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ABSTRACT 

Spot-welded structures contain inherent variability in location and/or stiffness due to the 

complexity of the manufacturing process. Therefore, an analysis that includes the 

uncertainty generated in the joints will provide a range of response predictions, adding 

more value to the design process compared to deterministic results. Finite element (FE) 

analysis is frequently used in conjunction with Monte Carlo simulations (MCS) to 

predict the variability in the vibration response of assembled structures, however this is 

usually computationally expensive. Small numerical spot weld models must be used 

since real spot welded structures usually possess many spot welds and modelling each 

of them in detail would lead to additional computational effort, current models provide 

results sensitive to the element size. 

 In this thesis, a method to quantify the variability in the dynamic characteristics 

of structures due to uncertainty in the location and diameter of the spot welds is 

proposed and experimentally validated. Component mode synthesis (CMS) is used in 

combination with multipont constraint (MPC) connection models in order to improve 

the computational efficiency of the uncertainty analysis. However, if the number of 

degrees of freedom (DOFs) involved in the connection is large, then the CMS size 

reduction is less effective. Two techniques are proposed to overcome this problem: (i) 

characteristic constraint modes and (ii) application of a low rank update theory to the 

CMS matrices. A spot weld model based on MPCs is proposed and validated as part of 

the original contributions of this work. This model improves convergence and 

minimizes the sensitivity to the element size. 

 The application of the new method is experimentally validated in a double hat 

structure. Results show that the method presented is accurate when predicting the 

structure’s natural frequencies and it can identify which modes are sensitive to the 

uncertainties in the spot welds and which modes are not.  
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μ         Modal mass matrix 

         Poisson’s ratio 

        Mass density 

        Standard deviation 

        Normal modes in CMS 
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(MPC)         Multipoint constraint  
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1  INTRODUCTION 

 

Structural elements such as beams, plates, rods, etc., are typically assembled together 

using elements called structural joints in order to build more complex structures. A 

built-up structure might contain many joints and the properties and characteristics of 

these connecting elements contribute significantly to the overall dynamic behaviour of 

the structure, e.g. natural frequencies, mode shapes and frequency response functions 

(FRFs). In the automotive industry one of the most important structural joint is the spot 

welded joint, or simply called the spot weld. A vehicle body contains several thousands 

of spot welds. The spot welds are manufactured using a process called resistance spot 

welding (RSW).  

RSW is an efficient process to join vehicle body parts. It consists of four stages called 

squeezing, welding, forging and cooling [1] as shown in Figure  1.1.  Two metal sheets 

are compressed between a pair of water-cooled copper-alloy electrodes with an external 

applied force, and then an electric current is passed through the sheets via the two 

electrodes to generate concentrated heating at the contact surface. The contact surfaces 

in the region of current concentration are heated for a very short duration by a pulse of 

low-voltage, high-amperage current. Due to heat generation at the contact surface and 

Joule heating, a molten nugget is formed at the interface of the two sheets. After the 

current flow ceases, the electrode force is maintained for a short duration to allow the 

workpiece to rapidly cool and solidify.  
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Other sources of variation in this process are welding duration, electrical current 

changes, electrode-surface contact characteristics and thermal conditions amongst 

others.  

Given this problem, there is current interest in developing methods to estimate the weld 

nugget parameters during the short time of the weld formation and create a real-time 

spot weld quality monitoring, but these investigations are current work and have not 

been implemented in industry [3]. 

The finite element method (FEM) is commonly used to compute deterministic 

predictions of complex systems. The inputs in a regular FEM analysis are the mass, 

stiffness and damping and the response quantities can be frequency response functions 

(FRFs), eigenvalues, eigenvectors etc. If the input parameters are accurate and the 

system is correctly modelled, then the output quantities will be accurate. Nevertheless 

the standard FEM does not include variations in the geometric and physical properties 

of the spot welds. 

These variations lead to variations in the joint dynamic properties and the resulting 

overall dynamic behaviour of the built up structure. Since spot welds contain inherent 

variability due to the complexity of the manufacturing process, an analysis including the 

uncertainty generated in the joints providing a range of response values, can add more 

value in the design process compared to deterministic predictions.  

In order to achieve that, it is necessary to use an adequate FE spot weld model, this 

model should be able to represent the physical and dynamic properties of these joints 

and therefore the variations in them. Then a method to include the uncertainties in the 

FE models must be implemented. 

In the following sections, the existing FE spot weld models are reviewed, followed by a 

review of the available methods to include variability in FE models and finally the 

outline/scope of the thesis is given.  
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1.1 Finite element spot weld models 

Modelling spot welds is a difficult task, mainly because there are many local effects 

such as geometrical irregularities, residual stresses, material inhomogeneities and 

defects due to the welding process that are not taken into account. Furthermore it is 

necessary to use models with as few degrees of freedom (DOF) as possible, since real 

spot welded structures usually possess many spot welds and modelling each of them in 

detail would lead to a major computational effort.  

Two main types of spot weld models can be distinguished: models for stress analysis 

within the spot weld and models for vibration analysis which do not require the 

knowledge of stresses at the spot welds. In the first case, very detailed models are 

required to compute a smooth stress field at the spot weld. As stated previously, these 

models are used for stress analysis and durability. In general they are too detailed to use 

in dynamic analysis, leading to a prohibitive computational cost, therefore these models 

will not be reviewed in this thesis. In the second case the only requirement from the 

model is to simulate, as closely as possible, the stiffness (and mass) characteristics of 

the real spot welds and their influence on the rest of the structure. This allows much 

simpler models with far fewer DOFs.  

These simpler models can be divided into two types, models that require coincident 

meshed surfaces in which the nodes of the plate elements of the joined surfaces are 

coincident and models that can be assembled with non-coincident meshes in which the 

plate nodes are non coincident.  

The latter models offer a great advantage to industry, since it is not necessary to re-

mesh surfaces to assemble them together. Next some of the most common models are 

reviewed.  

1.1.1 Single beam models 

These models were very commonly used in industry for many years. A node to node 

connection is applied between coincident meshes using a rigid link or a beam element. 
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According to Lardeur et al. [4] this connection is physically inconsistent and leads to 

imprecise and inconsistent results. Similarly, Palmonella et al. [5] state that this model 

is an inadequate representation for the behaviour of the spot weld and generally tends to 

underestimate its stiffness.  

1.1.2 Single brick models 

This model was first proposed by Pal and Cronin [6] and connect two surfaces using a 

single 3D solid element to characterise the spot weld nugget. The brick nodes are 

coincident with the plate nodes connected with rigid links in all DOFs, therefore it is 

necessary to have coincident meshes between surfaces.  

1.1.3 Area contact model 2  

This element was created by Heiserer  et al [7] and is known as area contact model 2 

(ACM2). This model consists of a brick element connecting the lower and upper plates 

with weighted average constraint elements, called RBE3 in MSC Nastran [8], as shown 

in Figure  1.3. RBE3 defines the motion at a reference grid point as the weighted 

average of the motions at a set of other grid points. The RBE3 element is able to 

distribute the applied loads onto a set of nodes without increasing the local stiffness as 

would happen with a rigid link. The ACM2 model is also known as  CHEXA spot weld 

model in LMS virtual lab [9]. This model provides the advantage of being able to 

connect surfaces with non congruent meshes and locate the spot weld anywhere in the 

surface between nodes. 

                        

Figure  1.3: ACM2 model 
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1.1.4 CWELD 

Fang et al. [10], proposed a model designed to connect congruent as well as non 

congruent meshes using a Multipoint constraint (MPC) equation. This element was 

implemented as the CWELD element in MSC/NASTRAN or PLINK in ESI/Pam-Crash. 

Figure  1.4 shows a sketch of the CWELD element. The elastic part of the CWELD 

element is a short beam from points GA to GB with six DOFs per node; this beam is 

modelled as a shear flexible Timoshenko type. The location of the element is defined 

with a free grid point GS, which is projected on the surfaces to be joined.                             

Every node of the beam is connected to a chosen set of nodes of the plate to which it 

belongs. In Figure 4, the node GA for example is connected to the shell nodes GA1, 

GA2, GA3 and GA4 belonging to the upper plate. The portions of the plates delimited 

by the nodes GAi and GBi are called “patches”  [8]. 

The DOFs of the spot weld end point GA are constrained as follows: the 3 translational 

and 3 rotational DOFs are connected to the 3 translational DOFs of each node GAi with 

constraints from Kirchoff shell theory, 
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Figure  1.4: CWELD model 

Here x, y and z are the co-ordinates with z  being  perpendicular to the element plane;  

Ni,i are the parametric shape functions; A  and A  are the normalised coordinates; u, v, 

and w are the displacement DOFs and x , y  and z  are rotational DOFs. 

1.2 APPROACHES FOR A NON-DETERMINISTIC 

ANALYSIS 

In order to include the uncertainties in a FE structural dynamics model, there are two 

contrasting approaches: (1) possibilistic and (2) probabilistic approaches. In possibilistic 

approaches the uncertain parameters are assumed to lie in a finite interval, where only 

the definition of a lower and upper bound is required. The definition of these bounds is 

normally a difficult task and in general is done based on experience or based on a 

limited number of experiments. The goal of a possibilistic propagation approach [11] is 

to calculate the bounds on the response quantity of interest. If the problem is monotonic, 

i.e. the output depends monotonically on every input parameter, it is sufficient to 

consider all combinations of the bounds of the input parameters only, which is referred 

to as the vertex method [12]. 

In probabilistic approaches [13,14], information about the likelihood and probability of 

events are included. The variation in the parameter(s) is specified by a probability 

density function (PDF) and the variation in the response can be quantified in terms of 

distribution functions or statistics. A standard PDF is normally assumed for the input 
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parameter(s). The normal distribution is often an adequate fit to product variability, in 

statistics, and this is also supported by the Central Limit Theorem [15]. However, the 

unbounded tails of the normal distribution are often inconsistent with reality, which has 

to be taken into account. 

The standard method for propagating probabilistic data is the Monte Carlo (MC) 

method [16–20]. In standard MC sampling, parameter values are randomly drawn 

according to their probability distributions and a deterministic problem is solved for 

each sample. The results are analysed to estimate response statistics and distribution 

functions. The method is very robust and converges to the exact solution as the sample 

size tends to infinity. It makes no approximations and considers all effects modelled in 

the deterministic problem. In general, a sample size of the order of 10 is sufficient to 

estimate the mean of a distribution function and a sample size of the order of 100 is 

required to obtain a reasonable estimate of the variance. However, the numerical cost to 

estimate a small probability of failure can be in the order of thousands of deterministic 

solutions. 

In order to reduce the computational time of the deterministic solution in the analysis of 

uncertainties when a FE model is used, the number of the degrees of freedom (DOF) 

can be reduced using component mode synthesis (CMS). CMS is a well established 

method to reduce the size of the model and also offers an appealing framework for the 

analysis of the structural dynamics of uncertain structures. One of the most accurate and 

frequently used CMS methods is the Craig-Bampton method [21]. In the fixed interface 

method the component normal modes are calculated with the interface between the 

components held fixed. These modes are further augmented by static constraint modes 

to improve convergence, yield the exact solution and assure the compatibility between 

components facilitating coupling of structures. It is also possible to perform an 

eigensolution on the constraint mode partitions of the mass and stiffness matrices. The 

resultant eigenvectors are called the characteristic constraint modes. When the Craig-

Bampton method is used the DOFs of the model can be further reduced by truncating 

the characteristic constraint modes, especially in problems with large number of 

interface coordinates [22]. 
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1.3 Scope of the thesis 

The objective of this thesis is to predict the vibrational behaviour of built-up structures 

subject to variations in the location and size of the spot welds. This objective was 

divided into three parts:  

(1) The analysis, evaluation and verification of spot weld FE models. 

(2) Improve the efficiency of the dynamic analysis of spot welded structures for non 

deterministic analysis. 

(3) Experimental validation of the proposed methodology. 

In modelling the structure, a model of the spot weld which is connected to the 

substructures by MPCs has clear advantages. It can be located anywhere in the model 

and it is not necessary to re-mesh surfaces to assemble them together.  Furthermore, 

MPC connections can be used to model changes in the location of the joint instead of 

modifying the FE model from one sample to the next.  

In order to further improve the efficiency of the deterministic solution, CMS gives a 

sub-structuring framework by which the number DOFs are reduced [21]. Combining 

CMS with MPC joints, the response of the system can be evaluated for many spot weld 

locations using the same modal representation of the substructures, which is a big 

advantage when using a MCS for a non deterministic study. 

As part of objective (1), in chapter 2  the MPC connection is analytically verified. The 

results from FE models with MPCs are compared to analytical solutions to evaluate the 

accuracy of these connections when the location is changed and to analyze the influence of 

the size and the type of element at which these MPCs are attached. Two different models 

are analyzed: two infinite beams and two simply supported plates. In all the models there is 

a single elastic connection with translational and rotational stiffnesses. 
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In chapter 3, as part of objective (2), MPC connections are combined with the Craig-

Bampton method  in order to reduce the computational time of a MCS. Combining 

CMS with MPC joints, the response of the system can be evaluated for many joint 

locations using the same modal representation of the substructures. However it will be 

seen that when the number of degrees of freedom involved in the connection is large, 

the CMS size reduction is less efficient because the interface DOFs are not reduced. To 

further improve the efficiency of this analysis, two additional methods are applied: 

characteristic constraint modes and a low-rank update theory. 

In chapter 4 a robust spot weld model based on MPC connections is proposed and 

validated. This model is compatible with the methods in chapter 3 and is capable of 

modelling not only changes in location but also changes in diameter of the spot weld 

with the same computational expense as the simple MPC connection. This proposed 

connection is also less sensitive to element size. 

In chapter 5 the robust spot weld model is combined with the numerical methods 

proposed in chapter 3 to obtain non deterministic predictions. These predictions are 

experimentally validated in a system of two hat profiles with four spot welds with 54 

samples. 

In summary the original contributions of this work include: 

 Analytical validation of MPC connections, especially when modelling changes 

in the connection location. 

 The application of the Craig-Bampton method and characteristic constraint 

modes in combination with the MPCs connection in order to model uncertainty 

in the locations of joints. 

o Constraints DOFs in areas instead of lines. 

o Elastic connection instead of rigid. 

 The application of low rank update theory in the CMS framework in order to 

improve models with a large number of coupling DOFs. 

 A spot weld model robust to changes in the mesh characteristics and capable of 

modelling the diameter of the spot welds was proposed and validated. 
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 Experimental validation of the non deterministic model. 
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2  VALIDATION OF MULTI POINT CONSTRAINTS 

FOR SPOT-WELD MODELS 

 

As mentioned in the previous chapter, in FE models spot welds are commonly 

represented by two-noded elements (e.g. beams or springs with lumped masses) or by 

rigid connections. The parameters of these simple elements represent the stiffness 

characteristics of the real joint, and therefore their influence on the rest of the structure. 

This simple connection can be connected to the substructures in mainly two different 

ways:  (1) a direct connection between nodes in the substructures (node-to-node 

connection) or (2) using interpolation elements or multipoint constraints (MPCs) to 

connect the joint nodes to the substructures.  The node-to-node connection requires 

coincident meshes: if the location of the weld changes, then the mesh of both surfaces 

needs to be modified. In contrast, when interpolation elements or MPCs are used, the 

connection can be placed at any location using the existing surface meshes.  

The latter feature offers a great advantage to industry, since it is then possible to 

assemble components with different mesh characteristics or to assemble components 

with complex geometries in which it is very difficult to have coincident nodes. 

Moreover, MPC connections can improve the computational efficiency when Monte 

Carlo simulation (MCS) is used to analyse the dynamic behaviour of built-up structures 

with uncertainties in the location of the joints. In this case, the MPC connections are 

used to model changes in the location of the joint instead of modifying the FE model 

from one sample to the next.  
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However, model validation is needed.  In this chapter, the results from FE models with 

MPCs are compared to analytical solutions to evaluate the accuracy of these 

connections and to analyse the influence of the size and the type of element for which 

these MPCs are attached. Two different models are analysed: two infinite beams and 

two simply supported plates. In all of the models there is a single elastic connection 

with translational and rotational stiffnesses. 

In the following section, the MPC joint model is described in detail. In Section  2.2 the 

MPC joint model is validated using a model of two infinite beams with a single elastic 

connection. In Section  2.3 the MPC joint model is validated using a model of two 

simply supported plates with a single elastic connection and the influence of the size 

and the type of element to which these MPCs are attached is analyzed. Finally, 

conclusions are given in section  2.4.  

2.1 Multi point constraint elastic connection 

The MPC elastic connection in this study consists of spring elements connected to the 

substructures using MPCs. The model is then a function of the position of the 

connection points  ,x y  as shown in Figure  2.1. In the case of thin plate substructures 

with out-of-plane DOFs w , x  and y , the elastic element contains a translational 

stiffness, wK  and two rotational stiffnesses, xK  and yK , as shown in Figure  2.1. The 

nodal forces and DOFs of the thi connection are related by 
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 hence, the stiffness matrix in the local connection DOFs iu  is 
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K K
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 (2.2) 

where 

  i iw i x i ydiag K K K  K  (2.3) 

The DOFs iu  can be related to the nodal DOFs of one of the substructures using MPCs. 

The MPC can be defined as the set of equations that relate each of the connection DOFs 

iu  to the interface DOFs ccu , i.e.  

      1 1 1(1) (1)( , )i i i i ccx y  u G u  (2.4) 

      2 2 2(2) (2)( , )i i i i ccx y  u G u  (2.5) 

where  1
iG  and  2

iG  are the matrix of coefficients of the MPC equations for the upper 

and lower plate respectively. In this case  1
iG  and  2

iG  are populated using the 

element shape functions. In doing so, the relationship between iu  and ccu  is made 

consistent with the FE formulation and is a function of ( , )x y  .  

There are many methods available in the literature to apply MPCs to a FE model, e.g. 

static condensation [23], augmented Lagrange multipliers, Lagrange elimination etc. In 

this paper, static condensation is used.  

In order to add n connections, a global connection matrix in iu  coordinates is defined as  

  1 2 3 ndiag     K K K K K  (2.6) 
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Then a transformation matrix Γ  that relates the iu  to ccu  and imposes the coupling 

conditions between plates can be written as 

    1 2   Γ G G  (2.7) 

where  

           1 1 1 1 1
1 2 3 ndiagG G G G G  (2.8) 

           2 2 2 2 2
1 2 3 ndiagG G G G G  (2.9) 

A second transformation matrix Ξ  is defined to transform from ccu  to p coordinates as 
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 (2.10) 

where 0 are zeros matrices of appropriate size. Then the stiffness matrix in p

coordinates containing n connections is 

  T

MPC   K Γ K Γ  (2.11) 

The resulting nodal forces in the joint are 

 MPC ccF K u  (2.12) 

The substructures DOFs ccu  can be partitioned as 
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where (1)
ccu  and (2)

ccu  are the DOFs in substructure (1) and substructure (2) respectively. 

2.2 Validation of a multipoint constraint spot-weld model for 

a one dimensional system. 

This section investigates the validation of use of MPCs for connecting FE models and 

their ability to locate a connection anywhere between nodes. To avoid effects due to 

resonances and to simplify the evaluation, the joint is placed in a model of two infinite 

Euler-Bernoulli beams joined by a single connection. The transfer mobility from the 

upper to the lower beam as shown in Figure  2.2, is evaluated using two different FE 

models; one with an MPC elastic connection and the second with a node-to-node 

connection. Finally, the results are compared to an exact analytical solution.  

2.2.1 Numerical models 

To model an infinite beam model, the region of the elastic connection is modelled using 

Euler-Bernoulli beam finite elements and then attached to semi-infinite Spectral 

Elements (SEs) as shown in Figure  2.3. 

An infinite beam structure can be incorporated into the FE model using the SE method. 

