, where varicose modes were found to be more unstable than
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sinuous ones. The dominant varicose modes grow quickly in amplitude for increas-

ing streamwise distance, as can be inferred from figures 4.25(e) and 4.25(f), leading

eventually to the onset of nonlinear interactions and breakdown to turbulence (see

4.25g to 4.25j).

The streamwise variation of maximum (over y and z) u′, v′ and w′ disturbances

inside the roughness wake is shown in figures 4.26(a) and 4.26(b) on a logarithmic

and on a linear scale, respectively. It can be seen that fluctuations of the u-

velocity component are dominant throughout the transition region and in the

fully turbulent boundary layer downstream. Disturbances grow in the roughness

wake starting from x ≈ 60 and initially evolve linearly. The maximum u′, v′ and w′

perturbations grow at similar rates up to about x = 75, where the growth of v′ and

w′ disturbances can be seen to accelerate considerably. This increase in growth

rate signals the start of weakly nonlinear interactions. Note that the growth rate

of u′ perturbations does not change up to until x = 80, by which point nonlinear

disturbances have grown large enough to dominate the instability of the wake.

This quickly leads to a disturbance amplitude saturation at x ≈ 100 and to the

subsequent breakdown to turbulence. Note that the saturation of disturbances

growing in the wake of the roughness is associated with the start of the skin

friction rise in figure 4.23. Similarly to what was observed for the M∞ = 6.0 case,

during the linear and weakly nonlinear stages of transition before breakdown to

turbulence, u′rms > v′rms > w′
rms, while, as expected, in the fully turbulent region

further downstream u′rms > w′
rms > v′rms. This aspect can be seen clearly in figure

4.26(b).

A visualisation of the flow structures taking part in the breakdown to turbulence

is given in figure 4.27 through isosurface of Q = 0.01 coloured by distance from

the wall. The varicose instability mode observed above leads to the roll-up of the

three-dimensional shear layer induced by the isolated roughness element, which

can be seen starting from x ≈ 75. This leads to the formation of a series of hairpin

vortices whose legs connect with the streamwise vortices induced by the roughness

element. Further downstream the hairpin vortices quickly break down, leading to

a turbulent wedge which grows laterally for increasing streamwise distance. More

details about the lateral spreading of turbulence after the breakdown process are

provided in the next section.
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Figure 4.25: Visualisation of the downstream development of roughness wake
instabilities. (a), (c), (e), (g), (i) contours of u′rms (shaded), superimposed by
uS = 0.65, 1.025, 1.4 contours and (b), (d), (f), (h), (j) contours of u′.
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Figure 4.26: Linear and nonlinear evolution of disturbances in the roughness
wake, shown by the streamwise evolution of maximum disturbance amplitude
inside the wake of the roughness. (a) logarithmic scale, (b) linear scale.

Figure 4.27: Isosurfaces of Q = 0.01, coloured by wall-normal distance, showing
the flow structures appearing during breakdown to turbulence.

4.3.3 Turbulent wedge development

The wedge of turbulence forming downstream of the roughness element is visu-

alised in figure 4.28(a) through isosurfaces of Q = 0.02 coloured by distance from

the wall. It can be seen that the edges of the wedge are populated by streamwise
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Figure 4.28: Visualisation of the turbulent wedge developing downstream of
the roughness. The solid and dashed contourlines in (b) and (c) indicate, respec-
tively, TKE = 0.07 and TKE = 0.008: (a) Isosurfaces of Q = 0.02, coloured
by wall-normal distance, (b) TKE contours in the horizontal plane at y = 1.2,
(c) crossflow TKE contours at x = 230.
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Figure 4.29: Measuring the lateral spreading half angle of the turbulent wedge.
The solid blue, dashed black and solid red lines are inclined at α = 5.3◦, α = 5.5◦

and α = 5.7◦ to the horizontal, respectively. (a) contours of TKE ≥ 0.07 at
y = 1.2, (b) contours of 0.06 < |ωy| < 0.08 at y = 1.2.

vortices, while the turbulent core is formed by hairpin vortices protruding up-

wards and smaller scale structures closer to the wall. Turbulence is continuously

generated in the breakdown region (near x = 100) and spreads laterally with in-

creasing streamwise distance, also in a continuous fashion. Figures 4.28(b) and

4.28(c) show, respectively, top and crossflow views of TKE contours at y = 1.2

and z = 240, with black continuous and blue dashed lines giving TKE = 0.07 and

TKE = 0.008 contours defining the inner and outer edges of the turbulent wedge,

respectively. As expected, TKE maxima are found near the inner edges and in the

near-wall region. On the other hand, velocity fluctuations extend for a about eight

inflow laminar displacement thicknesses out into the surrounding laminar flow.

The wedge lateral spreading rate is calculated following the same procedures used

for the M∞ = 6.0 case. The results, shown in figure 4.29, give a half spreading

angle of α = 5.5 ± 0.2◦, which agrees well with predictions of Fischer (1972).

Measurements of the half spreading angle of the intermittent flow region (not

shown), performed using the cut-off value of TKE = 0.008, give α = 7.8 ± 0.2◦.
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Figure 4.30: Crossflow contours of mean lateral velocity. Red and green con-
tourlines show respectively w = +3 × 10−3 and w = −3 × 10−3. The dashed
white line indicates the roughness position. (a) x = 148, (b) x = 172, (c) 220.

Similarly to what was observed for the M∞ = 6.0 case, the half spreading angle of

the intermittent region lies just outside the interval proposed by Fischer (1972).

Having measured the lateral growth rate of the turbulent wedge, the analysis

now concentrates on shedding some light onto the mechanisms responsible for

the lateral spreading of turbulence. Figures 4.30(a) to 4.30(c) show mean lateral

velocity contours respectively at x = 148, x = 172 and x = 220. It can be

seen that, as already shown for case NL6.0S, following the wedge evolution from a

transitional to a fully turbulent state a mean spanwise flow from the turbulent core

into the surrounding laminar boundary layer appears in mean w-velocity contour

plots. Lateral velocities reach about 2 − 3% of the free-stream velocity near the

core and are about one order of magnitude lower near the edges of the wedge, i.e.

near z = 14 and z = 46 in figure 4.30(c). Visualisations of the instantaneous w-

velocity field at different streamwise locations provided in figures 4.31(a) to 4.31(c)

for x = 196, x = 208 and x = 215, respectively, show that lateral jets protruding

into the surrounding laminar boundary layer appear and disappear near the sides

of the turbulent wedge (note the presence of lateral jets pointing outwards near
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Figure 4.31: Crossflow contours of instantaneous lateral velocity. Red and
green contourlines show respectively w = +5× 10−3 and w = −5 × 10−3. The
dashed white line indicates the roughness position. (a) x = 148, (b) x = 172,
(c) 220.

z = 14 and z = 48 in figure 4.31a, while fluid flows from the laminar boundary

layer towards the core of the wedge near z = 14 and z = 46 in figure 4.31b).

Enhancement and suppression of these lateral jets may be due to local events or

to a global breathing mode of the wedge. Here we limit ourselves to pointing out

that, as shown in figure 4.31(c), outward jets on one side of the wedge (see near

z = 12) may correspond to inward flow on the opposite side (see z = 47), which

would indicate a suppression of the lateral jet near z = 47 by a local event at

the edge of the wedge. Events of this type repeat periodically, so that lateral flow

averages out near the edges of the wedge, explaining the low mean w-velocities

found in this region of the flow. As in the M∞ = 6.0 case, the jets observed

in the instantaneous flow field reach lateral velocities of up to about 10% of the

free-stream velocity, similarly to what was found for turbulent spots (Wygnanski

et al., 1982; Redford et al., 2012).
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Figure 4.32: Generation of new vortices by destabilisation of surrounding lami-
nar flow. Crossflow velocity vectors superimposed streamwise vorticity contours
ωx = ±0.05, red for positive and blue for negative. (a) x = 180 and t = 2852,
(b) x = 200 and t = 2880, (c) x = 220 and t = 2904, (d) x = 240 and t = 2924.

The mean lateral flow from the core of the wedge outwards described above sug-

gests that the turbulent wedge is growing due to the convection of turbulent struc-

tures into the surrounding boundary layer. This mechanism, however, only partly
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explains the lateral spreading of turbulence, especially given the low mean w-

velocities observed. Looking back at figure 4.28(a), it is clear that new structures

(mostly streamwise vortices) are continuously being created near the sides of the

turbulent wedge, following the destabilisation of the surrounding laminar flow (see

for example near x = 130 and z = 35 and near x = 150 and z = 25). One of

these events is captured in figure 4.32, which shows crossflow velocity vectors su-

perimposed over streamwise vorticity contours (ωx = ±0.05) at different times and

streamwise positions. Figure 4.32(a) shows that at time t = 2852 a spanwise jet

is present at x = 180 on one edge of the turbulent wedge (z = 41). Note that the

jet is perturbed downwards by the presence of a vortex near z = 39.2 and takes

a meandering shape. At x = 200 and 28 time units later, figure 4.32(b) shows a

near wall jet for z > 40, a strong lateral jet for z > 41 and y ≈ 1 and a vortex

centred at z = 42.5 and y = 1. The roll-up of streamwise vorticity which leads to

the generation of this vortex appears to follow an anti-symmetric deformation and

subsequent instability of the lateral jet. The same vortex is seen in figure 4.32(c),

now centred at z = 43 and y = 1, inducing an upward tilting of the lateral jet.

Finally, figure 4.32(d) shows the same vortex displaced upwards and laterally, see

near z = 43.5 and y = 1.5, surrounded by turbulent structures. These results seem

to confirm the findings of Redford et al. (2012), who proposed the instability of

the lateral jets as a mechanism for the destabilisation of the surrounding laminar

flow. However for the wedge of turbulent fluid these jets only occur transiently.

4.3.4 Effects of a shock wave impinging on the transitional

boundary layer

The study of the effects induced by an oblique shock on the laminar-turbulent

transition occurring downstream of the roughness element, which began in section

4.2.4 with the analysis of case NL6.0S, continues here with a discussion of the

results obtained forM∞ = 2.5. In this case, the shock generator angle is θ = 1.93◦

(see table 4.1) and the RankineHugoniot conditions are applied at x = 75 so that,

in the absence of a boundary layer, the shock reaches the wall at x ≈ 118.

