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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Institute of Sound and Vibration Research 

Doctor of Philosophy 

EVALUATION OF THE SPARSE CODING SHRINKAGE NOISE REDUCTION 

ALGORITHM FOR THE HEARING IMPAIRED 

Jinqiu Sang 

Although there are numerous single-channel noise reduction strategies to improve speech 

perception in a noisy environment, most of them can only improve speech quality but not 

improve speech intelligibility for normal hearing (NH) or hearing impaired (HI) listeners. 

Exceptions that can improve speech intelligibility currently are only those that require a priori 

statistics of speech or noise. Most of the noise reduction algorithms in hearing aids are adopted 

directly from the algorithms for NH listeners without taking into account of the hearing loss 

factors within HI listeners. HI listeners suffer more in speech intelligibility than NH listeners in 

the same noisy environment.  Further study of monaural noise reduction algorithms for HI 

listeners is required.  

 The motivation is to adapt a model-based approach in contrast to the conventional Wiener 

filtering approach. The model-based algorithm called sparse coding shrinkage (SCS) was 

proposed to extract key speech information from noisy speech. The SCS algorithm was 

evaluated by comparison with another state-of-the-art Wiener filtering approach through speech 

intelligibility and quality tests using 9 NH and 9 HI listeners. The SCS algorithm matched the 

performance of the Wiener filtering algorithm in speech intelligibility and speech quality. Both 

algorithms showed some intelligibility improvements for HI listeners but not at all for NH 

listeners. The algorithms improved speech quality for both HI and NH listeners.  

Additionally, a physiologically-inspired hearing loss simulation (HLS) model was 

developed to characterize hearing loss factors and simulate hearing loss consequences. A 

methodology was proposed to evaluate signal processing strategies for HI listeners with the 

proposed HLS model and NH subjects. The corresponding experiment was performed by asking 

NH subjects to listen to unprocessed/enhanced speech with the HLS model. Some of the effects 

of the algorithms seen in HI listeners are reproduced, at least qualitatively, by using the HLS 

model with NH listeners.  

Conclusions: The model-based algorithm SCS is promising for improving performance in 

stationary noise although no clear difference was seen  in the performance of SCS and a 

competitive Wiener filtering algorithm. Fluctuating noise is more difficult to reduce compared 

to stationary noise. Noise reduction algorithms may perform better at higher input 

signal-to-noise ratios (SNRs) where HI listeners can get benefit but where NH listeners already 
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reach ceiling performance. The proposed HLS model can save time and cost when evaluating 

noise reduction algorithms for HI listeners.  
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Chapter 1 Introduction 

1.1 Contribution to knowledge 

Communication in the presence of background noise is known to be a major problem for 

hearing impaired listeners. Hearing impaired (HI) listeners usually need a signal-to-noise ratio 

(SNR) at least 3 or 6 dB higher than normal hearing (NH) listeners to reach the same 

intelligibility level. Therefore noise reduction algorithms are critical in order to alleviate the 

difficulty of speech communication in daily life for hearing aid users. In spite of large 

advances of noise reduction algorithms, most of the algorithms only improve speech quality 

rather than intelligibility for normal hearing listeners. The intelligibility effects of noise 

reduction algorithms for hearing impaired listeners need to be further evaluated and confirmed. 

Although speech intelligibility can be improved using noise reduction algorithms with a large 

microphone array or single-channel noise reduction algorithms with a priori knowledge of the 

speech and/or noise, they are not practical due to the cosmetic considerations of a small size of 

a hearing aid or the variation in environmental noise. Therefore the motivation of this thesis is 

how to improve and evaluate single-channel noise reduction algorithms for hearing aid users.   

Most of the single-channel noise reduction algorithms have been developed and evaluated 

for telecommunication systems, (e.g. cell phones, automatic speech recognition devices, etc.) 

for NH listeners; little research has been done to develop or evaluate noise reduction 

algorithms specifically for hearing aid users. Usually a noise reduction algorithm, originally 

developed for NH listeners, is adopted directly for HI listeners. Due to the hearing loss factors 

that distort the speech perception in HI listeners, a noise reduction algorithm that is optimal for 

NH listeners may not necessarily be optimal for HI listeners. Previous research has shown that 

HI listeners are more sensitive to noise (Arehart et al., 2003) but are less sensitive to speech 

distortion (Schijndel et al., 2001). This inspired investigation as to whether a noise reduction 

algorithm with more pronounced noise reduction effects can help HI listeners more at the 

expense of speech distortion that can be tolerated by HI listeners. In other words, algorithms 
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that can extract key information of speech might help HI listeners more. The concept of sparse 

stimuli for hearing impaired listeners has been proposed in cochlear implant processing (Li, 

2008, Li and Lutman, 2008, Hu et al., 2011a, Sang et al., 2011a). The sparse strategy has been 

found to bring significant intelligibility improvement for CI (cochlear implant) users (Li, 2008) 

who have profound hearing losses. This progress inspires to develop and evaluate sparse 

stimuli for hearing aid users who have mild to severe hearing losses (Sang et al., 2012). To the 

author’s knowledge, this research is the first to evaluate sparse stimuli effects for hearing aid 

users. 

Most single-channel noise reduction algorithms in current hearing aids utilise Wiener 

filtering or spectral subtraction methods, due to their robust performance and simple 

calculation. Recent advance in computation could bring other noise reduction methods with 

more complicated procedures into consideration for use in hearing aids. We propose a noise 

reduction algorithm that is a statistically based method in the principal component space 

through principal component analysis (PCA). We assumed that a) speech components in PCA 

space are sparsely distributed, and b) noise components have a Gaussian distribution and we 

applied the principle of sparse coding shrinkage (SCS) to reduce noise more efficiently. SCS is 

one of the few algorithms that take account of impaired auditory perceptual characteristics to 

better serve the group of HI listeners. Subjective tests with both NH and HI listeners were 

performed to assess the difference in perception of sparse stimuli between NH and HI listeners. 

Research questions are as follows:  

Can SCS bring different intelligibility effects between NH listeners and HI listeners?  

Can SCS make different quality impressions between NH listeners and HI listeners?  

What are the factors that determine the benefits of noise reduction algorithms to NH and HI 

listeners?  

To compare with SCS, unprocessed noisy speech and a noise reduction algorithm called 

CS-WF (cepstral smoothing based Wiener filtering) were also evaluated as a baseline 

performance and a competitive algorithm respectively. CS-WF was chosen, because Wiener 

filters are used frequently in today’s hearing aids and it is a competitive state of the art 
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algorithm (Breithaupt et al., 2008, Gerkmann and Martin, 2009, Gerkmann and Hendriks, 

2012). Since the a priori SNR of the Wiener filtering approach is estimated by the cepstral 

smoothing method, we refer this approach as CS-WF herein. This algorithm is regarded as an 

optimal noise reduction algorithm for NH listeners and its effects are uncertain in HI listeners. 

By comparing SCS with CS-WF, it can be shown which algorithm may lead to greater benefits 

for NH or HI listeners in terms of speech intelligibility and speech quality.  

The subjective tests included speech recognition tests and speech quality tests. The speech 

recognition tests were performed through an adaptive procedure to measure the speech 

reception threshold (SRT), which is the SNR corresponding to 79.4% correct recognition 

(Dahlquist et al., 2005). The quality tests were performed through the interpolated paired 

comparison rating (IPCR) to measure the SNR gain in terms of quality (Dahlquist et al., 2005). 

The results of quality and intelligibility were put together and compared on the same scale to 

give an illustration of the overall effects of noise reduction algorithms for NH or HI listeners. 

To compare noisy speech, CS-WF and SCS, objective measures were also performed 

although they are not as meaningful as subjective tests. Objective measures are quick and 

cheap, and therefore popular during the algorithm development stage and widely used in the 

signal processing community. Most objective measures are developed and validated with NH 

listeners. Even some objective measures, which are developed for HI listeners with additive 

parameters of hearing thresholds, are not necessarily representative for speech distortion 

brought by noise reduction algorithms. Five objective measures, including frequency weighted 

segmental SNR (fwsegSNR), perceptual evaluation of sound quality (PESQ), the hearing aid 

speech quality index (HASQI), the normalized covariance metric (NCM) and the 

short-time objective intelligibility measure (STOI) were performed in this thesis to compare 

with subjective results. FwsegSNR and PESQ are objective speech quality measures that 

reflect physical noise reduction effects and speech distortion effects respectively for NH 

listeners. HASQI is an objective speech quality measure for HI listeners with input parameters 

of hearing threshold levels at six frequencies (250, 500, 1000, 2000, 4000, 6000 Hz). NCM 

and STOI are objective speech intelligibility measures for NH listeners. To the author’s 
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knowledge, the research is the first to validate HASQI in evaluating noise reduction algorithms 

in speech quality for HI listeners with subjective tests.  

Current objective intelligibility measures for HI listeners are rare and often unreliable in 

predicting intelligibility effects of noise reduction algorithms for HI listeners. We propose an 

evaluation methodology to evaluate noise reduction effects on HI listeners through a hearing 

loss simulation model with NH subjects listening. The assumption is that consequences of 

hearing impaired listening can be an additive combination of hearing impaired distortion with 

normal hearing listening. If hearing- impaired distortion could be simulated in an appropriate 

and realistic way, the effects of listening to speech with HI listeners can be approximated by 

asking NH listeners to listen to the same speech with the hearing loss simulation (HLS). In our 

group, we proposed a physiologically-inspired hearing loss simulation model that has been 

validated with noisy speech in respect of speech intelligibility (Hu et al., 2011b). In this thesis, 

we evaluate noise reduction algorithms with this HLS model. If the HLS model is realistic, the 

effects of noise reduction algorithms on the HLS model might approach the effects on HI 

subjects. Therefore, another subjective speech recognition test was performed by asking NH 

listeners to listen to speech processed with the HLS model. Comparison between the 

experiment with the HLS model and the HI subjects can show whether an auditory filter based 

HLS model can predict noise reduction effects for HI listeners with NH listeners. There are 

several advantages to this experiment if it can appropriately reflect effects of HI listening. 

Firstly, it is much easier to recruit NH listeners than HI listeners. Secondly, we can introduce 

one specific hearing loss level during hearing loss simulation experiments; thus, the variability 

of responses in HI listeners due to different hearing losses is minimised. The proposed 

evaluation methodology can be regarded as a combination of a subjective test with an 

objective model. Current purely objective measures for HI listeners have only been validated 

with clean speech or noisy speech rather than with noise reduction algorithms. A future 

perspective is to set up a purely objective speech intelligibility measure that includes the 

auditory filter based HLS model to assess noise reduction effects on HI listeners. The research 



Chapter 1 Introduction 

5 
 

is thought to be the first to assess the validity of the hearing loss simulation model to evaluate 

effects of noise reduction algorithms in speech intelligibility for HI listeners. 

1.2 Introduction of hearing loss 

It is estimated that, in UK, the number of people suffering from hearing loss was 10 million in 

2011 and will increase to 14.5 million by 2031. The main headline statistics about hearing loss 

in UK is cited as follows from the website of Action on Hearing Loss1 in bullet points.  

 There are more than 10 million people in the UK with some form of hearing loss, or one 

in six of the population.   

 From the total 3.7 million are of working age (16 – 64) and 6.3 million are of retirement 

age (65+).  

 By 2031, it is estimated that there will be 14.5 million people with hearing loss in the 

UK.  

 More than 800,000 people in the UK are severely or profoundly deaf.  

 There are more than 45,000 deaf children in the UK, plus many more who experience 

temporary hearing loss.  

 More than 70% of over 70 year-olds and 40% of over 50 year-olds have some form of 

hearing loss.  

 There are approximately 356,000 people with combined visual and hearing impairment 

in the UK.  

 About two million people in the UK have hearing aids, but only 1.4 million use them 

regularly.  

 At least four million people who don't have hearing aids would benefit from using them.  

 On average it takes ten years for people to address their hearing loss.  

                                                 
1 http://www.actiononhearingloss.org.uk/your-hearing/about-deafness-and-hearing-loss/statistics.aspx 
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Hearing impairment is likely to restrict social interaction and educational and career 

opportunities and thus significantly degrade quality of life. Hearing impairment can impose a 

heavy social and economic burden on individuals, families, communities and countries. 

Estimates published in 2006 suggested that £13bn is lost to the UK economy every year 

through unemployment linked to hearing loss (Shield, 2006).  

Despite the severe status of hearing loss, hearing research is still significantly underfunded, 

which affects the development of treatments and cures. Estimates also suggested that, in 2010, 

the UK spent £1.34 on research into hearing loss for every person affected, which compares to 

£14.21 for sight loss, £21.31 for diabetes, and £49.71 for cardiovascular research (RNID, 

2010). This calls for larger investment into hearing research in UK.   

Hearing loss can be defined in different levels usually diagnosed from individual’s 

audiograms. Hearing loss levels can be categorized as mild, moderate, severe, and profound, 

depending upon how well a person can hear the intensities or frequencies most strongly 

associated with speech. Impairments in hearing can occur in only one ear or in both ears. 

Figure 1.1 indicates the definition of different hearing threshold levels (BSA, 2011) and an 

example of mild-to-moderate high frequency hearing losses in both ears of an individual. Mild 

hearing loss indicates hearing threshold levels between 20 dB HL and 40 dB HL; Moderate 

hearing loss indicates hearing threshold levels between 41 dB HL and 70 dB HL; Severe 

hearing loss indicates hearing threshold levels between 71 dB HL and 94 dB HL; Profound 

hearing loss indicates hearing threshold levels more than 95 dB HL. 
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Figure  1.1: An example of typical mild-to-moderate high frequency hearing loss is shown in 

dB HL, where “O” indicates an audiogram of the right ear; “ ”indicates an audiogram of the 

left ear. Different hearing loss levels are shown with different colours.  

Hearing loss can also be categorised in different types, depending on which part of the hearing 

pathway is affected2. It is important to localize where the problem lies in the hearing pathway 

to determine an appropriate treatment and compensation strategies.  

The four types of hearing loss are: 

 Conductive hearing loss 

 Sensorineural hearing loss 

 Central hearing loss 

 Mixed hearing loss 

Purely conductive losses are those resulting from dysfunction of the ear canal or 

middle-ear structures, such that less acoustic energy reaches the auditory receptors in the 

normal cochlea. Today, most conductive losses are successfully treated through medical 

intervention and do not necessitate hearing aids to understand speech (Watson, 1991). 

                                                 
2 http://ehealthmd.com/content/different-types-hearing-loss 
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Sensorineural losses involve reduced sensitivity or resolving power of the neural receptor 

mechanisms themselves, which is generally not amenable to medical intervention. Hearing 

aids and cochlear implants are designed primarily for individuals with sensorineural hearing 

loss (Watson, 1991). For people with mild to severe hearing losses, hearing aids are usually 

prescribed. For people with profound hearing losses, cochlear implants are more effective to 

help speech perception. In central hearing loss, the problem lies in the central nervous system, 

at some point within the brain. Some people with central hearing loss can hear perfectly well 

but have trouble interpreting or understanding speech. There is no effective treatment for 

central auditory processing disorders, other than educating the person, family, and friends, to 

manage the environment. Mixed hearing loss occurs when 

both conductive and sensorineural hearing losses are present in the same ear.  

People with sensorineural hearing loss often have difficulty in understanding speech, 

especially when the speech is corrupted with noise. Previous studies have attempted to 

understand how sensorineural hearing loss affects perceptual difficulties through hearing loss 

simulations (Moore and Glasberg, 1993, Baer and Moore, 1993, Baer and Moore, 1994, 

Nejime and Moore, 1997, Hu et al., 2011b). They have pointed out that speech perception 

difficulties for people with sensorineural hearing loss is due to reduced audibility of the speech 

signal (Humes et al., 1987, Zurek and Delhorne, 1987) and to abnormalities in the perceptual 

analysis of the signal, even when it is well above the absolute threshold (Plomp, 1986, 

Dreschler and Plomp, 1980, Dreschler and Plomp, 1985, Glasberg and Moore, 1989). Previous 

hearing loss simulations have studied perceptual effects of different hearing loss factors, such 

as hearing threshold elevation, loudness recruitment, reduced frequency selectivity and 

reduced temporal resolution (Nejime and Moore, 1997, Hu et al., 2011b). Moore and Glasberg 

(1993) asked normal hearing listeners to listen to the speech with or without noise processed 

by a hearing loss simulation model. This way, they could understand how much the 

intelligibility of speech is affected by different hearing loss factors, and whether a 

compensation strategy could be devised for a particular hearing loss factor.  

In this research, we focus on the group of hearing aid users who usually have mild to 
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severe sensorineural hearing loss. In the next section, we introduce the basic configuration of a 

hearing aid and what we were going to study and focus on. 

1.3 What is a hearing aid 

Ear 
canal

Microphone Processor Receiver

Hearing aid

Middle 
ear

Inner 
ear

Sound Enhanced sound

Impaired ear

Battery

 

Figure  1.2: The basic configuration of a hearing aid. 

Hearing aids use electronic amplification to enhance acoustic signals for hearing impaired 

people with mild, moderate to severe hearing losses. Hearing aids comprise one or more 

microphones, an electronic filter (processor), an earphone (also called a receiver), and a battery 

that serves as the power source. Figure 1.2 shows this configuration. Hearing aids have limited 

power in speech processing due to the limited size of a hearing aid and its processor chip. A 

complex signal processing strategy is therefore not practical because it would consume too 

much power. Hearing aids are usually configured with no more than two microphones each 

side due to the limited size, which inhibits the use of multi-channel hearing aids from using 

multi-channel signal processing with a large microphone array, which could improve speech 

enhancement performance more easily (Kates and Weiss, 1996, Levitt, 2001, Schum, 2003).  

 Development of strategies in hearing aids includes two aspects. On one hand, the 

strategies are inspired to compensate for impaired auditory factors to reach the level of normal 

hearing. For example, dynamic compression could compensate for hearing threshold elevation 

and loudness recruitment (Moore, 2007). But there are no optimal solutions to compensate for 

reductions in frequency selectivity and temporal resolution (Moore, 2007). On the other hand, 

signal processing strategies are developed to reduce interference, e.g. ambient noises, 

reverberation, feedback interference, etc., which could otherwise deteriorate speech perception 

for normal hearing listeners and generally render speech incomprehensible for hearing 
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impaired listeners. 

 All these signal processing strategies may be combined in the hearing aids to better serve 

the hearing aid users. As we develop and evaluate noise reduction strategies for hearing 

impaired listeners, we first introduce existing strategies to compensate for impaired auditory 

factors attempting to reach the level of normal hearing in Section 1.4. We then introduce 

current single-channel noise reduction strategies and its issues for hearing aids application in 

Section 1.5. We later introduce how to evaluate noise reduction strategies for hearing aid users 

in Section 1.6. The review in Section 1.4 and Section 1.5 inspired to develop a noise reduction 

strategy that could not only reduce additive noise, but also indirectly compensate for impaired 

auditory factors such as reduced frequency resolution and reduced temporal resolution. Section 

1.6 introduces appropriate evaluation methods for HI listeners and also states some evaluation 

methods that are only suitable for NH listeners.      

1.4 Introduction of hearing-impairment compensation strategies in hearing aids 

Most sensorineural hearing impairments occur as a result of damage to the cochlea. A simple 

solution is to restore normal firing pattern of auditory nerve fibres. In principle, this method 

may involve two processing stages in cascade. The first stage is to simulate the processing of 

the normal cochlea and the second stage is to perform the inverse of the processing of the 

damaged cochlea. However, combination of the two processing stages is difficult to realise in a 

perfect way as both the normal cochlear and the damaged cochlea are complicated nonlinear 

systems. An attempt can be made to realize an inverse-cochlear model in an approximate way, 

which is a promising perspective. 

Current strategies in hearing aids are developed to compensate for reduced 

psychoacoustic abilities underlying hearing impairment, e.g. hearing threshold elevation, 

loudness recruitment, reduced frequency selectivity and reduced temporal resolution. They are 

developed by intentionally introducing distortions into the speech signal in order to enhance 

available cues. This section introduces some compensation strategies in hearing aids that take 
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account of impaired auditory factors and strengthen important speech cues. 

1.4.1.1 Linear amplification 

The primary goal of linear amplification in a hearing aid is to compensate for the loss of 

audibility across frequencies. The linear gain in a hearing aid is independent of sound level. A 

well-established amplification procedure is the National Acoustic Laboratory (NAL) procedure 

(Dillon, 2001) which compensates for threshold elevation. Specifically, a gain prescription is 

computed from an individual’s audiogram to produce amplification with appropriate frequency 

dependent shaping. Because of the limited dynamic range associated with loudness recruitment, 

most hearing aids include some processing, such as peak clipping or compression limiting, to 

limit the maximum output levels. 

1.4.1.2 Automatic gain control (AGC) 

Automatic gain control (AGC) strategy has a nonlinear input-output function that operates by 

reducing overall gain when high-intensity sounds occur and amplifying overall gain when 

low-intensity sounds occur. The primary purpose of automatic control is to map the input 

signal into the limited dynamic range of the ear with a damaged cochlea. This method could 

compensate for loudness recruitment and threshold elevation. Although there have been quite a 

few techniques of AGC (Moore and Glasberg, 1988, Lunner et al., 1998) based on different 

rationales (Moore, 1996), there is no clear consensus on the best method.   

1.4.1.3 Base Increases at Low Levels (BILL) 

BILL is applied to adaptive high-pass filtering (HPF) hearing aids. The cut-off frequency of 

high-pass filtering increases as the level of the input signal increases (Killion et al., 1990). This 

strategy is applied to mildly or moderately sloping hearing losses with greater upward spread 

of masking which are more dependent on high-frequency gain for speech intelligibility. 
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1.4.1.4 Treble Increases at Low Levels (TILL) 

TILL provides different amplification at different input levels. It acts as a high-pass filter at 

low input levels and as a flat, transparent filter at high input levels to overcome insertion loss 

(Tobin, 1997). The insertion loss here is the difference in sound pressure level at the eardrum 

before inserting a hearing aid and after inserting a hearing aid. The aim of this algorithm is to 

amplify weak high-frequency consonant energy at low input levels and suppress annoying high 

input levels. A comparative study between benefits of BILL and TILL is not available. 

1.4.1.5 Consonant amplification 

Previous studies (Montogomery and Edge, 1988, Guelke, 1987, Gordon-Salant, 1987) have 

demonstrated that amplifying consonants relative to vowels can improve the intelligibility of 

speech for hearing-impaired subjects.  

1.4.1.6 Time-scale modification 

Researchers have also investigated the possibility of changing the duration of speech segments. 

It can be understood that speech intelligibility could be increased if the speech is spoken in a 

slower speed. Revoile et al. (Revoile et al., 1986) concentrated specifically on the contrast 

between voiced and unvoiced final fricatives. They enhanced the contrast not by altering the 

consonant duration but by altering the duration of the vowel preceding it. Montgomery and 

Edge (Montogomery and Edge, 1988) investigated continuant consonants and voiceless stops. 

Their algorithm lengthened these consonants and shortened the vowel before the voiceless 

stops. Currently, time-scale modification needs off-line processing which cannot be processed 

real time. 

1.4.1.7 Spectral sharpening 

Reduced frequency resolution is one of the most important suprathreshold factors that affect 

speech intelligibility for hearing-impaired people in noise environments. Some attempts have 

been made to sharpen spectral peaks or formants of the speech signal (Baer and Moore, 1993, 

Alcantara et al., 1994, Dillon, 2001). Bustamante and Braida (1987) developed a scheme that 
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can compress dynamic range and can also sharpen the spectral peaks of the speech signal 

through principal component analysis (Jolliffe, 1986). However, no intelligibility improvement 

has been shown in any of these efforts. 

1.4.1.8  Frequency lowering 

Many cues for recognition of consonants are at higher frequencies which are difficult to catch 

for people with severe high-frequency hearing impairment. Many researchers (Munoz et al., 

1999) have tried to make these cues accessible for patients with relatively good low-frequency 

hearing by mapping high-frequency information to lower frequencies. However, no significant 

improvements in intelligibility results from frequency lowering have been demonstrated.  

1.4.1.9 Discussion 

Larson et al. (2000) demonstrated that the hearing aids provided significant benefits to 

hearing impaired listeners when compared to unaided listening conditions. However, this same 

study cited statistics from recent surveys indicating that only 65% of individuals with hearing 

aids report that they are satisfied with their hearing instruments (Larson et al., 2000). There is 

still a long way to go to compensate for hearing impairment and improve speech perception in 

hearing aids. 

Among the existing compensation strategies in hearing aids, the most widely recognized 

strategy is AGC which compensates for threshold elevation and loudness recruitment. 

However, there are currently no appropriate solutions to suprathreshold hearing impairment, 

e.g. reduced frequency selectivity and reduced temporal resolution. Moreover, even if these 

strategies could perform well in clean speech, their performance might be deteriorated when 

listening to speech in noise. This is also one of the most frequent complaints of hearing aid 

users that they could not hear well in noisy environments. Therefore noise reduction strategies 

are critical to improve speech perception for hearing aid users. 
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1.5 Introduction of single-channel noise reduction strategies 

For people with mild to severe hearing losses, current advanced hearing aids can help 

improve speech perception in quiet environments. However, one important reason why 

hearing-aid users do not like to use hearing aids is that the current hearing aids don’t work well 

in background noise (Dillon, 2001, Alcantara et al., 2003). Hearing-impaired (HI) people 

typically require a speech-to-noise ratio that is 3-6 dB higher than normal-hearing people to 

achieve the same degree of speech intelligibility (Plomp, 1994, Alcantara et al., 2003). 

Therefore, noise reduction strategies in hearing aids are one critical factor to help HA users 

improve quality of life.  

Although microphone arrays have been proved to be an option to improve speech 

intelligibility (Kates and Weiss, 1996, Levitt, 2001, Schum, 2003), their performance is only 

significant with a large microphone array. Additionally, the microphone array is usually 

effective when the target speech and interfering sounds are coming from different directions. 

However, due to the small size of a hearing aid, usually only one or two microphones are 

placed in a hearing aid. Accordingly, a large microphone array is not practical to be placed in a 

hearing aid. Some may also argue the importance of beam-forming with two microphones in 

hearing aids, rather than single-channel noise reduction strategies. Currently, most hearing aids 

are equipped with combination of single-channel noise reduction algorithms and 

beam-forming strategies (Widrow and Luo, 2003), which mutually determine the final noise 

reduction performance of hearing aids. There are still limitations in the current development 

stage of single-channel noise reduction algorithms, which are worthy of further study. 

Furthermore, there are several situations that require the use of single-channel strategies, e.g. 

telephone speech, in-the-ear hearing aids that are place deep in the ear canal, etc.  

Previous research has shown that (Levitt, 1993, Levitt et al., 1993, Weiss and Neuman, 

1993, Dahlquist et al., 2005) a greater signal-to-noise ratio (SNR) in hearing aids does not 

guarantee benefits to a hearing-impaired listener. Most noise reduction strategies could not 

improve speech intelligibility by improving SNR, because the processing removes part of the 
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signal or distorts the speech in a way that reduces intelligibility.  

Evaluations of single-channel noise reduction algorithms (Hu and Loizou, 2007) with NH 

listeners have shown no speech intelligibility improvement, except for the algorithms with the 

priori knowledge of speech and/or background noise (Kim and Loizou, 2010). Evaluations of 

noise reduction algorithms with hearing impaired listeners have shown various positive and 

negative effects (Arehart et al., 2003, Dahlquist et al., 2005, Elberling et al., 1993, Levitt et al., 

1993, Levitt, 2001, Jamieson et al., 1995). Almost all of the algorithms could show 

improvement in speech quality, whereas only some of these algorithms could improve speech 

intelligibility. Besides differences in the noise reduction algorithms themselves, the varied 

intelligibility effects may be due to the noise type, the test type, the subject’s hearing loss level, 

input SNR, and the subject’s hearing aid experience. A spectral subtraction algorithm with an 

auditory masked threshold (Arehart et al., 2003) has shown intelligibility improvement for HI 

listeners in the background of voice communication channel noise and automobile highway 

noise with nonsensical syllable tests. Another nonlinear spectral subtraction algorithm 

(Lockwood and Boudy, 1992) did not show intelligibility improvement for HI listeners in 

background of speech shaped noise, babble noise by sentence tests (Dahlquist et al., 2005). 