The SE approach is similar to the FE method, but the element matrix is defined via the 

dynamic stiffness relationships in the frequency domain [24]. A SE element that 

extends to infinity and is connected at a single point can be created; this element 

simulates a semi-infinite medium and can be connected to any node in a FE model 

according to the method described by Doyle [24]. 

Two different SEs were created, a) one semi-infinite beam that extends to   and b) 

one that extends to   as shown in Figure  2.4. 
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Figure  2.1: MPC elastic connection for plate bending analysis:       joint DOFs  i
u ;        

substructure DOFs involved in the connection  ccu .   

The harmonic nodal forces are related to the nodal displacements as  
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2

2 2
2

(1 )

(1 )
b b

b b x

wQ i k ik
EI

M ik i k 

                  
 (2.15) 

where 

 
2

4
b

A
k

EI

 
    (2.16) 
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is the beam flexural wave number equal to 2 /  ,   being the corresponding 

wavelength. The dynamic stiffness of a semi-infinite beam that extends to   is then 

given by  

  
3 2

1

2

(1 )

(1 )
b b

se

b b

i k ik
EI

ik i k

  
   

D         0x   (2.17) 

and the dynamic stiffness matrix for a beam that extends to    is given by 

  
3 2

2

2

(1 )

(1 )
b b

se

b b

i k ik
EI

ik i k

   
    

D                0x   (2.18) 

The SEs are connected to the FEs in a similar way in which two FEs are connected, but 

instead of connecting the mass and stiffness matrices, the dynamic stiffness matrix of 

the FEs is connected to the dynamic stiffness matrix of the SEs. 

 2
fe  D K M  (2.19) 

 

 

Figure  2.2: Two infinite beams connected with an elastic connection. 
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Figure  2.3: FE-SE Model of two infinite beams joined by a translational and a                
rotational spring. 

 

Figure  2.4: Semi-infinite SEs. 1Q  and 2Q  are the applied forces. 1M  and 2M are the 

applied moments. 

2.2.2 Node to node connection 

The nodal force matrix F  of a connecting element comprising a translational and a 

rotational spring can be expressed as 

( )x

( )w x

x
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
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x
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w w

x x
x

wK K

K K

K K w
K K

 

 





    
                     

F K u  (2.20) 

where K  is the joint stiffness matrix in the local DOFs  ; w , wK  and xK  are the 

rotational and translational stiffness of the elastic connection as shown in Figure  2.3 and 

 1w  and  1
x  and  2w  and  2

x are the local DOFs at the connection node belonging to 

sibstructure 1 and 2 respectively. K  can be transformed into global DOFs as  

 T
joint K A K A  (2.21) 

where jointK  is the joint stiffness matrix in global co-ordinates and A  is a 

transformation matrix that relates the local to the global DOFs [25]. 

2.2.3 Multipoint constraint connection 

The local DOFs of the joint element in equation (2.20) can be related to one or more 

DOFs in the global matrices using a MPC equation. The same method described in 

section  2.1 can be used. In this case the model is assembled as shown in Figure  2.3. The

(1)G  and (2)G   matrices in equations (2.4) and (2.5) are expressed as 

 

       

 
 

 
 

1 1 1 1
1 2 3 4

(1)
11

1 131
2 4

( ) ( ) ( ) ( )

( )( )
( ) ( )

N aN N aN

NN
N N

a a

   

  

    
        

G  (2.22) 

 

       

 
 

 
 

2 2 2 2
1 2 3 4

(2)
22

2 231
2 4

( ) ( ) ( ) ( )

( )( )
( ) ( )

N aN N aN

NN
N N

a a

   

  

    
        

G  (2.23) 

where   
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 3
1

1
( ) (2 3 )

4
N       (2.24) 

 2 3
2

1
( ) (1 )

4
N         (2.25) 

 3
3

1
( ) (2 3 )

4
N       (2.26) 

 2 3
4

1
( ) ( 1 )

4
N          (2.27) 

are the parametric shape functions for a FE Euler-Bernoulli beam and 

 
x a

a


    
 

 (2.28) 

is the normalized co-ordinate, / 2a s  where s  is the element length. 

2.2.4 Analytical solution 

Appendix A gives the equations governing the system in Figure  2.2 using a mobility 

approach, and it also describes the derivation of the transfer mobility from a force 

excitation applied at point 1 on the first beam to a response evaluated at point 4 on the 

second beam. 

Solving the equations in appendix A, the velocities of  beams 1 and 2 at the connection 

point are given by 

 

1
(1)(1) (2)
2,2 1,2

(2)(2)
3,3

0

0 0
C

c ext

C


     

      
       

YV Y
I Z F

YV
 (2.29) 

where          
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0 0
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0 0

w w

x x
c

w w

x x

K K
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K K

K K

 

 



 
  
 
  

Z  (2.30) 

is the impedance of the connection and 

 
, ,

, ,( )
, , ,

, ,

v F v M
i j i jk

i j F M
i j i j

Y Y

Y Y 

 
  
  

Y  (2.31) 

is the mobility matrix from point i  to point j  for the thk Euler-Bernoulli beam [26]. 

2.2.5 Numerical Examples 

The numerical example is a system of two infinite beams joined together by an elastic 

connection. To simplify the analysis all simulations were divided into two cases; the 

first of which only the effects of a translational spring wK  are analyzed and the second 

for which only xK  is considered in order to analyze the effects of a rotational spring. 

The values used for wK  and xK  are 610 N m  and 410 Nm rad  respectively. Both 

beams were assumed to be identical and the properties are given in Table  2-1. 

The mobility of the translational connection is fully imaginary (i.e. related to stiffness), 

when compared to the imaginary part of the mobility of the connected beams (i.e. the 

beams’ stiffness) and setting them equal, a critical frequency 0  can be found, i.e. 

 

12
23

0 2
WK EI

EI A



     

   
 (2.32) 

much below 0  the spring is effectively rigid and the behaviour of the assembly is that 

of two beams bending in parallel with no relative displacement at the connection. Much 

above 0  the spring is flexible and works as an isolator between the two beams. 
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When the mobility of the rotational connection is compared to the imaginary part of the 

mobility of the connected beams, two critical frequencies appear 1  and 2 , i.e. 

 
   

2

1 1/ 2 3/ 2
2

RK

A EI



  and 

12
2

2

1

e r

EI

x x A



   

       
 (2.33) 

where ex and rx  are the excitation and response coordinates from the origin. 1 is 

equivalent to 0  but for the rotational DOF, 2 is not physically meaningful but 

represents a change in the slope of the FRF. Given the stiffness value and the beams’ 

properties ( 42.23 10EI   Nm2, 23.58A  kg/m) used in the present example, one has

0 654  rad/s, 1 81.56  rad/s and 2 11574  rad/s. 

The transfer mobility from the upper beam a position 0.01mx    in the upper beam to 

a position 0.01mx   in the lower beam was evaluated using two different FE models; 

the first using a MPC connection and the second using a node to node connection. 

Finally both solutions were compared to the analytical result. 

2.2.5.1 Accuracy of FE models: a single translational spring connection 

Figure  2.5 shows the comparison between the results from both FE models and the 

analytical solution for the translational stiffness case.  When the spring is connected 

from node to node (see Figure  2.3), the result for the transfer mobility is not exact due 

to FE discretization errors. 

 

Table  2-1: Beam properties 

Cross 
Section

Beams (1&2) Rectangular 0.5 0.006 7860 2.07E+11 0.3

 m

b

 m

h

 3kg/m



 2N/m

E 
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When the beam wave number bk and the element length s  are multiplied and squared 

 2

bk s , a non dimensional frequency is defined. When the mobility is plotted using this 

non dimensional frequency as the abscissa it is possible to compare the accuracy of 

different FE models with different element size. The frequencies corresponding to s=

/ 6 , s= / 3  and s=   are added for reference. Figure  2.5 shows the comparison 

between the exact solution and the prediction using the FE-SE model. It can be seen that 

the prediction agrees with the exact solution and it starts to deviate for frequencies 

slightly above the frequencies where s > / 3 . If s >  the solution is very inaccurate.  

These errors are expected from any FE model, since as a rule of thumb the predictions 

from a FE model are accurate up to a frequency for which  s= / 6 . If the element shape 

functions are quadratic, as used in this study, then the accuracy limit increases up to 

frequencies where / 3s  .  

When the results from the MPC connection model are compared, it can be seen that the 

prediction agrees very well with the exact solution and starts to differ at frequencies 

slightly lower than frequencies where s > / 3 ; therefore it is marginally less accurate 

than the node to node connection.  This is explained by the fact that the displacements  

 

Figure  2.5:  Magnitude of the transfer mobility for a system of two infinite beams 
with a single elastic translational connection:            analytical solution;            

MPC connection;            node to node connection. 
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of the connection nodes depend on the shape functions of the element to which it is 

connected when a MPC is used; therefore additional discretization errors are introduced 

into the solution.  

However, these additional errors are small and the agreement between both models is 

very good at low frequencies, especially at frequencies corresponding to s < / 6 . 

2.2.5.2 Accuracy of FE models: a single rotational spring connection 

When the node to node connection is used, the transfer mobility can be predicted with 

good accuracy at low frequencies as can be seen in Figure  2.6. The solution obtained 

with the node to node FE-SE model is accurate for frequencies where 3/s .  At 

higher frequencies, the solution starts to deviate from the analytical solution. Similar to 

the translational stiffness connection, when a MPC connection is used to connect the 

rotational spring the response starts to deviate significantly from the analytical solution 

at slightly lower frequencies compared to the node to node connection. 

 

Figure  2.6: Transfer mobility magnitude in a system of two infinite beams with a 
single elastic rotational connection:            analytical solution;            MPC 

connection;               node to node connection. 
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2.3 Validation of a multipoint constraint spot weld model for 

two dimensional systems. 

When plates are connected with an MPC connection, the MPC coefficient matrices are 

populated using the element shape functions. Therefore it is important to analyze the 

formulation of the plate element that is being used.  

There are two main different plate theories [27]. The first is Kirchoff plate theory, in 

which the effects of transverse shear deformation and rotary inertia are neglected. 

Kirchoff plate theory is applicable to thin plates in which the plate thickness is much 

smaller than the bending wavelength. The second is Mindlin-Reissner theory. Here the 

transverse shear and rotary inertia become important when describing the plate 

behaviour, and it is often used to analyze thick plates. 

When Kirchoff plate theory is used, the element results in a non-conforming 

formulation or alternately in a conforming formulation with additional DOFs [25]; the 

non-conforming formulation could result in incompatibilities with the MPC equations, 

whilst the conforming formulation is difficult to assemble due to the additional DOFs. 

Alternatively, when Mindlin-Reissner theory is used [27], the transverse shear strain is 

independent of the thickness of the plate. Therefore as the plate thickness decreases, the 

strain energy associated with transverse shear tends to dominate the  response, rather 

than tending to zero as in the Kirchoff plate theory. This phenomenon is referred to as 

“shear locking” and leads to an overly stiff prediction of the response. One approach to 

reducing the effects of shear locking is to use a reduced number of Gauss integration 

points when evaluating the shear stiffness of an element [28], [29]. In effect, this 

reduces the order of the interpolation for the transverse shear strain to that used in the 

Gauss integration scheme. In general this approach can lead to rank deficiency of the 

stiffness matrix and a singular set of equations. However, by appropriate selection of 

the element basis functions and integration schemes, it is possible to obtain a robust 

element known as the Heterosis plate element [30]. 
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In this section the ability of the MPC connection to be located anywhere in an element 

is tested for two different element formulations, namely  a non-conforming thin plate 

rectangular element [25] and a heterosis plate element [28].  

A system of two simply supported plates with a single elastic connection is used. The 

transfer mobility from the upper plate to the lower plate is evaluated using two different 

FE models; one with an MPC elastic connection and the second with a node-to-node 

connection.  Results are then compared to an analytical solution. 

2.3.1 Finite element formulations 

2.3.1.1 Thin plate rectangular element (Non conforming) 

This is a four noded element, with one node at each corner. Each node has three DOFs 

which describe flexural motion, vertical displacement w  and two rotations x  and y  

as can be observed in Figure  2.7. It is based on Kirchoff plate theory, therefore it is 

assumed that 

 x

w

y
 




 and y

w

x
 

 


 (2.34) 

The displacement function can be described in terms of the normalised coordinates   

and   as 

        1 2 3 4[ , , , , ] ew         N N N N w  (2.35) 

where ew  is a vector that contains the element DOFs and 



CHAPTER 2 

-28- 
 

  

   

   

   

2 2

2

2

1
1 1 2

8

, 1 1
8

1 1
8

j j j j

T
j j j

j j

b

a
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      

    

       
 
     
 
   
  

N  (2.36) 

are the element shape functions, where  , , 1, 2,3,4j j j   are the normalized 

coordinates of each of the element nodes. 

The rotations x  and y  are evaluated using equations (2.34) and (2.35). When doing so 

it is noted that y  is determined by the values of  w  and x  at the four nodes as well as 

by the values of y  at nodes 2 and 3. This indicates that when elements are assembled, 

y  is discontinuous between nodes. Similarly x is also discontinuous between nodes. 

This is therefore a non-conforming element. 

2.3.1.2 Heterosis element 

The Heterosis plate element [28] is a nine-noded plate element that is based on Mindlin 

-Reissner plate theory and is shown in Figure  2.8. The central node has two rotations 

and each other node has 5 DOFs which describe in-plane and out-of-plane motion (42 

DOF in total). The displacement field within the element is interpolated using 

serendipity basis functions, whilst the rotations in the x and y directions are interpolated 

using Lagrange basis functions. Reduced order integration is used to evaluate the shear 

stiffness matrix. This element does not suffer from shear locking and possesses correct 

rank.  The out of plane co-ordinates  , ,x yw    of a point within the element can be 

described as 

 
8

1
j j

j

w w


N  (2.37) 
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P  (2.38) 
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1

y j y j
j

 

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where j  indicates the node number and 

    1
1 1 1 , 1,3,5,7

4j j j j j j            N  (2.40) 
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P = (2.42) 

are vectors of Lagrange and serendipity basis functions respectively. 

 

Figure  2.7: Geometry and coordinate system of a rectangular element. 
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Figure  2.8: Node numbering for Heterosis element. 

2.3.2 Type of connection 

2.3.2.1 Node to node connection 

In the case of thin plate substructures with out-of-plane DOFs w , x  and y , the elastic 

element contains a translational stiffness wK  and two rotational stiffnesses xK  and yK , 

as shown in Figure  2.1.   

The nodal forces and DOFs of the point connection are related by equation (2.1) 

K  can be transformed into global DOFs as  

 T
joint K A K A  (2.43) 

where jointK  is the joint stiffness matrix in global co-ordinates and A  is a 

transformation matrix that relates the local to the global DOFs [25]. 

2.3.2.2 Multipoint constraint connection 

As described in  2.1, the local DOFs of the joint element in equation (2.1) can be related 

to one or more DOFs in the global matrices using a MPC equations. In this case the 
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model is assembled as shown in Figure  2.1, where the Gmatrix in equation (2.4) and 

(2.5) is given by 

     
1 2 3 4

1 1(1) 31 2 4

31 2 4

,x y
y y y y

x x x x

 
 
 

          
 

           

N N N N

NN N N
G

NN N N

 (2.44) 

where jN  are the element shape functions for node j  as defined in equation  (2.36). 

When heterosis elements are used,   1G  is defined as  

 

 

 

 
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1(1)

1

0 0
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 
 

  
 
  

N

G P

P

 (2.45) 

where 

    1
1 2 3 4 5 6 7 8 9P P P P P P P P P P  (2.46) 

is the vector of serendipity basis functions for substructure as defined in equation (2.42) 

and 

    1
1 2 3 4 5 6 7 8N N N N N N N N N  (2.47) 

Is the vector of Lagrange basis functions for substructure i  as defined in equations 

(2.40) and (2.41) and the same for (2)G . 
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2.3.3 Analytical solution 

In this section the transfer mobility for the system in Figure  2.9 is derived, thin plate 

theory being used.  

Appendix B shows the equations governing the system in Figure  2.9 using a mobility 

approach, and it also describes the derivation of the transfer mobility from a force 

excitation applied at point 1 on the first plate to a response evaluated at point 4 on the 

second plate. 

Solving the equations in appendix A, the velocities at plate 1 and plate 2 at the 

connection are given by 

 

1
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2,2 1,2

(2)(2)
3,4

0

0 0
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YV Y
I Z F

YV
 (2.48) 

where          

 i Z K  (2.49) 

is the transfer impedance of the connection, and 
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Y  (2.50) 

are the mobility matrices from point i  to point j  for plate k . The terms in matrix (2.50) 

are calculated for thin rectangular plates in terms of a modal summation [26]. 
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2.3.4 Numerical example 

The numerical example is a system of two simply supported parallel plates with an 

elastic connection as shown in Figure  2.9. The properties for each plate are given in 

Table  2-2. To simplify the analysis all simulations were divided into two cases; the first 

in which only the effects of a translational spring wK  are analyzed and the second in 

which only xK  is considered in order to analyze the effects of a rotational spring. The 

values used for wK  and xK  are 16000 N m  and 1600 Nm rad respectively. Damping 

is introduced as a modal loss factor 0.02  . 

The transfer mobility from coordinate (0.38, 0.32) in plate 1 to coordinate (0.38, 0.32) 

in plate 2 as shown in Figure  2.9 was evaluated. In this example, the co-ordinates of the 

spring  ,c cx y  are  0.1227,0.1614 in both plates.  

When the MPC connection is incorporated, the plates are modelled using a mesh of 

11 11  identical elements. The co-ordinates of the spring correspond to  2.25 ,3.5x ys s  

, where xs  is the element length in the x  direction and ys  is the element size in the y  

direction. The local co-ordinates of the connection within the element are

   , 0.25 ,0.5x yx y s s   .  For the node to node connection a mesh of 22 22  elements 

is used in order to have a node exactly at the elastic connection location. 
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Figure  2.9: Two parallel simply supported plates assembled with an elastic point 
connection. 

 

Table  2-2: Properties of each thin plate component for the numerical example. 

When Heterosis elements are used to predict the transfer mobility, in the case of a 

connection with translational stiffness wK , both connection models have almost 

identical behaviour and are in very good agreement when compared to the analytical 

solution. Only FE discretization errors are present at higher frequencies as can be 

observed in  Figure  2.10. At resonance the difference in magnitude between the 

analytical and numerical solution is negligible and the first natural frequency is 

overestimated by approximately 0.5 Hz, whilst the second natural frequency is 

overestimated by approximately 0.3 Hz as shown in Figure  2.11(a) and  Figure  2.11(b). 

These differences are small and consistent between FE models.  

In the case of a connection with rotational stiffness xK , both connection models are in  

good agreement with each other, but there are differences when compared to the 

analytical solution, especially at low frequencies where a difference of approximately 

2dB can be observed in Figure  2.12. These discrepancies are mainly caused by 
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convergence issues in the modal summation when rotational DOFs are involved. The 

natural frequencies are overestimated by the same amount as in the translational 

stiffness case, as can be observed in Figure  2.13. In spite of these differences, the 

performance of the Heterosis elements connected by MPCs is acceptable, having the 

same frequency limitation as typical FE models. 

When thin plate elements are assembled using a node to node connection, the 

predictions are comparable to the results obtained from the Heterosis element. In some 

cases this prediction is closer to the analytical solution, as can be observed in  

Figure  2.10 to Figure  2.13. On the other hand, when thin plates are connected using 

MPCs the solution is significantly in error and different from the analytical solution, as 

can be observed in  Figure  2.10 and Figure  2.12. The error is generated when the MPCs 

are attached to the non-conforming elements, for which y  is discontinuous between 

nodes in the individual plates. Hence, an important overall conclusion is that MPC 

connections should not be implemented on any model comprising thin plate non-

conforming elements. 