The flow features induced by the SBLI are visualised in figures 4.33(a) and 4.33(b),

showing, respectively, contours of
√
(∂ρ/∂x)2 + (∂ρ/∂y)2 at the roughness mid-

plane and shaded temperature contours in the horizontal plane at y = 1.2, super-

imposed by u = 0 contours (blue line) at the first grid point above the wall. The

oblique shock impinges onto the boundary layer at x ≈ 110, in a region where the

roughness wake is undergoing breakdown to turbulence, and induces a separation
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bubble in the laminar boundary layer regions at the sides of the computational

domain. The streamwise length of the separation bubble is about 30 inflow dis-

placement thicknesses in the laminar boundary layer and reaches about 45 near

the transitional roughness wake. The interaction does not lead to separation in

the transitional flow behind the roughness element. Figure 4.33(b) shows that

the turbulent wedge developing downstream of the roughness element undergoes

a rapid lateral growth immediately downstream of the separation bubble, leading

to a wider turbulent wedge than that observed in case NL2.5. This aspect will be

analysed later in more detail.

Figure 4.34 shows a comparison of the streamwise variation of the time-averaged

skin friction obtained for cases NL2.5 and NL2.5S inside the wake of the roughness

element. The adverse pressure gradient created by the SBLI leads to a gradual

decrease in skin friction visible from x ≈ 75. The flow does not separate for the

spanwise positions plotted, hence cf remains positive across the interaction region.

At the roughness mid-plane (z = 30) the skin friction increases sharply, starting

from about x = 100 for both cases (NL2.5 and NL2.5S ). The skin friction rise

associated with the breakdown to turbulence at the roughness mid-plane is prac-

tically identical up to x ≈ 115 for the cases with and without shock. Downstream

of this point case NL2.5S shows an earlier transition peak and a faster breakdown
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Figure 4.33: Flow features induced by the SBLI. (a) contours of√
(∂ρ/∂x)2 + (∂ρ/∂y)2 at the roughness mid-plane, (b)contours of instanta-

neous temperature in a horizontal plane at y = 1.2. The red squares indicate
the roughness position and the blue line shows regions of separated flow (u = 0
at the first grid point above the wall).
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Figure 4.34: Streamwise evolution of time-averaged skin friction at the rough-
ness mid-plane, showing the effect of the SBLI on the breakdown to turbulence.

to turbulence. The effect of the SBLI is more evident near the sides of the rough-

ness wake. At the two lateral wake positions considered in figure 4.34, cf for case

NL2.5S can be seen to rise suddenly starting from x ≈ 110, reaching a transition

peak near x = 145. Peak skin friction values are higher near the sides of the wake

than at the roughness mid-plane for this case. The skin friction at z = 27 and

z = 33 for case NL2.5 also starts increasing from x ≈ 110 but the rise towards

the turbulent value is more gradual than for case NL2.5S.

The wall-normal temperature gradient and the pressure fluctuations at the wall

for cases NL2.5 and NL2.5S are compared in figure 4.35. Overall, peak values of

∂T/∂y and p′rms/p∞ are similar for the two cases under consideration. However,

the SBLI induces two regions of high near-wall temperature and wall-pressure fluc-

tuations at the edges of the roughness wake (near z = 22 and z = 38) immediately

downstream of the shock-induced separation bubble (near x = 140). As already

noted from the instantaneous temperature contours in figure 4.33(b), and similarly

to what was reported for the M∞ = 6.0 cases, the lateral spreading of turbulence

in this region of the boundary layer is considerably faster for case NL2.5S than

for case NL2.5.

To analyse more closely the fast lateral spreading of turbulence observed for case

NL2.5S downstream of the interaction region we focus our attention on how the

shock modifies the growth of disturbances inside the roughness wake. Figure 4.36

gives a comparison of crossflow u′rms contours for cases NL2.5S and NL2.5 at dif-

ferent streamwise positions along the transition region. Figures 4.36(a) and 4.36(b)

show that at x = 93, immediately upstream of the shock-induced separation bub-

ble, the amplitude of disturbances in the roughness wake is similar for the two cases

considered. On the other hand, similarly to what was found for the M∞ = 6.0

case, the SBLI leads to a modification of the mean flow consisting mainly in
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Figure 4.35: Effects of SBLI on heat transfer and unsteady pressure loads at
the wall. Blue lines show regions of separated flow (u = 0 at the first grid point
above the wall). (a) ∂T/∂y for case NL2.5, (b) ∂T/∂y for case NL2.5S, (c)
p′rms/p∞ for case NL2.5, (d) p′rms/p∞ for case NL2.5S.



Chapter 4 Nonlinear stages in supersonic roughness-induced transition 121

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 5 10 15

(a) x = 93

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 5 10 15

(b) x = 93

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 5 10 15

(c) x = 108

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 5 10 15

(d) x = 108

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 10 20

(e) x = 115

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

5 10 15

(f) x = 115

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 5 10 15

(g) x = 134

z

y

 

 

u′
rms × 102

22 24 26 28 30 32 34 36 38
0

2

4

6

0 5 10 15

(h) x = 134

Figure 4.36: Effect of the SBLI on the growth of disturbances inside the rough-
ness wake. White lines in (a) and (b) show uS = 0.70, 1.05, 1.4. (a), (c), (e), (g)
case NL6.0S and (b), (d), (f), (h) case NL6.0.

the generation of lateral shear layers near the sides of the roughness wake. This

effect becomes more evident further downstream, as can be seen by comparing

figures 4.36(c) and 4.36(d), showing regions of high mean shear inside the rough-

ness wake together with the amplitude of u′ perturbations at x = 105, for cases

NL2.5S and NL2.5 respectively. It can be seen that lateral shear layers appear

for case NL2.5S at the boundaries between attached transitional flow and sepa-

rated laminar flow near z = 24 and z = 26. Maximum disturbance amplitudes are

still similar for the two cases, however u′rms peaks appear for case NL2.5S near

z = 27 and z = 33, indicating the growth of disturbances in the above mentioned
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Figure 4.37: Pressure probe at x = 110 and z = 28 showing the amplification
of low frequencies by the shock system. (a) NL2.5, (b) case NL2.5S.

lateral shear layers. In fact, these are the only disturbances still growing in the

roughness wake at x = 105, since disturbances developing in the central region of

the roughness wake have reached saturation and the flow is in the final stages of

breakdown to turbulence. The instability of the lateral shear layers dominates the

u′rms field for case NL2.5 at x = 115 (see figure 4.36e) and, further downstream,

breakdown to turbulence is seen to occur also near the edges of the separation

bubble, as shown in figure 4.36(g). This behaviour is not observed for case NL2.5

in figures 4.36(f) and 4.36(h). Wall pressure signals registered by numerical probes

located at x = 110 and z = 28 are shown in figures 4.37(a) and 4.37(b) for case

NL2.5 and NL2.5S, respectively. As already observed in the M∞ = 6.0 case, the

shock system seems to induce an amplification of the low frequencies. Movies of

the flow in this region of the wake show vortex shedding from the bubble edge at

a frequency of F ≈ 0.02 for case NL2.5S, in agreement with what was found for

the M∞ = 6.0 case.

The turbulent wedge evolution downstream of the breakdown region is shown in

figures 4.38(a) and 4.38(b) through TKE contours in horizontal planes at y = 1.2

for cases NL2.5 and NL2.5S respectively. After the initial fast lateral growth,

the turbulent wedge can be seen to recover the spreading rate of the case with-

out shock (see red line in figures 4.38a and 4.38b), similarly to what was found

for case NL6.0S. Therefore, the main effect of SBLI is to induce a fast initial

widening of the turbulent wedge, which in turn leads to a shortening of the tran-

sition region. Crossflow contours of TKE at x = 230, shown in figures 4.38(c)

and 4.38(d) respectively for cases NL2.5 and NL2.5S, show that, while leading
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Figure 4.38: Comparison of the turbulent wedge structure for cases NL2.5 and
NL2.5S. The solid and dashed contourlines in (c) and (d) indicate, respectively,
TKE = 0.08 and TKE = 0.007. (a) TKE contours in the horizontal plane at
y = 1.2 for case NL2.5, (b) TKE contours in the horizontal plane at y = 1.2
for case NL2.5S, (c) crossflow TKE contours at x = 230 for case NL2.5, (c)
crossflow TKE contours at x = 230 for case NL2.5S.

to a considerably wider turbulent wedge, the SBLI does not induce a substantial

thickening of the boundary layer in regions near the roughness mid-plane. Sim-

ilarly to what was found for the M∞ = 6.0 case, the region of intermittent flow
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Figure 4.39: Crossflow contours of mean lateral velocity at x = 230. Red and
green contourlines show respectively w = +5× 10−3 and w = −5 × 10−3. The
dashed white line indicates the roughness position. (a) case NL2.5, (b) case
NL2.5S.

bounding the fully turbulent core of the wedge is more widely spread in the pres-

ence of SBLI. In fact, while the half width of the wedge core is about four inflow

displacement thicknesses larger for case NL2.5S than for case NL2.5 at x = 230,

at the same streamwise position the intermittent flow region increases more than

eight displacement thicknesses and spreads over the full spanwise extent of the

computational domain. This behaviour might be due to either the more violent

breakdown to turbulence observed in the presence of SBLI or the amplification of

disturbances in the laminar separation bubble (see figure 4.36(c) near z ≈ 22 and

z = 38), or a combination of the two effects. Finally, figures 4.39(a) and 4.39(b),

showing contours of mean w-velocity at x = 230 for cases NL2.5 and NL2.5S,

respectively, indicate that, after transition to turbulence in the core of the wedge

is complete, similar lateral mean flow develops in the two cases, with peak mean

w-velocities reaching up to about 3% of the free-stream velocity. This behaviour

is consistent with the agreement in lateral half spreading angles observed for the

two cases.

4.4 Synthesis and discussion of key findings

The mechanisms leading to breakdown to turbulence in M∞ = 6.0 and M∞ = 2.5

boundary layers in the presence of a localised sharp-edged roughness element, with
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height of the order of the local boundary layer thickness and under the effect of

small external disturbances, have been analysed in this chapter. The study focused

on the nonlinear stages of the laminar-turbulent transition process and considered

also the effects of an oblique shock wave impinging on the transitional part of the

boundary layer dowsntream of the roughness element. This study is a continuation

of chapter 3, which focused on the linear stages of transition.

