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ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Computational Engineering and Design

Doctor of Philosophy

PHYSICS- AND ENGINEERING KNOWLEDGE-BASED GEOMETRY REPAIR

SYSTEM FOR ROBUST PARAMETRIC GEOMETRIES

by Dong Li

In modern multi-objective design optimisation, an effective geometry engine is becoming

an essential tool and its performance has a significant impact on the entire process.

Building a parametric geometry requires difficult compromises between the conflicting

goals of robustness and flexibility.

The work presents a solution for improving the robustness of parametric geometry mod-

els by capturing and modelling relative engineering knowledge into a surrogate model,

and deploying it automatically for the search of a more robust design alternative while

keeping the original design intent. Design engineers are given the opportunity to choose

from a list of optimised designs to balance the robustness of the geometry and the orig-

inal design intent. The prototype system is firstly tested on a 2D intake design repair

example and shows the potential to reduce the reliance on human design experts in the

conceptual design phase and improve the stability of the optimisation cycle. It also

helps speed up the design process by reducing the time and computational power that

could be wasted on flawed geometries or frequent human interferences. A case-study

of the proposed repair system based on the design and analysis of a three-dimensional

parametric turbine blade model has been set up. An automatic analysis workflow is set

up and the results are summarised for setting up a repair database based on surrogate

training methods. Positive repair results have been achieved and an automatic repair

cycle for the blade model is being set up and tested. The proposed physics and engineer-

ing knowledge based geometry repair system for robust parametric geometries proves an

effective tool for ensuring automation robustness and design flexibility.
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Chapter 1

Introduction

1.1 Motivation

Computer-Aided Design (CAD) refers to the application of computer technology that

assists engineers and designers in designing physical products ranging from aircraft,

ships and cars to electronics and buildings. The applications include computer-based

product specification, visualisation, analysis and optimisation, which have gradually

become inseparable elements in the aerospace, automotive and other industries that

produce complex, high-performance products over the past 30 years. CAD has greatly

shortened the design cycle and reduced the design cost by providing a virtual laboratory

for any product design. Throughout the rest of this thesis, an engineering design problem

implies a computer-aided engineering design problem if not otherwise specified.

Complex engineering design problems usually start with a conceptual design phase. In

this initial phase, the objective is to find the right combination of product parameters

that satisfies all the design constraints and relevant regulations, while at the same time,

optimise figures of merit, for example, cost, weight and aerodynamic drag. Essentially,

this conceptual design phase is a highly global exploration of the possible design space.

The exploration could be carried out in a design optimisation framework.

The practice of engineering design optimisation has gradually evolved from a manual,

time consuming, and step-by-step approach to an automated optimisation process [Roy

et al. (2008)]. The automated frameworks that have been developed are abundant in

the literature and diverse in nature depending on the problem at hand. Nevertheless,

most of them make use of a common component: a parametric geometry model, which

is entirely defined by a set of design variables. Such models serve as the starting point

for subsequent analysis and evaluation, such as computational fluid dynamics (CFD)

or computational structural mechanics (CSM), the analysis outcome(s) being sent back

into the optimisation framework, creating a design-evaluate-redesign workflow. In an

3
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ideal workflow, the geometry engine is able to deliver a geometry model defined by the

set of design variables as and when required by the optimiser.

Because of the highly global nature of conceptual design search, the geometry engine in

the optimisation framework should be able to deliver a variety of different geometries

defined by a wide range of design variable configurations without difficulty, i.e. the ge-

ometry engine should be flexible as well as robust. However, although parameterisation

technology has been a research focus for at least 20 years and various parameterisation

technologies having been developed (see [Samareh (2001)], for example), the control of

the trade-off between the desire for robustness and the need for flexibility is still a press-

ing challenge of parametric geometry generation. An expediential measure for ensuring

robustness is to place tight bound limits to design variables so that any combination

of the variables in the trimmed design space leads to a feasible design. However, for

complex geometry models, the infeasible regions often exhibit irregular shapes, and are

therefore hard to avoid. The above measure will either lead to very limited design space

that could be explored, or some remaining infeasible region(s), which will make the

model generation process fail from time to time.

Up to now, there is no satisfactory solution to the above problem. Especially for general-

purpose commercial CAD package, a flawless coverage of the design space is very difficult

to realise. As a result, bespoke in-house geometry engines still dominate in the concep-

tual design phase. These bespoke engines are made according to the specific needs of

an individual customer or product. They are usually more time-consuming, difficult

and costly to set up and use than ready-to-use commercial CAD tools [Keane and Nair

(2005a)]. Their applications are usually limited for specific problems, and within a com-

pany or an organisation. Furthermore, there is no mechanism to guarantee that the

precious engineering experience and knowledge which is used in the construction of a

bespoke geometry engine can be preserved and further reused. So far, there is relatively

little work that has addressed the problem.

In this work, an automatic geometry repair system is proposed to handle the above prob-

lem. The system aims to repair geometrically or physically flawed geometries based on

an engineering knowledge base, and assist the geometry engine to generate robust models

without limiting its flexibility. The system would reduce the reliance on human design

experts in the conceptual design phase and improve the stability of the optimisation

cycle. It also helps speed up the design process by reducing the time and computational

power that could be wasted on flawed geometries or frequent human interventions. The

prototype system aims to provide the following capabilities: capturing and storing the

knowledge of a design engineer; synthesising the knowledge into a general knowledge

base; deploying the knowledge automatically to recommend a repaired geometry alter-

native as and when required; producing inferences that the human expert may not be

able to devise in a reasonable amount of time. In a nutshell, the system could be a

valuable tool in a fully or partially automated design optimisation cycle.
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It should be noted that the automated design optimisation process could be hindered

by some other problems, for example, some geometric features or topological errors that

could not be automatically dealt with by CFD or CSM grid generation algorithms. This

type of error is not strictly related to the parameterisation of the geometry and often

unrelated to the engineer’s domain knowledge. Therefore, they lie outside of the repair

capability of the prototype system that is proposed in this thesis. In the literature, the

practice of preparing geometries for subsequent manipulation such as meshing is usually

referred to as “geometry clean-up” [Hu et al. (2002)], “de-featuring” [Gopalakrishnan

and Suresh (2007)] or “healing” [Chong et al. (2007)]. These operations generally aims

at improving the geometry’s suitability for downstream applications. In this thesis, the

term ”geometry repair” refers to the operation that improves the overall feasibility of

an unfeasible geometry by repairing its geometries parameter sets, rather than directly

patching the geometry.

1.2 About the thesis

In Chapter 2, literature review relative to this research is given. Basic building blocks

of design and optimisation in the field of aerospace engineering are first reviewed. These

include shape parameterisation, computational fluid dynamics and downstream appli-

cations and design optimisations. Various design optimisation methods are reviewed.

There include linear and nonlinear programming, various evolutionary algorithms and

optimisation methods that require derivative information of the objective function. Ex-

isting surrogate modelling techniques are reviewed and individually examined. These

include response surface methodology, radial basis functions, Kriging and support vec-

tor regression. Literature on incorporating prior knowledge into surrogate models are

reviewed. In Chapter 3, the proposed methodology and algorithm of geometry repair is

provided. Firstly a knowledge representation scheme is proposed. The support vector

regression is used as a main tool to construct the knowledge base. Basic ideas, detailed

mathematics and implementation of support vector regression are examined. A brief

review to B-splines representations and their derivatives is given in Section 3.3, as case

studies in Chapter 4–6 use B-splines to construct geometries, . The geometry repair

idea is presented in Section 3.4.

In Chapter 4, the geometry repair method is applied to and tested on an aero inlet

design case. This chapter overviews the inlet design problem first. Then the intake

model and its paremeterisation scheme is set up before demonstrating how to set up

a knowledge base based on practical engineering knowledge and design consideration.

Repair results are positive and are presented in Section 4.4. A comparison of the penalty

prediction landscape and the repair result between different surrogate methods is given

in Section 4.5. A MATLAB graphical user interface has been developed for the real-time
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display of the repair result and an interaction interface with the engineer who makes the

decision is presented in Section 4.6.

Chapter 5 adds computational fluid dynamics simulation results to the engine inlet

design case study. In this chapter, the process for setting up the flow modelling and

simulation is described. Knowledge base is updated and repair results are presented. The

effect of adding more training points to an existing surrogate model is also investigated

in this chapter. The last section of Chapter 5 discusses a few technical aspects in the

setting up of the CFD process, i.e., effect of using smaller y+ value, grid convergence

and the consideration of other turbulence models.

Chapter 6 extends the proposed methodology to a realistic 3D blade design case. After a

brief review of a turbine blade design problem, the author set up an automated turbine

blade design and analysis framework. Description of CAD model setup and parame-

terisation is followed by model preprocessing and stress analysis. Knowledge gathered

from these steps are analysed and used for setting up a knowledge base. The repair of

infeasible design is presented in Section 6.5.

Finally, conclusions and a few pointers for future research are presented in Chapter 7.



Chapter 2

Literature Review: Design and

Optimisation, Surrogate

Modelling, Knowledge

Representation and Geometry

Repair

This chapter reviews all essential aspects that are relevant to the proposed geometry re-

pair system. A study on state-of-the-art practise in engineering design and optimisation

is presented in Section 2.1, placing the geometry repair in the context of the engineering

design process. In Section 2.3 surrogate modelling techniques are reviewed. The next

section reviews how the relevant engineering knowledge is represented, captured and

reused. Section 2.6 reviews other literature which deals with the problem of geometry

repair.

2.1 Computer-aided-design

2.1.1 Computer aided geometric generation

The Sketchpad [Sutherland (1963)] is widely acknowledged as the first modern Computer

Aided Geometric Design(CAGD) program and the ancestor to many CAD systems. The

earliest CAGD systems first appeared in industry during the 1960s and 70s, mainly in

large aerospace and automotive companies. They served as the replacement of the tra-

ditional “pencil-and-eraser” approach of 2D drawing practice, eliminating the need for

drafting departments. Major technological breakthroughs were made in the 1980s as the

7
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first 3D solid modelling and feature-based parametric modelling were introduced [Shah

and Mantyla (1995)]. These days, CAGD is much more than a drawing or drafting aid.

It is used for the specification and visualisation of detailed representation of 3D models

and 2D drawing, as well as an integrated component in product lifecycle management.

The aerospace industry is dominated by commercial CAD software including CATIA

(Computer Aided Three-dimensional Interactive Application) from Dassault Systemes1,

NX (originally named Unigraphics) from Siemens2 and Pro/ENGINEER from the Para-

metric Technology Corporation3. Open source industrial alternatives to proprietary 3D

modelling software such as Open CASCADE4 are also available. Their source code

can be freely adapted, modified and enriched according to particular applications. The

absence of licence fee of open source modelling software can reduce costs of projects.

2.1.2 Shape parameterisation

The purpose of shape parameterisation is to provide an efficient, systematic method for

delivering different design definitions and geometry manipulations. The way in which the

geometry is parameterized is especially important in the process of design optimisation

and is a key consideration for the setup of geometry engines because it is generally desired

that the parameterisation is both flexible and robust for the geometry in question.

A flexible parameterisation would allow more geometries be generated, thus allow a

larger design space be explored in the design optimisation. A robust parameterisation

would reduce the possibility that a failing geometries to be generated so that design

optimisation can be carried out more smoothly.

The NACA series of airfoils is an early and successful parameterisation attempt in de-

signing aircraft airfoils [Jacobs et al. (1933)]. They were developed by the National

Advisory Committee for Aeronautics (NACA), the predecessor of NASA. The shape

of the NACA airfoils is described by a numerical code, comprised of a series of dig-

its. The parameters can be entered into analytical equations to precisely generate the

cross-section of the airfoil and calculate its properties. Today, airfoil design has, in

many ways, returned to an earlier time before the NACA families were created as the

computational resources available now allow the designer to quickly design and optimise

an airfoil specifically tailored to a particular application rather than making a selection

from an existing family.

Parameterisation methods for representing curves and surfaces have become prevalent

in the CAD community. The Bézier curve is one of the simplest forms among the

parameterisation methods. It is an effective way for representing simple curves in a

compact fashion. They were named after the French engineer Bézier (1968), who used

1http://www.3ds.com/
2http://www.plm.automation.siemens.com/en us/products/nx/index.shtml
3http://www.ptc.com/
4http://www.opencascade.org/
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them to design automobile bodies and made them widely publicised. However, The

Bézier form is inefficient for high degree complex curves. A B-spline is a generalisation

of a Bézier curve which could represent high degree curves without using inefficient

high degree polynomials. B-splines can be evaluated in a numerically stable way by

the de Boor algorithm [de Boor (1971)]. Computing the derivatives at a point on a

Bézier curve or B-spline is easy. More detailed mathematical descriptions of B-spline

and its derivatives are given in Section 3.3. B-spline curves are polynomial curves.

While they are flexible and have many nice properties for curve design, they are not

able to represent conic curves, including the circle. The nonuniform rational B-spline

(NURBS) is a generalisation of the B-spline to address the problem. It can represent

most parametric and implicit curves and surfaces accurately [Piegl and Tiller (1997)].

Bézier curve, B-splines and NURBS are all parameterisation methods for geometric

construction and manipulation. They provide the flexibility and intuitiveness to design

a large variety of shapes and reduce the memory consumption when storing shapes.

There are also parameterisation techniques for complex aerospace models, none of them

in domination though. Among them are the basis vector approach [Pickett et al. (1973)],

discrete element approach [Belegundu and Rajan (1988)], the domain element approach

[Leiva and Watson (1999)], the partial differential equation approach [Bloor and Wilson

(1989)] and the free form deformation [Sederberg and Parry (1986)]. The choice of

shape parameterisation techniques are of fundamental importance in the design and

optimisation process. An extensive survey of techniques and their suitability for shape

optimisation can be found in [Samareh (2001)].

2.1.3 CFD and downstream applications

The Computational Fluid Dynamics (CFD) is another element that usually functions

as an integrated part of systematic design optimisation in which it is used to obtain

flow predictions. The fluid behaviour can be described by the Navier-Stokes equations,

which account for the fluid compressibility and viscosity allowing the modelling of shock,

boundary layer separation, etc. In aerospace applications, these effects have significant

impacts on the designs. The Navier-Stokes equations are spatially and temporally depen-

dent partial differential equations whose solution are still beyond current computational

capabilities in spite of recent increases in computing power. As a result, two impor-

tant simplifications are common in practice. Reynolds Averaged Navier-Stokes (RANS)

equations use turbulence models to estimate fluctuations. It still allows compressibility

and viscosity to be considered, resulting in accurate estimation in most cases. The solu-

tion of RANS can still take considerable amount of computational power, for example,

[Duchaine et al. (2009)]. If inviscid flow is assumed, Euler equations will result. The

solution of an Euler system can be faster. However by definition inviscid flow model

neglects the dissipative, transport phenomena of viscosity, mass diffusion, and thermal
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conductivity, thus it could lead to inaccurate prediction when these phenomena are

significant.

2.2 Design optimisation

Design optimisation is the practice of improving existing designs with certain goals

and within constraints, such as robustness, safety and cost. In the simplest case, this

means solving problems in which one seeks to minimise or maximise a real function by

systematically choosing the values of real or integer variables from within an allowed set.

Designers have a very wide range of optimisation methods available, each suitable for a

subset of optimisation problems. Therefore it is important to be aware of the category

to which the optimisation problem at hand belongs. The optimisation problems can be

categorised in regard of the input(s), output(s) or functional relationship between them.

In most aerospace design cases, continuous numerical input optimisation problems are

often dealt with. Discrete numerical or nonnumeric inputs are not uncommon: for

example, if the objective is to optimise number of blades on an engine compressor disk,

or to choose from a ventral or side-mounting engine intake installation.

According to the number of outputs, the optimisation problem can be categorised into

single objective or multi-objective optimisation problems. A multi-objective optimisa-

tion maximises or minimises more than one objective function at the same time. Having

more than one objective to an optimisation problem adds complexity because differ-

ent objectives often conflict. The solution of multi-objective problems often leads to a

trade-off between designs. An important concept related to this trade-off is the Pareto

set. Designs in the Pareto set are those wherein any change in design inputs to improve

any single objective would make others worse. The designs in the Pareto set are called

Pareto optimal.

Optimisation problems can also be classified depending on the functional relationship

between the inputs and outputs. They can be linear or nonlinear, deterministic or

stochastic. Linear problems are those in which the objective function is linear and sub-

ject to linear equality and inequality constraints, whereas nonlinear optimisation refers

to the general case in which the objective function or the constraints or both are nonlin-

ear in the design variables. In aerospace design optimisation, many outputs come from

deterministic nonlinear computer codes. Stochastic problems are those in which some

of the constraints or parameters depend on random variables, for example, when taking

manufacturing variability or changing working environment load into consideration, the

problems often become nonlinear stochastic.

For each type of optimisation problem, the optimisation community has been trying

to develop and improve optimisation methods. Usually, the optimisation method is an
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iterative one for finding the minimum, i.e., given an initial point, an iteration sequence

will be generated by the optimisation method, the last point being the optimal solution

of the problem. A practical method should move steadily towards the neighbourhood

of the minimum, and converge rapidly to it. When a convergence rule is satisfied, the

iteration will be terminated.

2.2.1 Linear and nonlinear programming

For linear problems, various linear programming methods have been proposed. The sim-

plex method was one of the most efficient basis-exchange pivot algorithm for a great ma-

jority of practical problems [Bixby (1991)]. First put forward by Dantzig and Orchard-

Hays (1954), it was listed as one of the “top 10 algorithms of the twentieth century” by

the journal Computing in Science and Engineering [Dongarra and Sullivan (2000)], with

quick-sort algorithm and fast Fourier transform. The simplex method relies on noticing

that the objective function’s maximum must occur on a corner of the space bounded by

the constraints of the feasible region. Criss-cross algorithm is another family of basis-

exchange pivoting algorithm, first published independently by Terlaky (1985) and Wang

(1987)5. Fukuda and Terlaky (1997) present mathematical ideas and proof techniques

behind the finite criss-cross pivot methods. Interior-point method is another family

of linear programming algorithms, prominently among which are ellipsoid method of

Khachian (1980) and projective algorithm of Karmarkar (1984). Vanderbei (2008) pro-

vides a thorough treatment of linear programming, quadratic programming, and convex

optimisation6.

There is a vast range of methods for nonlinear problems; they are collectively known

as nonlinear programming. They can be classified according to whether they require

derivative information of the function. Those methods that do not require gradient infor-

mation are sometimes referred to as population-based methods or zeroth order methods.

Methods that require gradient information are known as gradient-based algorithms.

2.2.2 Population-based algorithms

The most basic form among population-based algorithms is probably the line search,

which optimises univariate functions. In the line search, an initial search interval which

contains the minimiser need to be determined; then sectioning techniques are employed

to reduce the interval iteratively until the length of the interval is less than some given

tolerance. The golden section method and the Fibonacci method are both section meth-

ods. The golden section method derives its name from the fact that the algorithm

5Full texts of either article are not publicly available.
6And this book is available online
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maintains the function values for triples of points whose distances form a golden ra-

tio. The Fibonacci search technique narrows down possible locations with the aid of

Fibonacci numbers.

Evolutionary algorithms are zeroth order methods as well. Among the large family of

evolutionary methods are evolutionary strategies, genetic algorithms and simulated an-

nealing [Bäck et al. (1997)]. Such classes of methods only need to evaluate the functions

and has wide applications, for example, [Song and Keane (2005)]. Especially it is suit-

able to non-smooth problems, problems with complicated derivative expressions, and

problems whose derivatives cannot be easily determined.

Evolution strategies (ES), developed by Rechenberg (1973), and extended by Ostermeier

et al. (1994) and Rudolph (1991) were initially designed with the goal of solving difficult

discrete and continuous parameter optimisation problems. Evolution strategies use nat-

ural problem-dependent representations, and in common with evolutionary algorithms,

the operators are applied in a loop. An iteration of the loop is called a generation. The

sequence of generations is continued until a termination criterion is met. Beyer and

Schwefel (2002) provided a comprehensive introduction into ES history, algorithms and

design principles.

Genetic algorithms, became popular through the work of Holland (1975), are classified

as global search heuristics. The techniques are inspired by the evolutionary biology

such as inheritance, mutation, selection, and crossover. The evolution usually starts

from a population of randomly generated individuals and happens in generations. In

each generation, the fitness of every individual in the population is evaluated; multiple

individuals are selected from the current population based on their fitness, and modified

(recombined and possibly randomly mutated) to form a new population. The new

population is then used in the next iteration of the algorithm. Commonly, the algorithm

terminates when either a maximum number of generations has been produced, or a

satisfactory fitness level has been reached for the population. If the algorithm has

terminated due to a maximum number of generations, a satisfactory solution may or may

not have been reached. [Goldberg (1989)], a classic in the field of genetic algorithms,

introduces the theory, operation, and applications7. [Konak et al. (2006)] presented

recet advances in using genetic algorithms for multiple-objective optimisation.

Simulated annealing [Kirkpatrick (1984)] is another generic heuristics for the global

optimisation problem. The method is an analogy with the physical annealing process

in metallurgy. Each point of the search space is analogous to a state of some physical

system, and the objective function to be minimised is analogous to the internal energy

of the system in that state. The goal is to bring the system to a state with the minimum

possible energy. In each step of the SA algorithm, the current solution is replaced by

a random neighbour, chosen with a probability that depends on the difference between

7The author Goldberg was a student of Holland
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the corresponding function values and on a global parameter T . T physically represents

the temperature which gradually decreases during the annealing process. The evolution

of the state s depends crucially on the value of T . The evolution is coarser when the T

is larger and finer when the T is smaller. Permitting uphill steps saves the method from

becoming stuck at a local minima.

2.2.3 Gradient-based algorithms

Methods that require the derivative information of the objective function are gradient-

based algorithms. The steepest descent method [Fletcher and Powell (1963)], which

uses the negative gradient as its descent direction is probably the most fundamental and

simplest in this category. Newton’s method requires second order derivatives informa-

tion to approximate the objective function in the neighbourhood of the current iterate,

and then minimise the approximation. The second order gradient information, usually

represented by the Hessian matrix, can be made available using finite differencing or

via an adjoint code. However, the Hessian can be computationally expensive to obtain

and sometimes indefinite, which can make the Newton method inapplicable. Therefore,

many modifications to Newton’s method exist. The conjugate gradient method [Hestenes

and Stiefel (1952)] only requires the first-order derivatives but overcomes the steepest

descent method’s shortcoming of slow convergence. At the same time, the method need

not save and compute the second-order derivatives. Therefore, it is widely used to solve

large scale optimisation problems. Trust-Region methods approximate only a certain

region (the so-called trust region) of the objective function with a model function (often

a quadratic) as opposed to the entire function as with the Newton’s method [Conn et al.

(2000)]. When an adequate model of the objective function is found within the trust

region then the region is expanded. Conversely, if the approximation is poor, then the

region is contracted. The method can be applied to find the global optimum. There

is also a large family of methods for constrained optimisation problems, for example,

penalty function methods, feasible sequential quadratic programming [Boggs and Tolle

(2008), Lawrence (1998)] and feasible direction methods. Many hybrid methods that

combine different methods have been developed to achieve better results, for example,

[Jian (2005)].

2.2.4 Computational engineering design and optimisation framework

Computer based optimisation In an ideal automated design optimisation framework,

usually a parametric geometry engine is used to generate parametric models. The mod-

els are to be meshed and transferred into CFD/FEA or other analysis modules. The

analysis results are sent back to the optimiser. If the preset optimisation objective is

reached, the process ends. If not, the optimisation algorithm will propose further design
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candidates. The design–analysis–optimisation cycle is repeated until the goal is reached

or time/computing budget is used up.

The increasing complexity of engineering systems has sparked rising interest in multi-

disciplinary optimisation (MDO). MDO is a field of optimisation that solves complex

design problems in which there is strong interaction between disciplines [Price et al.

(2010)]. Only by considering the fully coupled system can an optimal design emerge.

The primary challenges in MDO are computational expense and organisational com-

plexity. Sobieszczanski-Sobieski and Haftka (1997) surveyed various methods used by

different researchers to address these challenges. [Vanderplaats (2007)] systematically

described MDO techniques, with emphasis on application to engineering design. Yi et al.

(2008) compared seven common MDO methods with mathematical examples. [Simp-

son and Martins (2011)] is a recent examination of MDO’s current and future role in

designing complex engineered systems.

Surrogate modelling and sampling plan design are not optimisation techniques in them-

selves. However they are closely related to optimisation because they reduce the com-

putational cost of optimisation by transferring computationally expensive problems into

simpler tasks which could be solved by the algorithms outlined in the previous sections

[Keane and Scanlan (2007)]. Section 2.3 and Section 2.4 provide more detailed reviews

on these two areas.

2.3 Surrogate modelling

Although computing power has improved significantly in the last few decades, the com-

putational cost associated with engineering design optimisation remains a challenge.

This is mainly due to the engineers’ desire to model engineering systems with higher

fidelity. For example, the Reynolds Averaged Navier-Stokes (RANS) equations that are

used to describe high-fidelity simulation models can take hours to solve, depending on

the size and nature of the problem [Duchaine et al. (2009)]. This is compounded by

the fact that it is common that an optimisation algorithm can make many function

evaluations before an optimal solution is found. Optimisation can lead to prohibitive

computational requirements when high-fidelity simulation is used. [Schmit Jr. and

Farshi (1974)] provided an early example of the idea of surrogate modelling. The basic

idea of surrogate modelling is to construct an approximation of the expensive objective

function from the data generated by a sampling plan. The optimisation is then applied

to the approximation model, therefore reducing the computational cost. In many cases,

data obtained during the optimisation process are used to update the surrogate model in

order to make it more accurate. The process continues until certain convergence criteria
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are met. The technique, mainly used as an approximation technique to simulate compu-

tationally expensive codes, has gained wide notice by both academia and industry, and

has been an cutting-edge research area in the last decade.

In this section, response surface methodology, radial basis function networks, Kriging

and support vector regression are reviewed in turn.

2.3.1 Response surface methodology

The Response Surface Methodology (RSM) was first proposed by Box andWilson (1951).

It is derived from the least squares method. For a first order model

f̂(x) = w0 + [w1, . . . , wk]
Tx, (2.1)

the coefficients w = [w0, w1, . . . , wk] can be estimated by

ŵ = (XTX)−1XTy. (2.2)

where X is the sampling plan and y is the output vector.

Higher order polynomial models are used to approximate nonlinear functions. RSM has

been used in a variety of applications including multidisciplinary optimisation [Korngold

and Gabriele (1997)] and decision-based designs [Lewis and Mistree (1998)], in which

rational reaction sets are approximated by the RSM. Detailed application of the methods

and a MATLAB implementation can be found in [Forrester et al. (2008)].

2.3.2 Radial basis function networks

Radial Basis Function (RBF) networks can produce good approximations to arbitrary

functions. Mathematically, the RBF network model has the general form

f̂(x) =
n∑

i=1

wiψ(‖x − ci‖) (2.3)

where ‖ · ‖ represents the Euclidean norm, ci denotes the ith basis function centre and

ψ represents the basis function, which can take various forms. Common choices of basis

functions include

• linear ψ(r) = r

• cubic ψ(r) = r3

• thin plate spline ψ(r) = r2 ln r
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• Gaussian ψ(r) = e−
r
2

2σ2

• multi-quadric ψ(r) = (r2 + σ2)
1

2

where r is equal to ‖x − ci‖. Usually ci is chosen to be the same as xi for calcula-

tion convenience. In order to estimate the basis function weights w, the interpolation

condition is used.

f̂(xj) =

n∑

i=1

wiψ(‖xj − xi‖) = yi j = 1, 2, . . . , n. (2.4)

Defining the Gram matrix Ψi,j = ψ(‖xj−xi‖), Equation 2.4 can be written as Ψw = yT .

Provided the inverse of Ψ exists, the coefficients can be determined by w = Ψ−1yT .

The prediction at an arbitrary point x is

f̂(x) = φw = φΨ−1yT (2.5)

where

φ = [ψ(‖x − x1‖), ψ(‖x − x2‖), . . . , ψ(‖x − xn‖)].

For Gaussian and multi-quadric basis functions, it is also desired to find an optimised

value of the parameter σ that can minimise the (estimated) generalisation error of the

model. This can be done via a cross-validation process. In the cross-validation process,

the training data are randomly split into equal subsets, then each of the subsets are

removed in turn and the surrogate model is fitted to the remaining data. The error E

between the predictor and the points in the subset that is set aside at each iteration

can be used as a measure of the quality of the surrogates. A list of values of σ can be

populated beforehand and each used as the model parameter in turn. The value of σ

that delivers the smallest error E can be chosen as the optimised value.

A MATLAB implementation of the radial basis function and the cross validation process

can be found in [Forrester et al. (2008)]. The basic RBF can be enhanced to include

regression by introducing a regularisation parameter λ [Poggio and Girosi (1990)]. The

gradient information can also be utilised to build the RBF model [Kampolis et al. (2004)].

RBFs have been extensively applied to engineering problems, such as the parametric

geometry repair model in [Sóbester and Keane (2006)] and the construction of meta-

modelling of combined discrete/continuous responses in [Meckesheimer et al. (2001)].
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2.3.3 Kriging

The kriging method was pioneered by geological statistician Krige to interpolate the

value of a numerical field (e.g., the mineral concentrations or the elevation of the land-

scape, as a function of the geographic location) at an unobserved location from obser-

vations of its value at nearby locations [Cressie (1990)]. It was then introduced and

popularised as an alternative method of creating surrogate models of deterministic com-

putational experiments [Matheron (1963), Sacks et al. (1989)]. It has been extensively

used in various applications, for example, aerodynamics [Hoyle et al. (2006)] and multi-

objective optimisation [Keane (2006)].

Kriging views the response yi from a statistical perspective, as if it were a realisation of

a stochastic process. The correlations between random variables yi and yj are given by

corr(yi, yj) = exp

(
−

k∑

l=1

θl‖x(l)i − x
(l)
j ‖pl

)
, (2.6)

where the hyperparameters θl and pl in Equation 2.6 are then calculated using maximum

likelihood estimation [Jones (2001)]. A recent discussion of kriging hyperparameter

tuning strategies can be found in [Toal et al. (2008)], in which how often and how well

it is necessary to tune the hyperparameters of a kriging model as it is updated during

an optimisation process is investigated.

2.3.4 Support vector machine and support vector regression

Support Vector Machine (SVM) is a supervised learning method firstly proposed by

Cortes and Vapnik (1995) at the AT&T Bell Laboratories, which was developing optical

character recognition (OCR) at that time. SVR was a classification technique based on

the idea of the empirical risk minimisation principle. Classifying data point is a common

task in machine learning: suppose some given data points each belong to one of two

classes, the goal of classification is to decide which class a new data point will be in. The

SVM solves this problem by seeking a “maximum-margin hyperplane” which separates

the two classes of data using the given data points. Maximum-margin hyperplane is

defined as one that has the largest distance to the nearest training data point of any class.

Since in general the larger the margin the lower the generalisation error of the classifier,

maximum-margin hyperplane provides optimal classification. For a k-dimensional space,

a k − 1 dimensional maximum-margin hyperplane is needed. Figure 2.1 illustrates the

idea of class separation and maximum-margin hyperplane in a 2-dimensional space. In

the figure, H3 doesn’t separate the two classes. H1 does, with a small margin and H2

with the maximum margin.

The samples of the given data points that define the hyperplane are called support

vectors. A comprehensive understanding of SVM requires the synthesis of a wide range
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Figure 2.1: Illustration of hyperplanes in a 2-dimensional space

of topics, including dual representations, feature spaces, learning theory, optimisation

theory, and algorithmics[Vapnik (1995), Cristianini and Shawe-Taylor (2000), Sánchez

et al. (2011)].

To allow for mislabelled data, Cortes and Vapnik (1995) suggested soft margin method as

a modified maximum-margin method . If there is no hyperplane that can split the given

data, the soft margin method chooses a hyperplane that splits the examples as cleanly

as possible, while still maximising the distance to the nearest cleanly split examples.

While SVM are becoming competitive for OCR [Joachims (1998), Sebastiani (2002)]

and other object recognition tasks [Furey et al. (2000), Pan et al. (2002)], excellent

performance has been achieved in regression applications as well. Promising empirical

performance is shown in [Vapnik et al. (1996),Gunn (1998), Schoelkopf et al. (1997)].

The support vector regression (SVR) algorithm has been developed by Drucker et al.

(1997). In the regression case the loss function used only penalises errors greater than a

threshold. Such a loss function typically leads to a sparse representation of the decision

rule giving significant algorithmic and representational advantages. The application of

the support vector approach to regression adds the capability to approximate functions.

