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ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

Fluid Coupling and Waves in the Cochlea

by Guangjian Ni

The cochlea plays an important role in human hearing. Its basic function is to map
sounds of different frequencies onto corresponding characteristic positions on the
basilar membrane, BM. When sounds enter the fluid-filled cochlea, deflections of the
BM occur due to pressure differences between the cochlear fluid chambers. These
deflections propagate along the cochlea to a frequency-dependent characteristic position
and then decay away rapidly. The mechanics of the cochlea are modelled using both
analytic and numerical models. In this thesis, the passive response of the cochlea is
analysed, corresponding to its behaviour at high sound levels, to study the fluid

coupling and waves in the cochlea.

The fluid coupling is studied in 1D and 3D, uniform and non-uniform, uncoiled and
coiled geometries, all with a passive basilar membrane. A ‘uniaxial model’, which is
dependent on only a single dimension, is developed to represent the three-dimensional
cochlea. The finite element method is also used to provide an independent check of the

results from the analytic model.

Analytic methods are used to predict waves due to different mechanisms in the passive
cochlea, such as 1D and 3D fluid coupling and longitudinal BM dynamics. The wave
finite element, WFE, method is then used to decompose the results of a full finite
element model of the coupled cochlea into wave components. Results show that apart
from the conventional slow wave, other additional types of wave in the passive cochlea

do not appear to play a dominant role in normal passive cochlear function.
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Chapter 1 Introduction

Chapter 1. Introduction

This thesis is concerned with modelling the mechanics of the mammalian cochlea,
which forms part of the inner ear. Both analytic and numerical methods are used for
modelling. In particular, the wave finite element (WFE) method, which has previously
been used to analyse uniform, or periodic, engineering structures, is used here for the
first time to link the wave approach, found in analytic methods, with the finite element

approach, found in numerical methods.

This introductory chapter begins with a brief review of the structure and function of the
cochlea. A general overview of methods of modelling the mechanics of the cochlea is
then provided. The structure of the remainder of the thesis and its main contributions are

then discussed at the end of the chapter.
1.1 The Cochlea

The human ear consists of three main components, the outer, middle and inner ears. The
main functions of the outer ear are to enhance the amplitude of the sound wave at the
eardrum and to assist with locating sound. The middle ear includes three small bones
whose geometry provides a lever arrangement that optimises energy transfer from the
outer ear, which is filled with air, to the cochlea, which is filled with fluid. In other
words, the middle ear provides an impedance matching mechanism between the outer
ear and the cochlea. The inner ear consists of two parts which are housed in the
temporal bones, the cochlea and the vestibular organs. The vestibular organ is related

with the sense of balance but we will focus on the cochlea in this research.
1.1.1 Cochlear Structure

The length of the cochlea itself is about 35 mm in humans. From a structural point of
view, the cochlea is housed in a rather inaccessible part of the skull, totally embedded in
bone. Furthermore, the cochlea is also notable for its complicated geometry and small
physical size. In spite of these, Retzius, Huschke, Reissner, Kalliker, Deiters, Hensen,
and Corti studied its anatomical mystery in the mid-nineteenth century (Dallos, et al.,
1996). They described that the cochlea is composed of a bony labyrinth, within which is
found the cellular structures comprising a membranous labyrinth, as shown in Figure
1.1.
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Figure 1.1 shows a bony tube spiralling around the modiolus, which forms the central
axis of the cochlea, from the base to apex. The interior of the bony labyrinth is
partitioned into three tubes or spaces (scalae). The upper, more apical space (scala
vestibule, SV) is separated from the middle (scala media, SM) by Reissner’s membrane,
which is only two cell layers thick and has a similar density to that of the fluid in the
cochlea. The main function of Reissner’s membrane is to separate endolymph from
perilymph and is generally assumed to be “acoustically transparent” having no influence
to the cochlear mechanical functions (Dallos, et al., 1996). From the vantage point of
cochlear mechanics, the SV and SM can thus be thought as a single fluid chamber. The
SM is separated from the lower space (scala tympani, ST) by parts of osseous spiral
lamina and the basilar membrane (BM). The BM is one of the most important elements
in the passive cochlear mechanics. If the BM was flattened and unfolded, it would be
wedge-shaped with its width gradually increasing from the base to the apex. The change
in width results in a highly significant reduction of the BM stiffness from the base to
apex. The ST and SV are connected at the apical tip of the cochlea by a narrow opening

called the helicotrema.

Figure 1.1 A mid-modiolar section through the human cochlea, the membranous labyrinth can be seen
housed in bone. The fluid-filled tubes scala tympani (ST), scala vestibuli (SV) and scala media (SM) are

separated from each other by the basilar membrane (BM) and the Reissner’s membrane (RM).

An important component of the human cochlea is the organ of Corti (OC), the sensory
organ of hearing, which is distributed along the partition separating the fluid chambers
and located on the SM side of the BM. Figure 1.2 shows a detailed structure of the OC,
which includes a complement of support cells and two types of sensory cells (hair cells)
from a unit segment, which is repeated about 3,500 times along the length of the OC.
Another cochlear structure of great importance is the tectorial membrane (TM). The

2
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space between the tectorial membrane and reticular lamina is apparently open to the
endolymph. Consequently, the apical faces of hair cells and the entire reticular lamina
are bathed in this fluid. The complex consisting of the TM, the OC and the BM may be
taken as the accessory structures to the hair cells. Their role is to deliver a processed
mechanical signal to the appropriate group of sensory receptor cells whose primary
mechanical input is related to the relative motion between the TM and reticular lamina
(Dallos, et al., 1996). The stria vascularis maintains a potential difference of about 80 ~
100 mv between the SM and ST (Dallos, 1992), which powers the active behaviour of
the outer hair cells.

Reticular lamina

QOuter hair i
air cell Inner hair cell

Bone 2/ = 3
\ / Reissner's

membrane

Strin - Tecterial
vascularis membrane

Basilar
membrane

Figure 1.2 Cross section of the cochlear partition and the scala media, with one of three outer hair cells,
OHCs (left) and an inner hair cell, IHC (right) shown enlarged. Boundaries of the partition are the
Reissner’s membrane, basilar membrane, and the peripheral wall, lined by the stria vascularis. The organ
of Corti is on the scala media side of the basilar membrane; it contains an array of supporting cells and
the OHCs and IHCs. The tectorial membrane is above the organ of Corti. Nerve fibres enter the organ
from the central bony core of the cochlea. Inside the partition is endolymph; outside it and within the
organ of Corti spaces is perilymph. The reticular lamina, formed by support cell processes, is a flat plate

covering the organ of Corti (Fig. 2, Dallos, 1992) (with permission from the Journal of Neuroscience).
1.1.2 Cochlear Functions

The principal role of the cochlea is to transform the hair cell motions induced by the

incoming sound wave into electrical signals. These electrical signals then travel as
3
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action potentials along the auditory pathway to structures in the brainstem for further
processing. The whole transformation can be seen as a procedure of a real time spectral
decomposition of the acoustic signal in producing a spatial frequency map in the

cochlea.

Carterette (Carterette, 1978) summarised the history, from the ancient Greeks to modern
day, of auditory anatomies and functions. It showed that at the early stages, the studies
were mainly focusing on anatomy and identifying the major features of the auditory
system like the eardrum, cochlea and bones of the middle ear. von Békésy (von Békésy,
1960) carried out pioneering work to reveal the waves in the cochlea extracted from
human cadavers in the 1940s. He found that a travelling wave generated by a pure tone
excitation will propagate along the BM with the wave amplitude that gradually
increased. After a peak at a specific location, where resonance occurs, the vibration
decays quickly along the BM. The frequency of the input tone determines the location at
which the peak occurs and this peak is more basal at high frequencies and more apical at
low frequencies. This behaviour is one of the most critical evaluation criteria for

cochlear models.
1.1.3 The Active and Nonlinear Cochlear Mechanics

In the classic travelling wave model, the cochlea is taken as a hydromechanical element,
determined by the physical structure of the cochlea, which provides the basis for
frequency analysis. This passive, travelling wave model was first proposed by von
Békésy (von Békésy, 1960), who measured the travelling wave in cadaver ears, using an
optical method that required very high input levels to make the responses large enough
to be observed. For this kind of behaviour, the response is not dependent on stimulus

level, except for amplitude scaling, and is described as “passive”.

With the development of more refined measurement technologies, more and more
evidences showed that the cochlea is active and nonlinear. The idea of active processes
in the cochlea was first raised by Gold (Gold, 1948) and evidenced by Kemp (Kemp,
1978) in the form of objective tinnitus and oto-acoustic emissions. These active
processes provide a frequency-sharpening mechanism. Lyon (Lyon, 1990) and Mead
(Lyon and Mead, 1988) emphasized that the active processes function primarily as an
automatic gain control, allowing the amplification of sounds that would otherwise be
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too weak to hear. The response of the BM in the living ears was found to be different
both qualitatively and quantitatively from that seen in the dead ears. Figure 1.3 (a)
shows the BM amplitude normalized to the input stimulus level and represents the gain
functions between the BM displacement and stimulus. The gain is significantly
dependent on stimulus level. When measured at a high level stimulus, the BM
displacement is similar to that found in the dead cochlea, which indicates that the
passive cochlear model can reflect response at high level stimulus reasonably well. As
stimulus level decreases, however, the gain functions become increasingly sharper and
this gain increase only occurs in the vicinity of the characteristic frequency (CF). For
frequencies less than an octave below CF, the gain is independent of level, which
reflects a band-limited nonlinearity around the CF (Rhode, 1971).

From Figure 1.3 (b), the nonlinearity, as well as the sharp tuning behaviour, of the
living cochlea is seen to be different from that of the dead cochlea. In the living cochlea,
the gain is higher at the lower stimulus level, but for the dead cochlea this gain
difference disappears and the tuning becomes independent of the stimulus level
providing evidence of a nonlinear active process. Other evidence of the active behaviour
for the living cochlea is given by the detection of sound in the ear canal, due to
spontaneous oscillations originating from the cochlea, retransmitted by the middle ear,

in the absence of any excitation. (Wilson, 1980).

Although the passive cochlea loses the active and nonlinear behaviours of the living
ears, it is still capable of performing the basic cochlear function of mapping frequency
onto place reasonably well, especially for high level stimulus, higher than about 80 dB
SPL for example. It is also convenient as a first step in modelling, since the function is
relatively well understood and agreed upon, and it allows the more complicated active
behaviour, some elements of which are still controversial, to be ignored. In this research,
only the passive cochlear is modelled to reveal the fluid coupling and wave propagation,
which will help to understand the cochlear mechanics for future active cochlear models.
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Figure 1.3 (a) The normalized BM amplitude at different sound pressure levels, SPL. All curves
converge below 10 kHz, indicating linear response and equal gain, independent of the SPL.
Measurements were performed using the Mdssbauer technique in the basal turn of the guinea pig cochlea.
Maximal response frequency is at about 17 kHz (Johnstone, et al., 1986) (with permission from Hearing
Research). (b) Gain functions of the BM displacement measured in the basal turn of the chinchilla
cochlea with laser Doppler velocimetry. Maximal response frequency is at about 8.5 kHz. Measurements
are shown at two sound pressure level, 75 and 95 dB, and in conditions of living and dead cochlea

(Ruggero and Rich, 1991) (with permission from the Journal of Neuroscience).

1.2 Analytic Models

The original studies of the cochlea were primarily anatomical. By the mid-1800s, with
the developments of microscopes and chemical tissue fixatives, people were able to
describe a finer structure of the cochlea. Reissner (1851), Corti (1851) and Deiters
(1860) applied those new technologies and discovered the cochlear structures now
named after them (Dallos, et al., 1996).

Compared to reality, cochlear models may be incredibly simplified, but these crude
models can still reflect how the real organ works. The motivations of modelling the
cochlea are to represent, within one framework, the results from a large variety of

experiments and to explain the functions of the hearing system. In principle, models

6
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should also be tested by providing predictions of experiments that have yet to be done.
Cochlear models have been formulated and constructed in various forms. These models
are concerned with mechanical structures built up with structural elements like plate,
beam coupled with fluid (Elliott, et al., 2011, Parthasarathi, et al., 2000, Wittbrodt, et
al., 2004) or electrical networks (Crawford and Fettiplace, 1981, Fuchs, et al., 1988,
Kros, et al., 1992) consisting of inductors, resistances, capacitors, diodes and amplifiers.
After construction, these structures can be put into mathematical form and then be

solved by computer.
1.2.1 Travelling Waves in the Cochlea

The travelling wave theory of the cochlea (Zwislocki, 1948, Zwislocki, 1974) predicts
the delay of the travelling wave to accumulate with increasing distance from the stapes.
von Békesy (von Bekésy, 1970) studied the cochlea as a passive mechanical filter that
utilizes a system of elastic components immersed in a fluid for analysis of incoming
sounds. He observed that a pure tone input generates a travelling wave propagating
along the BM. The wave amplitude increases gradually to a peak at a characteristic
location along the BM, after which it decays rapidly. The characteristic location
depends on the driving frequency, for example, the peak is close to the stapes at high
frequencies, and further towards the apex at lower frequencies. This ‘‘place principle”’

is a crucial mechanism of frequency analysis in the cochlea.

In the 1970s, the cochlea was recognized as a wave propagation medium in which the
physical parameters vary slowly. Steele (Steele, 1974) firstly adopted the Wentzel-
Kramers—Brillouin (WKB), or Liouville-Green (LG) method to solve cochlear
mechanical problems and found closed-form solutions for a 1D cochlear model. Zweig
et al. (Zweig, et al., 1976) found the closed-form WKB solutions for a 1D long-wave
model in 1976. Steel, Taber and Miller also extended the WKB method to solve 2D
(Steele and Miller, 1980) and 3D (Steele and Taber, 1979, Taber and Steele, 1981)
cochlear problems. de Boer and Viergever (de Boer and Viergever, 1982, de Boer and
Viergever, 1984) further developed the WKB approach for cochlear mechanics. The
WKB solutions for the 2D and 3D cochlear model showed good agreement with more
detailed numerical solutions, except for the high-frequency region and the reason for
these errors appeared to be the non-uniqueness of the complex WKB wavenumber in
2D and 3D models (de Boer and Viergever, 1982).
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To explain the travelling wave model, a simpler example of wave propagation in a
stretched string is considered first. When a uniform semi-infinite string is driven by a
sinusoidal source at the left hand side, as shown in Figure 1.4, the transverse

displacement, w(x,t), can be given by (Graff, 1991)

w(x,t)= Ae'(o—e), (1.1)

where A is the wave initial amplitude which depends on the driving source, w is driving
frequency and k is complex wavenumber. If the wavenumber k is written in terms of

real and imaginary parts, as
k=x+ia, (1.2)

equation (1.1) can then be written as

w(x,t)= Ae®*gilX-eA), (1.3)

where e** reflects the effects of energy gains or losses and therefore determines

whether, and how quickly, the wave amplitude raises or decays as it travels (Shera,

2007) and " determines the phase change with respect to position x. For a passive
system, the imaginary part « of a forward-going wave should always be expected to be

either zero or negative.

H

Figure 1.4 Instantaneous wave motion along a uniform semi-infinite loose string under sinusoidal

excitation showing both decay and phase change.
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When the properties of the medium vary with position, as in the cochlea for example,
the waves manifest a more complicated relationship to the wavenumber k. For example,
the displacement of the BM produced by a pure tone has the approximate form, WKB

approximation, (de Boer and Viergever, 1982) as

wW(x,t) = Ak(x, w)¥2el* ] (1.4)

where ¢(x) = I k(x',w)dx" denotes the integral of the accumulating phase shift and
0

gains or losses as the wave propagates along the cochlea, x' is dummy integration

3/2

variable, and factor A is the wave amplitude at the base. The additional k(x, )™ term

is necessary for conservation of energy when the wavenumber changes with x. The

WKB method is discussed in more detail in Appendix A.
1.2.2 Wavenumber for a Simple Box Model

An initial estimate of the way in which the real and imaginary parts of the wavenumber
vary along the length of the passive cochlea can be obtained from an analysis of a
simple box model shown in Figure 1.5. This analysis will be gone over in detail in
Chapter 6, but for now we can just note that the wave equation is obtained by
combining the conservation of mass and momentum equations for the fluid coupling to

give

*p(x)  2iwp
-_ v(Xx), 15
ox? h (x) (1.5)
where v(x) is the distribution of the transverse BM velocity being complex quantities at
a single driving frequency, w. The parameter h corresponds to the physical height of the

two fluid chambers if the BM velocity is assumed to be uniform across its width.
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Basilar Membrane Helicotrema

Transverse
z Yy
Radial
> X

Longitudinal

Figure 1.5 A simple box model of the cochlea consists of two fluid chambers separated by the BM.

The BM is assumed to react only locally so that

V(X)=— P(x) : (1.6)

where the minus sign indicates that a positive pressure difference generates a negative
BM velocity in the sign convention used here and Zgw(x) is the local BM impedance,
which is assumed to be that of a single degree of freedom system, whose parameters are
listed in Table 2.1.

These quantities can be combined to give the wave equation as

o°p(x) __ 2iwp _
N ) p(x)=0. (L.7)

® the wavenumber can be obtained as

3 —2iwp
k(x)=+ /—h Zon () (1.8)

The real and imaginary parts of the wavenumber are plotted for four different

Assuming that p(x) is locally proportional to e

frequencies in Figure 1.6, from which it is clear that each frequency corresponds to a
different characteristic place along the cochlea.

10
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As can be seen in Figure 1.6, the travelling wave propagates along the cochlear length
with a slowly decreasing wavelength at a given driving frequency until it reaches a
characteristic place without decay, since the imaginary part of its wavenumber is zero. ,
The characteristic place depends on driving frequency and moves towards the apex
when the driving frequencies decrease. The wave becomes an evanescent wave
decaying away quickly beyond that point since the real part of wavenumber tends to
zero and the imaginary parts are non-zero. The negative imaginary parts of wavenumber

indicate those waves propagate in a positive direction from the base towards the apex.

T
5 kHz 2kHz 1 kiz 0.5 kilz —Re(k)

0 5 10 15 20 25 30 35

Figure 1.6 The distribution of the real (solid lines) and imaginary (dashed lines) parts of the wavenumber
calculated from a simple box model of the cochlea with 1D fluid coupling at driving frequencies of 5 kHz,

2 kHz, 1 kHz and 0.5 kHz.

1.2.3 Inverse Method

Shera (Shera, 2007) has proposed an inverse method for using the experimentally
obtained BM velocity transfer function at a location along the vivo cochlea in the

frequency domain to calculate the propagation and gain functions. He then goes on to
reconstruct the BM velocity distribution, Vg (x, fo) in the spatial domain to test the

theory. This method gives a strong evidence for travelling wave amplification in the
mammalian cochlea based on measurements, which are the real and imaginary parts of

the complex wavenumber.

11
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A
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Figure 1.7 Estimate of the BM frequency response from measurements of the BM click response,
VBM (Xo,t), at the cochlear location X, tuned to approximately 9 kHz in chinchilla (A). The response
estimate has been normalized by its peak value. Time, shown along the abscissa in units of the CF period,
is measured relative to the approximate onset of stapes vibration by subtracting out estimates of acoustic
and synaptic transmission delays amounting to a total of 1.225 ms. The magnitude and phase of the
Fourier transform of vgy (Xo,t) provide an estimate of the BM mechanical transfer function,
VM (xo, f), at the cochlear location x, (B). Frequency, normalized by CF(x,) =9 kHz, increases along
the logarithmic abscissa. Application of local scaling provides an estimate of the travelling wave by
reinterpreting the abscissa f/CF(X) as a spatial axis at fixed frequency (C). The figure shows a
snapshot of the 9 kHz wave whose envelope and phase are shown in (B) The 1 mm scale bar is based on

estimates of the chinchilla cochlear map (Shera, 2007) (with permission from AIP).

To find travelling waves from the transfer functions obtained from experiments, Shera
(Shera, 2007) applied the local scaling symmetry (Zweig, et al., 1976) manifest by BM
transfer functions (Gummer, et al., 1987, Rhode, 1971) and neural tuning curves (Kiang

and Moxon, 1974, Liberman, 1978). A dimensionless factor B(x, f)=f/CF(x),
where CF(X) is the characteristic frequency at location x (i.e. the cochlear position-

frequency map), is defined to let Vg (x, f) depend on the two variables x and f rather

than depend on position or frequency independently. When the BM velocity is scaled,

12
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the function vgy [,B(x, f )] describes both the transfer function and the travelling wave.
In other words, if frequency domain measurement of the transfer function Vg, (XO, f)
is plotted against f /CF(XO), it provides spatial domain measurement of the travelling

wave Vgy (X, f,) plotted against f, /CF(x), as shown in Figure 1.7.

To define the relation between the complex wavenumber, k, and the BM velocity, vgy,

Shera (Shera, 2007) adopted a two dimensional box model of the cochlea. By averaging

the pressure difference over the physical height of the scalae and applying boundary
conditions at the scalae walls and BM, the averaged pressure difference, p(x, f),
satisfies the one dimensional wave equation (Shera, et al., 2005)

2 —

0 p 2
—+k“p=0. 1.9
kD (19)

The BM velocity Vg (x, f) is related to the second spatial derivative of the pressure
difference through the equation
0P

where B is the BM width and Zgc is the fluid coupling impedance (Shera, et al., 2005).

If Vg (x, f) is obtained by measurement, the pressure difference p in equation (1.10)

can be solved by double integration as
P(x, f)=BZec s [ivam (X7, f)dx"dx, (1.11)

where X and X" are dummy integration variables and L is the length of the cochlea. The
constants of integration are chosen to satisfy the assumed boundary conditions.

Combining equations (1.9) to (1.11), the wavenumber can be given by

[FTSvgu (x7, F)dx"dx’

K(x, f)=iiJ Vem (%, 1) (1.12)
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This wavenumber inversion formula suggests how to estimate the complex
wavenumber, as shown in Figure 1.8, from the measured BM velocity. The method can
also be used to reconstruct the BM velocity distribution by combining the WKB
approach. Figure 1.9 shows a good agreement between the original measured BM
magnitude and phase distributions and those reconstructed from the derived
wavenumber using the WKB approximation (Shera, 2007). This gives both strong
theoretical and practical evidences to support the travelling wave theory in the cochlear

mechanism.

Since these measurements were taken on an active cochlea, the imaginary part of the
wavenumber is not entirely negative, indicating that the active processes are amplifying
the wave at positions just before it reaches its peak. Apart from this aspect the
distributions of the real and imaginary wavenumbers are similar to those predicted from

the simple analytic passive model in Figure 1.6.

€
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Figure 1.8 The distribution of the real (black lines) and imaginary (grey lines) parts of the wavenumber
inferred from measurements of the BM frequency response at seven positions along the length of the

cochlea using an inversion procedure (Shera, 2007) (with permission from AlP).
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Figure 1.9 The BM velocity distribution reconstructed from the derived wavenumber using the WKB
approximation. The reconstructed response (dashed lines), obtained using the WKB approximation,
shows a good agreement with that from measurement (solid lines) (reproduced based on Fig.5, Shera

2007) (with permission from AIP).

1.3 Numerical Models
1.3.1 Discrete Cochlear Model

It is computationally convenient to divide a continuous system into a number of discrete
elements, which may be taken as an accurate representation of the continuous system if
there are at least six elements within the shortest wavelength present, which is a
condition commonly used in finite element analysis (Fahy and Gardonio, 2007). The
coupled behaviour of the cochlear dynamics, which are assumed to be linear, can then
be represented by matrix representations of two separate phenomena. First, the way that
the pressure distribution is determined by the fluid coupling within the cochlear
chambers when driven by the BM velocity, and second, the way in which the BM
dynamics respond to the imposed pressure distribution. This kind of discrete model was
used, for example, by Neely and Kim (Neely and Kim, 1986), to simulate an early
model of the active cochlea, and has been used by many authors since then. These
discrete models have generally been applied to uniform and symmetric box models of
the cochlea, using the finite difference method to represent only the far-field, long

wavelength, components of the fluid coupling.

A widely used geometry for the three-dimensional cochlea is the rectangular box model,

as discussed by de Boer (de Boer, 1996), for example, and illustrated in Figure 1.5. The

cochlea is assumed to be uncoiled, consisting of uniform cross section and symmetric
15
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fluid chambers, ST and SV (including SM) for the lower and upper chamber, separated
by the BM. The RM is assumed to be flexible enough to play no significant part in the
dynamics of the fluid motion in the upper chamber. The cochlea is driven by the motion
of the stapes at the oval window. At very low frequencies the cochlear fluids can flow
along the upper chamber, through the gap at the helicotrema, and back through the
lower chamber to drive the motion of the flexible round window. At audio frequencies a
“slow” travelling wave is generated by the interaction between the fluid’s inertia and
BM stiffness, which propagates to a frequency-dependent characteristic place, beyond

which it rapidly decays.

w—>|p) p2) - o o p(V-D) pN)
vl w2) - - - wN-D) @)

Figure 1.10 The discrete approximation for a straightened cochlear box model.

The radial variation of BM velocity over the width of the cochlear partition (CP), W, is
assumed to be proportional to a single mode shape, w(y), which is independent of the
distribution of the pressure acting upon it. The analysis can be generalised to the case in
which the radial BM velocity is the sum of a number of such modes (Neely, 1985), but
in practice the fluid coupling is relatively insensitive to the exact form of the radial BM
velocity distribution and so it is reasonable to assume a single shape for this. Its upward
modal amplitude at longitudinal position x is defined to be

W
v(x) = (J) w(Y)V(x, y)dy, (1.13)

=

where v(x, y) is the distribution of complex BM velocity which is a function of
longitudinal and radial position, at a single frequency, the dependence on which is
suppressed for notational convenience. Similarly, the modal pressure difference across
the BM, can be defined as (Elliott, et al., 2011)

w
g w(y)p(x,y,0)dy, (1.14)

S|e

p(x) =

where p(x, y, z) is the 3D distribution of the complex pressure difference across the BM.
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The boundary conditions for this modal pressure difference are determined by its anti-
symmetric forms. For the modal pressure difference, the pressure in the upper chamber
must be equal but opposite to the pressure in the lower chamber and so the volume
excitation at the round window must be equal but opposite to that at the oval window.
Transverse BM motion is also allowed in this case since the resulting excitation of the
upper chamber is equal but opposite to that of the lower chamber. It is thus only the
pressure difference that interacts with the BM dynamics and generates the “slow” wave
motion noted above. The chambers are connected at the helicotrema, which is, for now,
assumed to equalise the pressures in the two chambers, so that the modal pressure
difference must then be zero at the helicotrema.

If the single longitudinal variables, for the modal pressure difference and the modal BM
velocity, are spatially sampled as finely as required, dividing the cochlea into N
segments, we can define, at a single frequency, the vectors of complex modal pressure
differences and modal BM velocities, p and v, to be

p=[p(1),p(2),--p(N)]", (L.15)

and

v=[v(1),v(2),-v(N)], (1.16)
whose elements are shown in Figure 1.10.

The BM, however, is assumed only to extend from element 2 to element N — 1. Element
1 is used to account for the effect of the stapes velocity, shown as us in Figure 1.10. The
final element, N, is used to account for the behaviour of the helicotrema. With the stapes
velocity set to zero, the vector of pressures due to the vector of BM velocities can be

written as
p=2Z.V, (1.17)

where Z.. is a matrix of the impedances due to the fluid coupling. Much of this thesis

is concerned with analysing the form of the elements in its fluid coupling matrix.

Similarly, the vector of BM velocities can be written as

17
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V=V, —Yg,P, (1.18)

where v; is vector whose first element is the stapes velocity and Yj,, is a matrix of the

BM admittances. The first and last diagonal elements are zero, since the BM only

extends from element 2 to element N — 1. If the BM reacts only locally, then Yj,, is a

diagonal matrix. Substituting equation (1.17) into (1.18) gives the vector of BM
velocities as

V=[1+YguZe] V..

S

(1.19)

The total pressure vector due to both stapes motion and motion of the BM can be

written, using linear superposition, as
p=p,+Z-.V, (1.20)

where ps is the vector of pressures due to the stapes velocity. Combining equations
(1.17) and (1.18) gives

P =[| +ZFCYBM ]_l Ps- (1.21)

An advantage of this discrete formulation is that complicated geometries need to be
analysed only once to determine the elements of Zgc, using finite element method for
example, and equation (1.19) then provides a very simple method of calculating the
coupled responses, for a variety of models, coiled cochlea for example, of BM

dynamics.
1.3.2 Finite Element Cochlear Model

Although the finite element (FE) cochlear model is a discrete representation of the real
continuous cochlea, the flexibility of the finite elements allows the possibility of
considering more detailed and complicated cochlear structure than in the discrete model
above. In many areas, the finite element analysis (FEA) is a key and indispensable
technology in the modelling and simulation procedures. However, a good understanding
of physical, mathematical and computational modelling plays an important role in

utilizing those advantages of the finite element method.
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Kolston and Ashmore (Kolston and Ashmore, 1996) applied a 3D Finite Element
Network to build a 3D cochlear model with individual cellular and membrane
components of the organ of Corti being embedded within the fluid in their real
biological positions and then solved the problem using the conjugate gradient method.
They suggested that both the TM radial stiffness and especially the Deiters’ cell (DC)
axial stiffness play a crucial role in the OHC-BM feedback loop.

Givelberg and Bunn (Givelberg and Bunn, 2003) constructed a comprehensive 3D
cochlear model consisting of the BM, spiral bony shelf, the tubular walls of SV and ST,
semi-elliptical walls sealing the cochlear canal, the oval window and the round window
membranes, to study the motion of the BM under a pure tone input at a given frequency.
They observed a travelling wave propagating from the stapes, in the longitudinal
direction, to the helicotrema. The amplitude of the wave is gradually increasing to a
peak at a characteristic location along the BM, which depends on the input frequency.
The speed of the wave is sharply reduced as it propagates further along the BM after the
peak. The higher the value of input frequency, the closer the peak is to the base. Those
observations are similar to experiments qualitatively, but this kind of comprehensive

numerical model is computationally expensive.

In the research reported here, the 3D finite element box model of the cochlea, as shown
in Figure 1.5, is used mostly as the basis of the finite element modelling and analysis.
Compared with other FE models, built by other authors, this box model may be crude
and incredibly simple, but it does reflect the basis of the cochlear functions and provide
a way of modelling the passive cochlea at low computation cost. It also allows that the

use of the wave finite element can be introduced in a relatively simple manner.
1.4 Motivation and Outline of the Thesis

It is important to understand the mechanisms of human hearing not only because of the
scientific challenges it presents, but also because such a knowledge is helpful in
diagnosing and potentially treating the multiple forms of hearing problems that people
suffer from. Modelling the biological cochlea assists in this understanding by allowing
assumptions about how its functions to be verified or by comparing responses predicted
by mathematical models with experimental observations. The motivation of this

research is to get a better understanding of the cochlear functions. The core of the work
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is the modelling of the dynamics of the cochlea by studying the fluid coupling and
waves in a passive cochlea, analytically and numerically, which constitute the two main

parts of the thesis.

