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USING A WAVEGUIDE FINITE ELEMENT/BOUNDARY ELEMENT METHOD 

 

by  

Iwan Prasetiyo 

 

The use of lightweight construction in building applications offers flexibility in use 

and ease of construction but often goes hand in hand with reduced sound insulation. 

Regarding this issue, this thesis investigates sound transmission behaviour of such 

structures. A numerical model is developed using a coupled waveguide finite element-

boundary element (WFBE) method to predict the transmission loss (TL) of more complex 

structures and is applied to double panel systems.  

Initially, analytical waveguide models for a plate strip are developed. These models 

are used to gain insight into the vibro-acoustic behaviour of such a structure, particularly 

compared with an infinite system, as well as for validating the WFBE method.  

Compared with results for an infinite double panel system, the finite extent in one 

direction of the waveguide system introduces some features in its TL. One of them is the 

presence of lateral cavity modes. These introduce additional stiffness to the air in the 

cavity so that the mass-air-mass resonance frequency of the waveguide structure shifts to 

higher frequency. Such additional stiffness reduces the overall transmission loss. This 

tendency is confirmed by measurement results. Another aspect related with the finite width 

is the presence of internal coincidence phenomena which cause dips that are not related 

with cavity resonance and are also independent of incidence angles. Moreover, a higher TL 

is found for the waveguide double panel partition at low frequencies as the finite width 

system radiates less efficiently than the infinite plate model. The results obtained also 

confirm that the dissipative mechanism behaviour found in the structure originates from 

the cavity rather than from the panel as postulated by London.  

The effect of studs connecting the two leaves of the double panel system is also 

investigated. The effect of the air in the cavity becomes less significant with increasing 

frequency for the case of stiff studs so that the stud behaviour is predominant at high 

frequency. However, for more flexible studs lateral cavity modes and the internal 

coincidence effect become more significant and reduce the sound transmission loss. 

Therefore, for the case of elastic steel studs where no sound absorbent material in the 

cavity, both the transmission paths need to be handled carefully in order to achieve a good 

prediction  of TL.  

Comparisons of the numerical model results and measurements suggest that 

inclusion of an appropriate cavity loss factor is important to achieve accurate results 

particularly when sound absorbing material is absent from the cavity. A reduced air 

stiffness also needs to be considered to account for practical considerations. Moreover, it is 

of importance to include the detail in terms of elastic stud geometry in order to have a 

more representative stiffness. The comparison results also indicate that numerical models 

based on the WFBE method are able to produce good prediction results. 
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Chapter 1. Introduction 

1.1 Background 

Lightweight structures are widely used in vehicles and buildings. In buildings 

lightweight walls, such as shown in Figure ‎1.1, have become commonplace due to their 

flexibility of use and ease of construction. In order to meet the stipulations of building 

regulations as in [1], such lightweight structures have to meet a certain sound reduction 

performance without increasing their weight unnecessarily. Hence, it is of importance to 

have a fundamental understanding of the vibro-acoustic behaviour as well as a good 

prediction model in the design process to ensure that such structures can comply with such 

requirements. 

 

Steel stud

plasterboard

Wooden  
stud

plasterboard

   

 

Figure ‎1.1. Typical lightweight structures for building application. 

 

In general, the reduction in sound across a partition increases with its mass. As the 

weight of the structures is critical, and considerable transmission losses are required, an 

appropriate construction is required in order to suppress their acoustic deficiencies. Double 

panel partition structures are often used in practice to deal with such requirements as they 

have a higher transmission loss (TL) performance than that of single panels for the same 

overall mass. However, double panel partitions introduce other complexities in their sound 

reduction mechanism that are not found in the single panel case, due to the air-cavity and 

acoustic material inserted within it as well as structural connections [2, 3]. Therefore, for a 
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good prediction model, it is not sufficient simply to consider the mass of the panels in 

order to calculate the sound reduction obtained but there is also a need to take account of 

the other relevant aspects of the system. 

A fundamental understanding of the vibro-acoustic behaviour of lightweight 

structures is of importance to investigate key parameters affecting the structure-borne and 

air-borne sound transmissions of such systems. This aim, however, is not always easily 

achieved as the most common models usually include some simplifications in their 

formulation, e.g. using infinite panel theory and limp panel theory where the bending 

stiffness effect of panel is disregarded [4, 5], using an infinite cavity [6], assuming infinite 

stiffness for the studs [2, 7] and so on, which are not always justified in practice. Under 

such circumstances, a parameter study and prediction for more realistic structures is 

restricted accordingly and may give rise to a misleading conclusion due to limitations in 

portraying their true physical behaviour. Moreover, it is found that existing prediction 

models do not yet cover all possible variations found in practice [8]. Hence, a more 

versatile prediction model is still required.  

For waveguide structures which have a constant cross-section in a particular 

direction, the waveguide finite element/boundary element (WFBE) method is a numerical 

tool that is able to provide a flexible approach in representing the structure in detail in 

terms of its geometry for a wide frequency range as well as allowing for fluid-structure 

interaction [9]. WFBE method allows an efficient model to be produced for situations 

where the geometry is effectively two-dimensional but the wave field is three dimensional. 

Hence, this method requires less computational time and memory compared with 

conventional FE/BE.  

As a typical double panel system has an arbitrary cross section with constant 

properties in one direction and therefore forms a waveguide, the WFBE method is 

expected to be useful for investigating its transmission loss behaviour as well as suitable to 

develop prediction models for such structures by taking into account the finite width of the 

panel and of the air cavity explicitly. Moreover, steel studs can also be included into the 

model as mechanical connectors between the panels. In the next section, literature on 

transmission loss particularly from single and double panel systems is reviewed. 
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1.2 Literature review 

1.2.1 Prediction models for single panel 

The transmission loss (TL) is a decibel quantity of the ratio of the incident power 

incW  impinging on a structure to resulting transmitted power 
transW  as 

 

 1010log inc

trans

W
R

W

 
  

 
 (1.1)

1
 

 

This quantity is used to indicate the reduction in sound energy across the structure. Hence, 

a higher TL means a lesser amount of sound energy can be transmitted through the 

structures and vice versa. The TL prediction of a panel has been carried out for many years 

under the fundamental assumption that the panel is infinitely extended and excited by a 

random incidence sound field [4]. This enables the TL of the panel to be predicted 

conveniently, assuming perfectly diffuse conditions where the incident energy is 

distributed equally in all directions. The use of a limp panel has the implication that the 

prediction is only dependent on the mass of the panel per unit area, not on its stiffness. 

This leads to a formulation known as the mass law which corresponds to ‘non-resonant 

transmission’. Accordingly, it is inadequate to explain resonant transmission in which the 

coincidence phenomenon is present. Moreover, compared with experimental results, this 

approach gives rise to some discrepancy where field incidence [10] is usually used as an 

empirical correction to get better prediction results. 

 The coincidence phenomenon in sound transmission occurs when the trace 

wavenumber of sound excitation equal to a free wavenumber of structure [11]. Under such 

a condition, the sound energy is transmitted almost unattenuated as the wave impedance of 

structure becomes zero. The coincidence in the TL curve can be found at different 

frequencies as it depends on the incident angle and the lowest coincidence appears at 

grazing incident angle which is equal to the critical frequency. 

London [5], developed a model for the sound transmission loss prediction of an 

unbounded single panel by considering the effect of mass, dissipation and flexural motion. 

                                                 
1
 For consistency throughout this thesis, R  is used instead of TL  to denote sound reduction index or 

transmission loss formula. 
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The average TL for a diffuse sound field was obtained by integrating the transmission 

coefficient over the incident angles. This study concluded that neither normal incidence 

theory nor the mass law were adequate to explain the behaviour of single panel in a diffuse 

sound field.  

As the panel is finite in practice, a number of researchers have addressed some 

problems that are not present in the infinite case, i.e. effect of the finiteness and mounting 

(or boundary) conditions which introduce peaks and dips in the TL curve over a particular 

range of frequency. For the finite panel, Sewell [12] developed a formula to predict the 

sound transmission loss of a single-leaf partition which was set in an infinite rigid baffle by 

means of a modal expansion approach. This study produced a correction to the TL 

prediction of the infinite plate, leading to an improvement in the prediction accuracy 

relative to the mass law.  

Leppington [13] investigated the resonant and non-resonant transmission of panels. 

Analytical formulae for the problem with two-dimensional geometry where a panel is 

mounted in an infinite rigid baffle were then developed. The formulae obtained can 

particularly improve the non-resonant transmission calculation which leads to better 

agreement with experimental results when combined with the resonant transmission. This 

corrects the non-resonant formulae proposed by Sewell [12] as well as providing further 

explanation for issues corresponding with the non-resonant transmission and field 

incidence that is commonly introduced in transmission prediction using infinite panel 

theory. 

1.2.2 Double panel partition with air cavity 

Some efforts to formulate the TL prediction of double panel partitions have been 

conducted over the years. Initially, simple models were developed for an infinite double 

panel partition without structural connections, for example the model proposed by Beranek 

and Work [14]. This was developed using the transfer impedance method based on 

continuity of the acoustic velocity at the interfaces. For simplicity only the mass reactance 

of the panel was initially considered. Moreover, this model did not include the effect of a 

diffuse incident sound field. Fahy [2] and London [15] used the progressive-wave method 

to develop a prediction model for a similar case by considering forward and reverse 

travelling waves between panels. From these models, the double panel partition may have 
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a lower TL than that of a single panel due to the presence of a dip at low frequency. Such a 

dip is present when the panels move out-of phase due to excitation in the normal direction 

and referred to as the mass-air-mass resonance. In the London model, a complex 

impedance consisting of the resistance and reactance term was introduced for the panels. 

Moreover, compared with the model in [14], the inclusion of the flexural motion of the 

panel allows the coincidence effect in the sound transmission problem to be evaluated and 

the panel response due to a diffuse field excitation to be investigated. Using this approach 

with an appropriate value of the panel resistance, the prediction results and measured ones 

can be aligned. 

In comparison with measurement results, however, the results from the infinite 

prediction model differ to some degree. To overcome these differences, various correction 

factors are commonly introduced to obtain an improved fit with the measurement results. 

The most classic way is by limiting the maximum incident angle for a diffuse field 

calculation; the limit typically varies between 70 and 85 [16]. For example Beranek et al. 

[10] found an upper incident angle of 78 leads to a good fit between the prediction results 

and the measurement ones. It should be noted that these limiting incident angle values 

were obtained empirically from the best fit between the prediction results and the 

experimental ones. The resulting model is then termed “field‎incidence”. In physical terms, 

it is reasonable as the incident sound at grazing incidence is hard to realize in practice. 

Mulholland et al. [17] support this by observing a relation between the room mode density 

and the incident angle. It is found that above the limiting angle the number of modes 

decreases significantly hence justifying the absence of sound in this region. Therefore, it is 

suggested that the introduction of the upper limit angle actually deals with imperfections in 

the diffuse sound field found in practice that might be caused by the properties of the 

measurement facility. Moreover, such an upper limit angle can minimize the “niche”‎effect 

at frequencies below the critical frequency; this corresponds to the shielding effect due to 

the depth of aperture in which the specimen is mounted [18] where such an effect is also 

evident at low frequency as discussed in [19]. Sewell [12] indicated in his theory that the 

limiting angle of incidence varies and is not limited to a fixed value; instead the exact 

value depends on frequency and on the panel size. This indicates that the form of the 

incident sound field is not the only cause of the discrepancy. Despite all that, Kang et al. 

[20] found that a Gaussian distribution function over incident angle offers a better 
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directional distribution of the incident energy than the field incidence theory for the case of 

multi-layered panels. 

The effect of finiteness of the structure on the transmission problem in double panel 

partitions is also considered through rigorous mathematical formulations among others by 

Sewell [6]. This was based on a multimodal analysis of the panels in order to get a solution 

for a finite double panel mounted in an infinite rigid baffle. Compared with the infinite 

models, his formulation for a fully diffuse incident field behaves similarly to those with a 

limiting angle of incidence, although such a limitation is not incorporated in his model. 

Instead, this behaviour is related to the cavity depth rather than the characteristic of the 

measurement facilities introduced as the limiting angle. Cummings and Mulholland [21] 

developed a prediction model for the same case by introducing absorption at the edges of 

the cavity. By using the multiple-reflection theory [17], the prediction model considers 

absorption effects in the air cavity by tracing the incoming sound in which the amplitude of 

reflected sound reduces as it undergoes successive reflections. However, it requires an 

absorption coefficient equal to 1 to allow the results to become close to the experimental 

ones and that is not realistic in practice. Xin et al. [22] developed a model which is 

applicable for a double panel system of finite‎extent.‎It‎differs‎from‎Sewell’s‎model since 

the solutions are derived for a double panel system with clamped boundary conditions 

instead of the simply supported boundary.  

A spatial windowing technique has been developed to deal with issues arising from 

the finiteness of the panel [23, 24]. A theoretical radiation ratio of a baffled finite sized 

panel is introduced to address the diffraction characteristics at the edges of the bounded 

structure. Compared with the infinite plate model, this increases the TL values, particularly 

at low frequency. However, in this approach, the modal characteristics of the panel due to 

its finiteness are not taken into account. More recently, Vigran [25] developed a prediction 

model based on a simplified spatial windowing technique in which a one-dimensional 

“window”‎was‎used‎rather‎than‎a two-dimensional one.  

Other methods used for sound transmission through finite structures, include SEA 

(statistical energy analysis) [26], FEM (finite element method) or BEM (boundary element 

method) [27, 28]. These are discussed further in section ‎1.2.4 below. 

Apart from numerical models, prediction models dealing with finite structures do 

not necessarily treat the air cavity as a finite system, e.g [6, 23]. Moreover, although a 
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finite cavity is considered in a model in [22], this was focused to investigate the effect of 

the boundary condition of the panel rather than discussing specifically the effect of the 

finite cavity on the transmission loss, particularly where no sound absorption is present in 

the cavity.  

1.2.3 Double panel partition with studs 

In a typical double panel wall, structural links or studs are commonly present 

between the two panels. They are used to increase the stiffness of the structure as well as to 

provide a structural support and stability to the panels attached to them. However, this 

leads to a degraded sound insulation performance as the studs act as an additional path for 

sound transmission. Some models have been proposed in order to evaluate such a structure. 

Sharp [7] considered double panel systems with the studs having an infinite stiffness that 

rigidly connects the panels. In this model, the vibration velocity of both panels is equal at 

the stud positions. The results obtained would be suitable for studs which have a high 

transverse stiffness, e.g. wooden studs. A primary‎positive‎aspect‎of‎Sharp’s‎model‎is‎that 

it is simple and easy to implement, hence it is very attractive for practical purposes. 

However, for the case of a double panel system with elastic studs, the resulting TL 

prediction would be underestimated due to the omission of the flexibility which reduces 

vibration transmission. For this reason, Gu and Wang [29] proposed a model in which 

flexible studs were included. They aimed to take account of the lateral resilient effect of 

the metal studs when under compression. The flexible studs were represented by a spring 

having equivalent stiffness tK  so that the vibration velocity of both panels at the stud is no 

longer equal. However, owing to assumptions made concerning the stud vibration velocity 

ratio of the two panels, their formulation should be used with caution for a lightweight 

partition regarding the frequency range under consideration.  

 Fahy [2] proposed a model for the same system using assumptions similar to 

Sharp’s, i.e. the stud possesses infinite stiffness and each stud is assumed to have an 

independent dynamic behaviour. Moreover, the studs are considered to move in the 

translational‎ direction‎ only.‎ However,‎ it‎ differs‎ from‎ Sharp’s‎ model‎ as‎ Fahy‎ also‎

considered the mass per unit length of the studs in calculating the vibration velocity of the 

stud due to excitation of the first panel. It should be noted that this model was derived to 

illustrate the general behaviour of the double panel system with studs rather than to give an 
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accurate solution to the stud-panel system for practical purposes. Nevertheless, this model 

gives a basic idea about how the stud connections transmit sound energy. By considering 

the ratio of transmission via the stud and via the cavity, assuming that the line impedance 

of both panels is equal, this formulation suggests that the sound transmission through the 

studs would be more dominant for panels with low critical frequencies. The stud 

transmission is then multiplied by a factor which expresses the ratio of sound power 

radiated by the whole panel and by the excitation region around the studs in order to get 

the overall transmission coefficient. 

Following Fahy’s‎ model‎ [2], Davy [30, 31] developed a prediction model with 

some extensions. It allows different line impedances for the panels involved in the system 

and flexible studs may be considered. Moreover, compared with the models in Refs. [2, 7, 

29], it also considers resonant components of the panel vibration besides the non-resonant 

ones, as proposed in [26]. This basic model actually consists of approximation equations to 

the numerical model proposed by Sato [32] to deal with bounded partitions. Among the 

established models, it delivers a better prediction for double panel cases than other models 

[8, 33]. However, this model seems to be difficult to understand in physical terms as 

various ad-hoc corrections are employed in order to get the results closer to the 

measurement ones rather than solving the vibro-acoustic governing equations as in e.g. 

Refs. [6, 34, 35]. Therefore, optimization of design may not be easy to perform using this 

formulation. 

The prediction models developed in Refs. [2, 7, 29, 31] use a decoupled approach 

to predict the sound transmission loss of the double panel system with studs. It is termed as 

such as the prediction models calculate the energy transmitted through the structure and the 

cavity separately and then add them up to obtain the total transmission of the system.  

More recently, a similar approch was also proposed by Nakanishi et al. [36] with a 

weighting factor introduced to each transmission path in order to get a better fit between 

the prediction result and the experimental ones.  

The frequency at which the stud and the air in the cavity have equal contributions 

to the total response if considered separately is termed the bridge frequency Bf  [7, 29]. 

Below this frequency the air in the cavity contributes most to the total transmission of the 

system while above this frequency, the stud starts to dominate in the overall transmission. 

This frequency is clearly seen for cases where sound absorbing material is present in the 
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cavity as in calculations [7, 29] and measurement [37] where the cavity and stud dominant 

regions in TL curves is clearly seen. Without sound absorbing material in the cavity, 

however, such a frequency would be different. Such a tendency is indicated by 

measurement results, e.g. in Ref. [38], where the inclusion of sound-absorbing material in 

the cavity in order to suppress undesirable cavity modes was found to increase the TL of a 

double panel system with C-studs for frequencies up to 6.3 kHz where the critical 

frequency was around 2.5 kHz. This indicates that the transmission through the air cavity is 

also significant at high frequency. 

Due to the periodic spacing of studs a periodic approach has been considered. Lin 

and Garrelick [39] developed an analytical model for an infinite double panel system with 

rigid studs treated as a periodic structure. By means of a Fourier transform, the solution for 

the system was obtained and then the relative contributions of the structural and cavity 

paths in such a system were obtained. However, as indicated by Urusovskii [40], the basic 

formulation of Lin and Garrelick has some shortcomings with regard to the phase factor 

and mass reactance of the stud as well as the acoustical influence of the cavity. These were 

remedied by the model proposed by Urusovskii [40]. 

With the help of a space harmonic expansion and the principle of virtual work, 

Wang et al. [41] developed a model in which the studs were assumed to be periodically 

distributed along the gap between the panels. This is actually an extension of Mead and 

Pujara’s model [42, 43] for the case of a double panel system with flexible studs. For this, 

compressional and torsional springs were used to cover the resilient characteristics of the 

studs. Subsequently, Legault and Atalla [33] reviewed some models that were developed 

using both the decoupled approach and the periodic one. By exploiting the important 

features of each model, a periodic model was developed for thin lightweight panels with 

mechanical connectors and sound absorbing material in the air cavity. Meanwhile, 

Brunskog [34] investigated the finite cavity effect of the same system using the Fourier 

transform to solve the vibro-acoustic problem. The cavity was treated as finite due to the 

presence of the wooden studs rather than being transparent to the studs as assumed in [33, 

41] but the system was otherwise infinite in extent.  

Instead of using a constant compressional stiffness to represent a resilient channel 

as in [29, 33, 41], some models used a frequency-dependent equivalent stiffness. Poblet-

Puig [44] calculated such an equivalent stiffness by approximating the results of the FE 
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model of elastic studs by simpler models consisting of compressional and rotational 

springs. Vigran [45] developed a model by including the best fit to the equivalent stiffness 

data in [44] to simplify calculations in his model. Compared with measurement results, his 

model produces a good agreement. More recently, Davy et al. [46] used a similar approach 

but with different data for best fitting based on NRCC sound insulation measurement data 

[38]. 

A numerical aproach can be an alternative method in modelling such cases without 

introducing many simplifications as found in [7, 29] which can give rise to restrictions to 

the prediction models in their use. Sound-structure interaction between panels and air in 

the cavity and surrounding medium can also be established in more rigorous way so that 

mutual effects can be taken account which are absent in the decoupled approach. This 

allows the total transmission to be obtained rather than calculating each transmission 

individually. This means that the use of weighting factors to the contribution of each 

transmission path [2, 7, 29, 31, 36] is no longer required. Moreover, the geometric form of 

studs can be expressed as they are (or closer to their true shape) and the stud parameters 

can be varied easily as well. This allows investigation of the physical origin of phenomena 

associated with the effect of steel studs on the TL to be performed more intensively, not 

limited for typical studs found in practice but also for new ones, where such advantages 

may be difficult to be inferred directly from some existing models, e.g. [45, 46]. 

1.2.4 Numerical models 

Since the exact solution is not always available, numerical approaches can be an 

alternative way to solve vibro-acoustic problems. This is beneficial for calculating the 

transmission loss for complex structures, e.g. geometrical complexity, where the analytical 

approach becomes impractical. For this, a coupled FEM/BEM approach can be used to 

calculate the sound transmission loss, where FEM is used for modelling the structural and 

internal fluid behaviour whilst the fluid domain outside the structure is efficiently handled 

by BEM especially for radiation problems [27, 28, 47]. The drawback of these numerical 

tools is that the computer resources required become excessive for high frequencies when 

the number of elements required increases. Therefore, it is more suitable for investigations 

at low frequencies [28]. 
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Conversely, Statistical Energy Analysis (SEA) can be used for mid-high frequency 

cases, depending on the modal density over a certain frequency band, but the results lack 

detail due to the statistical nature of the approach. The use of SEA for the TL calculation 

can be found for a homogeneous panel in [48] where coupling of the panel and rooms was 

considered. The concept of resonant transmission and the non-resonant transmission were 

introduced, the latter being associated with the mass of panel and introduced in SEA 

scheme as a direct coupling between the two rooms. This model was then extended for 

double panel systems in [26]. However, after comparing with experimental results, 

Elmallawany [49, 50] found inaccuracy or disagreement of the SEA results at low 

frequency and around and above the critical frequency. Moreover, for the double panel 

system case, such disagreement was also found at the dip frequency associated with the 

mass-air-mass resonance. With regard to the latter issue some extensions to improve the 

SEA model have been developed, e.g. Brekke [51] included a non-resonant coupling 

component for the panel and the air stiffness in the cavity while the problem related with 

the low frequency performance still remained as a consequence of nature of this method. 

The implementation of SEA for more complex structures can be found for double panel 

systems with mechanical connections in [52, 53] and sandwich panels in [54]. 

A numerical approach offers flexibility in modelling but a high computational 

resource is required as well as long computation times. As an alternative numerical tool, 

the spectral finite element (SFE) method [55] can be considered. This method is efficient 

as the solution can be expressed as a combination of cross-section mode shapes and 

exponential functions for propagation in the other direction so that the number of the 

degrees of freedom is reduced. For an infinite length waveguide system with arbitrary 

cross-section, an exact wave solution is utilized in the infinite direction. Hence, this 

method needs 2D modelling of the cross section with special elements that allow for wave 

propagation in the third dimension. This technique is also referred to as the waveguide 

finite element (WFE) method. It can be coupled with wavenumber boundary element 

(WBE) method to form a coupled waveguide finite element/wavenumber boundary 

element (WFBE) method. This numerical approach can provide results in detail and cover 

a wide frequency range compared with conventional FEM/BEM and SEA. It has been 

applied for example to railway tracks [56-58], pipes [55], cylindrical shells [59] and tyres 
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[9, 60]. The use of WFBE to calculate the sound transmission loss for an example extruded 

panel is reported in [61].  

As this numerical method requires specific elements that need to be developed on a 

case-by-case basis, another approach in modelling waveguides based on the finite element 

method can be found [62]. By applying a periodicity condition, dynamic behaviour of a 

section with particular segment length   cut from a structure can be used to predict the 

response of the whole structure. Using similar approaches, Mace et al. [63] has developed 

a method without necessarily requiring new elements where the element library of a 

conventional FE package can be employed. The advantage of these apparoches, however, 

contains some inherent weaknesses in regard with accuracy as the effects of spatial 

discretisation and periodicity as well as machine rounding error exist. Hence, the segment 

length   must be selected carefully in order to avoid being comparable to the shortest 

wavelength in the structure as well as not too small where round-off error is present in 

which the value of the stiffness matrices is too large compared with the inertial term [64].  

1.3 Objectives and scope of the thesis 

The main objective of this thesis is to investigate the sound transmission behaviour 

of lightweight structures. For this, a physically based model using the WFBE method is 

developed that allows a parameter study to be carried out for “waveguide”‎structures which 

have constant geometry in one dimension.  

The double panel system is the main application considered. The investigation is 

focussed on the effect of the finite cavity and finite panel width where sound absorbing 

material is not present. For more complex structures, the effect on sound transmission of 

mechanical connectors in the form of steel studs is also investigated. All results are 

expressed in terms of transmission loss (TL). The results are discussed by comparing them 

with those of an infinite system (London model). It means that the numerical model 

implicitly is used to assess the London model which uses infinite plate theory and 

introduces a complex impedance mass in order to get better prediction results. In this study, 

measurement results are also presented to validate the numerical ones and some findings 

related with issue of the finite cavity in double panel systems.  

The WFBE method allows the vibro-acoustic behaviour of complex structures to be 

evaluated. Using this method, the numerical model of the double panel system can be 
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realized with various parameters of interest to represent the physical structure including 

details that are usually simplified in analytical models. Hence, the WFBE approach allows 

flexibility in expressing the stud geometry with various cross-section shapes and material 

properties. The numerical model proposed assumes the structures are mounted in a rigid 

baffle. Moreover, room effects and flanking transmission that may exist in practice or 

measurements are not considered. In order to verify the WFBE approach, an analytical 

solution for a plate strip is developed as a benchmark solution. 

1.4 Thesis outline 

The structure of the thesis as follows: 

 

 Chapter 2 is devoted to a systematic procedure for obtaining solutions for the vibro-

acoustic behaviour of a plate strip using the Fourier transform method with emphasis on 

how the fluid and structure interact with each other. Moreover, a detailed discussion of the 

implication of varying several parameters of the plate strip is also provided. The resulting 

solutions, which are exact apart from their numerical evaluation, can be used as a 

benchmark solution for validating the waveguide finite element/boundary element 

approach. 

 Chapter 3 introduces the basic concept of the waveguide finite element/boundary 

element (WFBE) method. It starts with a description of plate elements and solid elements 

used in the WFBE method. Solutions for free and forced response using this method are 

also presented. Subsequently, the Wavenumber Boundary Element (WBE) method is 

explained to underline the way in which it differs from the conventional BE method. The 

coupling of these two methods is provided in terms of matrices and the procedure of 

calculating the radiated power and transmission loss is described including the diffuse 

sound field case. 

In Chapter 4 validation of the numerical model is conducted by comparing the 

results obtained with those from the analytical models in Chapter 2 for a finite width plate 

strip. Comparisons of the results of the two methods as well as various methods for 

evaluating the integral in the inverse Fourier transform are discussed in detail. This latter 

step is important in order to know the effect of discretization in wavenumber space in 

terms of step size and wavenumber range. As the numerical model is implemented with a 
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finite width baffle, the effect of baffle width on the accuracy of the radiated power 

calculation is also investigated. Moreover, the effect of the thickness (i.e. depth) of the 

WBE mesh is considered to ensure the WBE method does not produce unreliable results 

[65] owing to a close distance between the opposite sides of the mesh.  

In Chapter 5 a numerical model of the transmission loss for a double panel system 

is developed using the WFBE method. At first, the general behaviour of a double panel 

system is illustrated using the model proposed by London [15] in which the system is 

considered to be infinite in extent. The numerical WFBE model is then used to investigate 

the effect of finite cavity and panel width on the transmission loss. The results obtained are 

compared with those of the infinite system to draw some important conclusions. 

 In Chapter 6 the elastic studs are introduced in the waveguide double panel system 

which has been developed in Chapter 5. The dimensions of the structure in general are 

chosen to follow specimens measured by NRCC [38] which are used for comparison. The 

case is investigated initially using a simplified stud model where only the web part is 

included in the numerical model. This is then extended to include the flanges. A parameter 

study is presented to investigate further the elastic stud behaviour. 

In Chapter 7 new experimental results are provided to validate some findings, 

particularly in Chapter 5 and 6. In this chapter, the general specification of test specimens 

is presented as well as the measurement setup and procedure. The cavity dimension and 

elastic stud effect become a central issue in this measurement. Results are compared with 

the prediction model. 

Chapter 8 contains conclusions and suggestions for futher work. 

1.5 Thesis contributions 

The main contributions that have been achieved from this study can be outlined as 

follows: 

a. Analytical models based on a wave method have been developed to calculate 

the vibration response, sound radiation and sound transmission of an infinite 

plate strip. Compared with those obtained by infinite plate theory, it is shown 

that‎‘edge‎modes’‎contribute‎to‎the‎radiated‎power‎below‎the‎critical‎frequency‎

for a point force excitation.  
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b. It is shown that the slope of sound transmission loss curve for an infinite plate 

strip at low frequency is modified from the results for an infinite plate. 

c. Numerical integration and discretization effects in the wavenumber domain 

have been assessed and simple rules proposed to avoid losing information when 

implementing the coupled Waveguide Finite Element-Wavedomain Boundary 

Element (WFBE) method.  

d. The width of the finite rigid baffle used in the WBE method is shown to be 

important to the accuracy of the numerical model results at low frequency. The 

width of baffle required at a given frequency has been determined. 

e. It is found that the total response of the waveguide double panel system is the 

sum of the stiffness dependent response and acoustic lateral cavity modes as a 

consequence of the finite extent of the cavity. Measurement results validate 

such a tendency. 

f. Internal coincidence effects are found to be a source of TL degradation in the 

waveguide double panel system. The frequency of these phenomena is 

independent of the direction of incoming waves. 

g. It is confirmed that the stiffness of an elastic stud is a critical parameter to 

determine the overall response of the double panel system with mechanical 

connectors.  

h. Compared with measurement results, appropriate values of the cavity loss 

factor and air stiffness are also required to achieve better prediction results for 

cases where no sound-absorbing material is present in the air cavity. 
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Chapter 2. Vibro-acoustic behaviour for an infinite plate 

strip 

A plate strip is considered here which is assumed to be infinite in length but have a 

finite width, where it is confined by parallel boundaries. Such structures can also be 

considered as waveguides [2]. Since such plate strips form a basic element of more 

complex lightweight structures, they will be discussed first before proceeding to more 

complex waveguide structures.  

The framework for deriving the exact solutions for the vibro-acoustic problem for  

this structure is readily available in some references, e.g. in Ref.[2, 4]. In those references, 

the structural vibration response and its interaction with the surrounding fluid are discussed 

from a wave phenomenon point of view. This wave approach has been applied to obtain 

solutions by utilizing a spatial Fourier transform for solving many basic cases e.g. beams, 

plates, pipes (or cylindrical structures), etc. For the case of a plate strip, some results have 

also been found for particular cases but with a limited discussion.  

The focus of this chapter is to understand the vibro-acoustic behaviour of a plate 

strip in terms of its point mobility, sound radiation and sound transmission loss. For this, 

an analytical model is developed using a wave approach in order to find waves propagating 

freely along the waveguide. By combining this wave approach with a modal solution in the 

transverse direction, the response of the plate strip is obtained in the wavenumber domain 

using the Fourier transform method. This solution is then extended in order to solve cases 

in which the interaction of the plate strip and the surrounding fluid is considered, i.e. for 

the case of radiated sound power and sound transmission loss.  

2.1 Vibration of a plate strip 

For a waveguide structure an analytical wave approach can be considered. This is 

used in this section to find the free waves in an infinite plate strip, and in the next section 

its point mobility. The sound radiation of the structure due to a point force excitation is 

considered in section ‎2.3 and the sound transmission due to acoustic excitation is studied in 

section ‎2.4. Simply supported boundaries on the two parallel edges will be considered 

throughout for simplicity.  
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2.1.1 Undamped free vibration  

The plate strip under consideration is illustrated in Figure ‎2.1. It has width 
yl  in the 

y  direction and is infinite in the x direction. It is assumed to be simply supported 

(pinned) along the edges 0y   and 
yy l . This condition allows the response to be written 

in a separable form. A travelling wave solution is used to describe the dependence of the 

displacement on the x direction while, for the y  direction, a modal solution can be 

utilized to describe the structural response. Only the out-of-plane response w  is considered 

here. 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.1. A simply-supported plate strip. 

 

 

For a thin undamped plate, the out-of-plane displacement ( , , )w x y t  in the absence 

of external forces satisfies the following differential equation [2]  
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
 is the bending stiffness, E  is‎ Young’s‎ modulus,‎ h  is the plate 

thickness, 
p  is‎Poisson’s‎ratio,‎and‎   is the mass density of the plate.  

Harmonic motion is assumed at the angular frequency  , with a time dependence 

i te   which is omitted for brevity. Due to the use of simply supported boundaries, the 

response amplitude w  of the plate at position ( , )x y  may be separated into its x  and y  
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components and written as a summation over components with m  half-sine waves across 

the width yl  

 
1

( , ) ( )sinm

m y

m y
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 

  (2.2) 

 

where ( )mw x  is the complex amplitude of the m
th

 component that depends on the 

excitation. This series forms a complete set of functions which satisfy the boundary 

conditions on 0y   and 
yy l . Considering one term in the series, substituting this into 

Eq. (2.1) yields 
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Seeking solutions of the form ,( ) x mik x

mw x e


  gives 
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which can be written as 

 

2
2

2 4

,x m B

y

m
k k

l


  
   

      (2.5) 
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 is the free bending wavenumber of the plate. Eq. (2.5) has four 

solutions which can be divided into two fundamentally different wave-type solutions for 

each m  
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Real wavenumbers represent propagating waves; the wavenumber is the phase change per 

unit distance, equal to 2  , where   is the wavelength of vibration. Imaginary 

wavenumbers represent evanescent waves which decay with distance. At low frequency, 

B yk m l and all four wavenumbers in Eq. (2.6) are imaginary so that all four waves 

behave as evanescent or nearfield waves. In contrast, when B yk m l , 1,x mk  is real but 

2,x mk  remains imaginary. Therefore, both propagating and nearfield waves are present for 

the latter case. It may be noted that real positive or negative imaginary values of the 

wavenumber 1,x mk  and 2,x mk  correspond to waves travelling or decaying in the positive 

x direction while the opposite sign corresponds to those travelling or decaying in the 

negative x direction. The frequency at which B y
k m l  is referred to as the m

th
 cut-on 

frequency m  and is given by  
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 (2.7) 

 

The relation between the wavenumbers 1,x mk  and frequency   from Eq. (2.6) can be 

observed from the dispersion curves shown in Figure ‎2.2. These are calculated for the 

example parameters listed in Table ‎2.1 corresponding to a 6 mm aluminium plate. A 

damping loss factor of 0.1 is considered in order to give a smooth response. Although this 

value does not represent the typical internal loss factor of aluminium, it is useful to look at 

its behaviour clearly particularly at high frequency. It can be seen that the presence of the 

boundary constraint has modified the dispersion curves so that 1,x m Bk k . For each mode 

m , as frequency increases, the wavenumbers 1,x mk  change from imaginary values into real 
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ones at the cut-on frequencies at which 
1,x mk  = 0. Conversely, all the wavenumbers 

2,x mk  

are negative imaginary with zero real part. Both 
1,x mk  and 

2,x mk  have the same values 

yim l  at  = 0. 
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Figure ‎2.2. The dispersion curves in the x direction of an undamped simply-supported 

plate strip with parameters in Table ‎2.1: (a) 1,x mk ; (b) 2,x mk . 
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Table ‎2.1. Material properties and dimensions of the plate strip (unless otherwise 

stated). 

Properties Dimension 

Young’s‎modulus,‎ E  (N/m
2
 ) 107.1 10  

Poisson’s‎ratio,‎ p  0.332  

Thickness, h (mm) 6.0 

Width, 
yl  (m) 1.0 

Density,   (kg/m
3
) 32.7 10  

Damping loss factor (if used),   0.1  

 

The cut-on frequencies for this plate are listed in Table ‎2.2. It is noticeable that they 

are proportional to 2m  as indicated in Eq. (2.7).  

 

Table ‎2.2. Cut-on frequencies for each mode m  in Hz. 

 

m  mf  

1 14.8 

2 59.2 

3 133 

 4 237 

5 370 

6 533 

7 725 

8 947 

9 1198 

10 1479 

11 1790 

12 2130 

13 2500 

14 2899 

15 3328 
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2.1.2 Inclusion of damping 

Up to this point, the equations have been derived for an undamped structure. In 

practice, however, all structures experience damping. In order to incorporate this, a 

damping loss factor   is included in the formulation by‎ making‎ the‎ Young’s‎ modulus‎

complex. The bending stiffness becomes 

 

 
3

2

(1 )

12(1 )p

E i h
D






 


 (2.8) 

 

From now on, this complex bending stiffness D  will be used. 

Due to the introduction of the complex bending stiffness, the wavenumbers in Eq. 

