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Abstract 

 

Within the defence industry, there is the need to provide an improvement in the 

efficiency (performance) of a missile system.  The present generation of missile 

systems are sub-optimal in many currently considered scenarios.  Scenarios include 

both anti-air and ground attack domains and these have to allow for an increased 

usage of stealth, more effective countermeasures, and better mission survivability by 

making use of redundancy in subsystems.  There are many methods by which this 

improvement in efficiency can be achieved 

 

The traditional approach to improving the lethality of a missile has been to 

concentrate efforts in the guidance and control systems to improve accuracy and 

agility.  

 

This thesis considers how optimizing the endgame, the final few milliseconds before 

detonation, can yield improvements in overall lethality. This is achieved using 

traditional optimisation techniques and has investigated possible missile warhead 

fusing strategies which may be used in order to provide robust, high lethality 

engagement conditions for an air-to-air missile system. 

 

The development of various fusing strategies has been performed based on 

observations made during the undertaking of this research.  This included 

development of fusing rules used for the missile warhead and the development of 

advanced fusing algorithms that look at past missile fly-out and lethality data to aid 

the decision process of when to fuse the missile. 
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1. Introduction 

Within the defence industry, there is the need to provide an improvement in the 

efficiency (performance) of a missile system.  The present generation of missile 

systems are sub-optimal in many currently considered scenarios.  Scenarios include 

both anti-air and ground attack domains and these have to allow for an increased 

usage of stealth, more effective countermeasures, and better mission survivability by 

making use of redundancy in subsystems.  There are many methods by which this 

improvement in efficiency can be achieved, such as optimisation of individual missile 

sub-systems (guidance/navigation, fuse delay etc).  The missile system is made up of 

several sub-systems as shown in Figure 1.1. 

 

 
Figure 1.1: Missile Sub-Systems 

 

A standard missile fly out [1] will involve an initial fly-out, and the endgame 

condition, or fusing stage.  The initial fly-out is controlled using seeker, guidance and 

autopilot systems, in order to bring the missile close to the target.  Once close enough 

to the target, control is passed over to the fusing system to determine when to trigger 

the fuse and detonate the warhead.  This is achieved using a proximity fuse [2], which 

receiver a reflected transmission to determine the distance of the target to the missile 

to determine when to trigger the warhead, and is discussed in Section 6. 

 

Traditional methods for optimisation of a missile system generally focus on the non 

lethal components of the missile.  There has been ongoing research into the 

optimisation of these components, including the guidance system, autopilot system, 

motor, and missile airframe. 
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Improvements in missile lethality have been sought through improved guidance and 

control laws, for example, to optimize guidance for a specific control law such as the 

autopilot [3] and engagement conditions [4] or by solving receding horizon 

optimizations to achieve fast and realisable online target tracking [5] 

 

The main aim of this research will be to investigate the possible methods for 

increasing the level of system performance of an advanced missile system, by 

improving the lethality probability based on the point at with the missile warhead 

fuses, rather than through improvements in guidance or missile control laws.  This 

will be achieved by using optimisation techniques to improve the missile warhead aim 

points.   

 

By optimizing the endgame geometry to achieve high levels of lethality probability, 

the missile fly-out endpoint is determined and a suitable guidance law can be 

developed using conventional approaches [6] or intelligent ones [7] 

 

There are two software packages that have been made available for the research, 

MSTARS [8] and AGILE [9], which are described in more detail later in this thesis. 

 

Munitions Simulation Tools and Resources (MSTARS, developed by DSTO, 

Australia) is a weapons modelling system for developing models and model libraries, 

and conducting simulations and analysis.  The software is made up of Simulink model 

blocks for use in the Matlab environment.  The objective of the tool is to perform 

weapons systems modelling, and includes within its libraries various models for 

missile launch-capable vehicles (such as aircraft and helicopters), and targets (both 

airborne and ground based).  Many complex scenarios can be constructed using the 

package to simulate the fly-out conditions of varying engagement problems and 

provide a set of endgame parameters.  These parameters can then be passed on to the 

second package, AGILE. 

 

AGILE, (Analytic Gaussian Intersection for Lethality Engagement, Developed by 

QinetiQ, UK) is a lethality prediction tool that is designed to provide a value 

(probability) of engagement uncertainty, or ‘kill probability’.  The AGILE software 

can be used stand-alone, or can be employed as a component embedded into another 
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software package (MSTARS for example).  AGILE incorporates many features 

including the prediction of damage inflicted upon a target (or component of a target) 

by warhead fragments.  It also includes a simple blast damage model for close-burst 

conditions (i.e. where the warhead is in close proximity to the target).  Uncertainties 

in the ‘endgame geometry’ (relative position, velocity and orientation) are 

represented, by using a set of Gaussian inputs, as are the uncertainties in target and 

warhead configuration.  This final part of the missile-target engagement is assumed to 

be linear, for example all velocity vectors are static. 

 

1.1. Chapter Overview 

This thesis documents the research studies undertaken, and is split into the following 

sections: 

 

2. AGILE and Engagement Modelling 

This chapter will provide a basis for how lethality, Pk, can be evaluated.  Lethality 

is a probability measurement of the likelihood that a target will be completely 

destroyed.  This probability is used to base fusing decisions in simulations of fly-

out scenarios, thus optimisation of this probability can yield improved 

performance of missile subsystems.  A package, AGILE, which calculates this 

probability in a fast and efficient manner by using Gaussian function to define 

missile and target components, will be described.   The coordinate system in 

which this process is performed will be defined, and the method by which the 

lethality values are calculated will be described and endgame entities will be 

specified and illustrated. 

 

3. Lethality Optimisation 

This chapter will discuss optimisation and the various types of optimisation 

methods.  Sensitivity to disturbances of optimal parameters, known as robustness 

is then considered.  Following this, a representative set of endgame scenarios will 

be optimised in order to assess if a maximum value of lethality lies close to the 

endgame parameter set, and a robustness measure of this maximum will be 

described and evaluated. 

 



4 

4. Modelling Fly-Out of Missile 

This chapter will describe MSTARS, a missile fly-out simulation tool for 

Simulink.   Its basic workings and how it can be used with AGILE will be 

described and some sample fly-out scenarios illustrated.  Following this some fly-

out scenarios will be analysed to see how lethality varies in the final stages of fly-

out. 

 

5. Endgame Optimisation Along Missile Trajectory 

This chapter will examine the missile trajectory in more detail.  Each point along 

the trajectory will be examined to see how the lethality varies along the trajectory 

prior to the fusing of the missile and whether the lethality value can be increased 

through optimisation.  From these studies, potential fusing strategies will be 

assessed. 

 

6. Fusing Methods for Missile Warhead 

This Chapter will describe differing methods by which a decision on whether the 

missile should activate the trigger or not can be made.  These will be split into 

three categories, simple decision processes, conditional decision processes, and 

knowledge based decision processes.  Each will be described and a framework for 

how each will be implemented will be shown. 

 

7. Analysis of Fusing Methods 

Using the methods described in Chapter 6, a batch of 5,000 end game yielding 

scenarios will be evaluated, and the performance of each method compared.  The 

strategies evaluated will include, minimum distance, lethality threshold level, 

fusing matrix with original and optimal lethality values, and advanced fusing 

algorithms. 

 

8. Conclusions and Future Work 

Conclusion, Contributions, and Future Work is discussed in this section. 

 

A. Appendices 

Supplementary work 
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2. AGILE and Engagement Modelling 

This chapter will provide a basis for how lethality, Pk, can be evaluated.  Lethality is a 

probability measurement of the likelihood that a target will be completely destroyed.  

This probability is used to base fusing decisions in simulations of fly-out scenarios, 

thus optimisation of this probability can yield improved performance of missile 

subsystems.  A package, AGILE, which calculates this probability in a fast and 

efficient manner by using a Gaussian function to define missile and target components 

will be described.   The coordinate system in which this process is performed will be 

defined, and the method by which the lethality values are calculated will be described 

and endgame entities will be specified and illustrated. 

 

2.1. Engagement Geometry 

The trajectories and orientations of the missile and target are collectively known as 

the endgame engagement geometry.  Engagement geometry within AGILE is 

described using the GW372 coordinate system [10][11][12].  This coordinate system 

defines the relationship between two sets of Cartesian coordinates, using the relative 

data, such as position, orientation and velocity, between the target and missile to 

evaluate the lethality probability.  Cartesian coordinate systems require more 

calculations to be applied to the parameters to enable AGILE to calculate the lethality 

value.  The advantage of using the GW372 coordinate systems is that the key 

parameters can be varied independently to one another, reducing the computational 

load from performing conversions of standard Cartesian coordinate data each time an 

aspect of the endgame is varied.   