Another important aspect for improving our knowledge on cochlear functions is to
understand wave propagation in the cochlea. The classic cochlear model is based on the
hypothesis that there is only a single wave, “slow wave”, which is of primary
importance. In general, however, there are many other mechanisms, apart from 1D fluid
coupling, that give rise to longitudinal coupling in the cochlea, even if the cochlea is
passive and each of these forms of longitudinal coupling could give rise to wave
motion. Analytic methods are used to predict the wavenumber of the additional waves
due to 3D fluid coupling and longitudinal BM dynamics. In general the fully coupled
response of the cochlea to middle ear excitation can be calculated using a numerical
model, such as obtained with the finite element method, although the insight gained
from the wave approach is then lost. The wave finite element, WFE, method is used
here to decompose the results of a full finite element model of the coupled cochlea into
wave components. The WFE method predicts the properties of as many types of waves
as there are degrees of freedom across each cross-section of the finite element model.
Almost all of the forward-going components of these waves have large negative
imaginary components, indicating that they decay away very quickly along the cochlear
length. The mode shapes associated with the waves predicted from the WFE analysis
then have been used to decompose the results of the full finite element model into wave
components. Although additional types of wave are thus predicted to exist, in addition
to the conventional “slow wave”, in the passive cochlea, they do not appear to play a

dominant role in normal cochlear function.

The overall structure and framework of the thesis are illustrated in Figure 1.11 and

details can be found in following chapters.
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Figure 1.11 The diagram of thesis structure.

1.5 Contributions of the Thesis

The primary contributions of my work are as follows:

>

Applications of the wave finite element to study various non-uniform systems,
such as loudspeaker cone and orthotropic plate strips, which provide a new way
to illustrate dynamic behaviours of non-uniform structures in terms of waves.
Co-development and validation of a ‘uniaxial model’ of the cochlea which can
incorporate 3D fluid coupling and non-uniformity.

Comparison of coupled responses from coiled and uncoiled cochlea models
which shows the coiling does affect the cochlear dynamics based on the
parameters used here.

Study of waves in the passive cochlea using the wave finite element method,
providing the opportunity to analyse different types of wave that can propagate
in the cochlea and, more importantly, decompose the response of the fully-
coupled finite element model into the components due to each of these waves, in
order to study interaction between each wave.

An interpretation of how the longitudinal BM coupling affects the coupled

cochlear response.
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Some of these outcomes have been published through journal papers and conference
presentations:
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Elliott, S. J., Lineton, B. and Ni, G. (2011) Fluid coupling between the elements in a
discrete model of cochlear mechanics, ISVR Technical Memorandum 990, University

of Southampton, 98pp.

Elliott, S. J., Lineton, B. and Ni, G. (2011) Fluid coupling in a discrete model of
cochlear mechanics, The Journal of the Acoustical Society of America, 130 (3), 1441-
1451.

Ni, G., Elliott, S. J., Lineton, B. and Saba, R. (2011) Finite element modelling of fluid
coupling in the coiled cochlea. In Shera, C.A. and Olson, E.S., editors, What Fire is in
Mine Ears: Progress in Auditory Biomechanics, pp 350-355. (DOI: 10.1063/1.3658164)

Elliott, S. J., Ni, G., Mace, B. R. and Lineton, B. (2011) How many waves propagate in
the cochlea? In Shera, C.A. and Olson, E.S., editors, What Fire is in Mine Ears:
Progress in Auditory Biomechanics, pp 563-568. (DOI: 10.1063/1.3658164)

Elliott, S. J., Lineton, B. and Ni, G. (2011). Fluid coupling in a discrete cochlear model.
In Shera, C.A. and Olson, E.S., editors, What Fire is in Mine Ears: Progress in Auditory
Biomechanics, pp 328-332. (DOI: 10.1063/1.3658164)

Ni, G., Elliott, S. J. and Langley, A. (2012) Waves in Loudspeaker Cones, ISMA 2012,

Leuven, Belgium.

Elliott, S. J., Ni, G. and Lineton, B. (2012) Decomposition of the cochlear response
using wave finite elements, 19th International Congress on Sound and Vibration,

Vilnius, Lithuania.

22



Chapter 1 Introduction

Ni, G., Elliott, S. J. and Mace, B. R. (2012). Wave Propagation and Decomposition in
the Cochlea with Orthotropic Basilar Membrane, Innovations in Wave Modelling
(InnoWave 2012), Nottingham, UK (Poster).

Elliott, S. J., Ni, G., Mace, B. R. and Lineton, B. (2012) Wave Propagation in the
Cochlea, ISVR Technical Memorandum 996, University of Southampton, 98pp.

Elliott, S. J., Ni, G., Mace, B. R. and Lineton, B. (2012) A Wave Finite Element
Analysis of the Passive Cochlea, The Journal of the Acoustical Society of America
(submitted).

23



Chapter 1 Introduction

24



Chapter 2 Fluid Coupling in the Uncoiled Cochlea

Chapter 2. Fluid Coupling in the Uncoiled Cochlea

2.1 Introduction

The aim of this chapter is to review the approaches that have been taken to calculate the
fluid coupling in the cochlea, and to derive the form of the fluid coupling matrix in the
discrete model of the cochlea introduced in Chapter 1. Most authors assume that the
coiling of the cochlea does not play a significant part in determining the fluid coupling
(Cai, et al., 2005, Steele and Zais, 1985), and so in this chapter the uncoiled cochlea will
be considered, leaving the effects of coiling to be considered separately in the next

chapter.

It has also been common to assume a uniform box model for the cochlea, which is
where the analysis begins in this chapter, initially using the wavenumber approach
pioneered by Steele and Taber in 1979 (Steele and Taber, 1979). The pressure due to a
moving element of the BM is seen to be due to two components, called the far-field and
the near-field components here. The far-field component is obtained from the 1D model
of fluid coupling outlined in the introduction and is associated with wavelengths that are
large compared with the size of the fluid chamber, giving plane wave acoustic
propagation. The near-field component is associated with wavelengths that are not large
compared with the size of the fluid chamber, and can be identified being due to

evanescent higher order acoustic modes within the chamber.

A three-dimensional cochlea can be simply represented by a single dimension using a
radially-averaged BM velocity and a radially-averaged pressure difference acting upon
the cochlea. In this chapter a general approach is taken to the derivation of the discrete
cochlear model, using modal BM velocity and modal pressure difference, which allows
the definition of generic matrices to describe the fluid coupling and BM dynamics of the

cochlea.
2.2 Wavenumber Description

Following Steele and Taber (Steele and Taber, 1979), we consider an analysis in the
wavenumber domain for a box model of the cochlea, which is assumed to be symmetric,
I.e., the two fluid chambers, ST and SV, are of equal cross-sectional area. The pressure

distributions in the two chambers are thus equal and opposite and it is convenient to
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work with the single distribution p(x, y, z), defined as the pressure difference, which is
twice the pressure in the SV or ST. The fluid is assumed to be incompressible and

inviscid and so the conservation of fluid mass then leads to the equation

*p(xy,z) . *p(xy,z) . *p(x.y.2)
ox’ oy’ oz°

0. (2.1)

The fluid chamber has a width of W and height H. The boundary conditions on the sides

and the top of the cochlear chamber above the BM are assumed to be rigid, so that we

must have
p(x,y,2) o 2.2)
ay y=0,W
and
®(xy2) g 2.3)
oz .

The fluid velocity at z = 0 must equal that of the BM, v(X, y), so that

p(x,y,2)

e =—2iwpV(X,y), (2.4)

z=0

where the factor of 2 is due to the pressure doubling when p(x, y, z) is defined as the
pressure difference. The BM velocity is now assumed to have a given distribution
across its width, B, and in the longitudinal direction it has a sinusoidal variation with

wavenumber k, so that

v y) =V () =V (kD (y)e ™, (25)

where v(x) is the modal BM velocity distribution along the cochlea and y(y) is the BM
velocity distribution in the radial direction, y. The velocity distribution w(y) is

normalised such that
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w 2
[v=(y)dy=W, (2.6)
0
so that v(x) can be calculated from v(x, y) as
1 W
v(x):wjv(x, y)w(y)dy. (2.7)
0
The pressure field is assumed to be described by a summation of modes of the form
P(%%.2)= 3 Bugh (v,2)e ™ (28)
n=

where each mode shape, ¢4, (y,z), must satisfy the boundary conditions above. A

suitable choice of pressure mode shape (Neely, 1985, Steele and Taber, 1979) is
@ (y,z):cos(w]cosh[m (z-H)]. (2.9)
n W n

In order for each term in the model expansion to satisfy the equation for mass

conservation, equation (2.1), then the real parameter m, must satisfy the equation

(2.10)

The coefficients B, are determined by the boundary condition at the BM, so that using
equation (2.4) with (2.5) and (2.8) gives

oy (Y,2)

B
" oz

=—2ia)pV(k)w(y). (2.11)
z=0

=}
L4s

If ¢,(y,z) is given by (2.9), then equation (2.11) can be written as

% B,m, sinh(mnH)cos(%jzzmpyx(y)v(k). (2.12)
n=0

Multiplying each side of (2.12) by cos(n;ry/W) and integrating from 0 to W over vy,

the orthogonality of the cos(n;ry/W) function yields
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n

_ 2iop A,
_mnsinh(mnH)V(k)’ 213)

where the coupling coefficient for n = 0 is defined as

1w )
Ao =V—chlt//(y)dy, (2.14)
and forn > 1is
2w T
A= (I) COS(%jw(y)dy- (2.15)

We now explicitly define the “modal” pressure difference to be

VIV p(x,y,0)w (y)dy. (2.16)

1
p(X) W !

The longitudinal pressure distribution is defined to have this modal form so that the
ratio of pressure to BM velocity is equal to the BM impedance, and the product of
modal pressure and BM velocity is equal to acoustic power. The modal pressure can be

written using (2.8) and (2.9) as

M8

P(X)=i

n=0

W .
B, cosh(m,H) | cos(%)yx(y)dye"k", (2.17)
0

so that using equations (2.13), (2.14) and (2.15) and writing the modal pressure by

analogy with the modal velocity in equation (2.5) as

p(x)=P(k)e ™, (2.18)
then
P(k)=_2iwp %?coth(kH)+ i 2':13 coth(m,H) [V (k). (2.19)
n=1 n

The form of the BM vibration across the cochlea, w(y) in equation (2.6), is assumed to
take a half sinusoidal form across its width, B, and although we initially consider the
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case where the BM is positioned arbitrarily across the cochlear partition, most of the
simulations are performed assuming that the BM is positioned at the side, as both shown

in Figure 2.1.

B/W=03|

¢ _CB ‘
0 02 04 06 08 1

0 0.2 0.4 0.6 0.8 1
y [mm]

Figure 2.1 General form of the BM velocity distribution across the cochlear partition (above) and specific

case used in this thesis (below).

Thus for the general case, in our coordinate system,

2w . | z(y-C)
I//(Y)Z \/;sm{T},forCSySC+B, (2.20)

0, otherwise,

where the factor of /% ensures that w(y) is normalised in the way defined in
equation (2.6).

Following the approach of Steele and Taber (Steele and Taber, 1979), the modal

pressure difference in the wavenumber domain can be written as
P(k) = Z- (k)V (k), (2.21)

where V (k) is the wavenumber spectrum of the modal BM velocity distribution along
the cochlea and Z.-(k) is the wavenumber representation of the fluid coupling

impedance. It is convenient, de Boer (de Boer, 1984), to express Z (k) in the form
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Zec (k) = 2iwpQ(k), (2.22)

where Q(k), which is called the “equivalent height” (de La Rochefoucauld and Olson,

2007), has the dimensions of length and can be expressed, according to equation (2.19),

as

Q(K) = %coth(kH )+igcoth(mnH ) (2.23)

Although a rectangular cross-section for the fluid chambers is assumed here, de Boer

(de Boer, 1991) has shown that similar results are obtained if the cross section is

assumed to be semi-circular. The equivalent height Q(k) can be split into two
components, one due to the far-field fluid coupling, Q(k), and one due to the near-

field fluid coupling, Qy (k), so that

Q(k)=Qr (k) +Qu (k). (2.24)

Figure 2.2 shows the variation of Q(k)/H with kH, where H is the physical height of one
fluid chamber, for the parameters listed in Table 2.1. The BM is assumed to be located
on one side of the cochlear partition, i.e. C=0, and its width, B, is assumed to be 0.3
times that of the cochlear partition, W, for the uniform cochlear model. In Figure 2.2,
there are two components of Q(k) corresponding to the far-field and near-field
components. For long wavelengths, small k, the near-field coupling, Qn(k), becomes a

constant. For short wavelengths, large k, Qn(K) is equal to 1/k, whatever the BM width.

For small values of k, however, the near-field term becomes a constant which can be
interpreted as an effective fluid thickness, T, due to the fluid coupling, which adds to the
physical mass of the BM (Neely, 1985). The value of T as a function of the BM width
can be derived by taking two terms in the series expansion of the first part of equation

(2.23) and the limiting case of the remaining parts to give (Elliott, et al., 2011)

2
8BH = 4B 1+cos(nzB/W)

T= + > coth(nzH /W . (2.25)
37°W  nainz® ( ){ 1-n?B% /W2 }
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Figure 2.2 The wavenumber description of the total fluid coupling in the box model of the cochlea (solid
line) and its decomposition into far-field components (dashed line) and near-field components (dot-

dashed line).

It should be noted that the near-field term here is different from the “short wave”
component discussed by de Boer (de Boer, 1996), for example, where the limit for large
k is taken to yield a fluid coupling impedance proportional to 1/k. The definition of
Qn(Kk) used here includes all the elements of Q(k) except the term Qg(k). This definition
is, however, similar to that used by Mammano and Nobili (Mammano and Nobili, 1993)
for the long-range and short-range parts of their fluid coupling Green’s function. This is
because the long wave components are associated with the pressure response some
distance from the source of excitation on the BM, and so is descripted as the far-field
components, whereas the short wave components are, as well can be seen, associated
with the pressure response close to the source of excitation and so is called the near-
field components. Note, however, that formally speaking both terms describe the
behaviour in the hydrodynamic near-field of the source, if the fluid is sufficiently
incompressible that the wavelength is large compared with the length of the cochlea, so

that it is the geometric near and far-fields referred here.
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Table 2.1 Values of physical parameters used for the passive cochlear simulations.

Variable Parameter Value
L Length of cochlea 35 mm
W Width of fluid chamber 1 mm
B Width of basilar membrane 0.3 mm
H Physical height of single fluid 1 mm
chamber
h Effective chamber height for 1D 41 mm
model
p Density of fluid 1,000 kg m™
Number of elements in discrete
N 512
model
A=LIN Length of element 68 pm
mo BM mass, 1D model 03kgm™
Map BM mass, 3D model 0.05 kg m >
fs BM natural frequency at base 20,000 Hz
wo BM natural frequency distribution 2nfue
| Natural frequency length scale 7 mm
So(X) BM stiffness Mowo?(X)
& BM damping ratio 0.1
o BM damping 2molowo
d Characteristic distance 0.8 mm

The far-field fluid component is defined so that it obeys the equation derived from a one

dimensional analysis of the incompressible fluid coupling and given by (Elliott, et al.,

2011)

62 pF(X) - _ 2|a)p V(X),

ox? h

(2.26)

where h is the effective chamber height, assumed here to be independent of x, so that in

the wavenumber domain

(k)=

2iwp

' 1
ngW% Ze (k) = and - Qe(K) =5--(227)(2.28)(2:29)

k?h

We can thus decompose Q(k) in equation (2.22) as in equation (2.24) and define the

near-field component to be

Qu (k) =Q(k)—-Q: (k). (2.30)
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The effective height can be expressed in terms of the physical height of the fluid
chamber, H, its width, W, and the width of the BM, B, as (Elliott, et al., 2011)

_ 7°WH
8B

h

: (2.31)

so that for the ratio of B to W used here, 0.3, the effective chamber height is about 4.1
times the physical chamber height.

The assumed BM motion in equation (2.20) corresponds to that of a beam with simply-
supported boundary conditions at both ends. Steele and Taber (Steele and Taber, 1979)
also consider clamped boundary conditions, for which they assumed that the transverse
BM mode shape is proportional to sin®(zy/B), in which case the equivalent value of h, in
our notation, is 3WH/2B. The effective height, h, is thus again proportional to WH/B but
with the constant of proportionality being 1.5, instead of about 1.23 in equation (2.31).
This illustrates how the results are relatively insensitive to the exact mode shape of the
transverse BM velocity, which is, in fact more closely modelled as having a simply-
supported boundary condition at one end and a clamped boundary condition at the other
(Homer, et al., 2004). Whereas the exact expression for the BM mode shape with a
simply-supported boundary condition at one end and a clamped boundary condition at
the other is more complicated and cannot give an explicit expression for the modal BM
velocity and modal pressure. So for this analytic analysis, simply-supported boundary
conditions are assumed for both ends and the more accurate boundary conditions given
by Homer et al. (Homer, et al., 2004) are used for the FE cochlear model. A comparison
has also been made to show the effect of different BM boundary conditions on the

overall response of the BM, as shown in Appendix D, using a FE cochlear model.

To illustrate the change in the pressure distribution with wavenumber, Figure 2.3 shows
the equal-pressure contours in a cross-section of the box model for various values of kH.
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Figure 2.3 Contours of equal pressure, at 5 dB intervals, in a cross-section of the box model of the
cochlea when the BM, which is on the left hand third of the cochlear partition in this case, has a
longitudinally sinusoidal variation with normalised wavenumbers of kH = 1.5 (left), kH = 3 (centre) and
kH = 6 (right), corresponding to wavelengths 1=4H, A2=2H and A=H, where H is the physical height of a

single chamber.

For low values of kH the wavelength of the longitudinal BM vibration is much greater
than the height of the fluid chamber, and so Qn(k) is very small compared with Qg(K),
which is proportional to 1/k? and the pressure is almost uniform across the cross-
sectional area. As the wavelength becomes comparable with the height, Qn(k) becomes
comparable with Qr(k) and significant variation can be seen in the pressure across the
cross-section. When the wavelength is small compared with the height, Qn(k) becomes
equal to 1/k, which is large compared with Qg(k) and the pressure is much greater close
to the BM than it is in the rest of the fluid chamber.

The far-field component is often referred to as the 1D fluid coupling, since it can be
readily derived from a one-dimensional box model of the cochlea with the assumption
that the wavelength is long compared with the height of the fluid chamber (de Boer,
1996). The full fluid coupling model, including near-field components, is then referred
to as 3D fluid coupling. It must be emphasised, however, that when the cochlear
mechanics is formulated in terms of the longitudinal variation of a single velocity and a
single pressure variable, this formulation can clearly still incorporate the 3D fluid
coupling. It may thus be misleading to call this a 1D formulation, even though it does
only have one dimension, and so it is described as “uniaxial” to represent this single

axis model of the cochlear mechanics.
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2.3 Calculation of the Far-field Component

The far-field component of the fluid coupling in the discrete model can be readily
calculated using the finite difference approach used by Neely (Neely, 1981) and Neely
and Kim (Neely and Kim, 1986), so that the spatial derivative in equation (2.26) is

written as

|oF(n—1)—2|oAF2(n)+ Pe(n+l) _ Ziﬁ)pv(n). (2.32)

The length of one element is A and if the first and last elements, representing the
boundary conditions at the base and apex, are assumed to have the same length as the
BM elements, then 4= L/N, where L is the assumed length of the cochlea.

The boundary conditions at the base and apex of the cochlea are assumed to be
determined by the velocity of the stapes, corrected for the difference between the Stapes

and the chamber area, u, , and a zero pressure difference condition at the helicotrema,

so that

apgix) o= —2iopu, and  pe(x)],_ =0. (2.33)(2.34)

In the discrete representation, the finite difference method can be used at the base to

express these boundary conditions as

—pF(Z); PeW _ iggpu, and py(N)=0. (2.35)(2.36)

The complete discrete model of the far-field fluid coupling can thus be written in matrix

form as
A A I o ] 0] u]
h -2h h P (2) v(2) 0
0 h -2h h ) )
z . : =—2iwp : —2iwp : ,(2.37)
h —2h h | p(N-1) V(N —1) 0
I 0 0 A*|[ pe(N) | . 0 0]
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or, more compactly, as
Fpe=—2iwp(V+Vy), (2.38)
so that

P =Prs + £V, (2.39)

where Z¢ is equal to —2impF " and denotes the far-field fluid coupling matrix, and

P is equal to —2ico,oF‘1vS and denotes the pressure vector due to the stapes motion.

Taking only the far-field components of the fluid coupling into account and using the
expression for Z; above, the vector of pressures, as shown in equation (1.21), in the

coupled cochlea can be written as
. _ -1

Using the expression for pg, above and the properties of the matrix inverse, this can be

written as
. -1

which is the form of equation originally suggested by Neely (Neely, 1981) and used by
Neely and Kim (Neely and Kim, 1986). The matrix to be inverted in equation (2.41) is
tri-diagonal, for which the inverse can be efficiently computed, using Gaussian

elimination, for example.

Figure 2.4 illustrates the spatial distribution of this far-field pressure difference,

proportional to the columns of the matrix F™*, for excitation at a number of different
locations along the cochlea with the assumption that us is set to zero. The imaginary
component has been plotted for the assumed velocity excitation here and below, but it
would be real for an acceleration source. These distributions are very similar to those
obtained from an analytic solution to the differential equation for the far-field fluid

coupling, equation (2.26), with the appropriate boundary conditions, which can be
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obtained by assuming that v(x) is equal to v, between X,—A and X,, and is zero
elsewhere, and setting opg / ox equal to the slope of the linear fall off in pressure for x

greater than X, , and is given by
. L-
Pe(y e a = 2|wp%Avo , (2.42)

(L=x)

Pe(X)], oy =2i0p AV, (2.43)

where, for continuity, it has been assumed below that A is very small compared with L.
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Figure 2.4 Distributions of the pressure difference along the cochlea due to the far-field component of the
fluid coupling when only a single element of the discrete BM at x =5 mm (faint ling), 15 mm (medium

line) or 25 mm (bold line) is driven sinusoidally with a velocity of 10 mm-s " at a frequency of 1 kHz.

2.4 Calculation of the Near-field Component

We now define the full fluid coupling matrix for the discrete model to be
Zec=Zp+2Zy, (2.44)

where Zy contains the terms due to the near-field fluid coupling. When transformed into
the spatial domain, the inverse Fourier transform of Zy(k) in equation (2.24) contains
singularities, due to the implicit assumption of a velocity distribution equal to a spatial
delta function. In the discrete model, however, the motion of the n-th single BM

element represents a finite velocity distribution given by
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A (n—1)A<x<nA
Vo (X) = , (2.45)
0 x>nAor x<(n-1)A
where v, is independent of x.
The wavenumber spectrum of this velocity distribution is
. ik 1
V. (K) =V, SinkA /2 -ik(n z)A_ (2.46)

KA/2

The component of the pressure distribution generated by this velocity distribution due to

the near-field fluid coupling is then
P(K) = Zy (K)V, (k). (2.47)

Equation (2.47) can be numerically evaluated using the above variation for V,(k) and the
fact that Zy(K) is equal to Zgc(k) minus Zg(k). The inverse Fourier transform of equation
(2.47) can then be used to calculate the near-field component of the pressure in the
spatial domain, as shown in Figure 2.5 for excitation by a single element. Averaging
this continuous pressure distribution over each element of the discrete model then
provides the discrete pressure distribution due to the near-field wave coupling, as also
shown in Figure 2.5.

Since the near-field component of the fluid coupling impedance is equal to a constant
for kH less than about unity, as shown in Figure 2.2, then for such small values of Kk,
Zn(K) can be written as 2impT, where T is an effective fluid thickness. The near-field
pressure contribution, equation (2.47), for k = 0, Py(0), is thus equal to 2iwpTvo, Where
the limiting case of equation (2.46) has also been taken. Using the properties of the
wavenumber transform, then P,(0) is also equal to the integral of the near-field
component of the pressure in the spatial domain, or, equivalently, to the sum of the
elements of the discrete pressure distribution shown in Figure 2.5. This observation can
be used to provide an independent check on the magnitude of the near-field
components. It also suggests that an approximation to the near-field component, which
is valid if the wavelength of the slow cochlear wave is long compared with H or so
range of the near-field pressure shown in Figure 2.5, is a single pressure acting at the
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point of excitation having a magnitude 2iwpTv,. The variable T can thus be interpreted
as the effective thickness of the fluid loading on the BM due to the near-field
components of the pressure (Neely, 1985).

P Ll

15 152 154 156 15.8
X [mm]

104.2 14.4 14.6 14.8

Figure 2.5 Distributions of the modal pressure along the cochlea due to the near-field fluid coupling
(dashed line) and the average pressure over discrete elements of the BM used to calculate the columns of
Zy (solid line), when excited by a single element at x = 15 mm with a velocity of 10 mm's ' at a
frequency of 1 kHz. Also shown is the approximation to the averaged pressure given by equation (2.49)

(dot-dashed lines).

The distribution of the near-field component of the fluid pressure can also be derived
using an analysis of the acoustic field due to an elemental source in a duct, following
Doak (Doak, 1973). The modal pressure distribution is shown to be due to the
contributions from a number of evanescent higher order modes in the duct, whose

amplitudes decay exponentially, which can be written as

pu(X)= X a,e™, (2.48)
where m denotes the order of the mode, ay, is its amplitude, r is equal to |[x — Xo| and Iy,
its characteristic decay length. The characteristic length decreases as the mode order

gets higher and so it is the lower order modes that dominate when some distance from

the source.
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In fact, a reasonable approximation to the averaged near-field pressure in the discrete
model, due to a single BM element, is obtained using only two terms of such a series, so
that

prua (1) = 2icp( Qe +Qpe ™" v, (2.49)

where n’ is equal to the number of elements from the position where the averaged
pressure is evaluated to the exciting element, and is equal to |n — no| for excitation of the
no-th element, A is the length of one element and I; and |, are characteristic decay
lengths. The near-field pressure amplitudes are proportional to the equivalent height Q;
and Q, to the no-th excitation velocity, Vo, in equation (2.45). This approximation to the
average pressure over the discrete elements is also shown in Figure 2.5, with Q; and Q.
equal to 16-um and 41.56 um, |; equal to H/3.47 and |, equal to H/12.8, and is seen to
provide a good approximation to the result obtained from the inverse Fourier transform
of equation (2.47).

A position-shifted sequence of these pressure distributions, normalised by the velocities
of each element, can then be used to define the columns of the matrix Zy, which
determines the fluid coupling due to the near-field components in the discrete model.
The total distributions due to both the far and near-field fluid coupling are then obtained
by summing these two contributions, as illustrated in Figure 2.6. These distributions are
similar to those shown by other authors, for example Parthasarathi et al. (Parthasarathi,
et al., 2000), except that the singularity induced by assuming that the velocity is
concentrated at a single point has been removed by assuming a finite value of the

velocity distribution over the length of an element.
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Figure 2.6 Distributions of the total pressure difference due to both the far and near-field components in
the fluid coupling matrix along the length of the cochlea due to excitation of a single element on the BM

atx =5 mm, 15 mm and 25 mm with a velocity of 10 mm-s * at a frequency of 1 kHz.

2.5 The Coupled Response

Figure 2.7 shows a comparison of the predicted BM velocity in a uniform cochlea
model having the properties with either 1D or 3D fluid coupling. In these models the
BM mass per unit area has been assumed constant along the length of the cochlea. Its
stiffness and damping have been adjusted to achieve an exponential distribution of
natural frequency and a constant damping ratio. The value of the BM mass varies,
however, between the models using the 1D and 3D fluid coupling, since in the former
case this must include the added mass due to the near-field fluid loading, whereas in the
latter case this is automatically included. The physical height of the fluid chamber is
used in the 3D model, so that the effective chamber height is the same in both cases.
These changes, which are similar to those assumed by de Boer (de Boer, 1996) in his
“matched” model, for example, are made in order for the results using the 1D and 3D
fluid coupling to be as consistent as possible, so that the effects of the fluid coupling can
be seen most clearly.
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Figure 2.7 BM velocity, normalised to that of the stapes for the coupled model with either full 3D fluid
coupling and a BM mass of 0.05 kg'm 2 or 1D fluid coupling and a BM mass of 0.3 kg:m 2, with
excitation frequencies of (a) 500 Hz, (b) 1 kHz and (c) 2 kHz and a damping ratio of 0.1.

Although a reasonable matching of the magnitudes can be obtained between 1D and 3D
models, the roll-off of the model with the 3D fluid coupling is somewhat greater than
that of the model with the 1D fluid coupling and the peak response of the 3D model is
more basal than the corresponding 1D model as also observed by de Boer (de Boer,
1981). The accumulation of phase lag of the 1D model, however, is significantly less
than that of the 3D model apical to the characteristic place as also observed by de Boer
(de Boer, 1996) and Kolston (Kolston, 2000). This reflects the changes in the
wavelength of the BM motion as it approaches the characteristic place, becoming
comparable with the chamber height and invalidating the assumptions of the 1D model.
There is then a reduction in longitudinal fluid flow and an increase in the local mass

loading, slowing the wave and increasing the phase accumulation (Kolston, 2000).
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2.6 Fluid Coupling in a Non-uniform Asymmetric Cochlea
2.6.1 Far-field Pressure

In this section a one-dimensional analysis is used to derive the far-field component of
the pressure in each of the fluid chambers for a model of the cochlea with asymmetrical
and non-uniform fluid chambers and hence the far-field contribution to the pressure
difference. Since the near-field components of the pressure are not significantly affected
by the shape of the cochlear chambers, they will continue to be approximately equal and
opposite in the two chambers and can be calculated using the wavenumber approach for
a uniform cochlea described above. An example is then given of the calculated pressure
difference for two assumed variations of the chamber volumes. The effect of this
modified fluid coupling on the coupled response of the passive cochlear model is then

illustrated.

If areas of the upper fluid chamber, SM and SV, and the lower fluid chamber, ST, vary
along the length of the cochlea as A;(x) and Ay(x), the far-field component of the
pressure will be still determined by the continuity and momentum equations. Assuming
that the longitudinal fluid velocity in a single chamber, averaged across its cross-

sectional area, is U(x), and that the radial BM velocity averaged across the width of the

chamber is v (x), then the continuity equation for this chamber can be written as

&[A(X)U(X) =W (x)V (), (2.50)
where in general the CP width also varies along the cochlear as W(x). This is equivalent
to the equation used by Peterson and Bogert (Peterson and Bogert, 1950), except that
the fluid is assumed here to be incompressible.

The momentum equation can also be written in terms of the complex pressure averaged

across the cross-sectional area, p(x), as

=—iwpl (X). (2.51)
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Substituting T(x) in equation (2.51) into equation (2.50) gives an expression for p(x)

in terms of V(x) as

2 A2 o (1)) @52

which is an incompressible form of Webster’s horn equation, described by Fletcher and

Rossing (Fletcher and Rossing, 1998), for example.