Speech shaped noise and babble noise are more difficult to remove as they show the same long 

term average spectrum as the speech being used. However, the nonlinear spectral subtraction 

algorithm (Lockwood and Boudy, 1992) that did not show speech intelligibility improvement 

for hearing aid users showed intelligibility improvement for cochlear implant users, who are 

profound HI listeners (Verschuur et al., 2006), for the same speech shaped noise and for the 

same sentence tests. The reason was that the hearing aid users with mild-to-moderate hearing 

impairments are more sensitive to speech distortion brought by noise reduction algorithms 

compared to CI users with profound hearing impairments. The more severe the hearing loss is, 

the more tolerant the listener was to speech distortion (Schijndel et al., 2001). Thus, more 

benefits can be acquired from noise reduction algorithms for people with more severe hearing 

losses. It is therefore worthwhile to evaluate some updated noise reduction algorithms for HI 

listeners. 
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This section introduces some classical, as well as some state-of-the-art, single-channel 

algorithms. 

1.5.1 Spectral subtraction algorithm 

Spectral subtraction algorithms are based on a simple principle. If noise is additive, the clean 

signal spectrum can be estimated by subtracting an estimate of the noise spectrum from the 

noisy speech spectrum. The noise spectrum can be estimated, and updated. The assumption 

here is that noise is stationary or quasi-stationary. The phase of the clean signal is estimated to 

be the same as the phase of the noisy signal. The enhanced signal is obtained by computing the 

inverse discrete Fourier transform of the estimated signal spectrum with the estimated phase of 

the clean signal. 

 Basic spectral subtraction algorithms were introduced by Boll (Boll, 1979) while further 

modification methods of spectral subtraction has been done by many researchers (Gustafsson 

et al., 2001, Zenton et al., 1998, Kang and Fransen, 1989). One problem of spectral subtraction 

is musical noise that is introduced by subtraction of the noise spectrum from the noisy 

spectrum while the noise spectrum is estimated. Some modifications of spectral subtraction 

can suppress the musical noise distortion. The most common method is to subtract the 

estimated noise spectrum multiplied by an over-subtraction factor from the noisy spectrum, 

and a spectral floor is set to keep the speech spectrum above a minimum value. 

1.5.2 Wiener filtering 

The Wiener filtering approach (Wiener, 1949) is used to reduce the noise present in a signal. 

The principle of the Wiener filtering is based on minimum-mean-square-error (MMSE) 

between the estimated and desired clean signal. Using a Gaussian distribution assumption of a 

stationary clean signal and noise, the optimal Wiener filter in the spectral domain can be 

derived as the cross power spectrum between the clean signal and the noisy signal divided by 

auto power spectrum of the noisy signal. Specific details can refer to (Oppenheim and 
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Verghese, 2010). 

Wiener filtering can be implemented either iteratively or noniteratively in mathematical 

derivation. Autoregressive (AR) speech production models (Jae and Oppenheim, 1978) are 

examples of iterative models. Performance of this filtering approach is significantly improved 

with imposed constraints (Hansen and Clements, 1991, Pellom and Hansen, 1998). Several 

noniterative Wiener filtering algorithms were proposed to get good estimates of the a priori 

SNR with the use of low-variance spectral estimators (multitaper based) (Yi and Loizou, 

2004).  

Another recently developed Wiener filtering algorithm estimates the a priori SNR by 

temporal cepstrum smoothing with bias compensation (Breithaupt et al., 2008, Gerkmann and 

Martin, 2009), which can reduce the level of musical noise and suppress the non-stationary 

noise effectively. Since the a priori SNR of the WF approach is estimated by the cepstral 

smoothing method, we refer this approach as CS-WF herein. CS-WF is selected as a 

comparison algorithm in our evaluation study.  

Although the Wiener filters are considered to be optimal in the mathematically 

mean-square sense, they are not necessarily the best estimators of the clean signal spectrum in 

a perceptual sense. However, Wiener filtering algorithms are recognized to produce robust 

noise reduction performance and can be chosen as competitive noise reduction algorithms. 

1.5.3 Subspace algorithms 

Subspace algorithms can be traced back to early work in principal component analysis. These 

ideas were first brought into engineering sciences by Pisarenko (Pisarenko, 1973) and later by 

Schmidt (Schmidt, 1986).     

Subspace algorithms are based on the principle that the vector space of the noisy signal 

can be decomposed into a subspace that is occupied primarily by the clean signal and a 

subspace occupied primarily by the noise signal. Therefore, the clean speech could be 

estimated by discarding the component of the noisy vector residing in the noise subspace. The 
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decomposition of the vector space of the noisy signal into “signal” and “noise” can be done 

using Singular Value Decomposition (SVD) or Karhunen Loeve Transform (KLT) algorithms.  

In practice the signal components are further processed after decomposition. Some 

processing criteria are based on perceptually motivated measures, while others are based on 

the mathematically tractable square error.  

The majority of the subspace algorithms were originally formulated under the assumption 

that the additive noise is white. Research was also conducted to handle coloured noise with 

subspace algorithms (Hu and Loizou, 2003). 

1.5.4 Statistical-model-based methods 

Statistical-model-based methods are nonlinear estimators of the magnitude rather than the 

complex spectrum of the signal. These nonlinear models estimate the probability density 

function of the noise and the speech coefficients with some transform such as the Discrete 

Fourier Transform (DFT), principal component analysis (PCA) or independent component 

analysis (ICA). These methods can be implemented with different optimization criteria, for 

example a maximum-likelihood estimator (Yoshioka, 2008), a Minimum Mean Square Error 

(MMSE) magnitude estimator, or a log-MMSE estimator (Ephraim and Malah, 1983, Ephraim 

and Malah, 1985). Perceptually motivated distortion measures are taken into account in some 

of these estimators. These estimators are often combined with soft-decision gain modifications 

that take the probability of speech presence into account. These methods have shown better 

performance in reducing musical noise. 

1.5.4.1 Sparse coding shrinkage principle in ICA space 

Some attempts have been made to develop speech enhancement algorithms based on the sparse 

coding shrinkage principle through ICA (Potamitis et al., 2001b, Zou et al., 2008, Sang et al., 

2011a, Potamitis et al., 2001a). The sparse coding shrinkage principle assumes a super 

Gaussian distribution of signal and a Gaussian distribution of noise and suggests several 

shrinkage functions to suppress noise from the observed noisy signal. Super Gaussian 
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distribution indicates the distribution is in a peaked shape rather than a bell shape of Gaussian 

distribution. A sparse transform is derived from training data with ICA to map signals to a 

space where coefficients of speech signals are sparsely distributed, and the coefficients of 

noise signals have a Gaussian distribution and the distribution of signal is estimated in the 

sparse space. The performance of sparse coding shrinkage is most efficient in white noise. The 

disadvantage of sparse coding shrinkage in ICA space is that it needs prior knowledge from 

training speech or even training noise. 

1.5.4.2 Sparse coding strategies  

Recently, there has been significant development in sparse coding strategies, exploring sparse 

representations in the context of denoising and classification (Aharon et al., 2006, Zhou et al., 

2009, Zhou et al., 2011, Mairal et al., 2010). Sparse coding strategies that model data vectors 

as sparse linear combinations of basis vectors are widely used in machine learning, 

neuroscience, signal processing and statistics. Sparse applications exploit the fact that most 

signals of interest are sparsely represented in an appropriate dictionary or base. An appropriate 

dictionary could be derived by selecting one from a prespecified set of linear transforms 

(‘off-the-shelf’) or adapting the dictionary to a set of training signals (‘on-the-shelf’). However, 

most previous research utilises ‘off-the-shelf’ wavelet and cosine-transform dictionaries (Ji et 

al., 2008), but recent research has demonstrated the significant advantages of dictionary 

learning matched to the signals of interest (Aharon et al., 2006, Zhou et al., 2009, Mairal et al., 

2009, Hoyer, 2002, Hoyer, 2004).  

There have been several attempts to develop speech enhancement algorithms with sparse 

coding strategies, e.g. K-SVD (Aharon et al., 2006), online dictionary learning (Mairal et al., 

2010)), non-negative matrix factorization (NMF) (Mohammadiha et al., 2012). Sigg applied 

KSVD in speech enhancement (Sigg et al., 2010). For Gaussian noise, they derived a 

dictionary from training speech data; for structured noise (nongaussian), they not only learn 

the dictionary from training speech, but also learn another dictionary from the training noise. 

The speech and noise matrix are transformed in the short-time Fourier transform (STFT) 
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magnitude domain for sparse coding. Results show that this method can improve speech 

quality compared to VQ-based (vector quantization based) methods (Sigg et al., 2010) and 

spectral subtraction (Loizou, 2007). They did not show the performance of KSVD on 

intelligibility. The disadvantage of sparse coding strategies with on-the-shelf dictionaries is 

that they need to estimate sparse distribution through training speech data or training noise 

data. Therefore the method is not very robust in different speech or noise environments. 

Another state-of-the-art sparse coding strategy was developed to conduct fast dictionary 

learning for sparse representations of speech signals (Jafari and Plumbley, 2011). They showed 

that SNR can be improved with this strategy. However, their evaluation is only objective SNR 

that is not reliable to predict speech intelligibility or speech quality (Ma et al., 2009). Moreover, 

subjective evaluation was not conducted. Future research is promising to investigate the 

performance of such dictionary learning algorithm in speech enhancement thoroughly. 

1.5.5 Discussion 

Previous evaluations of noise reduction strategies in hearing aids mainly focused on 

spectral subtraction (Levitt et al., 1993, Elberling et al., 1993, Alcantara et al., 2003, Dahlquist 

et al., 2005) or Wiener filtering algorithms (Levitt et al., 1993). It is worthwhile to test other 

algorithms that might need more computation, but can be handled with advanced high speed 

computation technology. Moreover, most noise reduction algorithms were originally developed 

to improve speech perception for normal hearing subjects, and were later adopted for hearing 

aid users. Because of hearing loss factors discussed below, algorithms that are optimal for NH 

listeners may not be optimal for HI listeners. The algorithms for HI may allow more noise 

reduction even if greater speech distortion is introduced, as HI listeners are more tolerant to 

speech distortion, but more sensitive to background noise. 

We will introduce our development of a noise reduction algorithm with sparse coding 

shrinkage in PCA space in Chapter 3. It assumes an approximately sparse distribution of 

speech components in PCA space and performs a shrinkage function in the principal 
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components of noisy speech. The PCA method does not need to accurately estimate the 

distribution with training data, as is assumed a moderately super-Gaussian distribution. This 

algorithm is expected to utilize greater levels of noise reduction at the expense of increasing 

speech distortion to match the speech perception requirements of hearing impaired listeners.  

1.6 Introduction of objective evaluation measures 

The most accurate speech evaluation measures are through subjective listening tests. However, 

subjective tests can be time consuming and expensive. Subjective tests recruiting HI listeners 

become more difficult compared to recruiting NH listeners. Therefore, many objective 

measures have been developed and used during the signal strategy development stage or prior 

to subjective listening tests. Some objective measures include predictions for both NH and HI 

listeners whilst most objective measures include predictions only for NH listeners. If an 

objective measure has only been validated with NH listeners, it is uncertain whether it is 

suitable for predicting performance for HI listeners. Furthermore, if an objective measure is 

only validated for a particular type of speech distortion, e. g. low bit rate, it might not be 

reliable for evaluating speech distortion introduced by noise reduction algorithms. In this 

section, contemporary objective measures will be introduced in two categories: speech quality 

and intelligibility measures respectively. Whether the objective measures have been validated 

with NH or HI listeners will be stated.  

1.6.1 Objective speech intelligibility measures 

Contemporary objective speech intelligibility measures have been divided into different 

categories depending on their principal methods, which include articulation-index-based 

(AI-based) measures (French and Steinberg, 1947, Kryter, 1962, Pavlovic, 1987),  

speech-transmission-index-based (STI-based) measures (Houtgast and Steeneken, 1973, 

Houtgast and steeneken, 1985) and coherence-based measures (Kates and Arehart, 2005, 

Arehart et al., 2007). The articulation index can range from 0 to 1, representing the proportion 
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of the average signal that is audible to an individual. Several mathematical evaluations can be 

used as an index to predict speech intelligibility, although reliability of these evaluations needs 

to be investigated further.  

The AI measures were further modified to produce the speech intelligibility index (SII) 

(ANSI, 1997). For a given speech-in-noise condition, the SII is calculated from the speech 

spectrum, the noise spectrum, and the listener’s hearing threshold. Both speech and noise 

signals are filtered into frequency bands. Within each frequency band, the audibility factor that 

indicates the degree to which the speech is audible, is derived from the signal-to-noise ratio in 

that band,. The SII is determined by accumulation of the audibility factor across the different 

frequency bands, weighted by the band-importance function, which results in a rating value 

between zero and one. The SII can be regarded as the proportion of the total speech 

information available to the listener. However, as there might be redundancy in the available 

information, this may not correlate well with subjective test of intelligibility. Moreover, as 

estimation of speech and noise cannot be accurate after noise reduction strategies, SII may not 

be correlated with subjective intelligibility results of noise reduction strategies.  

The STI-based measures were further refined with various methods. One example is the 

normalized covariance metric (NCM) (Hollube and Kollmeier, 1996) that has been validated 

as one of the most reliable objective quality measures on noise reduction algorithms for NH 

listeners (Ma et al., 2009). NCM computes the STI as a weighted sum of transmission index 

(TI) values determined by the covariance between the reference and processed envelope 

signals in each frequency band. A short-time objective intelligibility (STOI) measure was 

proposed (Taal et al., 2011a), based on a correlation coefficient between the temporal 

envelopes of the clean and degraded speech, in short-time overlapping segments. In contrast to 

other conventional intelligibility models which tend to rely on global statistics across entire 

sentences, STOI is based on shorter time segments (386 ms). STOI showed high correlation 

with speech intelligibility of noise reduction algorithms for NH listeners.  

One example of coherence-based measures is the magnitude-squared coherence (MSC) 

function (Kates, 1992). It was used to assess distortion in hearing aids by calculating the 
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normalized cross-spectral density of the reference and the processed signals. Extensions of 

MSC measure (Kates and Arehart, 2005), called coherence SII (CSII) measures, were 

proposed to assess the effects of hearing-aid distortions (e.g. peak clipping) on speech 

intelligibility. CSII proposes to use the SII index as the base measure, and to replace the SNR 

term with the signal-to-distortion ratio term, which is computed using the coherence between 

the input and output signals. CSII can evaluate speech intelligibility for NH and HI listeners 

with hearing thresholds as input arguments.  

1.6.2 Objective speech quality measures 

Contemporary objective quality measures may be divided broadly into two distinct categories, 

namely, intrusive methods and non-intrusive methods. Intrusive quality measures shown in 

Figure 1.3 compare the difference between the degraded speech and the original clean speech 

and then calculate a rating value as output. Non-intrusive methods, on the other hand, calculate 

quality predictions from the degraded speech only. Significant advances in the field of 

objective speech quality measures have been made in recent decades; however, only few 

researchers concentrated on development and validation of objective quality measures for 

hearing impaired listeners in the application of hearing aids. Even if some objective quality 

measures were developed to correlate with subjective impression of hearing impaired listeners, 

they seldom have been validated to assess noise reduction algorithms. This section will first 

introduce the generalized objective quality measures for NH listeners, and then introduce some 

objective quality measures that are adapted with arguments of hearing loss characteristics in 

order to evaluate speech quality impression for HI listeners. 
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Figure  1.3: Principle and flowchart of intrusive objective measures. 

1.6.2.1 Objective speech quality measures for NH listeners 

When speech is corrupted with noise, an obvious choice to measure speech quality is to 

measure the level of the clean speech and the embedded noise. Hence a frame-based segmental 

SNR was proposed (Noll, 1976). Later frequency-weighted segmental SNR (fwsegSNR) was 

proposed (Tribolet et al., 1978), which calculates the frequency weighted average power 

difference between signal and noise. 

Klatt proposed a weighted spectral slope (WSS) distance measure based on weighted 

differences between the spectral slopes in each band (Klatt, 1982). This measure was designed 

to penalise heavily differences between the spectral peak locations. It was motivated by 

psychoacoustic studies, where subjects assigned the largest distance to pairs of vowels that 

differed in formant frequencies. 

Log-likelihood ratio (LLR) and Itakura-Saito (IS) measures, are two measures that use 

linear prediction coefficients to predict quality, and are often used to evaluate 

speech-enhancement algorithms (Quackenbush et al., 1988) for NH listeners. In the Barks 

spectral distortion (BSD) measure (Wang et al., 1992), both the original and processed signals 

undergo several stages of the auditory processing and then are compared in the Euclidean 

distance between their loudness spectra, leading to the so-called “loudness spectra”.  

Rix and Hollier (2000) developed the perceptual analysis measurement system (PAMS) to 

evaluate the perceived speech quality of telephone networks. PAMS takes two key network 

properties, linear filtering and variable bulk delay, into consideration to suit end-to-end 

measurement. Beerends and Stemerdink (1994) also developed the perceptual speech quality 

measure (PSQM), which optimized level compression for music and speech coding. PSQM 

was adopted in 1996 as the International Telecommunication Union's Recommendation ITU-T 

P.861. Later, PAMS (Rix and Hollier, 2000) and an updated and extended version of PSQM 

(Beerends and Stemerdink, 1994) were combined to produce the Perceptual Evaluation of 

Speech Quality (PESQ) (Rix et al., 2001), which superseded ITU's recommendation of PSQM 
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(ITU-T P.862). PESQ is the objective measure recommended by ITU-T for speech quality 

assessment of narrow-band handset telephony and narrow-band speech codecs. The basic 

components of PESQ include time alignment, a psychoacoustic model which maps signals into 

perceived loudness, disturbance processing, a cognitive model, aggregation of the disturbance 

in frequency and time, and finally, a mapping to the predicted subjective score. Despite the 

relative success of PESQ, other researchers proposed different psychoacoustic models and 

some reproduced internal information available to process in neural stages (Hansen and 

Kollmeier, 1997, Hansen and Kollmeier, 1999, Dau et al., 1996a, Dau et al., 1996b). 

Objective quality criteria, such as segmental SNR, PESQ (perceptual evaluation of speech 

quality), fwsegSNR (frequency weighted segmental signal to noise ratio) and LLR (log 

likelihood ratio) have been evaluated with subjective quality rating tests through NH listeners. 

(Hu and Loizou, 2008). They found that PESQ, LLR and fwsegSNR yielded high correlation 

with subjective quality tests, while segmental SNR which has been widely used for evaluating 

the performance of speech enhancement algorithms yielded poor correlation with overall 

quality. 

1.6.2.2 Adaptation of objective measures for hearing loss 

Several efforts have been made to develop objective speech quality measures for HI listeners. 

PESQ was extended for HI listeners by adjusting for hearing loss and level variations 

(Beerends et al., 2008). Beerends developed the perceptual hearing aid quality measure 

(PHAQM) and developed the model of auditory comfort for hearing impaired persons – 

revised version (MCHI-R) (Bramslow, 2004, Bramslow, 2008). 

Huber and Kollmeier (2006) proposed a measure called PEMO-Q, which is based on Dau 

et al.’s psychoacoustic model of the “effective” peripheral auditory system (Dau et al., 1996a, 

Dau et al., 1996b). PEMO-Q (Huber and Kollmeier, 2006) computes a perceptual similarity 

measure (PSM) as the weighted average of the linear cross correlation coefficient across 

modulation channels, as well as an instantaneous version of PSM by computing PSM every 10 

ms. PEMO-Q was reported to be able to predict quality for narrow-band speech as well as 
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wide-band audio signals. PEMO-Q was also reported to be able to predict listening effort 

reduction by noise reduction algorithms in hearing aids (Huber et al., 2010). 

There have been several recent objective measures that specifically predict quality in the 

context of hearing aid distortion. Parsa and Jamieson (2001) proposed a measure based on an 

“auditory distance” parameter, which computes the distance between the hearing aid response 

and their model output (Parsa and Jamieson, 2001). Recently, Kates and Arehart (2010) 

developed an objective measure for evaluating distortions introduced specifically by hearing 

aids for both NH and HI listeners. This metric (Kates and Arehart, 2010), called the Hearing 

Aid Speech Quality Index (HASQI), aims to capture the aspects of quality deemed important 

for rating speech processed by hearing aids. 

1.6.3 Objective measures to be used in our thesis 

In this section, we explain specifically the objective speech quality and intelligibility 

measures that are used in this thesis (Chapter 3) to predict effects of noise reduction algorithms 

for NH or HI listeners. The objective measures include PESQ, fwsegSNR, HASQI, NCM and 

STOI. Although PESQ and fwsegSNR have not been validated through HI listeners, they are 

well-recognized quality measures for NH listeners. FwsegSNR has been validated to reflect the 

physical noise reduction effects with NH listeners. PESQ has been recommended by ITU-T to 

assess speech quality of narrow-band handset telephony and narrow-band speech codec and 

has been validated to assess speech quality by noise reduction algorithms with NH listeners. 

Although some effort has been made to develop objective quality measures for HI listeners, 

their performance in evaluating speech quality effects by noise reduction algorithms for HI 

listeners are still uncertain. HASQI is a speech quality metric for HI listeners and it 

incorporates hearing threshold values into the evaluation model. NCM and STOI are two 

objective intelligibility measures for noise reduction algorithms validated with NH listeners. 

The reason to present objective measures only validated with NH listeners is to compare these 

objective results with subjective results from NH listeners.  
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We have chosen two objective quality measures for NH listeners, one objective quality 

measure for HI listeners and two objective intelligibility measures for NH listeners. We have 

not chosen any objective intelligibility measure for HI listeners as there are few publicly 

available codes that are reliable to reflect intelligibility effects of noise reduction algorithms 

for HI listeners.  

1.6.3.1    Perceptual Evaluation of Speech Quality (PESQ) 

The perceptual evaluation of speech quality (PESQ) (Rix et al., 2001, ITU, 2000) was selected 

as the ITU-T recommendation P.862. This measure includes distortions commonly encountered 

when speech goes through telecommunication networks. The original and degraded signals are 

first level-equalized to a standard listening level, and filtered through a standard telephone 

handset filtering system. The signals are aligned in time to correct for time delays, and then 

processed through an auditory transform to obtain the loudness spectra. The difference 

between the loudness spectra is computed. The PESQ produces a score between 1.0 and 4.5, 

with high values indicating better quality. PESQ is validated as in good correlation with 

subjective quality measure (Rix et al., 2001, Hu and Loizou, 2008) for NH listeners. The 

MATLAB code of PESQ was adopted from (Loizou, 2007). 

1.6.3.2 Frequency-weighted segmental SNR (fwsegSNR) Measure  

The frequency-weighted segmental SNR (fwsegSNR) was computed using the following 

equation (Hu and Loizou, 2008) 
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where ( , )W j m is the weight placed on the jth frequency band, K is the number of bands, M is 

the total number of frames in the signal, ( , )X j m  is the critical-band magnitude (excitation 

spectrum) of the clean signal in the jth frequency band at the mth frame, and ˆ ( , )X j m is the 

corresponding spectral magnitude of the enhanced signal in the same band. The critical-band 

spectra ( , )X j m  were obtained by multiplying the FFT magnitude spectra by 25 overlapping 
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Gaussian-shaped windows (Loizou, 2007) spaced in proportion to the ear’s critical bands and 

summing up the power within each band. Similar to the implementation in (Hu and Loizou, 

2008), the excitation spectra were normalized to have an area of unity. This measure has been 

found to be in good correlation with both subjective quality and intelligibility measures (Hu 

and Loizou, 2008). The MATLAB code of fwsegSNR was adopted from (Loizou, 2007).  

1.6.3.3 Hearing Aid Speech Quality Index (HASQI) 

Kates and Arehart (2010) proposed the Hearing Aid Speech Quality Index (HASQI) to 

evaluate speech quality with distortions introduced by hearing aids for both NH and HI 

listeners. This metric starts with a cochlear model that incorporates aspects of impaired hearing 

and then extracts signal features related to quality judgments. One set of features measures 

effects of noise and nonlinear distortion on speech quality, and the other set of features 

measures the effects of linear filtering. The final index is the multiplicative combination of the 

nonlinear effects and linear filtering effects. The MATLAB code of HASQI was provided by 

James M. Kates. 

1.6.3.4 NCM 

The NCM measure was computed as follows (Ma et al., 2009). The stimuli were first 

processed through K band pass filters. The normalized covariance between the envelope of the 

original clean signal and the envelope of the processed signal is then calculated in each 

frequency band. The SNR in each band is computed with the normalized covariance. The 

transmission index (TI) in each band is computed by linearly mapping the SNR values 

between 0 and 1 to the TI. Finally, the transmission indices are averaged across all frequency 

bands with band-importance weights to produce the NCM index. The MATLAB code of NCM 

was provided by P. Loizou.  

 

1.6.3.5 STOI 

The short-time objective intelligibility (STOI) measure (Taal et al., 2011a) is based on 

short-time correlations between the clean speech and the processed speech, in contrast to other 
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conventional intelligibility models that tend to rely on global statistics across entire sentences. 

STOI is calculated as follows. Both clean and processed stimuli are first decomposed into 

DFT-based, one-third octave bands. Next, short-time temporal envelope segments of the clean 

and processed speech are compared by means of a correlation coefficient. Before comparison, 

the short-time processed speech temporal envelopes are first normalized and clipped. The 

short-time intermediate intelligibility measures are then averaged to a rating value, which is 

expected to reflect speech intelligibility. The MATLAB code of STOI was downloaded from 

the following website3. 

1.6.4 Discussion 

As objective measures are usually used during the algorithm development stage, as an 

intermediate evaluation tool prior to time-consuming subjective tests, they need to be reliable 

to guide new speech enhancement algorithms to be improved in the right direction.  

Most contemporary objective measures are only suitable for NH rather than HI listeners. 

Objective measures for HI should take account of impaired auditory factors, e.g. threshold 

elevation; reduced frequency selectivity; reduced temporal resolution. Although there have 

been several efforts to develop objective measures for HI listeners (Kates and Arehart, 2010, 

Hollube and Kollmeier, 1996), they have only been validated with clean speech or speech in 

noise rather than with the noise reduction algorithms, which may introduce some distortion 

that makes the objective evaluations more difficult. 

According to current availability and reliability of objective measures for NH or HI 

subjects, only five objective measures were chosen, including two objective quality measures 

(fwsegSNR, PESQ) and two objective intelligibility measures (NCM, STOI) for NH listeners, 

and one objective intelligibility measure (HASQI) for HI listeners. As we focus on subjective 

tests in this thesis, objective measures are only used to be compared and validated with 

subjective tests.  

                                                 
3 http://siplab.tudelft.nl/content/software-and-data-resources 
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An alternative way to obtain objective measures for HI subjects is to simulate HI subjects’ 

listening using NH subjects. The rationale of this method is as follows. If the consequences of 

the hearing impaired listening can be viewed as an additive combination of the hearing 

impaired distortion with the normal hearing listening, and if the hearing impaired distortion 

can be simulated accurately through the hearing loss simulation model (Baer and Moore, 1993, 

Moore and Glasberg, 1993, Nejime and Moore, 1997, Hu et al., 2011b), the effects of asking 

HI listeners to listen to speech can be approximated by asking NH listeners to listen to the 

same speech that  processed with the hearing loss simulation. An auditory-based hearing loss 

simulation model is introduced in Chapter 2. The experiment to evaluate noise reduction 

algorithms with a combination of the hearing loss simulation model and NH listeners’ 

participation is introduced in Chapter 4. 

1.7 Introduction of subjective evaluation tests 

A subjective evaluation test uses either NH or HI subjects to listen to speech, and to give 

feedback by either repeating what they have heard or giving a specific judgment. It is more 

time consuming but is more ecologically valid if a sufficient number of subjects take part in 

the tests compared to objective tests. 

Quality and intelligibility are two different important attributes of speech and criteria 

should be set up to evaluate whether noise reduction algorithms could improve speech quality 

or intelligibility. Quality is highly subjective and variable in nature and is difficult to judge 

which is better as individual listeners have different perceptual criteria to assess sound quality. 

Intelligibility can be measured by asking listeners to identify the words. It is easier to perform 

subjective tests on intelligibility compared to quality. This section will introduce the basic 

methods for subjective speech intelligibility and quality tests. 

1.7.1 Subjective speech intelligibility tests 

There are numerous factors affecting the reliability of subjective intelligibility tests. Factors to 
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be considered include good representation of all major speech phonemes, equal quality of test 

lists and control of contextual information. Speech tests proposed over the years could be 

divided into three categories: (1) recognition of syllables made up of meaningless 

combinations of speech sounds (Miller and Nicely, 1955, Fletcher and Steinberg, 1930), (2) 

recognition of single meaningful words (Voiers, 1983, Fairbanks, 1958, House et al., 1965), (3) 

recognition of meaningful sentences containing all contextual information among words 

(Nilsson et al., 1994). Each of these tests has its advantages and disadvantages. Choice of a 

speech test type depends on specific situations.  