 

2.1.1. GW372 Coordinates 

The GW372 coordinate system, shown in Figure 2.1, defines the relationship between 

two Cartesian frames of reference, one for the missile and one for the target.  These 

axes are different to the normal body axes that define x as longitudinal, y as latitude 

and z as vertical.  In both frames of reference the x, y and z axes are usually defined as 

follows, in relation to the body of the vehicle: 
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• The x axis is to the left, for example in a fixed-wing aircraft along the port 

wing; 

• The y axis is up (in level flight the direction of the pilot’s torso); 

• The z axis is ahead, along the centre line of the aircraft or missile body, i.e. 

in the direction of flight when there are zero incidences in pitch and yaw. 

φ

γ

ω

Rη
η

 
Figure 2.1: GW372 Coordinate System 

 

GW372 coordinates only specify relative position, velocity and orientation; higher 

time derivatives (e.g. rotation rate and acceleration) are not specified because lethality 

is usually not sensitive to the latter. The lack of sensitivity of lethality to acceleration 

and rotation rate is due to the very short periods of time, typically less than a 

millisecond, involved in the damage mechanisms, such that the error in the position of 

fragment collision with the target due to a 10g target acceleration is approximately 

0.05 mm, assuming that the fragment takes 1 ms to reach the target, so is in effect, 

negligible. 

 

The relationships between the target and missile frames can be defined by two affine 

transformations, one for relative position and orientation, and the other for relative 

velocity. An affine transformation is a combination of a translation (shift) and a linear 

coordinate transformation. In this case the linear transformation is a pure rotation. The 

GW372 coordinate system describes these transformations in a way convenient for 

modelling the endgame.  
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AGILE is a software package that calculates a level of lethality for a particular 

endgame scenario.  AGILE uses this GW372 coordinate system as its input and 

calculates a percentage value corresponding to the lethality.  The main parameters of 

an engagement described in GW372 are summarised below. 

 

• Vm and Vt are the speeds of the missile and target respectively in meters 

per second; 

• η is the engagement angle in degrees: that subtended between the missile 

and target velocity vectors. η = 0° implies a tail chase, whereas η = 180° 

implies a head-on engagement; 

• ω is the target roll, in degrees; 

• δ, ε define missile yaw and pitch respectively, and ψ is missile roll, in 

degrees; 

• x0, y0, z0 define a missile aim point in the target’s frame of reference. This 

point is used to define the burst (warhead detonation) point; it is the origin 

of a cylindrical polar coordinate system whose z axis is aligned with the 

missile velocity, the aim points define a vector, and each component is 

expressed in meters; 

• φ, Sr, z are the above mentioned cylindrical polar coordinates used to 

define the burst points, (i.e. the point along the trajectory that the warhead 

is detonated). φ is known as the ‘dartboard’ angle expressed in degrees and 

Sr is known as the ‘dartboard’ radius, expressed in meters, and defines a 

polar coordinate away from the perpendicular of the trajectory of the 

missile. z specifies the position along the trajectory of the burst point, and 

is expressed in meters.  The ‘dartboard’ is a graphical display produced by 

AGILE that displays the variances in lethality from the missile detonating 

at differing points to the actual calculated lethality from the original input 

parameters.  An example of the dartboard is given in Figure 2.2. 
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Figure 2.2: Example Dartboard 

 

The dartboard’s centre shows the lethality at the point of detonation.  The dartboard 

shows the variance of lethality of points around the trajectory of the missile, i.e. the 

trajectory is perpendicular to the dartboard, with the dartboard showing lethality as 

the missile is translated to the various positions.  It can be seen from the figure that 

lethality varies as the position of the missile is translated away from the original 

detonation point. 

 

In reality the missile and target both move along their respective velocity vectors; 

however it is easier to think of the target as stationary with the missile moving along a 

vector VR towards it.  It is usually assumed that as the missile approaches the target 

along VR all the other parameters remain constant (no manoeuvres take place).  This 

assumption is justified because all the fusing and lethality events take place over a 

few milliseconds and thus within a very short distance along the trajectory length.  

The GW372 system has the advantage that the primary parameters can be changed 

independently of each other, and each has a clear physical meaning. 

 

2.2 Agile Overview 

AGILE (Analytical Gaussian Intersection for Lethality Engagement) is a computer 

lethality prediction tool that is designed primarily to provide fast representation of 
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engagement uncertainties.  The computational speed of AGILE gives it suitability to 

be used as a design tool (either for the weapon or to increase the survivability of the 

target), or as a component embedded in any computer simulation that would require a 

fast estimation of endgame lethality. 

 

AGILE has the following features: 

 

• Prediction of the damage inflicted by the fragments of a warhead on a 

target or a target component; 

o Fragment damage is the damage that occurs from the pieces of the 

warhead that scatter upon the fusing of the explosive material 

within the warhead.  These fragments travel outwards and hit the 

target, causing the damage to the target.  The amount of damage is 

related to the velocity and mass of the fragment. 

o This model is employed on research undertaken and a description 

follows, however, for completeness the following features are 

mentioned. 

• A simple close-burst model that incorporates the effects of blast; 

o When a missile detonates there is an associated blast wave that 

propagates outwards.  This wave can cause damage if it reaches the 

target before the dissipation of the energy in the wave.  This 

component is not used in this study. 

• A simple direct impact model; 

o Direct impact occurs when the missile hits the target.  Within 

AGILE if the missile hits the target an automatic lethality value of 

1 is assigned. This model is not used in this study. 

• Representation of uncertainty in the endgame geometry (relative position, 

velocity and orientation), and in the configuration of the target and 

warhead. 

o As with all systems, there can be uncertainties resulting from 

sensor error and other noisy factors.  AGILE can incorporate 

uncertainties from noise into the lethality calculation process.  

 



10 

AGILE can provide fast computations of lethality predictions due to the method by 

which endgame entities, namely the target and missile warhead, are modelled.  They 

are represented using Gaussian functions which can be operated on quickly and easily 

to find intersections between them.  The speed of AGILE can allow a solution to be 

formulated that can potentially be used to perform on-board calculations in an 

endgame scenario, and also incorporates uncertainty in the endgame parameters in its 

calculations. 

 

2.2.1. Gaussian Functions 

Gaussian functions have been used as they provide an efficient and fast method of 

defining missile and target entity components, and also allow for fast manipulation of 

the defined Gaussian functions in order to calculate points of intersection to analyse 

damage probabilities.  

 

A 3-Dimensional Gaussian function, f, has the following form: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − )()(

2
1exp)( 1 bxCbxaxf T      (2.1) 

 

where x is a spatial position vector (with three Cartesian components), a is the 

maximum value of f, b is the position vector where f is maximal and C is a 3x3 

positive-definite symmetric matrix representing the shape and orientation of level sets 

(surface contours) of f.  The level sets of a Gaussian are ellipsoids, so the Gaussian 

itself can be thought of as a fuzzy ellipsoid; the value of f decays smoothly from a to 

zero as the distance from the centre b of the ellipsoids increases.  Visualisation of a 

3D function is difficult; it can be best thought of as an elliptical cloud whose density 

decays smoothly with distance from centre.  Visualisation of a 2D Gaussian is easier, 

an example of such a 2D Gaussian is shown in Figure 2.3. 
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Figure 2.3: Intensity Plot and Contours of a 2D Gaussian. 

 

The following objects are represented by sums of Gaussian functions in AGILE: 

 

• Target vulnerability to warhead fragment damage.   

Regions of high vulnerability are close to the centres of one or more 

Gaussians, whilst regions of low or zero vulnerability are typically further 

away from the centres; 

 

• Warhead fragment cluster density.   

This is not the density or mass of individual fragments, but the average 

number of fragments per unit volume, or ‘population density’.  Where the 

target vulnerability and warhead fragment densities are both high, the level 

of damage, i.e. probability of target kill or component failure, will be high; 

 

• Close-burst lethality and warhead damage blast damage.  

A set of ellipsoids and cylinders used to describe a neighbourhood of the 

target for which a ‘kill’ is certain.  This region is the set of all points inside 

one or more of these Gaussian objects; the warhead blast damage are 

derived from level sets (contour surfaces) of Gaussian functions; 

 

• Target shape is used by both the fusing and impact models.  

In the fusing model Gaussians are used to define the external shape of the 

target and its reflectivity to the radiation used by the fusing sensor.  In the 
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impact model Gaussians are used to define the shape of both the missile 

and the target, so that the severity of a collision can be calculated; 

 

• Radiation pattern of the fusing sensor.  