Applying equation (2.52) to the upper chamber, it can be written in terms of the modal
BM velocity, v(x), and the modal pressure p1(x), by noting that the velocity distribution

in the radial direction at position x is equal to v(x)  (y), so that

v(x)= V();) jgv(x)z//(y)dy, (2.53)

and since, in the far-field limit, the pressure is uniform over the BM, then the definition

of the modal pressure gives

pl(X)ZV\ﬁ,(();)) 1o My (y)ay. (2.54)

If the BM velocity is a half sinusoid over a distance B on one side of the fluid chamber,

as assumed for the uniform case, then in this case

1 W(x) _E ZB(X)
W—(X)IO w(y)dy—ﬂJ—W(X)- (2.59)

The far-field fluid coupling equation in the upper chamber can thus be written in terms

of the modal pressure, and modal velocity as

0 0 (x) ]| 8io
5[%(@&[;}1@) B(X)H__va(x) (x)B(x). (2.56)

T

In general, however, the in the lower fluid chamber is similarly related to the modal BM
velocity by
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6[Mx>ﬁ£p2<x> B(”Hﬂ“;”v(x) Bk @S

ox ox ) ]| x

The integral of iwpv(x) with respect to x is thus equal to both of the expressions below

s;i%zv(x.) B(x')W(X')dX'—AZ(X)g[pZ(X) B((:))}__A&(X)g[pl(x) %J

(2.58)

where X' is dummy integration variable, and the fact that both Jp;(x)/ox and
0p,(X)/ ox are zero when x is equal to zero has been used to eliminate any constants of

integration. The pressure gradients in the two chambers are thus related by

g[pzm %}%g[w %J 259

We can relate the far-field component of the modal pressure difference, pg(x), to the
modal BM velocity, v(x), via the effective area Ay(X) in the expression

%[Ad(x)g[pp(x) ‘AB’((XX)) HJi#v(x)\/B(x)W(x), (2.60)

where pe(x) is equal to p1(x) — p2(x). The integral in equation (2.58) is thus also equal to

&%)f(v(x’) B(x')W(x’)dx'=M[§Lpl(x) %J%{M(X) B((::))H

< 0 2

(2.61)

Using equation (2.59) and equating (2.61) to the final form of equation (2.58) allows the
effective area for the pressure difference to be written (Zwislocki, 1953) as

M. (2.62)
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An analytic solution to the pressure difference can be obtained for excitation of a single
BM element, having a velocity of vy from X, —A to X,, by integrating equation (2.60)
and using the boundary condition that opg(X)/0x is zero and assuming that B(x) and

W(x) are independent of x at x = 0 to give

=0, (2.63)

0 <x<x,—A

=—16ipr7\T/gAHB((XX))W (X)v(x). (2.64)

0 (x)
&[pF(X) B(X)J

The boundary condition that pg(x) is zero at x = L and the fact that A is small compared

Xo<X<L

with L can then be used to integrate these expressions again to give the pressure
distribution of the far-field pressure difference as

16 B(x)W(%)B(x) b 1 .
pF(X)‘O<x<x0—A = 16|prvOJ W(x) ){OAd(Xl)dx, (2.65)
L B(%)W(x)B(x)L 1 .

PEO, xer = 16Ia)pAV0\/ W) )j(Ad(X')dx. (2.66)

If the areas of the fluid chambers in the cochlear models are divided up into N discrete
sections, as for the BM, equations (2.56), (2.57) and (2.62) can be used to calculate the
effective area for the pressure difference at the n-th discrete element as Aq4(n). The
integrals in equations (2.65) and (2.66) can be approximated by summations to give the

pressure at the n-th element as

Pr (n)|0<n<n0—l - _16ipr2 Vo\/B(no )x E:(;) B(n) ng:n Ad :(Ln ')’ (2.67)

Pe(N)

n<n<N

B(n
——l6ia)pA2V0\/
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where ng = Xo/A.

Figure 2.8 shows an assumed variation of A; and A, along the length of the human
cochlea, together with corresponding assumed variations in the width of the fluid
chamber, W, and BM width, B. These are based on the area variations given by Zakis
and Witte (Zakis and Witte, 2001), which are interpolated using a cubic spline function.
They are reasonably consistent with the measurements of Thorne et al. (Thorne, et al.,
1999) and the earlier estimates shown in Fig. 79 of Fletcher (Fletcher, 1958) and Fig.
4.5 in Zwislocki (Zwislocki, et al., 2003). The cross-sectional areas for the two fluid
chambers used in equations (2.56) and (2.57), and the effective area for the pressure
difference, equations (2.62) is also shown in Figure 2.8. Equations (2.67) and (2.68) can
be used to calculate the far-field contribution to the pressure difference in the non-

uniform cochlea due to asymmetry in two fluid chambers.

N

—
[V}
T

e
W

Effective Area [mm?]

(=]

0 5 10 15 20 25 30 35
x [mm)]

Width [mm]

0 5 1‘0 1‘5 26 25 3‘0 35

x [mm)]
Figure 2.8 Assumed variation (a) in the cross-sectional area of the upper, A;, and lower, A,, fluid
chambers as a function of longitudinal position in the asymmetric model, together with (b) the calculated
effective area for the pressure difference and (c) the assumed variation in the width of the cochlear

partition, W, and BM width, B.

47



Chapter 2 Fluid Coupling in the Uncoiled Cochlea

2.6.2 Near-field Pressure and Coupled Response

Although the near-field component is assumed to be unaffected by the size of the fluid
chambers (Elliott, et al., 2011), it will depend on the proportion of the chamber width
occupied by the BM. Figure 2.9 shows that there is not much variation over the range
B/W = 0.11 to B/W = 0.99, as required for non-uniform cochlea. In fact, apart from the
amplitude variation, the shape of these near-field components is relatively independent
of B/W.
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10 —— 10 ———
8 8r »
= 6 = 6f
E £
e 41 e 4
2r 2r
0 : ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ =
142 144 146 148 15 152 154 15.6 158 142 144 146 148 15 152 154 15.6 158
x [mm] x [mm]
() B/W=0.55 (d) B/W=0.99
10 —— 10 ——
8 = 1 8 o
= 6 : = 9 Ih
=h W [ &, i
a 47 K o 47 \
z—ﬂﬂ_ﬂ_ﬁv 27
0= : ‘ ‘ ‘ ‘ ‘ == 0" : ‘ ‘ ‘ ‘ ‘ ==
142 144 146 148 15 152 154 15.6 158 142 144 146 148 15 152 154 15.6 158
X [mm] x [mm]

Figure 2.9 The variation of the modal pressure due to the short wavelength component of fluid coupling
along the cochlea for B/W = 0.11, 0.3, 0.55 and 0.99 (dashed lines) together with the average pressure

over the discrete elements (solid lines).

Figure 2.10 shows the value of effective thickness, T, normalized by B, plotted as a
function of B/W for W equal to H and for the BM both at the edge of, and in the centre
of, the cochlear partition, calculated using equation (2.25). When B/W is equal to unity,
the BM extends over the whole width of the fluid chamber, so that the problem becomes
almost two-dimensional. The ratio T/B then tends to about 0.27, as can be calculated by
taking only the first term in equation (2.25) (Neely, 1985). When B/W becomes much
less than unity, however, and the BM is in the centre of the cochlear partition, both sides
of the BM element are essentially radiating as a line source into a three-dimensional

space and the effective thickness becomes large compared with B, as seen in Figure
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2.10. When B is much smaller than W, but the BM is on the edge of the cochlear
partition, the effect of the side wall will be to double the pressure in front of the
vibrating BM element and hence to approximately double the value of T/B, as also
observed in Figure 2.10. If B is assumed to be 0.3 mm and W is assumed to be 1 mm, as
in the box model above, where the BM is on the edge of the cochlear partition, then T/B
Is about 0.8, so that T is about 0.24 mm. The added mass due to fluid coupling, pT7, is
then 0.24 kg-mm™, which is the difference between the assumed BM mass for the 1D

and 3D models in Figure 2.7.

25

T/B

0 0.2 0.4 0.6 0.8 1

B/w
Figure 2.10 Variation of the effective thickness due to fluid loading, normalized by the BM width, T/B,
as a function of the normalized BM width, B/W, for the BM both at the edge (solid line) and the centre

(dashed line) of the cochlear partition.

The distribution of the modal pressure difference with both far and near-field
components, due to BM excitation by a single element of the BM at 5 mm, 15 mm or 25
mm is shown in Figure 2.11. The curvature in the pressure difference distribution for x
greater than X, is due to the reduction of the effective area with distance, as shown in
Figure 2.8 (b), and also seen in Fig. Al of Shera et al. (Shera, et al., 2004), for example,

which was calculated using a Green’s function approach.
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Figure 2.11 The calculated total variation in the modal pressure difference due to both far and near-field
components for the model of an asymmetrical cochlea, due to the difference in chamber areas, CP width,
W, and BM width, B, when only a single element of the discrete BM at x = 5 mm, 15 mm or 25 mm is

driven sinusoidally with a velocity of 10 mm-s " at a frequency of 1 kHz.

Figure 2.12 shows the calculated distribution of the BM velocity calculated by
combining the results shown in Figure 2.11 for the fluid coupling term with the passive
BM dynamics along the length of the cochlea in the discrete model. These coupled
responses do not look very different from those shown in Figure 2.7 for the uniform
cochlea, particularly for frequencies of excitation. The roll-off of the non-uniform
model is somewhat greater than that of the uniform model close to the characteristic
place. For higher excitation frequencies, the accumulation of phase lag of the uniform
model, however, is significantly less than that of the non-uniform model apical to the
characteristic place. The pressures basal to the position where the BM is excited, as
shown in Figure 2.11, are less than those shown in Figure 2.6, reflecting the fact that the
effective height of the non-uniform model is greater than that of the uniform model,
which causes the wavenumber, based on equation (6.7), has a smaller value for the non-
uniform case. This indicates that the non-uniformity has a great effect on the changes in
the wavelength of the BM motion as it approaches the characteristic place, since the
effective area of the cochlear chambers becomes much less than that at the base. There
is then a reduction in longitudinal fluid flow due to reflection and an increase in the

local mass loading, slowing the wave and increasing the phase accumulation.

50



Chapter 2 Fluid Coupling in the Uncoiled Cochlea

w
=

30 30

(a) 500Hz (b) 1000 Hz

(c) 2000 Hz

[
=1

20

[
=]

—_
=3

10

'
—
<

-10

| Vam | [dB wr.t us]
=]

| VoM | [dB w.r.t us]
=)

[ Vg [dBW.rtu]
(=]

»
S

-20

—— Non-uniform 3D
= = = Uniform 3D

'
w
=]

=30

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 o 5 10 15 20 25 30 35
X [mm] x [mm] X [mm]
0 = 0 =
2 2
3 ) 0
& & &
2 4 2 4 2
i i z
> > >
N N \ N
6 N 6 """\‘_
-8 -8
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
X [mm] x [mm]

Figure 2.12 Coupled BM velocity distribution in the model of the non-uniform cochlea (solid lines) and
the uniform cochlea (dashed lines) at excitation frequencies of 500 Hz, 1 kHz and 2 kHz with a damping

ratio of 0.1.

2.7 Finite Element Modelling of Fluid Coupling in the Cochlea

The finite element method can be used to calculate the fluid coupling in more
complicated geometries than the box model assumed in this chapter. It will be used in
the next chapter to analyse fluid coupling in a coiled cochlea, but is introduced here in
order to demonstrate some features of meshing and compressibility in a simple
geometry.

2.7.1 Finite Element Model of a Uniform Cochlea

The finite element model assumes a rigid walled enclosure within which the BM has an
imposed velocity contained in the vector geg, having dimensions of mass acceleration

(m-s). The vector of pressures, pee, at all of the nodes is related to ge by the equation
QPre +HPre =g, (2.69)

where Q and H are acoustic inertia and stiffness matrices as discussed by Fahy and
Gardonio (Fahy and Gardonio, 2007).
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The imposed velocity at the BM has the half sinusoidal form and the discrete
approximations to the modal velocity in equation (1.13) and modal pressure in equation
(1.14) are calculated from the relevant elements of gre and pge respectively. The FE
model is coded in MATLAB™ and is divided into 512 longitudinal sections in order to
ensure compatibility with the analytic results above. We initially investigated the effect
of the number of elements in each cross-section on the predicted modal pressure
distributions. The meshing in the cross-section has to be fine in order to capture the
near-field pressure variation close to the vibrating BM, and four different mesh sizes are
used to investigate the effect of this on the predicted results. Figure 2.13 shows the
geometry of the FE meshes of cochlear model cross-section used in calculations.
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Figure 2.13 Grids used for finite element calculation of fluid coupling for a cross-section of the cochlea.
Four meshes of (a) 8 X1 elements, (b) 8 X 2 elements, (c) 8 X 4 elements and (d) 8 X 8 elements are

used for each fluid chamber.

Figure 2.14 shows the distribution of the computed modal pressure difference along the
cochlea, when a single longitudinal BM segment is driven at different locations, using
four different mesh sizes for the fluid elements. It can be seen that with relatively few
elements, the FE model reproduces the far-field behaviour of the pressure, which gives
rise to the piecewise linear pressure distribution, reasonably well. A larger number of
elements are required, however, to reproduce the details of the near-field pressure on the
BM close to the point of excitation and hence the additional near-field component of the
modal pressure. Figure 2.14 also shows the modal pressure difference distribution

calculated using the analytic formulation shown above. It can be seen that the two
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methods have a good agreement along the whole length of the cochlea, although even
with 8x8 elements the FE model still does not completely reproduce the analytic results
in the near-field, since the local pressure distribution is then rather complicated around

the BM.

o S12%8x1
---512x8x2
——-512x8x4
——512x8x8
— Analytic

0 5 10 15 20 25 30 35

x[mm]
Figure 2.14 Modal pressure difference on the BM calculated using the FE model for excitation of a single
longitudinal segment of the BM at x equal to 5 mm, 15 mm and 25 mm with a velocity of 10 mm-s™ at a
frequency of 1 kHz with 8 X1 elements (dotted lines), 8 X 2 elements (dashed lines), 8 X 4 elements

(dot-dashed lines), 8 X 8 elements (solid lines) and analytic solution (red lines).
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Figure 2.15 The distribution of the modal pressure difference along the uncoiled uniform cochlear model
due to the fluid coupling when only a single element of the discrete BM at x=5 mm, is driven sinusoidally
with a velocity of 10 mm-s* at a frequency of 1 kHz by using ANSYS (solid lines) and analytic model

(dashed lines).
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In order to use the commercial software ANSYS to analyse the effects of coiling on the
cochlear dynamics, it is important to validate the ANSYS simulation. This has been
achieved by comparing the ANSYS results of the uniform uncoiled model with those

from the analytic model, as shown in Figure 2.15.

An advantage of the finite element method is that since the fluid is modelled using
acoustic elements, the compressibility of the fluid, as well as its inertial properties, are
taken into account. The widely used theoretical model assumes that the fluid is
incompressible (Elliott, et al., 2011). The effects of compressibility are expected to be
greater at higher frequencies as the inertial forces become larger. Figure 2.16 shows the
magnitude of the modal pressure difference calculated using the finite element model,
with the BM driven at equal accelerations on a single element at x equal to 5 mm, for
excitation at 1 kHz, 10 kHz, 15 kHz and 20 kHz. In the incompressible model the fluid
pressure would be independent of frequency. It is clear, however, that the magnitude
and shape of the fluid pressure change significantly with frequency in the finite element
model. The magnitude increases at 10 kHz and the distribution of fluid pressure is no

longer linear away from the excitation point.

@ (W)
1.2 ‘ ‘ ‘ ‘ 7 ; ‘ ‘ ‘ ‘
1 kHz | 10kHz |
1t 6
_08] 3
= o 4 L
S o6/ 3
5 8 37
047 20
02 [ 1 L
0 : : : : : ‘ 0 : : : : :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
x [mm] x [mm]
© d)
1 ‘ ‘ ‘ ‘ 0.4 ‘ ‘ ‘ ‘ ‘
15 kHz 20 kHz
0.8 1 03
—= 0.6 )
5 3 02]
804 &
02! 0.1
0 : : : ‘ : : 0 : : : ‘ : :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
x [mm] x [mm]

Figure 2.16 Magnitude of the modal pressure difference on the BM calculated using the finite element
model for excitation of a single longitudinal element at x equal to 5 mm, normalised to the acceleration of

the driving position at frequencies of (a) 1 kHz, (b) 10 kHz, (c) 15 kHz and (d) 20 kHz.
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Figure 2.17 The magnitude (a) and phase (b) of the modal pressure difference at the base of the cochlea
as a function of excitation frequency, calculated using the finite element method for excitation of a single
longitudinal element at x equal to 5 mm. Also shown (c) is a sketch of the box model with the anti-
symmetric pressure driven by the BM velocity and the resulting pressure distribution (d) when L is one
quarter wavelength with the rigid boundary condition at the oval window and zero pressure difference at

the helicotrema.

Figure 2.17 shows the predicted magnitude of the modal pressure at the base of the
cochlea as a function of frequency. The peak at about 10.7 kHz can be associated with a
resonance in the fluid column, which for the pressure difference has a rigid boundary
condition where it is driven at the stapes and a pressure release boundary condition at
the helicotrema. The cochlea length, 35 mm, thus corresponds to a quarter of a
wavelength at this frequency, for an assumed wave speed of 1, 500 m-s™, which is the
speed of a “fast wave” in the cochlea. This acoustic resonance increases the magnitude
of the average pressure across any cross-section of the cochlea, but does not influence
the near-field, short wavelength, components which are unaffected by the
compressibility of the fluid (Lighthill, 1981). In order to limit the pressure magnitude at
this peak, the finite element model has been modified to include a small imaginary
component in the elements of the H matrix in equation (2.69) so that each element is
multiplied by 1 + i7, where 7 is the loss factor, which is 0.03 in this case (Elliott, et al.,

2011). The resonant peak at 10.7 kHz is accompanied by a phase change, so that the
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pressure distributions for excitation frequencies between 10.7 kHz and 20 kHz are
almost entirely out of phase with those below 10.7 kHz.

Figure 2.18 compares the coupled BM velocity, calculated using the discrete approach
outlined in Chapter 1, when the fluid coupling is assumed to be incompressible and
compressible. For simplicity, the near-field components have not been considered in
either case here and the BM mass for the passive BM model has been set to include the
additional fluid loading. The columns of the fluid coupling impedance, Zgc, used in the
solution to the coupled dynamics, equation (1.19), are obtained either from samples of
the analytic form of the pressure for the incompressible case given by equations (2.42)
and (2.43) or from samples of the analytic form of the pressure for the compressible
case given by equations (5.6) and (5.7) in Elliott et al. 2011 (Elliott, et al., 2011).
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Figure 2.18 The coupled BM velocity calculated for high frequency excitation using the passive BM
dynamics and long wavelength fluid coupling with the assumption that the fluid is either incompressible

(solid lines) or compressible (dashed lines).

Despite the very significant change in the pressure distributions in the fluid coupling
calculations due to fluid compressibility, as shown in Figure 2.16, this hardly appears to
have any effect on the coupled cochlea response at all. This surprising result could be
explained by returning to how the coupled model is formulated in Section 1.3.1. The

fluid coupling effects are first calculated independently of any BM motion by defining
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the fluid coupling impedance matrix for the fluid chambers with rigid walls. It is this
assumption that leads to the quarter wavelength resonance in the uncoupled fluid
column. When the BM is allowed to move, in the coupled response, however, this
resonance does not get a chance to become established since the BM is sufficiently
mobile that it substantially equalises the pressures in the two fluid chambers well before
the wave reaches the end of the cochlea. On the other hand, this also reflects that the
fluid compressibility does not have a significant influence on the characteristic

frequency location of the travelling wave in the cochlea (Lighthill, 1981).
2.7.2 Finite Element Model of a Non-uniform Asymmetric Cochlea

In order to compare the fluid coupling impedances derived analytically above with those
derived using an alternative method, a non-uniform asymmetric uncoiled finite element
model of the cochlea has been constructed. As well as providing an independent check
of the behaviour of the fluid coupling in the uncoiled rectangular box model of the
cochlea used above, the finite element model has the advantage that more complicated

and realistic geometries, coiled cochlea for example, can also be analysed.

60

0 Analytic solution

Finite element solution

0 5 10 15 20 25 30 35
x [mm]

Figure 2.19 Comparison of modal pressure difference on the BM of a non-uniform asymmetric cochlear
model calculated using the FE model (solid lines) and the analytic model (o) for excitation of a single
longitudinal segment of the BM at x equal to 5 mm, 15 mm and 25 mm with a velocity of 10 mm-s™ at a

frequency of 1 kHz.
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Similar to the uniform uncoiled cochlea, the non-uniform asymmetric cochlea can be
represented by a straight box model with two fluid chambers, SV and ST, separated by
the BM. The assumed variations of cross-sectional areas A; and A,, associated with SV
and ST respectively, the width of CP and the width of BM are same as those assumed in
analytic model, as shown in Figure 2.8. Figure 2.19 shows good agreement between the
FE model and the analytic model, and provides an alternative way to examine equations
(2.65) and (2.66) for calculating modal pressure difference analytically in a non-uniform

asymmetric cochlear model.
2.8 Conclusions

The interaction between the fluid coupling and BM dynamics in three-dimensional
cochlear mechanics can be simplified by defining the pressure difference and the BM
velocity as a function of a single longitudinal variable. This important simplification
reduces the three-dimensional fluid coupling problem down to a uniaxial one, which
consists of far and near-field components. The discrete model of the cochlea, which has
a finite number of longitudinal sections, can effectively avoid singularities from
appearing in the representation of the near-field fluid coupling due to the implicit
assumption of a spatial delta function for the driving velocity in the continuous spatial
domain, using the Green’s function approach for example, since the assumed BM

velocity distributions remain finite and are described using linear algebra.

The near-field component of the fluid coupling is initially obtained from a conventional
wavenumber analysis, and an approximation based on the theory of acoustic modes in a
duct has also been derived, in which the near-field component is associated with the
evanescent, higher order, modes in the fluid chambers, while the far-field pressure

component is associated with the plane wave.

Realistic longitudinal variations of the cochlear geometry, including asymmetric fluid
chambers, have also been incorporated into the fluid coupling and analysed both
analytically and numerically. These coupled responses for the uncoiled non-uniform
cochlea do not look significantly different from those for the uniform cochlea, except a
significant difference of the accumulation of phase lag occurs in the non-uniform

cochlea.
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A finite element model of fluid coupling is also used to provide an independent check of
the results of the analytic model. An advantage of using a finite element model of the
fluid coupling is that various geometric complexities, which are difficult to account for
analytically, and compressibility can be readily incorporated. The compressibility is
seen to have a huge effect on fluid coupling close to a duct resonance, but a far smaller
effect on the coupled cochlear response. It can be seen that the coupled responses from
the incompressible analytic model match those from the finite element model, which

includes compressibility, well.
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Chapter 3. Fluid Coupling in the Coiled Cochlea

3.1 Introduction

It is believed that the coiled structure was an adaptation to the problem of fitting a long
basilar membrane, to provide good low frequency hearing, into the relatively small
heads of early mammals (Lieberstein, 1972). The origins of the coiled cochlea have
recently been traced back 150 million years (Luo, et al., 2011), for example, in
morphogenesis of extant marsupials and placentals, the full coiling of the cochlear duct
is inextricably linked with the formation of the cochlear ganglion and complex bony
labyrinth structures, all during the late embryogenesis. Obviously, the coiled cochlea is
a key evolutionary innovation of modern mammals. Despite providing a good blood and
nerve supply, however, the effects of the coiling on the mechanics of the cochlea are
still not fully understood. von Békésy (von Békésy, 1960) states that the coiling is not
essential as far as mechanics are concerned because a few animals, for example the
anteater, have a cochlea on the form of a slightly bent tube. The first mathematical
attempt to analyse the possible mechanical effects of the spiral coiling was due to
Huxley (Huxley, 1969), who derived an ordinary differential equation for the pressure
in an unrolled 1D cochlear model similar to the box model which is widely used now
and gave estimates indicating that coiling of the cochlear geometry could mechanically
isolate adjacent sections along the cochlear partition and provide a sharp resonance
effect. Hereafter, only a few researchers considered how spiral coiling may affect the
BM dynamics, fluid coupling and low frequency perception. Fleischer (Fleischer, et al.,
2010) used a finite element model to study the effect of coiling on the stiffness
distribution of the BM along the cochlea. They found that the coiling exerts its greatest
influence on the apical third of the BM, although a much larger influence on the range
of BM stiffness was the longitudinal variation of its thickness. This reinforced the
earlier work of Viergever (Viergever, 1978), who also concluded that the mechanical

behaviour of the cochlea is only slightly affected by its spiral form.

An analytic model of the fluid coupling in the coiled cochlea was developed by Steele
and Zais (Steele and Zais, 1985), who concluded that the response was not significantly
affected by the coiling. Kohlloffel (Kohlloffel, 1990) also suggested that the effect of
the coiling on the pressure difference is small and that there is an equivalent straight
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cochlear in the limit of long wavelength. This author also noted that the frequency of the
quarter wavelength resonance in the mean component of the pressure is raised by about
half an octave due to coiling. Manoussaki and Chadwick (Manoussaki and Chadwick,
2000) considered fluid loading using an analytic model of the coiled “helical box”
model of the cochlea using a wavenumber analysis and found that the fluid loading at
the apex was only about 11% less in the coiled cochlea compared with the straight
cochlea. In subsequent publications, however, Cai and Chadwick (Cai and Chadwick,
2003), Cai et al. (Cai, et al., 2005), and Manoussaki et al. (Manoussaki, et al., 2006)
emphasised the redistribution of wave energy towards the outer wall of the cochlea
generating a radial force on the organ of Corti that significantly increases its shear gain
at the apex, which can lower the fluid impedance at the apex and thus helps detection of

low frequency sounds.

In this chapter the effects of coiling in the cochlea are investigated using a three-
dimensional finite element model, which is constructed based on the geometry data
extracted from Figure 2 in Zakis and Witte (Zakis and Witte, 2001), to calculate the
fluid coupling impedance. To examine the effects of spiral coiling, results will be
compared with the three-dimensional finite element model of the uncoiled cochlea with
same variation of area as the coiled cochlea. In the calculation of the fluid coupling
impedance in the discrete model introduced in Chapter 1, the BM is divided up into a
number of longitudinal sections and its radial velocity distribution is assumed to be
known, for example a half sinusoidal mode shape, and independent of the fluid loading
upon it. This allows complicated three-dimensional behaviour of the fluid coupling to
be represented as a function of a single longitudinal variable for excitation at each point
along the cochlea. These pressure distributions constitute the columns of the fluid
coupling impedance matrix, which can be combined with a BM admittance matrix to

give a simple model of the coupled cochlear dynamics.

The other potential application of this coiled three-dimensional cochlear model is to
predict wave propagation in the coiled cochlea and examine the effects of the coiling on

wave scattering.

62



Chapter 3 Fluid Coupling in the Coiled Cochlea

3.2 Finite Element Model of the Coiled Cochlea
3.2.1 Geometry of the Coiled Cochlea

The real cochlea is a three-dimensional object with complicated spiral coiling and
geometry. Most cochlear mechanics researchers reduce the real cochlea structure to a
simple mathematical model with assumed physical and geometrical properties. An
advantage of the finite element method is that these assumptions do not have to be
made, although a description of the 3D geometry is necessary to mesh the model. It is
extremely difficult to obtain the real geometry of a cochlea for modelling, since the
cochlea itself is very small and enclosed in bony structure. Three-dimensional medical
imaging is a recently developed technique that allows the production of accurate and
interactive models of human anatomy, which can be used to visualise and model the
cochlea. Current 3D modelling techniques depend on using the range finding method to
collect 3D range data in order to determine an accurate range map of a subject to be
modelled (refs). This range map can then be analysed using software, ANSYS for
example, to recreate the object in virtual space. Zakis and Witte (Zakis and Witte, 2001)
applied magnetic resonance imaging (MRI) technology to create splines to trace the
outlines of the scalae and then used JAVA software to build a 3D cochlear model. In
this research, the 3D coiled cochlear model is built based on the scanning pictures
shown in Zakis and Witte (Zakis and Witte, 2001). The profiles of the scalae are then
extracted and used in Solidworks for building the geometric cochlear model, as shown

in Figure 3.1.

Figure 3.1 Geometric 3D cochlear model.
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The geometric model is saved in Parasolid format with extension ‘x t’ and then
imported into ANSYS. The FE model of this coiled cochlea consists of 512 fluid
elements in the axial direction which is compatible with the uncoiled cochlear model
and 24 fluid elements along the cochlear outer wall circumferential direction as shown

in Figure 3.2.

(@) (b)

Figure 3.2 Mesh of the coiled cochlear model decomposed to two fluid chambers, (a) scala tympani and

(b) scala vestibuli.

3.2.2 Effects of the Coiling on the Fluid Coupling

To investigate the effects of the coiling on the fluid coupling, the radial variation of the

BM velocity, w(y), again is assumed to be independent of the pressure distribution

acting upon it, so that a complex modal pressure difference can be defined at a single
frequency that only has a longitudinal variation along the cochlea as (Elliott, et al.,
2011)
1w
p(X)=V—V({w(y)[p1(x, y,0)—p, (%, y,0)ldy, (3.1)
where W is the width of the cochlear partition and pi(x, y, z) and pa(x, vy, z) are the

pressure distributions in the two fluid chambers, as shown in Figure 3.2.

This formulation allows complicated three-dimensional behaviour of the fluid coupling
to be represented as a function of a single longitudinal variable for excitation at each
point along the cochlea. These longitudinal distributions of the modal pressure can then

be used to construct the columns of the fluid coupling impedance matrix, which can be
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combined with a BM admittance matrix to give a simple discrete model of the coupled
cochlear dynamics. The FE coiled cochlear model is analysed using ANSYS and the
computed modal pressure difference is compared with that from a non-uniform uncoiled
analytic model of the cochlea, discussed above, which has the same variations of cross-
sectional area and BM width, to show the effects of the coiling. The FE cochlea is
assumed to be coiled and, for the time being, the width of the BM is equal to that of the
CP. The distributions of the modal pressure difference with both far and near-field
components, due to the BM is excited by a single element at xo equal to 5 mm, 15 mm
or 25 mm are shown in Figure 3.3. It can be seen that in the uncoiled cochlea, denoted
by the dashed line, the modal pressure difference is constant from the basal end and then
gradually increases to a peak, due to the near-field component, and then shows a

downward sloping behaviour when x is greater than xo.
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Figure 3.3 The distribution of modal pressure difference along the cochlea due to the fluid coupling when
only a single element of the discrete BM at x equal to 5 mm, 15 mm and 25 mm, is driven sinusoidally
with a velocity of 10 mm-s* at a frequency of 1 kHz by using an ANSYS coiled cochlear model (solid

lines) and an analytic uncoiled cochlear model with same variations in scale area (dashed lines).