The results show that, for both the Mach numbers considered, the initial linear

growth of disturbances in the roughness wake eventually leads to breakdown to

turbulence, which starts at the roughness wake and results in a wedge of turbulent

flow that spreads laterally with increasing streamwise distance. At M∞ = 6.0

the linear growth of disturbances in the wake of the roughness is dominated by a

sinuous wake instability mode, similar to mode SL observed during the M∞ = 6.0

receptivity study in section 3.6, which initially leads to an anti-symmetric deforma-

tion of the roughness wake. Interestingly, as this mode evolves in the streamwise

direction it appears that linear processes, including non-parallel flow effects or non-

normal mode superposition (or a combination of the two), lead to the asymmetric

growth of disturbances in the roughness wake, with a disturbance peak appearing

on one of the two lateral shear layers generated by the roughness induced pair of

counter-rotating streamwise vortices. The idea is that as the basic flow changes in

the streamwise direction, the disturbance energy is re-distributed into the modes

of the new basic flow, potentially leading to asymmetric amplitude increase due

to the spanwise asymmetry of the forced perturbations. Non-parallel flow effects

can also lead to the excitation of additional wake modes (stable and/or unstable)

which, if non-orthogonal, may lead to algebraic disturbance growth. Further down-

stream the finite amplitude disturbances trigger nonlinear interactions, leading to

the roll-up of the lateral shear layers which drive the breakdown to turbulence of

the roughness wake.

By contrast, atM∞ = 2.5 the linear stages of transition show the presence of both

varicose (mode VT) and sinuous (mode SL) modes, the former being dominant

as already found during the receptivity study in section 3.7. The growth of mode

VT leads to the rapid onset of nonlinear interactions, which manifest themselves

as the roll-up of the strong three-dimensional detached shear layer induced by the

counter-rotating streamwise vortices associated with the roughness element. The

final stages of the laminar-turbulent transition are driven by the breakdown of the

hairpin-like structures appearing as a consequence of the above mentioned shear

layer roll-up. At M∞ = 2.5 transition to turbulence occurs considerably closer

to the roughness element than at M∞ = 6.0 (recall that for case NL6.0 the flow
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Figure 4.40: Cases NL6.0 (red circles) and NL2.5 (blue squares) in the context
of the transition criteria proposed by Redford et al. (2010) (a) and Bernardini
et al. (2012) (b). The dashed black lines are straight lines going through the two
markers and are plotted to highlight the distance of each case from the critical
line (solid black line).

behind the roughness element is still transitional at the computational outflow

boundary). This aspect is consistent with the higher roughness Reynolds number

and lower wall-temperature considered for case NL2.5, which leads to a more

unstable flow than for case NL6.0. Figure 4.40 puts the cases considered in this

chapter in the context of the transition maps proposed by Redford et al. (2010)

and Bernardini et al. (2012). In these maps a dividing line is used to separate

flows that remain laminar (to the left of the line) from those undergoing transition

to turbulence (to the right of the line). Note that for case NL6.0 Mk/Tw = 0.31,

Reh = 726 and Re∗h = 719, while for case NL2.5 Mk/Tw = 0.63, Reh = 791 and

Re∗h = 788. Both transition criteria correctly predict transition to turbulence for

the two cases analysed.

Following breakdown to turbulence a wedge of turbulent flow forms behind the

roughness element. The rate at which turbulence spreads laterally for increasing

streamwise distance in the two cases considered here (half spreading angles are

α = 3.0± 0.2◦ for case NL6.0 and α = 5.5± 0.2◦ for case NL2.5 ) agrees well with

experimental (Fischer, 1972) and numerical (Redford et al., 2012) results obtained

for the lateral spreading rate of turbulent spots in compressible boundary layers. A

distinctive lateral flow from the wedge core to the surrounding laminar boundary

layer is present, similar to that observed in turbulent spots. This behaviour is

clearest for case NL6.0S, where SBLI leads to a fully turbulent wedge core, and
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for the two M∞ = 2.5 cases. However, peak mean w-velocities are somewhat

smaller than those reported in turbulent spots studies (about 3% of the free-stream

velocity both for the M∞ = 6.0 and M∞ = 2.5 cases analysed here against about

7 − 10% found in turbulent spots). A close look at the mechanisms driving the

lateral spreading of the turbulent wedges also reveals similarities with turbulent

spots. At M∞ = 2.5 the wedge is found to grow both by convection of turbulent

structures from the wedge core outwards and by destabilisation of the surrounding

laminar flow. Flow visualisations suggest that the latter mechanism occurs, at

least in part, as a consequence of the instability of the lateral jets, which are

continuously forced by the turbulent core of the wedge. The same mechanism was

found to be active in turbulent spots by Redford et al. (2012). At M∞ = 6.0 the

growth by destabilisation mechanism was found to be strongly damped, also in

agreement with the observations of Redford et al. (2012), and the wedge appears

to grow mainly due to the lateral convection of turbulent structures by the mean

spanwise flow.

Finally, the effects induced by an oblique shock wave impinging on the transitional

boundary layer developing downstream of the roughness element were analysed

both at M∞ = 6.0 and M∞ = 2.5. The shock/boundary layer interaction induces

a separation in the laminar boundary layer surrounding the transitional wake

of the roughness, where the flow remains attached, and leads to an acceleration

of the transition process. This effect is particularly evident at the sides of the

roughness wake, near the edges of the laminar separation bubble, characterised by

high lateral shear. Disturbances are found to grow quickly in these lateral shear

layers and eventually lead to the breakdown to turbulence in the lateral regions

of the roughness wake. Consequently, lateral spreading of turbulence is found

to be greatly enhanced immediately downstream of the shock-induced separation

bubble. Similar behaviour was reported by Krishnan & Sandham (2007), who

studied the influence of SBLI on the evolution of compressible turbulent spots and

found an increment of the spot spreading angle as it passed through the shock

induced separation bubble. Further downstream the turbulent wedge recovers the

spreading rate of the case without shock.





Chapter 5

Transition control using surface

porosity1

5.1 Introduction

It was shown in chapter 3 that Mack modes can influence the receptivity of insta-

bility modes in the wake of a roughness element. In this investigation our attention

is focused on the effects of a porous surface on the transition to turbulence over a

flat plate due to small external disturbances atM∞ = 6. Smooth and porous walls

are considered. The damping effect of porosity on the Mack modes is analysed by

comparisons with smooth wall results. The purpose of the present study is to con-

tinue the work of Sandham & Lüdeke (2009) by analysing the transition process

all the way through the secondary instability to the final turbulent breakdown.

The numerical calculations were carried out using the temporal DNS approach

(TDNS), see for example Kleiser & Zang (1991). In this technique the Navier-

Stokes equations are solved using periodic boundary conditions in the directions

parallel to the wall. This means that the evolution of disturbances in the boundary

layer is followed in time for a much smaller computational domain than would

be required for the full spatially-developing boundary layer. This is especially

advantageous when details of surface geometry such as pores need to be resolved.

In a spatially developing boundary layer a wave travelling at a certain phase speed

encounters different velocity profiles at each instant. From a frame of reference

moving with the wave, the rate at which the boundary layer grows depends on

the boundary layer spatial growth and the phase speed of the wave. Without a

1The work presented in this chapter has been published in De Tullio & Sandham (2010)
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forcing term the boundary layer would grow over time at a rate which is unrelated

to the disturbance phase speed. In addition, while growing, the laminar profile

would change shape and stability characteristics due to the imposed periodicity,

which reduces the u-momentum equation to

∂ρbUb

∂t
=

1

Re

∂

∂y

(
µb

∂Ub

∂y

)
. (5.1)

A possible solution is to use similarity profiles at different downstream locations to

prescribe the temporal growth of the laminar boundary layer, taking into account

the phase speed of the disturbances. However, as the boundary layer grows the

wavelengths of the disturbances change, along with their growth rates, making

the interpretation of disturbance interaction and growth rates difficult. For these

reasons it was decided to focus on the evolution of disturbances in a specific laminar

boundary layer and to apply forcing terms to the momentum and energy equations

to keep the initial laminar base flow fixed in time. The forcing terms are found

by the numerical evaluation of the Navier-Stokes equations at the first time step,

after initializing the flow with the similarity solutions for compressible boundary

layers, and take the following form

FM1 = − 1
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dy
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dUb
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; FM2 = FM3 = 0

FE = − 1

Re

d

dy

(
Ubµb
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− 1
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∞PrRe

d

dy

(
µb

dTb
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)
, (5.2)

where the subscript (b) refers to the basic laminar flow. The terms FMi, with i = 1,

2, 3, are the forcing terms for the x, y and z-momentum equations respectively

whereas FE is the forcing term for the energy equation. The main drawbacks

of TDNS are that only a selection of discrete modes, which have to be chosen

a priori by performing preliminary linear stability analysis, are allowed in the

calculation and that, as already mentioned, boundary layer growth effects are not

included. This latter omission is less important when the rapid breakdown stages

of transition are studied as in the present work. When comparing smooth and

porous surfaces an additional difficulty arises from the possibility that the effects

of porosity may be different for different primary and secondary wavelengths. This

aspect was investigated for the primary instability and is reported in Section 5.5.
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5.2 Numerical simulations

This investigation is focused on the transition to turbulence in the boundary layer

over a flat plate at M∞ = 6 due to small initial disturbances. Smooth and porous

walls are considered. The stabilizing effects of porous surfaces can be analyzed by

comparison with the smooth wall results. The Navier-Stokes equations are solved

using the TDNS approach with no-slip and constant temperature boundary con-

ditions at the walls. The wall temperature is set to be equal to the adiabatic wall

temperature, Tw = 7.027. At the outer boundary y = Ly, characteristic boundary

conditions were used and periodicity is imposed in the x and z directions. The

variation of viscosity µ due to temperature is modeled using Sutherland’s law (2.8)

with a constant of S∗ = 110.4K and a reference temperature of T ∗
r = 216.65K. A

constant ratio of specific heats, γ = 1.4, was considered. Two different Reynolds

numbers based on the displacement thickness of the initial laminar boundary layer

were analyzed for the smooth and the porous wall cases, namely Reδ∗ = 6000 and

Reδ∗ = 20000. The Prandtl number was set to Pr = 0.72 in all the simulations.