 

 Figure  2.10: Magnitude of the transfer mobility for a system of two simply 
supported plates with a single elastic connection with translational stiffness:                       

analytical solution;            node to node-heterosis;          MPC-heterosis;          
node to node-thin;             MPC-thin.  
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Figure  2.11: Magnitude of the transfer mobility for a system of two simply 
supported plates with a single elastic connection with translational stiffness: (a) 

first resonance ; (b) second resonance:         analytical solution;                              
node to node-heterosis;          MPC-heterosis;          node to node-thin. 

 

Figure  2.12:   Magnitude of the transfer mobility for a system of two simply 
supported plates with a single elastic connection with rotational stiffness:           
analytical solution;            node to node-heterosis;          MPC-heterosis;          

node to node-thin;             MPC-thin.       

(b)(a) 
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Figure  2.13: Magnitude of transfer mobility in a system of two simply supported 
plates with a single elastic connection with rotational stiffness: (a) first 

resonance; (b) second resonance:           analytical solution;            node to node-
heterosis;          MPC-heterosis;          node to node-thin.  

2.3.5 Influence of element size in MPC connections 

To study the influence of element size for MPC connections, the same numerical 

example in section  2.3.4 was used.  The FE model with Heterosis elements and an MPC 

connection was modified to change the element size from the original 11 11  element 

mesh to meshes ranging from 6 6 to 22 22  elements and compared to the analytical 

solution. 

Since the location of the nodes is changed for every different mesh, the force was 

applied and the response calculated using MPCs in order to predict the same transfer 

mobility as in section  2.3.4. 

It was found that when a spring with a translational stiffness is used, the element size 

has a small influence when adapting MPC connections and only differences at higher 

frequencies are present, due to discretization errors as can be observed in Figure  2.14.  

There is a stiffening effect due to the increase in the constraint area as the element gets 

larger; however this effect is negligible since the variations in natural frequency and 

peak magnitude are insignificant as can be observed in Figure  2.15.  

(a) (b) 



CHAPTER 2 

-38- 
 

On the other hand, when a rotational stiffness is used the estimated transfer mobility is 

not as accurate as the translational stiffness case. Moreover, the estimated transfer 

mobility is sensitive to the element size; the magnitude changes with the element size as 

can be observed in Figure  2.16. If the plotted line below the first resonance is extended 

to lower frequencies, it is obvious that even the static solution for this problem is 

sensitive to the element size. This problem is not related to the MPC, since the MPC 

and node to node connection results are almost identical. Furthermore, the MPC results 

are closer to the analytical solution as can be seen in Figure  2.13. This sensitivity is 

generated when rotational stiffness is added into the FE stiffness matrix. This will be 

addressed and studied in detail on Chapter  4.  

 

Figure  2.14: Magnitude of the transfer mobility magnitude for a system of two 
simply supported plates with a single elastic connection with translational 

stiffness:                                                                                      
analytical solution          MPC-heterosis 6 6  mesh;          MPC-heterosis 

22 22 mesh. 
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Figure  2.15: Magnitude of the transfer mobility magnitude for a system of two 
simply supported plates with a single elastic connection with translational 

stiffness: (a) first resonance; (b) second resonance:             analytical solution           
MPC-heterosis 6 6  mesh;          MPC-heterosis 22 22 mesh;              MPC-

heterosis meshes from 7 7  to 21 21 . 

 

Figure  2.16: Magnitude of the transfer mobility for a system of two simply 
supported plates with a single elastic connection with rotational stiffness: (a) 
first resonance; (b) second resonance:             analytical solution           MPC-

heterosis 6 6  mesh;            MPC-heterosis 22 22 mesh;          MPC-heterosis 
meshes from 7 7  to 21 21 . 
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Figure  2.17: Magnitude of the transfer mobility for a system of two simply 
supported plates with a single elastic connection with rotational stiffness: (a) 
first resonance;(b) second resonance:             analytical solution           MPC-

heterosis 6 6  mesh;             MPC-heterosis 22 22 mesh;              MPC-
heterosis meshes from 7 7  to 21 21 . 

2.4 Conclusions           

In this chapter multipoint constraints (MPC) were used to apply connections between 

flat structures. It was shown that an MPC connection can be placed between nodes of an 

FE model and is able to incorporate any change in the location of the elastic connection 

in an accurate way. 

When beams are connected, results showed that the MPC connection has the same 

predictive performance compared to the direct node to node connections. Both models 

giving accurate results for point connections comprising a translational or rotational 

spring. 

Results showed that the MPC connection is not accurate when thin plate elements are 

used, due to the non-conforming formulation. In contrast, when the Heterosis element 

was used the results showed that the MPC connection is as accurate as the node-to-node 

connection.  Additional errors appear when rotational springs are used in the 

connection, due to discrepancies between the element formulation and the analytical 
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solution. Some convergence issues exist in the modal summation when rotational DOFs 

are involved; however the solution is still acceptable. 

When a rotational spring is used, the transfer mobility magnitude is sensitive to the 

element size. This problem is not related to the MPC, since the MPC and node to node 

connection results are almost identical. Furthermore, the MPC results are closer to the 

analytical solution. This sensitivity is related to the addition of rotational stiffness into 

the FE stiffness matrix. This will be addressed and studied in detail on Chapter  4.  
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3  VIBRATION ANALYSIS OF STRUCTURES WITH 

UNCERTAIN SPOT WELD LOCATION  

 

Spot-welded structures contain inherent variability in the location and/or stiffness of the 

spot weld due to the inherent variability of the manufacturing process. This variability 

leads to variability in the dynamic response of the structure. An analysis that includes 

uncertainty in properties of the joints provides a range of response predictions, adding 

more value to the design process compared to a single deterministic analysis. 

In Chapter  2 it was seen that in modelling the structure, a model of the joints which is 

connected to the substructures by multipoint constraints (MPCs) has clear advantages. It 

can be located anywhere in the model and it is not necessary to re-mesh surfaces to 

assemble them giving accurate results whatever the location of the joint. 

Therefore, MPC connections can improve the computational efficiency when Monte 

Carlo simulation (MCS) is used to analyze the dynamic behaviour of built-up structures 

with uncertainties in the location of the joints. In this case the MPC connections are 

used to model changes in the location of the joint instead of modifying the FE model 

from one sample to the next. Nonetheless, as the accuracy of this method depends on 

the number of repeated analyses used during the simulation [14], the computational 

effort is still high, especially for large scale models. 

In order to further improve the efficiency, component mode synthesis (CMS) gives a 

sub-structuring framework by which the number of the degrees of freedom (DOFs) can 

be reduced [31]. Combining CMS with MPC joint models, the response of the system 
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can be evaluated for many joint locations using the same modal representation of the 

substructures.   

However, if the number of DOFs involved in the connection between  structures is 

large, the reduction in the model size using CMS is not great because the number of 

coupling DOFs is not reduced.  Two techniques are proposed to overcome this problem: 

(i) characteristic constraint modes [22] and (ii) application of a low rank update theory 

[32] to the CMS matrices.  

The use of characteristic constraint modes is a technique for reducing the size of a 

model generated by the Craig-Bampton method of CMS in which an eigenanalysis is 

applied to the constraint-mode partitions of the mass and stiffness matrices and the 

resulting modes are truncated to yield a reduced model.  

When using the low rank update theory, the receptance matrix is first calculated for the 

unassembled system. Then the response of the assembled system is calculated by 

updating this response by including the effect of the connection. Here the efficiency is 

increased in two ways: (i) most of the CMS dynamic stiffness matrix is inverted only 

once during the MCS, (ii) the transformation from CMS coordinates to physical 

coordinates is also calculated only once during the MCS. 

3.1 Component mode synthesis 

CMS is a technique in which a structure is subdivided into components. The static and 

dynamic behaviour of each component is described in terms of a set of basis functions, 

e.g. the modes of the component. When the higher frequency modes are truncated a 

reduction in size is achieved. Another advantage arises in substructuring, where it may 

be cheaper to solve the eigenvalue problems of a number of the components and of the 

assembled reduced global system compared to solving the complete global eigenvalue 

problem [33].   

The CMS method was introduced by Hurty [34] who introduced the concept of using 

component modes as trial functions or basis vectors. Craig and Bampton [21] simplified 
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the method  when they showed that rigid body and redundant interface modes could be 

treated as constraint modes. There are different variants of the method [35–37] and 

reviews of current techniques in CMS are available in literature [38–40]. 

In this section the general CMS method is described followed by an overview of the 

most common types of component modes. Finally the fixed-interface Craig-Bampton 

[21] method is discussed in detail. 

3.1.1 Background theory 

The undamped equation of motion for a structure is given by 

 Mu + Ku = f  (3.1) 

where u  are the physical DOFs, M  and K are the mass and stiffness matrices 

respectively and f is the vector of external forces. The structure is divided into N  

substructures, where the mass and stiffness of the i th subsystem are given by  iM  and 

 iK . The global DOFs u  are partitioned such that 

         1 2
TT T T

N    
u u u u  (3.2) 

 iu  can subsequently be partitioned into interior, Iu  and coupling DOFs, cu  such that 

 
 

( )

( )

i
i I

i
c

 
  
 

u
u

u
 (3.3) 

The sub-matrices M  and K , that relate to each subsystem are given by 

 
( ) ( )

( )

( ) ( )

i i
i II Ic

i i
cI cc

 
  
 

m m
M

m m
 (3.4) 
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( ) ( )

( )

( ) ( )

i i
i II Ic

i i
cI cc

 
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 

K K
K

K K
 (3.5) 

These form the block diagonal matrices of M  and K , i.e. 

      1 2 NblkdiagK K K K  and        1 2 NblkdiagM M M M  (3.6) 

The force vector associated with the ith substructure is given by 

  
( )

( )

i
i I

i
c

 
  
 

f
F

f
 (3.7) 

and the equation of motion for each substructure is therefore 

          i i i ii  M u K u F  (3.8) 

Consider two coupled components,   and   that have a common boundary interface, 

the coupling DOFs can be constrained such that 

    
c c
 u u  (3.9) 

and the coupling forces are related by 

     0c c
  f f  (3.10) 

A selection of component modes is arranged in a component modal matrix B . Usually 

these are one of two general types: kept fixed-interface modes and constraint modes; 

kept free-interface modes and attachment modes. The u  DOFs can be transformed into 

the component modal coordinates q  by 
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 u = Bq  (3.11) 

where  

 
 

 





 
  
  

q
q

q
 (3.12) 

It can be shown that the expressions for the kinetic and potential energy, from 

Lagrange’s equation of motion for components   and   are given by [41] 

            1 1 1

2 2 2
T TTT        q μq q μ q q μ q       (3.13) 

            1 1 1

2 2 2
T TTV        q κq q κ q q κ q       (3.14) 

where 

        T   μ B M B  (3.15) 

        T   κ B K B  (3.16) 

are the transformed component mass and stiffness matrices (similarly for component β) 

which are assembled as 

 
 

 
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0





 
  
  

μ
μ

μ
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 

 

0

0





 
  
  

κ
κ

κ
 (3.17) 

The conditions to be satisfied in equations (3.9) and (3.10) can be expressed in terms of 

the modal coordinates and written in matrix form as 
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 0Hq  (3.18) 

where H  is the constraint matrix. This equation can be partitioned into linearly 

independent DOFs l  and dependent DOFs d such that equation (3.18) becomes 

   0d
dd dl

l

 
 

 

q
H H

q
 (3.19) 

The Lagrangian for the system can be written as  

 TL T V  σ Hq  (3.20) 

where σ is a vector of Lagrange multipliers. It can be shown that the system equation of 

motion is given by [42] 

 T μq κq H σ  (3.21) 

This can be solved by introducing a linear transformation 

 d
l

l

 
   
 

q
q Cq Cv

q
 (3.22) 

where v is the new set of independent modal coordinates and  

 
1

dd dl

ll

 
  
 

H H
C

I
 (3.23) 

is the transformation matrix. The mass and stiffness matrices of the global system are 

then found by 
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 gl T
R M C μC  and gl T

R K C κC  (3.24) 

which are reduced in size if the component modal matrix B  is truncated. 

Substituting equation (3.22) into (3.21), pre-multiplying by TC and substituting gl
RM  

and gl
RK  from equation (3.24), the equation of motion for the system becomes 

 gl gl T T
R R M v K v C H σ   (3.25) 

From equations (3.22) and (3.18) it can be seen that 0HC , therefore equation (3.25) 

becomes 

 0gl gl
R R M v K v   (3.26) 

3.1.2 Component mode types 

Component modes in equation (3.11) are defined as Ritz basis vectors, used for the 

reduced description of the static and/or dynamic behaviour of a substructure in a CMS 

setting. These may include normal modes of free vibration, rigid body modes, constraint 

modes, attachment modes and Krylov vectors [43].  

The free-interface normal modes of a component are the eigenvectors of the component 

with the boundary DOFs free. They are found from solving the eigenvalue problem 

   0fr fr
j j  K M  (3.27) 

and can be combined as columns to give the normal mode matrix frΦ . The normal 

modes may be divided into a set of modes k  to be kept for further calculations and a 

complementary set of modes d  that will be deleted, i.e. 
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 fr fr fr
k d   Φ Φ Φ  (3.28) 

Similarly, the eigenvalues   are arranged on the diagonal of the eigenvalue matrix  Λ

and can be divided into sets k  and d  to give 

 
0

0

fr
fr k

fr
d

 
  
 

Λ
Λ

Λ
 (3.29) 

If a component is unconstrained, the normal mode set contains rigid body modes with 

zero-valued eigenvalues. 

The fixed-interface normal modes of a component are the eigenvectors of the 

component with the interface DOFs fixed. The size of the eigenvalue problem is 

therefore reduced by the number of interface DOFs. It is governed by the elements of 

the mass and stiffness matrices associated with the interior DOFs only and given as 

   0fi fi
II j II Ij  K M  (3.30) 

where fi
j  are the fixed-interface eigenvalues. The eigenvectors fi

Ij  form the columns of 

the normal mode matrix fiΦ , which can be divided into a matrix with kept  k  and 

deleted  d  modes, respectively. The normal mode matrix is then 

 
fi fi

fi fi fi Ik Id
k d

ck cd

 
     

 

Φ Φ
Φ Φ Φ

0 0
 (3.31) 

where the c0 relate to the DOFs of the fixed coupling DOFs. There are no rigid body 

modes in Equation (3.31) if the set of fixed boundary DOFs is sufficient to constrain all 

rigid body modes of the unconstrained component. 
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Static constraint modes will be defined with respect to the interface DOFs and denoted 

by the subscript c . A constraint mode is the static displacement of all nodes due to a 

unit displacement applied to one interface coordinate and with all other interface 

coordinates fixed. This can be written in matrix form as 

 II Ic Ic Ic

cI cc cc cc

     
     

     

K K Ψ 0

K K I F
 (3.32) 

where IcΨ  is a matrix of displacements of the interior DOFs and ccI  is an identity 

matrix, which defines zero and unit displacements for all constraint modes. ccF  are the 

force reactions at the nodes with prescribed displacements and the interior nodes are 

force-free. From the first line of Equation (3.32) it follows that 

 1
Ic II Ic

 Ψ K K  (3.33) 

and the complete matrix of constraint modes is given by 

 
1

II Ic
c

cc

 
  
 

K K
Ψ

I
 (3.34) 

Rigid body modes appear if a component is unconstrained. They are obtained either as 

free-interface normal modes (Equation (3.28)) from the eigenvalue problem or 

recovered from constraint modes (Equation (3.34)). However they are often regarded as 

a separate class of component modes and will be denoted by rΨ . 

Static attachment modes will be defined with respect to the boundary DOFs and will be 

denoted by the subscript a . An attachment mode is the static displacement of all nodes 

due to a unit force applied to one boundary coordinate and with all other boundary 

coordinates force-free. Since forces are applied, the cases of a constrained and an 

unconstrained component have to be distinguished. If the component is constrained the 

governing static equation is given by 
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1

Ia II Ia Ia

aa aI aa aa


     

     
     

ψ K K 0

ψ K K I
 (3.35) 

where  IaΨ  and aaΨ are the unknown nodal displacements. The identity matrix aaI  

arises from the forces at the boundary DOFs. All interior DOFs are force-free. A 

solution can be found by inverting the stiffness matrix K , where 1G = K is the 

flexibility matrix, assuming the inverse exists, to give 

 Ia II Ia Ia

aa aI aa aa

     
     

     

Ψ G G 0

Ψ G G I
 (3.36) 

The attachment modes are then found to be 

 Ia
a

aa

 
  
 

G
Ψ

G
 (3.37) 

Residual attachment modes may be defined for forces applied at one of the coupling 

DOFs at a time with all other DOFs force-free. The force is given in equation (3.35) as  

 Ia
a

aa

F
 

  
 

0

I
 (3.38) 

A set of residual attachment modes is then defined by 

 aR d aΨ G F  (3.39) 

where dG  is the residual flexibility matrix associated with the deleted modes and 

related to the free-interface normal mode matrix Φ  and the free-interface eigenvalues 

Λ   
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 1 T
d d d d

G Φ Λ Φ  (3.40) 

The two most commonly used CMS methods are firstly the free-interface Craig-Chang 

method [44] in which residual attachment modes are added to the free-interface modes 

to form the modal matrix B . The second method is the fixed interface Craig-Bampton 

method [21] in which the fixed normal modes fiΦ  of a component are found with the 

boundaries fixed. In order to improve convergence, assure the compatibility of the 

components and yield the exact static solution static constraint modes cΨ  are added to 

the component modal matrix B .  

The free interface method is sometimes preferred since the free interface modes can be 

measured more easily than the constraint modes. However, for this application the 

Craig-Bampton method offers a number of advantages since the coupling DOFs are 

isolated in the reduced matrices as is shown in the following subsection. 

3.1.3 Craig-Bampton Method    

In the fixed interface method of CMS, the component modal matrix of a component 

is  

 k c
     B Φ Ψ  (3.41) 

and the transformation matrix from physical coordinates to component modal 

coordinates is given by 

 
1fi

I Ik II Ic k

c cc c

 
  

 

     
       

     

u Φ K K q
u B q

u 0 I q
 (3.42) 

Here the physical coupling DOFs cu  are retained, but will be denoted as modal DOFs 

cq (i.e. c cu q ). On the other hand the interior physical DOFs Iu  are transformed into  

modal DOFs kq . The mass matrix in modal DOFs 



 VIBRATION ANALYSIS OF STRUCTURES WITH UNCERTAIN SPOT WELD LOCATION 

-53- 

 kk kc
T
kc cc


  
  
 

I m
μ

m m
 (3.43) 

where kkI is a identity matrix if the normal modes are mass normalised. The ccm  

contains the modal constraint masses and kcm  are the coupling matrices between the 

modal kq  and cq . The stiffness matrix in component modal DOFs is given by 

 kk

cc

  
  
 

Λ 0
κ

0 k
 (3.44) 

where kkΛ  is a diagonal matrix of eigenvalues and cck is the constraint modal stiffness 

matrix.  

The system matrix in modal DOFs is assembled for a system comprising two 

components,   and  ,  

 
T T T T T

k c k c
      q q q q q  (3.45) 

In order to transform q  DOFs into linearly independent modal DOFs v , the coupling 

conditions are imposed using equation (3.22), where the transformation matrix C  

depends on the conditions at the interface, for example, in the case of rigid connections  

 c c
 u u  (3.46) 

Which can be transformed into modal space by equation (3.42)  

 c c c
  q q q  (3.47) 

In which case, the matrix constraint equation  
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   0
T T T T T

k c k c
      Hq 0 I 0 -I q q q q  (3.48) 

and 

 

 
 
 
 
 
 

I 0 0

0 0 I
C

0 I 0

0 0 I

 (3.49) 

The reduced global system matrices are found by equation (3.24), so that 

 
kk kc

gl
R kk kc

T T
kc kc cc cc

 

 

   

 
   
  

I 0 m

M 0 I m

m m m m

 (3.50) 

and 

 
kk

gl
R kk

cc cc





 

 
   
  

Λ 0 0

K 0 Λ 0

0 0 k k

 (3.51) 

3.1.4 Characteristic constraint modes 

The size of the constraint matrices in equations (3.50) and (3.51) depends on the 

number of kept fixed interface modes and interface DOFs. Since there is no reduction of 

the interface DOFs, the computational cost of equation (3.72) can be dominated by 

these modes, especially for applications involving line and surface coupling of 

components where the number of interface DOFs can be considerable compared to the 

overall number of DOFs. The number of interface DOFs can be reduced by introducing 

characteristic constraint modes [22]. 