Similar distributions of the pressure difference are obtained from the coiled cochlear
model except that some differences occur after each peak. It can be seen that the effects
of the coiling on the far-field components are more obvious than that on the near-field
components, since as stated previously, the near-field components of the pressure are

not significantly affected by the shape of the cochlear chambers. Recalling equation
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(1.17), p=Z.v, when the BM velocity is fixed, the pressure difference in the cochlear

chambers only depends on fluid impedance. These magnitude reductions of the pressure
difference occur after each peak imply the fluid impedance at those positions, which are
close to the apex, is decreased due to the spiral coiling of the cochlea is greater at the
apex. This implies that the spiral coiling could help perception of low frequency sounds
which could be an evolutionary compensation of reducing the space for holding the
cochlea done by the power of nature. Similar results were observed by Manoussaki et
al. (Manoussaki and Chadwick, 2000) who suggested that the coiling helps to lower the
fluid impedance particularly at the apex, where the BM curvature is greatest. In addition
to this, Chadwick and his colleagues (Cai and Chadwick, 2003, Cai, et al., 2005,
Manoussaki, et al., 2006, Manoussaki, et al., 2006) also emphasised the redistribution
of wave energy towards the outer wall of the cochlea generating a radial force on the
organ of Corti that significantly increases its shear gain at the apex, which can lower the

fluid impedance at the apex thus helps detection of low frequency sounds.
3.2.3 Effects of the Coiling on the Coupled Response

Although the effects of the coiling on the fluid coupling have been predicted in the
current case, it is still necessary to explore its effects on the coupled responses, which

are shown in Figure 3.4, using the discrete method.
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Figure 3.4 The BM response calculated using the coiled model (solid lines) and the uncoiled non-uniform

model (dashed lines), at 0.6 kHz, 1 kHz and 2 kHz.

Although a reasonable matching of the magnitudes can be obtained between the coiled
and uncoiled models, the peak response of the coiled model is less than that of the

uncoiled model. The accumulation of phase lag of the coiled model, however, is greater
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than that of the uncoiled model apical to the characteristic. This reflects the curvature
has some effects on the changes of wavelength of the BM motion as the motion
approaches the characteristic place. Also, when driving frequency increases, the
agreement of magnitude basal to peak between the two models increases. The curvature
may have an effect on reducing axial fluid flow and an increase in the local mass

loading, slowing the wave and increasing the phase accumulation.
3.3 Conclusions

An advantage of using a finite element model of the fluid coupling is that various
geometric complexities, which are difficult to account for analytically, can be readily
incorporated. In this chapter the flexibility of the finite element method is illustrated by
using it to investigate the effects of the coiling on the fluid coupling and coupled
response. Results for this set of parameters show that the coiling does change the modal
pressure distribution, especially close to the apex indicating that the coiling reduces the
fluid impedance in the apical region and thus somewhat reduces the coupled BM
velocity near the apex. This conclusion is similar to that drawn by Steele and Zais
(Steele and Zais, 1985) and Kohlléffel (Kohlléffel, 1990) who suggested that the effects
of the coiling on the pressure difference are, although there is evidence for a greater
effect at low frequencies, small and that there is an equivalent straight cochlea. For the
region beyond the characteristic place, the BM velocity calculated using the coiled
model is less than that from the uncoiled model, but the greater accumulation of phase
from the coiled model suggests that the coiling has an influence on changes of

wavelength of the BM motion.
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Chapter 4. Fully Coupled Response Calculated Using the FE Method

4.1 Introduction

Up until now the discrete model has been used to calculate the coupled response of the
cochlea, with separate models for the fluid coupling impedance and BM admittance. A
fundamental assumption of the discrete model, however, is that the radial velocity
distribution of the BM is known, and that this is unaffected by fluid coupling. In order
to test this important assumption, the finite element method can be used to compute the
response of the cochlea as a fully coupled fluid-structural system. For simplicity we
continue to assume the box geometry for the cochlear model, divided into the same
number of longitudinal elements as in the discrete model, but now the model is also
meshed over each cross section, as in Figure 4.1. Using symmetry, the derivation of the
equation of motion of the coupled system is only given for coupling between one fluid
chamber and the BM.

The lower surface of the upper chamber, SV, is coupled with a flexible plate that
represents the BM, as shown in Figure 4.1, so that the fluid field in the chamber is
influenced by the motion of the BM and the vibration of the BM is perturbed by the
fluid pressure loading. The vibrational behaviour of this coupled system can be derived
using Hamilton’s principle. The integral of Hamilton’s principle equation for the
acoustic system must include the work done by the BM on the fluid. Likewise, the
integral for the structural system also must include the complementary work done by the
fluid on the BM.

For the fluid-structural coupled system, each fluid element located with its lower

surface coincident with the BM element, the elemental virtual work done over the r-th
coupling face by the pressures —p, and virtual displacements ow. of the matching BM

element is given by (Craggs, 1971)

+1+1

W, =] p.owdS, = p, [ [§(&uost)OW(Sos t)asar, dEudE, (A1)

-1-1

where &, ,, stands for local coordinates in the fluid element &, &,,, &5 as shown in

Figure 4.2, £, and &,, are the a-dimensional coordinates of the r-th dissipative face of
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the fluid element with area S, =a,, xa,, matched to the plate element, as shown in
Figure 4.2, such that a, =& and a,, =7 . The a-dimensional coordinate £, locates the

position of the dissipative face and thus, &, =—1 for this example. The a-dimensional
coordinates of the bottom face denoted by the nodal points 1, 2, 3 and 4 of the element

in Figure 4.2(a) aregivenby &, =&, &,=¢, and &, =&, =-1.

Basilar Membrane Helicotrema

@ (b)

Figure 4.1 (a) Geometry of the finite element model of the cochlea and (b) elemental grids used on each

cross-section.

Although a general model is initially assumed for the BM structure, this will be used
below for the particular case where the BM is locally reacting, and then when it is
longitudinally coupled via an orthotropic model. The kinetic and potential energy terms

for one fluid element, the virtual work done over the r-th coupling face by the pressures

—p, and virtual displacements ow, of the matching BM element and the virtual work

done by acoustic excitations are given by (Fahy and Gardonio, 2007)

1

Tef = E P ¢eTHe¢e’ (42)
1 . .
Uef =§pf ¢eTQe¢e7 (43)
oW, = p; & RW,, (4.4)
and
éV\/eq =—pP% &eTQe' (45)
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where H, and Q, are elemental acoustic inertia and stiffness matrices, R, the
elemental coupling matrix, g. the elemental acoustic source vector, ¢, the velocity

potential of the fluid element and w, the displacement vector of the BM element.
7 C A /n
5
3 3 4
2a3 ’
[ ﬂ 2b > E:
1
4
2a, 2a,
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1 2
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Figure 4.2 (a) Fluid element and (b) BM element and their coordinates and dimensions.
A four-node quadrilateral element is used to model the BM structure, which has three
degrees of freedom (transverse displacement w , rotations 6 =ow/dy and
6, =—ow/ 0x) at each node point, as shown in Figure 4.2 (b) (Petyt, 1990). The Kinetic

and potential energy terms for one BM element and the virtual work done by the
pressure p, and virtual displacements ow, through the r-th face of the coupling

element on the matching BM element are given by

T = Ev'vji\/lewe, (4.6)
us :%WQTKQWQ, (4.7)

and
WS = p,ow,"S ¢, (4.8)

where M, is elemental mass matrix, K, elemental stiffness matrix and S, elemental
coupling matrix. Once the elemental stiffness, mass and coupling matrices are derived,
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the global matrices and vectors can be obtained through assembling these elemental
matrices (Petyt, 1990). The BM is assumed to be isotropic for the locally-reacting case
and orthotropic for the longitudinal coupling case, which leads to a different assembly
between the two cases to make sure that there is no longitudinal coupling between

adjacent BM elements for the locally-reacting one.

The kinetic and potential energy, the virtual work done by the volume acoustic sources
and the work done by the BM on the fluid can be combined to give the total energies
and virtual work for the fluid. These energy expressions can be substituted into

Hamilton's principle to give (Craggs, 1971)

tf[a(T —U)+oW " +6Wdt
b , (4.9)
- .[{5(%pf¢TH¢_%pfd’TQd’j+pf§d’T RW_pf&bTQ} dt =0,

where H, Q and R are global acoustic stiffness, inertia and acoustic-structural
coupling matrices respectively and q is the acoustic source vector. It should be noted
that the coupling surface is located on the bottom surface of the fluid chamber for this
condition. After integrating the second and third terms by parts and differentiating the
expression to be integrated, which is valid for any arbitrary &, the equation of motion

in terms of nodal pressure p=—p; {6¢/ot} and plate displacement w is given by

(Fahy and Gardonio, 2007)

Hp+Qp+ o, RW=q. (4.10)

Similarly, the equation of motion of the BM coupled with the fluid chamber on the

bottom surface as shown in Figure 4.1 is obtained based on Hamilton's principle as

M\ + Kw —Sp =0, (4.11)

where M and K are the global mass and stiffness matrices and S the structural-
acoustic coupling matrix. Because of reciprocity, the two coupling matrices R and S

are related such that R=S".

Combining the equations of motion of the fluid chamber and BM gives the equation of

motion of the whole coupled system as
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o s o wls)la) w2

The dynamic stiffness matrix, as shown in equation (4.12), is not symmetric if both the
pressure, p, and BM transverse displacement, w, are present, because of the
incorporation of the coupling terms S and R. Mencik and Ichchou (Mencik and Ichchou,
2007) gave an example to rewrite the equation of motion of a fluid-structural coupled

system in a symmetric form in terms of fluid velocity potential, ¢ , and the BM

transverse displacement, w, as
M 0] . |0 pS| |K O0f||w
-0 0 +iw R0 + 0 H = 1 ql (4.13)
Q - ¢ |a),0f

Then, multiplying the second row of equation (4.13) by —p, results in the following

symmetric system

—_|W 0
D{ }: 1 | (4.14)
() —q
10
where
D =—w? ' , 4.15
“’{0 —pr}'”LfR OHO —pr} @19

is a symmetric dynamic stiffness matrix since R=S" (Morand and Ohayon, 1995). It
should be noted that both problems, equations (4.12) and (4.14), have the same
eigenvalues. The advantages of the symmetric form are less computational cost
(Everstine, 1981) and better matrix condition (Maess and Gaul, 2006). Everstine
(Everstine, 1981) points out that non-symmetric matrix operations cost about twice as
much to perform on a computer as symmetric operations. If the system, shown in
equation (4.12), is modelled in Sl-units (kg, m and s), the system is poorly conditioned,
since nodal pressure values are about 10** — 10" times higher than the displacements in
units of m for the present example. Vice versa, entries in block matrices M and p:R are

about 10* — 10% times higher as compared to the ones in Q. The same ratio occurs for
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the entries of K as compared to the ones in H and S, respectively. As a result, high

condition measures result for global mass and stiffness matrices.

In this chapter, the distribution of the BM velocity magnitude and phase is first
investigated using a locally-reacting model of the BM in Section 4.2, and is then
calculated for the more complicated case including longitudinal coupling along the BM
in Section 4.3.

4.2 Finite Element Model with Local BM Dynamics

The finite element model was illustrated in Figure 4.1 and consists of 512 longitudinal
elements. The cross-section of each element is divided into an 8x4 grid of hexahedral
fluid elements in each chamber, although the excitation is assumed to be symmetric so
that the pressure in the lower chamber is opposite to that in the upper chamber and so
need not be explicitly represented. The partition between the two fluid chambers is rigid
apart from the BM, which is represented by four quadrilateral plate elements. Each BM
slice vibrates independently across its width, with no mechanical coupling between the
plates in the longitudinal direction. The mass per unit length of the BM, which is 0.2
kg-m™, is kept constant along the cochlea. The mass assumed here is greater than that
for the 3D analytic model, as a compensation for the relatively coarse mesh, used here
for the sake of computational efficiency. The bending stiffness of each BM section
varies as a function of longitudinal position x to match the place-frequency mapping
characteristics in the human cochlea, since in the model the physical size and mass of
the BM are assumed to be constant along the cochlear length. In this thesis, the
boundary condition for the fluid chambers are defined to be rigid with a time harmonic
source at the stapes (x=0), while at the helicotrema (x=L), the pressure gradient is
assumed to be zero, i.e. an open end. The side and top walls are all assumed to be rigid.
The boundary conditions for the BM are assumed to be simply-supported at y=0 and
clamped at y>B (Allaire, et al., 1974, Homer, et al., 2004), by removing the
corresponding degrees of freedom from the dynamic stiffness matrix. Such boundary
conditions for the BM can give a good agreement with the measured radial BM
displacement as shown in Fig. 2 by Homer et al. (Homer, et al., 2004). The effects of
the boundary conditions on the overall coupled responses are discussed in details in
Appendix D.1.
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The fundamental bending frequency of the BM can be expressed as (Rao, 2004)

(pB)’ El

=" ApB* (1-v2)’

(4.16)

where E is the BM Young’s modulus, p density, I the second moment of area, v
Poisson’s ratio, A cross-sectional area, B the width of the BM and £ is a coefficient

with a dimension of m™ depends on boundary condition. After some simple

mathematical transformations, the Young’s modulus variation of the BM can be given

by

, (4.17)

where fg(x) is frequency distribution along the cochlear length, which is decaying
exponentially from 20 kHz down to about 20 Hz (Dallos, 1992).

Damping is included in the BM by introducing a loss factor to define an imaginary
component in each element of stiffness matrix, K, adjusted to give a damping ratio of

0.1, as used above. The complex stiffness matrix then becomes K (1+i7), where 7 is
the loss factor. We assume that the imaginary term of the complex stiffness matrix is
equivalent to the damping term, r(x), in the BM impedance,

Zgy (X)=iom(x)+s(x)/iw+r(x). We can relate the loss factor and damping ratio as

in(x)s(x)=iwr(x). (4.18)

According to the definitions of s(x) and r(x) listed in Table 2.1, the loss factor can be

given in terms of the damping ratio as

n(X)=2w£, (4.19)

Wy

where {p is the BM damping ratio, which is equal to 0.1, used for the analytic models, @
driving frequency, | natural frequency length scale, which is 7 mm, and wg is natural

frequency at the base.

75



Chapter 4 Fully Coupled Response Calculated Using the FE Method

The solution of the full finite element method is obtained in the usual way by solving
equation (4.12), to give the vector of pressures and displacements at every node. The
modal BM velocity can be obtained from a continuous BM displacement distribution,
w(x, y), as

2io y

VBM(X):? w(X, y)sinEdy. (4.20)

The finite element model provides the BM displacement in discrete form, as elements of
the vector w, which can be written in terms of the radial BM velocity distributions at

each longitudinal slice along the cochlea as
w=[w'(1) w'(2) w'(N)], (4.22)

where w(n) is the radial BM displacement due to the plate motion at the n-th

longitudinal element, and N is the number of longitudinal elements, which is 512 in this

case.

The modal BM velocity at the n-th position can then be estimated from the radial BM
displacement distribution at this position using a discrete approximation to equation
(4.20),

Veu (N) = 2iw sg,w(n), (4.22)

where s, is the vector of normalised values of the mode shape, sin(zy/B), at the nodal

locations across the BM.

Figure 4.3 shows the predicted BM motion along the cochlear length using the full finite
element model with locally-reacting BM dynamics. It can be seen that the motion
represents the first bending mode all the way along the cochlea, which provides an
independent check for the assumption made for the discrete model in Chapter 2. The
asymmetric behaviour of the mode shape about the BM’s mid-point is due to the
assumed boundary conditions that is simply-supported at y=0 and clamped at y=B,

which is also noted by Homer et al. (Homer, et al., 2004).
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(b) BM mode shape at four positions along the cochlear length.

Figure 4.3 BM mode shape along the cochlear length predicted using the locally-reacting finite element

model.

The cochlear model is driven at the stapes by a volume acoustic velocity source vector,
g, over all the fluid elements of the upper chamber. The amplitude and phase of the
modal BM velocity at 1 kHz is plotted in Figure 4.4, normalised with respect to the
driving velocity at the stapes. The results are seen to be reasonably similar to those

predicted from the 3D and 1D discrete cochlear model.
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Figure 4.4 The (a) magnitude and (b) phase of the modal BM velocity at 1 kHz, calculated from the full
finite element model with locally reacting BM (solid lines) and the 3D discrete model assuming a half

sine radial distribution of the BM velocity with a damping ratio of 0.1.

These results are found to change by less than 0.5 dB if the number of fluid elements on
each cross section is increased from 8x4 to 8x16, but computation time increases by
factor of 460.

4.3 Finite Element Model with Longitudinal BM Dynamics

In most cochlear models, the BM is conventionally assumed to be locally-reacting and
to have no longitudinal mechanical coupling. It is thus the fluid chambers that are the
only source of longitudinal coupling. The finite element method provides a way of
testing this assumption, by modelling the BM as an orthotropic plate, so that the
stiffness in the longitudinal direction can be varied independently of the stiffness in the
radial direction. The governing equation of a bending orthotropic plate, as shown in
Figure 4.5, can be expressed as (Szilard, 2004)

4 4 4
p, W), gp SWXY)  py SWOGY) ey, (4.23)
OX ox“oy oy
E h? E, h® —
where D, =——*— , Dy=————— are the flexural rigidities of the
12(1-v,0,) 12(1-v,0,)

orthotropic plate associated with the longitudinal, x, and the radial, y, direction,

respectively, T ~ v, D, +2D; is the effective torsional rigidity of the orthotropic plate,
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vy, and vy, are the Poisson’s ratios corresponding to a contraction in direction x or y
when an extension is applied in direction y or x respectively and Ds is equal to
nyh3/12 which represents torsional rigidity where G, is shear modulus. Based on

Betti’s reciprocal theorem (Werner, 2004), we can write
v E, =0 E, or v,D, =0, D,. (4.24)

We assume that Dy, Dy and Gyy vary in proportion with Dy, which varies in proportional

2x/1

to e, where I is the natural frequency length scale, 7 mm, and x is the position in the

cochlear longitudinal direction, in order to give the required distribution of the BM

stiffness.
Dy J / / / \ / Z ¥ =R
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Figure 4.5 Sketch diagram of an orthotropic plate with boundary conditions simply supported aty = 0

and clamped aty = B.

In a similar way to the FE analysis described above, the orthotropic finite element
model for each of the 512 segments of the cochlea has 8 x 4 hexahedral fluid elements
to describe the fluid motion in each chamber and four plate elements to describe the BM
radial structural response as a beam, but now with weak mechanical coupling due to
orthotropy in the longitudinal direction. The cochlea is still assumed to be symmetric so
that only one fluid chamber needed to be modelled. There are thus 9 x 5 nodes on each
face of the fluid chamber segment, each having 1 degree of freedom, and 5 x 1 nodes on

each edge of the BM segment, each having three degrees of freedom which are

transverse displacement w, rotations 6, and 6, . (4.25)(4.26)(4.27)

A value for the ratio of longitudinal to radial BM stiffness D,/Dy needs to be chosen for

the FE simulation. It is assumed that v, , v,, are given by equation (4.24) and

yx '+ Pxy
G)(y:1.1><106 Pa at the base. Various estimates appear in the literatures (Liu and White,

2008, Meaud and Grosh, 2010) suggesting that the range is from 0.01 to 0.1.
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The distributions of the BM velocity magnitude and phase using the orthotropic plate
are plotted in Figure 4.6. Similar to those predicted from the locally-reacting model, the
BM velocity gradually increases to a characteristic place which depends on driving
frequency, and then sharply decreases. The incorporation of the longitudinal BM
coupling moves the peak towards the apex compared with those from the isotropic case
since the additional coupling stiffens the BM, but the effect of D,/Dy changes can hardly

been seen in this scale.
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Figure 4.6 The (a) magnitude and (b) phase of the modal BM velocity at 1 kHz, calculated from the full
finite element model with locally reacting BM (dot-dashed lines) and the orthotropic BM with different

Dx/Dy ratios, 0.05 (solid lines), 0.01 (dotted lines) and 0.1 (dashed lines) and a damping ratio of 0.1.
4.4 Conclusions

In this chapter, the uncoiled cochlea is modelled using finite elements as a fluid-
structural coupled system, with three-dimensional fluid and two-dimensional BM
elements. By driving the stapes at a given frequency, numerical prediction of the modal
BM responses have been obtained. Two kinds of cochlear models, which include the
local BM dynamics or longitudinal BM dynamics, are constructed and studied.
Generally for both cases, the BM velocity increases gradually to a peak, whose location
depends on driving frequency, and starts to decrease quickly afterwards. This
observation is similar to those predicted by other models, like discrete cochlear model in

Chapter 1, or the WKB reconstruction in Chapter 5.

The longitudinal BM coupling introduces additional interaction, which stiffens the BM,
in the longitudinal direction and leads to a peak shift towards the apical end compared
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with the isotropic case at the same driving frequency. The original distribution of
natural frequencies along the cochlea could, however, be recovered by adjusting the
way that the Young’s modulus is defined. By carefully defining the stiffness distribution
of the orthotropic nature of more detailed cochlear models, other effects, such as

longitudinal coupling of the TM motion for example, could also be taken account into
consideration.
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Chapter 5. Applications of the Wave Finite Element Method

5.1 Wave Finite Element Method

The wave finite element (WFE) method is a numerical approach to investigate wave
motion in waveguides and slender structures at low computational cost (Duhamel, et al.,
2006, Houillon, et al., 2005, Mace, et al., 2005, Zhong and Williams, 1995). The WFE
method starts by first modelling a short section of a waveguide or a structure using
conventional finite elements, so that the equation of motion is defined in terms of a
finite number of degrees of freedom (DOFs) in order to find the dynamic stiffness
matrix; second, the transfer matrix of the section is formed using elements of the
dynamic stiffness matrix; finally, the eigenvalues and eigenvectors of the transfer
matrix, which represent the free wave propagation characteristics such as the
wavenumbers and wave modes, are obtained from solving the eigenvalue problem of
the transfer matrix after applying periodicity conditions (Duhamel, et al., 2006, Mace, et
al., 2005).

The WFE method originated from the use of the finite element method to study periodic
structures (Orris and Petyt, 1974, Orris and Petyt, 1975). Researchers utilized the finite
elements to model periodic structures and predicted wave propagation in the structures.
Abdel-Rahmen (Abdel-Rahmen, 1980) did extensive work to predict free wave
propagation in 1D, 2D and 3D periodic structures using a FE model of a single periodic
section. When a periodicity condition was applied to the equation of motion formed
from the FE model, an eigenvalue problem was formulated. Free wave propagation
characteristics were determined from solutions to the eigenvalue problem. Shorter
(Shorter, 2004) utilized the waveguide finite elements for viscoelastic laminates and set
out the discrete problem using Lagrange’s equations. He solved for the wavenumber at
different frequencies and hence found dispersion relations. Nilsson (Nilsson, 2004)
derived and validated six wave finite elements, straight and curved pre-stressed,
orthotropic or anisotropic shell elements, straight and curved fluid elements, and
straight and curved fluid-shell coupling elements, and he also calculated forced response
and input power for infinite and periodic waveguides. Using a similar method, Gry
(Gry, 1996) used the finite elements to model a rail cross-section, calculated wave

propagation in rails and dispersion relations. He then extended the work (Gry and
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Gontier, 1997) to take the periodic structure of the track into account by solving the

problem in terms of a transfer matrix approach.

The wave finite element method, WFE, has been widely used on periodic or uniform
structures, but few applications have been published for non-uniform structures. The
WFE method was originally proposed for studying waves in periodic and uniform
waveguides and a periodic condition must be applied to form the eigenvalue problem.
However, it is possible to use the WFE to study certain structures with “slowly varying”
properties such as the cochlea (Ni, et al., 2010). So, for example the criterion commonly

used for the WKB approximation holds (de Boer and Viergever, 1982)

<1. (5.1)

For our models this criterion is reasonably well satisfied at positions not too close to the
base of the cochlea. Before considering the use of the WFE to analyse the response of
the cochlea, in this chapter, we illustrate the WFE method and extend its use to study
waves in slowly varying structures, using several other applications: plate strips,
acoustic ducts and, particularly, loudspeaker cones.

5.1.1 Calculation of the Transfer Matrix form a Finite Element Model

The equation of motion of the n-th element of length A of a general uniform

waveguide, as shown in Figure 5.1, can be written as
D(n)q(n)=f(n), (5.2)
where
D(n)=K(n)+iaC(n)-o’M(n), (5.3)

is the dynamic stiffness matrix, g is nodal displacement vector, f is nodal force vector,

K, C and M are stiffness, damping and mass matrices, calculated from a finite element

model for example, w is angular frequency and 1= \/—_1
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Figure 5.1 Sketch of a section of a uniform waveguide.

Note that time harmonic motion is implicit throughout and suppressed for brevity. After

partitioning of the nodal displacement and force vectors into components on the left and

right  hand sides of the element, so q(n):[qL(n),qR(n)]T and

f(n)=[f_(n).f (n)]T, the equation can be expressed as

A R S

where the subscripts L and R represent the response and forcing vector on the left and

right hand side of the section. The transfer matrix can be defined as

|:qR (n):|:T(n)|:qL(n):|, (55)
- (n) f (n)
and expressed in terms of the dynamic matrix as (Mace, et al., 2005)

e —D; (n)D,, (n) D& (n)
T(n) { (n)} (5.6)

—Dg, (N)+Dge (N)Dx (n)D, (n) —Dgs (n)Dix

n n
|:qR( )i|:lj|:ql_( )i|, (57)
T (n) f (n)
where A; is an eigenvalue of T and relates to wave propagation over the distance A,

such that

A =e " (5.8)
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where k; represents the wavenumber for the j-th wave. The wavenumber can be purely

real, purely imaginary or complex, associated with a propagating, a near-field
(evanescent) or oscillating decaying wave respectively. Positive-going waves are those
for which the magnitude of the eigenvalues is less than 1, such that the power is

positive-going. The wavenumber k can be expressed as

k=R+i3, (5.9)

where R is the real part of the wavenumber, which represents the phase change
associated with wave propagation and 3 is the imaginary part of the wavenumber,
which represents attenuation of the wave. If J3<0, it denotes the amplitude of the wave
attenuates. If 3> 0, it indicates the amplitude of the wave increases. The eigenvector
represents a wave mode and contains information about both the displacements and the

internal forces.
5.1.2 Eigenvalues and Eigenvectors

The right eigenvectors of the transfer matrix of the n-th section can be defined as
T(n)e;(n)=4(n)e;(n), (5.10)

for the i-th eigenvalue 4 and ¢, is a column vector of the right eigenvector. Similarly,

the left eigenvector can be expressed as
v (N)T(n)=4(n)w;(n), (5.11)

and y; is a row vector of the left eigenvector for the j-th eigenvalue and given by

(Duhamel, et al., 2006)
v, (n) :[q;ﬁj (n)(Deg (n)+4;(M)D (n)) @, (n)], (5.12)

where subscript 1/ 4; denotes the displacement vector associated with the eigenvalue

which is the reciprocal of A, and wy; can be written in the form of

v, (n)= [fJT (n) qj (n)} Combining equation (5.10) and (5.11) gives
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v (N)T(n)e;(n)=4(n)w; () (n)=4 (n)w;(n)e; (). (5.13)
This relation leads to
(4 (n)=2;(n))w;(n)e;(n)=0. (5.14)

It is easy to find that if A4 (n)=4,(n), w;(n)e,(n)=0. Thus the orthogonal

relationship between left and right eigenvectors can be expressed in terms of delta

function as

\I’j(n)q)i(n):dié‘ij’ (5.15)

_ 1 (i=] . ) .

where &; is Kronecker delta, such that ¢, :{0 E Jg and d, is arbitrary. This
N

orthogonal relationship can then be utilized to calculate the wave assurance criterion

value which shows the degree of consistency between one left eigenvector and another

right eigenvector.
5.1.3 Wave Assurance Criterion Value

For general waveguides, there are many wave modes, so that many eigenvalues and
associated eigenvectors are calculated at each different frequency (or at each different
position in the cochlear model). It is important to recognize and distinguish the
mathematical or physical similarity of these eigenvectors at two adjacent frequencies or
positions. In other words, pre-processing must be utilized to check and then match the
eigenvectors or eigenvalues in order to draw the correct wave dispersion curves
(Allemang, 2003, Houillon, et al., 2005). In this research, a wave assurance criterion
(WAC) value is used to check the coherence of the initial propagation branches, which
is similar to the MAC number used by Houillon (Houillon, et al., 2005). The wave
assurance criterion value is defined as a normalised scalar relating the degree of
consistency between one left eigenvector and another right eigenvector at two adjacent

frequencies or positions as follows:
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WAC, | (n,n-1)=

Lvi(n=1)¢;(n) [[wi(n); (n-1)]
Lwi(m)e;(n)][wi (n-1)o; (n-1)]

%, (5.16)

where n and n—1 represent the frequency of n-th and (n—1)-th discrete frequency step, or

for cochlear model n-th and (n-1)-th position along the length, y and ¢ are left

eigenvector and right eigenvector associated with i-th or j-th wave at the n-th or (n-1)-
th frequency or position. This WAC value is different from the MAC number defined
by Houillon (Houillon, et al., 2005), since they only use right eigenvector to calculate
the coherence, which is a general approach in modal analysis (Allemang, 2003). The
advantage of this WAC value is that it is based on the orthogonal relationship, equation
(5.15), between the left and right eigenvectors, which makes the WAC value more
distinct. The WAC value can be calculated from two complex eigenvectors associated
with two distinct eigenvalues. The WAC value takes on values from zero which
represents no consistent correspondence, to unity that denotes that the eigenvectors are
correlated. In particular all values of WAC are calculated at each junction in order to
pair the eigenvectors in adjacent elements. If kA is much less than unity, the correct
pairing typically gives WAC~0.99 and incorrect WAC=0.01. Figure 5.2 shows the
WAC values between eigenvectors of the i-th and j-th wave modes calculated before
and after applying the WAC using the locally-reacting cochlear model. It can be seen
that the original correlations between each eigenvector are not strictly diagonal
indicating the dispersion curves are not distinguishable, but after applying the WAC
processing they are strictly diagonal, which means that each eigenvector associated with
the corresponding wave is distinguished and thus the dispersion curves can now be
clearly plotted out and used further for either WKB approximation or wave

decomposition.
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(@) (b)

Figure 5.2 The WAC value between eigenvectors of i-th and j-th wave mode calculated (a) before and (b)

after applying WAC using the locally-reacting cochlear model.

