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ABSTRACT

Spot-welded structures contain inherent variability in location and/or stiffness due to the
complexity of the manufacturing process. Therefore, an analysis that includes the
uncertainty generated in the joints will provide a range of response predictions, adding
more value to the design process compared to deterministic results. Finite element (FE)
analysis is frequently used in conjunction with Monte Carlo simulations (MCS) to
predict the variability in the vibration response of assembled structures, however this is
usually computationally expensive. Small numerical spot weld models must be used
since real spot welded structures usually possess many spot welds and modelling each
of them in detail would lead to additional computational effort, current models provide

results sensitive to the element size.

In this thesis, a method to quantify the variability in the dynamic characteristics
of structures due to uncertainty in the location and diameter of the spot welds is
proposed and experimentally validated. Component mode synthesis (CMS) is used in
combination with multipont constraint (MPC) connection models in order to improve
the computational efficiency of the uncertainty analysis. However, if the number of
degrees of freedom (DOFs) involved in the connection is large, then the CMS size
reduction is less effective. Two techniques are proposed to overcome this problem: (i)
characteristic constraint modes and (ii) application of a low rank update theory to the
CMS matrices. A spot weld model based on MPCs is proposed and validated as part of
the original contributions of this work. This model improves convergence and

minimizes the sensitivity to the element size.

The application of the new method is experimentally validated in a double hat
structure. Results show that the method presented is accurate when predicting the
structure’s natural frequencies and it can identify which modes are sensitive to the

uncertainties in the spot welds and which modes are not.
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Y Mobility matrix

¢ Impedance matrix

d,and d, Disturbance left and right vectors

f Vector of external forces.

g Interface basis coordinates.
i Connection number

J Node number.

kb

Beam flexural wave number equal to 27/ 4

q Component modal coordinates

7 . :

. Pearson product-moment correlation coefficient between ¢, and ¢,
u Physical DOFs,

u!

i Local connection DOFs

Wee Interface DOFs

v Independent modal coordinates
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u, v, and w Displacement DOFs

Connection local coordinates

x,vandz  Coordinates

Greek letters

r Transformation matrix that relates connection local to modal DOFs

11

Transformation matrix defined to transform to global DOFs

k4 Static constraint modes in CMS

n Modal loss factor

K Modal stiffness matrix
A Eigenvalue, wavelength
n Modal mass matrix

|4 Poisson’s ratio

P Mass density

o Standard deviation

¢ Normal modes in CMS
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w Angular frequency

-XVi-



RICARDO OCTAVIO DE ALBA ALVAREZ

ABBREVIATIONS

(ACM2)

(CMS)

(DOF)

(FEM)

(FRFs)

(MCS)

(MPC)

(PDF)

(RSW)

(SEs)

(SEA)

Area contact model 2

Component mode synthesis

Degrees of freedom

Finite element method

Frequency response functions

Monte Carlo simulation

Multipoint constraint

Probability density function

Resistance spot welding

Spectral Elements

Statistical energy analysis
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1 INTRODUCTION

Structural elements such as beams, plates, rods, etc., are typically assembled together
using elements called structural joints in order to build more complex structures. A
built-up structure might contain many joints and the properties and characteristics of
these connecting elements contribute significantly to the overall dynamic behaviour of
the structure, e.g. natural frequencies, mode shapes and frequency response functions
(FRFs). In the automotive industry one of the most important structural joint is the spot
welded joint, or simply called the spot weld. A vehicle body contains several thousands

of spot welds. The spot welds are manufactured using a process called resistance spot

welding (RSW).

RSW is an efficient process to join vehicle body parts. It consists of four stages called
squeezing, welding, forging and cooling [1] as shown in Figure 1.1. Two metal sheets
are compressed between a pair of water-cooled copper-alloy electrodes with an external
applied force, and then an electric current is passed through the sheets via the two
electrodes to generate concentrated heating at the contact surface. The contact surfaces
in the region of current concentration are heated for a very short duration by a pulse of
low-voltage, high-amperage current. Due to heat generation at the contact surface and
Joule heating, a molten nugget is formed at the interface of the two sheets. After the
current flow ceases, the electrode force is maintained for a short duration to allow the

workpiece to rapidly cool and solidify.
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Figure 1.1: Figure 1: RSW welding sequence [1].

The contact surface area depends on the electrode diameter, applied force, temperature
and metal deformation. It has been shown that the electrothermal and mechanical
contact conditions influence the weld growth mechanisms [2]. Thus a RSW process

involves interactions of thermal, electrical, mechanical and metallurgical phenomena.

All the interactions involved in the RSW lead to a large source of variability in the final
characteristics of the spot weld such as the location, shape or size of the nugget. For
example, the electrode contact region varies when the area at the electrode tips increases
due to in-service degradation of electrode tips (pollution and erosion of the profile)
affecting the nugget diameter. Figure 2 shows changes in the electrode profile after 300

welded points [1].
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Figure 1.2: RSW electrode profiles [1]
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Other sources of variation in this process are welding duration, electrical current
changes, electrode-surface contact characteristics and thermal conditions amongst

others.

Given this problem, there is current interest in developing methods to estimate the weld
nugget parameters during the short time of the weld formation and create a real-time
spot weld quality monitoring, but these investigations are current work and have not

been implemented in industry [3].

The finite element method (FEM) is commonly used to compute deterministic
predictions of complex systems. The inputs in a regular FEM analysis are the mass,
stiffness and damping and the response quantities can be frequency response functions
(FRFs), eigenvalues, eigenvectors etc. If the input parameters are accurate and the
system is correctly modelled, then the output quantities will be accurate. Nevertheless
the standard FEM does not include variations in the geometric and physical properties

of the spot welds.

These variations lead to variations in the joint dynamic properties and the resulting
overall dynamic behaviour of the built up structure. Since spot welds contain inherent
variability due to the complexity of the manufacturing process, an analysis including the
uncertainty generated in the joints providing a range of response values, can add more

value in the design process compared to deterministic predictions.

In order to achieve that, it is necessary to use an adequate FE spot weld model, this
model should be able to represent the physical and dynamic properties of these joints
and therefore the variations in them. Then a method to include the uncertainties in the

FE models must be implemented.

In the following sections, the existing FE spot weld models are reviewed, followed by a
review of the available methods to include variability in FE models and finally the

outline/scope of the thesis is given.
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1.1 Finite element spot weld models

Modelling spot welds is a difficult task, mainly because there are many local effects
such as geometrical irregularities, residual stresses, material inhomogeneities and
defects due to the welding process that are not taken into account. Furthermore it is
necessary to use models with as few degrees of freedom (DOF) as possible, since real
spot welded structures usually possess many spot welds and modelling each of them in

detail would lead to a major computational effort.

Two main types of spot weld models can be distinguished: models for stress analysis
within the spot weld and models for vibration analysis which do not require the
knowledge of stresses at the spot welds. In the first case, very detailed models are
required to compute a smooth stress field at the spot weld. As stated previously, these
models are used for stress analysis and durability. In general they are too detailed to use
in dynamic analysis, leading to a prohibitive computational cost, therefore these models
will not be reviewed in this thesis. In the second case the only requirement from the
model is to simulate, as closely as possible, the stiffness (and mass) characteristics of
the real spot welds and their influence on the rest of the structure. This allows much

simpler models with far fewer DOFs.

These simpler models can be divided into two types, models that require coincident
meshed surfaces in which the nodes of the plate elements of the joined surfaces are
coincident and models that can be assembled with non-coincident meshes in which the

plate nodes are non coincident.

The latter models offer a great advantage to industry, since it is not necessary to re-
mesh surfaces to assemble them together. Next some of the most common models are
reviewed.

1.1.1 Single beam models

These models were very commonly used in industry for many years. A node to node

connection is applied between coincident meshes using a rigid link or a beam element.

4-
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According to Lardeur ef al. [4] this connection is physically inconsistent and leads to
imprecise and inconsistent results. Similarly, Palmonella e al. [5] state that this model
is an inadequate representation for the behaviour of the spot weld and generally tends to

underestimate its stiffness.

1.1.2 Single brick models

This model was first proposed by Pal and Cronin [6] and connect two surfaces using a
single 3D solid element to characterise the spot weld nugget. The brick nodes are
coincident with the plate nodes connected with rigid links in all DOFs, therefore it is

necessary to have coincident meshes between surfaces.

1.1.3 Area contact model 2

This element was created by Heiserer et al [7] and is known as area contact model 2
(ACM2). This model consists of a brick element connecting the lower and upper plates
with weighted average constraint elements, called RBE3 in MSC Nastran [8], as shown
in Figure 1.3. RBE3 defines the motion at a reference grid point as the weighted
average of the motions at a set of other grid points. The RBE3 element is able to
distribute the applied loads onto a set of nodes without increasing the local stiffness as
would happen with a rigid link. The ACM2 model is also known as CHEXA spot weld
model in LMS virtual lab [9]. This model provides the advantage of being able to
connect surfaces with non congruent meshes and locate the spot weld anywhere in the

surface between nodes.

Figure 1.3: ACM2 model
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1.1.4 CWELD

Fang et al. [10], proposed a model designed to connect congruent as well as non
congruent meshes using a Multipoint constraint (MPC) equation. This element was
implemented as the CWELD element in MSC/NASTRAN or PLINK in ESI/Pam-Crash.
Figure 1.4 shows a sketch of the CWELD element. The elastic part of the CWELD
element is a short beam from points GA to GB with six DOFs per node; this beam is
modelled as a shear flexible Timoshenko type. The location of the element is defined
with a free grid point GS, which is projected on the surfaces to be joined.
Every node of the beam is connected to a chosen set of nodes of the plate to which it
belongs. In Figure 4, the node GA for example is connected to the shell nodes GA1,
GA2, GA3 and GA4 belonging to the upper plate. The portions of the plates delimited
by the nodes GAi and GBi are called “patches” [8].

The DOFs of the spot weld end point GA are constrained as follows: the 3 translational
and 3 rotational DOFs are connected to the 3 translational DOFs of each node GAi with

constraints from Kirchoff shell theory,

u u
vi =2 Ni(&um) Y (1.1)
w y Wl,
ow
0. " YN, -w (1.2)
HA—a—W——ZN ‘W (1.3)
y ax i,x i :
1(0v ou 1
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Figure 1.4: CWELD model

Here x, y and z are the co-ordinates with z being perpendicular to the element plane;

N;; are the parametric shape functions; £, and 77, are the normalised coordinates; u, v,

and w are the displacement DOFs and 6,, 6, and 6, are rotational DOFs.

1.2 APPROACHES FOR A NON-DETERMINISTIC
ANALYSIS

In order to include the uncertainties in a FE structural dynamics model, there are two
contrasting approaches: (1) possibilistic and (2) probabilistic approaches. In possibilistic
approaches the uncertain parameters are assumed to lie in a finite interval, where only
the definition of a lower and upper bound is required. The definition of these bounds is
normally a difficult task and in general is done based on experience or based on a
limited number of experiments. The goal of a possibilistic propagation approach [11] is
to calculate the bounds on the response quantity of interest. If the problem is monotonic,
i.e. the output depends monotonically on every input parameter, it is sufficient to
consider all combinations of the bounds of the input parameters only, which is referred

to as the vertex method [12].

In probabilistic approaches [13,14], information about the likelihood and probability of
events are included. The variation in the parameter(s) is specified by a probability
density function (PDF) and the variation in the response can be quantified in terms of

distribution functions or statistics. A standard PDF is normally assumed for the input
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parameter(s). The normal distribution is often an adequate fit to product variability, in
statistics, and this is also supported by the Central Limit Theorem [15]. However, the
unbounded tails of the normal distribution are often inconsistent with reality, which has

to be taken into account.

The standard method for propagating probabilistic data is the Monte Carlo (MC)
method [16-20]. In standard MC sampling, parameter values are randomly drawn
according to their probability distributions and a deterministic problem is solved for
each sample. The results are analysed to estimate response statistics and distribution
functions. The method is very robust and converges to the exact solution as the sample
size tends to infinity. It makes no approximations and considers all effects modelled in
the deterministic problem. In general, a sample size of the order of 10 is sufficient to
estimate the mean of a distribution function and a sample size of the order of 100 is
required to obtain a reasonable estimate of the variance. However, the numerical cost to
estimate a small probability of failure can be in the order of thousands of deterministic

solutions.

In order to reduce the computational time of the deterministic solution in the analysis of
uncertainties when a FE model is used, the number of the degrees of freedom (DOF)
can be reduced using component mode synthesis (CMS). CMS is a well established
method to reduce the size of the model and also offers an appealing framework for the
analysis of the structural dynamics of uncertain structures. One of the most accurate and
frequently used CMS methods is the Craig-Bampton method [21]. In the fixed interface
method the component normal modes are calculated with the interface between the
components held fixed. These modes are further augmented by static constraint modes
to improve convergence, yield the exact solution and assure the compatibility between
components facilitating coupling of structures. It is also possible to perform an
eigensolution on the constraint mode partitions of the mass and stiffness matrices. The
resultant eigenvectors are called the characteristic constraint modes. When the Craig-
Bampton method is used the DOFs of the model can be further reduced by truncating
the characteristic constraint modes, especially in problems with large number of

interface coordinates [22].
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1.3 Scope of the thesis

The objective of this thesis is to predict the vibrational behaviour of built-up structures
subject to variations in the location and size of the spot welds. This objective was

divided into three parts:

(1) The analysis, evaluation and verification of spot weld FE models.

(2) Improve the efficiency of the dynamic analysis of spot welded structures for non

deterministic analysis.

(3) Experimental validation of the proposed methodology.

In modelling the structure, a model of the spot weld which is connected to the
substructures by MPCs has clear advantages. It can be located anywhere in the model
and it is not necessary to re-mesh surfaces to assemble them together. Furthermore,
MPC connections can be used to model changes in the location of the joint instead of

modifying the FE model from one sample to the next.

In order to further improve the efficiency of the deterministic solution, CMS gives a
sub-structuring framework by which the number DOFs are reduced [21]. Combining
CMS with MPC joints, the response of the system can be evaluated for many spot weld
locations using the same modal representation of the substructures, which is a big

advantage when using a MCS for a non deterministic study.

As part of objective (1), in chapter 2 the MPC connection is analytically verified. The
results from FE models with MPCs are compared to analytical solutions to evaluate the
accuracy of these connections when the location is changed and to analyze the influence of
the size and the type of element at which these MPCs are attached. Two different models
are analyzed: two infinite beams and two simply supported plates. In all the models there is

a single elastic connection with translational and rotational stiffnesses.
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In chapter 3, as part of objective (2), MPC connections are combined with the Craig-
Bampton method in order to reduce the computational time of a MCS. Combining
CMS with MPC joints, the response of the system can be evaluated for many joint
locations using the same modal representation of the substructures. However it will be
seen that when the number of degrees of freedom involved in the connection is large,
the CMS size reduction is less efficient because the interface DOFs are not reduced. To
further improve the efficiency of this analysis, two additional methods are applied:

characteristic constraint modes and a low-rank update theory.

In chapter 4 a robust spot weld model based on MPC connections is proposed and
validated. This model is compatible with the methods in chapter 3 and is capable of
modelling not only changes in location but also changes in diameter of the spot weld
with the same computational expense as the simple MPC connection. This proposed

connection is also less sensitive to element size.

In chapter 5 the robust spot weld model is combined with the numerical methods
proposed in chapter 3 to obtain non deterministic predictions. These predictions are
experimentally validated in a system of two hat profiles with four spot welds with 54

samples.

In summary the original contributions of this work include:

e Analytical validation of MPC connections, especially when modelling changes
in the connection location.

e The application of the Craig-Bampton method and characteristic constraint
modes in combination with the MPCs connection in order to model uncertainty
in the locations of joints.

0 Constraints DOFs in areas instead of lines.
0 Elastic connection instead of rigid.

e The application of low rank update theory in the CMS framework in order to
improve models with a large number of coupling DOFs.

e A spot weld model robust to changes in the mesh characteristics and capable of
modelling the diameter of the spot welds was proposed and validated.

-10-
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e Experimental validation of the non deterministic model.
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2 VALIDATION OF MULTI POINT CONSTRAINTS
FOR SPOT-WELD MODELS

As mentioned in the previous chapter, in FE models spot welds are commonly
represented by two-noded elements (e.g. beams or springs with lumped masses) or by
rigid connections. The parameters of these simple elements represent the stiffness
characteristics of the real joint, and therefore their influence on the rest of the structure.
This simple connection can be connected to the substructures in mainly two different
ways: (1) a direct connection between nodes in the substructures (node-to-node
connection) or (2) using interpolation elements or multipoint constraints (MPCs) to
connect the joint nodes to the substructures. The node-to-node connection requires
coincident meshes: if the location of the weld changes, then the mesh of both surfaces
needs to be modified. In contrast, when interpolation elements or MPCs are used, the

connection can be placed at any location using the existing surface meshes.

The latter feature offers a great advantage to industry, since it is then possible to
assemble components with different mesh characteristics or to assemble components
with complex geometries in which it is very difficult to have coincident nodes.
Moreover, MPC connections can improve the computational efficiency when Monte
Carlo simulation (MCS) is used to analyse the dynamic behaviour of built-up structures
with uncertainties in the location of the joints. In this case, the MPC connections are
used to model changes in the location of the joint instead of modifying the FE model

from one sample to the next.

-12-
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However, model validation is needed. In this chapter, the results from FE models with
MPCs are compared to analytical solutions to evaluate the accuracy of these
connections and to analyse the influence of the size and the type of element for which
these MPCs are attached. Two different models are analysed: two infinite beams and
two simply supported plates. In all of the models there is a single elastic connection

with translational and rotational stiffnesses.

In the following section, the MPC joint model is described in detail. In Section 2.2 the
MPC joint model is validated using a model of two infinite beams with a single elastic
connection. In Section 2.3 the MPC joint model is validated using a model of two
simply supported plates with a single elastic connection and the influence of the size
and the type of element to which these MPCs are attached is analyzed. Finally,

conclusions are given in section 2.4.

2.1 Multi point constraint elastic connection

The MPC elastic connection in this study consists of spring elements connected to the

substructures using MPCs. The model is then a function of the position of the

connection points (x', y') as shown in Figure 2.1. In the case of thin plate substructures
with out-of-plane DOFs w, 6. and 6’y , the elastic element contains a translational
stiffness, K, and two rotational stiffnesses, K, and K, , as shown in Figure 2.1. The

nodal forces and DOFs of the i” connection are related by

) [0
kK. o0 o -k, o o ]"
o kK, 0 o0 -k, o [[&
0 0 K 0 0 -K, ||V
F/=Ku; = " R 2.1)
K, 0 0 K, 0 0 || o
0 K, 00 K, 0 ||,
o 0 -K, 0 0 K, ||
- “ g

hence, the stiffness matrix in the local connection DOFs u; is
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K! K/
K: = " 4 (22)
K’ K’
where
K;' = dlag (Kiw Kiax K,'gy) (23)

The DOFs u, can be related to the nodal DOFs of one of the substructures using MPCs.
The MPC can be defined as the set of equations that relate each of the connection DOFs

u; to the interface DOFs u,_, i.e.

cc?

G,y (2.4)

1 1

G (), 3y 2.5)

i i i i

where Gl.(l) and Gi(z) are the matrix of coefficients of the MPC equations for the upper

and lower plate respectively. In this case Gl.(l) and Gi(z) are populated using the
element shape functions. In doing so, the relationship between u, and wu_ is made

consistent with the FE formulation and is a function of (x', ).

There are many methods available in the literature to apply MPCs to a FE model, e.g.
static condensation [23], augmented Lagrange multipliers, Lagrange elimination etc. In

this paper, static condensation is used.