This information is used in conjunction with the shape and reflectivity of 

the target to predict the moment when the fuse is triggered. 

 

Gaussian components are used for the following reasons: 

 

• Their intersections can be computed very efficiently using an analytical 

approach; 

 

• Uncertainty in the endgame geometry can be represented directly by 

Gaussian components, reducing or avoiding the need for Monte-Carlo 

methods [13] as sampling around the burst point is not required. 

 

The reason for AGILE’s speed is its ability to represent many warhead fragments 

simultaneously as a single entity; instead of computing each individual intersection of 

fragment and target, a single calculation can be applied to hundreds of fragments as 

an ensemble. 

 

2.2.2. Gaussian Mixtures 

Much of the input data specified for AGILE is in the form of Gaussian mixtures, a set 

of Gaussian functions each defined previously in Equation 2.1.  The following 

sections describe how these mixtures are defined and what they will represent. 

 

Each Gaussian function has three components: 

 

• The amplitude, a, that is the peak value of the function.  This is a single 

‘double-precision’ scalar; 
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• The mean value, b, that is the 3-element position vector at which the peak 

value of the function occurs; 

 

 

• The covariance matrix, C, which defines the size and shape of the function 

(and its contour surfaces).  The covariance matrix is a 3x3 square matrix. 

 

2.2.2.1. Visualisation 

3D Gaussian functions are easiest to visualise by showing their contour surfaces, 

which are nested ellipsoids.  Figure 2.4 shows a small number of contour surfaces, 

which are nested ellipsoids, in cross-section. 

 
Figure 2.4: Cut Away Contour Surface of 3D Gaussians. 

 

When viewing many Gaussians at the same time, for example when viewing the 

target, only a single contour surface is shown to reduce complexity.  Figure 2.4 shows 

some examples of these. 

 

2.2.2.2. Amplitude and Position 

The amplitude, a, does not affect the contour surfaces except for their functional 

values, such that if the value of a is increased the value of each contour will increase, 

or equivalently the contour surfaces at the same value will dilate.  This means that the 

mean value, b, is at the common centre of all the contour surfaces.  Therefore 

changing b will result in a translation of all the contours by the same amount and 
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direction.  Figure 2.5 shows three Gaussians with the same a and C, but differing b 

values.  In each case the contour surface with the same value is shown.  Note that the 

contour surfaces are shown for each Gaussian separately, not the contour surfaces of 

all three added together.  If the centres, b, are sufficiently similar, the contour surfaces 

can overlap, as shown by the red surface and blue surfaces in Figure 2.5. 

 

 
Figure 2.5: Three Gaussian contour surfaces with same a, C but different b. 

 

2.2.2.3. Size, Shape and Orientation 

The covariance matrix C affects the size, shape and orientation of the ellipsoid’s 

contour surfaces.  Multiplying all 9 coefficients of C by the same scalar causes each 

contour surface to dilate by the square root of the scalar value.  The covariance matrix 

affects the shape and orientation of the contour surfaces in a more complex manner.  

There are two ways of describing this relationship: 

 

• The three principal axes (directions of locally extreme curvatures) of the 

contour surfaces are given by the eigenvectors of the covariance matrix, 

and the lengths of these ellipsoids in each of these directions are 

proportional to the square roots of the corresponding eigenvalues.  The 

constant of proportionality depends on the value of the contour surface 

chosen.  In cases where two or more eigenvalues are identical the 
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ellipsoids are circular in at least one cross-section, and when all three 

eigenvalues are identical the contour surfaces will be spherical.  In such 

cases the eigenvectors are not unique, as the principal axes are not well 

defined.  This is one reason why the covariance matrix describes the shape 

and orientation of the Gaussian, as it is always unique. 

 

• Another method of describing this is more intuitive and is suitable for 

constructing a covariance matrix for a Gaussian of a given shape, size and 

orientation.  The first step is to construct an ellipsoid whose principal axes 

are parallel to the coordinate axes x, y, and z; this is a diagonal matrix 

whose values are proportional to the squares of the diameter of the 

ellipsoid in the x, y, and z directions respectively.  This step defines the 

size and shape of the ellipsoid, the next stage is to define the orientation.  

This is done by rotating the already constructed ellipsoid (parallel to x, y, 

and z) to the desired orientation.  In general this involves defining a matrix 

of rotation, R, from which the required covariance matrix of the tilted 

Gaussian is: 

 
TRRCC 0=        (2.2) 

 

where C0 is the original old diagonal matrix and C is the required 

covariance of the tilted Gaussian. 

 

There are various ways of constructing this rotation matrix R.  One approach is to 

define three consecutive rotations about each of the coordinate axes, Rx, Ry, Rz.  A 

rotation through an angle θ about the x, y and z axis is given by: 
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The composite rotation R is given by the matrix product zyx RRRR =  where the 

rotation about x is applied first and that about z is applied last. 

 

In most practical cases it is sufficient to orientate the ellipsoid with the principal axes 

parallel to the coordinate axes, so the latter step of applying a rotation is not required.  

The diagonal elements of C are called variances and their square roots are the 

standard deviations.  The standard deviations are proportional to the corresponding 

widths of the ellipsoids when C is a diagonal matrix. 

 

Figure 2.6 shows examples of ellipsoids with different size, shapes and orientations.  

The red ellipsoid has semi-major axes of lengths 1, 2 and 3 in the x, y and z directions 

respectively.  The green ellipsoid has corresponding lengths 1, 1, 2, and hence is 

circular in the xy plane.  The blue ellipsoid has the same dimensions as the red but has 

been rotated in all three directions. 

 
Figure 2.6: Ellipsoids with Varying Size, Shape and Orientation. 
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2.2.2.4. Spherical Polar Coordinates 

Gaussian functions can be represented in any coordinate system, not just Cartesian 

coordinates.  The suitability of the coordinate system to be used depends on the type 

of object being defined.  Targets are most naturally represented in Cartesian 

coordinates, but objects that have natural symmetry in a radial direction or with 

respect to a set of rotations are sometimes better represented in spherical polar 

coordinates (SPC).  Warhead fragments and active sensor beams both have radial 

symmetry and often rotational symmetry too. Therefore, these objects are represented 

by Gaussians in SPC. 

 

SPC are composed of three coordinates: 

 

• Azimuth,θ .  This is the angle measured anti-clockwise between the x-axis 

and the vector (x, y), where (x, y, z) are the Cartesian coordinates. 

• Elevation, φ.  This is the angle between the xy plane and the vector (x, y, 

z), where the sign of φ is the sign of z. 

• Radius, r.  This is the Euclidian length of the vector (x, y, 

z), 222 zyxr ++= .  In AGILE the natural logarithm or r is used as 

explained below. 

 

The logarithm of radius is used as the third SPC coordinate in AGILE because it is 

unbounded, whereas the conventional radius is bounded below zero.  The use of the 

natural logarithm prevents a Gaussian in SPC from violating this bound, i.e. assuming 

negative values of (conventional) radius.  Shifts in log radius (the third element of the 

Gaussian mean b) correspond to dilations in the corresponding Cartesian coordinates. 

 

Some examples of various Gaussians in SPC, showing their shapes (surface contours) 

in Cartesian coordinates are now described.  Figure 2.7 shows three narrow jets with 

narrow distributions in azimuth and elevation, but a relatively wide distribution in 

radius.  The red and green jets have zero mean elevation so are in the xy plane.  The 

red jet also has zero mean azimuth, and so points along the x axis and has small equal 

standard deviations in azimuth and elevation, and hence is narrow and circular in 

section.  The blue jet has 3π/4 azimuth, so points along the line with direction vector 
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(-1, 0, 1).  It has a mean log radius of 1, whereas the red and green jets have a mean 

log radius of 0, which means the blue jet has been dilated by a factor of e in the radial 

direction, which is why it is longer. 

 

 
Figure 2.7: Narrow Jets Described in SPC 

 

Figure 2.8 shows two Gaussians with a small standard deviation in elevation, but 

much wider deviations in azimuth.  The wider deviation in azimuth results in the 

‘stretching’ of the jet shape out across the xy plane in a circular arc from a fixed 

centre.  Therefore these shapes are similar to conical shapes than ellipsoids because 

the Gaussians are defined in SPC, not Cartesian coordinates.  

 

In both cases the mean elevation is approximately half the angle at the base of the 

cone; the mean elevations are π/6 and π/3 for the red and green objects respectively.  