In most of the subjective intelligibility tests, speech intelligibility is often quantified in 

terms of percentage of identified words (or syllables) correct. Percentage intelligibility is often 

measured at fixed speech or noise levels, or fixed input SNRs. Such intelligibility measures are 

inherently limited by subjective floor or ceiling performance at different input SNRs. A more 

reliable measure for assessing speech intelligibility that is not sensitive to the presentation 

level of speech or noise or input SNR is recommended as the speech reception threshold 

(SRT).  

 SRT is an important criterion to assess speech intelligibility. The SRT can be measured 

either in quiet or in noise. In a quiet environment, it is defined as the presentation level at 

which listeners identify words with a fixed percentage that are correct. In noise, the SRT is 

defined as the signal-to-noise ratio at which listeners identify words with a fixed percentage 

threshold of accuracy. A practical and efficient method is developed for obtaining the SRT 

(Dirks et al., 1982, Levitt, 1971). It uses an adaptive method known as the up-down procedure 

which is designed to be accurate and efficient. The one-up-one-down procedure can find the 

threshold of 50% correct whereas the three-up-one-down procedure can find the threshold of 

79.4% correct. In the three-up-one-down procedure, the subject must make three consecutive 

correct judgement s in order to cause the staircase magnitude to go up. Any incorrect judgment, 

at any time, causes the staircase to go down. This staircase settles at the magnitude where the 

threefold probability is 50% or the probability is 79.4%. The three-up-one-down procedure is 

adopted in the subjective speech recognition tests in Chapter 3&4 in order to find the threshold 
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of input SNR which corresponds to 79.4% correct recognition. 

1.7.2 Subjective speech quality tests  

A subjective sound quality test is to ask listeners to listen to speech and give feedback, which 

is much more time consuming than objective sound quality measures. 

 The methods for evaluating subjective speech quality can be broadly classified into two 

categories: those based on relative preference tasks (Munson and Karlin, 1962, Hecker and 

Williams, 1966, Combescure et al., 1982) and those based on assigning a numerical value to 

the quality of the speech stimuli (Hu and Loizou, 2007). In relative preference tests, listeners 

are presented with a pair of speech stimuli consisting of the test stimuli and the reference 

stimuli. Listeners are asked which stimuli they prefer. In the rating tests, listeners are asked to 

rate the quality of the stimuli on a numerical scale, typically, a five-point scale with 1 

indicating poor quality and 5 indicating excellent quality. As individual listeners have different 

perception or criteria of rating quality, there will be a large variance in rating tests.  

A new method called Interpolated Paired Comparison Rating (IPCR) (Dahlquist et al., 

2005) can be regarded as a combination of the relative preference task and the stimuli rating 

task. In IPCR tests, listeners are presented with a pair of speech stimuli and asked to give a 

rating value based on how much they prefer one stimulus B to the other stimulus A. If they 

prefer B to A, they give a rating distance value between 0 and 10; if they prefer A to B, they 

give a rating distance value between -10 and 0. It was developed to quickly derive the 

difference in signal-to-noise ratios between enhanced and unprocessed speech that give equal 

subjective sound quality impression. One direct but time-consuming way to measure such 

SNR-gain is to adaptively compare between enhanced stimuli with a fixed SNR and an 

unprocessed signal with a variable SNR. IPCR is performed by comparison between processed 

stimuli with fixed SNR and unprocessed stimuli with only two different SNRs. A rating value 

between -10 and 10 is given as subjective impression feedback of preference distance between 

the enhanced stimuli and unprocessed stimuli. Interpolation and extrapolation was used to find 
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the SNR-gain of subjective equality of quality impression. Accordingly, IPCR is an efficient 

way to test subjective SNR-gain for noise reduction algorithms and can be compared with 

objective SNR improvement on the same scale in dB. Specific details were described 

(Dahlquist et al., 2005) and also discussed in Chapter 4. In the thesis, we tested subjective 

speech quality effects using noise reduction algorithms through IPCR tests. 

1.7.3 Discussion 

Strategy evaluation is important as it reflects the reliable perception results. Inaccurate 

evaluation will mislead the judgement and development of algorithms. Different signal 

processing strategies serve different purposes. To evaluate whether the signal processing 

strategy can achieve its developing motivation, we can set up an appropriate test to detect 

signal processing effects. For speech intelligibility or quality tests, many factors should be 

considered, e.g. speech materials, noise types, SNRs, hearing threshold levels of subjects, age 

of subjects, instructions and information sheets for subjects, specific procedure and testing 

order, etc. After testing, appropriate statistical analysis needs to be performed. Implications and 

tips for further development of strategies can also be acquired from subjective testing results.  

1.8 Outline of this thesis 

Figure 1.4 gives an overview of the remaining chapters in this thesis. The different colours 

indicate different studies, all of which are combined to investigate whether noise reduction 

algorithms can benefit the HI listeners. We first developed a hearing loss simulation (HLS) 

model to understand hearing loss factors and consequences. A deep understanding of the 

hearing loss mechanism can motivate appropriate strategies to compensate for hearing loss 

factors. Then, we developed a noise reduction algorithm called sparse coding shrinkage (SCS) 

that is motivated to present sparse stimuli to hearing impaired listeners. During the 

development stage, the algorithm is evaluated with objective measures. During test stage, 

evaluations are performed through subjective tests with NH and HI listeners. Evaluations are 



Chapter 1 Introduction 

34 
 

also performed through the HLS model with NH subjects to mimic speech perception in HI 

listeners. Through the evaluation results, several questions are going to be answered: whether 

the results of evaluation with the HLS model correlate with the evaluation with HI listeners; 

whether the results with HI listeners differ from the results with NH listeners in speech 

intelligibility or quality with background of different noise types; whether the objective 

measures correlate with the subjective results; whether noise reduction algorithms benefit HI 

subjects.   

 

 

Figure  1.4: Outline of the remaining chapters of this thesis. The three studies are divided in 
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different colours shown in the dashed rectangular diagram. The rectangle indicates the topic of 

each study. The hexagon indicates the specific content of each study. Research questions and 

discussion are presented at the beginning and the end of this flowchart. 

 

In Chapter 2, an auditory-filter-based hearing loss simulation model is developed to 

characterize the hearing loss factors and predict perceptual consequences of hearing 

impairment. This HLS model can simulate threshold elevation, loudness recruitment, reduced 

frequency selectivity and reduced dynamic range. This hearing loss simulation was developed 

in our group (Hu et al., 2011b). This model differs from previous HLS models in its adoption 

of a nonlinear physiologically-inspired auditory filter bank, called the gamma-chirp filter bank. 

The gamma-chirp filter bank adds a level-dependent asymmetric correction to the basic 

gammatone channel frequency response, thereby providing a yet more accurate approximation 

to the auditory frequency response (Irino and Patterson, 2001, Patterson et al., 2003, Irino and 

Patterson, 2006). Understanding the hearing loss mechanism through the HLS model should be 

a priority as it can give implications for development of noise reduction algorithms for HI 

listeners. 

In Chapter 3, a sparse coding shrinkage noise reduction algorithm is proposed for hearing 

impaired subjects. In our group, sparse stimuli have shown benefits for cochlear implants users 

who are profoundly hearing impaired listeners (Li and Lutman, 2008, Hu et al., 2011a). This 

inspires us to further evaluate whether sparse stimuli are also beneficial for mildly to severely 

hearing impaired listeners who are usually hearing aid users. The noise reduction algorithm is 

performed by applying a sparse coding shrinkage function (Hyvärinen, 1999) to the noisy 

speech components in PCA space. Objective measures are presented in this chapter as a quick 

assessment of noise reduction algorithms in speech intelligibility and speech quality. However, 

most of the objective measures have only been validated with NH listeners; they might not be 

reliable to evaluate noise reduction algorithms for HI listeners.  

In Chapter 4, subjective tests are presented to evaluate noise reduction algorithms for NH 

and HI listeners in speech quality and speech intelligibility. SCS is compared with CS-WF and 
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noisy speech. CS-WF is selected as it is a competitive state-of-the-art noise reduction 

algorithm for NH listeners (Breithaupt et al., 2008, Gerkmann and Hendriks, 2011, Gerkmann 

and Hendriks, 2012). The subjective results will be analysed to answer several questions: 

whether noise reduction algorithms show different effects between HI subjects and NH 

subjects; whether SCS and CS-WF show different perceptual effects for HI or NH subjects; 

whether there is any advantage of sparse stimuli for HI subjects. 

In Chapter 5, we will perform an experiment to evaluate noise reduction effects through 

the HLS model using NH subjects. The motivation is to validate the HLS model in predicting 

speech intelligibility effects for HI listeners. The assumption is that consequences of hearing 

impaired listening can be an additive combination of hearing impaired distortion with normal 

hearing listening. By simulating hearing impaired distortion in an appropriate and realistic way, 

the effects of listening to speech with HI listeners can be approximated by asking NH listeners 

to listen to the same speech processed with the hearing loss simulation. Through comparison 

between the subjective results with the HLS model in Chapter 5 and with HI subjects in 

Chapter 4, conclusions can be made in two aspects: whether the HLS model can predict noise 

reduction effects for HI listeners and whether noise reduction algorithms can bring 

intelligibility benefits for HI listeners if the HLS model is realistic in predicting intelligibility. 

The purpose of this experiment is to set up a test platform to predict noise reduction algorithms 

for HI listeners through NH listeners which can be much easier due to the difficulty in 

recruiting HI listeners and the large variance among HI listeners. The evaluation platform 

using the HLS model and NH subjects can predict intelligibility effects with noise reduction 

algorithms for the specific level of hearing impairment.  

In Chapter 6, we discuss several factors that determine the performance of noise reduction 

algorithms. The effects include the hearing loss level, the input SNR, the algorithm itself, the 

noise type, etc. We also discuss the validity of the HLS model in predicting intelligibility 

performance of noise reduction algorithms for HI listeners. Limitation of this research is 

pointed out. Future work is also suggested. In Chapter 7, general conclusions are drawn. 
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Chapter 2 Characterization and prediction of perceptual 

consequences of hearing impairment 

 

While beneficial, hearing aids do not restore normal audition. The varied successes of 

signal processing strategies for hearing aid design reflect our incomplete understanding or 

compensation of impaired auditory profiles that cause decreased speech perception in 

individual hearing impaired listeners, especially in noisy environments. 

Prior to developing the right compensation strategy for HI listeners one needs to 

understand the hearing loss mechanism. One way to understand hearing loss mechanism and 

quantify hearing loss consequences is to develop a hearing loss simulation (HLS) model. A 

realistic HLS model can characterize hearing loss factors quantitatively and predict perceptual 

consequences of hearing impairment. A HLS model based on a compressive gammachirp 

auditory filter bank was developed in our group (Hu et al., 2011b) and described in this chapter. 

The HLS model will also be used in Chapter 3 to represent speech distortion by hearing 

impairment in speech spectrograms.   

The HLS model can simulate different hearing loss factors such as threshold elevation, 

loudness recruitment and reduced frequency selectivity. One distinct character of the HLS 

model compared to other HLS models is its adoption of a compressive gammachirp auditory 

filter bank. Compressive gammachirp filters are physiologically motivated in the sense that 

they simulate the main passive and active mechanical processes in the basilar membrane (Irino 

and Patterson, 2001, Patterson et al., 2003), while most other HLS models use a FFT filter 

bank or a gammatone filter bank. The simulations of threshold elevation, loudness recruitment 

and reduced frequency selectivity were contributed by the author. 

If the HLS model is realistic, the effects of normal hearing (NH) subjects listening to 

speech processed with the HLS could approximate the effects of hearing impaired (HI) 

subjects listening to unprocessed speech. The HLS model is expected to have implications for 

advanced compensation strategies and noise reduction algorithms in hearing aids. The HLS 
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model can be used as an evaluation platform to assess effects of signal processing strategies for 

HI subjects through NH listeners. This platform can be adopted as a quick way prior to final 

subjective evaluations of signal processing strategies using HI subjects.  

2.1 Introduction 

2.1.1 Introduction of impaired auditory factors 

2.1.1.1 Hearing Threshold Elevation 

Hearing threshold is the minimum sound level of a pure tone that an individual ear can hear 

with no other sound present. Individual hearing threshold is usually measured through pure 

tone audiometry (BSA, 2011), which is a subjective measure of individual response to pure 

tone stimuli with different frequencies (250, 500, 1000, 2000, 4000, 8000 Hz). For HI 

listeners, one of their impaired auditory factors is shown as hearing threshold elevation. 

Individual hearing threshold has been used as a traditional reference for selecting an 

appropriate hearing aid. 

 The relationship between hearing threshold and speech perception has been studied by 

many researches through simulation studies (Fabry and van Tasell, 1986, Humes et al., 1987, 

Zurek and Delhorne, 1987, Dubno and Schaefer, 1992, Patterson et al., 1982, Lutman, 1991). 

Simulation of threshold elevation can be achieved by selective filtering or using masking noise. 

The stimuli processed with threshold elevation are tested by normal-hearing subjects. Provided 

the simulation is accurate, this makes it possible to study the effect of hearing threshold 

elevation in isolation. Most of these studies have implied that hearing threshold elevation is not 

the only factor for the relatively poor speech perception in noise of the hearing-impaired 

subjects.  

2.1.1.2 Loudness recruitment 

When hearing loss is present, the perception of loudness is altered. Sounds at low levels are no 

longer audible to the HI listeners but are still audible to the normal hearing (NH) listeners. 

However, sounds at high levels often are perceived as having the same loudness for a HI 
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listener as they would for a NH listener. This phenomenon indicates that loudness grows more 

rapidly for HI listeners than normal listeners with the audible sound level. This phenomenon is 

called loudness recruitment. Loudness recruitment is associated with threshold elevation. 

Simulation of threshold elevation is also often accompanied with simulation of loudness 

recruitment in previous studies (Moore and Glasberg, 1993). 

2.1.1.3 Reduced frequency resolution 

Frequency resolution is defined as hearing ability to detect signal at one frequency in the 

presence of sound at a different frequency. It involves separating out spectral components of a 

sound. It reflects the sharpness of auditory filter shapes. For hearing impaired people, their 

auditory filter shapes are blunt (Moore, 2007) and thus their frequency resolution ability is 

limited. Measurement of frequency resolution can be performed through psychophysical 

tuning curves (PTC) or notch noise masking (Lutman et al., 1991).  

Reduced frequency resolution can induce severe disruption of speech perception in noise 

which is one of the most severe difficulties of HI listeners (Moore, 2007). There are currently 

no optimal solutions to compensate for reduced frequency resolution. Some research has 

attempted frequency sharpening initially to compensate for broadened auditory filter shapes 

but no intelligibility improvement has been shown (Baer and Moore, 1993, Alcantara et al., 

1994, Dillon, 2001).  

Correlation studies (Glasberg and Moore, 1989) were used to investigate the relation 

between the auditory factors and speech perception. Correlation studies implied that in high 

levels of background noise, speech intelligibility is determined more by supra-threshold 

psychoacoustic factors such as frequency resolution than by hearing threshold.  

2.1.1.4 Temporal resolution 

Temporal resolution is defined as the ability to detect changes over time. In previous research 

(Moore, 2007), a temporal resolution model was described in terms of a four-stage model 

consisting of an array of band-pass filters (the auditory filters) each followed by a compressive 

non-linearity, a sliding temporal integrator and a decision device. It was argued that the 
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cochlear hearing loss could affect the first two stages, the filters and the non-linearity, but that 

it usually did not affect the last two. 

Some researchers (Drullman et al., 1994, Hou and Pavlovic, 1994) have taken the 

approach of simulating the effects of reduced temporal resolution to estimate the relative 

importance of temporal modulations at different rates for speech intelligibility. Drullman 

carried out a study of the effects of the temporal envelope smearing on speech intelligibility 

(Drullman et al., 1994). Their result suggests that reduced temporal resolution doesn’t reduce 

speech intelligibility for most hearing-impaired people. Schijindel et al. (1994) also found that 

the detection thresholds for HI listeners with respect to temporal information were not 

significant differently different from those for NH listeners. That is also why we did not take 

into account reduced temporal resolution in our novel HLS model described in 2.2. Our HLS 

model was initially developed to predict intelligibility of speech in noise with sensorineural 

hearing impairment. 

2.1.2 Introduction of auditory filter banks 

Auditory filter banks are non-uniform band-pass filter banks designed to imitate the frequency 

resolution in the human auditory system. Derivation of auditory filters is based on 

psychoacoustic and physiological measurements (De Boer and Kuyper, 1968), leading to 

approximations of the auditory filter frequency response in terms of a Gaussian function 

(Patterson, 1976), a “rounded exponential” (roex) (Patterson et al., 1982), and more recently 

the gammatone filter bank (Patterson et al., 1995). Psychophysical measurements of the 

auditory filter shape, however, indicate that the filter is approximately symmetric only at low 

stimulus levels, but asymmetric at high stimulus level with the low-frequency skirt shallower 

than the high frequency skirt (Lutfi and Patterson, 1984, Rosen and Baker, 1994). These 

findings also are consistent with physiological observations of basilar membrane motion 

(Patterson and Moore, 1986). The gamma-chirp filter bank further adds a level-dependent 

asymmetric correction to the basic gammatone channel frequency response, thereby providing 

a yet more accurate approximation to the auditory frequency response (Irino and Patterson, 
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2001, Patterson et al., 2003, Irino and Patterson, 2006). This gammachirp filter bank is firstly 

adopted in a hearing loss simulation model in our research (Hu et al., 2011b) to imitate 

nonlinear asymmetric human auditory filtering more realistically compared to other auditory 

filter banks (Moore and Glasberg, 1993). 

2.2 Development of Hearing Loss Simulation (HLS) Model 

2.2.1 Framework of compressive gamma-chirp auditory filter based HLS 

The most obvious perceptual consequence of cochlear damage is hearing threshold 

elevation (Moore, 2007). There are also supra-threshold effects of hearing loss, specifically 

loudness recruitment, reduced spectral and temporal resolution, and reduced dynamic range. A 

complete simulation of hearing loss should incorporate all the important auditory deficits that 

have been observed in HI listeners. Some effort has been made (Nejime and Moore, 1997) to 

combine different psychoacoustic factors together. However, in their simulation the signal has 

been filtered twice with two different filter banks. This double filtering is in contradiction with 

what is known in the cochlear mechanism that signals are only filtered once in the basilar 

membrane. Our HLS system was developed by combining a gammachirp auditory filter bank 

with traditional HLS methods: the input signal was divided into 26 sub-bands by the 

gammachirp auditory filter bank and then digital signal processing methods were applied in 

each band to realise reduced frequency selectivity, loudness recruitment and hearing threshold 

elevation. 
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Figure  2.1: Framework of a compressive-gammachirp-auditory-filter based hearing loss 

simulation model. 
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Figure 2.1 describes the framework of compressive gammachirp auditory filter based HLS 

model. It is assumed that impaired ear listening can be regarded as the additive combination 

effects of impaired speech distortion and normal ear listening. If the HLS model can mimic the 

impaired speech distortion, the output signal in Figure 2.1 is expected to produce the same 

excitation pattern in a normal ear as an impaired ear would receive the input signal in Figure 

2.1. 
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Figure  2.2: An example of six compressive gammachirp filters with different centre 

frequencies (250, 500, 1000, 2000, 4000 and 6000 Hz) at three sound pressure levels (40, 60, 

80 dB). The lower the sound pressure level, the sharper the filter. 

 

As mentioned in section 2.1.2, the gammachirp filter was introduced by Irino and Patterson 

(Irino and Patterson, 1997) and successively improved (Irino and Patterson, 2001, Patterson et 

al., 2003) to describe auditory filters. Irino and Patterson (Irino and Patterson, 2001, Patterson 

et al., 2003) demonstrated that the dynamic compressive gammachirp filter provides a good 

description of observed human auditory filter shapes. Its main advantages against traditional 

auditory filters are that its amplitude spectrum is asymmetric and level dependent. 

Compressive gammachirp filters are physiologically motivated in the sense that they simulate 

the main passive and active mechanical processes in the basilar membrane. It is therefore a 

functional model to simulate and to describe observed auditory filter shapes and excitation 
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patterns. Gammachirp filter banks that are based on NH listeners’ responses are well 

developed and are used in our model directly (Irino and Patterson, 2001, Patterson et al., 2003). 

Although the shapes of the auditory filters in HI listeners are different from those in NH 

listeners, our correction of the broadened auditory filter shape will be processed in the stage of 

spectral smearing in Figure 2.1. As currently there were no broadened Gamma-chirp filters for 

HI subjects, the correction is necessary to simulate the broadened shape of the impaired 

auditory filters. 

In our model the auditory filter bank is simulated by 26 compressive gammachirp filters 

with centre frequencies spaced logarithmically between 100 Hz and 8000 Hz. Figure 2.2 shows 

six examples of the filter shapes at different centre frequencies (250, 500, 1000, 2000, 4000 

and 6000 Hz) at three different sound pressure levels (40, 60, 80 dB) (Irino and Patterson, 

1997). This figure shows the nonlinear level-dependent and asymmetric property of 

gammachirp filters which can better mimic the physiological mechanism of the basilar 

membrane. Conventional gammatone filters (Patterson et al., 1995) are symmetric and 

level-independent which can only simulate the filtering of sound in the basilar membrane at 

low sound levels. 

The analytic complex form of the gammachirp auditory filter is (Irino and Patterson, 

1997) 

 1 1
1 1 1 1 1( ) exp( 2 ( ) ) exp( 2 ln )n

c r rg t at b ERB f t j f t jc t j        (2.1) 

where t>0; a  is the amplitude; 1n  and 1b are parameters defining the envelope of the 

gamma distribution; 1c  is the chirp factor (Patterson et al., 1995). 1rf  is the asymptotic 

frequency; ( )1ERB fr  is the equivalent rectangular bandwidth (Moore et al., 1990); 1  is the 

initial phase; and ln t  is the natural logarithm of time. For specific details refer to Irino and 

Patterson (1997). 

An auditory filter bank consists of non-uniform band-pass filters and is designed to 

imitate the frequency resolution of human hearing. In our HLS model, gammachirp filter banks 

are used with centre frequencies spaced logarithmically between 100 Hz and 8000 Hz.  
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2.2.3 Simulation of hearing threshold elevation and loudness recruitment 

Simulation of threshold elevation and loudness recruitment is implemented in the block of 

expanding and scaling spectral envelope in Figure 2.1. It is a modified method based on the 

principle of envelope expansion and scaling in a previous simulation (Moore and Glasberg, 

1993). In the envelope of signal from each auditory filter band, the level of processed stimulus 

is calculated as pL in dB HL, the level of unprocessed stimulus as uL  in dB HL, the hearing 

threshold level as TL  in dB HL and the threshold of discomfort as  (also called the 

uncomfortable loudness level) in dB HL. Figure 2.3 (a) shows the assumed audiogram of the 

moderate high frequency sloping hearing loss. The hearing thresholds are 40 dB HL at low 

frequencies (0.25, 0.5, 1 kHz) and 55 dB HL at high frequencies (2, 4, 8 kHz). The 

uncomfortable levels are 110 dB HL across all the frequencies. Figure 2.3 (b) shows the 

principal relationship between the processed envelope and unprocessed envelope in our HLS 

model. This input/output (unprocessed/processed) function can simulate the phenomenon that 

a hearing impaired individual could not hear the sound until the sound reaches the hearing 

threshold level and shows the similar uncomfortable loudness as a normal hearing individual 

when the sound level is very high. In Moore’s simulation model (Moore and Glasberg, 1993), 

the input  and the output  are in unvaried linear relationship which is not realistic 

when the sound is too loud for a listener to tolerate. Therefore the proposed nonlinear model 

imposes a threshold at the uncomfortable level and sound will be clipped when it is over the 

uncomfortable loudness level. The nonlinear model also imposes the sound output level to be 

near 0 dB HL to mimic little sound perception as long as the sound level is below the hearing 

threshold. Therefore, the model can simulate the subjective perception of very loud and very 

quiet sounds. 
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(a)                                 (b) 

    

Figure  2.3: Illustration of the mechanism how to simulate the threshold elevation and loudness 

recruitment. (a) The assumed audiogram with hearing thresholds and uncomfortable levels 

across audiometric frequencies in the HLS model; (b) the input-output function to simulate 

threshold elevation and loudness recruitment in the HLS model. The hearing threshold and 

uncomfortable level are illustrated in both (a) and (b).  

2.2.4 Simulation of reduced frequency resolution 

Spectral smearing is implemented to simulate reduced frequency resolution. Reduced 

frequency resolution means the ability to detect signal at one frequency in the presence of 

sound at a different frequency. In each channel, the waveform of the input stimuli was 

processed frame by frame. For each of the analysis/synthesis frames in each channel, the 

short-term spectrum was calculated using a Hamming window and a fast Fourier transform 

(FFT). The length of the Hamming window was 128 samples at a sample rate of 16 kHz, 

corresponding to an input frame size of 8 ms. The size of FFT was chosen to be reasonably 

small so as to limit computational complexity, while still sufficiently long to encompass a 

typical pitch period and give reasonable frequency resolution. Spectral smearing was 

performed by replacing each component of the power spectrum with a weighted sum of the 

surrounding components (Baer and Moore, 1993). The weighting function was similar to the 

shape of the broadened impaired auditory filter centred on the component. The broadened roex 
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function which simply simulates broadened auditory filter shape in the frequency domain was 

selected as the weighting function as in Baer and Moore (1993).  

2.2.5 Objective hearing loss simulation results 

Figure  2.4 shows waveforms and the spectrograms of the original clean and the noisy 

Bamford-Kowal-Bench (BKB) sentence: “she drinks from her cup” processed with or without 

the hearing loss simulation. The BKB sentences consist of 21 lists with 16 sentences in each 

list. These sentences can be used to test speech recognition by calculating the proportion of 

recognized keywords. The waveforms and spectrograms are shown for (a) original clean 

speech; (b) the same clean speech processed with the hearing loss simulation; (c) the same clean 

speech with speech shaped noise (0 dB input SNR); (d) the same noisy speech processed with 

the hearing loss simulation. Speech shaped noise is a stationary noise which is produced by 

filtering the white Gaussian noise with a filter that shows the similar frequency response as the 

spectrum of the speech being used. Through this way, the speech shaped noise has the similar 

long term spectrum as the speech being used. All the waveforms are plotted with the same 

amplitude scale to indicate the relative amplitudes. All the spectrograms are plotted with the 

same colour scale (colour scale corresponds to amplitude power level scale) to also indicate the 

relative levels. Comparison in waveforms between (a) and (b) or between (c) and (d) shows that 

perceived sound levels are reduced due to threshold elevation and loudness recruitment. 

Comparison in spectrograms between (a) and (b) or between (c) and (d) shows that spectral 

information is smeared and important speech formants are blurred in (b) and (d) due to reduced 

frequency selectivity. Comparison of spectrograms between (b) and (d) shows that HLS model 

is very sensitive to noise and the information of noisy speech will be blurred and deteriorated 

severely by the HLS model. Assuming the HLS model is realistic, this also implies the effects 

of noise on hearing impaired ear and why HI listeners complain communication in noise 

environment. Through informal listening, although clean speech processed with the HLS model 

can still be understood; noisy speech (0 dB SNR) with the HLS model is difficult to understand. 

Listening to speech (with or without noise) with the HLS model could give us an impression of 
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the difficulty experienced by HI listeners when listening to speech. During the signal processing 

stage, the perceptual consequences of the enhanced speech for HI listeners can be predicted by 

processing the enhanced speech with the HLS model and playing to the normal ear. Therefore, 

the HLS model is potentially an effective tool in evaluating speech perceptual effects for the 

impaired ear through speech spectrograms or playing to NH listeners.    

 

 

Figure  2.4: The demonstration of the speech in stationary noise with/without the HLS model. 

The BKB sentence is “she drinks from her cup”. The waveforms and spectrograms are shown 

for (a) original clean speech; (b) the same clean speech processed with the hearing loss 
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simulation; (c) the same clean speech with speech shaped noise (0 dB input SNR); (d) the same 

noisy speech processed with the hearing loss simulation. 

2.3 Discussion 

This chapter proposed a novel HLS system by combining the physiologically motivated 

compressive gammachirp auditory filter bank with traditional methods to simulate both 

threshold and supra-threshold hearing loss factors. The purpose of the research was to build a 

versatile and computationally inexpensive HLS system that is simple to operate and maintain, 

yet has strong theoretical foundations and realistic simulation consequences. Figure 2.4 

suggests that such a system can potentially simulate various perceptual aspects of 

sensorineural hearing loss, including reduced frequency selectivity, increased hearing 

thresholds and loudness recruitment. Furthermore, the compressive gammachirp-based HLS 

system can simulate the compressive, level dependent characteristic of the basilar membrane. 