(2.6) become complex. Therefore, there are no purely propagating waves or purely 

evanescent waves in this case as both of them are decaying oscillatory waves. Moreover, 

since Eq. (2.6) produces wavenumber values in which the imaginary part can be either 

positive or negative, in the calculation process it must be ensured that the complex 

wavenumbers have imaginary values less than zero for positive-going waves in order to 

obtain waves that decay as x . Figure ‎2.3 shows examples of complex wavenumbers 

for   0.1 and the same parameters as previously, see Table ‎2.1. Results are shown for 

1m   to 6m  . The wavenumbers 1,x mk  can be seen to be predominantly imaginary at low 

frequency and then to become predominantly real above the cut-on frequency. However, 

this transition around the cut-on frequencies is more gradual than for the undamped case. 

The wavenumbers 2,x mk  are negative imaginary with a small negative real part. 
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Figure ‎2.3. Complex wavenumber evolution against frequency (━ real components;  

┅ imaginary components). 

2.2 Response due to a point force  

2.2.1 Formulation  

There are four wave solutions for each m  in Eq. (2.6), allowing the complete 

solution to be written as 

 

  1, 2, 1, 2,

1, 2, 3, 4,( , ) sinx m x m x m x mik x ik x ik x ik x

m m m m

m y

m y
w x y A e A e A e A e

l

 
 

     
 
 

  (2.9) 

 

In order to determine the constants 1,mA , 2,mA , 3,mA  and 4,mA , boundary conditions are 

required. For a force applied at 0x   it should be noted that, to ensure that waves decay in 

both directions, 1,mA  and 2,mA  are zero in the region 0x  while 3,mA  and 4,mA  are zero in 

the region 0x  . The external force can be written as a pressure ( , )f x y  

 

1m   

2m   

3m   

4m   
5m   

6m   

1m 

 

2m 

 

3m 

 

4m 

 

5m 

 
6m 
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 ( , ) ( ) ( )x yf x y f x f y  (2.10) 

 

where ( ) ( 0)xf x x   and 
0( ) ( )yf y F y y   for a point force at  00, y . Since the 

Fourier transform of ( ) ( 0)xf x x   into the wavenumber domain is unity at all 

wavenumbers, it is sufficient to consider only ( )yf y . Due to the finite width of the plate 

and the simply supported boundary conditions, this can be expressed as a Fourier sine 

series as follows 

 

 
1

( ) siny m

m y

m
f y F y

l





 
  

 
 

  (2.11) 

 

where mF  are the Fourier coefficients which are given by 

 

 
0

2
( )sin

yl

m y

y y

m
F f y y dy

l l

 
  

 
 

  (2.12) 

 

Recalling 0( ) ( )yf y F y y  , Eq. (2.12) becomes 

 0

2
sinm

y y

F m
F y

l l

 
  

 
 

 (2.13) 

 

where F  is the force amplitude.  

Considering the continuity of displacement, rotation and bending moment and the 

force equilibrium condition at 0x  , the solution may be written as follows (see Appendix 

A for its derivation) 

 

 
 

 

1, 2,

1, 2,

1,

2 2
1 2,1, 1, 2,

1,

2 2
1 2,1, 1, 2,

( 0, ) sin
2

( 0, ) sin
2

x m x m

x m x m

ik x ik xx mm

m x m yx m x m x m

ik x ik xx mm

m x m yx m x m x m

kiF m y
w x y e e

k lD k k k

kiF m y
w x y e e

k lD k k k










 



  
             

  
             





 (2.14) 

 

From this, the mobility Y i w F w F  for the infinite plate strip can be derived as 
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 

1, 2,0 1,

2 2
1 2,1, 1, 2,

(2 )sin( )( , )
sin

2

x m x mik x ik xy y x m

m x m yx m x m x m

i l m y l kw x y m y
i e e

F k lD k k k

 



 



  
            

  (2.15) 

 

 

The point mobility for the structure can be found by setting 0x   and 
0y y  

 

 

 
 

1, 2

02 2
1 2,1, 1, 2,

( ) 1 sin
x m

m x m yy x m x m x m

k m
Y y

k lD l k k k

 






  
            
  (2.16) 

 

 

Note that as an alternative formulation it is possible to apply the residue calculus method to 

obtain the point mobility Y [66].  

2.2.2 Convergence 

 Theoretically, the response amplitude of the plate strip is obtained from an infinite 

number of the wave components. In practice, the summation in Eq. (2.2), (2.9), (2.14) and 

(2.16) is performed for 1m   to M , where the upper limit M  is determined based on 

some convergence criterion. In order to find a suitable criterion, the mobility was 

calculated for the example parameters in Table ‎2.1 at various representative frequencies 

(30 Hz, 200 Hz, 400 Hz, 1 kHz, 2 kHz, and 3 kHz) for different values of M with 

excitation at the position (0, 0.433 yl ). Table ‎2.3 shows that the relation between frequency, 

the number of cut-on modes and the upper limit M  associated with a 1% relative 

difference in Y  compared with 400M  . From this, it can be concluded that M = 82 will 

give results within 1% for 3 kHz which is the highest frequency considered. The required 

upper limit M  decreases for lower frequencies but the ratio of this to the number of waves 

that have cut-on at each of these frequencies tends to be roughly constant. From this 

convergence study, a ratio of 6 (i.e. M  is taken as 6 times the number of cut-on modes) is 

found to be sufficient to estimate the mobility to within 1% for a particular frequency of 

interest.  
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Table ‎2.3.  Relation between frequency, number of cut-on modes m  and upper limit M  

for 1% difference in Y . 

Frequency (Hz) m  M  

30 1 6 

200 3 22 

400 5 30 

1 k 8 42 

2 k 11 66 

3 k 14 82 

2.2.3 Results  

Figure ‎2.4 shows the point mobility of a plate strip with properties as in Table ‎2.1 

for excitation at position (0,0.433 )yl . The mobility of an infinite plate with the same 

properties is shown for comparison. This is given by 1 8 ( )Y D h  [67]. 
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Figure ‎2.4. The point mobility of the plate strip excited at position (0,0.433 )yl . The dashed 

line indicates the mobility of an infinite plate. 

 

The features of the plate strip mobility in Figure ‎2.4 can be identified as follows: 

1. At low frequencies, below the first cut-on frequency, the mobility is clearly 

stiffness-controlled as indicated by the phase of nearly 2  radians and the 
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amplitude which increases in proportion to frequency. Note that the phase is less 

than 2  radians due to the presence of the damping loss factor which makes the 

stiffness complex. It is also seen from the point mobility formula, where  

 B yk m l  in this frequency region, so that Eq. (2.16)  reduces to  

 
 

2

0

1

sin

2

y

m y

m y l
Y i

D m m l




 





 
 
 
 

   (2.17) 

2. Peaks occur at each of the cut-on frequencies (see Table ‎2.2). 

3. At high frequencies, when a lot of waves have cut on, the mobility tends to 

converge to that of an infinite plate. 

2.2.4 Effect of plate thickness 

It is instructive to study the point mobility behaviour due to changes in the plate 

thickness. Three different plate thicknesses are considered, 3 mm, 6 mm and 9 mm. The 

results are shown in Figure ‎2.5. It is clear that reducing the plate thickness leads to a higher 

mobility and a reduction in the cut-on frequencies.  
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Figure ‎2.5. Effect of plate thickness on the point mobility excited at (0, 0.433 yl )  

(┅ h  = 3 mm; ━ h = 6  mm; –•– h = 9 mm). 
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2.2.5 Effect of excitation position 

The peaks at the cut-on frequencies have magnitudes that are determined by the 

term  2

0sin ym y l  in Eq. (2.16). Figure ‎2.6 shows the point mobility for 
0 4yy l  and 

0 2yy l . For the case of excitation at the centre position (
0 2yy l ), the peaks only exist 

when m   1,‎3,‎5,…etc,‎as‎ for the even ones  0sin 0ym y l  . Meanwhile, for the case 

of 0 4yy l  the peaks are found for m  1, 2, 3, 5, 6, 7 etc while those for m  4, 8, etc are 

missing. Again, the term  0sin 0ym y l   for these values of m . For the latter case, the 

low frequency stiffness-like behaviour corresponds to a higher stiffness (lower mobility) 

because this position is closer to the edge. 
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Figure ‎2.6. Modulus and phase of point mobility for an infinite plate strip (━at 

 0, 2yl ; –•– at  0, 4yl ). 

2.2.6 Effect of damping loss factor  

To show the effect of the damping loss factor on the mobility, Figure ‎2.7 compares 

results with   0.01 and   0.1 for excitation at the centre position. This figure shows 

that a lower damping loss factor causes a higher amplitude at the peaks, whereas a higher 
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damping suppresses the peak amplitude. Away from the peaks, the response is similar. So, 

it is clear that the greatest damping effect on the point mobility can be seen in the region of 

the peaks which correspond to the cut-on frequencies. 
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Figure ‎2.7. Effect of damping loss factor on the point mobility of plate strip with 

parameters in Table ‎2.1 (┅   0.01; ━ 0.1  ). 

2.2.7 Average response of plate 

In this section the spatially averaged response of the plate is determined. The 

vibration of the plate surface in Eq. (2.15) can be expressed as a two dimensional Fourier 

transform pair as follows 

 
( )

( , ) ( , ) x yi k x k y

x yV k k v x y e dxdy
  

 
    (2.18) 

 
( )

2

1
( , ) ( , )

4

x yi k x k y

x y x yv x y V k k e dk dk


   

 
    (2.19) 

 

Thus, the wavenumber transform of ( , )v x y  as given by Eq. (2.14) for a unit point force 

and a single mode m  is 
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

 

 (2.20) 

 

where the integration limit   in the y  direction is replaced by 0 to yl  because it is 

assumed that the velocity is zero outside this range (for a plate set in a baffle). Eq. (2.20) 

has the following solution  

 

 
   2 22 2 2 2

1, 2,

( / )[( 1) 1]
( , )
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y yik lm

ym
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m l ei F
V k k

k m lD k k k k





 


  
 (2.21) 

  

 

The mean-square response 2( , )v x y  at a given point is the integration of the squared 

velocity over time.  For harmonic motion with complex velocity amplitude  ,v x y , this is 

equal to  
2

, 2v x y . It can also be written in terms of the product of the complex velocity 

amplitude  ,v x y  and its conjugate ( , )v x y .‎ A‎ spatial‎ ‘average’‎ mean-square response 

can then be obtained by integrating 2( , )v x y  over the plate strip area  

 

 2 2

inf
0

1
( , ) ( , )

yl

y

v x y v x y dxdy
l





    (2.22) 

 

where 
inf

 denotes‎ a‎ spatial‎ ‘average’‎ over‎ the‎ width. Note that this is actually an 

integral over the length direction rather than an average. Due to the infinite extent of the 

plate strip, where damping is included in the calculation the average would tend to zero 

whereas the integral is finite. An index inf is added to the angle brackets to indicate this. 

Recalling the definition of the mean-square response and substituting Eq. (2.19) into Eq. 

(2.22),  this yields 
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 (2.23) 

 

where 
xk   and 

yk   are introduced to distinguish between the integration over 
xk  and 

yk  

related to 
mV  and 

mV 

  respectively. If the integration order is changed so that integration is 

first performed over x  and y , use can be made of the Dirac delta function as follows 

 

 
( )( ) 24 ( ) ( )y yx x
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where the integral is zero for '

x xk k  or '

y yk k and is infinite if '

x xk k  and '

y yk k . 

Thus, the average mean-square response can be obtained in terms of the surface 

velocity in the wavenumber domain as follows 
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where 
2

( , )m x yV k k  is given by 
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 (2.26) 

 

 

which reflects the energy spectrum of ( , )m x yV k k . The derivation of Eq. (2.26) is given in 

Appendix B.  In determining the squared-amplitude of the surface velocity for each mode 

order in Eq. (2.26) the cross-term contributions have been neglected.  

 Figure ‎2.8 presents the average response of the plate strip with different damping 

loss factors for a unit point force, 1F  . It is clear that the damping loss factor has a 
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significant impact above the first cut-on frequency, with the largest influence found around 

the cut-on frequencies. In this frequency region, away from the cut-on frequencies, it can 

be seen that the average response is inversely proportional to the damping loss factor. 

Hence, increasing the damping loss factor gives a reduction in the average response. Below 

the cut-on frequency, the response is largely unaffected by the damping since all waves in 

the x direction are evanescent in nature.  
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Figure ‎2.8. Average response of the plate strip with different damping loss factor   for 

unit excitation at  0,0.433 yl ( ━   = 0.01; ┅  = 0.03; •–•–•   = 0.1) 

 

 

 The effect of plate thickness on the average response can be observed from 

Figure ‎2.9. In general, a thinner plate has a higher average response compared with a 

thicker one.  The peak associated with the first cut-on frequency shifts to a lower frequency 

as the thickness of the plate strip is reduced. The implication of these results will be 

discussed further in section ‎2.3 where the radiation ratio, which is the sound radiation 

normalized to the average response of the plate, is investigated. 
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Figure ‎2.9. Average response of the plate strip due to different thickness with damping loss 

factor equal to 0.1 and excited by unit point force at (0, 0.433 yl ) (┅ h = 3  mm; ━ h = 6 

mm; –•–h = 9 mm). 

2.3 Sound radiation of a plate strip  

A vibrating plate in contact with a fluid will radiate sound by producing acoustic 

waves that propagate away from the plate surface. In this section, the sound radiation from 

the plate strip is evaluated by means of an analytical model. The analytical model uses a 

wave-domain approach.  

In order to understand the sound radiation mechanism for an infinite plate strip, a 

two-dimensional spatial (or wavenumber) Fourier transform is used for predicting the 

sound radiated in the wavenumber domain. In this evaluation, a wave approach as above is 

used to determine the velocity distribution of the plate strip in the infinite direction. The 

basic concept of using the wavenumber domain approach for the sound radiation is 

introduced through an infinite plate case. It is then extended to the plate strip case by 

imposing simply supported boundaries on the two parallel edges while assuming that the 

plate strip is set in an infinite rigid baffle. A detailed explanation of the radiated power 

calculation in the wavenumber domain can be found in  [2, 4, 68]. 

In this section fluid loading is neglected, i.e. the velocity response of the plate strip 

to the applied forces is taken from the in-vacuo response calculated in the previous section. 
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2.3.1 Infinite plate 

Consider first an infinite, uniform plate which is in contact with a semi-infinite 

fluid domain 0z  , as shown in Figure ‎2.10. A plane transverse wave is assumed to travel 

in the plate in the x -direction with arbitrary frequency   and wavenumber  . The 

velocity amplitude with the implicit time dependence i te   is expressed by 

 

 ( ) i xv x Ve   (2.27) 

 

Subsequently, sound is radiated by the vibrating plate into the fluid with the same 

wavenumber component in the x direction.  

In terms of the acoustic field, a plane wave propagates with a component in the 

x direction and a component in the z direction 

 

 ( )
( , ) x zi k x k z

p x z Pe
 

  (2.28) 

 

The acoustic plane waves must have a wavenumber component in the x - direction equal to 

that of the wave in the plate xk  . This leads to the wavenumber in the z direction 

being given by 

 2 2 1 2( )zk k     (2.29) 

 

where k c  is the acoustic wavenumber in the fluid at frequency   and c  is the wave 

speed in the fluid. 

 

 
 

Figure ‎2.10. Transverse wave in a plate in contact with a fluid. 
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The appropriate sign of the square root in Eq. (2.29) depends on the values of k  

and  . For the case k  , a real zk  is obtained and plane sound waves will travel away 

from the plate surface with 0zk  . Meanwhile for the case k   an imaginary zk  is 

obtained which can be conveniently expressed as 2 2 1 2( )zk i k   . In the latter case, the 

disturbance of the fluid decays exponentially with the distance normal to the plate. For the 

opposite sign it would grow exponentially which is not allowed as a solution. Therefore in 

the plate-fluid interaction, propagating sound waves only exist due to the plate wave when 

k  . In other words the bending wave phase speed must be greater than the sound wave 

phase speed (supersonic velocity) in order to radiate energy into the far field. 

The radiated pressure field caused by the plate vibration can then be calculated by 

the use of the specific acoustic wave impedance az  which is defined as the ratio of the 

complex amplitudes of pressure and normal particle velocity. At the plate-fluid interface, 

the particle velocity in the z direction 
zv  is equal to the surface normal velocity of the 

plate v . Hence [2] 

 

 0 0

2 2 1 2

0
( )

a

z zz

ckp
z

v k k

 




 
   

 
 (2.30) 

 

where p  is the pressure amplitude, zv  is the particle velocity in the z direction and 0  is 

the fluid density. 

Using the spatial Fourier transform, an arbitrary velocity distribution ( )v x  can be 

transformed into the wavenumber domain using  

 

 ( ) ( ) xik x

xV k v x e dx



   (2.31) 

 

and its inverse Fourier transform 

 

 
1

( ) ( )
2

xik x

x xv x V k e dk






   (2.32) 
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A similar expression can be written for the sound pressure. Therefore, from Eq. (2.30) the 

sound pressure at 0z   can be expressed in the wavenumber domain as  

 

 0
0 2 2 1/2

[ ( )] ( ) ( ) ( )
( )

x z a x x x

x

ck
P k z k V k V k

k k


  


 (2.33) 

2.3.2 Plate strip 

Now, consider a simply supported plate strip of infinite length (in the x direction) 

and of finite width (in the y direction) vibrating harmonically in an infinite rigid baffle. 

The vibration of the plate surface and the resulting pressure can be written as a two 

dimensional Fourier transform analogous to Eq. (2.32) as follows 

 

 
( )

2

1
( , ) ( , )

4

x yi k x k y

x y x yv x y V k k e dk dk


   

 
    (2.34) 

 

 
( )

0 2 0

1
[ ( , )] ( , )

4

x yi k x k y

z x y x y
z

p x y P k k e dk dk


   


  

      (2.35) 

 

where xk  and yk  are the wavenumbers in the x  and y  directions. 

 

The power radiated by the plate strip is given by 

 

 
1

Re ( , ) ( , )
2

radW p x y v x y dxdy

 



 

  
  

  
   (2.36) 

 

where   indicates the complex conjugate. By substituting Eq. (2.34)-(2.35) into Eq. (2.36), 

this gives 
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 

 (2.37) 
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where 
xk   and 

yk   are introduced to distinguish between the integration over 
xk  and 

yk  

related to P and V . Referring to Eq. (2.33), the surface pressure for the two dimensional 

case can be replaced by the plate velocity distribution in two dimensions multiplied by the 

wave impedance, as follows 

 

 


' '

( )0

4 2 2 2 1/2
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1
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32 ( )
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ck
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k k k
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

 
   

 
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  
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 
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  
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

   

 

 (2.38) 

 

   

Further simplification can be made using the Dirac delta function in Eq. (2.24).  Therefore 

Eq. (2.38) can be simplified as 

 

 
2

0

2 2 2 2 1/2

1
Re ( , )

8 ( )
rad x y x y
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ck
W V k k dk dk

k k k





 
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  
  

   
   (2.39) 

 

where 
2

( , )x yV k k  is the square of the plate velocity in the wavenumber domain. It is 

possible to limit consideration to wavenumbers satisfying the necessary condition for plate 

waves to be able to radiate sound energy, that is 2 2 2

x yk k k  ; elsewhere the term 

2 2 2 1/2( )x yk k k   is imaginary. Therefore, the range of integration can be limited to give 
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





  


    (2.40) 

2.3.3 Radiation due to point force 

The normal velocity distribution ( , )v x y
2
 due to the point force can be found from 

the displacement solution in section ‎2.2 using 

                                                 
2
 Note that some publications use index n  for the variable v  to indicate the velocity in the normal 

direction nv . In this thesis, it does not appear explicitly but the velocity v  is actually the velocity distribution 

in the z - direction so that this is the normal velocity. 
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 ( , ) ( , )v x y i w x y  (2.41) 

 

where ( , )w x y  is the surface displacement of the plate strip which is given by Eq. (2.14). 

Now the normal surface velocity is  
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1, 2,1,

2 2
1 2,1, 1, 2,
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2
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m x m yx m x m x m

kF m y
v x y e e

k lD k k k
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 



  
            
  (2.42) 

 

 

For a given value of m, the modulus squared 
2

( , )x yV k k  of Eq. (2.21), which reflects the 

energy spectrum of ( , )x yV k k , is given by 
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 (2.43) 

 

 

For the time being, it is assumed that each transverse order m  of the velocity ( , )x yV k k  

radiates sound independently, i.e. cross terms are ignored for simplicity. This allows the 

radiated power of the plate strip due to a point force excitation to be expressed as 
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 (2.44) 

 

The effect of this assumption will be considered in section ‎2.3.7 below. 

Note that the radiated sound power can be determined using a different approach, 

e.g. Junger and Feit [69] and Sakagami et al. [70] use a far-field solution to calculate the 

radiated power of a plate strip or waveguide structure. 

 The radiation ratio   is used to indicate how much sound power is radiated from 

the vibrating surface compared with an infinite flat surface vibrating in phase with the 

same mean-square velocity. It is thus defined as [2, 4, 71, 72] 
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2

0

radW

cS v



  (2.45) 

 

where 0  is the fluid density, c  is the sound velocity, S  is the surface area and 2v  is 

the spatially averaged mean-square velocity. For the plate strip case, the‎ ‘average’‎ is‎ an‎

integral over the x  - direction so the area is replaced by the width 
yl : 

 

 
2

0
inf

rad

y

W

cl v



  (2.46) 

 

where 2

inf

v  now represents the integral of the mean-square velocity over the length and 

the average over the width. 

 Figure ‎2.11 presents the radiated sound power and radiation ratio of the plate strip 

considered in the previous section due to a point force excitation at position (0, 0.433 yl ). 

The total number of modes 82M   is the same as used in the mobility calculation in 

section ‎2.2. The radiated power has peaks at the various cut-on frequencies. The critical 

frequency is 2 kHz at which the radiation ratio reaches its maximum value. 
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(b) 

Figure ‎2.11. (a) Sound power radiation of the plate strip due to a unit point force at (0, 

0.433 yl ); (b) its associated radiation ratio. 
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2.3.4 Effect of finite width and point force excitation on the plate strip 

 It is interesting to see the effect of the finite plate width and the effect of the point 

force excitation in the case of the plate strip. The plate strip differs from an infinite plate, 

on the one hand, and a finite plate on the other hand. In the infinite plate, above the critical 

frequency 
cf , sound is radiated effectively by the plate vibration. However, as seen in 

section ‎2.3.1 there is no radiated power from a plane wave in an infinite plate below the 

critical frequency because of acoustic short-circuiting. For a point force excitation, some 

radiation will occur from the nearfield in the vicinity of the forcing point. In contrast, a 

finite plate experiences non-zero radiation below the critical frequency due to the influence 

of edges and corners [10]. The plate strip has a finite width but infinite length which makes 

the problem more complex, especially for the case below the critical frequency. 

In principle, referring to [2, 4], whenever the trace wavenumber in a particular 

direction in a structure is higher than the acoustic wavenumber k  at the same frequency, 

acoustic short-circuiting will occur. In the case under consideration, the acoustic short-

circuiting occurs when the characteristic wavenumber in the y  direction y yk m l is 

higher than the acoustic wavenumber k , i.e. ym l k  . Under this circumstance, because 

the adjacent anti-nodal regions in the plate strip are separated by much less than the 

acoustic wavelength in the surrounding medium, the fluid displaced outward by one region 

will compensate for the inward motion in the adjacent region [10]. However, the finite 

width of the structure means that the acoustic short-circuiting is incomplete at the edges. 

The combination of  ym l k   and the structural wavenumbers in the x  - direction 

which are smaller than the acoustic wavenumber ( 1.x mk k ) would create radiating modes 

along the edge in the x  - direction. Commonly, on a finite plate such modes are termed 

edge modes.   

The acoustic short-circuiting is also present in the x  - direction. When the 

condition 1,x mk k  is fulfilled, the cancellation takes place completely along the plate as it 

is infinite in length. Hence only the radiating component due to the nearfield wave and the 

discontinuity introduced by the point force exist. This means neither edge modes nor 

corner modes are found in this direction. However, not all free propagating waves undergo 

short-circuiting because this depends on the mode order, which determines the 
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wavenumbers 
1,x mk  and 

2,x mk . As mentioned in section ‎2.1.1, 
1,x mk  corresponds to the 

propagating waves which carry vibration energy above their cut-on frequencies while 
2,x mk  

corresponds to the nearfield waves. As shown by the dispersion curves of the plate strip in 

Figure ‎2.12, in this example only the first five propagating waves have wavenumbers 

higher than the acoustic wavenumber k . The rest of the modes have wavenumbers that are 

always lower than the acoustic wavenumbers (
1,x mk k ) and hence contribute to the sound 

power radiation. Peaks in the radiated power (see Figure ‎2.11) are associated with the cut-

on frequency behaviour for every mode order m  as all the dispersion curves start below 

the diagonal line representing k .  

To provide a visual description of the radiation components of the plate strip, a 

classification can be made intuitively by considering the wavenumber distribution over the 

frequency range of interest. Figure ‎2.12 presents dispersion curves corresponding to the 

wavenumbers in the x direction 1,x mk  and primary wavenumber components
3
 in the 

y direction y yk m l  in the absence of damping. The acoustic wavenumber values and 

an indication of the critical frequency are added to each graph to help identify the various 

regions where the radiation components can be described based on their values relative to 

the acoustic wavenumber k . Regions A and B indicate regions in which 1,x mk k  and  

1,x mk k  respectively. Meanwhile, regions C and D are assigned for the corresponding 

wavenumber areas for yk . Hence, yk k  occupies the region C and  yk k  can be found 

in region D. Following the explanations from the previous paragraphs, some combinations 

of these regions can thus be identified as follows: 

1. The combination of regions A and C causes a zero radiation ratio as there are no 

corner modes present due to the complete acoustic short-circuiting along the 

infinite direction. 

2. The combination of regions A and D leads to a similar situation. The structural 

wavenumber in the y direction is smaller than the acoustic one which would 

                                                 
3
 It should be borne in mind that the finite extent over width produces modal wavenumber spectra with the 

spectrum peaks found at  ym l  rather than single wavenumber as found in an infinite plate. Therefore, in 

this study, y yk m l is termed the primary wavenumber. The same terminology is also found in [2]. 
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result in radiation. However, there is a complete short-circuiting along the 

x direction, hence zero radiation occurs. 

3. The combination of regions B and C clearly leads to the edge modes along the 

x direction where the acoustic short-circuiting takes place along the direction 

normal to this axis. 

4. The combination of regions B and D is related to surface radiation component 

where the radiation ratio tends to unity at high frequency. Note that region B and 

D can occur below 
cf  but mostly occurs above this frequency. 
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Figure ‎2.12. Dispersion curve of the plate strip (━ bending wavenumbers for different 

mode orders ( 1xk ) and wavenumber for each mode m ( yk ); ┅ acoustic wavenumbers).  

 

Figure ‎2.13 compares the radiated power of the plate strip and the infinite plate. 

The radiated power of the infinite plate due to a point force infW was calculated based on a 

formulation proposed in [4] but neglecting the fluid loading contribution as follows 
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where 
2 2 2

r x yk k k  . If the frequency range of interest is limited to well below the critical 

frequency ( r Bk k ) so that  4 41 1r Bk k  , this gives 
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which is independent of frequency. 

 It is clear that the radiated power of the plate strip is higher than the infinite plate 

result for frequencies above the first cut-on frequency and below the critical frequency. 

The presence of the edge mode radiation component has caused more power to be radiated 

compared with the infinite plate for the same amplitude of force. Conversely, only the 

radiated power of the nearfield around the forcing position can be found from the infinite 

plate for this frequency region. Below the first cut-on frequency, the radiated power of the 

plate strip is less than that of the infinite plate as the stiffness characteristic of the plate 

strip determines its radiated power whereas in this frequency region that of the infinite 

plate depends on the square of the mass per unit area as indicated in Eq. (2.48). Above the 

critical frequency the results of both models are similar.  
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Figure ‎2.13. Radiated power of plate strip and infinite plate excited at position  0,0.433 yl  

with force amplitude 0 1F   (━ plate strip; ┅ infinite plate). 

2.3.5 Effect of damping loss factor 

Figure ‎2.14 indicates the effect of the damping loss factor on the radiated sound 

power. In general, its effect mostly appears at the cut-on frequencies at which the peak 
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amplitude increases as the damping loss factor decreases. However, the effect significantly 

increases at the frequencies where there are several bending wavenumbers which are lower 

than the acoustic wavenumbers, i.e. above about 500 Hz (see Figure ‎2.12). In contrast, at 

low frequencies where the bending wavenumbers are generally higher than the acoustic 

wavenumbers for most frequencies, the damping only affects the radiated power close to 

the cut-on frequencies. In this lower frequency region, away from the cut-on frequencies, 

only a small part of the vibration, which corresponds to nearfield or evanescent waves, 

radiates into the fluid medium. Therefore, as the nearfield is almost independent of the 

damping values, the damping loss factor has a negligible effect in this region except at the 

cut-on frequencies [4]. 
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Figure ‎2.14. Comparison of sound power radiation for different damping loss factors for 

plate strip excited at (0, 0.433 yl ) (━   = 0.01; ┅  = 0.03; –•–   = 0.1). 

 

The corresponding radiation ratios are shown in Figure ‎2.15. The greatest damping 

effect is found in the acoustic short-circuiting region while the effect is negligible at 

frequencies below the first cut-on frequency and above the critical frequency. It is clear 

that the radiation ratio in the short-circuiting region is proportional to the damping value as 

the average mean-square velocity decreases with increasing damping (see section ‎2.2.7).  
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Figure ‎2.15 Comparison of radiation ratio due to different damping loss factor excited at 

(0, 0.433 yl ) (━  = 0.01; ┅  = 0.03; –•–  = 0.1). 

2.3.6 Effect of plate thickness 

The effect of the plate thickness can be observed from Figure ‎2.16(a). It is clear 

that the sound power level increases across the frequency range considered as the thickness 

of the plate strip is reduced. Moreover, the first cut-on frequency is reduced and the critical 

frequency is increased as the thickness reduces. Therefore the frequency region between 

the first cut-on frequency and the critical frequency becomes wider and the acoustic short-

circuiting effect is increased. This is seen in the radiation ratio which is plotted in 

Figure ‎2.16(b). The radiation ratio decreases as the thickness reduces in the acoustic short-

circuit region. Below the first cut-on frequency the radiation ratio is largely unaffected. 
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Figure ‎2.16. (a) Comparison of sound power radiation due to different thickness with 

damping loss factor equal to 0.1 and excited at (0, 0.433 yl ); (b) its associated radiation 

ratio ( ┅ h = 3 mm ; ━h = 6 mm; –•–h = 9 mm) . 

2.3.7 Inclusion of the cross-terms  

In the formulation of the previous section, the radiated sound power is calculated 

on the basis of individual modes generating sound independently. In fact, there is an 

interaction between the resulting pressures produced by one mode of a vibrating structure 
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and the vibration of other modes. Hence it is of importance to assess the cross-term 

contributions to the resulting radiated sound power. This has been studied in [73] for a 

finite plate where it is shown that neglecting the cross modal contribution can lead to 

under- or over-estimates of the radiated power even at resonance frequencies. They are 

frequently disregarded in the radiated power formulation due to the computational burden 

they introduce in calculation.  

To include the cross-terms in the radiated sound power formulation, Eq. (2.44)

needs to be modified. It becomes  

 

 
2 2
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   (2.49) 

 

where 
mV  and 

nV  are defined by Eq. (2.21) with m  and m  the mode index of velocity 

corresponding to pressure and velocity respectively. 
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Figure ‎2.17. Effect of the cross-terms contribution in radiated power due to a point force 

excitation at (0, 0.433 yl )  (━ the cross-terms modal radiation incorporated along with the 

self-modal one ; ┅ only self- modal radiation considered). 

 

Figure ‎2.17 presents a comparison of the radiated power calculated with only self-

modal radiation and including the cross modal radiation using the same material properties 
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as listed in Table ‎2.1 with excitation at position (0, 0.433
yl ). It is clear that the cross-terms 

contribute to the radiated sound power mainly away from the cut-on frequencies in the 

acoustic short-circuiting region between the first cut-on frequency and the critical 

frequency. Below the first cut-on frequency where the radiation is dominated by first wave 

mode (m = 1) and around the critical frequency, both formulations agree well. 

As pointed out earlier, the resulting radiated power using Eq. (2.49) to determine 

the radiated power increases the required calculation time considerably. Using Matlab on a 

personal computer powered by an Intel Pentium Quadcore 2.8 GHz processor and 4 Gbyte 

memory, it requires 24.6 hours to get the result. This is around 80 times the calculation 

time required to obtain the results where the cross-term contribution is neglected. 

2.4 Sound transmission loss of a plate strip 

 In this section the sound transmission due to a plane acoustic wave acting on the 

simply supported plate strip (waveguide) is considered. The incident plane wave is 

assumed to impinge on the plate strip with elevation angle   and azimuth angle   as 

shown in Figure ‎2.18. The transmission loss (TL) is determined by considering the bending 

waves in the plate. The bending stiffness therefore influences the TL calculation inherently. 

Moreover, the finite width and the boundary conditions of the plate strip on its two edges 

are expected to give useful insights of those effects in the transmission loss prediction 

whereas they are not considered explicitly in most classical theory based on infinite plates, 

e.g. in Ref.  [2, 5, 10]. 

2.4.1 Pressure and velocity functions  

Since the structure is finite in the y direction a modal solution can be utilized to 

describe the structural response in terms of y  as in section ‎2.1. Meanwhile, for the 

x direction, as the structure is infinite, a travelling wave solution is suitable to describe 

the dependence of displacement on x . Therefore, the general solution for the radiated 

pressure p  and the plate velocity v  can be decomposed into terms of the form  

 ( , ) sin ,     ( , ) sini x i x

m m

y y

m y m y
p x y p e v x y v e

l l

   
   

       
   

 (2.50) 

where m  is an integer and   is the (real) wavenumber in the x direction. 
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Figure ‎2.18. Direction of a plane wave incident on an infinite plate strip 

 

 

 Before proceeding to the mathematical formulation and solution for the 

transmission coefficient, some simplifying assumptions should be noted as follows: 

1. As in previous sections, the plate strip is modelled with the thin-plate theory and it 

is set in a rigid baffle.  

2. The thickness of the baffle and the plate is neglected in the acoustic formulation. 

3. The amplitude of the reflected sound pressure is initially assumed equal to the 

incident sound pressure so that the blocked pressure field at the plate surface is 

equal to twice the incident pressure. 

4. Simply supported boundaries are assumed. 

5. The acoustic medium on both sides of the plate is assumed to be identical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.19. Elevation and azimuth angle convention and trace wavenumbers in the fluid. 
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Considering Figure ‎2.19 the incident sound pressure is considered as a plane wave 

expressed by 

 ( , , ) yx z
ik yik x ik z

i ip x y z p e e e
   (2.51) 

 

where time harmonic dependence i te   is omitted for clarity. The wavenumbers in x , y  

and z  directions can be defined as follows: 

 

 

cos

sin cos

sin sin

z

x

y

k k

k k

k k



 

 







 (2.52) 

 

where 2 2 2

x y zk k k k    is given by k c  with   the angular frequency and c  the 

sound velocity. 

For a rigid, uniform and infinitely extended plate, the pressure field in 0z   (the 

source side) consists of the superposition of the incident wave and a reflected wave. At the 

plate surface they add in phase to give the so-called blocked pressure blp . When the plate 

motion is considered, the plate radiates in the negative and positive z  directions. The 

radiated pressure in the positive z direction is then called the transmitted sound pressure 

tp . The total pressure on the plate surface at 0z   consists of the superposition of the 

blocked pressure field and the radiated pressure field on both sides of the plate. The 

radiated pressure terms in the total pressure will impose a fluid loading at the plate surface. 

An implication of this is that it will introduce a damping to the plate strip in addition to the 

internal damping loss factor. Due to the finite width, the radiated field on either side of the 

plate strip does not consist of a plane wave. 

The two-dimensional bending wave equation in terms of velocity subject to the 

applied acoustic pressure field and the radiated acoustic pressure produced by the plate 

velocity is 

 

  
4 4 4

4

4 2 2 4
2 B bl rad rad

v v v
D k v i p p p

x x y y
  

    
              

 (2.53) 
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The distribution of the pressure ( , )p x y  may be expressed by the combination of a Fourier 

integral and a Fourier series. This yields 
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l

 
 









 
   

 
  (2.54) 

 

and 
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( ) ( , ) sin
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i x
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m y
p p x y e dxdy

l l

 






 
  

 
 

   (2.55) 

 

where m  is an integer corresponding to each mode of the pressure in the y direction and 

  is the (real) wavenumber in the x direction. 

As stated earlier, it is assumed that a blocked reflected sound pressure is generated 

equal to the incident sound pressure at the plate surface. The total pressure on the plate 

surface at 0z   consists of the superposition of the blocked pressure field and the radiated 

pressure field on both sides of the plate due to plate motion. Hence the pressure for mode 

m  is given by 

 

  ( , ) 2 ( ) ( )y x x
ik y ik x ik x

i rad radp x y p e e p y p y e
       (2.56) 

 

and Eq. (2.55) becomes 
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   (2.57) 

 

It may be noted that
( )

2 ( )xi k x

xe dx k
  







  . Hence 
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where 
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 
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Similarly, because the plate strip is uniform and infinite in the x direction, its 

transverse velocity may be written in the form  
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Using the same argument as above 
( )

2 ( )xi k x

xe dx k
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
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   and hence 
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  (2.61) 

 

where m  is an integer designating each mode of the plate vibration. Eq. (2.61) can be 

conveniently written as 

 
,

1

( , ) ( ) xik x

y m

m

v x y v y e








  (2.62) 

 

where  , ( ) siny m m yv y v m y l 
 . This expression for the transverse velocity only applies 

for 0 yy l  ; it is zero otherwise. Subsequently, it can be expressed in terms of an infinite 

set of simple harmonic waves travelling in the y direction, with wavenumber denoted as 

  in order to distinguish it from the incident wavenumber yk , as follows 

 

 , ,

0

( ) ( )

yl

i y

y m y mV v y e dy    (2.63) 
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The solution for , ( )y mV   is 
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 , ( ) ( )y m m mV v a     (2.65) 

 

where 
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   (see also Eq. (2.21)). 