In order to add n connections, a global connection matrix in u, coordinates is defined as

AK'=diag(K] K, K, - K!) (2.6)
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Then a transformation matrix T' that relates the u to u, and imposes the coupling

conditions between plates can be written as

r-[¢" -G%] 2.7)

where
G(]):diag(Gl(l) G," G .. Gn(l)) (2.8)
G¥ =diag(G"” G, G .. G (2.9)

A second transformation matrix E is defined to transform from u_, to p coordinates as

09 2.10
0 I (2.10)

where 0 are zeros matrices of appropriate size. Then the stiffness matrix in p

[l
Il

coordinates containing » connections is
K, =(TE) AK' TE (2.11)
The resulting nodal forces in the joint are
F=K,,u, (2.12)

The substructures DOFs u_, can be partitioned as

F.| |K® K@ [|a® '
2 MpPC MPC

cc
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where u'!’ and u?’ are the DOFs in substructure (1) and substructure (2) respectively.

2.2 Validation of a multipoint constraint spot-weld model for

a one dimensional system.

This section investigates the validation of use of MPCs for connecting FE models and
their ability to locate a connection anywhere between nodes. To avoid effects due to
resonances and to simplify the evaluation, the joint is placed in a model of two infinite
Euler-Bernoulli beams joined by a single connection. The transfer mobility from the
upper to the lower beam as shown in Figure 2.2, is evaluated using two different FE
models; one with an MPC elastic connection and the second with a node-to-node

connection. Finally, the results are compared to an exact analytical solution.

2.2.1 Numerical models

To model an infinite beam model, the region of the elastic connection is modelled using
Euler-Bernoulli beam finite elements and then attached to semi-infinite Spectral

Elements (SEs) as shown in Figure 2.3.

An infinite beam structure can be incorporated into the FE model using the SE method.
The SE approach is similar to the FE method, but the element matrix is defined via the
dynamic stiffness relationships in the frequency domain [24]. A SE element that
extends to infinity and is connected at a single point can be created; this element
simulates a semi-infinite medium and can be connected to any node in a FE model

according to the method described by Doyle [24].

Two different SEs were created, a) one semi-infinite beam that extends to +o0o0 and b)

one that extends to — as shown in Figure 2.4.

-16-
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Figure 2.1: MPC elastic connection for plate bending analysis: € joint DOFs (ui' );

@ substructure DOFs involved in the connection (u,, ).

The harmonic nodal forces are related to the nodal displacements as

{]\% . } = [_(li;b? “ a le);kb } {Z;l))} @14
and
el et e
where
k- w;?A (2.16)
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is the beam flexural wave number equal to 27/A4, A being the corresponding
wavelength. The dynamic stiffness of a semi-infinite beam that extends to +oo is then

given by

x>0 2.17)

D0 _ E{—(l—z‘)k; ik,’ }

ik,? (1+i)k,

and the dynamic stiffness matrix for a beam that extends to —o is given by

—(1-ik} ik,
D = 1| ¢ ’)2 R x<0 (2.18)
| ik (1+0)k,

The SEs are connected to the FEs in a similar way in which two FEs are connected, but
instead of connecting the mass and stiffness matrices, the dynamic stiffness matrix of

the FEs is connected to the dynamic stiffness matrix of the SEs.

D,=K-o'M (2.19)
=00 Fl) 2 00
1
w(x)
K Kex
8. ()
Ww(®)
«—% o,
3 4

Figure 2.2: Two infinite beams connected with an elastic connection.
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SEs FEs SEs
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Figure 2.3: FE-SE Model of two infinite beams joined by a translational and a
rotational spring.

0, a)
M, CI ———
()
b) 0, I
o ——— M,
D 8,
s

Figure 2.4: Semi-infinite SEs. O, and (, are the applied forces. M, and M, are the
applied moments.

2.2.2 Node to node connection

The nodal force matrix F' of a connecting element comprising a translational and a

rotational spring can be expressed as

-19-
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k. o -k, o "
O Kﬁx 0 _Kﬁx 9)51)’
F =K'= (2.20)
-K, 0 K, 0 ||,
0 _Kex 0 Kex 6(2)'

where K’ is the joint stiffness matrix in the local DOFs A"; w, K and K, are the
rotational and translational stiffness of the elastic connection as shown in Figure 2.3 and
w! and 0" and w'” and ¢ are the local DOFs at the connection node belonging to

sibstructure 1 and 2 respectively. K’ can be transformed into global DOFs as

K, =A"KA (2.21)

Joint

where K is the joint stiffness matrix in global co-ordinates and A is a

Jjoint

transformation matrix that relates the local to the global DOFs [25].

2.2.3 Multipoint constraint connection

The local DOFs of the joint element in equation (2.20) can be related to one or more
DOFs in the global matrices using a MPC equation. The same method described in
section 2.1 can be used. In this case the model is assembled as shown in Figure 2.3. The

G" and G matrices in equations (2.4) and (2.5) are expressed as

NEDY an, @My NyEY)  an, V)

G(l) — 1) ') (222)
B ey B e

N(EP)  aN, &)y NPy aN, (&)

1 1(2) 1 ei(2) (2.23)
N, (&™) N (&) Ny (&™) N, (&)

a a

G? —

where
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M@= (23648
Ny§) = (1-¢-£+8)
N =2 +36-8)

N4(§)=%(—1—5+§2+§3)

are the parametric shape functions for a FE Euler-Bernoulli beam and

is the normalized co-ordinate, a =s/2 where s is the element length.

2.2.4 Analytical solution

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Appendix A gives the equations governing the system in Figure 2.2 using a mobility

approach, and it also describes the derivation of the transfer mobility from a force

excitation applied at point 1 on the first beam to a response evaluated at point 4 on the

second beam.

Solving the equations in appendix A, the velocities of beams 1 and 2 at the connection

point are given by

Vél) _ I YZ(,IZ) 0 Z ) Yl(é) F
Véz) - 0 Y3(’23) c 0 ext

where
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w 0 _Kw 0
. 0 K, 0 -K,

Z =io (2.30)

-K, 0 K, 0

0 -K, O K,
is the impedance of the connection and
VA A
Y, = {Y’.;’,F ’:;,M} (231)
inj ij

is the mobility matrix from point ;i to point ; for the k” Euler-Bernoulli beam [26].

2.2.5 Numerical Examples

The numerical example is a system of two infinite beams joined together by an elastic

connection. To simplify the analysis all simulations were divided into two cases; the

first of which only the effects of a translational spring K are analyzed and the second
for which only K, is considered in order to analyze the effects of a rotational spring.

The values used for K and K, are 10°N/m and 10* Nm/rad respectively. Both

beams were assumed to be identical and the properties are given in Table 2-1.

The mobility of the translational connection is fully imaginary (i.e. related to stiffness),

when compared to the imaginary part of the mobility of the connected beams (i.e. the

beams’ stiffness) and setting them equal, a critical frequency @, can be found, i.e.

2 1

@, = [ﬁj3 (ET (2.32)
2EI pA

much below @, the spring is effectively rigid and the behaviour of the assembly is that

of two beams bending in parallel with no relative displacement at the connection. Much

above @), the spring is flexible and works as an isolator between the two beams.
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When the mobility of the rotational connection is compared to the imaginary part of the

mobility of the connected beams, two critical frequencies appear @, and @,, i.e.

1

2 1
K.’ 1 EIl 2
w, = 7 77 and @, = [ J (2.33)
2(pA)" (EI) v ) \pa

where x, and x, are the excitation and response coordinates from the origin. @, is
equivalent to @, but for the rotational DOF, @, is not physically meaningful but

represents a change in the slope of the FRF. Given the stiffness value and the beams’

properties ( EI =2.23x10* Nm?, ¢4 = 23.58 kg/m) used in the present example, one has
@, =654 rad/s, o, =81.56rad/s and @, =11574 rad/s.

The transfer mobility from the upper beam a position x =-0.0lm in the upper beam to

a position x =0.0lm in the lower beam was evaluated using two different FE models;

the first using a MPC connection and the second using a node to node connection.

Finally both solutions were compared to the analytical result.

2.2.5.1 Accuracy of FE models: a single translational spring connection

Figure 2.5 shows the comparison between the results from both FE models and the
analytical solution for the translational stiffness case. When the spring is connected
from node to node (see Figure 2.3), the result for the transfer mobility is not exact due

to FE discretization errors.

Cross b h P E v
Section (m) (m) (kg/m3) (N/mz)
Beams (1&2) |Rectangular| 0.5 0.006 7860 2.07E+11 0.3

Table 2-1: Beam properties
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When the beam wave number £, and the element length s are multiplied and squared

(khs)2 , a non dimensional frequency is defined. When the mobility is plotted using this

non dimensional frequency as the abscissa it is possible to compare the accuracy of
different FE models with different element size. The frequencies corresponding to s=
A/6, s=A/3 and s= A are added for reference. Figure 2.5 shows the comparison
between the exact solution and the prediction using the FE-SE model. It can be seen that
the prediction agrees with the exact solution and it starts to deviate for frequencies
slightly above the frequencies where s >A/3. If s >4 the solution is very inaccurate.
These errors are expected from any FE model, since as a rule of thumb the predictions
from a FE model are accurate up to a frequency for which s=A/6. If the element shape
functions are quadratic, as used in this study, then the accuracy limit increases up to

frequencies where s =A4/3.

When the results from the MPC connection model are compared, it can be seen that the
prediction agrees very well with the exact solution and starts to differ at frequencies
slightly lower than frequencies where s >A1/3; therefore it is marginally less accurate

than the node to node connection. This is explained by the fact that the displacements

-a0

=100

dB re (Trm/Ms)

=150

200L
10

)2

Mon-dimensional frequency ik, s

Figure 2.5: Magnitude of the transfer mobility for a system of two infinite beams
with a single elastic translational connection: analytical solution;
———- MPC connection; ----- node to node connection.
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of the connection nodes depend on the shape functions of the element to which it is
connected when a MPC is used; therefore additional discretization errors are introduced

into the solution.

However, these additional errors are small and the agreement between both models is

very good at low frequencies, especially at frequencies corresponding to s <A/6.

2.2.5.2 Accuracy of FE models: a single rotational spring connection

When the node to node connection is used, the transfer mobility can be predicted with
good accuracy at low frequencies as can be seen in Figure 2.6. The solution obtained
with the node to node FE-SE model is accurate for frequencies wheres < A4/3. At
higher frequencies, the solution starts to deviate from the analytical solution. Similar to
the translational stiffness connection, when a MPC connection is used to connect the
rotational spring the response starts to deviate significantly from the analytical solution

at slightly lower frequencies compared to the node to node connection.

-0

1200 ¢

dB re {1m/Ms)

-130 ¢

I I
=140+ | |
I I

I :

-150 . . . P |D . . M .'II. L

10 10 10
Mon-dimensional frequency [Kbs]F

Figure 2.6: Transfer mobility magnitude in a system of two infinite beams with a
single elastic rotational connection: analytical solution; ----- MPC
connection; ——-—- node to node connection.
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2.3 Validation of a multipoint constraint spot weld model for

two dimensional systems.

When plates are connected with an MPC connection, the MPC coefficient matrices are
populated using the element shape functions. Therefore it is important to analyze the

formulation of the plate element that is being used.

There are two main different plate theories [27]. The first is Kirchoff plate theory, in
which the effects of transverse shear deformation and rotary inertia are neglected.
Kirchoff plate theory is applicable to thin plates in which the plate thickness is much
smaller than the bending wavelength. The second is Mindlin-Reissner theory. Here the
transverse shear and rotary inertia become important when describing the plate

behaviour, and it is often used to analyze thick plates.

When Kirchoff plate theory is used, the element results in a non-conforming
formulation or alternately in a conforming formulation with additional DOFs [25]; the
non-conforming formulation could result in incompatibilities with the MPC equations,

whilst the conforming formulation is difficult to assemble due to the additional DOFs.

Alternatively, when Mindlin-Reissner theory is used [27], the transverse shear strain is
independent of the thickness of the plate. Therefore as the plate thickness decreases, the
strain energy associated with transverse shear tends to dominate the response, rather
than tending to zero as in the Kirchoff plate theory. This phenomenon is referred to as
“shear locking” and leads to an overly stiff prediction of the response. One approach to
reducing the effects of shear locking is to use a reduced number of Gauss integration
points when evaluating the shear stiffness of an element [28], [29]. In effect, this
reduces the order of the interpolation for the transverse shear strain to that used in the
Gauss integration scheme. In general this approach can lead to rank deficiency of the
stiffness matrix and a singular set of equations. However, by appropriate selection of
the element basis functions and integration schemes, it is possible to obtain a robust

element known as the Heterosis plate element [30].
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In this section the ability of the MPC connection to be located anywhere in an element
is tested for two different element formulations, namely a non-conforming thin plate

rectangular element [25] and a heterosis plate element [28].

A system of two simply supported plates with a single elastic connection is used. The
transfer mobility from the upper plate to the lower plate is evaluated using two different
FE models; one with an MPC elastic connection and the second with a node-to-node
connection. Results are then compared to an analytical solution.

2.3.1 Finite element formulations

2.3.1.1 Thin plate rectangular element (Non conforming)

This is a four noded element, with one node at each corner. Each node has three DOFs

which describe flexural motion, vertical displacement w and two rotations 6, and 6,

as can be observed in Figure 2.7. It is based on Kirchoff plate theory, therefore it is

assumed that

0. =—and 0, =—— (2.34)

The displacement function can be described in terms of the normalised coordinates &

and 7 as

W=[N1(§a77) Nz(f,ﬂ) N3(§,77) N4(§>77)]We (2.35)

where w, is a vector that contains the element DOFs and
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%(H9519&)(1+’71’7)(2+§j95+’7ﬂ7_652 ~-’)
NJEm)=| S gE)(n, v -) (2.36)
%(1+77.i77)(§/ +95)(§2 _1)

are the element shape functions, where (5_1.,77_/.), j=1,2,3,4 are the normalized

coordinates of each of the element nodes.

The rotations 6, and 6, are evaluated using equations (2.34) and (2.35). When doing so
it is noted that &, is determined by the values of w and 6, at the four nodes as well as
by the values of 6, at nodes 2 and 3. This indicates that when elements are assembled,
6, is discontinuous between nodes. Similarly 6, is also discontinuous between nodes.

This is therefore a non-conforming element.

2.3.1.2 Heterosis element

The Heterosis plate element [28] is a nine-noded plate element that is based on Mindlin
-Reissner plate theory and is shown in Figure 2.8. The central node has two rotations
and each other node has 5 DOFs which describe in-plane and out-of-plane motion (42
DOF in total). The displacement field within the element is interpolated using
serendipity basis functions, whilst the rotations in the x and y directions are interpolated
using Lagrange basis functions. Reduced order integration is used to evaluate the shear

stiffness matrix. This element does not suffer from shear locking and possesses correct

rank. The out of plane co-ordinates (w, 0x,6?y) of a point within the element can be

described as

8
w=> Nw, (2.37)
Jj=1
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0, = Z P60,
j=1
9

ey - Z Pjey,j

where ; indicates the node number and
1 :
N,-=Z(1+5,—5)(1+77,-77)(§,§+77/7—1), j=13,577

Nj _ é:jz (1+§f2§)(1_772)+7712 (1+77/;7)(1_§2)’ j=2,4,6,8

S(1+¢, n\1+n,
P, = M+(1_52)(1_42)J[M+(1_772)(1_77;) J=1-9(2.42)

2b

Figure 2.7: Geometry and coordinate system of a rectangular element.
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Figure 2.8: Node numbering for Heterosis element.

2.3.2 Type of connection
2.3.2.1 Node to node connection

In the case of thin plate substructures with out-of-plane DOFs w, 6, and @, , the elastic

element contains a translational stiffness K, and two rotational stiffnesses K, and K, ,

as shown in Figure 2.1.

The nodal forces and DOFs of the point connection are related by equation (2.1)

K' can be transformed into global DOFs as

K. =A"KA (2.43)

Jjoint

where K is the joint stiffness matrix in global co-ordinates and A is a

Jjoint
transformation matrix that relates the local to the global DOFs [25].
2.3.2.2 Multipoint constraint connection

As described in 2.1, the local DOFs of the joint element in equation (2.1) can be related

to one or more DOFs in the global matrices using a MPC equations. In this case the
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model is assembled as shown in Figure 2.1, where the Gmatrix in equation (2.4) and

(2.5) is given by

el (xr(l)’yr(l)) _ (2.44)

where N, are the element shape functions for node j as defined in equation (2.36).

When heterosis elements are used, G is defined as

NY 0 0
G"= 0 PY o0 (2.45)
o o pY
where
P(I)Z[Pl P, P P P FB PP P9] (2:46)

is the vector of serendipity basis functions for substructure as defined in equation (2.42)

and

N(I)Z[Nl N, Ny N, Ny No N, N (2:47)

Is the vector of Lagrange basis functions for substructure i as defined in equations

(2.40) and (2.41) and the same for G .
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2.3.3 Analytical solution

In this section the transfer mobility for the system in Figure 2.9 is derived, thin plate

theory being used.

Appendix B shows the equations governing the system in Figure 2.9 using a mobility
approach, and it also describes the derivation of the transfer mobility from a force
excitation applied at point 1 on the first plate to a response evaluated at point 4 on the

second plate.

Solving the equations in appendix A, the velocities at plate 1 and plate 2 at the

connection are given by

-1

V(l) Y(l) 0 Y(2)

P EED E N V /4 "2 |F,, (2.48)
A\ 0 Y7 0

where
7' =ioK' (2.49)

is the transfer impedance of the connection, and

A APLEI A

Y L] LJ
DA DA AE D A (2.50)
N ij ij ’
ng’F YHJJ M, 0,.M,

i,j i,j i,j

are the mobility matrices from point i to point j for plate k. The terms in matrix (2.50)

are calculated for thin rectangular plates in terms of a modal summation [26].
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2.3.4 Numerical example

The numerical example is a system of two simply supported parallel plates with an
elastic connection as shown in Figure 2.9. The properties for each plate are given in

Table 2-2. To simplify the analysis all simulations were divided into two cases; the first

in which only the effects of a translational spring K are analyzed and the second in
which only K, is considered in order to analyze the effects of a rotational spring. The

values used for K, and K, are 16000N/m and 1600 Nm/rad respectively. Damping

is introduced as a modal loss factor 77 =0.02.

The transfer mobility from coordinate (0.38, 0.32) in plate 1 to coordinate (0.38, 0.32)

in plate 2 as shown in Figure 2.9 was evaluated. In this example, the co-ordinates of the

spring (x,,,) are (0.1227,0.1614)in both plates.

When the MPC connection is incorporated, the plates are modelled using a mesh of

11x11 identical elements. The co-ordinates of the spring correspond to (2.25 s.,3.5 Sy)

, where s, is the element length in the x direction and s, is the element size in the y
direction. The local co-ordinates of the connection within the element are

(x',y’) = (O.ZSSX,O.SSy) . For the node to node connection a mesh of 22x 22 elements

is used in order to have a node exactly at the elastic connection location.
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Figure 2.9: Two parallel simply supported plates assembled with an elastic point

connection.
L Ly h Y2 E v
(m) (m) (m) (Kg/mS) (N/mz)
Cornponent (1) 0.6 0.5 0.006 7860 2.07E+11 0.3
Component (2) 0.6 0.5 0.012 7860 2.07E+11 0.35

Table 2-2: Properties of each thin plate component for the numerical example.

When Heterosis elements are used to predict the transfer mobility, in the case of a

connection with translational stiffness K, , both connection models have almost

identical behaviour and are in very good agreement when compared to the analytical
solution. Only FE discretization errors are present at higher frequencies as can be
observed in Figure 2.10. At resonance the difference in magnitude between the
analytical and numerical solution is negligible and the first natural frequency is
overestimated by approximately 0.5 Hz, whilst the second natural frequency is
overestimated by approximately 0.3 Hz as shown in Figure 2.11(a) and Figure 2.11(b).

These differences are small and consistent between FE models.

In the case of a connection with rotational stiftness K,_, both connection models are in

good agreement with each other, but there are differences when compared to the
analytical solution, especially at low frequencies where a difference of approximately

2dB can be observed in Figure 2.12. These discrepancies are mainly caused by
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convergence issues in the modal summation when rotational DOFs are involved. The
natural frequencies are overestimated by the same amount as in the translational
stiffness case, as can be observed in Figure 2.13. In spite of these differences, the
performance of the Heterosis elements connected by MPCs is acceptable, having the

same frequency limitation as typical FE models.