The red Gaussian contour surface has an distribution in azimuthal range of (0. π), or 

180°, and as such the contour displayed does not wrap all the way round in a loop, 

whereas the green surface has a very large azimuthal range of (-1000, 1000).  In the 

green object’s case the azimuthal range far exceeds the 2π that corresponds to a full 

circle, so the Gaussian distributions in azimuth is almost exactly a uniform 

distribution in the range (-π, π), or 360°; this is why in Cartesian coordinates this 

Gaussian is almost a perfect cone whose thickness is the range in elevation.   
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Figure 2.8: Gaussians Defined using SPC with Large Standard Deviation in 

Azimuth. 

 

Therefore, this is a very convenient configuration method to enable the description of 

a radial-symmetric fragment distribution emanating from a warhead cone. 

 

2.2.3. Mathematical Operations on Gaussians 

The main reasons why Gaussian mixtures are used to describe the various objects 

involved in lethality prediction are because the following operations on Gaussians can 

be computed analytically and efficiently: 

 

• Point-wise multiplication. Here we define the product of two functions h 

= fg as the function whose value at each point x is h(x) = f(x)g(x); this is 

known as point-wise multiplication. The product of two Gaussians is also a 

Gaussian and its amplitude, mean and covariance can be calculated 

analytically by completing the square of a quadratic function. The product 

of a Gaussian in Cartesian coordinates and another in SPC is not exactly a 

Gaussian in either system, but an approximation can be computed using a 

numerical approximation technique that is almost as fast as the calculation 

of the product in a common coordinate system. 
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• Integration. A Gaussian can be integrated analytically in one, two or three 

dimensions provided the domain of this integral is unbounded, i.e. the 

whole real line, real plane or 3D space. The integral is given by 

( )Ca n detπ  where n is the number of dimensions being integrated. 

• Affine transformation, i.e. the combination of translation and any linear 

transformation. Affine transformations include any combination of 

translation, rotation, dilation and skew transformations. 

• Convolution. A convolution is an integral that expresses the amount of 

overlap of one function g, as it is shifted over another function f. It 

therefore "blends" one function with another.  Convolution of two 

functions of real numbers can be defined as h(x) = f*g = ∫
∞

∞−

− dxxgxf )()( τ .  

Two Gaussians can be convolved, simply by adding their mean’s and 

covariance’s respectively, where each addition is weighted by the 

Gaussian amplitude, thus the resultant convolution is also a Gaussian. 

• Maximal projection. This is defined to be the maximum value of a 

Gaussian with respect to one or more of its coordinates (independent 

variables).  This operation reduces the dimension of the Gaussian. For 

example, maximal projection in the third coordinate (z) reduces a 3D 

Gaussian (a function of x,y,z) to a 2D Gaussian (a function of x,y): 

( ) ( ){ }zyxfyxf
z

,,max,max ≡ . Projection is implemented by deleting the 

appropriate rows and columns from the mean vector b and covariance 

matrix C. For example for the maximal projection in z the 3rd row and 

column is deleted. 

An overview of how these operations are applied in lethality prediction is given next. 

 

2.2.3.1. Geometric Intersection 

This is the operation to find a region of intersection between two geometric objects, 

and is implemented by point-wise multiplication. The most important example is 
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finding where warhead fragments reach target components.  Here the fragment cluster 

density is multiplied by the target’s fragment vulnerability, and the product is a 

vulnerability probability density.  The integral of this is related to the component’s 

damage probability.  Target component damage is most likely to occur only in regions 

where both the fragment density and target vulnerability are high. 

 

Another example is the reflection of radiation from a fusing sensor off the target’s 

surface.  The strength of reflected radiation at each target point is proportional to the 

radiation power density multiplied by the reflectivity of the target.  These functions 

are represented as a Gaussian in AGILE. The total power of the radiation reflected is 

proportional to the integral of the above product, assuming the radiation is incoherent. 

A third example is the damage from the collision of the missile and the target, a direct 

hit. This is calculated as the total kinetic energy of the missile that intersects with each 

target component, weighted by a target component vulnerability function. This is 

proportional to an area integral, in the plane perpendicular to the direction of the 

relative velocity vector, or the product of the missile mass density and the target 

vulnerability. 

 

2.2.3.2. Frames of Reference 

When calculating Gaussian intersections between missile and target components it is 

necessary to take account of the relative position, velocity and orientation of these 

systems. All the components of the missile and target respectively are specified in 

separate coordinate frames so that different endgame geometry can be incorporated 

efficiently. Affine transformations are applied to both the target and missile 

components in order to work with a common frame of reference when calculating 

Gaussian intersections. 

 

2.2.3.3. Uncertainty 

Uncertainties in either the endgame trajectory or target/missile configurations can 

occur for any given scenario. Examples of uncertainty are: 

 

• Fuse timing, caused by errors in seeker measurements; 
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• Relative position and velocity, either because of seeker measurement, 

target evasive manoeuvres or air turbulence. 

• Relative orientation, e.g. because of low seeker imaging resolution. 

• Target configuration, either because of target identification error, or 

because future target concepts are being assessed that are inherently 

uncertain. 

• Warhead fragment distribution, e.g. because of manufacturing tolerance, or 

limited knowledge of the explosive dynamics. 

A general treatment of uncertainty typically involves Monte-Carlo simulation, but 

where uncertainty can be approximated by a Gaussian mixture, convolution of the 

target or missile components by Gaussians is appropriate, as this will allow the 

uncertainty to be modelled within AGILE, and thus reducing the number of 

computations required if Monte Carlo methods are used. For example, if the relative 

position of the target and warhead at the moment of warhead detonation has a 

Gaussian probability distribution, the target Gaussians can be convolved by this 

Gaussian to account for this uncertainty. 

 

2.3. Target Lethality Modelling in AGILE 

There are a number of damage models that can be employed by AGILE in lethality 

computation.  These include the lethality caused by fragment damage; lethality caused 

by the blast wave of the warhead, lethality caused by a close burst of the warhead, and 

a blast damage model.  Also included is a simple fusing model to determine when to 

detonate the warhead for given endgame trajectory. These can be used independently 

or different damage models can be activated for use simultaneously.  In this study 

only the fragment damage model is considered.  
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2.3.1. Fragment Damage Model 

2.3.1.1. Background 

The level of damage to a very small region of a target is assumed to be proportional to 

the mean number of fragments that intersect that region.  This is similarly assumed to 

be proportional to the solid angle that the region subtends with the centre of the 

warhead blast.  Therefore the greater the distance between the target and warhead the 

smaller this angle will be, and hence the smaller of probability of fragment damage. 

 

Each target component within the fragment damage model is partitioned into regions 

of infinitesimal solid angle to derive a Poisson stochastic process.  The probability of 

each region of the target being damaged is proportional to a known probability 

density multiplied by the solid angle subtended by this region.  If h is this probability 

density, the probability of component failure is modelled as: 
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where S is the unit sphere, dΩ is the solid angle element, and the RHS is an alternative 

form of the integral in spherical polar coordinates. 

 

The probability density, h, is calculated from the product of the following functions: 

 

• The conditional probability, f, of target damage from a single fragment; 

 

• The fragment cluster density, g, i.e. the average number of fragments per 

unit solid angle. 

 

Since a target has three-dimensional geometry, the dependence of target damage on 

the radial dimension (distance travelled by a fragment) needs to be considered as well 

as the direction the fragment travelled which is characterised by θ  and φ .  Also 

requiring consideration is how much damage is dependant on the depth of fragment 

penetration through the target. 
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One method for this would be to assume that h is proportional to the depth of 

penetration.  In such a case h could be given using the following integral: 

 

( ) ( ) ( ) ( )∫
∞

∞−

= drrrgrfh exp,,,,, φθφθφθ     (2.5) 

 

where r is log radius (see Section 2.2.4) and g could incorporate an optimal radial 

dependence such as allowing for the decay of target vulnerability with distance 

travelled, for example, due to loss of kinetic energy.  The function f is now the 

conditional probability density of target damage with respect to log radius.  The 

exponential term is the Jacobian (first derivative) resulting from a change of variable 

from radius to log radius, and thus would not exist in conventional SPC.   

 

An advantage of this model is that the integral in Equation 2.4 becomes a 3D volume 

integral of the product fg, and this integral would be easy to calculate analytically in 

AGILE using the operations of point-wise multiplication and 3D integration. 

 

2.3.1.2. Implementation 

To calculate the component damage probability, P in Equation 2.4, the functions f and 

g are represented as Gaussian mixtures where f describes the target’s conditional 

fragment damage probability and g describes fragment cluster density (fragments per 

Steradian). f is in Cartesian coordinates and g is in SPC. Each permutation of 

Gaussians in f and g is then point-wise multiplied and the product is another Gaussian. 