5.1.4 Numerical Errors

Sometimes, the WFE method runs into difficulties due to the inversion of ill-
conditioned matrices and the cumulative errors due to the transfer matrix assembly.
Zhong (Zhong, et al., 1991, Zhong and Williams, 1995) offered several approaches for
solving the eigenvalue problems for linear periodic structures, which are a kind of state
space eigenvalue problem, wherein the main parameters are the displacements at both
sections of the considered system. The reasons for the WFE numerical errors can be
classified as FE discretization errors and round-off of inertia terms, such that the
frequency range analysed is limited. There is a trade-off between these two kinds of

errors.
5.1.4.1 FE discretization error

When the phase change over the length of an element A becomes large, the FE
discretization error becomes large. Since the FE modelling is an approximation to
represent a system, there are always numerical errors. In the WFE method, the phase
change over an element is recommended to be (Waki, et al., 2009)

kA|<1. (5.17)

In general, the wavenumbers may be purely real, purely imaginary or complex. For

complex wavenumbers, either the equation above or the condition
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Re(kA)| <1 and |Im(kA)[<1, (5.18)(5.19)

is recommended (Waki, et al., 2006). The criterion should be satisfied in both the
directions of wave propagation and across the cross-section of a waveguide for small FE
discretisation errors. The criterion on imaginary part of kA and hence on magnitude of
kA is only required if accurate representation of evanescent terms is required, but that
this is not the case here. It should be mentioned that the FE discretisation errors depend
on the shape function of an element. Even if the values of kA are the same, errors in the
WEFE results using a cubic polynomial shape function are smaller than those using a

linear shape function (Waki, et al., 2009).

5.1.4.2 Round-off of inertia terms

The upper bound to the length A of the element can be decided from the FE
discretization error, e.g. equation (5.17), considering the maximum wavenumber of
interest in the frequency range analysed. On the other hand, the lower bound of A may

be defined considering round-off of inertia terms.

In the WFE method, the round-off error can be significant specifically when
D =K -®’M is numerically calculated. For very small A, and in particular at low

frequencies, some effective digits of the inertia terms will be rounded-off since K;

might be much greater than a)ZMij . The criterion for the smallest permissible value of A

could be therefore determined to satisfy
log,, (|Ky|/ @’ |My|) < ey, (5.20)

and ¢; <16 at the minimum frequency of interest using the double precision

calculations for accurate results.
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Figure 5.3 Relative errors of bending wavenumber from a thin plate strip model.

The relative errors of the wavenumber of a thin plate strip calculated using the WFE
method are shown in Figure 5.3, in which the minimum error is around kA=0.345.
Above this point, the relative error increases due to the FE discretisation error and

below this point, the relative error decreases due to the round-off of the inertia terms.
5.2 Waves in Thin Plate Strips

In this section the use of the WFE is illustrated in the calculation of the wavenumber
distribution along non-uniform stripes of plate. We begin, by way of a review, with the

analysis of uniform plate structures.
5.2.1 Uniform Plate Strips

The plate is assumed to be thin and isotropic with simply supported boundary
conditions at the edges, as shown in Figure 5.4. For such a plate strip, the analytic

wavenumber is given by (Graff, 1991)

=Kk =52, (5.21)

where D is the bending rigidity, D = Eh®/12(1-0?), v is Poisson's ratio, p is material

density, h is plate thickness. For the assumed simply supported boundary conditions,

the displacement in the y direction can be assumed as (Leissa, 1969)
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w(y)= Asin(%},

y

where n is the order of the mode and A is the displacement magnitude, so that

Thus, the wavenumbers in the x direction are given by

2
K2 =+ p—hw—(”—”] (nN=1,2,3--").
D L

Substituting k,, =0 gives the cut-off frequency for the n-th wave mode as

2
D | nx

Oy = |—| — | -
ph L,

(5.22)

(5.23)

(5.24)

(5.25)

In the case considered here, it is assumed that, Ly = 0.16 m, E = 2.1x10" Pa, p = 7,800

kg/m®, h = 0.002 m and » = 0.30. Consider a plate strip model consisting of four

elements in the radial direction, as shown in Figure 5.4 (b) with A, = 0.02 m, A, = 0.04

m. A four nodes plate element is chosen and there are 3 DOFs, transfer displacement w,

rotation 6, and &, , at each node. There are then 22 DOFs for each slice in this model,

due to the defined boundary conditions. Since the y direction wavenumber is k, = nz / Ly

for the n-th wave mode, only the wavenumber for the n = 1 wave mode could be

expected to be accurately evaluated since ky Ay = 7/4 < 1.
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y=Ly

@

(b)
Figure 5.4 (a) Plate strips with simply-supported boundary conditions at edges and (b) 4-element model.

The dispersion curves for the n = 1 mode are shown in Figure 5.5. There are two waves
associated with the n = 1 mode; one is for a wave which propagates above its cut-off
frequency and another is for a near-field wave. The cut-off frequency for this mode
occurs at about 200 Hz in this case. The ordinate shows the non-dimensional

wavenumber, KL, /7, becomes —i for this wave mode at 0 Hz.
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Figure 5.5 (a) Flexural wave and (b) near-field wave in an isotropic plate strip with simply-supported
edges for n=1 forward-going. Analytic solution is represented by lines (solid lines for the real part of the
wavenumber and dashed lines for the imaginary part of the wavenumber) and numerical solution is

indicated by “o0”.
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5.2.2 Non-uniform Plate Strips

If the material properties of the plate vary along its longitudinal direction, x, we can
modify the analytic expression of the wavenumber of the isotropic plate, which is

simply supported at y=0 and y=L, to vary against position as

2 _ ph INEAY:
k (X)—i D(X)w (Ly), (5.26)

where only the first mode is considered. In this example, D(x) has a value of 4.5 x 10
N-m at x=0 and a value of 2.1 x 10™ N-m at 35 mm away from the base, L, is assumed
to be 0.3 mm, the plate thickness h is 50 um and the density of the plate is 1000 kg/m?,
which is assumed here to be as same as the BM in the cochlea. The values of D(x) along

the plate are thus assumed to be exponentially decaying, with a characteristic decay
length | of 7 mm, i.e. D(x)=D,e™", where Dy is the value at x=0 which is 4.5 x 10°®

N-m in this case.

Figure 5.6 shows the distribution of wavenumber along the plate with varying stiffness
at different positions. The dispersion curves for the n = 1 mode are similar to those

obtained in Figure 5.5. For the assumed variation of D(x), the term (7r/Ly)2 is much

larger than /ph/ D(x)w at x=0, thus kL, / z equal to —i at x=0.

Similar to the uniform case, the cut-off frequency for the first flexural wave mode can
be given by

o, = D(x) [1J2. (5.27)

ph (L,

When for a given frequency, f, the cut-off position can be expressed as

4phL? f2
X, :-lm[’oz—yj. (5.28)
2 7°D,

It can be seen that the cut-off position moves towards x=0 if the driving frequency

increases, since the term D(x) is assumed to decay exponentially along x-axis.
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Figure 5.6 Flexural waves in a non-uniform isotropic plate strip with simply-supported edges when the

flexural rigidity varies exponentially along the x direction calculated at 100 Hz (left column) and 500 Hz

(right column). Analytic solution of the isotropic plate is represented by red solid lines and numerical

solution using the WFE is represented by blue dashed lines.

5.3 Waves in Fluid Filled Ducts
5.3.1 Waves in Uniform Ducts

Acoustic wave propagation in a three-dimensional duct with rigid-walled boundary
conditions filled with water is illustrated in this section using the WFE method. The
dimensions of the three dimensional duct are LyxLyxL,=68 um x1 mm x1 mm, which
are the same as the cochlear segment used in Chapter 6, and the sound speed in water is

¢=1,500 m/s. The relation between angular frequency @ and dimensions Ly, Ly and L, is

given by (Pain, 2006)
| 2 2 N 2
T msr T
— = 5.29
o(m,n)=c (LJ +{LyJ+(LJ’ (5.29)

where |, m and n are order of mode in the x, y and z directions respectively, so that the

wavenumber can be expressed as
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w2 [ETET (] o

The wavenumber can be rewritten as

2 2 2
kz(m,n):kf+kj+kf:(||_—ﬂj J{%] +(”L—”] . (5.31)

X y z

The (m,n) mode wavenumber in the x direction k. is derived from equations (5.30)

and (5.31) as

2 _ 2 _2_2_Q2_M2_n_ﬂz
Kooy = k*(m,n)—k; kz_(CJ {L] (Lj (5.32)

y z

Substituting k., =0 into equation (5.32) gives the cut-off frequency for the (m, n)-th

wave mode as

a)c(m,n)c\/(ml_—f] +[r|‘_—7j : (5.33)

For numerical simulation, the duct is modelled by a mesh of 1x4x4 8-node hexahedral

acoustic elements as shown in Figure 5.7.
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Figure 5.7 A three-dimensional acoustic duct filled with water and modelled using 1x4x4 8-node

hexahedral acoustic elements.

The 8-node hexahedral acoustic element consists of eight nodes as shown in Figure 5.8.
The details of deriving the stiffness and inertial matrices are given by Fahy and
Gardonio (Fahy and Gardonio, 2007).

Figure 5.8 A sketch of an 8-node quadratic hexahedron fluid element.

The dispersion curves for mode (0, 0) and (0, 1) are shown in Figure 5.9. The abscissa
represents frequency and the ordinate shows the non-dimensional wavenumber K L. .
Dispersion curves represent waves associated with mode (0, 0) which represents a fast
wave propagating at 1,500 m/s, and (0, 1) which is a near-field wave below the cut-off
frequency, which is 750 kHz for this case, and starts to propagate above the cut-off
frequency. It can be seen that the numerical results have a good agreement with the

analytic results.
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Figure 5.9 Dispersion curves for wave mode (a) (0, 0) and (b) (0, 1). Analytic solution is indicated by red

solid lines and the WFE solution is represented by blue dashed lines.

5.3.2 Waves in Non-uniform Ducts

If the acoustic duct used above is not uniform but has a varying cross-sectional area
along its length, the WFE method can also be used to predict the wavenumber
distribution at a given frequency. The variation of dimensions L, and L, of the duct are
shown in Figure 5.10. The duct is assumed to be 35 mm long with rigid-walled

boundary condition and filled with water.

=
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Figure 5.10 Assumed variation of the width of the duct (solid line), L,, and the height (dashed line), L.
The variation of the duct cross-sectional area is identical to that assumed for the non-uniform cochlear

fluid chamber in Section 2.
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Figure 5.11 shows the wavenumber distribution of wave mode (0, 1) along the length of
the duct. The wave is evanescent and decays away along the duct due to the non-
uniformity. The agreement between the numerical method and the analytic method is
good which indicates that the WFE method can be applied to predict the wavenumber

distribution in a non-uniform structure with slowly varying properties.
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Figure 5.11 Dispersion curves for wave mode (0, 1) along the length of the duct at 20 kHz. Analytic

solution is indicated by solid line and the WFE solution is represented by dashed line.

5.4 Waves in Loudspeaker Cones

The dynamics of an idealised loudspeaker cone provides a particularly interesting
example of a non-uniform system. A loudspeaker typically consists of four primary
components: the voice coil, the cone, the suspension and the enclosure, as shown in
Figure 5.12. The loudspeaker cone is one of the core components of the loudspeaker
and it can be manufactured from various materials, depending on driver
implementation, desired frequency response for each driver, and cost. The loudspeaker

cone is assumed here to be exactly conical.

At low frequency, below 500 Hz for an 8 inches woofer for example, the loudspeaker
cone usually moves rigidly, with its shape almost unchanged during vibration (Petyt and
Gélat, 1998). As the frequency is increased, the transverse velocity of the cone surface
becomes non-uniform with the amplitude of the vibration increasing towards the outer

edge. At still higher frequencies the outer edge starts to move in anti-phase, which is
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called cone break-up. If the transverse displacement of the cone surface is plotted
against the axial position, as shown in Figure 5.13, the response has surprising
similarities with that of the cochlea. They both increase gradually to a peak, which is
dependent on driving frequency and then decrease sharply, although in the loudspeaker
cone the response does not fall uniformly beyond the peak but appears to oscillate in
amplitude. Thus, it is of interest to study the dynamics of the loudspeaker cone in order
to help understanding of the cochlear functions, or, to help improving loudspeaker

design from the cochlear modelling.
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Figure 5.12 The primary components of a loudspeaker drive unit.
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Figure 5.13 The distribution of (a) normalized transverse displacement and (b) phase of the cone surface,

calculated at a frequency of 3 kHz for the cone described by Table 5.1.
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5.4.1 Forced Response Using the Dynamic Stiffness Matrix Method

To study the dynamic response of the loudspeaker cone, here we assume that the
loudspeaker is represented by an axisymmetric conical cone, as shown in Figure 5.14,
based on thin shell theory (Leissa, 1993) and the dynamic stiffness matrix, DSM,
method is used here to calculate the response of the cone under an axial sinusoidal force

at different frequencies

S

X= xcosa’:
|

Figure 5.14 Side view of the conical cone in local coordinates, x denotes position along the cone
meridian, X and Y are the axial and radial positions in the global coordinates, « is the angle between the

axis and meridian.

In Figure 5.14, x denotes position along the cone surface, X denotes horizontal position
in the global coordinate, u is displacement along the cone surface, w is transverse
displacement, 6 is rotation and d is displacement in the X direction where

d=ucosa+wsina.
5.4.1.1 Equation of Motion

The displacements and forces of the cone, which are shown in Figure 5.14, can be

expressed by six first-order differential equations as (Goldberg, et al., 1960)
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(5.34)

where x is the position along the cone meridian, a is the half angle of the cone, u is the

displacement along the meridian (positive in the direction of positive x), w is the

displacement normal to the meridian (positive inward), & is the rotation of the cone’s

normal in the direction shown in Figure 5.14, Ny is the membrane force in the direction

of the meridian, Qy is the normal shearing force, My is the bending moment in the

direction of meridian, E is the Young’s modulus of the cone material, h is the cone

thickness, v is Poisson’s ratio, p is the density of cone material and o is angular

frequency. Equation (5.34) can be written in “state space” form as (Petyt and Gélat,

1998)
oy(x) _
~ 2= Ay (),
where
L
w
0
y(x)=|\ |
Q.
_MX_
and
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The dynamic behaviour of a conical cone, whose geometry and material are listed in
Table 5.1, is calculated using the dynamic stiffness matrix method (Petyt and Gélat,
1998).

Table 5.1 Assumed properties of the cone.

Initial value E p Loss Poisson’s  Thickness
a Cone 5 )
on the X [Pa] [kg/m°] factor ratio h
[rad] length [m] )
axis [m] n v [m]
2m/9 0.108 0.0209 1.5x10° 900 0.02 0.33 0.5x107

The dynamic behaviour at a given position along the cone depends on whether the
excitation is above or below the ring frequency at this location (Kaizer, 1979).

Assuming the cone acts as a cylinder at a given location, the ring frequency is given by

c

fo=——, 5.38
RSO R (5.38)

where c is the speed of longitudinal waves given by \[E/ p, R is the distance between

the cone and cone axis measured perpendicular to the cone meridian, as shown in Figure
5.14, and this is plotted for the cone used below in Figure 5.15. Below the ring
frequency the dynamics are dominated by the membrane stiffness, resulting in mostly

in-plane motion. Above the ring frequency the dynamics are dominated by the bending
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stiffness, resulting in flexural motion. Since the ring frequency varies along the length
of the cone, however, the dynamic behaviour of the cone depends on whether the
frequency is in one of three regions, as shown in Figure 5.15. In region I, the excitation
frequency is below the ring frequency at every position along the cone, so the cone
moves entirely in phase as a quasi-rigid body. In region Il, the excitation frequency is
below the ring frequency at the apex of the cone but above it at the base of the cone, so
that part of the cone is still moving as a quasi-rigid body and part of the cone has
“broken up” into flexural motion. In region Ill, the excitation frequency is above the
ring frequency all along the cone, so the dynamics are dominated by bending waves at

all positions.

10
Region 11T

Region II

Ring frequency of the cone [kHz]

4 L

1
Region I

0 1

0.02 0.04 0.06 0.08 0.1

X [m]

Figure 5.15 The ring frequency as a function of position along the cone axis indicating the transition

between mostly in-plane (unshaded) and mostly bending (shaded) behaviour.

5.4.1.2 Forced Response

To calculate the forced response of the cone, the boundary condition at the inner edge,
small end, is that the cone can only move along its meridian and at its outer edge, big
end, is assumed to be free. The cone is driven by a sinusoidal force at the inner edge in
the x direction. The dynamic stiffness matrix, D, of the cone is calculated by the Runge-
Kutta approximation (Petyt and Gélat, 1998). The accuracy of the response depends
mainly upon the step size, which is 0.1 mm in this case, used in the Runge-Kutta
analysis rather than the number of segments of the cone. The cone thus can be expressed

as
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Dq=f, (5.39)

where g is the vector of displacement, u, w, and @ at each segment along the cone and f
Is the corresponding vector of forces Ny, My and Qy at each element, which in this case
is applied on the cone at the apex.

The forced response of the cone due to a harmonic force f, which is applied uniformly
over the circumference of the narrow apex of the cone in the axial direction, is
calculated at different frequencies and harmonic forces and an instantaneous snap shot
of the resulting vibration patterns are shown in Figure 5.16. The dashed lines in each
subfigure are the undeformed middle surfaces and the solid lines denote the deformed
middle surfaces. The forces have been increased beyond those encountered in a typical

loudspeaker to emphasise the amplitude of the motion.
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Figure 5.16 Cone vibration at different frequencies.
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It can be seen that at low frequencies in region I, 100 Hz for example, the cone moves
as a rigid body and the amplitude of motion in the axial direction, X, is much greater
than that in the vertical direction, y. Also, the real part of the displacement in the axial
direction is much greater than its imaginary part and is constant along the cone. The
amplitude of this displacement is about 15.8 mm, for a driving force of 100 N, which is
close to theoretical result calculated using Newton’s Second Law of Motion assuming

the cone acts as a mass.

At higher frequencies, 2 kHz and 3 kHz when the excitation frequency is in region I,
cone “break-up” occurs, in which the cone no longer vibrates as a rigid body, but some
sections of the cone still move in phase. In this frequency range, the bending wave
cannot propagate in the region close to the apical edge of the cone, due to the high
stiffness, but can propagate on the outer part of the cone and then build up into a
standing wave. The “transition point”, where bending wave starts to cut-on, moves
towards the apical edge as the driving frequency increases. At 10 kHz the excitation
frequency is in region 111 and the whole cone moves with a bending motion. The more
detailed behaviours of bending and longitudinal motions are studied and discussed

below using the WFE method.
5.4.2 Numerical Dispersion Curve Using the WFE Method

By using the dynamic stiffness matrix, D, in equation (5.39), the transfer matrix of each
of the 512 segments of the cone model can be formed. After solving the eigenvalue
problem of the transfer matrix, the eigenvalue and eigenvector of each slice of the cone
can be obtained. Figure 5.17 shows the distribution of the real and imaginary parts of
the wavenumber along the cone meridian at 3000 Hz, calculated using the WFE method
at each slice. Since the DSM cone model for each of the 512 segments of the cone has 3
degrees of freedom on each face of the cone section, there are thus 3 pairs of
eigenvalues for the transfer matrix T(n). Half of these, whose imaginary part is
negative, are forward-going waves. For an excitation frequency of 3 kHz, we can divide
the cone into 2 regions along the cone axis, region A includes apex to about 0.06 m
corresponding to the transition point at 3 kHz shown in Figure 5.17 and region B
corresponds to from 0.06 m to the base of the cone. It can be seen that not all waves can
propagate along the cone in region A, since they have non-zero imaginary wavenumber

indicating they are oscillating and decaying. Specifically, wave 1 propagates with a
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gradually decreasing speed and decays less than the other two waves, since wave 1 has a
small non-zero imaginary part of wavenumber. This shows that in region A, the
longitudinal motion dominates the vibration pattern of the cone. Beyond the position
0.06 m, wave 2 starts to propagate towards the base. Wave 1 becomes an evanescent
wave beyond this position. Wave 3 has a large non-zero imaginary part of wavenumber
along the whole range of the cone, which indicates that this wave does not play a

significant role in cone vibration and can be identified as an evanescent near-field wave.
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Figure 5.17 Wavenumber distribution along the cone axis at 3000 Hz using the WFE method, with only
wavenumbers, solid lines for the real part and dashed lines for the imaginary part, corresponding to

forward-going waves plotted.

Figure 5.18 shows the distribution of the real and imaginary parts of the wavenumber
associated with backward-going waves, whose imaginary part is positive, along the
cone axis at 3 kHz. These backward-going waves, due to the reflection from the free
basal end of the cone, have the same wavenumber distribution but with opposite sign
from those of the forward-going waves. The interactions between the backward-going
component and the forward-going component of wave 2 give rise to the standing wave

seen in the DSM results, as shown in Figure 5.16 at 3 kHz.
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Although we can find the properties of each wave from the wavenumber variations, the
transition in the vibration pattern and the contribution of each wave to the cone
vibration cannot be directly seen from this analysis. The forced response from the DSM
analysis can be decomposed into the wave components calculated using the WFE
method, however, as described in the next section, which can show the contribution of

each wave to the cone vibration.
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Figure 5.18 Wavenumber distribution along the cone axis at 3000 Hz using the WFE, with only
wavenumbers corresponding to backward-going waves plotted, and solid lines being the real component

of the wavenumber k, and dashed lines being the imaginary component.

5.4.3 Decomposition into Wave Components

In general, the N x N transfer matrix T for each slice of the cone has a linearly
independent set of N eigenvectors and we can express the eigenvalue, eigenvector
decomposition of the transfer matrix for the n-th section in the form

T(n)=0(n)A(n)w(n), (5.40)

so that
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T(n)e(n)=9(n)A(n), (5.41)
and
v(n)T(n)=A(n)y(n). (5.42)

The right eigenvectors of T(n) thus correspond to the columns of q)(n) and the left
eigenvectors of T(n) correspond to the rows of \|1(n). The wavenumbers are given by

the elements of the diagonal eigenvalue matrix A(n).

Using equation (5.41) and (5.42), equation (5.5) can also be written as

w(“)[?fz((?)}=A(n)w(n)ﬁt((:ﬂ. (5.43)

Since A(n) is diagonal, the inner product of each row of \|1(n), which is a left

eigenvector of T(n), with the “state vectors” on the right and left hand side gives an

equation of the form
agn (N)=4,(n)a,, (n), (5.44)

where a,,(n) and a_,(n) can be interpreted as the complex amplitudes of the m-th

wave on the right and left hand side of the n-th section (Duhamel, et al., 2006). The
vector of all such wave amplitudes, on the right hand side of this segment, for example,

can be written as

aR(n):\y(n){qR(n)}, (5.45)

_fR (n)

which are shown for forward-going waves in Figure 5.19.
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Figure 5.19 The (a) amplitude and (b) phase of each forward-going wave at 3000 Hz.

The horizontal displacement, d (n,m), due to m-th wave at n-th position is given by
d(n,m)=sq(n,m)a(n,m), (5.46)

where s is a weighting vector, s =[cosa sin«], q(n, m) is the displacement vector for

the m-th wave at n-th position, q(n,m)=[u(n,m), w(n,m)]", and a(n,m) is the
wave amplitude for the m-th wave at n-th position. The contributions to the
displacement d (n,m), from the full finite element model are shown for forward-going

waves in Figure 5.20.

The contribution of the forward going component of wave 1 is seen to be in reasonable
agreement with the overall result from the DSM method for positions apical to the peak
response at this frequency, at about 0.06 m along the cone axis. The contribution of
wave 1 is significantly less than the overall result of the DSM for positions beyond the
peak response, region B, however, where the contribution of wave 2 dominates the
overall response. There is also a negative-going component of wave 2 in this region,
due to the reflection from the free basal end of the cone and the interaction between this
and the positive-going wave 2 gives rise to the interaction pattern seen in the DSM
results. The contribution of wave 3 decays away on either side of this peak, and the
amplitude is too small to significantly affect the overall response. Inside region A the
wavelength of wave 1 is about 0.31 m due to the predominance of longitudinal motion,

with k being about 20 m™ in Figure 5.17, and inside region B the wavelength of wave 2
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is about 0.023 m due to the predominance of bending motion, with k being about 270

m~ in Figure 5.17. The energy is converted from longitudinal motion to bending

motion at the transition point.
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Figure 5.20 Decomposition of the overall horizontal displacement calculated from the DSM model into
components due to forward-going waves in Figure 5.17, calculated from the wave finite element model at

3 kHz.

5.5 Conclusions

The theory of the wave finite element method has been reviewed and several
applications of the method have been considered, which extend the method to structures
having varying properties or geometry. The dispersion curves for the complex

wavenumbers have been calculated and compared with analytic solutions.

Freely propagating in-plane waves were analysed for plate strips with simply supported
boundary conditions. When the characteristics of the plate strips vary with position, the
wavenumber distribution with position has a similar behaviour to the variation with
frequency for the uniform cases. The cut-off position is frequency dependent, and
moves towards the base when the driving frequency increases due to the assumed

variation of the bending rigidity D(x).
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There are two main waves in a duct filled with water, one wave corresponding to the
mode (0, 0) is a purely propagating plane wave, with speed of 1,500 m/s and the other
one corresponding to the mode (0, 1) has a similar behaviour to the plate strips. This
indicates that similar waves would occur in the cochlea structure since the cochlea is
assumed to be a fluid-structural coupled system. Besides the well-known “slow wave”,
there is also a fast wave travel at about 1,500 m/s which is the wave speed in the
cochlear fluid. But this fast wave does not interact with the BM so would not be

considered later in the cochlear model.

Another interesting application of the WFE method to a non-uniform geometry is to
study the dynamics of the loudspeaker cone, in order to explain the vibration patterns of
the cone in terms of waves. Although the vibration patterns of the cone have been
widely studied numerically, using the dynamic stiffness matrix method for example
(Petyt and Gélat, 1998), or theoretically (Kaizer, 1979, Zhang and Cheng, 2007),
physical insight into the dynamic behaviour may be lost. In this chapter, the loudspeaker
cone has been analysed using the DSM method and the WFE and the results from the
DSM model was decomposed into wave components for illustrating the contribution of
each wave to the overall response. The WFE method provides a way to study waves that
travel in the loudspeaker cone and, more importantly, decompose the response of the
DSM model into the components due to each of these waves, in order to explore how
they interact. In this way the insight provided by the wave approach allows us to

analyse the significance of different waves in the overall response.
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Chapter 6. Wave Propagation and Decomposition in the Cochlea

6.1 Introduction

In this chapter wavenumber distributions along the cochlea for various types of waves
are calculated first analytically and then numerically, using the WFE method. The
cochlea is a complicated organ with considerable geometric and structural complexity.
One of its most important functions is the mapping of different frequencies to a peak
response at different longitudinal positions along its length. This process is commonly
described in terms of the propagation of a single wave along the cochlea, generated by
the interaction between the inertia of the fluid in the chambers and the local basilar
membrane dynamics, as outlined in Chapter 1. The speed of this wave is relatively high
at the base of the cochlea, where it is excited by the middle ear, but slows down as it
propagates towards the apex and stalls when its velocity drops significantly at a
frequency-dependent position determined by the distribution of BM mass and stiffness
along the cochlea. The conventional theory of wave propagation along the cochlea with
1D fluid coupling is covered in more detail in Section 6.2. It is shown in this chapter
how additional mechanisms of longitudinal couplings give rise to additional wave types.
Specific examples will be described in Sections 6.3 and 6.4 of additional waves due to,
(1) either an approximation to 3D fluid coupling that includes near-field components, or
(2) due to longitudinal BM coupling. This study uses relatively simple analytic models
to derive dispersion equations that can be solved to give the distribution of
wavenumbers for the different waves along the cochlea. Sections 6.5 shows
comparisons between the BM velocities from WKB reconstruction using wavenumbers

calculated analytically and from discrete models.

Previous WKB solutions for the 2D and 3D cochlear model (de Boer and Viergever,
1982, Steele and Taber, 1979, Steele and Taber, 1979, Watts, 2000), showed good
agreement with exact solutions except regions beyond the peak. The reason for these
differences was attributed to the non-uniqueness of the complex WKB wavenumber in
2D and 3D models. The WFE method provides a practical way, as shown in Sections
6.6 and 6.7, to analyse all the waves in the cochlea, and can thus give further
understanding of the WKB approximation and the cochlear mechanics in terms of

waves.
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In order to illustrate the results, a simple box model of the fluid coupling is assumed, as
shown in Figure 6.1 together with a passive, single degree of freedom, model for the
BM.

v N\

|
Basilar Membrane Helicotrema

Figure 6.1 Box model of the cochlea.

The extra waves due to the additional forms of longitudinal BM coupling are generally
heavily attenuated as they propagate along the cochlea. In general the wavenumbers are
complex and so the disturbances they describe will have longitudinal changes in both
phase and magnitude. It is thus difficult to distinguish between “waves” that
predominantly propagate and near-fields that predominantly decay and so all such
disturbances will be referred to as waves here. It is not, however, clear from this
dispersion analysis the extent to which these additional waves are excited when the
cochlea is driven at its base by the middle ear. Then a simpler discrete model of the
cochlea is used to calculate the modal BM velocity along the cochlea. These velocity
distributions are then compared with those calculated using the WKB methods, with the

wavenumbers that are obtained analytically.

Finally the WFE method is used to calculate the characteristics of all the wave
components that are obtained by a finite element model of the cochlea. This is used to
decompose the response of the full finite element model into wave components, which

includes 3D fluid coupling.
6.2 Local BM Dynamics and 1D Fluid Coupling

The simplest and most important type of wave propagation in the cochlea involves the
interaction between the 1D component of the fluid coupling and the local BM dynamics,
and is generally called the “slow wave”. Fluid coupling in the two chambers of the
cochlea gives rise to a distribution of pressure difference due to BM motion (de Boer

and Viergever, 1984). The fluid coupling can conveniently be split into two components
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(Elliott, et al., 2011). The first involves the spatially-averaged pressure in each cross-
section of the chambers, so that the pressure distribution is one dimensional, 1D, and
corresponds to a far-field or plane wave or to the far-field component of a wavenumber
analysis. The second component involves the near-field part of the three dimensional
flow of fluid round the BM and corresponds to the higher order modes, or the near-field
components of a wavenumber analysis. The effect of both components together will be
considered in the 3D fluid coupling case in Section 6.3, but the 1D component has the

most significant effect and initially only this will be considered.

An equation for the far-field fluid coupling can be derived by combining those for the
conservation of mass and of momentum in the fluid (Elliott, et al., 2011). That for the

conservation of mass is

au(x) v(x) 6.1)

where u(x) is the distribution of longitudinal velocity of the fluid along the cochlea,
which is assumed uniform over each cross-section and v(x) is the distribution of the
transverse BM velocity, both being complex quantities at a single driving frequency, .
The parameter h corresponds to the physical height of the two fluid chambers if the BM
velocity is assumed to be uniform across its width. In a more complete analysis, in
which the BM has some prescribed distribution of velocity across its width, an equation
identical to equation (6.1) can be derived if h is interpreted as the effective height of the
fluid chamber, as ”"WH/8B (Elliott, et al., 2011), where W is the width of the cochlear
partition, H is the physical height of the fluid chamber and B is the width of the BM. If
W and H are both about 1 mm and B is about 0.3 mm, in the middle of the human

cochlea, then h is about 4.1 mm.