Initial comparison of SVR with other methods has been made using 26 engineering

analysis functions by Clarke et al. (2005), and SVR has achieved more accurate and

more robust function approximations. Many works contribute to make large-scale SVR

learning practical, for example, [Quan et al. (2004)]. The two main references used by

this work for this approach are [Forrester et al. (2008)] and [Smola and Schölkopf (2004)].

To allow for nonlinearity in classification and regression, kernel trick originally proposed

by Aizerman et al. (1964) is introduced into SVM/SVR. The kernel trick basically replace

every dot product by a nonlinear kernel function. This allows the algorithm to fit the
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maximum-margin hyperplane in a transformed feature space [Boser et al. (1992)]. More

details of kernel trick is presented in Section 3.2.4.

2.4 Sampling plans

Discrete observations or samples are basic building blocks for surrogate modelling. A

well-designed sampling plan is a precondition for any surrogate model. A well-posed

surrogate model may not generalise well if the sampling plan fails to explore certain

regions of the input space. The accuracy of the prediction is restricted by the density of

the sampling plan as well. However the number of sampling points is inevitably limited

by the computing budget. Thus, it is important to make wise decision on the sampling

plan.

Perhaps the full factorial sampling technique is the most straightforward way of sampling

a design space. Such a sampling plan forms a rectangular grid of points in a uniform

fashion. It is easy to implement but when projected to the axes, points will overlap.

Intuitively, this is a waste of the computing budget assigned for design space exploration.

A good sampling plan should cover the design space in a thorough and uniform fashion.

The requirement of a uniform projection onto each dimension of the design space leads

to the idea of Latin hypercube sampling, in which the sample points align in such a

way that there is only one sample in each row and each column [McKay et al. (1979)].

It is also desired that the sampling points spread in the design space as uniformly

as possible. The maximin metric, originally introduced by Johnson et al. (1990) and

further elaborated by Morris and Mitchell (1995) and Ye et al. (2000), is widely used

to evaluate the uniformity of a sampling plan. [Forrester et al. (2008)] illustrates how

optimised space-filling Latin Hypercube can be obtained by evolutionary operation using

maximin criteria, and the method is used in this work.

2.5 Knowledge-based systems

Knowledge-based systems are expert systems based on the methods and techniques of

artificial intelligence. La Rocca and van Tooren (2010) defined knowledge-based engi-

neering system as systems that identify, captures and reuses design, product and process

knowledge in an integrated way. The application of knowledge-based systems reduce

time and cost for engineering applications, automating repetitive design tasks, and sup-

port conceptual design activities. Eom (1992) surveyed expert system applications in

production and operations management. Maher et al. (1984) described tools and tech-

niques for knowledge-based expert systems for engineering design. Common knowledge

representation techniques include frames, rules, tagging, and semantic networks. Oxman

and Oxman (1991) provided a theoretical perspective of knowledge-based CAD.
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Different from the common knowledge-based engineering approach above-mentioned, a

branch of research deals with incorporating prior knowledge into surrogate models. If

prior knowledge of the black-box function exists, this can be used to enhance the ac-

curacy of the surrogate models. Wang and Zhang (1997) developed a knowledge-based

neural network model for microwave design. Problem specific knowledge in the form of

generic empirical functions was included to improve the accuracy of the surrogate. Leary

et al. (2003) extended this approach by incorporating low fidelity information inside the

network. They also used a new knowledge-based kriging method instead of an artifi-

cial neural network. Lauer and Bloch (2008) proposed methods of incorporating prior

knowledge in linear programming support vector regression. The type of knowledge in-

cluded particular points with known values and derivatives of the function . Bloch et al.

(2008) also proposed an algorithm for adding potential support vectors into the surro-

gate. These are, in essence, methods of adding constraints to the linear programming

SVR optimisation problem.

2.6 Geometry repair

As briefly mentioned in Section 1.1, some literature, for example, [Butlin and Stops

(1996)], use the word “repair”to refer to the operation onto a geometry to get it into

a form suitable for engineering analysis. Similarly, Hu et al. (2002) use the word “ge-

ometry clean-up” to refer to the removal of geometry inconsistencies including common

edge defined twice, small gaps, holes, and overlapping of faces. Another similar concept

is “de-featuring” [Lee et al. (2003), Gopalakrishnan and Suresh (2007)], which means

suppressing small or irrelevant features for speeding-up downstream processes. None of

these has directly addressed the control of the tradeoff between robustness and flexibility

of the parametric geometry generation, and should not be confused with the term ’ge-

ometry repair’ that is used in the thesis which refers to the automatic repair of infeasible

design from engineering design point of view.

Recent research suggested that a supervised learning system can be attached to the

design system to capture some of the engineering and geometrical judgment of the de-

signer. Thereafter, the knowledge could be used to repair design variable sets that lead

to infeasible geometry models. In [Sóbester and Keane (2006)], the idea was tested by

building a radial basis function (RBF) supervised learning system into the design pro-

cess of a jet engine nacelle. The approach is robust and effective for models described

by a moderate number of design variables (ten design variables are used in [Sóbester

and Keane (2006)] for defining a jet engine nacelle). However, the amount of training

data required to build up an accurate surrogate increases exponentially with the number

of design variables, which makes the amount of work required to prepare the training

data become less affordable for larger scale conceptual design processes. For example,

a typical aircraft design may be summarised at the concept design stage by nearly 100
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variables [Keane and Nair (2005b)] and a wing characterised by 30 [Walsh et al. (2000)].

Therefore, in order to make the approach applicable to a broader range of real life prob-

lems, it is necessary to improve the above mentioned approach so that it becomes a more

affordable one.





Chapter 3

Methodology

In this chapter, the essential elements of the proposed knowledge-based geometry repair

system are reviewed in detail. Firstly, the way that physical and engineering base

knowledge can be gathered and transferred to useful information are discussed first

in Section 3.1. Section 3.2 explains in further detail how to use the SVR to represent

the knowledge at hand. Section 3.3 introduces B-spline representation of curves which

is used in subsequent chapters. In Section 3.4, the concept of geometry repair and the

process of search for a repair alternative are explained in detail.

3.1 Knowledge representation

An engineer’s judgement and expert knowledge of the feasibility of a model can be drawn

from various sources such as

• explicit rules, discovered by using engineering or geometrical judgment; these rules

include equality and inequality constraints, parameters and engineering laws, etc.

• assessment of individual design cases by an expert engineer, and

• computational analysis results (from CFD, FEA, etc.).

There are no universally applicable schemes for incorporating engineering knowledge into

a design system. This work shows the possibility of transferring some knowledge into

explicit functions and incorporate the knowledge into a regression model. Furthermore,

knowledge of specific designs taken directly from individual engineers, existing designs

or computational analysis results can be mapped to design variable sets [Sóbester and

Keane (2006)]. The explicit rules can be transformed into penalty functions. The penalty

function method is commonly used in design optimisation to transform engineering con-

straints into objective functions, onto which various optimisation techniques can then

23
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be applied. The simplest penalty approach in the optimisation literature is to attach a

large penalty constant to the original objective function whenever any constraint is vio-

lated. Although simple to apply, the approach causes a discontinuity in the shape of the

penalised objective at the constraint boundary and takes no account of the number of

constraint violations. These limitations can be mitigated by some modifications. First,

the penalty can be multiplied by the degree of violation of the constraint for continuity.

Secondly, a separate penalty function may be applied to each violated constraint. In

this work, both modifications are adopted and the penalty is used to indicate the degree

of violation of engineering constraints, in other words, the feasibility of the design. The

more constraints are violated or the worse a single constraint is violated, the higher

the penalty is and the less feasible the design becomes. In this work, this idea is ap-

plied, by constructing four penalty functions [Keane and Nair (2005c)] resulting from

practical considerations and physics-based analysis. The penalty functions take a set of

design variables as input and generate a numerical penalty value for this set as output.

The resulting data are collected, stored and used to train a surrogate. As a result, the

surrogate ‘learns’ from the penalty functions, which are representations of engineering

knowledge.

When knowledge is drawn from the physical properties of the geometric model in ques-

tion (for example, the aerodynamics or the mechanics), these can be calculated from

engineering laws. More commonly in optimisation design practice, they are predicted

by numerical analysis codes. These codes can be viewed as black box functions, whose

input (parametric geometries defined by design variables) and output (the physical prop-

erties in question) are known. Once the data have been collected, they can be utilised

in the same way the data from penalty functions were utilised to train the surrogate.

Furthermore, knowledge of specific designs can be captured directly from case-by-case

assessment by engineers. Experienced engineers can exercise their own judgement and

score a design based on its feasibility, for example, from 0 to 10. The score and its cor-

responding design variable set can be stored and used as training data for the surrogate.

This process was demonstrated by [Sóbester and Keane (2006)].

Figure 3.1 summarises the knowledge representation process.

3.2 Using support vector regression as the knowledge sur-

rogate

Having reviewed surrogate modelling literature in Section 2.3, it is noticed that support

vector regression can be used to avoid difficulties of using linear functions in the high

dimensional feature space, because the model produced by SVR only depends on a subset

of the training data. The SVR model ignores any training data that are close (within
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Figure 3.1: Knowledge representation

a threshold ǫ) to the model prediction and does not depend on the dimensionality of

the input space. Because of these, it is expected that SVR will have advantages in the

high dimensionality space, and the sparse representation of the SVR model can give

algorithmic and representational advantages. This can be a useful feature in real life

design applications where the number of design variables is high. In this section, the

basic ideas, mathematics and implementation of the SVR method are examined. The

SVR method is used as the main tool for knowledge base construction later discussed in

Section 3.4 and is tested in later chapters.

3.2.1 The basic idea

Suppose the training data X = {x1,x2, . . . ,xn}, where xi ∈ IRk,∀i ∈ {1, . . . , n}, has
been obtained and the outputs from the analysis is vector y = {y1, y2, . . . , yn}. Support
vector regression allows specification of a margin ǫ within which prediction errors could

be tolerated. Thus, the prediction function f(x) will have deviation no larger than ǫ

from the actually obtained function values for all the training data. On the other hand,

it is desired to minimise the model complexity. For example, consider the first order

linear regression model

f(x) = wTx+ µ (3.1)

wherew is the coefficient vector {w0, w1, . . . , wk} and µ is the bias. Its model complexity

can be measured by the norm of w, i.e. ‖w‖2 = wTw.
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The problem described above can be cast in the form of a convex optimisation problem:

minimise 1
2‖w‖2

subject to

{
yi −wTxi − µ ≤ ǫ

wTxi + µ− yi ≤ ǫ.

(3.2)

Notice that the above optimisation problem may not be feasible when such a function

f which approximates all pairs (xi, yi) within ǫ precision does not exist. To tackle this,

slack variable pairs ξ+, ξ− are introduced to relax the constraints in the original problem

in case Equation 3.2 becomes infeasible. Of course it is desired that these slack variables

to be as small as possible. Thus, Equation 3.2 can be transformed into:

minimise 1
2‖w‖2 + C

∑k
i=1(ξ

+
i + ξ−i )

subject to





yi −wTxi − µ ≤ ǫ+ ξ+i
wTxi + µ− yi ≤ ǫ+ ξ−i
ξ+i , ξ

−

i ≥ 0

(3.3)

The constant C ≥ 0 in Equation 3.3 is a user-defined parameter, which determines

the trade-off between model complexity and the amount up to which excessive error

can be tolerated. When C approaches 0, the latter term in the optimisation objective,

C
∑k

i=1(ξ
+
i + ξ−i ), also approaches 0 since the summation of slack variable pairs is al-

ways finite. Thus the optimisation focuses on minimising 1
2‖w‖2, and results in a flat

prediction. On the other hand, a larger constant C will lead to a closer fitting of the

training data, since more emphasis is put on minimising
∑k

i=1(ξ
+
i + ξ−i ). So C can be

regarded as a cost index: the higher C is, the more costly prediction error becomes.

3.2.2 Finding w

Having understood the basic idea of support vector regression, a practical solution to

the above constrained optimisation problem is pursued. The key idea is to introduce

two sets of Lagrange multipliers:

{
η+i ≥ 0

η−i ≥ 0
and

{
α+
i ≥ 0

α−

i ≥ 0

which correspond to the constraints

{
yi −wTxi − µ ≤ ǫ+ ξ+i
wTxi + µ− yi ≤ ǫ+ ξ−i

and {
ξ+i ≥ 0

ξ−i ≥ 0
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in Equation 3.3 respectively. The Lagrange function is then given by the original ob-

jective function minus the sum of all products between Lagrange multipliers and corre-

sponding constraints:

L =
1

2
‖w‖2 + C

k∑

i=1

(ξ+i + ξ−i )

−
k∑

i=1

(η+i ξ
+
i + η−i ξ

−

i )

−
k∑

i=1

α+
i (ǫ+ ξ+i − yi +wTxi + µ)

−
k∑

i=1

α−

i (ǫ+ ξ−i + yi −wTxi − µ). (3.4)

Duality theory in convex optimisation states that L should be minimised with respect

to the primal variables w, µ and ξ± while at the same time maximised with respect to

the dual variables, which are the Lagrange multipliers η± and α± in this case.

To find w, the fact that the solution must be at a saddle point is exploited. Applying

the saddle point condition, all partial derivatives with respect to the primal variables

equal zero. In particular,

∂L

∂w
= w −

k∑

i=1

(α+
i − α−

i )xi = 0. (3.5)

Rearranging (3.5)

w =

k∑

i=1

(α+
i − α−

i )xi. (3.6)

Substituting (3.6) into (3.1)

f̂(x) =
k∑

i=1

[
(α+

i − α−

i )xi

]
· x+ µ

=

k∑

i=1

(α+
i − α−

i )(xi · x) + µ. (3.7)

The above process is called the support vector expansion, in which w is completely

described as a linear combination of the training data. Thus, it is not necessary to

compute w explicitly to get the prediction model. Notice that α± remain unknown for

the time being. They are computed by the quadratic programming approach, which is

briefly described later in Section 3.2.7.
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3.2.3 Finding µ

After w has been found by the support vector expansion, it is necessary to find the

bias term µ to complete (Equation 3.1). The Karush–Kuhn–Tucker conditions [Karush

(1939)] state that the product between dual variables and the constraints vanishes at

the solution point: {
α+
i (ǫ+ ξ+i − yi +wTxi + µ) = 0

α−

i (ǫ+ ξ−i + yi −wTxi − µ) = 0
(3.8)

and {
ξ+i (C − α+

i ) = 0

ξ−i (C − α−

i ) = 0.
(3.9)

Notice that if

ǫ+ ξ+i − yi +wTxi + µ = 0

or rearranging it as

yi − (wTxi + µ) = ǫ+ ξ+i

the prediction value lies at the upper boundary of the allowable region; on the other

hand, if

ǫ+ ξ−i + yi −wTxi − µ = 0,

the prediction value lies at the lower boundary. These two opposite scenarios cannot

happen simultaneously at the same point, so the above two terms cannot be both simul-

taneously zero. Now examining Equation 3.8), to make sure it holds, either α+
i or α−

i

must be zero, so their product is always zero:

α+
i α

−

i = 0. (3.10)

Also notice that only those points outside the ǫ-insensitive tube have ξ+ > 0 or ξ− > 0.

From Equation 3.9, it is worth mentioning that these outside points have a corresponding

α+
i = C

or

α−

i = C.

Now consider a special case in which 0 < α+
i < C. It can be proved that:

µ = yi −wTxi − ǫ if 0 < α+
i < C. (3.11)

In a similar way,

µ = yi −wTxi + ǫ if 0 < α−

i < C. (3.12)
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3.2.4 Kernels

To capture more complicated landscapes of the unknown function, it is also desirable to

make the SVR algorithm nonlinear. To achieve this, the input data from input space X
to the so-called feature space F could be mapped:

Φ : X → F . (3.13)

However, computing such Φ explicitly can be prohibitive when the dimensionality of the

input data is high, because the number of different monomial terms can grow rapidly

as the dimension of the input space increases [Burges (1998)]. As noted at the end of

section 3.2.2, it is only the dot product xi · x that is of interest in the SVR algorithm.

Thus, it suffices to use a kernel function that only deals with the dot product in the

algorithm instead, in order to avoid explicit computation of Φ.

Those kernel functions k, which correspond to a dot product, obey the so-called Mercer’s

conditions. Some widely used kernels are:

• Homogeneous polynomial kernels

k(x1,x2) = (x1 · x2)
p p ∈ IN (3.14)

• Inhomogeneous polynomial kernels

k(x1,x2) = (x1 · x2 + c)p p ∈ IN, c > 0 (3.15)

• Gaussian

k(x1,x2) = exp

(
−‖x1 − x2‖2

2σ2

)
(3.16)

• Kriging

k(x1,x2) = exp

(
−

k∑

i=1

θk

∣∣∣x(i)
1 − x

(i)
2

∣∣∣
pk

)
(3.17)

Now the optimisation problem with the kernel concept included could be restated as:

Maximise:

k∑

i=1

yi(α
+
i − α−

i )− ǫ

k∑

i=1

(α+
i + α−

i ) (3.18)

− 1

2

k∑

i,j=1

(α+
i − α−

i )(α
+
j − α−

j )k(xi,xj)
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subject to:
k∑

i=1

(α+
i − α−

i ) = 0 and α±

i ∈ [0, C].

3.2.5 Computing ǫ using ν-SVR

In many cases it is possible to estimate ǫ based on the understanding of the engineering

problem at hand. However, when such information is unavailable, value of ǫ can still be

calculated via the ν-SVR method.

In the ν-SVR, the constrained optimisation problem can be represented as:

minimise 1
2‖w‖2 + C

(
νǫ+

∑k
i=1(ξ

+
i + ξ−i )

)

subject to





yi −wTxi − µ ≤ ǫ+ ξ+i
wTxi + µ− yi ≤ ǫ+ ξ−i
ξ±i ≥ 0, ǫ ≥ 0.

(3.19)

Following a similar procedure, (3.19) can be transformed into the dual optimisation

problem:

Maximise:

k∑

i=1

yi(α
+
i − α−

i ) (3.20)

− 1

2

k∑

i,j=1

(α+
i − α−

i )(α
+
j − α−

j )k(xi,xj)

subject to:
k∑

i=1

(α+
i − α−

i ) = 0, α±

i ∈ [0, C]

and
k∑

i=1

(α+
i + α−

i ) ≤ Cν.

To get the value of ǫ, Figure 3.11 and 3.12 are equated and substitute into Figure 3.6

ǫ =
1

2

(
ym − yn −

k∑

i=1

(α+
i − α−

i )k(xi,xm)

+

k∑

i=1

(α+
i − α−

i )k(xi,xn)

)
(3.21)

if

0 < α+
m < C and 0 < α−

n < C.
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3.2.6 Tuning SVR parameters

The estimation accuracy of SVR depends on the setting of its parameters C, ǫ and kernel

parameters. The problem of parameter selection is further complicated by the fact that

SVM model complexity and hence its generalisation performance depends on all three

parameters. In this work C and Gaussian kernel parameter σ are treated as user-defined

inputs, and are manually tuned in order to get an optimised SVR performance. ǫ is com-

puted using ν-SVR method. Many literature states that parameters should be selected

based on the understanding of the engineering problem at hand. However, when such

information is unavailable, it is difficult to tell the extent to which the parameters of a

SVR model need to be tuned for the resulting surrogate model to be effective. System-

atic ways of estimating SVR parameters could make an interesting research direction.

Hsu et al. (2003) suggested that for a Gaussian kernel, best combination of C and σ

can be selected by a grid search with exponentially growing sequences of C and σ. For

example, C ∈ {2−5, 2−3, . . . , 213, 215}and σ ∈ {2−15, 2−13, . . . , 21, 23}. Each combination

of parameter choices is checked using cross validation, and the parameters with best

cross-validation accuracy are picked. The final model, which is used for testing and

for classifying new data, is then trained on the whole training set using the selected

parameters.

3.2.7 Implementation

To solve (3.18), the quadprog function in the MATLAB optimisation toolbox could be

used. For example,

x = quadprog(H, f, A, b, Aeq, beq, lb, ub)

solves the quadratic programming problem:

min
x

(
1

2
xTHx+ fTx) (3.22)

subject to:

A · x ≤ b,

Aeq · x = beq,

and lb ≤ x ≤ ub,

where H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors. Figure 3.18

can be rewritten to fit it in the standard form (Equation 3.22) as:

maximise

1

2

[
α+

α−

]T [
Ψ −Ψ

−Ψ Ψ

][
α+

α−

]
+

[
1T ǫ− y

1T ǫ+ y

]T [
α+

α−

]
(3.23)
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subject to

1T

[
α+

α−

]
= 0

and

α± ∈ [0, C].

After α± are given by the quadratic programming solver, the complete form of the SVR

predictor could be written out as

f̂(x) =
k∑

i=1

(α+
i − α−

i )(xi · x) + µ (3.24)

3.3 B-spline representation and derivatives

The inlet duct design problem that will be studied in Chapter 4 is a B-spline based

model. Therefore, a brief review to B-splines representations and their derivatives is

given in this section. B-splines are an efficient means of representing complex high-

degree curves. In essence, they are seamless conjunctions of low degree Bézier curve

segments. A B-spline curve is defined as follows:

C(u) =
n∑

i=0

Ni,p(u)Pi (3.25)

where Ni,p(u) are the B-spline basis functions of degree p and Pi are the control points.

Given m real valued ui, called “knots”, with u0 ≤ u1 ≤ · · · ≤ um−1, the m− n+1 basis

B-splines of degree n can be defined using the Cox-de Boor recursion formula [Piegl and

Tiller (1997)].

Ni,0(u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Ni,n(u) =
u−ui

ui+n−ui
Ni,n−1(u) +

ui+n+1−u
ui+n+1−ui+1

Ni+1,n−1(t).

(3.26)

It is sometimes necessary to find out the derivative of a B-spline for analysis. The

derivative of a B-spline curve is:

C′(u) =

n−1∑

i=0

Ni,p−1(u)Qi (3.27)
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where the Qi’s are defined as follows:

Qi =
p

ui+p+1 − ui+1
(Pi+1 −Pi). (3.28)

Since the first derivative of a B-spline curve is another B-spline curve, derivatives of

higher orders could be computed by recursively applying this technique.

The curvature k(u) at u can be computed as:

k(u) = |C′(u)×C′′(u)|/|C′(u)|3. (3.29)

The radius of curvature R(u) is the reciprocal of curvature k(u):

R(u) =
1

k(u)
(3.30)

3.4 Geometry repair

After the knowledge surrogate is properly trained with a set of training data, typically

obtained by evaluating the feasibility related penalty functions at a set of designs in-

cluded in a sampling plan, the surrogate model can be used to predict the feasibility of

untested geometries by giving a numerical value which can be regarded as a predictor of

the feasibility of the unknown geometry. To draw a line between feasible and infeasible

designs, a feasibility threshold pth should be defined. The untested geometries which

have a value higher than the threshold will be regarded as infeasible. Then, when an in-

feasible geometry is detected by the surrogate, an alternative set of design variables can

be found automatically using an optimisation-based search over the surrogate, making

an automatic geometry repair process possible.

The repair of a low feasibility geometry can be implemented by identifying the design

alternative with the smallest possible repair alteration (SPRA). To be precise, the SPRA

is defined as the set of design variable increments that will make the design feasible while

keeping changes to a minimum, thus retaining the original design intent to the maximum

[Sóbester and Keane (2006)]. The method will be further elaborated in Chapter 4.

In essence, the search for the SPRA is a single objective constrained optimisation prob-

lem:
minimise SPRA =

∑n
i=1

√
(xi − xri)

2

subject to f̂(x) ≤ pth
(3.31)

where xi is the ith design variable of the unknown geometry x, xri is the ith design

variable of the proposed repair alternative xr and f̂(x) is the feasibility predictor of x,

given by the surrogate f̂ .
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The choice of method to be employed for the search of a repair alternative is fairly open

from the standpoint of computing budget because both the objective (the distance be-

tween the original design and repair alternatives) and the constraint (the SVR geometry

quality predictor) are cheap to evaluate. However, if a simple gradient-based local search

is employed, it is possible that the true nearest possible repair alternative is neglected

if it hides behind a local hump of the surrogate. In this work, a variable resolution

evolutionary strategy approach has been adapted to avoid such problems. The search

starts with an initial global search, which covers the whole scope of the design space. If

the initial global search is successful, further local searches are repetitively performed

within the hyper-sphere which centred on the original design point with a radius equal

to the distance between nearest feasible design found so far. In each repetition, or

“generation” in the evolution strategies terminology, a series of offspring are obtained

by using the full factorial sampling technique. If a whole generation fails to produce a

better design alternative, the sampling density will be increased to allow a more intense

search. After a successful round of search, the design variable sets that fulfil the quality

constraint are listed, the one that is closest to the original design picked and used as the

benchmark for the next round of search. The search terminates when either the opti-

mised design reaches a pre-determined penalty value below which the design is deemed

as “satisfactory” or the limit of computing budget is reached.

3.5 Summary

In this chapter, building blocks of the proposed knowledge-based geometry repair system

are reviewed in detail. Knowledge can be gathered from physical judgement, simulation

results and individual assessment of the geometry in question by a domain expert. After

the knowledge is collected and normalised, it can be used to train a regression surrogate

model. The resulting model represents the knowledge at hand. It is used for the subse-

quent search for the SPRA, in order to find a robust and close substitute. In Section 3.3

mathematics of B-spline representation and analysis are reviewed , which will be used

in the next chapter.

As a summary of this chapter, a flowchart of the proposed process is shown in Figure 3.2.

In the preparation phase, expert knowledge is translated into penalty functions. At

the same time, a sampling plan is generated across the design space. Each sample is

evaluated by referencing to the penalty functions and/or CFD/FEA codes or individual

assessment by an expert. Evaluations are stored in a database, which is used to construct

a knowledge surrogate. The surrogate is tuned to best represent the training data before

it is used to predict unknown geometry feasibility and search for the SPRA if the new

unknown geometry is predicted to be infeasible. Of course there is no certain way to

determine the feasibility threshold, therefore the algorithm generates and uses a set of

feasibility thresholds, based on which a sequence of repaired geometries is generated.
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The designer can review the repaired geometries in the order of increasing or decreasing

distance from the original design and may choose one to form the repaired geometry.

When new feasible geometries are determined, the designer may probably be interested

in its true penalties/physical properties. These values can be calculated as before, and

the data obtained can be used to update the existing database.
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Figure 3.2: Methodology flowchart for setting up the repair system and the repair
process





Chapter 4

Case Study: Geometry Repair in

the Aero-engine Intake Design

In this chapter, the geometry repair methodology proposed in Chapter 3 is applied to an

aero-engine intake geometry model design case. An overview of the aero-engine intake

design problem is presented first in Section 4.1. Section 4.2 presents the setup of the

intake model and the geometry paremeterisation scheme. Practical physical-based engi-

neering knowledge are summarised and conversed into penalty functions in Section 4.3.

The repair system is set up in Section 4.4 and the effectiveness of the repair system is

tested over a few individual geometries, the movement of the repair suggestions being

illustrated on a repair path chart. Later in Chapter 4, different regression models are

used for modelling the knowledge, and a comparison of the penalty prediction landscape

and the repair results generated by using different surrogate methods are given in Sec-

tion 4.5. Finally a graphical user interface that visualise SPRAs and assists the selection

of an optimal design by a designer is presented in Section 4.6.

4.1 Overview of the intake design problem

Aero-engine intake ducts are designed to meet a number of criteria to ensure that an

aircraft engine is properly supplied with steady, high quality airflow under different

operational conditions from steady flight to maneuvering. The duct should capture a

portion of the incoming free stream airflow and transform it into suitable flow conditions

before feeding it into the entrance of the engine fan or compressor [Seddon and Goldsmith

(1985)].

As the air is brought from free stream to the compressor face, the flow may be distorted

by the inlet duct. At the compressor face, one portion of the flow may have a higher

velocity or higher pressure than another portion. The flow may be swirling, or some

37
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section of the boundary layer may be thicker than another section because of the inlet

shape. The rotor blades of the compressor move in circles around the central shaft. As

the blades encounter distorted inlet flow, the flow conditions around the blade change

very quickly. The changing flow conditions can cause flow separation in the compressor, a

compressor stall, undesirable vibration of rotating blade rows or the possibility of engine

surge (reverse airflow) and can cause structural problems for the compressor blades. A

good inlet must produce low distortion [NASA (2009)].

As mentioned above, flow separation and distortion under cross wind or tail wind condi-

tions should be minimised. While at cruise conditions, it is also important to minimise

the drag by optimising the design of the intake together with other components. The

design of a turbine-powered aircraft engine intake is a demanding task due to its multi-

objective and multi-disciplinary nature. Major objectives in the design process include

minimising drag, compressor entrance pressure distortions, weight, cost and maximising

pressure recovery [Sobester (2007)]. The design of a modern inlet is always a compromise

between these major objectives.

The advent of supersonic aircraft raised new challenges on the efficiency of inlet since

the total pressure recovery significantly influences the overall engine performance. An-

nular intakes with bullet centre-bodies (e.g. MiG-21) and normal shock intakes (e.g

F-16 Falcon) became favourable designs for fighter aircraft. Other important factors

that influence the design decision include capture area of the intake, effect of flow dis-

tortion, noise reduction. For civil aircraft, non-integrated podded engine installations

are dominant, raising another challenge of the design and optimisation of nacelle and its

integration with the engine.

4.2 The intake model and its parameterisation

Here a simple 2-dimensional parameterized inlet model was built as a test case, as shown

in Figure 4.1. The external shape of the airframe, the position of the engine and rear

bulkhead are fixed. The intake shape is entirely dependent upon its centre axis (the

dashed curve in the graph), which is a B-spline defined by seven control points (C1–

C7, as noted in the graph). The horizontal positions of these control points are held

constant. The vertical positions of C1 and C2 are kept the same so that the entrance

of the intake stays horizontal. Additionally, the vertical positions of C6 and C7 are on

the engine centreline to ensure that the exit of the intake is level and connects smoothly

with the engine. The cross-sectional area of the intake duct equals that of the engine

face and is held constant along the duct centre axis. The vertical positions of other

points are left free as design variables. Horizontal positions, acceptable vertical position

ranges and corresponding design variables for each control point are listed in Table 4.1.
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Figure 4.1: A simplified 2D intake model

The design variable set x comprises four design variables in the test case:

x = {x1, x2, x3, x4}.

For example, the design variable set x = {359.5, 359.9, 165.8, 116.1} will result in the

design shown in Figure 4.1.

Control Point Horizontal position Vertical range Design variable

C1 -100 245 − 385 x1
C2 -65 same as C1 same as C1

C3 0 175 − 455 x2
C4 100 70− 350 x3
C5 200 35− 315 x4
C6 250 131.25

C7 300 131.25

Table 4.1: List of the horizontal positions, acceptable vertical position ranges and
corresponding design variables for each control point

4.3 Physics based knowledge of the intake design and its

representation

As mentioned in Section 3.1, engineering knowledge in the form of explicit rules can be

transformed into penalty functions in order to make them optimisable objectives. In

this section, the idea is illustrated by three examples.
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4.3.1 Consideration on the vertical distance between the fuselage and

intake

First of all, an intake position penalty function P1 is related to the vertical distance

D between the aircraft fuselage (upper boundary) and the intake lower boundary at

the air intake entrance position, as show in Figure 4.1. A positive D corresponds to

a protruding intake design, which will increase the aerodynamic drag. On the other

hand, negative distance will result in an intake design where the entrance is partially

submerged into the fuselage. Since the air capture area is reduced, the capture/throat

area ratio is reduced, which is undesirable from an intake aerodynamics point of view.

Such engineering considerations are incorporated into P1, in which both unfavourable

scenarios receive a penalty. P1 is considered as having the form

P1 =

{
D3/2 if D ≥ 0

−100D if D < 0
(4.1)

The reason an exponential function was chosen when D ≥ 0 and a linear function when

D < 0 was to test the learning ability of support vector regression with different penalty

functions. Since the airframe external shape is fixed and the vertical position of the

intake entrance is defined by the design variable x1, D is solely dependent upon x1.

Here x1 and D are related by

D = x1 − 306.25, (4.2)

so that P1 can be rewritten as a function of the design variables

P1 = P1(x) =

{
(x1 − 306.25)3/2 if x1 − 306.25 ≥ 0

−100(x1 − 306.25) if x1 − 306.25 < 0.
(4.3)

4.3.2 Consideration on the curvature limit of the intake duct

A second penalty function P2 is related to the curvature of the intake duct. It can be seen

that certain design variable combinations can render the overall shape of the intake duct

convoluted. From an aerodynamic engineer’s point of view, designs with sharp bends

are unfavourable because the airflow can separate and cause distorted pressure fields on

the engine face. Furthermore, too high a curvature of the centre line can cause a loop in

its upper and lower offset curves and render the design impractical. Such a failed design

is shown in Figure 4.2, in which the design variables are set to be x = {360, 300, 50, 250}.