The adoption of the gammachirp auditory filters into the HLS model is novel. This proposed 

HLS model has been validated in evaluating intelligibility of speech corrupted with speech 

shaped noise or babble noise. 

 When the noisy speech is processed with a noise reduction algorithm, perceptual 

distortions will be introduced to both speech and noise for an impaired ear which is different 

from perception for a normal ear. Whether the HLS model can appropriately quantify the 

impaired perceptual distortion brought by noise reduction algorithms needs validation 

experiments. Further work in Chapter 5 will be done to validate the HLS model in assessing 

the effects of noise reduction algorithms for HI listeners. The validation experiment in Chapter 

5 will be performed by evaluating noise reduction algorithms with the HLS model and NH 

subjects. The result in Chapter 5 will be compared with the results with HI subjects in Chapter 

4. If the intelligibility results from both experiments show similar performance, the HLS model 

can be proposed as realistic in predicting intelligibility effects for HI subjects. 
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Chapter 3 Development of sparse coding shrinkage algorithm  

Hearing impaired people struggle more to understand speech that is corrupted with noise than 

normal hearing listeners. Current commercial hearing aids still have difficulty reducing noise 

and improving speech perception for hearing impaired (HI) listeners. This also demonstrates 

why hearing aid users often don’t like to use hearing aids in noisy environments. In this 

chapter we have developed a single-channel sparse coding shrinkage noise reduction strategy 

for hearing aid (HA) users in noisy environments. This strategy takes into account 

superthreshold auditory deficits such as reduced frequency selectivity and, not only reduces 

background noise but also extracts key information from speech. The proposed strategy is 

compared with a competitive state-of-the-art noise reduction algorithm and unprocessed 

speech, through objective evaluations, in this chapter.  

3.1 Introduction 

Some hearing impairment compensation strategies have been well developed (e.g. automatic 

gain control), but noise reduction strategies need improving for use with hearing aids. Current 

hearing aids can help HI listeners in clean environments, but still have difficulty improving 

users’ speech perception in noisy environments. This is due to a shortage of reliable and 

practical noise reduction algorithms for hearing aids. Because of the small size of hearing aids, 

multi-microphone noise reduction algorithms which can improve speech intelligibility are not 

suitable. Usually a hearing aid consists of only one or two microphones with single-channel 

noise reduction algorithms and beam forming algorithms together. The performance of 

single-channel noise reduction algorithms is critical in hearing aids.  

Previous development of noise reduction strategies in hearing aids mainly focused on 

spectral subtraction (Levitt et al., 1993, Elberling et al., 1993, Alcantara et al., 2003, Dahlquist 

et al., 2005) or Wiener filtering algorithms (Levitt et al., 1993). Moreover, most noise 

reduction algorithms were originally developed to improve speech perception for normal 

hearing subjects and were later adopted for hearing aid users. Due to the hearing loss factors in 
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HI listeners, algorithms that are optimal for NH listeners might not be optimal for HI listeners.  

When developing noise reduction algorithms for HI listeners, the hearing loss factors 

should be taken into account and compensated for when possible. As described in the previous 

chapters, for people with sensorineural hearing loss, hearing loss factors include threshold 

elevation, loudness recruitment, reduced frequency selectivity and reduced temporal resolution. 

Automatic gain control can compensate for threshold elevation and loudness recruitment, but 

there are currently no appropriate solutions to reduced frequency selectivity and reduced 

temporal resolution. Some researchers have attempted to compensate for reduced frequency 

selectivity with spectral sharpening but have not measured any intelligibility improvements 

(Baer et al., 1993). A possible solution to the speech in noise problem to compensate for 

reduced frequency selectivity is to extract and preserve key speech information while at the 

same time reducing the overall noise. This way, essential speech information will not be 

blurred or smeared by broadened auditory filters in HI listeners.  

In this chapter, we propose a noise reduction strategy based on the principle of sparse 

coding shrinkage (SCS). It assumes a super-Gaussian (sparse) distribution of the principal 

components in clean speech and SCS is performed on the principal components. SCS was first 

proposed by (Hyvärinen, 1999), then applied to image noise reduction (Hyvärinen et al., 1998) 

and later applied to speech enhancement (Potamitis et al., 2001a, Sang et al., 2011a, Zou et al., 

2008). Sparse coding has shown significant improvement in cochlear implant users (Li and 

Lutman, 2008) and this implies that there may be potential benefits of SCS in hearing aid 

users. One previous research study (Jesper and Richard, 2007) also assumed that the principal 

components of the speech are super-Gaussian but their calculation is complicated. The 

shrinkage function in our SCS is simplified by an approximation method.  

This SCS algorithm is compared with a Wiener filtering approach, of which the code is 

provided by Timo Gerkmann. This algorithm was chosen as it is a competitive state-of-the-art 

noise reduction algorithm (Breithaupt et al., 2008, Gerkmann and Martin, 2009, Gerkmann and 

Hendriks, 2012). Wiener filtering approaches can reach optimal performance when the speech 

and noise are both in Gaussian distribution. However, previous research has shown that speech 
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components are usually not in Gaussian distribution. As SCS has been developed to estimate 

the speech components with assumption of super-Gaussian distribution, we hypothesize that 

SCS might perform better than CS-WF especially for hearing impaired listeners who require 

less-but-key information from noisy speech.  

This SCS was also compared with unprocessed speech which can show the baseline 

performance in a noisy environment without any algorithms applied. Previous research 

demonstrated that noise reduction algorithms might reduce speech intelligibility for HI 

listeners (Dahlquist et al., 2005). The comparison with unprocessed speech will be used to 

investigate whether there is any benefit of noise reduction algorithms for HI listeners. Babble 

noise and speech shaped noise were chosen as the additive noise, due to their similar average 

long term spectrum when compared with the speech signal. This makes the noise reduction 

performance challenging.   

The perceptual consequences of noise reduction algorithms are demonstrated in ‘normal’ 

and ‘impaired’ spectrograms for NH listeners and HI listeners respectively. The ‘normal’ 

spectrograms are normal short-time Fourier Transform (STFT) domain speech amplitude 

representations. The ‘impaired’ spectrograms are speech with the hearing loss simulation (HLS) 

model added and then shown in spectrograms. If the HLS model is realistic to some degree, 

the ‘impaired’ spectrogram becomes an easy way to show the effects of signal processing 

strategies on HI listeners visually.        

Previous research has shown that objective criteria such as segmental SNR or spectral 

distortion were uncorrelated with either speech quality or speech intelligibility (Ma et al., 

2009). In this chapter, we will evaluate the noise reduction algorithms with several objective 

criteria (PESQ, fwsegSNR, CSII, NCM) which have been validated to reflect speech quality or 

intelligibility in normal hearing (NH) subjects (Hu and Loizou, 2008, Ma et al., 2009). We will 

also evaluate the noise reduction algorithms with an objective measure HASQI for hearing aids 

users (Kates and Arehart, 2010) to predict speech quality in HI listeners. 

The structure of this chapter is as follows. Firstly, the concept and principle of sparse 

coding shrinkage is introduced. Secondly, the implementation of the sparse coding shrinkage 
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principle for speech enhancement is proposed. Thirdly, we will introduce a competitive Wiener 

filtering algorithm which is going to be compared with SCS. Then, we will demonstrate the 

perceptual consequences of noise reduction algorithms for NH and HI listeners in ‘normal’ and 

‘impaired’ spectrograms respectively. After this, comparison among the proposed SCS strategy, 

the competitive Wiener filtering algorithm and the noisy speech is performed through objective 

measures. Discussion and conclusions are also given to justify the effects of noise reduction 

algorithms with objective evaluations. 

3.2 Introduction of sparse coding shrinkage 

3.2.1 Gaussian distribution and sparse distribution 

 

Figure  3.1: Examples of Gaussian distribution and sparse distribution centred on zero. Here the 

signal distribution is sparse (solid line) and the noise distribution is Gaussian (dotted line). 

  

Figure 3.1 depicts examples of Gaussian distribution (dotted line) as a bell shape and sparse 

distribution (solid line) as a peaked shape. Suppose the clean signal is mixed with the noise 

and the clean signal needs to be estimated from the observed noisy signal. If the clean signal 

and the noise are in the same distribution, it is difficult to estimate the clean signal from the 

noisy signal. However, if the distribution of the signal is sparse (also called super-Gaussian) 

and the distribution of the noise is Gaussian as shown in Figure 3.1, estimation of the signal is 
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possible due to the large deviation between their distributions. The sparse coding shrinkage 

principle can be used to estimate the clean signal in the latter situation. Derivation of the sparse 

coding shrinkage is presented in the following section. Generally, no matter which principle is 

applied to the noise reduction algorithms, it is always important to differentiate the 

characteristics between the signal and the noise. 

3.2.2 Principle of Sparse Coding Shrinkage  

This SCS principle is applied to estimate a random variable corrupted in Gaussian noise given 

sparse distribution of the random variable. Details are also described in (Hyvärinen, 1999). We 

will propose a noise reduction algorithm for speech enhancement based on the SCS principle 

in the next section.  

 We first consider only scalar random variables. s denotes the original non-Gaussian 

random variable and v the Gaussian noise with zero mean and variance 2 . Assume that we 

observe only the random variable y: 

 y s v   (3.1)             

The maximum a posterior estimator (MAP) is used to estimate the original variable s: 

 
( ) ( )

ˆ arg max ( ) arg max
( )s s

p y s p s
s p s y

p y
   (3.2) 

where ŝ is the estimated original clean variable s and p denotes probability density.  

Since ( )p y does not depend on s, 

 ˆ arg max ( ) ( )v s
s

s p y s p s   (3.3)             

where ( )vp y s is the density of noise evaluated at y s  and ( )sp s is the density of the 

original signal evaluated at s. As the noise is assumed to be white Gaussian noise, the distribution 

of noise is shown in the following equation, 

 
2

1 1
( ) exp

22
v

y s
p y s

 

         
 (3.4) 

Using lns sf p  the negative log density, then 
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 2
2

1
ˆ argmin ( ) ( )

2 ss
s y s f s


    (3.5) 

Assuming sf to be strictly convex and differentiable, this equation could be solved using the 

following expression  

 ˆ ( )s g y  (3.6)                      

which is called ‘shrinkage function’. The shrinkage function used in our research is shown in 

Figure 3.2 with its specific expression in Equation (3.17). The effect of this function is to 

reduce the absolute value of its argument by a certain amount, which depends on the noise 

variance. Small arguments are suppressed to zero.  

 

Figure  3.2: The shrinkage function used in our research (dash-dotted line). y is the observed 

signal and ŝ  is the estimated clean signal. The effect of this function is to reduce the absolute 

value of its argument by a certain amount, which depends on the noise variance. Small 

arguments are suppressed to zero (Hyvärinen, 1999).  

3.3 Sparse Coding Shrinkage in Speech 

3.3.1 Implementation 
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Figure  3.3: The flowchart of sparse coding shrinkage in noisy speech. 
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Figure 3.3 illustrates the flowchart of conducting the sparse coding shrinkage in noisy speech. 

This flowchart is implemented on each speech segment with length of k. The observed noisy 

speech is reconstructed into a noisy speech matrix Z as Equation (3.7). The noisy speech 

matrix was transformed into principal components where clean signals are transformed into a 

sparse distribution and noise is transformed into a Gaussian distribution. The shrinkage 

function g(·) is applied to suppress the noise in noisy components and estimate the clean 

components. After that, the inverse transform and reconstruction is calculated to derive the 

estimated clean speech signals. How to derive W will be described in Figure  3.4. W indicates 

the transpose of WT and W-T means the inverse of WT. 

 

The noisy speech signal z is assumed to be produced by corrupting the original speech 

sequence x with Gaussian noise n:                             

 z x n   (3.7)             

The noisy speech matrix is constructed by reshaping z as overlapping frames (50% overlap),            
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 (3.8)             

where l (l=15) denotes the number of frames and m (m=64) is number of samples in each 4-ms 

frame at a sampling rate of 16 kHz. Accordingly, the total number of samples in each speech 

segment k equals m(l-1)/2+m and the duration of each speech segment is 32 ms.  

After reshaping, the original noisy speech can be written as  

  Z X N  (3.9) 

 

Noise is first estimated from noisy signal through a noise power estimation method (explained 

in Section  3.3.3). The estimated noise covariance matrix ˆ
nR and the estimated clean speech 

covariance matrix ˆ
xR are derived as noise and speech are assumed as uncorrelated. When the 
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noise and speech both have zero means, the covariance matrices can be calculated through the 

following equations, 
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 (3.10) 

Figure 3.4 shows how to derive eigenvalue matrix xΛ and eigenvector matrix W through 

simultaneous diagonalization of the estimated clean speech and noise covariance matrices (Hu 

and Loizou, 2003). 
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Figure  3.4: Flowchart of simultaneous diagonalization of the estimated speech and noise 

covariance matrices. 

 

The transformation from noisy speech to principal components is realized with the eigenvector 

matrix W as illustrated in Figure 3.3.  

Through the implementation in Figure 3.4, not only eigenvector matrix is derived but also 

noise is pre-whitened as illustrated in Equation (3.9) 
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 (3.11) 

Transforming the noisy speech matrix to principal components is realized with the matrix W as 

follows, 

     T T TY W Z W X W N S V  (3.12) 

where [ ; ; ]  1 2 mY y y y , [ ; ; ]  1 2 mS s s s , [ ; ; ]  1 2 mV v v v , and the clean speech 

components is are in super-Gaussian distribution and noise components iv are in Gaussian 

distribution. Therefore the sparse coding shrinkage function can be applied to each element iy  

to estimate the clean element is :                       
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 ˆ g(y )i is   (3.13)         

where iy  is one element in the component iy  and is  is one element in the component is . 

ˆ ˆ ˆ ˆ[ ; ; ]  1 2 mS s s s  is the estimated clean speech matrix in the space of principal components. 

Inverse transformation of the estimated clean matrix yields                         

 ˆˆ  TX W S  (3.14)             

Finally, the enhanced speech x̂  is reconstructed by reshaping X̂  back into a vector by the 

overlap and add method (Deller et al., 2000). 

Although the above implementation is performed on a short speech segment (32 ms), the 

processing with longer speech can be realized by dividing it into short segments and using the 

overlap and add method (Deller et al., 2000).   

3.3.2 Super-Gaussian distribution and shrinkage function 
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Figure  3.5: An example of a histogram showing the distribution of the coefficients of one 

principal component vector is in speech. The horizontal axis indicates the amplitude of the 

principal components. The vertical axis indicates the number of components in each amplitude 

bin.  

 

Figure 3.5 shows the distribution of one principal component in speech. This shows an 
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example of moderately super-Gaussian distribution. The red line was plotted to emphasize the 

peaked shape of the distribution which is different from the bell shape of Gaussian distribution. 

Sparsity can also be quantified by kurtosis of the signal (Field, 1994). The more sparse, 

the larger the kurtosis is. The larger sparsity level is also shown as a more peaked distribution 

shape in Fig. 3.1. Sparsity of each component is in S  can be estimated through normalized 

kurtosis: 
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where ijs is the jth observation value in is , is the mean,  is the standard deviation and K is 

the measured normalized kurtosis. The measured kurtosis is much larger than zero, the 

normalized kurtosis of a Gaussian distribution. This means that the distribution of each 

component is is super-Gaussian. Different super-Gaussian levels have been categorized as 

moderately super Gaussian, Laplacian and strongly super Gaussian (Hyvärinen, 1999). The 

distribution of clean speech components was selected as a linear combination of Gaussian and 

Laplacian distributions (Hyvärinen, 1999):  

  2( ) exp 2s i i if s C as b s    (3.16) 

where C is an irrelevant scaling constant. Different values of a and b represent different 

degrees of super-Gaussianity.   

Through maximum-a-posterior (MAP) derivation (Hyvärinen, 1999), the shrinkage function 

corresponding to the distribution of Equation (3.16) is derived as: 

  2
2

1
( ) sign( ) max 0,

1i i ig y y y b
a

 


 


 (3.17) 

where 2  is noise variance in each noise component iv . The above shrinkage function is 

shown as the dash-dotted line in Figure 3.2. 

This shrinkage function is interpolated between the shrinkage function of the Gaussian density 

and the shrinkage function of the Laplacian density. Specifically, when the distribution of is is 
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Laplacian, a is 0 and b is estimated as  22 iE s ; when the distribution of is is Gaussian, b 

is 0 and a is estimated as  21 iE s . Therefore it is reasonable to constrain the values of a and 

b in the intervals  20,1 iE s    and  20, 2 iE s 
  

, respectively.   

To simplify the estimation of a and b in Equation (3.17), we estimate 

that  2
1 ia E s ,  2

2 2 ib E s  ,  

where 1,2 are coefficients to be adjusted according to the distribution of is . In our test, 1 is 

set to 1, 2 is set to 0.3.  

   2 2 2
i iE s E y    the speech and noise are assumed to be uncorrelated. 

The choice of moderately super Gaussian distributions is justified by the criterion  that when 

 2 1
(0)

2
i sE s f  , the distribution model can be assumed to be described as Equation 

(3.16) (Hyvärinen, 1999).  

3.3.3 Estimation of noise covariance matrix 

Generally, the noise covariance matrix needs to be estimated as ˆ
nR in Equation (3.11) and 

Figure 3.4 when a noisy speech signal is given. Here, a state-of-the-art noise estimator 

proposed by Gerkmann and Hendriks (2012) is adopted to track non-stationary noise. Instead 

of estimating noise power based on a voice activity detector, this method estimated noise 

power based on a soft speech presence probability (SPP) with a fixed priori SNR. The 

amplitude of the noise spectrum is therefore the square root of the noise power spectrum at 

each frequency bin frame by frame. The phase of the noise spectrum is assumed to be the same 

as that of noisy speech spectrum. The noise spectrum can be obtained by multiplying the 

amplitude of the noise spectrum with the phase of the noisy spectrum. The time-domain noise 

waveform is accordingly estimated with the inverse FFT of the estimated noise spectrum. The 

noise covariance matrix is estimated by calculating the covariance of noise in temporal domain 
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as shown in Figure 3.4.  

Another way to estimate the noise covariance matrix is estimated through direct inverse 

Fourier transform of the noise power spectral density according to Wiener-Khinchin Formula 

(Deller et al., 2000): 
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Where ( )jw
nn e is NPSD and [ ]nn m is noise auto-correlation coefficient which can be 

derived through inverse Fourier transform of NPSD. When the mean of noise is zero, noise 

auto-covariance coefficients equal noise auto-correlation coefficients. If the noise covariance 

matrix is in the length of M, it could be constructed as a symmetric Toeplitz matrix with the 

first M values of noise auto-covariance coefficients.       

3.3.4 Introduction of comparison algorithm 

This SCS algorithm was compared with a Wiener filtering approach, of which the code was 

provided by Timo Gerkmann (Breithaupt et al., 2008, Gerkmann and Martin, 2009, Gerkmann 

and Hendriks, 2012). The idea of Wiener filtering has been introduced in Section 1.5.2. One 

characteristic of this Wiener filtering approach is that the a priori SNR is estimated by the 

cepstral smoothing method. We refer to this approach as ‘CS-WF’ herein. This algorithm was 

chosen because Wiener filters are used frequently in today’s hearing aids and CS-WF is a 

competitive, state-of-the-art, algorithm (Breithaupt et al., 2008, Gerkmann and Martin, 2009, 

Gerkmann and Hendriks, 2012). There were two critical techniques in CS-WF. One technique 

was to estimate the noise power spectral density (NPSD) based on a speech presence 

probability (SPP), where the a priori SNR was a fixed value in estimating the SPP (Gerkmann 

and Hendriks, 2012). SCS also adopted the same NPSD estimation method as described in 

section 3.3.3. The other technique involved estimating the a priori SNR using temporal 

cepstrum smoothing with bias compensation (Breithaupt et al., 2008, Gerkmann and Martin, 

2009). This algorithm can reduce musical noise and suppress non-stationary noise effectively.  
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3.4 Objective evaluation 

The SCS, CS-WF and the noisy speech (baseline condition) were evaluated through objective 

criteria. Although the current objective measures are not as reliable as the subjective tests 

especially for HI subjects, it is quick and cheap to test algorithms with objective measures 

during the strategy development stage. Subjective evaluations are presented in the next two 

chapters. Bamford-Kowal-Bench (BKB) (Bench et al., 1979) sentences recorded by a female 

British speaker are used as speech material. The sentence database comprised 21 lists with 16 

sentences in each list and 3 or 4 keywords in each sentence. Speech shaped noise (SSN) and 

babble noise are used as additive background noise.  

3.4.1 Demonstration through ‘normal’ and ‘impaired’ spectrograms 

In this section, we demonstrate the noise reduction effects for NH and HI listeners with speech 

temporal waveforms and spectrograms. Figure 3.6 and 3.7 show speech in speech shaped noise 

or babble noise (0 dB input SNR) with and without noise reduction algorithms for NH listeners. 

Supposing that the hearing impaired listening can be approximated with the additive 

combination effects of hearing loss distortion and normal hearing listening, stimuli processed 

with a realistic hearing loss simulation can mimic the perceptual consequence of hearing loss. 

The spectrograms of speech with the HLS model developed and described in Chapter 2 are 

named ‘impaired spectrograms’. The HLS model assumed the same hearing thresholds as 

shown in Figure 2.2. Figure 3.8 and 3.9 show speech in speech shaped noise or babble noise (0 

dB input SNR) with or without noise reduction algorithms for HI listeners in ‘impaired’ 

waveforms and spectrograms. It is of note that all the four spectrograms in each figure share 

the same colour scale to show the amplitude differences among them. 

Figure 3.6 and Figure 3.7 show the ‘normal’ time domain waveforms and spectrograms of 

an example BKB sentence “she drinks from her cup” under 0 dB input SNR with different 

noise reduction strategies in the background of SSN and babble noise respectively. Clean 

speech and noisy speech are also shown. The waveforms and the spectrograms are (a) original 

speech; (b) noisy speech; (c) noisy speech processed with CS-WF; (d) noisy speech processed 
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with SCS. By comparison through (b) to (d), the noise reduction algorithms show more noise 

reduction effects in speech shaped noise but less in babble noise. Babble noise is a competitive 

multi-talker noise and is difficult to reduce due to its non-stationary property. SCS reduced the 

speech shaped noise most efficiently (shown in Figure 3.6) and CS-WF reduced babble noise 

most efficiently (shown in Figure 3.7). 

 

Figure  3.6: The demonstration of the speech in stationary noise with/without noise reduction 

algorithms. The BKB sentence is “Little baby sleeps”. The spectrograms and waveforms are 

shown for (a) original speech; (b) speech in speech shaped noise (0 dB input SNR); (c) the same 

noisy speech processed with CS-WF; (d) the noisy speech processed with SCS. 
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Figure  3.7: The demonstration of the speech in babble noise with/without noise reduction 

algorithms. The BKB sentence is “Little baby sleeps”. The spectrograms and waveforms are 

shown for (a) original speech; (b) speech in babble noise (0 dB input SNR); (c) the same noisy 

speech processed with CS-WF; (d) the noisy speech processed with SCS. 

 

Figure 3.8 and Figure 3.9 show the ‘impaired’ time domain waveforms and spectrograms 

of an example BKB sentence “she drinks from her cup” under 0 dB input SNR (in the 

background of SSN and babble noise respectively) with different noise reduction strategies. 

The ‘impaired’ clean speech and noisy speech are also shown. The waveforms and the 
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spectrograms shown are (a) original speech with the HLS model; (b) noisy speech with the 

HLS model; (c) the same noisy speech processed with CS-WF plus the HLS model; (d) the 

same noisy speech processed with SCS plus the HLS model. By visual comparison and 

informal listening among (b) to (d) in each figure, noise has detrimental effects in the hearing 

loss simulation model. The ‘impaired’ spectrograms in Figure 3.8 show that the noise reduction 

effects increase in the order of noisy, CS-WF and SCS in speech shaped noise. This indicates 

the potential of noise reduction algorithms to reduce noise in the HLS model in speech shaped 

noise. The ‘impaired’ spectrograms in Figure 3.9 show that the noise reduction algorithms only 

slightly reduce noise. This indicates the difficulty of noise reduction algorithms to reduce 

babble noise in the HLS model.  

Through informal listening of the ‘impaired’ speech (Figure 3.8 and Figure 3.9), there is 

no difference in speech quality (‘comfort’, ‘clarity’) level among (b) to (d); however, the 

difference in noise loudness among (b) to (d) can be perceived especially in speech shaped 

noise. In contrast, through the informal listening of the ‘normal’ speech (Figure 3.6 and Figure 

3.7), the difference in both speech quality and noise loudness can be detected among (b) to (d). 

This suggests that ‘impaired’ speech is less sensitive to speech distortion by noise reduction 

algorithms than ‘normal’ speech. 
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Figure  3.8: The demonstration of the unprocessed/enhanced speech (speech in stationary noise) 

with the HLS model. The BKB sentence is “she drinks from her cup”. The waveforms and 

spectrograms are shown for (a) original speech with the hearing loss simulation; (b) speech in 

speech shaped noise (0 dB input SNR) with the hearing loss simulation; (c) the same noisy 

speech processed with CS-WF and then with the hearing loss simulation; (d) the same noisy 

speech processed with SCS and then with the hearing loss simulation. 
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Figure  3.9: The demonstration of the unprocessed/enhanced speech (speech in babble noise) 

with the HLS model. The BKB sentence is “she drinks from her cup”. The waveforms and 

spectrograms are shown for (a) original speech with the hearing loss simulation; (b) speech in 

babble noise (0 dB input SNR) with the hearing loss simulation; (c) the same noisy speech 

processed with CS-WF and then with the hearing loss simulation; (d) the same noisy speech 

processed with SCS and then with the hearing loss simulation. 
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3.4.2 Objective quality and intelligibility evaluation 

This section introduces the results of objective measures that were explained in detail in 

Section 1.6.3, including fwsegSNR, PESQ, HASQI, NCM, STOI. FwsegSNR reflects the 

physical noise reduction effects in NH listeners. All of the measures were calculated based on 

336 BKB sentences (21 lists with 16 sentences in each list). The results presented in Figure 

3.10 were the averages from the 336 sentences in each condition. While mixing the speech 

with noise for different SNRs, the level of speech was kept constant and the level of noise was 

varied. Another advantage of the five objective measures is that their results don’t vary with 

the amplitude of speech as long as the amplitude of speech is not over clipped. That is, when 

the reference speech (clean speech) and processed speech are varied with the same magnitude, 

the result of the objective measure is kept the same. 

The most widely used objective quality metric ‘segmental SNR’ (segSNR) is not used 

here as it has been proved to be uncorrelated with either subjective quality or intelligibility 

performance (Yi and Loizou, 2008, Ma et al., 2009). PESQ reflects sound quality and has been 

recommended by ITU-T to assess speech quality of narrow-band handset telephony and 

narrow-band speech codec. PESQ has also been validated to reflect subjective quality 

impression for NH listeners. NCM and STOI are two validated objective intelligibility 

measures of noise reduction algorithms for NH listeners. The objective measures that have 

been validated with NH listeners might not reflect HI listening effects, as large deviations 

occurred between the objective measures for NH listeners and the performance with HI 

subjects (Pavlovic, 1984). 

   Although some effort has been made to develop objective measures for HI listeners, their 

accuracy in predicting effects of noise reduction algorithms for HI listeners are still uncertain. 

HASQI is a speech quality metric for HI listeners and it incorporates hearing thresholds as 

input parameters. We assumed the same moderate hearing loss level (shown in Figure 2.2) in 

HASQI.  

Figure  3.10 (a) shows the fwsegSNR results of noisy, CS-WF and SCS in speech shaped 
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noise (left half panel) and babble noise (right half panel) under 0, 5, 10 dB input SNRs. SCS 

and CS-WF show the most physical noise reduction effects in speech shaped noise and babble 

noise respectively. This also is in accordance with the spectrograms shown in Fig. 3-4 and Fig. 

3-5 that SCS reduces speech shaped noise the most and CS-WF reduces babble noise the most.  

 Figure  3.10 (b) shows the PESQ results of noisy, CS-WF and SCS in speech shaped noise 

(left half panel) and babble noise (right half panel) under 0, 5, 10 dB input SNRs. CS-WF 

shows the best speech quality in this metric in both speech shaped noise and babble noise. This 

indicates that although SCS achieved greater noise reduction, speech distortion might be 

introduced at the same time which is reflected by PESQ.  