 

In order to solve the coupled vibration-radiation problem, some conditions must be 

satisfied, i.e. the fluid particle velocity must be equal to the normal plate velocity and the 

fluid particle velocity v  and the pressure p  must‎ satisfy‎ Euler’s‎ equation‎
0i v p   . 

Therefore, the (normal) plate velocity v  in Eq. (2.62) is related to the radiated pressure by 
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Hence the radiated pressure field, assuming the fluid on both sides is the same, is 
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 (2.67) 

 

or as a function of y , the radiated pressure can be written as 
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where 2 2 2

zk k     . Note that rad radp p   . 

 

Therefore, mA  in Eq.(2.59) becomes 
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where ( ) ( )m ma a    as the modal displacement function is real. 

 

Substituting Eq. (2.58) and Eq. (2.61) into Eq. (2.53), this gives 
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(2.70) 

 

Using the orthogonality of the mode shapes  
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Eq. (2.70) can be written for a single term in the series; to obtain this, it is multiplied with 

sin
y
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l
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 and integrated over the length yl  yielding  
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  (2.72) 

 

and substituting mA  from Eq. (2.69) into Eq. (2.72) after some simplifications, it is found 

that 
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where mmR   is the inter-modal coupling which couples the structural mode m  with the 

radiated pressure in other modes as is given 
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where 2 2 2

zk k     . Considering the solution of  ma  , mmR   has non-zero values 

for the parity indices of odd-odd or even-even, otherwise its value is zero as the odd and 
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even modes do not interact each other. The solution of  Eq. (2.73) is rather complicated as 

it is not mathematically orthogonal [74, 75]. For light fluid loading, the off-diagonal terms 

of 
mmR   can be neglected. This implies that there is no energy transfer due to two different 

modes hence only direct fluid loading exists. Consequently, this removes the summation 

sign in second term on the right hand side of  Eq. (2.73). This yields  
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 Despite the above simplification relating to fluid loadng, the cross-modal radiation 

terms can still be included as discussed in the next section.  

2.4.2 Transmission coefficient 

 The transmission coefficient   is defined as the ratio of the transmitted sound 

power tranW  to the incident sound power incW . The sound power transmitted through the 

plate strip is equal to the sound power radiated into the region 0z  , hereafter denoted by 

2radW . For clarity and consistency in defining the radiated power of the plate strip, an 

arbitrary length of plate strip xL  is retained in the following derivation. Thus, the radiated 

sound power of the plate strip 2radW  per unit length in the x direction is given by 
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in which the range of the integration 0 to 
yl  has been extended to   because the form of 

( )yV   ensures that 
yv is zero outside 0 yy l  . Substituting Eq. (2.64) and Eq. (2.67) into 

Eq. (2.77) for the radiated sound power per unit length, this yields 
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where   ,y mV   as defined in Eq. (2.65). 

Hence the total radiated sound power with the necessary condition 2 2 2

xk k   is  
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where the product of  ma   and  ma   corresponds to the cross-modal radiation coupling. 

For the case where the cross-term contribution is neglected, Eq. (2.79) reduces to 
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The incident power per unit length of the plate strip can be expressed as follows 
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The transmission coefficient is given by 
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Substituting Eq. (2.80) and (2.81) into Eq. (2.82) gives  
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The sound reduction index or transmission loss R  is found from 
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 Figure ‎2.20 presents results for normal incidence for the plate strip considered in 

the previous sections (see Table ‎2.1). From Figure ‎2.20, it can be seen that the results of 

the analytical model with and without including the cross-term contribution in the 

calculation are very similar except between 80 and 200 Hz. Hence, for this case, the model 

without the cross-term contribution can be considered to achieve a sufficient accuracy, 

except in this frequency region, without requiring such a high computational time. Using 

Matlab on a personal computer powered by an Intel Pentium Quadcore 2.8 GHz processor 

and 4 Gbyte memory, it is found that this approach allows obtaining the results in 1/67 

times the calculation time required by the model with the cross-term contributions. Due to 

this fact, without losing the generality of this model, the cross-term contribution will be 

neglected in the calculations for investigating the TL behaviour of the plate strip in next 

paragraphs. 
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Figure ‎2.20. Effect of neglecting of cross-term contribution on TL of plate strip (━ with 

cross-term contribution;┅ without cross-term contribution). 

The above model was used to evaluate the effect of changing the incident angle, 

thickness and structural loss factor with a total number of modes M = 150 taken into 

account in calculation. In the present case, the number of the modes is increased from that 

considered in section ‎2.1 as the frequency range is extended to 10 kHz where 25 waves 

have cut-on in the plate strip.  

Figure ‎2.21 presents a comparison of the predicted transmission loss calculated 

using the transmission coefficient in Eq. (2.83) and the transmission coefficient of an 

infinite plate for normal incidence which is calculated using Eq. (5.14) of  [2]  
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 (2.85) 

 

where s  is the stiffness per unit area and  0 s h  . 

In general, at frequencies above 100 Hz, the TL of the plate strip tends to the 

infinite plate result which typically follows the mass-law behaviour  
2

02 c h   . 

Hence, for this region the TL of the plate strip is mass-controlled. Some dips or ripples in 

the curve are related to cut-on frequencies and the corresponding modal behaviour while 

such features are not present in the infinite plate model. At low frequency, or 1  , a 
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stiffness-controlled behaviour appears where a slope of -30 dB/decade occurs rather than -

20 dB/decade as indicated by the infinite plate model. At the first cut-on frequency 
1 , the 

transmission loss has a negative value rather than zero as the lowest value which appears 

for the infinite plate model. This happens as a consequence of the normalization area 

introduced in the transmission coefficient. In particular only the incident power falling 

within the width of the plate strip is consideted. Hence the ratio of radiated sound power 

and incident power can be greater than unity for the case of the plate strip which has a 

finite dimension (in one direction). A more detailed discussion on this issue is given in [76].  
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Figure ‎2.21. TL comparison of the plate strip and the infinite plate for normal incident case 

(━ plate strip; ┅ infinite plate) 

 

The slope of -30 dB/decade in the stiffness-controlled region can be demonstrated 

by considering  1   in Eq. (2.75). Hence mv   reduces to 
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In this frequency range  
2

2

x yk m l  so that the transmission coefficient in Eq. (2.83) is 

finally proportional to the cube of frequency, 3  , which results in a slope of -30 
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dB/decade. If 
1  , where the mass-controlled region is found, 

mv  in Eq. (2.75) 

becomes  
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( )4 i m y
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y

p a k
v
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  (2.87) 

 

Accordingly, the transmission coefficient in Eq. (2.83) now is inversely proportional to 

frequency, 1  . This indicates that a slope of 10 dB/decade applies in this frequency 

range. However, above the subsequent cut-on frequencies it is found that    m y ma k a   in 

 yV   is proportional to 1   or     1m y ma k a    hence causing 2  . Thus, 

the slope of the TL curve increases to 20 dB/decade at high frequency. It should be noted 

that the transition from 10 dB/decade to 20 dB/decade depends on the incident angle and 

the width of the plate strip as both variables are contained in the ma  term. For example for 

the normal incidence case, it is found that the transition occurs at about 340 Hz for 0.5 m 

width, 170 Hz for 1 m width and 85 Hz for 2 m width. Hence, comparing this with the 

acoustic wavelength it can be identified as 2 yl  . A comparison of the TL curve and 

these slopes is given in Figure ‎2.22. 
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Figure ‎2.22. TL slope of plate strip in the stiffness-controlled region and the mass-

controlled region. 
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Figure ‎2.23(a) shows results for different angles of incidence about the x axis. 

The coincidence frequency depends on the incident angle, with a higher angle 

corresponding to a lower coincidence frequency. These results have a similar tendency as 

those obtained by the infinite plate model where the transmission coefficient is calculated 

using Eq. 7.74 of [4] 
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However, in the area close to the coincidence frequency the TL of the infinite plate tends 

to be higher than that of the plate strip. This difference is affected by the presence of edge 

mode radiation and cut-on frequencies in the plate strip response. Conversely, for 

increasing incident angle and for frequencies below the coincidence frequency, it can be 

seen that the TL of the infinite plate is lower than that obtained by the plate strip model. 

This is caused by the radiation ratio of the infinite plate which is given by inf 1 cos  , 

which increases when the incident angle increases and becomes infinite when 90  while 

that of a finite structure remains finite  [77]. Meanwhile, above the coincidence frequency, 

the results of both models are in good agreement. Similar trends are also observed from the 

case of oblique incidence about the y axis as shown in Figure ‎2.23(b). Compared with 

the former case, however, the modal behaviour effect is less apparent for this case.  
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(b) 

 Figure ‎2.23. TL comparison of the plate strip and the infinite plate for obliquely incident 

case: (a) about x  axis; (b) about y  axis (━ plate strip; ┅ infinite plate). 

 

Results for different thicknesses for normal incidence are shown in Figure ‎2.24(a).  

Here the analytical model again behaves as expected with the first panel resonance (cut-on 

frequency) becoming lower and the TL values reducing when the thickness reduces. The 

same situation also appears when the plate strip is obliquely excited as can be seen from 

 = 30 

 = 45 

 = 60 

 = 80 

 = 85 

 = 30 

 = 45 

 = 60 
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Figure ‎2.24(b). However, the corresponding coincidence frequency now also exists and 

this shifts to a lower frequency with increasing thickness. 
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(b) 

Figure ‎2.24. Effect of changing thickness of the plate strip on the sound transmission loss: 

(a) normal incidence; (b) oblique incidence at angle 45 about y -axis (┅ h = 3 mm ; ━ 

h = 6 mm ; –•– h = 9 mm). 
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Figure ‎2.25(a) presents the effect of the structural damping loss factor on the sound 

transmission loss values for normal incidence. It is clear that the loss factor has a large 

influence at the cut-on frequencies but negligible effect elsewhere. The same tendency is 

also found for oblique incidence as shown in Figure ‎2.25(b). 
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(b) 

Figure ‎2.25. Effect of structural loss factor of the plate strip on the sound transmission loss: 

(a) normal incidence; (b) oblique incidence at angle 45º about y -axis (–•– = 0.01 ; 

┅ = 0.03, ━  = 0.1) 
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2.4.3 Diffuse sound field 

The diffuse sound field excitation is formulated as the superposition of uncorrelated 

plane waves with equal amplitude in all direction. The sound transmission is then obtained 

by integrating the response of all incident plane waves over the incident angle and 

weighting them with the solid angle to account for the directional distribution. Therefore, 

the sound transmission loss for a diffuse field excitation is expressed as 
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 (2.89) 

 

where lim  is the upper elevation angle which is typically taken equal to 78º for the field 

incidence case and which is 90º  for the full random incidence case [10]. 

 Figure ‎2.26 presents a comparison of the sound transmission loss between the plate 

strip and the infinite plate for the diffuse field case. Here only a quarter of hemisphere is 

considered due to the symmetrical properties of the structures hence the limit of the 

azimuth angle is reduced from 2  to 2 . In practical calculation, the infinite plate are 

calculated using 36 incident angles under the random incidence excitation ( 0 90  ) 

and the field incidence one ( 0 78  ) while 36 incident angles for the random and field 

incidence excitations and 18 ones over the azimuth angles are used for the plate strip. It is 

clear that the dip at around 2 kHz is associated with the critical frequency. Above this 

frequency, the plate strip and the infinite plate produce a similar result. However, below 

this frequency the TL of the plate strip is higher by 6.5 dB at low frequency than that of the 

infinite plate. This difference reduces with increasing frequency; for example a difference 

of 2.7 dB is found at around the critical frequency. This difference comes about because a 

finite extent in one dimension of the plate strip introduces a spatial windowing effect on 

the infinite baffle [23]. Accordingly, the radiation ratio of the infinite plate is modified to 

remain finite for increasing incident angle rather than becoming infinite. This leads to a 

higher TL for the plate strip. This situation is also illustrated in Figure ‎2.23 in section ‎2.4.2 

for oblique incidence. The relation of radiation ratio on incident angles for various 

parameter kL  where k  is the acoustic wavenumber and L  is the panel dimension was 

presented in [23] for the case of a finite plate. When the plate strip is calculated using the 
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field incidence method, below the critical frequency, its TL is getting closer to that 

obtained for the infinite plate particularly close to the critical frequency. Above the critical 

frequency, a similar curve is seen for both models.  
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Figure ‎2.26. TL of plate strip under a diffuse sound field excitation: random incidence 

( 0 90  ): (━ Plate strip; ┅ infinite plate); field incidence ( 0 78  ): (–•– 

Plate strip; ••• infinite plate). 

2.5 Summary 

In this chapter, analytical models of the vibration and sound radiation of a plate 

strip have been presented. The point mobility behaviour of the plate strip is stiffness-

controlled at low frequency and then tends to the mobility of an infinite plate at high 

frequencies. Peaks are found in the mobility curve associated with the cut-on frequencies 

while their magnitude is determined by the term  2

0sin ym y l . The damping has a 

significant effect at the cut-on frequencies while in other areas it has little effect on the 

point mobility. However the spatially averaged response is affected by the damping at all 

frequencies above the first cut-on frequency. Moreover, the average response is also 

affected by the thickness of the plate strip. 

 To get an acceptable accuracy, a sufficient number of waves should be incorporated 

in the calculation, indicated by the upper limit M . It has been shown that the ratio of M  
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to the number of waves that have cut-on should be at least 6 to obtain the response within 

1%. 

Unlike an infinite plate, a plate strip still radiates sound at frequencies below its 

critical frequency due to the finite extent in one dimension. Therefore, edge modes 

effectively contribute to the radiated sound power even though the wavenumbers in the y - 

direction, 
yk , are higher than the acoustic wavenumber in this frequency region. In the 

infinite dimension, that is in the x - direction, the radiated power is also present at 

frequencies below the critical frequency when 1,x mk k . For the opposite condition sound 

radiation occurs which is only significant in the area close to the excitation position. Peaks 

found in the radiated power curve are associated with the cut-on frequencies at which it is 

always the case that 1,x mk k . 

The greatest effect of damping on the radiated sound power appears at the cut-on 

frequencies. The damping also has a broadband effect for higher frequencies at which the 

bending wavenumbers 1,x mk  are lower than the acoustic wavenumbers k . Considering the 

related radiation ratio, it is clear that the damping loss factor affects the results 

significantly in the acoustic short-circuiting region between the first cut-on frequency and 

the critical frequency. A thicker plate strip will radiate less power as the average mean-

square velocity reduces for a thicker plate. On the other hand it will reduce the frequency 

range of the acoustic short-circuiting region which increases the radiation ratio.  

An analytical solution for sound transmission through a plate strip has been derived 

by considering acoustic plane wave excitation, internal and acoustic damping. Comparing 

the results with that of the infinite plate, some differences occur. For the normal incidence 

case, it is found that at high frequency, the TL of the plate strip converges to that of the 

infinite plate while at low frequency a slope of -30 dB/decade is found rather than 

the -20 dB/decade that is normally found in the TL of an infinite plate. Dips are found 

corresponding to the cut-on frequencies. The effect of neglecting cross-modal coupling has 

been shown to be small. 

For the oblique incidence case, the analytical model behaves as expected 

considering the coincidence frequencies when the incidence angle is varied. These match 

with the infinite plate results. However, well below the coincidence frequency, the TL of 

the plate strip is greater than that of the infinite plate due to its finite width. 
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The internal damping loss factor effectively determines the TL values around the 

cut-on frequencies and the coincidence frequencies. Elsewhere, the damping has a 

negligible effect. Meanwhile, varying the thickness will shift the first cut-on frequency and 

the coincidence frequency while the TL values increase as the thickness increases.  

Under random incidence, the plate strip model produces the same results as an 

infinite plate above the critical frequency. Below this frequency, the TL values of the plate 

strip are higher than those obtained using the infinite plate model. Closer results are found 

around the critical frequency and just below this frequency when both the plate strip and 

the infinite plate are excited by the field incidence limited to 78°. 

The analytical models of the plate strip developed in this chapter will be used 

in ‎Chapter 4 to validate WFBE results. First, however, the WFBE method is introduced in 

the next chapter. 
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Chapter 3. Waveguide Finite Element-Wavedomain 

Boundary Element (WFBE) method 

A‎ “waveguide‎ structure”‎ is‎ one‎ which‎ is‎ long‎ (or‎ infinite) in one (or more) 

dimensions and has a constant cross-section perpendicular to this axis. The Waveguide 

Finite Element (WFE) method [9] is a useful numerical approach to calculate the dynamic 

behaviour of such a waveguide structure in an efficient way. This approach uses a two-

dimensional finite element mesh with special elements that allow for wave propagation in 

the third dimension. The general three-dimensional solution can be obtained from an 

inverse Fourier transform over wavenumber. For the case of sound radiation predictions, 

the coupled Waveguide Finite Element-Boundary Element (WFBE) method can be used to 

calculate the interaction with the acoustic field [58, 61]. In the present thesis, the existing 

software WANDS [78] is used to implement the WFBE approach. For completeness, the 

basis of this approach is described in this chapter, largely following Ref. [78] particularly 

for the equations of motion of each element. The post-processing methods for forced 

response and transmission loss have been specifically developed in this thesis as these are 

not developed in Ref. [78]. 

3.1 Waveguide Finite Element method 

A structure with uniform geometrical and material properties along one direction 

taken here as the x  direction, but arbitrary cross-section can be modelled numerically 

using the waveguide finite element (WFE) method [61, 79, 80]. Under this formulation, the 

structural behaviour is treated as a two-dimensional problem in which the waveguide 

cross-section in the y z  plane is discretized into a number of finite elements. In the other 

dimension, the x direction, the structure has homogeneous properties and harmonic wave 

solutions of the form i xe   are assumed. Therefore, a solution is obtained which is three-

dimensional in nature, without requiring a three-dimensional model as would be required 

using conventional finite elements for a similar outcome. This offers a versatile and 

numerically efficient method for such structures, especially when they are long (or 

effectively infinite) in the x direction. 
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3.1.1 Plate elements 

Consider a plate strip element with translational displacements u , v  and w  in the 

x , y  and z directions and a rotational displacement   about the x  axis, as shown in 

Figure ‎3.1. The element is defined by node points in the y z  plane which become lines in 

the x direction. This basic element is employed in the WFE formulation to build up any 

thin-walled complex structure. Derivation of the equations of motion for each element 

under the WFE formulation can be found in [61, 80, 81]. Harmonic motion at frequency  

is assumed throughout. For a structure assembled of a number of elements, the overall 

equation can be written in the form 
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where nK  and M  are stiffness and mass matrices which correspond to elastic energy in 

the system and kinetic energy of the structure respectively. W  is the vector of nodal 

displacement amplitudes at nodes in the y z  plane which is sought as the solution and F  

is a vector of nodal force amplitudes. W is also a function of  (suppressed for clarity). In 

the numerical implementation, the plate strip element includes in-plane and out-of plane 

motion so that the displacements are given by  1 1 1 1 2 2 2 2( )x u v w u v w 
T

W . 

 

 

 

 

 

 

 

 

 

Figure ‎3.1. A shell (or plate) strip element 

 

For clarity, Eq. (3.1) can be expanded as follows 

,x u  

  ,y v  

,z w  

Node line 1 
Node line 2 
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Note that the term 3K  is not usually present. The matrices 4K , 2K , 0K  and M  are 

symmetric while 1K  is skew-symmetric. Plate out-of-plane bending motion contributes 

terms in 4K , 2K  and 0K  while in-plane motion contributes terms in 2K , 1K  and 0K . 

The matrices nK  and M  and given in Appendix C in terms of the dimensions and material 

properties of the element. 

For the case of an infinite waveguide structure, a spatial Fourier transform in the 

longitudinal direction enables the response of the structure to be obtained. The following 

Fourier transform pair is used 

 

 ( ) ( ) i xx e dx



 W W  (3.3) 

 

 
1

( ) ( )
2

i xx e d 






 W W  (3.4) 

 

and a similar transform for F . Taking the Fourier transform of Eq. (3.2) to transform it 

from the spatial domain into the wavenumber domain, yields 

 

 4 2 2

4 2 1 0( ) ( ) ( ) ( ) ( )i i i              K K K K M W F  (3.5) 

 

where   is the wavenumber in the x direction.  

3.1.2 Solid elements 

Similarly a solid element can be defined by four (or more) node points. Nodes in 

the solid elements have 3 degrees of freedom corresponding to three translational 

displacements. Using the same principle as presented in section ‎3.1.1, the overall motion of 

a structure built up of solid elements can be written as follows [78] 
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2

2

2 1 02
( ) ( )x x

x x


  
    

  
K K K M W F  (3.6) 

 

where again W is also a function of  (suppressed for clarity). Taking Fourier transforms, 

this gives  

 2 2

2 1 0( ) ( ) ( ) ( )i i           K K K M W F  (3.7) 

 

where   is the wavenumber in the x direction. The matrices  2K , 1K , 0K  and M  are 

stiffness and mass matrices as before, and are given in Appendix C.  

3.1.3 Fluid element 

Since fluid in the cavity is presumed to be ideal in the numerical model, the flow is 

irrotational, i.e. the vorticity (v  ) is equal to zero [82]. That allows the particle velocity 

to be written as 

  v  (3.8) 

where  , , ,x y z t   is the velocity potential. The use of the velocity potential is 

effective for this modelling as all components of the fluid velocity can be obtained. 

Moreover, the pressure can be also defined by this scalar quantity as 

 
0p

t








 (3.9) 

The assembling of the fluid elements can be formulated by integrating their weak form (see 

Ref. [78] page 87) and this gives   

 

 
2

2

2

ˆ
ˆ ˆ 0

x



  


2 0 f

ψ
K K ψ M ψ  (3.10) 

 

where 2K , 0K  and fM  are stiffness and fluid mass matrices. These matrices are given in 

Appendix C.  

Applying Fourier transforms to Eq. (3.10) as defined in Eq. (3.3) yields 

 

  
2 2 0i     

 2 0 f
K K M ψ  (3.11) 
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which is the waveguide FE model for a fluid in the wavenumber domain. The manner in 

which it is coupled to the structure us described in section ‎3.3 below. 

3.1.4 Free wave solution 

Setting the external force F 0  in Eq. (3.5) leads to the free vibration case, which 

results in a twin-parameter eigenvalue problem where both wavenumber   and frequency 

  are unknown: 

 

 4 2 2

4 2 1 0( ) ( ) ( )i i i            K K K K M W 0  (3.12) 

 

This is a linear eigenvalue problem in squared frequency 2  for a given 

wavenumber  . Alternatively the polynomial eigenvalue problem in wavenumber   can 

be solved for a given frequency  . The solution obtained can then be used to describe the 

dispersion characteristics of the structure while the corresponding eigenvectors represent 

the cross-section deformation modes. For the case of 0  , the eigenvalue problem 

reduces to 

 

 2

0    K M W 0  (3.13) 

 

where the frequencies that are the solution of Eq. (3.13) are the cut-on frequencies of the 

various waves in the waveguide. Otherwise, however, Eq. (3.12) is a non-standard 

eigenvalue problem in wavenumber which can be more efficiently solved if it is 

transformed into a standard form. This can be achieved by transforming Eq. (3.12) so that 

the unknown eigenvalue   does not appear in the system matrix. The following procedure 

is used for solving such an eigenvalue problem by transforming it into a standard 

eigenvalue problem form for 1( )i   as given by Gavric [80]. The procedure starts by 

inverting the part of Eq. (3.12) which does not depend on wavenumber,  2

0 K M . Eq. 

(3.12) is then multiplied by the inverted matrix and divided by i  to give the following 

relation 
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  3 1
( ) ( )

( )
i i

i
 


    


1 2 4A A A W W  (3.14) 

  

where  
1

2

j j


  0A K M K , 1,  2,  4j  . Eq. (3.14) can then be converted to a simple 

eigenvalue problem by adding three identities 1( ) ( )( )j ji i i    W W  for 1,  2,  3j   

to yield the square matrix system 

 

 

2 4

2 2

3 3

( ) ( )1

( )( ) ( )

( ) ( )

i i

ii i

i i

 

 

 

    
    
      

      
            

1A A 0 A W W

I 0 0 0 W W

0 I 0 0 W W

0 0 I 0 W W

 (3.15) 

 

where I  is the identity matrix. The dimension of the unknown eigenvector is four times 

the dimension of the original finite element model. The eigenvalues are the inverse of the 

wavenumbers 1( )i  . Eq. (3.15) satisfies the standard eigenvalue problem form. For the 

case of 4 K 0 , e.g. only solid elements, Eq.  (3.15) reduces to  

 

 
2 1

( )( ) ( )ii i 

    
    

     

1A A W W

I 0 W W
 (3.16) 

 

where  
1

2

j j


  0A K M K , 1,  2j  . 

 

3.1.5 Forced response 

In order to predict the forced response of a structure, all the wave solutions 

including nearfield waves are required. Hence, Eq. (3.15) and Eq. (3.16) have to be solved 

to obtain all wavenumbers and mode shapes at a given frequency .  

For the case of forced vibration due to a concentrated load at a given frequency , 

the force can be represented using a delta function in the spatial domain as follows 

 

  ˆ( )x xF F  (3.17) 
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where F̂  represents the nodal force vector. The response of the structure is then given as 

the solution to 

 

  
4 2

2

4 2 1 04 2
ˆ( )x x

x x x
 

   
     

   
K K K K M W F  (3.18) 

 

Using Fourier transforms as in Eq. (3.3), Eq. (3.18) is subsequently written as 

 

 4 2 2

4 2 1 0( ) ( ) ( ) ( ) ( )i i i              K K K K M W F  (3.19) 

    

where  

   ˆ ˆ( ) i xx e dx 




 F F F  (3.20) 

 

and ( )W  is the displacement of the cross-section at wavenumber  . By inverting the 

dynamic stiffness matrix in square brackets in Eq. (3.19), the displacement of the structure 

in the wavenumber domain can be obtained as 

 

 
1

4 2 2

4 2 1 0( ) ( ) ( ) ( ) ( )i i i     


         W K K K K M F  (3.21) 

 

Subsequently, the displacement in the spatial domain can be recovered through the inverse 

Fourier transform, Eq. (3.4). This equation can be solved by several methods as discussed 

below. 

3.1.6 Residue calculus method 

Using the residue calculus method, as presented in [9, 58, 81, 83], the integral in Eq. 

(3.4) with limits   can be replaced by a contour integral in the complex plane. Two such 

curves are shown in Figure ‎3.2. For x   0 the integral in Eq. (3.4) is performed over the 

upper half plane because the integrand will approach zero in this plane as R . 
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Similarly for 0x   the integral is performed over the lower half plane. The integral is 

equal to  2 i  times the sum of the residues at the poles of the integrand [84]  

 

 
( ) ( )

2
( ) ( )p

f z f z
dz i

q z q z



  (3.22) 

 

where ( )f z  and ( )q z  are finite functions of the complex variable z  and the sign depends 

on the direction in which the poles are encircled. Eq. (3.22) has poles, where the dynamic 

stiffness has zero determinant, at precisely the solutions to Eq. (3.12), i.e. the free wave 

solutions. It is assumed that each of them is a simple pole hence there are no duplicate 

wave solutions. 

 

Figure ‎3.2. Path of integration in complex plane [9]. 

 

The response in the spatial domain is then calculated as a sum of residues as follows [9, 81]  
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

W F

W K W

 (3.23) 

 

where q  is an index over the waves in the structure under consideration at a given 

frequency. LW and RW  are referred to as the left and right eigenvectors of Eq. (3.12) 

respectively for the eigenproblem evaluated at p  . The DOF subscript is an index 
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indicating the degree of freedom at which the displacement is required while , ,DOF q RW  is 

the component of the right eigenvector RW  corresponding to index DOF.  

The differential term in the denominator of Eq. (3.23) can be derived as follows 

 

  3

4 2 1( ) 4 ( ) 2 ( )
p

p

j

j

j

i i i i
 

 

  
 



 
       

  
K K K K  (3.24) 

 

For the case of the solid elements, where 
4K is absent, Eq. (3.24) becomes 

 

  2 1( ) 2 ( )
p

p

j

j

j

i i i
 

 

 
 



 
     

  
K K K  (3.25) 

 

3.1.7 Numerical integration 

Aside from the residue calculus approach, the integration in Eq. (3.4) can also be 

solved for a limited wavenumber range by using a simple numerical integration technique 

such as the rectangle method [84]. This method works by dividing the area under the graph 

of Eq. (3.21) into r  rectangles. The area of each is the product of height and width. Thus 

the integral in Eq. (3.4) becomes  

 

 
max

max

(2)

(1)

1 1
( ) ( ) ( )

2 2

i x i x

r

x e d e


 


   

 

 


  W W W  (3.26) 

 

where term (1) determines the height of the rectangles and term (2)   is the step size 

which is taken as an equal sub-division of the length. Figure ‎3.3 illustrates how this 

method works. The key point here is to determine suitable values for max  and   which 

will be considered in section ‎4.1.2. 
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Figure ‎3.3. Integration in Eq. (3.4) is performed as a series of rectangles to approximate the 

area under the graph. 

3.2 Wavenumber Boundary Element method  

3.2.1 Wavenumber domain 

For the boundary element method, the acoustic domanin is discretized around its 

boundary. The boundary variables, acoustic pressure p  and fluid particle velocity in the 

direction n , nv , are conveniently expressed through the velocity potential   (see Eq. (3.8) 

and (3.9)). This gives 

  

 nv


 
n

 (3.27) 

 

and 

 0p
t








 (3.28) 

 

where n  is a unit direction vector normal to the surface and 0  is the mean fluid density. 

The Kirchoff-Helmholtz integral equation for the radiated acoustic field is given by 

[78] 
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  2 2

0 0 0
V S

k dV dS
 

       


    
     

  
  n n

 (3.29) 

 

where    is the‎Green’s‎function‎of‎the‎system with   denoting complex conjugate and 

S  is a closed surface enclosing the volume V . For unbounded region S  includes an 

integral over a surface at infinity. 

 Taking a spatial Fourier transform in the x direction leads to the volume and 

surface integrals in Eq. (3.29) becoming surface and line integrals when the integral over 

wavenumber is dropped, hence 

 

   2 2 2

0 2 0 0D

S

k dS d
 

       


 



  
       

  
  n n

 (3.30) 

 

where 2 2 2 2 2

2D y z      ,   is the wavenumber in the x direction, S  is the cross-

section area of the acoustic domain and   is the perimeter of the boundary. It can be seen 

that the first term of Eq. (3.30) is similar to the normal 2D Helmholtz equation in the 

conventional BE method but with 2k  replaced by 2 2 2( )k   .  

Now consider the presence of a point source at 
0r . The first integral of Eq. (3.30) is 

required to be zero except at the source position. Meanwhile, the second integral of this 

equation over the source constitutes    C  
r r  where 0 0r r . The integral over the 

far-field‎boundary‎also‎disappears‎owing‎to‎Sommerfeld’s‎radiation‎condition.‎Hence,‎the‎

boundary integral equation becomes 

    C d
 

  


 



  
    

  
r r

n n
 (3.31) 

 

 The result from the BE model gives a relation between the boundary variables that 

may be written as 

 

 
i


 



inPψ
Hψ G

n
 (3.32) 
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where ψ and  ψ n  are vectors of the respective variables at the nodes of the BE model 

and n  is the unit vector normal to the surface of the boundary. To allow excitation by an 

incident wave field, 
inP  is introduced as the pressure amplitude of the incoming wave 

evaluated on the boundary nodes. H  and G  are generally full, non-symmetric, complex-

valued matrices that are obtained by discretising terms on the right-hand side of Eq. (3.31).   

3.2.2 Mixed boundary condition 

In addition to Eq.(3.32), another relation between the boundary pressure and the 

velocity vector is also required. This relation is given to cover specific conditions of the 

boundary, i.e. specifying a coupling to another system, for example nodes on the boundary 

which are not on the FE/BE interface (or ‘wetted’ surface). This is then referred to as a 

mixed boundary condition and can be written as 

 

 A B n c C P C V c  (3.33) 

 

where AC  and BC  are diagonal matrices and cc is a vector corresponding to pressure 

sources and moving boundaries. Note that this boundary condition is also known as a 

Robin (or impedance) boundary condition. This kind of boundary condition is imposed in 

the case of a baffled plate to enforce zero velocity on the baffle and at the edges of the 

plate. 

3.3 Coupling between WFE and WBE models 

A complex structure can be developed by combining sub-models of waveguide finite 

elements and wavenumber boundary elements through a suitable coupling mechanism. In 

this section, an overview on this is provided, while detailed explanations are given in [78]. 

At the wetted surface there are two types of boundary conditions along the surface,  

namely Dirichlet (or Essential) and Neuman (or Natural). The Neuman boundary 

conditions are implicitly included in the equation for Hamilton’s‎ principle‎ in which 

relation between force and displacement or pressure and particle velocity have already 

been defined [78].  
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For plate FE or solid FE coupled with fluid FE, the virtual work from fluid motion 

needs to be included. Hence, Eq. (3.5) or (3.7) in the absence of external force now 

becomes 

 

 2

1 2i     K M M W 0  (3.34) 

 

where    

T

W W ψ , 1M  is the coupling matrix to account for virtual work on the solid 

by the fluid and vice versa, which can be seen as a gyroscopic coupling matrix , and 
2M  is 

the mass matrix defined as follows 

 

 2      
 

  
 

j

f

M 0
M

0 M
 (3.35) 

 

where index j  is p  or s  to indicate plate or solid. 

For plate FE or solid FE coupled with fluid BE, the Dirichlet boundary conditions 

that must be fulfilled for coupled FE-BE at the wetted surface are that the velocity of the 

structure must match that of the fluid. Therefore, in terms of velocity potential, this can be 

expressed as  

 

 0i


 


2 2

ψ
I C W

n
 (3.36) 

 

where 2I is a matrix containing terms which are unity or zero and 2C is a transformation 

matrix transforming FE-displacements W to the equivalent normal displacement at the 

boundary. 

From Eq. (3.36)  ψ n  can be written as  

 

 1

2i 



2

ψ
I C W

n
 (3.37) 

 

where the vector ( )W  is the displacement from the FE model. The velocity potential is 

obtained by substituting Eq. (3.37) into Eq. (3.32). This gives 
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 1 




ψ
ψ H G

n
 (3.38) 

 

Having obtained  ψ n  and ψ , the particle velocity ( )n V  and the pressure ( )P  and 

can be found from the Fourier transforms of Eq.(3.27) and Eq. (3.28). 

 Due to presence of the fluid BE on the boundary, the pressure from the fluid is now 

added to Eq. (3.34) so that the virtual work  
1C P  produced by the WBE model can be 

included in the WFE model. This gives 

 

 2

1 2 1i      K M M W C P 0  (3.39) 

 

where 1C P  is the force from the fluid acting on the plate in which 1C  is the coupling 

matrix that projects the pressure of the fluid onto the structure and P  is the pressure.  

Considering all relationships in Eq.(3.32)-(3.33) and Eq.(3.36)-(3.39), the combined 

system is obtained as follows 

 2

n in

c

i i

i i

  

 

 
    

           
       

  

1 1 2 e

A B 2 2

ψ
H G 0 P

ψ
- C 0 K + M - M F

n
C C I C c

W

 (3.40) 

where 
1

n
i

G G  and 
e

F  contains the other external forces. 

 

3.3.1 Radiated sound power  

The radiated power radW  due to a vibrating waveguide structure is given by 

 

 
1

Re ( ) ( )
2

rad nW p x v x d dx





 

 
  

 
   (3.41) 
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where   is the perimeter of the cross-section in the y z  plane and d  is an infinitesimal 

segment of the perimeter of the cross-section. By‎using‎Parseval’s‎formula,‎Eq. (3.41) can 

be written in the wavenumber domain to give 

 

 
1

Re ( ) ( )
4

k

rad n

k

W P V d d  




 

 
  

 
   (3.42) 

 

where the integral is restricted to k k   , with k  the acoustic wavenumber, since 

elsewhere no radiated power is produced. 

 The integration process over   in Eq. (3.42) is actually performed element-by-

element with the boundary variable jP  and jV  of each element j  given by 

  
1

n

j i i

i

P p N 


  (3.43) 

  
1

n

j i i

i

V V N 


  (3.44) 

 

where j  is the element number, i  is the node number of element j  and  iN   is the 

shape function with local coordinate 1 1   . 

 The length of the infinitesimal segment itself can be evaluated by [65] 

 

    
2 2

2 2 dy dz
d dy dz d Jd
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   
 (3.45) 

 

where J  is the Jacobian and  
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Therefore, the integration over the perimeter for each   can be performed 

numerically. Here standard Gaussian quadrature [85] is used for this. This gives 
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 (3.48) 

 

where m  is the number of elements, g  is the number of Gaussian points used on the 

element, 
k  is the thk  Gaussian point, kw  is the corresponding weight and  

     
1 1

n n

k i i i i

i i

f p N V N Jd   



 

 
  

 
  . 

3.3.2 Sound transmission 

For an incident plane wave at angle   to the normal (about the x axis), the incident 

power per unit length in the x direction is defined as 

 

 

2
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cos1
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i

inc

p
W d

c






   (3.49) 



where ip  is the incident pressure amplitude. The incident angle about the y - axis is 

determined by the wavenumber   in the x direction. By using the radiated sound power 

radW  as defined by Eq. (3.42), the transmission coefficient is given by 

 

 rad

inc

W

W
   (3.50) 

 

The sound reduction index or transmission loss R  is found from 
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1
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      dB (3.51) 

 



Chapter 3 

 

 

87 

 

In practice, structures are often subjected to a diffuse sound field rather than a plane 

wave. The diffuse sound field excitation is formulated as the superposition of uncorrelated 

plane waves with equal amplitude. The response of the structure is then obtained by 

integrating the response due to all incident plane waves over the incident angle and 

weighting them with the corresponding solid angle to account for the directional 

distribution. 