The maximum h of the product with respect to log radius is then derived as a 

projection in the radial direction.  h is a 2D Gaussian in the coordinates θ, φ.  h can be 

integrated analytically, but the product hcos(φ) cannot. Consider the following 

analytical approximation to Equation 2.4: 

 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∫ ∫

∞

∞−

∞

∞−

φθφφφθφ ddJhP 00 ,cosexp1    (2.6) 

 



25 

where φ0 is the mean value of elevation angle at the Gaussian function h (the second 

element of the mean vector b) and J is given by: 

 

 ( ) ( )2
2
1exp φφ −=J        (2.7) 

 

Because both J and h are Gaussians, Equation 2.6 can be evaluated analytically. This 

approximation is given by the following identity: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0000 sinsincoscos,cos, φφφφφφφθφφθ −−−= hh  (2.8) 

 

When the right-hand-side is integrated, the sin terms integrate to zero because h is 

symmetric about φ0 and the sine function is anti-symmetric. The Gaussian function J 

is an approximation to the cosine function that has the same third-order Taylor 

expansion, so the error in Equation 2.6 is only fourth-order in φ, so is only significant 

if the range in elevation in h is very large, which only happens when the target 

component is very close to the burst point of the warhead compared to its diameter. In 

such cases the target is likely to be defeated either by the blast wave, or by direct 

impact. For example, if the standard deviation of φ is half a radian (which means the 

burst point is effectively at most a diameter from the target component), the relative 

error in Equation 2.6 is at most 1.25%. Even when the standard deviation of φ is a full 

radian (so the burst point is virtually touching the target component), the relative error 

in Equation 2.6 is at most 14% 

 

2.3.1.3. Fragment Velocities 

The fragment cluster density, g, in Section 2.3.1 described the spatial distribution of 

fragment cluster density in the target’s frame of reference over all times, but did not 

explicitly define the fragment velocities. This additional temporal information of 

velocity is not required if calculations are carried out in the target’s frame of 

reference. 

 

However, in order to study the impact on lethality of changes to the missile’s velocity, 

it is better to specify the fragments in the missile’s frame of reference. In order to 
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transform g from the missile frame to the target frame information about the fragment 

velocity distribution is required. 

 

The most general way of specifying the fragment distribution would be a density 

function in space-time: a 4D function that would require 4D Gaussians to describe it. 

A simpler approach is adopted in AGILE, which is to specify the spatial distribution 

of the fragment velocity vector. This is a 3D distribution, and therefore involves 3D 

Gaussians. It is assumed that all fragments originate from a single burst point and 

each travels with constant speed. This purely spatial 3D fragment distribution will 

therefore dilate uniformly with time. 

 

The fragment velocity distribution is thus specified in the missile’s frame of 

reference. To convert this to the spatial fragment cluster density g the following 

operations are performed: 

 

• The distribution is converted to Cartesian coordinates and the relative 

velocity of the missile and target is added to the mean velocity vector.  

• Uncertainty in fragment velocity is incorporated by convolution (Section 

2.2.3.3). 

• The new velocity distribution in the target’s frame is converted back to 

SPC. 

• Uncertainty in orientation is incorporated by convolution. 

• The velocity distribution is converted into the spatial cluster density g by 

setting the variance in log radius to infinity (which in practice uses a very 

large value).  This effectively convolves the fragment distribution over all 

times after the time of detonation. 

As an example of how the above transformations work, consider fragments distributed 

uniformly in a thin disc, with a small standard deviation in elevation (Figure 2.9, 

shown in semi-transparent green). The true cluster density g is unbounded in radius, 

as the fragments do not decelerate, but to aid visualisation, the radial coordinate is 



27 

bounded in this illustration. The velocity distribution in missile coordinates is shown 

in red.  The standard deviation in fragment speed is small, so the distribution is rather 

disc-like. This distribution is equivalent to the spatial cluster density at a fixed time, 1 

second after detonation. 

 
Figure 2.9: Fragment Spatial and Velocity Distribution in missile Coordinates. 

 

Figure 2.10 shows the corresponding spatial and velocity distributions in target 

coordinates.  The disc has the same shape but has been shifted to incorporate the 

motion of the missile relative to the target. The effect of the relative motion is to 

transform the fragment disc into a cone. 
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Figure 2.10: Spatial and Velocity Distribution in target Coordinates. 

 

 

2.4. Target and Warhead Definitions 

Running the fragment damage model requires the target and warhead’s probability 

densities to be defined using Gaussian mixtures in Cartesian and SPC coordinates 

respectively.  These are defined in text files that are read in at the start of an endgame 

lethality computation.  Each component is defined using an amplitude, mean, and 

covariance matrix as described in Section 2.2.2.  The amplitude term is prefixed with 

the label ‘amp’, and the mean is prefixed with ‘mean’.  For a full covariance matrix 

six terms are required, prefixed using the term ‘covar’.  Similarly, for covariance 

matrices that have off diagonal terms that are zero, only three terms are required and 

the prefix ‘stdev’ is used. 

 

2.4.1. Warhead Definition 

The peak fragment density is 1000 fragments per Steradian.  A uniform density in 

azimuth is defined by using a very large standard deviation (1000 Steradians).  The 

value of the corresponding mean is therefore unimportant in this case (hence it’s zero 

value).  The disc is thin, so the standard deviation in elevation is small (0.01 radians).  

The mean elevation of zero radians shows that the disc is perpendicular to the z axis, 

i.e. that fragments are flying outwards from the missile in a radial pattern.  If this 

mean elevation value is non-zero in either direction the fragments would have a 

conical distribution as shown previously in Figure 2.9. 

 

The radial coordinate represents the length of the vector, i.e. the speed of the 

fragments.  This third coordinate is the log radius, so a value of 7.6 is the mean of the 

logarithm of fragment speed.  In this case the actual fragment speed is almost 

2000m/s.  The standard deviation of log speed of 0.1 corresponds to an average 

variation in speed of 10%, so the standard deviation in fragment speed is 

approximately 2000x0.1 = 200m/s. 
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The warhead fragment velocity density is defined in a text file using the label 

‘fragment_density’ and is of the form shown in Table 2.1: 

 
 

% Warhead fragment disc 

fragment_density 

amp 1000 

mean 0  0  7.6 

stdev 1000  0.01  0.1 

 

Table 2.1: Warhead Fragment Definition 

 

2.4.2. Target Aircraft 

Only one target is defined in this section, the simple fixed-wing aircraft.  Other target 

craft, an airliner size craft and a helicopter are described in Appendix A. 

 

The component definitions of the Gaussians required for defining a simple fixed-wing 

aircraft for are shown below in Table 2.2  Each component is labelled using 

‘fragment_damage’ followed by an integer as these values will be used by the 

AGILE fragment damage model.  Following this label are the values defining the 

Gaussian.  The order of components is not important. 

 

 
% Cockpit: highly vulnerable 

fragment_damage 1 

amp 0.1 

mean 0  1  3 

stdev 0.35  0.53  0.71 

% Engine: medium vulnerability 

fragment_damage 3 

amp 0.03 

mean 0  -1  -4 

stdev 0.53 0.53  1.06 
% Fuselage: low vulnerability 

fragment_damage 2 

amp 0.01 

mean 0  0  0 

stdev 0.71  0.71  2.47 

% Wings: low vulnerability 

fragment_damage 4 

amp 0.01 

mean 0  0  0 

stdev 2.47  0.088  0.71 

Table 2.2: Simple Fixed Wing Target Definition 
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Figure 2.11 shows the target defined above using contour surfaces at 8  standard 

deviations.  This measure of 8  standard deviations enables one to view the surface 

containing 87.5% of the defined 3D Gaussian function to enable a visualisation of 

how the target is defined.  The colour coding is as follows: blue for the cockpit; green 

for the fuselage; red for the engine; and cyan for the wings.  The position of 

components in this case are relative to the fuselage (‘mean 0 0 0’), therefore the 

cockpit is defined along the centre (x axis), 1 metre above (y coordinate) and 3 meters 

ahead (z coordinate, ‘mean 0 1 3’). 

 
Figure 2.11: Simple Fixed Wing Aircraft Model 

 

2.5. AGILE Examples 

This section will cover some examples of lethality calculated using AGILE for a set 

of basic endgame scenarios.  

2.5.1. Simple Example 

For a simple endgame example the following parameter values, shown in Table 2.3, 

were used to exercise AGILE. 
Parameter Value Units 

VM 1000 m/s 

VT 500 m/s 

η 30 ° 

SR 15 m 

ω 100 ° 
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δ 15 ° 

ε 35 ° 

Table 2.3: Example Endgame Parameters 

 

All other parameters were set to zero, so there was no missile aiming, only the 

direction of travel, and no fuse delay.  The missile is travelling at 500 m/s at and angle 

of 30° to the target (from behind) and at fusing is orientated such that the pitch and 

yaw are 15° and 35°. 