The rest of the simulation parameters are presented in Table 5.1 and a sketch of the

computational domain is shown in figure 5.1. In the main simulations (R2S, R2P,

R6S, R6P) the streamwise extent of the computational domain gives a streamwise

wavenumber of α = 2π/3, which, according to LST calculations performed by

Sandham & Lüdeke (2009), with a M∞ = 6 and Reδ∗ = 20000 base flow, places

the fundamental wave near the maximum growth rate of the second Mach mode.

This configuration allows the fundamental type of secondary instability to be an-

alyzed. The spanwise extent of the computational domain was chosen to allow

the growth of an unstable secondary wave. Ng & Erlebacher (1992) and El-Hady

Lx

Ly

Ly

Ly

Lz
x

y

z

(a)

(b)

d

Figure 5.1: Computational domain. (a) smooth wall, (b) porous wall.
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Case Reδ∗ Lx×Ly×Lz Nx×Ny×Nz Type
Main simulations

R2S 20000 3×10×3 128×356×128 Smooth
R2P 20000 3×10×3 128×356×128 Porous
R6S 6000 3×10×3 64×356×64 Smooth
R6P 6000 3×10×3 64×356×64 Porous

Additional simulations

R6S-6×3 6000 6×10×3 128×356×64 Smooth
R6S-6×9 6000 6×10×9 128×356×192 Smooth
R2S-9×6 20000 9×10×6 192×356×128 Smooth
R2P-9×6 20000 9×10×6 192×356×128 Porous

Table 5.1: Simulation parameters.

(1992) have shown that the spanwise wavenumber of the most dangerous secondary

instability tends to the streamwise wavenumber of the primary instability as the

Mach number increases from 1.6 to 7 and that there is a broad band of spanwise

wavenumbers for which the secondary growth rates are large. Based on this the

spanwise extent of the domain was chosen to be equal to the streamwise primary

wavelength.

The smooth wall calculations were started with a computational grid of Nx = 32,

Ny = 356, Nz = 32 points. As the calculations advanced the grids were refined to

meet the resolution requirements. For the Reδ∗ = 6000 and Reδ∗ = 20000 cases

the finest grid used was of 64×356×64 and 128×356×128 points respectively.

The porous wall calculations were performed with 4 pores in the streamwise and

spanwise directions, giving a total of 16 pores. Based on the findings of Sandham &

Lüdeke (2009), who showed that, for the same pore hydraulic diameter considered

here, the pores reached an asymptotic behavior after d = 1, a pore depth of d = 1

was used in this study. The pores were square with length and width of 0.375

which gives a hydraulic diameter of dh = 0.375. In real applications the porous

sheet is expected to have a higher number of pores per Mack mode wavelength. See

for example the experiments of Rasheed et al. (2002) where a sheet with 10 − 20

pores per disturbance wavelength was used. On the other hand, LST (Fedorov

et al., 2001) and DNS (Sandham & Lüdeke, 2009) suggest that the damping effect

of the pores on the Mack mode increases with their hydraulic diameter. The

present calculations are relevant since they may help reveal whether big pores
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could trigger early transition due to roughness effects, a problem which may be

critical for the design of porous surfaces. All the porous wall calculations have a

porosity of n = 0.25, which is achieved by considering the same number of grid

cells inside and outside the pores in the streamwise and spanwise directions. The

grid is uniform in these two directions. As reported by Sandham & Lüdeke (2009),

due to the simplicity of the flow inside the pores, the number of grid points within

the pores can be reduced to the minimum allowed by the spatial discretisation

scheme. The Carpenter scheme employed near solid boundaries allows a minimum

number of Ng = 8 streamwise or spanwise grid points inside the pores. Here 9

grid points (8 cells) per pore were considered giving an initial grid of 64×356×64

points. For the Reδ∗ = 20000 case this grid was refined to 128×356×128 points

as for the smooth wall case. To verify grid convergence a calculation with a fine

grid (128×356×128) was started from t = 0, giving a Mack mode growth rate

(ωi = 0.0128) only 3% lower than the coarse grid result. Note that the porous wall

cases have 112 additional grid points within the pores in the vertical direction. A

non-dimensional time step of ∆t = 0.002 was used for all the simulations.

The additional simulations stated in Table 5.1 were carried out to complete the

study. In particular cases R6S-6×3 and R6S-6×9 were used to analyze the be-

havior of the subharmonic secondary instabilities during transition and to assess

the importance of the domain size in the low Reynolds number cases, respectively.

Simulations R2S-9×6 and R2P-9×6 were carried out in order to verify the impor-

tance of oblique first mode waves in the presence of pores.

The presence of periodic boundary conditions in the streamwise and spanwise

directions allowed the use of Fourier interpolation for refining the grids. This

interpolation method provides the highest possible accuracy. For the porous wall

cases Fourier interpolation was applied away from the pores. Within the pores the

flow field was interpolated by a cubic spline method.

Grid stretching was only applied in the y direction in order to place more points

near the flat plate (y = 0). The stretching function used is given by

y = Ly

sinh(cη)

sinh c
, (5.3)

where ηmin < η < 1 is the vertical coordinate in the computational grid. For the

smooth wall cases ηmin = 0 and c = 3.15. For the porous wall cases ηmin and c

were iteratively determined imposing y(ηmin) = −d and an integer number of grid

points within the pore. Here c was chosen to be close to the value used in the

smooth wall cases. All the test cases were initialized with the laminar similarity
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solution at M∞ = 6. For the porous wall simulations the smooth wall similarity

solution was used to initialize the flow field over the pores, whereas inside the

pores all the flow variables were kept constant and equal to their values at the

wall (y = 0). The flow was initially perturbed by introducing random noise in

the v-velocity component with maximum amplitude of the order of 10−3 ×U∞. A

damping function given by

D = y2e−y2 , (5.4)

was used to damp the amplitude of the noise close and far away from the wall. In

the porous wall cases D was set to zero for y < 0. The objective here is to excite

all the boundary layer modes resolved by the grid employed in order not to favor

any particular wavenumber. The random disturbances are introduced into the

v-component of velocity and during the subsequent integration of the governing

equations all the conservative variables develop fluctuations. The maximum am-

plitude of the disturbances was chosen small enough to include the linear regime

in the calculations.

In order to allow comparisons between the different simulations all the results

shown in Fourier space are referred to a grid with Nx = 64 and Nz = 64 points.

5.3 Transition to turbulence due to second mode

waves

5.3.1 Evolution and interactions of boundary layer modes

The disturbance evolution for cases R2S and R2P is shown in figure 5.2. It can be

seen that in the smooth wall case (figure 5.2a) the random noise decays rapidly

and after about ten non-dimensional time units the primary instability mode (1,0)

starts growing linearly. The growth rate calculated from the numerical solution

was found to be ωi = 0.0341, which is in agreement (to 3 significant figures) with

the LST result. When mode (1,0) reaches finite amplitudes it starts interacting

nonlinearly with itself giving rise to mode (2,0), which, as expected, grows twice

as fast as mode (1,0). Nonlinear interactions of modes (1,0) and (2,0) then lead

to mode (3,0) and so on for the higher harmonics. The total energy contained in

each mode is calculated as follows

Eφ(kx, kz, t) =

∫ Ly

0

φ̂(kx, kz, y, t)φ̂
†(kx, kz, y, t)dy, (5.5)
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Figure 5.2: Time history of selected v′ Fourier modes. (a) case R2S, (b) case
R2P

where φ = {u′, v′, w′, ρ′, T ′} and the the superscript (†) denotes a complex conju-

gate. At about t = 180 mode (1,1) starts growing, closely followed by modes (0,1)

and (2,1). At time t = 250 the primary instability mode saturates and there is an

increase in the growth rate of mode (1,1). At this point the transition process is

driven by modes (1,1), (0,1) and (2,1) which all grow at the same rate.

Flow visualisations for case R2S reveal that mode (1,0) is a second mode wave (the

Mack mode), which, in the region close to the boundary layer edge, is represented

by a spanwise vortex. When the final breakdown to turbulence starts, the sec-

ondary instability breaks the two-dimensional structure of this vortex introducing

spanwise variations in the disturbance amplitude, represented by a series of peaks

and valleys and giving rise to characteristic Λ-vortices as seen in figure 5.3(a).

The vortices are identified as regions of positive second invariant (Q-criterion) of

the velocity gradient tensor (given by equation 4.3), and represent the dominant
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Figure 5.3: Coherent structures during transition for case R2S (Q-criterion),
colored by streamwise velocity increasing from blue to red. (a) t = 350, (b)
t = 360, (c) t = 368.

mode (1,1) taking part in the secondary instability. In all the cases the pres-

ence of vortices was verified by plotting velocity vectors in the regions indicated

by the vortex visualisation criterion used. The Λ-vortices redistribute the mean

shear and give rise to localised regions of high shear. The mechanism driving this

is consistent with the findings of Stuart (1965), Sandham & Kleiser (1992) and

Adams & Kleiser (1996), who showed, for both low speed and high speed flows,

the importance of vortex stretching (ωz∂w/∂z) and convection in the generation of

additional vorticity (notice that positive ∂w/∂z is associated with counter-rotating
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streamwise vortices as seen in figure 5.3a). The shear layers roll up into the ad-

ditional streamwise vortices visible in figure 5.3(b) at z ≈ 0.5 and z ≈ 2.5. The

strength of these new vortices increases until they dominate the flow field together

with the legs of the initial Λ-vortices, which can be seen in the region 1.0 < z < 2.0

in figure 5.3(c). Further interactions of these streamwise vortices drive the flow to

a chaotic state.

The variation of mode energy with time for case R2P shown in figure 5.2(b) reveals

that, as expected, mode (1,0) (the Mack mode) starts growing linearly at a rate of

ωi = 0.0132, which is about 2.5 times lower than in the smooth wall case. In this

case, the DNS primary mode growth rate does not agree perfectly with the LST

result of ωi = 0.0107, which is about 19% smaller than the DNS. The nonlinear

interaction of mode (1,0) with itself leading to mode (2,0) is also visible along with

the secondary instability growth starting from about t = 350. From the behavior

seen on figure 5.2(b) modes (1,1) and (1,2) both are involved in the secondary

instability.