Therefore, to represent such engineering concerns, a penalty function P2 is set up to

penalise geometries with excessive curvature. The curvature k(u) and the radius of
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Figure 4.2: Failed design example due to high curvature

curvature R(u) of the centre B-spline axis can be computed by Equation 3.29 and Equa-

tion 3.30 respectively.

A loop will occur in the offset curve if R(u) is less than the radius of the engine face,

which is 43.75 in this intake design case. P2 is set up as a sum of R(u)s whenever its

value is less than 43.75, i.e.

P2 =
1∑

u=0

R(u),∀R(u) < 43.75. (4.4)

4.3.3 Interference with the rear pressure bulkhead

It is noticed that those duct designs which interfere with the rear pressure bulkhead

are undesirable since precious space in the fuselage is occupied it involves moving the

bulkhead forward. Such an unfavourable geometry is illustrated in Figure 4.3. A penalty

function P3 is set up to penalise interference between the two parts.

P3 = Total Area of Interference (4.5)

A more severe interference will incur a higher penalty value of P3. So far, three penalty

functions have been set up for three explicit rules, each of which represents some form

of engineering knowledge. Compared to direct consultation with a human expert or

evaluation of CFD codes, explicit rules are relatively cheap to calculate and thus more

favourable in the process of generating training data. However, in contrast to the 4

design variables in the test case, many more design variables may exist in real engineering
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Figure 4.3: A faulty geometry due to structure interference

applications with underlying interactions that the designer may be unaware of. In the

region of the search space where these explicit rules cannot reach, a CFD analysis could

be set up, and it may be possible to consult human experts to get information about the

deficiencies of the geometry. Human expert consultation and CFD analysis will result

in case-based knowledge, which can be used in the training of a surrogate.

4.4 Repair result

4.4.1 A simple case

Following the procedure that has been described in the previous sessions, it is possible

to predict the quality of the geometry and find an SPRA for faulty geometries. To test

the idea of geometry repair, the author began with the single penalty function P3 which

penalises the interference between the rear pressure bulkhead and intake, and a pre-

determined feasibility threshold value pth = 1500. A faulty design whose corresponding

design variable set is x = [0.2, 0.1, 0.5, 0.5] is presented in Figure 4.3. It is obvious that

the interference between the bulkhead and intake is severe.

100 training points xi, i = 1, 2, . . . , 100 were chosen by the Latin Hypercube sampling

method. For each xi, yi = P3(xi). The SVR geometry quality predictor f̂(x) was

trained on these (xi, yi) pairs,with i = 1, 2, . . . , 100. The predicted penalty for this

design was found to be f̂(x) = 2.7874× 104. The search started globally over the whole

design region. A Pareto front was determined based on the initial search result (the
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circled points in Figure 4.4). The point which lay below and is closest to the feasibility
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Figure 4.4: Initial global search result with its Pareto front being marked by circle,
and the initial choice being marked by a bold circle

threshold line (black dashed line) was chosen as the current best point in the search

process (bold circled point in Figure 4.4). It was predicted by the SVR predictor that

the chosen point had a penalty of 940 and its Euclidean distance from the original design

was 0.4743.

After the successful initial global search (with a sample size of 114), optimisation con-

tinued by repetitively performing local searches within the hyper-sphere centred at the

original design point with a radius equal to the distance from the best point found so

far. The sampling points outside the hyper-sphere were discarded to save computing

budget. This strategy proved to be able to improve the search result in each of the

four consecutive rounds before it converged at x = [0.2650, 0.4900, 0.6950, 0.5650] with

f̂(x) = 1440. The geometry corresponding to the optimised x is shown in Figure 4.5.

Comparing Figure 4.3 and Figure 4.5, it can been seen that in the optimised design the

interference between the rear pressure bulkhead and the engine intake had been signifi-

cantly reduced, while the aft part of the intake was subject only to minor changes. This

indicates that the design can be made feasible by the repair process while the original

design intent is retained.

4.4.2 Repair of a design candidate with multiple flaws

The proposed geometry repair method proves feasible in the simple case study in Sec-

tion 4.4.1. In this section, the author investigated into the application of the proposed
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Figure 4.5: Suggested repair alternative of the original design, see Figure 4.3 for
comparison

method on a design candidate with multiple design flaws. Such a flawed design is pre-

sented in Figure 4.6 with its design vector

xo = [0.45, 0.35, 0.05, 0.65].

The front part of the intake is slightly submerged in the fuselage and the duct itself is

snaky and interferes with the bulkhead.

Three penalty functions are combined to form P = P1 + P2 + P3. The same set of

training points xi were used but this time yi = P (xi). An SVR surrogate f̂(x) was

trained on the data and was used for the optimisation. In this case, 10 different pth

values were used: pth = 0, f̂(xs)/10, 2f̂ (xs)/10, . . . , 9f̂(xs)/10 which led to 10 different

repair suggestions and leave the final option to the engineer. The repair alternatives are

presented in Table 4.2, (notice that the predicted penalty for the original design xo is

f̂(xs) = 5642):



Chapter 4 Case Study: Geometry Repair in the Aero-engine Intake Design 45

−100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

 ← Engine Intake

Unphysical loops

Interference with rear pressure bulkhead

Figure 4.6: A design candidate with multiple flaws

Table 4.2: Design alternatives based on different feasibility

threshold levels

pth x Repair alternative suggestion

5053 [0.4696, 0.3761, 0.0565, 0.6304]
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Table 4.2: (continued)

pth x Repair alternative suggestion

3930 [0.5025, 0.4375, 0.0675, 0.5975]
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Table 4.2: (continued)

pth x Repair alternative suggestion

1684 [0.5966,0.5454,0.0989,0.5034]

−100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

 ← Engine Intake

1123 [0.5929,0.5644,0.1215,0.4356]

−100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

 ← Engine Intake
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It can be seen that the repair suggestions xr gradually change from very similar to

the original design to a “near perfect design” as the feasibility threshold pth gradually

decreases. The part exhibiting high curvature is gradually smoothed, while at the same

time the interference with fuselage and rear bulkhead is gradually reduced. The engineer
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can thus choose one of these optimised design alternatives in a way that best balances

between the desire to retain the original design intent and the “health”of the geometry.

4.4.3 Illustration of the repair path

To better illustrate the repair path on the predicted penalty function landscape, the

code is slightly modified so that two of the design variables were fixed, allowing the

other two variables to vary and to be optimised. The optimisation problem is thus

reduced to a two dimensional one. The original design labelled No.1 in Figure 4.7 is

x = [0.4, 0.2, 0.2, 0.9]. In this case, the second and fourth design variable (x2 and x4)

are allowed to vary. The contour plot on the left of Figure 4.7 shows the predicted

penalty function landscape with regard to x2 and x4. It could be clearly observed from

Figure 4.7 that as the penalty threshold decreases, the suggested repair alternative moves

away from the original design, and towards the area in the penalty landscape where the

predicted penalty is low.

4.5 A comparison of the penalty prediction landscape and

the repair result between different surrogate methods

The penalty prediction landscape can be constructed from the same sampling points

by different surrogate modelling methods. The experiments presented here are aimed

at determining the possible extent of these differences in the landscape and the repair

result. In this section, the author constructed the penalty prediction functions by three

other surrogate modelling methods: RBF network with thin plate spline base (Fig-

ure 4.8), Gaussian base (Figure 4.9) and inverse multi-quadric base (Figure 4.10). A

detailed review of the methods and how the hyper-parameter σ is chosen can be found

in Section 2.3.2. These prediction functions are presented against the SVR prediction

(Figure 4.11) as well as the original penalty function (Figure 4.10) . To visualise these

four-dimensional functions, a “nested tile plot” [Forrester et al. (2008)] is used. In a

nest tile plot, two variables are selected to plot against each other on each tile; then a

matrix of such tiles could be generated, where the row and column of a tile determines

the values of the remaining two variables.

To compare the quality of the repair results based on the different surrogates, ten random

faulty designs were chosen from the design space (Table 4.3) and were repaired using

the same repair algorithm as described in Section 3.4, each time based on one of the

four different knowledge bases, which are represented by the different penalty prediction

models (Figure 4.8 to 4.11).

The ten faulty design cases are listed in Table 4.3.
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Figure 4.7: Illustration of a repair path
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Table 4.3: Variables of ten faulty design cases

Case Variable#1 Variable#2 Variable#3 Variable#3

1 0.005 0.555 0.255 0.645

2 0.185 0.015 0.295 0.135

3 0.015 0.275 0.775 0.305

4 0.055 0.835 0.635 0.885

5 0.065 0.205 0.755 0.745

6 0.025 0.125 0.105 0.145

7 0.125 0.455 0.185 0.975

8 0.035 0.315 0.265 0.195

9 0.045 0.855 0.405 0.005

10 0.075 0.065 0.205 0.765
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Figure 4.8: RBF with thin plate base prediction landscape
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Figure 4.9: RBF with Gaussian base prediction landscape
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Figure 4.10: RBF with inverse multi-quadric base prediction landscape
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The analytical penalty function (Figure 4.12) is also used as a knowledge base as a

control.

For each of the unrepaired faulty designs, ten repair alternatives are suggested by the

repair algorithm. For each of the repair alternatives, the Euclidian distances to the

unrepaired design (Dmin) are plotted on the x axis against the predicted penalty values

(y axis). The data obtained by using the five knowledge bases are plotted on the same

graph in order to compare with each other. The graphs for each unrepaired designs are

presented in Figure 4.13, 4.15, 4.17, 4.19, 4.21, 4.23, 4.25, 4.27, 4.29 and 4.31.

The differences of penalty values of the repairs based on the four different surrogates

and that based on the true knowledge model could be used as a measure of the repair

quality of the different knowledge bases. The smaller the differences are, the closer the

surrogates are to the true knowledge base. Formally, for a certain type of surrogate, a

quality indicator Q would be expressed as:

Q =
n∑

i=1

|Predicted penalty− True penalty| (4.6)

where n is the total number of the repair alternatives.
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Figure 4.12: Analytical penalty function landscape

Therefore, it is necessary to calculate the true penalty values of the suggested repair

alternatives and compare them with the corresponding predicted penalty values. The

true penalty values of the suggested repair alternatives are determined by using the

suggested repair variables as the input of the true penalty function. The values of Dmin

are plotted against the true penalty values in the same way as they are plotted against

the predicted penalty values. The results are presented in Figure 4.14, 4.16, 4.18, 4.20,

4.22, 4.24, 4.26, 4.28, 4.30 and 4.32.
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Figure 4.13: Repair Pareto front for design 1: Predicted Penalty versus Minimum

distance
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Figure 4.14: True penalties of the repair suggestions on the Repair Pareto front for

design 1
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Figure 4.15: Repair Pareto front for design 2: Predicted Penalty versus Minimum

distance
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Figure 4.16: True penalties of the repair suggestions on the Repair Pareto front for

design 2
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Figure 4.17: Repair Pareto front for design 3: Predicted Penalty versus Minimum

distance
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Figure 4.18: True penalties of the repair suggestions on the Repair Pareto front for

design 3
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Figure 4.19: Repair Pareto front for design 4: Predicted Penalty versus Minimum

distance
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Figure 4.20: True penalties of the repair suggestions on the Repair Pareto front for

design 4
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Figure 4.21: Repair Pareto front for design 5: Predicted Penalty versus Minimum

distance
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Figure 4.22: True penalties of the repair suggestions on the Repair Pareto front for

design 5
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Figure 4.23: Repair Pareto front for design 6: Predicted Penalty versus Minimum

distance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5
x 10

4

Dmin

T
ru

e 
P

en
al

ty

Repair for X
0
 = [0.025 0.125 0.105 0.145]

 

 
Analytical
SVR
RBF−Thinplate
RBF Inverse multi−quadric
RBF−Gaussian

Figure 4.24: True penalties of the repair suggestions on the Repair Pareto front for

design 6
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Figure 4.25: Repair Pareto front for design 7: Predicted Penalty versus Minimum

distance
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Figure 4.26: True penalties of the repair suggestions on the Repair Pareto front for

design 7
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Figure 4.27: Repair Pareto front for design 8: Predicted Penalty versus Minimum

distance
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Figure 4.28: True penalties of the repair suggestions on the Repair Pareto front for

design 8
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Figure 4.29: Repair Pareto front for design 9: Predicted Penalty versus Minimum

distance
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Figure 4.30: True penalties of the repair suggestions on the Repair Pareto front for

design 9
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Figure 4.31: Repair Pareto front for design 10: Predicted Penalty versus Minimum

distance
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Figure 4.32: True penalties of the repair suggestions on the Repair Pareto front for

design 10
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The quality indicators Q, the average quality indicator Q (Q = Q/n) and the standard

deviation σ of the penalty differences for each of the four surrogate models are presented

in Table 4.4. In all the cases, n = 110 because there are 11 available data points (ten

repair alternatives and 1 original design) on each of the 10 graphs.

Table 4.4: Quality comparison of the surrogates

Surrogate Q n Q σ

SVR 1.6623×105 110 1.5112×103 2.8634×103

RBF (thin plate) 4.6445×104 110 422.2229 369.0119

RBF (Inverse multi-quadric) 3.8468×104 110 349.711 345.7447

RBF (Gaussian) 5.5695×104 110 506.3137 630.8099

It can be seen from Table 4.4 that the differences between different surrogates are limited.

Repair alternatives generated by the RBF surrogate with inverse multi-quadric basis are

most similar to the repair alternatives suggested by the original penalty and are most

consistent. The repair alternatives given by the SVR surrogate are the least alike to the

repair alternatives suggested by the original penalty and the least consistent.

4.6 A graphical user interface

A Graphical User interface (GUI) has been developed for the real-time display of the

repair result and an interaction interface with the chief engineer who makes the decision

in MATLAB.

Figure 4.33 shows an example of the GUI being used. On the left upper corner is a display

window of the original design. The corresponding design variable set is displayed below

the window. Manual input can be accepted to make immediate changes to the original

design. On the left lower corner is a panel for repair setup. The engineer can specify

the number of repair alternatives he wishes to view in the text box. By pressing the

”Decide penalty ranges for me” button, the GUI can automatically decide a optimised

penalty range for the user. The feasibility threshold that each repair alternative uses

will spread uniformly in the specified penalty range, whose minimum is set to zero, and

maximum is set to the predicted penalty value of the original design. The penalty range

can also be manually modified by typing values into the two text boxes at the both

end of the slider. The “Generate” push button will call the repair callback function in

the background and find out the optimised repair alternatives before storing the repair

information in a file. The search and optimisation process may last for several minutes,

depending on the size of the optimisation problem. After the search is finished, the first

repaired design is displayed immediately on the main window in the middle of the GUI.

The slider can be dragged to change the penalty value threshold. The repair alternative
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with the closest penalty value will be displayed in the window. Correspondingly, the

repair design variable set will change in a real-time fashion.

Figure 4.33: A MATLAB GUI for generating and examining repair alternatives

This visualisation kit enables the engineer to observe the repair alternative suggestions

directly. The user can easily specify the penalty range to observe a series of repair

alternatives. By developing this tool, it is hoped that the end user can make quick and

more informed choice between robust and flexible design options even without knowing

the mathematical and programming details in the background.

4.7 Summary

In this chapter, an automatic 2D engine intake duct model design workflow is set up.

The modelling of knowledge is demonstrated by formulating three pieces of physics and

engineering based design tips into penalty functions. After the repair system is fed

into with the training data, it exhibits clear ability to repair faulty designs. The repair

suggestion moves gradually from the original design, as the penalty threshold decreases.

A comparison of the penalty prediction landscapes reveals the similarity between the

resulting surrogate generated using different statistical models, and successful repair can

be achieved using these surrogates.





Chapter 5

Aero-engine Intake Design Case

with Aerodynamic Properties

Calculated and Incorporated in

the Knowledge Base

The aerodynamic properties of the engine intake are of great interest in the design pro-

cess. Flow separation and distortion under cross wind or tail wind conditions need to

be minimised, because they could cause undesirable vibration of rotating blade rows or

engine surge. These aerodynamic properties could be predicted by a CFD application.

If CFD results could be obtained and used to enhance the existing knowledge base, the

knowledge base would be able to tell the quality of the design candidate from an aero-

dynamicist’s view, and potentially repair or eliminate aerodynamically invalid designs.

The chapter demonstrates how to obtain useful CFD results and integrate them into an

existing knowledge base. The engine intake model used in Chapter 4 is reused in this

chapter. The pressure distribution at the intake outlet is predicted using FLUENT, a

common flow modelling simulation software.

5.1 The incorporation of flow modelling and simulation

In this section, the process for setting up the flow modelling and simulation is described.

The process starts with exporting the model from MATLAB to the meshing software

GAMBIT. The meshing file generated by GAMBIT is then exported to the CFD software

FLUENT. Finally, the FLUENT result should be properly translated and incorporated

into the existing knowledge base.
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Figure 5.1: Determination of aerodynamic properties

5.1.1 Meshing process and the corresponding GAMBIT journal file

After a duct model is generated in MATLAB, two matrices, one representing the lower

duct wall and the other representing the upper duct wall, are stored in the MATLAB

workspace. From each of the two matrixes 21 points, including the starting and finishing

points of the matrices, are sampled at a uniform interval. The resulting 42 points are

created in GAMBIT as vertexes. The first 21 points which represent the lower duct wall

are linked consecutively as an edge in GAMBIT. The same is done to the remaining 21

points, which represent the upper duct wall. The two starting points of the wall are

linked as an edge and physically represent the flow inlet. The two finishing points of the

wall are linked and physically represent the outlet. After the geometry is fully defined

in GAMBIT, a boundary layer mesh of 6 rows is generated for both the lower and upper

duct wall and a quadrilateral mesh is generated for the interior of the geometry. The

boundary layer first-row height1 is set to 1, and the growth factor2 is set to 1.2. The

1The first-row height specifies the distance between the edge or face to which the boundary layer is
attached and the first full row of mesh nodes.

2The growth factor represents the ratio b/a where b is the distance between the first and second full
rows and a is the height of the first row.
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interval of the face mesh is set to 5. Next, the physical nature of each of the components

of the geometry are defined, i.e. the lower and upper duct wall are defined as “walls”; the

edge that represents the inlet and outlet are defined as “velocity inlet” and “outlet”; the

inside of the duct is defined as “fluid”. Finally, the work is exported to a two-dimensional

mesh file (with an extension of .msh) which is readable by FLUENT.

A journal file which can carry out the process as described above and can be read into

GAMBIT is generated by the codes as shown in Appendix A.5 and a sample journal file

is listed in Appendix A.6. In this sample journal file, the name 147.msh is used as this

mesh is generated based on the 147th geometry out of the 200 geometries which were

used to construct the geometry quality knowledge base. Other mesh files were prepared

in the same manner and named using the same naming rule. Figure 5.2 illustrates a

successful meshing, which is based on the 147th geometry. The 5 layers of boundary layer

cells and the face mesh are both discernable in the figure. Note that the geometries that

are unphysical, for example, those that exhibit loops in the lower or upper walls, would

not be meshed and there would not be any mesh file for those unphysical geometries,

e.g. Figure 5.3, which is based on the 76th geometry. Therefore, for those unphysical

geometries, it would not be possible to predict their flow behaviours or find their fan

face distortion, and the process terminates here. Of these 200 geometries, 83 failed to

be meshed.

5.1.2 CFD simulation process and the corresponding FLUENT journal

file

If the geometry in question is successfully meshed, the corresponding mesh file can be

read into FLUENT and a flow model can be set up and solved. After the solution is

obtained, the total pressure distribution at the outlet of the duct can be saved as a data

file. The model in question is firstly pre-processed by being scaled to one thousandth

because the FLUENT default unit is in metre and the model is defined in millimetre.

At a typical cruise height of 35,000 feet, the atmospheric pressure is 23.8 kPa and air

temperature is 288.15 K [NASA (2010)]. In FLUENT the inlet is set as a velocity

inlet, with a typical cruise speed of 200 m/s. The air viscosity is set to abide by the

Sutherland viscosity law [Sutherland (1893)]. Then a κ− ǫ turbulence model is defined

in order to take viscous effect into consideration. The residual value of the continuity,

velocity and energy, which are used as criterions of convergence are each modified to

the smaller values of 10−6, 10−3 and 10−3 respectively, in order to obtain more accurate

results before convergence criterions are reached. The gauge pressure of the inlet is

set to 1.5 times atmospheric pressure at 151987 Pascal. The turbulence is specified by

intensity and hydraulic diameter, which are set to 5% and 0.0875 metre each. Note that

0.0875 metre is actually the diameter of the duct inlet and outlet surface because in this

round duct, the hydraulic diameter equals the diameter of the duct. The model is then
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Figure 5.2: An example of successful meshing

initialised and iterated 200 times. The pre-process proved to be effective for solving

most of the models with 112 out of 117 meshes successfully solved in the test. After

the flow is predicted, the values of the total pressure at each node of the outlet face are

recorded. The data will be read back into MATLAB and the standard deviation of the

pressure will be calculated and used as a metric of the fan face distortion.

FLUENT has a scripting facility which gives the opportunity to accomplish the neces-

sary operations as described above in an automatic fashion by using a journal file. To

automate the design cycle , the FLUENT journal file is in turn automatically generated

by a piece of MATLAB code as shown in Appendix A.5. A sample of the resulting

FLUENT journal files is shown in Appendix A.7.

The flow prediction of the total pressure distribution (for model No.9) is shown in

Figure 5.4.

The total pressure distribution at the outlet of model No.9 is shown in Figure 5.5.

The residual monitor in FLUENT shows the residual convergence history of the case

(Figure 5.6). The case of Geometry 9 is converged after 568 iterations.



Chapter 5 Aero-engine Intake Design Case with Aerodynamic Properties Calculated

and Incorporated in the Knowledge Base 71

+

+

+

+

+

+

+

+

+ +

+

+

+

++++

+

+

+

+

+

+

+

+

+

+

+

+

+++
+

+

+

+

+

+

+

+

++

X

Y

Z

Figure 5.3: An example of meshing failure

Figure 5.4: A typical distribution of the total pressure in the intake
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Figure 5.5: A typical distribution of the total pressure at the engine face

The plots of velocity streamlines (Figure 5.7) are calculated in FLUENT to understand

the flow pattern.

Figure 5.8 illustrates the range of total pressure distribution at the outlet of the intake

ducts which are in the sampling plan established in Section 5.3. Only the total pressure

distribution profiles of those designs which can be solved in FLUENT are presented.

The pressure profiles corresponding to that of Geometry 8 and Geometry 9 are both

highlighted in the figure.

5.2 Verification of the CFD process

Analysis result could change when the fineness of the mesh is altered. Generally the finer

the mesh, the smaller the simulation error is, but the longer the computation time it

takes. When an analysis activity involves many CFD simulations (e.g., a sampling plan

evaluation), one may wish to use a coarse grid to speed up the process. However the mesh

should not be so coarse that the effectiveness of the CFD simulation is jeopardised. In

this work the purpose of the CFD analysis is to find a measure for the pressure distortion

at the intake outlet. As discussed in Section 5.1, A FLUENT process has been set up

and the total pressure value at 21 evenly distributed points at the outlet face has been

collected. Then the standard deviation of the 21 values is used as a measure for the

distribution. The measure is then normalised and incorporated in the penalty table as
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Figure 5.6: Residual convergence history



74
Chapter 5 Aero-engine Intake Design Case with Aerodynamic Properties Calculated

and Incorporated in the Knowledge Base

Contours of Stream Function (kg/s)

FLUENT 6.3 (2d, pbns, ske)

Apr 28, 2011

5.04e+01

4.79e+01

4.53e+01

4.28e+01

4.03e+01

3.78e+01

3.53e+01

3.27e+01

3.02e+01

2.77e+01

2.52e+01

2.27e+01

2.02e+01

1.76e+01

1.51e+01

1.26e+01

1.01e+01

7.56e+00

5.04e+00

2.52e+00

0.00e+00

Figure 5.7: Velocity streamlines
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Figure 5.8: Total pressure distribution profiles at the outlet of the intake ducts

a measure of the aerodynamic performance of the design. Therefore, what is required

in this work is a relative measure which is effective in telling the difference between the

distortions of two designs, rather than the accurate value of the standard deviation of

the pressure data , or the accurate value at each of the discrete points at the outlet face.

To verify that the grid scheme that is used is effective in telling the difference of the

distortion effect, alternative meshing schemes have been set up, results being compared

against the ones obtained with the original meshing setup in Section 5.1.

5.2.1 Effect of using smaller y
+ value

Due to the no-slip conditions, there is a boundary layer at the near-wall region where

solution variables have large gradients compared with the core, turbulent flow [Day

(1990)]. The k-ε model used in this work is primarily valid for turbulent core flows.

Therefore semi-empirical formulas called “wall functions” are provided by FLUENT

and are used in this work to more accurately represent the flow in this boundary region.

It is recommended that for standard wall functions, each wall-adjacent cell’s centroid

satisfy 30 < y+ < 300, where y+ is called the wall unit, and is defined by

y+ ≡ ρury/µ (5.1)
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where ρ is the density of the fluid, y is the distance between the wall and wall-adjacent

cell’s centroid, ur is the fluid velocity, and µ is the viscosity of the fluid. The interested

reader can refer to [FLUENT (2006a)] for more details. It was found by the author

that such a y+ value requires a very small first-row height a (approximately on the

order of magnitude −2) of the boundary layer to be specified in the meshing process,

which would potentially increase the grid density and computational time. (Remember

in Section 5.1.1, a = 1 was used.) It is an interesting question whether the relative

measure of outlet pressure distortion obtained from CFD analysis would change when

using a smaller y+ value.

Two typical geometries were chosen from the 200 samples. Geometry 147 is roughly a

straight duct (Figure 5.2) and Geometry 148 (Figure 5.9) is a reverse S-shape design

with an additional twist at the front of the duct. Intuitively the more convoluted design

Geometry 148 causes more pressure distortion than the straight one.
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Figure 5.9: Geometry 148

To generate a small y+ value within the range of 30 < y+ < 300 for Geometry 147,

a = 0.08 was used. y+ value varies along the wall between 36 and 100 (Figure 5.10).

The y+ value is geometry dependent. When using the same meshing setup a = 0.08 for

Geometry 148, a different distribution is obtained with the y+ values between 21 and

102 (Figure 5.11). According to [FLUENT (2006a)], the mesh should be made either

coarse or fine enough to prevent the wall-adjacent cells from being placed in the buffer

layer where 5 < y+ < 30.
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Figure 5.10: y+ distribution along the duct walls for Geometry 147

In order to find a proper a which would limit the y+ in the recommended range, a is

manually set to 0.05, 0.07, 0.1, 0.15 and 0.2. Among these values, 0.1 was the most

promising one, as it was expected that a slight increment in a would result in a slight,

proportional increment in y+ when Equation 5.1 is examined. However it proved that

none of these values could lead to a satisfactory y+ range along the wall cells.

a = 0.08 is used for both geometries as a expediency when the small y+ scheme is

required. And the corresponding standard deviation value for each scheme is calculated

and presented in Table 5.1

Standard deviation of the outlet pressure
original meshing scheme small y+ meshing scheme

Geometry 147 1.29 × 104 3.97 × 104

Geometry 148 2.28 × 104 4.33 × 104

Table 5.1: Standard deviation obtained using different y+ meshing schemes

It could be seen that both the original meshing scheme and the small y+ meshing scheme

indicate that Geometry 147 causes less pressure distortion at the fan face than Geometry

148. The distortion values increase by a factor of 3.07 for Geometry 147, and 1.89 for



78
Chapter 5 Aero-engine Intake Design Case with Aerodynamic Properties Calculated

and Incorporated in the Knowledge Base

Wall Yplus
FLUENT 6.3 (2d, pbns, ske)

Apr 13, 2011

Position (m)

Yplus
Wall

0.30.250.20.150.10.050-0.05-0.1-0.15

1.10e+02

1.00e+02

9.00e+01

8.00e+01

7.00e+01

6.00e+01

5.00e+01

4.00e+01

3.00e+01

2.00e+01

wall.1

Figure 5.11: y+ distribution along the duct walls for Geometry 148

Geometry 148. Despite the increase, if the values are collected and normalised, the

resulting relative measure of the aerodynamic performance of the design is similar for

both schemes. To prove this, a y+ adaption process have been used in FLUENT to

appropriately refine or coarsen the mesh along the wall during the solution process.

Wall adjacent y+ value is specified in the range between 30 and 100. The resulting y+

values of four geometries were manually examined. The adaption was only effective for

3 of them.

The 200 geometries have gone through the simulation using y+ adaption, and a new set

of 200 pressure data have been obtained. The data is processed by the same way as in

Section 5.3. The penalty related to the pressure distortion is calculated and compared

to that obtained from the previous simulations.

The new penalty data set is very similar to that obtained from the previous simulations

(Figure 5.12), with goodness of fit R2 = 0.8364. The difference in the penalty sum is

even smaller, (Figure 5.13), with goodness of fit R2 = 0.9681.

To conclude, using a small y+ hardly change the relative measure of pressure distortion.

The meshing is made finer with a small y+, which requires more computational time.

It is also difficult in practice to maintain 30 < y+ < 300 in an automatic process with
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Figure 5.12: Goodness of fit plot of the Penalty 4

a fixed first row height a. For these three reasons, a less strict y+ is used in this work,

as a sufficient method to get a relative measure of the pressure distortion. It should be

noted the recommendation of 30 < y+ < 300 should be used when an k-ε model is used

with standard wall-functions and precise CFD results are required.

5.2.2 Grid convergence

As mentioned in the beginning of this section, coarser grids are desired when a large

number of designs are to be evaluated. However a coarser meshing scheme causes more

discretisation errors, which occur from the representation of the governing flow equa-

tions as algebraic expressions in a discrete domain of space [NASA (2008b)]. A mesh

convergence study is typically used to determine the lowest feasible mesh resolution.

Geometry 147 was selected for the grid convergence study. Five refined meshing schemes

were manually prepared for it. The total number of cells in each scheme was 2500, 5000,

10000, 20000 and 40000 respectively. The finer grid is made to double the previous

coarser grid for the convenience of the following calculation of the grid convergence

index (GCI). Each grid is assigned a number for narrative convenience(Table 5.2).
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Figure 5.13: Goodness of fit plot of the penalty sum

The pressure distribution at the fan face for each meshing scheme has been presented

in Figure 5.14. The mesh with 1602 cells used for the flow simulation in Section 5.1

is also listed for comparison. It is clear from Figure 5.14 that finer meshing schemes

does not significantly change the prediction of the pressure distribution at the outlet.

Numerically, the GCI could be calculated from the value of the simulation results to

provide a consistent manner in reporting the results of grid convergence studies, and

validate the simulations. The GCI is a measure of the percentage the computed value

is away from the value of the asymptotic numerical value. A clear introduction and

procedure could be found in [NASA (2008a)], and [Power et al. (2003)] is an example

of a comprehensive set of convergence test. It is recommended in [NASA (2008a)] that

the GCI computed using three levels of grid in order to accurately estimate the order of

convergence.

The GCI on the fine grid is defined as

GCIfine =
Fs|ε|
rp − 1

(5.2)

where Fs is a factor of safety and r is the grid refinement ratio. For comparisons over

three or more grids, Fs = 1.25 is recommended. r is defined by r = h2/h1, where h1 and

h2 are spacings of grid with h1 being the finer (smaller) spacing. For a two dimensional
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Figure 5.14: Comparison of pressure distribution with different grid scheme

problem where each consecutive mesh is twice as fine as the last, it could be estimated

that r =
√

2/1 =
√
2. This is known as the effective grid refinement ratio.

The relative error ε in Equation 5.2 is defined as

ε =
f2 − f1
f1

(5.3)

where fi (i = 1, 2, 3) are the solution functionals, such as the standard deviation of the

fan face pressure distribution, or a distortion factor.