The characteristic constraint modes are the solution of the right-eigenvalue problem 
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   0cc cc cc cc  K M  (3.52) 

where, the matrix of characteristic constraint modes 

  1 2cc c      (3.53) 

defines a projection of the constraint component modal coordinates (1)
cq  and (2)

cq  (in 

equation (3.59) on to a new set of interface basis coordinates g , i.e. 

 
(1)

(2)
c

cc

c


 

 
 

q
g

q
 (3.54) 

A reduction in the number of coordinates is obtained if only k  characteristic modes are 

kept so that 

  1 2kcc k      (3.55) 

consequently, the system matrices in coordinates g  are  

 kk kc kcc
g T T T

kcc kc kcc cc kcc


  
 

  
 

I m
M

m M
 and 

0

0
kk

g T
kcc cc kcc 

 
  
 

Λ
K

K
 (3.56) 

3.2 Craig-Bampton method applied to MPC connections 

In order to apply the Craig-Bampton method to use CMS with sub-structures assembled 

with an MPC connection, first the system is divided into components.  For the example 

in Figure  2.2, the system is divided into two components: (1) the upper plate and (2) the 

lower plate. 
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For each component i , 1, 2i  , the DOFs are separated into interior and coupling 

DOFs, cu  and Iu respectively. Here, cu  are all the DOFs within the area in which the 

location of each of the n point connections varies. The group of elements in which each 

connection might lie is called a patch. i.e. cu  contains every DOF in each of the n

patches. For example, Figure  3.1 shows the coupling DOFs for a system with three 

connections with each patch comprising an array of 4x4 elements, i.e. the location of 

each connection might lie anywhere within sixteen elements. The normal modes for 

each component i are calculated using equations (3.31) and (3.33) are assembled in the 

component mode matrix iB  in equation (3.41). It is important to remember that only 

some of the normal modes are kept in i
kΦ  achieving reduction in the size of the system 

matrices.  

The component physical co-ordinates u can be transformed into the component modal 

co-ordinates q  using equations (3.42). The component modal mass and stiffness 

matrices for each component i  are given by 

 i iT i iμ B M B  (3.57) 

 i iT i iκ B K B  (3.58)  

where iM  and iK  are the mass and stiffness matrices of component i  in component 

physical co-ordinates u, ( )iμ  and ( )iκ  are the mass and stiffness matrices of component 

i  in component modal coordinates. 

 

Figure  3.1: Part of FE mesh of a plate with three point connections allowed to lie within 

the highlighted areas.    Possible joint location,     constrained nodes. 
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For this system the modal DOFs matrix is assembled as 

 

(1)

(1)

(2)

(2)

k

c

k

c

 
 
 
 
 
  

q

q
q

q

q

 (3.59) 

where ( )i
kq  are the component modal coordinates and ( )i

cq  are the constraint co-

ordinates for the thi component. In this case, a rigid connection between the boundary 

DOFs is not applied, instead the boundary DOFs are connected using the stiffness 

matrix from the MPC connection MPCK  defined in equation (2.11) in Chapter  2. In 

order to do so, the component modal DOFs q  are transformed into linearly independent 

component modal DOFs v using a transformation matrix S  

 q Sv  (3.60) 

where 

 

0 0 0

0 0 0

0 0 0

0 0 0

 
 
 
 
 
 

I

I
s

I

I

  (3.61) 

and  

 

(1)

(2)

(1)

(2)

k

k

c

c

 
 
 
 
 
  

q

q
v

q

q

 (3.62) 

The global mass and stiffness matrices in the global co-ordinates v are given by,  
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(1)

(2)

0

0
T

R

 
  

 

μ
M S S

μ
 and  

(1)

(2)

0

0
T

R

 
  

 

κ
K S S

κ
 (3.63) 

resulting in   

 

(1) (1)

(2) (2)

(1) (1)

(2) (2)

0 0

0 0

0 0

0 0

kk kc

kk kc
R T

kc cc
T

kc cc

 
 
 
 
 
  

I m

I m
M

m m

m m

 and 

(1)

(2)

(1)

(2)

0 0 0

0 0 0

0 0 0

0 0 0

kk

kk
R

cc

cc

 
 
 
 
 
  

Λ

Λ
K

k

k

 (3.64) 

where (1)
kkΛ  and (2)

kkΛ  are diagonal matrices of eigenvalues of component 1 and 

component 2 respectively, I  is the identity matrix of appropriate size and  

 
(1)

(2)

0

0
cc

cc

cc

 
  
 

m
M

m
 and 

(1)

(2)

0

0
cc

cc

cc

 
  
 

k
K

k
 (3.65) 

are the  mass and stiffness matrices for the interface DOFs  ccu . MPCK  can be added to 

the system stiffness matrices using equations (2.13), (3.63) and (3.64) as 

 

(1)

(2)

(1) (11) (12)

(21) (2) (22)

0 0 0

0 0 0

0 0

0 0

kk

kk
R

cc MPC MPC

MPC cc MPC

 
 
 
 
 

  

Λ

Λ
K

k K K

K k K

 (3.66) 

It can be observed that if the location of the point connection changes within the 

element, only the terms in the matrix MPCK  change. This means in order to obtain the 

reduced mass and stiffness matrices RM  and RK  for different connection locations, 

only the matrix Γ  in equation (2.7) needs to be re-calculated and equation (2.11) re-

evaluated, offering a reduction in computation time. 
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3.2.1 Frequency response function 

The equation of motion for forced undamped vibrations in modal co-ordinates v  is 

given by  

 R R  vM v K v f  (3.67) 

If harmonic motion is assumed, i te v V  and i te v vf F  then 

 2 1[ ]R R   vV K M F  (3.68) 

The transformation from linearly independent global modal co-ordinates v  to the 

physical component co-ordinates u is given in equations (3.11) and (3.60)  as 

 u = BSv    (3.69) 

One can express the modal forces vF   in terms of the applied nodal forces uF  as 

 T Tv uF S B F  (3.70) 

Then, the receptance matrix A in physical coordinates is given by 

 
12 T T

R R


   A BS K M S B  (3.71) 

Finally, the response at nodal DOF r  with an excitation of unit amplitude at DOF e  is 

given by the element ( , )r eA  in the matrix A . Introducing damping with a loss factor 

to the global component modal stiffness matrix RK , this response can be evaluated 

using the matrix product 

     1* 2 *, 1r T e T
R Rr e i 


    A B S K M S B  (3.72) 
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where *rB  and  *eB  are the thr  and the  row of B  respectively. The method outlined 

here is validated in the following section. 

3.2.2 Numerical validation 

The numerical example is the same system that was used in section  2.3.4. Using MPCs, 

the elastic point spring connection is located at the midpoint of the region that surrounds 

the area in which the position varies, represented as the shaded elements in Figure  2.9. 

Using this position, the transfer mobility from coordinate (0.38, 0.32) in plate 1 to 

coordinate (0.38, 0.32) in plate 2 as shown in Figure  2.9 was evaluated. When the 

Craig-Bampton method is applied, all the DOFs in the shaded elements are set as 

boundary DOFs. When the component mode matrix iB  is assembled using equation 

(3.41) fewer modes can be kept in order to further reduce the DOFs of the system and 

reduce computational time. When more modes are truncated, the frequency range over 

which the solution is accurate is reduced, i.e. the accuracy at higher frequencies is lost 

but the accuracy at lower frequencies is maintained. Therefore, depending on the 

frequency range of interest the computational efficiency can be further improved.  

When the Craig-Bampton method is applied in this example, it was found that only the 

first 25 modes of component 1 and the first 7 modes of component 2 are necessary for 

errors of 0.5% or less at all frequencies below 1000 Hz when compared to the full FE 

solution. Fewer modes of component 2 are required, because it is stiffer with fewer 

modes in the bandwidth considered. When CMS is applied, the computational time is 

reduced by nearly 90%. The comparison between CMS results and results for no 

component reduction are shown in Figure  3.2(a) and Figure  3.2(b). 

The FRFs calculated by retaining fewer modes in the CMS solution are shown in 

Figure  3.3. It can be observed how the frequency range in which the CMS solution is 

accurate is reduced as the number of kept modes is reduced.  For example, if the 

frequency range of interest were up to 100 Hz, keeping only 3 modes of the upper plate 

and 1 of the lower plate is sufficient to give accurate results. 
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Figure  3.2: Transfer mobility: (a) translational stiffness connection and (b) 
rotational stiffness connection:              full solution+node to node;              

CMS+MPC. 

 

Figure  3.3: Transfer mobility at baseline position with a translational stiffness 
connection:            full solution;              CMS: (a) 25 + 7 kept modes; (b) 12 + 3 

kept modes; (c) 6 + 2 kept modes; (d) 3+1 kept modes. 
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In order to validate the model for different coupling conditions, the CMS+MPC model 

is compared to the full solution of the node to node connection model using different 

values of the point translation stiffness: (a)  
1 2

wK D 
 , (b)  

1 2
wK D 

   and (c) 

 
1 2

wK D 
 , where  

1 2D 
  is the sum of the point dynamic stiffness of infinite plates with 

the material properties and thickness of each connected plate, i.e. 

     8D i hB  
  (3.73) 

is the dynamic stiffness of an infinite plate, where   is the density, h  is the thickness 

and B   is the bending stiffness of plate given by 

 
 

3

212 1

Eh
B


 


 (3.74) 

where E  is the Young’s modulus and   is the Poisson ratio. 

 For the previous numerical example, when the static stiffness of the connection

16000wK  N/m is compared to the sum of the magnitudes of the dynamic stiffnesses of 

the connected plates at 1000 Hz,  
1 2 72.72 10D 
   N/m, it can be observed that 

 
1 2

wK D 
 . 

For different connection stiffness values, the CMS+MPC model is in good agreement 

with the node to node connection and full solution as can be observed in Figure  3.4. It 

can be seen that when 810wK   the connection is effectively rigid. 
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Figure  3.4: Transfer mobility at baseline position with a translational stiffness 
connection:            full solution, node to node;              CMS+MPC with 24 and 
7 kept modes for plates 1 and 2 respectively: (a) 410WK  N/m; (b) 810WK   

N/m (c) 1210WK  N/m;  

3.3 Characteristic constraint modes applied to MPC 

connections 

When analyzing a structure with uncertain MPC connections using the Craig-Bampton 

method outlined in section  3.2 it can be seen the computational cost of equation (3.71) 

and (3.72) is associated with the number of coupling DOFs. When this is applied to a 

built up structure, the number of coupling DOFs increases if the number of connections 

increases or the size of the elements in the FE model is reduced. In order to reduce the 

number of DOFs and reduce computational cost, characteristic constraint modes are 

applied to the CMS matrices in which the MPC stiffness is included (see equation 

(3.66)). In that case, equation (3.52) becomes 

   0cc cc cc cc ΔK ΔKK M Φ  (3.75) 
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The constraint component modal coordinates (1)
cq  and (2)

cq  are then transformed on to a 

new set of interface basis coordinates g , i.e. 

 
(1)

(2)
c

cc

c

 
 

 
ΔKq

Φ g
q

 (3.76) 

A reduction in the number of coordinates is obtained if only some of the lower order 

characteristic modes are kept so that 

  1 2kcc k  ΔKΦ   (3.77) 

Consequently, the system matrices in coordinates g  are  

 
kk kc kcc

g T
kcc kc kcc cc kcc

 
  
  

ΔK

ΔK ΔK ΔK

I m Φ
M

Φ m Φ M Φ
T T

 and  

 
0

0

kk

g

kcc cc kcc

 
  
 

ΔK ΔK

Λ
K

Φ K Φ
T  (3.78) 

Finally, to calculate the response at DOF r  due to an excitation at DOF e , equation 

(3.72) becomes 

     1* 2 *, 1
T

MPC MPCr T e T
kcc g g kccr e i 


    

K KA B SΦ K M Φ S B  (3.79) 

where only MPC
cc
KΦ  needs to be recalculated for point connections at different locations. 

3.4 A low rank update theory in the frequency domain 

When there is uncertainty in the location of the connection point and MCS is being 

preferred, multiple evaluations of the FRFs are required. This can be computationally 
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expensive. In this section a method to improve the speed of the estimation of the 

response in physical coordinates u of a system with uncertainties in the point 

connections properties is described. This method uses a low rank update approach in the 

CMS framework. The low rank update is based on the Woodbury matrix identity [45] , 

which has been used extensively in signal processing [46–49] but lately being applied in 

the structural dynamics field [50–54]. The rank one version [55], also known as the 

Sherman Morrison identity, has also been applied for analysis of uncertainties in 

structural dynamics by Lecomte [32].  

The response of a nominal system, i.e. the unassembled structure in p coordinates in the 

frequency domain is calculated as  

     1
x    A F  (3.80) 

where  A  is the dynamic stiffness and is given by  

     21R Ri    A K M  (3.81) 

When a disturbance  D  is added to the nominal system, equation (3.80) can be 

written as 

      x     A D F  (3.82) 

where   x   is the updated response and  D  is the dynamic stiffness of the 

disturbance. It is assumed that  D  is a low rank matrix and can be expressed as the 

outer product of given left and right vectors ld  and rd as 

      T
l r  D d d  (3.83) 
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In the current analysis, the disturbance is given by the connection stiffness matrix MPCK  

defined in equation 2.11 as function of the connection stiffness matrix in local physical 

coordinates K  

  T

MPC   K Γ K Γ  (3.84) 

Equation  (3.84) can be rewritten as an outer product of ld  and rd  

        TT
MPC l r       D K d d Γ K Γ  (3.85) 

where 

  T

l  d Γ  (3.86) 

and 

 T
r  d K ΓΞ  (3.87) 

It can be seen that when the system is disturbed by an MPC connection the assumption 

that the disturbance is a low rank matrix is always perfectly met. 

Substituting equation (3.83) into equation (3.82) and after some manipulation leads to 

      1 T
l rx x      A F d d  (3.88) 

it can be seen that  x   occurs on both sides of the equation. To solve this equation, 

expression (3.88) can be premultiplied by T
rd  and manipulated in order to obtain 
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      
11 1T T T

r r l rx   
     d I d A d d A F  (3.89) 

Substituting this expression into the right hand side of equation (3.88) gives 

     1
x     A F  (3.90) 

where 

          
11 1 1 1 1T T

l r l r    
            

A A A d I d A d d A  (3.91) 

Finally, the response in coordinates p  can be transformed into physical coordinates u

can be performed using equation (3.69) as  

          
11 1 1 1* *, r T T T e T

l r l rr e    
          

A B S A F A d I d A d d A F S B (3.92) 

Substituting equations (3.86) and (3.87) into this expression and some manipulation 

leads to  

 
   

     

1* *

11 1 1* *

, r T e T

r T T T T T e T

r e 

  



  

 

                    

A B SA FS B

B SA Γ I K Γ A Γ K Γ A FS B
(3.93) 

where the first term represents the transfer function of the nominal unperturbed system. 

The second term represents the effect of the perturbation to the transfer function, here 

the first factor represents the transfer function between the response DOFs to the 

connection location in the first unperturbed subsystem; the second factor represents the 

full  receptance matrix of the connection in local DOFs considering the disturbed 

system and finally the third factor represents the transfer function from the location of 
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the connection to  the excitation location in the second unperturbed subsystem, this is 

illustrated in Figure  3.5. 

Given the separation of terms, it can be seen that the transfer functions of the 

unperturbed system could be replaced by FRFs measured experimentally giving a 

framework for hybrid analysis. 

In order to improve the efficiency of evaluating equation (3.93), when applied in a 

MCS, it can be re-arranged as 

 
   

     

1* *

11 1 1* *

, r T e T

r T T T T T e T

r e 

  



  

 

                    

A B SA FS B

B SA Γ I K Γ A Γ K Γ A FS B
(3.94) 

When equation (3.94) is used to calculate the response of a system with uncertain point 

connections, the efficiency is improved in the following ways: (i)   1 
A , , B  and S 

are invariant to changes in the connections, therefore they are calculated only once 

during a MCS. Hence, the first term and the first and third factors in the second term are 

calculated only once in the MCS. (ii)   1 
A  is calculated in the CMS co-ordinates, 

therefore the size of the matrices are smaller  in comparison to the original matrices of 

the system. (iii) Since the first and third factors in the second term are vectors, the final 

multiplication is computationally cheap. (iii) The computational effort to invert the 

second factor of the second term is small since the sizes of the matrices to be inverted is 

equal to the number of  DOFs in the connection. 
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Figure  3.5: Graphical representation of the second term in equation (3.93):              first 

factor;              second factor;              third factor. 

3.5 Numerical Example 

The numerical example is a system of two plates with free edges and five elastic 

connections as shown in Figure  3.6. The plates are modelled using a mesh of 22x22 and 

22x20 heterosis elements [28] and any offset in the plates was ignored, (i.e. both plates 

have the the same centerline). In order to avoid symmetry in the x and y direction, the 

first plate is 10% wider and 10% thicker than the second plate. The properties for each 

plate are given in Table  3-1. 

The stiffnesses values of all five connections are 121 10 N/mwK    and 

41 10 Nm/radx yK K    . As a baseline, the connections are located at the midpoint of 

the area in which the position varies, represented as the shaded elements in Figure  3.6. 

Using this configuration, the transfer mobility from coordinate  1 1,x y = (0.0836, 

0.0364) in plate 1 to coordinate  2 2,x y  = (0.0836, 0.0836) in plate 2 was evaluated 

using a full modal solution and two different approximations: (1) CMS in which only 

the first 30 normal modes of each component were kept and 710 constraint modes, here 
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the DOFs are reduced from 10686 to 770; (2) CMS and truncation of the characteristic 

constraint modes using equation (3.79), in which only 16 modes were kept from a total 

of 710 constraint modes in order to keep the prediction error lower than 1% for all 

frequencies below 1000 Hz when compared to the full solution; (3) CMS matrices 

solved using a low rank update theory as in equation (3.93), this method is exact when 

compared to the CMS method, no additional approximations are made, therefore a 

maximum error of 0.5% can be maintained. 

 

 

Figure  3.6: Two free plates assembled with five elastic point connections. 
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Table  3-1: Properties of the plates. 

The low rank update approach is more accurate than the reduced characteristic 

constraint modes approach since it does not involve further approximations. This can be 

observed in Figure  3.7. Even though it was ensured to keep a good agreement in the 

CMS methods below 1000Hz, it can be seen that the solutions start to deviate from the 

full modal solution especially the CMS + characteristic constraint modes method. 

 

Figure  3.7: Transfer mobility of the baseline configuration:              full  modal 
solution;            CMS and 16 kept characteristic constraint modes;             CMS 

and update theory. 
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Figure  3.8: Computational time when evaluating FRFs as function of the number of 
interface DOFs:     full modal solution;       CMS;      CMS and characteristic 

constraint modes;       CMS and update theory;             ; 7 2.257 10t N   ,               
9 3.128 10t N           5 2.473 10t N    ;            8 3.52 10t N  .                . 

The low-rank update approach leads to approximately 99% reduction in the 

computational time when compared to the pure CMS method, as can be seen in 

Figure  3.8. When the number of interface DOFs N  is large ( 1000N  ) it saves nearly 

90% in the computational time when compared to the CMS with truncated characteristic 

constraint modes. The computational time for this approach depends mainly on the 

number of connections since it defines the size of the inverse operation, but it is also 

determined to a lesser extent by the number of interface DOFs because this number 

defines the size of the rest of the matrix operations (i.e. multiplications and additions) as 

can be seen in equation (3.93). On the other hand, when the characteristic constraint 

method is used to reduce the size of the problem, the computational time depends 

almost entirely on the number of interface DOFs, since the most expensive operation 

performed when this method is used is the eigenvalue solution of the mass and stiffness 

matrices of the constrained DOFs.  