The LST growth rates of the porous wall cases were calculated following the study

of Wartemann et al. (2009), which corrected an error in the earlier LST calculations

reported by Sandham & Lüdeke (2009). Wartemann et al. (2009) compared the

temporal/spatial stability code used in this work with the DLR NOLOT spatial

stability code showing very good agreement. The DLR NOLOT code was also

found to agree well with Fedorov’s original code (Fedorov et al., 2001). However,

it should be noted that, here and in Wartemann et al. (2009), the boundary

conditions at the porous wall were calculated following the procedure proposed

by Fedorov et al. (2001) for circular pores, using the hydraulic diameter as the

characteristic pore size. Fedorov (2009) has recently shown that it is possible to

reduce the discrepancies between the LST and the DNS by using the acoustic

properties of square pores in the calculation of the porous-layer admittance.

The temporal evolution of mode (3,0) in figure 5.2(b), which grows linearly at the

same rate as mode (1,0), was not expected. In fact, there is a whole family of

discrete modes that shows the same behavior. The modes that were observed to

follow this trend are the same that one would expect to see from the nonlinear

interaction of modes (1,0) with the (4,0) and (0,4) standing waves, which repre-

sent the four pores per wavelength in the streamwise and spanwise directions. A

physical explanation of this phenomenon can be found in the scattering of sound

from the interaction of the Mack mode with the pores. The basic mechanism is

similar to the scattering of sound from rough surfaces, studied by Brekhovskikh
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Figure 5.4: Scattering of sound waves for case R2P (contours of pressure:
increasing from dark to light). (a) x− y plane, (b) y − z plane

& Lysanov (1994). For a simplified problem involving a rough surface with small

slopes and small roughness elements the method of small perturbations (MSP)

can be used to obtain an analytical solution for the scattered field. We consider

an incident plane wave moving in the direction {ζ0, γ0}, with ζ0 and γ0 being the

horizontal and vertical components of the wave vector. Then by representing the

rough surface, defined as y = Ψ(r) with r = {x, z}, as a Fourier integral

Ψ(r) =

∫ +∞

−∞

A(ξ)eiξrdξ, (5.6)

it is possible to show that each of its Fourier components ξ gives rise to a scattered

plane wave with ζ = ζ0 + ξ. Here ζ0 would be the horizontal wavenumber of the

Mack mode. A complete derivation of this result can be found in Brekhovskikh

& Lysanov (1994). The sound waves scattered from the porous surface can be

appreciated in figure 5.4, which shows pressure contours in the x − y and y − z

planes.

At the beginning of the simulation transient growth of spanwise modes can be

observed in the density, temperature and streamwise velocity component for both

R2S and R2P cases, as can be noted in figure 5.5 where the time history of Eu′

is shown. The growth of these modes represents the formation of streaks in the

vicinity of the boundary layer edge, as shown in figure 5.6. Similar behavior

was reported by Kim & Moser (1989) in their calculations of transition in plane
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Figure 5.5: Time history of selected u′ Fourier modes. (a) case R2S, (b) case
R2P

Poiseuille flow. A direct consequence of the initial growth of spanwise modes

(streaks) is the excitation of the fundamental three-dimensional modes, which

arise due to nonlinear interactions of the primary mode (1,0) and the spanwise

modes (kx = 0,kz 6= 0). Since the streaks are only slightly damped, the growth

rate of mode (1,1) is initially similar to that of mode (1,0), as can be noted in

figures 5.2 and 5.5. It should be noted that the initial growth of mode (1,1) and

other fundamental three-dimensional modes (until about t = 250 for the smooth

wall case and t = 550 for the porous wall case) seems to be associated with the

aforementioned nonlinear interactions rather than with the secondary instability,

which only develops at later times. The effects of the transient growth observed

on the secondary instability are discussed further in Section 5.4.

At saturation the primary wave has an amplitude of A = 6% of the free-stream

velocity for the smooth wall (case R2S), whereas for the porous wall (case R2P)
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Figure 5.6: Streaks in the u-velocity profile due to transient growth, isosurfaces
of u′ (cyan: low speed streaks; magenta: high speed streaks). (a) case R2S, (b)
case R2P
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Figure 5.7: Comparison of secondary instability mode (1,1) growth rates: — ,
Smooth wall; – – – , Porous wall. Note that the curves where moved along the
temporal axis to help the comparison.

A = 3%. This drop in primary wave amplitude affects the growth rate of the

secondary instability as shown in figure 5.7 for mode (1,1). The growth rate

reduction factor is 0.475. Floquet analysis carried out by Ng & Erlebacher (1992)

for a Mach 4.5 secondary instability showed a secondary growth rate reduction

factor of about 0.56 when the primary amplitude dropped fromA = 6% toA = 3%.

This behavior compares well with what is observed here. It is concluded that the

pores mainly affect the secondary instability growth rate indirectly by limiting the
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energy of the saturated primary wave. In order to understand the direct effect

of porosity on the secondary instability it is useful to compare the mode energy

distribution across the boundary layer, given by

eφ(kx, kz, y, t) = φ̂(kx, kz, y, t)φ̂
†(kx, kz, y, t). (5.7)

The energy profiles of the secondary wave in the smooth and porous cases are

shown in figure 5.8, where the total mode energy is the same for the porous and

the smooth wall results. The damping effect of the pores in the near wall region is

clear. In the smooth wall case the secondary wave energy is mainly concentrated

in the near wall region, whereas in the porous wall case there is a big peak near the

critical layer. Damping of the secondary wave energy near the wall was observed

for all the components of the disturbance field (u′, v′, w′, ρ′, T ′). A possible

explanation for this change of shape in the disturbance energy profiles is given in

Section 5.3.2.

The coherent structures involved in the transition process in case R2P are similar

to those discussed for case R2S. The secondary instability distorts the primary

wave leading to the Λ-vortices shown in figure 5.9(a). Soon after the formation of

these vortices additional Λ-shaped vortices pointing downstream form close to the

boundary layer edge, as can be seen in figure 5.9(b). These two Λ-vortices represent

modes (1,1) and (1,2) which, as shown in figure 5.2(b), dominate the secondary

instability. At this stage the flow is dominated by strong quasi-streamwise vortices,

which drive the flow to the breakdown to turbulence.

Figure 5.10 shows the temporal evolution of selected Fourier modes for the Reδ∗ =
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0.5

1

1.5

2

2.5

3

ev′

y

Figure 5.8: Secondary mode energy profiles: — , Smooth wall; – – – , Porous
wall.
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Figure 5.9: Coherent structures during transition for case R2P (Q-criterion),
colored by streamwise velocity increasing from blue to red. (a) t = 712, (b)
t = 730.

6000 smooth and porous walls (cases R6S and R6P). As can be seen the boundary

layer is still unstable at this Reynolds number and the Mack mode grows linearly

at a rate ωi = 0.02084 in the smooth wall case and ωi = 0.00889 in the presence

of pores. The LST prediction for the primary growth rate gives ωi = 0.02085

and ωi = 0.00576 for smooth and porous wall respectively, i.e. in the porous wall

case the LST result is about 35% lower than the DNS solution. In both cases the

growth rate of the Mack mode has decreased in comparison with the Reδ∗ = 20000

case, in agreement with theory. The flow undergoes all the stages of transition

observed in the higher Reynolds number cases, including the secondary instability

dominated by modes (1,1), (0,1) and (2,1) in case R6S and modes (1,1) and (1,2) in

case R6P. The amplitude of the saturated primary waves is similar to the higher

Reynolds number counterpart in both cases. The porous wall simulation (case

R6P) shows the characteristic growth of scattered waves due to the interaction of

the Mack mode with the pores. Transient growth of the u′, ρ′ and T ′ spanwise

modes is also present for both the smooth and the porous wall cases. The effect

of porosity on the secondary instability compares well with what is observed in

the higher Reynolds number case. The reduction of growth rate due to porosity

is very similar. In fact, the reduction factor recorded at Reδ∗ = 6000 is fsec = 0.5.

Following the secondary instability all the boundary layer modes grow rapidly and

the spectrum fills up, indicating the start of a chaotic state, only to quickly decay

soon after. From visualisations of the flow it is seen that the turbulence does
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Figure 5.10: Time history of selected v′ Fourier modes. (a) case R6S, (b) case
R6P.

not penetrate to the near wall region and does not sustain. The reason for this

sudden decay is that, given the low Reynolds number and high temperature, and

hence viscosity, near the wall, the computational box is too small to accommodate

the mechanisms that sustain the near wall turbulence (Jiménez & Moin, 1991;

Waleffe, 1997). The spanwise extent of the computational domain in wall units,

at t ≈ 600, is L+
z ≈ 45, which is below the limit of L+

z ≈ 100 identified by Jiménez

& Moin (1991) for self sustaining turbulence in incompressible channel flows. The

situation is even worse when considering the streamwise domain length.

In order to investigate this particular behaviour further, an additional calculation

was carried out for the smooth wall case with a domain of Lx×Ly×Lz = 6×10×9

(case R6S-6×9), which gives L+
z ≈ 120 and L+

x ≈ 80 at t ≈ 600. Although still

relatively short in the streamwise direction, the new domain is able to sustain the

turbulence. As shown in figure 5.11, the new configuration allows the presence of
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Figure 5.11: Time history of selected v′ Fourier modes (Case R6S-6×9).

an oblique second mode with α = 2π/3 and kz = 2π/9 which grows linearly at

a lower rate than the two-dimensional Mack mode, in accordance with LST. The

Mack mode dominates the linear stages of transition growing at the same rate

reported for the case with the smaller domain. As expected the presence of an

oblique wave in the flow field affects the secondary instability. The fundamental

secondary instability, represented by modes (2,1), (2,2) and (2,3), still dominates

this stage of the transition process, however the growth rate is now significantly

lower than for the smaller domain case. It should be noted that, due to the

presence of the oblique second mode (2,1) and its nonlinear interaction with the

two-dimensional Mack mode, which gives rise to modes (0,1) and (2,2), the flow is

already three-dimensional when it undergoes secondary instability. Nevertheless,

besides the appearance of an unstable oblique second mode, which seems to be of

secondary importance in the transition process, the new simulation has not brought

up any fundamentally new transition mechanism, hence the small computational

domain used in cases R6S and R6P seems to capture the main features of the

transition process prior to the final turbulent breakdown. The waves dominating

the transition to turbulence are the two-dimensional second mode in the linear

stages and the fundamental secondary modes, followed by spanwise modes and

mode (4,3) in the late stages. Note that mode (4,3) coincides with mode (2,1)

in the small domain. At the same time, we conclude that the relaminarisation

observed in cases R6S and R6P is an artifact of the small computational domain

used and not a fundamental physical mechanism.
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Figure 5.12: Contours of v for case R2P during the primary instability stage
(increasing from dark to light).