When thin plate elements are assembled using a node to node connection, the
predictions are comparable to the results obtained from the Heterosis element. In some
cases this prediction is closer to the analytical solution, as can be observed in
Figure 2.10 to Figure 2.13. On the other hand, when thin plates are connected using
MPCs the solution is significantly in error and different from the analytical solution, as
can be observed in Figure 2.10 and Figure 2.12. The error is generated when the MPCs

are attached to the non-conforming elements, for which 6 is discontinuous between

nodes in the individual plates. Hence, an important overall conclusion is that MPC
connections should not be implemented on any model comprising thin plate non-

conforming elements.
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Figure 2.10: Magnitude of the transfer mobility for a system of two simply
supported plates with a single elastic connection with translational stiffness:
analytical solution; ----- node to node-heterosis; ——— MPC-heterosis;
—-—-- node to node-thin; MPC-thin.
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Figure 2.11: Magnitude of the transfer mobility for a system of two simply
supported plates with a single elastic connection with translational stiffness: (a)
first resonance ; (b) second resonance— analytical solution;
————— node to node-heterosis; ——— MPC-heterosis; —-—--node to node-thin.

-110

-120

-130

-140

-1a0

-160 -

-170

-180

R :

Frequency (Hz)

Figure 2.12: Magnitude of the transfer mobility for a system of two simply
supported plates with a single elastic connection with rotational stiffness:

analytical solution; ----- node to node-heterosis; ——— MPC-heterosis;

—-—-- node to node-thin; MPC-thin.
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Figure 2.13: Magnitude of transfer mobility in a system of two simply supported
plates with a single elastic connection with rotational stiffness: (a) first
resonance; (b) second resonance: analytical solution; ----- node to node-
node to node-thin.

2.3.5 Influence of element size in MPC connections

To study the influence of element size for MPC connections, the same numerical
example in section 2.3.4 was used. The FE model with Heterosis elements and an MPC
connection was modified to change the element size from the original 11x11 element
mesh to meshes ranging from 6x6to 22x22 elements and compared to the analytical

solution.

Since the location of the nodes is changed for every different mesh, the force was
applied and the response calculated using MPCs in order to predict the same transfer

mobility as in section 2.3.4.

It was found that when a spring with a translational stiffness is used, the element size
has a small influence when adapting MPC connections and only differences at higher
frequencies are present, due to discretization errors as can be observed in Figure 2.14.
There is a stiffening effect due to the increase in the constraint area as the element gets
larger; however this effect is negligible since the variations in natural frequency and

peak magnitude are insignificant as can be observed in Figure 2.15.
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On the other hand, when a rotational stiffness is used the estimated transfer mobility is
not as accurate as the translational stiffness case. Moreover, the estimated transfer
mobility is sensitive to the element size; the magnitude changes with the element size as
can be observed in Figure 2.16. If the plotted line below the first resonance is extended
to lower frequencies, it is obvious that even the static solution for this problem is
sensitive to the element size. This problem is not related to the MPC, since the MPC
and node to node connection results are almost identical. Furthermore, the MPC results
are closer to the analytical solution as can be seen in Figure 2.13. This sensitivity is
generated when rotational stiffness is added into the FE stiffness matrix. This will be

addressed and studied in detail on Chapter 4.
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Figure 2.14: Magnitude of the transfer mobility magnitude for a system of two
simply supported plates with a single elastic connection with translational
stiffness:
analytical solution ----- MPC-heterosis 6x6 mesh; ——— MPC-heterosis
22 x 22 mesh.
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Figure 2.15: Magnitude of the transfer mobility magnitude for a system of two
simply supported plates with a single elastic connection with translational
stiffness: (a) first resonance; (b) second resonance: analytical solution
- MPC-heterosis 6x6 mesh; ——— MPC-heterosis 22 x 22 mesh; MPC-
heterosis meshes from 7x7 to 21x21.
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Figure 2.16: Magnitude of the transfer mobility for a system of two simply
supported plates with a single elastic connection with rotational stiffness: (a)
first resonance; (b) second resonance: analytical solution MPC-

heterosis 6 x6 mesh; — — MPC-heterosis 22 x 22 mesh; MPC-heterosis

meshes from 7x7 to 21x21.
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Figure 2.17: Magnitude of the transfer mobility for a system of two simply
supported plates with a single elastic connection with rotational stiffness: (a)
first resonance;(b) second resonance: analytical solution ----- MPC-

heterosis 6x6 mesh; ——— MPC-heterosis 22 x 22 mesh; MPC-
heterosis meshes from 7x7 to 21x21.

2.4 Conclusions

In this chapter multipoint constraints (MPC) were used to apply connections between
flat structures. It was shown that an MPC connection can be placed between nodes of an
FE model and is able to incorporate any change in the location of the elastic connection

in an accurate way.

When beams are connected, results showed that the MPC connection has the same
predictive performance compared to the direct node to node connections. Both models
giving accurate results for point connections comprising a translational or rotational

spring.

Results showed that the MPC connection is not accurate when thin plate elements are
used, due to the non-conforming formulation. In contrast, when the Heterosis element
was used the results showed that the MPC connection is as accurate as the node-to-node
connection.  Additional errors appear when rotational springs are used in the

connection, due to discrepancies between the element formulation and the analytical
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solution. Some convergence issues exist in the modal summation when rotational DOFs

are involved; however the solution is still acceptable.

When a rotational spring is used, the transfer mobility magnitude is sensitive to the
element size. This problem is not related to the MPC, since the MPC and node to node
connection results are almost identical. Furthermore, the MPC results are closer to the
analytical solution. This sensitivity is related to the addition of rotational stiffness into

the FE stiffness matrix. This will be addressed and studied in detail on Chapter 4.

41-



3 VIBRATION ANALYSIS OF STRUCTURES WITH
UNCERTAIN SPOT WELD LOCATION

Spot-welded structures contain inherent variability in the location and/or stiffness of the
spot weld due to the inherent variability of the manufacturing process. This variability
leads to variability in the dynamic response of the structure. An analysis that includes
uncertainty in properties of the joints provides a range of response predictions, adding

more value to the design process compared to a single deterministic analysis.

In Chapter 2 it was seen that in modelling the structure, a model of the joints which is
connected to the substructures by multipoint constraints (MPCs) has clear advantages. It
can be located anywhere in the model and it is not necessary to re-mesh surfaces to

assemble them giving accurate results whatever the location of the joint.

Therefore, MPC connections can improve the computational efficiency when Monte
Carlo simulation (MCS) is used to analyze the dynamic behaviour of built-up structures
with uncertainties in the location of the joints. In this case the MPC connections are
used to model changes in the location of the joint instead of modifying the FE model
from one sample to the next. Nonetheless, as the accuracy of this method depends on
the number of repeated analyses used during the simulation [14], the computational

effort is still high, especially for large scale models.

In order to further improve the efficiency, component mode synthesis (CMS) gives a
sub-structuring framework by which the number of the degrees of freedom (DOFs) can

be reduced [31]. Combining CMS with MPC joint models, the response of the system
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can be evaluated for many joint locations using the same modal representation of the

substructures.

However, if the number of DOFs involved in the connection between structures is
large, the reduction in the model size using CMS is not great because the number of
coupling DOFs is not reduced. Two techniques are proposed to overcome this problem:
(1) characteristic constraint modes [22] and (ii) application of a low rank update theory

[32] to the CMS matrices.

The use of characteristic constraint modes is a technique for reducing the size of a
model generated by the Craig-Bampton method of CMS in which an eigenanalysis is
applied to the constraint-mode partitions of the mass and stiffness matrices and the

resulting modes are truncated to yield a reduced model.

When using the low rank update theory, the receptance matrix is first calculated for the
unassembled system. Then the response of the assembled system is calculated by
updating this response by including the effect of the connection. Here the efficiency is
increased in two ways: (i) most of the CMS dynamic stiffness matrix is inverted only
once during the MCS, (ii) the transformation from CMS coordinates to physical

coordinates is also calculated only once during the MCS.

3.1 Component mode synthesis

CMS is a technique in which a structure is subdivided into components. The static and
dynamic behaviour of each component is described in terms of a set of basis functions,
e.g. the modes of the component. When the higher frequency modes are truncated a
reduction in size is achieved. Another advantage arises in substructuring, where it may
be cheaper to solve the eigenvalue problems of a number of the components and of the
assembled reduced global system compared to solving the complete global eigenvalue

problem [33].

The CMS method was introduced by Hurty [34] who introduced the concept of using

component modes as trial functions or basis vectors. Craig and Bampton [21] simplified
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the method when they showed that rigid body and redundant interface modes could be
treated as constraint modes. There are different variants of the method [35-37] and

reviews of current techniques in CMS are available in literature [38—40].

In this section the general CMS method is described followed by an overview of the
most common types of component modes. Finally the fixed-interface Craig-Bampton

[21] method is discussed in detail.

3.1.1 Background theory

The undamped equation of motion for a structure is given by
Mii +Ku=f (3.1)

where u are the physical DOFs, M and K are the mass and stiffness matrices
respectively and f is the vector of external forces. The structure is divided into N
(1)

substructures, where the mass and stiffness of the i th subsystem are given by M’ and

K", The global DOFs u are partitioned such that

u:[(uu))T (u<z>)’ (uw)ﬂ (3.2)

ul

G
u® = {“(fﬂ} (3.3)
u,

The sub-matrices M and K , that relate to each subsystem are given by

0 (0

, m m

MO =| fe (3.4)
m®% m"?

cl cc
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‘ K(l’) K(i)
) _ 11 Ic
K™= {Kﬂ) K® (3-5)

These form the block diagonal matrices of M and K, i.e.
K= blkdiag(K(l) K® ... K<N>) and M =blkdiag(M" M® ... M(N)) (3.6)

The force vector associated with the i™ substructure is given by

g = |7 3.7)
-1t |

and the equation of motion for each substructure is therefore

( () (@)

MY%" + K "u" =F (3.8)

Consider two coupled components, & and £ that have a common boundary interface,

the coupling DOFs can be constrained such that
ul® = uf,ﬂ) (3.9)
and the coupling forces are related by

£+ =0 (3.10)

A selection of component modes is arranged in a component modal matrix B . Usually
these are one of two general types: kept fixed-interface modes and constraint modes;
kept free-interface modes and attachment modes. The u DOFs can be transformed into

the component modal coordinates q by
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u=Bq (3.11)

where
(@)
qz{q ] (3.12)

It can be shown that the expressions for the kinetic and potential energy, from

Lagrange’s equation of motion for components & and S are given by [41]

. N 1 - (a a) . (a 1 h o

T=—q'pg = —q( )ru( )q( ) +_q(ﬂ)Tu(ﬂ)q(ﬂ) (3.13)

2 2 2
v = Larg = Lq@k@q@ + Lgrmg®) (3.14)

2 2 2

where

u(“) - B“"M“B@ (3.15)
k@ = K@@ (3.16)

are the transformed component mass and stiffness matrices (similarly for component f)

which are assembled as

ll(a) 0 K(“) 0
pn= ) and kK = ) (3.17)
0 pn 0 kK

The conditions to be satisfied in equations (3.9) and (3.10) can be expressed in terms of

the modal coordinates and written in matrix form as
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Hq=0 (3.18)

where H is the constraint matrix. This equation can be partitioned into linearly

independent DOFs / and dependent DOFs d such that equation (3.18) becomes

[H,, Hd,][qd} 0 (3.19)
q,

The Lagrangian for the system can be written as
L=T-V+¢'Hq (3.20)

where ¢ is a vector of Lagrange multipliers. It can be shown that the system equation of

motion is given by [42]
ng+xq=H'oc (3.21)

This can be solved by introducing a linear transformation

q= {q"} ~Cq, =Cv (3.22)
q,

where v is the new set of independent modal coordinates and

-H H
C{ dd ‘”} (3.23)
Ill

is the transformation matrix. The mass and stiffness matrices of the global system are

then found by
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M#% =C'uC and K¢ =C"kC (3.24)
which are reduced in size if the component modal matrix B is truncated.

Substituting equation (3.22) into (3.21), pre-multiplying by C’ and substituting M

and K¢ from equation (3.24), the equation of motion for the system becomes
Mév+K¢v=C"H'e (3.25)

From equations (3.22) and (3.18) it can be seen that HC = 0, therefore equation (3.25)

becomes
M§IV+K§ZV=O (3.26)

3.1.2 Component mode types

Component modes in equation (3.11) are defined as Ritz basis vectors, used for the
reduced description of the static and/or dynamic behaviour of a substructure in a CMS
setting. These may include normal modes of free vibration, rigid body modes, constraint

modes, attachment modes and Krylov vectors [43].

The free-interface normal modes of a component are the eigenvectors of the component

with the boundary DOFs free. They are found from solving the eigenvalue problem
(K-2/'M)g/ =0 (3.27)

and can be combined as columns to give the normal mode matrix ®” . The normal
modes may be divided into a set of modes k to be kept for further calculations and a

complementary set of modes d that will be deleted, i.e.
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" =[] @] (3.28)

Similarly, the eigenvalues A are arranged on the diagonal of the eigenvalue matrix A

and can be divided into sets k£ and d to give

A0
A=k (3.29)
0 Af

If a component is unconstrained, the normal mode set contains rigid body modes with

zero-valued eigenvalues.

The fixed-interface normal modes of a component are the eigenvectors of the
component with the interface DOFs fixed. The size of the eigenvalue problem is
therefore reduced by the number of interface DOFs. It is governed by the elements of

the mass and stiffness matrices associated with the interior DOFs only and given as
(K, -A'™, )4 =0 (3.30)

where /l}ﬁ are the fixed-interface eigenvalues. The eigenvectors ¢[f’ form the columns of
the normal mode matrix ®”, which can be divided into a matrix with kept (k) and

deleted (d ) modes, respectively. The normal mode matrix is then

(3.31)

@' =|:(D1{i q)g:l 2{(1)51 q’ﬁz}

ock Ocd

where the 0, relate to the DOFs of the fixed coupling DOFs. There are no rigid body

modes in Equation (3.31) if the set of fixed boundary DOFs is sufficient to constrain all

rigid body modes of the unconstrained component.
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Static constraint modes will be defined with respect to the interface DOFs and denoted
by the subscript ¢. A constraint mode is the static displacement of all nodes due to a
unit displacement applied to one interface coordinate and with all other interface

coordinates fixed. This can be written in matrix form as

I<II KIC lI’Ic — OIC (3 32)
K cl K cc I cc Fcc '

where W, is a matrix of displacements of the interior DOFs and I is an identity

matrix, which defines zero and unit displacements for all constraint modes. F,. are the

force reactions at the nodes with prescribed displacements and the interior nodes are

force-free. From the first line of Equation (3.32) it follows that
‘Plc = _K;IIKIC (333)

and the complete matrix of constraint modes is given by

K, 'K
v, =[ I” ’C} (3.34)

Rigid body modes appear if a component is unconstrained. They are obtained either as
free-interface normal modes (Equation (3.28)) from the eigenvalue problem or
recovered from constraint modes (Equation (3.34)). However they are often regarded as

a separate class of component modes and will be denoted by P, .

Static attachment modes will be defined with respect to the boundary DOFs and will be
denoted by the subscript a. An attachment mode is the static displacement of all nodes
due to a unit force applied to one boundary coordinate and with all other boundary
coordinates force-free. Since forces are applied, the cases of a constrained and an
unconstrained component have to be distinguished. If the component is constrained the

governing static equation is given by
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-1
Vi _ K, K, 0, (3.35)
‘I’aa Ka] Kaa Iaa

where ¥, and ¥, are the unknown nodal displacements. The identity matrix I,

arises from the forces at the boundary DOFs. All interior DOFs are force-free. A
solution can be found by inverting the stiffness matrix K , where G=K'is the

flexibility matrix, assuming the inverse exists, to give

Tla — GII Gla 0111 (3 36)
lPaa Gal Gaa Iaa .

The attachment modes are then found to be
Gla
Y, = (3.37)

Residual attachment modes may be defined for forces applied at one of the coupling

DOFs at a time with all other DOFs force-free. The force is given in equation (3.35) as
01(1
F, = (3.38)

A set of residual attachment modes is then defined by

¥ =G, (3.39)

a

where G, is the residual flexibility matrix associated with the deleted modes and

related to the free-interface normal mode matrix ® and the free-interface eigenvalues

A
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G, =0 A0 (3.40)

The two most commonly used CMS methods are firstly the free-interface Craig-Chang
method [44] in which residual attachment modes are added to the free-interface modes
to form the modal matrix B . The second method is the fixed interface Craig-Bampton
method [21] in which the fixed normal modes ®” of a component are found with the

boundaries fixed. In order to improve convergence, assure the compatibility of the

components and yield the exact static solution static constraint modes ¥_ are added to

the component modal matrix B .

The free interface method is sometimes preferred since the free interface modes can be
measured more easily than the constraint modes. However, for this application the
Craig-Bampton method offers a number of advantages since the coupling DOFs are

isolated in the reduced matrices as is shown in the following subsection.

3.1.3 Craig-Bampton Method

In the fixed interface method of CMS, the component modal matrix of a component «

is
B =07 V] (3.41)

and the transformation matrix from physical coordinates to component modal

coordinates is given by

u® = B%q% = u(Il _ (I){Ilc _K;Ilch ‘lZ (342)
u’ 0 I q.

c cc

Here the physical coupling DOFs u, are retained, but will be denoted as modal DOFs
q.(i.e. u, =q,). On the other hand the interior physical DOFs u, are transformed into

modal DOFs (. The mass matrix in modal DOFs
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I o
ua:|: ek mkc:| (3.43)

T
m, m

cc

where I, is a identity matrix if the normal modes are mass normalised. The m_,
contains the modal constraint masses and m,_ are the coupling matrices between the

modal q, and q,. The stiffness matrix in component modal DOFs is given by
A 0
K” = [ . } (3.44)

where A, is a diagonal matrix of eigenvalues and K is the constraint modal stiffness

matrix.

The system matrix in modal DOFs is assembled for a system comprising two

components, o and S,

a=[a/ o o o] (3.45)

In order to transform q DOFs into linearly independent modal DOFs v, the coupling
conditions are imposed using equation (3.22), where the transformation matrix C
depends on the conditions at the interface, for example, in the case of rigid connections
u’ =vu’ (3.46)
Which can be transformed into modal space by equation (3.42)
qai =q/ =q, (3:47)

In which case, the matrix constraint equation
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Hq=[0 1 0 -I]lq «q

and

I
I I — I

_—e - O

The reduced global system matrices are found by equation (3.24), so that

1 0
MY=l 0 I
m;" my’
and
AL 0
K¢=| 0 A
0 0

3.1.4 Characteristic constraint modes

a
m ke
B
ke

a
mcc‘f‘m

m
B

cc

0

a B
kcc + kcc

(3.48)

(3.49)

(3.50)

(3.51)

The size of the constraint matrices in equations (3.50) and (3.51) depends on the

number of kept fixed interface modes and interface DOFs. Since there is no reduction of

the interface DOFs, the computational cost of equation (3.72) can be dominated by

these modes, especially for applications involving line and surface coupling of

components where the number of interface DOFs can be considerable compared to the

overall number of DOFs. The number of interface DOFs can be reduced by introducing

characteristic constraint modes [22].