Using the same principle, the diffuse field can be defined in WANDS but with a 

different convention owing to the way the acoustic response is calculated in WANDS. The 

acoustic response of the waveguide structure is calculated based on the wavenumber   

instead of k  as follows (see section ‎3.2.1) 

 

 2 2 2 2

y zk k k      (3.52) 

 

 

The incident direction in WANDS can thus be described by two respective angles   and 

  which cover the directional distribution of the acoustic intensity, as illustrated in 

Figure ‎3.4. 
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Figure ‎3.4. Description of incident direction in WANDS 

 

Here   is the angle within the  y z  plane (about the x  axis) and   is the angle between 

the vectors of the acoustic wavenumber and propagating wavenumber in the x  direction 

(for 2   it corresponds to a rotation about the y  axis). Note that the angle   is 

dependent on   while the angle   is discretised from 0 to 90º. 
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As a consequence of the convention adopted in Figure ‎3.4, the wavenumbers in 

each direction can be defined as 

  

 cosxk k    (3.53) 

 

 2 2cos cos sin cosyk k k          (3.54) 

   

 2 2sin sin sin sinzk k k          (3.55) 

  

Following the Paris’ formula [86], the diffuse field transmission coefficients can thus be 

expressed as 
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where sind d d    . Hence, the transmission loss for the diffuse sound field is finally 

expressed by 

 10

1
10logd

d

R


 
  

 
       dB (3.57) 

3.4 Summary  

The waveguide finite element (WFE) method can be used to calculate the free and 

forced response of dynamic systems. This method is able to model various waveguide 

structures as well as fluid with arbitrary cross section and homogeneous properties in the 

other direction. Coupled with the wavenumber boundary element (WBE) method, such an 

approach can be used to calculate the radiated sound power excited either by mechanical or 

acoustic excitation.   

 In this study, the WFBE method is implemented using a software package called 

WANDS [78] developed at the ISVR. All methods described in this section will be used to 

calculate structural response of an infinite plate strip as presented in ‎Chapter 4. 
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Chapter 4. Validation of WFBE for a plate strip 

For the particular case of sound radiation and transmission involving the coupling 

between structural components and the surrounding air, analytical models have been 

developed in ‎Chapter 2 to enable validation of the WFBE approach. These are based on an 

infinite plate strip with simply supported boundaries. Results have been given in ‎Chapter 2 

for the mobility, the sound radiation due to a point force and the sound transmission due to 

an incident sound field. 

A computer program has recently been developed at ISVR which implements the 

WFBE approach with a number of suitable element types as presented in ‎Chapter 3. This 

software package called WANDS (Wave Number Domain Software) [78] is used here to 

model the structure of a plate strip as well as the surrounding fluid for the case where the 

structure-fluid interaction exists. The detailed procedure for using WANDS is given in 

[87]
4
.   

In this chapter, validation of the numerical model is conducted by comparing the 

results with those from the analytical models. A comparison of the results of each method 

as well as an investigation of various methods for evaluating the integral in the inverse 

Fourier transform are discussed in detail. This step is important to know the effect of 

discretization in wavenumber space in terms of step size and wavenumber range in order to 

avoid losing information. The effect of baffle width on the accuracy of the radiated power 

calculation is also investigated considering the finiteness of the baffle width implemented 

in the numerical model. Moreover, the thickness (or depth) of the WBE mesh is considered 

in order to avoid problems corresponding with thin bodies [65] owing to a close distance 

between the opposite sides of the mesh. In general, the verification of the numerical result 

by comparison with the analytical one is of importance as a prerequisite to employing the 

method in more complicated cases. 

In the present comparisons, an aluminium plate of width yl  and infinite length is 

assumed with simply supported boundaries. The material and geometric properties are 

identical to those used in ‎Chapter 2 and are listed again in Table ‎4.1.  

                                                 
4
 No new developments of the WANDS software have been carried out by the author. However, the 

procedures to implement diffuse incidence TL were developed as part of the present thesis and issues 

surrounding the use of WBE-fluid were investigated in detail. 
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Table ‎4.1. Material properties of the plate strip (unless otherwise stated). 

Properties Value 

Young’s‎modulus,‎ E  (N/m
2
 ) 107.1 10  

Poisson’s‎ratio,‎
pv  0.332  

Thickness, h (mm) 6.0 

Width, 
yl  (m) 1.0 

Density ,   (kg/m
3
) 32.7 10  

Damping loss factor (if used),   0.1  

 

4.1 Point mobility of a plate strip 

In WANDS, a special two-noded element is implemented for plates consisting of a 

linear shape function for the in-plane motion and cubic Hermite polynomials for out-of 

plane motions. Here, unless otherwise stated, 30 plate elements are used to represent the 

cross-section of 1 m width. This corresponds to 4 elements per wavelength at the 

maximum frequency of 3 kHz. To simulate the simply supported boundaries, the first node
 

of the first element and the second node of the last element are restrained in the x , y  and 

z  directions but are free in rotation so that the model has 118 degrees of freedom (DOF) 

in total. A point force of unit amplitude is applied at the centre, which corresponds to the 

16
th

 node. 

The WANDS software itself is used for calculating the matrices nK  and M . Then, 

the receptance of the plate strip is obtained in a separate post-processing state in Matlab 

using the residue calculus method as described in section ‎3.1.6. The mobility of the plate 

strip is obtained by multiplying by i . Figure ‎4.1 shows the point mobility of the plate 

strip along with the analytical result from ‎0. It is clear that the numerical result agrees well 

with the analytical one for the parameters given. With the numerical parameters included 

in the calculation, the numerical model has errors in amplitude less than 1% compared with 

the analytical result while differences of up to 0.02 radians (1.15 degrees) in the phase 

occur as shown in Figure ‎4.2 .  
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Figure ‎4.1. Mobility of the plate strip due to force excitation at  0, 2yl  calculated using 

WFE model compared with analytical result (━ numerical; ┅ analytical). 
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Figure ‎4.2. Relative percent difference of mobility amplitude and difference of phase in 

radians between numerical result and analytical one. 
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Figure ‎4.3 presents the predicted dispersion curves found from the free wave 

solutions for the undamped plate strip. Some mode shapes are also illustrated for particular 

cut-on frequencies. It is clear that the peaks found in the mobility are strongly related to the 

cut on of various waves.  

 In this figure, curves A and B are coupled longitudinal and shear waves resulting 

from in-plane displacement of the plate. These are not considered further here as this study 

is mainly devoted to the investigation of radiated power and sound transmission for 

lightweight structures. For these cases, the bending waves impose the largest normal 

displacement on contiguous fluid. Hence in terms of fluid-structure interaction, they are of 

most relevance. 

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

Frequency, Hz

R
e

( 
),

  
(r

a
d

/m
)

 

 

 

Figure ‎4.3. The predicted dispersion curves of a simply-supported plate strip and particular 

mode shapes. 

 

Compared with the analytical results (see Figure ‎2.2), the discrepancy in cut-on 

frequency is less than 1%, as shown in Table ‎4.2. This discrepancy increases with 

increasing frequency, indicating that the element density used in the model becomes less 

sufficient to cover the actual structural wavelength at higher frequencies. 
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Table ‎4.2. Cut-on frequency fm: comparison between numerical results and analytical ones. 

 

m  mf  numerical mf  analytical % difference 

1 14.8 14.8 0 

2 59.2 59.2 0 

3 133 133 0 

4 237 237 0 

5 370 370 0 

6 533 533 0 

7 725 725 0 

8 947 947 0 

9 1199 1198 0.08 

10 1480 1479 0.07 

11 1792 1790 0.10 

12 2133 2130 0.14 

13 2505 2500 0.20 

14 2908 2899 0.30 

 

 

4.1.1 Effect of element size 

 The required number of elements increases as frequency increases. As a rule of 

thumb, six finite elements or more are normally required per wavelength [88], although the 

element shape function also affects the accuracy. It has been seen that by including 30 

elements in the model, the numerical result shows a good agreement with the analytical 

result up to 3 kHz. From Figure ‎4.3, it can be seen that at 1500 Hz 10 waves have cut on. 

The 10
th

 wave has 5 wavelengths across the width so that using 30 elements in the model 

gives 6 elements per wavelength at this frequency. By 3 kHz 14 waves have cut on and 

there are only 4 elements per wavelength. Table ‎4.3 compares the mobility results from 

WFE based on the residue calculus method with the analytical ones at some example 

frequencies. Even at 3 kHz the agreement is within 0.3% in magnitude, as shown in 

Table ‎4.4. Reducing the mesh to 10 elements, it can be seen that the results are much worse. 

This coarser mesh is sufficient up to 500 Hz where the error is less than 2% for the 

amplitude and 3 degrees for the phase. At this frequency it corresponds to 4 elements per 

wavelength. Hence, the results at higher frequencies are not strictly valid with this mesh. 
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Table ‎4.3. Mobility comparison based on analytical results and numerical ones based on 

residue calculus. 

 

Frequency 

(Hz) 

Analytical WFE Residue calculus 

Magnitude 

(ms
-1

N) 

Phase 

(degrees ) 

Magnitude (ms
-1

N) Phase (degrees ) 

30 

elements 

10 

elements 

30 

elements 

10 

elements 

1 57.402 10  84.27 57.402 10  57.397 10  84.27 84.27 

10 31.052 10  81.52 31.052 10  31.052 10  81.52 81.52 

100 45.287 10  15.73 45.287 10  45.268 10  15.73 15.19 

500 47.842 10  -12.83 47.844 10  47.969 10  -12.88 -15.11 

1000 47.194 10  -5.73 47.196 10  47.430 10  -5.87 -12.13 

3000 47.645 10  -4.87 47.666 10  48.427 10  -5.45 -19.17 

 

Table ‎4.4. Relative error of numerical results compared with analytical results for certain 

frequencies. 

Frequency 

(Hz) 

Relative error  

Magnitude (%) Phase (degrees) 

30 

elements 

10 

elements 

30 

elements 

10 

elements 

1 0 0 0 0 

10 0 0 0 0 

100 0 0.36 0 0.54 

500 0.03 1.62 0.05 2.28 

1000 0.03 3.25 0.14 6.40 

3000 0.30 10.2 0.58 14.3 

 

4.1.2 Effect of wavenumber range and step size on accuracy of mobility 

calculation 

When the rectangle method is used, the calculation process experiences truncation 

in the wavenumber domain. In order to determine correct integration parameters, the 

results of this approach are compared with the residue calculus ones. They are used as the 

reference here as they include the same effects of discretization. The comparison is 

therefore limited to the effect of the integration method. Various wavenumber ranges and 

step sizes are considered. The maximum wavenumbers and step sizes are deliberately 
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designed by considering them as multiples of the free bending wavenumbers 
Bk , as 

defined in ‎Chapter 2, at the corresponding frequency. 

This approach allows a more general conclusion to be reached about how many 

wavenumbers should be included in the calculation. The error is obtained from comparison 

between the numerical results based on the rectangle method and the residue calculus one, 

defined as  

 
10 10rectangle residue

dB error 20log 20logY Y   (4.1) 

  

The residue calculus results are given in Table ‎4.3 above. The wavenumber range 

and step size required to achieve an error less than 1 dB or 0.1 dB can be observed from 

Table ‎4.5. Note that the required maximum wavenumber and step size are compared to the 

real part of the free bending wavenumber at the corresponding frequency in order to get a 

non-dimensional maximum wavenumber and step size. 

Some prominent features can be deduced from Table ‎4.5. Firstly, for low 

frequencies a high maximum wavenumber ratio is needed while a lower one is sufficient 

for mid and high frequencies. Secondly, a large step size ratio seems to be acceptable for 

low frequencies but as frequency increases a smaller step size ratio is required, particularly 

for mid frequencies. Therefore, the largest number of integration points is found in the mid 

frequencies. Thirdly, as expected, in order to achieve 0.1 dB error or less, a higher 

maximum wavenumber ratio and a smaller step size ratio are required than for 1 dB error.  

 

Table ‎4.5. Wavenumber ranges and step sizes required for 1 dB error and 0.1 dB error
5
. 

Frequency 

(Hz) 
Re( )Bk  

1 dB error 0.1 dB error 

max

Re( )Bk


 

Re( )Bk


 max

Re( )Bk


 

Re( )Bk


 

1 0.816  5.5  2.75  18  2.25 

10 2.579  1.5  0.75  4.5  0.375 

100 8.156  1.25  0.1  3.75  0.12 

500 18.24  1.0  0.05  2.0  0.03 

1000 25.79  0.9  0.04  1.5  0.04 

3000 44.67  0.9  0.04  1.5  0.02 

                                                 
5
  In practical calculation , the wavenumber range and step size is implemented: 

   max max2 : : 2k k k      
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(c) 

Figure ‎4.4. Mobility spectrum of the plate strip at (a) 1 Hz, (b) 500 Hz and  (c) 3 kHz to 

represent low, mid and high frequencies respectively, with associated bending 

wavenumber of 0.8169, 18.27 and  44.74 rad/m (━ range required for 1 dB error; ┅ 0.1 

dB error; ••• border for the region required for 1 dB error). 
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To clarify the effect of the wavenumber range included in the calculation, Figure ‎4.4 

portrays the mobility spectrum in the wavenumber domain for three example frequencies 

based on Eq. (3.26) for 0.1  . From this figure, it is clear that a wider range of 

wavenumbers relative to the bending wavenumbers is required at the low frequencies due 

to the presence of a single broad lobe. Therefore, the tail of the curve gives an important 

contribution to the total integral at low frequency. Meanwhile, for the mid and high 

frequencies a ratio of 1 is sufficient to cover most of the lobes and achieve an agreement 

within 1 dB. The tail of the spectrum should be included at these frequencies in order to 

achieve agreement within 0.1 dB. In terms of absolute step size, the mid frequencies need a 

smaller step size than at low and high frequencies because the peaks are quite close 

together and have a narrow bandwidth. It can be expected that for lower damping a smaller 

step size would be required. 

4.2 Sound radiation of a plate strip   

The radiated sound power has also been calculated using the coupled Wavenumber 

Finite Element-Wavedomain Boundary Element (WFBE) method. Figure ‎4.5 illustrates the 

WFBE model schematically. The WFE parameters are the same as for the WFE model 

used in the mobility calculation in section ‎4.1 where 30 elements are used to cover 1 m 

wide plate strip and can cover the highest frequency up to 3 kHz. However, it is important 

to compare the model configuration with the acoustic wavelength as the structural 

wavelength is larger than this above the critical frequency of 2.0 kHz. In fact, compared 

with the acoustic wavelength there are only 2 elements per wavelength. To the WFE model 

is added a WBE model developed for an exterior problem using 30 four-noded cubic 

elements in all on the wetted surface. The first and last node of each element have the same 

coordinates as the WFE model as required in a coupled model, although the boundary 

elements have two intermediate nodes as well.  

The analytical model used for comparison includes an infinite rigid baffle beyond the 

plate strip. In order to implement a rigid baffle in the numerical model, as will be shown,  

this must comply with the following procedure: (i) the WBE sub-model should be included 

as an extended boundary element mesh on either side of the plate strip with a width of at 

least half of the acoustic wavelength under consideration; (ii) the WBE sub-model should 

be closed. The nodal surface velocity 0V  is set equal to zero for all nodes outside the 
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wetted surface. For the current numerical model, a 1 m finite rigid baffle is included 

beyond both edges of the plate strip, unless otherwise stated, and this WBE mesh is 0.1 m 

thick. The effect of the size of this mesh is discussed in section ‎4.2.2. Note that the rear of 

the plate strip is not considered to radiate sound. 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4.5. Schematic illustration of the WFBE model. 

 

 

The sound power radiation from the plate strip due to the point force excitation was 

calculated using Eq. (3.42). Figure ‎4.6 presents the radiated power for excitation at the 

centre (0, 2yl ) from the numerical and the analytical models. Some discrepancies can be 

observed from this figure, especially at low frequencies and around 2 kHz which 

corresponds to the critical frequency cf . It is likely that the finite rigid baffle length of the 

numerical model affects the results in the low frequency region. This effect will be studied 

further in the next section. Meanwhile, the difference around cf   is potentially due to 

difficulties in the implementation of the plate-fluid coupling in WANDS, also discussed 

later. 

It can also be seen that a lower radiated power is obtained, where the result is not in 

agreement with that of the analytical model, when an open BE mesh is used. This indicates 

that the inclusion of a closed BE mesh in the numerical model is of importance to get a 

correct result. To use an open BE mesh correctly, the indirect boundary element method as 

in [89, 90] could be considered in future works as part of improvements to the WANDS 

software. 
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Figure ‎4.6 Comparison of the radiated power between numerical result and analytical one 

for excitation at the middle (0, 2yl ) (━ numerical model with closed BE mesh; ┅ 

numerical model with open BE mesh; –•– analytical model).  

 

4.2.1 Effect of baffle width 

The analytical results are based on a plate strip set in an infinite baffle. In the WFBE 

results, this is approximated by a finite width baffle. The baffle width incorporated in the 

model affects the accuracy of the results, especially at low frequency. This is demonstrated 

here by varying the baffle width and then comparing the results with those of the analytical 

model. The baffle width is varied to be a 0, 0.2, 1 and 2 metre extension from either edge 

of the plate strip. In other words, the length of the WBE sub-model on the radiating side 

for the 1 metre plate-strip will be 1.0, 1.4, 3.0 and 5.0 metre in total. Compared with the 

acoustic wavelength at a frequency of 34 Hz, these baffle lengths correspond to 0.1, 0.14, 

0.3 and 0.5 times the acoustic wavelength respectively. 

The results are shown in Figure ‎4.7. It is clear that the sound power level results 

from the numerical model become closer to the analytical ones when the baffle width 

increases. Thus a 1.4 m width baffle gives good agreement between the numerical results 

and the analytical ones at frequencies above 115 Hz while the agreement is extended down 

to 35 Hz for a 5 m width baffle. In contrast, the numerical model does not quite agree with 
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the analytical one for any frequencies when the baffle is not present where the BE mesh is 

only 1m wide.  
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Figure ‎4.7 Radiated sound power calculated using the numerical model with various baffle 

width on each side of the plate and compared with those obtained with the analytical model 

(┅analytical model; ━ numerical model with baffle width of  2 m; ┅ baffle width of 1 m; 

–•– baffle width of 0.2 m; ••• no baffle exists) 

 

These effects can be seen more clearly in Figure ‎4.8 which shows the level  

difference, defined as 

 
,
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10log
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     (4.2) 

 

The value of radW  is approximately -3 dB at low frequency and reduces to 0 dB above a 

certain frequency. A large difference is found around at 15 Hz which is the first cut-on 

frequency. However, it should be noted that the fluid loading is neglected in the analytical 

model while this is considered in the numerical one. Hence, the difference greater than -3 

dB at this frequency is caused by the fluid loading as well as the baffle width effect. This 

causes the peak at the first cut-on frequency to shift in frequency, due to mass loading. Its 

damping is also affected. Another large difference found at 2 kHz is related to the plate-

fluid coupling issue at the critical frequency rather than the baffle width effect.  
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Figure ‎4.8. The baffle width effect on the radiated power in terms of radiated power 

differences relative to the analytical model (━ baffle width beyond plate of  2 m; ┈ 1 m; 

–•– 0.2  m; ••• no baffle exists) 

 

Considering these indications, it can be further concluded that the lowest frequency 

that can be covered by the model depends on the baffle width. The relation between the 

lowest frequency limit and the total width of the WBE mesh is summarized in Table ‎4.6. It 

can be seen that the lowest frequency limit reduces with increasing baffle width.  

Therefore, the relation between the approximate lowest frequency of validity and the baffle 

width can then be shown to be 

 
2

ll

ll b

c c
f

l
   (4.3) 

 

where llf  is the lowest frequency limit and bl  is the total width of the WBE sub-model on 

the radiating side. Thus, in order to allow the numerical model to be used reliably down to 

15 Hz, for example, bl  would need to be around 11 m. Accordingly, the 1 m wide structure 

would require a 5 m extension of the BE mesh beyond the structural width at both sides. 

 

Table ‎4.6.  Effect of baffle width on the lowest frequency limit for 1 m width structure 

 

Baffle width (m) Total width (m) 
llf (Hz) 

0.2 1.4 123 

1.0 3.0 57 

2.0 5.0 34 
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4.2.2 Effect of enclosed boundary thickness 

Great care should be taken to avoid problems associated with thin bodies when 

developing the enclosed boundary element mesh. Otherwise, the Helmholtz integral 

equation in Eq. (3.31) becomes near-singular as the mesh of the surface comes too close to 

that of the opposite surface (or line). Under such circumstances, the required jump in the 

double-layer potential is not generated as both surfaces collapse to the same surface so that 

the pressure is zero when the field point and source point are at the same surface. 

Moreover, the terms     n  of the Helmholtz integral equation is also zero as the 

normal velocities are equal and opposite on each surface. Consequently the presence of the 

singularity is never detected by the computer program so that the Boundary Element 

method produces unreliable results [65].  

Specifically, this can be overcome by a thin-body integral formulation, e.g. as 

demonstrated in [65, 91]. In this study, however, the WBE model in WANDS is tested 

using different boundary thicknesses in order to avoid the problem. For this, four different 

enclosed boundary thicknesses are used to test the WBE model in WANDS. For the WBE 

thickness values of 6 mm, 15 mm, 30 mm, 66 mm and 100 mm are selected. The effect of 

the boundary thickness is discussed in terms of the radiated power due to a point force. 

 Figure ‎4.9 shows the effect of thickness of the closed boundary WBE mesh. The 

results are identical for all thicknesses under consideration except for 6 mm where a 2 dB 

lower radiated power is found at low frequency. Therefore, the numerical model will 

produce good results if the thickness is 15 mm or more.  
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Figure ‎4.9. Effect of enclosed boundary mesh thickness (━ 100 mm; ┅ 66 mm;  

–•– 30 mm;  15 mm; ••• 6 mm). 

4.3 Sound transmission loss of a plate strip 

To calculate the transmission loss for the sound transmission problem, the numerical 

model is similar to that used for the radiated power calculations as discussed in section ‎4.2. 

The main difference exists in the form of excitation: in the transmission loss case, a plane 

acoustic wave is used instead of the point force, as shown in Figure ‎4.10. The numerical 

model is developed using a coupled WFBE model consisting of one WFE region 

representing the plate strip structure and two WBE-fluid regions for modelling the sound 

pressure field on both sides of the structure. The wavenumbers of the plane waves are 

governed by the incidence angle, which depends on the elevation and azimuthal angles for 

a 3-D problem. Moreover, 50 cubic plate elements are now used to cover the 1 m width in 

order to extend the result to a higher frequency. Under such circumstances, the model is 

expected to be acceptable up to 8.5 kHz at which it corresponds to 4 elements per 

structural wavelength (see section ‎4.1.1).  
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Figure ‎4.10. Schematic illustration of the plate strip excited by the acoustic plane wave. 

 

For simplicity, the model differs from the WBE model of the radiation problem as 

the incoming plane waves are realized by an open boundary mesh. This causes differences 

in the scattered field on the source side. In order to assess the effect of the open boundary 

mesh, the result obtained is compared with that of the closed boundary one using the 

following formula: 

 
closed boundary

10

open boundary

10log  ,                      dBTL




 
    

 

 (4.4) 

 

The result is presented in Figure ‎4.11. It is clear that the highest difference occurs at 

the first cut-on frequency, 14.8 Hz, at which a difference of 2.5 dB is found. As the 

frequency increases, the level difference reduces and it is less than 0.5 dB for frequencies 

above 40 Hz. This behaviour is caused by fluid loading at low frequencies which becomes 

negligible at higher frequencies. Hence the open boundary used in this study will not affect 

the accuracy of the numerical results for the current case by more than 0.5 dB for 

frequencies above 40 Hz. 
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Figure ‎4.11. The difference in the transmission loss between open boundary and closed 

boundary mesh on the source side. 

4.3.1 Normal incidence case 

Figure ‎4.12 presents a comparison between the numerical result and the analytical 

one for normal incidence. Note that the analytical model for this case uses 
2radW  in Eq. 

(2.79) instead of Eq. (2.80) so that the cross-terms between different mode orders are 

included. The mass-law result is also shown for comparison.  

First of all, the trend of the transmission loss in the numerical results agrees well 

with the analytical one. For the case under consideration, the transmission loss follows the 

mass law trend as frequency increases, especially above 100 Hz. Below 50 Hz, a 

discrepancy occurs due to the finite baffle width (see section ‎4.2.1); hence it will always 

appear below some frequency depending on the assumed baffle width considered in the 

numerical model. Apart from this, the numerical result agrees well with the analytical one. 

Various peaks and dips are seen corresponding to the cut-on frequencies of odd modes. 

The even modes are not excited in this case of normal incidence. 
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Figure ‎4.12. Comparison of transmission loss of the plate strip based on the numerical 

model and the analytical one (━ numerical model; ┅ analytical model; –•– mass law). 

 

4.3.2 Oblique incidence case 

 A further comparison can be carried out for an oblique incidence angle. The plate 

strip is subject to a plane wave impinging on it at a certain angle to the normal. For the 

plate strip case, it is possible to construct the incident angle about the x  axis or y  axis, 

where each of them would affect the transmission loss behaviour differently due to the 

nature of the plate strip dimensions. Figure ‎4.13(a) shows the result for oblique incidence 

at an angle of 45º about the x axis and Figure ‎4.13(b) is the result for the same elevation 

angle but about the y axis. Both cases show a good agreement with the analytical result, 

with the dips in the curves corresponding to the cut-on frequency behaviour. Due to the 

finite width of the plate strip, the modal behaviour is more pronounced for the former case, 

where even modes as well as odd modes are excited, than it is for the latter one. 
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(b) 

Figure ‎4.13. Comparison of transmission loss of the plate strip and the analytical model for 

oblique incidence case: (a) 45  ; 90   (b) 45  ; 0   (━ numerical model; ┅ 

analytical model). 

 

Above the critical frequency, the coincidence frequency calculated by the 

numerical model agrees with that of the analytical model for the former case. However, it 

is slightly lower than the analytical one for the latter case. This unmatched coincidence 

frequency would lead to an erroneous result for the diffuse sound field in which the plane 

waves from all incident angles are evaluated in the transmission loss calculation. This 

discrepancy is believed to be related to the errors found in the sound radiation result 
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around the critical frequency (see Figure ‎4.6). Moreover, it has been found (not shown 

here) that the error increases as the incidence angle is increased. 

4.3.3 Effect of plate thickness 

Figure ‎4.14 shows results for two different plate thicknesses, 6 mm and 9 mm, for 

normal incidence. The numerical results show a good agreement with the analytical ones. 

The increasing transmission loss is as expected and the dip related to the first cut-on 

frequency shifts upward with increasing thickness. 
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Figure ‎4.14 Comparison of transmission loss of the plate strip based on the numerical 

model and analytical model for the case of the different thickness (━ numerical model; ┅  

analytical model). 

4.3.4 Effect of damping loss factor 

Figure ‎4.15 shows results for a smaller damping loss factor   of 0.01, again for 

normal incidence. A good agreement is found with the analytical model, with dips in the 

transmission loss at the various (odd) cut-on frequencies. 

6 mm 

9 mm  
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Figure ‎4.15. Comparison of transmission loss of the plate strip and the analytical model for 

lower damping loss factor 0.01   (━ numerical model; ┅ analytical model). 

4.3.5 Diffuse sound field 

In the previous analysis, the resulting transmission loss was calculated for 

excitation by an acoustic plane wave. Now the structures are subjected to a diffuse sound 

field excitation and the sound pressure level is calculated using the procedure described in 

section ‎3.3.2. For this, 9 incident angles  about the x  axis and 18 incidence angles   are 

considered with an upper angle of 90º. Figure ‎4.16 presents a comparison of transmission 

loss from the numerical model and analytical one under a diffuse sound field excitation. 

The results of the numerical model are in a good agreement except around and above the 

critical frequency. Around the critical frequency, the WFBE model has a higher 

transmission loss than the analytical one while the dip associated with the critical 

frequency occurs at 2179 Hz for the numerical model instead of 2034 Hz as shown by that 

of the analytical model.  Moreover, above this frequency the transmission loss of the plate 

element model starts to deviate and has lower values than the analytical results. Therefore, 

it is clear that the numerical model gives erroneous results in this frequency region.  
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Figure ‎4.16. TL comparison of the numerical models and the analytical model under a 

diffuse sound field excitation (━ numerical model using plate elements; ┅ analytical 

model). 

4.4 Substitution of plate elements by solid elements 

All cases considered in the previous sections will now be repeated using a model 

assembled using solid finite elements instead of plate elements. The results obtained will 

be compared with those of the plate elements and the analytical model. All procedures and 

formulae used for the plate element case are again used for calculating the results with the 

solid elements, hence the description of that is not repeated in this section. Furthermore, 

the material properties are the same as used for the plate element model (see Table ‎4.1).  

To realize the WFE model using solid elements, eight-noded quadrilateral elements 

are used with quadratic polynomial shape functions. Three-noded boundary elements are 

used for the WBE fluid region with a 1 metre extension on both sides beyond the length of 

the plate strip in order to represent the rigid baffle. Hence the width of the BE mesh at the 

radiation side is 3 m in total. The elements at the edges are restrained in three directions at 

their mid-side points to impose simply supported boundary conditions, as shown in 

Figure ‎4.17. The effect of restraining the nodes is considered in detail in section ‎4.4.2.  
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Figure ‎4.17. Restrained node for simply supported boundary conditions in the solid 

element model. 

4.4.1 Element density 

The element density used for the plate elements, which was 30 elements for 1 m 

width plate strip, is not sufficient to produce the same results up to 3 kHz for the case of 

the solid elements. After increasing the density up to 50 elements, the dispersion curves of 

this model become closer to those of the plate element model, as shown in Figure ‎4.18. 

This indicates that it requires seven elements per wavelength if the quadrilateral type of 

solid element is used while four elements per wavelength are sufficient for the case of the 

plate elements. This element density gives 0.3% difference in cut-on frequency relative to 

the plate element result and 0.6% compared with the analytical results at around 2.9 kHz 

(which is the 14
th

 cut-on frequency). Hereafter, this element density is implemented for all 

comparisons considered except for particular cases where a higher maximum frequency is 

required. 
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Figure ‎4.18. Dispersion curve comparison of the plate element model and the solid element 

one (● Plate element ; ○ solid element) 

Restrained nodes  
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(a) (b) (c) 

4.4.2 Effect of restrained nodes 

Restrained nodes are of importance in realizing certain boundary conditions in the 

numerical model. In order to see the effect on the boundary conditions, three different 

configurations of restrained nodes of the solid elements are considered. This can be seen 

from Figure ‎4.19 where only a corner node is restrained in configuration (a), a midside 

node for configuration (b) and combination of both the corner and midside node for the 

configuration (c). In each case all three translations are restrained; unlike plate elements, 

solid elements do not have rotational degrees of freedom. 

 

 

 

 

Figure ‎4.19.‎Restrained‎nodes‎position‎of‎an‎solid‎element‎(●‎restrained‎node) 

 

 The effect of the restrained node position is compared in terms of dispersion 

characteristics in Figure ‎4.20 and the cut-on frequencies corresponding with each 

configuration are listed in Table ‎4.7. Considering the relationship of the cut-on frequencies 

and the boundary conditions, it can be inferred that the cut-on frequencies of configuration 

(b) correspond to the simply supported boundary conditions. The corresponding analytical 

results are    
2 1 2

ym l D h   with yl  the panel width, D  bending stiffness,   structural 

density and h  structural thickness. Meanwhile, configuration (c) can be inferred to 

correspond to the clamped boundary condition in which the cut-on frequencies equal 

approximately    
2

1 21
2 ym l D h  

 
. For configuration (a) the results are affected by 

coupling with the longitudinal waves due to the asymmetrical constraint. 
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Figure ‎4.20 Dispersion curve comparison of configurations in Figure ‎4.19 (○‎configuration‎

(a); ● configuration (b) ; □ configuration (c)). 

 

Table ‎4.7. Cut-on frequencies 
mf  corresponding with configurations in Figure ‎4.19. 

 

 mf  (Hz) 

m  
Numerical Theoretical 

a b c Simply supported Clamped 

1 23.6 14.8 33.3 14.8 33.3 

2 59.3 59.2 92.4 59.2 92.4 

3 146.5 133 181 133 181 

4 237 237 302 237 300 

 

4.4.3 Point mobility 

A point force is applied at the centre of the plate strip at position  0, 2yl . In terms 

of amplitude, the mobility of the solid element model is in good agreement with that 

obtained by the plate element model as well as the analytical model, as shown in 

Figure ‎4.21. However, the differences are found to be greater at high frequencies; e.g. at 

3 kHz it is found that the mobility amplitude of the solid model is 0.4% higher than the 

plate element model while its phase is 0.12 radian higher than the plate element model. 

Compared with the analytical model, differences of 0.7% for the amplitude and of 0.13 

radian for the phase are found. 
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Figure ‎4.21. Mobility comparison of the solid element model and the plate element model 

(━ solid element; ┅ plate element; －•－ analytical model). 

4.4.4 Radiated sound power 

It has been shown in section ‎4.2 that the plate element model result has a discrepancy 

in the radiated sound power around the critical frequency cf . To re-evaluate the numerical 

model for this frequency region, the analytical results are also included along with the plate 

element model result. The comparison of these results for radiated sound power can be 

seen in Figure ‎4.22. It is clear that the solid element model produces a better result for the 

frequency range of interest, particularly around cf , when the results are compared with 

those of the analytical model. At low frequency, below 50 Hz, both the numerical models 

produce around 3 dB lower radiated power than the analytical model as a consequence of 

the finite baffle width included in the models (see section ‎4.2.1).  
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Figure ‎4.22. Radiated power comparison (━  solid element; ┅  plate element; －•－ 

analytical model). 

Figure ‎4.23 presents the level difference of the radiated power between both the 

numerical models and the analytical one. It is clear that around the critical frequency a 

difference of up to 3 dB exists for the plate element model whereas the solid element 

model shows a difference of less than 0.2 dB in this frequency region. Apart from this 

frequency region, the difference between the numerical models and the analytical one at 

low frequencies is clearly due to the baffle width effect as found previously. The effect of 

fluid loading is again seen around the first cut-on frequency.  
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Figure ‎4.23. Radiated power level difference between the numerical model and the 

analytical one (━  solid element model and analytical; ┅ plate element model and 

analytical). 
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Regarding the problem associated with the radiated power from plate elements at 

the critical frequency, it is believed that this is due to implementation of the plate-fluid 

coupling rather than fundamental errors in the WFBE method considering the mobility 

results in section ‎4.1 as well as an unpublished investigation of the Boundary Element 

implementation in WANDS which is found to work well for calculating radiated power of 

an oscillating cylinder
6
. 

4.4.5 Sound transmission loss 

Next the sound transmission problem is considered using solid elements. To cover a 

higher frequency range up to 6 kHz, which is considered to be sufficient to include the 

coincidence region for oblique incidence with angle of 45, the number of elements is 

increased to 70 elements covering 1 m width plate strip. At 6 kHz, there are 7 elements per 

structural wavelength and 4 elements per acoustic wavelength.  

Figure ‎4.24 presents a comparison of the transmission loss for the solid element 

model, the plate element and the analytical one for the normal incidence case. At 

frequencies above 50 Hz, the results of the solid element model agree well with those of 

the plate element model and the analytical one. Meanwhile, the solid element model results 

agree with the plate element ones for all frequencies. 
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Figure ‎4.24. Transmission loss comparison of the model with solid element and plate 

element for normal incidence case (━ solid element; ┅ plate element; －•－ analytical 

model). 

                                                 
6
 Subsequent to the submission of the thesis the error in the plate element implementation has been rectified 

by Jungsoo Ryue 
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For the case of oblique incidence at an angle about the x  axis, the results are 

shown in Figure ‎4.25(a). The solid element model generally produces promising results 

compared with the plate element model and the analytical one below the coincidence 

frequency at 4 kHz. Above this frequency, the transmission loss of the solid element model 

starts to deviate slightly from the plate element model and the analytical results. This 

indicates that the solid element model requires a higher element density to cover this 

frequency region. For the case of an incident angle about the y  axis, as shown in 

Figure ‎4.25(b), it is clear that the solid element model results agree well with the analytical 

results whereas the plate element model results differ considerably below the coincidence 

frequency and at the coincidence frequency itself. Thus the discrepancy found for the plate 

elements appears not to occur for the solid elements. 
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(a) (b) 

Figure ‎4.25. Transmission loss comparison of the model with solid element and plate 

element for oblique incidence case: (a) at angle 45º about x  axis; (b) at angle 45º about y  

axis (━ solid element; ┅ plate element; －•－ analytical model). 

4.4.6 Diffuse sound field 

As in section ‎4.3.5, the diffuse sound field is represented by an integral over a range 

of incident angles with an upper angle of 90 to represent full random incidence. These 

results are shown in Figure ‎4.26. From this, it can be seen that the solid element model 

gives results that are much closer to the analytical ones than the plate element model, 
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particularly around and above the critical frequency. This confirms the trends already 

observed in Figure ‎4.25. 
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Figure ‎4.26. TL comparison of the numerical models and the analytical model under a 

diffuse sound field excitation (━ solid element; ┅ plate element; –•– analytical 

model). 

4.5 Summary 

Comparisons of the numerical results and analytical ones were conducted to 

validate the WFBE method applied in this study and to determine under what 

circumstances the numerical model can be used to give accurate results. In terms of the 

mobility calculation a suitable wavenumber range and step size are determined in order to 

ensure errors are less than a certain value. This is expressed in terms of the maximum 

wavenumber ratio, relative to the associated free bending wavenumber of the plate. This 

study shows that the maximum wavenumber ratio decreases as frequency increases e.g. for 

1 Hz  max Re( )Bk   18 while for 3 kHz max Re( )Bk   1.5 in order to get results with an 

error of less than 0.1 dB. 