Conservation of momentum is described by the equation

op(x)
OX

=—2imp u(x), (6.2)

where p is the fluid density and p(x) is the distribution of the pressure difference along
the cochlea, which is also assumed to be uniform across each cross-section of the

chambers.
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By differentiating equation (6.2) with respect to x and substituting equation (6.1), the

one-dimensional fluid coupling equation is derived as

O°p(x) __2iwp
v 5 v(Xx). (6.3)

If the BM is assumed to respond only locally, then its complex velocity at position X,
v(x) is only determined by the complex pressure difference at the same position, p(x).
Assuming that the response is linear, it can be characterised by the local BM impedance,
Zgm(x) at the driving frequency, so that

v(X)=— p(x) (6.4)

where the minus sign indicates that a positive pressure difference generates a negative

BM velocity in the sign convention adopted here.

By substituting equation (6.4) into (6.3), the wave equation for the interaction between

the one dimensional fluid coupling and local BM dynamics is obtained as

o'p(x)  2iwp B
X hZg,(x) (x)=0. (©5)

This second order wave equation has a local solution of the form
p(x) = pe ™, (6.6)

where k(x) is the wavenumber associated with the solution at position x. Differentiating

this twice with respect to x, and substituting into equation (6.5), yields the dispersion

3 —2iwp
K(x)=+ /—h ] (6.7)

where the two solutions for k correspond to a forward and backward travelling wave. In

equation for this type of wave as

principle the effective height, h, may also be a function of position, but this dependence

116



Chapter 6 Wave Propagation and Decomposition in the Cochlea

can be incorporated into a slightly modified form of Zgw(x) to retain the simple form of
equation (6.7).

For high levels of excitation, the BM behaves almost passively and its impedance may
be approximated by that of a single degree of freedom system having local mass,

stiffness and damping, per unit area, equal to m(x), s(x) and r(x), so that

ZBM(X):ia)m(x)+si(—a):)+r(x). (6.8)
The distribution of the wavenumber in equation (6.7), which in general is complex, will
thus depend on the distribution of BM mass, stiffness and damping along the cochlea. In
the example below it is assumed that the BM mass is uniform along the length of the
cochlea, and equal to mo, but that the stiffness varies such that the local natural
frequency of the BM in isolation is given by

@, (X)=we™", (6.9)

n

where @, is the natural frequency at the base of the cochlea, assumed here to be 2n x
20 kHz, and | is the natural frequency length scale, assumed here to be 7 mm. The
assumed parameters of the cochlea are also listed in Table 2.1. The stiffness is assumed
to vary exponentially, to give the distribution of natural frequencies in equation (6.9), so
that

s(X)=af

n

(X)m, = wgmee ™" (6.10)

Also, by assuming a constant damping ratio for the BM, {, the damping per unit area

must be equal to
r (X) =26y, (X) =24, myage™". (6.11)

The range of natural frequencies thus extends from 20 kHz at the base to about 150 Hz
at the apex of the cochlea, which is assumed to have a length of 35 mm, so that the
model approximates the parameters of the human cochlea.
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To provide some insight into the form of the wave it is helpful to consider the limiting
case in which the damping term in the impedance is negligible compared with the mass
and stiffness terms. We first assume that the BM is driven below its natural frequency,
as it is at positions basal to the characteristic place, xo, where the natural frequency is
equal to the driving frequency, so that the BM is stiffness controlled. The wavenumber

in this region is given by

N 2p
k(x<X,)=ztw rs(x)’ (6.12)

which is entirely real, indicating a propagating wave, with phase speed given by

c(x)= ’h;_f)x) (6.13)

which is about 70 ms " at the base of the cochlea for the parameters assumed here, with
h equal to 4 mm, p being 10*°kg m™° and the stiffness given by «? (x)m, with mo equal

to 0.3 kg m 2 The wave then slows down as it propagates along the cochlea, since the
stiffness decreases with position.

At the characteristic place, Zgm(x) becomes zero if the BM is completely undamped and
so the wavenumber tends to infinity and the velocity falls to zero. A small amount of

damping is thus always included in the simulations below so that the wavenumber

k(x=%)== /h;i/:w : (6.14)

If we now assume that the BM is driven above its natural frequency, as it is at positions

always remains finite, then

apical to Xp, so that it is mass controlled, then the wavenumber is

.| 2p
k — 4 |[£P .
(x<x)=4i ™y (6.15)
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where the BM mass, my, is assumed to be independent of x, as noted above. The
wavenumber is now purely imaginary indicating an evanescent wave, having an

exponential decay length, d, equal to

d= , (6.16)

which is about 0.8 mm for the parameters assumed here.

Figure 6.2 shows the distribution of the real and imaginary parts of the wavenumber
along the cochlea for a passive BM and 1D fluid coupling, at an excitation frequency of
1 kHz. The wavenumber for only the forward travelling wave, with a negative
imaginary part, has been shown, since the backwards travelling wave must just have

real and imaginary parts with the opposite sign to these, as indicated in equation (6.7).

'
w

Figure 6.2 The distribution along the cochlea of the real and imaginary parts of the wavenumber, at an
excitation frequency of 1 kHz, for the wave due to the interaction between the local passive BM dynamics

and 1D fluid coupling.

For the assumed parameters, the result has a realistic value of the damping ratio for the
passive cochlea, and shows a gradual transition from a mostly propagating to a mostly

evanescent behaviour.

The WKB method provides a way of reconstructing the distributions of complex

pressure and BM velocity along the cochlea from the knowledge of the wavenumber
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distribution. Using the WKB method (de Boer and Viergever, 1982), the pressure

distribution can be written as

p(x) - (6.17)

#(x)= [K(X ). (6.18)

is the cumulative phase.

Using the one-dimensional fluid coupling equation (6.3), we see that the local BM

velocity is related to the pressure by

v(x)= h;;(:) p(X). (6.19)

The velocity distribution can thus be calculated from the pressure distribution as

v(x)= Ay (x)"* e, (6.20)

2iwp

The transverse BM velocity, which locally must also be proportional to e *®* | is

related to the longitudinal fluid velocity by equation (6.1) so that
v(x)=—ik(x)hu(x). (6.21)

At the base of the cochlea the longitudinal fluid velocity must be equal to that of the
stapes, Us, Where the difference in area between the stapes and fluid chamber is

accounted for in the definition of us, so that
v(0) =—ik (0)hu,. (6.22)

By setting equation (6.22) equal to equation (6.20) in the case where X is equal to zero,

the amplitude of the WKB solution to the pressure can be shown to be
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2
A= 202 (6.23)

k(0)

Figure 6.3 shows the distribution of complex BM velocity calculated using the WKB

method.
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Figure 6.3 The distribution of the (a) magnitude and (b) phase of the BM velocity along the cochlea, at
an excitation frequency of 1 kHz, calculated using the WKB method for the wavenumber calculated

analytically due to the interaction between the local, passive, BM dynamics and the 1D fluid coupling.

6.3 Local BM Dynamics and 3D Fluid Coupling

The fluid pressure due to the BM motion can be divided into two components: one due
to the far-field of the source, involving 1D plane acoustic waves, and one due to the
near-field, involving 3D evanescent higher order modes (Elliott, et al., 2011). The 1D
fluid coupling is described in the spatial domain by equation (6.3) but it is convenient to
express the combined effect of the far and near-field using a wavenumber formulation
(de Boer and Viergever, 1984, Elliott, et al., 2011, Steele and Taber, 1979). The
complex pressure difference in a uniform cochlea due to a velocity distribution that is
spatially varying with a sinusoidal waveform having a wavenumber k can be expressed

in terms of the fluid coupling impedance as equation (2.21).

The variation of Zgc with k can be approximated with various polynomial functions of k.
For example de Boer (de Boer, 1998) gave both fourth and sixth order polynomial

approximations, and the former will be considered here. This can be written as
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H 2
ZFc(k)=2llwa[%} (6.24)
where h is again the effective height of the fluid chamber and a and b are fitted
parameters, which in this case are a=5.5 x10”" m? and b=1x10® m. de Boer (de Boer,
1998) emphasised the need for Zgc(k) to be an even function of k in order to obtain
consistent solutions for forward and travelling waves. Figure 6.4 shows the exact and
approximate values of Zgc(k), together with the corresponding pressure distributions
when excited at x = 10 mm, calculated as in Elliott et al. (Elliott, et al., 2011). The

approximation is seen to reproduce the main features of the exact formulation.

10 : 70
——EXxact
- - -Approximate 60
B 1047 50t
< w 40}
o o,
NTO, o 30}
107}
20}
101
(8]
10— ‘ : . . . . . .
T 10° 10" 10° % 5 10 15 20 25 30 35
kH X [mm]
(@) (b)

Figure 6.4 The wavenumber distribution of (a) the fluid coupling for the exact expression, equation (2.22)
and the approximation in equation (6.24), together with the resulting spatial distributions of (b) the

pressure when the cochlea is excited at x=10 mm at 1 kHz.

If the BM again responds locally, so that its velocity only depends on the pressure
difference at the same point, then in a wavenumber analysis its admittance does not

depend on wavenumber, so we can write

v(k)=_P(k), (6.25)

Substituting this and equation (6.24) for Zgc(k) into equation (2.21) gives
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. (1+ak?
kZhZBMP(k)=—2Ia)p(1+bk2jp(k), (6.26)

so that the dispersion equation can be written as
bhZ,,,k* +(hZg,, + 2aiwp)k* + 2iwp = 0. (6.27)

This is now a quadratic equation in k? and if we write 1/k? as « it becomes

2Aap oy 1021890 ) b, (6.28)
hZ,, hZ,,

so that

: . 2 .
1s 2iawp s 2iawp |  8ibwp
hZg,, hZg,, hZg,,

diop
hZg,,

o= (6.29)

If a and b are small compared with hZgm/2iwp, so that 2iwp/hZgy is small compared

with 1/a and 1/b, then the two solutions for a correspond to the wavenumbers

—2iwp 1
k~+ or +i,|—. 6.30)(6.31
| . \ﬁ (6.30)(6.31)

The first pair of solutions for the wavenumber, in equation (6.30), corresponds to the

slow wave in Section 6.2, generated by the interaction of the far-field fluid coupling and
the local BM dynamics. The second pair, in equation (6.31), corresponds to an
evanescent wave with length scale /b . The definition of Zrc(k) and its approximation,
in equations (2.21) and (6.24), can be used to derive the equation below relating P(k)
and V(k)

P(k)k*n(1+bk?) = 2imp (1+ak®) V (k). (6.32)

If the BM were rigid, so that V(k) is equal to zero, then either P(k) is also zero, or k is
zero, corresponding to a fast wave of infinite speed in the incompressible fluid, or K is
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equal to+i</1/b , as above. This evanescent wave can thus exist in the fluid alone, in the
absence of any flexibility of the BM, and can be interpreted as the evanescent higher

order acoustic mode with a length scale of /b .
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Figure 6.5 The distribution along the cochlea of the wavenumber of (a) wave 1 and (b) wave 2, at an
excitation frequency of 1 kHz, for the forward-going waves due to the interaction between the local
passive BM dynamics and an approximation to 3D fluid coupling with a constant damping ratio, ¢,=0.1.

Also shown, dashed line, is the distribution of wave 1 from the analysis of 1D fluid coupling.

The wavenumber distributions of the forward travelling waves, calculated by solving
equation (6.27), are shown in Figure 6.5. A similar approach to that used above was
used by de La Rouchefoucauld and Olson (de La Rochefoucauld and Olson, 2007) to
obtain the wavenumber distribution that they used to estimate BM mass and stiffness
distributions from measured BM velocity frequency responses. Those authors, however,
used an earlier approximation for Zgc(k) given by de Boer and Viergever (de Boer and
Viergever, 1982), which involved odd powers of k and hence was not symmetrical for
positive and negative values of k. The wavenumber distributions for the first wave are
very similar to those for the 1D fluid coupling, also shown in Figure 6.5. The magnitude
of this wavenumber is generally much smaller than the imaginary part of the second
wave shown in Figure 6.5, indicating that the approximation leading to equations (6.30)
and (6.31) is a reasonable one. This is confirmed when the magnitude of the imaginary
part of the second wave, —10 mm™ near the base, is compared with the predicted value

from equation (6.31) with b equal to 10 m? which is also —10 mm™.
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The BM velocity distributions corresponding to these wavenumber distributions,
calculated using the WKB method, are shown in Figure 6.6. The WKB solution for the
BM velocity is slightly modified in this case, since v(x) and p(x) are no longer related by
equation (6.19) as they were in Section 6.2. In this case equation (6.24) governs the
ratio of p(x) to v(x), for a given wavenumber, and so again assuming a solution of the
form of equation (6.17) for p(x), the BM velocity distribution is given by

__Ah g 1+bk?(x) g
V(X)_Zia)pk (X)(—Hakz(x)]e : (6.33)

The calculation of the wave amplitude, A, as a function of the stapes velocity also has to

be slightly modified in this case, i.e.

(6.34)

. 2om, | 1+ak? (0)]

k(0)[1+bk*(0) |

Pl =
2 °
= o
4 S .
g 2
= b
> N
20 | 3D fluid coupling
= = =1D fluid coupling
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Figure 6.6 The distribution of the (a) magnitude and (b) phase of the BM velocity along the cochlea, at
an excitation frequency of 1 kHz, for the wave due to the interaction between the local, passive, BM

dynamics and the 3D fluid coupling (solid lines) and 1D fluid coupling (dashed lines).

The BM velocity distributions for the slow wave are similar to those in Figure 6.3, from
the 1D analysis, as is expected since their wavenumber distributions are also similar. It
IS interesting to note, however, that there is a difference of perhaps 8 dB in the peak
value of the BM velocity between the 1D and 3D predictions when using the

approximation to Zgc(k) given by equation (6.24), whereas when these distributions are
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calculated using the full fluid coupling equation (2.19), the 1D and 3D cases are more
similar, as shown in Figure 2.7. The BM velocities for the second wave fall off very
rapidly, due to the large negative value of the imaginary part of its wavenumber,

indicating an exponential decay length scale of about 0.1 mm.
6.4 Longitudinal BM Dynamics and 1D Fluid Coupling

Longitudinal coupling in the BM is modelled here using an orthotropic plate model
(Allen and Sondhi, 1979, Liu and White, 2008, Meaud and Grosh, 2010, Steele and
Taber, 1979). The governing equation for the BM can then be written (Meaud and
Grosh, 2010) as

p(xy)= —[—a)zm(x)+ ia)r(x)]w(x, y)—{ 822 LDX ow(xy) +Dyy GZL)Z(}/)J

X ox?
, , , , , (6.35)
A 0 Daw(x,y) +8 b aw(x,y)+D o°w(x,y) |
oxoy| °  oxoy oyl Y ay? Yax?

where p(x,y) is the complex pressure distribution acting on the BM, w(X,Y) is its
complex displacement upwards, hence the negative sign as in equation (6.4), which

each depend on both x and y. The parameters m(x) and r(x) are the mass per unit area
and damping per unit area, as in Section 6.2, D, , D,, and D, are the orthotropic

bending stiffness in the x, xy and y directions, respectively, and Dy is torsional rigidity.

Defining the origin of the y axis along the centre of the BM, we now assume, again
following Meaud and Grosh (Meaud and Grosh, 2010), that the BM vibrates as a single

mode, such that its displacement is equal to

w(X, y):vi(—a))()sin(%yj for 0<y<B, (6.36)

where B is the BM width, taken here as 0.3 mm, and Vv(x) is the complex modal

velocity (Elliott, et al., 2011).

We also define the modal pressure difference as
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p(x):éz p(x, y)sin(%yjdy. (6.37)

These assumptions, together with the assumption that the longitudinal variation of B and
those of the orthotropic stiffness properties, apart from Dy, can be neglected, then
simplifies the governing equation for the BM to

p(x z—[la)m(x ()]v(x)
1]p 3 4x) ~2(D,, + 2DS)(ZT azv(zx) +D, (g]“v(x)}. (6.38)
i OX B o 5

If the longitudinal coupling in the plate is ignored, by setting D, , D,, and D; to zero,
equation (6.38) reduces to that for the locally acting BM dynamics in equation (6.8),
with a local stiffness, s(x), of D (z/ B)". The variation of s(x) with x in equation
(6.10) is then used to define the longitudinal variation of D, . So that, assuming B is
equal to 0.3 mm, D, has a value of 3.9 x 107 N m at the base and 20 mm along the
cochlea has a value of 1.3 x 10° N m. The values of D, D,, and D, all along the

cochlea are initially assumed to be the same all along the cochlea and equal to (Meaud
and Grosh, 2010) 6.5 x 10 N'm, 3.1 x 10™ N m, and 4.3 x 10™ N m. The ratio of
longitudinal to radial stiffness, D,/D,, at the base is thus about 1.7 x 10 and it is about

0.05 when 20 mm along the cochlea, so the longitudinal coupling is weak.

If the local variation of v(x) is proportional to e™*, then we can write equation (6.38)

as

P(k)= {(iwmo +%+ r(x)}+%{ka4 +2(Dyy +2DS)(%T kz}}v (k). (6.39)

where the term in the outer brackets can be defined to be Zg,, (k) by analogy with

equation (6.4). The fluid coupling can also be quantified in general by writing

P(K)=Zee (K)V (K), (6.40)
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where for 1D fluid coupling, equation (6.3) can be used to show that

2i
718 (k)= kj’f . (6.41)

In general the dispersion equation can thus be written as
Zgm (X)+Zgc (k) =0. (6.42)

For the passive BM, modelled as an orthotropic plate, and 1D fluid coupling, the
dispersion equation is thus

2(D,, +2D,)( 52 i
P—W‘HM(EJ K4 42 k2 + 2P o, (6.43)
i i B h

where Zg,, is the locally reacting BM impedance given by equation (6.8) with s(x)

equal to Dy(n/B)4, and the mass and damping as in Table 2.1.

There are thus 6 solutions for the wavenumber, corresponding to 3 waves propagating in
each direction, whose wavenumbers are shown in Figure 6.7 for the passive BM,
modelled as an orthotropic plate with the constants above and the other parameters
taken from Section 6.2. It can be seen that the difference between the orthotropic model
(longitudinal BM dynamics) and the isotropic model (local BM dynamics) can hardly be

distinguished in this scale.

If k is assumed to be small, so that the first two terms in equation (6.43) are small
compared with the second two terms, then the solution to this dispersion equation is
almost the same as equation (6.7), for the conventional slow wave. The two additional
waves in Figure 6.7 are presumably due to the interaction between the local BM
dynamics and the orthotropic bending stiffness. In fact if we assume that k is large, so
that fluid coupling is not important, and additionally assume that the torsional stiffness

does not play an important role but that Zgy, is dominated by its stiffness, then we obtain

=S (6.44)
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so that

(6.45)

The forward-going waves are assumed to be the ones for which the wavenumber has
negative imaginary components, and so the real part could either be positive, as in the

second wave, or negative, as in the third wave.
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Figure 6.7 The distributions of the real and imaginary parts of the wavenumbers, the BM velocity and the
BM phase along the cochlea, calculated using the WKB method, at an excitation frequency of 1 kHz, for
the passive cochlear model using an orthotropic plate model for forward-going waves with the BM having
constant orthotropic components and damping ratio, ¢,=0.1. Also shown, dashed lines, is the wavenumber
distribution for the first wave obtained from the locally reacting BM with 1D fluid coupling shown in

Figure 6.2.

Near the base, the second and third waves correspond thus closely to solutions of this
equation for large k, with real and imaginary parts that are either equal or of opposite
sign and decrease with X, since Dy is constant and s(x) is decreasing exponentially. The
cut-off effect that occurs at about 20 mm for the second wave is reminiscent of that of a
thin plate when simply supported at the edges. It is interesting to note that beyond this

point the second wave is predicted to propagate with little attenuation.
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Figure 6.7 also shows the WKB reconstruction of the BM velocity distribution
assuming that each of these waves exists in isolation. The reconstruction of the first
wave is similar to that in Section 6.2, as expected. The velocity distributions for the
other two waves fall off very rapidly with position, because of the large negative
Imaginary component of the wavenumber at the base, although it is not clear why the
phase apparently peaks about 5 mm along the cochlea. It is interesting to note that the
imaginary part of the wavenumber for the second wave is only of the order of —-0.8 mm’
! near the apex. If this wave was excited at this position, by bone conduction for
example, it would decay significantly less slowly than for the case where the excitation

is at the base, as shown in Figure 6.7.

In order to account for the longitudinal variations of those orthotropic stiffness
properties, we assume that the values of D, , D,, and D, are, like Dy, proportional to

e2¥' where | is the natural frequency length scale, 7 mm, and x is the position in the

cochlear longitudinal direction. By defining D, =D,,e ™" | D, =D e |

D, = D,e 2" and D, = Dye**", equation (6.35) can be written, in this case, as

p(x, y)=—[—a)2m(x)+ia)r( )] (X y) {;XZ (one‘ZX“ —azvég()z(’y) nyoe—Zx/I o*w ()2(’ Y)J

‘4 0° [Dsoezxn 62W(X, Y)}_ 0 [Dyoezm aZW(>2(1 Y)+ nyoeflel 82 H
0 oy
6.4

8)/2
Again, by defining a modal velocity, equation (6.36), and a modal pressure difference,

equation (6.37), equation (6.46) can be reduced assuming a longitudinal variation

proportional to e,

P(k)= {(la)m(ﬁmﬂ(x)}eZX“[onk4 I. X0k3+2£%on+(%T(DWO+2D50)Jk2

_4Ti(DXy0 . 2D50)(%J2 k}}v (k).

Recalling equation (6.42), dispersion equation can be given by

(6.47)
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. 2
ks_ﬂk5+2 3+(£j M_{_% k4
| 12 \B) (D, Dy
| S 2 (6.48)
- SI (nyo + ZDSO)(%J <+ — ke 2P~ 0,

—2x/1 o —2x/1
IDyo D,o® hD,e

where D,, and D, denote values at the base, taken here as 3.9x10" N mand 1.9x10°
N m, so that D,/Dy is equal to 5 x 107 all along the cochlea. The parameters D,, and

D, are now defined as a function of Dy and are taken here as 5.9x10° N m, and 5.8 x

10° N m at the base.

The ratio of longitudinal to radial stiffness, D,/Dy, determines the extent of the
longitudinal static deflection on the BM compared with its radial deflection (Liu and
White, 2008). Although these deflections were measured in cadaverous human BM by
von Békeésy (von Beékésy, 1960), Voldfich (Voldfich, 1978) pointed out that the extent
of the longitudinal is significantly smaller in fresh preparations. Liu and White (Liu and
White, 2008) define an orthotropy ratio as E,/Eyx and show that in the gerbil this varies
from about 60 at the base to about 10 towards the apex, suggesting that a reasonable
value for D,/Dy is perhaps 2% at the base and 10% at the apex. This range of values is
very much less than the range of Dy along the cochlea, which here is about 2x10°% to
account for the range of natural frequencies. A constant ratio of D,/D, thus appears to be
a reasonable model, and a numerical value of 5% has been chosen for the calculations

here.

Figure 6.8 shows the wavenumber distributions calculated by solving this dispersion
equation and the corresponding WKB reconstructions of the BM velocity distribution
for the lightly damped and normally damped cases. The first wave again corresponds to
the slow wave and has characteristics that are similar to those if the BM is only locally
reacting. The two other waves again have large negative imaginary wavenumbers near
the base, although these are now constant with position, implying that they are again
dependent on an interaction between the different components of the bending stiffness,
as in equation (6.44), but now these two components vary in proportion to each other so

that their ratio is constant.
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Figure 6.8 The distributions of the real and imaginary parts of the wavenumbers, the BM velocity and the
BM phase along the cochlea, calculated using the WKB method, at an excitation frequency of 1 kHz, for
the passive cochlear model using an orthotropic plate model (bold lines) and an isotropic plate model
(faint lines) for forward-going waves with BM having longitudinally varying orthotropic components,

such that D,/D,=0.05, and damping, ¢,=0.1.

6.5 Discrete Model of the Cochlea

A discrete model of the cochlea is briefly described in this section, which can also be
used to numerically compute its coupled response. The discrete model is simpler than
the full FE model, since the fluid coupling and BM dynamics are analysed separately
before being combined in a coupled matrix solution (Elliott, et al., 2011). It is therefore
interesting to investigate the extent to which this model could be used to test the
assumption that only a single wave propagates in the cochlea. The BM velocity
distribution that is predicted from this coupled analysis is compared with the WKB
solution for the main forward travelling wave using the analytic wavenumbers discussed
in Sections 6.2, 6.3 and 6.4.

There are approximations involved in both the WKB approximation and in the discrete
model. If, however, these two methods produce similar results, taking only the dominant

wave into account in the WKB solution, this would suggest that the extra wave types
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due to additional longitudinal BM coupling do not play a significant role in normal

passive cochlear function.

The near-field component of the fluid coupling for the discrete model is calculated, as
described by Elliott et al. (Elliott, et al., 2011), by taking the inverse Fourier transform
of the wavenumber transfer for the velocity of a single BM element, multiplied by the
near-field component of the fluid coupling impedance in the wavenumber domain. This
near-field component is defined to be the total fluid coupling impedance, Zgc(k), minus

that due to far-field coupling, Zg(k), so that

ZN(k) = ZFC(k)_ZF(k)’ (6.49)
where
7. (k)= 2P (6.50)
" k’h '

In the present case, where Zgc(k) is assumed to be given by equation (6.24), Zn(k) is

given by

_ 2iop(a—h)

© (Q+bkdh (6.5

Zy (k)

Figure 6.9 shows a comparison of the results from the 1D discrete model and the WKB
reconstruction of the 1D model, in Figure 6.3, calculated at 1 kHz with a damping ratio
of 0.1. Figure 6.10 shows a comparison of the results from the 3D discrete model and
the WKB reconstruction of the 3D model, shown in Figure 6.6, at 1 kHz with a damping
ratio of 0.1. Figure 6.11 shows a comparison of the results from the 1D discrete model
and the WKB reconstruction of the longitudinal BM coupling model, shown in Figure

6.8, at 1 kHz with a damping ratio of 0.1.
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Figure 6.9 Comparison of the results from the discrete model (solid lines) and the WKB reconstruction of

the 1D model (dashed lines) shown in Figure 6.3 at 1 kHz with a damping ratio of 0.1.
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Figure 6.10 Comparison of the results from the discrete model (solid lines) and the WKB reconstruction

of the 3D model (dashed lines) shown in Figure 6.6 at 1 kHz with a damping ratio of 0.1.
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Figure 6.11 Comparison of the results from the discrete model (solid lines) and the WKB reconstruction

of the longitudinal BM coupling model (dashed lines) shown in Figure 6.8 at 1 kHz with a damping ratio

of 0.1.
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6.6 Wave Decomposition with Local BM Dynamics
6.6.1 Wave Finite Element Model

A method of identifying the various waves that can propagate in the cochlea is to use
wave finite elements (Duhamel, et al., 2006, Mace, et al., 2005). In this approach a
finite element model is constructed of the structural and fluid components of an
elemental segment of a discrete model of the cochlea, as shown in Figure 6.12. This is
first used to describe all the complex forces, at a given excitation frequency, as a
function of all the complex displacements multiplied by the corresponding dynamic
stiffness. The vector of these forces and displacements is then partitioned into those on

the left and right hand side of the n-th segment in the discrete model, so that

L0 [oule) Du]al] 652

fa(n)] [Da(n) Dar(n)][dr ()

where the square matrix is the dynamic stiffness matrix. Any forces and displacements
due to internal degrees of freedom in the finite element model of the elemental segment
can be incorporated into this a generalised definition of the elements D, D.r, Dr. and
Drg, as described by Mace et al. (Mace, et al., 2005).

In particular for the WFE model of the cochlea with local BM dynamics, the DOFs
associated with the BM are condensed (Mace, et al., 2005) since they are only vibrating
locally and there is no longitudinal coupling, so there is no force between two adjacent
segments. When decomposing the BM velocity into wave components, the DOFs
associated with the BM need to be recovered from the condensed ones. The equation of

motion of the cochlear system can be written as

= ollol"Ls wlis)
piR QJlp) |0 H](p] [a] '
where w represents the DOFs associated with the BM, p represents the pressure vector

of the fluid and q is the vector of external volume velocities acting on this segment of
the FE model.
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Figure 6.12 An elemental segment of the cochlea used in the wave finite element method showing the
forces and displacement on the left hand and right hand side of this element. The internal structure of the

cochlea is not shown.

For time harmonic vibration, partitioning matrices into the left and right hand sides

gives
KLL = LL KLR =S LR M LL 0 M LR 0 W, 0
0 H., 0 H: g PR Qu pRkr Qi PL _ a. (6.54)
KRL _SRL KRR _SRR MRL 0 M RR 0 Wg 0
0 Heo 0 H e PR Qr. PiRme Qg Pr ar

Since the DOFs associated with the BM, w, and wy , are taken as internal DOFs,

equation (6.54) can be rearranged into the form below

H, Hex 0 0 Qu Qkr poRL pRk P a.

Hee  Her 0 0 P Qr. Qre AiRe. PiRge ||| Pr _ |9 .(6.55)
=S LL = LR K LL K LR 0 0 M LL M LR W,

_SRL _SRR KRL KRR 0 0 MRL MRR We 0

Equation (6.55) can also be written in terms of an uncondensed dynamic stiffness

matrix, with w_and wy included as a single vector w, as

D|_|_ DLR Du P. a.
DRL DRR DRI Pr [=]|0r | (6-56)
5, B, B, ||w| |0
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where the superscript © ~ > denotes this dynamic stiffness matrix contains internal DOFs

without condensation and

O

w=Hy _COZQLL' DLR =Hx _a)ZQLR’
LI :_wzpf (RLL + RLR)’ Dr =Ha _a)ZQRL’
DRR =Hgr _a)ZQRR’ DRI = _a)zpf (RRL + RRR)’ (6.57)

~ -S ~ -S
D.L=[ } D.R{ }
_SRL _SRR

D“:|:KLL KLRj|_a)2|:MLL MLRj|.

O

KRL KRR IVIRL MRR
The third row of equation (6.56) gives
w=-D;'(D,p, +Dpgpg), (6.58)
so that the condensed form is thus
EEAIR I
Dr. Dge JLPr Or

where

O
(W
(W

1
DIL’

LI |

DLR =
RIDlllDIL’ DRR = DRR _DRI Dl_lDIR'

LL

:DRL_

D
t (6.60)
DRL

Wk

which is dynamic condensation, although other formulations are possible (Friswell and
Mottershead, 1995).