The characteristic constraint modes are the solution of the right-eigenvalue problem
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(KL’C - ﬁ/L’CMCC ) ¢CC = 0 (3 '52)
where, the matrix of characteristic constraint modes
¢cc :[¢1 ¢2 t ¢c] (353)

defines a projection of the constraint component modal coordinates q and q'* (in

equation (3.59) on to a new set of interface basis coordinates g, i.e.

q"

A reduction in the number of coordinates is obtained if only & characteristic modes are

kept so that

b =0 & - 4] (3.55)

consequently, the system matrices in coordinates g are

A 0
Mg _ |: TI/ck . ;Ilkc¢kcc :| and Kg — |: kk . :| (356)
¢kcc m ke ¢kcc M cc ¢kcc 0 ¢kcc K cc ¢kcc

3.2 Craig-Bampton method applied to MPC connections

In order to apply the Craig-Bampton method to use CMS with sub-structures assembled
with an MPC connection, first the system is divided into components. For the example
in Figure 2.2, the system is divided into two components: (1) the upper plate and (2) the

lower plate.
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For each component i, i=1,2, the DOFs are separated into interior and coupling
DOFs,u, and u,respectively. Here, u, are all the DOFs within the area in which the
location of each of the n point connections varies. The group of elements in which each
connection might lie is called a patch. i.e. u, contains every DOF in each of the n

patches. For example, Figure 3.1 shows the coupling DOFs for a system with three
connections with each patch comprising an array of 4x4 elements, i.e. the location of
each connection might lie anywhere within sixteen elements. The normal modes for
each component i are calculated using equations (3.31) and (3.33) are assembled in the

component mode matrix B’ in equation (3.41). It is important to remember that only

some of the normal modes are kept in @, achieving reduction in the size of the system

matrices.
The component physical co-ordinates u can be transformed into the component modal

co-ordinates q using equations (3.42). The component modal mass and stiffness

matrices for each component ;i are given by

n =B"M'B (3.57)

x' =B K'B’ (3.58)

where M’ and K' are the mass and stiffness matrices of component i in component

physical co-ordinates u, p” and k” are the mass and stiffness matrices of component

i in component modal coordinates.

L LS Ll L L LL L L
Sl L L] oL S S L L
L)) S L) S ]
[ LT [ [T [T [ LT T

Figure 3.1: Part of FE mesh of a plate with three point connections allowed to lie within

the highlighted areas. Possible joint location, ® constrained nodes.
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For this system the modal DOFs matrix is assembled as

1)
q;

)
q.
q=| (3.59)
q,
q”

where q,"” are the component modal coordinates and q,"” are the constraint co-
ordinates for the ith component. In this case, a rigid connection between the boundary
DOFs is not applied, instead the boundary DOFs are connected using the stiffness
matrix from the MPC connection K, . defined in equation (2.11) in Chapter 2. In
order to do so, the component modal DOFs q are transformed into linearly independent

component modal DOFs v using a transformation matrix S

q=Sv (3.60)
where
I 0 0O
0 01T O
s = (3.61)
OI 0O
0 0 0 I
and
q;’
)
q
V= qlzl) (3.62)
q;)

The global mass and stiffness matrices in the global co-ordinates v are given by,
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1) (1)
A 0 T K 0
M, =S { . u(”}s and K, =S { . K(z)}s (3.63)
resulting in
I 0 md 0 A 0 0 0
0 1?2 0 m?® 0 A® 0 0
M, = m 0 m® o and K, = o 0 kY o (3.64)
0 m?P 0 m? 0 0 0 kY

ke cc cc

where Al and A!\Y are diagonal matrices of eigenvalues of component 1 and

component 2 respectively, I is the identity matrix of appropriate size and

m 0 KD 0
M, :{ (2)} and K, :{ 0 k@} (3.65)

are the mass and stiffness matrices for the interface DOFs u . K, can be added to

cc

the system stiffness matrices using equations (2.13), (3.63) and (3.64) as

AD 0 0 0
0 AW 0 0
Ky = * M, (D (12) (3.66)
O O kcc + KMPC KMPC
00 KR KK

It can be observed that if the location of the point connection changes within the

element, only the terms in the matrix K, change. This means in order to obtain the

reduced mass and stiffness matrices M, and K, for different connection locations,

only the matrix I' in equation (2.7) needs to be re-calculated and equation (2.11) re-

evaluated, offering a reduction in computation time.
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3.2.1 Frequency response function

The equation of motion for forced undamped vibrations in modal co-ordinates Vv is

given by

M,V +K,v=f (3.67)
If harmonic motion is assumed, v = Ve and f, =F,¢" then

V=[K,-o'M,]|"'F (3.68)

\4

The transformation from linearly independent global modal co-ordinates v to the

physical component co-ordinates u is given in equations (3.11) and (3.60) as
u=BSv (3.69)

One can express the modal forces F, in terms of the applied nodal forces F, as

F,=S'B'F, (3.70)
Then, the receptance matrix A in physical coordinates is given by
2 1 QTRT
A=BS[K,-o’M, | S'B (3.71)
Finally, the response at nodal DOF » with an excitation of unit amplitude at DOF e is
given by the element A(7,e) in the matrix A . Introducing damping with a loss factor

to the global component modal stiffness matrix K, , this response can be evaluated

using the matrix product

A(r.e)=B"S[K, (1 +in)-o'M, | SB (3.72)
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where B”" and B¢ are the " and €” row of B respectively. The method outlined

here is validated in the following section.

3.2.2 Numerical validation

The numerical example is the same system that was used in section 2.3.4. Using MPCs,
the elastic point spring connection is located at the midpoint of the region that surrounds

the area in which the position varies, represented as the shaded elements in Figure 2.9.

Using this position, the transfer mobility from coordinate (0.38, 0.32) in plate 1 to
coordinate (0.38, 0.32) in plate 2 as shown in Figure 2.9 was evaluated. When the
Craig-Bampton method is applied, all the DOFs in the shaded elements are set as
boundary DOFs. When the component mode matrix B’ is assembled using equation
(3.41) fewer modes can be kept in order to further reduce the DOFs of the system and
reduce computational time. When more modes are truncated, the frequency range over
which the solution is accurate is reduced, i.e. the accuracy at higher frequencies is lost
but the accuracy at lower frequencies is maintained. Therefore, depending on the

frequency range of interest the computational efficiency can be further improved.

When the Craig-Bampton method is applied in this example, it was found that only the
first 25 modes of component 1 and the first 7 modes of component 2 are necessary for
errors of 0.5% or less at all frequencies below 1000 Hz when compared to the full FE
solution. Fewer modes of component 2 are required, because it is stiffer with fewer
modes in the bandwidth considered. When CMS is applied, the computational time is
reduced by nearly 90%. The comparison between CMS results and results for no

component reduction are shown in Figure 3.2(a) and Figure 3.2(b).

The FRFs calculated by retaining fewer modes in the CMS solution are shown in
Figure 3.3. It can be observed how the frequency range in which the CMS solution is
accurate is reduced as the number of kept modes is reduced. For example, if the
frequency range of interest were up to 100 Hz, keeping only 3 modes of the upper plate

and 1 of the lower plate is sufficient to give accurate results.
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Figure 3.2: Transfer mobility: (a) translational stiffness connection and (b)
rotational stiffness connection: full solution+node to node;
""" CMS+MPC.
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Figure 3.3: Transfer mobility at baseline position with a translational stiffness
connection: full solution; == == CMS: (a) 25 + 7 kept modes; (b) 12 + 3
kept modes; (c) 6 + 2 kept modes; (d) 3+1 kept modes.
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In order to validate the model for different coupling conditions, the CMS+MPC model

is compared to the full solution of the node to node connection model using different

values of the point translation stiffness: (a) K < D(';f, (b) K, zD(lx and (c)

K, > D({jj, where D(fj is the sum of the point dynamic stiffness of infinite plates with

the material properties and thickness of each connected plate, i.e.

Dy

oo)(a))zia)S phB' (3.73)
is the dynamic stiffness of an infinite plate, where p is the density, /4 is the thickness

and B’ is the bending stiffness of plate given by

ER’

Br:lZ(l—uz)

(3.74)

where E is the Young’s modulus and v is the Poisson ratio.

For the previous numerical example, when the static stiffness of the connection

K, =16000N/m is compared to the sum of the magnitudes of the dynamic stiffnesses of

the connected plates at 1000 Hz, D(l;i =2.72x10" N/m, it can be observed that

1+2
K, <Dg-

For different connection stiffness values, the CMS+MPC model is in good agreement

with the node to node connection and full solution as can be observed in Figure 3.4. It

can be seen that when K, =10° the connection is effectively rigid.
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Figure 3.4: Transfer mobility at baseline position with a translational stiffness
connection: full solution, node to node; ====- CMS+MPC with 24 and

7 kept modes for plates 1 and 2 respectively: (a) K, =10*N/m; (b) K,, =10°
N/m (¢)K,, =10 N/m;

3.3 Characteristic constraint modes applied to MPC

connections

When analyzing a structure with uncertain MPC connections using the Craig-Bampton
method outlined in section 3.2 it can be seen the computational cost of equation (3.71)
and (3.72) is associated with the number of coupling DOFs. When this is applied to a
built up structure, the number of coupling DOFs increases if the number of connections
increases or the size of the elements in the FE model is reduced. In order to reduce the
number of DOFs and reduce computational cost, characteristic constraint modes are
applied to the CMS matrices in which the MPC stiftness is included (see equation

(3.66)). In that case, equation (3.52) becomes

(KX -2M, )@k =0 (3.75)
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The constraint component modal coordinates q" and q'* are then transformed on to a

new set of interface basis coordinates g , i.e.

q"

MR 676
q®?

A reduction in the number of coordinates is obtained if only some of the lower order

characteristic modes are kept so that

(I)i:j:[@ ¢ - ¢k] (3.77)

Consequently, the system matrices in coordinates g are

AK
M - L m, @, and
g (I)AKT T ‘I)AKTM DK
kee mkc kee cc

kee

Ay 0
K, = " (3.78)

kee kee

Finally, to calculate the response at DOF » due to an excitation at DOF e, equation

(3.72) becomes
A(r,e)=B SO [K, (1+in)-o'M, | @S B (3.79)
where only @' needs to be recalculated for point connections at different locations.

3.4 A low rank update theory in the frequency domain

When there is uncertainty in the location of the connection point and MCS is being

preferred, multiple evaluations of the FRFs are required. This can be computationally
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expensive. In this section a method to improve the speed of the estimation of the
response in physical coordinates u of a system with uncertainties in the point
connections properties is described. This method uses a low rank update approach in the
CMS framework. The low rank update is based on the Woodbury matrix identity [45] ,
which has been used extensively in signal processing [46—49] but lately being applied in
the structural dynamics field [50-54]. The rank one version [55], also known as the
Sherman Morrison identity, has also been applied for analysis of uncertainties in

structural dynamics by Lecomte [32].

The response of a nominal system, i.e. the unassembled structure in p coordinates in the

frequency domain is calculated as

x(0)=A(w)'F (3.80)

where A(®) is the dynamic stiffness and is given by

A(o) =K, (1+in)-o’M, (3.81)

When a disturbance D(a)) is added to the nominal system, equation (3.80) can be

written as
[A(0)+D(0)]x'(0)=F (3.82)

where x'(a)) is the updated response and D(a)) is the dynamic stiffness of the
disturbance. It is assumed that D(a)) is a low rank matrix and can be expressed as the

outer product of given left and right vectors d, and d, as

D(w)=d,(»)d,’ (o) (3.83)
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In the current analysis, the disturbance is given by the connection stiffness matrix K,

defined in equation 2.11 as function of the connection stiffness matrix in local physical

coordinates AK'

K, =(TE) AK' TE (3.84)

Equation (3.84) can be rewritten as an outer product of d, and d_

D(®)=K,,c =d,(0)d,” (0)=(TE) AK' = (3.85)
where
d, =(rz)’ (3.86)
and
d'=AK'TE (3.87)

It can be seen that when the system is disturbed by an MPC connection the assumption

that the disturbance is a low rank matrix is always perfectly met.

Substituting equation (3.83) into equation (3.82) and after some manipulation leads to
¥ (0)=A(0) [F+dd ¥ (0)] (3.88)

it can be seen that x'(a)) occurs on both sides of the equation. To solve this equation,

expression (3.88) can be premultiplied by d,” and manipulated in order to obtain
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-1

dx(0)=[1-4A(0)d,|

d"A(w)"'F (3.89)
Substituting this expression into the right hand side of equation (3.88) gives
xX(w)=A'(0) F (3.90)

where

Finally, the response in coordinates p can be transformed into physical coordinates u

can be performed using equation (3.69) as

-1

A(r.e)= B’*S[A(a))_l F+A(0)'d|1-d/A(0) | d A(e) F}STBQ*T (3.92)

Substituting equations (3.86) and (3.87) into this expression and some manipulation

leads to

A(r,e)=B"SA (@) FS'B*" +
* y . 4 (393
| B'SA(w) ETFT}HI—AKTEA(CU) =T | AK’}[FEA(@) FS'B” |

where the first term represents the transfer function of the nominal unperturbed system.
The second term represents the effect of the perturbation to the transfer function, here
the first factor represents the transfer function between the response DOFs to the
connection location in the first unperturbed subsystem; the second factor represents the
full receptance matrix of the connection in local DOFs considering the disturbed

system and finally the third factor represents the transfer function from the location of
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the connection to the excitation location in the second unperturbed subsystem, this is

illustrated in Figure 3.5.

Given the separation of terms, it can be seen that the transfer functions of the
unperturbed system could be replaced by FRFs measured experimentally giving a

framework for hybrid analysis.

In order to improve the efficiency of evaluating equation (3.93), when applied in a

MCS, it can be re-arranged as

A(r,e)=B"SA(w) FS'B" +

[1]

[BSA(a)" ET}[FT [1-AKTZA(0)" TFTT AKT}[EA(@)I FS'B | ’

When equation (3.94) is used to calculate the response of a system with uncertain point
connections, the efficiency is improved in the following ways: (i)A(a))f1 ,2,B and S

are invariant to changes in the connections, therefore they are calculated only once

during a MCS. Hence, the first term and the first and third factors in the second term are
calculated only once in the MCS. (i1) A(a))_1 is calculated in the CMS co-ordinates,

therefore the size of the matrices are smaller in comparison to the original matrices of
the system. (iii) Since the first and third factors in the second term are vectors, the final
multiplication is computationally cheap. (iii)) The computational effort to invert the
second factor of the second term is small since the sizes of the matrices to be inverted is

equal to the number of DOFs in the connection.
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Figure 3.5: Graphical representation of the second term in equation (3.93): e first

factor; — — — second factor; —-—- third factor.

3.5 Numerical Example

The numerical example is a system of two plates with free edges and five elastic
connections as shown in Figure 3.6. The plates are modelled using a mesh of 22x22 and
22x20 heterosis elements [28] and any offset in the plates was ignored, (i.e. both plates
have the the same centerline). In order to avoid symmetry in the x and y direction, the
first plate is 10% wider and 10% thicker than the second plate. The properties for each

plate are given in Table 3-1.

The stiffnesses values of all five connections are K, =1x10"N/m and
K, =K, =1x 10*Nm/rad . As a baseline, the connections are located at the midpoint of

the area in which the position varies, represented as the shaded elements in Figure 3.6.

Using this configuration, the transfer mobility from coordinate (x,,y,) = (0.0836,

0.0364) in plate 1 to coordinate (x,,y,) = (0.0836, 0.0836) in plate 2 was evaluated

using a full modal solution and two different approximations: (1) CMS in which only

the first 30 normal modes of each component were kept and 710 constraint modes, here

-69-



CHAPTER 3

the DOFs are reduced from 10686 to 770; (2) CMS and truncation of the characteristic
constraint modes using equation (3.79), in which only 16 modes were kept from a total
of 710 constraint modes in order to keep the prediction error lower than 1% for all
frequencies below 1000 Hz when compared to the full solution; (3) CMS matrices
solved using a low rank update theory as in equation (3.93), this method is exact when
compared to the CMS method, no additional approximations are made, therefore a

maximum error of 0.5% can be maintained.
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Figure 3.6: Two free plates assembled with five elastic point connections.
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L L, h P E v
(m) | (m) | (m) [(e/m)|(rome)
Plate (1) 0.23 0.2 0.0022 7860 2.07E+11 0.3
Plate (2) 0.23 0.182 0.002 7860 2.07E+11 0.3

Table 3-1: Properties of the plates.

The low rank update approach is more accurate than the reduced characteristic
constraint modes approach since it does not involve further approximations. This can be
observed in Figure 3.7. Even though it was ensured to keep a good agreement in the
CMS methods below 1000Hz, it can be seen that the solutions start to deviate from the

full modal solution especially the CMS + characteristic constraint modes method.
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Figure 3.7: Transfer mobility of the baseline configuration: full modal
solution; ———— CMS and 16 kept characteristic constraint modes; = = = CMS
and update theory.
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Figure 3.8: Computational time when evaluating FRFs as function of the number of
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The low-rank update approach leads to approximately 99% reduction in the
computational time when compared to the pure CMS method, as can be seen in
Figure 3.8. When the number of interface DOFs N is large (N >1000) it saves nearly
90% in the computational time when compared to the CMS with truncated characteristic
constraint modes. The computational time for this approach depends mainly on the
number of connections since it defines the size of the inverse operation, but it is also
determined to a lesser extent by the number of interface DOFs because this number
defines the size of the rest of the matrix operations (i.e. multiplications and additions) as
can be seen in equation (3.93). On the other hand, when the characteristic constraint
method is used to reduce the size of the problem, the computational time depends
almost entirely on the number of interface DOFs, since the most expensive operation
performed when this method is used is the eigenvalue solution of the mass and stiffness

matrices of the constrained DOFs.

The dependence of the computational time when evaluating the FRFs on the number of

interface DOFs of all methods is shown in Figure 3.8. The update theory method is not
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only cheaper than any other method but also scales better with the number of interface
DOFs, N, growing for large N as N**° as compared to N> for the CMS and
characteristic constraint modes method. Therefore, the proposed approach reduces the

computational time by factor of approximately N [56]. If the computational time is

extrapolated for a full body in white with 3000 spot welds and 1.26x10° DOFs (42
DOFs per spot weld) it would take 2.4 days to solve the model using the proposed
method. This number can be further improved using optimized algorithms and parallel

computing with larger number of processors and increased RAM memory.

The results show that for FRFs calculation, the update theory is the preferred method, it
is the cheapest method at all ranges on N and scales much better. However, if the
statistics of the natural frequencies and mode shapes need to be computed when the
update theory approach is followed, the calculation of the natural frequencies and
modeshapes would lead to a different analysis, (i.e. would require a further modal
analysis) and a considerable increase in the computational cost. On the other hand,
using the characteristic constraint method there is not an increment in the computational

cost when the natural frequencies and modeshapes are calculated.

3.5.1 Uncertainty analysis

As reference, the first four natural frequencies and modeshapes of the baseline
condition will be analyzed. In this condition all the connections are located at the centre
of the regions in which the position are allowed to change. Strain energy in the

assembly is also analyzed.

The first natural frequency is a fundamental flexural mode in which the midline of the
assembly experiences large deflections while the strain is maximum at the locations of
the connections as can be observed in Figure 3.9 and Figure 3.10. The second natural
frequency is a fundamental torsional mode in which the displacement is minimum at the
connections location, however the strain is maximum at the midline of the assembly and
equally distributed on the overlap area. The next mode is a second bending mode in
which the displacement and strain are minimum at the midline and in general over the

overlapped area. Finally, the fourth mode is a mixed third bending mode with cross
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bending. In this case, the displacement and strain are maximum again in the midline of
the assembly, but due to the presence of cross deflection, the strain energy is maximum

at the outer connections.

For the uncertainty analysis, a MCS with 500 samples is used to estimate the envelope

of the transfer mobility. The (x;,y,) coordinates of each of the i point connections are

independent Gaussian random variables with their mean ( ,uxi,,uyl.) located at the

baseline position and

0,=0255 and o, =025, (3.95)

where S, and S, are the x and y length of each element. In this case, the samples for

which the coordinates of the point connection lay outside the element were discarded

(<0.1% of the sampled locations).

Figure 3.9: Modeshapes for the baseline condition
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Figure 3.10: Strain energy computed for the first four assembly modeshapes.

Being the most time efficient method to calculate the FRFs in a MCS, the low rank

update method is then applied for the subsequent uncertainty analysis.