Some practical aspects of implementing this method using the WANDS software 

should be borne in mind in order to obtain correct results. Firstly, the Waveguide Boundary 

Element (WBE) mesh should have a closed boundary rather than an open one. The 

thickness of the mesh should be determined carefully to avoid the thin body problem which 

causes misleading results. Secondly, to simulate a baffled situation a finite rigid baffle 
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should be included in the model by extending the width of the WBE fluid model beyond 

the width of the structure. The width of the finite rigid baffle is important in determining 

the accuracy of the numerical model results in comparison with the analytical ones, which 

are for an infinite baffle. The lowest frequency at which the numerical model results are 

still valid depends on the total width of baffle at the radiating side which should be at least 

half the acoustic wavelength. Thirdly, care should be taken in choosing the element type in 

the WANDS software. For the case of the waveguide structure considered in this study, the 

plate element type along with its coupling element to acoustic BE fails to calculate 

accurately the vibro-acoustic response of the plate strip although it gives good results for 

the mobility. It is found that the radiated sound power is incorrect in the critical frequency 

region and the sound transmission loss is incorrect around and above the coincidence 

frequency. Considering the mobility result, the current error found with plate elements is 

associated with its implementation in WANDS rather than the mathematical formulation of 

WFBE method. To overcome this problem, solid elements can be used to obtain the 

results, although a higher element density is required. 

All in all, the WFBE method is applicable for the cases considered in this study. 

Moreover, the WANDS software can be used to develop numerical models of structures 

and the structure-fluid interaction provided that suitable precautions are taken. The 

problems associated with plate-fluid coupling require further attention in the WANDS 

software but this is beyond the scope of the present study. All procedures and precautions 

discussed in this chapter are used as a basis for the development of numerical models of a 

double panel system in the next chapter. 
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Chapter 5. Waveguide double panel system 

In this chapter a numerical waveguide model of a double panel system is developed 

using the WFBE method, described in ‎Chapter 3 and validated in ‎Chapter 4. The case of a 

waveguide structure shares some of the features of a finite panel while also having an 

infinite length in one direction. It is well known that the finite extent of a bounded 

structure introduces structural modes which are associated with resonance frequencies. 

Moreover, diffraction occurs for apertures in the baffle in which the structure is mounted 

[2]. Therefore, theoretically, the finite width of the waveguide structure could bring some 

consequences in the TL behaviour. This model is intended to investigate transmisson loss 

behaviour of such a double panel system, particularly the effect of finiteness of the double 

panel system on the transmission loss rather than the single panel as discussed in 

section ‎2.4. This means the effect of finiteness of the air cavity is also studied as well as its 

interaction with the panels. The results are discussed for normal and oblique incidence and 

compared with those of an equivalent infinite system. To investigate futher the 

transmission loss behaviour, diffuse sound field excitation is also considered. 

5.1 Transmission loss of infinite double panel partition 

An analytical model of the infinite double partition is initially considered in order 

to give insight into the double panel partition behaviour when excited by a plane acoustic 

wave. On one hand, this is also intended to provide guidance in assessing the general 

behaviour of the numerical model as well as forming an important benchmark for the 

behaviour of the system of finite and infinite extent. On the other hand, the numerical 

model can also be useful in assessing some assumptions imposed in the infinite model. The 

physical behaviour is discussed by considering the normal and oblique incidence cases 

with several different air cavity depths.  

The analytical model for the sound transmission loss of a double panel is referred to 

as the London model [15]. This model was chosen as the reference for benchmarking 

purposes throughout this study. The reasons for this are, firstly, the model is simple and 

can be implemented straightaway and secondly, the model is capable of evaluating 

possible coincidence effects due to bending waves (cf. [14]). Hence the common features 

of the double panel partition are readily available for the comparison considered. 
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Prior to discussing the formulation itself, some assumptions in the model should be 

noted, as follows: (I) both panels are identical and infinite in extent; (II) each panel is 

isolated and they are coupled only by the air space. Moreover, the infinite condition 

indicates that the panels have no boundary conditions or structural resonances. 

By considering only the mass reactance of the wall impedance (or 
wZ i m   where 

m  is the mass per unit area and   is circular frequency), and excluding resistance 

damping and flexural motion of the panel, the inverse of the transmission coefficient of the 

double panel can be written as [15] 

  

  
22 21

1 4 cos cos cos sina a   

    (5.1) 

 

where 02a m c   with m  the mass of the panel per unit area, 0c  the characteristic 

impedance of air,   is the incident angle and coskd   with k  the acoustic 

wavenumber and d  the air cavity depth. By letting   0, Eq. (5.1) reduces to  

 

  
221

1 4 cos sina kd a kd

    (5.2) 

 

 From Eq. (5.1) , it is clear that perfect transmission (or 1  ) occurs when  

 

  cos cos sin 0a     (5.3) 

or 

 cot cosa   (5.4) 

 

In the case where   is small, which means that the air cavity is small compared with 

acoustic wavelength ( 1kd ), cot 1   and hence Eq. (5.4) leads to an expression for a 

resonance frequency as follows 

 02

2 cos
res

c
f

m d



 



 (5.5) 

 

Therefore, Eq. (5.5) indicates frequencies where the incident sound at angle   will be 

transmitted perfectly. For the normal incidence case, Eq. (5.5) leads to the so-called Mass-

Air-Mass (MAM) resonance which occurs at 
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 0
,0

2

2
res MAM

c
f f

m d




 


. (5.6) 

 

At this frequency, the air in the cavity acts as a spring and the two panels move out 

of phase with each other on the spring. Hence the double partition suffers a poor insulation 

performance at this frequency. It can be further observed that the term cos  in Eq. (5.5) 

indicates that 
MAMf  is the lowest frequency at which the attenuation of the double panel 

system is zero; for oblique incidence 
resf  will be higher than 

MAMf . This frequency is also 

known as lower London frequency. 

To describe the TL behaviour relative to the frequency of mass-air-mass resonance, a 

normalization of Eq. (5.1) by 
MAMf  is performed. The inverse of the transmission 

coefficient can now be expressed as [92] 

 

 

2 2 2

20 0

0 0 0 0

1 1
1 cos cos cos sin

2

m m

c c

  
   

    

      
       

     
 (5.7) 

where 0

0 0

2 cos
c

m


 

 



 and 0 2 MAMf  . 

 In the following sections, results are given for a double panel system consisting of 

two panels of plasterboard and an air cavity. The properties of the system are listed in 

Table ‎5.1.  

Table ‎5.1. Material properties of the gypsum plasterboard 

 

Properties Value 

Young’s‎modulus,‎ E  (N/m
2
 ) 92.5 10  

Poisson’s‎ratio,‎ pv  0.3 

Density (kg/m
3
) 690 

Panel thickness, h (mm) 16 

Air cavity depth (mm) (unless otherwise 

stated) 
65 
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Figure ‎5.1. Effect of the incident angle on TL according to the London model for 

parameters in Table ‎5.1 (━ 0   ; ┅ 45  ; ••• 60  ; –•– 80  ). 

 

 Figure ‎5.1 presents the TL values for various incident angles. It can be observed 

that the dip occurs at the frequency of the mass-air-mass resonance at angle 0 . The dip 

occurs at a higher frequency as the incident angle increases. It is clear that the frequency is 

proportional to 1 cos  as expressed in Eq. (5.5). However, some minima also occur in the 

TL curves at higher frequencies above MAMf . These are related to the term cot   in Eq. 

(5.4) when the transmission coefficient of the double panel system tends to 1. Since a  

increases with increasing frequency, at high enough frequencies this term is approximately 

equal to infinity, cot    hence 

 

 ,          = 1, 2, 3, ...,n n   (5.8) 

 

Under such circumstances, standing waves are present in the air cavity. These waves thus 

effectively connect the two panels rigidly. By recalling that coskd  , Eq. (5.8) gives 

the frequency corresponding to the standing wave as follows 

 
2 cos

n

nc
f

d 
  (5.9) 

 

It is clear that, if the air cavity depth increases, more minima will occur. Figure ‎5.2 

shows the effect of doubling the air cavity depth. 
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Figure ‎5.2. Effect of the air cavity depth on standing waves/acoustic resonance for normal 

incidence (━ d   100 mm ; ┅d   200 mm). 

 

Up to this point, only the mass reactance is considered in the TL prediction. Now, 

the panel resistance r  and the flexural motion of the plate, specified by its critical 

frequency, are incorporated according to London [15]. Therefore, the panel impedance 

becomes  

 
2

4

2

2
1 sin

cos
w

c

r f
Z i m

f
 



 
   
 

 (5.10) 

 

where   21 2cf c m D   with c  the sound speed and D  the bending stiffness. 

Considering Eq. (5.10) and performing some algebraic manipulations, the inverse of the 

transmission coefficient is given by [15]  

 
  

  

2
2 2 2 2 2 2 2

2 2

1
1 4 ( 1) 4sin ( 1)

4 sin 2 ( 1)

R R p v bv R R p v p v

pv bv R R p v


             

  

 (5.11) 

 

where R  is the resistance of the panel r  normalized by 0c  or 0R r c , cosv  , 

b kd  and   
2

2 2 21 1cp a f f v   
  

.  However, the postulate of the panel resistance 

introduced in the model does not have physical basis according to [21, 93] hence this is 

actually as an empirical correction to achieve a better fit to measurement results. 
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Figure ‎5.3 presents a comparison of the results calculated using Eq. (5.11) with those 

from the model with purely the mass reactance. It is clear that some differences exist at 

low frequencies due to the inclusion of the resistance. The attenuation no longer tends to 

zero as occurred in the previous model. Moreover, the TL value predicted using the revised 

model is higher at low to mid frequencies than the initial model. According to [15], this 

behaviour is closer to experimental results. 
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Figure ‎5.3. Effect of incorporating the panel resistance R  on the TL curve for normal 

incidence (━ Eq. (5.1); ┅ Eq. (5.11), R = 2.16; –•–Eq. (5.11), R = 10.5 ). 

 

 

In order to observe the effect of flexural motion on the TL curve, an oblique 

incidence result is presented in Figure ‎5.4 for an angle of 75°. It is clear that the model 

incorporating the flexural motion of the panel can demonstrate the coincidence 

phenomenon or trace-wave matching [4]. At 2.1 kHz, the component of the incident 

acoustic wavelength parallel to the plates matches the free flexural wavelength, hence a 

free propagating wave is excited in the panel. This wave is transmitted ‘resonantly’ and 

causes a considerable dip in the TL curve. In fact, this phenomenon exists at a frequency 

that depends on the incident angle  . The lowest such frequency is the critical frequency 

cf  which occurs for 90   (grazing incidence). The model without these terms has the 

same tendency as the normal incidence result except that the MAM resonance frequency 

shifts upwards (see Figure ‎5.1). As found for the normal incidence, a similar tendency also 
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occurs for oblique incidence in which the inclusion of R  affects the TL at low frequency 

and around the coincidence frequency. However, the effect of R  becomes evident over a 

wider frequency range rather than only at low frequency as found for the normal incidence 

in Figure ‎5.1 for larger R .  

 

 

Figure ‎5.4. Effect of incorporating the flexural motion of the panel and resistance panel R  

on the TL curve for the obliquely incident case ( 75  ) (━ Eq. (5.1); ┅Eq. (5.11), R = 

0 ; –•– Eq. (5.11), R = 2.16; ••• Eq. (5.11), R = 10.5 ). 

 

 Figure ‎5.5 presents TL under diffuse sound field excitation for elevation angles 

ranging from 0  to 2  calculated with 0R  . To achieve convergence it is found that 900 

angles are required. It can be seen that the first dip at low frequency corresponds to the 

mass-air-mass resonance while that at high frequency corresponds to the critical frequency.  



Chapter 5 

 

 

128 

 

10
2

10
3

5

10

15

20

25

30

35

40

Frequency, Hz

T
ra

n
s
m

is
s
io

n
 l
o

s
s
, 
d

B

 
Figure ‎5.5. Diffuse TL for infinite system with 0R  . 

 

5.2 Waveguide double panel partition with air cavity 

The numerical model of the double panel partition system is now developed on the 

basis of a waveguide structure mounted in a finite rigid baffle using the WFBE method. As 

before, the double panel partition is made of two leaves of plasterboard coupled by an 

enclosed air cavity. The material properties and dimensions are specified in Table ‎5.2. 

Note that these properties are assumed based on typical values rather than obtained from a 

measurement. Most of them are similar to values given in [31, 45] which allow comparison 

with the same experimental data [38] as used for those studies. Hereafter, this is designated 

as a reference model during this study. Moreover, the system without studs is discussed 

separately from that with studs as it is of importance in practice: some structures have no 

mechanical connection, e.g. double glass or high performance double walls. Steel studs are 

introduced afterwards and their effect is investigated in ‎Chapter 6. 
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Table ‎5.2. Material properties and dimensions of the double panel partition (unless 

otherwise stated). 

 

Properties Plasterboard Air 

Young’s‎modulus,‎ E  (N/m
2
 ) 92.5 10  - 

Poisson’s‎ratio,‎ pv  0.3 - 

Thickness (or cavity depth), 

h (mm) 
16 65  

Density,  (kg/m
3
) 690 1.21 

Damping loss factor (if used),   0.06 10
-3

  

 

5.2.1 Problem statement 

The waveguide double panel system model is shown schematically in cross-section 

in Figure ‎5.6. The structural response is calculated for different wavenumbers   in the 

x direction by solving the vibro-acoustic problem in the y z  plane. In this model, a 

WFE fluid sub-model is included to represent the dynamic response of the air in the cavity. 

Thus, the model embraces three sub-models to form the whole double panel system: WFE-

Solid, WFE-Fluid and WBE-Fluid. At the edges, simply supported boundaries are 

introduced unless otherwise stated; hence the central nodes of the solid element 

representing the panels here are restrained in x , y  and z -directions while rotation is 

allowed. The wavenumbers of the incident plane wave are determined by the incidence 

angle   about the x  axis while the angle about the y  axis depends on the wavenumbers in 

the x -direction.  

Acoustic plane wave

WBE 1

WBE 2

WFE-Fluid
WFE-

Solid

y

z

 

Figure ‎5.6. Schematic illustration of the numerical model for double panel partition with 

enclosed air cavity. The dashed-line on the WBE-2 mesh is to indicate the surface 

velocities are equal to zero. 
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The air in the cavity is assumed to be an ideal fluid, or close to ideal which means 

the fluid has low viscosity and low heat conductivity [78]. However, the formulation still 

permits a dissipative term to be introduced through a damping loss factor as long as the 

irrotational condition of the fluid particle displacement is not violated. Otherwise, care is 

required for example for the case of a thin air layer [94] where viscothermal effects occur 

which significantly increase as the air layer becomes thinner. However, a suitable loss 

factor for the air is still required to take account of relevant effects in the cavity as the air is 

trapped within the cavity. Some suggested values that are found in the literature are a loss 

factor 310  [34] or a frequency independent power attenuation coefficient of 0.2  m
-1

 

[25]. In the present study, a loss factor of 310 is initially assumed. The physical 

justification for this value will be discussed in detail in section ‎5.2.3.3. Moreover, the 

numerical model does not take into account the effect of possible flanking transmission 

that may exist in practice.  

The numerical model was developed by using the software package WANDS [87]. 

The current version of the software restricts the maximum number of nodes or elements 

and coupling elements during the calculation process due to maximum allocated memory 

under a 32 bit Operating System environment. Accordingly, the number of elements used 

for each sub-model reflects this limitation considering the size of the structure, while 

ensuring a minimum of at least six elements per wavelength [88]. 

The plasterboard leaves are modelled using 8-noded solid finite elements. 48 

elements are used to cover 1.218 m width which is equal to three bays of a double panel 

with the stud system that will be studied later. For the air in the cavity, 8-noded acoustic 

elements are employed where 4 layers across the depth are used to cover 65 mm depth 

while the same number of elements as for the solid elements is used in the direction 

parallel to the panels. Similarly, the boundary element mesh at the radiating side uses the 

same element size as the solid and acoustic elements. However, this mesh is extended by 

0.60 m beyond the structure width on each side, unless otherwise stated, in order to include 

a finite baffle in the model. The depth of this WBE mesh is 0.13 m to form a closed 

boundary mesh as required. Hence, 204 elements are used to cover the whole closed 

boundary. Under such circumstances, the model is expected to be acceptable for a lowest 

frequency of around 70 Hz due to the width of the baffle and up to 3.4 kHz at high 

frequency at which the acoustic wavelength equals 0.1015 m. It is important to compare 
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the model configuration with the acoustic wavelength as the structural wavelength is larger 

than this above the critical frequency of 2.0 kHz. Meanwhile incoming waves with a 

particular pressure amplitude are defined in another WBE model (or WBE 1) which is used 

to apply the excitation to the system. For this, an open boundary mesh consisting of 48 

acoustic boundary elements is used by considering that the fluid loading from the air is 

small. All these aspects have been discussed in detail in ‎Chapter 4, sections ‎4.2-‎4.3. 

It should be noted that plate elements are more convenient than solid elements but, it 

was found in ‎Chapter 4 that the plate elements in WANDS give incorrect results when 

coupled to acoustic WBE around and above the critical frequency, as discussed in 

section ‎4.3. However, for particular cases in which a higher order element is required, e.g. 

to cover a wider waveguide or higher frequency, the plate elements will be used as long as 

such cases do not deal with results associated with the critical or coincidence frequency or 

a non zero wavenumber in the x  direction. For these cases, at least 4 elements per 

wavelength will be used as this was found to be sufficient in section ‎4.4.1. Hence 30 plate 

elements can cover frequencies up to 4.2 kHz for 1.218 m width panel while that of 3.4 

kHz is the upper limit for 48 solid elements. The same WBE dimensions are used as in the 

model assembled with the solid elements. 

5.2.2 Features found in the waveguide double panel results for normal 

incidence 

Prior to discussing the effect of various geometrical parameters on the TL behaviour, 

the results of the waveguide structure are first compared with those of the infinite double 

panel system. In this section, the numerical model is developed using plate elements. This 

is expected to allow observing features at higher frequency that can be found in the 

numerical result particularly for normal incidence. For other cases, e.g. oblique incidence, 

the model is based on the solid elements unless otherwise stated. The results for both the 

waveguide double panel structure and the infinite system are calculated using identical 

material properties given in Table ‎5.2. However, as the formulation of the London model 

uses the term R  to account for the wall resistance instead of the loss factor of the panel, it 

is difficult to find an appropriate value of R  to enable the results of both models to be 

obtained under identical dissipative conditions. Moreover, from the comparison of the 

results, the value of R  affects the TL at low frequency whereas the damping loss factor 
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has little effect in this frequency region. Hence, the term R  in the London model is set to 

zero throughout the comparison.   

Figure ‎5.7 compares the results for the normal incidence case. This shows that the 

TL of the waveguide double panel system follows the general trend of the infinite double 

panel system at frequencies between MAMf  and cf  of the panel which is around 2 kHz. 

Hence, it increases with frequency at rate of 18 dB/octave in this frequency region [7]. At 

higher frequencies, the dip due to the standing wave resonance across the depth is 

pronounced in the TL curves of both models. The first such dip occurs in both results at 

2640 Hz at which half a wavelength occurs in the cavity depth, as indicated in Eq. (5.9). 

However, some features appear in the waveguide results which are not found for the 

infinite system. Four particular frequency ranges may be considered to discuss these 

features: 

(i) At frequencies below the mass-air-mass resonance, MAMf f , the TL values of 

the waveguide structure are higher than those of the infinite one. Some small dips 

are also found at frequencies below MAMf  which are not evident for the infinite 

structure. 

(ii) The value of MAMf  for the waveguide structure is higher than that of the infinite 

one. For the 65 mm air cavity depth considered here, MAMf  of the infinite 

structure is around 100 Hz, calculated using Eq. (5.6), while that of the 

waveguide structure is 173 Hz. This suggests that the MAMf  formulae (Eq. (5.6)) 

for the infinite structure cannot be used to evaluate this parameter correctly for 

the case of the waveguide structure. 

(iii) For MAM cf f f  , it is clear that the TL values of the waveguide structure are 

lower than those of the infinite one. Significant dips are also found in the TL 

curve of the waveguide structure which are not coincident with the dips due to 

acoustic standing waves across the depth, which should be evident at 2640 Hz, 

5280 Hz, etc. according to Eq. (5.9). Moreover, some considerable dips also 

occur around the critical frequency cf  of the panel, i.e. 2028 Hz.  

(iv) For cf f , another considerable dip is also found besides that due to the cavity 

resonance. This can be observed at around 3840 Hz. 
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These features will be discussed further in the next sections. Moreover, for 

convenience, the case of oblique incidence angles is also skipped in this section until the 

loss factor and coincidence frequency issues have been discussed. 
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Figure ‎5.7. TL comparison of the waveguide double panel system using 30 plate elements 

and‎London’s‎model‎for normal incidence (━ waveguide structure; ┅ London’s‎model). 

 

5.2.3 Effect of finite cavity 

The London model and other double panel models, e.g. [6, 17], treat the cavity as 

infinite in the directions parallel to the plate. Unlike these models, the air cavity of the 

waveguide double panel system here is treated as finite in one direction. In this model, the 

edges of the cavity are assumed to be rigid, which will cause perfect acoustic reflection. 

From the literature, some efforts to model such a finite width cavity in double panel 

systems were already carried out by other workers, for example by modelling the reflected 

waves at the cavity boundaries using a ray tracing model [21, 95] or SEA method [26, 51]. 

However, these models are inherently limited at low frequencies; e.g. the geometrical 

approach in the ray tracing model does not allow long wavelength sound to interact with 

the surfaces under consideration. Likewise, the SEA method requires a sufficient modal 

density in order for the average response to be correctly predicted, which is not fulfilled at 

low frequencies. Alternatively, an analytical model is employed in [96] to solve the finite 

cavity with rigid walls at its edges. 
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It is instructive to investigate the implications of the finite cavity imposed in the 

double panel system in order to assess the consequences of the infinite extent which is 

assumed in most classical models. Moreover, some structures such as double glazing 

actually contain sound-absorbing material at the cavity perimeter. Therefore, the discussion 

of this can be beneficial for practical situations. 

5.2.3.1 Lateral cavity mode effect  

It is usual that the air occupying the cavity is assumed to be incompressible and have 

no viscosity. Hence, the cavity pressure distribution is uniform across the depth when the 

cavity depth d  is much smaller than the acoustic wavelength (or 1kd  ). Under such 

circumstances, the air effectively acts as a spring with a stiffness per unit area 2

0 /c d . 

However, when the panels exhibit flexural motion the fluid inside the cavity can 

experience a deformation leading to motion parallel to the plates. Under such 

circumstances, due to changes in the air volume in the cavity, pressure fluctuations can 

occur. As a consequence of this, the pressure distribution inside the cavity is not uniform 

but varies along the directions parallel to the panels so that air stiffness in the cavity now 

varies locally in the lateral direction [97]. For the case of a waveguide structure with a 

confined cavity, the air is trapped in the cavity and cannot escape through the edges. 

Hence, at certain frequencies, the pressure distribution takes the form of a standing wave 

pattern, as illustrated in Figure ‎5.8, where the acoustic wavelength is an integer fraction of 

twice of the width. In other words, lateral cavity modes are found in which resonant 

behaviour occurs across the width. These frequencies are given by   

 

 ,
2

m y

y

mc
f

l
  (5.12) 

 

where yl  is the width of the waveguide structure and 1,2,3,...m  . These frequencies can 

be seen as dips in the TL curves in Figure ‎5.7. 
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Figure ‎5.8 The change in volume and pressure due to compression and refraction in the 

enclosed cavity when the panels deform. 

 

At the frequencies at which the lateral cavity resonances occur, the panels move out 

of phase. This allows the incident sound to be transmitted virtually unattenuated across the 

waveguide double panel system at these frequencies. This mechanism is different from the 

resonances due to cavity modes across the depth, in which the cavity impedance becomes 

infinite in the absence of dissipative terms rigidly connecting the panels. Meanwhile, for 

the x direction, the lateral cavity modes are not present as a consequence of the infinite 

dimension of the waveguide structure in this direction.  

Dowell and Voss [98] provided an approximate theory corresponding with flexible 

panel-cavity interaction. According to this theory, the discrepancy of the panel mode 

frequency between the in-vacuo panel and the one coupled with the cavity is due to 

coupling between cavity modes with higher-order panel modes. The effect of the cavity on 

the panel produces added stiffness to symmetrical modes while a negative stiffness is 

found for anti-symmetric panel modes. This is similar to the findings of Pretlove [99] 

where‎only‎ “volume-displacing”‎modes‎ like‎ the fundamental panel mode is significantly 

affected by the cavity rather than the second mode.  

To give insight into the pressure distribution inside the finite cavity, Figure ‎5.9 

illustrates the operating deflection shape of the panels and the pressure distribution inside 

the cavity at 173 Hz, corresponding with the first dip in the TL of the waveguide double 

panel system as shown in Figure ‎5.7. It is clear that the lateral cavity mode is pronounced 

while the panels are in flexural motion at their fundamental mode. However, this does not 

imply the presence of the viscothermal effect as found in a thin air layer [94] as such an 

effect is not taken into account in the current model according to the formulation in [78].  
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Figure ‎5.9. Operating deflection shape of the 1.218 m wide double panel partition at 173 

Hz, obtained using WANDS. 

 

It has been shown in section ‎5.1 that the first dip in the TL of the infinite double 

panel system corresponds to the mass-air-mass resonance frequency MAMf  in which no 

lateral cavity modes exist. To see further consequences of the presence of the lateral cavity 

modes in the waveguide system on this frequency, Figure ‎5.10 compares the transmission 

loss of the waveguide structure for different widths and MAMf  of the infinite structure for 

normal incidence. It is clear that the frequency of the first dip reduces as the width 

increases, so that for 3.05 m it is 115 Hz while for 1.8 m and 1 m it is 138 Hz and 199 Hz 

respectively. Therefore, the frequency of this dip becomes closer to MAMf  of the infinite 

structure as the waveguide structure becomes wider. 
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Figure ‎5.10. Effect of the panel size on TL for normal incidence (waveguide structure: ━ 

1.0  m width ; ┅ 1.8 m width; –•–3.05 m width ; ••• infinite structure).  
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It is also instructive to see the effect of the cavity depth on the frequency of the first 

dip of the waveguide structure, as the formulation of the London model indicates that for 

the infinite structure it depends on the panel mass and the air cavity depth as indicated by 

Eq. (5.6). For a fixed mass, according to the London model MAMf  is reduced as the cavity 

depth increases, as shown in Figure ‎5.11(a). The transmission loss also increases at 

frequencies where 
MAMf f  and 1kd . Note that lowering MAMf  would be beneficial to 

improve overall sound reduction performance of the double panel system in the frequency 

range of interest, hence such an approach is frequently employed in practice.  
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(b) 

Figure ‎5.11. Effect of cavity depth for normal incidence: (a) infinite structure (b) 

waveguide structure with 1.8 m width (━ 65 mm depth; ┅ 100 mm; －•－  200 mm). 
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The same tendency is also exhibited by the waveguide structure, as shown in 

Figure ‎5.11(b). The increase in the cavity depth drives the frequency of the first dip to 

lower frequencies, i.e. for the present case of 1.8 m width, this resonance frequency equals 

138 Hz for the cavity depth of 65 mm, reducing to 124 Hz for 100 mm cavity depth. It 

further reduces to 111 Hz for 200 mm cavity depth. Likewise, the standing wave 

resonances in the depth direction are also reduced when the cavity depth is increased. The 

usefulness of increasing the depth is again seen where the transmission loss below the 

critical frequency increases with increasing depth. Note that the standing wave resonance 

frequencies along the directions parallel to the panels remain virtually unchanged as long 

as the width of the structure is retained the same for all cases.  

Considering such a tendency, the frequency of the first dip for the waveguide 

structure will thus be determined by two factors for a given mass, i.e. the width and depth 

dimensions. Figure ‎5.12 indicates this through a comparison of transmission loss for 

widths of 1.8 m and 3.05 m and depths of 65 mm and 100 mm and the results are 

summarized in Table ‎5.3 together with results from other cases. 
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Figure ‎5.12 Effect of width and cavity depth of the waveguide to MAMf  for normal 

incidence (━ : 1.8 m width and 65 mm depth ; ┅1.8 m width and 100 mm depth; ━ : 

3.05m width and 65 mm depth ; ┅ : 3.05 m width and 100 mm depth). 

Following the numerical results given in Table ‎5.3, the first dip found for the 

waveguide double panel system can be considered as a modified mass-air-mass resonance 

1.8 m 3.05 m 
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frequency where the added stiffness of lateral cavity modes is added in parallel to that of 

the ideal air with uniform pressure distribution which follows 

 

 

2
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,
2

MAM WG MAM

y

c
f f

d

 
    

 

 (5.13) 

 

Table ‎5.3. Modified 
MAMf  of the waveguide structure ,MAM WGf  

 
Depth 

65 mm 100 mm 200 mm 

Width 

               MAMf , Hz 

 

1, yf , Hz 

100 81 57 

1.0 m 172 199 (199) (190) (181) 

1.218 m 141 173 (173) (162) (152) 

1.8 m 95 138 (138) 125 (125) 111 (111) 

3.05 m 56 115 (115) 99 (99) (80) 

 Convention of the pair : Numerical (Equation (5.13) ) 

 

In general MAMf  of the infinite system is modified for the current case and 

converges to that of the infinite system with increasing width of the waveguide, as shown 

in Figure ‎5.13. However, a typical double panel system is usually constructed with 

dimensions much less than 10 m, e.g. [100, 101]. Hence, the discrepancy in TL curve 

associated with  MAMf  as indicated in this figure could be found in practice. 
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Figure ‎5.13. MAMf  of finite cavity compared with that of infinite system with 65 mm cavity 

depth (━ waveguide system ; ┅ infinite system). 

 

Considering the numerical results obtained, it is clear that these lateral cavity 

resonances need to be considered where no sound-absorbing material is present to damp 

them. They may not be regarded as a simple continuous spring as proposed in [2, 7, 15]. 

Hence, the non-uniformity of the pressure distribution in the cavity causes the total 

response in the cavity to be the superposition of the air-stiffness dependent response across 

the depth and the cross-section modal response. It can be deduced further that the 

frequencies associated with the subsequent dips found in the transmission loss curve for 

1kd   can be generally formulated as 

 2 2

, ,m y MAM m yf f f   (5.14) 

 

With increasing frequency ,MAM m yf f  so that , ,m y m yf f . Note that, for normal incidence 

only odd cavity modes are excited (see Figure ‎5.7). 

For frequencies where 1kd , the cavity modes exist in 2D form where cavity 

modes across the depth are also present as well as in the lateral direction. However, as 

previously noted, the contribution of the acoustic lateral cavity modes in this frequency 

range becomes smaller.  

The presence of the lateral cavity modes is also discussed by Sharp in [7] where the 

resulting effects are considered to be similar to that of mechanical connectors such as 
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studs. To demonstrate the role of the lateral cavity modes in lowering the TL, he 

partitioned the cavity area into small parts in order to suppress the cavity modes across the 

width and the length. Compared with the original cavity, a higher TL amplitude was found 

for the partitioned cavity. For the same purpose, Sharp placed sound-absorbing material 

around the cavity perimeter to damp the lateral cavity modes. From this, he found that a 

thicker absorbent produced higher TL values than a thinner material. The same approach 

was used to assess the importance of the lateral cavity modes by other workers. This was 

discussed by London in [15] following experimental results obtained by Meyer (1935). 

However, this gave an opposite result where the sound-absorbing material around the 

cavity perimeter did not make a significant improvement in transmission loss. 

Nevertheless, some indications from Sharp [7] are substantiated by the present model 

through the presence of the cavity lateral modes. To explain the above results Utley et al. 

[102] argued that the insignificant improvement in transmission loss occured as absorption 

already existed at the edges before the sound absorption material was placed in this area. 

Hence, there was less additional absorption effect from the absorption material than 

expected. 

5.2.3.2 Internal coincidence frequency 

At high frequencies, acoustic standing waves across the cavity depth start to be 

established. Their associated frequencies can be calculated using Eq. (5.9). In this 

frequency region, standing waves can therefore exist in both directions. Thus, the acoustic 

wavenumbers in the cavity are the resultant of the acoustic wavenumbers in x , y  and z -

directions. For a waveguide structure, the acoustic wavenumbers in the cross-section are 

defined by 

 2 2 2 2 2

y zk k k      (5.15) 

Hence the acoustic wavenumbers along the directions parallel to the panels are given by 

  
2

2 2 2 2

,y q z

q
k k k

d


 

 
     

 
 (5.16) 

where   is the acoustic wavenumber along the x direction and 0,1,2,...q  corresponds 

to the number of half wavelength in the depth direction. 
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Figure ‎5.14 Dispersion curve of the waveguide double panel system for  = 0 ( ━ free 

bending wave; ┅ acoustic wavenumber in the y direction in the air cavity). 

When ,y qk coincides with the free bending wavenumbers Bk  of the panel, an 

internal coincidence frequency is found. This can be observed from the dispersion curves 

in Figure ‎5.14 for the case of 0  . The curve for 0q   crosses the free bending 

wavenumber curve at the critical frequency of 2028 Hz. This corresponds to the large dip 

found in Figure ‎5.7. This can be considered as an internal coincidence frequency in order 

to distinguish it from the coincidence effect proposed by Cremer [11]. Moreover, the 1q   

curve crosses Bk  at 3840 Hz, corresponding to the further dip found in Figure ‎5.7. Note 

that these frequencies are expected to be the same for all incident angles about the x  axis, 

although they will be different when 0  . The boundary conditions imposed on the 

edges also affect this (see section ‎5.2.5) as well as non-identical panel properties (see 

section ‎5.2.8). 

 The pressure distribution in the cavity associated with these frequencies can be 

observed in Figure ‎5.15 where simply supported boundaries are introduced at the edges of 

both the panels while the edges of the cavity are assumed to be acoustically reflective. At 

these frequencies, the incident energy impinging on the first panel is more easily 

transmitted to the second panel leading to a higher radiated power. Therefore, regarding 

the lower TL found for the waveguide double panel system than for the infinite system, the 

internal coincidence effect is another cause as well as the lateral cavity modes.  

0q   1q   
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(a) 

 

  
(b)  

Figure ‎5.15. Pressure distribution in the cavity at internal coincidence frequency for normal 

incidence: (a) 2028 Hz (b) 3840 Hz. 

Compared with the conventional coincidence phenomenon as proposed by Cremer 

[11], the internal coincidence occurs as progressive sound waves impinging on the panel 

excite standing flexural waves in the finite panel which match standing sound waves in the 

finite cavity. Therefore, physically, the coincidence is independent of the incident angle 

because the standing waves are stationary and do not depend on the trace wavenumber of 

the incident wave, as shown in Figure ‎5.16. Such indications can be seen later in 

section ‎5.2.6 where two extreme incidence angles about the x axis and y  axis are 

considered. The same phenomenon was also found by Bhattacharya et al. [103] for the case 

of a finite flexible panel backed by a cavity. 

 

 

 

 

  

 

  

 

 

 

 

Figure ‎5.16. Standing sound wave match standing flexural wave. 
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5.2.3.3 Effect of cavity loss factor 

For an air cavity without any sound-absorbing material or mechanical connections 

between the panels, the cavity loss factor 
cav  becomes a crucial factor with regard to the 

accuracy of TL prediction results. It is also not justified to treat the air in the cavity as 

inviscid. The main reasons are: (I) viscous and thermal loss effects; (II) absorption will 

always be present even in a small quantity on the edges so sound will not be totally 

reflected as assumed in an ideal cavity model; (III) some sound-absorbing material is often  

found around the cavity perimeter, e.g. in double glazing systems. Cummings et al. [21] 

and Quirt [93] confirmed points (II) and (III) through their experimental results while point 

(I) depends on the cavity dimensions and frequency. However, in theory, it is difficult to 

propose an appropriate value and sometimes it becomes unrealistic in a real situation; e.g. 

Cummings founds that an absorption coefficient   1 was required for the sound-

absorbing material at the cavity perimeter [21] to get good agreement between the 

prediction results and the experimental ones. Price and Crocker [26] calculated the cavity 

loss factor based on the normal incidence absorption coefficient 0  for sound-absorbing 

material introduced at the cavity perimeter for a double panel system without structural 

connections. They found that an average value of cav  of  22.7 10  was required up to 

1.25 kHz. When the sound-absorbing material is absent at the perimeter area of such a 

structure, it is more difficult to determine an appropriate value of the cavity loss factor. For 

this case, Brekke [51] found 0 0.1   for 0.1d   m and 0 0.5   for 0.02d   m from 

measurement results. Quirt [93] measured the absorption coefficient 0  of unfinished 

plywood and found 0 0.1   for frequencies above 500 Hz while it was much lower than 

0.1 for frequencies below 500 Hz. This result can be used to approximate the absorption 

coefficient when unfinished wood is used at the cavity perimeter. Hence, Brekke’s‎results 

[51] must be used with caution depending on the material properties used at the cavity 

perimeter. Apart from this, Dijckmans and Vermeir [104] set the cavity loss factor to zero 

for the case of a double wall and multi-layered wall with cavity depth less than 30 mm 

using a wave based method (WBM). They found good results compared with measurement 

ones. 

By default, cav = 310  has been assumed in the results discussed in the previous 

sections. This value was chosen to represent the cavity loss factor in an attempt to cover all 
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aspects in points (I)-(III) above not just the damping loss factor of the air. To investigate 

further its effect on the waveguide double panel system, the loss factor is now varied in the 

range 310  to 110  for the case of normal incidence and oblique incidence at an angle of 

45°. The results are shown in Figure ‎5.17. They are shown in 1/3 octave frequency bands 

to obtain a clear comparison across the frequency range of interest. For this, the sound 

transmission coefficient is averaged across the band to obtain the 1/3 octave value. 