The condition number of the condensed dynamic stiffness matrix, D, is very important

for solving the eigenvalue problem efficiently and accurately. It is difficult to verify if D

is symmetric analytically, but numerically if the differences between D/, and Dri, D],

and D, D}, and Drg are small enough, as shown in Figure 6.13, the condensed matrix

D can be taken as a symmetric matrix. The normalised difference is defined as
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‘DIR B DR'—L,j
JP (1) De (1)
P L T T, (661
\/DIL(I,I)DLL(L i)
‘D;R N DRR‘i,j
\/Dse (i.1) Dee (1. J)

where the numerator stands for the difference between estimated matrices and the

denominator is used for normalization.
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Figure 6.13 Distributions of normalized difference between estimated matrices at different position along
the cochlear length. The very small difference numerically indicates the symmetry of the condensed

matrix D.
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Once p, and p, are calculated, the vectors w,_and wy can then be calculated from

p, and p, using equation (6.58). The terms in equation (6.52) can be re-arranged to

express the forces and displacements on one side of the segment, at the n-th position in
the discrete model, in terms of those on the other side, so that

[?fRR((r;))} ) T(n)ﬁt ((:))} (6.62)

where T(n) is the transfer matrix, defined as

e —Dr (n)D,, (n) Dix ()
T(n) [ ( )}. (6.63)

—Dg (N)+Dgg (N)Dix (N)Dy, (n) —Dgg (n)Dig (N

The sign convention on the forces on the right hand side of this segment is reversed, so
that it is in equilibrium with that defined on the left hand side of the adjacent, (n+1)-th,
segment. We now assume that a particular distribution of displacements and forces, due
to the m-th mode, on the right hand side of the element is equal to that on the left hand

side of the element, apart from a complex constant of proportionality, so that

{qu(n)}ﬂm [qm(”)}_ (6.64)

_me(n) fLm(n)

This distribution would thus propagate as a wave with an unaltered shape along a
uniform cochlea with a wavenumber, kg, determined by

A, =e (6.65)
where A is the length of the element. The right hand side of equation (6.64) must now
be equal to the right hand side of equation (6.62), and so An,, and the corresponding
distribution of displacements and forces, must be an eigenvalue, and the corresponding
eigenvector, of the transfer matrix. Using the WFE method the wavenumbers are thus
obtained directly from the eigenvalues of the transfer matrix, rather than the eigenvalue
problem for the finite element model of a section being used to deduce a dispersion

equation, which then has to be solved to give the wavenumber (Chadwick, et al., 1996,

Fuhrmann, et al., 1987). Another advantage of the WFE method over that used in
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Fuhrmann (Fuhrmann, et al., 1987) and Chadwick (Chadwick, et al., 1996), which is
sometimes called the Spectral Finite Element method (Finnveden, 2004), is that
elements of finite thickness can be analysed. In the context of cochlear mechanics, each
segment could incorporate finite element models of several layers of hair cells, for
example. It is also possible to incorporate asymmetries into the structure, by slanting the
hair cells in the longitudinal direction, for example, in which case T(n) would not be

equal to T(n).

The analysis becomes a little more complicated when the structural parameters of the
cochlea vary along its length, as considered by Ni et al. (Ni, et al., 2010). In this case
the eigenvector corresponding to a specific type of wave is not exactly the same when
passing from one element to the next. If the longitudinal variation is gradual, however,
the change in the mode shape corresponding to this eigenvector will not be very large
from one element to the next. By calculating the inner products of the left eigenvectors
for one element with the right eigenvector for the adjacent element (Houillon, et al.,
2005), it is then possible to track which eigenvalue, and hence which wavenumber, is
associated with each mode travelling along the cochlea. Figure 6.14 (a), for example,
shows the variation with longitudinal position of the real and imaginary parts of the
wavenumber associated with different waves propagating along the cochlea at 1 kHz.
The BM velocity distribution associated with each of these waves is plotted in Figure
6.14 (b).

Since the finite element model for each of the 512 segments of the cochlea has 8 x 4
hexahedral elements to describe the fluid motion in each chamber, and 4 quadrilateral
elements along the BM to describe its radial structural response as a beam, there are
thus 9 x 5 nodes on each face of the fluid chamber slice, each having 1 degree of
freedom, and 5 x 1 nodes on each edge of the BM slice, each having 3 degrees of
freedom. The BM elements are assumed to be separated from each other in the
longitudinal direction, however, so that the degrees of freedom associated with the BM
elements are all condensed, as described above, and the vectors in equation (6.62), for
example, have 90 degrees of freedom. There are thus 90 eigenvalues of the transfer
matrix T in equation (6.62) and hence the wavenumbers of 90 separate waves can be
calculated. Only half of these will be forward-going waves, however, and most of these
have wavenumbers with large imaginary components and thus are heavily attenuated

even a short distance from the excitation position. Only the wave labelled 1 in Figure
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6.14 (a) has a zero imaginary part to its wavenumber at the base and is thus able to
propagate any significant distance along the cochlea. These wavenumber distributions,
together with the results of the full finite element model do not change significantly if
256 or 1024 longitudinal elements are used instead of 512, as shown in Appendix D,

indicating that the WFE assumption, that k,, A is small compared with unity, holds and

that the system is reasonably well conditioned.
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Figure 6.14 (a) The wavenumber distribution of 5 of the forward-going waves, calculated using the wave
finite element model of the cochlea at 1 kHz. (b) The normalised BM velocity in the radial direction
associated with the 5 selected waves, calculated at the place where the real part of their wavenumber is

largest at 1 kHz. The normalized BM velocity of waves 1 to 5 lie on top of each other and that of wave 5

shows a second order bending shape.
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The details of the wavenumber distributions in Figure 6.14 are, however, dependent on
the number of fluid elements used in the cross section. In order to correctly reproduce
the near-field fluid pressure very close to the BM a much denser grid of fluid elements
would be required than has been used here. The only important property of this near-
field pressure for wave 1, however, is the added mass of the fluid. This is somewhat
smaller for the FE grid used here than it was for the analytic model, so that the BM
mass needs to be increased to account for this effect. Waves 2 to 4 correspond to higher
order fluid modes, which have relatively simple cross-sectional mode shapes that can be
accurately reproduced with the current grid density in the FE model. The most
important aspect of these waves is the value of the negative imaginary part of the
wavenumber in the basal region, and this is not significantly affected if the number of
fluid elements is increased. The relatively coarse grid of fluid elements used here thus
correctly predicts the important features of the wavenumbers in the WFE analysis. The
mode shapes of the BM velocity shown in Figure 6.14 (b), obtained by joining the nodal
values, are not accurate representation of their true shapes due to the relatively coarse
mesh in the radial, y, direction. The gradient at y=B is in fact zero corresponding to the

clamped boundary condition defined here.

Wave 1 involves the first radial mode of the BM and has a wavenumber distribution
similar to that of the slow wave in Section 6.2. Waves 2, 3, and 4 also involve the first
radial mode of the BM, but have wavenumber distributions that are similar to the higher
order fluid mode in Section 6.3. Wave 5 has been included in Figure 6.14 since it is the
first mode with a higher-order radial distribution of BM velocity, although it has a large

negative imaginary component to its wavenumber and so is strongly evanescent.

The pressure distributions in the upper fluid chamber corresponding to the eigenvectors
of waves 1, 2 and 3 at various positions along the cochlea are shown in Figure 6.15. The
pressure distribution due to wave 1 is almost uniform before the characteristic place,
which is about 22 mm here, but shows a complicated distribution beyond this position.
Since the modal BM velocity decays very quickly beyond the characteristic place and
the magnitude is also small, the pressure distributions are not as important as those
before. The pressure distribution due to wave 2 is very similar to the (0, 1) acoustic
mode close to the basal end, but again starts to become more complicated close to the
characteristic place. It is interesting to see that the interaction between the BM and the

fluid does not affect wave 2 very much until it reaches the characteristic place. The
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pressure distribution of wave 3 is similar to the (1, 0) acoustic mode close to the basal

end although the interaction with the BM now moves the nodal line away from the

centre.
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Figure 6.15 Pressure distribution in upper fluid chamber corresponding to waves 1, 2 and 3 in Figure

6.14 at different position along the cochlea.
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Figure 6.16 The (a) magnitude and (b) phase of the modal BM velocity at 1 kHz, calculated from the full

finite element model and the WKB method using the wavenumber distribution for the slow wave, wave 1,

calculated using the WFE method.

Assuming that it propagates in isolation, the WKB method can be used with the

wavenumber distribution of the slow wave, to calculate a longitudinal distribution of the
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BM velocity, whose magnitude and phase is shown in Figure 6.16, together with the
results of the full finite element method. The results of the full finite element model are
thus in reasonable agreement with those predicted using only the slow wave labelled
wave 1 in Figure 6.14 (a). The less rapid fall off in the results of the full finite element
model just apical of the peak, compared those using the WKB method, has also been
noted by Steele and Taber (Steele and Taber, 1979), de Boer and Viergever (de Boer
and Viergever, 1982) and Watts (Watts, 2000).

6.6.2 Wave Decomposition

Using the approach shown in Section 5.4.3, we can consider a more detailed
decomposition of the results of the full finite element analysis into wave components.
The vector of all wave amplitudes, on the right hand side of this segment can be written

as

a, (n):\y(n){ Pr (”)J, (6.66)

—Qg (N

where the volume velocities, g, can be calculated from the pressures, p, using equation
(6.59) and so the wave amplitudes in the n-th segment can be expressed entirely as a
function of the vector of elemental pressures on the face of this segment, calculated
from the full finite element model. Equation (6.66) has been used to decompose the
state vectors at each longitudinal element derived from the full finite element model in
Section 4.2 into amplitudes of the waves determined by the wave finite element method,

with the results shown in Figure 6.17.

It is also possible to calculate the contributions to the modal BM velocity, calculated
from the full finite element analysis, from each of these modes. The state vector at the

n-th section due to all of the wave amplitudes can be written as

—Qg (N

{ Pr (”))}(p(n)aR (n), (6.67)

so the contribution to the state vector due to the m-th wave on the right hand side of the

n-th segment can be defined, using equation (6.67), as
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{ P (”’m))} —r(n,m)a, (n,m), (6.68)

—0g (n,m

where r(n,m) is the m-th column vector of Q(n) and a, (n,m) is an element of a, (n)

in equation (6.67).
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Figure 6.17 The (a) amplitude and (b) phase of the forward-going waves in Figure 6.14 (a).

The vector of elemental BM displacements due to the m-th wave, Wy (n,m), can then

be calculated from the vector of elemental pressures using equation (6.58), from which
the modal BM velocity due to the m-th wave on the right hand side of the n-th segment,

Vg (n, m), can be calculated using the form as
Vaw (N:M) = 2iw sg,Wg (n,m), (6.69)

where W, (n,m) is the elemental displacement vector associated with the m-th wave on
the right hand side of the n-th segment and s, is the vector of normalised values of the

BM mode shape.

The contributions to the modal BM velocity distributions, due to each of the forward-
going waves selected in Figure 6.14, are plotted in Figure 6.18. The WKB result for
wave 1 is seen to be in reasonable agreement with the calculated contribution of this
wave to the full finite element results for positions basal to the peak response at this

frequency, at about 20 mm along the cochlea in this case. The contribution of wave 1 is
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significantly less than the overall result of the full finite element, however, for positions
beyond the peak response, where the contribution of wave 2 dominates the overall
response. The contribution of wave 2, which is an evanescent higher-order fluid mode,
decays away on either side of this peak, as do the contributions of waves 3, 4 and 5,
although the amplitudes of these waves are too small to significantly affect the overall

response.
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Figure 6.18 Decomposition of the modal BM velocity into components due to each of the forward-going
waves in Figure 6.14 (a), the WKB reconstruction of the slow wave and the modal BM velocity from the

full finite element model are also shown.

As well as being able to calculate the contributions of the forward-going waves to the
overall finite element response, equation (6.68) can also be used to calculate the
individual contributions of the backward-going waves, as shown in Figure 6.19, since

their amplitudes are also calculated as elements of aR(n) in equation (6.67). It is

interesting to see that there apparently is a backward-going component to wave 1, which
is about 25 dB below the amplitude of the forward-going component at the peak, but
only about 10 dB below the forward-going component at the base. The phase
distribution of the contribution due to this negative going wave is almost the same as
that of the positive-going component, however, which indicates that this does not
represent a freely decaying wave, but is a component driven at each point along the
cochlea by the positive-going wave, due to scattering as a result of the change in
wavenumber with position. The contribution due to the backward-going component of
wave 2 is far greater basal to the peak response than it is apical, and is larger there than

the forward-going component, in Figure 6.18, although both of these components are so
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small compared to those from wave 1 in this region, that they are not expected to play a
major role. Similarly the backward-going component of wave 5, involving the second
mode of BM motion, is larger than the forward-going component, but is again very

small compared with the contribution due to the slow mode.

It is clear that the amplitudes of waves 2, 3 are very much less than wave 1 except near
the peak. The higher order fluid modes are excited close to the peak response, however,
such that the contribution of wave 2 to the BM velocity dominates the overall response
beyond this point. Beyond the peak position, the slow wave decays rapidly, so that the
total response is somewhat larger than it would otherwise be, as noted by Watts (Watts,
2000). The decomposed BM velocity component due to the slow wave is almost the
same as its amplitude calculated using the WKB approximation basal to the peak, as
shown in Figure 6.16. This suggests that although there is some scattering of this wave
into the higher order modes, this does not significantly affect the propagation of the
slow wave. For a locally reacting passive BM, the overall behaviour of the cochlea to
excitation of the stapes is thus approximated well by the propagation of a single, slow
wave.
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Figure 6.19 Decomposition of the modal BM velocity into components due to the backward-going
version of the waves those in Figure 6.14 (a), and the modal BM velocity from the full finite element

model.
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6.6.3 Scattering

If the system under consideration was entirely uniform in the longitudinal direction, the
set of eigenvalues and eigenvectors for the transfer matrices of each element would be
exactly the same. In the cochlea, however, the properties are slowly changing, so that at
a given frequency, there are gradual changes in the eigenvalues and eigenvectors with
position, which give rise to the distribution of wavenumbers shown in Figure 6.14.
Although in the uniform system each wave propagates completely independently, there
is the possibility of interaction between these waves in the non-uniform system. This
interaction can be quantified by defining a scattering matrix at the junctions between
adjacent segments.

We first separate the wave amplitudes calculated from equation (6.66) into forward and
backward travelling waves, according to whether |4,|<1, forward, or |4,|>1,

backward, as above, so that, referring to Figure 6.20 (a), the wave amplitudes on the

right hand side of the n-th segment are

e} e

The corresponding wave amplitudes on the left hand side of the (n+1)-th segment are

a; (n+1) q.(n+1)

where y(n+1) is calculated from the eigen-decomposition of the transfer matrix for
the (n+1)-th segment.

At the junction between these two adjacent segments, the nodal displacements and

forces must be continuous or in equilibrium, so that

(p(n){a_(n)}:q)(n+l){a_(n+1)}, (6.72)

2 () a(n+1)

o+
-+

and hence
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ﬂ:w(n+l)(p(n){:%(n)}. (6.73)

The matrix of outgoing waves from the junction between the n-th and the (n+1)-th

segments can now be represented as a scattering matrix, as in Figure 6.20 (b), so that

Sl e

a (n a (n+1
where
L Bkl

and S;;(n) and S, (n) are matrices of transmission coefficients of forward-going
waves, from left to right, and backwards-going waves, from right to left, and Slz(n)

and S,,(n) are matrices of refection coefficients from backwards-going waves on the

right to forward-going waves on the right and forward going waves on the left to
backwards-going waves on the left.

If we partition the matrix in equation (6.73) as

M, M
UEROR el 679

then the partitioned elements of equation (6.75) can be calculated to show that

S(n)= Sll(n) SlZ(n) _ Mn_Mle;;le Mle;; . (6.77)
S _M;Mm M;

If the n-th and the (n+1)-th segments are identical then y(n+1) is equal to y(n), so
that equation (6.76) is equal to the N x N identity matrix. Hence M, and M., are equal

to the N/2 x N/2 identity matrix and M,, and M,, have zero elements. In this case,

149



Chapter 6 Wave Propagation and Decomposition in the Cochlea

S.(n) and S,,(n) in equation (6.77) are also N/2 x N/2 identity matrix and S,, (n) and
S,,(n) are zero, as expected.
Figure 6.21 shows the magnitude of the elements of one column of the scattering matrix

in equation (6.74) corresponding to the scattering from wave 1 in Figure 6.14 into other

forward-going waves, above, and the reflection of wave 1 into backwards travelling

waves, below.
n-th (nt1)-th
a4, () q, (n+1)
-fr() fi (n+1) ag(n) af (n+1)
e — —
ag(n) > >| af(n+1) S(n)
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- < < - + R
ag(n) | aj (n+1) «— 2 (n+1)
(@) (b)

Figure 6.20 (a) The junction between the n-th and (n+1)-th segment with the corresponding states and

wave amplitudes, and (b) the definition of the scattering matrix.

Near the base of the cochlea almost all the elements of S;, and S,, are close to zero
except for those corresponding to the transmission coefficient of wave 1, which is about
unity, and most the elements of S,, and S,, are close to zero, as expected in a uniform

system. There is only significant scattering of wave 1 into the higher order modes at
about x = 20 mm, which is the origin of the additional wave components in Figure 6.14.
Close to the base, however, it is predicted that at each junction about 0.5% of the
forward-going slow wave, wave 1, will be scattered into the backward-going slow

wave. This helps explain the spurious backwards-going wave seen in Figure 6.19.
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Figure 6.21 The magnitude of the scattering elements at each junction along the cochlea model from

mode 1 into other forward-going waves at 1 kHz.

6.7 Wave Decomposition with Longitudinal BM Dynamics

In a similar way to the FE analysis described in Section 5.3, the finite element model for
each of the 512 slices of the cochlea had 8 x 4 hexahedral elements to describe the fluid
motion in each chamber and 4 plate elements along the BM to describe its radial
structural response as a beam, but now with weak mechanical coupling due to orthotropy
in the longitudinal direction. The cochlea was still assumed to be symmetric so that only
one fluid chamber needed to be modelled. There are thus 9 x 5 nodes on each face of the
fluid chamber slice, each having 1 degree of freedom, and 5 x 1 nodes on each edge of

the BM slice, each having 3 degree of freedom which are transverse displacement w,

rotations 6, and 6, . So that the vectors in equation (6.62), for example, have 112

degrees of freedom under the assumed boundary condition for the BM slice, which is

simply supported at both y=0 and y=B, i.e. w=0 and 6y=0.

Figure 6.22 (a) shows the distribution of the real and imaginary parts of the
wavenumbers associated with some of the different waves propagating along the

cochlea, modelled with the BM as an orthotropic plate, at 1 kHz. All of the components
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of stiffness vary with position as in equation (6.46), but with parameters Dyo = 1.9 x 10°®
N m, Dyo=3.9 x 107 N m and Dy = 5.8 x 10™ N m at the base, so that D,/D,=5 x 107,

0
_1~
_2~
w E 4l
£ £°3
= g -4t
¥ E
_5~ _ ‘I
-7 :
0 5 10 15 20 25 30 35
X [mm]
1 R
/\
\
0.8f \
/ \
2 / \
2061 [ %
2 | \
> / \
= 0.4f | v\
a1] |
/ \
0.2/ \
/ \
/ \
o b o oo
0 0.2 0.4 0.6 0.8 1
y [mm]
(b)

Figure 6.22 (a) Wave number distribution of the forward-going waves calculated using the orthotropic
WFE model of the cochlea at 1 kHz and a damping ratio of 0.1; (b) The normalised BM velocity in the
radial direction associated with the first 4 of these waves calculated at the place where the real part of

their wavenumber is largest at 1 kHz. The normalized BM velocity of waves 1 to 4 lie on top of each

other.

The imaginary part of the radial BM velocity distribution associated with each of these
waves is plotted in Figure 6.22 (b). Forward-going waves have again been selected with
the smallest magnitude of the imaginary part of the wavenumber. There are 112
eigenvalues, for the matrix T in equation (6.62) and hence the wavenumbers of 112
separate waves can be calculated. Only half of these will be propagating in the forward
direction, however, and most of these have wavenumbers with large imaginary
components at the base and thus are heavily attenuated, even a short distance from the
excitation position at the stapes. In fact only the wave 1 in Figure 6.22 (a) has a zero
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imaginary part to its wavenumber at the base and can thus propagate along the cochlea
when excited by the stapes.
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Figure 6.23 Each row of pressure distribution in upper fluid chamber corresponding to waves 1, 2 and 3

in Figure 6.22 at different position along the cochlea.

The pressure distributions in the upper fluid chamber using the model with the
longitudinal BM dynamics are seen to be similar to those predicted from the model with
the locally-reacting BM dynamics shown in Figure 6.15. Each row in Figure 6.23
corresponds to the eigenvectors of waves 1, 2 and 3 at various positions along the
cochlea are shown in Figure 6.22 respectively. Wave 1 shows an almost uniform
pressure distribution before the characteristic place, and then becomes complicated
beyond this position. Wave 2 shows a (0, 1) and wave 3 shows a (1, 0) acoustic mode at
the basal end, and the pressure distributions of wave 2 and wave 3 become more
complicated when they are close to the characteristic place. The mode shapes of the BM
velocity shown in Figure 6.22 (b) are not the same as their true shapes due to the
relatively coarse mesh in the radial, y, direction. The gradient at y=B is in fact zero
corresponding to the clamped boundary condition defined here.

Figure 6.24 (a) and (b) show comparisons between magnitude and phase distributions
along the cochlea calculated from the full FE orthotropic model and WKB method, when

using the wavenumber for wave 1 predicted by the WFE method with the orthotropic
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plate. The difference between these graphs is rather larger than it was in the case of the
locally-reacting BM, in Figure 6.16, and will be discussed below.
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Figure 6.24 The (a) amplitude and (b) phase of the modal BM velocity at 1 kHz.

The state vectors at each longitudinal element have again been used to decompose the
full finite element orthotropic model into amplitudes of the waves determined by the
wave finite element method, with the results shown in Figure 6.25. A modified version
of equation (6.66) was used for this, in which the plate velocity as well as the fluid
velocity was included. The decomposition of the modal BM velocity into forward-going

and backward-going components is shown in Figure 6.26.

All of the results for the orthotropic plate model of the BM are similar to those in
Section 6.6, for the locally-reacting BM model. This suggests that longitudinal coupling
along the BM does not play a dominant role in determining the coupled dynamics of the
cochlea, at least for the orthotropic parameters assumed here. The real part of the
wavenumber for wave 1 in Figure 6.22 peaks at a position slightly further along the
cochlea than in Figure 6.22, for the locally-reacting BM, perhaps reflecting the
increased stiffness of the BM. A similar effect is seen in the peak of the calculated BM
velocity, which was also observed by (Meaud and Grosh, 2010) and Grosh (2010) in
their Fig 2. Also, the imaginary part of the wavenumber for wave 1 in Figure 6.22 does
not fall to quite such a low value beyond the position of the peak response as for the
locally-reacting BM in Figure 6.14. The WKB solution using this wavenumber
distribution, now peaks just beyond the peak response predicted from the full FE model.

Although the peak levels of the higher-order fluid modes are somewhat less than for the
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locally-reacting BM, the overall response is still dominated by wave 2 for positions

beyond the peak response.
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Figure 6.25 The (a) amplitude and (b) phase of the forward-going waves in Figure 6.22 (a).
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Figure 6.26 Decomposition of the modal BM velocity into components due to each of the forward-going

waves in Figure 6.22 (a), the WKB reconstruction of the slow wave and the modal BM velocity from the

full finite element model are also shown.
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Figure 6.27 Decomposition of the modal BM velocity into components due to the backward-going
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Figure 6.28 The magnitude of the scattering elements at each junction along the cochlea model from

mode 1 into other forward-going waves above, and backwards-going waves, below.

Figure 6.28 shows the magnitude of the elements of one column of the scattering matrix
in equation (6.74) corresponding the scattering from wave 1 in Figure 6.22 (a) into other
forward-going waves, and the reflection of wave 1 into backwards-going waves, below.
In Figure 6.28, S1; represents the transmission coefficient from left to right, Sy, represents
the transmission coefficient from right to left, Sy; represents the reflection coefficient on

left hand side, S, represents the reflection coefficient on right hand side.
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6.8 Conclusions

Our understanding of the cochlea is largely based, either explicitly or implicitly, on the
assumption that only a single type of wave propagates along its length. The properties
of this “slow wave” can be calculated from a simple model of the passive cochlea that
includes a locally-reacting BM and 1D fluid coupling. The most useful description of
such a wave, at a given frequency, is the distribution of the complex wavenumber along
the length of the cochlea. The real part of this wavenumber describes the change of
phase with distance and determines the wave speed. The imaginary part of the
wavenumber describes the change of amplitude with distance and must be negative for a
forward-going wave in the passive cochlea, since energy can only be dissipated.
Assuming that the wavenumber does not change too rapidly with position, and that the
wave travels without interaction from other waves, the coupled response of the cochlea
can be deduced from the wavenumber distribution using the WKB method.

In general, however, there are many other mechanisms, apart from 1D fluid coupling,
that give rise to longitudinal coupling in the cochlea, even if this is passive. These
include the higher order modes associated with 3D fluid coupling and mechanical
coupling along the BM. Simple models for both of these effects are considered in order
to calculate the wavenumber distributions of the additional waves that they generate.
The wavenumber spectrum derived from an approximation to 3D fluid coupling shows
that the additional wave in the coupled system has similar characteristics to a cut off
acoustic mode in a rigid duct, since the wavenumber is largely imaginary. Mechanical
coupling along the BM is modelled by assuming that it behaves as an orthotropic plate,
in which case two additional waves are predicted, both of which decay rapidly close to
the base, as did the higher order fluid wave. Even though these additional waves may
exist, it is not clear what role they play in normal cochlear function. Of particular
interest is the extent to which they are excited when the cochlea is driven normally, at

the stapes, from the middle ear.

In general the fully coupled response of the cochlea to middle ear excitation can be
calculated using a numerical model, such as obtained with the finite element method,
although in the insight gained from the wave approach is then lost. The wave finite
element, WFE, method is used here to decompose the results of a full finite element

model of the coupled cochlea into wave components. The WFE method predicts the
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properties of as many types of waves as there are degrees of freedom across each cross
section of the finite element model. Almost all of the forward-going components of
these waves have large negative imaginary components, indicating that they decay away
very quickly. Examples of such evanescent waves include the higher order fluid modes
and also modes associated with more complicated radial distributions of BM motion
than is associated with the slow wave.

The mode shapes associated with the waves predicted from the WFE analysis can then
be used to decompose the results of the full finite element model into wave components.
In a uniform system there would be no coupling between the modes, but due to the
distribution of parameters along the cochlea, the wavenumbers are functions of
longitudinal position and one wave is able to excite other types of waves. This is only
seen to occur, in the passive cochlea model with the locally reacting BM, in the region
where the slow wave is rapidly decaying. It is believed to be associated with the fact
that the rapidly decaying slow wave cannot match the boundary conditions. The initial
predictions are more complicated if the behaviour when the BM is modelled as an
orthotropic plate. The dominant contribution of the slow wave is still observed on the

basal side of the peak response, however.

Although additional types of wave are thus predicted to exist, in addition to the
conventional slow wave, in the passive cochlea, they do not appear to play a dominant
role in normal cochlear function. The framework produced by the WFE method can also
be used with more detailed models, of the active cochlea for example, where there are
far greater opportunities for additional forms of longitudinal coupling to significantly

affect the cochlear response.
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Chapter 7. Conclusion and Future Work

This chapter summarises the work has been done in this thesis and the conclusions from
the modelling and simulations. Based on this experience some other potential research
areas have also been pointed out for the further interest.

7.1 Summary of Present Work

This work consists of two main parts, fluid coupling in the cochlea and the propagation
of waves in the cochlea. The work was carried out using both analytic and numerical
approaches. The analytic results have been used to validate those from numerical
simulation, and the numerical methods provide the possibility of considering more

complicated models.
7.1.1 Fluid Coupling in the Cochlea

The coupled behaviour of the linear cochlear dynamics can be expressed using matrix
representations of two separate phenomena, assuming only a single radial mode shape
for the BM vibration. The first phenomenon is the way that the pressure distribution is
determined by the fluid coupling within the cochlear chambers when driven by the BM
and stapes velocities, and the second phenomenon is the way in which the BM

dynamics respond to the imposed pressure distribution.

In this work the coupled response is studied using a “uniaxial” discrete model that
allows the three-dimensional fluid coupling to be described as a function of a single
longitudinal variable, assuming a given radial distribution for the BM velocity. This
reduces the three-dimensional fluid coupling problem which can be described in terms
of far and near-field components down to one with a single dimension. By dividing up
the uniaxial formulation into a discrete number of longitudinal sections, the problem
becomes tractable numerically, since it can be described using linear algebra. This
elemental approach avoids the singularity in the fluid coupling with a continuous spatial
domain, by using the Green’s function approach, due to the implicit assumption of a
spatial delta function for the driving velocity. The near-field component of the fluid
coupling was initially obtained from a conventional wavenumber analysis. An
approximation based on the theory of acoustic modes in a duct was then derived which
was shown to be in a good agreement with the conventional wavenumber analysis. In
159



Chapter 7 Conclusion and Future Work

this way, the near-field component of the fluid coupling can be associated with the
evanescent, higher order, modes in the fluid chambers, while the far-field pressure
component can be associated with the plane wave, which provides an insight for

physical interpretation of the two components.

Realistic longitudinal variations in the geometry, including asymmetric fluid chambers,
have also been incorporated into the elemental model of fluid coupling. This includes a
new analytic formulation for the far-field component. The coupled responses of the
passive cochlea with non-uniform fluid chambers do not, however, look very different
from those calculated assuming a uniform cochlea, except for a difference of the
accumulation of phase lag.

A finite element model of fluid coupling was also used to provide an independent check
of the results of the analytic model. The agreement between the analytic model and the
finite element model is reasonably good. An advantage of using a finite element model
of the fluid coupling is that various geometric complexities, which are difficult to
account for analytically, can be readily incorporated. In this work the flexibility of the
finite element method was used to investigate the effect of fluid compressibility and the
effects of the coiling on the fluid coupling. Results for the parameters used here show
that the coiling does reduce the modal pressure distribution and the coupled BM
velocity, especially close to the apex indicating that the coiling decreases the fluid
impedance in the apical region. The compressibility is seen to have a huge effect on
fluid coupling near a duct resonance, but a far smaller effect on the coupled cochlear

response.
7.1.2 Waves in the Cochlea

The wave finite element, WFE, method was introduced and its use extended from
previous applications in uniform structures, to also consider structures with slowly
changing parameters. Examples were considered of plates whose stiffness varied with
position, and also conically shaped shells. The latter are particularly interesting partly
because they are relevant to the analysis of loudspeaker cones, and partly because they
show a transition from one kind of wave propagation to another, that occurs at a

frequency-dependent position along the cone.
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The WFE method has the advantage of studying all waves, whose number depends on
the number of DOFs in the segment. By combining results of the WFE analysis with the
full FE solution, the overall responses have been decomposed into wave component and

physical insight can be given in terms of waves.