The dependence of the computational time when evaluating the FRFs on the number of 

interface DOFs of all methods is shown in Figure  3.8. The update theory method is not 

10
2

10 3
10-2

10-1

100

101

102

103

104

105

Number of interface DOFs

C
om

p
u

ta
tio

n
a

l t
im

e 
(s

)



 VIBRATION ANALYSIS OF STRUCTURES WITH UNCERTAIN SPOT WELD LOCATION 

-73- 

only cheaper than any other method but also scales better with the number of interface 

DOFs, N, growing for large N as N2.25 as compared to N3.12 for the CMS and 

characteristic constraint modes method.  Therefore, the proposed approach reduces the 

computational time by factor of approximately N [56]. If the computational time is 

extrapolated for a full body in white with 3000 spot welds and 51.26 10  DOFs (42 

DOFs per spot weld) it would take 2.4 days to solve the model using the proposed 

method. This number can be further improved using optimized algorithms and parallel 

computing with larger number of processors and increased RAM memory. 

The results show that for FRFs calculation, the update theory is the preferred method, it 

is the cheapest method at all ranges on N  and scales much better. However, if the 

statistics of the natural frequencies and mode shapes need to be computed when the 

update theory approach is followed, the calculation of the natural frequencies and 

modeshapes would lead to a different analysis, (i.e. would require a further modal 

analysis) and a considerable increase in the computational cost. On the other hand, 

using the characteristic constraint method there is not an increment in the computational 

cost when the natural frequencies and modeshapes are calculated. 

3.5.1 Uncertainty analysis 

As reference, the first four natural frequencies and modeshapes of the baseline 

condition will be analyzed. In this condition all the connections are located at the centre 

of the regions in which the position are allowed to change. Strain energy in the 

assembly is also analyzed. 

The first natural frequency is a fundamental flexural mode in which the midline of the 

assembly experiences large deflections while the strain is maximum at the locations of 

the connections as can be observed in Figure  3.9 and Figure  3.10. The second natural 

frequency is a fundamental torsional mode in which the displacement is minimum at the 

connections location, however the strain is maximum at the midline of the assembly and 

equally distributed on the overlap area. The next mode is a second bending mode in 

which the displacement and strain are minimum at the midline and in general over the 

overlapped area. Finally, the fourth mode is a mixed third bending mode with cross 
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bending. In this case, the displacement and strain are maximum again in the midline of 

the assembly, but due to the presence of cross deflection, the strain energy is maximum 

at the outer connections. 

For the uncertainty analysis, a MCS with 500 samples is used to estimate the envelope 

of the transfer mobility. The  ,i ix y coordinates of each of the i point connections are 

independent Gaussian random variables with their mean  ,xi yi   located at the 

baseline position and  

 0.25xi xS   and 0.25yi yS   (3.95) 

where xS  and yS  are the x  and y  length of each element. In this case, the samples for 

which the coordinates of the point connection lay outside the element were discarded 

(<0.1% of the sampled locations). 

 

Figure  3.9: Modeshapes for the baseline condition 

a) b)

c) d)
x

yz
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Figure  3.10: Strain energy computed for the first four assembly modeshapes.  

Being the most time efficient method to calculate the FRFs in a MCS, the low rank 

update method is then applied for the subsequent uncertainty analysis. 

The results from the MCS can be observed in Figure  3.11, where the FRF envelopes is 

together with the baseline FRF. Here it can be noted that the first and fourth natural 

frequencies are more sensitive to the connection locations since the strain energy is 

concentrated in the connections, small changes in its location affect the stiffness of the 

assembly in that area impacting on these natural frequencies. For the second and third 

natural frequencies, the strain is equally distributed in the overlapped area (where the 

connections lie), therefore these natural frequencies are less sensitive to changes in the 

connections (see Figure  3.9 and Figure  3.10). 

For the baseline configuration for which all the connections lie at the midline, the 

natural frequencies are close to the maximum values within the MCS results since the 

midline experiences the highest strain values; when the spot welds deviate from this line 

the modal stiffness in the assembly is reduced. This means that the natural frequencies 

for the case in which the connections are in the mean location i.e.    , ,i i xi yix y    

are different to the mean natural frequencies of the ensemble (Figure  3.11 and 

Figure  3.12). The probability density functions (PDFs) of the natural frequencies are not 

Gaussian, even though  ,i ix y  are Gaussian variables, as can be observed in 

Figure  3.12.  

a) b)

c) d)
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3.5.1.1 Broken or missing weld 

In order to estimate the variability in the vibration response of this system due to 

missing or broken welds when the position of the remaining welds is uncertain, a MCS 

with 500 samples is used to estimate the envelope of the transfer mobility. The  ,i ix y

coordinates of each of the i point connections are assumed to be independent Gaussian 

random variables with their means  ,xi yi   located at the baseline position and their 

standard deviation are given by equation (3.95). 

 

Figure  3.11: Response envelopes for the magnitude of the transfer mobility using 
MCS with 500 samples:             Maximum-minimum;              baseline. 
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Figure  3.12: PDFs of the natural frequencies for MCS with 500 samples: (a) first ; 
(b) second; (c) third; (d) fourth natural frequencies:              MCS;             n  ;               

X                          ,xi yi

n

  ;            n   one standard deviation. 

The stiffness of a missing or broken weld is set to zero. In doing so, the inverse of the 

unperturbed system and the CMS matrices do not need to be re-calculated. The 5 to 

95% response envelope is computed for five cases; in each case one of the five spot 

welds is absent. This envelope is then compared to the random case with no absent 

connections. The results are shown in Figure  3.13. 

When any spot weld is absent, the translational and rotational stiffness of the joint is 

reduced. This affects especially the first flexural mode since the strain energy is 

concentrated in the connections as can be observed in Figure  3.10. Then, the bounds of 

the first natural frequency are extended, especially when the outer connections are 

broken. This effect can be observed in Figure  3.13. On the other hand, the third natural 

frequency is relatively insensitive when any of the connections is absent because the 

strain energy is higher in the middle of the individual plates and lower in the connection 

area. 
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In general, the response is not affected greatly when the inner spot welds are missing. 

However, when the outer spot welds are missing there is a general change in the 

response envelopes as can be observed in Figure  3.13 (a) and Figure  3.13 (e).  

 

Figure  3.13: 5%-95%  response envelopes for the magnitude of the transfer mobility 
using MCS with 500 samples:  a) first; b) second; c)third; d)fourth; e)fifth spot 

weld being absent;               baseline             absent spot weld.              
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3.6 Conclusions 

In this chapter multipoint constraints (MPC) in combination with component mode 

synthesis (CMS) were used to predict the response where there are uncertainties in the 

joint locations in a finite element (FE) model.  

In chapter 2 it was shown that an MPC connection can accurately model the effects due 

to a change in the location of the joint. In this chapter it was seen that CMS gives a sub-

structuring framework and a reduction in the number of the degrees of freedom (DOF) 

of the model. Combining both approaches, the response of the system can be evaluated 

for any connection location using the unchanged modal representation of the 

substructures in an accurate and numerically efficient manner.  

However, when the number of degrees of boundary DOFs is large, then the CMS size 

reduction is less efficient since the number of the interface DOFs is not reduced.  Two 

techniques are proposed to overcome this problem: (i) characteristic constraint modes 

[22] and (ii) low rank update theory [32].  

The vibration response was calculated using these approaches for different connection 

positions and compared to a full modal solution. The predictions obtained gave a good 

agreement and the computational time was reduced by approximately 99% when 

compared to the full modal solution. When compared to the characteristic constraint 

mode method, the low rank update approach leads to a reduction in the computational 

time t at a rate of t2/3. 

The last approach was used in a Monte Carlo simulation (MCS) with 500 samples to 

evaluate the variability in the vibration response. The results show that probability 

density functions (PDFs) of the system natural frequencies are not Gaussian even 

though the connection locations are Gaussian variables. 

Finally, a second MCS was used to evaluate the variability in the vibrational response 

due to missing or broken connections and/or uncertainty in the location of the spot-

welds in a model of two plates with five spot welds. Results show that, for the example 
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considered, when any of the inner spot welds is missing and the location and size of the 

remaining connections is uncertain the vibration responses lie approximately within the 

bounds of the case in which all the connections are present. On the other hand, when 

any of the outer connections are absent the variability in the vibration response is 

greater. 
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4  A ROBUST SPOT WELD MODEL BASED ON 

MPC CONNECTIONS 

 

As mentioned before, the spot weld is one of the most important structural joints in the 

automotive industry; a vehicle body typically contains thousands of spot-welds. The 

finite element (FE) method can be used to analyze spot welded structures and several 

models have been proposed in the literature. However, there are still issues in the 

application of these models.  

In Chapter  2 it was seen that when MPCs are used to connect the elastic component to 

the substructures (solid, beam or springs) [7], [10], the connection can be placed at any 

location using the existing surface meshes. This latter feature offers a great advantage, 

since it is then possible to assemble components with different mesh characteristics or 

to assemble components with complex geometries, for which it is very difficult to have 

coincident nodes. Unfortunately, it was also seen in Chapter  2 that when a rotational 

spring is used in the spot weld model, the transfer mobility magnitude is sensitive to the 

element size. Moreover, Palmonella et al. identified the element area as a parameter that 

can be updated in order to reduce the error in the prediction of dynamic properties in a 

FE model when compared to experimental measurements [57]. It has also been found 

that for dynamic predictions, some of the lowest natural frequencies do not converge 

even if the element size is much smaller than the wavelength [58], [59]. 

In this study the cause of the large sensitivity to element size is identified and in order 

to overcome this difficulty a spot weld model base on MPC connections is proposed. 
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This model provides a better physical representation of the spot weld and as a result the 

forces at the connections are distributed over an area imposing a surface to surface link 

between the structures. This model is robust to changes in the mesh size and coincident 

meshes are not required.  

In the following section the sensitivity of spot weld models to element size is discussed 

and demonstrated in an example of two simply supported plates with a single 

connection; which is the same example used in section  2.3.4. In section  4.2 a spot weld 

model robust to element size is proposed. In section  4.3 the application of the new spot-

weld model is demonstrated in a model of two simply supported plates with three point 

connections. In order to evaluate the performance of the proposed element, mesh 

sensitivity and convergence are evaluated.  The resulting natural frequencies are 

compared to experimental measurements. Finally conclusions are given in section  4.4. 

4.1 SENSITIVITY OF SPOT WELD MODELS TO 

ELEMENT SIZE 

In this section the sensitivity of the diagonal terms in the stiffness matrix of a Heterosis 

element with respect to element size is discussed. When the out of plane behaviour is 

studied, it is seen that the terms associated with the rotational DOFs are sensitive to the 

element size. 

When two plates are connected using any of the existing spot weld models, constant 

stiffness values are added to all the diagonal terms of the DOFs involved in the 

connection. The magnitude of the plate rotational stiffness depends on the element size, 

while the added rotational stiffness does not, resulting in natural frequencies and/or 

dynamic or static solutions that are sensitive to element size. 

To illustrate this, consider the Heterosis plate element [28]. This is a plate element 

derived from the Mindlin-Reissner plate theory.  Midlin-Reissner plate theory is used to 

describe thick plates behaviour, however, as reduced order integration is used to 

evaluate the shear stiffness matrix, this element does not suffer from shear locking, 

possesses correct rank and can be applied to both thick and thin plates. This element is 
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described in detail in section  2.3.1.2. The out-of-plane co-ordinates  , ,x yw   of a point 

within the element are described in equations (2.37),(2.38) and (2.39). These equations 

can be written in matrix form as 

 

 
 
 

, 0 0

, 0 0

, 0 0

T

T
x e

T
y

w x y

x y

x y




  
      

      

N

P d

P

 (4.1) 

where the nodal displacement vector is given by 

 , ,

TT T T
e j x j y j   d w θ θ  (4.2) 

where j  indicates the node number. 

For out-of-plane vibration, the stiffness matrix of a plane isotropic element based on 

Mindlin-Reissner plate theory comprises bending and shear contributions [60], i.e. 

 b s K K K  (4.3) 

where the bending contribution to the element stiffness matrix can be expressed as 

  
3

12
T

b b b b

A

t
dA K B D B  (4.4) 

and the contribution from the shear stiffness is given by 

  T
s s s s

A

t dA K B D B  (4.5) 
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where A  is the area of the element, bB and sB  are the strain-displacement matrices 

given by 
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 (4.6) 

and the matrices of the material constants are 
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D  (4.7) 

where E  is the Young’s modulus, v  is the Poissons ratio, G  is the shear modulus and 

 is the shear correction factor. The shear correction factor is an empirical constant 

applied to improve the accuracy of the predicted wave velocity. Generally this constant 

is taken to be 5/6. 

Since the basis functions N  and P  in equation (4.6) are defined in terms of   and  , 

the appropriate derivatives are then given by 
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 (4.8) 

where J  is the Jacobian transformation matrix 
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x y

x y

 

 

  
   
  

   

J  (4.9) 

Rather than evaluating the integrals in equations (4.4) and (4.5) in physical coordinates, 

it is more convenient to evaluate the integral over the non-dimensional domain  ,  , 

resulting in 

 
 

3 1 1

1 112
T

b b b b

t
d d 

 
  K B D B J

 (4.10) 

and 

  1 1

1 1

T
s s s st d d 

 
  K B D B J  (4.11) 

When the integrals in equations (4.10) and (4.11) are evaluated it is found that the 

values for the rotational DOFs in the leading diagonals of bK  and sK  are 

    
 3

, , 2

1 3
1b b bx x y y

vEt
K K C

v   


 


 (4.12) 

and 

      , , 1
x y

s sx x s y y

Ets s
K K C

v    


 (4.13) 

where bC  and sC  are constants that depend on the node number, mesh characteristics, 

the shape functions and the integration scheme used in the particular element 

formulation. For example for the first corner node in the Heterosis element, 
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 0.0389bC   and 0.00514sC   (4.14) 

Following equations (4.12), (4.13) and (4.3), the stiffnesses values for the rotational 

DOFs are  

        
3

, , 2
1

3 11
x y

b sx x y y

Ets sEt v
K K C C

vv   

            
 (4.15) 

The relative contributions to these rotational stiffnesses from the bending and shear 

contributions are: 

  

   
,

2
,

3

3 1
s x x x ys

bb x x

K s sC v

K C v t
 

 

  
       

 (4.16) 

Thus the contribution to the total stiffness from the shear term is large compared to that 

of the bending contribution except when the element dimensions (width and length) are 

much smaller than the thickness t , i.e. ,x ys s t . Hence the rotational stiffness terms 

in the leading diagonal of the element stiffness matrix depends on the element 

dimensions.  

In contrast, the value for the translational degrees of freedom in the stiffness matrix is 

independent of ,x ys s , the bending contribution is equal to zero, and the shear 

contribution is given by   

 
 ( , ) , 1w w s w

Et
K C

v



 (4.17) 

As can be seen in equation (4.15), the rotational stiffness values in the element matrix 

depends on the element length. On the other hand, the rotational stiffnesses of the 

general spot weld models (CWELD, ACM2 and the simple MCP connection) are 

constant and independent of the element size [7], [10], [61]. Therefore, when the 
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stiffness matrices are assembled, the relative magnitude of the rotational stiffness added 

to the substructure stiffness depends on the element size, resulting in solutions which 

are sensitive to the element size. This effect is illustrated in the following example. 

4.1.1 Numerical example 

The numerical example used in this section is the same used in section  2.3.4: a system 

of two simply supported plates with a single elastic connection as shown in Figure  2.9. 

The material and geometric properties are given in Table  2-2. The plates are modelled 

using a mesh of identical rectangular Heterosis elements. Different element sizes 

ranging from 0.006 to 0.12 m are chosen in order to calculate the static deformation at 

point (0.38, 0.32) in plate 2  to a force at coordinate (0.38, 0.32) in plate 1.  

The connection is modelled using the same MPC connection described in section  2.1. 

Two cases are analyzed when either a single translational or rotational spring is used. In 

the first, the translational and rotational spring stiffnesses are 16000 N/mwK  , 

0 Nm/radxK   and 0 Nm/radyK   respectively; the second case corresponds to 

0 N/mwK  ,   1600 Nm/radxK   and 0 Nm/radyK  . An analytical solution of this 

system was estimated using a mobility approach in section  2.3. The numerical results 

are compared to this analytical solution and are presented in Figure  4.1. It can be seen 

that in the case in which only a rotational spring connects the plates (case 2) the static 

solution depends on the element size and does not converge as the element size 

decreases. On the other hand, when only a translational spring is used (case 1), the 

solution is not sensitive to the element dimensions; furthermore the error when 

compared to the analytical result is very small.  

One way to remove or reduce the sensitivity of the model to element size is to develop a 

connection model that does not add stiffness to the rotational DOFs, but instead add an 

equivalent rotational stiffness to the system using an array of translational springs. Such 

a connection model is described in the following section and subsequently applied to 

spot weld modelling. 
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 2 2
,

1 1

1 4 1 1 4
1 cos cos

2 2 2

N N

x eq w w
j j

j j
K K r K r N

N N
 

 

                   
   (4.20) 

Given that 
1

4
cos 0

N

j

j

N




   
 

 , 

 2
,

1

2x eq wK K r N   (4.21) 

One can show similarly that the rotational stiffness , ,eq x eqK K  is independent of the 

rotational axis. Considering equation (4.18), we have that 

 2
, ,

1

2eq w eqK K r   (4.22) 

Equation (4.22) shows that ,eqK is independent of .N  It was also found that even if the 

x and y  axes are rotated an angle axis , ,eqK is independent of .axis  for 3N  . It was 

also seen on section 3.3 that the computational efficiency of the low rank update 

method depends on the number of DOFs involved in the connection. Therefore, three 

springs are recommended in terms of computational efficiency (see Figure  4.2). 

The main advantage of this model compared to the simple MPC model in section  2.1 is 

related to the fact that the new model provides a surface to surface link between 

components, in doing so the physics of the connection is modelled in a better way and 

the area of the spot weld is consistent with the spot weld dimensions. Finally ,eqK  is 

proportional to the spot weld radius as can be seen in equation (4.22) and not to the 

element length.  

For in-plane vibration springs in the appropriate direction are added in the central 

position of the weld. This has been proven effective in practice [5], [62]. The local 

DOFs of the individual springs are attached to the structures using MPCs in the same 

way as the simple model in section 2.1. The springs can be attached to the same or to 
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different elements of the structure. Thus not only can the spot weld be located anywhere 

in the model but it can also join structures with different mesh characteristics as shown 

in Figure  4.2. 

4.3 Experimental validation 

The experimental set-up comprised an assembly of two overlapped identical steel plates 

with free-free boundary conditions and with three spot welds along the overlapped area.  

This set-up was used previously by Lardeur et al [58]. The spot weld size is 7 mm and 

the plate thicknesses are 1.96 mm. According to Lardeur [58], this value was chosen 

because it is thin enough to satisfy thin plate theory conditions and thick enough to 

reduce effects due to geometrical imperfections.  The geometry is shown in Figure  4.3. 

The assembly was hung by rubber bands to replicate free boundary conditions. The first 

plate was excited using an LDS V201 shaker attached at coordinate 

   , 84mm, 36mmi ix y  . The input force was measured using a PCB force gauge, type 

208C01, screwed to a threaded stud which was glued to the plate using epoxy glue. A 

25 mm long stinger was used to connect the force gauge and the shaker in order to 

minimise the effects of moments transmitted from the shaker.  

The response was measured using a PCB accelerometer attached to the second plate at 

coordinates    1 1, 314mm, 84mmx y   and    2 2, 236mm, 185mmx y  . A stepped 

sine signal was input to the shaker with a fine frequency resolution around resonances. 