5.3.2 Dissipation of disturbance energy inside the pores

Porous surfaces were originally proposed as a passive method for transition con-

trol in high-speed flows due to their ability to absorb acoustic energy (Fedorov

et al., 2001). It was thought that damping of the higher modes of Mack could

be achieved by dissipating some of their energy inside the pores. This was then

verified both numerically and experimentally, as already explained in Section 1.6.

The results obtained in this work corroborate further this hypothesis. The acous-

tic waves which constitute the Mack mode are partially absorbed by the pores due

to viscous losses. This can be seen in figure 5.12 for case R2P in the form of v′

perturbations moving towards the bottom of the pores and represents the main

mechanism responsible for the Mack mode damping. A similar effect is observed in

figure 5.13(a) during the secondary instability stage. The pores seem to suppress

the near wall v′ modulations, visible in figure 5.13(b) for case R2S, due to the

oblique acoustic waves shed by the secondary vortices and trapped in the relative

supersonic region near the wall. This explains the difference in the energy profiles

in figure 5.8. It is not clear how this process affects the secondary wave, however,

as already mentioned, we believe that the main cause of secondary growth rate

reduction is the reduced primary saturation.
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Figure 5.13: Contours of v during the secondary instability stage (increasing
from dark to light). (a) case R2P, (b) case R2S.

5.3.3 Evolution of the averaged boundary layer quantities

To understand better how the mode interactions affect the averaged boundary

layer an analysis of the boundary layer integral quantities is considered. The

displacement thickness (δ∗) and momentum thickness (θ) are defined by

δ∗ =

∫ ∞

0

(
1− ρu

ρ∞U∞

)
dy, θ =

∫ ∞

0

ρu

ρ∞U∞

(
1− u

U∞

)
dy, (5.8)
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Figure 5.14: Time history of drag coefficient for the Re∗δ = 20000 cases: — ,
total drag CD (case R2S); – – – , skin friction drag CDf (case R2P); – · – pressure
drag CDp (case R2P).
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and the skin friction coefficient is calculated using non-dimensional variables as

cf =
2µw

Re

∂u

∂y
|w. (5.9)

Figure 5.14 shows a comparison between the instantaneous spatially-averaged drag

coefficients for the high Reynolds number cases. In the porous wall case the

total drag is given by the sum of friction and pressure drag CD = CDf + CDp,

where CDf was calculated by integrating cf over the entire horizontal area of

the computational domain, whereas to calculate CDp the pressure was integrated

over the vertical areas facing the streamwise direction inside the pores. CDf and

CDp where normalized with the same area. The first thing to note is that in

the porous wall case the rise in CD from the laminar to the turbulent value is

much more sudden than in the smooth wall case. In the smooth wall case CD

increases in three stages. The skin friction first increases with the onset of the

secondary instability at t ≈ 220. The second rise is a consequence of the nonlinear

interactions between the secondary waves, which start at t ≈ 300. The third

and final skin friction jump coincides with the final stages of transition when the

turbulence reaches the wall. In the porous wall case the secondary as well as the

primary waves are damped near the wall, so that the growth of the disturbances is

not reflected in the drag coefficient, which only grows when the turbulence, after

developing away from the wall, finds its way into the near wall region. Another

feature worth noting is the difference in CD before transition, which depends on the

porosity considered and it is due to the fact that the basic flow in the porous wall

case consists of zero velocity and constant pressure inside the pores. The laminar
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Figure 5.15: Time history of averaged displacement thickness: — , case R2S;
– – – , case R2P.
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Figure 5.16: Time history of averaged momentum thickness: — , case R2S;
– – – , case R2P.
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Figure 5.17: Time history of averaged shape factor: — , case R2S; – – – , case
R2P.

total drag in the porous wall case is 25% smaller than in the smooth wall case.

This difference corresponds to the 25% porosity and is a direct consequence of

the forcing used to maintain the base flow. Calculations of a spatially-developing

flow over pores are needed to study the effect of porosity on the laminar boundary

layer. When the turbulence reaches the wall in the porous wall case a streamwise

pressure difference establishes within the pores so that the pressure drag increases

and brings the turbulent total drag to a higher value than in the smooth wall case.

The total drag is influenced by the hydraulic diameter of the pores, which is quite

large in the present simulations.

The evolution of the spatially-averaged displacement thickness, momentum thick-

ness and shape factor, H = δ∗/θ, is shown in figures 5.15, 5.16 and 5.17. The
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Figure 5.18: Boundary layer averaged u-velocity profiles during transition. (a)
case R2S, (b) case R2P.

behavior observed at Reδ∗ = 20000 (cases R2S and R2P) presents all the general

features of boundary layer transition, with an increase in δ∗ and θ and a decrease

in shape factor. While in the smooth wall case skin friction and shape factor de-

part from their respective laminar value at about the same time, in the porous

wall case the shape factor has already dropped significantly before the turbulence

starts affecting the skin friction. Again, this indicates the effectiveness of the
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porous surface in damping the disturbances in the near wall region.

An impression of the evolution of the boundary layer during the simulations is

provided in figure 5.18 where boundary layer profiles are plotted at different times.

The velocity profiles become steeper close to the wall and flatter away from the

wall as the boundary layer grows and turbulence develops from the boundary layer

edge all the way to the near wall region. The damping effect of the pores can also

be noticed by observing that at t = 750 in figure 5.18(b) the mean velocity profile

is still very close to the initial laminar profile. The heat transfer properties of the

boundary layer during transition can be analyzed by plotting the Stanton number,

written in dimensionless form as

St =
(γ − 1)M2

∞qw
(Tw − 1)

, (5.10)

which is a measure of the heat transferred from the fluid to the structure or vice

versa. Given the normalisation used in this work the dimensionless density ρ∞ = 1.

Here, negative values of St indicate heat being transferred from the fluid to the

structure.

Figure 5.19 shows the evolution of Stanton number for cases R2S and R2P. Al-

though the wall is kept at a constant high temperature (equal to the laminar

adiabatic temperature) in the smooth wall case there is still a heat transfer peak,

characteristic of transitional high speed boundary layers. The same is not true

for the porous wall case where heat transfer is negligible. The sudden drop in

Stanton number for the smooth wall case coincides with the initial growth of skin

friction due to the evolution and interactions of the three-dimensional secondary
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Figure 5.19: Variation of Stanton number during transition: — , case R2S;
– – – , case R2P.
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waves. Since these waves are damped by the pores in the near wall region the

same behavior is not observed in the porous wall case.

5.4 The role of the fundamental secondary waves

The limited available literature on boundary layer secondary instability for com-

pressible flows seems to suggest that the H-type (subharmonic) transition is the

most likely transition scenario at high speeds. Ng & Erlebacher (1992) performed

linear calculations using a Floquet model and found no evidence of the fundamen-

tal type of transition following a second-mode primary instability with streamwise

wavenumber of α = 2.52 at M∞ = 4.5. This result was later verified by Adams

& Kleiser (1996) for the same configuration through TDNS. On the other hand,

Erlebacher & Hussaini (1990) carried out temporal direct numerical simulations

of the fundamental secondary instability of the M∞ = 4.5 flow over a flat plate

and showed that the K-type (fundamental) breakdown to turbulence is possible.

The initial simulations carried out in the present work focused on the fundamental

type of transition, since the streamwise extent of the computational domain was

set to be equal to the primary wave streamwise wavelength. The importance of

subharmonic secondary waves was evaluated in case R6S-6×3, where a domain

with a streamwise extent twice as large as the primary wave wavelength was used.

Figure 5.20 shows the temporal evolution of the Fourier mode energy. In this new

configuration mode (2,1) represents the fundamental secondary instability whereas

mode (1,1) is the subharmonic. It can be seen that the energy of the subharmonic

secondary wave remains at low levels throughout the transition process. This
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Figure 5.20: Time history of selected v′ Fourier modes (Case R6S-6×3).
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behavior was corroborated by the calculation carried out in order to assess the

importance of the computational domain size discussed in Section 5.3 (see figure

5.11). The additional subharmonic secondary waves included in that case were

also found to have small amplitudes during the transition process.

It should be noted that the initial growth of mode (2,1), starting from t ≈ 250, is

not a consequence of the secondary instability. As already mentioned in Section

5.3, the fundamental wave initially grows solely due to the interaction of the

primary wave with the slightly damped spanwise modes present in the flow after

the initial transient growth, which in turn is a consequence of the excitation of all

the boundary layer modes through the introduction of random noise. In particular,

the initial excitation of v′ drives the transient growth of streaks through the lift-up

mechanism, as already shown in figure 5.6.

It is concluded that the early excitation of mode (2,1) tends to favor the fundamen-

tal secondary instability. For this reason the subharmonic secondary instability

can be excluded from the present simulations, although it may still play an im-

portant role in the M∞ = 6 boundary layer transition to turbulence, depending

upon upstream conditions.

5.5 The importance of first mode waves

Linear stability theory predicts that at M∞ = 6 the second Mack mode waves,

in particular the two-dimensional waves, are the most unstable. At these speeds

the first mode is also unstable, with a maximum growth rate for oblique waves.

The growth rate of the most amplified Mack mode for Reδ∗ = 20000 is about 2.6

times larger than that of the most unstable oblique first mode, which explains why

transition is dominated by the second mode at these Mach numbers. However, this

is only true for smooth flat plates. We have already shown that when dealing with

porous surfaces the growth rate of the second Mack mode decreases by a factor

of about 2.5 and that three-dimensional second mode waves are strongly damped

in the near wall region. In addition, LST calculations with the model of Fedorov

et al. (2001) suggest that the oblique first modes are slightly destabilized by the

porous surfaces, so that they may play an important role in the transition process.