The results from the MCS can be observed in Figure 3.11, where the FRF envelopes is
together with the baseline FRF. Here it can be noted that the first and fourth natural
frequencies are more sensitive to the connection locations since the strain energy is
concentrated in the connections, small changes in its location affect the stiffness of the
assembly in that area impacting on these natural frequencies. For the second and third
natural frequencies, the strain is equally distributed in the overlapped area (where the
connections lie), therefore these natural frequencies are less sensitive to changes in the

connections (see Figure 3.9 and Figure 3.10).

For the baseline configuration for which all the connections lie at the midline, the
natural frequencies are close to the maximum values within the MCS results since the
midline experiences the highest strain values; when the spot welds deviate from this line

the modal stiffness in the assembly is reduced. This means that the natural frequencies

for the case in which the connections are in the mean location i.e. (x,,y,)= ( M ,uyl.)

are different to the mean natural frequencies of the ensemble (Figure 3.11 and

Figure 3.12). The probability density functions (PDFs) of the natural frequencies are not

Gaussian, even though (x,., yi) are Gaussian variables, as can be observed in

Figure 3.12.
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3.5.1.1 Broken or missing weld

In order to estimate the variability in the vibration response of this system due to

missing or broken welds when the position of the remaining welds is uncertain, a MCS
with 500 samples is used to estimate the envelope of the transfer mobility. The (xl., yl.)
coordinates of each of the i point connections are assumed to be independent Gaussian

random variables with their means ( s ﬂy,-) located at the baseline position and their

standard deviation are given by equation (3.95).
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Figure 3.11: Response envelopes for the magnitude of the transfer mobility using
MCS with 500 samples: ——— Maximum-minimum;

baseline.
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Figure 3.12: PDFs of the natural frequencies for MCS with 500 samples: (a) first ;
(b) second; (c) third; (d) fourth natural frequencies: MCS; === @, ;

X a)n(#"”y"i) j T @, + one standard deviation.
The stiffness of a missing or broken weld is set to zero. In doing so, the inverse of the
unperturbed system and the CMS matrices do not need to be re-calculated. The 5 to
95% response envelope is computed for five cases; in each case one of the five spot
welds is absent. This envelope is then compared to the random case with no absent

connections. The results are shown in Figure 3.13.

When any spot weld is absent, the translational and rotational stiffness of the joint is
reduced. This affects especially the first flexural mode since the strain energy is
concentrated in the connections as can be observed in Figure 3.10. Then, the bounds of
the first natural frequency are extended, especially when the outer connections are
broken. This effect can be observed in Figure 3.13. On the other hand, the third natural
frequency is relatively insensitive when any of the connections is absent because the
strain energy is higher in the middle of the individual plates and lower in the connection

arca.
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In general, the response is not affected greatly when the inner spot welds are missing.
However, when the outer spot welds are missing there is a general change in the

response envelopes as can be observed in Figure 3.13 (a) and Figure 3.13 (e).

dB (re 1m/Ns)

dB (re 1m/Ns)

dB (re 1m/Ns)

dB (re 1mV/Ns)

dB (re 1m/Ns)

10° Frequency (Hz) 10

Figure 3.13: 5%-95% response envelopes for the magnitude of the transfer mobility
using MCS with 500 samples: a) first; b) second; c)third; d)fourth; e)fifth spot
weld being absent; baseline ======' absent spot weld.

-78-




VIBRATION ANALYSIS OF STRUCTURES WITH UNCERTAIN SPOT WELD LOCATION

3.6 Conclusions

In this chapter multipoint constraints (MPC) in combination with component mode
synthesis (CMS) were used to predict the response where there are uncertainties in the

joint locations in a finite element (FE) model.

In chapter 2 it was shown that an MPC connection can accurately model the effects due
to a change in the location of the joint. In this chapter it was seen that CMS gives a sub-
structuring framework and a reduction in the number of the degrees of freedom (DOF)
of the model. Combining both approaches, the response of the system can be evaluated
for any connection location using the unchanged modal representation of the

substructures in an accurate and numerically efficient manner.

However, when the number of degrees of boundary DOFs is large, then the CMS size
reduction is less efficient since the number of the interface DOFs is not reduced. Two
techniques are proposed to overcome this problem: (i) characteristic constraint modes

[22] and (i1) low rank update theory [32].

The vibration response was calculated using these approaches for different connection
positions and compared to a full modal solution. The predictions obtained gave a good
agreement and the computational time was reduced by approximately 99% when
compared to the full modal solution. When compared to the characteristic constraint
mode method, the low rank update approach leads to a reduction in the computational

time ¢ at a rate of £°.

The last approach was used in a Monte Carlo simulation (MCS) with 500 samples to
evaluate the variability in the vibration response. The results show that probability
density functions (PDFs) of the system natural frequencies are not Gaussian even

though the connection locations are Gaussian variables.

Finally, a second MCS was used to evaluate the variability in the vibrational response
due to missing or broken connections and/or uncertainty in the location of the spot-

welds in a model of two plates with five spot welds. Results show that, for the example
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considered, when any of the inner spot welds is missing and the location and size of the
remaining connections is uncertain the vibration responses lie approximately within the
bounds of the case in which all the connections are present. On the other hand, when
any of the outer connections are absent the variability in the vibration response is

greater.
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MPC CONNECTIONS

As mentioned before, the spot weld is one of the most important structural joints in the
automotive industry; a vehicle body typically contains thousands of spot-welds. The
finite element (FE) method can be used to analyze spot welded structures and several
models have been proposed in the literature. However, there are still issues in the

application of these models.

In Chapter 2 it was seen that when MPCs are used to connect the elastic component to
the substructures (solid, beam or springs) [7], [10], the connection can be placed at any
location using the existing surface meshes. This latter feature offers a great advantage,
since it is then possible to assemble components with different mesh characteristics or
to assemble components with complex geometries, for which it is very difficult to have
coincident nodes. Unfortunately, it was also seen in Chapter 2 that when a rotational
spring is used in the spot weld model, the transfer mobility magnitude is sensitive to the
element size. Moreover, Palmonella et al. identified the element area as a parameter that
can be updated in order to reduce the error in the prediction of dynamic properties in a
FE model when compared to experimental measurements [57]. It has also been found
that for dynamic predictions, some of the lowest natural frequencies do not converge

even if the element size is much smaller than the wavelength [58], [59].

In this study the cause of the large sensitivity to element size is identified and in order
to overcome this difficulty a spot weld model base on MPC connections is proposed.
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This model provides a better physical representation of the spot weld and as a result the
forces at the connections are distributed over an area imposing a surface to surface link
between the structures. This model is robust to changes in the mesh size and coincident

meshes are not required.

In the following section the sensitivity of spot weld models to element size is discussed
and demonstrated in an example of two simply supported plates with a single
connection; which is the same example used in section 2.3.4. In section 4.2 a spot weld
model robust to element size is proposed. In section 4.3 the application of the new spot-
weld model is demonstrated in a model of two simply supported plates with three point
connections. In order to evaluate the performance of the proposed element, mesh
sensitivity and convergence are evaluated. The resulting natural frequencies are

compared to experimental measurements. Finally conclusions are given in section 4.4.

4.1 SENSITIVITY OF SPOT WELD MODELS TO
ELEMENT SIZE

In this section the sensitivity of the diagonal terms in the stiffness matrix of a Heterosis
element with respect to element size is discussed. When the out of plane behaviour is
studied, it is seen that the terms associated with the rotational DOFs are sensitive to the

element size.

When two plates are connected using any of the existing spot weld models, constant
stiffness values are added to all the diagonal terms of the DOFs involved in the
connection. The magnitude of the plate rotational stiffness depends on the element size,
while the added rotational stiffness does not, resulting in natural frequencies and/or

dynamic or static solutions that are sensitive to element size.

To illustrate this, consider the Heterosis plate element [28]. This is a plate element
derived from the Mindlin-Reissner plate theory. Midlin-Reissner plate theory is used to
describe thick plates behaviour, however, as reduced order integration is used to
evaluate the shear stiffness matrix, this element does not suffer from shear locking,

possesses correct rank and can be applied to both thick and thin plates. This element is
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described in detail in section 2.3.1.2. The out-of-plane co-ordinates (w, 0..0, ) of a point

within the element are described in equations (2.37),(2.38) and (2.39). These equations

can be written in matrix form as
o (x,y) =0 P 0]|d 4.1)

where the nodal displacement vector is given by

d,=[w o o ] (4.2)

e J
where ;j indicates the node number.

For out-of-plane vibration, the stiffness matrix of a plane isotropic element based on

Mindlin-Reissner plate theory comprises bending and shear contributions [60], i.e.
K=K, +K, (4.3)

where the bending contribution to the element stiffness matrix can be expressed as

3
K, = 1t_2 [(BID,B,)dA 4.4)

A

and the contribution from the shear stiffness is given by

K, =¢[(B/D,B,)d4 (4.5)
A
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where 4 is the area of the element, B, and B, are the strain-displacement matrices

given by

T
0 0 oP
ox
T
B,=|0 _op 0 |, B,
y
0 _GPT oP’
| ox oy |

and the matrices of the material constants are

ONT

3 0 P’
X
ONT (4.6)
-PT 0
Oy
kG O
D, :{ 0 G} 4.7)
K

where E is the Young’s modulus, v is the Poissons ratio, G is the shear modulus and

x 1s the shear correction factor. The shear correction factor is an empirical constant

applied to improve the accuracy of the predicted wave velocity. Generally this constant

is taken to be 5/6.

Since the basis functions N and P in equation (4.6) are defined in terms of & and 7,

the appropriate derivatives are then given by

ON’ ON" | | ONT
ox | | 05 || ox | L.
ON’ = oN” |”| oNT =]
oy on y

where J is the Jacobian transformation matrix
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o
J= o5 0 (4.9)

o

on 0On

Rather than evaluating the integrals in equations (4.4) and (4.5) in physical coordinates,

it is more convenient to evaluate the integral over the non-dimensional domain(f,n) ,

resulting in
K =_t3 .[1 Il (BTI) B )|J|d¢fd77
SR VECIE (4.10)

and

Jdédn (4.11)

szth:(Bﬁst)

When the integrals in equations (4.10) and (4.11) are evaluated it is found that the

values for the rotational DOFs in the leading diagonals of K, and K| are

31~V
K =K =C M (4.12)
b(6x,0x) - b(0y.0y) b 1_ v2 :
and
3 . Eiss,
K =C (4.13)

where C, and C, are constants that depend on the node number, mesh characteristics,

the shape functions and the integration scheme used in the particular element

formulation. For example for the first corner node in the Heterosis element,
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C, ~0.0389 and C, ~0.00514 (4.14)

Following equations (4.12), (4.13) and (4.3), the stiffnesses values for the rotational
DOFs are

v Ets.s,
K(Qx,gx) =K(¢9y,9y) = Cb (l_vz) 1—5 +Csm (415)

The relative contributions to these rotational stiffnesses from the bending and shear

contributions are:

(3(31__‘;)](32? j (4.16)

Thus the contribution to the total stiffness from the shear term is large compared to that
of the bending contribution except when the element dimensions (width and length) are

much smaller than the thickness 7, i.e. s ,s , <<t. Hence the rotational stiffness terms

in the leading diagonal of the element stiffness matrix depends on the element

dimensions.

In contrast, the value for the translational degrees of freedom in the stiffness matrix is

independent of s ,s, , the bending contribution is equal to zero, and the shear

contribution is given by

Et
K =C
(w,w) s,W (1+V)

(4.17)

As can be seen in equation (4.15), the rotational stiffness values in the element matrix
depends on the element length. On the other hand, the rotational stiffnesses of the
general spot weld models (CWELD, ACM2 and the simple MCP connection) are
constant and independent of the element size [7], [10], [61]. Therefore, when the
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stiffness matrices are assembled, the relative magnitude of the rotational stiffness added
to the substructure stiffness depends on the element size, resulting in solutions which

are sensitive to the element size. This effect is illustrated in the following example.

4.1.1 Numerical example

The numerical example used in this section is the same used in section 2.3.4: a system
of two simply supported plates with a single elastic connection as shown in Figure 2.9.
The material and geometric properties are given in Table 2-2. The plates are modelled
using a mesh of identical rectangular Heterosis elements. Different element sizes
ranging from 0.006 to 0.12 m are chosen in order to calculate the static deformation at

point (0.38, 0.32) in plate 2 to a force at coordinate (0.38, 0.32) in plate 1.

The connection is modelled using the same MPC connection described in section 2.1.

Two cases are analyzed when either a single translational or rotational spring is used. In

the first, the translational and rotational spring stiffnesses are K, =16000 N/m ,
K,, =0 Nm/rad and K, =0 Nm/rad respectively; the second case corresponds to

K,=0 N/m, K, =1600 Nm/rad and K, =0 Nm/rad . An analytical solution of this

system was estimated using a mobility approach in section 2.3. The numerical results
are compared to this analytical solution and are presented in Figure 4.1. It can be seen
that in the case in which only a rotational spring connects the plates (case 2) the static
solution depends on the element size and does not converge as the element size
decreases. On the other hand, when only a translational spring is used (case 1), the
solution is not sensitive to the element dimensions; furthermore the error when

compared to the analytical result is very small.

One way to remove or reduce the sensitivity of the model to element size is to develop a
connection model that does not add stiffness to the rotational DOFs, but instead add an
equivalent rotational stiffness to the system using an array of translational springs. Such
a connection model is described in the following section and subsequently applied to

spot weld modelling.
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Figure 4.1: Receptance at 0 Hz as a function of element size; a) translational spring,
b) rotational spring; (O Finite Element solution, = = analytical solution.

4.2 Proposed spot weld based on MPC connections with

equivalent rotational stiffness.

In this model, the spot weld is assumed to be circular with radius ». In order to add

rotational stiffness to the connection, the proposed spot weld model contains N

translational vertical springs (N > 2) located along the perimeter of the spot weld at

angles of MTP where p=1,2---N (see Figure 4.2). For a required equivalent

translational stiffness, K, the translational stiffness of each individual spring

w,eq °

KWG
K =—ue (4.18)

The equivalent rotational stiffness is given by

ul 27
Ky = K, 7 cos’ (T]j (4.19)

J=1

Applying the identity (cos” x =1/2 (1 +cos (2x)) ), equation (4.19) can be rewritten as
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51 4rj 1 51 4rj
K, =Y —Kr*|l+cos| —L ||=K r*| =N+ —cos| —~ 4.20
Ox,eq Z 2 wr ( ( N jj WI" (2 jz_ll 2 ( N jj ( )

N .
Given that Zcos (4%} =0,

j=1
K, =—K’N 4.21)

One can show similarly that the rotational stiffness K, , =K, ,, 1s independent of the

Ox,eq

rotational axis. Considering equation (4.18), we have that

K, =—K. r’ (4.22)

0,eq 2 w,eq

Equation (4.22) shows that K, is independent of N. It was also found that even if the

xand y axes are rotated an angle 6 . ,K

wis » Koy 18 Independent of 6, .. for N >3. It was
also seen on section 3.3 that the computational efficiency of the low rank update
method depends on the number of DOFs involved in the connection. Therefore, three

springs are recommended in terms of computational efficiency (see Figure 4.2).

The main advantage of this model compared to the simple MPC model in section 2.1 is
related to the fact that the new model provides a surface to surface link between
components, in doing so the physics of the connection is modelled in a better way and

the area of the spot weld is consistent with the spot weld dimensions. Finally K, is

proportional to the spot weld radius as can be seen in equation (4.22) and not to the

element length.

For in-plane vibration springs in the appropriate direction are added in the central
position of the weld. This has been proven effective in practice [5], [62]. The local
DOFs of the individual springs are attached to the structures using MPCs in the same

way as the simple model in section 2.1. The springs can be attached to the same or to
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different elements of the structure. Thus not only can the spot weld be located anywhere
in the model but it can also join structures with different mesh characteristics as shown

in Figure 4.2.

4.3 Experimental validation

The experimental set-up comprised an assembly of two overlapped identical steel plates
with free-free boundary conditions and with three spot welds along the overlapped area.
This set-up was used previously by Lardeur et al [58]. The spot weld size is 7 mm and
the plate thicknesses are 1.96 mm. According to Lardeur [58], this value was chosen
because it is thin enough to satisfy thin plate theory conditions and thick enough to

reduce effects due to geometrical imperfections. The geometry is shown in Figure 4.3.

The assembly was hung by rubber bands to replicate free boundary conditions. The first

plate was excited using an LDS V201 shaker attached at coordinate
(x,,»,)=(84mm, 36mm). The input force was measured using a PCB force gauge, type
208C01, screwed to a threaded stud which was glued to the plate using epoxy glue. A

25 mm long stinger was used to connect the force gauge and the shaker in order to

minimise the effects of moments transmitted from the shaker.

The response was measured using a PCB accelerometer attached to the second plate at

coordinates (x,,,)=(314mm, 84mm) and (x,,y,)=(236mm, 185mm) . A stepped

sine signal was input to the shaker with a fine frequency resolution around resonances.
The signals from the transducers were acquired by a Data Physics DP240 analyzer and
the signls were postprocessed using MATLAB. The test was repeated six times for two
different samples. In each case, the plates were dismounted from the experimental set-

up and then mounted again.

The natural frequencies f, are estimated from the measured FRFs using the single DOF

circle fitting method [63]. In the frequency range of interest twelve modes were
observed: 6 rigid body modes and 6 elastic modes. Only the elastic modes are

considered in this study. The measured natural frequencies are given in Table 4-1.
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Figure 4.2: Graphical representation of the spot weld model: —— shell elements;
——-  multipoint constraints; ---- spot weld region.
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Figure 4.3: Geometric description of the spot welded assembly: ‘ excitation
position; §response positions.
Mean natural frequencies (Hz) and standard deviation (%)
mode 1 mode 2 mode 3 mode 4 mode 5 mode 6
fi |0, 5 |o, R fi |9, S5 | os fs |9
Assemhly 1] 52.380.07114 82.54{ 0.03643 154.66 0.00364 164.0540.00843 272.18 0.0288¢ 289.73 0.0144(
Assemhly 2 | 51.96/ 0.09499 81.98(0.09244 152.29 0.0378] 163.950.03129 271.1¢ 0.03923 289.95 0.02719

Table 4-1: Measured mean natural frequencies / and normalized standard

deviation O of these values.
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These results show that the experimental variation of the measured natural frequencies
is small between the measurements of the same assembly, while the difference between
assemblies is greater but still small. Therefore these values will be used as reference for

the numerical model.

4.3.1 Numerical model

The numerical model is shown in Figure 4.3. The plates were modelled using Heterosis
elements [28]. The Young’s modulus and density were estimated experimentally from
beams cut out from the original assemblies. The dimensions of the beams were
measured using a vernier calliper and the thickness was measured using a micrometer.
The mass was measured using a mechanical balance with 0.01 gram resolution. The

dimensions and weight of the beams are in Table 4-2. E is estimated using the

measured fundamental frequency @), and the analytical formula

k1)
oy = El, (k1) 14) (4.23)
pA, 1

where p is the estimated density, / is the measured length. 4,, /, are the cross section

and second moment of area of the beam calculated from the measured dimensions. (k,/)

is the first non-zero solution to the transcendental equation of beams with free boundary

conditions (cosh (kl)cos(kl)= 1) )

w,, was estimated using the circle fitting method [63] on the measured FRFs. The FRFs

were measured using an impact hammer to excite the beam and the response was
measured at the antinodes using a laser vibrometer to avoid mass loading. The beams
were hung at the nodal points using elastic bands. The estimated properties are shown in

Table 4-3.
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/ a b Wy, weight
(m) (m) (m) (rad/s) (kg)
0.2 0.02 0.00196 1637 0.062

Table 4-2: Beam measured dimensions and weight.

p 1, 4, E
(kg/m?) (m*) (m?) (N/m?)
7908 1.25E-11 B3.92E-05 2.15E+11

Table 4-3: Estimeted properties to be used in FE model.

Different element sizes ranging from 0.002 to 0.03 m were utilized in order to calculate

the mesh sensitivity and convergence criteria.