The signals from the transducers were acquired by a Data Physics DP240 analyzer and 

the signls were postprocessed using MATLAB. The test was repeated six times for two 

different samples. In each case, the plates were dismounted from the experimental set-

up and then mounted again. 

The natural frequencies nf  are estimated from the measured FRFs using the single DOF 

circle fitting method [63]. In the frequency range of interest twelve modes were 

observed: 6 rigid body modes and 6 elastic modes. Only the elastic modes are 

considered in this study. The measured natural frequencies are given in Table  4-1. 
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Figure  4.2: Graphical representation of the spot weld model:          shell elements;       
multipoint constraints;          spot weld region. 

230 mm

200
m

m

20 mm

10 mm

10 mm

90 mm

90 mm

x

y

 

Figure  4.3: Geometric description of the spot welded assembly:        excitation 
position;      response positions. 

 

Table  4-1: Measured mean natural frequencies f  and normalized standard 
deviation of these values. 
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These results show that the experimental variation of the measured natural frequencies 

is small between the measurements of the same assembly, while the difference between 

assemblies is greater but still small. Therefore these values will be used as reference for 

the numerical model. 

4.3.1 Numerical model 

The numerical model is shown in Figure  4.3. The plates were modelled using Heterosis 

elements [28]. The Young’s modulus and density were estimated experimentally from 

beams cut out from the original assemblies. The dimensions of the beams were 

measured using a vernier calliper and the thickness was measured using a micrometer. 

The mass was measured using a mechanical balance with 0.01 gram resolution. The 

dimensions and weight of the beams are in Table  4-2. E  is estimated using the 

measured fundamental frequency 1b  and the analytical formula 

 
 4

12
1 4

b
b

b

k lEI

A l



  (4.23) 

where   is the estimated density, l  is the measured length. bA , bI  are the cross section 

and second moment of area of the beam calculated from the measured dimensions. 1( )k l

is the first non-zero solution to the transcendental equation of beams with free boundary 

conditions     cosh cos 1kl kl  . 

1b  was estimated using the circle fitting method [63] on the measured FRFs. The FRFs 

were measured using an impact hammer to excite the beam and the response was 

measured at the antinodes using a laser vibrometer to avoid mass loading. The beams 

were hung at the nodal points using elastic bands. The estimated properties are shown in 

Table  4-3. 
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Table  4-2: Beam measured dimensions and weight. 

 

Table  4-3: Estimeted properties to be used in FE model. 

Different element sizes ranging from 0.002 to 0.03 m were utilized in order to calculate 

the mesh sensitivity and convergence criteria. 

The elastic connection was modelled using two models: a simple MPC model as 

described in section  2.1 and similar to the CWELD model [10] and the model described 

in section  1.1.4. For the simple model, the stiffnesses values used in all three 

connections are  121 10 N/mwK    and 41 10 Nm/radx yK K    . These values are 

effectively rigid, i.e. effects of larger stiffness are negligible. When the proposed model 

is applied, the configuration described in section  4.2 is used, i.e. three translational 

springs with stiffness of 120.33 10 N/mwK   located around a circumference with 

radius r . 

4.3.2 Results 

The first six natural frequencies were obtained using the numerical model described 

previously and then compared to the experimental results. In order to evaluate the 

accuracy in the predicted natural frequencies with different element sizes the results are 

presented in Figure  4.4 and Figure  4.5 respectively. The % error when compared to the 

experimental results and sensitivity is calculated for an element size equal to 10mm, i.e. 

10mmx ys s  . The results can be seen in Table  4-4. The synthesis of the results is 

given in Table  4-5. 

(m) (m) (m) (rad/s)
weight 

(kg)

0.2 0.02 0.00196 1637 0.062

l ba 1b

(kg/m3) (m4) (m2) (N/m2)

7908 1.25E-11 3.92E-05 2.15E+11

bA bI E
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Both methods underestimate the natural frequencies. It must be emphasised that these 

models have not been updated in any way: a simple update of the connection properties 

could lead to more accurate estimates for both models. It can be seen in Table  4-4 that 

for modes 2,3,4 and 6 both models give similar results, with the proposed spot weld 

model giving slightly better results, however, the estimated natural frequencies are 

considerably improved for modes 1 and 5.  

The sensitivity to the mesh size and convergence characteristics are considerably 

improved by using the new model in all modes as shown in Figure  4.4, Figure  4.5 and 

Table  4-4. On average, the sensitivity is improved almost five times as can be seen in 

Table  4-5. 

Having a high sensitivity to the element size means that changes in the mesh 

characteristics lead to large changes in the predictions. This problem does not occur 

when the proposed model is used. Results also show that the simple MPC model does 

not converge, this model results in assemblies that are too flexible, especially when a 

small element size is used. On the other hand, when a coarse mesh is used the errors are 

substantially reduced, although coarse meshes might give inaccurate predictions in 

practical applications with complex geometries. Even then, the error is greater than that 

of the new spot weld model.  

The lack of convergence and large sensitivity to changes in the element size for the 

simple MPC model are related to the application of rotational stiffnesses to the DOFs of 

the plate elements as described in section  4.1.  
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Figure  4.4: Variation of calculated natural frequencies with element size:            
simple MPC model;           proposed spot weld model: a) first; b) second; c) third 

flexural natural frequencies.  

 

Figure  4.5: Variation of calculated natural frequencies with element size:          
simple MPC model;           proposed spot weld model: a) first; b) second; c) third 

torsional natural frequencies. 

 

Table  4-4: % error in predicted natural frequencies and sensitivity at element size 
equal to 10 mm. 
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Table  4-5: Summary of results comparing performance of both models. 

4.4 Conclusions 

In this chapter a new spot weld model is proposed. This model imposes a surface-to-

surface connection between two structures using simple spring elements and MPCs, 

therefore coincident meshes are not required. The application of the new spot-weld 

model is validated experimentally on a model of two simply supported plates with three 

spot weld connections. The performance is compared to a simple MPC connection. 

It has been shown that when plate elements are based on  Mindlin-Reissner plate theory, 

the stiffnesses in the rotational DOFs depend on the element size in a quadratic way. In 

addition, when the rotational stiffness of the connection is added to the system, it results 

in a high sensitivity of the static solution and natural frequencies to the element size. 

This was demonstrated on an assembly of two simply supported plates with a single 

connection. 

The new model provides a better physical representation of the spot weld and as a result 

the forces at the connections are distributed over an area imposing a surface to surface 

link between the structures. This model does not add stiffness to the rotational DOFs, 

but instead it is composed of an array of three springs distributed along the spot weld 

circumference that add an equivalent rotational stiffness to the system. The results show 

that the new spot weld model reduces the sensitivity substantially and improves 

convergence with different mesh sizes. For the structures considered, convergence is 

achieved with an 8mm element size compared to a plate thickness of 1.96mm, whilst for 

the simple MPC model convergence is not achieved. The average sensitivity to element 

size at 10mm is reduced almost five times from 346.7 Hz/m to 70.49 Hz/m. 

% error 
natural 

frequencies

Average 
Sensitivity 

(Hz/m)
Convergence

Simple MPC 
model

-7.779 346.7 Not achieved

Proposed spot 
weld model

-4.724 70.49 8mm
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5  EXPERIMENTAL VALIDATION 

 

The main objective of this thesis is to predict the vibrational behaviour of built-up 

structures subject to variations in the location and size of the spot welds. In chapter 3 an 

efficient method to perform a numerical analysis was presented. This method applies a 

low rank update theory in the CMS framework. In this chapter this method is validated 

using experimental results. In addition, the performance of the spot weld model 

proposed in chapter 4 is compared to a model similar to the CWELD model in Nastran. 

A double hat structure, shown in Figure  5.1 was chosen for this purpose. This structure 

consists of hat section steel plates joined together by spot welds at the flanges. This 

structure was chosen for the following reasons: (i) it is a simplified representation of the 

beams used in car bodies. The thickness used is also typical of automotive sheet metal 

(0.7mm), (ii) the stiffness added due to the contact conditions at the flanges is negligible 

when compared to the stiffness of the profile and therefore it is not necessary to model 

the contact conditions in the flanges to obtain accurate predictions, (iv) considering the 

properties of each spot weld (  ,x y  coordinates and radius) as independent variables, 

having only a few spot welds, fewer samples are necessary in order to predict the 

variability in the assembly due to variations in the spot weld location and size. 

Therefore an assembly with only four spot welds was chosen.  
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5.1.1 Experimental modal analysis 

The experimental modal analysis was carried out for all of the hat plates using a 

hammer test with fixed accelerometer position and fixed impact location. The structures 

were tested in free conditions, supported by an elastic band on one edge of the plates 

(see Figure  5.4).  

The FRFs were acquired using a Data Physics DP 730 Dynamic Signal Analyzer. The 

plate acceleration was measured using a PCB 352C22 accelerometer at a point 5 mm 

from the midline of the plate and 10 mm from the top edge. The excitation was applied 

using a PCB 086D80 hammer to strike the plate at the flange of the plate 20 mm from 

the bottom of the plate and 7 mm from the edge of the plate as shown in Figure  5.4. 

These positions allow the measurement of all the first seven elastic modes.    

In order to acquire the first seven modes, the measurements were taken from 0.1 to 

1600 Hz and 3200 frequency lines, hence a frequency resolution of 0.5 Hz and a 

measurement time of 2 seconds. An average of three measurements was taken for each 

FRF using the analyser software (signalcalc730) and then exported to MATLAB to 

perform modal analysis. Figure  5.5 shows a typical input force signal in the time and 

frequency domain. It can be seen that the spectrum is reasonably flat in the 

measurement frequency range. Figure  5.6 shows a typical FRF and coherence for these 

measurements. The coherence is poor at antiresonances due to a low signal to noise 

ratio in these regions. However, generally it can be judged satisfactory.    

In addition to the elastic modes, 6 rigid modes are found below 10 Hz. However their 

effects on the elastic modes are insignificant.  Only the elastic modes are considered in 

this study.  

The experimental natural frequencies were estimated from the measured FRFs using the 

single DOF circle fitting method [63]. Figure  5.7 illustrates a circle fitted to measured 

data around a natural frequency.  The natural frequencies are estimated as the frequency 

at which the response is maximum, since damping is in general low, the error generated 

by this estimation is small.  
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Figure  5.4: Experimental setup for FRF measurement of single hat plates using an 
impact hammer:             

 

Figure  5.5: Typical force signal in (a) the frequency and (b) the time domains. 

 

Figure  5.6: Typical (a) FRF and (b) coherence measurements 
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In order to estimate the modal loss factor, three data points were selected at frequencies 

greater than the natural frequency and three more points were selected at lower 

frequencies. These points were used two at a time in order to calculate nine loss factor 

estimates. The loss factor was estimated as [63] 

 
 2

tan tan2 2

a b
n

a b
n
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            

 (5.1) 

where   a   and b   are the frequencies of the chosen pair of data points,  while  a  and 

b    are the angles subtended by these data points and the estimated natural frequency as 

shown in Figure  5.7. Finally the nine values were averaged in order to estimate the 

modal loss factor. The standard deviation was calculated in order to determine the 

variability on the estimation. Figure  5.8 shows the mean and standard deviation from 

the nine loss factor estimates of a typical sample. The modal loss factors are always 

lower than 33.5 10 . It can be seen that damping on modes 1 and 2 exhibit larger 

variability compared to the other modes, however the standard deviation is still small 

when compared to the mean. 

 

Figure  5.7: Circle fitting for modal analysis: x  natural frequency:  data points: 
points selected to measure the modal loss factor. 
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Figure  5.8: Loss factor estimation in typical sample:     mean;      mean+/- standard 
deviation 

5.1.2 Modeshapes of single plate 

The mode shapes of the single hat profiles were measured in only three samples. The 

FRFs were acquired as described in section  5.1.1. except for the impact locations. In 

this case the impact locations were distributed in a 3 by 3 array on each face of the hat 

plate as shown in Figure  5.9. The modal constant was calculated as  

 2
n n n nA D    (5.2) 

where nD  is the diameter of the fitted circle in the Nyquist diagram for the n th natural 

frequency as observed in Figure  5.7. 

Figure  5.10 shows an example of the measured mode shapes of the first 7 modes of a 

single hat plate. The natural frequencies and mode shape description are given in 

Table  5-1. “Bending 1” refers to a simple 1st bending mode of the side panels while 

“bending 2” refers to a 1st bending out of phase mode of the side panels.  
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The results from the other two samples exhibit the same behaviour: modeshapes occur 

in the same order and the difference between the natural frequencies of the different 

samples is always lower than 1%.    

The first three modes are global modes of the structure and the remaining four modes 

are bending and torsional modes of the side panels as can be seen in Figure  5.10. These 

side panels dominate the behaviour of the plate at lower frequencies since they exhibit 

the largest area of all the five sections and hence have the lowest stiffness.  

 

Figure  5.9: Impact positions for the experimental measurement of the single hat profiles 

mode shapes.  

 

Table  5-1: Single hat profiles mode shape description and mean natural frequency 
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Figure  5.10: Measured modeshapes of a single plate. 
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5.1.3 Results 

The mean and standard deviation for the estimated natural frequencies and loss factors 

for all 159 plates are shown in Table  5-2 and Figure  5.11. In general the dispersion of 

the natural frequencies between samples is small and always between 1~ 2 % of the 

mean value.  The estimated loss factors show values of approximately 31 10 in all 

modes except modes 1 and 3, which interestingly also exhibit the largest standard 

deviation as shown in Figure  5.11.  The reasons for this behaviour are unknown; it is 

believed that there might be repeatability issues between samples. In any case, the 

modal loss factors are small. 

 

Table  5-2: Mean and normalized standard deviation of natural frequencies and loss 
factor. 

 

Figure  5.11: Natural frequencies and loss factor statistics :     mean;      mean+/- 
standard deviation. 
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5.1.4 Statistical analysis 

In this section a statistical analysis of the first seven natural frequencies is presented in 

terms of the normalized error  

 
2 2

2
n n

n
n

 



  (5.3) 

2 was chosen because n  is likely to be proportional to the stiffness. The histograms 

are shown and statistics (mean, standard deviation, skew and kurtosis) are calculated 

and examined. Finally, in order to test the goodness-of-fit of the response distributions 

to a normal distribution a 2  test is carried out. 

The skewness of a random variable is the third moment, normally interpreted as a 

measure of the asymmetry of a probability distribution [64]. The skew can be positive 

or negative; a negative skew indicates that the tail on the left side of the PDF is longer 

than the right side and vice versa. In a normal distribution, the skew is equal to zero. 

The kurtosis of a random variable is the fourth moment. Kurtosis measures how heavy 

the tails of the PDF are; higher kurtosis means bigger tails. The kurtosis of a normal 

distribution is 3.   

The 2  goodness-of-fit test is based on a comparison between observed frequencies of 

categories and corresponding expected frequencies under the hypothesis to be tested 

[65–67], in this case compared to a normal distribution. The 2  test is conducted on 

classified (binned) data and outlying bins are summed to ensure at least five counts in 

each; this reduced the skewing effect of out-lying results. There is not a clear constraint 

regarding the minimum size of the sample in order to obtain a valid answer, as an 

approximation it has been found that the sample should be at least four or five times the 

number of cells, k  [65].  

The computed 2  statistic has the value of 0 for a perfect fit and is large when the fit is 

bad. The null hypothesis is therefore rejected if 2   , where  is a constant taken 
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from the 2  distribution with  significance level and 1k r   degrees of freedom, 

where r is the number of estimated parameter. In this case, 2r  , i.e. mean and standard 

deviation. The significance value indicates the probability of obtaining those or more 

extreme results [65] , which means that a higher significance level leads to a more 

rigorous test. 

Figure  5.12 shows the histograms of the first seven natural frequencies when compared 

to normal distribution. Table  5-3 shows the skew, kurtosis and the 2 statistic results. 

From examination of the 2 values in this table, one cannot reject the hypothesis that 

the first, third, fourth, fifth, sixth and seventh modal frequencies fit into a normal 

distribution. 

It can be seen in Table  5-3 that the skew and kurtosis values of all of the n  are close to 

the values of a normal distribution, 0 and 3 respectively. Conversely, for the second 

mode the kurtosis value is the closest to 3 and the skew value is the second closest to 0 

and yet is the only modal frequency in which the hypothesis can be rejected. The 

normal distribution can be rejected as a likely fit for the distribution of the second 

natural frequency, probably due to the high number of samples close to the mean with 

an uneven spread as can be observed in Figure  5.12. 

 

Table  5-3: Skew, Kurtosis and 2  probability results for goodness-of-fit tests of n .    

mode number (   ) 1 2 3 4 5 6 7

0.0247 0.0300 0.0327 0.0220 0.0205 0.0371 0.0343

Skew 0.562 ‐0.229 ‐0.058 0.478 0.501 0.692 0.699

Kurtosis 3.883 3.091 3.204 3.862 3.918 4.221 4.304

9 9 9 9 9 9 9

9.015 13.687 4.620 6.441 2.880 6.896 3.615

10.645 10.645 10.645 10.645 10.645 10.645 10.645

n

2

n

k





 EXPERIMENTAL VALIDATION 

-109- 

 

Figure  5.12: Distribution of the first seven natural frequencies (single profiles):      
Experimental data;                  Gaussian distribution. 

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

-0.15-0.15

-0.15 -0.15

-0.15 -0.15

-0.15

Normalized frequency(     )11

65

C
o

u
n

ts

C
o

u
nt

s

C
ou

n
ts

C
o

un
ts

C
o

u
nt

s

C
o

un
ts

C
o

un
ts

7Normalized frequency(     )

Normalized frequency(     )Normalized frequency(     )

4Normalized frequency(     )3Normalized frequency(     )

2Normalized frequency(     )



CHAPTER 5 

-110- 
 

5.1.5 Correlation coefficients 

In order to measure the level of correlation between modes, the Pearson product-

moment correlation coefficient between l  and m  
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 (5.4) 

is calculated [68], where i  is the sample number,  and N is the total number of samples, 

,l m   are the mean normalized error of modes l  and m  respectively and , ,,l i m i   are 

the normalized errors of modes l  and m  and sample i . ,l mr  is a measure of the 

correlation between random variables l  and m , giving a value between +1 and -1 

inclusive. When , 1l mr   or , 1l mr   then l  and m are perfectly correlated, when 

, 0l mr  , l  and m are completely uncorrelated. Table  5-4 shows the correlation 

coefficients between the natural frequencies. Examples of a strong correlation, 

1,5 0.956r  , weak correlation, 1,2 0.497r  , and a moderate correlation, 1,3 0.718r  , are 

shown in Figure  5.13.  

Modes 1,4,5,6 and 7 are strongly correlated between each other since all of them 

depend on the deflection of the side panels. Modes 2 and 3 are modes related to the 

deflection of the structure in different directions (torsion and bending in the XY plane); 

hence the correlation between these modes and modes 1,4,5,6 and 7 is weak. However, 

they are well correlated between each other. 



 EXPERIMENTAL VALIDATION 

-111- 

 

Figure  5.13: Dispersion plots: a) modes 1 and 2, 1,2 0.497r  ; b) modes 1 and 3,

1,3 0.718r  ; c) modes 1 and 5, 1,5 0.956r  . 

 

Table  5-4: Correlation coefficients between n   

5.2 The assembled structures 

The hat profiles studied in the previous section were assembled using four spot welds as 

shown in Figure  5.1. A manual spot welder mounted in a bench vice was used to weld 

the hat plates together. The nominal spot weld diameter depends on the electrode 

diameter and in this case is equal to 4mm. The spot weld locations were marked by 

hand using a linear length gauge at the nominal positions shown in Figure  5.1. In order 

to assure the alignment between the plates at the time of assembly an insert was 

designed, the profile and the manufactured insert can be observed in Figure  5.14. 