The order of convergence p in Equation 5.2 is defined as

p = ln

(
f3 − f2
f2 − f1

)
/ ln(r) (5.4)

For each grid, three functionals are calculated based on the total pressure data pi, i =

1, 2, . . . , n at the fan face. These are the standard deviation of the pressure σp, average

pressure µp, and pressure distortion factor (DTMM), which is defined in [Hughes et al.
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(1985)] as

DTMM =
pmax − pmin

µ
. (5.5)

1 2 3 4 5 6

Cell Number 1602 2500 5000 10000 20000 40000

σp 1.29E+04 2.39E+04 4.00E+04 3.66E+04 3.27E+04 2.87E+04

µp 1.42E+05 1.33E+05 1.18E+05 1.24E+05 1.28E+05 1.32E+05

DTMM 0.32 0.67 1.11 1.04 1.00 0.96

Table 5.2: Variation of simulation functionals on multiple grid levels

Grids 3, 4 and 5 are used for calculating GCI. Following Equations 5.2, 5.3 and 5.4,

GCI and asymptotic rate for σp, µp and DTMM are calculated based on the data in

Table 5.2, and presented in Table 5.3.

GCI45 GCI34 Asymptotic rate

σp −57.09% −43.82% 1.0396

µp 3.30% 5.04% 0.6978

DTMM 5.84% 7.89% 0.6758

Table 5.3: GCI and asymptotic rate for simulation functionals

It can be seen from Table 5.3 that the asymptotic rate for σp is approximately one and

indicates that the solutions are well within the asymptotic range of convergence. Other

solution functionals exhibit small errors and trend of convergence as well. Here, σp,

the standard deviation of the fan face pressure is used as the indicator of the pressure

distortion and later incorporated in the knowledge base.

P4 = σp (5.6)

5.2.3 Turbulence models

It is well-known that no single turbulence model is universally accepted as being superior

for all classes of problems. In this work, a fully turbulent duct flow is investigated and

therefore a standard κ− ǫ turbulence model which is valid for fully turbulent flows has

been used. Standard κ− ǫ model is a two-equation model in which the turbulent veloc-

ity and length scales are independently determined by solving two separate transport

equations. The model provides robust and reasonably accurate solution for a wide range

of turbulent flows since it was proposed by Launder and Spalding (1972), and is popular

in industrial flow and heat transfer simulations. When accurate prediction is required,

and/or the available computational resources and time is limited, other turbulent models

could be considered. The difference of various models, and their suitability are beyond

the scope of the thesis, as the sole purpose of the CFD analysis in this chapter is to
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demonstrate that the knowledge from CFD simulations could be extracted and used for

the setup of a knowledge base. Without benchmark data at hand, it is not possible

to measure the quality of results obtained from different turbulent models. Therefore,

simulations are only carried out with a standard κ − ǫ turbulence model. However the

interested readers can refer to [FLUENT (2006b)] for more information on choosing

turbulence models.

5.3 Sampling plan, penalty table and surrogate modelling

After the three penalty equations based on the engineering knowledge and one penalty

based on the CFD result of the pressure distortion have been set up (Equation 5.6), 200

designs generated in a sampling plan have been analysed using the CFD setup described

above. The knowledge surrogate model was then fitted to the resulting responses.

5.3.1 Sampling plan

A good sampling plan should cover the design space in a thorough and uniform fashion.

Here the method illustrated in [Forrester et al. (2008)] was adopted and a four dimen-

sional sampling plan of 200 points was generated. Part of the sampling plan is presented

in Table 5.4.

Table 5.4: Sampling plan

Design variables

Sample #1 #2 #3 #4

1 0.8075 0.9125 0.2575 0.0425
2 0.4925 0.2075 0.2375 0.8575
3 0.8675 0.4675 0.7775 0.7275

· · · · · · · · · · · · · · ·
199 0.0575 0.3525 0.1225 0.6875
200 0.4775 0.9275 0.1475 0.2125

5.3.2 The penalty table

For each of the samples, penalty values based on the penalty functions that have been

introduced in Section 4.3 and 5.1 are calculated and assembled in a penalty value table

as presented in Table 5.5.

Note that for the 4th column, which is the standard deviation of the total pressure distri-

bution on the fan face, some values are not available because the corresponding designs

are not meshable in GAMBIT or solvable in FLUENT. For the meshable geometries,
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the largest value of standard deviation found was 7.37×104, which indicated a relatively

severe fan face distortion. As it is even worse to be not meshable or solvable (which

is a sign of unphysical or very faulty designs) than to have large standard deviation

values (which indicates the design was not very engineering favourable but could still be

considered), the author endeavours to penalise those samples which failed to be meshed

or solved with a large value of 7.37 × 104, which equals the largest standard deviation

value from those samples that can be solved. The result is presented in the last column

of Table 5.5 as “Modified std.”.

Modified std. =

{
73666.9 if std.=NaN

std.
(5.7)

The averages and standard deviations of each penalty are shown in the lower half of

Table 5.5.

Table 5.5: Penalties and statistics

Penalties

Sample Penalty 1 Penalty 2 Penalty 3 Standard deviation (std.) Modified std.

1 373.2 1541.6 0 NaN 73666.9
2 21.6 2665.9 31887.9 NaN 73666.9
3 467.4 0 0 33117.5 33117.5
4 24.5 54.6 0 57825.9 57825.9
5 3359.9 0 11195 22210.4 22210.4

· · · · · · · · · · · · · · · · · ·
196 96.5 387.4 0 31052.0 31052.0
197 116.2 0 321.1 44693.1 44693.1
198 628.6 0 0 22695.3 22695.3
199 5319.7 1982.1 29462.3 NaN 73666.9
200 13.6 2917.2 0 NaN 73666.9

Penalties statistics

Penalty 1 Penalty 2 Penalty 3 Penalty 4(Modified std.)

Average 1495.1 1093.8 9443.8 49303.3
Standard deviation 1818.6 1745.4 14826.4 22676.0

To give each penalty a fair and equal consideration, the penalty values are normalized

by

pn =
pi − p̄i
spi

(5.8)

where pn is the normalized penalty value, pi is the original penalty value, p̄i the average

of the penalty in question and spi the standard deviation of the penalty. The resulting

normalised penalties and the sum of the four normalised penalties are presented in

Table 5.6.
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Table 5.6: Normalised penalty value table

Normalised Sum
Sample Penalty 1 Penalty 2 Penalty 3 Penalty 4

1 -0.6169 0.2565 -0.6370 1.0744 0.0771
2 -0.8103 0.9007 1.5138 1.0744 2.6786
3 -0.5651 -0.6267 -0.6370 -0.7138 -2.5426
· · · · · · · · · · · · · · · · · ·
199 2.1031 0.5089 1.3502 1.0744 5.0367
200 -0.8147 1.0447 -0.6370 1.0744 0.6675

5.3.3 Surrogates

After the 200 sample designs were generated and their corresponding total penalty values

determined (Table 5.6), two surrogate modelling methods, RBF and SVR, as described

in Section 2.3.2 and 3.2 respectively, were used to generate the knowledge surrogate

models. The surrogates were built, tuned and the results compared against each other

based on the same sampling plan, which represents the knowledge we have at hand.

5.3.3.1 RBF surrogate, cross validation and visualisation

The RBF method adopted here used a Gaussian basis:

ψ(r) = e−
r
2

2σ2 . (5.9)

To estimate the value of σ, a cross validation method is deployed. The 200 designs

were divided into 10 random subsets with 20 samples in each subset. A list of 20

logarithmically spaced σs between 10−3 and 100 was populated as candidates.

For each value of σ, the RBF model was fitted by removing one subset and fitting the

model to the remaining, aggregated 9 subsets. A loss function L, which measures the

error between the predictor and the points in the subset that has been set aside, can

then be computed by

L =

10∑

i=1

20∑

j=1

[
y
(i)
j − f̂ (−i)(x

(i)
j )
]2

(5.10)

where f̂ (−i) is the RBF function obtained by removing the ith subset and x
(i)
j is the

jth training point in the ith subset. f̂ (−i)(x
(i)
j ) is the prediction value at x

(i)
j and its

difference between the true value y
(i)
j indicates the error between the predictor and the

true value. The cross-validation errors are calculated and presented in Table 5.7. As

the 200 training points are randomly divided into the 10 subsets, each time the cross

validation result could be different. Therefore, three runs were performed. It can be seen
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Table 5.7: RBF cross validation result

No. σ L
Run 1 Run 2 Run 3

1 0.0010 1056.88 1056.88 1056.88
2 0.0014 1056.88 1056.88 1056.88
3 0.0021 1056.88 1056.88 1056.88
4 0.0030 1056.88 1056.88 1056.88
5 0.0043 1056.88 1056.88 1056.88
6 0.0062 1056.88 1056.88 1056.88
7 0.0089 1056.88 1056.88 1056.88
8 0.0127 1056.88 1056.88 1056.88
9 0.0183 1056.88 1056.88 1056.880
10 0.0264 1056.87 1056.87 1056.87
11 0.0379 1056.24 1056.23 1056.22
12 0.0546 1040.32 1039.69 1039.99
13 0.0785 923.26 922.76 924.91
14 0.1129 629.49 629.01 636.63
15 0.1624 346.55 333.20 343.32
16 0.2336 237.72 218.50 220.47
17 0.3360 301.42 261.75 236.28
18 0.4833 642.64 579.55 470.38
19 0.6952 1264.68 1239.53 935.00
20 1.0000 2113.82 2017.62 1531.05

from Table 5.7 that the minimum value of L can always be achieved when σ = 0.2336.

Therefore, σ = 0.2336 is used in the RBF surrogate.

The RBF surrogate is a function of four design variables (x1 to x4), and is therefore

difficult to visualise. Here a nested dimensions plot see, e.g., [Forrester et al. (2008)] is

employed to present the “landscape” of the surrogate. In Figure 5.15, x3 varies along

the horizontal axis of each tile, x4 along the vertical axes, while the values of x1 and

x2 can be read off the bottom of each column of tiles and the beginning of each row,

respectively.

5.3.3.2 SVR surrogate, tuning and visualisation

As an alternative to RBF, a Gaussian kernel based SVR surrogate is also examined.

The kernel has the following form:

ψ[(x)(i), (x)(j)] = exp

{
−
[
(x)(i) − (x)(j)

]2

σ2

}
. (5.11)

The value of σ in Equation 5.11 also needs to be determined. A list of candidates of σ

is populated:

σ = 0.1, 0.2, 0.3, . . . , 0.9, 1. (5.12)
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Figure 5.15: RBF surrogate landscape

As the SVR model is a regression model, it makes sense to directly compare the predic-

tions against the original sums of penalties (whereas in the case of the RBF surrogate, as

it is an interpolating model, the prediction and the training data will always be equal).

To determine the value of σ that can best represent the training data, the square of

the difference in the training data and SVR prediction are summed for each σ in Equa-

tion 5.12. The σ that produces the least error is chosen. Formally, the sum of the error

for the kth σ is denoted as

L2
k =

200∑

i=1

[
yi − f̂σk

(xi)
]2

(5.13)

where yi is the true value of the penalty and f̂σk
(xi) is the SVR prediction at the training

site xi using σk.

The difference in the training data and SVR prediction could be measured by other

metrics such as the sum of the absolute values of the difference in the training data and

SVR prediction, which is denoted as |Lk| here:

|Lk| =
200∑

i=1

|yi − f̂σk
(xi)|. (5.14)

The σs and their corresponding prediction error value L2
ks and |Lk|s (k=1, 2, . . . , 9,

10) are presented in Table 5.8. It can be seen from Table 5.8 that when σ = 0.4, L2
k is

minimised, when σ = 0.5, |Lk| is minimised. Therefore we will use both σs and compare

them in Section 5.3.4.
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Table 5.8: σ vs. Prediction Errors

σ L2
k |Lk|

0.1 709.97 286.02
0.2 498.54 225.23
0.3 304.49 162.19
0.4 233.71 149.46

0.5 214.54 151.28
0.6 222.30 156.93
0.7 239.49 165.84
0.8 273.61 179.16
0.9 317.06 195.36

The “landscape” images of the SVR surrogates for both σs are generated in a way similar

to how the RBF surrogate was generated, see Figures 5.16 and 5.17 for the landscape.
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Figure 5.16: SVR surrogate landscape (σ = 0.4)

5.3.4 Data validation

To find out whether the surrogate models we have obtained can effectively represent the

knowledge base and how well they can predict the penalty level for any new designs,

20 new sample designs were generated and their penalties were determined in the same

way that those of the 200 designs used to construct the surrogate. The normalisation
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Figure 5.17: SVR surrogate landscape (σ = 0.5)

parameters pi and spi (i = 1, 2, 3, 4) used in Equation 5.8 for the new samples are

from Table 5.5. In the same manner, a penalty table was assembled. This time, as

three surrogates (one RBF and two SVR models) have been obtained, the normalised

penalty sum in the penalty table can be compared against the prediction values from

the surrogate models. The 20 new normalised penalty sum, predictions from RBF and

SVR models are listed in Table 5.9. To measure the error for each surrogate, the sum

of the square of difference Esqr is calculated for each of the surrogate, which is denoted

as f̂ in Equation 5.15.

Esqr =

20∑

i=1

[
f̂(xi)− yi

]2
. (5.15)

For all the surrogate models, the absolute value error, Eabs is also calculated:

Eabs =

20∑

i=1

|f̂(xi)− yi| (5.16)

The results are listed in Table 5.10.

Two conclusions can be drawn from Table 5.10.

1. After each surrogate was tuned to give its best performance, both SVR surrogates

give better prediction results than the RBF surrogate does, no matter which metric
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Table 5.9: 20 new designs, their true penalties, RBF and SVR predictions

Sample True penalty RBF SVR(σ = 0.4) SVR(σ = 0.5)

1 -0.965 0.036 -3.488 -1.847
2 -0.602 -0.009 -0.481 -0.288
3 1.689 -0.235 2.092 0.662
4 -1.830 0.000 -1.921 -0.481
5 -2.125 -0.004 0.551 0.262
6 -2.933 0.019 -2.548 -1.173
7 -2.968 -0.062 -1.132 -0.509
8 -0.804 0.094 1.167 0.631
9 1.299 -0.014 2.284 0.829
10 -0.624 0.000 -0.673 -0.266
11 -0.845 0.001 -0.373 -0.302
12 0.601 -0.004 0.849 0.325
13 3.534 -0.002 2.612 0.547
14 -0.434 -0.193 1.002 0.216
15 -1.581 0.000 0.178 -0.247
16 -1.329 -0.037 0.499 0.622
17 -0.335 -0.002 -0.520 -0.156
18 -0.478 0.113 0.695 0.312
19 3.910 0.000 2.081 0.339
20 0.099 -0.025 2.200 0.715

Table 5.10: Comparison of prediction errors for different surrogates

Esqr Esqr

RBF 66.6 29.22

SVR (σ = 0.4) 40.9 23.0
SVR (σ = 0.5) 50.1 25.3

is used to measure the prediction error (Equation 5.15 or Equation 5.16). Therefore

the author conclude that SVR is better at predicting new values for this particular

problem, and therefore better at representing the knowledge base than RBF in

this case study.

2. The L2
k metric is better at selecting the σ values for SVR surrogate, as the SVR

surrogate with σ = 0.4, which is chosen by minimising L2
k, predicts better than

the one with σ = 0.5, no matter which metric is used to measure the prediction

error.

5.4 Repair

To investigate the proposed method’s ability to evaluate an unknown design candidate

and provide repair suggestions, a design with multiple flaws is picked (Figure 5.18). The

intake face of the design is slightly submerged in the fuselage and the intake itself is
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snaky and interferes with the aft bulkhead. The design is so convoluted that it becomes

unphysical, to the extent that it fails to be meshed. The design variables of the geometry
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250

300

350

400

 ← Engine Intake

Unphysical loops

Interference with rear pressure bulkhead

Figure 5.18: A design candidate with multiple flaws

shown in Figure 5.18 are

x = [0.45, 0.35, 0.05, 0.65].

The predicted penalty values based on different surrogates were first calculated and

are listed in Table 5.11. These values are used to determine a starting value for a list

of feasibility thresholds — any feasibility threshold that is larger than the predicted

penalty is meaningless. The true penalty was also calculated and listed in Table 5.11

for comparison purpose. The feasibility thresholds used for the repair and results based

Table 5.11: Predicted penalty values

Surrogate Predicted Penalty

RBF 2.425

SVR (σ = 0.4) 0.9398
SVR (σ = 0.5) 0.5615

True Penalty 2.455

on the RBF surrogate are listed in Table 5.12 alongside the resulting geometries.
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Table 5.12: Design alternatives based on the RBF surrogate

pth Repair alternative suggestion

2.0

[0.4526 0.3523 0.0661 0.6370]
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pth Repair alternative suggestion pth Repair alternative suggestion

1.5

[0.4571 0.3543 0.0816 0.6201]
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1.0
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0.5
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Table 5.12: (continued)

Repair suggestions based on the RBF surrogate

−0.5

[0.4685 0.3797 0.1673 0.5954]
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 ← Engine Intake

The feasibility thresholds used for the repair and results based on the SVR surrogate

(σ = 0.4) are listed in Table 5.13, again with the resulting geometries.
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Table 5.13: Repair suggestions based on the SVR surrogate

(σ = 0.4)

pth Repair alternative suggestion

0.4

[0.4566 0.3741 0.0712 0.6094]
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pth Repair alternative suggestion pth Repair alternative suggestion

0.2

[0.4638 0.3818 0.0794 0.5964]
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−0.2
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−0.3

[0.4829 0.3873 0.0966 0.5577]

−100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

 ← Engine Intake



Chapter 5 Aero-engine Intake Design Case with Aerodynamic Properties Calculated

and Incorporated in the Knowledge Base 95

Table 5.13: (continued)

Repair suggestions based on the SVR surrogate (σ = 0.4)

−0.4

[0.4886 0.4061 0.1154 0.5697]
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The feasibility thresholds used for the repair and results based on the SVR surrogate

(σ = 0.5) are listed in Table 5.14.
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Table 5.14: Repair suggestions based on the SVR surrogate

(σ = 0.5)

pth Repair alternative suggestion

0.1

[0.4613 0.3606 0.0687 0.6158]
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pth Repair alternative suggestion pth Repair alternative suggestion

−0.1

[0.4656 0.3679 0.0777 0.6031]
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−100 0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

 ← Engine Intake

−0.5
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Table 5.14: (continued)

Repair suggestions based on the SVR surrogate (σ = 0.5)

−0.9

[0.4896 0.3933 0.1238 0.5634]
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Reduced interference area

Smooth corners

As expected, the repair suggestions all look similar to the original design (Figure 5.18),

which is a sign of the preservation of the original design intent. However subtle changes

do occur, which correct the meshing failure and improve the feasibility of the geometry.

For example, if compare Figure 5.18 and the last figure in Table 5.14, it is not difficult

to notice that:

1. the unphysical loop and the first order discontinuities, which occurred on the intake

wall between x = 100 and x = 200 have been eliminated;

2. the area of interference with the rear pressure bulkhead has been gradually dimin-

ished and eventually disappears altogether.

The unphysical loops were responsible for the mesh failure. After they have been replaced

by the smooth corners, the geometry became meshable. Furthermore, the suggested

repair alternative has a reduced area of interference with the bulkhead, due to the

knowledge that dictates that such interference is an unfavourable feature (Section 4.3.3).

From Table 5.12 and Table 5.13, it could be observed that similar repair results have

been achieved with RBF surrogate model and a SVR surrogate with a different σ.

The repaired geometries become gradually more feasible, as the feasibility threshold

increases. Therefore, we conclude that the knowledge that was set up in Section 4.3

has been successfully incorporated in the knowledge surrogate, and the automatic repair

system is effective.
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5.5 Surrogate update

In this section, the author demonstrates how an existing surrogate can be updated using

new information and investigates the effect of adding more training points to an existing

surrogate model on geometry repair. The SVR surrogate with a preset σ = 0.5 is

used for demonstration in this process. Four badly designed geometries were manually

picked as the starting points for repair. For each badly designed geometry, its feasibility

index is firstly determined by the current SVR surrogate. Then eight repair alternatives

are determined by the method described in Section 3.4. After the repaired geometries

were determined for the four geometries, the true feasibility values for these 32 repair

alternatives were calculated by the method described in Section 4.3. These 32 sets of

data were added to the original 200 training data. Another 20 sets of data have been

determined in Section 5.3.4 as a validation data set. We then reused these data and

added them to the existing training data pool.

The SVR surrogate is updated with the 252 (200+20+32) training data. In terms of the

computing budget, this updating process is very cheap — the training of the surrogate

takes only a few minutes. The updated SVR surrogate is used for the repair of the

same four badly designed geometries again. In this way another 32 repair alternatives

were generated, the feasibility values calculated and the data were used to update the

surrogate (284 training points altogether). The update process is repeated one more

time with 316 training points, the last 32 of which were from the repair alternatives

generated with the SVR surrogate training by 284 points.Þßàáâãäåããæçáèß éßê çßæëßèãâßìíàîáèß
Figure 5.19: Illustration of the surrogate model update process

Altogether 96 update points were generated. To find out the effect of adding more

training points to the existing surrogate, the true penalty values and feasibility predic-

tions from the SVR surrogate of 200 points, 252 points, 284 points and 316 points were
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calculated. Then the absolute value of the difference between true penalty values and

predictions were calculated. Some of the results are presented in Table 5.15 and 5.16.

Table 5.15: Update training points’ true penalties and SVR predictions

No.of sample True Penalty SVR(200) SVR(252) SVR(284) SVR(316)

1 1.501 0.910 0.997 1.068 1.118
2 0.749 0.544 0.592 0.646 0.681
3 0.183 0.181 0.206 0.244 0.268
. . . . . . . . . . . . . . . . . .
94 -1.318 -0.678 -0.898 -0.933 -1.115
95 -1.872 -1.298 -1.445 -1.502 -1.669
96 -2.342 -1.883 -1.979 -2.047 -2.220

Table 5.16: Comparison of surrogates between updates

No. of sample True Penalty |Diff.| (200) |Diff.|(252) |Diff.|(284) |Diff.|(316)
1 1.501 0.591 0.504 0.433 0.383
2 0.749 0.205 0.158 0.103 0.068
3 0.183 0.001 0.023 0.062 0.085
. . . . . . . . . . . . . . . . . .
94 -1.318 0.640 0.420 0.386 0.204
95 -1.872 0.574 0.427 0.369 0.203
96 -2.342 0.459 0.363 0.295 0.123

Average difference 0.683 0.638 0.579 0.531

The average difference listed in the last row of Table 5.16 measures the fidelity of the

knowledge surrogate model. It can be seen that as the surrogate is updated, the dif-

ferences reduce correspondingly. Therefore, the update is helpful in obtaining a higher

fidelity surrogate that better represents knowledge about the design.





Chapter 6

3D Case Study: Repair of a

Turbine Blade Geometry

In this chapter, the author endeavours to extend the idea of geometry repair to a more

complicated three-dimensional CAD model. The repair of a real-life model would be

potentially beneficial and of commercial interest to industry, such as the author’s indus-

trial sponsor Rolls-Royce, as a means of smoothing the design workflow. A possible 3D

case may be the Rolls-Royce blade and core model that other members of the author’s

research group are investigating from a different perspective (life prediction, etc.). The

cores are air ducts inside the blade, filled with cold circulating air while in service. The

air cools the blade down, therefore prolongs the life of the blade. The model is quite

complex and can easily fail in a variety of ways if the parameterisation goes wrong, for

example, the cores can penetrate the blade surface or overlap with each other, which

could lead to failed designs. If the CAD model fails, any subsequent analysis will be-

come impossible. Therefore, it is potentially useful if a knowledge base can be set up

and attached to the CAD model, in order to automatically examine the quality of the

model and provide helpful advice which can lead to a valid and better design.

In this chapter, the author sets up a repair system for an 3D turbine blade, based on the

principles of the geometry repair system described in Chapter 3 and tested in Chapter 4.

This system can fit in an optimisation framework, which helps the automation of the

optimisation.

6.1 Overview of a turbine blade design problem

Turbine blades are amongst the main components of a typical gas turbine. They are

designed to generate power by translating circumferential aerodynamic forces on the

aerofoil to the rotating disc. The blades are of a cambered aerofoil shape, designed to

101
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extract energy from the high temperature, high pressure gas produced by the combustor.

The blades glow red-hot when the engine is running, yet at this condition they must still

be strong enough to carry high centrifugal loads due to their rotation and the bending

load due to the gas stream.

The blades rotate in the casings with a typical tip speed of 460 m/s [Rolls-Royce (2005)].

At this speed, the power output of a single civil HP blade is ten times higher than that

of a small family car and the force transmitted into the disc by each blade at redline

speed is approximately 18 tonnes.

The blade’s cross-section design is governed by the permitted stress in the material used

and by the size of any core passages required for cooling purposes. The hottest running

blades are cast in a high-temperature nickel alloy and are often coated in a ceramic

thermal barrier coating on their aerofoils and platforms. High operating temperatures

dictate the need to internally cool the HP blades with cooling air flowing through a com-

plex internal channel system before exiting through rows of cooling holes. Cooling flow

is regulated very carefully to minimise the detrimental effect on turbine performance.

The following picture shows a high pressure turbine blade with internal cooling system1.

Figure 6.1: A turbine blade with cooling holes for film cooling

As turbine designs progress through each new engine project, the basic design and op-

erating principles remain the same as those used in the very earliest of turbine designs.

Today, however, modern market requirements combined with reduced timescales add

pressure to the design and development programme. The focus of investment and de-

velopment on the latest products is channelled towards even more demanding targets

in turbine performance and efficiency —together with reductions in fuel burn, unit cost

and engine weight [Rolls-Royce (2005)].

1This file is made available by Tomeasy from the Wikimedia Commons, a freely licensed media
file repository, The file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license. The original link is http://en.wikipedia.org/wiki/File:GaTurbineBlade.svg.
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6.2 An automated turbine blade design and analysis frame-

work

The modern design practice of a turbine blade involves parameterisation, automated

geometry generation, analysis and optimisation. In this section, the author set up such

a design cycle. Due to the complexity of the feasible design space, the automated

optimisation cycle can be interrupted. A repair framework is set up to ensure the

continuity of the design workflow, and capture possible optimal designs which may lie

at the edge of feasible design space. The automated framework includes CAD model

setup, preprocessing, stress analysis and the use of surrogate modelling for predicting the

quality of untested geometries and repair the ones that fall below the quality threshold.

6.2.1 CAD model setup and parameterisation

First a simplified turbine model is set up. The topology of the model is predefined:

three cooling holes are present in the blade 3D model. The blade outline is defined by

four splines, the shape of which similar to an airfoil. The exact shape of the blade is

determined by 12 variables altogether. The first six variables control the positions of

the three cooling holes: the first two define the position of the leading hole; the third

and fourth middle hole; the fifth and sixth trailing hole. The next group of six variables

defines direction in which the blade cross-section is extruded. The first trio in the group

defines the extrusion direction of the cross-section, leading hole and trailing hole. The

second trio defines the extrusion direction of the middle cooling hole. The trailing edge

of the blade is often the hottest and therefore endures higher temperature and thermal

stress. The temperature of the trailing edge could be a bottleneck of the blade design.

Therefore the cooling hole which is closest to the trailing edge is of special importance.

The last four design variables are used to control the exact shape of the trailing hole.

Variables Definitions

x1 and x2 Horizontal and vertical position of the front cooling hole
x3 and x4 Horizontal and vertical position of the middle cooling hole
x5 and x6 Horizontal and vertical position of the trailing cooling hole

x7, x8 and x9 Extrusion direction of the blade contour, front and trailing hole
x10, x11 and x12 Extrusion direction of the middle cooling hole
x13 and x14 Trailing hole upper contour point
x15 and x16 Trailing hole lower contour point

Table 6.1: Blade variable definitions
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Figure 6.2: Turbine Blade cross-section view with illustrations of the design variables

Figure 6.3: Turbine blade shaded view
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Figure 6.4: Possible blade cooling hole position contours

6.2.1.1 Geometry generator developed in NX Open

The CAD model is generated by NX Open C. NX Open is a collection of Application

Programming Interface (API) toolkits that allow for automating complex and repetitive

tasks. NX Open also allows for the flexible integration of diverse third party and NX

applications, sharing data on different computer platforms, from different locations using

heterogeneous networks, and even across the Internet [Sie (2008)]. The NX Open API

provides an open architecture which can be utilised by third parties, customers, and

in-house users for creating and integrating custom software applications.

The geometry is generated by the following steps. Firstly the 12 design variables are read

into memory from a file that contains design variables. The variable file is generated

by a MATLAB programme. A sample variable file is listed in Appendix A.8.1. The

variables are read into the memory by a C program, which is listed in Appendix A.8.2.

After the design variables are successfully loaded, they are passed to the API functions

that generates the splines and extrusions. The C file that generates the 3D section of

the turbine blade is listed in Appendix A.8.3

The above-mentioned C files are complied into a .dll file, which can be executed within

NX interactively. Furthermore, an executable file is compiled, which can be called by a

Windows batch file, which is listed in Appendix A.8.4. In this way the geometry can be

automatically generated. The batch file requires two Windows environment variables,

UGII BASE DIR and UGII ROOT DIR, to be set up and pointed to the NX installation

folder path.
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There is a minimum blade wall thickness requirement in manufacturing. A guideline

thickness is 0.5 millimetres. Designs with blade wall thinner than this value would be

unsuitable for manufacturing. The geometry generator can measure distance between

the cooling holes, and between the cooling holes and the blade walls. The distances

are automatically recorded and saved to a data file for evaluating the feasibility of a

candidate design.

Figure 6.5: Turbine blade wireframe view

6.2.2 Preprocessing

To facilitate stress analysis, the native NX geometry is firstly exported into IGES for-

mat. The NX command line interface allows the translation of files without using the

interactive menus. The NX IGES translator is initiated by IGES.cmd, a Windows batch

script listed in Appendix A.8.5. The output IGES file name is the same as the input file

name, except with the appropriate file extension.

In this research, the Rolls-Royce developed finite element analysis application SC03

is used for thermal stress analysis. The IGES file is translated by CADfix2 to SC03

2A CAD translation software by ITI TranscenData, see www.cadfix.com for more details
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acceptable database file (pm file). This step is automated by calling CADfix in batch

mode (A.8.6).

6.2.3 Stress analysis

Turbine blades endure high temperatures in working conditions. It is important to

predict the stress in blade structure subjected to thermal loads. The von Mises yield

criterion is a common yield criteria for ductile materials. Calculation for von Mises

stress is readily available in SC03.

6.2.3.1 Von Mises Stress and yield criterion

Von Mises stress is derived from the von Mises yield criterion, which states that yielding

begins when the distortional strain energy density at a point equals the distortional

strain energy density at yield in uniaxial tension [Boresi and Schmidt (2003)]. The

distortional strain energy density UD is defined as

UD =
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2

12G
(6.1)

where σ1, σ2 and σ3 are principle stress, and G the shear modulus defined as

G =
E

2(1 + ν)
. (6.2)

The distortional energy density UD can be written in terms of the second deviator stress

invariant J2 as

UD =
1

2G
J2 (6.3)

where

J2 =
1

6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2]. (6.4)

At yield in uniaxial tension or compression, σ1 = ±Y , σ2 = σ3 = 0. Then

J2 =
1

3
Y 2 (6.5)

Therefore, by Equation 6.4 and 6.5, the yield function for the von Mises criterion can

be written as

f =
1

6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2]− 1

3
Y 2. (6.6)

It is convenient to define an equivalent tensile stress or von Mises stress, σv, as

σv =

√
1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2] =

√
3J2 (6.7)
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By Equation 6.7, Equation 6.6 can be written in a more compact form as

f = σ2v − Y 2 (6.8)

The von Mises yield function is continuously differentiable, and is preferred in plasticity

studies. There are other yield criteria, including the maximum shear-stress (Tresca)

criterion [Boresi and Schmidt (2003)]. No single yield criterion has been established

that accurately predicts yielding for all materials. The difference between these criteria

are beyond the scope of this thesis.

6.2.3.2 Analysis in SC03

SC03 is an automatic analysis system created by Rolls-Royce to allow fully integrated

stress, displacement, thermal and vibration analysis to be undertaken at any stage in the

design cycle. It was originally designed to meet the aero engine manufacturer’s in-house

analysis needs.

In this work SCO3 is used to mesh the blade geometry and predicts thermal stress and

temperature of the blade in simulated working conditions. The process is automated by

calling SC03 in batch mode by the script listed in Appendix A.8.7. In the script, an

SC03 executable file is called (Appendix A.8.8). This executable file controls SC03 to

do the following in turn:

• reading in the pm file;

• setting up working condition and constraint;

• specifying material;

• meshing;

• analysis and output.