The elastic connection was modelled using two models: a simple MPC model as
described in section 2.1 and similar to the CWELD model [10] and the model described

in section 1.1.4. For the simple model, the stiffnesses values used in all three

connections are K, =1x10"N/m and K, =K, = 1x10*Nm/rad . These values are

effectively rigid, i.e. effects of larger stiffness are negligible. When the proposed model

is applied, the configuration described in section 4.2 is used, i.e. three translational

springs with stiffness of K, =0.33x10">N/m located around a circumference with

radius 7.

4.3.2 Results

The first six natural frequencies were obtained using the numerical model described
previously and then compared to the experimental results. In order to evaluate the
accuracy in the predicted natural frequencies with different element sizes the results are
presented in Figure 4.4 and Figure 4.5 respectively. The % error when compared to the
experimental results and sensitivity is calculated for an element size equal to 10mm, i.e.

s, =s,=10mm. The results can be seen in Table 4-4. The synthesis of the results is

given in Table 4-5.
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Both methods underestimate the natural frequencies. It must be emphasised that these
models have not been updated in any way: a simple update of the connection properties
could lead to more accurate estimates for both models. It can be seen in Table 4-4 that
for modes 2,3,4 and 6 both models give similar results, with the proposed spot weld
model giving slightly better results, however, the estimated natural frequencies are

considerably improved for modes 1 and 5.

The sensitivity to the mesh size and convergence characteristics are considerably
improved by using the new model in all modes as shown in Figure 4.4, Figure 4.5 and
Table 4-4. On average, the sensitivity is improved almost five times as can be seen in

Table 4-5.

Having a high sensitivity to the element size means that changes in the mesh
characteristics lead to large changes in the predictions. This problem does not occur
when the proposed model is used. Results also show that the simple MPC model does
not converge, this model results in assemblies that are too flexible, especially when a
small element size is used. On the other hand, when a coarse mesh is used the errors are
substantially reduced, although coarse meshes might give inaccurate predictions in
practical applications with complex geometries. Even then, the error is greater than that

of the new spot weld model.

The lack of convergence and large sensitivity to changes in the element size for the
simple MPC model are related to the application of rotational stiffnesses to the DOFs of

the plate elements as described in section 4.1.
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% error

% error
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Figure 4.4: Variation of calculated natural frequencies with element size:— = -
simple MPC model; proposed spot weld model: a) first; b) second; ¢) third
flexural natural frequencies.
a) f, b) /i c) /s
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Figure 4.5: Variation of calculated natural frequencies with element size: = = -
simple MPC model; proposed spot weld model: a) first; b) second; ¢) third
torsional natural frequencies.
% error natural frequencies Sensitivity (Hz/m)
Simple MPC |Proposed spot| Simple MPC |Proposed spot
de numb
mode number (n model weld model model weld model
1 -14.68 -3.98 660.73 133.13
2 -7.66 -7.57 2.97 1.63
3 -1.85 -1.35 97.17 8.17
4 -7.74 -6.51 84.23 44.22
5 -10.53 -4.84 1216.25 224.44
6 -4.22 -4.10 19.08 11.35

Table 4-4: % error in predicted natural frequencies and sensitivity at element size
equal to 10 mm.
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% error Average
natural Sensitivity | Convergence
frequencies (Hz/m)
Simple MPC
fmple -7.779 346.7  |Not achieved
model
Proposed spot) =, 0 70.49 8mm
weld model

Table 4-5: Summary of results comparing performance of both models.

4.4 Conclusions

In this chapter a new spot weld model is proposed. This model imposes a surface-to-
surface connection between two structures using simple spring elements and MPCs,
therefore coincident meshes are not required. The application of the new spot-weld
model is validated experimentally on a model of two simply supported plates with three

spot weld connections. The performance is compared to a simple MPC connection.

It has been shown that when plate elements are based on Mindlin-Reissner plate theory,
the stiffnesses in the rotational DOFs depend on the element size in a quadratic way. In
addition, when the rotational stiffness of the connection is added to the system, it results
in a high sensitivity of the static solution and natural frequencies to the element size.
This was demonstrated on an assembly of two simply supported plates with a single

connection.

The new model provides a better physical representation of the spot weld and as a result
the forces at the connections are distributed over an area imposing a surface to surface
link between the structures. This model does not add stiffness to the rotational DOFs,
but instead it is composed of an array of three springs distributed along the spot weld
circumference that add an equivalent rotational stiffness to the system. The results show
that the new spot weld model reduces the sensitivity substantially and improves
convergence with different mesh sizes. For the structures considered, convergence is
achieved with an 8mm element size compared to a plate thickness of 1.96mm, whilst for
the simple MPC model convergence is not achieved. The average sensitivity to element
size at 10mm is reduced almost five times from 346.7 Hz/m to 70.49 Hz/m.
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The main objective of this thesis is to predict the vibrational behaviour of built-up
structures subject to variations in the location and size of the spot welds. In chapter 3 an
efficient method to perform a numerical analysis was presented. This method applies a
low rank update theory in the CMS framework. In this chapter this method is validated
using experimental results. In addition, the performance of the spot weld model

proposed in chapter 4 is compared to a model similar to the CWELD model in Nastran.

A double hat structure, shown in Figure 5.1 was chosen for this purpose. This structure
consists of hat section steel plates joined together by spot welds at the flanges. This
structure was chosen for the following reasons: (i) it is a simplified representation of the
beams used in car bodies. The thickness used is also typical of automotive sheet metal
(0.7mm), (ii) the stiffness added due to the contact conditions at the flanges is negligible
when compared to the stiffness of the profile and therefore it is not necessary to model

the contact conditions in the flanges to obtain accurate predictions, (iv) considering the

properties of each spot weld ((x, y) coordinates and radius) as independent variables,

having only a few spot welds, fewer samples are necessary in order to predict the
variability in the assembly due to variations in the spot weld location and size.

Therefore an assembly with only four spot welds was chosen.
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Figure 5.1: Spot welded assembly

In order to isolate the variability due to the spot welding process, it is desirable to
minimize the variability of the individual hat section. Therefore the natural frequencies
of the separate individual hat section plates were measured and a statistical analysis on
the first seven natural frequencies was performed in order to determine the variability in
the hat plates. Only a subset of the plates (for which the variability was small) was used

for later assembly.

After being welded, the spot weld sizes and locations were measured. The natural
frequencies, loss factors and mode shapes were estimated and analysed. Subsequently,
the measured damping estimates together with the spot weld size and location were
used as inputs for the FE model. Finally the result from the FE model and the

experimental modal analysis are compared.

5.1 The hat plates

The hat plates were cut from steel cladding sheets. To manufacture the cladding sheets,

flat sheet metal is rolled into the hat profile. Galvanised steel cladding profile 32/1000
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was used. The dimensions are shown in Figure 5.2. The hat plates were cut from the full

sheet and are 100 mm long, 0.7 mm thick and with flanges 14 mm wide as shown in

Figure 5.3.

159 hat plates were fabricated and marked with an identification number.

1000,31

/N 7/ \ /%\;

Thickness=0.7mm -
200,0
>
23,15
L 128,21 J
132,49 22,18 22,18

Figure 5.2: Cladding profile 32/1000

100mm

— 102mm I

Figure 5.3: Single hat profile
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5.1.1 Experimental modal analysis

The experimental modal analysis was carried out for all of the hat plates using a
hammer test with fixed accelerometer position and fixed impact location. The structures
were tested in free conditions, supported by an elastic band on one edge of the plates

(see Figure 5.4).

The FRFs were acquired using a Data Physics DP 730 Dynamic Signal Analyzer. The
plate acceleration was measured using a PCB 352C22 accelerometer at a point 5 mm
from the midline of the plate and 10 mm from the top edge. The excitation was applied
using a PCB 086D80 hammer to strike the plate at the flange of the plate 20 mm from
the bottom of the plate and 7 mm from the edge of the plate as shown in Figure 5.4.

These positions allow the measurement of all the first seven elastic modes.

In order to acquire the first seven modes, the measurements were taken from 0.1 to
1600 Hz and 3200 frequency lines, hence a frequency resolution of 0.5 Hz and a
measurement time of 2 seconds. An average of three measurements was taken for each
FRF using the analyser software (signalcalc730) and then exported to MATLAB to
perform modal analysis. Figure 5.5 shows a typical input force signal in the time and
frequency domain. It can be seen that the spectrum is reasonably flat in the
measurement frequency range. Figure 5.6 shows a typical FRF and coherence for these
measurements. The coherence is poor at antiresonances due to a low signal to noise

ratio in these regions. However, generally it can be judged satisfactory.

In addition to the elastic modes, 6 rigid modes are found below 10 Hz. However their
effects on the elastic modes are insignificant. Only the elastic modes are considered in

this study.

The experimental natural frequencies were estimated from the measured FRFs using the
single DOF circle fitting method [63]. Figure 5.7 illustrates a circle fitted to measured
data around a natural frequency. The natural frequencies are estimated as the frequency
at which the response is maximum, since damping is in general low, the error generated

by this estimation is small.
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/ ‘. Elastic bands

20 mm

Figure 5.4: Experimental setup for FRF measurement of single hat plates using an
impact hammer:
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Figure 5.5: Typical force signal in (a) the frequency and (b) the time domains.
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Figure 5.6: Typical (a) FRF and (b) coherence measurements
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In order to estimate the modal loss factor, three data points were selected at frequencies
greater than the natural frequency and three more points were selected at lower
frequencies. These points were used two at a time in order to calculate nine loss factor

estimates. The loss factor was estimated as [63]

2(w, —,)

ACIE=CH)

n,= (5.1

where @, and @, are the frequencies of the chosen pair of data points, while €, and

6, are the angles subtended by these data points and the estimated natural frequency as

shown in Figure 5.7. Finally the nine values were averaged in order to estimate the
modal loss factor. The standard deviation was calculated in order to determine the
variability on the estimation. Figure 5.8 shows the mean and standard deviation from
the nine loss factor estimates of a typical sample. The modal loss factors are always
lower than3.5x107 . It can be seen that damping on modes 1 and 2 exhibit larger
variability compared to the other modes, however the standard deviation is still small

when compared to the mean.

250 F ]

187.1497Hz
200
187Hz +187.25Hz

150 ¢

 187.5Hz
R .o 186.75Hz %

187.75Hz
5o | 186.5H |

-50 + ]

-200 -150 -100 -50 O 50 100 150 200
Real

Figure 5.7: Circle fitting for modal analysis: X natural frequency: O data points: X
points selected to measure the modal loss factor.
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Figure 5.8: Loss factor estimation in typical sample: © mean; ¢ mean+/- standard
deviation

5.1.2 Modeshapes of single plate

The mode shapes of the single hat profiles were measured in only three samples. The
FRFs were acquired as described in section 5.1.1. except for the impact locations. In
this case the impact locations were distributed in a 3 by 3 array on each face of the hat

plate as shown in Figure 5.9. The modal constant was calculated as

An = Dﬂa)ﬂznn (5'2)
where D, is the diameter of the fitted circle in the Nyquist diagram for the nth natural

frequency as observed in Figure 5.7.

Figure 5.10 shows an example of the measured mode shapes of the first 7 modes of a
single hat plate. The natural frequencies and mode shape description are given in
Table 5-1. “Bending 1” refers to a simple 1* bending mode of the side panels while

“bending 2” refers to a 1* bending out of phase mode of the side panels.
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The results from the other two samples exhibit the same behaviour: modeshapes occur
in the same order and the difference between the natural frequencies of the different

samples is always lower than 1%.

The first three modes are global modes of the structure and the remaining four modes
are bending and torsional modes of the side panels as can be seen in Figure 5.10. These
side panels dominate the behaviour of the plate at lower frequencies since they exhibit

the largest area of all the five sections and hence have the lowest stiffness.

Figure 5.9: Impact positions for the experimental measurement of the single hat profiles

mode shapes.

Mode number (7) fn (Hz) Modeshape description
1 190.06 Flapping
2 203.69 1st torsion
3 331.33 1st bending in the XY plane
4 655.61 Side panels bending 1 -out of phase-
5 820.17 Side panels bending 2 -out of phase-
6 1015.2 Side panels bending 1 -in phase-
7 1222.5 Side panels bending 2 -in phase-

Table 5-1: Single hat profiles mode shape description and mean natural frequency
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Figure 5.10: Measured modeshapes of a single plate.

-105-



CHAPTER 5

5.1.3 Results

The mean and standard deviation for the estimated natural frequencies and loss factors

for all 159 plates are shown in Table 5-2 and Figure 5.11. In general the dispersion of

the natural frequencies between samples is small and always between 1~ 2 % of the

mean value. The estimated loss factors show values of approximately 1x10~ in all

modes except modes 1 and 3, which interestingly also exhibit the largest standard

deviation as shown in Figure 5.11. The reasons for this behaviour are unknown; it is

believed that there might be repeatability issues between samples. In any case, the

modal loss factors are small.

mode number (1)

1 2 3 4 5 6 7

f,(Hz)
o, (Hz)

m,

O
T

189.2 203.1 329.0 657.1 821.2 1018 1224
2.33 3.06 5.39 7.22 8.39 18.76 20.87

4.59E-03 9.17E-04 4.24E-03 8.06E-04 1.08E-03 8.02E-04 5.59E-04
1.88E-03 3.21E-04 2.70E-03 1.28E-04 3.07E-04 5.38E-05 9.04E-05

Table 5-2: Mean and normalized standard deviation of natural frequencies and loss

factor.
-3
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Figure 5.11: Natural frequencies and loss factor statistics : O mean; ¢ mean+/-

standard deviation.
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5.1.4 Statistical analysis

In this section a statistical analysis of the first seven natural frequencies is presented in

terms of the normalized error

g, =t (5.3)

o’ was chosen because ¢, is likely to be proportional to the stiffness. The histograms

are shown and statistics (mean, standard deviation, skew and kurtosis) are calculated

and examined. Finally, in order to test the goodness-of-fit of the response distributions

to a normal distribution a y test is carried out.

The skewness of a random variable is the third moment, normally interpreted as a
measure of the asymmetry of a probability distribution [64]. The skew can be positive
or negative; a negative skew indicates that the tail on the left side of the PDF is longer
than the right side and vice versa. In a normal distribution, the skew is equal to zero.
The kurtosis of a random variable is the fourth moment. Kurtosis measures how heavy
the tails of the PDF are; higher kurtosis means bigger tails. The kurtosis of a normal

distribution is 3.

The »* goodness-of-fit test is based on a comparison between observed frequencies of
categories and corresponding expected frequencies under the hypothesis to be tested
[65-67], in this case compared to a normal distribution. The y” test is conducted on

classified (binned) data and outlying bins are summed to ensure at least five counts in
each; this reduced the skewing effect of out-lying results. There is not a clear constraint
regarding the minimum size of the sample in order to obtain a valid answer, as an
approximation it has been found that the sample should be at least four or five times the

number of cells, k [65].

The computed y” statistic has the value of 0 for a perfect fit and is large when the fit is

bad. The null hypothesis is therefore rejected if x> > Y, where Y is a constant taken
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from the y° distribution with « significance level and k—r—1 degrees of freedom,
where r is the number of estimated parameter. In this case,» = 2, i.e. mean and standard
deviation. The significance value indicates the probability of obtaining those or more
extreme results [65] , which means that a higher significance level leads to a more

rigorous test.

Figure 5.12 shows the histograms of the first seven natural frequencies when compared

to normal distribution. Table 5-3 shows the skew, kurtosis and the j° statistic results.

From examination of the y’values in this table, one cannot reject the hypothesis that

the first, third, fourth, fifth, sixth and seventh modal frequencies fit into a normal

distribution.

It can be seen in Table 5-3 that the skew and kurtosis values of all of the &, are close to

the values of a normal distribution, 0 and 3 respectively. Conversely, for the second
mode the kurtosis value is the closest to 3 and the skew value is the second closest to 0
and yet is the only modal frequency in which the hypothesis can be rejected. The
normal distribution can be rejected as a likely fit for the distribution of the second
natural frequency, probably due to the high number of samples close to the mean with

an uneven spread as can be observed in Figure 5.12.

mode number (1) 1 2 3 4 5 6 7
o, 0.0247 0.0300 0.0327 0.0220 0.0205 0.0371 0.0343
Skew 0.562 -0.229 -0.058 0.478 0.501 0.692 0.699
Kurtosis 3.883 3.091 3.204 3.862 3.918 4221 4.304

k 9 9 9 9 9 9 9
X ? 9.015 4.620 6.441 2.880 6.896 3.615
Y 10.645 10.645 10.645 10.645 10.645 10.645

Table 5-3: Skew, Kurtosis and > probability results for goodness-of-fit tests of g,.
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Figure 5.12: Distribution of the first seven natural frequencies (single profiles):
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= (Gaussian distribution.
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5.1.5 Correlation coefficients

In order to measure the level of correlation between modes, the Pearson product-

moment correlation coefficient between &, and &,

> (6 -8) (5, -)
V2 (6-5) (6 -5.)

Im —

(5.4)

is calculated [68], where i is the sample number, and N is the total number of samples,

&,,¢, are the mean normalized error of modes / and m respectively and ¢, ,,¢,, are

the normalized errors of modes / and m and sample i . 7, is a measure of the

Jm

correlation between random variables ¢, and ¢&,,, giving a value between +1 and -1
inclusive. When 7, =1 or r,, =-1then ¢ and ¢, are perfectly correlated, when

h,=0_ & and ¢, are completely uncorrelated. Table 5-4 shows the correlation

coefficients between the natural frequencies. Examples of a strong correlation,

15 =0.956, weak correlation, 7, =0.497, and a moderate correlation, 7, =0.718, are

shown in Figure 5.13.

Modes 1,4,5,6 and 7 are strongly correlated between each other since all of them
depend on the deflection of the side panels. Modes 2 and 3 are modes related to the
deflection of the structure in different directions (torsion and bending in the XY plane);
hence the correlation between these modes and modes 1,4,5,6 and 7 is weak. However,

they are well correlated between each other.
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Figure 5.13: Dispersion plots: a) modes 1 and 2, 7, =0.497 ; b) modes 1 and 3,

15 =0.718; c) modes 1 and 5, 7,5 = 0.956.

n 1 2 3 4 5 6 7

1 - 0.497 0.718 0.875 0.956 0.933 0.930
2 0.497 - 0.900 0.573 0.638 0.513 0.571
3 0.718 0.900 - 0.611 0.765 0.664 0.701
4 0.875 0.573 0.611 - 0.932 0.914 0.919
5 0.956 0.638 0.765 0.932 - 0.931 0.956
6 0.933 0.513 0.664 0.914 0.931 - 0.989
7 0.930 0.571 0.701 0.919 0.956 0.989 -

Table 5-4: Correlation coefficients between ¢,

5.2 The assembled structures

The hat profiles studied in the previous section were assembled using four spot welds as
shown in Figure 5.1. A manual spot welder mounted in a bench vice was used to weld
the hat plates together. The nominal spot weld diameter depends on the electrode
diameter and in this case is equal to 4mm. The spot weld locations were marked by
hand using a linear length gauge at the nominal positions shown in Figure 5.1. In order
to assure the alignment between the plates at the time of assembly an insert was

designed, the profile and the manufactured insert can be observed in Figure 5.14.

In order to focus on variability in the spot welds and to minimize the variability in the
assembled structures that arises from variability in the unassembled components, only

single plates for which

|£,/|<0.04 where n=1to0 7 (5.5)
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and

VO e <0.07 (5.6)

were used and the remainder were rejected. This means that not only those plates which
had variations greater that 4% for any eigenvalue were discarded, but also those plates
that exhibit consistently large errors for all eigenvalues. Given these conditions, 108 of
the 159 manufactured single plates were retained and were assembled to give 54 spot

welded assemblies.

After assembly, the locations of the spot welds at each of the assemblies were measured
as well as the natural frequencies of all 54 assemblies. Finally the mode shapes of three

samples were measured.