Figure  3.10 (c) and (d) respectively show the NCM and STOI results of noisy, CS-WF 

and SCS in speech shaped noise (left half panel) and babble noise (right half panel) under 0, 5, 

10 dB input SNRs. Both of these are objective intelligibility measures and have been validated 

with NH listeners. These results show very slight differences among noisy, CS-WF and SCS in 

each condition.  

Figure  3.10 (e) shows the HASQI results of noisy, CS-WF and SCS in speech shaped 

noise (left half panel) and babble noise (right half panel) under 0, 5, 10 dB input SNRs. This 

metric has incorporated the parameters of hearing thresholds with the moderate hearing loss 

and is expected to reflect speech quality for HI listeners. SCS and CS-WF show the best 

increase in quality for speech shaped noise and babble noise respectively in this metric. The 

results of HASQI are similar to fwsegSNR where SCS shows the best performance in 

stationary noise and CS-WF show the best performance in babble noise. Furthermore, the 

benefits of noise reduction algorithms in HASQI are relatively larger than in fwsegSNR. 

HASQI and fwsegSNR reflect effects on quality for HI listeners and NH listeners respectively. 

This indicates noise reduction algorithms might benefit HI listeners more than NH listeners in 

speech quality.     

 It is always difficult to set up a reliable objective intelligibility measure for HI listeners 

especially when evaluating comparative intelligibility effects between different signal 

processing strategies. Although several objective intelligibility measures (Hollube and 
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Kollmeier, 1996) have been developed for HI listeners, their validation with effects of noise 

reduction algorithms on HI listeners has not yet been proven. Moreover, there are seldom 

publicly available objective measures for HI listeners. Therefore, no objective intelligibility 

measure for HI subjects is adopted in this section. Alternatively, we have proposed a 

methodology to predict intelligibility effects for HI listeners with a hearing loss simulation 

model and normal listening in Chapter 5.       
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Figure  3.10: Results of objective measures of fwsegSNR, PESQ, NCM, STOI and HASQI. 

FwsegSNR and PESQ are quality measures for NH listeners; NCM and STOI are intelligibility 
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measures for NH listeners; HASQI is a quality measure for HI listeners. A more positive value 

corresponds to better performance in each measure.  

3.5 Discussion 

3.5.1 Potential of sparse coding strategies in speech enhancement 

The sparse coding shrinkage principle assumes a super-Gaussian distribution of speech 

representation coefficients and Gaussian distribution of noise representation coefficients and 

then derives a gain function (shrinkage function) which is different from Wiener filtering. 

Sparse coding shrinkage is not limited to principal components (PCA) or independent 

components (ICA), but could be applied to different speech representation domains. For 

example, in the STFT-based speech enhancement methods, the traditional Gaussian STFT 

coefficient assumption (Ephraim and Malah, 1984) has been replaced by Laplacian or gamma 

assumptions (Martin, 2005) or a generalized super-Gaussian assumption (Lotter and Vary, 

2005). Sparse coding shrinkage has also been applied in the spectral envelope domain to 

realize speech enhancement in CI vocoded speech (Li, 2008, Li and Lutman, 2008, Hu et al., 

2011a, Sang et al., 2011a).  

The proposed SCS strategy is different from previous SCS strategies in speech 

enhancement (Potamitis et al., 2001b, Zou et al., 2008, Sang et al., 2011a, Potamitis et al., 

2001a) which usually need a priori knowledge of statistics of speech and are therefore not 

robust in different speech environments. The proposed SCS performed shrinkage function in 

the domain of principal components with approximate shrinkage parameters without a priori 

knowledge. 

Some advanced sparse coding strategies have already been applied to speech 

enhancement besides the sparse coding shrinkage principle. For example, Sigg applied K-SVD 

(Aharon et al., 2006) in speech enhancement (Sigg et al., 2010). For Gaussian noise, they 

derive a dictionary from training speech data; for structured noise (nongaussian), they 

dictionaries from training speech and training noise separately. Although most of the 

state-of-the-art sparse coding strategies have the potential to apply to speech enhancement 
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strategies (Aharon et al., 2006, Zhou et al., 2009, Zhou et al., 2011, Mairal et al., 2010), it is 

critical to apply sparse coding strategies to blind environments without a priori knowledge of 

either speech or noise but with robust performance. One noticeable work by Jafari and 

Plumbley (2011) is one of the very few sparse coding dictionary learning algorithms that aim 

to decompose speech signals and reduce noise. However, they only evaluated the noise 

reduction effects with one objective measure. Subjective tests are necessary to further justify 

such algorithms.  

3.5.2 Validity of objective measures 

The objective measures in this chapter include two quality measures (fwsegSNR, PESQ) 

for NH listeners, two intelligibility measures (NCM, STOI) for NH listeners and one quality 

measure (HASQI) for HI listeners. The comparisons between these objective measures and 

subjective tests (in Chapter 4) can be performed to validate the effectiveness of objective 

measures. No objective intelligibility measure for HI listeners is used in our thesis due to the 

limited availability and reliability of objective intelligibility measures for HI subjects, in 

addition to the distortion with noise reduction algorithms. Alternatively, we will propose a 

methodology in Chapter 5 to predict speech intelligibility of noise reduction algorithms for HI 

listeners with a hearing loss simulation model using NH subjects. In this chapter, we also 

demonstrated the perceptual consequences of noise reduction algorithms in HI listeners 

through impaired spectrograms. The ‘impaired’ spectrograms included the HLS model to 

illustrate the effects of signal processing strategies on HI subjects visually. If the HLS model is 

realistic, the demonstration with impaired spectrograms can be a reliable method to assess 

strategies before subjective tests. 

3.5.3 Comparison between SCS and CS-WF  

The motivation to choose CS-WF as a competitor algorithm instead of choosing the same PCA 

based method with another shrinkage function is to assess whether the PCA-based sparse 

coding shrinkage is competitive compared to one of the state-of-the-art algorithms (CS-WF). 
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This can present an up-to-date knowledge of the performance of SCS. Through the comparison 

between SCS and CS-WF using objective measures, it was found that SCS shows more noise 

reduction effects in speech shaped noise and CS-WF shows more noise reduction effects in 

babble noise. This may be due to SCS reaching optimal performance in the presence of speech 

with white Gaussian noise and performing worse when the noise has the similar distribution 

statistic as the speech. 

3.6 Conclusions 

This chapter proposed a noise reduction algorithm based on the sparse coding shrinkage 

principle. This is a model-based method with principal component analysis. The sparse 

strategy is expected to keep less but key information of noisy speech.  

This SCS algorithm was compared with a competitive state-of-the-art Wiener filtering 

approach (CS-WF) and the noisy speech through objective measures in this chapter. Final 

evaluation of noise reduction algorithms will be decided by the subjective tests in Chapter 4. 

Objective measures can be compared with subjective tests to justify the reliability of objective 

measure.  

The objective measures in this chapter suggested that:  

 The two noise reduction algorithms may bring benefits in speech quality but not 

in speech intelligibility to NH listeners.  

 The two noise reduction algorithms may bring more benefits in speech quality to 

HI listeners (HASQI) than to NH listeners (fwsegSNR). 

 It is uncertain whether the two noise reduction algorithms can improve speech 

intelligibility for HI listeners given the shortage of relevant intelligibility 

measures; SCS might improve speech quality more in speech shaped noise and 

CS-WF might improve speech quality more in babble noise. 

 



 



Chapter 4 Subjective evaluation of noise reduction algorithms in normal hearing and hearing impaired listeners  

75 
 

Chapter 4 Subjective evaluation of noise reduction algorithms in 

normal hearing and hearing impaired listeners  

This chapter presents a subjective experimental evaluation of noise reduction algorithms in 

speech intelligibility and quality through normal hearing (NH) and hearing impaired (HI) 

listeners. Speech intelligibility is evaluated using an adaptive speech recognition test with the 

result of a speech reception threshold (SRT, in dB) which corresponds to the speech-to-noise 

ratio required for 79.4% correct recognition. Speech quality is evaluated through a method 

called Interpolated Paired Comparison Rating (IPCR) with the result of a speech-to-noise ratio 

gain (SNR-gain in dB). The SNR gain in quality is the difference between the SNRs of the 

noisy speech and the processed speech that reach the same quality impression. IPCR can 

sensitively detect speech quality improvement quantitatively and can be compared with SRT or 

objective SNR gain on the same scale. Speech under two different noise types (babble, speech 

shaped noise) with and without noise reduction algorithms has been evaluated using NH and HI 

listeners.  

4.1 Introduction 

Previous research has shown that most single-channel noise reduction algorithms did not 

improve speech intelligibility for NH listeners (Hu and Loizou, 2007). One exception is a 

Bayesian classification algorithm which can optimize noise reduction algorithm with a priori 

knowledge of acoustic environment and thus improve speech intelligibility for NH listeners 

(Kim and Loizou, 2010). However, the algorithms with a priori knowledge of statistics in 

speech or noise are neither robust nor practical in blind acoustic environments. Generally, most 

of the practical single-channel noise reduction algorithms cannot improve speech intelligibility 

for NH listeners. Despite this, single-channel noise reduction strategies have shown significant 

improvement in speech intelligibility in cochlear implant (CI) users (profoundly HI listeners) 

(Verschuur et al., 2006, Li, 2008, Li and Lutman, 2008, Yang and Fu, 2005, Hu et al., 2011a, 

Dawson et al., 2011). The contrast in intelligibility benefits between NH listeners and CI users 
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may reflect subjective performance variation with the hearing loss level. Some may speculate 

the intelligibility improvement from noise reduction algorithms increases with the hearing loss 

level. However, the effects of single-channel noise reduction algorithms on intelligibility for 

hearing aid users are still not clear. Previous research has shown varied intelligibility 

performance of noise reduction strategies in hearing aid users (Levitt et al., 1993, Elberling et 

al., 1993, Aharon et al., 2006, Dahlquist et al., 2005). This is consistent as hypothetically 

listeners with mild to severe hearing losses acquire intelligibility benefits from noise reduction 

algorithms somewhere in between listeners with normal hearing and profound hearing losses. 

The variations of noise reduction effects in hearing aid users across previous evaluations are 

due to various factors, e.g. the hearing loss level as hearing aid users span a large range of 

hearing loss levels (mild, moderate and severe), the hearing aid experience, the noise reduction 

algorithm, the noise type, the input SNR, etc. Elberling et al. (1993) evaluated three spectral 

subtraction algorithms and indicated that the algorithms decreased noise level but did not 

improve speech intelligibility in either NH listeners or HI listeners. Levitt et al. (1993) assessed 

four noise reduction algorithms and showed significant improvements for some HI listeners 

with single-channel short-term Wiener filtering algorithms. Dahlquist et al. (2005) tested a 

nonlinear spectral subtraction algorithm in four different noise types but found no speech 

intelligibility improvement in HI listeners. Aharon et al. (2006) evaluated an auditory masked 

threshold noise suppression algorithm in both NH and HI listeners and found significant 

intelligibility improvement in HI listeners in background of communication channel noise and 

highway noise. Most recently, Harlander et al. (2012) evaluated model-based versus 

non-parametric monaural noise reduction approaches with HI listeners. They found that none of 

the algorithms improved speech intelligibility, although the two model-based noise reduction 

algorithms improved speech quality (Harlander et al., 2012).  

Our study differed from previous studies in several ways. First, young subjects who have 

acquired hearing losses and were wearing hearing aids at an early age are recuited in our study 

as compared to the older subjects recruited in the investigaion (Dahlquist et al., 2005). Second, 

our evaluation assessed the sparse coding shrinkage algorithm as well as a competitive Wiener 
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filtering algorithm as compared to previous noise reduction evaluations in hearing aids that 

were mostly limited to Wiener filtering or spectral subtraction algorithms; our evaluation uses 

speech shaped noise and babble noise as additive noises which approach closer to realistic 

noise environments.  

In most of the previous subjective intelligibility tests, speech intelligibility is often 

quantified in terms of percentage of identified words (or syllables) correct. Percentage 

intelligibility is often measured at fixed input SNRs. Such intelligibility measures are 

inherently limited by floor or ceiling effects. A more reliable measure of speech intelligibility 

that is not sensitive to the input SNR is recommended as an adaptive procedure to measure the 

speech reception threshold (SRT), which is the signal-to-noise ratio at which the participant 

scored a fixed percentage correct (Dirks et al., 1982). The adaptive method called the up-down 

procedure has been evaluated to be accurate and efficient (Dirks et al., 1982, Levitt, 1971). Our 

evaluation follows the three-up-one-down procedure in speech recognition tests to measure the 

SRT corresponding to 79.4% correct recognition threshold. This is more stringent than other 

research which uses the one-up-one-down procedure to identify 50% correct recognition 

threshold. 

Although there is an unclear intelligibility improvement when using noise reduction 

algorithms for hearing aid users, speech quality has been reported to improve with noise 

reduction strategies for both NH and HI subjects. It is still of interest to evaluate whether the 

two noise reduction algorithms (CS-WF and SCS) can improve speech quality for NH or HI 

subjects and whether there is a difference in sound quality impression of noise reduction 

algorithms between NH and HI subjects.  

The most commonly reported subjective techniques of quality evaluation can be broadly 

classified into two categories: those based on relative preference tasks (Munson and Karlin, 

1962, Hecker and Williams, 1966, Combescure et al., 1982) and those based on assigning a 

numerical value to the quality of the speech stimuli (Marzinzik, 2000, Boymans et al., 1999, 

Jamieson et al., 1995). In relative preference tests, listeners are presented with a pair of speech 

stimuli consisting of the test stimulus and the reference stimulus. Listeners are asked which 
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stimuli they prefer. In the rating tests, such as the MOS test used in telephone applications, 

listeners are asked to rate the quality of the stimuli on a numerical scale, typically, a five-point 

scale with 1 indicating poor quality and 5 indicating excellent quality. As individual listeners 

have different perceptual criteria of rating quality, there will be a large variance in rating tests.  

A method called Interpolated Paired Comparison Rating (IPCR) (Dahlquist et al., 2005) has 

been developed to measure subjective SNR gain in sound quality, which is the difference in 

signal-to-noise ratios between processed and unprocessed speech that give equal subjective 

sound quality impression. One direct way to measure such SNR-gain is to compare adaptively 

between enhanced stimuli with a fixed SNR and unprocessed item with a variable SNR. 

However, it is too time-consuming (Dahlquist et al., 2005). IPCR is performed by comparison 

between processed stimuli with fixed SNR and unprocessed stimuli with only two different 

SNRs. A rating value between -10 and 10 is given as subjective impression feedback in each 

comparison between enhanced stimuli and unprocessed stimuli. Interpolation or extrapolation 

was used to find the SNR-gain of subjective equality of quality impression. The advantage of 

IPCR is that it can evaluate speech quality quantitatively and efficiently. This evaluation 

method IPCR was developed in LISCOM, an EU project within the Telematics Application 

Programme and later validated by tests with 30 hearing-impaired listeners each at two 

laboratories: KTH in Sweden and ISVR in the UK (Dahlquist et al., 2005). Sound quality 

dimensions include ‘preference’, ‘comfort’, ‘speech clarity’ and ‘background noise’. These four 

dimensions were evaluated by Dahlquist et al. (2005). Due to the time restrictions of evaluating 

the two algorithms (SCS, WF) with two noise types (babble noise, speech shaped noise) 

through two groups of listeners (NH and HI), only two subjective quality impression 

dimensions (‘preference’ and ‘background noise’) are tested in our experiment. ‘Preference’ is 

rated according to the overall impression of speech quality, including ‘comfort’, ‘speech 

clarity’ and ‘noise loudness’, etc. ‘Noise loudness’ is rated according to how much they can 

perceive the background noise, a more positive rating indicates less ‘noise loudness’ in our 

evaluation.  

In this chapter, several research questions are raised: Is there any difference in noise 
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reduction effects between NH and HI listeners? Is there any difference in performance between 

CS-WF and SCS? Is there any difference in performance under different noises? Can noise 

reduction strategies benefit HI subjects in speech quality or in speech intelligibility, or both? 

4.2 Stimuli 

The speech materials were BKB sentences (Bench et al., 1979) which are standard British 

sentences recorded by a female talker. The corpus consists of 21 lists with 16 sentences in each 

list. There are three or four key words in each sentence. Two noise types are used, babble noise 

and speech shaped noise. The speech shaped noise is generated such that the frequency 

spectrum matched the long term average spectrum of speech being used. The babble noise is a 

multi-talker babble noise. The speech corrupted with noise is further processed with and 

without noise reduction strategies to produce stimuli that will be denoted as ‘noisy’, ’CS-WF’ 

and ‘SCS’ in this chapter. The final presentation of these stimuli will be adjusted to compensate 

for the hearing threshold elevation of subjects as explained in Section 4.3 and 4.4. 

4.3 Participants 

Nine NH listeners and nine HI listeners with sensorineural hearing loss participated in this 

experiment. All subjects were native English speakers. The NH listeners had hearing thresholds 

at or below 20 dB HL from 250 Hz to 8 kHz, and their ages ranged from 20 to 36. The NH 

listeners were not informed of the purpose or design of the experiment. Figure 4.1 shows the 

individual hearing thresholds for the aided ears of 9 HI subjects. The HI listeners all had mild 

to severe hearing losses and most of them had sloping high frequency hearing losses. All 

listeners were tested monaurally. All the HI listeners were experienced hearing aid users and 

their ages ranged from 18 to 30. The tests were performed with their hearing aids taken off, and 

compensation was applied to each HI subject individually. Specifically, a linear gain 

prescription was computed from each individual’s audiogram through the NAL-R procedure 

(Dillon, 2001). The NAL-R procedure is a predetermined formula that produces appropriate 

frequency-dependent gain response to compensate for threshold elevation and loudness 
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recruitment. Table 4.1 shows the age, tested ear, cause of hearing loss and hearing aid 

experience of each HI participant. All of them are bilaterally hearing impaired. The experiment 

has been approved by the ethical committee in University of Southampton. 

 

Figure  4.1: Audiograms showing the individual hearing thresholds for the aided ears of HI 

subjects (N=9). 

Table  4.1: Age, tested ear, cause of hearing loss and hearing aid experience of the listeners with 

hearing losses. All of them are bilateral hearing impaired.  

Listener Age Gender Ear Cause of hearing loss Hearing aid 

experience 

HI1 20 F R meningitis at 2 years old 16 years 

HI2 31 F R Congenital 31 years 

HI3 22 F R Congenital 20 years 

HI4 18 F R Congenital 14 years 

HI5 21 F R Congenital 18 years 

HI6 20 F R Tinnitus, noise exposure 4 years 

HI7 22 M L Congenital 18 years 

HI8 20 F R Congenital 19 years 

HI9 22 M R congenital, hereditary 6 years 

4.4 Equipment 

All listeners were seated in a sound-isolated room and listened to the sounds presented through 



Chapter 4 Subjective evaluation of noise reduction algorithms in normal hearing and hearing impaired listeners  

81 
 

Sennheiser HDA 200 headphones presented through a Behringer UCA202 sound card and 

Creek OBH- 21SE headphone amplifier. The presentation levels of speech were kept at 65 dB 

SPL for NH listeners and are adjusted individually for each HI listener to their comfortable and 

audible level. 

4.5 Procedure 

4.5.1 Procedure in speech intelligibility tests 

There were a total of six test conditions in this experiment: two noise types (SSN, babble) by 

three noise reduction conditions (no noise reduction, SCS, WF). No noise reduction condition 

means noisy speech which shows baseline performance. BKB lists were randomly selected 

from the corpus for each test condition. Subjects were instructed to repeat as many words as 

they could after listening to each sentence, and they were not given any feedback during the 

tests. Practice was given for each subject with one randomly selected condition. The order of 

the six conditions was balanced among the listeners. A subject test with the six conditions and a 

training session together took less than 1 hour. 

The speech recognition test was performed through a three-up-one-down adaptive 

procedure as described in (Dahlquist et al., 2005) to find the speech reception threshold (SRT in 

dB) required for 79.4% correct recognition in each condition. A sentence was deemed to have 

been recognised correctly when at least two keywords were repeated correctly. Sentence order 

was controlled so that participants did not receive the same sentence repeatedly. The step size 

of the procedure was 1 dB. Only one trial was performed in each condition with each subject. 

4.5.2 Procedure in speech quality tests 

There are a total of eight conditions in this experiment: two noise types (SSN, babble) by two 

noise reduction algorithms (CS-WF, SCS) by two compared SNR conditions (unprocessed 

speech at 5 dB SNR vs processed speech at 5 dB SNR, unprocessed speech at 10 dB SNR vs 

processed speech at 5 dB SNR) as shown in Table 4.2. Unprocessed speech indicates noisy 

speech while processed speech indicates noisy speech processed with CS-WF or SCS. The 
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speech quality tests is long running speech concatenated with BKB sentences. 

 

 

Figure  4.2: An example of MATLAB GUI for paired comparison rating of speech quality. 

Qualities rated were ‘preference’ and ‘noise loudness’. The buttons A and B refer to two stimuli 

under comparison and can be switched by clicking. The slider is used for compared quality 

rating from a subject with the range between −10 and 10. 

Figure 4.2 shows MATLAB GUI developed by the author for paired comparison rating. The 

principle of this interface is adopted from that in (Dahlquist et al., 2005). Participants could 

switch between processed and unprocessed sound by clicking the button A or B. They were not 

told which setting corresponded to the processed speech and the assignment was alternated 

between conditions. They were instructed to keep listening until they reached a final quality 

impression. Ratings were recorded by using the slider which was quantified by measurement 

normalized to a ± 10 unit scale. The title ‘preference’ or ‘background noise’ was shown to 

indicate which quality dimension needs to be rated. The instruction sheet is shown in Appendix 

C. The remaining part of this section will cite the principle of ICPR (Dahlquist et al., 2005).   

Two conditions for each type of noise with each noise reduction algorithm were used: 1) 

comparison between processed signal at input 5 dB SNR and unprocessed signal at input 5 dB 

SNR with rating value 0R ; 2) comparison between processed signal at input 5 dB SNR and 
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unprocessed signal at input 10 dB SNR with rating value 5R .  The ratings of the comparison 

between processed and unprocessed stimuli were collected for both conditions. The point of 

subjective equality was obtained either by linear interpolation between these two difference 

values or by linear extrapolation. Figure 4.3 gives an example of this interpolation as Dahlquist 

et al. (2005). For each subject (index n), the SNR gain nG is obtained through the rating pairs by 

the following equation, 

0 0 55 ( )n n n nG R R R   

Where 0nR indicates rating value in condition 1 and 5nR indicates rating value in condition 2 

described above. nG was limited to ± 10 dB, because single extrapolated values may 

incidentally become very large to exclude any extremes (for example from confusing items in 

the pair). The measurement of nG for each noise with each algorithm is repeated four times and 

the final SNR gain for each subject is the median value from the four SNR gains. 

Table  4.2: Combinations of speech-to-noise ratios used for the various types.  

Noise type Noise reduction 

algorithm 

Speech-to-noise ratio (dB) for 

processed/unprocessed item 

Speech shaped noise 

 

 

 

Babble noise 

CS-WF 

 

SCS 

 

CS-WF 

 

SCS 

 

5/5 

5/10 

5/5 

5/10 

5/5 

5/10 

5/5 

5/10 
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Figure  4.3: The method used to estimate the point of subjective equality (PSE) (filled square) 

from paired comparison ratings (filled circles), calculated by interpolation or extrapolation 

(IPCR method). In this example, the pair of SNRs for subjective equality is interpolated to 5/9 

dB for processed/unprocessed stimuli (i.e. an SNR-gain of +/4 dB). Example of SNR gain from 

(Dahlquist et al., 2005). 

4.6 Statistical Analysis 

Speech reception thresholds (SRTs in dB) are the results from the speech recognition tests and 

will be processed through analysis of variance (ANOVA). ANOVA was performed on all the 

SRTs with NH and HI subjects, with within-subject factors of type of processing (noisy speech, 

CS-WF and SCS) and of type of noise (speech shaped noise and babble noise) and a 

between-subject factor of subject type (NH and HI). Post hoc tests, the Bonferroni test and/or 

the Fisher least-significant-difference (LSD) test, were applied where appropriate. The 

Bonferroni test was used as the most conservative test to verify the hypothesis of significant 

difference. The Fisher LSD test was used as the most sensitive test to verify the hypothesis of 

null difference.  

SNR gains (in dB) are the results from speech quality tests (IPCR) for each participant. 

This measure was based on four replicated paired comparison ratings (one for equal SNR 

condition and one for unequal SNR condition). Four SNR gains are deduced from the four 

replicated paired comparison ratings respectively in each condition (one algorithm under one 

noise type) for each participant. The median SNR gain is deduced from the four replicated SNR 
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gains as described in Section 4.5.2. A Wilcoxon matched-pairs signed ranks test was used to 

test if the median SNR gain differed significantly (p<0.05) from 0 and 5 dB. If the median SNR 

gain is significantly larger than 0 dB, this indicates subjective speech quality is significantly 

improved with noise reduction algorithms. If the median SNR gain significantly larger than 5 

dB, this indicates subjective speech quality is much better improved with noise reduction 

algorithms. 

Multivariate forward linear regression is performed to set up a prediction model of speech 

recognition gain with the factors of hearing threshold and SRT with noisy speech (baseline 

performance). This multivariate linear regression is to check the individual factors that affect 

the noise reduction performance. The forward regression only extracts the strongest factors that 

affect the model and excludes the less important factors. The main factors in regression, the 

correlation coefficients and the significance of correlation are measured through forward 

stepwise linear regression. 

4.7 Results 

4.7.1 Speech recognition results 

Figure 4.4 shows the speech recognition performance of all participants with the results of SRT 

in all six test conditions: SSN-Noisy, SSN-CS-WF, SSN-SCS, Babble-Noisy, Babble-CS-WF, 

Babble-SCS, for both 9 NH (left) and 9 HI subjects (right). Figure 4.4 (a) shows the spread of 

SRTs in box plots. Figure 4.4 (b) shows the average SRT in each condition with a 95% 

confidence range. The motivation to show the intelligibility results of NH and HI listeners in 

the same figure is mainly to test whether there is any difference between them, especially in the 

respect of group benefits from noise reduction algorithms. Although the motivation of the 

whole thesis is to develop and evaluate noise reduction algorithms for HI listeners, adding tests 

with NH listeners can indicate the difference in noise reduction effects between NH and HI 

listeners and accordingly imply how to modify the noise reduction algorithms for HI listeners 

that were originally developed for NH listeners. 
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Figure  4.4: SRTs for different conditions in 9 NH and 9 HI listeners. SSN: speech shaped noise; 

Noisy: noisy speech without noise reduction algorithms; CS-WF: the comparison algorithm; 

SCS: sparse coding shrinkage. (a) Boxplots of SRTs. On each box, the central mark is the 

median; the edges of the box are the 25th and 75th percentiles; the whiskers extend to the most 

extreme measured data not considered outliers. A Ladder diagram is also plotted showing 

individual performance. (b) Mean SRTs with error bars indicate the 95% confidence intervals 

of the means. A more negative SRT corresponds to better performance. 
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    The spread of the SRTs in Figure 4.4 (a) illustrates that the HI subjects show 

correspondingly large inter-subject variability compared to NH subjects. We assume that this is 

due to individual auditory deficits as well as individual experience with hearing aids. 

 For NH listeners, as shown in left panel of Figure 4.4 (b) and the second column of Table 

4.3, the mean SRT for noisy speech with SSN is −3.2 dB, for CS-WF with SSN is −3.3 dB, for 

SCS with SSN is −3.5 dB, for noisy speech with babble noise is −2.6 dB, for CS-WF with 

babble noise is −1.54 dB and for SCS with babble noise is −1.6 dB. The results were found to 

be normally distributed by the Shapiro-Wilk test. A two-way repeated ANOVA shows that for 

NH subjects, the effect of noise reduction algorithm is not significant [F(2,16)=2.4, p>0.05], 

but the effect of noise type is significant for NH subjects [F(1,8)=27.7, p<0.05]. There is no 

interaction between noise type and noise reduction algorithm [F(2,16)=2.4, p>0.05]. The 

non-significant effect of algorithm indicates that these noise reduction algorithms do not benefit 

NH subjects in speech intelligibility. 