LST indicates that the most unstable first mode (α = 2π/12 and kz = 2π/6.2)

grows at a rate of ωi = 0.0136 over a smooth flat plate, whereas in the presence of

a porous surface with n = 0.25 and dh = 1.0, the most unstable first mode moves
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to a higher streamwise wavenumber (α = 2π/9.5 and kz = 2π/6.8) and grows at

a rate ωi = 0.0163.

Two additional simulations, cases R2S-9×6 and R2P-9×6, were carried out in

order to investigate the behavior of the boundary layer during transition in the

presence of an oblique first mode. The new computational domain allows the

growth of both an unstable first mode (α = 2π/9 and kz = 2π/6) and the most

unstable Mack mode (α = 2π/3 and kz = 0). Figure 5.21 shows the evolution of

v′-disturbances in the smooth and porous wall cases.

Case R2S-9×6 in figure 5.21(a) shows all the main features already reported for

case R2S. The Mack mode (3,0) dominates the linear stages of transition giving

rise to its harmonics, see for example mode (6,0). The amplitude of the Mack

mode at saturation is slightly lower than in case R2S due to the presence of
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Figure 5.21: Time history of selected v′ Fourier modes. (a) case R2S-9×6, (b)
case R2P-9×6.
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additional finite amplitude waves in the flow-field, which interact with the Mack

mode. These waves are modes (1,1) and (3,1) in figure 5.21(a) and represent the

first mode, which grows at a rate ωi = 0.0128, and an oblique second mode. After

the Mack mode saturation the secondary instability takes place preceding the final

breakdown to turbulence. This configuration does not allow the growth of exactly

subharmonic secondary waves, however it was already shown in Section 5.4 that,

for the cases analyzed in this work, these waves do not play an active role with

the present initialisation.

The results for case R2P-9×6 shown in figure 5.21(b) suggest a completely different

transition scenario in the presence of a porous surface. The Mack mode (3,0) grows

at the expected rate (ωi = 0.0132, in agreement with case R2P) but this time its

nonlinear self-interaction, leading to mode (6,0) and the higher harmonics, does

not lead to a saturation state. The reason for this is that the oblique first mode

(1,1) grows at a rate of ωi = 0.0162, in good agreement with the LST result, and

gives rise to a spanwise (0,2) mode by interacting with a (-1,1) wave, which in turn

has a temporal growth rate of about ωi = 0.0330. This fast growing mode drives

the flow directly to a turbulent state by nonlinear interactions, without the need

for a secondary instability. This transition mechanism is similar to the oblique-

transition scenario found in low supersonic Mach numbers (Kosinov et al., 1990;

Sandham & Adams, 1993). In the light of this result it seems that the first mode

regains importance in the transition process at high Mach numbers when dealing

with porous surfaces.

5.6 Validity of the forcing term

The TDNS approach taken in this paper has been widely used, see for example

Kleiser & Zang (1991) and Adams & Kleiser (1996). However, when adding forcing

terms to the Navier-Stokes equations care is needed in order to correctly interpret

the results obtained. As already mentioned the role of the forcing terms in this

work is to prevent the growth of the initial laminar boundary layer, which is taken

as the basic flow over which disturbances evolve, and to maintain the correct

velocity profile. The forcing term is based on the initial laminar boundary layer

and is kept constant throughout the simulation. In this framework the forcing

term can interact with the disturbances, as in this case the decomposition is not

orthogonal,
∫
V
(Ub · u′) dV 6= 0 where V represents the computational domain
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Figure 5.22: The effect of the forcing term on the disturbance kinetic energy,
a) case R2S, b) case R6S: — , net production of K; – – – , production term;
– · – contribution of the forcing term.

volume, giving a non-zero contribution to the total disturbance energy, or more

precisely acting as a dissipative term in the disturbance energy equation.

For the simulations carried out in the present work the forcing term for the u-

momentum equation takes the following form

FM1 = − d

dy

[
µ

Re

dUb

dy

]
, (5.11)

whereas the forcing terms for the v-momentum and w-momentum equations are

identically zero. The contribution from this term to the total velocity disturbance

energy, K = (u′2 + v′2 + w′2)/2, is given by
∫
V
(u′ · FM1) dV . By comparing this

term with the right hand side of the total kinetic energy equation and with the
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integrated production term

P = −
∫

V

u′v′
dUb

dy
dV, (5.12)

it is possible to quantify the effect of the forcing. We note that the forcing term

is inversely proportional to the Reynolds number, hence it is more important at

low Re.

Figure 5.22 shows the effect of the forcing term on the kinetic energy of the dis-

turbances for cases R2S and R6S. The forcing term becomes important in the

final stages of transition, starting from t ≈ 600 for the low Reynolds number

case, whereas its effect is negligible in the high Reynolds number case throughout

the entire simulation. The amount of energy dissipated by the forcing term per

unit time is very small when compared with the net disturbance kinetic energy

produced in the boundary layer. Therefore in the high Reynolds number cases, al-

though the mean boundary layer profile changes drastically during the simulation,

as can be appreciated in figure 5.18, the effect of the forcing term on the evolution

of the velocity disturbance energy is negligible.

5.7 Conclusions

Three-dimensional temporal direct numerical simulations of hypersonic boundary

layer transition to turbulence over a porous surface have been carried out in the

present work. Initially the M∞ = 6 flat plate laminar boundary layer was per-

turbed with small random v′-disturbances with a maximum amplitude of the order

of 10−3 × U∞. Two Reynolds numbers based on laminar displacement thickness

were considered, namely Reδ∗ = 6000 and Reδ∗ = 20000. Smooth and porous wall

calculations, all starting from the same laminar similarity profile, were analyzed

for comparison. The results show that in all cases there is transient growth of u′,

ρ′ and T ′ at the beginning of the simulation leading to streamwise streaks. Non-

linear interactions of these modes with the primary wave lead to the excitation

of fundamental three-dimensional modes, thereby favoring the K-type transition

scenario.

A reduction of primary wave growth rate due to the presence of pores confirmed

the stabilizing effect of porous surfaces. The secondary wave growth rate was also

found to be reduced, but this is argued to be due mainly to the lower primary wave

amplitude at saturation. The direct effect of the pores on the secondary instability
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is to almost entirely suppress the secondary wave growth in the near wall region.

The analysis of the evolution of total drag during transition revealed that the rise

from the laminar to the turbulent value is much more sudden in the presence of

a porous surface. This is due to the fact that the three-dimensional secondary

waves, which cause the initial increase in skin friction in the smooth wall case,

are suppressed by the pores in the near wall region. Therefore the skin friction

rises suddenly when the turbulence developing near the edge of the boundary

layer reaches the wall. The onset of secondary instability was also found to be

responsible for a heat transfer peak in the smooth wall simulations. The effects of

transition on the wall heat flux were negligible in the porous wall case. It was found

that, even at the high Mach numbers considered in this work, oblique first mode

disturbances are the most dangerous waves for laminar boundary layers developing

over porous surfaces. In this case an oblique mode transition mechanism drives the

flow directly to a turbulent state without going through a secondary instability.

The conclusions drawn in this work are relevant to the classical small disturbance

transition scenario, where the linear amplification of boundary layer modes is

followed by nonlinear interactions and possibly secondary instabilities before the

modes become stable as they convect downstream. The routes to transition are

numerous. The effects of non-parallel mean flow, like synchronisation of boundary

layer modes which are thought to lead to the excitation of the second mode,

can determine the way disturbances enter the boundary layer (receptivity) and

how they grow and interact with each other. The way these effects modify the

transition scenario in the presence of porous surfaces is still not fully understood.

Another problem worth investigating concerns the way the pores interact with

the vortical structures entering the near wall region and how they influence the

turbulent boundary layer.

Finally, in real applications porous materials are more likely to have a random

distribution of pores with different widths and depths. We believe that our con-

clusions should apply to these cases at least qualitatively. This might not be the

case when using fibrous materials, where the layout of the micro-cavities is very

complex with intricate interconnections that can lead to non-negligible mean flow

effects within the fibers. For these cases appropriate boundary conditions would

need to be derived to take into account the effects of porosity.





Chapter 6

Conclusions and future work

The work presented in this dissertation was divided into three parts. Part one

(chapter 3) contained a parametric study of the receptivity and subsequent lin-

ear growth of small disturbances in the laminar flow around localised sharp-edged

roughness elements, which takes into account the effects of Mach number, rough-

ness height, disturbance type and wall temperature. The second part (chapter 4)

was focused on the nonlinear stages of transition to turbulence, with particular

attention to the mechanisms leading to breakdown to turbulence following the lin-

ear growth of small disturbances and to the dominant processes in the evolution

of a turbulent wedge downstream of the roughness element after breakdown. In

this part of the investigation the effects introduced on the transition process by an

oblique shock impingement on the transitional boundary layer were also analysed.

The final part of this dissertation (chapter 5) was devoted to the study of a passive

method for the control of transition to turbulence in high speed boundary layers

based on the use of porous materials to damp the linear growth of boundary layer

instability modes.

A synthesis of the principal results obtained in this work and suggestions for further

study are provided in the following.

Receptivity due to roughness

Both at M∞ = 6.0 and M∞ = 2.5, isolated roughness elements induce pairs of

counter-rotating streamwise vortices which, by lifting up low momentum fluid from

the near wall region, lead to the generation of a low velocity streak bounded by

regions of high wall-normal and lateral detached shear in the wake of the roughness

159
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element. The strength of these vortices is found to increase with increasing rough-

ness Reynolds number (Reh) and wall temperature and with decreasing Mach

number. As these vortices shape the wake of the roughness element they also

determine its stability characteristics.

At the two Mach numbers considered, the effects of small roughness elements on

the boundary layer stability are found to be weak. At M∞ = 6.0 a roughness ele-

ment with height h/δ∗h ≈ 0.35 and h/δh ≈ 0.27 slightly enhances the receptivity of

boundary layer modes, without introducing additional instabilities. The wake of

the roughness is found to be stable for all frequencies of the forcing. At M∞ = 2.5

small oscillations appear in the lateral shear layers surrounding the streak for

the lowest forcing frequency considered (F = 0.02) and grow slowly for increas-

ing streamwise distance. For higher frequencies the boundary layer response is

practically undistinguishable from that of the smooth flat plate boundary layer.