 

The resulting lethality calculation yields a lethality value, Pk, of 35%.  Figure 2.12 

shows the geometry of the fragments and target.  The blue regions show where the 

fragments intersect the target.  As can be seen, portions of the cockpit, fuselage and 

wing are damaged. 

 

 
Figure 2.12: Example Endgame Geometry 

 

2.5.2. Random Search 

AGILE was exercised using random parameter inputs, in the ranges shown below in 

Table 2.4.  As well the parameters used above the missile aim points are included.  

For completeness missile roll, Ψ, is also included, however due to the symmetrical 

nature of the warhead cone the value is not required.    



32 

 
Parameter Min Max Units 

VM 0 2000 m/s 

VT 0 VM m/s 

η 0 90 ° 

SR 0 50 m 

ω 0 180 ° 

δ 0 30 ° 

ε 0 30 ° 

Ψ 0 360 ° 

X0 -5 5 m 

Y0 -5 5 m 

Z0 -5 5 m 

Table 2.4: Agile Parameter Ranges 

 

10000 random searches were undertaken and the distribution plotted into lethality 

probability bounds as shown in Figure 2.13. 

 

 
Figure 2.13: Random Search Results 

 

The histogram in Figure 2.13 shows that for randomly distributed missile and target 

coordinates it is extremely difficult to achieve a high value of Pk.  In fact, only 1620 

of the solutions yielded lethality above 0.5.  This is expected as there are many inputs 
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to the system that can influence the outcome of the lethality model, such as the missile 

and target velocities and the angles between the missile and target, and fusing delay. 

 

From these results it can be seen that some form of search is required to find sets of 

endgame parameters that yield higher lethality values.  It is also useful to see if poorer 

lethality values can be improved upon by local optimisation of the endgame 

parameters.  This optimisation would take place within close bounds of the original 

parameters. 

 

 

 

 

 

Summary 

This chapter has provided background on lethality and how it is calculated.  The 

GW372 coordinate system and its associated parameter set has been illustrated and 

identified.  The AGILE package has been described and its method of using 

Gaussians to represent endgame entities (target and warhead) has been covered and 

defined, further to which an example target is specified.  The fragment damage model 

used by AGILE has been described.  An example endgame has been shown and a 

random search performed to highlight the vast problem space that exists and the 

difficulty in finding high lethality scenarios has been exposed. 
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3. Lethality Optimisation 

This chapter will discuss optimisation and the various types of optimisation methods.  

Sensitivity to disturbances of optimal parameters, known as robustness is then 

considered.  Following this, a representative set of endgame scenarios will be 

optimised in order to assess if a maximum value of lethality lies close to the endgame 

parameter set, and a robustness measure of this maximum will be described and 

evaluated. 

 

3.1. Optimisation Techniques 

Within practical engineering fields, many problems may be encountered for which a 

superior solution may be found via optimisation of an existing design.  These existing 

designs would be sub-optimal and would only reflect past design experiences.  These 

kinds of problems are usually complex in nature, consisting of multiple variables and 

multiple design objectives and/or constraints.  Some typical objectives may include 

performance, cost, and safety etc., which are functionally dependent on a set of input 

parameters (design variables). 

 

The search space of such a multi-variable problem may contain numerous solutions.  

Many of the potential solutions found during a design might be local optima.  There 

will be a global optimum or, as is usually the case with a complex multi-variable 

system, many solutions that lie across the search space each of which would offer 

competing optimal designs in some respect.  An example showing these areas of the 

design space is shown in Figure 3.1 

 

This is because some designs may provide better attainment of a particular objective 

whilst not achieving as high an attainment in other objectives.  These different 

solutions would then need to be compared and a trade–off decision made to decide 

which solution to use.  The set of solutions that provide an improvement in one 

objective whilst degrading another objective is called the Pareto-set. 
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Figure 3.1: Local and Global Maxima and Minima 

 

Similarly within a missile-target endgame scenario there will be many different sets of 

conditions that result in the same lethality, or Pk, level, for instance, the same lethality 

probability may occur from a tail chase condition, as well as from an angled head on 

condition depending on the relative positions and speeds of the target and missile.  

Therefore the problem set would contain many solutions depending on the endgame 

scenario (start point) and it may not be feasible to achieve the global solution from a 

given start point. 

 

There are many methods by which the domain can be searched to find the optimal set 

of design or process parameters.  Within the Matlab environment there exists the 

Optimisation Toolbox [14] which contains a representative range of search methods.  

The principles behind these search methods will be discussed in this section.  Also 

discussed will be a multiple objective approach, the Multi Objective Genetic 

Algorithm, MOGA [15], a multi-objective form of the genetic algorithm. 

 

Optimisation techniques are employed to seek out a set of optimal design parameters 

(x={x1, x2,…, xn}) that can be said to be optimal in some manner.  In the most 

simplistic case this may be the minimisation (or maximisation) of a system that is 

dependant on one variable, say x.  In a more complex situation f(x) may contain many 

design parameters and may be subject to equality constraints, Gi(x)=0 (i=1,…,me); or 

inequality constraints, Gi(x)≤0 (i= me+1,…,m);  or the design parameters may be 

limited to some boundary conditions, xl, xu.   
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The general optimization problem can be stated as: 

 

)(      minimise xf        (3.1) 
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where x is a vector of n design parameters, f(x) is the scalar objective function to be 

minimised, and the vector function Gi(x) returns an m length vector that contains the 

values of the constraints evaluated at x. 

 

The solution to such a problem is dependant on the number and types of constraints as 

well as the limitations on the design parameters in the form of the bounds.  The 

characteristics of the objective function also affect the efficiency and effectiveness of 

an optimiser.   

 

When the objective function and constraints are linear functions of the design 

variables, the problem is known as a ‘linear programming’ (LP) problem [16].   

Linear programming is a technique used for the optimisation of a linear objective 

function subject to a number of constraints on the variable parameters of the function. 

 

A ‘quadratic programming’, or QP minimisation or maximisation problem is one that 

has a quadratic objective function, subject to linear constraints on the design 

parameters [17].  Reliable solutions to the LP and QP problems exist, for example the 

Simplex algorithm [18], and Broyden- [19] Fletcher- [20] Goldfarb- [21] Shanno [22] 

or BFGS method which will be covered below.   

 

A more complex problem arises when the objective function and/or constraints are 

nonlinear functions of the design variables.  This is known as a ‘Nonlinear 
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Programming’, or NP problem.  A solution to the NP problem would generally 

require an iterative approach.  This is so a search direction can be established at each 

iteration in order to try and converge to a solution.  This can be achieved, for 

example, by reformulating the problem and using a LP, QP or an unconstrained 

solver. 

 

3.2. Unconstrained Optimisation 

Many methods exist for unconstrained problems; however most can be defined by the 

derivative information that is used by the method.  For example the simplex search 

methods of Nelder-Mead [18], which only use the function evaluations, are useful for 

problems that are highly nonlinear or contain many discontinuities to the search 

space.  Another class of method, the gradient based searches, are better suited to a 

problem set with an objective function that has continuous first derivative 

information.  Higher order methods are only really suited when the second order 

function derivatives are readily computed as it is usually computationally expensive 

to do so numerically. 

 

3.2.1. Gradient-based Methods 

Gradient-based methods use derivative information to influence the direction, or an 

approximation of the direction, of search where the minimum is believed to be. These 

will be described below.  

 

3.2.1.1. Steepest descent 

The simplest of these methods is the steepest descent method, which searches in the 

direction -∇f(x), where ∇f(x) is the gradient of the objective function.   

 

3.2.2. Quasi-Newton 

Quasi-Newton methods [19] use the derivative information at each iteration to 

generate a quadratic model problem such that: 
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x
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where H is the Hessian Matrix, a positive definite symmetric matrix, c is a constant 

vector and b is a constant.  The optimum of this problem is found when the partial 

derivatives of x are zero, so: 

 

0**)( =+=∇ cHxxf       (3.4) 

 

where x* is the optimal solution point, and can be written as, 

 

cHx 1* −−=         (3.5) 

 

Quasi-Newton methods use the behaviour of f(x) and ∇f(x) to calculate information on 

the curvature and use an updating technique to approximate the value of H.  Newton 

methods calculate H numerically which can be computationally demanding. 