In order to focus on variability in the spot welds and to minimize the variability in the 

assembled structures that arises from variability in the unassembled components, only 

single plates for which 
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and  
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0.07nn




  (5.6) 

were used and the remainder were rejected. This means that not only those plates which 

had variations greater that 4% for any eigenvalue were discarded, but also those plates 

that exhibit consistently large errors for all eigenvalues.  Given these conditions, 108 of 

the 159 manufactured single plates were retained and were assembled to give 54 spot 

welded assemblies. 

After assembly, the locations of the spot welds at each of the assemblies were measured 

as well as the natural frequencies of all 54 assemblies. Finally the mode shapes of three 

samples were measured. 

5.2.1 Measurement of spot weld size and location 

In order to measure the location and size of the four spot welds for each of the 54 

assemblies, a picture was taken using a digital camera. The picture was imported into 

MATLAB and eight points at the perimeter of the spot welds were selected using the 

command ginput. The spot weld centre and diameter were calculated using the circle fit 

MATLAB routine applied in the modal analysis. The dimensions were calibrated using 

two plastic rulers as shown in Figure  5.15 

In order to ensure that the pictures were taken from the same position repeatedly, the 

assemblies are placed in a jig aligned against a wall, with the camera mounted in a 

tripod facing downwards as shown in Figure  5.16. The pictures were taken using the 

camera self timer in order to avoid movement that might be induced by manual 

operation.  
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between these variables were calculated using equation (5.4). The correlation between 

the spot weld coordinates is low in general, which means that these variables can be 

treated as independent. Furthermore, the lack of correlation indicates us that systematic 

errors in the measurements are low, i.e. translations and/or rotations of the sample when 

the pictures are taken. The strongest correlation is between 2y  and 4y , the vertical 

coordinates of spot weld 2 and 4 are correlated due to the manufacturing process, 1y  

and 3y are correlated in the same way. 

Figure  5.19 shows the histograms of the spot weld coordinates together with normal 

distributions. The standard deviation, skew and kurtosis were calculated for the eight 

spot weld coordinates. The results are summarized in Table  5-6. Also the 2  goodness-

of-fit test was performed. 

When 2  is compared to  in Table  5-6 it can be seen that 4x  is the only coordinate 

for which the hypothesis that the spot weld coordinates come from a normal distribution 

can be rejected. 4x  exhibits the highest skew value and its kurtosis is not close to 3. In 

Figure  5.19 it can be seen that  4x  is clearly skewed to the right and there are a high 

number of counts at the left end. 

 

Table  5-5: Correlation coefficients between spot weld coordinates. 

1.000 ‐0.029 ‐0.109 ‐0.016 0.431 0.286 ‐0.239 0.070

‐0.029 1.000 0.056 ‐0.339 0.031 0.435 ‐0.050 ‐0.355

‐0.109 0.056 1.000 ‐0.223 ‐0.513 ‐0.195 0.582 ‐0.256

‐0.016 ‐0.339 ‐0.223 1.000 ‐0.128 ‐0.447 0.026 0.634

0.431 0.031 ‐0.513 ‐0.128 1.000 0.530 ‐0.424 0.062

0.286 0.435 ‐0.195 ‐0.447 0.530 1.000 ‐0.393 ‐0.176

‐0.239 ‐0.050 0.582 0.026 ‐0.424 ‐0.393 1.000 ‐0.043

0.070 ‐0.355 ‐0.256 0.634 0.062 ‐0.176 ‐0.043 1.000

1x 2x 3x 4x
1x

2x

3x

4x

1y 2y 3y

1y

2y

3y

4y

4y
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Figure  5.18: Dispersion plot between  2y  and 4y .    

 

Table  5-6: Standard deviation, skew, kurtosis and 2  probability results for 
goodness-of-fit tests of spot weld coordinates. 
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Figure  5.19: Distribution of the spot weld coordinates:      Experimental data;                  

Gaussian distribution    
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5.2.1.2 Spot weld size analysis.   

The spot weld size depends on the electrode size and the time of flow of the electrical 

current, which is a parameter that is set in the spot welding equipment and kept fixed 

during spot welding.  

The spot weld diameter was analysed as a single random variable since the diameter of 

the spot weld does not depend on the spot weld position. Again the  , skew, kurtosis 

are calculated and 2  test performed, the results can be observed in Table  5-7.  

It can be seen that the hypothesis that the spot weld diameter distribution fits a normal 

distribution can be rejected. The hypothesis is rejected especially for the high kurtosis 

value of the experimental data. This can also be observed in Figure  5.20, where the peak 

is much narrower compared to the normal distribution. The data from the analysis of the 

position and location of the spot weld will be used as an input for the FE analysis in 

section  5.4.1.  

 

Table  5-7:  ,  , Skew, Kurtosis and 2  probability results for goodness-of-fit 
tests of the spot weld diameter. 

 

Figure  5.20: Histogram of spot weld diameter:       Experimental data;       Gaussian 
distribution. 
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5.2.2 Experimental modal analysis 

The experimental modal analysis was carried out in the same way as with the single hat 

plates; using a hammer test with fixed accelerometer and impact location. Except that in 

this case the transfer functions were measured from hat plate to hat plate as shown in 

Figure  5.21. The 54 structures were tested in vertical free-free conditions supported by 

an elastic band on one edge of the plates. 

The FRFs were acquired using the same equipment as in the single hat plate structures: 

Data Physics DP 730 Dynamic Signal Analyzer, PCB 352C22 accelerometer and a PCB 

086D80 impact hammer. The accelerometer and impact positions are shown in 

Figure  5.21. The positions were decided based on the mode shapes from an earlier FE 

analysis. Using this configuration, the first seven elastic modes can be measured and the 

mass loading effects are minimised. 

Again, the shape of the input signal was verified in the time and frequency domain. 

Figure  5.22 shows a typical input force signal in the time and frequency domain. In 

general, the spectrum is reasonably flat in the frequency range of the measurement. 

The coherence was also verified. Since the transfer function is measured from one plate 

to the other, the coherence is poor at low frequencies and at antiresonances, where the  
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Figure  5.21: Experimental setup for FRF measurements of spot welded assemblies 
using impact hammer. 

 

Figure  5.22: Typical force signal in the frequency and time domain. 

level of the signal to noise ratio is low. However, in the frequency range of interest the 

coherence is close to one as can be observed in Figure  5.23. 

In the frequency range of interest (up to 1100 Hz), seven elastic modes can be found as 

shown in Figure  5.23.  The experimental natural frequencies and loss factors are 

estimated using the circle fitting method [63] in the same way as in section  5.1.1. The 
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Figure  5.23:Typical FRF and coherence measurements   . 

average of nine n  estimates from six data points; three data points to the right of  n  

and three more points to the left of n . Each of n  are estimated using equation (5.1). 

Figure  5.24 show the mean and standard deviation from the nine estimates used to 

calculate the loss factors. The loss factors are in general higher compared to the 

estimates of the single plates in Figure  5.8, where the maximum n  is a third of the 

maximum n  estimated in the assembled structures. Some of the samples had a 

maximum 0.005 0.007n    as in Figure  5.24 (a) and some of them had a maximum 

0.009 0.011n    as in Figure  5.24 (b). Only in some cases the loss factor exhibits a 

larger standard deviation as can be observed in 5  and 6  in Figure  5.24 (b), however it 

is still small and the mean can be considered as an adequate damping estimate. 
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Figure  5.24: Loss factor estimation in two typical samples:     mean;     mean+/- 
standard deviation. 

5.2.3 Spot welded assemblies’ experimental modeshapes. 

The modeshapes of the spot welded assemblies were measured in the same way as the 

single plates: a fixed accelerometer and a roving impact hammer, 9 impact locations 

distributed in a 3 by 3 array (see Figure  5.9) at each of the four faces of the assembly 

(36 impact locations). 

The modal constant was calculated using equation (5.2). Figure  5.25 shows the first 

seven experimental modeshapes of a spot welded assembly, where a positive value 

corresponds to motion in the outward normal direction. The natural frequencies are 

given in Table  5-8. The first four modes can be recognized as ovalling modes, where 

modes 2 and 4 have out of phase motion between the front and rear section. Modes 1,3 

and 2,4 can be identified as orthogonal pairs. 

 

Table  5-8: Mean natural frequencies of spot welded assembly. 
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The modeshapes presented correspond to a specific sample. The behaviour of the other 

two samples is similar, presenting the same modeshapes in the same order. 

5.2.4 Results 

The experimental modal analysis was performed for all the samples and then repeated 

four more times. The variations from the same sample are lower than 1% for the natural 

frequencies and lower than .1% for the modal damping estimation; these variations are 

small especially when compared to the dispersion between samples. Therefore only the 

average results are reported and carried forward as the properties of each sample for the 

variability analysis between samples. 

The mean and standard deviation for the natural frequencies and loss factor estimates 

across all 54 assemblies are shown in Table  5-9.  This results can also be observed in 

Figure  5.26. It can be seen that for 1, 2,5,6n   there is a larger variability where  

0.02 0.032
nf n nf f    . For 7n   there is an intermediate variability where 

7 70.012f f  . For  3, 4n   there is a small variability where 0.002 0.005
nf n nf f   . 

The loss factor estimates show a large variability between samples. This is expected 

since the contact conditions can vary greatly between samples. In any case, the loss 

factor values are still very low and typically 0.007n  . 

 

Table  5-9: Mean and standard deviation of natural frequencies and loss factor 
estimates. 

mode number (   ) 1 2 3 4 5 6 7

290.0 326.8 549.3 713.3 905.9 935.9 1014

7.66 7.64 1.53 3.99 27.9 30.0 12.4

2.67E‐03 4.31E‐03 1.76E‐03 5.52E‐03 3.05E‐03 4.74E‐03 5.31E‐04

6.45E‐04 6.83E‐04 2.16E‐04 1.15E‐03 1.47E‐03 1.68E‐03 1.08E‐03

n
(Hz)nf

(Hz)
nf



n


n
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Figure  5.26:Natural frequencies and loss factor across the ensemble:     mean;     
mean+/- standard  deviation. 

5.2.5 Statistical analysis 

The probability distribution of the natural frequencies was analysed in terms of the 

normalized error 
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Figure  5.27 shows the histograms of the first seven natural frequencies when compared 

to normal distribution. Table  5-3 shows the skew, kurtosis and the 2  probability 

results. It can be seen that modes 1,2,5,6 exhibit a larger variation and low kurtosis 

values, while modes 3 and 4 exhibit a very small variation with kurtosis values close to 

3, while mode 7 exhibits an intermediate variation and a large kurtosis value. 

The hypothesis that the natural frequencies fit a normal distribution can be rejected for 

mode 5, probably due to the heavy tails. 
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Figure  5.27: Distribution of the first seven natural frequencies (assembled profiles):     

Experimental data;               Gaussian distribution. 
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Table  5-10: Skew, kurtosis and 2  probability results for goodness-of-fit test of n . 

The results from the statistical analysis suggest that modes 3 and 4 are not affected by 

the spot weld location, and since   values are similar to those of the single hat profiles, 

it might confirm that they are only sensitive to variations in the geometry of the hat 

profiles and/or to variations in the material properties.  

On the other hand, modes 1,2,5,6 are affected by the characteristics of the spot welds 

and exhibit a larger value of standard deviation. The low kurtosis values might be a sign 

of a low number of samples, i.e. more samples are needed to predict the correct PDF. In 

any case and based on the 2  goodness-of-fit results, one cannot reject the hypothesis 

that all the natural frequencies fit to a normal distribution.  

These results will be compared with the results from the FE analysis in section  5.4.1. 

5.2.6 Correlation coefficients  

In section  5.2.3, it was observed that most of the modes considered depend greatly on 

the bending of the side panels, therefore it is expected that the natural frequencies are 

correlated between each other. In section  5.2.5 the statistical analysis of the 

experimental frequencies across the ensemble showed that some of the frequencies 

show a larger variation when compared to the standard deviation of the substructures, 

therefore it would be expected that the natural frequencies that exhibit a large variation 

are correlated between each other.   

mode number (   ) 1 2 3 4 5 6 7

0.0526 0.0466 0.0056 0.0112 0.0613 0.0638 0.0245

Skew 0.797 0.622 0.491 0.120 0.913 0.790 0.524

Kurtosis 2.189 2.061 3.784 2.725 2.468 2.031 4.674

7 7 7 7 7 7 7

5.95 4.21 3.27 1.19 8.14 5.85 3.05

7.78 7.78 7.78 7.78 7.78 7.78 7.78

n

2

n

k


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The level of correlation between modes is measured using the Pearson product-moment 

correlation coefficient [68] between l  and m  is calculated using equation (5.4).  

Table  5-11 shows the correlation coefficients between n . It can be confirmed that all 

the modes with large variability are correlated between each other, while the modes 

with smaller variabilities are not correlated to any other mode and not even between 

each other. 

Figure  5.28 shows some of the dispersion plots with strong correlation, 1,5 0.984r  ; 

weak correlation,  6,7 0.177r   ; and a mild correlation, 2,4 0.638r    

 

Figure  5.28: Dispersion plots: a) 6,7 0.208r  ; b) 2,4 0.638r  ; c) 1,5 0.984r   

 

Table  5-11: Correlation coefficients between n . 
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5.3 The single profile finite element model 

The FE model for the single plates was first built in ANSYS as shown in Figure  5.29. 

The mass and stiffness matrices were extracted to Matlab where Heterosis elements 

with the correct attributes were coupled into the missing areas, where the spot weld 

element will be located. 

In order to experimentally estimate the material properties, simple beams were cut from 

the cladding sheets. The dimensions of the beams were measured using a vernier 

calliper and the thickness was measured using a micrometer. The weight was measured 

using a mechanical balance with 0.01 gram resolution. The dimensions and weight of 

the beams are in Table  5-12. E   is estimated using the measured fundamental frequency 

1b  and the analytical formula 

 
 4

12
1 4

b
b

b

k lEI

A l



  (5.9) 

where   is the estimated density, l  is the measured length. bA , bI  are the cross section 

and second moment of area of the beam calculated from the measured dimensions. 1( )k l

is the first non-zero solution to the transcendental equation of beams with free boundary 

conditions     cosh cos 1kl kl  . 

1b  was estimated using the circle fitting method [63] on the measured FRFs. The FRFs 

were measured using an impact hammer to excite the beam and the response was 

measured at the antinodes using a laser vibrometer to avoid mass loading. The beams 

were hung at the nodal points using elastic bands. The estimated properties are shown in 

Table  5-13. 

In order to verify the construction of this model, the natural frequencies from the FE 

results are compared to the experimental average in Table  5-14. It can be seen that the 

difference between the two is always less than 2.5%. It should be noted that the 
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predicted natural frequencies are not always above or below the experimental values. 

Therefore, a change in the properties of the material would not necessarily lead to a 

better model. 

The transfer function from an excitation at the top of the profile to the centre of the area 

modelled with Heterosis elements was evaluated and compared to experimental results 

for some of the samples in Figure  5.30. The agreement between both of them is good, 

where the resonances and antiresonances show the same behaviour.  

 

Table  5-12: Beam measured dimensions, first natural frequency and weight. 

 

Table  5-13: Estimated properties to use in the FE model. 

The position of the resonances on the experimental results describes the variability of 

the manufacturing process while the FE result represents a sample with its natural 

frequency close to the experimental mean and not an additional sample as shown in 

Figure  5.30. This can be confirmed in Figure  5.31, where the FE natural frequency 

model profile lies close to the middle of the range when compared to the measured 

profiles. 

The accuracy in the predicted modeshapes was evaluated using the modal assurance 

criterion (MAC), which is  a widely used technique to estimate the degree of correlation 

between modeshape vectors.  When a measured modeshape mφ  is compared to a subset 

of the computed modeshape cφ , where only the DOFs present in mφ are extracted, the 

DOFs in cφ  need to be resolved in the appropriate direction to match the direction of 

the DOFs present in mφ .   The MAC  as defined in [69] is used in this study, i.e. 

(m) (m) (m) (rad/s)
weight 

(kg)

0.29 0.0246 0.00071 280.07 0.03996

l ba 1b

(kg/m3) (m4) (m2) (N/m2)

7890 7.34E-13 1.75E-05 2.09E+11

bA bI E
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Figure  5.29: ANSYS FE model 

   

Table  5-14:FE natural frequencies compared to the experimental mean values. 

 
 

Figure  5.30: Transfer mobility: - - - experimental;           FE model. 

(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

FE model 188.84 198.08 324.28 663.28 819.58 1024.9 1216.2

Experimental 
average

188.78 203.004 328.3955 656.15 819.84 1015.3 1221.5

1f 2f 3f 4f 5f 6f 7f
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  

2T
m c

T T
c c m m

MAC 
φ φ

φ φ φ φ
 (5.10) 

The MAC value is a scalar with values between 0 and 1, where 1 means that that one 

mode shape vector is a scaled multiple of the other. The MAC is a matrix of n x n size, 

where n is the number of modes considered in the evaluation. When the experimental 

and predicted modes are identical the diagonal terms are equal to 1, but the off diagonal 

terms are not necessarily equal to zero. This is because even if mφ  and cφ  are different 

modeshapes, they are not orthogonal vectors (although they are orthogonal with respect 

to the mass and stiffness matrices). 

There are modes that are similar to each other and with the number of measured points 

they cannot be completely differentiated, that is the case of modes 4 and 6 as can be 

observed in Figure  5.32 where the graphical representation of the MAC matrix is 

shown. Other modes might exhibit some smaller similarities, like for example modes 3 

and 7.  However the prediction of the mode shapes is adequate, since the mode shapes 

are presented in the right order and the MAC diagonal values are always higher that 0.7 

as can be seen in Figure  5.32. Similar behaviours were observed when the computed 

mode shapes were compared to mode shapes measured for different samples. 

 

Figure  5.31: Natural frequencies profiles:          measured;           deterministic FE 

model. 
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Figure  5.32: Graphical representation of MAC matrix. 

5.4 The spot welded profile finite element model 

The spot welded model was created taking two of the single profiles models as 

described in section  5.3. These two models were assembled together using the CMS 

approach described in section  3.2, where the response of the assembled structures is 

calculated by updating the response of the unassembled system. The spot welds are 

respresented using the model proposed in section  4.2, this model is capable of 

simulating changes in the spot weld location and diameter.  

In order to estimate the variability in the vibration response of this system due to 

uncertainties in the location and diameter of the spot welds, a MCS with 500 samples is 

used to estimate the envelope of the transfer mobility. The  ,s sx y  coordinates of each 

of the s  spot welds are assumed to be independent Gaussian random variables with 

their means located at the baseline position and standard deviation given in Table  5-6.  
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The diameter of the spot weld is also considered as an independent random variable 

with mean and standard deviation given in Table  5-7.  

The transfer functions were measured from hat plate to hat plate as shown in 

Figure  5.21. This is the same transfer function measured in the 54 physical samples. 

The response envelope is compared to the measurements in Figure  5.33.  

Figure 5.33 shows that the main difference between the numerical and experimental 

results can be observed at low frequencies, where the experimental rigid modes show 

some variability due to changes in elastic mounting and can be observed from 0 up to 

8.5 Hz while in the numerical results this modes are always at 0 Hz. In the MCS result 

there are no variations on 3f  and 4f , but this corresponds to the behaviour in the 

experimental results where the variation in 3f  and 4f  exhibit small spread, especially 

when compared to other natural frequencies as can be observed in Figure  5.33 and 

confirmed in Figure  5.27. Then the small variability of 3f  and 4f  in the experimental 

results is related to the variability on the single profiles and not to the position of the 

spot welds, taking into consideration that in the FE model the properties of the 

substructures are considered as deterministic. 

 It can also be noted that 3f  is overestimated while 4f  is underestimated, this means 

that there is a modelling error in the way in which the single plates where modelled. 

This is more likely to be related to the geometric properties of the profile rather than to 

the material properties. If the model of the single plate were improved, then the 

accuracy in the prediction of these two natural frequencies would improve as well. 