5.2.1 Measurement of spot weld size and location

In order to measure the location and size of the four spot welds for each of the 54
assemblies, a picture was taken using a digital camera. The picture was imported into
MATLAB and eight points at the perimeter of the spot welds were selected using the
command ginput. The spot weld centre and diameter were calculated using the circle fit
MATLAB routine applied in the modal analysis. The dimensions were calibrated using

two plastic rulers as shown in Figure 5.15

In order to ensure that the pictures were taken from the same position repeatedly, the
assemblies are placed in a jig aligned against a wall, with the camera mounted in a
tripod facing downwards as shown in Figure 5.16. The pictures were taken using the
camera self timer in order to avoid movement that might be induced by manual

operation.
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Figure 5.14: Insert used to assure alignment between profiles.

After every 5 samples were photographed, sample number 1 was photographed again in
order to assess repeatability. The maximum error between all measurements taken from
sample 1 was less that 0.3 mm. Figure 5.17 (a) shows the results of all measurements

on sample 1.

Figure 5.17 (b) shows the measured spot weld positions from all 54 samples. It can be
seen that the variability of the location of the spot welds are similar for all four

locations.

Figure 5.15: Photograph sample and weld numbers.
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Figure 5.16: Fixture and arrangement used to take the sample pictures.

a) b)
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Figure 5.17: Measured spot weld positions: a) sample 1 measurements; b) full

ensemble.

5.2.1.1 Analysis of spot weld location
The coordinates (x,,y,) of each spot weld were analysed in terms of its deviation from
the mean i.e.

Ax,=x,—Xx and Ay, =y -, (5.7)

where s=1,2,3,4 is the spot weld number as shown in Figure 5.15. The correlation

coefficients between Ax, and Ay, are shown in Table 5-5. The correlation coefficients
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between these variables were calculated using equation (5.4). The correlation between
the spot weld coordinates is low in general, which means that these variables can be
treated as independent. Furthermore, the lack of correlation indicates us that systematic

errors in the measurements are low, i.e. translations and/or rotations of the sample when
the pictures are taken. The strongest correlation is between Ay, and Ay,, the vertical

coordinates of spot weld 2 and 4 are correlated due to the manufacturing process, Ay,

and Ay, are correlated in the same way.

Figure 5.19 shows the histograms of the spot weld coordinates together with normal

distributions. The standard deviation, skew and kurtosis were calculated for the eight
spot weld coordinates. The results are summarized in Table 5-6. Also the y° goodness-

of-fit test was performed.

When y° is compared to Y in Table 5-6 it can be seen that Ax, is the only coordinate

for which the hypothesis that the spot weld coordinates come from a normal distribution

can be rejected. Ax, exhibits the highest skew value and its kurtosis is not close to 3. In
Figure 5.19 it can be seen that Ax, is clearly skewed to the right and there are a high

number of counts at the left end.

Ax, Ay, Ax) Ay, Ax, Ay, Ax, Ay,

Ax1 1.000 -0.029 -0.109 -0.016 0.431 0.286 -0.239 0.070
Ay1 -0.029 1.000 0.056 -0.339 0.031 0.435 -0.050 -0.355
sz -0.109 0.056 1.000 -0.223 -0.513 -0.195 0.582 -0.256
Ay2 -0.016 -0.339 -0.223 1.000 -0.128 -0.447 0.026 0.634
Ax3 0.431 0.031 -0.513 -0.128 1.000 0.530 -0.424 0.062
Ay3 0.286 0.435 -0.195 -0.447 0.530 1.000 -0.393 -0.176
Ax4 -0.239 -0.050 0.582 0.026 -0.424 -0.393 1.000 -0.043
Ay, 0.070 -0.355 -0.256 0.634 0.062 -0.176 -0.043 1.000

Table 5-5: Correlation coefficients between spot weld coordinates.
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Figure 5.18: Dispersion plot between Ay, and Ay,.

Ay Ay, Ax, Ay, Ax, Ay, Ax, Ay,
o 0.869 0.912 0.895 0.978 1.254 1.009 0.769 1.073
Skew | -0.0943 -0.0824 -0.2696 -0.0132 0.2106 -0.1088 -0.8594 0.0167
Kurtosis | 3.63 2.45 2.91 3.23 3.75 2.28 4.13 4.22
k 6 6 6 6 6 6 6 6
7 4,783 2.293 0.458 1.874  4.300 1.899 3.730
Y 6.250 6.250  6.250 6.250 6.250 6.250 6.250

Table 5-6: Standard deviation, skew, kurtosis and y° probability results for

goodness-of-fit tests of spot weld coordinates.
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Figure 5.19: Distribution of the spot weld coordinates: M@ Experimental data;

=== (Gaussian distribution
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5.2.1.2 Spot weld size analysis.

The spot weld size depends on the electrode size and the time of flow of the electrical
current, which is a parameter that is set in the spot welding equipment and kept fixed

during spot welding.

The spot weld diameter was analysed as a single random variable since the diameter of

the spot weld does not depend on the spot weld position. Again the o, skew, kurtosis

are calculated and y” test performed, the results can be observed in Table 5-7.

It can be seen that the hypothesis that the spot weld diameter distribution fits a normal
distribution can be rejected. The hypothesis is rejected especially for the high kurtosis
value of the experimental data. This can also be observed in Figure 5.20, where the peak
is much narrower compared to the normal distribution. The data from the analysis of the
position and location of the spot weld will be used as an input for the FE analysis in

section 5.4.1.

Mean (o2 Skew | kurtosis k X’ Y
Spot weld diameter 3.63 0.24 -0.675 12.12 22

Table 5-7: 1, o, Skew, Kurtosis and y” probability results for goodness-of-fit

tests of the spot weld diameter.

Counts

2 25 3 35 4 45 5
Spot weld diameter (mm)

Figure 5.20: Histogram of spot weld diameter: Bl Experimental data; ===Gaussian
distribution.
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5.2.2 Experimental modal analysis

The experimental modal analysis was carried out in the same way as with the single hat
plates; using a hammer test with fixed accelerometer and impact location. Except that in
this case the transfer functions were measured from hat plate to hat plate as shown in
Figure 5.21. The 54 structures were tested in vertical free-free conditions supported by

an elastic band on one edge of the plates.

The FRFs were acquired using the same equipment as in the single hat plate structures:
Data Physics DP 730 Dynamic Signal Analyzer, PCB 352C22 accelerometer and a PCB
086D80 impact hammer. The accelerometer and impact positions are shown in
Figure 5.21. The positions were decided based on the mode shapes from an earlier FE
analysis. Using this configuration, the first seven elastic modes can be measured and the

mass loading effects are minimised.

Again, the shape of the input signal was verified in the time and frequency domain.
Figure 5.22 shows a typical input force signal in the time and frequency domain. In

general, the spectrum is reasonably flat in the frequency range of the measurement.

The coherence was also verified. Since the transfer function is measured from one plate

to the other, the coherence is poor at low frequencies and at antiresonances, where the
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Figure 5.21: Experimental setup for FRF measurements of spot welded assemblies
using impact hammer.
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Figure 5.22: Typical force signal in the frequency and time domain.

level of the signal to noise ratio is low. However, in the frequency range of interest the

coherence is close to one as can be observed in Figure 5.23.

In the frequency range of interest (up to 1100 Hz), seven elastic modes can be found as

shown in Figure 5.23. The experimental natural frequencies and loss factors are

estimated using the circle fitting method [63] in the same way as in section 5.1.1. The

maximum response in the fitted circle is assumed to be @, and 77, is calculated as the
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Figure 5.23:Typical FRF and coherence measurements (77) .

average of nine 77, estimates from six data points; three data points to the right of @,

and three more points to the left of ®,. Each of 77, are estimated using equation (5.1).

Figure 5.24 show the mean and standard deviation from the nine estimates used to

calculate the loss factors. The loss factors are in general higher compared to the

estimates of the single plates in Figure 5.8, where the maximum 77, is a third of the
maximum 77, estimated in the assembled structures. Some of the samples had a
maximum 77, # 0.005—-0.007 as in Figure 5.24 (a) and some of them had a maximum
n, =0.009-0.011 as in Figure 5.24 (b). Only in some cases the loss factor exhibits a

larger standard deviation as can be observed in 75, and 7, in Figure 5.24 (b), however it

is still small and the mean can be considered as an adequate damping estimate.
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Figure 5.24: Loss factor estimation in two typical samples: O mean; ¥ mean+/-
standard deviation.

5.2.3 Spot welded assemblies’ experimental modeshapes.

The modeshapes of the spot welded assemblies were measured in the same way as the

single plates: a fixed accelerometer and a roving impact hammer, 9 impact locations

distributed in a 3 by 3 array (see Figure 5.9) at each of the four faces of the assembly

(36 impact locations).

The modal constant was calculated using equation (5.2). Figure 5.25 shows the first

seven experimental modeshapes of a spot welded assembly, where a positive value

corresponds to motion in the outward normal direction. The natural frequencies are

given in Table 5-8. The first four modes can be recognized as ovalling modes, where

modes 2 and 4 have out of phase motion between the front and rear section. Modes 1,3

and 2.4 can be identified as orthogonal pairs.

Mode fn (Hz)
number ( 1)
1 303.72
2 341.66
3 552.80
4 722.67
5 948.34
6 978.94
7 1036.72

Table 5-8: Mean natural frequencies of spot welded assembly.

-122-



Figure 5.25: Experimental modeshapes for spot welded plates.
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The modeshapes presented correspond to a specific sample. The behaviour of the other

two samples is similar, presenting the same modeshapes in the same order.

5.2.4 Results

The experimental modal analysis was performed for all the samples and then repeated
four more times. The variations from the same sample are lower than 1% for the natural
frequencies and lower than .1% for the modal damping estimation; these variations are
small especially when compared to the dispersion between samples. Therefore only the
average results are reported and carried forward as the properties of each sample for the

variability analysis between samples.

The mean and standard deviation for the natural frequencies and loss factor estimates
across all 54 assemblies are shown in Table 5-9. This results can also be observed in

Figure 5.26. It can be seen that for n=1,2,5,6 there is a larger variability where

o, ~0.02f, ~0.032f, . For n=7 there is an intermediate variability where

o, ~0.012f,. For n=3,4 there is a small variability where o, ~0.002f, ~0.005f, .

The loss factor estimates show a large variability between samples. This is expected

since the contact conditions can vary greatly between samples. In any case, the loss

factor values are still very low and typically 77, <0.007 .

mode number (77) 1 2 3 4 5 6 7
f,(Hz) 290.0 3268 5493 7133 9059 9359 1014
o, (Hz) 7.66 7.64 1.53 3.99 27.9 30.0 12.4
T 2.67E-03 4.31E-03 1.76E-03 5.52E-03 3.05E-03 4.74E-03 5.31E-04
n, 6.45E-04 6.83E-04 2.16E-04 1.15E-03 1.47E-03 1.68E-03 1.08E-03

Table 5-9: Mean and standard deviation of natural frequencies and loss factor
estimates.
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Figure 5.26:Natural frequencies and loss factor across the ensemble: O mean;
& mean+/- standard deviation.

5.2.5 Statistical analysis

The probability distribution of the natural frequencies was analysed in terms of the

normalized error

g, =1 (5.8)
4]

Figure 5.27 shows the histograms of the first seven natural frequencies when compared
to normal distribution. Table 5-3 shows the skew, kurtosis and the y° probability

results. It can be seen that modes 1,2,5,6 exhibit a larger variation and low kurtosis
values, while modes 3 and 4 exhibit a very small variation with kurtosis values close to

3, while mode 7 exhibits an intermediate variation and a large kurtosis value.

The hypothesis that the natural frequencies fit a normal distribution can be rejected for

mode 5, probably due to the heavy tails.
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Figure 5.27: Distribution of the first seven natural frequencies (assembled profiles):

B Experimental data; === Gaussian distribution.
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mode number (1) 1 2 3 4 5 6 7
o, 0.0526 0.0466 00056 0.0112 0.0613 0.0638  0.0245
Skew 0797 0622 0491 0120 0913 079  0.524
Kurtosis 2189 2061  3.784 2725 = 2468 2031 4674

k 7 7 7 7 7 7 7
X 595 421 327 119 58  3.05
Y 7.78 7.78 7.78 7.78 - 7.78 7.78

Table 5-10: Skew, kurtosis and y° probability results for goodness-of-fit test of &, .

The results from the statistical analysis suggest that modes 3 and 4 are not affected by
the spot weld location, and since o values are similar to those of the single hat profiles,
it might confirm that they are only sensitive to variations in the geometry of the hat

profiles and/or to variations in the material properties.

On the other hand, modes 1,2,5,6 are affected by the characteristics of the spot welds
and exhibit a larger value of standard deviation. The low kurtosis values might be a sign

of a low number of samples, i.e. more samples are needed to predict the correct PDF. In
any case and based on the y° goodness-of-fit results, one cannot reject the hypothesis

that all the natural frequencies fit to a normal distribution.

These results will be compared with the results from the FE analysis in section 5.4.1.

5.2.6 Correlation coefficients

In section 5.2.3, it was observed that most of the modes considered depend greatly on
the bending of the side panels, therefore it is expected that the natural frequencies are
correlated between each other. In section 5.2.5 the statistical analysis of the
experimental frequencies across the ensemble showed that some of the frequencies
show a larger variation when compared to the standard deviation of the substructures,
therefore it would be expected that the natural frequencies that exhibit a large variation

are correlated between each other.

-127-



CHAPTER 5

The level of correlation between modes is measured using the Pearson product-moment

correlation coefficient [68] between &, and ¢, is calculated using equation (5.4).

Table 5-11 shows the correlation coefficients betweené,. It can be confirmed that all

the modes with large variability are correlated between each other, while the modes
with smaller variabilities are not correlated to any other mode and not even between

each other.

Figure 5.28 shows some of the dispersion plots with strong correlation, 7 ; =0.984 ;

weak correlation, 7, =0.177 ; and a mild correlation, 7, , = 0.638
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Figure 5.28: Dispersion plots: a) 7, ; = 0.208; b)r, , =0.638 ; ¢) 7, =0.984

n 1 2 3 4 5 6 7

1 - 0.953 0.397 0.606 0.984 0.966 0.208
2 0.953 - 0.447 0.638 0.951 0.966 0.171
3 0.397 0.447 - 0.178 0.445 0.412 0.517
4 0.606 0.638 0.178 - 0.574 0.585 -0.219
5 0.984 0.951 0.445 0.574 - 0.959 0.194
6 0.966 0.966 0.412 0.585 0.959 - 0.177
7 0.208 0.171 0.517 -0.219 0.194 0.177 -
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5.3 The single profile finite element model

The FE model for the single plates was first built in ANSYS as shown in Figure 5.29.
The mass and stiffness matrices were extracted to Matlab where Heterosis elements
with the correct attributes were coupled into the missing areas, where the spot weld

element will be located.

In order to experimentally estimate the material properties, simple beams were cut from
the cladding sheets. The dimensions of the beams were measured using a vernier
calliper and the thickness was measured using a micrometer. The weight was measured
using a mechanical balance with 0.01 gram resolution. The dimensions and weight of

the beams are in Table 5-12. E is estimated using the measured fundamental frequency

@,, and the analytical formula

k1)
o = (kl) 14) (5.9)
pA, 1

where p is the estimated density, / is the measured length. 4, , I, are the cross section

and second moment of area of the beam calculated from the measured dimensions. (k,/)

is the first non-zero solution to the transcendental equation of beams with free boundary

conditions (cosh (kl)cos(kl)=1).

w,, was estimated using the circle fitting method [63] on the measured FRFs. The FRFs

were measured using an impact hammer to excite the beam and the response was
measured at the antinodes using a laser vibrometer to avoid mass loading. The beams
were hung at the nodal points using elastic bands. The estimated properties are shown in

Table 5-13.

In order to verify the construction of this model, the natural frequencies from the FE
results are compared to the experimental average in Table 5-14. It can be seen that the

difference between the two is always less than 2.5%. It should be noted that the
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predicted natural frequencies are not always above or below the experimental values.
Therefore, a change in the properties of the material would not necessarily lead to a

better model.

The transfer function from an excitation at the top of the profile to the centre of the area
modelled with Heterosis elements was evaluated and compared to experimental results
for some of the samples in Figure 5.30. The agreement between both of them is good,

where the resonances and antiresonances show the same behaviour.

/ a b Wy, weight
(m) (m) (m) (rad/s) (kg)
0.29 0.0246 0.00071 280.07 0.03996

Table 5-12: Beam measured dimensions, first natural frequency and weight.

P 1, 4, E
(kg/m®) (m) (m?) (N/m?)
7890  7.34E-13 1.7/5E-05 2.09E+11

Table 5-13: Estimated properties to use in the FE model.

The position of the resonances on the experimental results describes the variability of
the manufacturing process while the FE result represents a sample with its natural
frequency close to the experimental mean and not an additional sample as shown in
Figure 5.30. This can be confirmed in Figure 5.31, where the FE natural frequency
model profile lies close to the middle of the range when compared to the measured

profiles.

The accuracy in the predicted modeshapes was evaluated using the modal assurance

criterion (MAC), which is a widely used technique to estimate the degree of correlation

between modeshape vectors. When a measured modeshape @, is compared to a subset
of the computed modeshape @_, where only the DOFs present in @, are extracted, the
DOFs in @, need to be resolved in the appropriate direction to match the direction of

the DOFs present in @, . The MAC as defined in [69] is used in this study, 1.e.
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Figure 5.29: ANSYS FE model

N /i /s Ja /s Jo e
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
FE model 188.84 198.08 32428 66328 81958 10249  1216.2
Experimental | o028 203.004 328.3955 656.15 819.84 10153 12215
average

Table 5-14:FE natural frequencies compared to the experimental mean values.
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Figure 5.30: Transfer mobility: - - - experimental; FE model.
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2

00,

MAC =
(070.)(0)9,)

(5.10)

The MAC value is a scalar with values between 0 and 1, where 1 means that that one
mode shape vector is a scaled multiple of the other. The MAC is a matrix of n X n size,
where n is the number of modes considered in the evaluation. When the experimental

and predicted modes are identical the diagonal terms are equal to 1, but the off diagonal
terms are not necessarily equal to zero. This is because even if @, and @, are different

modeshapes, they are not orthogonal vectors (although they are orthogonal with respect

to the mass and stiffness matrices).

There are modes that are similar to each other and with the number of measured points
they cannot be completely differentiated, that is the case of modes 4 and 6 as can be
observed in Figure 5.32 where the graphical representation of the MAC matrix is
shown. Other modes might exhibit some smaller similarities, like for example modes 3
and 7. However the prediction of the mode shapes is adequate, since the mode shapes
are presented in the right order and the MAC diagonal values are always higher that 0.7
as can be seen in Figure 5.32. Similar behaviours were observed when the computed

mode shapes were compared to mode shapes measured for different samples.
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Figure 5.31: Natural frequencies profiles: measured; deterministic FE

model.
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Figure 5.32: Graphical representation of MAC matrix.

5.4 The spot welded profile finite element model

The spot welded model was created taking two of the single profiles models as
described in section 5.3. These two models were assembled together using the CMS
approach described in section 3.2, where the response of the assembled structures is
calculated by updating the response of the unassembled system. The spot welds are
respresented using the model proposed in section 4.2, this model is capable of

simulating changes in the spot weld location and diameter.

In order to estimate the variability in the vibration response of this system due to

uncertainties in the location and diameter of the spot welds, a MCS with 500 samples is

used to estimate the envelope of the transfer mobility. The (x,,y, ) coordinates of each

of the s spot welds are assumed to be independent Gaussian random variables with

their means located at the baseline position and standard deviation given in Table 5-6.
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The diameter of the spot weld is also considered as an independent random variable

with mean and standard deviation given in Table 5-7.

The transfer functions were measured from hat plate to hat plate as shown in
Figure 5.21. This is the same transfer function measured in the 54 physical samples.

The response envelope is compared to the measurements in Figure 5.33.