Using the conventional FE method, the uncoiled cochlea was modelled as a fluid-
structural coupled system with three-dimensional fluid and two dimensional BM
elements. By driving the stapes at given frequency, a numerical predication of the BM
response can be obtained. Two cochlear models, which include the local BM dynamics
or longitudinal BM dynamics, are constructed and studied. Generally for both cases, the
BM velocity increases gradually to a peak, whose location depends on driving
frequency and starts to decrease quickly after the peak which is similar to that predicted

using matrix presentations for the discrete cochlear model.

The classic travelling wave theory of the cochlear mechanics is based on the hypothesis
that only a single type of wave propagates along cochlear length. In this work, the
properties of this “slow wave” were first calculated from an analytic model of the
passive cochlea that includes locally-reacting BM and 1D fluid coupling, locally-
reacting BM and 3D fluid coupling, longitudinal BM coupling and 1D fluid coupling.
For models with 3D fluid coupling or longitudinal BM coupling, the higher order modes
associated with 3D fluid coupling or mechanical coupling along the BM give raise to
the additional evanescent waves as well as the expected “slow wave”. Assuming that the
wavenumber does not change too rapidly with position, and that the wave travels
without interaction from other waves, the coupled response of the cochlea can be

deduced from the wavenumber distribution using the WKB method.

The WFE method was used to decompose the results of a full finite element model of
the coupled cochlea into wave components. The WFE method predicts the properties of
as many types of waves as there are degrees of freedom across each cross section of the
finite element model. Almost all of the forward-going components of these waves have
large negative imaginary components, indicating that they decay away very quickly.
The mode shapes associated with the waves predicted from the WFE analysis were used
to decompose the results of the full finite element model into wave components.
Although many additional types of wave are predicted to exist apart from the “slow

wave” in the passive cochlea, they do not appear to play a dominant role in normal
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passive cochlear function. For a locally reacting passive BM, the overall behaviour of
the cochlea to excitation of the stapes can be approximated well by the propagation of a
single, slow wave. For a passive BM with longitudinal coupling modelled using the
orthotropic plate, the results are similar to those for the locally-reacting BM model,
which suggests that longitudinal BM coupling does not play a dominant role in
determining the coupled dynamics of the cochlea, at least for the orthotropic parameters

assumed in this work.
7.2 Suggestions for Future Research
7.2.1 Refining the Cochlear Model

The fluid coupling in the cochlea has been discussed in detail with 1D and 3D cochlear
geometries, but the BM dynamics are assumed to be passive. In the living cochlea at
low levels, the amplitude of the “slow wave” will be increased by an active cochlear
amplification mechanism, involving the inner and outer hair cells. Henaff et al. (Henaff,
et al., 2003) developed a cochlear model with 1D fluid coupling and locally-active BM,
but did not consider the effect of 3D fluid coupling. An interesting direction is thus to
take both the 3D fluid coupling and the active BM into account to predict the coupled
response of the cochlea. The non-uniformity, asymmetry and non-linear component
could also be included to give a more realistic model of the cochlea.

The flexibility of the meshing allowed in the finite element model gives the possibility
of building a more detailed cochlear model with sub-structures, such as the tectorial
membrane (TM) and the organ of Corti, to study the interaction between the TM and its
local surroundings on the OC (Ghaffari, et al., 2007, Jones, et al., 2011), or active BM

to study the active amplification process in the cochlea.
7.2.2 Developing the WFE Method

The problem with the spurious negative-going wave found in the current cochlear model
appears to be due to the fact that the eigenvectors of the transfer matrix do not take the
spatial variation of the wavenumbers into account, even though this variation changes
slowly. One way in which this variation could be accounted for is by assuming a WKB
solution to the propagating wave in the definition of the transfer matrix, instead of just a
uniformly propagating solution. Some preliminary work has been done (Elliott, et al.,
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2012) to take the variation into account using a modified transfer matrix and the effect
of the spurious negative-going wave then becomes negligible, at about 120 dB below
the corresponding positive-going wave at the position of the characteristic place. This
suggests that the modified WFE method could be applied to study non-uniform

structures by linking the non-uniformity more accurately into account.
7.2.3 Testing the Single Wave Hypothesis

The detailed numerical models of the cochlea used by both Steele et al. (Lim and Steele,
2002, Tuck-Lee, et al., 2008, Yoon, et al., 2007) and Chadwick et al. (Cai and
Chadwick, 2003, Cai, et al., 2004) are only even analysed one cross-section at a time.
This analysis is used to identify the wavenumber of a single “slow wave”, which is then
assumed to be the only wave of importance so that this overall response can be
computed using the WKB approximation. The WFE method developed here provides a
way of testing this hypothesis on a more complicated cochlear geometry that only a
single wave is of importance by decomposing the overall coupled behaviour into

individual wave components.
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Appendix A: WKB Approximation to Long Wavelength Component

For a 1D, long wave, model of the cochlea, the 1D Helmholtz equation can be expressed
as
o’ p(x,t) 1 o°p(xt)

o o(x) ot AL

where ¢(X) is a function with respect to x.

iot

Assuming time harmonic vibration, the pressure can be expressed as p(x,t)=P(x)e"”,

so equation (A.1) can be rewritten as

+ P=0. (A2)

e dz;((zx)—qu(x)zo, (A3)
where
E=w", (A.4)
and
i
Q= o) (A.5)

The approximate solution of equation (A.3) based on the WKB theory can be expressed
by a single exponential power series of the form (Bender, 1999)

%anzjfsj

P(x)=e"™ , §—>0. (A.6)

Differentiating equation (A.6) twice gives
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1¢ i
dP ndz. ) e
(X) z[l _’§JJe51’° . 00, (A.7)

and

’ ndz Y 1ediz, | iy
dp(x){l(z '51] +12 ’5']&0 , 50 (A.8)
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Substituting equations (A.7) and (A.8) into equation (A.3) and dividing off the

%izﬁj
exponential factors e ™ vyields:

g_z(dzoj2+252(dzoj(dzl)+€_2 d’z, o (A.9)
Fldx ) s Lax ok ) s ax | |

2
g

2
The largest term on the left side of equation (A.9) is ?(%j . By dominant balance
X

this term must have the same order of magnitude as Q* on the right side. Assuming &

is proportional to ¢ and for simplicity set 6 = &. After comparing powers of & gives a
sequence of equations which determine Zo, Z;, Z5...

2
(%J Q% n=0 (A10)
2
(B[ e s o

and

,92,dz, dz}, § dz, dz, |

=+ =0, nx>2. (A12)
dx dx dx* 47 dx dx

The equation (A.10) is called the eikonal equation and its solution is

Z, =+ on Qdx’. (A.13)

166



Appendix A: WKB Approximation to Long Wavelength Component

Substituting equation (A.13) into equation (A.11) and after integration
1
Zl=—§InQ. (A.14)

Substituting equations (A.13) and (A.14) into equation (A.6) gives the first order

approximation to the equation (A.3) as

P(x)z%exp(—ézoj+%expgzo} (A.15)

where C, and C, are constants to be determined from initial conditions.

The first order WKB approximations to pressure are given by
= (x)= &exp(a)J‘Xde’)+&exp(—wIXde'). (A.16)
Jo T JQ :

Substituting Q =i/c(x) into equation (A.16) gives

P (x) = A exp(ijxk(x)dx')+ A exp(—ijoxk(x)dx'). (A.17)

Tr R R AN T

If only forward travelling wave is concerned, the pressure due to far-field component in

the cochlea can be expressed as

P(x) :ﬁexp(—iﬂk(x)dx’). (A.18)

where A is a coefficient needs to be determined.

For the cochlear model, the 1D fluid coupling equation is given by

d*P(X) _ Z2iwp
= - h V(X), (A.19)

so the local BM velocity, V(x), is related to the pressure by
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h k2(x)

V= 2iwp

P(x). (A.20)

The BM velocity distribution can thus be calculated from the pressure distribution as

J.:k(x)dx’

V(x) = % K(x)"2e” (A21)

Since v(x)=—Yg, (x) p(x), that if p(x) is given by equation (6.17), the general WKB

approximation for v(x) should be

A »
e i$(x)

V(X)=—YBM(X)W

where Ygm(X) is the mobility of the BM. In this 1D fluid coupling case, then from

: (A.22)

equation (6.7) we can obtain

, (A.23)

so that

3/2
v(x) _ Ak (oh _ OO g-ioco (A.24)
2iwp
Figure A. 1 shows a comparison of the modal BM velocity calculated using equation
(6.33)and (A.22). Although there is no visual difference can be found, equation (A.22)

provides a more general form of the WKB approximation for the modal BM velocity.
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Figure A. 1 A comparison between the BM velocities using equation (6.33), solid lines, and equation

(A.22), dashed lines, calculated at an excitation frequency of 1 kHz, for the wave due to the interaction

between the local, passive, BM dynamics and the 3D fluid coupling with a constant damping ratio, £,=0.1.
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Appendix B: Condensation of Internal Nodes

In this appendix, several methods are described for condensing the internal DOFs of a
section. The condensations can be used to reduce the round-off errors of inertia terms
and also eliminate longitudinal coupling in the locally-reacting cochlear model used in
this thesis for example. The methods do not need to remodel the section since the global
stiffness and mass matrices can be formed from those of the original section (Petyt,

1990). If the section has internal nodes which are not condensed, equation (5.4) can be

PEE [:)E'Mqﬂ =[fE}, (B.1)
DIE DII ql 0

expressed as

where
~ D, D
D, = { “i PR }
Dp. Des
DEI = { = LI}
RI
DIE :[~ IL DIR:| 1 (B.2)

and the superscript ~ denotes that the section has internal nodes and have not been
condensed. The subscript E and | represent that DOFs are associated with edge nodes
or internal nodes of the section respectively. When the section has internal nodes, the
DOFs associated with the internal nodes always need to be condensed. Three ways to

condense the DOFs associated with the internal nodes are described here.

(1) Dynamic Condensation (Friswell and Mottershead, 1995)

The internal DOFs can be dynamically condensed by rewriting equation (B.1) as

J'DJq, =f,, (B.3)
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where

~ |
’ :{_Dnlf)lj’ (B.4)

and the superscript T denotes the transpose, | indicates the identity matrix. The matrix
J transforms the original basis into the condensed basis. Substituting relation (B.4) into

equation (B.3) and expanding gives
Dq. =T, (B.5)

where

D =D - DEI Dﬂlf)lE’ (B.6)

is the condensed dynamic stiffness matrix. These dynamically condensed element
matrices become frequency dependent and the dynamic condensation method is used
throughout this thesis.

(2) Static Condensation (Friswell and Mottershead, 1995)

The inverse of the dynamic stiffness matrix associated with internal DOFs can be

expressed as
~ ~ ~ -1 ~ ~ -1 ~
D' =(Ky—o'M, ) =(1-0’KiM, ) K. (B.7)

For small Kﬁll\N/III , equation (B.7) can be approximated as

Dy =K' +0(’K'M, K. (B.8)

G xR (B.9)
IIlMIE_MEIKlllKIE)'

A

~Kee —Kg KK g -0 (MEE -Kg

For small @, the condensed stiffness and mass matrices can be approximated by
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EE ~ EIK_IIKIE' (B.lO)

K=~
M=~ Mg KEIK_IlMIE_MEIKHlKIE'

It should be noted that this static condensation is only accurate at very low frequencies

(Waki, et al., 2006) since the inertia associated with D,, is removed.

(3) The Second Order Approximation (Waki, 2007)

Equation (B.7) can be expanded to the second order as

B, =(1+0’K,;M, ) K;!

o (B.11)
+0(0'K'M, KM, K.
Then condensed dynamic matrix D can be given by
D~ KEE - REIK]lKIE
~o’ (MEE - KEIK_IlM e~ Mg ﬁlKlE + KElKﬂlM ||KﬁlK|E) (B.12)
- (MEIK_IlM IE I'~<E|K_lll\?IuK_lll\N/l IE MElkﬁlmukﬂlKlE )
Similarly, the condensed stiffness and mass matrices can be expressed as
K= KEE - KEIK_IlKIE
+ o' (MEIKI_IlM IE KEIK_IlM ||K_|1|V| IE MEIK_IlM IIKﬁlKIE) (B.13)

The numerical results obtained by applying the second order approximation are much
more accurate than the static condensation for wide range of frequency (Waki, et al.,
2006).
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Appendix C: Wavenumber of an Orthotropic Plate Strip

C.1 Uniform Orthotropic Plate Strip

The governing equation of a bending orthotropic plate can be expressed as (Leissa,
1969)

52 (Dx 0" w(x,y) 5 62w(x,y)]+4 o? [DS 62w(x,y)]

+
ox? x> Y ay? X0y G
&2 o*w(X,y) o*w(x,y) o’w €D
D V) p I, 0N g
2| Yy 2 xy 2 P—2 =M
oy oy ox ot

where W(x, y) is transfer displacement, p is the density of the plate material, D, , D,,
and D, are the orthotropic bending stiffness in the x and y directions, respectively, and

D, is torsional rigidity.

The assumption of simple harmonic motion and constant material properties gives

4 4 4
D, o*'w(x,y) 42D, o'w(x,y) 44D, o'w(x,y)
o Y ox2oy? ox2oy? c2)
o*w(x, '
+D, % = pa*w(X,Y).

It is difficult to find an analytic wavenumber of such a complicated structure, however,
the advantage of numerical method, such as the WFE method, allows solving the
wavenumber distribution of this bending orthotropic plate numerically.
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N/

Y=Ly

y=0 y

Figure C.1 Diagram of an orthotropic plate with edges y = 0 and y = L, simply supported.

In this case it is assumed that L, = 0.16 m, E, = 2.1x10™ Pa, p = 7,800 kg/m°, h = 0.002
m and v = 0.30. Results were calculated at different ratio of D,/D, to illustrate effects of
the orthotropy. When D,/Dy =1, which means the plate is actually isotropic, predicted

dispersion curves are identical to Figure 5.5.

To explore the effect of the orthotropy, several values for the ratio of D,/Dy were used
to calculate the corresponding dispersion curves of the orthotropic plate and shown in
Figure C. 1. It can be found even when the orthotropy has been introduced the cut-off
frequency does not change with the ratio Dy/Dy, since the value of Dy which determines
wn In equation (5.25) is assumed to be the same as that in the isotropic case. However,
the ratio D,/Dy does have an influence on wave speed above the cut-off frequency and
the decay length below the cut-off frequency. The wave speed is determined by the real

part of the wavenumber and can be given by

c=——r7r, (C.3)

and the decaying length is determined by the imaginary part of the wavenumber and can

be given by
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(C.4)

The variation of wave speed at 400 Hz and decaying length at 0 Hz against can be seen
in Figure C. 2. It can be found that as the plate becomes more orthotropic, so that D,/Dy
becomes smaller, the wave speed decreases, since the plate tends towards being locally
reacting and the wave cannot propagate in the limit of D,/Dy=0. The decaying length
also decreases as the ratio of D,/Dy decreases, indicating the wave decreases much faster
if the plate is more isolated. The other issue raised by the orthotropy is that at very low
frequencies, the real part of the wavenumber is not zero as it is for the isotropic case,
but the value is much smaller than the corresponding imaginary part and thus will not

play a significant part in wave propagation.

—D /D =0.01
X7y
67| D /D =0.05 7
Xy
4 [—D,/D~0.1 ,
m [sotropic plate

Re(kL /n)
T
\

e

0 100 200 300 400
f[Hz]

Im(L /)

- | | |
5 0 100 200 300 400
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Figure C. 1 Dispersion curves for flexural waves in an orthotropic plate strip with simply-supported
edges for different D,/D, values. The solid lines are for the real part of the wavenumber (above) and the

dashed lines are for the imaginary part of the wavenumber (bottom).
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Figure C. 2 Variation of wave speed at 400 Hz and decay length at 0 Hz again the ratio of D,/D, for the

orthotropic plate example.

As long as the property Dy is constant, the cut-off frequency remains the same, even for
different ratios of Dy/Dy. When the orthotropy is increased, namely D,/Dy decreasing,
the wave speed decreases and also the wave decays slower below the cut-off frequency,

as the plate tends towards being locally reacting.
C.2 Non-uniform Orthotropic Plate Strip

For the orthotropic plate case, whose Dy is identical to E of the isotropic plate and D,/Dy
=0.05, the dispersion curves can be seen in Figure C. 3. The dispersion curves are
similar to those observed in non-uniform isotropic plate beyond the cut-off position, but
waves are more complicated and decay much faster before the cut-off position than

those in the isotropic plate.
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Figure C. 3 Flexural waves in an orthotropic plate strip at 100 Hz (left column) and 500 Hz (right column)
with simply-supported boundary edges when the flexural rigidity D, varies exponentially along the x
direction and D,/D is taken as 0.05 all along the plate. Solid lines for the real part of the wavenumber and

dashed lines for the imaginary part of the wavenumber.

The non-uniform orthotropic plate strips also give a similar wavenumber distribution to
the non-uniform isotropic case, apart from the real part of the wavenumber no longer

being zero before the cut-off position, which is due to the effect of the orthotropy.
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Appendix D: Factors Influencing the Dynamics and Waves in the

Cochlea

D.1 Effect of BM Boundary Conditions

The basilar membrane, BM, is a stiff structural element which separates two fluid
chambers that run along the cochlea, the scala media and the scala tympani. The BM
converts sound-evoked pressure differences between the two chambers into transverse
structural motion. This transverse motion then is converted into shearing motion
between the tectorial membrane and reticular lamina, which excites the inner and outer
hair cells and gives rise to the perception of hearing (Dallos, et al., 1996). The
distribution of the transverse motion across the width of the BM is complicated and
level-dependant in the real cochlea (Cooper, 1999). Homer and Champneys (Homer, et
al., 2004) developed a mathematical beam model of the BM to study the effect of
boundary conditions at the two ends and by comparing their predictions with
experimental data (Cooper, 1999), they found that the best fit is obtained by assuming

the BM is simply supported at the arcuate end and clamped at the other end.

The purpose of this section is to investigate the effect of different radial BM velocity
distributions on the fluid coupling and the coupled response in the cochlea. Various BM
radial profiles are defined analytically using an Euler-Bernoulli beam model for the
BM, with different boundary conditions. A discrete model of the cochlea (Elliott, et al.,
2011), which assumes a single mode across the width of the BM, is used to study the
fluid coupling, although it is noted that other, finite element, models make the same
assumption (Ramamoorthy, et al., 2007, Steele, 1974, Steele and Taber, 1979).
Although the shape of the BM radial velocity distribution is seen to depend on the
boundary conditions at the two ends of the BM, the fluid coupling is seen to be

relatively insensitive to these variations.

The BM mode shape is assumed to be that of an Euler-Bernoulli beam with various
boundary conditions (Homer, et al., 2004). The beam is assumed to have a constant
bending stiffness El in the BM radial direction, where E is the elastic modulus and I is
the area moment of inertia. Then the equation governing the transverse displacement w,

as a function of position along the beam, is given by
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o'w(y,t)

4

o*w(y,t)

atZ

El

+p, A =0, (D.1)

where p, is the beam density and A is the cross-sectional area. For time harmonic

vibration, the transverse displacement and the natural frequency of the beam are given
by (Rao, 2004)

W (y)=C, cos(By)+C,sin(By)+C,cosh(By)+C,sinh(By), (D.2)

and

w,=a %, (D3)

where B is the width of the BM, C;, C,, C3, C4 and « are coefficients depend on
boundary conditions. The values of the non-dimensional constant, a=(,BB)2, which

determines beam natural frequency, for the four combinations of boundary conditions

are reported in Table D. 1.

Table D. 1 Effective thickness and equivalent height at different BM boundary conditions.

Boundarv conditions Normalized equivalent Normalized effective Coefficient
Y height h/H thickness T/H a
y=0 y=B
Simply Simply :
supported (S) supported (S) 411 0.177 P
Simply Clamped
supported (S) (C) 4.51 0.173 15.4
Clamped Simply
© supported (S) 4.51 0.160 15.4
Clamped Clamped
4.80 0.158 221
© (C)

In this study, we consider four possible combinations of clamped (W =0, dW /dy =0)

and simply supported (W =0, d®W /dy® =0) boundary conditions at the two ends of
the BM. Throughout this paper we use C to represent clamped boundary condition and S
to represent simply supported boundary condition. The modal shape of the BM with
different boundary condition can be seen in Figure D. 1 (a). In the cases of S-C and C-S

the BM motion is asymmetric about the BM’s mid-point, whereas the cases of S-S and
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C-C the BM motion is symmetric. The experimentally measured shape of the transverse
BM velocity is, in fact, most closely modelled as having a simply supported boundary
condition at one end and a clamped boundary condition at the other (Homer, et al.,
2004). Whereas the exact expressions for the BM modal shapes, except for the simply
supported boundary conditions at both ends, have no explicit form, so the results for the
fluid coupling and later the coupled response are calculated numerically approximating
the integrals in equations (2.14) and (2.15) by the sum of 200 terms.
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Figure D. 1 The (a) normalized mode shape, (b) total equivalent height due to fluid coupling as a
function of wavenumber, (c) equivalent height due to far-field component and (d) equivalent height due

to near-field component, calculated from the discrete model with different boundary conditions.

Figure D. 1 shows the variations of Q(k)/H with kH, where H is the physical height of
one fluid chamber, for the parameters listed in Table 2.1 with different BM boundary
conditions. The BM is assumed to be located on one side of the cochlear partition, as
shown in Figure D. 1 (a) and to have a width, B, where is assumed to be 0.3W here.
Figure D. 1 (c) and (d), show the two components of Q(k), corresponding to the far-field
and near-field components for the various boundary conditions. For small values of k
the near-field term becomes a constant which can be interpreted as an effective fluid
thickness, T, due to the fluid coupling, which adds to the physical mass of the BM
(Neely, 1985). The values of T, calculated from Figure D. 1 (d) as k tends to zero, are
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listed in Table D. 1, and change slightly with different BM boundary conditions,

indicating that the effect of BM radial motion distribution is small on the near-field

component of the fluid coupling.
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Figure D. 2 Spatial distribution of the pressure difference along the cochlea due to the far field
component of the fluid coupling when only a single element of the 512 elements in the discrete BM at
x=10 mm is driven sinusoidally with a velocity of 10 mm s™ at a frequency of 1 kHz. The (a) normalized

mode shapes are again shown together with the distribution of (b) overall fluid pressure difference which
is the divided into (c) far-field and (d) near-field components.

Figure D. 2 shows spatial distribution of the pressure difference, also split into far and

near field components, along the cochlea when only a single element of the 512

elements in the discrete BM at x=10 mm is driven sinusoidally with a velocity of 10 mm

st at a frequency of 1 kHz. These are calculated by numerically taking the Inverse
Fourier Transform of the wavenumber results (Elliott, et al., 2011) and show the
differences between the assumed boundary conditions more clearly since they are
plotted on a linear scale. It can be seen that the boundary conditions do not affect the
pressure difference due to the near-field component very much, since the equivalent
thickness, T, which determines the near-field fluid coupling, is relatively insensitive to
the assumed boundary conditions. The magnitude of the far-field fluid coupling does

vary somewhat with different assumed boundary conditions, however, since the far-field
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fluid coupling is inversely proportional to the equivalent height, h, which does change
with the assumed boundary condition according to equation (2.26). Given the fluid
coupling impedances and assuming a single degree of freedom model for a passive BM,

the coupled response of the cochlea can now be calculated using equation (1.19).

Figure D. 3 shows a comparison of the predicted BM velocity distribution, calculated
using the discrete model of the passive cochlea, with different assumed BM boundary
conditions. The BM dynamics are modelled by locally-reacting single degree of
freedom models with the parameters shown in Table 2.1. The magnitudes are similar for

all conditions, although the final phase lag is somewhat larger for the S-S boundary

conditions.
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Figure D. 3 The (a) magnitude and (b) phase of the modal BM velocity calculated at 1 kHz from the
analytic model with locally reacting passive BM, with a damping ratio of 0.1, at different BM boundary

conditions.

Although experimental observations (Cooper, 1999) and modelling studies (Homer, et
al., 2004) suggest that the best fit to experimental data is obtained for a beam which is
simply supported at the arcuate end and clamped at the other end. The results presented
here show that the fluid coupling and its effect on the coupled response are not critically
dependent on this assumption. More generally it supports the assumption that the fluid
coupling in cochlear models can be reasonably well estimated by assuming a single,
fixed, radial profile for the BM velocity, even though in practice it may change slightly

with frequency or excitation level. These results show that it is reasonable to use other
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combinations of the boundary conditions to calculate the fluid coupling and the coupled

response.
D.2 Effect of BM Damping

It is interesting to investigate how these wavenumber distributions change with the BM
damping, and Figure D. 4 shows the distributions of the real and imaginary parts of the
wavenumbers for a damping ratio of 0.2, 0.14 and 0.1 respectively. What is striking about
these results is the way that the imaginary part of wave 1 does not have the very
significant dip after the characteristic place that it did when the damping ratio was 0.1, as
shown in Figure 6.14, but now remains less negative than the imaginary parts of waves 2,
3 and 4, as seen in the analytic model in Section 6.2. This difference in the behaviour of
the wavenumbers is important, since without it the difference between the numerical
results and the WKB method remarked on above does not occur. In fact Watts (2000)
shows a similar transition in the structure of the wavenumber distributions in his Figure
4. In his model example the damping factor of the BM, $, is assumed to be independent
of frequency and position, so that the damping ratio decreases as either the excitation
frequency or the natural frequency get larger. Thus Watts’ results at an excitation
frequency of 400 Hz correspond to a damping ratio of about 1.32 at the characteristic
place for this frequency and his results at an excitation frequency of 800 Hz correspond

to a damping ratio of about 0.66 at the characteristic place for that frequency.

Figure D. 4 shows the polar plot for the wavenumbers of the first four waves, calculated
using the WFE method for different BM damping ratios. It can be seen that a similar
transition of the behaviour of wave 1, which Watts calls the travelling wave mode, is seen
to that seen in his Figure 4, with the loop corresponding to wave 2, which Watts calls the
cut-off mode occurring at more negative imaginary wavenumbers for a damping ratio of
greater than about 0.14 in the WFE model, and less negative imaginary wavenumbers for
damping ratios of less than this value.
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Figure D. 4 Polar plots of the locus of the real and imaginary parts of the wavenumber for wave 1 to
wave 4 as the position along the cochlea increases, as shown by the arrows, calculated using the WFE

model for damping ratios of (a) 0.2, (b) 0.14, (c) 0.1.

D.3 Effect of Mesh Density

The details of the wavenumber distributions in the model of the cochlea are, however,
dependent on the number of fluid elements used in the cross section. In order to
correctly reproduce the near-field fluid pressure very close to the BM, a fine mesh of
fluid would be required. The only important property of this near-field pressure for the
“slow wave”, however, is the added mass of the fluid. This is somewhat smaller for the
FE grid used for the FE models than it was for the analytic models, so that the effective
BM mass was increased to account for this effect, as mentioned above. It can be seen
from Figure D. 5 that although the effective thickness increases with the number of
element in the vertical direction, z, its value is less than half of the analytic value. The
computation cost becomes extremely large when the number of fluid elements in the z

direction exceeds 32.
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Figure D. 5 Variation of the effective thickness due to the mesh size of the FE model (solid line) and the

analytic value using equation (2.25).

Although the mesh has a large effect on the fluid coupling, it is shown in Figure D. 6
that the overall responses calculated using different mesh sizes are similar on magnitude
and phase basal to the characteristic place. Differences beyond this point are small in

magnitude, thereby indicating that they are not very important.
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Figure D. 6 The (a) magnitude and (b) phase of the modal BM velocity calculated at 1 kHz with a
damping ratio of 0.1, using the full finite element model with a mesh density of 512x8x4 (solid lines),

512x8x8 (dashed lines) and 512x8x16 (dotted lines).

The finite element model of the cochlea is also a discrete description to the real
structure thus the number of elements along the cochlear model will affect the accuracy
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of the result. Although it is shown in literatures that the cochlea is by nature
longitudinally discrete, owing to the individual rows of OHCs, the rows are typically
about 5 um apart (Pickles, 2003), which would require dividing the human cochlea up
into approximately 7000 segments to create an ‘accurate’ model by this reasoning, this
will make the computation cost extremely large and also increase the round-off error.
Based on the wavenumber distribution calculated from the 1D model, as shown in
Figure 6.2, the shortest wavelength is about 2.6 mm at the characteristic place, so as
long as the element size meets the criterion that there are at least six elements within the
shortest wavelength present, the model can be taken as an accurate representation of the
continuous system (Fahy and Gardonio, 2007). The element number along the cochlear
length used in this thesis is 512 which corresponds to an element size of 68 um is
sufficient enough to make the model accurate. Figure D. 7 shows variation of the BM
velocity calculated using the model with 256 and 512 elements along its length. It can
be seen that results calculated using 256 and 512 elements have a good agreement.
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Figure D. 7 Comparison of the BM velocity (a) magnitude and (b) phase calculated using different values

of spatial discretisation size at 1 kHz.

Figure D. 8 shows the effects of mesh density on wavenumber distribution. Roughly
speaking, increasing the number of elements in the z direction does not change the
shape of wave 1 very much, although the magnitude of both the real and imaginary parts
becomes greater. From Figure D. 5 we can see that the effective thickness will increase
with the element number in the z direction, in other words, the added mass on the BM

due to fluid loading will increase with element number in the z direction. For the 1D
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case, the wavenumber magnitude is predicted to decrease when the effective mass of the
BM increases, based on equation (6.7), which is not seen in these simulations, since the
wave in this 3D cochlear model is more complicated than that of the 1D model. It is not
currently clear why the magnitude of the wavenumber increased with the number of
elements in the FE model, as seen in Figure D. 8. This does not appear to have very
much effect on the distribution of BM velocity, as seen in Figure D. 6, or on the

decomposition of this into wave components, as seen below.

Figure D. 9 shows the contribution of each wave to the overall finite element response,
calculated using different mesh sizes. It can be seen that a finer mesh does not change

the contributions of each wave very much.
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Figure D. 8 Wavenumber distribution of 5 of the forward-going waves, calculated using the wave finite

element model of the cochlea at 1 kHz with a BM damping ratio of 0.1 with different mesh density of (a)

512x8x4, (b) 512x8x8 and (c) 512x8x16.
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Appendix D: Factors Influencing the Dynamics and Waves in the Cochlea
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Figure D. 9 Decomposition of the modal BM velocity into components due to each of the forward-going

waves in Figure D. 8 at 1 kHz with a BM damping ratio of 0.1 with different mesh density of (a) 512x8x4,
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