The variation in the lowest two natural frequencies and the mobility magnitudes at 

resonances are estimated very accurately. This means that the variability of these 

natural frequencies is related to the variation of the spot welds, rather than variation in 

the substructures properties.  
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Above 800 Hz the envelope covers an area where 5f  and 6f  vary, in this area the 

frequency ranges for 5f  and 6f  overlap. This behaviour can be observed in the MCS 

envelope as well as in the experimental FRFs. On the other hand, the mobility 

magnitude at resonances in these two modes are usually under estimated, which means 

that the modal loss factors 5  and 6  used in the simulation are high compared to the 

real values. In practice, these show a large variability as observed in Figure  5.26 and in 

Figure  5.33, where the peak values exhibit a curved shaped spread rather than a flat 

spread as can be observed in the MCS envelope using a constant value for the loss 

factor n . In any case, the MCS FRF envelope is similar to the envelope of measured 

FRFs and the shape is very similar, which means that the method is efficiently 

predicting the variations in the response due to uncertainties in the location and in the 

size of the spot welds. This method can also reproduce the FRF percentiles when 

compared to the experimental results as can be observed in Figure  5.34. 

The predicted natural frequencies using MCS are compared to the measured natural 

frequencies in Figure  5.35, where it can be seen that the MCS results overlap the 

experimental results when the proposed spot weld model is used. In contrast, when the 

simple spring spot weld model is used, the natural frequencies are clearly 

underestimated, as explained before; this is due to the fact that the simple spring model 

does not represent the area of contact which adds stiffness in the flanges, on the other 

hand, the change in diameter cannot be modelled using this simple model. 

The statistical analysis of each natural frequency will be performed in the next section, 

but before that, it is important to determine if the modes above 800 Hz change order or 

not. In order to do that, the MAC matrix will be calculated for each one of the MCS 

comparing it to the experimental measurement described in section  5.2.3.  

The MAC matrix is first calculated for the baseline configuration, which means that all 

the spot welds are located at its mean position. When the new  MAC  matrix is 

calculated and compared to the one calculated for the single profile, it can be seen that 

in this case,  the diagonal values are closer to one as shown in Figure  5.32, this is due to 

the fact that more locations are used in order to calculate each ( , )i iMAC  value; 36 vs 
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18. It is also related to the fact that simpler modeshapes are in the assembly where only 

first bending is involved with out of phase – in phase combinations as can be observed 

in Table  5-8. 

When the MAC matrix of the average of the assembly is analysed, the modes appear to 

be in the same order. When the sample with the minimum ( , )i iMAC value is analysed, 

the modes 6 and 7 swap order as can be seen in Figure  5.36 c. When the sample with 

the second minimum ( , )i iMAC value is analysed, modes 4 and 5 start to look very 

similar but these modes do not appear to swap order. Therefore, only one sample out of 

the 500 samples experiences a change in the order of the modes, this case sample will 

not be considered for the statistical analysis in the following section. 

 

Figure  5.33: Response envelopes for the magnitude of the mobility:              
measured;              FE envelope. 
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Figure  5.34: FRF percentiles in the frequency domain: a) measured; b) FE MCS. 

 

Figure  5.35: Natural frequencies for the first seven flexural modes: a) simple spring 
model; b) proposed model.:           FE MCS;            measured. 
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Figure  5.36: Graphical representation of MAC matrix: a) baseline configuration; b) 
ensemble average;c) and d) 2 samples with  , 0.4i i MAC .  

5.4.1 Statistical analysis 

The dispersion of the natural frequencies are analysed in terms of the normalized error 

as calculated in equation (5.3).  

Figure  5.37 shows the histograms of the first seven natural frequencies when compared 

to normal distribution. Table  5-15 shows the skew, kurtosis and the 2  probability 

results. It can be seen that modes 1,2,5 and 6 are clearly affected by the uncertainty in 

the spot weld position, while the natural frequencies for modes 3,4 and 7 are almost 

insensitive to the uncertainties in the spot welds properties. 
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The skew and kurtosis values in modes 1,2,5 and 6 suggest that they might fit a normal 

distribution, i.e. the skew values are low and the kurtosis values are close to three. 

However, based on the results from the 2  goodness-of-fit results, the hypothesis that 

the assembly natural frequencies fit to a normal distribution is rejected, except for mode 

5. As said before, modes 3,4 and 7 are not affected by the properties in the connections, 

therefore it is irrelevant if they fit or not into a normal distribution.  

On the other hand, based on the experimental results, modes 1,2,5 and 6 are expected to 

fit a normal distribution. Mode 5 does, and if the significance level were reduced to 

0.05   the distributions for modes 1 and 2 could also be considered as normal.  

When compared to the experimental results in Table  5-10 and Figure  5.27, it can be 

observed that the modes with larger variation in the MCS results correspond to the 

modes with larger variation in the experimental results. Furthermore, the modes in 

which the natural frequencies are insensitive to the spot weld characteristics in the MCS 

also correspond to the modes with low variation in their measured natural frequencies.  

When the standard deviation of the natural frequencies for the FE MCS and 

experimental results are compared, it can be seen that the simulation results 

underestimate the experimental results in all modes as seen in Figure  5.38. It can also be 

seen that the difference between the measured and the estimated n  is almost constant 

in all modes, including the insensitive frequencies. This difference can be attributed to 

variability in the properties of the substructures which are not considered in the FE 

MCS.  

 

Table  5-15: Skew, Kurtosis and 2  probability results for goodness-of-fit test of n . 

mode number (   ) 1 2 3 4 5 6 7

0.0526 0.0466 0.0056 0.0112 0.0613 0.0638 0.0245

Skew 0.797 0.622 0.491 0.120 0.913 0.790 0.524

Kurtosis 2.189 2.061 3.784 2.725 2.468 2.031 4.674

29 29 29 29 29 29 29

37.481 63.693 38.709 37.861 20.630 54.242 374.906

35.563 35.563 35.563 35.563 35.563 35.563 35.563

n

2

n

k


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Hence it can be said that the method presented here is accurate when predicting which 

modes are sensitive to the uncertainties in the spot welds and which modes are not. It 

can also predict the standard deviation of the natural frequencies distributions as a result 

of spot weld variation. This method also predicts the correlation between the 

normalized natural frequencies accurately, as can be observed in Figure  5.39. 

On the other hand, PDF properties such as kurtosis and goodness of fit to a normal 

distribution were not correctly predicted, perhaps due to the difference in the number of 

samples between the experiments and the FE MCS. i.e. 50 vs 500. 
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Figure  5.37: Distribution of the first seven natural frequencies:                           
MCS results ;             Gaussian distribution.  
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Figure  5.38:  Standard deviation of natural frequencies distribution ( n ):                        

experiments;    FE MCS.  

 

Figure  5.39:  Normalized natural frequencies: a) 1  vs 2 ; b) 5  vs 6 :         

experiments;    x   FE MCS. 
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5.5 Conclusions 

In this chapter the proposed spot weld model in Chapter 3 and the method to evaluate 

the variability in the structure properties due to uncertainties in the spot welds was 

validated using experimental results. A double hat structure was chosen for this 

purpose. 

159 profiles were fabricated and tested before assembly, the natural frequencies were 

measured and their probability density functions (PDF) were studied. In order to reduce 

the variability in the substructures the samples with larger errors in the modal 

frequencies when compared to the mean were discarded; 108 profiles were left. 

After being welded, the spot weld size and location were measured. The natural 

frequencies, loss factor and mode shapes were estimated and analysed. The damping 

estimates together with the spot weld size and location are used as inputs for the FE 

model.      

A deterministic FE model for the single profiles was built and compared to 

experimental measurements to evaluate its performance. Finally the assembly was built 

in a MCS with stochastic spot weld properties and compared to the test results.     

It was concluded that the modal frequencies of the single profiles fit into a normal 

distribution and the modal loss factors are always lower than 33.5 10 . Measured spot 

weld position, spot weld size and assembly modal frequencies also fit into a normal 

distribution.  

When the deterministic FE model of a single plate is compared to the ensemble of 

measurements, the agreement between both of them is good, where the resonances and 

antiresonances show the same behaviour. The position of the resonances in the 

experimental results describes the variability of the manufacturing process, while the FE 

result represents a sample with natural frequencies close to the experimental mean 

modal frequencies. The prediction of modeshapes was also satisfactory. 
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When the proposed spot weld model is used, the predicted natural frequencies overlap 

the experimental results. The modeshapes are correctly predicted and the modeshape 

analysis show that in general the modes do not swap order. In contrast, when the simple 

spring spot weld model is used the natural frequencies are clearly underestimated. 

Finally, the method presented here is accurate when predicting which modes are 

sensitive to the uncertainties in the spot welds and which modes are not. It can also 

predict the standard deviation of the natural frequencies distributions as a result of spot 

weld variation. This method also predicts the correlation between the normalized 

natural frequencies accurately. 
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6  CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

Spot welds are the most important structural joint in the automotive industry. A vehicle 

body contains several thousands of spot welds. There is an inherent variability in these 

joints due to the complexity in the manufacturing process. 

These variations lead to variations in the joint dynamic properties and the resulting 

overall dynamic behaviour of the built up structure.  At this moment there is not a 

method in which the uncertainties in the spot welds are considered when predicting the 

global dynamic properties such as frequency response functions (FRFs), eigenvectors, 

eigenvalues etc. 

In this thesis an efficient method to calculate the variability in the dynamic properties of 

spot welded structures due to uncertainties in the location and size of the spot weld was 

proposed and experimentally validated. 

The finite element method (FEM) is used in conjunction with Monte Carlo simulations 

(MCS) to predict the variability in the vibration response of the spot weld structures; 

this is usually computationally expensive especially for large scale models.  
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In this thesis the computational time of such analyses is reduced up to 99% using a 

proposed spot weld model based on multipoint constraints (MPCs) and an analytical 

update theory in the component mode synthesis (CMS) framework and the results were 

experimentally validated. 

In chapter 2 MPCs were used to apply connections between flat structures. It was 

shown that an MPC connection can be placed between nodes of an FE model and is able 

to incorporate any change in the location of the elastic connection in an accurate way. 

When beams are connected, results showed that the MPC connection has the same 

predictive performance compared to the direct node to node connections. Both models 

giving accurate results for point connections comprising a translational or rotational 

spring. 

Results showed that the MPC connection is not accurate when thin plate elements are 

used, due to the non-conforming formulation. In contrast, when the Heterosis element 

was used the results showed that the MPC connection is as accurate as the node-to-node 

connection.  Additional errors appear when rotational springs are used in the connection, 

due to discrepancies between the element formulation and the analytical solution. Some 

convergence issues exist in the modal summation when rotational degrees of freedom 

(DOFs) are involved; however the solution is still acceptable. 

When a rotational spring is used, the transfer mobility magnitude is sensitive to the 

element size. This problem is not related to the MPC, since the MPC and node to node 

connection results are almost identical. Furthermore, the MPC results are closer to the 

analytical solution. This sensitivity is related to the addition of rotational stiffness into 

the FE stiffness matrix. 

In chapter 3 MPCs in combination with CMS were used to predict the response where 

there are uncertainties in the joint locations in a FE model. It was seen that CMS gives a 

sub-structuring framework and a reduction in the number of DOFs of the model. 

Combining both approaches, the response of the system can be evaluated for any 
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connection location using the unchanged modal representation of the substructures in an 

accurate and numerically efficient manner.  

However, when the number of degrees of boundary DOFs is large, then the CMS size 

reduction is less efficient since the interface DOFs are not reduced.  Two techniques are 

proposed to overcome this problem: (i) characteristic constraint modes [3] and (ii) low 

rank update theory [4].  

The vibration response was calculated using these approaches for different connection 

positions and compared to a full modal solution. The predictions obtained gave a good 

agreement and the computational time was reduced by approximately 99% when 

compared to the full modal solution. When compared to the characteristic constraint 

mode method, the low rank update approach leads to a reduction in the computational 

time t at a rate of 
2

3t . 

The last approach was used in a MCS with 500 samples to evaluate the variability in the 

vibration response. The results show that probability density functions (PDFs) of the 

system natural frequencies are not Gaussian even though the connection locations are 

Gaussian variables. 

A second MCS was used to evaluate the variability in the vibrational response due to 

missing or broken connections and/or uncertainty in the location of the spot-welds in a 

model of two plates with five spot welds. Results show that, for the example considered, 

when any of the inner spot welds is missing and the location and size of the remaining 

connections is uncertain the vibration responses lie approximately within the bounds of 

the case in which all the connections are present. On the other hand, when any of the 

outer connections are absent the variability in the vibration response is greater. 

In chapter 4 a new spot weld model was proposed. This model imposes a surface-to-

surface connection between two structures using simple spring elements and MPCs, 

therefore coincident meshes are not required. The application of the new spot-weld 

model is validated experimentally on a model of two simply supported plates with three 

spot weld connections. The performance is compared to a simple MPC connection. 
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It was shown that when plate elements are based on  Mindlin-Reissner plate theory, the 

stiffnesses in the rotational DOFs depend on the element size in a quadratic way. In 

addition, when the rotational stiffness of the connection is added to the system, it results 

in a high sensitivity of the static solution and natural frequencies to the element size. 

This was demonstrated on an assembly of two simply supported plates with a single 

connection. 

The new model does not add stiffness to the rotational DOFs, but instead it is composed 

of an array of springs that add an equivalent rotational stiffness to the system. The 

results show that the new spot weld model reduces the sensitivity substantially and 

improves convergence with different mesh sizes. For the structures considered, 

convergence is achieved with an 8mm element size compared to a plate thickness of 

1.96mm, whilst for the simple MPC model convergence is not achieved. The average 

sensitivity to element size at 10mm is reduced almost five times from 346.7 Hz/m to 

70.49 Hz/m. 

In chapter 5 the proposed spot weld model in Chapter 3 and the method to evaluate the 

variability in the structure properties due to uncertainties in the spot welds was 

validated using experimental results. A double hat structure was chosen for this 

purpose. 

159 profiles were fabricated and tested before assembly, the natural frequencies were 

measured and their PDFs were studied. In order to reduce the variability in the 

substructures the samples with larger errors in the modal frequencies when compared to 

the mean were discarded; 108 profiles were left. 

After being welded, the spot weld size and location were measured. The natural 

frequencies, loss factor and mode shapes were estimated and analysed. The damping 

estimates together with the spot weld size and location are used as inputs for the FE 

model.      
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A deterministic FE model for the single profiles was built and compared to 

experimental measurements to evaluate its performance. Finally the assembly was built 

in a MCS with stochastic spot weld properties and compared to the test results.     

It was concluded that the modal frequencies of the single plates fit into a normal 

distribution and the modal loss factors are always lower than 33.5 10 .Measured spot 

weld position, spot weld size and assembly modal frequencies also fit into a normal 

distribution.  

When the deterministic FE model of a single plate is compared to the ensemble of 

measurements, the agreement between both of them is good, where the resonances and 

antiresonances show the same behaviour. The position of the resonances in the 

experimental results describes the variability of the manufacturing process while the FE 

result represents a sample with natural frequencies close to the experimental mean 

modal frequencies. The prediction of modeshapes was also satisfactory. 

When the proposed spot weld model is used, the predicted natural frequencies overlap 

the experimental results. In contrast, when the simple spring spot weld model is used, 

the natural frequencies are clearly underestimated. The modeshapes are correctly 

predicted and the MAC analysis show that the modes do not swap order in all samples. 

Finally, the method presented here is accurate when predicting which modes are 

sensitive to the uncertainties in the spot welds and which modes are not. It can also 

predict the standard deviation of the natural frequencies distributions as a result of spot 

weld variation. This method also predicts the correlation between the normalized 

natural frequencies accurately. 

6.2 Future work 

In this thesis the propagation of uncertainties in the spot welds was computed using a 

standard MCS. The computational time was reduced using characteristic constraint 

modes/update theory in a CMS framework, here the computational time of the 

deterministic solution is reduced. The calculation cost for one solution can also be 
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reduced drastically, if numerically expensive operations, such as solving the eigenvalue 

problem, are replaced with numerically cheap formulations. First order perturbation 

methods using response sensitivities [70] are appropriate for low levels of uncertainty. 

For larger uncertainties, higher order perturbation or interpolation can be used. A 

systematic approach to select the reference solutions for an interpolation is given by the 

design of experiments methodology. It can also be used to construct an approximate 

response surface model (RSM) [71], which replaces the original model to provide a 

relationship between input parameters and response quantities. Although a replacement 

of the original model is often associated with errors due to approximations, these can 

often be neglected with respect to the level of uncertainty in the input data. 

Another option that could be explored is to apply techniques designed to reduce the 

number of necessary evaluations by using advanced sampling techniques [72]. These 

reduce the variance of the sampling estimator and achieve the same accuracy with a 

lower number of samples. The most common techniques are importance sampling [54], 

directional sampling [73], subset simulation and Line-Sampling [74]. The DOE 

methodology can also be applied to create advanced MC methods to estimate the mean 

and variance of a distribution using a very low number of samples. Latin Hypercube 

sampling [75] is a version of stratified sampling, where it is ensured that the samples are 

taken more evenly from the input parameter distribution. In contrast to sampling 

approaches, there are various subspace projection schemes, such as polynomial chaos 

expansion [76] and stochastic reduced basis methods [77].  

It could also be possible to apply a possibilistic approach, in this case, the complication 

comes when defining the bounds of the solution. In this case a small MCS can be run 

and the 5 and 95 percentiles in the stiffness matrix can be taken as the lower and upper 

bounds in the possibilistic method. 

In order to not only model the variability in the spot welds but also the variability in 

connected panels, statistical energy analysis (SEA) could be used to model large panels 

and coupled to small FE sections where the spot welds are located (e.g. the landings or 

flanges on the hat profiles can be modelled with FEA while the rest of the structure 

could be modelled using SEA). This would create a hybrid FE-SEA model that 
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potentially could extend the frequency domain of the analysis, reduce further the 

computational time and also consider the variability in the rest of the structure. 

This approach could be used for reverse problems in which, for a given set of 

requirements such as standard deviation of natural frequencies, a maximum tolerance in 

the location and size of the spot weld is determined. 

The proposed methodology should be applied in structures with a larger number of spot 

welds and more than two components in order to study the feasibility of applying it in 

industrial problems. The final goal would be the implementation of the current approach 

in large built up models such as a vehicle body-in-white with three to five thousands 

spot welds.  
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APPENDIX A 

 

For this system each point has two degrees of freedom, therefore the forces and 

displacement matrixes at each node are 
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Then the mobility matrix ijY  relates the force matrix in point i and the velocity matrix 

in point j as  

  

                                                             j ij iv Y F                                                       (A.3) 

 

where ijY  containing the following  elements ,
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The equations defining the system in Figure A.1 are; for the upper beam 

 

                                          2 12 22 2ext v Y F Y F                                                          (A.4) 
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for the lower beam 

                                                    4 34 3v Y F                                                              (A.5) 

Finally the spring can be defined in terms of its mobility 
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here the equilibrium forces are 
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Finally for the system in Figure A-1, the connection is massless. Therefore 

                                                     2 3F F                                                                   (A.7) 



 

-164- 
 

 

APPENDIX B 

 

 

 

 
Figure B-1: Two simply supported plates with a single elastic connection 

xK  wK  yK  
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For this system each point has three degrees of freedom, therefore the forces and 

displacement matrixes at each node are 
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Then the mobility matrix ijY  relates the force matrix in point i and the velocity matrix 

in point j as  

                                                             j ij iv Y F                                                       (B.3) 

where ijY  containing the following  elements ,
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The equations defining the system in Figure B.1 are; for the upper plate 

                                          2 12 22 2ext v Y F Y F                                                          (B.4) 

for the lower plate 

                                                    4 34 3v Y F                                                              (B.5) 
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Finally the spring can be defined in terms of its mobility 
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here the equilibrium forces are 
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Finally for the system in Figure B-1, the connection is massless. Therefore 
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