Figure ‎5.17(a) presents the effect of the cavity loss factor on the transmission loss 

for normal incidence in which only odd cavity modes are excited. A significant increase in 

TL can be seen as 
cav  increases. For the current case, the TL around ,MAM WGf  increases by 

1 dB when the loss factor is increased by a factor of 10 and by 9 dB if it is increased by a 

factor of 100. The effect is negligible at frequencies below MAMf  and above it up to around 

300 Hz. At higher frequencies, where lateral cavity modes occur, the TL behaviour is 

affected by the cavity loss factor, increasing by 1-5 dB from 310cav   to 210cav   and 

increasing by 2-15 dB from 310cav   to 110cav  . This trend is also evident for 

frequencies above cf . A similar tendency is also exhibited in the oblique incidence cases 

particularly at frequencies below ,MAM WGf , as shown in Figure ‎5.17(b). Above this 

frequency, the effect of damping is greater than for normal incidence and it extends to 

lower frequencies. This occurs as even modes as well as odd modes are now excited. This 

leads to the density of the lateral cavity modes increasing when the waveguide double 

panel system is excited by a plane wave at an angle of 45° about the x  axis. Hence, the 

mode spacing is reduced and the effect of cavity loss factor is greater. Conversely, the 

mode spacing is wider for the case of the oblique incidence at an angle of 45° about the y  

axis. Under such circumstances, the effect of the cavity loss factor is not significant up to 

500 Hz as shown in Figure ‎5.17(c). On the other hand, an increase in TL can be found in 

all cases at the first internal coincidence frequency around 2 kHz. 
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(c) 

 

Figure ‎5.17. Effect of cavity loss factor on TL in 1/3 octave frequency bands: (a) normal 

incidence case; (b) oblique incidence at angle 45° about x  axis; (c) oblique incidence at 

angle 45° about y  axis ( ━ cav = 310 ; ┅ cav = 210 ; ﹣•﹣ cav = 110 ). 
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5.2.4 Panel loss factor 

The damping loss factor of the panel is now varied to be a factor of ten greater or 

smaller than its original value of  = 0.06. Figure ‎5.18 shows the normal incidence TL of 

the waveguide double panel system with different damping loss factors. For a low damping 

loss factor,  = 0.006, more dips are present in addition to those due to standing waves in 

the air cavity. It is clear that the corresponding frequencies of these dips are cut-on 

frequencies of waves in the panels, indicating that such dips are related to the ‘resonant’ 

transmission of the waveguide structure. For example, the dip found at 88 Hz below the 

mass-air-mass resonance frequency is associated with the 3
rd

 cut-on frequency of the 

1.218 m width panel and the next two dips at 244 Hz and 478 Hz are associated with the 

5
th

 and 7
th

 cut-on frequencies. Despite the presence of these dips, the slope of the TL curve 

at frequencies below coincidence dip is still similar to that for the case of 0.06  .  
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Figure ‎5.18 Damping loss factor effect on the TL behaviour for normal incidence:  full 

spectrum (┅ panel = 0.6 ; ━ panel = 0.06 ; –•– panel = 0.006 ; ••• TL slope). 

However, at frequencies where the internal coincidence effect takes place, around 

2 kHz and 3.8 kHz, the TL is lower for the smaller damping loss factor which can be seen 

more clearly in 1/3 octave frequency bands as shown in Figure ‎5.19(a) for normal 

incidence. In this frequency region, the TL value is even greater when the damping loss 

factor is further increased to  = 0.6. Hence the considerable dips found in the previous 

two cases are less pronounced for this case.  
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(c) 

Figure ‎5.19. Effect of panel loss factor in 1/3 octave frequency bands: (a) normal incidence 

case; (b) oblique incidence at angle 45° about x  axis; (c) oblique incidence at angle 45° 

about y  axis (┅ panel = 0.6 ; ━ panel = 0.06 ; –•– panel = 0.006 ). 
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Similar‎ indications‎ are‎ also‎ found‎ for‎ the‎ cases‎ of‎ oblique‎ incidence‎ at‎ an‎ angle‎ of‎ 45˚‎

about the x  axis and y  axis, as shown in Figure ‎5.19(b) and (c) respectively. It can be 

seen that the TL behaviour is retained even for the higher damping loss factor except 

around the cut-on frequencies and the internal coincidence ones. 

From this comparison, the damping loss factor of the panel is effective in reducing 

the dips at the cut-on frequencies and the internal coincidence frequencies but not those 

related with the air stiffness dependent response. This differs from the London model 

results, in which damping is only introduced through the dissipative mechanism of the 

cavity. Therefore, the results do not support the existence of a resistance term in the 

complex impedance as postulated by London in [15]. The choice of R  to fit measured 

values appears to be based on an incorrect physical principle. Similar indications to those 

shown in this study were also found in [21, 93]. 

5.2.5 Effect of edge condition 

Some publications, e.g. [105, 106], discuss the effect of the edge condition of a plate 

specifically in terms of the radiated sound power and the radiation efficiency of the plate in 

response to mechanical excitation. In general, the important conclusion that is worth 

underlining is that a higher edge constraint does not necessarily cause additional sound 

radiation of the plate. However, for the case of acoustic excitation, the clamped boundary 

condition leads to a lower sound transmission loss than that obtained with simply 

supported boundaries [12, 22, 107]. Utley et al. [107] compared three boundary conditions 

and concluded that the real boundary condition exists between simply supported and 

clamped, based on comparisons with experimental results. This indicates that the real edge 

condition of a double panel system is not exactly known. Accordingly, the mounting 

method of the edge areas at the aperture potentially becomes a source of discrepancies 

between the prediction model results and the experimental ones. Therefore, it is of 

importance to clarify the TL behaviour of the waveguide double panel system in relation to 

the effect of the boundary conditions that are used in the numerical model.  

For the waveguide structure, three different boundary conditions have been 

implemented and the results are compared with each other. This is done by restraining the 

DOF of nodes at both edges as follows: 
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(i) Free-free boundary: none of the DOFs are restrained. 

(ii) Simply supported boundary: the DOF restrained are the x , y  and z  displacements 

of a midside node. 

(iii) Clamped boundary: the DOF restrained are the x , y  and z  displacements of 

midside and corner nodes. 

Additionally, for the case (i) none of the nodes at the edges of the cavity are restrained 

while the case (ii) and (iii) the nodes at this area are also restrained. Normal and oblique 

incidence are considered, while the damping loss factors are kept the same as in Table ‎5.2. 

 The effect of the boundary condition on the TL behaviour can be seen in 

Figure ‎5.20(a) for normal incidence. Ideally, the free-free boundary condition produces the 

same results as the infinite model since the panel is free to move without bending for 

normal incidence. Hence, the acoustic modes in the direction parallel to the panels are not 

excited in the cavity. This can be seen from the fact that 
MAMf  is 100 Hz. However, the 

finiteness of the system still gives rise to diffraction at the panel edges leading to non-

uniform fluid loading over the panel. This causes the panels to experience a small bending 

and then standing waves in the cavity are excited but at a reduced amplitude compared 

with the other two cases. When these standing waves match the bending wave contained in 

the panels, internal coincidence effect occurs. This introduces some dips in the TL curve. 

Meanwhile, the results for the simply supported boundary conditions and the clamped ones 

are similar to each other. Small differences appear corresponding to the cut-on frequencies. 

Moreover, the TL at high frequencies, above 3 kHz, tends to be lower than that for the 

simply supported boundaries. Compared with the free-free boundary conditions, these 

results are higher at frequencies below MAMf  but lower above this frequency. 

Figure ‎5.20(b) shows the equivalent results for the case of oblique incidence at an 

angle of 45° to the x  axis. The results are now similar for all three boundary conditions. 

The dips are now present for the free-free boundary condition as the incoming wave at a 

certain angle causes bending waves in the panels. Hence, the waves with the wavenumber 

equal to the structural wavenumber in the y direction are now found in the cavity around 

2 kHz as well as 3.8 kHz. For the case of 45° incidence angle about the y  axis shown in 

Figure ‎5.20(c), a similar tendency is evident except for the case of free-free boundary 

condition which has a similar behaviour as encountered in the normal incidence.   
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(c) 

Figure ‎5.20. Effect of boundary condition on the TL behaviour: (a) normal incidence; (b) 

oblique incidence at angle 45° about x -axis; (c) oblique incidence at angle 45° about y -

axis (━ simply supported BC; ┅ free-free BC;  ••• clamped BC). 
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5.2.6 Coincidence frequency behaviour 

The coincidence dip occurs in the TL curve of the infinite plate model if the 

structural wavenumber of the panel at the incoming side equals the acoustic trace 

wavenumber. Two different incident angle orientations are considered and discussed 

separately considering the presence of both finite and infinite extent in the waveguide 

structure. Hence, the results are presented for the case of different incident angles about the 

x -axis or about the y -axis; the results of the waveguide double panel system are 

compared with those of the infinite plate model.  

For oblique incidence at an angle about the x -axis, the coincidence frequency is 

found to be independent of the incident angle as shown in Figure ‎5.21(a). Compared with 

the results obtained with the infinite plate model, this tendency indicates that the 

coincidence effect occurs by a different mechanism where the coincidence frequency is 

determined by standing waves along the width in the cavity rather than solely the finiteness 

in panel.  

Conversely, different tendencies are evident for incidence at an angle about the 

y axis as shown in Figure ‎5.21(b). Here, as proposed by Cremer [11], coincidence takes 

place if the structural wavenumber of the panel equals the acoustic trace wavenumber. The 

lateral cavity resonances, indicated by the dips, still occur for this case as the cavity 

response in the x  direction cannot be completely separated from the total response 

considering the finiteness of the system. However, they now differ from the previous case 

as they shift to higher frequency by a factor of cos , with   the incidence angle about the 

y -axis as a consequence of   0. As the incidence angles increases, the acoustic 

wavenumber along the x -direction becomes larger while those in the y  and z  directions 

become smaller following the vector rules. This causes the presence of the lateral cavity 

modes to reduce with increasing incidence angle. Hence, the dip associated with MAMf  is 

the only one present below the coincidence frequency when the waveguide structure is 

acoustically excited at grazing incidence for which k   while yk  and zk  are zero. 

The same reasoning can explain the presence of the internal coincidences for the 

current case as shown in Figure ‎5.21(b), as indicated by the dip around 2 kHz, where they 

exist due to the finiteness of the system rather than being triggered by the infinite 

properties in the x  direction. These internal coincidences will appear less with increasing 
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incidence angle as consequence of larger acoustic wavelengths in the y  and z  directions. 

Hence, for the case of incidence angle of 60 and 80, the internal coincidence frequency 

of 3.8 kHz does not emerge as encountered in the case of oblique incidence about the x - 

axis. 
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(b) 

Figure ‎5.21. TL due to oblique incidence: (a) angle about x -axis (b) angle about y -axis (

━ numerical model at angle 60°; ━ numerical model at angle 80°; ┅ infinite plate 

model). 

Figure ‎5.21(a) also shows that the TL values of the waveguide structure are higher 

compared with the infinite structure particularly for larger incidence angles. It can be seen 

that the TL of the waveguide structure is dependent on the incidence angle. Hence the 

80° 

60° 

80° 

60° 
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incoming wave exciting the waveguide structure at an angle of 60º will cause higher TLs 

than if this structure is excited by the same wave at an angle of 80º to the normal. 

However, 
,MAM WGf  is fixed at a certain frequency for all incidence angles rather than 

shifting toward a higher frequency with increasing incidence angle as found for the infinite 

plate. Conversely for the case of the oblique incidence about the y -axis as shown in 

Figure ‎5.21(b), ,MAM WGf  shifts to a higher frequency as found for the infinite model in 

which impedance of air in the cavity increases by sec  with   incident angle. Moreover, 

the TL values are lower than those of the infinite system for frequencies above ,MAM WGf  for 

all incidence angles. For frequencies below ,MAM WGf , the TL behaviour for both incidence 

angles is similar to that of the normal incidence case (see Figure ‎5.7) where the TL of the 

waveguide structure is higher than the infinite structure. 

In order to give a clearer comparison, the cavity loss factor is increased to 210  so 

that the dips due to the cavity resonances are more suppressed. Moreover, the results are 

presented in 1/3 octave frequency bands. For the case of incidence angle about the x -axis 

(or across the finite panel), the results are given in Figure ‎5.22(a) where the coincidence 

dips are fixed at a particular frequency rather than reducing with increasing incidence 

angle. A subsequent coincidence can be found at 4 kHz when standing waves across the 

depth are established. Moreover, it is clear that the incidence angle will affect the 

transmission loss amplitude. The case of incidence angle about y -axis (or across the finite 

plate) as shown in Figure ‎5.22(b), the coincidence frequency depends on the incidence 

angle along with the internal coincidence where the critical frequency is also found. For 

the incidence angles considered in the current case, the internal coincidence frequency of 2 

kHz is present while the higher ones are not seen as lateral cavity modes become less 

evident as the wavenumber components in the cross-section area ( y z  plane) reduce. 
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(b) 

Figure ‎5.22. Transmission loss of waveguide double panel system due to oblique 

incidence: (a) about the x  axis; (b) about the y  axis . 

5.2.7 Radiation ratio 

Figure ‎5.23 presents the radiation ratio of the waveguide structure plotted against the 

incident angle for certain frequencies. This is obtained from the ratio of radiated sound 

power to average squared vibrational velocity due to acoustic plane wave excitation. The 
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corresponding result for the infinite structure is shown for comparison, which is defined for 

a given incident angle   as [4] 

 
inf

1

cos



  (5.17) 

 

The orientation of the incidence angle is varied about the x -axis. At low frequencies, the 

radiation ratio of the waveguide is lower than the infinite structure. For mid and high 

frequencies, it follows the infinite results up to a certain angle, above which it tends to a 

finite limit instead of going to infinity as indicated for the infinite structure. Such a 

tendency corresponds to the presence of the windowing effect [23, 108] due to the width of 

the waveguide structure. These results will be useful in interpreting the diffuse sound field 

behaviour in the subsection ‎5.2.9. 
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Figure ‎5.23. Radiation ratio of waveguide structure again the incident angle as a function 

of incident angle compared with that of infinite structure indicated by dashed line.  

 

5.2.8 Effect of asymmetrical structures 

Up to this point, identical panels (i.e. symmetrical structures) are considered for all 

cases. Now, the transmission loss of a double panel system with non-identical panels is 
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investigated. The thickness of one of the panels is changed by factor of 2 from their 

original thickness while the density and width are retained as the identical panel case. 

Hence, combinations of 8 mm and 16 mm thick panels and of 16 mm and 32 mm thick 

panels will be considered in this section in comparison with two 16 mm panels. For the 

non-identical panel systems, the 8 mm thick panel and the 16 mm thick panel of each 

system considered here are arranged to reside at the source side. 

Figure ‎5.24 presents the results for all combinations. As expected, due to the 

difference of total of surface mass on each combination, the case of 16 mm and 32 mm 

thick panels has the highest TL for normal and oblique incidence while its mass-air-mass 

resonance is found at the lowest frequency. Conversely, the case of 8 mm and 16 mm thick 

panel has the lowest TL as well as the highest mass-air-mass resonance frequency 

compared with the other two systems. For these behaviours, the system with identical 

panels behaves between the behaviour of other two non-identical panel systems. Lateral 

cavity modes and cross cavity modes occur at the same frequencies for all cases as the 

cavity has the same width and depth while some discrepancies appear at frequencies 

associated with coincidence effect. It can be seen that considerable dips are found around 

2 kHz and 3.8 kHz for the identical panels. For normal and oblique incidence about the 

x axis, see Figure ‎5.24(a) and Figure ‎5.24(b) respectively, those dips become less 

prominent for the case of 8 mm and 16 mm thick panels as the internal coincidence of the 8 

mm thick panel is expected around 3.9 kHz. Hence, the TL associated with these 

coincidence frequencies is higher than for the identical panels. Likewise, for the case of 16 

mm and 32 mm thick panels, a similar effect is seen. Considering the dip around 2 kHz, it 

further reduces in level as the internal coincidence of 32 mm thick panel is expected 

around 1 kHz and also the total mass is higher than for the identical panels. Hence, the TL 

around 2 kHz is highest compared with the other two cases. The subsequent dip is found 

around 3.1 kHz in addition to the dip at 3.8 kHz as now there are internal coincidences 

associated with the 32 mm thick panel.  
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(c)  

Figure ‎5.24. Effect of different panel thickness on TL: (a) normal incidence; (b) oblique 

incidence at angle 45° about x  axis; (c) oblique incidence at angle 45° about y  axis (━ 

identical 16 mm thick panels; ┅ combination of 8 mm and 16 mm thick panels; 

 –•–combination of 16 mm and 32 mm thick panels). 
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For the case of the oblique incidence about the y  axis, a similar tendency is also 

found for coincidence effect as shown in Figure ‎5.24(c). At the internal coincidence around 

2 kHz the non-identical panels have a higher TL than that of the identical panels while the 

internal coincidence of 1 kHz is also evident at which a different trend in TL curve is seen. 

Meanwhile, the internal coincidence related with the 8 mm panel becomes less apparent in 

the current case as its associated frequency is close to the dip due to the coincidence effect 

of a 45° incoming wave which occur around 4 kHz. 

 The same behaviour is found for the above non-identical panel systems with 

different arrangement where the 16 mm thick panel and the 32 mm thick panel of each 

system reside at the source side rather than at the receiver side. The results for this 

arrangement are not presented here. 

5.2.9 Diffuse sound field 

In this section, the response is presented for the waveguide double panel system with 

identical property panels when excited by a diffuse sound field. The diffuse sound 

transmission loss is calculated from nine incident angles about the x  axis and eighteen 

incident angles about the y  axis by following the procedure used for a plate strip in 

section ‎3.3.2. The results are then compared with that of the infinite plate model which has 

been calculated in section ‎5.1. 

The results are shown in Figure ‎5.25 from which it can be seen that the waveguide 

double panel system has a higher TL than that of the infinite plate model. At low 

frequency, it is clear that the dip corresponding to the mass-air-mass resonance shifts to a 

higher frequency in comparison with the infinite plate model, as expected considering the 

finite dimension of the waveguide system. Above the critical frequency, both the 

waveguide double panel system and the infinite double panel one produce a similar trend. 

The differences are caused by the lower radiation efficiency of the waveguide double panel 

system as discussed in section ‎5.2.7. These results reinforce the elementary behaviour of 

the bounded system discussed in ‎Chapter 2 and [23, 108]. Therefore, despite the fact that 

the damping mechanism of the infinite system is disregarded for the current case, the 

tendency of such higher TL is related to the finite extent of the waveguide double panel 

system. 



Chapter 5 

 

 

160 

 

10
2

10
3

5

10

15

20

25

30

35

40

45

50

Frequency, Hz

T
ra

n
s
m

is
s
io

n
 l
o

s
s
, 
d

B

 

Figure ‎5.25. Diffuse TL comparison of the numerical model and the infinite plate one (━ 

numerical model; ┅Infinite plate model with 0R  ). 

 

Figure ‎5.26 presents the effect of the cavity loss factor cav  on the TL behaviour for 

diffuse incidence. It is clear that a low cavity loss factor leads to a lower TL. If cav  is 

increased from 610  to 310 , the TL at frequencies between 500 Hz to 2 kHz is increased 

by 4 dB on average. However, the TL increases significantly, particularly at these 

frequencies, as the cavity loss factor is increased further, e.g. 8 dB for cav = 210  and 21 

dB for cav = 110  relative to that with cav = 310 .   
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Figure ‎5.26. Effect of the cavity loss factor on TL for diffuse sound field in 1/3 octave 

frequency bands (••• cav = 10
-6

; ━ cav = 10
-3

; ┅ cav =10
-2

; －•– cav =10
-1

). 
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The upper angle of the incident field is customarily limited to exclude the results 

corresponding to large angles close to grazing incidence. This is motivated by the fact that 

waves at grazing incidence are often not present in practice. For this study, upper limit 

angles of 60º up to 90º are used to demonstrate the effect of these upper angles on the TL 

behaviour. As the upper incident angle is reduced the TL is increased especially at 

frequencies around the critical frequency, as shown in Figure ‎5.27(a).  
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(b) 

Figure ‎5.27. Effect of upper incidence angle on the TL behaviour in 1/3 octave frequency 

bands with cav = 10
-3

 :(a) Numerical model (━ 
lim 90  ; ┅ 

lim 80  ; •••
lim 70  ; 

–•– lim 60  ); (b) Infinite plate model with 0R   (━ lim 90  ; ┅ 
lim 80  ; •••

lim 70  ;–•– lim 60  ) 

 

Likewise for the results of the London model, similar behaviour can be seen as shown in 

Figure ‎5.27(b). It can be seen that reducing the upper angle causes a significant 

improvement in TL e.g. 80 º upper angle can produce 25 dB higher TL compared with that 

of 90º, while 60º upper angle leads to an even higher difference where 55 dB difference is 

evident. For the same upper angles, WFBE results only give 4 dB and 16 dB differences 

respectively. Therefore, excluding the response of the incoming waves close to grazing 

incidence can change the TL behaviour and this causes a significant change in behaviour 

particularly for the London model. 
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5.3 Summary  

The comparisons presented have shown that the main features emerging in the 

waveguide double panel system are driven by the finite width of the panels and cavity and 

the coupling between the panel and the air in the cavity. In contrast, in the infinite panel 

theory [14, 15] such features are not considered and hence their effects are absent. 

Therefore, the numerical model developed in this study is able to evaluate some features 

caused by the finite extent in the structures, i.e. standing waves in the finite cavity, internal 

coincidence and finite radiation ratio caused by windowing.  

Considering the non-uniformity of the pressure distribution in the finite cavity, the 

total response in the cavity is the superposition of the air-stiffness dependent response 

across the depth and the cross-section modal response. This causes the mass-air-mass 

frequency of the waveguide double panel system to be modified compared with the mass-

air-mass‎resonance‎for‎normal‎incidence‎in‎London’s‎model. 

The cavity loss factor has a significant effect on the TL behaviour. This is due to 

the presence of lateral cavity modes in the direction parallel to the panels as well as the 

internal coincidence effect. The results obtained show that the dissipative mechanism 

found in the real structure actually originates from the cavity, rather than from the panel as 

postulated by London [15]. In the present results the damping of the panels has a more 

limited effect. 

Non-symmetrical panel properties lead to differences in the internal resonance 

behaviour compared with symmetrical one. The remaining properties related with change 

in TL and mass-air-mass resonance are the same for both the non-symmetrical panel and 

symmetrical panel system. 

Compared with the infinite panel for diffuse incidence, the higher TL found for the 

waveguide double panel partition is a consequence of the finite extent in the waveguide 

structure. This results in a finite radiation efficiency at grazing incidence so that the 

waveguide double panel system radiates less for larger angles of incidence. The cases 

considered in this chapter will be extended in the next chapter by introducing steel studs.  
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Chapter 6. Waveguide double panel system with steel 

studs 

In ‎Chapter 5 the transmision loss behaviour of a waveguide double panel system 

has been discussed. It is clear that the finite cavity brings some consequences for the 

transmission loss of such a structure. In this chapter, mechanical connections in the form of 

steel studs are introduced in the cavity and the effect of such steel studs on the transmission 

loss is discussed. A parameter study is carried out to give further insight into the 

implications of steel stud properties on the transmission loss. Finally, comparison with 

measurement data published by National Research Council of Canada (NRCC) [38] is 

provided to demonstrate the validity of the numerical model developed. 

6.1 Problem statement 

The waveguide double panel system model with enclosed cavity considered in 

section ‎5.2.1 is now extended to a more complex case in which a structural connection 

based on steel studs is introduced, as shown in Figure ‎6.1(a). The connection between the 

panels and the steel studs is regarded as a continuous line in the x  direction rather than a 

point connection, irrespective of the fastener or screw spacing. It should be noted that point 

and line connection models have been considered regarding the screw spacing for the case 

of stiff studs, i.e. wooden studs. This affects the transmission loss behaviour as discussed 

in [52, 109, 110] where the transition frequency between the respective models is 

theoretically evident when the screw spacing is equal to a half bending wavelength. For a 

lightweight steel stud, this is not expected to cause a significant effect on the TL except at 

low frequency around the “mass-air-mass resonance”‎ according to measurement results 

presented by Quirt and Warnock [101]. A measurement of the stud-panel mobility has also 

been carried out on various samples which supports such a tendency (see Appendix D). 

The stud spacing l  of the model is taken as 0.406 m, unless otherwise stated, and the 

overall width of the structure is 1.218 m. The type of stud considered here is known as a C-

stud, as shown in Figure ‎6.1(a). Other types of stud are also modelled for comparison 

purposes in section ‎6.6.4. The assumptions made in the previous waveguide model are 
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retained for this case, including the material properties, as listed in Table ‎6.1. The system 

is assumed to be symmetric with identical panels on each side. 

 

dz

dy

l

 

(a) 

Acoustic plane wave

WBE 1

WBE 2

y

z

WFE-

Solid

WFE-Plate

WFE-Fluid

 

(b) 

Figure ‎6.1 (a) Sketch of the waveguide double panel system with steel studs (b) Schematic 

view of numerical model of the waveguide double panel system with steel studs. The 

dashed-line on the WBE-2 mesh is to indicate the surface velocities are equal to zero. 

 

 Figure ‎6.1(b) illustrates the coupled WFBE model of the waveguide double panel 

system. The steel studs are represented using plate elements rather than solid elements due 

to their small thickness. These elements support bending, longitudinal, shear and transverse 

motion. As they are not coupled to the acoustic BE domain, the problem identified 

in ‎Chapter 4 has no influence here. Due to different number of degrees of freedom between 

the plate elements and the solid ones, the node of the plate elements is coupled with two 

local nodes of the solid elements at the stud panel connections to ensure continuity of 

rotation. It should also be noted that simply supported boundaries are imposed at the edges 

of the panels so that the studs at this area will experience different translational constraints 

accordingly compared with other studs in the middle. Moreover, separate FE fluid sub-

models are defined in each bay which are partitioned by the studs. This differs from the 

continuous fluid region as assumed in analytical work, e.g. in Ref. [33, 41]. Note that the 

C-stud shown in Figure ‎6.1(a), representing a conventional steel stud, is simplified to a line 

in the numerical model (see Figure ‎6.1(b)) rather than the full cross-section shape. Thus, 

the web of the stud is the only part considered, whereas the flanges and the lips of the studs 
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are omitted. This simplification will be further investigated when the full cross-sectional C 

shape is incorporated in the model later. Any holes in the studs that may be found in 

practice are also disregarded in this model. For brevity, the waveguide double panel system 

with steel studs and air in the cavity is termed a full model throughout this study while that 

without air in the cavity is called the in-vacuo model.  

 

 

Table ‎6.1 Material properties and dimensions of the double panel partition 

 

Properties Plasterboard Air Steel 

Young’s‎modulus,‎ E  (N/m
2
 ) 92.5 10  - 112 10  

Poisson’s ratio, pv  0.3 - 0.28 

Thickness (or cavity depth), h (mm) 16 65  0.5 

Density,  (kg/m
3
) 690 1.21 7800 

Damping loss factor (if used),   0.06 10
-3

  0.01 

Sound speed, c  (m/s) - 343 - 

6.2 In-vacuo model 

In this section, the in-vacuo model is initially considered before introducing the air 

within the bays. Figure ‎6.2 presents the results due to normal incidence for this model as 

well as the double panel system with enclosed cavity without studs. Compared with the 

results of the model without the studs, various dips are now found in the TL curve that are 

associated with the structural behaviour, e.g. around 165 Hz, 964 Hz, 2.4 kHz and so on. 

Moreover, above 400 Hz the TL of the in-vacuo model is lower than that of the model with 

air but without the studs.  
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Figure ‎6.2 TL comparison of the waveguide double panel system with stud removed, 

vacuum in cavity for normal incidence (━ in-vacuo model; ┅ double panel system with 

enclosed cavity without studs)  

6.3 Origin of peaks and dips 

To gain insight into the origin of the dips and peaks in the TL of the waveguide 

double panel system with the studs, some operating deflection shapes from the in-vacuo 

model are provided in Figure ‎6.3. Plots (a) and (c) correspond to dips in the TL in 

Figure ‎6.2 while plots (b) and (d) correspond to peaks. It is clear from Figure ‎6.3 that the 

dips are associated with symmetric displacement of the system while the peaks correspond 

to asymmetric displacement. The symmetric displacement means both that the panels 

vibrate out-of phase and they have symmetric displacement about the mid-plane. These 

mode shapes appear similar to the mass-air-mass resonance behaviour. In contrast, in the 

asymmetric cases the panel on the receiver side has a much smaller displacement than that 

on the source side. In all the plots in Figure ‎6.3, the studs constrain the panel in translation 

but allow some rotation. It is clear that the peaks occur when the deflection of the panel at 

the radiating side is small so that there is little disturbance to the adjacent fluid. 
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

Figure ‎6.3 Operating deflection shapes of the in-vacuo structure for normal incidence on 

lower panel: (a) 162 Hz (b) 273 Hz (c) 964 Hz (d) 1219 Hz 

6.4 Dispersion relations 

The dispersion curves of the in-vacuo model are shown in Figure ‎6.4. The results in 

Figure ‎6.4(a) illustrate the effect of the studs on the propagating waves in the waveguide 

double panel system in the x  direction. Compared with the results without studs, shown 

in Figure ‎6.4(b), it is clear that adjacent waves are now clustered into groups of dispersion 

curves when the studs are present in the double panel system. This dispersion characteristic 

is dictated by the wave characteristic in the y   direction in which waves are travelling 

over a repetitive panel-stud system (or periodic structure). The positive interference of the 

free waves and the reflected ones in the y  direction will cause the presence of panel 

resonances within a bay. Following harmonic spatial expansion [43], the relation of the 

wavenumbers in the x direction, the y  direction to the free bending wavenumber is 

given by 

 

 

2

2 2
B

n
k

l

 


 
   

 
 (6.1) 

 

where   is the propagation constant in the y direction and l  is the stud spacing. Hence, 

for the current case, these groups of dispersion curves approach the dispersion curves of a 

0.406 m width panel (corresponding to the stud spacing) as indicated by black lines. Such 
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features will be seen more clearly in section ‎6.6.1 in which the effect of stud spacing on the 

TL is investigated. 

From a periodic structure theory point of view, it is well known that stop and pass 

band frequency characteristics can lead to a series of dips and peaks in structural response 

[111]. A frequency band in which no energy is transmitted in the system is called a stop 

band. Under such circumstances the vibration is attenuated very quickly in the structure. 

The opposite situation occurs in the pass bands in which the vibrational energy is 

transmitted freely. Hence, the dispersion characteristics in Figure ‎6.4(a) are related to the 

presence of peaks and dips in the TL in Figure ‎6.2 as the stop and pass band characteristics 

across the width mean that only certain waves can exist in the x direction. For the current 

case, only the odd wave modes are excited for normal incidence so that the corresponding 

groups of dispersion curves, for example around 165 Hz, 964 Hz, 2.4 kHz and so on, are 

associated with the dips. 

Meanwhile, two steeper dispersion curves cut on at around 640 Hz and 1780 Hz. 

These correspond to bending waves propagating in the studs. These cut-on frequencies are 

proportional to  
2

1 2s   with s  the s
th

 wave. Thus, for the current case, they correspond 

to waves in the stud with clamped boundary conditions at the stud-panel connection. 

However these waves do not appear as features in the TL curves as they are not excited by 

the incident acoustic field. 
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(b) 

Figure ‎6.4. Dispersion curve of the waveguide double panel partition without existence of 

the air in the cavity: (a) with studs (b) without studs. 

6.5 Effect of air in the cavity 

For the case of the waveguide double panel system with enclosed air cavity, the 

sound energy is transmitted from the first panel, at the source side, to the second panel 

through the air cavity or airborne path. An additional transmission path exists in the system 

after introducing the studs which act as structural connectors between the panels. This is 

termed the structure-borne path.  
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The TL of the full model is compared with the results for the in-vacuo system and 

the system without studs in Figure ‎6.5 to assess the relative importance of the transmission 

paths found in the waveguide double panel system. This is of importance in seeking ways 

to improve the sound reduction performance of the double panel system. 
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Figure ‎6.5. TL comparison of the full model and the in-vacuo model with the studs for 

normal incidence (━ full model; ┅ in-vacuo model; –•– double panel system with 

enclosed cavity without studs). 

 

It can be seen that the TL of the full model is very similar to the in-vacuo one for 

frequencies above 390 Hz. Meanwhile, compared with the results of the model without the 

studs, the dips due to the standing waves in the cavity are less pronounced in the full 

model. It can be seen that most of the dips found in the TL curve are now associated with 

the structure-borne path. Likewise, peaks present in this TL curve also match those in the 

in-vacuo model for the same frequency range. Thus, this shows that the structural path is 

predominant over the cavity path for the current case. Moreover, the TL of such a system 

tends to be lower than that obtained without the studs. This indicates that the presence of 

the studs reduces the TL of the double panel system. 

Although the structure-borne path is dominant for the case of the double panel 

system with the studs, a slightly different behaviour is seen from the comparison at low 

frequency. As shown in Figure ‎6.5, it can be identified that below 390 Hz the peaks and 

dips in the TL curve of the full model are no longer coincident with those found in the in-

vacuo model. For the current case, this frequency can be identified as the bridge frequency 
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where the stud starts to be dominant in determining the overall TL behaviour. Nevertheless, 

it should be borne in mind that such a dominance depends on various parameters that are 

mainly related to the stiffness of the stud and the air cavity depth. For example, for a less 

stiff stud transmission through the cavity will become more evident, as will be seen later in 

section ‎6.6.4. Hence the result in this section cannot be considered to be general but is 

case-dependent. 

Following the mode coupling method [112] for forced response, the characteristics 

of interaction of the air in the cavity and panels depend on their resonance frequencies and 

the excitation frequency. However, in most cases, according to [99, 113] only the zeroth 

cavity mode is of importance in changing the panel resonance as this mode can couple 

efficiently with the fundamental mode of panel. Such a situation can be seen from the 

results of the waveguide double panel system in Figure ‎6.5. At low frequency the lowest 

dip of the full model occurs at 180 Hz which is higher than for in the in-vacuo model 

where it is found at 161 Hz. This suggests that the air in the cavity exerts an additional 

stiffness on the panels. Compared with the case of the double panel system without studs 

(see Figure ‎6.2), the frequency associated with this dip is not too far from ,MAM WGf . Hence, 

the presence of the studs does not always mean that the structural resonance is dominant 

over the mass-air-mass resonance but the response in this frequency region is the 

superposition of the structural and the cavity response. Bradley and Birta discussed in 

[114] that the structural resonance is dominant in such a system so that the mass-air-mass 

resonance frequency no longer appears. This seems to be valid only for very stiff studs, i.e. 

wooden studs, but is not the case here despite the fact that these simplified steel studs are 

also quite stiff. 

6.6  Effect of stud parameters 

This section aims to assess the behaviour of the in-vacuo model when several 

parameters associated with the studs are varied. These include the stud spacing, stud 

stiffness, damping loss factor, geometric form and dimensions of the studs.  

6.6.1 Effect of stud spacing 

The stud spacing is varied for the same overall panel width, which is now set to 

1.8 m. Stud spacing of 600 mm, 300 mm and 200 mm are considered. Hence, there are 3, 6 
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and 9 bays respectively. All the structures are compared for normal incidence. The height 

of the stud remains 65 mm.  

The effect of the stud spacing can be observed from Figure ‎6.6. The considerable 

dip corresponding to the lowest TL increases in frequency as the stud spacing is reduced. 

The corresponding values are 74.4 Hz, 345 Hz and 790 Hz as indicated by the arrows in 

the figure. These are approximately equal to the fundamental natural frequency of a single 

bay of plasterboard with clamped boundary conditions. Moreover, the distance between the 

dips due to the pass and stop band behaviour also gets wider as the stud spacing is reduced. 

This is related with the wavenumber distribution in the y  direction which is inversely 

proportional to the stud spacing. These results are consistent with the hypothesis of pass 

and stop band behaviour in the waveguide structure. 
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Figure ‎6.6. Effect of stud spacing on TL of  in-vacuo model for normal incidence ( ━ 600 

mm; ┅ 300 mm; –•– 200 mm). Arrows indicate a dip corresponding with fundamental 

natural frequency of a single bay of each system. 

 

The corresponding dispersion curves for each case are shown in Figure ‎6.7. It is 

clear that the number of wave groups reduces as the stud spacing reduces but the number 

of waves in each group increases. Moreover, as previously stated, the various wave groups 

also shift toward higher frequency, approaching the dispersion behaviour of a panel with 

width equal to the stud spacing. The number of waves in each wave group corresponds to 

the number of bays across the width. Therefore, the stud spacing and the number of the 

bays influences the TL behaviour of the double panel system. 
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(c) 

Figure ‎6.7 dispersion curves for different stud spacing: (a) 600 mm stud spacing; (b) 

300 mm stud spacing; (c) 200 mm stud spacing. 
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Apart from peak and dips corresponding with the stud spacing, ripples are also 

found in the TL curve as shown in Figure ‎6.6 as a consequence of the finite number of 

bays. They do not appear for infinite structures, e.g. as in Ref. [41].  

6.6.2 Effect of stud stiffness 

Hongisto [37] found that the stud stiffness affects the TL of a double panel 

partition. The same tendency is also indicated in [44] where less stiff studs lead to a higher 

TL. In practical terms, a change in the stiffness can be achieved by modifying the cross-

section‎shape‎of‎the‎stud.‎For‎example‎an‎“acoustic”‎stud‎has‎a‎lower‎stiffness‎due‎to‎the‎

shape of the web which introduces higher flexibility.  