 For HI subjects, as shown in right panel of Figure 4-4 (b) and the second column of Table 

4.4, the mean SRT for noisy speech with SSN is 2.9 dB, for CS-WF with SSN is 2.3 dB, for 

SCS with SSN is 1.8 dB, for noisy speech with babble noise is 3.9 dB, for CS-WF with babble 

noise is 3.4 dB and for SCS with babble noise is 2.8 dB. The results were found to be normally 

distributed by the Shapiro-wilk test. A two-way repeated ANOVA was also performed to detect 

within-subject noise type effect and algorithm effect across HI subjects. For HI listeners, both 

the noise reduction algorithm and the noise type have significant effects [F(2,16)=9.4, p<0.05, 

and F(1,8)=5.5, p<0.05, respectively]. There is no interaction between noise reduction 

algorithm and noise type [F(2,16)=0.04, p>0.05]. The significant effect of the algorithm 

indicates noise reduction algorithms can significantly improve speech intelligibility for HI 

subjects.  

 A three-way repeated ANOVA where both NH and HI subjects were included showed that 

the main effects of subject type, noise type were significant [F(1,16)=17.767, p<0.05, and 

F(1,16)= 22.589, p<0.05, respectively], but the main effect of the noise reduction algorithm is 

not significant [F(2,32)=3.085, p>0.05]. There is a significant interaction effect between subject 
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type and noise reduction algorithm [F(2, 32)=9.210, p<0.05]. There are no significant 

interaction effects between subject type and noise type or between noise type and noise 

reduction algorithm [F(1,16)= 0.55, p>0.05, F(2,32)=1.423, p>0.05, respectively]. There is no 

three-way interaction between subject type, noise reduction algorithm and noise type 

[F(2,32)=1.561, p>0.05]. These results indicate that the performance of noise reduction 

algorithms depend on the hearing loss level and the noise type. 

Fisher LSD post hoc tests were performed to detect the difference in performance between 

any pair of the six conditions across NH subjects (Table 4.3) and HI subjects (Table 4.4) 

separately. The numbers in the brackets are to give each condition an identification number. 

The numbers without brackets in the second column present the average SRT of each condition. 

Significant differences (p < 0.05) are shown in boldface. For NH listeners, the noise reduction 

algorithms barely improve speech intelligibility in speech shaped noise (compare (1) and (2), (1) 

and (3), in Table 4.3) but significantly deteriorate speech intelligibility in babble noise 

(compare (4) and (5), (4) and (6), in Table 4.3). There is no significant intelligibility difference 

between speech in babble noise and speech in speech shaped noise within NH subjects 

(compare (1) and (4) in Table 4.3). For HI listeners, the noise reduction algorithms significantly 

improve speech intelligibility in speech shaped noise (compare (1) and (2), (1) and (3), in Table 

4.4) but not significantly in babble noise (compare (4) and (5), (4) and (6), in Table 4.4). There 

is a significant intelligibility difference between speech in babble noise and speech in speech 

shaped noise within HI subjects (compare (1) and (4) in Table 4.3). Comparison between SCS 

and CS-WF in speech shaped noise through paired sample t-test shows that: the power is only 

0.2 with the available 9 HI subjects; at least 47 subjects are needed for p<0.05 at 80% power to 

detect a within-subject between-condition difference of 1.0 dB. Comparison between SCS and 

CS-WF in babble noise through paired sample t-test shows that: the power is 0.37 with the 

available 9 NH subjects; at least 23 subjects are needed for p<0.05 at 80% power to detect a 

within-subject between-condition difference of 1.0 dB.  
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Table  4.3: Fisher LSD post hoc significant tests for the interaction of noise reduction algorithm 

and noise type in the experiment with NH subjects. Significant effects (p < 0.05) are given in 

boldface. The number in each bracket indicates the number of each condition. 

Processing 

condition 

Mean SRT (1) (2) (3) (4) (5) 

SSN-Noisy (1) −3.2      

SSN-CS-WF (2) −3.3 0.896     

SSN-SCS (3) −3.5 0.317 0.598    

Babble-Noisy (4) −2.6 0.228 0.050 0.107   

Babble-CS-WF (5) −1.5 0.002 0.007 0.001 0.048  

Babble-SCS (6) −1.6 0.002 0.011 0.003 0.018 0.77 

 

Table  4.4: Fisher LSD post hoc significant tests for the interaction of noise reduction algorithm 

and noise type in the experiment with HI subjects. Significant effects (p < 0.05) are given in 

boldface. The number in each bracket indicates the number of each condition. 

Processing 

condition 

Mean SRT (1) (2) (3) (4) (5) 

SSN-Noisy (1) 2.9      

SSN-CS-WF (2) 2.3 0.030     

SSN-SCS (3)1.8 0.009 0.233    

Babble-Noisy (4)3.9 0.006 0.001 0.001   

Babble-CS-WF (5) 3.4 0.292 0.074 0.018 0.169  

Babble-SCS (6)2.8 0.865 0.525 0.210 0.073 0.058 
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4.7.2 Speech quality results 

(a) Paired comparison Rating – Preference (NH)     (b) Paired comparison Rating – Preference (HI) 

 

(c) Paired comparison Rating – Noise Loudness (NH) (d) Paired comparison Rating – Noise Loudness (HI) 

 

Figure  4.5: Subjective ratings from paired comparison rating (PCR) tests for two sound quality 

dimensions, two noise types and two noise reduction algorithms with NH and HI listeners 

separately. Median values of rating difference between processed and unprocessed signals 

(error bars: inter-quartile range). SSN: speech shaped noise. Labels, such as 5/10, indicate 

(SNR processed) / (SNR unprocessed) in dB. Left column: NH listeners. Right column: HI 

listeners. Upper row: ‘Preference’. Lower row: ‘Noise loudness’. Larger values indicate greater 

preference for, or less noise loudness in processed speech than in unprocessed speech. 

 

Median values of Paired Comparison Ratings for the difference between processed and 

unprocessed speech are shown in Figure 4.5 for two rating categories (‘preference’ and ‘noise 

loudness’.) The rating will be given a positive value if a subject prefers the overall quality of 

the processed speech to the unprocessed speech from overall quality impression (a-b) or if a 

subject regards the processed speech contains less noise than the unprocessed speech (c-d) as 
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explained earlier. The rating for noise loudness is just the inverse definition of that in Dahlquist 

et al. (2005) where a subject gives a negative rating value if he/she regards the sound in 

processed speech contains more noise than the sound in unprocessed speech. The inverse 

definition in our research is to put the ratings of “preference” and “noise loudness” in a more 

intuitive comparison as shown in Figure 4.5. As ‘preference’ contains several dimensions (e. g. 

‘clarity’, ’comfort’, ‘noise loudness’) with different perceptual weights for individual subjects, 

comparison between ‘preference’ and ‘noise loudness’ could show the weight of ‘noise 

loudness’ in overall subjective rating of ‘preference’.  

The filled bars represent the median ratings of the differences (processed minus 

unprocessed) for each noise condition with each noise reduction algorithm in either normal 

hearing group or hearing impaired group, while error bars indicate the inter-quartile range. 

Ratings for the various speech-to-noise ratios and noise types are presented in separate bars. 

Higher bars indicate higher ratings of the processed signal compared to the unprocessed signal 

on the sound quality dimension, e.g. more ‘preference’ or less ‘noise loudness’. The results are 

shown in separate panels for the NH group and HI group. All the four panels in Figure 4.5 

show positive bars (except one bar in panel (a)) and thus indicate advantages of processed 

speech over unprocessed speech in either equal SNR conditions or unequal SNR conditions. 

Comparison between panel (a) and panel (b) indicates NH listeners don’t prefer quality of noise 

reduction algorithms as much as HI listeners do. The comparison between CS-WF and SCS in 

panel (a) shows that NH subjects prefer the quality of CS-WF rather than SCS. Panel (c) 

indicates NH listeners can clearly perceive the benefits of noise reduction algorithms in 

reducing ‘noise loudness’. The different levels of quality benefits for NH subjects between 

‘preference’ (a) and ‘noise loudness’ (c) indicate that NH listeners have considered other 

quality dimensions (e. g. ‘clarity’, ‘comfort’, etc.) besides ‘noise loudness’ when rating their 

‘preference’ of overall speech quality. Panels (b) and (d) indicate that for HI listeners, both the 

noise reduction algorithms show obvious benefits in both rating categories ‘preference’ and 

‘noise loudness’. The accordance between (b) and (d) implies that the HI listeners place more 

weight on ‘noise loudness’ when rating their ‘preference’ of overall speech quality. The 
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contrast between (a) and (b) suggests that HI subjects are less sensitive to speech distortion 

than NH subjects. The larger ratings in panel (d) relative to panel (c) indicate that HI subjects 

are more sensitive to ‘noise loudness’ than NH subjects. The results in panel (b) and panel (d) 

are also comparable with the results in Dahlquist et al. (2005) where HI subjects gave similar 

range of quality ratings in ‘preference’ and ‘noise loudness’ when tested using a nonlinear 

spectral subtraction algorithm.    

Median speech-to-noise ratio gains (SNR gains) across subjects in the normal hearing group 

and hearing impaired group are presented in Table 4.5. As explained in Section 4.5.2, the 

individual SNR gain measures were obtained by linear interpolation of the ratings for two 

conditions. In one condition, the SNR was the same for the processed and unprocessed stimuli; 

in the other condition, the SNR for the unprocessed condition was 5 dB higher. All the SNR 

gains with positive values indicates that noise reduction algorithms can improve speech quality 

for NH and HI listeners with each noise type under each rating category. A Wilcoxon 

matched-pairs signed ranks test was used to test if the SNR gains within the NH or HI group 

are significantly larger than 0 dB or 5 dB (p<0.05). ** indicates SNR-gain >5, * indicates 

SNR-gain >0, both significant at the 5%-level. 

This table also shows the different benefits of noise reduction algorithms to NH and HI 

listeners. In Table 4.5, the value in every even line (‘HI’) always being larger than or equal to 

the value above (‘NH’) indicates that HI listeners acquire larger SNR gain in sound quality than 

NH listeners with each noise reduction algorithm in each noise under each rating category 

(‘preference’ or ‘noise loudness’). This shows that noise reduction algorithms are more 

beneficial to HI listeners than to NH listeners across different noise types and different speech 

quality criteria. Furthermore, the difference in the category of ‘preference’ between ‘NH’ and 

‘HI’ indicates the overall quality with noise reduction algorithms is more acceptable by HI 

listeners than NH listeners. In Table 4.5, for NH listeners, the SNR gain of ‘noise loudness’ 

(the 5th row) is always larger than that of ‘preference’ in the same condition (the 3rd row). This 

indicates that for NH subjects, although the reduction in ‘noise loudness’ with algorithms is 

recognized, this only partially contributes to the final judgment of ‘preference’ in overall 
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quality. In Table 4.5, for HI listeners, the SNR gains of ‘noise loudness’ and ‘preference’ are all 

around 10 dB (the 4th and 6th rows). This also indicates that ‘noise loudness’ is a more weighted 

factor in determining ‘preference’ of overall speech quality in HI subjects. Noise reduction 

algorithms can reduce noise at the price of introducing speech distortion which can be 

sensitively detected by NH subjects but can be tolerated by HI subjects. 

Results from subjective SNR gain in ‘preference’ across NH subjects were compared with 

an objective quality measure fwsegSNR shown in Table 4.6. This is mainly to show whether 

there were any similar trends between subjective quality tests and objective measures for NH 

subjects. The results of fwsegSNR of the processed speech were calculated assuming the input 

SNR was 5 dB (also shown in Figure  3.10 a). Within NH listeners, compared to CS-WF, SCS 

brought more SNR-gain in speech shaped noise but less SNR-gain in babble in the category of 

‘preference’. The objective measure fwsegSNR also showed the similar trend as the subjective 

SNR gain. Therefore, there was some agreement between these two measures that supports the 

reliability of fwsegSNR in predicting speech quality for NH subjects.  

 

Table  4.5: Median values for SNR-gain (in dB) for the rating categories “preference” and 

“noise loudness”. Results are for 9 NH subjects and 9 HI subjects. ** indicates SNR-gain >5, * 

indicates SNR-gain >0, both significant at the 5%-level. 

Rating Category Hearing 

Level 

CS-WF SCS 

ssn babble ssn babble 

Preference (dB) NH 5.9** 7.3** 8.8** 3.1* 

HI 10.0** 9.9** 10.0** 10.0** 

Noise Loudness 

(dB) 

NH 9.1** 9.7** 10.0** 10.0** 

HI 9.8** 10.0** 10.0** 10.0** 
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Table  4.6: Objective and subjective noise reduction effects (dB) for babble noise and speech 

shaped noise. Frequency-weighted segmental SNR (fwsegSNR) and subjectively estimated 

with IPCR method for ‘preference’ criterion from normal hearing group.  

Noise reduction effect SSN Babble 

CS-WF SCS CS-WF SCS 

Physical (dB) 7.0 7.5 7.5 7.0 

Subjective (dB) 5.9 8.8 7.3 3.1 

4.7.3 Speech recognition versus subjective sound quality 

An important characteristic of the IPCR methodology is that it allows for examination of sound 

quality judgements and subjective speech recognition results on the same quantitative scale. 

The examination between subjective quality and intelligibility performance provides an 

intuitive vision as shown in Figure 4.7 whether noise reduction algorithms can be beneficial in 

either quality or intelligibility within each group (NH or HI). This comparison also can imply 

overall benefits from noise reduction algorithms for each group.  

Figure 4.6 shows individual SNR gains in speech recognition and in quality dimension 

‘preference’ with each noise reduction algorithm (CS-WF and SCS) under each noise type 

(speech shaped noise and babble noise) within NH or HI group. The speech recognition gain is 

the SRT of the unprocessed speech minus the SRT of the processed speech. The SNR gain in 

‘preference’ from IPCR tests was explained in Section 4.7.2 and its median values were shown 

in Table 4.5. Each plot shows individual SNR gain in quality and intelligibility with both 

CS-WF and SCS strategies under each noise within each group. In each plot, the thick lines 

divide the plot into four sections. The marks in the upper right section show individual SNR 

gains positive in both quality and intelligibility; the marks in the upper left section show 

individual SNR gain positive in quality but negative in intelligibility; the marks in the lower 

right section show individual SNR gain negative in quality but positive in intelligibility; the 

marks in the lower left section show individual SNR gain negative in both quality and 

intelligibility.     
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Gains are generally smaller in speech recognition than in quality, both measured in dB, in 

all the four subplots which means both noise reduction algorithms improve speech quality more 

than speech intelligibility. However, this does not necessarily mean that these two effects are of 

equal weight contributing to individual overall benefits from algorithms. For NH subjects 

listening to speech in speech shaped noise shown in (a), the SNR gains in speech recognition 

are clustered around 0 dB, which reflects no significant difference between processed speech 

and unprocessed speech as shown in Table 4.3. For NH subjects listening to speech in babble 

noise shown in (c), the SNR gains in speech recognition are almost all in the left half plot 

below 0 dB, which reflects a significant intelligibility decrease with processed speech as shown 

in Table 4.3. For HI subjects listening to speech in speech shaped noise and babble shown in (b) 

and (d) respectively, almost all the SNR gains in speech recognition are in the right half plot 

above 0 dB which further verifies that noise reduction algorithms bring more intelligibility 

benefits to HI subjects than to NH subjects. By inspecting the speech recognition gains with 

respect to the horizontal axis, the speech recognition gains of CS-WF and SCS scatter in the 

similar range in each plot which further suggests little significant intelligibility difference 

between SCS and CS-WF in each noise within each group. However, we should point out that 

SCS shows slightly greater speech recognition gains than CS-WF within HI subjects. For NH 

subjects evaluating speech quality in (a) and (c), most of the SNR gains in preference are above 

0 dB and nearly half of them are near 10 dB. This indicates noise reduction algorithms 

generally improve speech quality for NH subjects. However, there are several SNR gains of 

preference with SCS below 0 dB which indicates some NH individuals perceive negative 

quality effects from noise reduction algorithms. In (a) and (c), SCS are generally less than with 

CS-WF in the individual SNR gains of ‘preference’ within NH subjects. SCS introduces some 

speech distortion while reducing more noise. For HI subjects evaluating speech quality in (b) 

and (d), all the SNR gains in ‘preference’ are in upper plots above 0 dB and most of them are 

near 10 dB which indicates noise reduction algorithms improve speech quality more for HI 

subjects than for NH subjects. This also results in the corresponding difference of median SNR 

gain in ‘preference’ between NH and HI subjects shown in Table 4.5.  
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(a)Preference vs Speech Recognition (NH)    (b)Preference vs Speech Recognition (HI) 

     speech shaped noise SNR=5               speech shaped noise SNR=5      

 

(c)Preference vs Speech Recognition (NH)     (d)Preference vs Speech Recognition (HI) 

             babble noise SNR=5                     babble noise SNR=5     

 

 

Figure  4.6: Scatter plots showing individual speech-to-noise ratio gains in the quality 

dimension of ‘preference’ versus speech recognition gain in different condition with NH or HI 

listeners. Positive values with respect to horizontal or vertical axis indicate the noise reduction 

algorithm is beneficial. SNR-gain is limited up to +10 dB. 
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4.7.4 Multivariate regression of speech recognition gain 

Single channel noise reduction algorithms seem to still have difficulty to improve speech 

intelligibility that is quantified as speech recognition gain in the present thesis. Figure 4.4 

shows that there are large differences between NH and HI subjects in speech recognition gain 

from noise reduction algorithms. HI subjects generally acquire higher speech recognition gain 

than NH subjects. It may be due to the difference between NH and HI subjects. Thus one factor 

in speech recognition gain may be the hearing loss level. However, it is worth noting that, HI 

subjects were tested at higher input SNRs, as the SRT of noisy speech was higher in HI 

listeners than in NH subjects. Therefor the other factor in speech recognition gain may be the 

SRT of unprocessed noisy speech. To investigate the relationship between speech recognition 

gain and the above two factors (the hearing loss level, and the SRT of noisy speech). 

Multivariate regression of speech recognition gain is conducted. As defined in Section 4.7.3, 

the speech recognition gain is the SRT of the unprocessed speech minus the SRT of the 

processed speech. A positive speech recognition gain indicates a positive benefit in 

intelligibility from noise reduction algorithms. The hearing loss level is quantified here by 

averaging the hearing thresholds at the three frequencies (1, 2, 4 kHz) in each subject. It is 

assumed the thresholds in the corresponding frequency range affect more in understanding 

English language (Amos and Humes, 2007). The SRT of noisy speech indicates the baseline 

performance of unprocessed noisy speech. The higher the SRT with noisy speech, the worse the 

baseline performance is.  

The relationship between each factor and speech recognition gain was primarily 

investigated. The scatter plots in Figure 4.7 show the relationship between speech recognition 

gain and average hearing threshold in four conditions. The scatter plots in Figure 4.8 show the 

relationship between speech recognition gain and baseline performance in four conditions. The 

four conditions (a-d) in Figure 4.7 and Figure 4.8 are CS-WF in speech shaped noise, SCS in 

speech shaped noise, CS-WF in babble noise, SCS in babble noise in order. The larger value of 

R2 (correlation squared) in each plot shows the higher level of correlation between the factor 

and the speech recognition gain. Through statistical analysis, the factor of average hearing 
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threshold or baseline performance correlates significantly (p<0.05) with speech recognition 

gain in babble but not in speech shaped noise. However, the fact that Figure 4.8 (c, d) give 

higher values of R2 than Figure 4.7 (c, d), suggests the SRT of noisy speech is a more important 

factor. 

 

 

 

Figure  4.7: Scatter plots showing speech recognition gain versus average hearing threshold in 

four conditions (SCS-SSN, SCS-Babble, CS-WF-SSN, CS-WF-Babble).
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Figure  4.8: Scatter plots showing speech recognition gain versus average SRT of unprocessed 

noisy speech (baseline performance) in four conditions (SCS-SSN, SCS-Babble, CS-WF-SSN, 

CS-WF-Babble). 

 

Then, the contributions of the two factors to the speech recognition gain in babble noise were 

differentiated through multivariate forward stepwise linear regression. The forward stepwise 

regression can include the most important variable and exclude the less important variable in 

the linear model. Table 4.7 and 4.8 show the results of multivariate forward stepwise linear 

regression of the speech recognition gain in babble noise with the algorithms of CS-WF and 

SCS respectively. In the regression model, the dependent variable is the speech recognition 

gain, and the two independent variables are average hearing threshold and SRT in noisy speech. 

Table 4.7 and 4.8 show that the factor of hearing threshold can be excluded compared with the 
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factor of baseline performance in the regression. This suggests that the factor of SRT in noisy 

speech contributes more to speech recognition gain than the average hearing threshold does. 

This further indicates that the speech recognition performance is mainly due to the input SNR 

of noisy speech. This can also clarify the previous speculations that the performance of noise 

reduction algorithms depends on the hearing loss levels. In fact, as HI subjects were usually 

presented with speech at higher input SNR and noisy reduction algorithms may perform better 

with noisy speech at higher SNR, HI subjects seemed to perform better than NH subjects in 

many pervious evaluations. 

Table  4.7: The forward stepwise regression of speech recognition gain with the algorithm of 

CS-WF in babble noise. 

 B Std Error B β Sig. 

Included variables     

SRT in Noisy 0.233 0.053 0.738 0.000 

Excluded variables     

Average HL   0.004 0.991 

Note: B is the unstandardized coefficient, β is the standardized coefficient, the value in 

boldface indicates significance (p<0.001).   

 

Table  4.8: The forward stepwise regression of speech recognition gain with the algorithm of 

SCS in babble noise. 

 B Std Error B β Sig. 

Included variables     

SRT in Noisy 0.302 0.057 0.796 0.000 

Excluded variable     

Average HL   0.189 0.544 

Note: B is the unstandardized coefficient, β is the standardized coefficient, the value in 

boldface indicates significance (p<0.001). 



Chapter 4 Subjective evaluation of noise reduction algorithms in normal hearing and hearing impaired listeners  

101 
 

4.8 Discussion 

4.8.1 Choice of noise conditions 

It is worth mentioning that the appropriate choice of noise type is an important methodological 

issue. Noise that contains mainly low-frequency components is easier to remove from speech 

compared to noise that shows the similar frequency spectrum shape as speech being used. 

Dillon and Lovegrove (1993) have indicated that the benefit of previous single-channel noise 

reduction systems in terms of speech intelligibility is small and the amount of improvement 

was greatest when the noise spectrum was weighted towards low frequencies. White noise and 

pink noise are also easy to reduce as they show a different pattern of spectrum from speech. To 

make the situation of speech in noise more realistic and difficult, speech shaped noise and 

babble noise were chosen in our study, both of which show similar average spectra as the 

speech.  

4.8.2 Challenge of babble noise for HI listeners 

HI listeners showed significantly more difficulty in multi-talker babble noise than in speech 

shaped noise (difference between conditions (1) and (4) in Table 4.4). Babble noise might 

represent a natural non-stationary background noise for example in social communication 

situations (‘cocktail party’ effect). This is in accordance with previous investigations that HI 

subjects performed worse in non-stationary noise (e.g. babble noise, cafeteria noise) than in 

stationary noise (e.g. speech shaped noise) (Wang et al., 2009). This is in accordance with the 

difficulty experienced by HI listeners in the ‘cocktail’ party effect. In contrast, NH listeners did 

not show such significant difficulty in babble noise (difference between conditions (1) and (4) 

in Table 4.3). NH listeners presumably can catch speech cues that exist in the intervals of 

babble noise with their normal hearing thresholds, sharp frequency selectivity and temporal 

resolution.  
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4.8.3 Difference between NH and HI subjects in benefits from algorithms 

The speech recognition tests showed that: noise reduction algorithms barely improve 

speech intelligibility for NH subjects but significantly for HI subjects in speech shaped noise; 

noise reduction algorithms bring significantly negative intelligibility effects for NH subjects but 

do not affect intelligibility for HI subjects in babble noise.  

The speech quality tests showed that: NH and HI subjects all recognized the noise 

reduction effects with algorithms; however, HI subjects gave higher ratings of noise reduction 

algorithms in overall speech quality than NH subjects. 

In summary, noise reduction algorithms benefit HI subjects more than NH subjects in both 

speech intelligibility and speech quality. With hearing loss factors, HI listeners are less sensitive 

to speech distortion but more sensitive to noise loudness, compared to NH listeners. Noise 

reduction strategies are usually developed to reduce noise at the price of introducing speech 

distortion, which might be easily perceived by NH listeners but not by HI listeners. That may 

be one reason why noise reduction strategies are more beneficial to HI listeners than to NH 

listeners in speech quality and intelligibility. This is in accordance with (Schijndel et al., 2001) 

where it was shown that: HI subjects were less sensitive to spectral distortion; when speech is 

distorted speech intelligibility degrades significantly in NH subjects but not in HI subjects. This 

is also in accordance to the finding that noise reduction schemes based on the ideal binary mask 

could benefit HI listeners more than NH listeners (Wang et al., 2009) in speech intelligibility.  

The relationship between the speech recognition gain and hearing threshold showed that 

the noise reduction benefit in speech intelligibility generally increases with the hearing loss 

level (Figure 4.7). However, the relationship between the SRT of noisy speech and speech 

recognition gain showed that the input SNR is a more important factor that determines the 

performance of noise reduction algorithms (Figure 4.8, Table 4.7, Table 4.8). This finding is 

new as pervious evaluations always thought the difference of performance between NH and CI 

users might be due to the factor of the hearing loss level. However, Section 4.7.4 dug out a 

deeper reason why NH users and CI users show different performance from noise reduction 

algorithms. In fact, they are not tested at the same input SNRs. This indicates that noise 
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reduction algorithms perform better at higher SNRs. It can be further inferred that if NH users 

can be tested at higher SNRs without reaching ceiling performance, they may also get as much 

improvement as HI listeners do. This reminds us that we should be careful if we claim the 

performance of noise reduction algorithms is different between NH and HI listeners.  

4.8.4 Comparison between SCS and CS-WF 

On the whole, there was no significant difference in performance between SCS and 

CS-WF either within NH subjects or HI subjects. However, as SCS has reduced noise by a 

larger amount, a bit more distortion can be sensitively detected by NH subjects than can be 

tolerated by HI subjects. SCS presents sparse stimuli with a larger degree of noise reduction, 

which is more acceptable to HI subjects who are less sensitive to speech distortion and more 

sensitive to noise level due to the hearing loss factors. SCS performs slightly better in speech 

intelligibility than CS-WF within HI subjects. Therefore an algorithm that is not optimal for 

NH subjects might be optimal for HI subjects. We should be always careful if we directly 

adopted algorithms that were originally developed for NH subjects into hearing aid or cochlear 

implant applications. 

4.8.5 Acclimatization effects 

Acclimatization is the process in an individual organism adjusting to a gradual change in 

environment, allowing it to maintain performance across a range of environmental conditions. 

Acclimatization effects are important to the individual performance with noise reduction 

algorithms. Acclimatization effects may be different for different algorithms. Participants in our 

test did not have much time to adjust to each algorithm. If they had used the algorithm in a 

wearable hearing aid for several weeks, they might have obtained different results.  

4.8.6 Comparison with previous studies 

Although previous studies have also tested noise reduction algorithms in hearing aid users 

(Levitt et al., 1993, Elberling et al., 1993, Aharon et al., 2006, Dahlquist et al., 2005), they are 
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not very comparable with our study as different studies used different test types, different 

speech materials and different noise types. However, our study can be easily compared with the 

results from Dahlquist et al. (2005) because we followed their procedure in testing speech 

recognition and speech quality with the same speech materials and the similar noise materials.  

Firstly, the mean SRTs of unprocessed speech (noisy speech) in our evaluation are 

compared to the results from Dahlquist et al. (2005). It is found that the SRT from HI subjects 

in our evaluation is 0.4 dB lower in speech shaped noise but 2.9 dB lower in babble noise. The 

lower SRT corresponds to better speech intelligibility performance. The comparison indicated 

that our study showed similar performance in speech intelligibility in speech shaped noise but 

better performance in babble noise compared to Dahlquist’s study (2005). The difference might 

be due to the hearing loss levels and the ages of the subjects. Hearing threshold levels in our 

research (as shown in Figure 4.1) are approximately in the same range as that shown in 

Dahlquist et al. (2005). Therefore the hearing threshold level is not a factor of SRT difference 

in noisy speech. Similar hearing loss levels result in similar intelligibility performance in 

stationary noise. The ages of our participants (average 22 years, range 18-31 years) are much 

younger than the participants in Dahlquist’s study (average 70 years, range 47-78 years). The 

same hearing threshold does not mean the same speech perception abilities. This might be a 

factor inducing a difference of SRTs in babble noise between the two groups. There might be at 

least two reasons why young subjects can perform better than old subjects. Firstly, young 

subjects usually have acute central processing abilities in speech recognition; secondly, young 

subjects usually acquire a hearing loss at an early age and have been trained to deal with speech 

communication in noise with stronger plasticity in the brain. However, reasons cannot be 

confirmed as we did not compare the equal number of young and old subjects. 