Increasing the roughness height by a factor of two leads to a completely different

scenario. At M∞ = 6.0 the wake of the roughness sustains the growth of three

additional instability modes, characterised by sinuous and varicose deformations

of the low velocity streak. Growth of disturbances on the lateral shear layers

located at the sides of the roughness-induced streamwise vortices may lead to a

sinuous mode (denoted here as mode SL) or to a varicose mode (denoted as mode

VL) depending on the nature of the disturbance environment. Disturbances domi-

nated by sound are found here to efficiently excite two-dimensional (zero spanwise

wavenumber) boundary layer modes which in turn tend to drive the response of the

roughness wake towards a varicose deformation of the streak. Disturbances domi-

nated by streamwise vorticity, on the other hand, lead to a more three-dimensional

disturbance field inside the boundary layer and to the excitation of mode SL. The

third mode (mode VC) is also associated with a varicose streak deformation and is

characterised by the appearance of a near wall maximum near the roughness mid-

plane in the u′ and v′ disturbance fields. This mode appears to be the roughness

wake response to the growth of Mack modes in the laminar boundary layer away

from the roughness wake. The most unstable roughness wake modes are mode VL

for F = 0.06 and mode VC for F = 0.14, with −αi ≈ 0.029 and −αi ≈ 0.027 re-

spectively and are found to be most effectively excited by disturbances dominated

by sound.

At M∞ = 2.5 all the forcing frequencies lead to the excitation of instability modes

in the roughness wake. Disturbances grow due to the excitation of mode SL,

similarly to what was found for the M∞ = 6.0 case, and an additional varicose
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mode (mode VT) associated with the Kelvin-Helmholtz instability of the shear

layer along the roughness centreline. With a growth rate of −αi ≈ 0.25 (about an

order of magnitude higher than that of the most unstable wake mode atM∞ = 6.0)

mode VT for F = 0.14 is the most unstable mode observed. The results show that

this mode drives the instability of the wake for 0.08 ≤ F ≤ 0.14, while for higher

frequencies mode SL is dominant. It appears that any generic boundary layer

disturbance can lead to the excitation of mode SL and mode VT, however the

results also suggest that in the absence of boundary layer disturbances only the

fast acoustic waves are able to penetrate the boundary layer.

A study of the effects of wall temperature on the stability of the flow revealed that

at M∞ = 6.0 wall cooling tends to damp the growth of instability modes in the

roughness wake and, as it is well known, has a destabilising effect on the Mack

modes growing in the boundary layer away from the roughness wake. This result

agrees with the damping effect of wall cooling in roughness-induced transition

reported in previous studies (Redford et al., 2010; Bernardini et al., 2012). At

M∞ = 2.5 a decrease of wall temperature from Tw = Tad to Tw = T∞ leads to the

onset of spontaneous oscillations in the separation bubble induced immediately

upstream of the roughness element, suggesting the development of a global mode

instability. This result, however, should be verified with further analysis in the

future.

Nonlinear transition stages

For both M∞ = 6.0 and M∞ = 2.5 the linear growth of instabilities in the rough-

ness wake eventually leads to breakdown to turbulence leading to the formation

of a wedge of turbulence downstream of the roughness element. At M∞ = 6.0,

the linear growth of mode SL gives way to an asymmetric disturbance growth

in the wake of the roughness element. We speculate that this behaviour is due

to non-parallel flow effects leading to algebraic disturbance growth. The onset

of nonlinear interactions further downstream leads to a breakdown to turbulence,

characterised by the roll-up of the lateral shear layers surrounding the roughness

induced streamwise vortices.

At M∞ = 2.5 mode VT grows to finite amplitudes and induces the roll-up of

the three-dimensional shear layer induced by the roughness in its wake, forming

a series of hairpin-like vortices. The breakdown of these structures precedes the

formation of a turbulent wedge.
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The rate at which turbulence spreads laterally for increasing streamwise distance

after breakdown to turbulence agrees well with experimental (Fischer, 1972) and

numerical (Redford et al., 2012) results obtained for the lateral growth of turbulent

spots. At M∞ = 6.0 the turbulent wedge has a half spreading angle of α = 3.0±
0.2◦ while forM∞ = 2.5, α = 5.5±0.2◦. Similarly to what was found for turbulent

spots, at M∞ = 2.5, the turbulent wedge grows both due to the convection of

turbulent structures from the core of the wedge towards the surrounding laminar

boundary layer and by an instability of the lateral jets located at the edges of the

wedge. AtM∞ = 6.0 the growth by destabilisation mechanism is strongly damped

and the wedge grows mainly by convection. In this case, the mean lateral flow

also appears to play an active role in the generation of new mean flow structures

near the edges of the wedge.

An oblique shock impingement on a boundary layer undergoing the final stages of

transition was found to lead to an acceleration of the transition process at both

M∞ = 6.0 and M∞ = 2.5. A small separation bubble is induced in the laminar

boundary layer surrounding the wake of the roughness as a result of SBLI, while the

flow in the transitional roughness wake remains mostly attached. This leads to the

generation of two regions of high lateral shear near the sides of the roughness wake

which sustain the quick growth of disturbances, eventually leading to breakdown

to turbulence. The breakdown to turbulence in these lateral regions appears, for

both the Mach numbers considered, as vortex shedding at the separation bubble

edge with a dominant frequency of F = 0.02, which is much lower than the most

unstable wake mode frequencies. As a result, the turbulent wedge spreads quickly

in the lateral direction immediately downstream of the laminar separation bubble,

leading to a wider turbulent in the presence of SBLI. The turbulent wedge recovers

the lateral spreading rate of the case without shock further downstream.

Transition control using porous coatings

The effect of pores on the stability of a M∞ = 6.0 boundary layer was studied

by performing temporal direct numerical simulations. The stabilising effect of

porous surfaces was confirmed by the computed reduction of Mack mode growth

rate from ωi = 0.0341 (in the smooth wall case) to ωi = 0.0132. The reduced

primary wave amplitude at saturation appears to be the main cause of a reduction

of secondary instability growth rate in the porous wall case. The secondary wave

growth near the wall is almost entirely suppressed by the pores. The increase

of total drag during transition, while being delayed, occurs more suddenly in the
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presence of pores than in the smooth wall case due to the suppression of the

growth of secondary waves near the wall. Secondary instabilities cause the initial

skin friction rise in the smooth wall case.

The damping effect of the Mack modes by the pores was found to be accompanied

by a slight destabilisation of first mode waves. A combination of the two effects

causes oblique first modes to be the most dangerous waves in the presence of

pores, despite the high Mack number considered. An oblique mode transition

mechanism leads in this case directly to breakdown to turbulence without the

need for secondary instabilities.

Suggestions for further work

A continuation of this work could take a number of different paths. A list of

suggestions for future work is provided in the following.

• The parametric study on the receptivity of small disturbances in the presence

of roughness could be extended to include the effects of different roughness

shapes and dimensions. For example, for a constant roughness height, dia-

mond shaped roughness elements have been found experimentally to be more

effective at triggering the boundary layer than squared ones. Therefore, it

would be interesting to understand the underlying mechanisms responsible

for these observations and the consequences these may have on roughness-

induced transition criteria based on Reh.

• The roughness-induced transition criteria proposed by Redford et al. (2010)

and Bernardini et al. (2012) could be improved by performing a study of

the effects of Reynolds number and roughness height close to the proposed

critical Reh value. This analysis could also give a better indication of the

ability of Reh to predict transition in the presence of roughness.

• The Roughness-induced transition criteria (see Redford et al., 2010; Bernar-

dini et al., 2012) base their predictions (for a fixed Mach number and wall

temperature) solely on the roughness Reynolds number (Reh or Re∗h). A

significant contribution would be to incorporate the effect of disturbance

amplitudes and types into the criteria.

• The receptivity study carried out in this work considered disturbances with

different amplitudes of sound, vorticity and temperature fluctuations. For
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small perturbations it should in principle be possible to impose disturbances

made purely by sound, vorticity and entropy waves, which would help gain

a more profound understanding of the process of receptivity. A numerical

approach to achieve this is currently missing from the literature.

• The cold-wall M∞ = 2.5 case analysed in section 3.7.3 suggests that an

absolute instability developing in the upstream roughness-induced separa-

tion bubble drives the flow instability, which occurs in the absence of forced

disturbances. It would be interesting to analyse this aspect in more detail

by performing linear stability calculations. A full three-dimensional eigen-

value analysis would be challenging. However one could make considerable

progress by solving the local and/or bi-global problems together with global

stability Navier-Stokes based simulations (i.e. using the temporal DNS ap-

proach).

• In section 4.2.2 it was speculated that the asymmetric growth of disturbances

in the roughness wake during the linear stages of transition is due to a linear

superposition of non-normal modes which occurs as a consequence of non-

parallel flow effects. It would be interesting to investigate this behaviour

further. A detailed receptivity analysis, as those presented in this work in

chapter 3, together with results from the bi-global eigenvalue problem would

give considerable insight.

• The lateral growth of turbulent wedges was found in chapter 4 to be governed

by similar mechanisms to those observed in turbulent spots studies. A more

in depth study of the flow features near the edges of the wedge, perhaps

with the use of conditional averages to better quantify the intensity of the

lateral jets, would give a clearer picture of the role played by these jets in

the spreading of turbulence both in turbulent wedges and spots.

• The study of the effects of SBLI on transitional boundary layers could be

extended by considering for example different shock strengths and impinge-

ment locations. In addition, it would be of great interest to explore the

onset of low-frequency oscillations in this transitional SBLI configuration,

for which, however, much longer integration times than those considered in

this work would be needed.

• The damping of Mack modes by porous coatings was investigated in chapter

5 in the temporal framework which neglects non-parallel flow effects. An

extension of this work would be to consider the full three-dimensional spatial
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problem. This would allow an investigation of the effects of pores on the

boundary layer receptivity and the effect of non-parallel flow effects on Mack

mode damping.
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