In this section, the effect of the stud stiffness is assessed for the waveguide double 

panel‎ system.‎For‎ convenience,‎ this‎ is‎ achieved‎by‎ varying‎ the‎Young’s‎modulus‎ of‎ the‎

stud material rather than modifying the cross-section‎ shape.‎ A‎ lower‎ Young’s‎ modulus‎

means lower stiffness. The rest of the parameters included in the model are unchanged, 

including the stud spacing of 406 mm. 

The effect of the stud stiffness on the TL of the in-vacuo model is shown in 

Figure ‎6.8(a) for normal incidence. From these results, it can be seen that lower stiffness 

causes a higher TL. Moreover, the periodic response found previously for E = 112 10 N/m
2
 

is retained even with a lower‎Young’s‎modulus although as the stiffness reduces, this effect 

becomes less clear. The results are considerably different for‎the‎lowest‎Young’s‎modulus‎

considered (E = 82 10  N/m
2
) where the dip at low frequency reduces to 148 Hz compared 

with around 180 Hz for the other results. Analogous to the mass-air-mass resonance, this 

frequency is strongly influenced by the stiffness of the stud. Hence, the lower‎Young’s‎

modulus leads to a lower structural resonance. The same tendency is also seen for the case 

of oblique incidence at 45° as shown in Figure ‎6.8(b). 
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(b) 

Figure ‎6.8. Effect of stud stiffness on TL of in-vacuo model: (a) normal incidence; (b) 

oblique incidence (━ E = 112 10  N/m
2
; ┅ E = 102 10  N/m

2; ••• E = 92 10  N/m
2; 

–•– E = 82 10  N/m
2). 

6.6.3 Effect of stud loss factor 

In this section, the damping loss factor of the stud is varied to study its effect on the 

TL behaviour. For this comparison, three different loss factors are considered which are  
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factors of ten are larger and smaller than the reference value of 0.01. Meanwhile, the loss 

factor of the panel is unchanged for all cases. 
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(b) 

Figure ‎6.9. Effect of loss factor on TL of in-vacuo model for normal incidence: (a) E 

= 112 10  N/m
2
; (b) E = 82 10  N/m

2
 (┅ 0.1stud  ; ━ 0.01stud  ;•－• 0.001stud  ). 

 

Figure ‎6.9 presents the results. It is clear that the stud loss factor has negligible 

effect on the TL for all frequencies. This tendency remains even for a much less stiff stud 

as shown in Figure ‎6.9(b) in which a higher damping loss factor only affects particular 
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frequency regions. Hence, changing the stud material to have a higher damping loss factor 

will not be effective in obtaining better sound insulation unless the stiffness is considerably 

reduced. 

6.6.4 Effect of stud geometric form  

The geometric form of the stud affects its stiffness [2, 37, 44]. In practice, various 

stud geometries are used to achieve a higher sound transmission loss. In this section, the 

previous results which use the simplified stud, as shown in Figure ‎6.10(a) are compared 

with the full C-profile and an acoustic stud, as indicated in Figure ‎6.10(b) and (c), where 

the flange parts are now included. The perimeter of the stud is thus changed due to its 

modified shape. The length of the flange part is taken as the average length of the C-stud 

specification found in the market that is usually in the range 36 mm to 40 mm. For 

convenience, the length of the flange is kept the same for the C-stud and the acoustic stud. 

Hence the geometric detail of the acoustic stud may not exactly represent an actual 

industrial specification found in practice. Here, 4 plate elements are used to represent the 

simplified stud while 12 plate elements are considered for the C-stud and 23 plate elements 

are used for the acoustic stud due to the nature of its cross-section. In the numerical 

implementation, these studs are attached to each panel through a single node. For the case 

of the simplified stud, the coupling node exists on either tip of the web part while for the 

C-stud and the acoustic stud the node exists at the middle of the flange section. It should be 

noted that any contact between the rest of the flange and the plasterboard is neglected.  

38 mm

65 mm

19 mm

(b) (c)(a)
 

Figure ‎6.10. Cross-sectional shape of the studs: (a) simplified stud; (b) C-stud; (c) acoustic 

stud. 
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 The effect of the cross-sectional shape of the studs on the TL can be observed from 

Figure ‎6.11. Clearly, the dips at low frequency shift to lower frequency when the 

simplified studs are replaced with the C-stud and the acoustic stud. From a stiffness point 

of view, as expected, the results indicate that the lowest stiffness is found for the acoustic 

stud, followed by the C-stud, while the simplified stud is the stiffest. Considering the 

results at mid and high frequency, the inclusion of the flange causes a higher TL. In this 

frequency region, however, the results for the C-studs and acoustic studs are not much 

different. This may be influenced by the flange length which is taken as identical for both 

the stud design. Apart from this, the pass-stop band behaviour becomes less apparent in the 

transmission loss curve for less stiff studs. 
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Figure ‎6.11. Effect of stud geometric form for normal incidence case (┅ simplified C-

stud; ━ C-stud; －•－acoustic stud). 

  

Now the air is added again into the cavity to assess its contribution for the case of a 

less stiff stud. In the numerical model, the couplings of the stud and the fluid are only 

introduced at the web part of the studs while no coupling exists between the flange parts 

and the fluid. The in-vacuo and full model with C-studs are compared in Figure ‎6.12. This 

differs from the results corresponding to the simplified stud (see Figure ‎6.5), as the lateral 

cavity modes and internal coincidence effect are now more pronounced at high frequency. 

Again such cavity modes are present at higher frequency as the lateral cavity dimension is 

reduced due to existence of the studs. The less stiff stud is believed to support their 
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presence allowing fluid deformation to occur more easily. This fact also means that 

transmission through the cavity is not limited to below the bridge frequency. This has been  

observed for a double panel system with studs where sound absorbing material is present in 

the cavity [7, 37]. 

10
2

10
3

0

20

40

60

80

100

Frequency, Hz

T
ra

n
s
m

is
s
io

n
 l
o

s
s
, 
d

B

 

 

 

Figure ‎6.12. TL comparison between in-vacuo and full model with C-stud (━ full model; 

┅ in-vacuo model). 

6.7 Diffuse sound field excitation: comparison with measurement  

 To demonstrate the validity of the model developed so far, the results for diffuse 

sound field excitation are compared with a measurement result from the literature (TL-93-

057) [38]. This measurement data corresponds to a structure comprising a double-leaf 

gypsum wall with 16 mm plasterboard connected by steel C-studs at 406 mm spacing with 

65 mm cavity depth. No geometric detail of the studs is available. Hence the length of 

flange part is assumed to be 38 mm as above. The total dimensions of the measured sample 

were 3.05 2.44 m
2 
and no sound-absorbing material was present in the cavity. The diffuse 

sound field in the numerical model is calculated with the upper limit angle equal to 90° 

while the procedure for calculating it is the same as used in section ‎5.2.9.  

6.7.1 Effect of cavity loss factor 

Figure ‎6.13 presents TL comparisons of the full C-stud for different cavity loss 

factors cav . It is clear that the TL of the numerical model increases and becomes closer to 
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the measurement results as the loss factor is increased. For example, the numerical result is 

7 dB lower on average than the measured one for frequencies between the first dip and the 

critical frequency when 210cav   is used. Compared with the results for 31 10cav   , a 

4 dB improvement is obtained. This result gives 
wR of 33 dB. However, little improvement 

is found at low frequency where the stiffness behaviour is dominant. It is clear that the 

cavity loss factor has a little effect on the TL in this region. Moreover, when the cavity loss 

factor is further increased to 110 , the TL is overestimated at high frequencies compared 

with the measured one although a good prediction is obtained at mid frequency. 

Consequently the numerical result has an wR  of 37 dB which is 1 dB higher than found in 

the measured result. 
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Figure ‎6.13. TL comparison of measured result and numerical results (WANDS) for 

different cavity loss factor cav  ( ━ 310cav  ;┅ 210cav  ;–•– 110cav  ; •••

frequency-dependent cavity loss factor; –○–measurement TL-93-057 [38] ).  

 

Alternatively, frequency-dependent cavity loss factors can be used in order to 

achieve better prediction results over a wider frequency range. Such an approach was used 

by Price and Crocker in [26] when predicting the TL of a double panel system using 

Statistical Energy Analysis. However, their results are not directly applicable to this case 

as no sound-absorbing material is present along the edges of the double panel system. An 
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equivalent sound absorption coefficient 
0  for the case of no edge absorption is required 

accordingly. According to Brekke [51], based on measurement results, 
0 0.275   can be 

used for 65 mm depth cavity. The calculation of the cavity loss factor based on a value of 

0  is provided in Appendix E. It should be noted that in such a model a constant value of 

0  leads to a frequency-dependent loss factor. From Figure ‎6.13, it can be seen that the use 

of‎the‎“frequency-dependent cavity loss‎factor”‎allows‎the‎TL‎behaviour‎of‎the‎numerical‎

model to become closer to the measured one at low and mid frequencies without 

introducing overestimated results at high frequencies. The corresponding 
wR  is 33 dB. 

Nevertheless, this approach tends to be hard to realize and there is no strong physical basis 

for obtaining the loss factor except when the edge absorber is present in such a system. 

6.7.2 Effect of simplified cross-section stud shape 

It is clear that the simplified stud model leads to a considerable underestimate of 

the TL particularly at high frequencies as shown in Figure ‎6.14; for example at 1 kHz the 

results differ by 21 dB. Moreover, the dip at low frequency occurs at a higher frequency 

than in the measurement and a higher TL occurs at low frequency, below the frequency of 

the first dip, than in the experimental result. The numerical results are closer to the 

measured ones at mid and high frequencies when the full C-stud shape is implemented but 

there is still a discrepancy of up to 18 dB. Above the critical frequency, however, the TL of 

the numerical model tends to be higher than that of the measurement. Apart from this, the 

inclusion of the flange part in this current case allows the numerical model to have a more 

reasonable result at low frequency where the first dip is situated in the same frequency 

region as the measurement. Despite this, in terms of weighted sound reduction index wR , 

the full C-stud has a slightly lower wR  of 30 dB, because of the reduced TL at 125 Hz and 

160 Hz, while that of the simplied stud is 31 dB. Meanwhile, wR  of the measured one is 36 

dB. Therefore, both the results are 5 to 6 dB lower in terms of wR  than found in the 

measured result. The result becomes closer to the measured one when using  an average 

cavity loss factor of 2.7 10
-2  

from [26]  which gives wR  of 34 dB. 
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Figure ‎6.14. TL comparison of numerical results (WANDS) and measured one for the case 

of 65 mm cavity depth ( C-stud: ━ 22.7 10cav    , ┅ 310cav  ; ••• simplified 

stud with 310cav  ; –○–measurement TL-93-057 [38] ). 

 

6.7.3 Effect of limiting angle 

To see the effect of the upper limit angle lim , this parameter is varied between 60° 

and 90°. The C-stud case with the cavity loss factor cav  of 310  is selected to demonstrate 

the effect of the limiting angle. The results are presented in Figure ‎6.15. It is clear that 

reducing the limiting angle increases the TL at high frequency, e.g. 3 dB higher TL is 

obtained for 
lim 80   around 1 kHz so that the wR  increases from 30 dB to 31 dB. This 

effect becomes significant down to lower frequency with reducing limiting angle and the 

results become closer to the measured ones, e.g an wR  of 35 dB is found where the upper 

limit angle is set to 60. However, with reducing upper limit angle the results are 

overestimated at high frequency particularly around the critical frequency. Moreover the 

dip in the TL around the critical frequency becomes less apparent. At low frequency, 

negligible effect is found. 
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Figure ‎6.15. TL comparison of measured result and numerical results (WANDS) for 

different upper limit angle lim  ( ━ lim 90  ; ┅
lim 80   ; –•– lim 70  ; •••

l i m 60  ; –○–measurement TL-93-057 [38] ). 

6.7.4 Effect of air stiffness 

Regarding the TL behaviour at frequencies between the first dip and the critical 

frequency, it is instructive to investigate the role of the air stiffness in the cavity. Another 

motivating factor is that a discrepancy remains from the comparisons particularly around 

the first dip (or‎the‎“mass-air-mass”‎resonance)‎even when the cavity loss factor has been 

increased considerably. The air stiffness is proportional to the air density and inversely 

proportional to the cavity depth. Hence, in order to change the air stiffness in the model, 

the air density o  is reduced to half of its original value in order to get a lower bulk 

modulus of the air  2

0c  while the cavity loss factor is kept at 210 . The results can be 

seen in Figure ‎6.16. Compared with the TL of the numerical model with the original air 

stiffness value, it can be seen that the reduced stiffness causes the TL of the numerical 

model to be higher‎at‎ frequencies‎ above‎ the‎“mass-air-mass”‎ resonance‎ frequency hence 

the result becomes closer to the measured one. This produces a weighted sound reduction 

index 35wR   dB which is only 1 dB lower than the measured result, which has 36wR   

dB. A distinct improvement can be observed at low frequency at which the cavity loss 

factor had a little effect. Moreover, the‎ “mass-air-mass”‎ resonance‎ frequency‎ shifts‎ to‎ a 
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lower frequency but it is still acceptable compared with the measured result. This 

improvement implies that the air behaviour in the cavity is not only influenced by 

dissipative mechanisms but also by processes affecting the air stiffness. One possible cause 

of this is the existence of holes commonly found in real steel studs. Hence the air in the 

cavity is not totally enclosed between two adjacent studs. This has been neglected in the 

numerical model. Moreover, the sample may not be completely air-tight as small leaks 

effectively lead to a reduction in stiffness. However, the use of the reduced air stiffness, by 

introducing 
air = 0.6 kg/m

3, 
should be used with caution while its mechanism requires 

further investigation. 
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Figure ‎6.16. TL comparison of measured result and numerical results (WANDS) for 

different air stiffness with cavity loss factor of 210 ( ━ air = 0.6 kg/m
3
; ┅ air = 

1.21 kg/m
3
;–○–measurement TL-93-057 [38] ). 

 

 It can be demonstrated that a better prediction result for the previous case, where 

0.6air   kg/m
3, can be obtained by combining this with an increased the cavity loss 

factor of 22.7 10  (previously 210 ) as shown in Figure ‎6.17. The TL behaviour of the 

numerical model is now closer at low and mid frequencies but the results at high 

frequencies are overestimated. This result gives 36wR   dB which is equal to the 

measured one. Compared with the numerical result where 110cav  and 1.2air   kg/m
3
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are used, also shown, this approach improves the result in frequency range between 125 Hz 

and 200 Hz. Moreover, 110cav   cannot be justified in experimental results (cf. [51]).  
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Figure ‎6.17. TL comparison of measured result and numerical results (WANDS) and for 

half air stiffness with different cavity loss factor (━ 22.7 10cav   ; ┅ 210cav  ; •••

110cav   and 1.21air   kg/m
3
;–○–measurement TL-93-057 [38] ). 

 

The case of the same system with full C-stud and a larger 90 mm cavity depth is now 

considered. The cavity loss factor is set to 210  while the reduced air density of 0.6 kg/m
3 

is assumed to give lower air stiffness. The upper limit angle is 90°. Figure ‎6.18 presents a 

comparison of the numerical model and the measurement result (TL-93-418) [38] under 

diffuse sound field excitation. At low frequency the numerical results show a good 

agreement compared with the measured one, including the dip found at 100 Hz. Some 

discrepancies are found between the frequency of the first dip and the critical frequency,  

where the numerical model results are 5 dB lower on average than those obtained by the 

measurement. This numerical result gives 36wR   dB compared with 39wR   dB as 

found in the measurement. This discrepancy reduces when 22.7 10cav    is used. The 

improvement can be obtained particularly at frequencies below 1 kHz. The weighted sound 

reduction index is 39 dB from this curve. Above the critical frequency, however, the 

numerical model produces a higher TL than the measurement one. 



Chapter 6 

 

 

186 

 

80 125 200 315 500 800 1.25k 2k 3.15k
0

10

20

30

40

50

60

70

Frequency, Hz

T
ra

n
s
m

is
s
io

n
 l
o

s
s
, 
d

B

 

Figure ‎6.18 TL comparison of numerical result (WANDS) and measurement one for the 

case of 90 mm cavity depth  ( ━  Numerical result for 0.6air   kg/m
3
 and 

22.7 10cav    ; ┅ Numerical result for 0.6air   kg/m
3 

and 210cav  ; – ○ –

measurement TL-93-418 [38] ). 

6.8 Summary 

In this chapter, the waveguide double panel system with studs has been modelled 

using the WFBE method. A finite width of panel is modelled with the studs placed a 

certain distance apart. The system is infinite in the other dimension. New features are 

found in the results compared with the existing analytical models, even though some of 

them take advantage of periodic structure theory to solve the vibro-acoustic problem for 

such a system. After introducing the studs into the system, a considerable reduction in 

performance of the waveguide double panel system is found at mid and high frequency. At 

lower frequencies, the response is a combination of the structural response and the air 

cavity one.  

Regarding the stud behaviour, the results suggest that the stiffness of the stud is an 

important parameter in determining the total response of the double panel system, 

particularly in relation to the pass-stop band characteristic that is evident in the results. 

Such characteristics become less apparent as the stiffness of the studs is reduced. In 

practical terms, the stud cross-section shape has a critical role in affecting the behaviour of 
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the sound transmission loss, as it affects the stud stiffness. Conversely, the loss factor of 

the stud has negligible effect on the results, even for less stiff studs. 

The effect of the air in the cavity becomes less significant with increasing frequency 

for the case of stiff studs so that the stud behaviour is predominant at high frequency. 

However, for less stiff studs lateral cavity modes and the internal coincidence effect are 

more significant and reduce the sound transmission loss. Therefore, for the case of an 

elastic steel stud both the transmission paths need to be handled carefully in order to 

achieve a good TL.  

Comparisons of the numerical results and measurements from the literature suggest 

that inclusion of an appropriate cavity loss factor is required to achieve more accurate 

results. The use of a frequency-dependent cavity loss factor can be an alternative approach 

to optimize the result over a wider frequency range. A reduced air stiffness also needs to be 

considered to account for practical considerations. Moreover, it is of importance to include 

the detail in terms of elastic stud geometry. Meanwhile, the reducing of upper limit angle 

leads the results to be closer to the measured one but they are overestimated at high 

frequency. At low frequency, its effect is negligible. Further evidence of these phenomena 

will be seen in ‎Chapter 7 in which the numerical model results are compared with 

measured ones. 
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Chapter 7. Experimental validation 

In this chapter, measurement results are presented in order to validate the results, 

particularly in relation to the effect of the finite cavity on the transmission loss. To meet 

this objective, test specimens consisting of identical 9.5 mm thick plasterboards and a 

30 mm cavity depth without sound absorbing material are used. The dimension of cavity 

has then been varied by adjusting the width or increasing the cavity depth. Subsequently, a 

mechanical connection in the form of a steel C-stud is introduced in the cavity to look 

further at its effect on the transmission loss of such systems, as well as to obtain further 

evidence of the validity of the numerical model developed based on the WFBE method.  

7.1 Experimental setup and procedure 

7.1.1 Reverberation chamber 

The measurements were conducted in the ISVR transmission suite facility situated in 

building 15 of the University of Southampton. The transmission suite comprises a large 

reverberation chamber and a smaller one which have volumes of 348 m
3
 and 131 m

3
 

respectively. An aperture size of 2.02   2.42 m
2
 exists between the two reverberation 

chambers in which a test specimen can be fitted. 

The source room is excited by broadband noise. The sound field approximates a 

difuse field above the Schroeder frequency sf . This frequency ensures that on average at 

least three eigenmodes occur within the half-power bandwidth of one resonance. It is given 

by [115] 

 

 602000s

T
f

V
  (7.1) 

 

 

where 60T  is the reverberation time of the room and V  is the room volume. Considering 

the measured reveberation time and the room volume of each reverberation chamber, the 

Schroeder frequency of the large reverberation chamber is approximately 315 Hz while 

400 Hz for the smaller reverberation chamber. Hence, above these frequencies, a diffuse 
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sound field can be assumed in each reverberation chamber. The newer standard ISO-10140 

part 5 [116] requires a reverberation time between 1 s and  
2 3

2 / 50V s  where V  is the 

room volume in order to get measurement results that are down to 100 Hz.  

According to those values of the Schroeder frequency, evalution for the results in 

terms of weighted sound reduction index 
wR  in later sections will only incorporate 11 

frequency bands starting from 315 Hz to 3150 Hz. Hence, the total of unfavourable 

deviations becomes 22 dB rather than 32 dB for 16 bands as described in ISO 717 part 1 

[117]. Due to this different definition in 
wR , the weighted sound reduction index 

throughout this section is denoted as 
wR . 

7.1.2 Test specimen parameter 

Four test specimens are considered for this experimental validation. For 

convenience, the test specimens are labelled TS1, TS2, TS3 and TS4 throughout this 

chapter. The parameters of each test specimen are listed in Table ‎7.1 with the dimensions 

of all specimens nominally 0.9  2.4 m
2. 

They are chosen to be long and thin so that 

waveguide structural properties are expected to apply. Moreover, this is a typical
 

dimension of the plasterboard found in the market so that the specimens could be easily 

constructed in practice. All the test specimens are shown in Figure ‎7.1. Timber section 

frames were placed on their perimeter to hold the plasterboard samples when they were 

fitted to the aperture. A cavity depth of 30 mm is considered here in order to ensure that 

MAMf  is not too low relative to the Schroeder frequency of the reverberation chambers as 

discussed in section ‎7.1.1. With this cavity depth, the mass-air-mass frequency is expected 

at around 273 Hz. Moreover, a 48 mm cavity depth is considered in TS3 and TS4 

corresponding to the smallest steel stud thickness found in the market. A smaller cavity 

depth would be more suited to meeting the measurement objective as it leads to higher 

MAMf  which would ensure that the low frequency transmission loss behaviour could be 

clearly seen under the diffuse sound field. However, it is not further considered here due to 

technical constraints during construction. It should be noted that the use of the timber 

frames gives rise to potentially higher flanking transmission compared with steel and brick 

ones, as discussed in [118], so that the overall TL may be lower than the actual one  

particularly at high frequency. Despite this, timber frames are used for ease of construction 
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considering the aperture dimension. Moreover, this should not be a critical aspect in this 

measurement as all test specimens were treated in the same approach. Hence differences in 

the TL behaviour corresponding with the cavity dimension and steel stud are still expected 

to exist. 

 

Table ‎7.1. Parameters of test specimens 

 

TS Plasterboard 
Cavity  

(width   depth) 

Mechanical 

link 

1 Identical 9.5 mm 2020 mm    30 mm - 

2 Identical 9.5 mm 900 mm    30 mm - 

3 Identical 9.5 mm 900 mm    48 mm - 

4 Identical 9.5 mm 900 mm    48 mm  steel C-stud 

 

 

For cases TS2-TS4, cavity blockers were put in the cavity in order to reduce the 

width of the air cavity to 0.9 m from its original dimension of 2.02 m as applied for TS1. 

These blockers, made of timber, were arranged in such a way so that they do not act as a 

“vibration‎bridge”‎for‎the‎section‎frames.‎To‎realize‎this,‎a‎silicone‎rubber‎sealant‎was put 

between the blocker edges and the timber frames (see Figure ‎7.2). For this measurement, a 

steel C-stud was only introduced in TS4 which basically has the same specification as TS3. 

The steel C-stud was attached to the panel using screws which were spaced on 300 mm. 

As the test specimen has smaller dimension compared with the aperture size, filler 

walls were required so that the test specimen can be fitted into a 0.92.4 m
2
 aperture. 

According to ISO 140 part 3 [119], 15 dB higher reduction is required compared with the 

test speciment. Therefore, four layers of 15 mm sound bloc with surface density of 12.6 

kg/m
2
 were used. They are expected to provide approximately 15 dB higher transmission 

loss.  
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Test specimen

48 mm

900 mm

30 mm

Filler wall

 
section 
timber 
frame

Timber 
frame

48 mm

Silicone rubber sealant

(TS1)

(TS2)

(TS3)

(TS4)

C Steel stud

Timber

 

Figure ‎7.1. Sketch of test specimens considered in the measurement. 

 

 

 

 

 

Figure ‎7.2. Timber cavity blocker 
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7.1.3 Measurement procedure 

The measurement was conducted according to ISO 140 part 3 [119] which 

describes laboratory measurements of airborne transmission loss. The large reverberation 

chamber was designated as the source room while the smaller one was the receiver room. 

A random broadband sound source was used.  Measurements were then performed at eight 

microphone different positions in order to get spatial averaging. The same number of 

measurement positions was also used in the receiver room. For each position, the 

measurement data was captured for a 30 s averaging time. Meanwhile, the measurement of 

reverberation time 
60T  was carried out in the small reverberation room following ISO 354 

[120] in order to obtain the equivalent sound absorption A . For this, four different 

configurations of microphone and loudspeakers were used and the measurement was 

repeated five times for each configuration. Finally, 60T  was obtained through an averaging 

a number of multispectral [121]. 

Figure ‎7.3 illutrates the measurement setup in the large reveberation chamber. 

During the measurement, four Brüel & Kjaer 1 2  free field microphones type 4165 were 

used to measure the acoustic pressure in the source and receiver rooms, with two 

microphones for each room. These microphones were connected to a Brüel & Kjaer front 

end PULSE type 3650C in the control room in order to capture the data in 1 3  octave 

frequency bands with centre frequencies from 50 Hz to 10 kHz. This system was also used 

to generate broadband noise for the same frequency range through the loudspeaker which 

was located close to one corner of the room about 1 m from the wall. This loudspeaker was 

moved to an other corner for a different set of microphone positions. Before starting the 

transmission loss measurement, the microphones were calibrated using a Brüel & Kjaer 

piston calibrator type 4230. 
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Figure ‎7.3. Measurement setup in the reverberation chamber 

 

 

The measured transmission loss TL  is given by [119] 

 

 
1 2 1010log       dBp p

S
TL L L

A

 
    

 
 (7.2) 

where 1pL  is the average sound pressure level in the source room, 2pL  is the average sound 

pressure level in the receiver room, S  is the area of the test specimen and A  is the 

equivalent sound absorption area in the receiver room. A  is determined from the 

reverberation time of the receiver room using Sabine’s formula 

 

 
60

0.16 V
A

T
  (7.3) 

 

A temperature of 19 C and humidity of 62% were measured in the reverberation chamber 

during the measurements. 

7.2 Preliminary test 

In order to comply with the standard ISO 140 Part 3 [119], a preliminary test was 

conducted first to ensure that the filler wall achieves a transmission loss at least 15 dB 

higher compared than that of the designated test specimens. For this test, the whole 

partition was constructed using the arrangement of the filler wall as shown in Figure ‎7.4. 
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Sound blocTimber frame Sound bloc

 
 

Figure ‎7.4. Sketch of filler wall during preliminary test. 

 

Figure ‎7.5 presents the TL of the filler wall. Considering the sound pressure level 

obtained particularly in the receiver room 
2pL , some corrections need to be applied to the 

measured sound pressure level as the level is comparable to that of background noise at 

high frequency as shown in Figure ‎7.6. It is clear that 2pL  at 5 kHz is only 8 dB higher 

than the background noise. Hence, in accordance with ISO 140 [119], the following 

equation is used to apply such corrections: 

 

  2 10 10
10log 10 10      dBp b

L L
L    (7.4) 

 

where L  is the adjusted sound pressure level, 2pL  is the measured sound pressure level 

combined with background noise and bL  is the level of background noise. At 6.3 kHz the 

level difference is less than 6 dB which is the limit allowed in the standard. Due to the 

background noise issue, no results related with frequencies above 5 kHz are considered 

further. For the case of TS1, TS2, TS3 and TS4, the measured sound pressure level shows 

a difference in level greater than 15 dB compared with the background noise in this 

frequency region as indicated in Figure ‎7.6. Hence, no correction is applied for those 

results. 
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Figure ‎7.5. TL of filler wall. 
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Background noise

 

Figure ‎7.6.  Sound pressure level at receiver room and compared with that of background 

noise when the filler wall or each test specimen fitted into the aperture. 

 

Figure ‎7.7 presents the transmission loss of the filler wall compared with that of 

TS1. It can be seen that the transmission loss of the filler wall is between 14 dB and 23 dB 

greater than TS1 except below 125 Hz and around 2.5 kHz which are in the range of 8 to 

10 dB.  Consequently, it is expected that sound transmission through the filler wall can be 

disregarded, so that the measurement results of all test specimens are expected to be valid 
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for the frequency range of interest. From this figure, it can also be seen that there is a dip at 

63 Hz in both the curves which may be due to the influence of room modes. 
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Figure ‎7.7. Transmission loss comparison between filler wall and TS1 

7.3 Effect of air cavity dimensions 

Changing the air cavity dimensions is expected to affect the transmission loss as 

discussed in ‎Chapter 5. Such a tendency is evident in the measurement results as shown in 

Figure ‎7.8. It can be seen that the narrower cavity leads to a lower transmission loss below 

the coincidence dip at 4 kHz down to 160 Hz, although such a tendency is not seen at 

frequencies between 1.25 kHz and 2 kHz. Considering the frequency region, apparently 

this lower TL is not related with additional flanking transmission through the timber frame 

as indicated in [118]. Meanwhile, a larger cavity depth causes a higher transmission loss is 

evident for TS3, where the cavity depth was increased from 30 mm to 48 mm. For all 

configurations, the coincidence dip at high frequency is found around 4 kHz.  

Numerical models for these structures were developed assuming a cavity loss factor 

of 22.7 10 . This is chosen based on the results in section ‎6.7 in which this value allows 

the numerical models to produce reasonable results compared with published experimental 

data. As mentioned before, it should be borne in mind that this value should be used with 

caution and can be considered as an ‘empirical fix’. Hence this may be different for 

different circumstances and modelling approach. Simply supported boundary conditions 

were assumed for all models. 48 elements are used to cover 0.9 m width plasterboard and 
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the boundary element mesh is extended by 0.675 m beyond the structure width on each 

side. Under such circumstances, the model is expected to be acceptable for a lowest 

frequency of around 76 Hz due to the width of the baffle and up to 4.5 kHz at high 

frequency at which the acoustic wavelength equals 0.076 m. The rest of the properties are 

the same as in the numerical model developed in section ‎5.2 except the cavity width was 

extended to 2.2 m beyond the structural width to model configuration TS1. For the TS1 

model, the number of elements for the plasterboard is reduced to 22 elements in order to 

allow the air cavity, which is coupled to the plasterboard, to be modelled properly 

considering maximum number of nodes and elements that can be handled by WANDS. 

Hence, the result of this model is only acceptable up to 2.1 kHz while the lowest frequency 

limit is the same as the other models. Material properties used in the numerical model are 

listed in Table ‎7.2. They are obtained based on typical properties of plasterboard and steel 

rather than measurement. 
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Figure ‎7.8. Transmission loss of TS1, TS2 and TS3 

 

Table ‎7.2. Material properties used in numerical models (unless otherwise stated) 

 

Properties Plasterboard Steel 

Young’s‎modulus,‎ E  (N/m
2
 ) 92.5 10  112 10  

Poisson’s‎ratio,‎ pv  0.3 0.28 

Density (kg/m
3
) 663 7800 

Thickness, h (mm) 9.5 0.5 
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The numerical results are compared with the experimental results in Figure ‎7.9 for 

TS1 and TS2. It can be seen that the same tendency is obtained between those 

configurations as the measurement results. The narrower cavity has a higher stiffness than 

the wider one, giving a higher 
MAMf . Agreement between experiments and the numerical 

model is less good below 250 Hz; this is likely to be affected by modal room response in 

the experiments results where the diffuse sound field assumption is expected to be less well 

satisfied. In 1/3 octave bands, the dip occurs between the 3.15 kHz and 4 kHz and is less 

distinct than the measurement. This critical frequency can be more clearly seen when the 

results are presented in narrow band e.g. for the case of TS2 as shown in Figure ‎7.10. From 

this figure, the dip is found at around 3.6 kHz from the numerical results while it is 3.9 

kHz from the measurement result. Therefore, those dip frequencies differ by 8%. 
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Figure ‎7.9.  TL comparison of numerical results and measurements ones in 1/3 octave 

frequency bands (┅ TS1; ┅ TS2;  ━ numerical model for TS1; ━ numerical model for 

TS2). 
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Figure ‎7.10. TL comparison of numerical result and measurements one for TS2 in narrow 

bands (┅ measurement;  ━ numerical model ). 

 

Figure ‎7.11 presents the TL differences between TS1 and TS2 for both the 

measurement and numerical results. The TL differences of 1 dB to 3 dB are found in the 

numerical results while the TL differences of 1.8 dB to 2.4 dB occur in the measurement 

results for frequencies between 250 Hz and 1.25 kHz. Beyond this frequency region, 

negative TL differences are found in the measurement results which indicate the TL of TS2 

is higher than that of TS1.  
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Figure ‎7.11. The difference in the transmission loss between TS1 and TS2 ( ━ Numerical 

model; ┅ Measurement) 
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 Figure ‎7.12 shows the results separately for each test specimen. It can be seen from 

Figure ‎7.12(a) that the numerical model results are 2 dB to 7 dB lower than the measured 

ones for the case of TS1, which causes 
wR  of the numerical result to be lower than that of 

the measurement result. For the current case, 
wR  of the numerical model result is 35 dB 

while that of the measured one is 41 dB. This tendency is also evident for the case of TS2 

as shown in Figure ‎7.12(b) where the numerical model result is 4 dB to 7 dB lower than 

measurement result. It is found that 
wR  of the numerical model is 33 dB while 

wR = 39 dB 

is found for the measured one. This may be caused by the non air tight nature of the air 

cavity of the test specimens. Such an indication can be seen from Figure ‎7.12(b), where the 

result for reduced air stiffness is included. It is clear that the numerical result becomes 

closer to the measured one after the air stiffness is reduced, giving 
wR = 39 dB from the 

numerical result.  
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(a) (b) 

 

Figure ‎7.12. TL comparison of numerical results and measured ones: (a) TS1 (b) TS2  (┅ 

measurement ;  ━ numerical model ; –•–numerical model with o  = 0.6 kg/m
3
). 

 

For the case of a finite cavity with a bigger cavity depth, the transmission loss 

increases compared with the narrower specimen, as expected. The numerical model of the 

same specification shows similar trends, as shown in Figure ‎7.13. From the measurements, 

it is found that TS3 gives 42wR   dB while wR  of the numerical model for the same 

specification is 37 dB. Compared with TS2, the TL of TS3 is 2.9 dB to 4.9 dB higher 

according to the numerical results while it is 3.7 dB to 6 dB higher in the measurement 

results, as indicated in Figure ‎7.14. This TL difference leads to a difference of wR  by 3 to 4 
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dB. Despite this, the results of TS2 and TS3 in the measurement results and the numerical 

ones indicate a similar trend.  
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Figure ‎7.13. TL comparison of numerical results and measured ones for the case of TS3  

(━ numerical model ; ┅ measurement). 
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Figure ‎7.14. The difference in the transmission loss between TS2 and TS3 (━ Numerical 

model; ┅ Measurement). 
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7.4 Effect of steel stud 

Figure ‎7.15 presents measurement results of TS4 compared with that of TS3 showing 

the effect of adding a steel stud. It is clear that the steel stud reduces the TL by 3 dB at high 

frequency. At low frequency, particularly around 315 Hz, TS4 has a slightly higher TL 

than that measured from TS3. 
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Figure ‎7.15. Effect of steel stud on transmission loss 

 

 

The numerical model results also show the same tendency as shown in Figure ‎7.16 

although the dip around 250 Hz in both the predicted curves is not evident in the 

measurement results. However, the difference between the TL of the double panel system 

with and without the steel C-stud tends to be bigger than in the measurement results. It is 

found that the steel C-stud causes a difference of up to 4.7 dB at high frequency while that 

of the measurement results is up to 3.4 dB as shown in Figure ‎7.17. Below 500 Hz, both 

the results have negative differences that mean the TL of TS4 is higher than TS3 in this 

frequency region.  
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Figure ‎7.16. TL comparison of numerical results and measurements ones (┅ TS3; ┅ TS4; 

━ numerical model for TS3; ━ numerical model for TS4). 
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Figure ‎7.17. The difference in the transmission loss between TS3 and TS4 (━ Numerical 

model; ┅ Measurement) 

 

It is clear from Figure ‎7.18 that there are differences between the numerical results 

and the measured ones for the case of TS4. wR  = 43 dB is found from the measured result 

while wR  = 38 dB from the numerical model result for the same case. Better prediction 

results can be obtained by reducing the air stiffness, particularly for the current case. Using 
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this approach, 
wR of the numerical model result increases to 41 dB which is only 2 dB 

lower than that of the measured result.  
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Figure ‎7.18. TL comparison of numerical results and measured one for  TS4  ( ┅ 

measurement ;  ━ numerical model; –•–numerical model with o  = 0.6 kg/m
3
). 

7.5 Summary 

Transmission loss measurements were conducted by following standard ISO 140 [119] 

rather than the more recent ISO-10140 [116] hence the results must be used with caution. 

The use of timber frames may lead to higher flanking transmission. Moreover, a totally 

enclosed cavity system of the specimens, as assumed in the numerical model, may not be 

completely air-tight. Regarding the numerical model, empirical adjustment were used in 

order to get the results closer to measured ones. Hence these values may be different for 

different cirucumstances and modelling approach. 

Despite some detail differences, the measurement results generally validate the 

findings of the numerical model. However, the mass-air-mass resonance frequency is not 

observable from the measurement results. Theoretically, it should also be affected by the 

air stiffness in the finite cavity due to the presence of lateral cavity modes.  

For the case of the double panel system with a steel C stud, the measurement results 

indicate that the numerical model can show the effect of the stud on TL with a reasonable 

result. The results can be improved by introducing a lower air stiffness in calculation 

which may be justified by a lack of air tightness in the cavity. This can further confirm the 

comparison results in section ‎6.7. 
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Chapter 8. Conclusions 

8.1 Infinite plate strip 

A study of the vibro-acoustic behaviour of a plate strip has been presented. An 

analytical model has been developed in order to investigate the plate strip behaviour in 

terms of its mobility, its sound radiation and its sound transmission loss. Some concluding 

remarks can be made as follows: 

1. The mobility of the plate strip due to a point force excitation is stiffness-controlled at 

low frequency while it tends to be similar to that of an infinite plate at high frequencies. 