 Following this, the speech recognition gains are compared between present study and the 

study by Dahlquist et al. (2005). The speech recognition gains are most positive in our study in 

HI subjects which is different from Dahlquist et al. (2005) where most of the HI subjects show 

negative SRT gains. This might be due to the noise reduction algorithms themselves, the 

difference in age, or difference in experience with noise reduction algorithms.  
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 The subjective quality results are also compared with Dahlquist’s study (2005). Our 

study showed the similar pattern of paired comparison ratings (Figure 4.5, right column) and 

showed similar median SNR gains in speech shaped noise but a bit higher median SNR gains in 

babble noise (Table 4.4).  

 The comparison between present study and Dahlquist’s study validates the reliability of 

present evaluation and suggests the effect of age on noise reduction performance. However, this 

effect is not clear unless both young and old HI subjects are recruited.  Due to the difficulties in 

recruiting HI subjects, only 9 HI subjects from the University of Southampton voluntarily 

participated in our experiment. To make a balanced comparison in the 95% confidence range, 9 

NH subjects from university were tested as well.  

4.9 Conclusion 

The two noise reduction algorithms in speech intelligibility and quality were tested 

through NH and HI subjects in speech shaped noise and babble noise. The speech intelligibility 

tests were performed through an adaptive procedure (three-up-one-down) to measure the 

speech reception threshold (SRT) corresponding to 79.4% correct recognition. The quality tests 

were performed through the interpolated paired comparison rating (IPCR) to measure the SNR 

gain in quality impression.  

The noise reduction algorithms improve speech quality for both NH and HI subjects; the 

noise reduction algorithms did not improve speech intelligibility for NH subjects; the noise 

reduction algorithms significantly improved speech intelligibility for HI subjects in stationary 

noise but no significant improvement was observed in babble noise; the noise reduction 

strategies hold more promise to help HI subjects than NH subjects in both intelligibility and 

quality. Non-stationary noise (babble noise) is more difficult for noise reduction algorithms to 

suppress compared to stationary noise. 

There is no significant difference in speech intelligibility between the two noise reduction 

algorithms within either NH or HI subjects. However, SCS shows slightly worse speech quality 

than CS-WF in NH subjects. SCS reduces noise to a larger amount at the price of introducing a 
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bit more speech distortion which can be sensitively detected by some NH subjects but can be 

tolerated by HI subjects. Both the algorithms might help HI subjects more given more practice. 

Statistical power will increase with more subjects. The reason that SCS has not shown any 

advantage over CS-WF in babble noise might be that SCS assumes Gaussian distribution of 

noise while it is difficult to estimate the power of babble noise and then pre-whiten babble 

noise appropriately. Although SCS did not show significant advantage over CS-WF, it at least 

matched the performance of CS-WF which is a competitive state-of-the-art noise reduction 

algorithm. 

Previous studies have already showed that there is difference in benefits from noise 

reduction algorithms in speech intelligibility between NH and HI listeners. The present study is 

the first study that pins down the factors behind this difference between NH and HI listeners. 

This difference is more related with the input SNR rather than the hearing loss level. Noise 

reduction algorithms might perform better at higher input SNRs. This reminds us to test 

subjects at appropriate input SNRs when evaluating signal processing strategies. The adaptive 

speech recognition procedure and the IPCR speech quality procedure are both recommended 

for algorithm evaluation studies. 
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Chapter 5 Subjective evaluation of noise reduction effects with 

the hearing loss simulation model 

Although we performed experiments to evaluate noise reduction algorithms in hearing 

impaired (HI) subjects, it is in general more difficult to recruit HI subjects than to recruit 

normal hearing (NH) subjects. We assume that a HI subject’s speech perception can be 

approximated by additive combination of a hearing loss simulation (HLS) model and a NH 

subject’s speech perception. If we could predict the noise reduction effects for HI subjects 

through NH subjects’ listening with an appropriate HLS model, the experiment would become 

much easier. If the HLS model is realistic, the effect of asking the HI subjects to listen to the 

speech could be approximated by asking the NH subjects listening to the same speech with a 

HLS model, which simulates the average hearing loss characters in the HI group. Accordingly, 

we evaluated noise reduction algorithms with the gamma-chirp based HLS model through NH 

subjects in speech recognition tests. The motivation of this study is to investigate whether the 

HLS model can predict intelligibility effects of noise reduction algorithms relative to baseline 

performance (unprocessed speech) for HI listeners. This experiment might give two 

implications if the experimental results with HLS model and NH subjects show similar results 

as with HI subjects. On one hand, it can further support the reliability of the HLS model in 

simulating impaired auditory processing. On the other hand, it can imply whether noise 

reduction algorithms show benefits in speech intelligibility for HI listeners. The two 

implications interact with each other and can also suggest whether the auditory filter based 

HLS model could be used to evaluate speech intelligibility effects of noise reduction 

algorithms for HI listeners, which is easier, compared to recruitment of HI listeners. 

5.1 Introduction 

 Although several attempts (Hollube and Kollmeier, 1996, Taal et al., 2011b, Taal et al., 

2011a) have been made to develop objective speech intelligibility measures, most of them 

have only been validated with NH listeners rather than HI listeners. Some research has already 
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shown that some methods provide a very simple and very good prediction of speech 

intelligibility for NH listeners in a variety of listening situations (French and Steinberg, 1947, 

Kryter, 1962, Pavlovic, 1987). However, large deviations occur with severely HI listeners 

between the predicted speech intelligibility and the performance of the subjects (Pavlovic, 

1984). Even for some objective intelligibility measures that take account of hearing loss 

factors (Kates and Arehart, 2005, Hollube and Kollmeier, 1996), their performance has only 

been validated with clean speech or noisy speech rather than with noise reduction algorithms. 

In other words, a reliable objective speech intelligibility measure to predict effects of noise 

reduction algorithms for HI listeners has not been developed.  

Approaches to modelling speech intelligibility with impaired auditory factors in the 

literature can be divided into two classes: the first class describes speech intelligibility in terms 

of unmasked portions of the speech spectrum and estimates a rating value, such as articulation 

index (AI) or speech transmission index (STI). The speech intelligibility index (SII) concept 

for estimating intelligibility has been extended for the coherence speech intelligibility index 

(CSII) to evaluate broadband peak-clipping and centre-clipping distortion, with the coherence 

between the input and output signals used to estimate noise and distortion effects (Kates and 

Arehart, 2005). The second class attempts to model speech processing in the impaired auditory 

system. This can be more advanced in simulating impaired auditory mechanisms and impaired 

speech perception. Hollube and Kollmeier (1996) developed a speech intelligibility prediction 

model for hearing impaired listeners by simulating the impaired auditory mechanisms. Their 

model set parameters of the individual listener’s hearing thresholds and measured temporal and 

spectral resolution. Hollube and Kollmeier (1996) adapted AI (articulation index) (French and 

Steinberg, 1947, Kryter, 1962, Pavlovic, 1987) and STI (speech transmission index) to predict 

intelligibility effects for HI listeners. All these objective measures show similar power of 

prediction accuracy in speech intelligibility effects for HI listeners. However, these were 

validated with noisy speech rather than with noise reduction algorithms which could introduce 

different speech distortions.  

The accuracy of current objective intelligibility measures to assess noise reduction 
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algorithms for HI listeners is still uncertain. The use of a HLS model is an alternative approach 

to predict noise reduction effects for HI listeners using NH listeners (Hu et al., 2011b). If the 

HLS model is a realistic simulation at impaired auditory processing in respect of intelligibility, 

the intelligibility performance of NH listeners listening to speech processed with the HLS 

model can approach the performance of HI listeners when listening to the same speech without 

the HLS model. As NH listeners are easier to recruit, the evaluation by combing the HLS 

model with NH listeners costs much less in time and effort.  

There are several characteristics of this physiologically inspired HLS model. It can 

simulate hearing threshold elevation, loudness recruitment and reduced frequency selectivity 

based on a compressive gamma-chirp filter bank. Compared to the gammatome filter bank, the 

gamma-chirp filter bank adds a level-dependent asymmetric correction to the basic gammatone 

channel frequency response, thereby providing a more accurate approximation to the auditory 

frequency response (Irino and Patterson, 2001, Patterson et al., 2003, Irino and Patterson, 

2006). Specific details of hearing threshold elevation, loudness recruitment and reduced 

frequency selectivity have been described in Chapter 2. As Drullman et al. (1994) suggested 

that reduced temporal resolution doesn’t reduce speech intelligibility for most 

hearing-impaired people; we did not take account of reduced temporal resolution in our HLS 

model. 

The effects of noise reduction algorithms might be affected by other impairment 

compensation strategies in a hearing aid, which could not be detected if a noise reduction 

algorithm is evaluated in isolation. Therefore appropriate impaired compensation strategies in 

a hearing aid are better to be combined with noise reduction strategies to mimic combined 

signal processing strategy effects in a hearing aid. A well-known compensation strategy, called 

NAL-R procedure (Dillon, 2001), is combined with noise reduction algorithms to test effects 

in the HLS model with NH listeners. NAL-R is a spectral gain prescription to produce 

amplification based on an individual audiogram to compensate for threshold elevation. The 

parameters in the NAL-R procedure are set according to the assumed hearing thresholds in the 

HLS model.  
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The structure of this chapter is as follows: Section 5.2 introduces how to produce the 

stimuli, with noise reduction algorithms, the NAL-R procedure and the HLS model. Sections 

5.3 to 5.7 describe the participants, equipment, procedure and statistical analysis for the 

experiment respectively which are similar to Sections 4.3 to 4.7. The NH subjects who 

participated in the experiment described in Chapter 4 also participated in the experiment 

described in this chapter. Section 5.7 will present the results in intelligibility from HLS model 

with NH listeners and will also compare with results through HI listeners (Chapter 4). Our 

motivation is to evaluate whether the HLS model can predict the significance of difference 

between enhanced speech and unprocessed speech for HI subjects if there exists any. Therefore 

current comparison only compares whether there is according improvement with noise 

reduction algorithms between HI subjects and the HLS model. That is, the difference in SRT 

between enhanced speech and processed speech rather than the correlation in SRT of the same 

condition (enhanced or processed speech) between HI subjects and HLS model will be 

analysed. The comparison can further validate the accuracy of the HLS model in respect of 

intelligibility effects of noise reduction algorithms for HI listeners. Section 5.8 discusses the 

validity and limitation of the HLS model and its potential in setting up a purely objective 

intelligibility measure for HI listeners without subjects’ participation.  

5.2 Stimuli 

The speech materials are BKB sentences (Bench et al., 1979) which are standard British 

sentences recorded by a female talker, consisting of 21 lists with 16 sentences in each list. 

There are three or four key words in each sentence. Two noise types are used, babble noise and 

speech shaped noise. The speech materials and noise materials are the same as in Section 4.2. 

Figure 5.1 shows the procedure to produce the stimuli with the HLS model for NH 

listeners. The noisy sentences were first processed with or without noise reduction algorithms 

and then with the NAL-R procedure. After the NAL-R compensation, the speech was 

processed through the HLS model before finally presented monaurally to one ear of NH 

listeners through headphones. The processing stages mimic the noise reduction and impaired 
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compensation strategies in a hearing aid and the impaired speech perception in a HI listener.   

 

Figure  5.1: Flowchart of how to produce the stimuli with the HLS model for NH listeners,  

 

Figure  5.2: The median hearing thresholds (blue rectangle) of the 9 HI subjects in the 

experiment in Chapter 4 and the assumed hearing thresholds (red circle) used in the HLS 

model. 

 

Figure 5.2 shows the median hearing thresholds (blue rectangle) of the 9 HI subjects in the 

experiment (Chapter 4) and the assumed hearing thresholds (red circle) used in the HLS model. 

There is a difference between the assumed hearing thresholds and the median hearing 

thresholds of the 9 HI participants. As there was a large variation in the hearing thresholds 

across the 9 HI subjects, it was not necessary to make the assumed hearing thresholds to be 

exactly the same as the median measured hearing thresholds. The HLS model in Hu et al. 

(2011b) has been validated in predicting speech intelligibility of speech corrupted with babble 

noise or speech shaped noise. The same HLS model with the same assumed hearing threshold 

as in Hu et al. (2011b) can be further validated in this chapter to predict speech intelligibility 

with noise reduction algorithms. The variability in audiogram will cause some variability in the 

SRT in the HI group. The matched-pair design would eliminate this source of variability and 

can be conducted in future research.  
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5.2.1 Objective demonstration of stimuli 

Figure 5.3 and Figure 5.4 show the time domain waveforms and spectrograms of an example 

BKB sentence “she drinks from the cup” under 0 dB input SNR (in the speech shaped noise 

and babble noise respectively) processed with different noise reduction strategies and then 

with the NAL-R procedure and the HLS model. Clean speech and noisy speech processed with 

the NAL-R procedure and the HLS model are also shown. The waveforms and spectrograms 

are (a) original speech with the NAL-R procedure and the HLS model; (b) noisy speech with 

the NAL-R procedure and the HLS model; (c) the same noisy speech processed with CS-WF 

and then processed with NAL-R procedure and the HLS model; (d) the same noisy speech 

processed with SCS and then processed with NAL-R procedure and the HLS model. Compared 

to Figure 3.8 and Figure 3.9, Figure 5.3 and Figure 5.4 add the effects of NAL-R procedure 

respectively to simulate the combined strategy processing in hearing aids. By visual comparison 

and listening in figures (b) to (d), it can be seen that the noise in the noisy speech (Figure 5.3 (b)) 

is further smeared with the HLS model and noise reduction strategies (Figure 5.3 (c-d)) can 

reduce the noise smearing effects by the HLS model.  In speech shaped noise (Figure 5.3), the 

noise reduction effects increase in the order of the noisy speech, CS-WF and SCS. In babble 

noise (Figure 5.4), there is no such distinct difference between any pair of noisy speech, CS-WF 

and SCS, as Figure 5.3. Through informal listening, the difference in speech quality (‘clarity’, 

‘comfort’) among noisy speech, CS-WF and SCS can be hardly detected. However, the 

difference in ‘noise loudness’ can be obviously perceived. This corresponds to the experimental 

results with the HI subjects (Chapter 4) who could not sensitively detect speech distortion due 

to hearing loss factors (e. g. reduced frequency resolution), but could sensitively detect noise 

loudness.  
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Figure  5.3: Demonstration of unprocessed/processed speech in stationary noise with the HLS 

model. The BKB sentence is “she drinks from the cup”. The spectrograms and waveforms are 

shown for (a) original speech with NAL-R procedure and the HLS model; (b) speech in speech 

shaped noise (0 dB input SNR) with NAL-R procedure and the HLS model; (c) the same noisy 

speech processed with CS-WF and then with NAL-R procedure and the hearing loss simulation; 

(d) the same noisy speech processed with SCS and then with NAL-R procedure and the hearing 

loss simulation. 

 

 

 



Chapter 5 Subjective evaluation of noise reduction effects with the hearing loss simulation model  

114 
 

 

 

Figure  5.4: Demonstration of unprocessed/processed speech in babble noise with the HLS 

model. The BKB sentence is “she drinks from the cup”. The spectrograms and waveforms are 

shown for (a) original speech with NAL-R procedure and the hearing loss simulation; (b) 

speech in babble noise (0 dB input SNR) with NAL-R procedure and the HLS model; (c) the 

same noisy speech processed with CS-WF and then with NAL-R procedure and the HLS 

model; (d) the same noisy speech processed with SCS and then with NAL-R procedure and the 

hearing loss simulation. 

 

5.3 Participants 

Nine NH listeners who are the same NH participants in experiment in Chapter 4 participated in 
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this experiment. All subjects were native English speakers. The NH listeners had hearing 

thresholds at or below 20 dB HL from 250 Hz to 8 kHz (confirmed by PTA), and their ages 

ranged from 20 to 36. 

5.4 Equipment 

All NH listeners were seated in a sound-isolated room and listened to the sounds presented 

through Sennheiser HDA 200 headphones presented through a Behringer UCA202 sound card 

and Creek OBH- 21SE headphone amplifier. The presentation levels of speech were kept at 65 

dB SPL.  

5.5 Procedure 

The intelligibility test is performed through the off-line adaptive speech recognition tests as 

described in Section 4.5. A total of six conditions were tested: two noise types (SSN, babble) 

multiplied by three noise reduction conditions (‘noisy’, SCS, WF). All the six conditions are 

processed with the NAL-R procedure and the HLS model as shown in Figure 5.1. Subjects 

were instructed to repeat as many words as they could after listening to each sentence with no 

feedback given during the tests. For familiarization, participants practised the procedure with 

one randomly selected condition. The order of the six conditions was balanced among the 

listeners using a latin square. This experiment took each subject no more than one hour. 

 The three-up-one-down adaptive procedure was also used to find the speech-to-noise ratio 

required for 79.4% correct recognition in each condition (Dahlquist et al., 2005), which is 

defined as speech reception threshold (SRT) in dB. A sentence was deemed to have been 

recognised correctly when at least two keywords were repeated correctly. Each sentence has 

three or four keywords which were fixed in the BKB database. For example, the key words in 

the sentence “The car engine is running” are “car”, “engine” and “running”. 

5.6 Statistical analysis 

As in Chapter 4, a two-way repeated ANOVA was performed on all of the SRTs across NH 
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subjects. The Fisher least-significant-difference (LSD) test was performed to detect the 

difference between any pair of the six conditions. 

5.7 Results 

Figure 5.5 shows the speech recognition performance of all participants in all six test 

conditions: SSN-Noisy, SSN-CS-WF, SSN-SCS, Babble-Noisy, Babble-CS-WF, Babble-SCS, 

with the HLS model by 9 NH subjects (left) and with 9 HI subjects (right). Figure 5.5 (a) 

shows the spread of SRTs in boxplots. Figure 5.5 (b) shows the mean STR with 95% 

confidence range in each condition. The left panels in Figure 5.5 (a & b) show the results of 

the test with the combination of HLS model and NH subjects. The right panels in Figure 5.5 (a 

& b) show the test results with HI subjects (already introduced in Chapter 4, exactly the same 

as the right panels in Figure 4.4). The test with the HLS model and NH subjects is to mimic the 

effects of the test with HI subjects. The results of the two tests are presented together to 

illustrate where both results share any similarity. In Figure 5.5 (a), the SRTs in the right panel 

show larger variability than in the left panel for each condition. The large inter-subject 

variability in HI listeners is presumably due to individually different auditory deficits and 

individual experience with hearing aids. The hearing loss simulation tests simulated the same 

hearing loss level (shown in Figure 2.3) with all the NH subjects so that this test results in 

smaller inter-subject variability. In Figure 5.5 (b), by comparing mean SRTs within the left 

panel and within the right panel, the order of algorithm performance in each noise is similar 

(SCS > CS-WF > Noisy). It is also to note that SCS performs much better than CS-WF and 

Noisy speech in speech shaped noise in the HLS simulation test. Further investigation will be 

performed through statistics. 
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Figure  5.5: SRTs in different conditions with the hearing loss simulation model (left) and with 

HI subjects (right). SSN: speech shaped noise; Noisy: noisy speech without noise reduction 

algorithms; WF: Wiener filtering; SCS: sparse coding shrinkage. (a) Boxplots of SRTs. On 

each box, the central mark is the median; the edges of the box are the 25th and 75th 

percentiles; the whiskers extend to the most extreme measured data not considered outliers. (b) 

Mean SRTs with error bars indicate the 95% confidence intervals of the means. A more 

negative SRT corresponds to better performance. 
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In the hearing loss simulation test (left panel), the mean SRT for noisy speech with SSN is 

3.24 dB, for CS-WF with SSN is 2.14 dB, for SCS with SSN is −0.31 dB, for noisy speech 

with babble noise is 3.93 dB, for CS-WF with babble noise is 3.74 dB and for SCS with babble 

noise is 2.8 dB. The results were found to be normally distributed by the Shapiro-wilk test. A 

two-way repeated ANOVA shows that in the HLS test with NH subjects, the effects of noise 

reduction algorithm and noise type are both significant [F(2,16)=28.311, p<0.05, F(1,8)=27.07, 

p<0.05]. There is also significant interaction between noise type and noise reduction algorithm 

[F(2,16)=9.055, p<0.05]. The Fisher LSD post hoc test was used across NH subjects to detect 

the difference between any pair of the six conditions (Table 5.1). Significant effects (p < 0.05) 

are given in boldface. In speech shaped noise, there is a significant difference between any pair 

of the three conditions ((1-3) Table 5.1). This indicates that noise reduction algorithms are 

significantly better at improving speech intelligibility than unprocessed speech in speech 

shaped noise in simulation tests which is in accordance with the test by HI subjects in Table 

4.4. In Table 5.1, in simulation test, SCS performs significantly better than CS-WF in speech 

shaped noise which is not the case with HI subjects in Table 4.4. In babble noise, there is no 

significant effect between any pair of the three conditions ((4-6) Table 5.1). This implies that 

noise reduction algorithms are not significantly different from unprocessed speech in speech 

recognition in babble noise with the HLS model which is also in accordance with the test by 

HI subjects in Table 4.4. On the whole, the HLS model with NH subjects can predict the 

effects of noise reduction algorithms for HI subjects in speech shaped noise and babble noise. 

We don’t expect them to be correlated very tightly, as the HLS model only simulates one 

typical hearing loss level while the HI subjects show hearing loss simulation levels with large 

inter-subject variance. The significant difference between SCS and CS-WF in speech shaped 

noise in the simulation test rather than in the HI subjects indicates the  HLS model 

overestimated the effects of SCS. 
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Table  5.1: Fisher LSD post hoc significant tests for the interaction of noise reduction algorithm 

and noise type in the HLS experiment with NH subjects. Significant effects (p < 0.05) are 

given in boldface. The number in each bracket is to give each processing condition an 

identification number. 

Processing 

condition 

Mean SRT (1) (2) (3) (4) (5) 

SSN-Noisy (1) 3.244      

SSN-CS-WF (2) 2.144 0.021     

SSN-SCS (3) −0.311 0.000 0.000    

Babble-Noisy (4) 3.933 0.102 0.010 0.000   

Babble-CS-WF (5) 3.744 0.366 0.016 0.000 0.683  

Babble-SCS (6) 2.800 0.400 0.112 0.000 0.085 0.074 

5.8 Discussion 

The final evaluation of noise reduction effects in HI listeners is due to subjective 

evaluation tests through HI subjects. However, it is difficult to recruit HI subjects and 

performing such tests is expensive. Objective measures are quick and cheap for initial 

evaluation during the strategy development stage. Current objective measures for HI listeners 

are rare and are short of validation with different signal processing strategies. In this chapter, 

we proposed an evaluation methodology to evaluate intelligibility effects of noise reduction 

algorithms for HI listeners.  

This evaluation methodology is based on a physiologically-inspired hearing loss 

simulation model which has been explained in Chapter 2 and in Hu et al. (2011b). The 

assumption is that consequences of hearing impaired listening can be an additive combination 

of hearing impaired distortion with normal hearing listening. If we could simulate hearing loss 

distortion in an appropriate and realistic way, the effects of listening to speech with HI listeners 

can be approximated by asking NH listeners to listen to the same speech with the hearing loss 

simulation. Therefore, this proposed evaluation methodology is to perform a subjective speech 

recognition test by asking NH listeners to listen to speech (noisy, CS-WF, SCS) processed with 
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the HLS model. The same physiologically-inspired hearing loss simulation model was 

validated with noisy speech (speech corrupted with babble noise or speech shaped noise) (Hu 

et al., 2011b), but not with noise reduction algorithms before this experiment, in respect of 

speech intelligibility.  

Both the test with HLS model and the test with HI subjects showed that there is a 

significant effect of noise reduction algorithm in speech shaped noise, but no significant effect 

of noise reduction algorithm in babble noise. However, the effects of difference in Table 5.1 

and Table 4.5 suggest that there might be some significant advantage of SCS in babble noise 

for both HLS model and HI subjects (p is near 0.05). The effect can be clear if more subjects 

are recruited. Currently because the powers of the results with HLS model and HI subjects are 

low, it is not clear if there is any trend. The range of mean SRTs between the HLS model and 

HI subjects are similar. Therefore, the HLS model can generally predict the noise reduction 

effects for HI subjects in speech intelligibility. However, several differences still exist between 

the two tests. One difference is that the test with the HLS model showed much less 

inter-subject variance than the test with HI subjects. All NH listeners listened to speech with 

the same hearing loss simulation level and thus show less diverse results compared to HI 

listeners, who showed variant hearing loss levels. Another difference is that SCS can perform 

significantly better than CS-WF in speech shaped noise with HLS model but not with HI 

subjects.  

Through further investigation of the parameters in the HLS model, a correction parameter 

was overestimated. This correction is the difference between the calculated level (dB) in 

MATLAB representations and the estimated hearing level (dB) of the same signal. The 

MATLAB representation quantities are normalized in amplitude within the range [-1 1]. The 

correction parameter can be called the calibration parameter which calibrates the hearing level 

of the signal from its MATLAB representation quantity. Figure 5.6 shows the distortion by the 

threshold elevation and loudness recruitment of a signal in the quantity of hearing level (dB). 

Before HLS processing, the calculated signal level in MATLAB is added with the correction as 

the input hearing level inL . After processing in Figure 5.6, the output hearing level outL
 

is 
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deduced with the same correction as the output signal level in MATLAB. When the correction 

is overestimated, the input hearing level inL  is increased to inL  . Accordingly, the difference 

d between the output hearing level and the input hearing level is underestimated as d  . Figure 

5.6 shows the consequence of overestimating the input hearing level of envelope with the same 

function as shown in Figure 2.3. Therefore, when the output hearing level is corrected back to 

the output signal level in MATLAB, the output signal is actually deduced by d  rather than d 

in MATLAB. That is, the output signal is overestimated by (d- d  ).  

pL

cL

cLinL 
inL

outL 

TL uL

outL

d 

d

 

Figure  5.6: Illustration of effects when overestimating the input hearing level inL . 

The exact correction parameter in each filter band should be calculated as follows. We 

calibrated the difference between the sound pressure level in TDH 39 headphone and the level 

calculated in MATLAB as 1L . We can also acquire the difference between the sound 

pressure level in TDH 39 headphone and the corresponding hearing level from ISO 389-1 as 

2L , also called reference equivalent threshold sound pressure level (RETSPL) (ISO389-1, 

2000). The exact correction parameter is 1L  minus 2L . The correction parameter in each 

filter band should be different and can be interpolated. However, our experiment roughly set 

the correction parameter the same across the filters and this value is around 20 dB higher than 

the actual correction parameter.   
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The overestimation of output envelopes (Figure 5.6) as well as frequency smearing 

(Figure 2.1) will amplify the detrimental effects of additive noise where local SNR is lower 

than 0 dB in the spectrogram. As speech shaped noise is stationary and spreading the whole 

spectrogram, speech corrupted with speech shaped noise can show more noise detrimental 

effects (Figure 5.2 (b)). This may explain why this HLS model has more detrimental effects in 

noisy speech (Figure 5.2 (b)) rather than in clean speech or enhanced speech (Figure 5.2 (a), 

(c), (d)). As the babble noise is fluctuating with gaps in the spectrogram, the noise detrimental 

effect with the HLS model in babble noise (Figure 5.3 (b)) is not as much as that in stationary 

noise (Figure 5.2 (b)).  

The HLS model may amplify the smearing effects of remaining noise in the speech. When 

the correction parameter is appropriate, the HLS model can be more realistic. The estimation 

of the correction parameter in the HLS model has been explained in Section 2.2. However, the 

HLS model with the overestimated correction parameter can differentiate obviously the noise 

reduction effects between the algorithms. According to the subjective performance in Table 5.1, 

we can infer that SCS reduced much more speech shaped noise but similar amounts of babble 

noise compared to CS-WF (compare conditions (2) and (3) or conditions (5) and (6) in Table 

5.1). 

We still believe the HLS model holds promise to predict effects of noise reduction 

algorithms relative to unprocessed speech in speech intelligibility for HI subjects to some 

degree. The HLS model can be made more realistic with appropriate correction parameters.  

5.9 Conclusions 

Our research is the first to validate the hearing loss simulation model in evaluating effects 

of noise reduction algorithms for HI listeners. Our study has shown that some of the effects of 

the noise reduction algorithms seen in HI listeners are reproduced, at least qualitatively, by 

using the HLS model with NH listeners. If the correction parameters are adjusted, the HLS 

model might be more realistic. There are several advantages of this evaluation methodology. 