Firstly the database file is loaded into SC03. Then a blade material thermo-elastic

property data file is loaded (An abridged version of the material property data file

is shown in Appendix A.8.9). Then a boundary conditions file is loaded. The file is

generated by firstly setting up boundary conditions interactively in SC03, and then

saving as a separate file that can be reloaded. The boundary condition file specifies

that the front and back flat surfaces as fixed. The convex face endures very hot air

when operating. It is assigned as a convecting zone with an air temperature of 1500K

and a pressure of 1MPa. The concave face is exposed to relatively cooler air but higher

pressure. It is assigned as a convection zone with an air temperature of 1300K and

a pressure of 1.25MPa. The cooling holes supply cool air to the blade to keep its
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temperature down. They are assigned as convecting zones with air temperatures of

1000K and pressures of 1.5MPa.

Figure 6.6: Blade model imported into SC03

Before meshing, local mesh controls are applied to the blade surfaces. Surface mesh

element sizes are specified depending on the local curvature. The convex and concave

surface where the curvature is relatively low has an average element size of 2 × 10−3.

Other surfaces, including the cooling holes has an average element size of 1.5 × 10−3.

If the meshing is successful, a thermo-stress steady state analysis is performed to deter-

mine the steady state temperature and von Mises stress of the structure. The results are

exported in a SC03 log file first, and the maximum temperature, maximum von Mises

stress and largest mesh distortion are extracted by a MATLAB script (Appendix A.8.11).
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Figure 6.7: Blade model meshing

6.3 Statistics of modes of failure

The automated design process described above could fail in several different ways, which

hinders design automation and reduces the possibility of finding an optimum design

near the edge of a feasible design space. The MATLAB script (Appendix A.8.11),

which automates the design and analysis process, reports an error code if the process is

terminated prematurely.

A sampling plan of 1000 designs is generated using Latin hypercube method, as described

in Section 2.4. These designs are put through the design and analysis automation pro-

cess. Among these 1000 design candidates, 611 fail in the NX model generation process;
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Figure 6.8: Blade temperature contours



112 Chapter 6 3D Case Study: Repair of a Turbine Blade Geometry

Figure 6.9: Von-Mises stress contour map
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Figure 6.10: Von-Mises stress contour map with predicted blade deflection displayed
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Error flag Error Count

1 NX Part generation failure 611

2 IGES generation failure 0

3 SC03 database generation failure 6

4 Result generation failure 34

0 Design process success 349

Total:1000

Table 6.2: Error type and statistics

none fail during the IGES file generation process; 6 fail in the CADfix process; and 34

fail in SC03 (meshing and analysis). 349 geometries were successfully generated, meshed

and analysed. It is observed that the majority failed in the NX geometry generation

process. This is probably due to the difficulty of setting up an accurate range for cooling

hole positions. The designs with cooling holes intersecting with blade boundaries will

fail in the geometry generation process. It is also observed that a significant number of

geometries fail in SC03 meshing and analysis process. This is probably due to some de-

signs lead to sharp edges at cross-section of cooling holes, and at cross-section of cooling

hole and blade boundaries. The sharp edges could often cause difficulty in meshing.

6.4 Knowledge base setup

6.4.1 Data collection

As shown in Figure 6.11, different types of data are generated and collected in the

geometry generation, translation and analysis process. The 1000 design candidates are

put through the process. If the design successfully generates a geometry, the minimum

wall thickness of the blade is recorded. If the design is successfully meshed, the largest

distortion of the mesh is recorded. After the design passes stress analysis, the maximum

temperature and stress are recorded. If the design fails at any stage of the process, an

error flag is generated as described in Section 6.3. This error flag is recorded as well.

The maximum temperature recorded for the 1000 geometries is 1406 K and the mini-

mum temperature is 1145.2 K. The maximum von Mises stress recorded for the 1000

geometries is 2.8×105 N/m2 and the minimum 2.7×104 N/m2. The maximum minimum-

wall-thickness is 0.4817 millimetre and the minimum 0, which indicates interfering design

features. The maximum mesh distortion recorded for the 1000 geometries is 72.39 and

the minimum 4.3029. Mesh distortion is a dimensionless number defined by ratio of the

radius of the circumscribed sphere to that of the inscribed sphere of a mesh element,

and consequently quantifies the extent of distortion. By definition it can be deduced

that for a 2 dimensional mesh the minimum possible value of mesh distortion is 2, for

an undistorted, equilateral triangle mesh element.
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Figure 6.11: Data collection process
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Design No. Error flag Temperature Von-Mises Stress Distortion Minimum wall thickness

1 1 NaN NaN NaN 0
2 1 NaN NaN NaN 0
3 1 NaN NaN NaN 0
4 4 NaN NaN NaN 0
5 0 1249.8 34874 10.2613 0.720145
6 0 1390.3 45637 14.5982 0.835647
7 1 NaN NaN NaN 0
. . . . . . . . . . . . . . . . . .
998 1 NaN NaN NaN 0
999 1 NaN NaN NaN 0
1000 0 1349.4 45631 8.66375 0

Table 6.3: Blade working-condition measurements

Maximum Minimum

Temperature (K) 1406 1145.2
Von Mises stress (Pa) 2.8 × 105 2.7× 104

Minimum-wall-thickness (millimetre) 0.4817 0
Mesh distortion 72.39 4.3029

Table 6.4: Measurement extremes

6.4.2 Geometry quality evaluation and penalty setup

The quality of each candidate geometry is evaluated by measuring its maximum tem-

perature, maximum von Mises stress, maximum meshing distortion and minimum wall

thickness.

For infeasible geometries some of whose data are unavailable, the maximum value from

that catalogue is used as a substitute for the purpose of geometry quality evaluation and

penalty setup. For example, when a design successfully creates a geometry but fails to be

processed by SC03, its temperature and stress information is unavailable. The maximum

values of these measurements, 1406 K and 2.8×105 Pa respectively (Table 6.4) are used

as substitutes.

After the data are collected, a penalty function is postulated. Following the ideas in

Chapter 5, it is desired that less feasible geometries be allocated larger penalty values.

The more infeasible a geometry is, the larger a penalty value it should be allocated. Large

peak temperature, stress and maximum distortion naturally indicate a unfavourable

design. However a large wall thickness is favourable for manufacturing consideration.

The following formula is used to convert the original wall thickness data to thickness

penalty, pt.

pt = 1−minimum wall distance, pt ∈ [0, 1] (6.9)
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When a design fails to create a geometry in NX, its minimum-wall-thickness could not be

determined. The maximum possible thickness penalty of pt = 1 is used as the thickness

penalty for these failed geometries .

Given the above modification, a penalty metric is assembled in Table 6.5

Temperature Von-Mises Stress Distortion Minimum wall thickness
Design No. Penalty

1 1406 2.8× 105 72.398 1
2 1406 2.8× 105 72.398 1
3 1406 2.8× 105 72.398 1
4 1406 2.8× 105 72.398 1
5 1249.8 34874 10.2613 0.720145
6 1390.3 45637 14.5982 0.835647
7 1406 2.8× 105 72.398 1
. . . . . . . . . . . . . . .
998 1406 2.8× 105 72.398 1
999 1406 2.8× 105 72.398 1
1000 1349.4 45631 8.66375 1

Table 6.5: Penalty metric

The average and standard deviation of each column of Table 6.5 is listed in Table 6.6.

Average Standard deviation

Temperature (K) 1365.17 74.2
Von Mises stress (Pa) 1.98 × 105 1.14 × 105

Mesh distortion 52.33 28.23
Minimum-wall-thickness 0.96 0.09

Table 6.6: Penalty statistics

The data in Table 6.5 are of different magnitudes. To give each column of data equal

consideration, the penalty values are normalised by using Equation 5.8.

A normalised penalty table is generated. The sum of the normalised penalty is used as

the geometry quality indicator.

6.4.3 Surrogate training and tuning

A SVR surrogate is generated in the same way as described in Section 3.2. The penalty

sum and the design parameter table for the 1000 designs were used as a database for

the SVR surrogate model training.

Training using the whole database of 1000 data proved prohibitively time-consuming.

Various sizes of the subsets of the database were used to generate a SVR surrogate, and

the results were assessed by measuring a goodness-of-fit statistic, R2. R2 is the square
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Temperature Von-Mises Stress Distortion Minimum wall thickness Penalty
Design No. normalised penalty Sum

1 0.5501 0.7289 0.7107 0.4710 2.4607
2 0.5501 0.7289 0.7107 0.4710 2.4607
3 0.5501 0.7289 0.7107 0.4710 2.4607
4 0.5501 0.7289 0.7107 0.4710 2.4607
5 -1.5546 -1.4277 -1.4902 -2.5253 -6.9978
6 0.3385 -1.3334 -1.3366 -1.2887 -3.6201
7 0.5501 0.7289 0.7107 0.4710 2.4607
. . . . . . . . . . . . . . .
998 0.5501 0.7289 0.7107 0.4710 2.4607
999 0.5501 0.7289 0.7107 0.4710 2.4607
1000 -0.2125 -1.3334 -1.5468 0.4710 -2.6218

Table 6.7: Normalised penalty table and penalty sum

of the correlation between the response values and the predicted response values. It is

defined as the ratio of the sum of squares of the regression (SSR) and the total sum of

squares (SST). SSR is defined as

SSR =
∑

i

(ŷi − ȳ)2. (6.10)

SST is also called the sum of squares about the mean, and is defined as

SST =
∑

i

(yi − ȳ)2. (6.11)

R2 is expressed as

R2 =
SSR

SST
(6.12)

R2 calculated R2 calculated
Size of training subset using the training set using all data in the database

100 0.7661 0.0819
110 0.6311 0.0715
120 0.9076 0.1271
130 0.9113 0.1332
140 0.9108 0.1417
150 0.9108 0.1505

Table 6.8: Goodness of fit of SVR surrogate model trained by using different sizes of
training data

It can be observed from Table 6.8 that goodness of fit improves as the number of training

data used increases. However as the number of training data increases, the time required

for the computation of the SVR surrogate increases exponentially.
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6.5 Repair with the knowledge base

An SVR surrogate trained by the first 100 data in the database are used to test the

validity of the repair model. Feasibility threshold is set to 1.5566, 80% of the surrogate

mean of 1.9457. An infeasible design xo (Figure 6.12) is chosen randomly from the

remaining 900 design cases, and is subjected to the repair process. The randomly chosen

design xo ranks 315
th in the 1000 designs. xo generates a NX part that has a shape edge

which prevents a successful meshing (Figure 6.13).

Figure 6.12: Top view of the original design xo in NX

The variable resolution evolutionary strategy described in Section 3.4 is used to optimise

the surrogate landscape in order to find a repair alternative for xo. The optimisation

code is modified from the code used for the 2D optimisation used in Chapter 4 to cope
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Figure 6.13: Trimetric view of the original design xo in NX

with the requirement for a large-scale search, which is necessary for the 16-dimensional

design space. The modified code could search a large sampling plan of effectively 107 in

each round of the continuous search in the hyper-circle without exceeding the limit of

the random access memory of the author’s workstation, which is 3.25GB. Pareto front

plots are generated at each stage of the optimisation.

The initial selection process of the design alternative (x1) is illustrated in Figure 6.14.

A repair alternative is found by a global search with a small sampling plan whose size is

12743. Points on the Pareto front is marked by circles. Only one point falls below the

feasibility threshold of 1.5566. The point is selected as the initial repair alternative. Its

Euclidean distance from the original design xo is 1.101.

After x1 is found, optimisation is continued in the hyper-circle centred at the original
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Figure 6.14: Initial selection of the repair alternative after a global search

design,with radius equals to current minimum distance of 1.101. Having searched a

sampling plan of size 106, a better repair alternative x2 is found. The searching process

is visualised in Figure 6.15: among the points that fall below the feasibility threshold,

the one that is closest to the original design is selected as the repair alternative x2. x2 is

marked by a cross in Figure 6.15. Its Euclidean distance from xo is 0.811, which means

that x2 is more similar to xo than x1 is. The geometry corresponding with the design

variable set x2 is displayed in Figure 6.16.

After x2 is found, subsequent search is conducted in the hyper-circle whose centre is xo

and radius is 0.811. Having searched a sampling plan of size 102353, a better repair

alternative x3 is found. The searching process is visualised in Figure 6.17

x3 falls below the feasibility threshold of 1.5566. Its Euclidean distance from the xo is

0.5498, which means that x3 is more similar to xo than x2 is. x3 is selected as the repair

alternative.

A further search using a sampling plan of effectively 107 can not find a better repair al-

ternative. This terminates the optimisation, and x3 is used as the final repair alternative

suggestion xr:

xr = x3. (6.13)



122 Chapter 6 3D Case Study: Repair of a Turbine Blade Geometry

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

1.5

1.6

1.7

1.8

1.9

2

2.1

16−dimensional Euclidean distance from the original design

P
re

di
ct

ed
 P

en
al

ty

Penalty threshold P
th

=1.5566

 ← Selected point P
th

=1.5189

Figure 6.15: Selection of the repair alternative in the hyper-circle

The design variables, before and after repair, are presented side by side in Table 6.9

for comparison. By comparing each row of the design variables in Table 6.9, it can

be observed that most of the variables in the repaired design variable set is close to

the corresponding one in the original design variable set. considering the range of each

variable is [0, 1]. Examining the penultimate row, one can observe that the Euclidean

distance from the original design xo gradually reduced, which means the repair alterna-

tive become closer to the initial design intent. While at the same time, the last row of

Table 6.9 shows that the predicted penalty stays below the preset feasibility threshold.

Comparing Figure 6.12 (xo ) and Figure 6.18 (xr ), it can be observed intuitively that

the two designs are still similar. However the sharp edge in Figure 6.12 is gently removed

by slightly moving the middle cooling hole toward the inside of the blade. The removal

of the shape edge fixes the meshing problem. With a even smaller predicted penalty,

Figure 6.16 (x2) moves the cooling hole further into the blade. This makes sense because

in Section 6.4.2, it has been dictated that a larger wall thickness is a favourable feature

in manufacturing (Equation 6.9), and the penalty would reduce when the blade thickness

is larger.

The selection of feasibility threshold can affect the optimisation as well. Setting a strin-

gent (small) threshold could theoretically produce more feasible designs from physics-
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Figure 6.16: Repaired blade model x2 displayed and meshed in SC03

and engineering knowledge-based point of view. However it could stretch the repair al-

ternative further from the original design. If the threshold is too small, the optimisation

may fail. As discussed earlier, if computing budget allows, xr could be generated using

multiple pth, and a designer could view these repair suggestions and select the one that

most suit the context of design requirement.

A final test of the efficacy of the repair alternative xr is to test it with the automated

turbine blade design and analysis framework described in Section 6.2. Figure 6.19 shows

that the suggested design alternative not only successfully generates a geometry, but also

makes the meshing and analysis process possible. Similarly, x2 also makes the meshing

and analysis possible (Figure 6.20). These results show that the proposed repair method

is an effective one for the turbine blade design and automation framework.
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Figure 6.17: Selection of the repair alternative in the hyper-circle in subsequent
optimisation

x xo x1 x2 xr

x1 0.7565 0.7142 0.8600 0.5595
x2 0.3545 0.5548 0.3363 0.4834
x3 0.0195 0.3033 0.1393 0.2059
x4 0.7545 0.3714 1.0975 0.7176
x5 0.3025 0.5818 0.6651 0.4485
x6 0.2995 0.1672 0.2541 0.2312
x7 0.4625 0.2989 0.5625 0.4834
x8 0.5315 0.3542 0.8177 0.6400
x9 0.7645 0.5006 0.8109 0.6162
x10 0.8405 0.4233 0.7729 0.6763
x11 0.0095 0.5719 0.1863 0.2008
x12 0.6625 0.9520 0.8185 0.8133
x13 0.8685 0.9556 0.5041 0.7048
x14 0.3115 0.3467 0.4766 0.3617
x15 0.0895 0.4457 0.2285 0.2353
x16 0.4905 0.5869 0.2724 0.3737

Euclidean distance from the original design 1.1010 0.8109 0.5498

Predicted Penalty 1.486 1.5189 1.5413

Table 6.9: Original design variables and repair alternatives
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Figure 6.18: Suggested repair alternative xr (same as x3) displayed and successfully
meshed in SC03, with the predicted penalty equaling to 1.5413
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Figure 6.19: Final repair alternative xr analysed in SC03, showing deflected shape
under constraints and thermal stress
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Figure 6.20: Repaired blade model x2 analysed in SC03, showing stress contours only





Chapter 7

Conclusions

7.1 Summary

In an ideal optimisation procedure an effective geometry engine should generate wide

ranges of designs without jeopardising geometry robustness. Building a parametric ge-

ometry proves a difficult task in reality because there is no universally applicable pa-

rameterisation scheme and it is often necessary to compromises between the conflicting

goals of geometry robustness and flexibility. This thesis has demonstrated a new ap-

proach that tackles this problem by capturing and modelling engineering knowledge, and

deploying it automatically in the search for a SPRA, while keeping the original design

intent.

In Chapter 1, the background information of computer-aided-design and optimisation

was described to put the research objective in perspective. The difficult tradeoff between

parameterisation flexibility and robustness was described. Also it was mentioned that

the knowledge on feasibility of geometries is seldom collected and reused. The motivation

of the thesis, as mentioned in Section 1.1, was to address the problem by developing a

physics- and engineering knowledge-based geometry repair system. Section 1.2 provided

a clear road map for the thesis.

To understand the background of the research, a wide range of topics in research litera-

ture was reviewed in Chapter 2. In Section 2.1, modern computer-aided-design practice

in the field of aerospace engineering was reviewed. Two areas that have direct link to this

research, i.e., shape parameterization and CFD were reviewed in detail. Mainstream Op-

timisation techniques were reviewed in sec:optimisation review. Having understood the

principle, applicability, advantage and drawback of each technique, the author later de-

veloped an ES based optimisation in Chapter 3 for the search of SPRA. In Section 2.3,

surrogate modelling techniques were individually examined. Surrogate modelling has

wide applications in design optimisation as a means to reduce computing cost. Having

129
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mastered the surrogate modelling techniques, the author demonstrated how to use them

as instruments for modelling the feasibility knowledge in later chapters. The author

found very limited literature that directly deals with incorporating prior knowledge into

surrogate models or geometry repair, which left space for innovation. In summary, by

writing this chapter, the author has gained deeper knowledge and a more comprehensive

understanding of the research background.

Chapter 3 outlined the proposed knowledge-based geometry repair system, which was

first tested in Chapter 4 with a simplified 2D intake geometry design case. Three pieces

of engineering knowledge was transformed into forms that can be easily incorporated

into the repair system’s knowledge base, and Chapter 5 added CFD simulation results

to the knowledge base, thus provides a more complete consideration on the feasibility

of the intake geometry. The repair system proved a success in generating feasible repair

alternatives based on the original, infeasible design, whilst keeping the original design

intent to its maximum.

In Chapter 6 the repair system was applied to a 3D turbine blade design case. In

this case, an automated turbine blade design and analysis workflow was generated. The

feasibility information was collected during the running of the workflow. A repair system

was build up based on the same principle described in Chapter 3 and was applied to

fixing infeasible geometries. The repair proved a success in Section 6.5.

7.2 Contributions

Firstly, the proposed repair system has proved that it can reduce the engineer’s work-

load and increase the design efficiency, flexibility and robustness when it is applied on

real scale engineering design problems. The system has provided the ability to repair

geometries through an interactive process, where the analyst can readily inspect geome-

tries at various constraint violation levels. Also the system is able to find the nearest

feasible alternative as part of an automated search process using a feasibility threshold

value. Using the feasible alternative in an optimisation process provides the possibility

to make the optimisation cycle continuous and identify potentially optimal design near

the boundary of a feasible region, whilst keeping the original design intent as much as

possible.

The repair system is also an data fusion tool because the statistics model which lies

in the core of the repair system can be trained in a variety of ways using physics-

and engineering knowledge, simulation results and individual assessment. One of the

contributions of this work is that it proves the possibility of using preset metrics and

CFD simulation results for performance and geometric feasibility. This eliminates the

tedious process of using manual input to set up a knowledge surrogate.
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Thirdly, as the curse of dimensionality demands exponentially increasing numbers of

observations as the number of design variables increases, a training process that requires

intensive human interaction as per the process outlined in [Sóbester and Keane (2006)]

becomes less feasible. A contribution of this thesis is that it provides evidence that a

SVR model can be used as the basis of an effective knowledge representation for a high

dimensional design space.

Although some ability of dealing with knowledge-based analytical constraints is incor-

porated into serious optimisation codes, the thesis proposes a specialised way of dealing

with constraints in a manner particularly suited to geometry-based design searches.

Posing the problem in this way, as mentioned above, allows the analyst to select an ac-

ceptable degree of constraint violation in an intuitive, interactive way (Section 4.6), with

the same system also functioning as a repair mechanism if deployed in a fully automated

setting.

In summary, the repair system can be an invaluable tool for assisting design and opti-

misation practise in industry.

7.3 Recommendations

7.3.1 Recommended application of the work

The repair system could be used in the conceptual design phase of a product life cycle.

The system can be attached to an existing automated optimisation framework to improve

its parameterisation flexibility and geometry robustness. The application of the system

can lead to a better chance of discovering novel, optimal solution that may not be found

using the traditional optimisation approach.

It can also be deployed as a visualisation tool that aids the decision making process.

Using the system, the chief engineer can view a set of repair alternatives that range from

more feasible designs to risky designs that has the potential to improve existing designs.

7.3.2 Recommended future research

In this section a few pointers to future research are presented.

7.3.2.1 Identifying potential critical designs automatically

Recently the possibility of identifying potential critical design from SVR process has

been examined. The idea has been tested on the traditional quadratic programming

support vector regression based on my intake design test model. According to the SVR
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theory, the significance of the design is related to the corresponding α±. For a certain

design, if its α± = 0, this design is not a support vector, and it is effectively ignored in

the SVR prediction. If the absolute value of the α± is large compared to the others for

a certain design, this design is a more significant support vector than the others. Thus,

an investigation of the distribution of α± values has been done. As shown in Figure 7.1,

for the test case in which 100 samples are used, 57 (57%) of the α± values lie at the two

end of the graph. This amounts to the majority of the designs and is of little help as

long as the anticipation here is to identify a few critical designs, which might be helpful

in making design decisions. Breaking the histogram graph into more bins Figure 7.2, it

is clear that only a small fraction of the design are not support vectors with α± = 0.
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Figure 7.1: alphapm histogram (10 bins)

The excess of number of support vectors is possibly due to the sparsity of the sampling

points. Thus, most sampling points are regarded as important support vector features.

In [Lauer and Bloch (2008)], it is hinted that a linear programming support vector

regression (LP-SVR) may significantly reduce the number of support vectors.
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Figure 7.2: alphapm histogram (100 bins)

7.3.2.2 Comparison of other SVR techniques

The reason we use a classic SVR surrogate as the basis for knowledge formation in this

work is that the SVR offers sparse representation can give algorithmic and representa-

tional advantages in high-dimensional design space. While the classic SVR is used in this

work, the author noticed a few variations of the classic SVR being investigated by the

wider research community. Two of them are relevance vector machine (RVM) and linear

programming support vector regression (LP-SVR). Relevance vector machine (RVM)

uses Bayesian inference to obtain parsimonious solutions for regression. The RVM has

an identical functional form to the support vector machine, but provides probabilistic

classification [Tipping (2001)]. It may offer benefits of probabilistic predictions and

exceptional degree of sparsity, which is useful in high-dimensional design space. Investi-

gations of RVM are found in the fields of pattern recognition [Agarwal and Triggs (2006),

He et al. (2009)] and neural networks [Yuan et al. (2008)], but no application of using

RVM for high-dimensional engineering knowledge modelling has been found. Similarly

LP-SVR offer the possibility of further reducing the number of support vectors, and

potentially identify critical design in an automatic fashion. It would be interesting to

investigate the potentials of these two variations of SVR.
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7.3.3 Recommendations on research methodology

During the writing of the thesis, the author reflected on the gains and pains during his

research. The author highly recommends “write-as-you-work” method. Writing should

be as concurrent as possible with other research activities, such as the literature review

and computer experiments. Writing is the opportunity to organise ideas, record experi-

mental results and reflect upon these intellectual outcomes. New ideas and experiments

result could go missing if they are not collected in time. Write-as-you-work approach

greatly reduces the risk of losing work. Admittedly this method could reduce the short-

term efficiency. But it is a time saver for the overall research. Never leave the writing

all to the end.

The author found that although comprehensive literature review a key to the success of

research, one should not try to cover and summarise everything, which would be endless

and unproductive. By searching out the literature one should focus on where his own

work will contribute to. An engagement in dialogue with what has been written and

what is to be written could be inspirational. Look in the reference section of key books

and articles of the research can be very helpful in finding useful references. Google

scholar is very useful in finding full text papers.

The author felt that it is very important to follow advice from supervisors. At the

same time, it is equally important to take the research initiative. This could spark

interest and improve motivation. The author also found transfer viva and conference

precious opportunities to get constructive criticism from peer students and researchers

other than supervisors. The author recommends a good preparation for these events

and be prepared to implement some advices in the ensuing research.



Appendix A

Important Codes Used in the

Thesis

A.1 Geometry modelling

A.1.1 model.m

%This function draws the intake shape model , including

% 1: The aircraft body by calling drawaircraft.m

% 2. The duct , by calling duct.m and ductoffset .m

%

% Input: x - A set of normalised design variables in a single vector .

% For example :[0 ,0.4 ,0.5 0.3]

% mode - 0:plot the figure in a axes

% 1:plot the figure in a new window

% Output :

% A figure showing the geometry corresponding to the design variable

%

% Example : model ([0 ,0.4 ,0.5 0.3])

% 12/02/2009

function model(x,mode)

if nargin < 2, mode =1; end

% global xmin xmax ymax ;% Figure window boundary

xmin = -100; xmax =500; ymax =350;

if mode ==0

drawaircraft_in_axes (xmin ,xmax ,ymax);

else

drawaircraft(xmin ,xmax ,ymax ,0);

end

y=0.8* ymax.*x -0.4* ymax;

D=[ xmin 0.9* ymax+y(1)*0.5;...

xmin +35 0.9* ymax+y(1)*0.5;... %D1

0*xmax 0.9* ymax+y(2);... %D2

0.2* xmax 0.6* ymax+y(3);... %D3

0.4* xmax 0.5* ymax+y(4);... %D4

0.5* xmax 0.375* ymax ;... %D5

135
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0.6* xmax 0.375* ymax ;];

%Spline parameters assignments and spline calculation

degree =3;

number_of_points =1001;

SPLN=duct(D,degree ,number_of_points );

ductoffset (D,SPLN );

Listing A.1: model.m

A.1.2 drawaircraft.m

%This function draws the aircraft body

%Input : xmin - minimum x coordinate

% xmax - maximum x coordinate

% ymax - maximum y coordinate

% ps - pause time in second (useful when )

% Output :Aircraft boundary in a figure

function drawaircraft(xmin ,xmax ,ymax ,ps)

%Set screen position

scrsz = get (0,’ ScreenSize ’);

figure (’Position ’,[0 scrsz (4)/5+20 scrsz (3)/1.25 scrsz (4)/1.7])

axis([ xmin xmax 0 1.2* ymax ])

hold on

%The aircraft boundary

B1x =[xmin xmax];

B2x =B1x;

B1y =[0 0.25* ymax];

B2y =[0.75* ymax 0.5* ymax ];

line(B1x ,B1y ,’linewidth ’,3);

line(B2x ,B2y ,’linewidth ’,3);

%The Engine boundary

Ex =[0.6* xmax xmax xmax 0.6* xmax 0.6* xmax];

Ey =[0.25* ymax 0.25* ymax 0.5* ymax 0.5* ymax 0.25* ymax];

plot(Ex ,Ey ,’k’,’linewidth ’,2);

text (0.6* xmax ,0.37* ymax ,’ \ leftarrow Engine Intake ’,’FontSize ’,12)

%Draw bulkhead , this bulkhead is pre -calculated and stored in a mat file

%called ’B.mat ’. This is actually a stupid idea since this diminish the

%flexibility of drawing the model under different parameters (xmin , xmax , ymax)

load Bulkhead ;

szub =10001;

plot(B(1,1: szub),B(2,1: szub),’k’,’LineWidth ’,2)

grid on

pause(ps)

%Note:

%1. The bulkhead is pre - calculated and stored in a mat file

%called ’B.mat ’. This is actually a stupid idea since this diminish the

%flexibility of drawing the model under different parameters (xmin , xmax , ymax)

Listing A.2: drawaircraft.m
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A.1.3 duct.m

%This function calculates the B-spline

% Input: DESIGN_VARIABLE -

% (n by 2 matrix ,can be conveniently genereated from model .m)

% degree - Degree of the B-Spline , three is a common used value

% number_of_points - number of points used to approximate the B-Spline

% Output : SPLN: The centre B-spline which is approximated by 1000 points .

%

function SPLN=duct(DESIGN_VARIABLE ,degree ,number_of_points)

hold on

D=DESIGN_VARIABLE;

p=degree ;

%knot vector construction

szC =size(D ,1);

U=[ zeros (1,p) ,0:1/( szC -p):1, ones(1,p)];

szU =size(U ,2); %Size of knot vector

interval =1/( number_of_points -1);

u=U(1+ p): interval :U(szU -p);

szu =size(u ,2); %Return the size of u

N=zeros(szU ,szu ); %Define the storage matrix for the basis func.

for i=1:(szU -1) % 0 degree basis function

for j=1: szu

if (u(j)>=U(i)&& u(j)<U(i+1))

N(i,j)=1;

else

N(i,j)=0;

end

end

end

for i=1:p+1

N(szU -i,szu )=1;

end

for i=1:p %Degree p basis function

for j=1:(szU -i-1)

for k=1: szu

if U(j+i)-U(j)==0

add1 =0;

else

add1 =(u(k)-U(j))/(U(j+i)-U(j))* N(j,k);

end

if U(j+i+1)-U(j+1)==0

add2 =0;

else

add2 =(U(j+i+1)-u(k))/(U(j+i+1)-U(j+1))*N(j+1,k);

end

N(j,k)=add1+add2;

end

end

end
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SPLN=zeros (2, szu );

for i=1: szC

for j=1: szu

SPLN(1,j)= SPLN(1,j)+N(i,j)*D(i ,1);

SPLN(2,j)= SPLN(2,j)+N(i,j)*D(i ,2);

end

end

%Notes :

% Using 1001 points to draw the figure , the figure looks the same ,

% but calculation is much faster .

Listing A.3: duct.m

A.1.4 ductoffset.m

%This function calculates the offset of the B-spline and add the duct shape

%onto the current figure if it exist .

% Input:

% DESIGN_VARIABLE -

% (n by 2 matrix ,can be conveniently genereated from model .m)

% SPLN: The centre B-spline , which is a 2 by n matrix

%

% Output :

% Add the duct centre line as well as the offset onto the current figure

function ductoffset (DESIGN_VARIABLE ,SPLN)

%Assignments

D=DESIGN_VARIABLE;

plotpolyline=’on ’;

%Generate offset splines

szS =size(SPLN ,2);

plot(SPLN (1,1: szS),SPLN (2,1: szS),’--k’,’LineWidth ’,1)

diff=zeros (2,szS -1);

for i=1: szS -1

for j=1:2

diff(j,i)= SPLN(j,i+1)- SPLN(j,i);

end

end

for i=1: szS -1

if diff(2,i)~=0

t=-diff(1,i)/ diff(2,i);

diff(1,i)=43.75/(1+ t^2)^(1/2);

diff(2,i)=43.75* t/(1+t ^2)^(1/2);

if diff(2,i)<0

diff(1,i)=- diff(1,i);

diff(2,i)=- diff(2,i);

end

else

diff(1,i)=43.75;

diff(2,i)=0;

end

end
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%Create Upper offset line

uofs=zeros (2,szS -1);

for i=1: szS -1

for j=1:2

uofs(j,i)= SPLN(j,i)+diff(j,i);

end

end

plot(uofs (1,:), uofs(2,:),’r’,’linewidth ’,2)

%Create Lower offset line

lofs=zeros (2,szS -1);

for i=1: szS -1

for j=1:2

lofs(j,i)= SPLN(j,i)-diff(j,i);

end

end

plot(lofs (1,:), lofs(2,:),’r’,’linewidth ’,2)

%Plot ployline and Spline

if strcmp (plotpolyline ,’on ’)

Cx=D(: ,1); Cy=D(: ,2);

plot(Cx,Cy,’o’), grid on

line(Cx,Cy)

end

%Add the duct centre line onto the current figure

plot(SPLN (1,:), SPLN(2,:),’-- r’,’ LineWidth ’,1)

Listing A.4: ductoffset.m

A.2 Penalty functions

A.2.1 penalty.m

function p=penalty (D)

%Weighted Combined penalty

%Input : Design variable D

%Output :combined penalty

p=2* penalty1 (D)+ penalty2 (D)+ penalty3 (D)/7;

Listing A.5: penalty.m

A.2.2 penalty1.m (abridged)

function pnty=penalty1 (x)

%Input : x - design variable set

%Output :pnty - distance penalty

...

y_distance =lofs (2 ,1) -0.75* ymax;

if y_distance >=0

pnlt=y_distance ^1.5;

else

pnlt = -100* y_distance ;
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end

Listing A.6: penalty1.m

A.2.3 penalty2.m (abridged)

function pnty=penalty2 (x)

%Excessive curvature penalty function

%Input : x - design variable set

%Output :pnty - curvature penalty

...