Peaks occur at the cut-on frequencies with magnitudes that depend on the location of 

the excitation point. Damping has an effect only around the cut-on frequencies. 

2. It is clear that the plate strip still radiates sound below the critical frequency even if it is 

less than above the critical frequency. This sound is produced by nearfield waves in the 

vicinity of the forcing‎ point‎ and‎ by‎ ‘edge‎ modes’,‎ that is waves with an axial 

wavenumber smaller than the acoustic wavenumber while the transverse wavenumber 

is greater than the acoustic wavenumber. Therefore, it is clear that the finite width and 

the point force excitation influence the sound power radiation below the critical 

frequency. 

3. The sound transmission loss of the plate strip for normal incidence converges to the 

mass-law result at high frequencies. At low frequency, below the first cut-on frequency, 

a stiffness-controlled region appears, while the mass-controlled region exists above the 

first cut-on frequency. The slope at low frequencies is modified from the result for an 

infinite plate when the width is less than half the acoustic wavelength. Some dips or 

ripples in the curve are related to various cut-on frequencies. Such features are not 

present in an infinite model. 

 The results presented here can be used as benchmark solutions for validating 

numerical methods such as waveguide FE/BE. 

8.2 Waveguide Finite Element-Boundary Element 

The waveguide FE/BE method has been applied to a plate strip. Comparisons of the 

numerical results and analytical ones were conducted to validate the WFBE method 
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applied in this study and to determine under what circumstances the numerical model can 

be used to give accurate results. In terms of the mobility calculation a suitable wavenumber 

range and step size are determined in order to ensure errors are less than a certain value. 

This is expressed in terms of the maximum wavenumber ratio, relative to the associated 

free bending wavenumber of the plate. This study shows that the maximum wavenumber 

ratio decreases as frequency increases; e.g. for 1 Hz  max Re( )Bk   18 while 

max Re( )Bk   1.5 for 3 kHz in order to get results with an error of less than 0.1 dB. 

Some practical aspects of implementing this method using the WANDS software 

have been highlighted in order to obtain correct results.  Firstly, the Waveguide Boundary 

Element (WBE) should have a closed boundary rather than an open one. The thickness of 

the mesh should be determined carefully to avoid the jump phenomenon which causes 

misleading results. Secondly, to simulate a baffled situation a finite rigid baffle should be 

included in the model by extending the width of the WBE fluid model beyond the width of 

the structure. The width of the finite rigid baffle is important in determining accuracy of 

the numerical model results in comparison with the analytical ones which are for an 

infinite baffle. The lowest frequency at which the numerical model results are still valid 

depends on the total width of baffle at the radiating side which should be at least half the 

acoustic wavelength. Thirdly, care should be taken in choosing the element type in the 

WANDS software. For the case of the waveguide structure considered in this study, the 

plate element type along with its coupling element to acoustic BE fails to calculate 

accurately the vibro-acoustic response of the plate strip although it gives good results for 

the mobility. It is found that the radiated sound power is incorrect in the critical frequency 

region and the sound transmission loss is incorrect around and above the coincidence 

frequency. Alternatively, solid elements can be used to obtain the results although a higher 

element density is required. These problems are believed to be due to errors in the 

WANDS software and not a fundamental limitation of the WFBE method. 

All in all, the WFBE method is applicable for the cases considered in this study. 

Moreover, the WANDS software can be used to develop numerical models of structures 

and the structure-fluid interaction provided that suitable precautions are taken. The 

problems associated with plate-fluid coupling require further attention in the WANDS 

software which is beyond the scope of the present study. 
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8.3 Waveguide double panel system 

The sound transmission of a double panel system has been studied using the WFBE 

approach. Finite extent and non-uniformity of the pressure distribution introduced in the 

waveguide double panel system with enclosed cavity cause some features to emerge in the 

sound transmission compared with the infinite system. Under such conditions, lateral 

cavity modes are evident along with cavity modes across the cavity depth. Hence, the total 

response in the cavity of such a system is the superposition of the air-stiffness dependent 

response across the depth and the cross-section modal response. This causes the mass-air-

mass frequency of the waveguide double panel system to be modified. As a consequence, a 

stronger acoustical coupling is found which reduces the sound transmission loss in a wide 

frequency region. Moreover, the presence of coupled system resonances in which internal 

coincidence in the cavity occurs also cause the sound transmission loss to be reduced. The 

cavity loss factor has a large effect on the TL behaviour. The results obtained also show 

that the dissipative mechanism behaviour found in the real structure originates from the 

cavity rather than from the panel as postulated by London [15]. 

The finite width of the waveguide structure limits the radiation efficiency for larger 

angles of incidence. Consequently, a higher TL is found in the waveguide double panel 

partition as the finite width system radiates less compared with the infinite plate model. 

After introducing studs into the system, a considerable reduction in performance of 

the waveguide double panel system was found at mid and high frequency. At lower 

frequencies, the response is a combination of the structural response and that of the air in 

the cavity. Moreover, pass-stop band characteristics typical of periodic structures are 

evident in the results.  

Regarding the stud behaviour, the results suggest that the stiffness of the stud is an 

important parameter in determining the total response of the double panel system. In 

practical terms, the stud cross-section shape has a critical role in affecting the sound 

transmission loss as it determines the stud stiffness. However, for a less stiff stud the 

presence of lateral cavity modes and internal coincidence becomes more significant and 

limits the TL. Therefore, for the case of an elastic steel stud both air-borne and structure-

borne transmission paths need to be handled carefully in order to achieve a good TL 

prediction. 
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Measurement results generally validate the findings of the numerical model with 

regard to the air cavity dimension. Without the presence of sound absorbing material in the 

cavity, this affects the overall TL of the double panel system.  

8.4 Recommendations for further work 

Numerical models have been developed using the WFBE method. As a consequence, 

the model is only able to represent the structure as a two-dimensional problem although the 

results obtained from the current approach show a good agreement compared with the 

experimental results. Further work is required to extend the model to predict the 

transmission loss of fully bounded structures as found in practice. This could be achieved 

e.g. by applying spatial windowing to modify the two dimensional structural problem to 

become a three dimensional one. Another concept that may be considered is to use 

particular set of wavenumbers in the x  direction which are associated with natural 

frequencies of modes in the length direction e.g. xn l   for simply supported boundary 

conditions. 

 In a more general sense, the errors found in coupling plate-FE and acoustic-BE 

implies that it is required to have further analytical models of simple cases to validate the 

results of WANDS. It is particularly useful for testing the cases incorporating coupling 

models before proceeding to handle multi-domain models in which more than two sub-

models are used. The results obtained can then be used to update WANDS to resolve the 

errors found.  

Sound-absorbing material needs to be considered to make the model more versatile 

to cover various double panel systems found in practice. Although it can be included by 

using a suitable loss factor in the cavity, this should be frequency dependent. Moreover, 

the wavespeed is also frequency dependent. For this, therefore, a new sub-model is 

required which implements poroelastic material. 

The findings in this thesis related to the stiffness of air in the cavity need to be 

examined further for different double panel systems, e.g. double glazing in order to get 

further comfirmation. 

Finally, approximate formulae can be derived from the numerical models in order to 

have efficient and simple models particularly for practical purposes. Such an effort can be 

carried out by introducing some parameters related with material and geometrical 
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properties of a particular double panel system which can approximate the numerical results 

for the same system. 
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Appendix A. Out-of plane displacement of a plate strip due to a 

point force  

 

The out-of plane displacement of the infinite plate strip vibrating in order m  contained in 

Eq. (2.2) can be written as 
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      (A.1) 

 

where 
1,x mk  and 

2,x mk  are given in Eq. (2.6). 

 

The generalized force acting on the m
th

 order motion is given by  
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The boundary conditions for such structures evaluated at 0x   are as follows 

 

1. Continuity equation ; equal displacement 
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2. Continuity of rotation 
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3. Continuity of bending moment 
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4. Force equilibrium condition 

 

(0, ) (0, )m m mS y S y F            (A.6) 
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Using the relation from (A.4)  
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From Eq. (A.3) and Eq. (A.5) the following relations are obtained 
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By substituting Eq. (A.8) into Eq. (A.7) this yields 
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The other coefficients will be 
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Based on these coefficients, the solution may be written as follows 
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The complete solution is given by 
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Appendix B. Modulus squared of plate velocity in wavenumber 

domain 

 

 

The plate velocity in the wavenumber domain for a single mode m  is given by Eq. (2.20) 

as follows 
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From Eq. (B.1), the plate velocity in the wavenumber domain in the x direction is  
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while that of  the y  dependent plate velocity in the wavenumber domain is  
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The absolute value of Eq. (B.3) is  
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The plate velocity in x  and y  directions may be written as 
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Hence the modulus of ( , )x yV k k  can be written as combination of Eq. (B.2) and (B.4) as 
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Thus the modulus squared of ( , )x yV k k  is 
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Appendix C. Stiffness and mass matrices of WFE method 

 

 

C.1 Plate elements 

 

For a structure assembled of a number of elements, the overall equation can be 

written in the form 
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where 0 00K a ,  1 01 10K a a ,   2 02 21 11K a a a  and 4 22K a . The matrices ija  and M  

are calculated as follows 
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where D  is the material stiffness matrix,   is the material density, h  is the plate 

thickness . 0B Ψ  , 1B Ψ  and 2B Ψ  in Eq. (C.2) are defined as 
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where 
0B , 

1B  and 
2B are given by 
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and Ψ  is the shape function and is defined as 
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where 
2

my y

L



  with 

my  the mid y coordinate of element and L  the width of element. 

C.2 Solid elements 

The overall motion of a structure built up of solid elements can be written as follows 

[78] 
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where 0 00K a , 1 01 10 K a a  and 
2 11 K a . In this method, ija  and M  are given by 
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where D  is the material stiffness matrix, s  is the material stiffness, A  is the cross-

sectional area of element and sN  is the shape function as defined as 
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C.3 Fluid elements 

The assembling of the fluid elements can be formulated [78] 
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where ψ̂  is the velocity potential while 0K , 2K  and 
fM  are defined as 
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where 
f fz y      B N N  , A  is the cross-sectional area of element and c  is the 

sound speed in fluid. 
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Appendix D. Mobility of single panel system and double panel 

system with steel studs 

D.1 Mobility of steel stud-panel  

The behaviour of stud-panel connections in lightweight structures is investigated 

here particularly the effect of screw spacing in order to give insights into its overall effect 

as to the role of screws along a steel stud and the spacing between respective screws.  

To achieve this objective, measurements of transfer mobility of stud-panel systems 

were performed. In general, test specimen consists of the stud attached to a single piece of 

plasterboard by screws. Free-free boundary conditions are considered for all 

configurations. Such boundary conditions are less relevant in practice but easy to set up 

without requiring a specific arrangement to apply constraints.  

D.2 Test specimen parameters 

The test specimen consists of a steel stud and a single piece of plasterboard as shown 

in Figure D.1. The plasterboard dimensions nominally 600  450  12.5 mm (length  

width  thickness) while the steel stud was 600  70  0.5 mm (length  depth  thickness). 

For this configuration, three variants are considered owing to different screw spacing, i.e. 

600 mm, 300 mm and 150 mm spacing. The stud-plasterboard connection is situated at the 

middle of the plasterboard or 225 mm from the edges.  

450 mm

150 mm
300 mm

600 mm

70 mm Screw

Plasterboard

Steel stud

600 mm

225 mm

(I) (II) (III)
 

Figure D.1. Test specimen for the first configuration 

 

D.3 Experimental setup and procedure 

The measurement setup is shown in Figure D.2. The test specimens were laid on 

pieces of soft foam at each corner to approximate free-free boundary conditions. Small 

PCB accelerometers were attached at two different positions to capture the mobility at the 
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stud and plasterboard simultaneously. Accelerometer 1 is at the lower flange and 

accelerometer 2 is on plasterboard. For each measurement point, the stud was excited by an 

impact hammer at its upper flange. The excitation was repeated 3-5 times to get a 

consistent result. By using a Data Physics DP240 analyser, the FRF and the coherence 

were calculated. This procedure was then repeated for other measurement points. As the 

weight of the accelerometer is less than 2 gram, which is about 1/1500 times the weight of 

the stud and 1/1000 times the weight of the plasterboard, the total impedance before and 

after the accelerometer attached on the stud and plasterboard is not much different. Hence 

the mass loading effect in this measurement is expected to be neglible.  

The frequency range of interest was up to 4 kHz. The set of measurement positions 

selected for the single panel and double panel system are indicated in Figure D.3. At 

selected measurement points, where the square and dot symbols coincide, correspond with 

measurements were made at the screw area; otherwise the measurement was taken at a 

location at which the stud and the plasterboard are not directly connected. To get a clear 

representation, the data is presented in 1/3 octave frequency bands.  

Digital signal analyser 

hammer

computer

accelerometers

foam

Excitation 

1

2

plasterboard

 
Figure D.2. Experimental setup for mobility measurement and accelerometer arrangement 

of the single panel system. 

excitation 1 2 3 4

100 mm

 
Figure D.3. Measurement point positions of single‎ panel‎ system‎ (●‎ screw;‎ □ 

measurement points). 

D.4 Mobility results for single panel sytem 
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Figure D.4 presents transfer mobility results on the plasterboard for each screw 

spacing at all measurement points, taken from accelerometer 2 for excitation at the upper 

flange as indicated in Figure D.2. It can be seen that the results are not much different 

particularly for 300 mm and 600 mm screw spacings while the mobility tends to be higher 

for the case of the 150 mm stud spacing case although it is only 5 dB higher which can be 

considered small. Moreover, the overall behaviour of all cases considered here is similar as 

shown in the measurement point 1, 2, 3 and 4. Compared with the point mobility of infinite 

plasterboard, indicated by the black dashed line, the mobility of each case is evident 

around that of the infinite plasterboard particularly above 250 Hz. At measurement point 1 

and 4, which coincide with the screw positions, the mobility of the plasterboard with stud 

is higher than that of the infinite plasterboard. This only gives 3 dB differences on average 

compared with the measurement points where the screws are absent. Hence, this would not 

give rise to significant implications. 
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Figure D.4. Mobility comparison on plasterboard for different screw spacings. 
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Appendix E. Cavity loss factor 

 

 It is difficult to obtain an appropriate cavity loss factor to be included in the 

prediction model when no absorbing material is present in the cavity. Price and Crocker 

[26] estimated this value based on normal-incidence sound absorption coefficient 
0  of 

sound-absorbing material at edges. The cavity loss factor is thus formulated as  

 

 0

4
cav

cS

V





  (E.1) 

 

where c  is the sound velocity ,  2 x z y zS l l l l   with ,x yl l  and 
zl  cavity dimension in ,x y  

and z  directions respectively is the surface area of sound absorption at the edge of cavity, 

  is the angular frequency and V  is the cavity volume. As the waveguide is infinite in one 

dimension, xl  can be assigned as a large value so that Eq. (E.1) becomes 

 

 0

2
cav

y

c

l





  (E.2) 

 

 For the case of double panel system where the edge sound-absorber is absent, an 

equivalent normal-incidence sound absorption coefficient 0  can be used. For this, from 

measurement results Brekke [51] found 0 0.1   for 0.1d   m and 0 0.5   for 0.02d   

m, with d  cavity depth, and interpolation can be made for cavity depths between these 

values. The interpolation is given as 

 

 0 5 0.6d     (E.3) 

 

hence 0 0.275   can be found for 0.065 m cavity depth used in this thesis. 

 By inserting 0 0.275   into Eq.(E.2), the frequency-dependent cavity loss factors 

for 0.065 m cavity depth and 1.218 m width are found as given in Table E.1 
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Table E.1. Cavity loss factor for 65 mm cavity depth and 1.218 m width 

 

Frequency, Hz 
cav  

80 0.077 

100 0.062 

125 0.049 

160 0.039 

200 0.031 

250 0.025 

315 0.020 

400 0.015 

500 0.012 

630 0.010 

800 0.008 

1000 0.006 

1250 0.005 

1600 0.004 

2000 0.003 

2500 0.002 

3150 0.002 

4000 0.002 

 



 

 

 

229 

 

References  

1. Building Regulations 2010 Approved document E, Resistance to the passage of 

sound, HM Government  

2. Fahy, F. and P. Gardonio, Sound and Structural Vibration: Radiation, Transmission 

and Response. 2nd ed. 2006, London: Academic Press. 

3. Fahy, F., Foundations of Engineering Acoustics. 2001: Academic Press. 

4. Cremer, L., M. Heckl, and B.A.T. Petersson, Structure-Borne Sound. 3rd edition ed. 

2005, Berlin: Springer. 

5. London, A., Transmission of reverberant sound through single walls. Research Nat. 

Bur. of Standard, 1949. 42(605). 

6. Sewell, E.C., Two-dimensional solution for transmission of reverberant sound 

through a double partition. Journal of Sound and Vibration, 1970. 12(1): p. 33-57. 

7. Sharp, B.H., Prediction methods for the sound transmission of building elements. 

Noise Control Engineering, 1978. 11: p. 53–63. 

8. Hongisto, V., Sound Insulation of Double Panels - Comparison of Existing 

Prediction Models. Acta Acustica united with Acustica, 2006. 92: p. 61-78. 

9. Nilsson, C.-M., Waveguide Finite Elements Applied on a Car Tyre. 2004, MWL 

KTH: Stockholm. 

10. Beranek, L.L., Noise and Vibration Control 1971, New York: McGraw-Hill  

11. Cremer, L., Theorie der Schalldammung dunner Wande bei schragen Einfall. 

Akustica Zeitschrift, 1942. 7: p. 81-103. 

12. Sewell, E.C., Transmission of reverberant sound through a single-leaf partition 

surrounded by an infinite rigid baffle. Journal of Sound and Vibration, 1970. 12(1): p. 

21-32. 

13. Leppington, F.G., et al., Resonant and Non-Resonant Acoustic Properties of Elastic 

Panels. II. The Transmission Problem. Proceedings of the Royal Society of London. 

A. Mathematical and Physical Sciences, 1987. 412(1843): p. 309-337. 

14. Beranek, L.L. and G.A. Work, Sound transmission through multiple structures 

containing flexible blankets. The Journal of the Acoustical Society of America, 1949. 

21(4): p. 419-428. 

15. London, A., Transmission of reverberant sound through double walls. The Journal of 

the Acoustical Society of America, 1950. 22(2): p. 270-279. 



References 

 

 

230 

 

16. Jones, R.E., Intercomparisons of laboratory determinations of airborne sound 

transmission loss. The Journal of the Acoustical Society of America, 1979. 66(1): p. 

148-164. 

17. Mulholland, K.A., H.D. Parbrook, and A. Cummings, The transmission loss of 

double panels. Journal of Sound and Vibration, 1967. 6(3): p. 324-334. 

18. Hopkins, C., Sound Insulation. 2007, Oxford, UK: Elsevier. 

19. Vinokur, R., Mechanism and calculation of the niche effect in airborne sound 

transmission. J. Acoust. Soc. Am., 2006. 119(4): p. 2211-2219. 

20. Kang, H.-J., et al., Prediction of sound transmission loss through multilayered panels 

by using Gaussian distribution of directional incident energy. Journal of the 

Acoustical Society of America, 2000. 107(3): p. 1413-1420. 

21. Cummings, A. and K.A. Mulholland, The transmission loss of finite sized double 

panels in a random incidence sound field. Journal of Sound and Vibration, 1968. 

8(1): p. 126-133. 

22. Xin, F.X., T.J. Lu, and C.Q. Chen, Vibroacoustic behavior of clamp mounted double-

panel partition with enclosure air cavity. The Journal of the Acoustical Society of 

America, 2008. 124(6): p. 3604-3612. 

23. Villot, M., C. Guigou, and L. Gagliardini, Predicting the acoustical radiation of 

finite size multi-layered structures by applying spatial windowing on infinite 

structures. Journal of Sound and Vibration, 2001. 245(3): p. 433-455. 

24. Atalla, N., F. Sgard, and C.K. Amedin, On the modeling of sound radiation from 

poroelastic materials. The Journal of the Acoustical Society of America, 2006. 

120(4): p. 1990-1995. 

25. Vigran, T.E., Predicting the sound reduction index of finite size specimen by a 

simplified spatial windowing technique. Journal of Sound and Vibration, 2009. 

325(3): p. 507-512. 

26. Price, A.J. and M.J. Crocker, Sound Transmission through Double Panels Using 

Statistical Energy Analysis. The Journal of the Acoustical Society of America, 1970. 

47(3A): p. 683-693. 

27. Panneton, R. and N. Atalla, Numerical prediction of sound transmission through 

finite multilayer systems with poroelastic materials. Journal of the Acoustical Society 

of America, 1996. 100(1): p. 346-354. 



References 

 

 

231 

 

28. Sgard, F.C., N. Atalla, and J. Nicolas, A numerical model for the low frequency 

diffuse field sound transmission loss of double-wall sound barriers with elastic 

porous linings. The Journal of the Acoustical Society of America, 2000. 108(6): p. 

2865-2872. 

29. Gu, Q. and J. Wang, Effect of resilient connection on sound transmission loss of 

metal stud double panel partitions. Chinese Journal of Acoustics, 1983. 2: p. 113-

116. 

30. Davy, J.L., The improvement of a simple theoretical model for the prediction of the 

sound insulation of double leaf walls. The Journal of the Acoustical Society of 

America, 2010. 127(2): p. 841-849. 

31. Davy, J.L., Predicting the Sound Insulation of Walls. Building Acoustics, 2009. 

16(1): p. 1-20. 

32. Sato, H., On the mechanism of outdoor noise transmission through walls and 

windows - A modification of infinite wall theory with respect to radiation of 

transmitted wave. The Journal of the Acoustical Society of Japan, 1973. 29(9): p. 

509-516. 

33. Legault, J. and N. Atalla, Numerical and experimental investigation of the effect of 

structural links on the sound transmission of a lightweight double panel structure. 

Journal of Sound and Vibration, 2009. 324(3-5): p. 712-732. 

34. Brunskog, J., The influence of finite cavities on the sound insulation of double-plate 

structures. The Journal of the Acoustical Society of America, 2005. 117(6): p. 3727-

3739. 

35. Leppington, F.G., K.H. Heron, and E.G. Broadbent, Resonant and Non-Resonant 

Transmission of Random Noise through Complex Plates. Proceedings: Mathematical, 

Physical and Engineering Sciences, 2002. 458(2019): p. 683-704. 

36. Nakanishi, S., M. Yairi, and A. Minemura, Estimation method for parameters of 

construction on predicting transmission loss of double leaf dry partition. Applied 

Acoustics, 2011. 72(6): p. 364-371. 

37. Hongisto, V., M. Lindgren, and R. Helenius, Sound Insulation of Double Walls An 

Experimental Parametric Study. Acta Acustica united with Acustica, 2002. 88(6): p. 

904-923. 



References 

 

 

232 

 

38. Halliwell, R., et al., Gypsum board walls: transmission loss data. Internal report 

IRC-IR-761. 1998, Institute for Research in Construction, National Research Council 

of Canada. 

39. Lin, G.-F. and J.M. Garrelick, Sound transmission through periodically framed 

parallel plates. The Journal of the Acoustical Society of America, 1977. 61(4): p. 

1014-1018. 

40. Urusovskii, I.A., Sound transmission through two periodically framed parallel plates. 

Journal of Soviet Physics Acoustics, 1992. 38(4): p. 411-413. 

41. Wang, J., et al., Sound transmission through lightweight double-leaf partitions: 

theoretical modelling. Journal of Sound and Vibration, 2005. 286(4-5): p. 817-847. 

42. Mead, D.J., Free wave propagation in periodically supported, infinite beams. Journal 

of Sound and Vibration, 1970. 11(2): p. 181-197. 

43. Mead, D.J. and K.K. Pujara, Space-harmonic analysis of periodically supported 

beams: response to convected random loading. Journal of Sound and Vibration, 1971. 

14(4): p. 525-532, IN9, 533-541. 

44. Poblet-Puig, J., et al., The Role of Studs in the Sound Transmission of Double Walls. 

Acta Acustica united with Acustica, 2009. 95: p. 555-567. 

45. Vigran, T.E., Sound insulation of double-leaf walls - Allowing for studs of finite 

stiffness in a transfer matrix scheme. Applied Acoustics, 2010. 71(7): p. 616-621. 

46. Davy, J.L., C. Guigou-Carter, and M. Villot, An empirical model for the equivalent 

translational compliance of steel studs. The Journal of the Acoustical Society of 

America, 2012. 131(6): p. 4615-4624. 

47. Li, S., T. Wang, and S.R. Nutt, Transmission loss assessments of sandwich structures 

by using a combination of finite element and boundary element methods. The Journal 

of the Acoustical Society of America, 2005. 118(3): p. 1847-1848. 

48. Crocker, M.J. and A.J. Price, Sound transmission using statistical energy analysis. 

Journal of Sound and Vibration, 1969. 9(3): p. 469-486. 

49. Elmallawany, A., Criticism of statistical energy analysis for the calculation of sound 

insulation—Part 1: Single partitions. Applied Acoustics, 1978. 11(4): p. 305-312. 

50. Elmallawany, A., Criticism of statistical energy analysis for the calculation of sound 

insulation: Part 2-double partitions. Applied Acoustics, 1980. 13(1): p. 33-41. 

51. Brekke, A., Calculation methods for the transmission loss of single, double and 

triple partitions. Applied Acoustics, 1981. 14(3): p. 225-240. 



References 

 

 

233 

 

52. Craik, R.J.M. and R.S. Smith, Sound transmission through double leaf lightweight 

partitions part I: airborne sound. Applied Acoustics, 2000. 61(2): p. 223-245. 

53. Craik, R.J.M. and R. Wilson, Sound transmission through masonry cavity walls. 

Journal of Sound and Vibration, 1995. 179(1): p. 79-96. 

54. Wang, T., et al., Predicting the sound transmission loss of sandwich panels by 

Statistical Energy Analysis approach. Journal of Vibration and Acoustics, 2010. 

132(1): p. 011004-1 - 011004-7. 

55. Finnveden, S., Spectral finite element analysis of the vibration of straight fluid-filled 

pipes with flanges. Journal of Sound and Vibration, 1997. 199(1): p. 125-154. 

56. Bartoli, I., et al., Modeling wave propagation in damped waveguides of arbitrary 

cross-section. Journal of Sound and Vibration, 2006. 295(3-5): p. 685-707. 

57. Gavric, L., Computation of propagative waves in free rail using a finite element 

technique. Journal of Sound and Vibration, 1995. 185(3): p. 531-543. 

58. Nilsson, C.M., et al., A waveguide finite element and boundary element approach to 

calculating the sound radiated by railway and tram rails. Journal of Sound and 

Vibration, 2009. 321(3-5): p. 813-836. 

59. Ryue, J., A waveguide finite element and boundary element approach applied on 

submerged fluid-filled cylindrical shells, in RASD2010. 2010: Southampton, UK. 

60. Waki, Y., B.R. Mace, and M.J. Brennan, Free and forced vibrations of a tyre using a 

wave/finite element approach. Journal of Sound and Vibration, 2009. 323(3-5): p. 

737-756. 

61. Nilsson, C.-M., et al. A coupled waveguide finite and boundary element for 

calculating the sound transmission through complex panel structure. in IX 

International Conference on Recent Advances in Structural Dynamics. 2006. 

University of Southampton UK. 

62. Thompson, D.J., Wheel-rail noise generation, Part III: Rail vibration. Journal of 

Sound and Vibration, 1993. 161(3): p. 421-446. 

63. Mace, B.R., et al., Finite element prediction of wave motion in structural waveguides. 

The Journal of the Acoustical Society of America, 2005. 117(5): p. 2835-2843. 

64. Waki, Y., B.R. Mace, and M.J. Brennan, Numerical issues concerning the wave and 

finite element method for free and forced vibrations of waveguides. Journal of Sound 

and Vibration, 2009. 327(1–2): p. 92-108. 



References 

 

 

234 

 

65. Wu, T.W., ed. Boundary Element Acoustics: Fundamentals and Computer Codes. 

2000, WIT Press: Southampton. 

66. Cremer, L., M. Heckl, and E.E. Ungar, Structure-borne Sound (second ed.). 1988, 

Berlin: Springer. 

67. Gardonio, P. and M.J. Brennan, Mobility and Impedance Method in Structural 

Dynamics. chapter 9 in Advanced Applications in Acoustics, Noise and Vibration, ed. 

F.J. Fahy and J.G. Walker. 2004: Spon Press. 

68. Williams, E., Fourier Acoustics: Sound Radiation and Nearfield Acoustical 

Holography. 1999: Academic Press. 

69. Junger, M.C. and D. Feit, Sound, structures, and their interaction 1972, Cambridge, 

Mass.: MIT Press. 

70. Sakagami, K., et al., Sound radiation from a baffled elastic plate strip of infinite 

length with various concentrated excitation forces. Applied Acoustics, 1998. 55(3): p. 

181-202. 

71. Maidanik, G., Response of Ribbed Panels to Reverberant Acoustic Fields. J. Acoust. 

Soc. Am., 1962. 34(6): p. 809. 

72. Wallace, C., Radiation Resistance of a Rectangular Panel. J. Acoust. Soc. Am., 1972. 

51(3B): p. 946. 

73. Li, W.L. and H.J. Gibeling, Determination of the mutual radiation resistance of a 

rectangular plate and their impact on the radiated sound power. Journal of Sound 

and Vibration, 2000. 229(5): p. 1213-1233. 

74. Davies, H.G., Low frequency random excitation of water-loaded rectangular plates. 

Journal of Sound and Vibration, 1971. 15(1): p. 107-126. 

75. Stepanishen, P.R., Modal coupling in the vibration of fluid-loaded cylindrical shells. 

The Journal of the Acoustical Society of America, 1982. 71(4): p. 813-823. 

76. Thompson, D.J., P. Gardonio, and J. Rohlfing, Can a transmission coefficient be 

greater than unity? Applied Acoustics, 2009. 70(5): p. 681-688. 

77. Villot, M., C. Guigou, and L. Gagliardini, Predicting the acoustical radiation of 

finite size multi-layered structures by applying spatial windowing of infinite 

structures. Journal of Sound and Vibration, 2001. 245(3): p. 433-455. 

78. Nilsson, C.-M. and C.J.C. Jones, Theory manual for WANDS 2.1, ISVR technical 

memorandum No.975. 2007, University of Southampton: UK. 

79. Doyle, J.F., Wave Propagation in Structures. 1997, New York: Springer. 



References 

 

 

235 

 

80. Gavric, L., Finite element computation of dispersion properties of thin-walled 

waveguides. Journal of Sound and Vibration, 1994. 173(1): p. 113-124. 

81. Karasalo, I., Exact finite elements for wave propagation in range-independent fluid-

solid media. Journal of Sound and Vibration, 1994. 172(5): p. 671-688. 

82. Temkin, S., Element of Acoustics. 1981, New York: John Wiley & Sons. 

83. Nilsson, C.M. and S. Finnveden, Input power to waveguides calculated by a finite 

element method. Journal of Sound and Vibration, 2007. 305(4-5): p. 641-658. 

84. Kreyszig, E., Advanced Engineering Mathematics. 7th ed. 1993, Canada: John Wiley 

& Sons. 

85. Stroud, A. and D. Secrest, Gaussian Quadrature Formulas. 1966, New York: 

Prentice-Hall. 

86. Kuttruff, H., Room acoustics. 2000, London: Spon Press. 

87. Nilsson, C.-M. and C.J.C. Jones, Manual for WANDS 2.1, ISVR technical 

memorandum No.976. 2007, University of Southampton: UK. 

88. Petyt, M., Introduction to Finite Element Vibration Analysis. 1990, Cambridge: 

Cambridge University Press. 

89. Filippi, P.J.T., Layer potentials and acoustic diffraction. Journal of Sound and 

Vibration, 1977. 54(4): p. 473-500. 

90. Vlahopoulos, N. and S.T. Raveendra, Formulation, implementation and validation of 

multiple connection and free edge constraint in an indirect boundary element 

formulation. Journal of Sound and Vibration, 1998. 210(1): p. 137-152. 

91. Ih, K.D. and D.J. Lee, Development of the direct Boundary Element method for thin 

bodies with general boundary conditions Journal of Sound and Vibration, 1997. 

202(3): p. 361-373. 

92. Ver, I.L. and L.L. Beranek, Noise and Vibration Control Engineering - Principles 

and Applications. 2006: John Wiley & Sons. 

93. Quirt, J.D., Sound transmission through windows II. Double and triple glazing. The 

Journal of the Acoustical Society of America, 1983. 74(2): p. 534-542. 

94. Basten, T.G.H., et al., On the acousto-elastic behaviour of double-wall panels with a 

viscothermal air layer. Journal of Sound and Vibration, 2001. 243(4): p. 699-719. 

95. Grosveld, F.W., Field-incidence noise transmission loss of general aviation aircraft 

double-wall configurations. Journal of Aircraft, 1985. 22: p. 117-123. 



References 

 

 

236 

 

96. Xin, F.X., T.J. Lu, and C.Q. Chen, Sound Transmission Through Simply Supported 

Finite Double-Panel Partitions With Enclosed Air Cavity. Journal of Vibration and 

Acoustics, 2010. 132(1): p. 011008-1 - 011008-11. 

97. Gösele, K. and U. Gösele, The influence of cavity-volume damping on the stiffness of 

air layers in double walls. Acustica, 1977. 38(3): p. 159 -166. 

98. Dowell, E.H. and H.M. Voss, The effect of a cavity on panel vibration. AIAA, 1963. 

1(476). 

99. Pretlove, A.J., Free vibrations of a rectangular panel backed by a closed rectangular 

cavity by a closed rectangular cavity. Journal of Sound and Vibration, 1965. 2(3): p. 

197-209. 

100. Nightingale, T. and J.D. Quirt, Preliminary results of a systematic study of sound 

transmission through a cavity wall assembly. 1999, Institute for Research in 

Construction, National Research Council of Canada. 

101. Quirt, J.D. and A. Warnock. Influence of sound-absorbing material, stud type and 

spacing, and screw spacing on sound transmision through a double panel wall 

specimen. in Inter-noise93. 1993. Leuven, Belgium. 

102. Utley, W.A., A. Cummings, and H.D. Parbrook, The use of absorbent material in 

double-leaf wall constructions. Journal of Sound and Vibration, 1969. 9(1): p. 90-96. 

103. Bhattacharya, M.C., R.W. Guy, and M.J. Crocker, Coincidence effect with sound 

waves in a finite plate. Journal of Sound and Vibration, 1971. 18(2): p. 157-169. 

104. Dijckmans, A., G. Vermeir, and W. Lauriks, Sound transmission through finite 

lightweight multilayered structures with thin air layers. The Journal of the 

Acoustical Society of America, 2010. 128(6): p. 3513-3524. 

105. Gomperts, M.C., Radiation from rigid baffled, rectangular plates with general 

boundary conditions. Acustica, 1974. 30: p. 320-327. 

106. Li, W.L., Vibroacoustic analysis of rectangular plates with elastic rotational edge 

restraints. J. Acoust. Soc. Am., 2006. 120(2): p. 769-779. 

107. Utley, W.A. and B.L. Fletcher, The effect of edge conditions on the sound insulation 

of double windows. Journal of Sound and Vibration, 1973. 26(1): p. 63-72. 

108. Ljunggren, S., Airborne sound insulation of thin walls. J. Acoust. Soc. Am., 1991. 

89(5): p. 2324-2337. 

109. Craik, R.J.M. and R.S. Smith, Sound transmission through lightweight parallel 

plates. Part II: structure-borne sound. Applied Acoustics, 2000. 61(2): p. 247-269. 



References 

 

 

237 

 

110. Smith, R.S., Sound transmission through lighweight parallel plates. 1997, University 

of Heriot-Watt. 

111. Mead, D.J., Wave propagation in continuous periodic structures: Research 

contributions from Southampton, 1964 - 1995. Journal of Sound and Vibration, 1996. 

190(3): p. 495-524. 

112. Dowell, E.H., G.F. Gorman III, and D.A. Smith, Acoustoelasticity: General theory, 

acoustic natural modes and forced response to sinusoidal excitation, including 

comparisons with experiment. Journal of Sound and Vibration, 1977. 52(4): p. 519-

542. 

113. Lyon, R.H., Noise Reduction of Rectangular Enclosures with One Flexible Wall. The 

Journal of the Acoustical Society of America, 1963. 35(11): p. 1791-1797. 

114. Bradley, J.S. and J.A. Birta, On the sound insulation of wood stud exterior walls. The 

Journal of the Acoustical Society of America, 2001. 110(6): p. 3086-3096. 

115. Schroeder, M.R., The ``Schroeder frequency'' revisited. The Journal of the 

Acoustical Society of America, 1996. 99(5): p. 3240-3241. 

116. ISO10140, Acoustics-Laboratory measurement of sound insulation of building 

elements 2010. 

117. ISO717, Acoustics rating of sound insulation in buildings and of building elements, 

in Part 1: Airborne sound insulation. 1997. 

118. Smith, R.S., R. Pompoli, and P. Fausti, An investigation into the reproducibility 

values of the europe inter-laboratoy test for lightweigh walls. Building Acoustics, 

1999. 6(3-4): p. 187-210. 

119. ISO140, Acoustics - Measurement of sound insulation in buildings and of building 

elements 1995. 

120. ISO354, Measurement of sound absorption in a reveberation room. 2003. 

121. Højlberg, K., Measurement of reverberation time with the single/dual channel real-

time analyzer 2123/33. 1988, Brüel & Kjaer: Denmark. 

 

 