 

There are many updating techniques available to obtain a value for H.  Of these, the 

BFGS formulation [19-22] is considered to be quite effective in the general case.  The 

BFGS formulation is: 
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H0 can be set to any positive definite symmetric matrix, such as I,  

 

In order to avoid the inversion of H, Davidon [23], Fletcher and Powell [24] devised 

the DFP updating method.  The DFP method uses the same formula as BFGS except 

that qk is used instead of sk. 
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The gradient information is either obtained through calculating the gradients 

analytically, or it is determined by partial derivatives using a numerical differentiation 

method with finite differences. This is done by perturbing each of the design 

variables, x, in turn and calculating the rate of change in the objective function.  At 

each major iteration, k, a line search is performed in the direction: 

 

)(.1
kk xfHd ∇−= −        (3.8) 

 

3.2.2.1. Line Search 

The search direction in which a solution is estimated to lie is usually calculated by 

solving a sub-problem.  The minimum along the line formed is approximated using a 

search procedure (e.g. Fibonacci) or by a polynomial method involving interpolation 

or extrapolation (e.g. quadratic, cubic).  Polynomial methods approximate a number 

of points with a univariate polynomial whose minimum can be found easily.  

Interpolation refers to the condition that the minimum lies within the area spanned by 

the available points, and extrapolation refers to a minimum that is located outside the 

range of the spanned points.  Extrapolation methods are considered generally 

unreliable for estimating minima for nonlinear functions.  However, extrapolation 

methods are useful for estimating step length when trying to approach a region close 

to the solution.  Polynomial interpolation methods are usually efficient when the 

function is continuous.  The problem is to find a new iterate xk+1 of the form: 

 

dxx kk ∗+=+ α1        (3.9) 

 

where the current iteration is denoted by  xk, d is the search direction (obtained by an 

appropriate method), and α* is a scalar step parameter that is the distance to the 

minimum. 

 

3.2.2.2. Quadratic Interpolation 

Quadratic interpolation involves a data fit to a univariate function of the form: 
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cbamq ++= ααα 2)(       (3.10) 

 

where the extremes occur at a step length of 

 

a
b

2
−

=∗α         (3.11) 

 

This point is a minimum when interpolation is performed (i.e. a bracketed minimum) 

or when a is positive.  The coefficients a and b can be calculated using any 

combination of three function or gradient evaluations, or from two gradient 

evaluations.  The coefficients are found by formulating and solving a set of linear 

simultaneous equations.  Simplifications to these equations can be achieved by using 

particular characteristics of the points, for example, the first point can usually be 

taken as α = 0.  Other simplifications can be achieved when the points are evenly 

spaced.  For example, assume there are three unevenly spaced points {x1, x2, x3} and 

their respective function values are {f(x1), f(x2), f(x3)}, the minimum resulting from a 

second-order fit is given by 
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where, 
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for interpolation to be used, as opposed to extrapolation, the minimum must be 

bracketed so that the points can be arranged to give 

 

( ) ( ) ( ) ( )3212        and       xfxfxfxf <<     (3.14) 
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3.2.2.3. Cubic Interpolation 

This is more useful when gradient information is readily available or when three or 

more function evaluations have been computed.  It also involves a data fit to the 

univariate function 

 

( ) dcbamc +++= αααα 23       (3.15) 

 

where the local extrema are roots of the solution to the derivative i.e. 

 

023 2 =++ cba αα        (3.16) 

 

In order to find the minimum of the above equation, the root that gives 6aα+2b as 

positive should be used.  The coefficients a and b can be found using any combination 

of four function or gradient evaluations or with just three gradient evaluations.  These 

coefficients are found by formulating and solving a set of linear simultaneous 

equations as before. 

 

Given two points, {x1, x2}, with their corresponding gradients with respect to x, 

{∇f(x1), ∇f(x2)}, and respective function values, {f(x1), f(x2)}, the update is 
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3.2.2.4. Quasi-Newton Implementation 

A Quasi-Newton method is available to be used in Matlab.  This algorithm is made up 

of two stages: 
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1. Hessian Update (calculating the search direction, such as BFGS or DFP) 

2. Line Search Procedures (quadcubic or cubicpoly) 

 

3.2.2.4.1. Hessian Update 

The Hessian, H, is always kept positive definite to ensure that the direction of search, 

d, is always in a descent direction. Therefore some arbitrarily small step in the descent 

direction will result in the objective function decreasing by some magnitude.  Positive 

definiteness of H is achieved by seeing that H is initialized to be positive definite and 

thereafter k
T
k sq  (from Equation 3.19) it is always positive. The k

T
k sq  term is a 

product of the line search step length parameter αk, and a combination of the search 

direction d with past and present gradient evaluations such, 
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kkk
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The value of k
T
k sq  can be kept positive by varying the accuracy of the line search.  

The search direction is a descent, therefore, αk and -∇f(xk)Td are positive.  Thus, the 

possible negative term, ∇f(xk+1)Td, can be made as small as possible by using a more 

accurate line search. 

 

3.2.2.4.2. Line Search 

There are two types of line search that can be used by this function depending on 

whether the gradient information is easily obtainable or not.  If gradient information is 

not readily available it is best to use a cubic polynomial method, and if the gradient 

information is more difficult to evaluate (for instance if it needs to be found using 

finite difference methods) it is better to use a mixed quadratic and cubic polynomial 

method. 
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3.2.2.5. Cubic Polynomial Method. 

When the cubic polynomial method is used, the gradient and function evaluation is 

calculated at each iteration k.  At each iteration the update is performed when a new 

point, xk+1, is found that satisfies the following condition 

 

( ) ( )kk xfxf <+1        (3.20) 

 

At each iteration, a step, αk, is used to form a new iterate of the form 

 

dxx kkk α+=+1        (3.21) 

 

If this step does not conform to the condition in Equation 3.20, then the value of αk is 

reduced to form a new xk+1.  The general rule for the reduction in αk is to continually 

reduce it by factor of 0.5 until there is a reduction in f(x).  This technique is quite 

slow, however, compared to a method that uses function and gradient information 

together with cubic interpolation/extrapolation to determine the estimates for step 

length. 

 

When a point that satisfies the condition in equation 3.20, an update is performed if 

k
T
k sq  is positive, otherwise cubic interpolations are performed until the univariate 

gradient term ∇f(xk+1)Td is small enough for k
T
k sq  to be positive.  Following each 

update procedure a step length of αk is tried, after which a number of possible 

outcomes may occur.   

 

At each iteration, a cubically interpolated step length αc is calculated and then used to 

adjust the step length parameter αk+1. Occasionally, for highly nonlinear functions, the 

value of αc can be calculated to be negative, in which case αc is given a value of 2αk. 

and the next iteration computed.  Some robustness measure can also be included so 

that, even in the case when false gradient information is supplied, a reduction in f(x) 

can be obtained by taking a negative step. This is achieved by setting 
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21
k

k
αα −=+ when αk falls below a certain threshold value.  This is critical if a high 

level of accuracy is required, if only finite difference gradients are available. 

 

3.2.2.6. Mixed Cubic/Quadratic Polynomial Method 

When gradient information is not readily available, a mixed method may be 

appropriate.  This interpolation/extrapolation method is implemented so that gradients 

are not needed at every iteration.  The approach involves using quadratic interpolation 

and the minimum is usually bracketed using some form of bisection.  This method 

does not use all the available information..  For example, the gradient is always 

calculated for the Hessian update for each major iteration.  Therefore, given three 

points that bracket the minimum, it is possible to use cubic interpolation, which would 

provide a much more accurate calculation than quadratic interpolation.  Hence, the 

method that is used in Matlab is to find three points that bracket the minimum and to 

use cubic interpolation to estimate the minimum at each line search.  

 

If the interpolated point is greater than any of the three used for the interpolation, then 

it is replaced with the point with the smallest function value. Following the line search 

procedure, the Hessian update procedure is performed as for the cubic polynomial line 

search method. 

 

3.3. Constrained Optimisation 

The aim of constrained optimisation is to transform the problem into an easier sub-

problem.  This can then be solved and used as the base for an iterative function.  

Earlier methods of optimisation focused on converting the problem to an 

unconstrained one and then applied penalty functions to constraints that were near or 

beyond the boundary constraints.  The constrained problem can then be solved using a 

sequence of parameterised unconstrained optimisations.  These methods are generally 

inefficient and have been replaced by methods that involve the solution of the Kuhn-

Tucker (KT) equations [25].  The KT equations are fixed conditions required for the 

optimality of a constrained optimisation problem.  If the problem is a convex 
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programming one, such that f(x) and ( ) { }mixGi ,...,1, =  are convex functions, then the 

KT equations are both necessary and enough for a global solution point. 