% Curvature calculaion

DRVT_Augmented=[ DRVT;zeros (1, szud )];

SDRVT_Augmented=[ SDRVT;zeros (1, szudd )];

Crossp =cross (DRVT_Augmented ,SDRVT_Augmented ,1);

Cnorm=abs (Crossp (3 ,:));

DRVT_norm =zeros (1, szud);

for i=1: szud

DRVT_norm (i)=norm(DRVT(:,i));

DRVT_norm (i)= DRVT_norm (i)^3;

end

%Curvature

Curvature =Cnorm ./ DRVT_norm ;

%Radius of Circle of Curvature

for i=1: size(Curvature ,2)

if Curvature (i)==0

Curvature (i)= realmin ;

end

end %Avoid devided by zero

RadiusoCoC =1./ Curvature ;

%Calcute the penalty

finish_index=size(RadiusoCoC ,2);

start_index =ceil (0.1* finish_index);

%We do this because we don ’t want to include the head of the duct into

%consideration.

pnlt =0;

% Penalty curvature threshold

pcth =43.75;

for i= start_index : finish_index

if RadiusoCoC (i)<pcth

pnlt=pnlt +(pcth - RadiusoCoC (i));

end

end

%Magnify the penalty value so that it is comparable with other penalties

pnlt=pnlt *15;

Listing A.7: penalty2.m

A.2.4 penalty3.m (abridged)
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function pnty=penalty3 (x)

%Bulkhead interference penalty function

%Input : x - design variable set

%Output :pnty - interference penalty

...

load Bulkhead .mat

p3=0;

for i=35: -1: -40

indexB =find(B(1 ,5000:10001) <=i);

indexL =find(lofs (1,:)>=i);

ydiff =lofs(2, indexL (1))-B(2, indexB (1)+4999);

if ydiff <0

p=-10* ydiff;

else

p=0;

end

p3=p3+p;

end

Listing A.8: penalty3.m

A.3 Support vector regression and prediction

A.3.1 SVR regression function.m

This function is adapted from the SVR prediction source code in [Forrester et al. (2008)].

clear

global X e alpha_pm sigma mu

load X200

load y_200

X=X200 (1:200 ,:);

y=y_200 (1:200) ;

sigma =0.5;

C=100;

nu =0.9;

n=size(X,1);

options = optimset (’MaxIter ’,1 e20);

% user defined constants

xi=1e-15;

% build correlation matrix (set theta =30

% arbitrarily without tuning

Psi =zeros (n,n);

for i=1:n

for j=1: n

Psi(i,j)=exp(norm(X(i,:) -X(j ,:))^2*( -1/ sigma ^2));

end

end
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Psi =Psi+eye(n,n)*1e-10;

% matrix of correlations

Psi =[Psi -Psi;-Psi Psi ];

% constraint terms

c=[-y;y];

% lower bound |alpha |>=0

lb=zeros (2*n,1) ;

% lower bound |alpha |<=0

ub=(C/n)*ones (2*n,1);

% start at alpha =[0;0;...;0]

x0=zeros (2*n,1) ;

% set sum (alpha ^+ + alpha ^-) <=C*nu

A = [ones(1,n) +ones(1,n)];

b=C*nu;

% set sum (alpha ^+ - alpha ^-)=0

Aeq =[- ones(1,n) ones(1,n)];

beq =0;

% run quadprog

alpha=quadprog (Psi ,c,A,b,Aeq ,beq ,lb ,ub ,x0 ,options );

% combine alphas into nx1 vector of SVs

alpha_pm =alpha (1:n)-alpha(n+1:2*n);

% find indices of SVs

sv_i=find(abs(alpha_pm )>xi);

num_svs =length (sv_i);

num_svs /n;

% find SVs mid way between 0 and C/n for e and mu calculation

[sv_mid_p ,sv_mid_p_i ]=min(abs(abs(alpha (1:n))-(C/(2*n))));

[sv_mid_m ,sv_mid_m_i ]=min(abs(abs(alpha(n+1:2*n)) -(C/(2*n))));

% calculate e

e=0.5*( y(sv_mid_p_i )-y(sv_mid_m_i )-alpha_pm (sv_i) ’*Psi(sv_i ,sv_mid_p_i )+alpha_pm (

sv_i) ’*Psi(sv_i ,sv_mid_m_i ));

% calculate mu

mu=y(sv_mid_p_i )-e*sign(alpha_pm ( sv_mid_p_i ))-alpha_pm (sv_i) ’*Psi(sv_i , sv_mid_p_i

);

save SVR_RESULT e alpha_pm sigma mu

Listing A.9: SVR regression function

A.3.2 SVR prediction function

function pred=SVR_Y_Gaussian_pred (x)

%Input : row vector x

%Output : predicted value

global X alpha_pm sigma mu

n=size(X,1);

psi =zeros (n,1);

for i = 1:n

psi(i)=exp(norm(x-X(i ,:))^2*( -1/ sigma ^2));

end

pred=mu+alpha_pm ’*psi ;

Listing A.10: SVR prediction function.m
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A.4 ES optimisation repair function

[caption=ES optimisation repair function]

% function evop_repair determines a repair alternative for design D0 based on a

prediction

% function and a penalty threshold .

%

% Input - X0: original design variable set

% objhandle : name of the prediction function

% th: the prescribed penalty threshold value

%

% Output - X_best : suggested repair alternative

%

% Example :

% objhandle =’ SVR_Gaussian_pred ’;

% th =1500;

% X0 =[0.2 , 0.1, 0.5, 0.5];

% X_best = evop_repair (X0,objhandle ,th)

%

% Do not forget to load the surrogate parameters

%

% Dong Li 10/06/2010

function X_best =evop_repair (X0 ,objhandle ,th)

% Initial global search

for i=5:2:19

[SAMPLE_PLAN ,sample_plan_size ]= sample_plan (i,’rlh ’);

RESULT =zeros(sample_plan_size ,2); RESULT (:) =Inf;

for j=1: sample_plan_size % search x1 in the whole design space

RESULT (j ,1)=norm(X0 -SAMPLE_PLAN (j,:) ); % Calculate the

distance

RESULT (j ,2)=feval(objhandle ,SAMPLE_PLAN (j,:)); % Calculate the penalty

end

[dmin ,indexbp ]= best_point (RESULT ,th);

if dmin <inf

X1=SAMPLE_PLAN (indexbp ,:);

fprintf (’A repair alternative has been found by an initial %d^4 global

search , continue with hyper -circle search \n’,i);

X_best =X1;

break

else

fprintf (’No repair alternative can be found with less than 19^4 search

points for th=%d, return X_best =X0 \n’,th)

X_best =X0;

return

end

end

% Initial search in the hyper -circle centered at the original design ,with radius

==dmin

for i=5:2:21

[SAMPLE_PLAN ,sample_plan_size ]= sample_plan (i,’rlh ’);

SAMPLE_PLAN =SAMPLE_PLAN *(2* dmin)-dmin;

for j=1: sample_plan_size %This operation isn ’t slow .. don ’t need to change

to 100..
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SAMPLE_PLAN (j,:) =X0+SAMPLE_PLAN (j,:) ; %Generate the second sample plan

end

RESULT =result (SAMPLE_PLAN ,X0,dmin ,objhandle );

[d,indexbp ]= best_point (RESULT ,th);

Xc=SAMPLE_PLAN (indexbp ,:);

if d<dmin

X_best =Xc;

dmin=d;

break

end

end

if X_best ==X1

return

end

% Continuous circle search

Xc=[0 0 0 0];

count =0;

while (~ isequal (Xc ,X_best ))

X_best =Xc;

count =count +1;

for i=5:15

%Generate a sample plan centered at X0 with side length =2* dmin

[SAMPLE_PLAN , sample_plan_size]= sample_plan (i,’rlh ’);

SAMPLE_PLAN =SAMPLE_PLAN *(2* dmin)-dmin;

for j=1: sample_plan_size %This operation isn ’t slow .. don ’t need to

change to 100..

SAMPLE_PLAN (j,:)=X0+SAMPLE_PLAN (j ,:); %Generate the second sample

plan

end

RESULT =result (SAMPLE_PLAN ,X0 ,dmin ,objhandle );

[d,indexbp ]= best_point (RESULT ,th);

if d<dmin

Xc= SAMPLE_PLAN (indexbp ,:);

dmin=norm(X0 -Xc);

break

end

end

end

Listing A.11: ES optimisation repair function

A.5 MATLAB codes as described in Figure 5.1

%Automated geometry generation , GAMBIT meshing and FLUENT solving for the

%two dimensional duct. Store the total pressure data at the exit of the duct.

%Automatically read the data file from hard drive. Calculate the standard

%deviation of the pressure . The standard deviation is used as a messure

%of the fan face distortion , and is regarded as a metric of the engineering

%feasibility of the duct.

%To switch to any other sample plan , only need to modify line 14 18 ,22&25.

%Dong Li

%15/05/2010
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% v6 is adapted from v4.3 as a piece of code that can assess an input of four

variables .

% input directly the parameters of the design

% fluent simulation iteration is reduced to 10

%Housekeeping

% clear

close all

% std_data =zeros (1,1);

sample_nmbr =1000;% assign to a fake number

fprintf (’Working on Geometry %d...\n’,sample_nmbr );

x=[0.4838 0.3980 0.1064 0.5746];

% global xmin xmax ymax ;% Figure window boundary

xmin = -100; xmax =500; ymax =350;

close

draw_duct (xmin ,xmax ,ymax ,0);

y=0.8* ymax.*x -0.4* ymax;

D=[ xmin 0.9* ymax+y(1) *0.5;...

xmin +35 0.9* ymax+y(1) *0.5;... %D1

0*xmax 0.9* ymax+y(2) ;... %D2

0.2* xmax 0.6* ymax+y(3) ;... %D3

0.4* xmax 0.5* ymax+y(4) ;... %D4

0.5* xmax 0.375* ymax ;... %D5

0.6* xmax 0.375* ymax ;];

%Spline parameters assignments and spline calculation

degree =3;

number_of_points =1001;

SPLN=duct(D,degree ,number_of_points);

%Assignments

plotpolyline=’on ’;

%Generate offset splines

szS =size(SPLN ,2);

plot(SPLN (1,1: szS),SPLN (2,1: szS),’--k’,’LineWidth ’,1)

diff=zeros (2,szS -1);

for i=1: szS -1

for j=1:2

diff(j,i)=SPLN(j,i+1) -SPLN(j,i);

end

end

for i=1: szS -1

if diff(2,i)~=0

t=-diff(1,i)/diff(2,i);

diff(1,i)=43.75/(1+ t^2) ^(1/2) ;

diff(2,i)=43.75* t/(1+t^2) ^(1/2) ;

if diff(2,i) <0

diff(1,i)=-diff(1,i);

diff(2,i)=-diff(2,i);
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end

else

diff(1,i)=43.75;

diff(2,i)=0;

end

end

%Create Upper offset line

uofs=zeros (2,szS -1);

for i=1: szS -1

for j=1:2

uofs(j,i)=SPLN(j,i)+diff(j,i);

end

end

while uofs(1,1) <-100.1

uofs (:,1) =[];

end

plot(uofs (1,:) ,uofs (2,:) ,’r’,’linewidth ’,2)

%Create Lower offset line

lofs=zeros (2,szS -1);

for i=1: szS -1

for j=1:2

lofs(j,i)=SPLN(j,i)-diff(j,i);

end

end

while lofs(1,1) <-100.1

lofs (:,1) =[];

end

plot(lofs (1,:) ,lofs (2,:) ,’r’,’linewidth ’,2)

%Plot ployline and Spline

if strcmp (plotpolyline ,’on ’)

Cx=D(:,1);Cy=D(:,2);

plot(Cx,Cy,’o’),grid on

line(Cx,Cy)

end

%Add the duct center line onto the current figure

plot(SPLN (1,:) ,SPLN (2,:) ,’--r’,’ LineWidth ’,1)

saveas (gcf ,strcat (’C:\ Documents and Settings \dl9v07 \Desktop \CFD -working -folder \’,

num2str (sample_nmbr ) ,’.eps ’))

%Open the GAMBIT journal file to write

fid = fopen(strcat (’C:\ Documents and Settings \dl9v07 \Desktop \CFD -working -folder

\’,num2str (sample_nmbr ),’gambit .jou ’), ’w’);

%Use the lofs and uofs data to print out the jou file

%Input : k - Scaling of the coordinates

%Input : lofs , uofs

%Output : mesh generating command file that is readable by Gambit

k=1;

lofs_mini =lofs/k;

uofs_mini =uofs/k;

count =0;

%Sample lofs and Create the command

for i=1:( size(lofs_mini ,2) /20):size(lofs_mini ,2)
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i=floor(i);

fprintf (fid , ’vertex create coordinates %6.2f %6.2f 0\n’, lofs_mini (:,i));

count =count +1;

end

%Sample the last point on the curve

fprintf (fid , ’vertex create coordinates %6.2f %6.2f 0\n’, lofs_mini (:, size(

lofs_mini ,2) ));

count=count +1;

%Sample uofs and Create the command

for i=1:( size(uofs_mini ,2) /20):size(uofs_mini ,2)

i=floor(i);

fprintf (fid , ’vertex create coordinates %6.2f %6.2f 0\n’, uofs_mini (:,i));

end

%Sample the last point on the curve

fprintf (fid , ’vertex create coordinates %6.2f %6.2f 0\n’, uofs_mini (:, size(

uofs_mini ,2) ));

fprintf (fid ,’edge create "lofs" nurbs ’);

for i=1: count

fprintf (fid ,’" vertex .%d" ’,i);

end

fprintf (fid ,’ interpolate \n’);

fprintf (fid ,’edge create "uofs" nurbs ’);

for i=( count +1) :( count)*2

fprintf (fid ,’" vertex .%d" ’,i);

end

fprintf (fid ,’ interpolate \n’);

fprintf (fid ,’edge create "inlet" straight "vertex .1" "vertex .22"\n’);

fprintf (fid ,’edge create "outlet " straight "vertex .21" "vertex .42"\n’);

fprintf (fid ,’face create "Face1" wireframe "lofs" "uofs" "inlet" "outlet " real\n

’);

fprintf (fid ,’blayer create first 1.2 growth 1.2 rows 1 transition 1 trows 0

uniform \n’);

fprintf (fid ,’blayer attach "b_layer .1" face "Face1 " "Face1" "Face1" "Face1 " edge

"uofs" "lofs" "inlet" "outlet " add\n’);

% fprintf (fid ,’ blayer create first 1 growth 1.2 total 9.92992 rows 6

transition 1 trows 0 uniform \n’);

% fprintf (fid ,’ blayer attach "b_layer .1" face "Face1 " "Face1" "Face1" "Face1"

edge "uofs" "lofs" add\n’);

% fprintf (fid ,’face mesh "Face1 " map size 2.35\n’); %Specify grid size

fprintf (fid ,’face mesh "Face1" triangle size 3\n’); %use triangle mesh

fprintf (fid ,’ physics create btype "WALL" edge "lofs" "uofs "\n’);

fprintf (fid ,’ physics create btype " VELOCITY_INLET" edge "inlet "\n’);

fprintf (fid ,’ physics create btype "OUTFLOW " edge "outlet "\n’);

fprintf (fid ,’ physics create ctype "FLUID" face "Face1 "\n’);

fprintf (fid ,’export fluent5 ’);

fwrite (fid ,’\’);

fprintf (fid ,’\n ’);

fwrite (fid ,’"C:\\ Documents and Settings \\ dl9v07 \\ Desktop \\CFD -working -folder \\’);

fprintf (fid , strcat (num2str (sample_nmbr ) ,’.msh" nozval ’));

fclose (fid);
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str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr ) ’.msh ’];

if exist(str ,’file ’)

delete (str );

end

str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr ) ’.trn ’];

if exist(str ,’file ’)

delete (str );

end

str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr ) ’.dbs ’];

if exist(str ,’file ’)

delete (str );

end

str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr ) ’.jou ’];

if exist(str ,’file ’)

delete (str );

end

str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr ) ’.lok ’];

if exist(str ,’file ’)

delete (str );

end

str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr )];

if exist(str ,’file ’)

delete (str );

end

%prepare the GAMBIT batch file

fid = fopen(’C:\ Documents and Settings \dl9v07 \Desktop \CFD -working -folder \GAMBIT .

bat ’,’w’);

fwrite (fid ,[’C:\ Fluent .Inc\ntbin\ntx86 \gambit .exe -r2 .4.6 ’ num2str ( sample_nmbr )

’ -inputfile C:\ Docume ~1\ dl9v07 \Desktop \CFD -WO~1\’ num2str ( sample_nmbr ) ’

gambit .jou ’]);

fclose (fid);

%Run GAMBIT

winopen (’C:\ Docume ~1\ dl9v07 \Desktop \CFD -WO ~1\ GAMBIT .bat ’)

%Try to find the mesh file , if the geometry fails , there will not be a mesh

str =[’C:\ Documents and Settings \dl9v07 \\ Desktop \CFD -working -folder \’ num2str (

sample_nmbr ) ’.msh ’];

timecount =0.5;

while ~exist (str ,’file ’)&& timecount <40

pause (0.5)

timecount =timecount +0.5;

end

pause (1)

mesh_flag =exist (str ,’file ’);

if mesh_flag ==2

%Prepare the fluent journal file

fid = fopen (strcat (’C:\ Documents and Settings \dl9v07 \Desktop \CFD -working -

folder \’,num2str (sample_nmbr ),’fluent .jou ’), ’wt ’);

fwrite (fid , [’file/read -case "C:\ Documents and Settings \dl9v07 \Desktop \CFD -

working -folder \’ num2str (sample_nmbr ) ’.msh "’]);
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fprintf (fid ,’\n’);

fwrite (fid , ’grid/scale ’);

fprintf (fid ,’\ n0.001 \n0.001 \n’);

fwrite (fid , ’define /models /viscous ’);

fprintf (fid ,’\nke -standard \nyes \nq\n’);

fwrite (fid , ’solve/set/discretization -scheme /pressure ’);

fprintf (fid ,’\ n12 \n’);

fwrite (fid , ’solve/set/discretization -scheme /mom ’);

fprintf (fid ,’\ n1\n’);

fwrite (fid , ’solve/set/discretization -scheme /epsilon ’);

fprintf (fid ,’\ n1\n’);

fwrite (fid , ’solve/set/discretization -scheme /k’);

fprintf (fid ,’\ n1\n’);

fwrite (fid , ’solve/monitors /residual /convergence -criteria ’);

fprintf (fid ,’\n1e -6\ n0 .001\ n0 .001\ n0 .001\ n0 .001\n\n’);

fwrite (fid , ’define / materials /change -create ’);

fprintf (fid ,’\ nair\ nair_incompressible\ny\nconstant \n0.38\ nno\nno\ny\

nsutherland \n\n\n\n\nno\nno\nno\nno \nno\nyes\nconstant \n295 .4\ nyes\n\n’);

fwrite (fid , ’define /operating -conditions ’);

fprintf (fid ,’\ noperating -pressure \n23800 \nq\n’);

fwrite (fid , ’define /boundary - conditions /’);

fprintf (fid ,’\ nvelocity -inlet \n\n\n\n\n\n\n200\n\n288 .15\ nn\n\n\ny\n5\n0

.0875\ nq\n’);

fwrite (fid , ’solve/initialize /set -defaults ’);

fprintf (fid ,’\nx-velocity \n200\ntemperature\n288 .15\ nq\n’);

fwrite (fid , ’solve/monitors /residual ’);

fprintf (fid ,’\ nplot\ny\nq\n’);

fwrite (fid , ’solve/iterate ’);

fprintf (fid ,’\ n10 \n\nadapt \nadapt -to-y+\n30 \n100\n\n\ny\nq\n’);

fwrite (fid , ’solve/iterate ’);

fprintf (fid ,’\ n10 \nplot \nplot \nyes\n’);% number of iterations

fprintf (fid ,num2str ( sample_nmbr ));

fprintf (fid ,’\ nno \ny\n0\n1\nno\nno \ntotal -pressure \n3\n\n’); %Write to a x-y

data file

% fprintf (fid ,’q\nexit \nyes\n’); %This line controls whether Fluent

automatically quit after the computation .

fclose (fid);

%Prepare a Fluent batch file

fid = fopen (’C:\ Documents and Settings \dl9v07 \desktop \CFD -working -folder \

FLUENT .bat ’,’w’);

fwrite (fid ,[’C:\ Fluent .Inc\ntbin \ntx86\fluent .exe -r6.3.26 2d -i C:\ Docume ~1\

dl9v07 \Desktop \CFD -working -folder \’ num2str ( sample_nmbr ) ’fluent .jou ’]);

fclose (fid);

%Run Fluent by the batch file

winopen (’C:\ Documents and Settings \dl9v07 \desktop \CFD -working -folder \FLUENT .

bat ’)

%Read xy data file , find the std of the pressure distribution

str =[’C:\ Documents and Settings \dl9v07 \\ desktop \CFD -working -folder \’ num2str (

sample_nmbr )];

while ~exist(str ,’file ’)

pause (0.5)

end

pause (1)

pressure_profile_data =importxy (str );

std_data (sample_nmbr ,1)=std( pressure_profile_data (:,1));

else
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std_data (sample_nmbr ,1)=NaN;

fprintf (’No mesh file found for Geometry %d\n’, sample_nmbr )

end

close

Listing A.12: MATLAB code as described in Figure 5.1

A.6 Sample GAMBIT journal file

vertex create coordinates -99.83 283.50 0

vertex create coordinates -66.93 288.67 0

vertex create coordinates -44.23 296.46 0

vertex create coordinates -31.15 300.47 0

vertex create coordinates -29.36 300.89 0

vertex create coordinates -28.79 300.24 0

vertex create coordinates -16.31 284.47 0

vertex create coordinates 1.67 253.89 0

vertex create coordinates 21.49 216.78 0

vertex create coordinates 42.96 179.21 0

vertex create coordinates 68.63 145.21 0

vertex create coordinates 102.68 121.16 0

vertex create coordinates 138.28 113.28 0

vertex create coordinates 166.23 115.40 0

vertex create coordinates 184.58 118.68 0

vertex create coordinates 191.97 119.38 0

vertex create coordinates 197.40 117.86 0

vertex create coordinates 211.47 111.42 0

vertex create coordinates 233.38 101.28 0

vertex create coordinates 263.07 91.65 0

vertex create coordinates 299.30 87.50 0

vertex create coordinates -100.10 371.00 0

vertex create coordinates -91.62 372.61 0

vertex create coordinates -73.80 378.81 0

vertex create coordinates -46.99 386.52 0

vertex create coordinates -9.26 386.06 0

vertex create coordinates 29.62 365.40 0

vertex create coordinates 56.73 332.65 0

vertex create coordinates 78.51 295.75 0

vertex create coordinates 98.56 258.22 0

vertex create coordinates 117.04 225.78 0

vertex create coordinates 131.37 206.19 0

vertex create coordinates 137.26 201.54 0

vertex create coordinates 141.18 200.74 0

vertex create coordinates 151.97 201.73 0

vertex create coordinates 171.16 205.15 0

vertex create coordinates 199.70 206.53 0

vertex create coordinates 228.74 199.55 0

vertex create coordinates 249.93 190.02 0

vertex create coordinates 266.89 182.11 0

vertex create coordinates 282.47 176.97 0

vertex create coordinates 299.50 175.00 0

edge create "lofs" nurbs "vertex .1" "vertex .2" "vertex .3" "vertex .4" "vertex .5" "

vertex .6" "vertex .7" "vertex .8" "vertex .9" "vertex .10" "vertex .11" "vertex

.12" "vertex .13" "vertex .14" "vertex .15" "vertex .16" "vertex .17" "vertex .18"

"vertex .19" "vertex .20" "vertex .21" interpolate
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edge create "uofs" nurbs "vertex .22" "vertex .23" "vertex .24" "vertex .25" "vertex

.26" "vertex .27" "vertex .28" "vertex .29" "vertex .30" "vertex .31" "vertex .32"

"vertex .33" "vertex .34" "vertex .35" "vertex .36" "vertex .37" "vertex .38" "

vertex .39" "vertex .40" "vertex .41" "vertex .42" interpolate

edge create "inlet " straight "vertex .1" "vertex .22"

edge create "outlet " straight "vertex .21" "vertex .42"

face create "Face1 " wireframe "lofs" "uofs" "inlet " "outlet " real

blayer create first 1.2 growth 1.2 rows 1 transition 1 trows 0 uniform

blayer attach "b_layer .1" face "Face1" "Face1" "Face1 " "Face1" edge "uofs" "lofs"

"inlet" "outlet " add

face mesh "Face1" triangle size 3

physics create btype "WALL" edge "lofs" "uofs"

physics create btype "VELOCITY_INLET" edge "inlet"

physics create btype "OUTFLOW " edge "outlet "

physics create ctype "FLUID " face "Face1"

export fluent5 \

"C:\\ Documents and Settings \\ dl9v07 \\ Desktop \\CFD -working -folder \\196. msh"

nozval

Listing A.13: Sample GAMBIT journal file

A.7 Sample FLUENT journal file

file/read -case "C:\ Documents and Settings \dl9v07 \Desktop \CFD -working -folder \196. msh"

grid/scale

0.001

0.001

define /models /viscous

ke-standard

yes

q

solve/set /discretization -scheme /pressure

12

solve/set /discretization -scheme /mom

1

solve/set /discretization -scheme /epsilon

1

solve/set /discretization -scheme /k

1

solve/monitors /residual /convergence -criteria

1e-6

0.001

0.001

0.001

0.001

define /materials /change -create

air

air_incompressible

y

constant

0.38

no

no

y

sutherland
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no

no

no

no

no

yes

constant

295.4

yes

define /operating -conditions

operating -pressure

23800

q

define /boundary -conditions /

velocity -inlet

200

288.15

n

y

5

0.0875

q

solve/initialize /set -defaults

x-velocity

200

temperature

288.15

q

solve/monitors /residual

plot

y

q

solve/iterate

1000

adapt

adapt -to-y+

30

100

y

q

solve/iterate

1000
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plot

plot

yes

196

no

y

0

1

no

no

total -pressure

3

q

exit

yes

Listing A.14: Sample FLUENT journal file

A.8 Turbine blade model repair automation

A.8.1 Sample blade design variable file

TURBINE BLADE DESIGN VARIABLES

DELTA X:

FRONT_CORE -0.99

DELTA Y:

FRONT_CORE --0.2

DELTA X:

MIDDLE_CORE - -0.99

DELTA Y:

MIDDLE_CORE -0.4

DELTA X:

TRAILING_CORE -0.3

DELTA Y:

TRAILING_CORE -0.6

First Extrusion Directions :

X_DIR -0.6

Y_DIR -0.6

Z_DIR --0.6

Second Extrusion Directions :

X_DIR -0.6

Y_DIR -0.6

Z_DIR --0.6

Trailing Hole:

X_up -6.5

Y_up -3

X_down -8

Y_down -0.8

Listing A.15: Sample blade design variable file

A.8.2 NX Open C file that reads blade design variables
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#include <stdio .h>

#include <uf.h>

#include <uf_ui .h>

/* Function to read in the design variables to construct the engine */

int read_design_vars(double *VARS)

// double *VARS;

{

int i=0, SUCCESS =1;

char REPORT [300] , s[300];

char *MAIN_DIR ;

/* char MAIN_DIR []="C:\\ Documents and Settings \\ dl9v07 \\My Documents \\

Visual Studio 2008\\ Projects \\ C_exe_Project";*/

char VAR_FILE [300];

FILE *file;

double VAR ;

UF_UI_write_listing_window ("\n Reading Turbine Blade Design Parameters \n

");

/* Extract the main directory from the environment variables */

MAIN_DIR =getenv (" TURBINE_BLADE");

/* Define the full path to the folder containing the design variables */

sprintf (VAR_FILE ,"%s\\ Blade_Variables.exp", MAIN_DIR );

/* open the .exp file containing the variables */

file=fopen (VAR_FILE ,"r");

/* terminate the script if the variables file has not been found */

if (file== NULL){

UF_UI_write_listing_window ("\n Parameters File Not Found\n");

return (SUCCESS =0);

}

/* Import Fan Casing Design Variables */

fgets(s,300, file); fgets(s,300, file); /* discard header */

UF_UI_write_listing_window ("\t\tDelta X (mm):\t\tDelta Y (mm):\n");

if (fgets(s,300, file)!=NULL){

sscanf (s," FRONT_CORE -%lf",& VAR);

sprintf (REPORT ," Front Core:\t\t %8.6f",VAR );

UF_UI_write_listing_window (REPORT );

*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

fgets(s,300, file); /* discard header */

if (fgets(s,300, file)!=NULL){

sscanf (s," FRONT_CORE -%lf",& VAR);

sprintf (REPORT ,"\t\t%8.6f\n",VAR); UF_UI_write_listing_window (

REPORT );

*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

UF_UI_write_listing_window ("\n");
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/***************************************************************/

fgets(s,300, file); /* discard header */

if (fgets(s,300, file)!=NULL){

sscanf (s," MIDDLE_CORE -%lf",& VAR );

sprintf (REPORT ," Middle Core:\t %8.6f",VAR);

UF_UI_write_listing_window (REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

fgets(s,300, file); /* discard header */

if (fgets(s,300, file)!=NULL){

sscanf (s," MIDDLE_CORE -%lf",& VAR );

sprintf (REPORT ,"\t\t%8.6f\n",VAR); UF_UI_write_listing_window (

REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

UF_UI_write_listing_window ("\n");

/***************************************************************/

fgets(s,300, file); /* discard header */

if (fgets(s,300, file)!=NULL){

sscanf (s," TRAILING_CORE -%lf",& VAR);

sprintf (REPORT ," Trailing Core:\t %8.6f",VAR);

UF_UI_write_listing_window (REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

fgets(s,300, file); /* discard header */

if (fgets(s,300, file)!=NULL){

sscanf (s," TRAILING_CORE -%lf",& VAR);

sprintf (REPORT ,"\t\t%8.6f\n",VAR); UF_UI_write_listing_window (

REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

UF_UI_write_listing_window ("\n");

/***************************************************************/

fgets(s,300, file); /* discard header */

UF_UI_write_listing_window (" First Extrusion Direction :\n");

if (fgets(s,300, file)!=NULL){

sscanf (s,"X_DIR -%lf",& VAR );

sprintf (REPORT ,"\ tX: %8.6f",VAR); UF_UI_write_listing_window (

REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

if (fgets(s,300, file)!=NULL){

sscanf (s,"Y_DIR -%lf",& VAR );

sprintf (REPORT ,"\t\tY: %8.6f",VAR ); UF_UI_write_listing_window (

REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }
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if (fgets(s,300, file)!=NULL){

sscanf (s,"Z_DIR -%lf",& VAR );

sprintf (REPORT ,"\t\tZ: %8.6f\n",VAR); UF_UI_write_listing_window

(REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

UF_UI_write_listing_window ("\n");

/***************************************************************/

fgets(s,300, file); /* discard header */

UF_UI_write_listing_window (" Second Extrusion Direction :\n");

if (fgets(s,300, file)!=NULL){

sscanf (s,"X_DIR -%lf",& VAR );

sprintf (REPORT ,"\ tX: %8.6f",VAR); UF_UI_write_listing_window (

REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

if (fgets(s,300, file)!=NULL){

sscanf (s,"Y_DIR -%lf",& VAR );

sprintf (REPORT ,"\t\tY: %8.6f",VAR ); UF_UI_write_listing_window (

REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

if (fgets(s,300, file)!=NULL){

sscanf (s,"Z_DIR -%lf",& VAR );

sprintf (REPORT ,"\t\tZ: %8.6f\n",VAR); UF_UI_write_listing_window

(REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

UF_UI_write_listing_window ("\n");