Firstly, it takes less time and effort to recruit NH listeners than HI listeners. Secondly, by 
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asking NH listeners to listen to speech with the same hearing loss simulation level, this 

experiment can show intelligibility results with less variance and thus show some factor effect 

with more power.  

Further research can be conducted to test whether there is any correlation in SRT between 

HI subjects and the HLS model in each condition. This experiment needs a number of HI 

subjects with similar hearing loss thresholds and the same number of NH subjects with the 

same hearing loss thresholds as HI subjects.  

Most existent intelligibility measures for HI listeners are only validated with clean speech 

or noisy speech rather than with noise reduction algorithms. A future perspective is to set up a 

purely objective speech intelligibility measure that includes the auditory filter based HLS 

model.  
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Chapter 6 General discussion 

The evaluation results in Chapter 4 provide answers to a number of important questions about 

the benefits of single-channel noise reduction algorithms in hearing aids. One confirmed 

answer is that single-channel noise reduction algorithms could help hearing impaired listeners 

more than normal hearing listeners. However, there is no simple way to determine the 

magnitude of the benefits to hearing aid users. Specific factors include the hearing loss level, 

the input SNR, the noise reduction algorithm itself, the effect of noise type, etc. Specific 

benefits include the domain of intelligibility or quality. This chapter will discuss the factors 

that determine the performance and how these affect performance. 

In terms of evaluation methodology for HI subjects, tests on real users are difficult and 

more time consuming than objective measures. However, currently, there are very few 

validated objective measures to evaluate noise reduction algorithms for HI listeners. Chapter 2 

& 5 respectively proposed and validated an evaluation methodology that is a combination of 

subjective tests on NH subjects and a novel HLS model. Assuming that the HLS model is 

realistic, this evaluation avoided the difficulty of recruiting HI subjects and predicted reliable 

subjective results for a specific hearing loss level. Development of the HLS model in Chapter 

2 was prioritised before algorithm development in Chapter 3, as understanding hearing loss 

factors through the HLS model can have implications to development of noise reduction 

algorithm for HI listeners. Algorithm testing through NH and HI subjects in Chapter 4 was 

followed by validation of the HLS model in Chapter 5, as the test with the HLS model is 

currently a new and additional evaluation test that is not as reliable as the tests with HI subjects 

(Chapter 4).  

The discussion in this chapter first considers the factors and issues that are related to the 

performance of noise reduction algorithms for hearing aid users. This is followed by a 

discussion of the effectiveness and limitations of the HLS model as an evaluation tool for HI 
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listeners. Then, potential translation of this research to hearing aids is discussed. Finally, 

limitations of the study and suggestions for future work are given. 

6.1 Related factors and effects 

6.1.1 The effect of hearing loss level 

The two noise reduction algorithms (CS-WF and SCS) evaluated in our study showed 

comparatively more benefits to HI listeners than to NH listeners, both in speech intelligibility 

and speech quality. This is in accordance with previous evaluation that most single-channel 

noise reduction algorithms could not improve speech intelligibility for NH listeners, but could 

show significant intelligibility improvement for CI users who are profoundly hearing impaired 

listeners. This indicates that the benefits of noise reduction algorithms might vary with the 

hearing loss level. The hearing threshold is one basic characteristic of the hearing loss level. 

The quantitative linear relationship between the speech recognition performance and the 

hearing threshold across the 18 subjects in Figure 4.7 also supported this hypothesis. However, 

when including the hearing threshold and SRT of noisy speech both into the regression model 

of speech recognition gain, the contribution of the hearing threshold is excluded (Table 4.7, 

Table 4.8). Therefore, SRT of noisy speech is a more critical factor that determines the 

performance of noise reduction algorithms. This will be explained in the next section. 

The study showed that the two noise reduction algorithms improved speech quality more 

for HI listeners than for NH listeners. HI listeners, especially with severe or profound hearing 

losses, are very sensitive to noise loudness, but less sensitive to speech distortion compared to 

NH listeners. This is in accordance with previous research that spectral distortion in speech can 

be easily detected by NH subjects, but not by HI subjects (Schijndel et al., 2001). 

Single-channel noise reduction algorithms usually reduce noise by a larger amount at the 

expense of greater speech distortion. Therefore, single-channel noise reduction algorithms can 

use more aggressive noise reduction methods such as SCS to suit the listening properties of the 
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HI listeners.  

6.1.2 The effect of input SNR 

Table 4.7 and Table 4.8 show that the SRT of noisy speech is a more important factor in the 

linear regression of the speech recognition gain compared to the hearing loss level. The SRT of 

noisy speech indicates the level of input SNR in individual evaluation. This reflects that input 

SNR is a more important factor than the hearing loss level in determining the noise reduction 

performance. Noise reduction algorithms perform better at higher SNRs. Noise estimation is 

better at higher input SNRs where it is easier to differentiate speech and noise segments. If NH 

subjects can be tested at higher input SNRs using difficult speech, they might also get as much 

speech recognition gain as HI subjects did. However, usually NH subjects can reach ceiling 

performance at higher input SNRs that do not need noise reduction algorithms. The variation 

of speech recognition gain with input SNR of noisy speech is more obvious in babble noise 

than in speech shaped noise. This reflects the difficulty of reducing babble noise at low input 

SNRs. 

This also suggests that the choice of input SNR during evaluation of noise reduction 

algorithms affects the results, which is especially important for non-adaptive speech 

recognition tests that choose fixed input SNRs (usually 0, 5, 10 dB).   

6.1.3 The effect of noise reduction algorithm 

The evaluation in Chapter 4 showed no significant difference between the two noise reduction 

algorithms for either NH subjects or HI subjects. This indicated that the performance of the 

two noise reduction algorithms were similar in level given the limited number of subjects. 

However, with the HLS model shown in Chapter 5, SCS showed significantly better 

performance than CS-WF in speech shaped noise. The HLS model may amplify the benefits of 

noise reduction effects. Due to the limited power of this study, it is still not certain whether 
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SCS performs better than CS-WF in some type of noise.  

6.1.4 The effect of noise type 

Speech shaped noise and multi-talker babble noise, both of which show a similar average long 

term spectrum as the speech, were adopted as additive noise in the evaluation. Speech shaped 

noise is stationary and babble noise is fluctuating. The two noise reduction algorithms showed 

better performance for stationary noise than for non-stationary noise in both NH and HI 

subjects. For NH listeners, noise reduction algorithms did not affect speech intelligibility in 

speech shaped noise but deteriorated speech intelligibility in babble noise. For HI listeners, 

noise reduction algorithms showed significant intelligibility improvements in speech shaped 

noise but not in babble noise. The effect of noise type was also shown in CI users. Yang and 

Fu (2005) found that the same spectral subtraction algorithm worked much better in speech 

shaped noise than in babble noise in CI users. Due to the rapid varying characteristics of 

babble noise, the noise power estimation methods can not accurately track and estimate the 

noise power in each temporal frame. Babble noise, which shows similar fluctuating properties 

as the target speech, can be easily misidentified as speech resulting in weak noise reduction 

effects. 

6.1.5 Benefits in intelligibility or quality 

Intelligibility and quality are two properties typically tested for noise reduction algorithms. 

These two noise reduction algorithms bring more benefits in quality than in intelligibility for 

HI subjects (Figure 4.6). This is in accordance with previous findings that noise reduction 

algorithms can improve speech quality but not necessarily improve speech intelligibility 

(Harlander et al., 2012). Noise reduction algorithms have reached limits in terms of 

intelligibility, especially for those who show mild-to-moderate hearing losses and are tested at 

the limit of their performance (typically at input SNR below 5 dB). However, it is worth noting 
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that quality is evaluated at more positive input SNRs (5 dB, 10 dB) than intelligibility (Figure 

4.5). It must be recognized that the benefit of quality and intelligibility are measured at 

different input SNRs, which means that the algorithms are performing differently in the two 

types of comparison. This difference in SNR may be the main reason why quality benefits are 

easier to demonstrate.  

6.2 The evaluation methodology with the HLS model 

It has been assumed that consequences of hearing impaired listening can be a combination of 

hearing impaired distortion and normal hearing listening, and that the hearing impaired 

distortion can be simulated with the HLS model. If this assumption is correct, evaluation of 

noise reduction algorithms for HI listeners can be predicted by evaluation with a HLS model 

through NH listeners. Chapter 5 tested this assumption, and showed that the HLS model can 

predict some intelligibility effects of noise reduction algorithms relative to baseline 

performance for HI subjects. The advantage of the physiologically inspired hearing loss 

simulation model is that it adopts the nonlinear and asymmetric auditory filter bank, which can 

potentially approximate the nonlinear auditory filtering in the basilar membrane.  

NH listeners all listen to speech that is processed with the same HLS level while HI 

listeners show considerable differences in hearing loss levels. Therefore, the results obtained 

using the HLS model showed less variation than results with HI subjects. The corresponding 

performance across NH listeners with the HLS model can predict the result for a specific 

hearing loss level more easily. However, the HLS model overestimated the correction 

parameter and thus overestimated the output hearing level of the noisy signal (Figure 5.6). This 

resulted in amplified detrimental effects of additive noise where local SNR is lower than 0 dB 

in the spectrogram (Section 5.8). That is, the HLS model amplified the benefits of noise 

reduction effects by exaggerating the detrimental effects of remaining noise in speech. With 

appropriate choice of the correction parameter in the HLS model, which calibrates the 
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difference between the hearing level and the MATLAB quantities (dB) of the same signal, the 

HLS model may be more realistic in predicting noise reduction performance for HI subjects. 

This HLS model also has the potential to be added into a purely objective intelligibility metric 

for HI listeners. 

6.3 Limitations of the study and future work 

6.3.1 Practical issues in hearing aids 

Essentially all commercial hearing aids are equipped with a spatial filtering algorithm 

(beam-forming) and a single-channel noise reduction algorithm except in-the-ear hearing aids 

that mostly rely only on single-channel noise reduction algorithms. Final tests of 

single-channel noise reduction algorithms in hearing aids should be combined with a spatial 

filtering algorithm. 

In the present test, the noise reduction algorithms were combined with the NAL-R 

formula to mimic the threshold compensation in hearing aids. However, NAL-R can only 

compensate sound with linear amplification. If there is a large range in amplitude across the 

sound, soft sounds may not be amplified enough to be audible, while other sounds may 

become painfully loud. Therefore, advanced hearing aids usually are equipped with automatic 

gain control that can better mimic the compensation strategies in hearing aids.  Therefore in 

laboratory testing it is better to add noise reduction algorithms with dynamic range 

compression to test performance in HI subjects.  

6.3.2 Subjects, test materials and test types 

This study only tested nine HI subjects due to the difficulty of recruiting hearing aid users. 

To make a balanced comparison, this study also tested nine NH subjects. Due to the limited 

power of the study with only 18 subjects, the effects of noise reduction algorithms may not be 

thoroughly unearthed. Although some effect has already been shown, statistical power would 
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increase using more subjects. 

Input SNR seems to be a very important parameter. Further studies can be conducted to 

pin down this effect more precisely. For example, using more difficult speech materials to 

change the input SNR within the same subject; or using more severely hearing impaired 

subjects to present them with noisy speech at higher input SNRs.  

 Young HI subjects may perform better than older subjects due to plasticity in speech 

adaptation (Robinson, 1998). Therefore, an equal number of young and older subjects should 

be recruited in future evaluation to clarify the effect of age.  

As well as the babble noise and speech shaped noise, more noise types can be added to 

simulate different scenarios. It is worth noting that there is a corpus that collected noise from a 

real family living room4. This would mimic real life background noise more realistically.    

Words or syllables can also be used to evaluate the effect of noise reduction algorithms. 

For example, the vowel-consonant-vowel (VCV) test can help to explore whether the noise 

reduction algorithm help to understand vowels or consonants specifically. 

As the algorithms might show different acclimatisation effects, the performance of 

algorithms in the experiment might not represent the long-term benefits of algorithms. Clinical 

trials of algorithms embedded in a wearable device are worthy in future research. This also 

demands the feasibility and real-time implementation of algorithms in a hearing aid.  

6.3.3 Future research in sparse coding for speech enhancement  

This study applied the sparse coding shrinkage principle to speech enhancement for HI 

subjects. No clear difference in performance of SCS and CS-WF was seen. However, the 

method of extracting key information from noisy speech is not limited to the proposed strategy. 

Previous noise reduction algorithms that assume super-Gaussian distribution of speech were 

also developed to extract key speech information. Furthermore, with the development of 

                                                 
4 http://spandh.dcs.shef.ac.uk/projects/chime/challenge.html 
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various sparse coding strategies in the machine learning society, there are more opportunities 

to extract key speech information for hearing aid users through different ways. While training 

to extract statistical features of speech or noise might improve the algorithms, this is not very 

practical due to variation in conversational speech and environmental noise. The proposed 

sparse coding shrinkage method in speech enhancement only approximately estimated the 

sparse parameters, so it is better if more accurate sparse parameters can be estimated online 

without a priori knowledge of speech or noise. Performing sparse coding in the spectral 

envelop domain (Sang et al., 2011b) is also promising, as the envelop carries plenty of 

information for speech intelligibility, which has already been shown in the cochlear implant 

processing.  

Previous machine learning algorithms concentrate on text or image signals and have 

seldom considered speech signals. There is one state-of-the-art sparse coding dictionary 

learning algorithm that sets out to find sparse atoms for speech signals (Jafari and Plumbley, 

2011). Future work can be conducted to develop speech enhancement algorithms with such 

sparse coding algorithms that focus on sparse decomposition of speech signals in the 

background of different noises.  

Sparse coding has been studied in the neural science (Olshausen and Field, 1996, Rieke et 

al., 1999, Dayan and Abbott, 2001). If we regard our brain as an intelligibility system with 

sparse coding mechanisms, the findings from neurophysiology can inspire improvements in 

sparse coding strategies in the signal processing community.  

6.3.4 Future research in the HLS model 

There is still a minor difference between the test with the HLS model and the test with the 

HI subjects. It is found that due to the overestimation of the correction parameter in the HLS 

model, the noise smearing effects are exaggerated in the HLS model. The correction parameter 

is the difference in dB between the signal level calculated in MATLAB and the corresponding 
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hearing level. In other words, the advantage of algorithms with stronger noise reduction effects 

is overestimated. As SCS had more noise reduction effects than CS-WF and unprocessed 

speech in stationary noise, the HLS model predicted a significant advantage of SCS in speech 

shaped noise for HI subjects. This model can be improved by adjusting the correction 

parameter. Current study only evaluated the effects of noise reduction algorithms relative to 

baseline performance between HI subjects and the HLS model. Further research can be 

conducted to evaluate the correlation in SRT of each enhanced/ unprocessed condition between 

HI subjects and the HLS model.  
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Chapter 7 Conclusion 

This work focuses on the benefits of single-channel noise reduction algorithms in hearing aids. 

This work contains development and evaluation of the sparse coding shrinkage (SCS) noise 

reduction algorithm. The motivation is to evaluate whether the SCS algorithm might benefit HI 

subjects more than a state-of-the-art competitive noise reduction algorithm (CS-WF). 

Subjective evaluations were performed with NH and HI subjects in speech intelligibility and 

quality. An additional evaluation of effects of noise reduction algorithms for HI subjects was 

performed using the HLS model and NH subjects. The results of this work are about the 

evaluation and justification of effects of noise reduction algorithms on HI listeners. In 

particular, this work supports the following conclusions: 

 Although SCS seems to perform better than CS-WF in terms of intelligibility in 

stationary noise (Section 3.4 & Section 5.8), differences between the algorithms were 

not large enough to be statistically significant for the overall samples of subjects 

tested here. A more powerful study is required to determine definitely whether SCS 

outperforms CS-WF.  

 Both the algorithms can improve speech quality which is in accordance with previous 

evaluations (Section 4.7.2). 

 The difference between NH and HI subjects in intelligibility gain depends primarily 

on the input SNR rather than the hearing loss level although the two variables are 

correlated. The input SNR was set adaptively according to the individual hearing loss 

level. The algorithms performed better at higher input SNRs where HI subjects can 

get benefits but NH subjects have reached ceiling performance (Section 6.1.2).  

 Babble noise is still a challenge for the noise reduction algorithms used here, 

especially at low input SNRs and for listeners with mild-to-moderate hearing losses 

(Section 6.1.2 & Section 6.1.4). 

 The HLS model may predict the effects of noise reduction algorithms relative to 

baseline performance for HI subjects using NH subjects, and it can probably be 



Chapter 7 Conclusions 

136 
 

improved by adjusting the correction parameter in the model (Chapter 5).
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Appendix B: Results of subjective tests 

Table B. 1: SRT of HI listeners in adaptive speech recognition tests (dB). The lower the SRT, 

the better the intelligibility of the condition is. 

 Speech shaped noise Babble noise 

 Noisy CS-WF SCS Noisy CS-WF SCS 

HI1 0.7 0 -2.5 2 1.9 1.2

HI2 3.5 3.1 2.4 4.9 4 4.4

HI3 0.1 -0.3 -1.3 0 -0.8 -0.8

HI4 3.6 2 3.4 5 4.7 3.1

HI5 9 7.9 8.4 10.4 10.2 10

HI6 -1.5 -2.3 -1.8 -1.5 -0.3 -0.1

HI7 10 9.6 8.9 10 7.4 5.2

HI8 -0.8 -0.1 -1.1 1 0.6 0

HI9 1.4 1.1 0.2 3.4 3 2

 

Table B. 2: SRT of NH listeners in adaptive speech recognition tests (dB). The lower the 

SRT, the better the intelligibility of the condition is. 

 Speech shaped noise Babble noise 

 Noisy CS-WF SCS Noisy CS-WF SCS 

NH1 -3.1 -4.8 -4.1 -2.9 -1.6 -1.5

NH 2 -3.9 -4.9 -4.5 -3.3 -0.9 -1

NH 3 -3.1 -4.9 -3.3 -4.6 -2.1 -2

NH 4 -4.6 -2.4 -5 -2.1 -1.6 -1.9

NH 5 -2.3 -3.6 -2.9 -3.3 -1.9 -2.1

NH 6 -2 -2 -3.5 -0.4 -2 -0.4

NH 7 -2.4 -0.9 -1.1 -1.1 -0.9 -1.3

NH 8 -3.6 -3.4 -4 -3.8 -1.1 -3.3

NH 9 -3.8 -2.5 -3.1 -2.1 -1.8 -1.3
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Table B. 3: Results of paired comparison rating of ‘preference’ with HI listeners. The higher 

the rating, the better the quality of algorithm is. 5/5 means input SNR 5dB for processed 

speech / 5dB for unprocessed speech. 5/10 means input SNR 5dB for processed speech / 

10dB for unprocessed speech. 

 CS-WF SCS 

 SSN Babble SSN Babble 

 5/5 5/10 5/5 5/10 5/5 5/10 5/5 5/10 

HI1 6.3 4.8 5.1 2.9 6.0 3.6 5.1 3.8 

HI2 1.0 0.5 1.1 -0.3 3.6 2.2 2.9 2.0 

HI3 6.9 4.0 3.1 2.0 5.4 5.0 6.0 5.0 

HI4 6.8 4.4 4.7 1.2 7.3 6.1 6.7 5.1 

HI5 7.9 4.4 5.9 4.4 6.1 4.0 6.1 3.2 

HI6 5.1 4.0 4.1 3.8 6.2 5.3 5.0 4.1 

HI7 5.2 1.3 2.7 0.0 6.1 2.0 2.7 -0.2 

HI8 6.3 1.0 5.5 3.5 7.3 5.0 4.5 1.6 

HI9 5.4 3.6 7.1 3.7 7.1 4.6 6.5 4.4 

 

Table B. 4: Results of paired comparison rating of ‘preference’ with NH listeners.  The 

higher the rating, the better the quality of algorithm is. 5/5 means input SNR 5dB for 

processed speech / 5dB for unprocessed speech. 5/10 means input SNR 5dB for processed 

speech / 10dB for unprocessed speech. 

 CS-WF SCS 

 SSN Babble SSN Babble 

 5/5 5/10 5/5 5/10 5/5 5/10 5/5 5/10 

NH1 1.9 -2.1 3.4 1.8 1.1 -1.7 3.0 -0.7 

NH 2 0.7 0.0 2.2 1.8 1.4 1.1 1.9 0.6 

NH 3 3.6 2.4 2.4 1.0 3.9 3.2 0.0 -2.1 

NH 4 4.9 3.3 2.5 1.1 6.4 4.6 5.4 3.9 

NH 5 3.4 1.1 2.4 0.0 3.8 1.4 2.6 1.9 

NH 6 3.3 2.7 3.0 -2.6 2.9 -3.1 3.0 -2.1 

NH 7 1.5 0.5 1.0 -1.0 1.5 0.0 0.0 -1.0 

NH 8 0.6 -0.3 1.3 0.3 0.6 0.3 -0.4 -1.0 

NH 9 2.0 0.3 3.8 1.0 0.8 -3.2 -0.9 -2.3 
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Table B. 5: Results of paired comparison rating of ‘noise loudness’ with HI listeners. The 

higher the rating, the better the quality of algorithm is. 5/5 means input SNR 5dB for 

processed speech / 5dB for unprocessed speech. 5/10 means input SNR 5dB for processed 

speech / 10dB for unprocessed speech. 

 CS-WF SCS 

 SSN Babble SSN Babble 

 5/5 5/10 5/5 5/10 5/5 5/10 5/5 5/10 

HI1 6.9 4.0 5.1 3.7 6.1 3.9 5.9 4.6

HI2 2.5 1.3 3.5 1.9 4.0 2.4 1.8 1.0

HI3 6.1 4.1 4.9 3.5 6.1 4.1 5.1 3.6

HI4 5.1 1.9 5.3 1.1 5.1 3.4 4.6 2.5

HI5 5.0 2.0 7.1 3.7 5.3 2.7 5.3 2.6

HI6 5.0 3.2 4.7 3.5 5.6 5.1 5.1 4.5

HI7 5.6 3.5 5.2 3.2 7.1 5.0 5.6 3.4

HI8 6.5 2.5 5.5 3.5 7.6 6.1 5.0 3.0

HI9 8.7 6.6 7.3 5.2 8.8 5.9 6.4 5.2

 

Table B. 6: Results of paired comparison rating of ‘noise loudness’ with NH listeners. The 

higher the rating, the better the quality of algorithm is. 5/5 means input SNR 5dB for 

processed speech / 5dB for unprocessed speech. 5/10 means input SNR 5dB for processed 

speech / 10dB for unprocessed speech. 

 CS-WF SCS 

 SSN Babble SSN Babble 

 5/5 5/10 5/5 5/10 5/5 5/10 5/5 5/10 

NH1 2.6 0.9 3.6 3.0 4.3 1.0 2.8 2.7

NH 2 7.0 4.3 5.0 3.5 6.5 5.5 4.9 3.1

NH 3 4.0 2.7 3.3 1.5 4.7 4.2 3.0 2.0

NH 4 5.1 2.5 2.4 1.2 6.2 5.0 3.9 2.7

NH 5 2.7 1.4 2.7 1.3 3.2 1.7 1.7 0.4

NH 6 4.0 0.8 5.2 2.4 2.2 0.1 2.3 0.3

NH 7 7.5 2.0 6.0 3.0 8.0 4.5 5.0 1.5

NH 8 4.0 1.5 4.0 2.0 5.2 3.5 4.3 3.2

NH 9 3.0 2.4 1.8 1.5 3.0 2.8 3.3 3.1
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Table B. 7: Speech recognition gain and SNR gain in quality ‘preference’ within HI subjects 

in each condition. 

 

 Speech recognition gain SNR gain in ‘preference’ 

 SSN Babble SSN Babble 

 CS-WF SCS CS-WF SCS CS-WF SCS CS-WF SCS 

HI1 0.7 3.2 0.1 0.8 10.0 10.0 9.8 10.0 

HI2 0.4 1.1 0.9 0.5 6.5 10.0 3.4 10.0 

HI3 0.4 1.4 0.8 0.8 10.0 10.0 10.0 10.0 

HI4 1.6 0.2 0.3 1.9 10.0 10.0 7.2 10.0 

HI5 1.1 0.6 0.2 0.4 10.0 10.0 10.0 10.0 

HI6 0.8 0.3 -1.2 -1.4 10.0 10.0 10.0 10.0 

HI7 0.4 1.1 2.6 4.8 6.6 7.3 5.2 4.6 

HI8 -0.7 0.3 0.4 1.0 6.1 10.0 10.0 7.2 

HI9 0.3 1.2 0.4 1.4 10.0 10.0 10.0 10.0 

 

Table B. 8: Speech recognition gain and SNR gain in quality ‘preference’ within NH 

subjects in each condition. 

 Speech recognition gain SNR gain in ‘preference’ 

 SSN Babble SSN Babble 

 CS-WF SCS CS-WF SCS CS-WF SCS CS-WF SCS 

NH1 1.7 1.0 -1.3 -1.4 2.3 -0.5 9.7 6.0 

NH 2 1.0 0.6 -2.4 -2.3 4.7 10.0 10.0 7.4 

NH 3 1.8 0.2 -2.5 -2.6 10.0 10.0 8.4 0.1 

NH 4 -2.2 0.4 -0.5 -0.2 10.0 10.0 8.8 10.0 

NH 5 1.3 0.6 -1.4 -1.2 6.9 9.0 6.4 9.8 

NH 6 0.0 1.5 1.6 0.0 10.0 2.4 2.7 3.1 

NH 7 -1.5 -1.3 -0.2 0.2 5.9 5.0 2.5 0.1 

NH 8 -0.2 0.4 -2.7 -0.5 5.7 8.8 7.3 -1.3 

NH 9 -1.3 -0.7 -0.3 -0.8 5.9 1.0 6.9 -3.8 
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Appendix C: Instruction sheet to test speech quality 

Paired comparison rating of speech quality 

This experiment asks you to give relative ratings of speech quality through hearing tests using 

headphones. There are two quality parameters: “Preference” and “Background Noise”. We will 

explain how to rate the two dimensions separately in the following. 

1) Preference. 

 

Figure C. 1: User Interface for quality comparison rating of ‘preference’. The quality 

dimension is “Preference” shown as the title.  

The software will automatically show the interface as Figure C. 1on the screen. Please follow 

the instructions below. 

a) First, you will hear the information voice “Preference” that reminds you that the 

evaluation parameter is preference.  

b) You can listen to whichever sentence by clicking button A or B. Please click the 

button A and button B in turn until you are sure of the quality difference between the 

two. 
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c) Please use the slider to give the comparative quality rating between A and B. For 

example, if you think A is better than B, the slider can be placed in the left side of bar 

(<0); if you think A is much better than B, the slider can be shifted leftwards (<<0); if 

you perceives that A equals B in quality, the slider can be placed to the middle of the 

bar (0). The left side of the slider indicates the rating value that appears below the bar, 

as shown in Figure C. 1. 

d) After you give the rating value using the slider, please click “next” to give another 

rating with the same procedures as explained in b) and c). 

e) If you want a break at any time, please click the button “stop”. You can continue the 

procedure by clicking the button A or B again. 

f) Please keep on clicking and give ratings until the title of “Preference” on the screen is 

replaced by “Finished!”.  

 

2) Background Noise 

 

Figure C. 2: User Interface for quality comparison rating of “noise loudness”. The quality 

dimension is “Background Noise” shown as the title. 

The software will automatically show Figure C. 2 on the screen. Please follow the instructions 
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below. 

a) First, you will hear the information voice “Background Noise” which reminds you that 

the evaluation parameter is the loudness of background noise.  

b) You can listen to whichever sentence by clicking button A or B. Please click the 

button A and button B in turn until you are sure of the quality difference between the 

two. 

c) Please use the slider to give the comparative quality rating between A and B. For 

example, if you think A contains less noise than B, the slider can be placed in the left 

side of bar (<0); if you think A contains much less noise than B, the slider can be 

shifted leftwards (<<0); if you perceives that A equals B in background noise, the 

slider can be placed to the middle of the bar (0). The scale on top of the slider . The 

left side of the slider indicates the rating value that appears below the bar as shown in 

Figure C. 2. 

d) After you give the rating value using the slider, please click “next” to give another 

rating with the same procedures as explained in b) and c). 

e) If you want a break at anytime, please click the button “stop”. You can continue the 

procedure by clicking the button A or B again. 

f) Please keep on clicking and give ratings until the title of “Background Noise” is 

replaced by “Finished!”. 
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