Figure 5.33 shows that the main difference between the numerical and experimental
results can be observed at low frequencies, where the experimental rigid modes show
some variability due to changes in elastic mounting and can be observed from 0 up to

8.5 Hz while in the numerical results this modes are always at 0 Hz. In the MCS result

there are no variations on f; and f,, but this corresponds to the behaviour in the

experimental results where the variation in f; and f, exhibit small spread, especially

when compared to other natural frequencies as can be observed in Figure 5.33 and

confirmed in Figure 5.27. Then the small variability of f; and f, in the experimental

results is related to the variability on the single profiles and not to the position of the
spot welds, taking into consideration that in the FE model the properties of the

substructures are considered as deterministic.

It can also be noted that f; is overestimated while f, is underestimated, this means

that there is a modelling error in the way in which the single plates where modelled.
This is more likely to be related to the geometric properties of the profile rather than to
the material properties. If the model of the single plate were improved, then the

accuracy in the prediction of these two natural frequencies would improve as well.

The variation in the lowest two natural frequencies and the mobility magnitudes at
resonances are estimated very accurately. This means that the variability of these
natural frequencies is related to the variation of the spot welds, rather than variation in

the substructures properties.
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Above 800 Hz the envelope covers an area where f; and f; vary, in this area the

frequency ranges for f; and f, overlap. This behaviour can be observed in the MCS

envelope as well as in the experimental FRFs. On the other hand, the mobility

magnitude at resonances in these two modes are usually under estimated, which means

that the modal loss factors 75 and 77, used in the simulation are high compared to the

real values. In practice, these show a large variability as observed in Figure 5.26 and in
Figure 5.33, where the peak values exhibit a curved shaped spread rather than a flat

spread as can be observed in the MCS envelope using a constant value for the loss

factor 77,. In any case, the MCS FRF envelope is similar to the envelope of measured

FRFs and the shape is very similar, which means that the method is efficiently
predicting the variations in the response due to uncertainties in the location and in the
size of the spot welds. This method can also reproduce the FRF percentiles when

compared to the experimental results as can be observed in Figure 5.34.

The predicted natural frequencies using MCS are compared to the measured natural
frequencies in Figure 5.35, where it can be seen that the MCS results overlap the
experimental results when the proposed spot weld model is used. In contrast, when the
simple spring spot weld model is used, the natural frequencies are clearly
underestimated, as explained before; this is due to the fact that the simple spring model
does not represent the area of contact which adds stiffness in the flanges, on the other

hand, the change in diameter cannot be modelled using this simple model.

The statistical analysis of each natural frequency will be performed in the next section,
but before that, it is important to determine if the modes above 800 Hz change order or
not. In order to do that, the MAC matrix will be calculated for each one of the MCS

comparing it to the experimental measurement described in section 5.2.3.

The MAC matrix is first calculated for the baseline configuration, which means that all
the spot welds are located at its mean position. When the new MAC matrix is
calculated and compared to the one calculated for the single profile, it can be seen that
in this case, the diagonal values are closer to one as shown in Figure 5.32, this is due to

the fact that more locations are used in order to calculate each MAC(i,i) value; 36 vs
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18. It is also related to the fact that simpler modeshapes are in the assembly where only
first bending is involved with out of phase — in phase combinations as can be observed

in Table 5-8.

When the MAC matrix of the average of the assembly is analysed, the modes appear to
be in the same order. When the sample with the minimum MAC(i, ) value is analysed,
the modes 6 and 7 swap order as can be seen in Figure 5.36 c. When the sample with
the second minimum MAC(i,7) value is analysed, modes 4 and 5 start to look very
similar but these modes do not appear to swap order. Therefore, only one sample out of
the 500 samples experiences a change in the order of the modes, this case sample will

not be considered for the statistical analysis in the following section.
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Figure 5.33: Response envelopes for the magnitude of the mobility:
measured; FE envelope.
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ensemble average;c) and d) 2 samples with MAC(i,i)<0.4.

5.4.1 Statistical analysis

The dispersion of the natural frequencies are analysed in terms of the normalized error

as calculated in equation (5.3).

Figure 5.37 shows the histograms of the first seven natural frequencies when compared

to normal distribution. Table 5-15 shows the skew, kurtosis and the y° probability

results. It can be seen that modes 1,2,5 and 6 are clearly affected by the uncertainty in

the spot weld position, while the natural frequencies for modes 3,4 and 7 are almost

insensitive to the uncertainties in the spot welds properties.
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The skew and kurtosis values in modes 1,2,5 and 6 suggest that they might fit a normal

distribution, i.e. the skew values are low and the kurtosis values are close to three.
However, based on the results from the »” goodness-of-fit results, the hypothesis that

the assembly natural frequencies fit to a normal distribution is rejected, except for mode
5. As said before, modes 3,4 and 7 are not affected by the properties in the connections,

therefore it is irrelevant if they fit or not into a normal distribution.

On the other hand, based on the experimental results, modes 1,2,5 and 6 are expected to
fit a normal distribution. Mode 5 does, and if the significance level were reduced to

a =0.05 the distributions for modes 1 and 2 could also be considered as normal.

When compared to the experimental results in Table 5-10 and Figure 5.27, it can be
observed that the modes with larger variation in the MCS results correspond to the
modes with larger variation in the experimental results. Furthermore, the modes in
which the natural frequencies are insensitive to the spot weld characteristics in the MCS

also correspond to the modes with low variation in their measured natural frequencies.

When the standard deviation of the natural frequencies for the FE MCS and
experimental results are compared, it can be seen that the simulation results

underestimate the experimental results in all modes as seen in Figure 5.38. It can also be
seen that the difference between the measured and the estimated o, is almost constant
in all modes, including the insensitive frequencies. This difference can be attributed to

variability in the properties of the substructures which are not considered in the FE

MCS.

mode number (1) 1 2 3 4 5 6 7
o, 0.0526 0.0466 0.0056 0.0112 0.0613 0.0638 0.0245
Skew 0.797 0.622 0.491 0.120 0.913 0.790 0.524
Kurtosis 2.189 2.061 3.784 2.725 2.468 2.031 4.674
k 29 29 29 29 29 29 29
X ’ 20.630
Y 35.563

Table 5-15: Skew, Kurtosis and y° probability results for goodness-of-fit test of &, .
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Hence it can be said that the method presented here is accurate when predicting which
modes are sensitive to the uncertainties in the spot welds and which modes are not. It
can also predict the standard deviation of the natural frequencies distributions as a result
of spot weld variation. This method also predicts the correlation between the

normalized natural frequencies accurately, as can be observed in Figure 5.39.

On the other hand, PDF properties such as kurtosis and goodness of fit to a normal
distribution were not correctly predicted, perhaps due to the difference in the number of

samples between the experiments and the FE MCS. i.e. 50 vs 500.
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5.5 Conclusions

In this chapter the proposed spot weld model in Chapter 3 and the method to evaluate
the variability in the structure properties due to uncertainties in the spot welds was

validated using experimental results. A double hat structure was chosen for this

purpose.

159 profiles were fabricated and tested before assembly, the natural frequencies were
measured and their probability density functions (PDF) were studied. In order to reduce
the variability in the substructures the samples with larger errors in the modal

frequencies when compared to the mean were discarded; 108 profiles were left.

After being welded, the spot weld size and location were measured. The natural
frequencies, loss factor and mode shapes were estimated and analysed. The damping
estimates together with the spot weld size and location are used as inputs for the FE

model.

A deterministic FE model for the single profiles was built and compared to
experimental measurements to evaluate its performance. Finally the assembly was built

in a MCS with stochastic spot weld properties and compared to the test results.

It was concluded that the modal frequencies of the single profiles fit into a normal
distribution and the modal loss factors are always lower than 3.5x10~ . Measured spot
weld position, spot weld size and assembly modal frequencies also fit into a normal

distribution.

When the deterministic FE model of a single plate is compared to the ensemble of
measurements, the agreement between both of them is good, where the resonances and
antiresonances show the same behaviour. The position of the resonances in the
experimental results describes the variability of the manufacturing process, while the FE
result represents a sample with natural frequencies close to the experimental mean

modal frequencies. The prediction of modeshapes was also satisfactory.
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When the proposed spot weld model is used, the predicted natural frequencies overlap
the experimental results. The modeshapes are correctly predicted and the modeshape
analysis show that in general the modes do not swap order. In contrast, when the simple

spring spot weld model is used the natural frequencies are clearly underestimated.

Finally, the method presented here is accurate when predicting which modes are
sensitive to the uncertainties in the spot welds and which modes are not. It can also
predict the standard deviation of the natural frequencies distributions as a result of spot
weld variation. This method also predicts the correlation between the normalized

natural frequencies accurately.
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6.1 Conclusions

Spot welds are the most important structural joint in the automotive industry. A vehicle
body contains several thousands of spot welds. There is an inherent variability in these

joints due to the complexity in the manufacturing process.

These variations lead to variations in the joint dynamic properties and the resulting
overall dynamic behaviour of the built up structure. At this moment there is not a
method in which the uncertainties in the spot welds are considered when predicting the
global dynamic properties such as frequency response functions (FRFs), eigenvectors,

eigenvalues etc.

In this thesis an efficient method to calculate the variability in the dynamic properties of
spot welded structures due to uncertainties in the location and size of the spot weld was

proposed and experimentally validated.

The finite element method (FEM) is used in conjunction with Monte Carlo simulations
(MCS) to predict the variability in the vibration response of the spot weld structures;

this is usually computationally expensive especially for large scale models.
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In this thesis the computational time of such analyses is reduced up to 99% using a
proposed spot weld model based on multipoint constraints (MPCs) and an analytical
update theory in the component mode synthesis (CMS) framework and the results were

experimentally validated.

In chapter 2 MPCs were used to apply connections between flat structures. It was
shown that an MPC connection can be placed between nodes of an FE model and is able

to incorporate any change in the location of the elastic connection in an accurate way.

When beams are connected, results showed that the MPC connection has the same
predictive performance compared to the direct node to node connections. Both models
giving accurate results for point connections comprising a translational or rotational

spring.

Results showed that the MPC connection is not accurate when thin plate elements are
used, due to the non-conforming formulation. In contrast, when the Heterosis element
was used the results showed that the MPC connection is as accurate as the node-to-node
connection. Additional errors appear when rotational springs are used in the connection,
due to discrepancies between the element formulation and the analytical solution. Some
convergence issues exist in the modal summation when rotational degrees of freedom

(DOFs) are involved; however the solution is still acceptable.

When a rotational spring is used, the transfer mobility magnitude is sensitive to the
element size. This problem is not related to the MPC, since the MPC and node to node
connection results are almost identical. Furthermore, the MPC results are closer to the
analytical solution. This sensitivity is related to the addition of rotational stiffness into

the FE stiffness matrix.

In chapter 3 MPCs in combination with CMS were used to predict the response where
there are uncertainties in the joint locations in a FE model. It was seen that CMS gives a
sub-structuring framework and a reduction in the number of DOFs of the model.

Combining both approaches, the response of the system can be evaluated for any
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connection location using the unchanged modal representation of the substructures in an

accurate and numerically efficient manner.

However, when the number of degrees of boundary DOFs is large, then the CMS size
reduction is less efficient since the interface DOFs are not reduced. Two techniques are
proposed to overcome this problem: (i) characteristic constraint modes [3] and (ii) low

rank update theory [4].

The vibration response was calculated using these approaches for different connection
positions and compared to a full modal solution. The predictions obtained gave a good
agreement and the computational time was reduced by approximately 99% when
compared to the full modal solution. When compared to the characteristic constraint
mode method, the low rank update approach leads to a reduction in the computational

% .

time t at a rate of ¢

The last approach was used in a MCS with 500 samples to evaluate the variability in the
vibration response. The results show that probability density functions (PDFs) of the
system natural frequencies are not Gaussian even though the connection locations are

Gaussian variables.

A second MCS was used to evaluate the variability in the vibrational response due to
missing or broken connections and/or uncertainty in the location of the spot-welds in a
model of two plates with five spot welds. Results show that, for the example considered,
when any of the inner spot welds is missing and the location and size of the remaining
connections is uncertain the vibration responses lie approximately within the bounds of
the case in which all the connections are present. On the other hand, when any of the

outer connections are absent the variability in the vibration response is greater.

In chapter 4 a new spot weld model was proposed. This model imposes a surface-to-
surface connection between two structures using simple spring elements and MPCs,
therefore coincident meshes are not required. The application of the new spot-weld
model is validated experimentally on a model of two simply supported plates with three

spot weld connections. The performance is compared to a simple MPC connection.
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It was shown that when plate elements are based on Mindlin-Reissner plate theory, the
stiffnesses in the rotational DOFs depend on the element size in a quadratic way. In
addition, when the rotational stiffness of the connection is added to the system, it results
in a high sensitivity of the static solution and natural frequencies to the element size.
This was demonstrated on an assembly of two simply supported plates with a single

connection.

The new model does not add stiffness to the rotational DOFs, but instead it is composed
of an array of springs that add an equivalent rotational stiffness to the system. The
results show that the new spot weld model reduces the sensitivity substantially and
improves convergence with different mesh sizes. For the structures considered,
convergence is achieved with an 8mm element size compared to a plate thickness of
1.96mm, whilst for the simple MPC model convergence is not achieved. The average
sensitivity to element size at 10mm is reduced almost five times from 346.7 Hz/m to

70.49 Hz/m.

In chapter 5 the proposed spot weld model in Chapter 3 and the method to evaluate the
variability in the structure properties due to uncertainties in the spot welds was

validated using experimental results. A double hat structure was chosen for this

purpose.

159 profiles were fabricated and tested before assembly, the natural frequencies were
measured and their PDFs were studied. In order to reduce the variability in the
substructures the samples with larger errors in the modal frequencies when compared to

the mean were discarded; 108 profiles were left.

After being welded, the spot weld size and location were measured. The natural
frequencies, loss factor and mode shapes were estimated and analysed. The damping
estimates together with the spot weld size and location are used as inputs for the FE

model.
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A deterministic FE model for the single profiles was built and compared to
experimental measurements to evaluate its performance. Finally the assembly was built

in a MCS with stochastic spot weld properties and compared to the test results.

It was concluded that the modal frequencies of the single plates fit into a normal

distribution and the modal loss factors are always lower than 3.5x10~° .Measured spot
weld position, spot weld size and assembly modal frequencies also fit into a normal

distribution.

When the deterministic FE model of a single plate is compared to the ensemble of
measurements, the agreement between both of them is good, where the resonances and
antiresonances show the same behaviour. The position of the resonances in the
experimental results describes the variability of the manufacturing process while the FE
result represents a sample with natural frequencies close to the experimental mean

modal frequencies. The prediction of modeshapes was also satisfactory.

When the proposed spot weld model is used, the predicted natural frequencies overlap
the experimental results. In contrast, when the simple spring spot weld model is used,
the natural frequencies are clearly underestimated. The modeshapes are correctly

predicted and the MAC analysis show that the modes do not swap order in all samples.

Finally, the method presented here is accurate when predicting which modes are
sensitive to the uncertainties in the spot welds and which modes are not. It can also
predict the standard deviation of the natural frequencies distributions as a result of spot
weld variation. This method also predicts the correlation between the normalized

natural frequencies accurately.

6.2 Future work

In this thesis the propagation of uncertainties in the spot welds was computed using a
standard MCS. The computational time was reduced using characteristic constraint
modes/update theory in a CMS framework, here the computational time of the

deterministic solution is reduced. The calculation cost for one solution can also be
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reduced drastically, if numerically expensive operations, such as solving the eigenvalue
problem, are replaced with numerically cheap formulations. First order perturbation
methods using response sensitivities [70] are appropriate for low levels of uncertainty.
For larger uncertainties, higher order perturbation or interpolation can be used. A
systematic approach to select the reference solutions for an interpolation is given by the
design of experiments methodology. It can also be used to construct an approximate
response surface model (RSM) [71], which replaces the original model to provide a
relationship between input parameters and response quantities. Although a replacement
of the original model is often associated with errors due to approximations, these can

often be neglected with respect to the level of uncertainty in the input data.

Another option that could be explored is to apply techniques designed to reduce the
number of necessary evaluations by using advanced sampling techniques [72]. These
reduce the variance of the sampling estimator and achieve the same accuracy with a
lower number of samples. The most common techniques are importance sampling [54],
directional sampling [73], subset simulation and Line-Sampling [74]. The DOE
methodology can also be applied to create advanced MC methods to estimate the mean
and variance of a distribution using a very low number of samples. Latin Hypercube
sampling [75] is a version of stratified sampling, where it is ensured that the samples are
taken more evenly from the input parameter distribution. In contrast to sampling
approaches, there are various subspace projection schemes, such as polynomial chaos

expansion [76] and stochastic reduced basis methods [77].

It could also be possible to apply a possibilistic approach, in this case, the complication
comes when defining the bounds of the solution. In this case a small MCS can be run
and the 5 and 95 percentiles in the stiffness matrix can be taken as the lower and upper

bounds in the possibilistic method.

In order to not only model the variability in the spot welds but also the variability in
connected panels, statistical energy analysis (SEA) could be used to model large panels
and coupled to small FE sections where the spot welds are located (e.g. the landings or
flanges on the hat profiles can be modelled with FEA while the rest of the structure
could be modelled using SEA). This would create a hybrid FE-SEA model that
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potentially could extend the frequency domain of the analysis, reduce further the

computational time and also consider the variability in the rest of the structure.

This approach could be used for reverse problems in which, for a given set of
requirements such as standard deviation of natural frequencies, a maximum tolerance in

the location and size of the spot weld is determined.

The proposed methodology should be applied in structures with a larger number of spot
welds and more than two components in order to study the feasibility of applying it in
industrial problems. The final goal would be the implementation of the current approach
in large built up models such as a vehicle body-in-white with three to five thousands

spot welds.
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APPENDIX A

1
w(x)
K K@x
Ex (-T)
()
«® 0
3 4

For this system each point has two degrees of freedom, therefore the forces and

displacement matrixes at each node are

V.
Vl.=|: l} (A.1)
v,

F—Fi A2
[_Mi ()



APPENDIX A

Then the mobility matrix Y, relates the force matrix in point i and the velocity matrix

in point j as

v.=YF (A.3)

where Y, containing the following elements Y,/ =' V . = W% ’

v,
Y/ :lw‘%/l and Y :lwl//%l

B!

i i

The equations defining the system in Figure A.1 are; for the upper beam

Vz = Y12F

ext

+Y,,F, (A4)
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for the lower beam
v, =YK (A.5)

Finally the spring can be defined in terms of its mobility

Vz—Y Fo A5
v3_SFe3 ()

here the equilibrium forces are

FeZ _ _Fz A6
Fe3 - _Fs ( . )

Finally for the system in Figure A-1, the connection is massless. Therefore

F, =F, (A.7)
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Figure B-1: Two simply supported plates with a single elastic connection
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For this system each point has three degrees of freedom, therefore the

forces and
displacement matrixes at each node are
vi
Vi=| V¥ (B.1)
l//yi
F,
F=M, (B.2)
M

Then the mobility matrix Y, relates the force matrix in point i and the velocity matrix

in point j as

v, =Y,F (B.3)

yx,F

Y-/ = ia)lf//y/' Y- = ia)v.i Yi-, = ia)wxi Y-/ = i Yy
2 Foootan T Sy T T M, 0 o T M,
1 X1 Xt Xt
—; oy, i oy, i oy
=i — J - 7 — BY
YV’M)' N %/[yl. ’ YW,MY - %4})[ and Yv?y,My - %{w :

The equations defining the system in Figure B.1 are; for the upper plate

where Y, containing the following elements Y./ =' % , Y=t W% ,

Vz = Y12Fext + Y22F2 (B.4)

for the lower plate

v, = Y,F, (B.5)
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Finally the spring can be defined in terms of its mobility

\& -Y F, B.S
V3_SFe3 (B2)

here the equilibrium forces are

FeZ _ _Fz B.6
Fe3 - _F3 ( ' )

Finally for the system in Figure B-1, the connection is massless. Therefore

F, =F, (B.7)
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