/***************************************************************/

fgets (s,300, file); /* discard header */

UF_UI_write_listing_window (" Two pairs of pole coordinates to determine

the shape of the trailing hole:\n");

if (fgets(s,300, file)!=NULL){

sscanf (s,"X_up -%lf",& VAR);

sprintf (REPORT ,"\ tX_up :\t\t%8.6f",VAR );

UF_UI_write_listing_window (REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

if (fgets(s,300, file)!=NULL){

sscanf (s,"Y_up -%lf",& VAR);

sprintf (REPORT ,"\ tY_up :\t\t%8.6f\n",VAR);

UF_UI_write_listing_window (REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

if (fgets(s,300, file)!=NULL){

sscanf (s,"X_down -%lf",& VAR);

sprintf (REPORT ,"\ tX_down :\t%8.6f",VAR );

UF_UI_write_listing_window (REPORT );*( VARS+i++)=VAR ;}

else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

if (fgets(s,300, file)!=NULL){

sscanf (s,"Y_down -%lf",& VAR);

sprintf (REPORT ,"\ tY_down :\t%8.6f\n",VAR);

UF_UI_write_listing_window (REPORT );*( VARS+i++)=VAR ;}
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else{UF_UI_write_listing_window ("\ tVariables Mismatch \n"); return (SUCCESS

=0) ; }

UF_UI_write_listing_window ("\n");

/* close the file */

fclose (file);

return (SUCCESS );

}

Listing A.16: NX Open C file that reads blade design variables

A.8.3 NX Open C file that creates a turbine blade 3D section

/* Function which creates a 3D section of the turbine blade */

#include <uf_modl .h>

#include <uf_ui .h>

#include <math.h>

#include <uf_obj .h>

#include <uf_curve .h>

#include <uf.h>

#include <stdio.h>

#include <conio.h>

#include <stdlib .h>

int Blade_Gen (double *VARS)

{

int SUCCESS =1;

/* define the NX line structure and tags */

tag_t spline1_ID , spline2_ID , spline3_ID , spline4_ID , spline5_ID ,

spline6_ID , spline7_ID , spline8_ID ; // typedef unsigned int tag_t;

tag_t spline9_ID , spline10_ID , spline11_ID ;

/* define the spline data structures */

int n_states , i=0;

UF_CURVE_state_t *spline_states;

double knots1 [8], poles1 [4][4] , knots2 [13], poles2 [9][4] , knots3 [8],

poles3 [4][4] , knots4 [15], poles4 [11][4];

double knots5 [10], poles5 [6][4] , knots6 [11], poles6 [7][4] , knots7 [12],

poles7 [8][4] , knots8 [12], poles8 [8][4];

double knots9 [12], poles9 [8][4] , knots10 [11], poles10 [7][4] , knots11 [11],

poles11 [7][4];// trailing edge cooling hole splines

UF_CURVE_spline_t spline_data1 , spline_data2 , spline_data3 , spline_data4 ,

spline_data5 , spline_data6;

UF_CURVE_spline_t spline_data7 , spline_data8 , spline_data9 , spline_data10

,spline_data11;

/* define distance variables */

double min_dist_4_6;

double min_dist_2_5;

double min_dist_4_8;

double min_dist_2_7;

double min_dist_4_10;

double min_dist_2_9;

double min_dist_6_7;

double min_dist_8_9;
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double guess [3]={0 ,0 ,0};

double pt_on_obj1 [3];

double pt_on_obj2 [3];

FILE *stream ;

int numclosed ;

errno_t err;

char REPORT [MAX_TEXT_LENGTH ];

/* define the variables */

double FRONT_X =*( VARS+i++);

double FRONT_Y =*( VARS+i++);

double MIDDLE_X =*( VARS+i++) ;

double MIDDLE_Y =*( VARS+i++) ;

double TRAILING_X =*( VARS+i++);

double TRAILING_Y =*( VARS+i++);

double Direction_X =*( VARS+i++) ;

double Direction_Y =*( VARS+i++) ;

double Direction_Z =*( VARS+i++) ;

double Direction_X2=*( VARS+i++);

double Direction_Y2=*( VARS+i++);

double Direction_Z2=*( VARS+i++);

double X_up =*( VARS+i++);

double Y_up =*( VARS+i++);

double X_down =*( VARS+i++);

double Y_down =*( VARS+i++);

/* define extrusion data structures */

int obj_cnt ;

char *limits [2]={ "0.0" , "11" };//* limit [2] is a pointer array. limit [0]

is the address of the first character of the string "0.0". limit [1] is the

address of the string "1"

char *limits_middle [2]={ "0.0" , "21" };//* limit [2] is a pointer array.

limit [0] is the address of the first character of the string "0.0". limit [1]

is the address of the string "1"

char *offsets [2]={ "0.0" , "0.0" };// ditto

double region_point[3]={0.0 ,0.0 ,0.0};

double direction [3]={ Direction_X ,Direction_Y , Direction_Z };

UF_FEATURE_SIGN mode_sign = UF_NULLSIGN ; // typedef enum UF_FEATURE_SIGNS

UF_FEATURE_SIGN; UF_NULLSIGN = 0, /* create new target solid */ this line

declares and assigns the variable mode_sign at the same time

tag_t *Blade_Feat , Blade_Body , extrude_objs[9]; // define pointers of type

tag_t (unsigned interger )

// The term "tag" is used instead of the old term "EID" (Entity ID), so

basically tag is an entity ID.

int obj_cnt2 ;

double direction2 [3]={ Direction_X2 ,Direction_Y2 , Direction_Z2};

UF_FEATURE_SIGN mode_sign2 = UF_NEGATIVE ; // typedef enum UF_FEATURE_SIGNS

UF_FEATURE_SIGN; UF_NULLSIGN = 0, /* create new target solid */ this

line declares and assigns the variable mode_sign at the same time

tag_t *Blade_Feat2 , Blade_Body2 , extrude_objs2[2]; // define pointers of

type tag_t (unsigned interger )

// The term "tag" is used instead of the old term "EID" (Entity ID), so

basically tag is an entity ID.

/* define structures to search for and apply tags */

uf_list_p_t face_list , edge_list ;
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int face_count , facetype , edge_count , edge_type , j=0, vertex_count ,

tag_count ;

tag_t faceID , edgeID ;

double edge_point1 [3], edge_point2 [3];

UF_UI_write_listing_window (" Generating Modified Turbine Blade :\n");

/* create spline 1 (leading edge) */

spline_data1. num_poles = 4;

spline_data1.order = 4;

spline_data1.is_rational = false ;

spline_data1.start_param = 0.0;

spline_data1.end_param = 1.0;

spline_data1.knots=knots1 ;

spline_data1.poles=poles1 ;

/* define the knots */

i=0;

spline_data1.knots[i++]=0.0;

spline_data1.knots[i++]=0.0;

spline_data1.knots[i++]=0.0;

spline_data1.knots[i++]=0.0;

spline_data1.knots[i++]=1.0;

spline_data1.knots[i++]=1.0;

spline_data1.knots[i++]=1.0;

spline_data1.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data1.poles[i][0]= -10.95; spline_data1.poles [i][1]= -2.70;

spline_data1.poles [i][2]=0.0; spline_data1.poles[i ++][3]=1.0;

spline_data1.poles[i][0]= -10.9; spline_data1.poles[i][1]= -2.6;

spline_data1.poles [i][2]=0.0; spline_data1.poles[i ++][3]=1.0;

spline_data1.poles[i][0]= -10.8; spline_data1.poles[i][1]= -2.35;

spline_data1.poles [i][2]=0.0; spline_data1.poles[i ++][3]=1.0;

// spline_data1.poles[i][0]= -10.7; spline_data1.poles[i][1]= -2.15;

spline_data1.poles [i][2]=0.0; spline_data1.poles[i ++][3]=1.0;

spline_data1.poles[i][0]= -10.5; spline_data1.poles[i][1]= -2.0;

spline_data1.poles [i][2]=0.0; spline_data1.poles[i ++][3]=1.0;

/* create the spline */

UF_CURVE_create_spline (& spline_data1 ,& spline1_ID ,&n_states ,& spline_states

);// UF_CURVE_spline_t spline_data1;

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tLeading edge constructed \n");

/* create spline 2 (lower surface ) */

spline_data2. num_poles = 9;

spline_data2.order = 4;

spline_data2.is_rational = false ;

spline_data2.start_param = 0.0;

spline_data2.end_param = 1.0;

spline_data2.knots=knots2 ;

spline_data2.poles=poles2 ;

/* define the knots */

i=0;

spline_data2.knots[i++]=0.0000000000000000;

spline_data2.knots[i++]=0.0000000000000000;

spline_data2.knots[i++]=0.0000000000000000;
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spline_data2.knots[i++]=0.0000000000000000;

spline_data2.knots[i++]=0.1667;

spline_data2.knots[i++]=0.3333;

spline_data2.knots[i++]=0.5;

spline_data2.knots[i++]=0.6667;

spline_data2.knots[i++]=0.8333;

spline_data2.knots[i++]=1.0000000000000000;

spline_data2.knots[i++]=1.0000000000000000;

spline_data2.knots[i++]=1.0000000000000000;

spline_data2.knots[i++]=1.0000000000000000;

/* define the poles */

i=0;

spline_data2.poles[i][0]= -10.5; spline_data2.poles[i][1]= -2.0;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]= -9.8; spline_data2.poles[i][1]= -1.6;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]= -7.9; spline_data2.poles[i][1]= -1.6;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]= -3.5; spline_data2.poles[i][1]= -0.9;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]=5.5; spline_data2.poles [i][1]=2.9; spline_data2.

poles[i][2]=0.0; spline_data2.poles [i++][3]=1.0;

spline_data2.poles[i][0]=9.75; spline_data2.poles[i ][1]=6.8; spline_data2

.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]=13.5; spline_data2.poles[i ][1]=12.9;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]=14.0; spline_data2.poles[i ][1]=13.8;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

spline_data2.poles[i][0]=14.5; spline_data2.poles[i ][1]=14.0;

spline_data2.poles [i][2]=0.0; spline_data2.poles[i ++][3]=1.0;

/* create the spline */

UF_CURVE_create_spline (& spline_data2 ,& spline2_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tLower surface constructed \n");

/* create spline 3 (trailing edge) */

spline_data3. num_poles = 4;

spline_data3.order = 4;

spline_data3.is_rational = false ;

spline_data3.start_param = 0.0;

spline_data3.end_param = 1.0;

spline_data3.knots=knots3 ;

spline_data3.poles=poles3 ;

/* define the knots */

i=0;

spline_data3.knots[i++]=0.0; spline_data3.knots[i++]=0.0;

spline_data3.knots [i++]=0; spline_data3.knots [i++]=0;

spline_data3.knots[i++]=1.0; spline_data3.knots[i++]=1.0; spline_data3

.knots [i++]=1.0; spline_data3.knots [i++]=1.0;

/* define the poles */

i=0;

spline_data3.poles[i][0]=14.5; spline_data3.poles[i ][1]=14.0;

spline_data3.poles [i][2]=0.0; spline_data3.poles[i ++][3]=1.0;

spline_data3.poles[i][0]=14.65; spline_data3.poles[i][1]=14.15;

spline_data3.poles [i][2]=0.0; spline_data3.poles[i ++][3]=1.0;

spline_data3.poles[i][0]=14.85; spline_data3.poles[i][1]=14.0;

spline_data3.poles [i][2]=0.0; spline_data3.poles[i ++][3]=1.0;
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spline_data3.poles[i][0]=14.9; spline_data3.poles[i ][1]=13.8;

spline_data3.poles [i][2]=0.0; spline_data3.poles[i ++][3]=1.0;

/* create the spline */

UF_CURVE_create_spline (& spline_data3 ,& spline3_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tTrailing edge constructed \n");

/* create spline 4 (upper surface ) */

spline_data4. num_poles = 11;

spline_data4.order = 4;

spline_data4.is_rational = false ;

spline_data4.start_param = 0.0;

spline_data4.end_param = 1.0;

spline_data4.knots=knots4 ;

spline_data4.poles=poles4 ;

/* define the knots */

i=0;

spline_data4.knots[i++]=0.0;

spline_data4.knots[i++]=0.0;

spline_data4.knots[i++]=0.0;

spline_data4.knots[i++]=0.0;

spline_data4.knots[i++]=0.1250;

spline_data4.knots[i++]=0.2500;

spline_data4.knots[i++]=0.3750;

spline_data4.knots[i++]=0.5000;

spline_data4.knots[i++]=0.6250;

spline_data4.knots[i++]=0.7500;

spline_data4.knots[i++]=0.8750;

spline_data4.knots[i++]=1.0;

spline_data4.knots[i++]=1.0;

spline_data4.knots[i++]=1.0;

spline_data4.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data4.poles[i][0]=14.9; spline_data4.poles[i ][1]=13.8;

spline_data4.poles [i][2]=0.0; spline_data4.poles[i ++][3]=1.0;

spline_data4.poles[i][0]=14.6; spline_data4.poles[i

][1]=12.9154132218400000; spline_data4.poles [i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]=11.2; spline_data4.poles[i

][1]=5.0596844425069900; spline_data4.poles[i][2]=0.0; spline_data4.poles [i

++][3]=1.0;

spline_data4.poles[i][0]=4.7; spline_data4.poles [i

][1]= -6.9894388807489900; spline_data4.poles [i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]=1.3; spline_data4.poles [i

][1]= -10.2025330099099000; spline_data4.poles[i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]= -2.0; spline_data4.poles[i

][1]= -11.3931509861200000; spline_data4.poles[i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]= -5.0; spline_data4.poles[i

][1]= -11.1303171135899000; spline_data4.poles[i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]= -8.5; spline_data4.poles[i

][1]= -8.8109391377529900; spline_data4.poles [i][2]=0.0; spline_data4.poles[i

++][3]=1.0;
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spline_data4.poles[i][0]= -10.7; spline_data4.poles[i

][1]= -5.0758833937009900; spline_data4.poles [i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]= -11.0; spline_data4.poles[i

][1]= -3.3139874899890000; spline_data4.poles [i][2]=0.0; spline_data4.poles[i

++][3]=1.0;

spline_data4.poles[i][0]= -10.95; spline_data4.poles [i][1]= -2.70;

spline_data4.poles [i][2]=0.0; spline_data4.poles[i ++][3]=1.0;

/* create the spline */

UF_CURVE_create_spline (& spline_data4 ,& spline4_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tUpper surface constructed \n");

/* create spline 5 (front cooling core section 1) */

spline_data5. num_poles = 6;

spline_data5.order = 4;

spline_data5.is_rational = false ;

spline_data5.start_param = 0.0;

spline_data5.end_param = 1.0;

spline_data5.knots=knots5 ;

spline_data5.poles=poles5 ;

/* define the knots */

i=0;

spline_data5.knots[i++]=0.0;

spline_data5.knots[i++]=0.0;

spline_data5.knots[i++]=0.0;

spline_data5.knots[i++]=0.0;

spline_data5.knots[i++]=0.333;

spline_data5.knots[i++]=0.666;

spline_data5.knots[i++]=1.0;

spline_data5.knots[i++]=1.0;

spline_data5.knots[i++]=1.0;

spline_data5.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data5.poles[i][0]= -6.65; spline_data5.poles[i][1]= -3.0;

spline_data5.poles [i][2]=0.0; spline_data5.poles[i ++][3]=1.0;

spline_data5.poles[i][0]= -8.5; spline_data5.poles[i][1]= -3.1;

spline_data5.poles [i][2]=0.0; spline_data5.poles[i ++][3]=1.0;

spline_data5.poles[i][0]= -9.1; spline_data5.poles[i][1]= -3.6;

spline_data5.poles [i][2]=0.0; spline_data5.poles[i ++][3]=1.0;

spline_data5.poles[i][0]= -9.0; spline_data5.poles[i][1]= -5.1;

spline_data5.poles [i][2]=0.0; spline_data5.poles[i ++][3]=1.0;

spline_data5.poles[i][0]= -7.5; spline_data5.poles[i][1]= -7.7;

spline_data5.poles [i][2]=0.0; spline_data5.poles[i ++][3]=1.0;

spline_data5.poles[i][0]= -6.45; spline_data5.poles[i][1]= -8.75;

spline_data5.poles [i][2]=0.0; spline_data5.poles[i ++][3]=1.0;

/* translate spline in X & Y axis */

for (i=0; i<spline_data5. num_poles ; i++)

{

/* adjust the X coordinates */

spline_data5.poles[i][0]= spline_data5.poles [i][0]+ FRONT_X ;

/* adjust the Y coordinates */

spline_data5.poles[i][1]= spline_data5.poles [i][1]+ FRONT_Y ;

}
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/* create the spline */

UF_CURVE_create_spline (& spline_data5 ,& spline5_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tFront core section 1 constructed \n");

/* create spline 6 (front cooling core section 2) */

spline_data6. num_poles = 7;

spline_data6.order = 4;

spline_data6.is_rational = false ;

spline_data6.start_param = 0.0;

spline_data6.end_param = 1.0;

spline_data6.knots=knots6 ;

spline_data6.poles=poles6 ;

/* define the knots */

i=0;

spline_data6.knots[i++]=0.0;

spline_data6.knots[i++]=0.0;

spline_data6.knots[i++]=0.0;

spline_data6.knots[i++]=0.0;

spline_data6.knots[i++]=0.250;

spline_data6.knots[i++]=0.500;

spline_data6.knots[i++]=0.750;

spline_data6.knots[i++]=1.0;

spline_data6.knots[i++]=1.0;

spline_data6.knots[i++]=1.0;

spline_data6.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data6.poles[i][0]= -6.45; spline_data6.poles[i][1]= -8.75;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

spline_data6.poles[i][0]= -5.1; spline_data6.poles[i][1]= -9.2;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

spline_data6.poles[i][0]= -4.5; spline_data6.poles[i][1]= -8.6;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

spline_data6.poles[i][0]= -4.6; spline_data6.poles[i][1]= -7.0;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

spline_data6.poles[i][0]= -5.4; spline_data6.poles[i][1]= -4.1;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

spline_data6.poles[i][0]= -6.0; spline_data6.poles[i][1]= -3.1;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

spline_data6.poles[i][0]= -6.65; spline_data6.poles[i][1]= -3.0;

spline_data6.poles [i][2]=0.0; spline_data6.poles[i ++][3]=1.0;

/* translate spline in X & Y axis */

for (i=0; i<spline_data6. num_poles ; i++)

{

/* adjust the X coordinates */

spline_data6.poles[i][0]= spline_data6.poles [i][0]+ FRONT_X ;

/* adjust the Y coordinates */

spline_data6.poles[i][1]= spline_data6.poles [i][1]+ FRONT_Y ;

}

/* create the spline */

UF_CURVE_create_spline (& spline_data6 ,& spline6_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tFront core section 2 constructed \n");
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/***************************************************************************************************

/* create spline 7 (middle cooling core section 1) */

spline_data7. num_poles = 7;

spline_data7.order = 4;

spline_data7.is_rational = false ;

spline_data7.start_param = 0.0;

spline_data7.end_param = 1.0;

spline_data7.knots=knots7 ;

spline_data7.poles=poles7 ;

/* define the knots */

i=0;

spline_data7.knots[i++]=0.0;

spline_data7.knots[i++]=0.0;

spline_data7.knots[i++]=0.0;

spline_data7.knots[i++]=0.0;

spline_data7.knots[i++]=0.25;

spline_data7.knots[i++]=0.5;

spline_data7.knots[i++]=0.75;

spline_data7.knots[i++]=1.0;

spline_data7.knots[i++]=1.0;

spline_data7.knots[i++]=1.0;

spline_data7.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data7.poles[i][0]=3.8; spline_data7.poles [i][1]=0.8; spline_data7.

poles[i][2]=0.0; spline_data7.poles [i++][3]=1.0;

spline_data7.poles[i][0]= -2.5; spline_data7.poles[i][1]= -2.0;

spline_data7.poles [i][2]=0.0; spline_data7.poles[i ++][3]=1.0;

spline_data7.poles[i][0]= -4; spline_data7.poles[i][1]= -3; spline_data7.

poles[i][2]=0.0; spline_data7.poles [i++][3]=1.0;

spline_data7.poles[i][0]= -3.0; spline_data7.poles[i][1]= -5; spline_data7.

poles[i][2]=0.0; spline_data7.poles [i++][3]=1.0;

spline_data7.poles[i][0]= -2.5; spline_data7.poles[i][1]= -7.8;

spline_data7.poles [i][2]=0.0; spline_data7.poles[i ++][3]=1.0;

spline_data7.poles[i][0]= -2; spline_data7.poles[i][1]= -8.75; spline_data7

.poles [i][2]=0.0; spline_data7.poles[i ++][3]=1.0;

spline_data7.poles[i][0]= -1.7; spline_data7.poles[i][1]= -8.5;

spline_data7.poles [i][2]=0.0; spline_data7.poles[i ++][3]=1.0;

/* translate spline in X & Y axis */

for (i=0; i<spline_data7. num_poles ; i++)

{

/* adjust the X coordinates */

spline_data7.poles[i][0]= spline_data7.poles [i][0]+ MIDDLE_X ;

/* adjust the Y coordinates */

spline_data7.poles[i][1]= spline_data7.poles [i][1]+ MIDDLE_Y ;

}

/* create the spline */

UF_CURVE_create_spline (& spline_data7 ,& spline7_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tMiddle core upper and left edge

constructed \n");

/***************************************************************************************************
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/********************************************************************************************

/* create spline 8 (middle cooling core section 2) */

spline_data8. num_poles = 8;

spline_data8.order = 4;

spline_data8.is_rational = false ;

spline_data8.start_param = 0.0;

spline_data8.end_param = 1.0;

spline_data8.knots=knots8 ;

spline_data8.poles=poles8 ;

/* define the knots */

i=0;

spline_data8.knots[i++]=0.0;

spline_data8.knots[i++]=0.0;

spline_data8.knots[i++]=0.0;

spline_data8.knots[i++]=0.0;

spline_data8.knots[i++]=0.2;

spline_data8.knots[i++]=0.4;

spline_data8.knots[i++]=0.6;

spline_data8.knots[i++]=0.8;

spline_data8.knots[i++]=1.0;

spline_data8.knots[i++]=1.0;

spline_data8.knots[i++]=1.0;

spline_data8.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data8.poles[i][0]= -1.7; spline_data8.poles[i][1]= -8.5;

spline_data8.poles [i][2]=0.0; spline_data8.poles[i ++][3]=1.0;

spline_data8.poles[i][0]=3; spline_data8.poles[i][1]= -6; spline_data8.

poles[i][2]=0.0; spline_data8.poles [i++][3]=1.0;

spline_data8.poles[i][0]=5.5; spline_data8.poles [i][1]= -2.5; spline_data8

.poles [i][2]=0.0; spline_data8.poles[i ++][3]=1.0;

spline_data8.poles[i][0]=6; spline_data8.poles[i][1]= -2.0; spline_data8.

poles[i][2]=0.0; spline_data8.poles [i++][3]=1.0;

spline_data8.poles[i][0]=5.3; spline_data8.poles [i][1]=0; spline_data8.

poles[i][2]=0.0; spline_data8.poles [i++][3]=1.0;

spline_data8.poles[i][0]=4.75; spline_data8.poles[i ][1]=0.8; spline_data8

.poles [i][2]=0.0; spline_data8.poles[i ++][3]=1.0;

spline_data8.poles[i][0]=4; spline_data8.poles[i][1]=1; spline_data8.

poles[i][2]=0.0; spline_data8.poles [i++][3]=1.0;

spline_data8.poles[i][0]=3.8; spline_data8.poles [i][1]=0.8; spline_data8.

poles[i][2]=0.0; spline_data8.poles [i++][3]=1.0;

/* translate spline in X & Y axis */

for (i=0; i<spline_data8. num_poles ; i++)

{

/* adjust the X coordinates */

spline_data8.poles[i][0]= spline_data8.poles [i][0]+ MIDDLE_X ;

/* adjust the Y coordinates */

spline_data8.poles[i][1]= spline_data8.poles [i][1]+ MIDDLE_Y ;

}

/* create the spline */

UF_CURVE_create_spline (& spline_data8 ,& spline8_ID ,&n_states ,& spline_states

);

UF_free (spline_states);

UF_UI_write_listing_window ("\t\tMiddle core lower and right edge

constructed \n");
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/***************************************************************************************************

/***************************************************************************************************

/* create spline 9 (trailing cooling core upper and left section ) */

spline_data9. num_poles = 8;

spline_data9.order = 4;

spline_data9.is_rational = false ;

spline_data9.start_param = 0.0;

spline_data9.end_param = 1.0;

spline_data9.knots=knots9 ;

spline_data9.poles=poles9 ;

/* define the knots */

i=0;

spline_data9.knots[i++]=0.0;

spline_data9.knots[i++]=0.0;

spline_data9.knots[i++]=0.0;

spline_data9.knots[i++]=0.0;

spline_data9.knots[i++]=0.2;

spline_data9.knots[i++]=0.4;

spline_data9.knots[i++]=0.6;

spline_data9.knots[i++]=0.8;

spline_data9.knots[i++]=1.0;

spline_data9.knots[i++]=1.0;

spline_data9.knots[i++]=1.0;

spline_data9.knots[i++]=1.0;

/* define the poles */

i=0;

spline_data9.poles[i][0]=11; spline_data9.poles[i][1]=7.5; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

spline_data9.poles[i][0]=8; spline_data9.poles[i ][1]=4.8; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

spline_data9.poles[i][0]= X_up; spline_data9.poles[i][1]= Y_up;

spline_data9.poles [i][2]=0.0; spline_data9.poles[i ++][3]=1.0;

spline_data9.poles[i][0]=6; spline_data9.poles[i][1]=2; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

spline_data9.poles[i][0]=5.8; spline_data9.poles [i][1]=1.8; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

spline_data9.poles[i][0]=6; spline_data9.poles[i ][1]=1.1; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

spline_data9.poles[i][0]=6.1; spline_data9.poles [i][1]=0.6; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

spline_data9.poles[i][0]=6.3; spline_data9.poles [i][1]=0.1; spline_data9.

poles[i][2]=0.0; spline_data9.poles [i++][3]=1.0;

/* translate spline in X & Y axis */

for (i=0; i<spline_data9. num_poles ; i++)

{

/* adjust the X coordinates */

spline_data9.poles[i][0]= spline_data9.poles [i][0]+ TRAILING_X ;

/* adjust the Y coordinates */

spline_data9.poles[i][1]= spline_data9.poles [i][1]+ TRAILING_Y ;

}

/* create the spline */

UF_CURVE_create_spline (& spline_data9 ,& spline9_ID ,&n_states ,& spline_states

);
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UF_free (spline_states);

UF_UI_write_listing_window ("\t\tTrailing core upper and left edge

constructed \n");

/********************************************************************************************

/********************************************************************************************

/* create spline 10 (trailing cooling core lower and right section ) */

spline_data10.num_poles = 7;

spline_data10.order = 4;

spline_data10. is_rational = false;

spline_data10. start_param = 0.0;

spline_data10. end_param = 1.0;

spline_data10.knots =knots10 ;

spline_data10.poles =poles10 ;

/* define the knots */

i=0;

spline_data10.knots [i++]=0.0;

spline_data10.knots [i++]=0.0;

spline_data10.knots [i++]=0.0;

spline_data10.knots [i++]=0.0;

spline_data10.knots [i++]=0.25;

spline_data10.knots [i++]=0.5;

spline_data10.knots [i++]=0.75;

spline_data10.knots [i++]=1.0;

spline_data10.knots [i++]=1.0;

spline_data10.knots [i++]=1.0;

spline_data10.knots [i++]=1.0;

/* define the poles */

i=0;

spline_data10.poles [i][0]=6.3; spline_data10.poles[i][1]=0.1;

spline_data10.poles[i ][2]=0.0; spline_data10.poles [i++][3]=1.0;

spline_data10.poles [i][0]=6.9; spline_data10.poles[i][1]= -0.1;

spline_data10.poles[i ][2]=0.0; spline_data10.poles [i++][3]=1.0;

spline_data10.poles [i][0]=7.1; spline_data10.poles[i][1]=0; spline_data10

.poles [i][2]=0.0; spline_data10.poles[i++][3]=1.0;

spline_data10.poles [i][0]=7.75; spline_data10.poles [i][1]=0.2;

spline_data10.poles[i ][2]=0.0; spline_data10.poles [i++][3]=1.0;

spline_data10.poles [i][0]= X_down ; spline_data10.poles[i][1]= Y_down ;

spline_data10.poles[i ][2]=0.0; spline_data10.poles [i++][3]=1.0;

spline_data10.poles [i][0]=10; spline_data10.poles[i][1]=4; spline_data10.

poles[i][2]=0.0; spline_data10.poles[i ++][3]=1.0;

spline_data10.poles [i][0]=11.75; spline_data10.poles[i ][1]=7.6;

spline_data10.poles[i ][2]=0.0; spline_data10.poles [i++][3]=1.0;

/* translate spline in X & Y axis */

for (i=0; i<spline_data10.num_poles ; i++)

{

/* adjust the X coordinates */

spline_data10.poles [i][0]= spline_data10.poles[i][0]+ TRAILING_X ;

/* adjust the Y coordinates */

spline_data10.poles [i][1]= spline_data10.poles[i][1]+ TRAILING_Y ;

}

/* create the spline */

UF_CURVE_create_spline (& spline_data10 ,& spline10_ID ,&n_states ,&

spline_states);
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UF_free (spline_states);

UF_UI_write_listing_window ("\t\tTrailing core lower and right edge

constructed \n");

/***************************************************************************************************

/***************************************************************************************************

/* create spline 11 (trailing cooling core tip section ) */

spline_data11.num_poles = 6;

spline_data11.order = 4;

spline_data11. is_rational = false;

spline_data11. start_param = 0.0;

spline_data11. end_param = 1.0;

spline_data11.knots =knots11 ;

spline_data11.poles =poles11 ;

/* define the knots */

i=0;

spline_data11.knots [i++]=0.0;

spline_data11.knots [i++]=0.0;

spline_data11.knots [i++]=0.0;

spline_data11.knots [i++]=0.0;

spline_data11.knots [i++]=0.33;

spline_data11.knots [i++]=0.66;

spline_data11.knots [i++]=1.0;

spline_data11.knots [i++]=1.0;

spline_data11.knots [i++]=1.0;

spline_data11.knots [i++]=1.0;

/* define the poles */

i=0;

spline_data11.poles [i][0]=11.75; spline_data11.poles[i ][1]=7.6;

spline_data11.poles[i ][2]=0.0; spline_data11.poles [i++][3]=1.0;

spline_data11.poles [i][0]=11.88; spline_data11.poles[i ][1]=7.8674;

spline_data11.poles[i ][2]=0.0; spline_data11.poles [i++][3]=1.0;

spline_data11.poles [i][0]=12; spline_data11.poles[i ][1]=8.1143;

spline_data11.poles[i ][2]=0.0; spline_data11.poles [i++][3]=1.0;

spline_data11.poles [i][0]=11.5; spline_data11.poles [i][1]=7.95;

spline_data11.poles[i ][2]=0.0; spline_data11.poles [i++][3]=1.0;

spline_data11.poles [i][0]=11.25; spline_data11.poles[i ][1]=7.725;

spline_data11.poles[i ][2]=0.0; spline_data11.poles [i++][3]=1.0;

spline_data11.poles [i][0]=11; spline_data11.poles[i ][1]=7.5;

spline_data11.poles[i ][2]=0.0; spline_data11.poles [i++][3]=1.0;// upper edge

connecting

/* translate spline in X & Y axis */

for (i=0; i<spline_data11.num_poles ; i++)

{

/* adjust the X coordinates */

spline_data11.poles [i][0]= spline_data11.poles[i][0]+ TRAILING_X ;

/* adjust the Y coordinates */

spline_data11.poles [i][1]= spline_data11.poles[i][1]+ TRAILING_Y ;

}

/* create the spline */

UF_CURVE_create_spline (& spline_data11 ,& spline11_ID ,&n_states ,&

spline_states);

UF_free (spline_states);
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UF_UI_write_listing_window ("\t\tTrailing core tip edge constructed \n");

/********************************************************************************************

/* define the splines to extrude */

i=0;

extrude_objs[i++]= spline1_ID ; extrude_objs[i++]= spline2_ID ;

extrude_objs[i++]= spline3_ID ; extrude_objs[i++]= spline4_ID ;

extrude_objs[i++]= spline5_ID ; extrude_objs[i++]= spline6_ID ;

extrude_objs[i++]= spline9_ID ; extrude_objs[i++]= spline10_ID ;

extrude_objs[i++]= spline11_ID ;

/* extrude the splines to form a pseudo -2D turbine blade section */

if ( UF_MODL_create_extrusion (extrude_objs ,9,NULL ,"0.0" , limits ,offsets ,

region_point ,false ,true ,direction ,mode_sign ,& Blade_Feat ,& obj_cnt )==0)

{

UF_UI_write_listing_window ("\t\tBlade section extruded

successfully\n");

/* capture the body tag of the blade */

UF_MODL_ask_feat_body (* Blade_Feat ,& Blade_Body );

SUCCESS =1;

}

else{UF_UI_write_listing_window ("\t\tBlade section extrusion failed \n");

SUCCESS =0;}

/********************************************************************************************

/* define the splines to extrude */

i=0;

extrude_objs2[i++]= spline7_ID ; extrude_objs2[i++]= spline8_ID ;

/* extrude the splines to form a pseudo -2D turbine blade section */

if ( UF_MODL_create_extrusion (extrude_objs2 ,2, NULL ,"0.0" , limits_middle ,

offsets ,region_point ,false ,true ,direction2 ,mode_sign2 ,& Blade_Feat2 ,& obj_cnt2 )

==0)

{

UF_UI_write_listing_window ("\t\tMiddle Core extruded successfully

\n");

/* capture the body tag of the blade */

UF_MODL_ask_feat_body (* Blade_Feat2 ,& Blade_Body2 );

SUCCESS =1;

}

else{UF_UI_write_listing_window ("\t\t Middle core section extrusion

failed \n"); SUCCESS =0;}

/********************************************************************************************

/* Tag all construction splines */

UF_OBJ_set_name(spline1_ID ," SPLINE_1 ");

UF_OBJ_set_name(spline2_ID ," SPLINE_2 ");

UF_OBJ_set_name(spline3_ID ," SPLINE_3 ");

UF_OBJ_set_name(spline4_ID ," SPLINE_4 ");

UF_OBJ_set_name(spline5_ID ," SPLINE_5 ");

UF_OBJ_set_name(spline6_ID ," SPLINE_6 ");

UF_OBJ_set_name(spline7_ID ," SPLINE_7 ");

UF_OBJ_set_name(spline8_ID ," SPLINE_8 ");

UF_OBJ_set_name(spline9_ID ," SPLINE_9 ");

UF_OBJ_set_name(spline10_ID ," SPLINE_10 ");
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UF_OBJ_set_name(spline11_ID ," SPLINE_11 ");

/* Tag the blade body */

UF_OBJ_set_name(Blade_Body ," BLADE_BODY ");

/* extract the faces of the turbine blade */

UF_MODL_ask_body_faces (Blade_Body ,& face_list );

/* determine the number of faces */

UF_MODL_ask_list_count (face_list ,& face_count );

/* initialise the face tag counter */

tag_count =0;

for (i=0; i<face_count ; i++)

{

/* extract the ith face from the list */

UF_MODL_ask_list_item (face_list ,i,& faceID );

/* determine the type of face */

UF_MODL_ask_face_type (faceID ,& facetype );

/* if the edge is not planar then the face is one of the edges

defined by splines */

if(facetype != UF_MODL_PLANAR_FACE)

{

/* ask the face edges */

UF_MODL_ask_face_edges (faceID ,& edge_list );

/* define the no. of edges */

UF_MODL_ask_list_count (edge_list ,& edge_count );

/* extract end points of the first spline in the list*/

for (j=0; j<edge_count ; j++)

{

/* extract the jth edge ID */

UF_MODL_ask_list_item (edge_list ,j,& edgeID );

/* determine the type of edge */

UF_MODL_ask_edge_type (edgeID ,& edge_type );

/* a linear edge has been located (all are

vertical in this case) */

if(edge_type == UF_MODL_SPLINE_EDGE )

{

/* determine the spline end points */

UF_MODL_ask_edge_verts (edgeID ,edge_point1

,edge_point2 ,& vertex_count);

break;

}

}

/* match these points with the splines created previously

*/

/* Leading edge */

if(fabs(edge_point1 [0]- spline_data1.poles [0][0]) <1e-9 ||

fabs(edge_point2 [0]- spline_data1.poles [0][0]) <1e -9)

{

if(fabs(edge_point1 [0]- spline_data1.poles [

spline_data1.num_poles -1][0]) <1e-9 || fabs(edge_point2 [0]- spline_data1.poles [

spline_data1.num_poles -1][0]) <1e-9)

{

/* Tag the leading edge */

UF_OBJ_set_name(faceID ," SURFACE_1 ");

tag_count ++;

}

}

/* Lower Surface */
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if(fabs(edge_point1 [0]- spline_data2.poles [0][0]) <1e-9 ||

fabs(edge_point2 [0]- spline_data2.poles [0][0]) <1e -9)

{

if(fabs(edge_point1 [0]- spline_data2.poles [

spline_data2.num_poles -1][0]) <1e-9 || fabs(edge_point2 [0]- spline_data2.poles [

spline_data2.num_poles -1][0]) <1e-9)

{

/* Tag the lower surface */

UF_OBJ_set_name(faceID ," SURFACE_2 ");

tag_count ++;

}

}

/* Trailing edge */

if(fabs(edge_point1 [0]- spline_data3.poles [0][0]) <1e-9 ||

fabs(edge_point2 [0]- spline_data3.poles [0][0]) <1e -9)

{

if(fabs(edge_point1 [0]- spline_data3.poles [

spline_data3.num_poles -1][0]) <1e-9 || fabs(edge_point2 [0]- spline_data3.poles [

spline_data3.num_poles -1][0]) <1e-9)

{

/* Tag the trailing edge */

UF_OBJ_set_name(faceID ," SURFACE_3 ");

tag_count ++;

}

}

/* Trailing edge */

if(fabs(edge_point1 [0]- spline_data4.poles [0][0]) <1e-9 ||

fabs(edge_point2 [0]- spline_data4.poles [0][0]) <1e -9)

{

if(fabs(edge_point1 [0]- spline_data4.poles [

spline_data4.num_poles -1][0]) <1e-9 || fabs(edge_point2 [0]- spline_data4.poles [

spline_data4.num_poles -1][0]) <1e-9)

{

/* Tag the trailing edge */

UF_OBJ_set_name(faceID ," SURFACE_4 ");

tag_count ++;

}

}

/* The two splines defining each core both have the same

start and end points /*

/* Forward Core */

if(fabs(edge_point1 [0]- spline_data5.poles [0][0]) <1e-9 ||

fabs(edge_point2 [0]- spline_data5.poles [0][0]) <1e -9)

{

if(fabs(edge_point1 [0]- spline_data5.poles [

spline_data5.num_poles -1][0]) <1e-9 || fabs(edge_point2 [0]- spline_data5.poles [

spline_data5.num_poles -1][0]) <1e-9)

{

/* Tag the trailing edge */

UF_OBJ_set_name(faceID ," FWD_CORE ");

tag_count ++;

}

}

}

else

{

/* determine which of the planar faces is selected */

/* ask the face edges */
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UF_MODL_ask_face_edges (faceID ,& edge_list );

/* extract the 1st edge ID */

UF_MODL_ask_list_item (edge_list ,1,& edgeID );

/* extract end points of the first edge in the list*/

UF_MODL_ask_edge_verts (edgeID ,edge_point1 ,edge_point2 ,&

vertex_count);

if(fabs(edge_point1 [2]+0.5) <1e -9)

{

/* the lower face has been selected */

UF_OBJ_set_name(faceID ," LOWER_FACE ");

tag_count ++;

}

else

{

/* the upper face has been selected */

UF_OBJ_set_name(faceID ," UPPER_FACE ");

tag_count ++;

}

}

}

if(tag_count ==8)

{SUCCESS =1; UF_UI_write_listing_window ("\t\t All 8 Tags Applied

successfully\n\n");}

else

{SUCCESS =1; UF_UI_write_listing_window ("\t\tSome Tags Applied

successfully \n\n");}

UF_MODL_ask_minimum_dist (spline4_ID ,spline6_ID ,0, guess ,0, guess ,&

min_dist_4_6 ,pt_on_obj1 , pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline2_ID ,spline5_ID ,0, guess ,0, guess ,&

min_dist_2_5 ,pt_on_obj1 , pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline4_ID ,spline8_ID ,0, guess ,0, guess ,&

min_dist_4_8 ,pt_on_obj1 , pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline2_ID ,spline7_ID ,0, guess ,0, guess ,&

min_dist_2_7 ,pt_on_obj1 , pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline4_ID ,spline10_ID ,0, guess ,0, guess ,&

min_dist_4_10 ,pt_on_obj1 ,pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline2_ID ,spline9_ID ,0, guess ,0, guess ,&

min_dist_2_9 ,pt_on_obj1 , pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline6_ID ,spline7_ID ,0, guess ,0, guess ,&

min_dist_6_7 ,pt_on_obj1 , pt_on_obj2 );

UF_MODL_ask_minimum_dist (spline8_ID ,spline9_ID ,0, guess ,0, guess ,&

min_dist_8_9 ,pt_on_obj1 , pt_on_obj2 );

sprintf (REPORT ," Distance :\t\t %8.6f\n", min_dist_4_6);

UF_UI_write_listing_window (REPORT );

err= fopen_s ( &stream , " minimum_distance.txt", "w" );

if(err !=0)

{sprintf (REPORT ," The file ’minimum_distance.txt ’ was not opened \n

");

UF_UI_write_listing_window (REPORT );}

else

{

sprintf (REPORT ,"The file ’minimum_distance.txt ’ was

opened \n", min_dist_4_6);

UF_UI_write_listing_window (REPORT );

fprintf (stream ,"% f\n",min_dist_4_6);

fprintf (stream ,"% f\n",min_dist_2_5);
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fprintf (stream ,"% f\n",min_dist_4_8);

fprintf (stream ,"% f\n",min_dist_2_7);

fprintf (stream ,"% f\n",min_dist_4_10);

fprintf (stream ,"% f\n",min_dist_2_9);

fprintf (stream ,"% f\n",min_dist_6_7);

fprintf (stream ,"% f\n",min_dist_8_9);

}

if( stream )

{

if ( fclose ( stream ) )

{

sprintf ( REPORT , "The file ’

minimum_distance.txt ’ was not closed \n" );

UF_UI_write_listing_window (REPORT );

}

}

return SUCCESS ;

}

Listing A.17: NX Open C file that creates a turbine blade 3D section

A.8.4 Batch file that automates geometry generation

title NX Part Generation

if exist "% TURBINE_BLADE%\ PART_GEN .log " del "% TURBINE_BLADE%\ PART_GEN .log "

if exist "% TURBINE_BLADE%\ TURBINE_BLADE.prt" del "% TURBINE_BLADE%\ TURBINE_BLADE.

prt "

if exist "% TURBINE_BLADE%\ TURBINE_BLADE.igs" del "% TURBINE_BLADE%\ TURBINE_BLADE.

igs "

if exist "% TURBINE_BLADE%\ TURBINE_BLADE.fbm" del "% TURBINE_BLADE%\ TURBINE_BLADE.

fbm "

if exist "% TURBINE_BLADE%\ TURBINE_BLADE.pm" del "% TURBINE_BLADE%\ TURBINE_BLADE.pm

"

if exist "% TURBINE_BLADE%\ TURBINE_BLADE_done.pm" del "% TURBINE_BLADE%\

TURBINE_BLADE_done.pm"

if exist "% TURBINE_BLADE%\ TURBINE_BLADE.png" del "% TURBINE_BLADE%\ TURBINE_BLADE.

png "

if exist "% TURBINE_BLADE%\ sc03.diag" del "% TURBINE_BLADE%\sc03.diag"

if exist "%C:\ Docume ~1\ dl9v07 \ minimum_distance.txt " del "C:\ Docume ~1\ dl9v07 \

minimum_distance.txt"

Set UGII_BASE_DIR="C:\ Program Files \UGS\NX 6.0\"

Call % UGII_BASE_DIR%\ UGII\ugiicmd .bat %UGII_BASE_DIR% AUTO

"% TURBINE_BLADE%\ C_exe_Project.exe" > "% TURBINE_BLADE%\ PART_GEN .log"

dir > "% TURBINE_BLADE%\ RUN_CHECK .txt"

Listing A.18: Batch file that automates geometry generation

A.8.5 Batch file that automates IGES format geometry generation
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title IGES Generation

Set UGII_BASE_DIR="C:\ Program Files \UGS\NX 6.0\"

Call % UGII_BASE_DIR%\ UGII\ugiicmd .bat %UGII_BASE_DIR% AUTO

"% UGII_BASE_DIR%\IGES\iges.cmd" "% TURBINE_BLADE%\ TURBINE_BLADE.prt" O="%

TURBINE_BLADE%\ TURBINE_BLADE.igs " D="% UGII_BASE_DIR%\ IGES\igesexport .def"

Listing A.19: Batch file that automates IGES format geometry generation

A.8.6 Batch file that automates pm format geometry generation

title pm Generation

cd /d "% TURBINE_BLADE%"

"C:\ Program Files\CADfix 7.1\ bin\ runcadfconsole.exe" -wait -BATCH -config SC03.

cwc TURBINE_BLADE.igs -exportfile TURBINE_BLADE.pm

dir > "% TURBINE_BLADE%\ RUN_CHECK .txt"

Listing A.20: Batch file that automates pm format geometry generation

A.8.7 Batch file that automatically starts SC03 and loads SC03 exe-

cutable file

title Dong Li ’s SC03 analysis

cd /d "% TURBINE_BLADE%"

C:\ DOCUME ~1\ dl9v07 \Desktop \stress ~1\ SC03_1 ~1\ bin\Winsc03 .exe -b -e "blade .exec"

Listing A.21: Batch file that automatically starts SC03 and loads SC03 executable

file

A.8.8 SC03 executable file for setup, meshing, analysis and output

# Exec file to run SC03 analysis of the 3D turbine blade

# Dong

# 05/10/2010

# Initialization

# no_ct88 stops CT88 material property checks

no_ct88

# Prevent SC03 from stopping scripts or exiting on an error

ignore off

# Read in the required data files

rd PM "C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \Automation \

TURBINE_BLADE.pm"

# mat file contains material data

rd MAT "C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ sc03_13b0x32\bin

\BLADE_MATERIAL.mat"
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rd GBP "C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ sc03_13b0x32\bin

\boundaries .gbp "

# bdd file contains cycle data

rd BDD "C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ sc03_13b0x32\bin

\cycle .bdd"

domxpand 1

domain 1 speed =0

domain 1 th_temp =500; th_units =C;st_temp =20; st_units =C

domain 1 thermal_flag=1

domain 1 elastic =Y

domain 1 int_ht =0

domain 1 therm_output=Y; therm_refinement=Y

domain 1 component =1

domain 1 material =RCY

domain 1 name=D1

global 1 rotation =X

global 1 analtype =TM

global 1 GNL =N

global 1 thermal_strain=Y

global 1 follower_tractions=N

global 1 thermal_bc_press=Y

global 1 GNL_on_1st_iter=Y

global 1 eqn_reform =N

global 1 residual_tol=1.0E-04

global 1 stress_acc =1000000000000

global 1 strain_acc =0.10

global 1 relative_acc=2

global 1 struct_bound_loads=Y

global 1 struct_body_loads=Y

global 1 steadystate =Y

global 1 coupled =Y

global 1 baseparm =N

global 1 matching =N

global 1 viewfactor_calcs=Y

global 1 max_temp =2000

global 1 th_time_acc =10

global 1 th_ref_acc =10

mesh 1

run

index

locate

case time 1000

CTP TK

gsave TURBINE_BLADE.png

QDOM [5]=0

QDOM [1]=1

call scobk

$MIN=QDOM [3]

$MAX=QDOM [5]

$MEAN=QDOM [4]

echo MIN TEMPERATURE $MIN

echo MAX TEMPERATURE $MAX

echo MEAN TEMPERATURE $MEAN

index
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locate

case time 1000

CTP SVM

gsave TURBINE_BLADE.png

QDOM [5]=0

QDOM [1]=1

call scobk

$MIN=QDOM [3]

$MAX=QDOM [5]

$MEAN=QDOM [4]

echo MIN VONMISES $MIN

echo MAX VONMISES $MAX

echo MEAN VONMISES $MEAN

wr PM "C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \Automation \

TURBINE_BLADE_done.pm"

Listing A.22: SC03 executable file

A.8.9 SC03 material property file

#

# material file produced by SC03 version 10E0 on 20-MAR -07

# from model file C:\ abhi1\ hiparsysnatfreq/hiparsys1 .pm

#

#

# Thermo -elastic properties for RCY

#

RCY

ISO_ORTH

0.872000 E-08

64

#

# T (deg C) E (MPa) G (Mpa ) v alpha

# k (mW/mm/K) Cp (mJ/Mg/K)

#

-100.000 131200. 134050. 0.375500 0.119500 E-04

9.05000 0.360000 E+09

-80.0000 130650. 133525. 0.375750 0.119734 E-04

9.27500 0.365000 E+09

-60.0000 130100. 133000. 0.376000 0.119975 E-04

9.50000 0.370000 E+09

-40.0000 129550. 132475. 0.376250 0.120227 E-04

9.72500 0.375000 E+09

...

800.000 98700.0 104000. 0.394000 0.143000 E-04

19.9000 0.560000 E+09

820.000 97551.1 103268. 0.395051 0.144200 E-04

20.1400 0.567280 E+09

840.000 96372.0 102590. 0.396192 0.145400 E-04

20.3800 0.575840 E+09

860.000 95117.3 101918. 0.397408 0.146600 E-04

20.6357 0.583840 E+09

880.000 93741.8 101204. 0.398683 0.147800 E-04
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20.9666 0.591280 E+09

900.000 92200.0 100400. 0.400000 0.149000 E-04

21.3000 0.600000 E+09

920.000 90560.0 99310.0 0.401347 0.150104 E-04

21.5598 0.610000 E+09

940.000 88920.0 97878.7 0.402720 0.151272 E-04

21.8235 0.620000 E+09

960.000 87280.0 96272.4 0.404120 0.152800 E-04

22.2000 0.630000 E+09

980.000 85640.0 94657.4 0.405547 0.154400 E-04

22.6000 0.640000 E+09

1000.00 84000.0 93200.0 0.407000 0.156000 E-04

23.0000 0.650000 E+09

1020.00 82360.0 91999.4 0.408520 0.157600 E-04

23.4000 0.661280 E+09

1040.00 80720.0 90848.5 0.410147 0.159200 E-04

23.8000 0.673840 E+09

1060.00 79029.6 89435.2 0.411899 0.160704 E-04

24.2056 0.686000 E+09

1080.00 77051.2 87535.4 0.413864 0.161788 E-04

24.6432 0.698000 E+09

1100.00 74900.0 85300.0 0.416000 0.163000 E-04

25.1000 0.710000 E+09

1120.00 72900.0 83340.0 0.418000 0.164932 E-04

25.5680 0.719920 E+09

1140.00 70900.0 81380.0 0.420000 0.167536 E-04

26.0520 0.726960 E+09

1150.00 69900.0 80400.0 0.421000 0.169000 E-04

26.3000 0.730000 E+09

Listing A.23: SC03 material property file

A.8.10 3D evolutionary strategy optimisation MATLAB code for propos-

ing turbine blade repair alternative

% function evop_repair determines a repair alternative for design D0 based on a

prediction

% function and a penalty threshold .

%

% Input - X0: original design variable set

% objhandle : name of the prediction function

% th: the prescribed penalty threshold value

%

% Output - X_best_initial: initial repair

% - X_best_second: initial circular repair

% - X_best_final: final suggested repair alternative

%

% SVR_repair calls this function .

% Do not forget to load the surrogate parameters

%

% Created : 10/06/2010

% Last modified : 28/11/2011

% Lastest changes : add initial global search result , X_best_initial , and

X_best_second circular search

% result as outputs .X_best is replaced as X_best_final. Also add two graphs

% to illustrate the generation of X_best_second and X_best_final.
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% Also use i=round (logspace (5 ,6 ,100) ) to stay within RAM limit

% Terminate when 5 alternatives are found

% Dong Li

function [X_best_initial ,X_best_second ,X_best_final]= evop_repair_3D(X0,objhandle ,

th)

dimension =size(X0 ,2);

% Initial global search

for i=round(logspace (3,6,20) )%i is a row vector of 20 logarithmically equally

spaced points between 10^2~10^5

fprintf (’Sample size = %d...\n’,i);

SAMPLE_PLAN =rlh(i,dimension );

RESULT =zeros(i,2) ; RESULT (:)=Inf;

for j=1: i % search x1 in the whole design space

RESULT (j ,1)=norm(X0 -SAMPLE_PLAN (j,:) ); % Calculate the

distance

RESULT (j ,2)=feval(objhandle ,SAMPLE_PLAN (j,:)); % Calculate the penalty

end

[dmin ,indexbp , Bplogical ]= best_point_3d(RESULT ,th);

if dmin <inf

X1=SAMPLE_PLAN (indexbp ,:);

X_best_initial=X1;

X_best_second=X1;

X_best_final=X1;

fprintf (’A repair alternative has been found by a global search with size

%d, continue with hyper -circle search \n’,i)

X_best_initial

fprintf (’dmin =%d\n’,dmin);

fprintf (’Penalty =%d\n’, RESULT (indexbp ,2));

figure

hold on;

plot(RESULT (:,1) ,RESULT (:,2) ,’.’);

plot(RESULT (Bplogical ,1) , RESULT (Bplogical ,2) , ’ro ’);

grid on

xlabel (’16- dimensional Euclidean distance from the original design ’);

ylabel (’ Predicted Penalty ’);

line(xlim , [th ,th]);

xlimit =xlim;

text (( xlimit (1)+xlimit (2))/2, th+0.02 , strcat (’Penalty threshold P_{th

}=’, num2str (th , ’%1.4f’)), ’fontsize ’,12)

plot(RESULT (indexbp ,1) ,RESULT (indexbp ,2) ,’x’)

text(RESULT (indexbp ,1) ,RESULT (indexbp ,2) ,strcat (’ \ leftarrow Selected

point P_{th}=’, num2str (RESULT (indexbp ,2) ,’%1.4f’)))

ylimit =ylim;

ylim ([ RESULT (indexbp ,2) -0.1, ylimit (2) ])

drawnow

hold off

break

end

end

if dmin==inf

fprintf (’No repair alternative can be found \n’);

X_best_final=X0;

return

end
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fprintf (’Initial search in the hyper -circle centered at the original design ,with

radius ==dmin\n’)

for i=round(logspace (5 ,6 ,100) )

fprintf (’Sample size = %d...\n’,i);

SAMPLE_PLAN =rlh(i,dimension );

for j=1: i

SAMPLE_PLAN (j,:) =( SAMPLE_PLAN (j ,:) -0.5) *dmin /2+ X0; %sqrt( dimension )=sqrt

(16) =4; 2/4=1/2

end

RESULT =result_3D (SAMPLE_PLAN ,X0 ,dmin ,objhandle );

[d,indexbp ,Bplogical ]= best_point_3d(RESULT ,th);

Xc=SAMPLE_PLAN (indexbp ,:);

if d<dmin

X_best_second=Xc;

X_best_final=Xc;

dmin=d;

fprintf (’A better repair alternative is found \n’);

X_best_second

fprintf (’dmin =%d\n’,dmin);

fprintf (’Penalty =%d\n’, RESULT (indexbp ,2));

figure

hold on;

plot(RESULT (:,1) ,RESULT (:,2) ,’.’);

plot(RESULT (Bplogical ,1) , RESULT (Bplogical ,2) , ’ro ’);

grid on

xlabel (’16- dimensional Euclidean distance from the original design ’);

ylabel (’ Predicted Penalty ’);

line(xlim , [th ,th]);

xlimit =xlim;

text (( xlimit (1)+xlimit (2))/2, th+0.02 , strcat (’Penalty threshold P_{th

}=’, num2str (th , ’%1.4f’)), ’fontsize ’,12)

plot(RESULT (indexbp ,1) ,RESULT (indexbp ,2) ,’x’)

text(RESULT (indexbp ,1) ,RESULT (indexbp ,2) ,strcat (’ \ leftarrow Selected

point P_{th}=’, num2str (RESULT (indexbp ,2) ,’%1.4f’)))

ylimit =ylim;

ylim ([ RESULT (indexbp ,2) -0.1, ylimit (2) ])

drawnow

hold off

break %breaks here so that as soon as a better repair alternative is

found , this loop is terminated

end

end

if X_best_final==X1

fprintf (’A better repair alternative cannot be found ,using X_best_final==X1\n

’);

return

end

fprintf (’Continuous search in hypercircle \n’);

Xc=zeros (0, dimension );

count =0;

while (count <5) %To find five repair alternatives

X_best_final=Xc;

count =count +1;

for i=round (logspace (5 ,6 ,100) )

fprintf (’Sample size = %d...\n’,i);

SAMPLE_PLAN =rlh(i,dimension );

for j=1:i

SAMPLE_PLAN (j,:) =( SAMPLE_PLAN (j,:) -0.5)*dmin /2+ X0;
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end

RESULT =result_3D (SAMPLE_PLAN ,X0 ,dmin ,objhandle );

[d,indexbp ,Bplogical ]= best_point_3d(RESULT ,th);

Xc=SAMPLE_PLAN (indexbp ,:);

if d<dmin

X_best_final=Xc;

dmin=d;

fprintf (’dmin=%d\n’,dmin);

fprintf (’Penalty =%d\n’,RESULT (indexbp ,2));

fprintf (’A better repair alternative is found\n’);

X_best_final

fprintf (’dmin=%d\n’,dmin);

fprintf (’Penalty =%d\n’,RESULT (indexbp ,2));

figure

hold on;

plot(RESULT (:,1) ,RESULT (:,2) ,’.’);

plot(RESULT (Bplogical ,1) , RESULT (Bplogical ,2) , ’ro ’);

grid on

xlabel (’16- dimensional Euclidean distance from the original design ’);

ylabel (’Predicted Penalty ’);

line(xlim , [th,th]);

xlimit =xlim;

text(( xlimit (1)+xlimit (2))/2, th+0.02 , strcat (’Penalty threshold P_{

th}=’, num2str (th , ’%1.4f’)), ’fontsize ’,12)

plot(RESULT (indexbp ,1) ,RESULT (indexbp ,2) ,’x’)

text(RESULT (indexbp ,1) ,RESULT (indexbp ,2) ,strcat (’ \leftarrow Selected

point P_{th}=’, num2str (RESULT (indexbp ,2) ,’%1.4f’)))

ylimit =ylim;

ylim([ RESULT (indexbp ,2) -0.1, ylimit (2) ])

drawnow

hold off

break

end

end

end

Listing A.24: 3D evolutionary strategy optimisation MATLAB code for proposing

turbine blade repair alternative

A.8.11 MATLAB code for stress analysis

function [error_flag , max_temp , max_stress , max_distortion] =

stress_analysis_assembly (front_core_x ,front_core_y ,middle_core_x ,

middle_core_y ,trailing_core_x , trailing_core_y ,x_dir ,y_dir ,z_dir ,X_DIR ,Y_DIR ,

Z_DIR ,X_up ,Y_up ,X_down ,Y_down )

% This function assembles all analysis components .

% Input: All blade design variables

% Output : One of the failure mode flags , or the resulting maximum temperature and

% maximun von mises stress

% error_flag =0; Successful

% error_flag =1; NX Part generation failure

% error_flag =2; IGES generation failure

% error_flag =3; pm generation failure

% error_flag =4; result generation failure

% Dong Li 04/11/2010

%Initialization
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error_flag =0;

%Write a Blade_Variable.exp file using all the input variables

fid = fopen(’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \Automation \

Blade_Variables.exp ’, ’wt ’);

fprintf (fid ,’ TURBINE BLADE DESIGN VARIABLES \n’);

fprintf (fid ,’DELTA X:\n’);

fprintf (fid , strcat (’FRONT_CORE -’, num2str (front_core_x)));

fprintf (fid ,’\ nDELTA Y:\n’);

fprintf (fid , strcat (’FRONT_CORE -’, num2str (front_core_y)));

fprintf (fid ,’\ nDELTA X:\n’);

fprintf (fid , strcat (’MIDDLE_CORE -’, num2str (middle_core_x)));

fprintf (fid ,’\ nDELTA Y:\n’);

fprintf (fid , strcat (’MIDDLE_CORE -’, num2str (middle_core_y)));

fprintf (fid ,’\ nDELTA X:\n’);

fprintf (fid , strcat (’TRAILING_CORE -’, num2str (trailing_core_x)));

fprintf (fid ,’\ nDELTA Y:\n’);

fprintf (fid , strcat (’TRAILING_CORE -’, num2str (trailing_core_y)));

fprintf (fid ,’\ nFirst Extrusion Directions :\n’);

fprintf (fid , strcat (’X_DIR -’, num2str (x_dir)));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’Y_DIR -’, num2str (y_dir)));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’Z_DIR -’, num2str (z_dir)));

fprintf (fid ,’\ nSecond Extrusion Directions :\n’);

fprintf (fid , strcat (’X_DIR -’, num2str (X_DIR)));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’Y_DIR -’, num2str (Y_DIR)));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’Z_DIR -’, num2str (Z_DIR)));

fprintf (fid ,’\ nTrailing Hole:\n’);

fprintf (fid , strcat (’X_up -’, num2str (X_up)));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’Y_up -’, num2str (Y_up)));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’X_down -’,num2str (X_down )));

fprintf (fid ,’\n’);

fprintf (fid , strcat (’Y_down -’,num2str (Y_down )));

fclose (fid);

%Generate the turbine model by calling NX6 in batch mode.

system (’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \1

_TURBINE_GEN.bat ’);

%Try to find the UG part file , if the geometry generation fails , there will not

be a part file

str =’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \

TURBINE_BLADE.prt ’;

%Leave 20 seconds for the UG part to be generated .

count =0;

while ((~ exist(str ,’file ’))&&( count <200))

pause (0.1)

count =count +1;

end

part_flag =exist (str ,’file ’);

if part_flag ~=2

%Part file does not exist

error_flag =1; %Part generation failure

max_temp =NaN;
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max_stress =NaN ;

max_distortion=NaN;

return

end

%Generate the iges format of the blade model using NX6 in batch mode

system (’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \2

_IGES_GEN .bat ’);

str =’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \

TURBINE_BLADE.igs ’;

count =0;

while ((~ exist(str ,’file ’))&&( count <200))

pause (0.1)

count =count +1;

end

iges_flag =exist (str ,’file ’);

if iges_flag ~=2

%IGES file does not exist

error_flag =2; %IGES generation failure

max_temp =NaN;

max_stress =NaN ;

max_distortion=NaN;

return

end

%Generate the pm file , which can be read by Rolls -Royce SC03 , using CADFix

%in batch mode

system (’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \3

_PM_GEN .bat ’);

str =’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \

TURBINE_BLADE.pm ’;

count =0;

while ((~ exist(str ,’file ’))&&( count <60))

pause (1)

count =count +1;

end

pm_flag =exist(str ,’file ’);

if pm_flag ~=2

%pm file does not exist

error_flag =3; %pm generation failure

max_temp =NaN;

max_stress =NaN ;

max_distortion=NaN;

return

end

%Run SC03. Generate the sc03 result files

system (’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \4

_SC03_RUN .bat ’);

str =’C:\ Documents and Settings \dl9v07 \Desktop \stress analysis \ Automation \

TURBINE_BLADE_done.pm ’;

count =0;

%Leave 40 seconds for the pm result file (TURBINE_BLADE_done.pm) to be generated .

while ((~ exist(str ,’file ’))&&( count <400))

pause (0.1)

count =count +1;

end

result_flag =exist(str ,’file ’);
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if result_flag ~=2

%result file does not exist

error_flag =4; %result generation failure

max_temp =NaN;

max_stress =NaN ;

max_distortion=NaN;

return

end

%Read maximum temperature and maximum von mises stress from sc03.diag

Diag_ID =fopen (’C:\ Docume ~1\ dl9v07 \Desktop \stress ~1\ Automa ~1\ sc03.diag ’);

A=fread(Diag_ID ,’uint8=>char ’);

A=A’;

temp_index =strfind (A,’MAX TEMPERATURE ’);

temp=A(temp_index +16: temp_index +21);

max_temp =str2double (temp);

stress_index=strfind (A,’MAX VONMISES ’);

von_mises =A( stress_index+13: stress_index+18);

max_stress =str2double (von_mises );

distortion_index=strfind (A, ’Largest distortion measure ’);

distortion =A(distortion_index +27: distortion_index +34);

max_distortion= str2double (distortion );

fclose (Diag_ID );

Listing A.25: MATLAB code for stress analysis
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