 

Using Equation 3.1 the Kuhn-Tucker equations can be given as 

 

( ) ( )

( )
)(1,...,10
)(,...,10

)(0
1

cmi
bmixG

axGxf

ei

ii

m

i
ii

+=≥∗
==∗⋅∗

=∗⋅∇∗+∗∇ ∑
=

λ
λ

λ

 (3.22) 

 

Equation 3.22(a) provides a cancelling of the gradients of the objective function and 

the constraints that are active at the solution point.  In order to achieve this 

cancellation, Lagrange multipliers (λi, i=1,…,m) are used to balance the changes in 

magnitude of the objective function and constraint gradients.  Only active constraints 

are included in the cancelling operation, therefore any inactive constraints have their 

Lagrange multipliers set to zero. 

 

The solution to the KT equation provides the structure for many nonlinear 

programming algorithms.  The algorithms try to calculate the Lagrange multipliers 

directly.  Constrained quasi-Newton methods ensure convergence of the solution by 

gathering second order data of the KT equations using a quasi-Newton updating 

procedure.  These methods are usually referred to as Sequential Quadratic 

Programming (SQP), because a QP sub-problem is solved at each major iteration.  

SQP is also known as Iterative Quadratic Programming, Recursive QP and 

Constrained Variable Metric Methods. 

 

The SQP mimics the Newton method used in unconstrained optimisation.  At each 

major iteration the Hessian of the Lagrangian function is estimated using a quasi-

Newton updating method.  This is then used to generate a sub-problem which is 

solved to provide a search direction for a line search procedure. 

 

Given the general problem described earlier (Equation 3.1), the QP sub-problem is 

formulated using a quadratic approximation of the Lagrangian function, 

 



46 

( ) ( ) ( )∑
=

⋅+=
m

i
ii xgxfxL

1
, λλ       (3.23) 

 

The general problem is simplified using the assumption that boundary constraints are 

expressed as inequalities.  The QP sub-problem is obtained by linearising the non-

linear constraints.  The sub problem can be written as, 
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This sub-problem can be solved using a QP algorithm.  The solution gives an iterate 

of the form: 

 

kkkk dxx α+=+1        (3.25) 

 

The step length parameter, αk, is determined using a suitable search method such that 

a sufficient decrease in the merit function is attained.  The Hessian matrix, Hk, is a 

positive definite matrix and is calculated by any of the quasi-Newton methods, such 

as BFGS. 

 

A non-linear constrained problem can be solved in fewer iterations than an 

unconstrained problem using SQP.  This is due to the limits on the feasible region to 

be searched, the optimiser can make more informed decisions on the search direction 

and step length change. 

 

3.4. Sensitivity to Disturbance (Robustness) 

In order to establish how sensitive the optimal solution is to parameter variations the 

optimal parameter set can be perturbed by some set amount.  This amount can either 
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be within a fixed bound, or a percentage of the parameter value, or a percentage of the 

maximum value that the parameter range lies in, as shown for a three parameter 

system in Figure 3.2 below.   

 

- x
 %

Opt

+ x
 %

 
Figure 3.2: Perturbation Search Space 

 

These parameters are then perturbed by this amount about their nominal values.  

Following the perturbation a second evaluation of the objective function is found to 

identify the deviation from the optimal solution.   

 

Multiple samples can be taken for each optimisation, and a sensitivity measure can be 

assigned, for example the mean of the perturbed sample evaluations or the standard 

deviation of the samples, to establish how the robust a solution is to disturbances.. 

 

3.5. Agile Analysis Using the Matlab Optimisation Toolbox 

Following the initial study of AGILE, where a random search using all design 

variables was explored (Section 2.5), analysis of endgame lethality using methods 

from the Matlab Optimisation Toolbox was undertaken. 

 

The tolerance of an objective function is the sensitivity of the evaluation of the 

objective function.  It measures how many decimal places the optimiser will use to 

decide whether or not to terminate the search.  In order to decide the tolerance setting 
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for the objective function for this study, a simple three parameter objective function 

was evaluated for ten start points, using missile and target velocities and engagement 

angle as the parameters, such that: 

 

( )η,, TMk VVfP =       (3.26) 

 

The results of running the optimiser with different tolerance settings of the objective 

function are shown below in Figure 3.3. 

 

 
Figure 3.3: Varying Tolerances of Optimiser 

 

From the graph above it can be seen that the most improvement occurs when the 

tolerance is set to 10-9, as would be expected as this is the most sensitive.  Therefore 

the ‘options’ structure for the optimiser will use this value for future optimisation 

purposes. 

 

Following each optimisation a sensitivity function is run in order to gauge how 

sensitive the optimal solution is to disturbances of parameters.  Initially, two measures 

are calculated, the mean of all perturbed lethality values, and the standard deviation of 

these perturbed lethality variations. 
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A sample of 500 random start points were implemented and the lethality calculations 

performed, for each of three categories based on the engagement angle, η.  The three 

categories were for front on, side on and rear on fusing points.  These are defined as 

follows: 

 

  Front On: 135° - 225° 

  Side On: 45° - 135° and 225° - 315° 

  Rear On: 0° - 45° and 315° - 360° 

 

In addition to these categories, for each optimisation only ‘controllable’ parameters 

are optimised, i.e. those that one can adjust, for example the missile parameters such 

as missile orientation and warhead aim point are perturbed and not the target velocity 

and orientation. 

 

Bounds were placed on the parameters to be optimised such that any solution found 

does not result in a set of parameters which would be unrealisable in a practical 

situation.  The bound on the range of parameters during the optimisation from the 

initial start points will ensure that for an end-game scenario the optimised parameters 

are feasible in terms of being able to realise an increase in lethality through small 

deviations from the initial search points.  

 

The bounds used for the optimisation were defined as shown in Table 3.1. 

 
Parameter Bounds Units 

VM ±50 m/s 

η ±15 ° 

δ ±15 ° 

ε ±15 ° 

X0 ±5 m 

Y0 ±5 m 

Z0 ±5 m 

Table 3.1: Optimisation Bounds 

 

For each optimal solution, 1000 different perturbations are evaluated to calculate the 

robustness of each solution by calculating the standard deviation and mean of the 
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lethality values found from the lethality achieved from perturbations of the missile 

parameters within AGILE.   

 

For each category 500 valid start points, i.e. those that initially yield lethality values 

greater than zero, are assessed.  The results are displayed for the simple aircraft model 

in Figure 3.4.  The graphs on the left show optimal lethality vs. standard deviation, 

and the right side shows optimal vs. mean lethality. 

 

As can be seen, the results show that for all three scenario categories, the optimiser 

can yield both low and high lethality probabilities, and that these consist of solutions 

that range from robust solutions, showing a very low standard deviation and high 

mean from the perturbations of parameters from the optimal found; to those that are 

extremely sensitive to variations in the optimal parameters, whereby the mean 

lethality can drop by as much as 95% in the case of rear endgame scenarios. 

 

How ever there are many endgame scenarios that do not yield high lethality values, or 

are not robust, possibly due to unlikely endgame scenarios.  Therefore a fly out 

analysis will be performed in order to understand how lethality varies during the 

missile fly out. 

 

Small changes to say, delta or epsilon, can reduce the probability of lethality 

dramatically.  Therefore it would be ideal to look for solutions that not only give high 

lethality probability, but also provides a robust solution, or that will not deteriorate 

significantly if the parameters are perturbed slightly.  This led to the investigation of 

the lethality problem using a multi-objective approach.  The research and analysis into 

multi-objective optimisation using a genetic algorithm is discussed in Appendix B, 

and also Appendix C, a paper published at the 16th IFAC World Congress, as this is 

an extension of the main body of the research.  A summary of this is provided below. 
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Figure 3.4: Optimal Lethality and Corresponding Sensitivity Measure. 

 

3.6. Multi Objective Optimisation 

The use of multi-objective optimisation (MO) in engineering design recognises that 

most practical problems involve a number of design criteria that need to be satisfied 

simultaneously, such that: 

 

Ω∈x
xG )(min

        (3.27) 
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where x =[x1, x2,…, xn] and Ω define the set of free variables, x, subject to any 

constraints and G(x) = [g1(x), g2(x),…, gn(x)] are the design objectives to be optimised. 

 

For this set of functions, G(x), it can be seen that there is no one ideal optimal 

solution, but rather a set of solutions for which an improvement in one design 

objective will lead to a degradation in one or more of the other objectives.  This set is 

known as the Pareto-optimal solution set.  These solutions are also known as non-

dominated solutions to the MO optimisation problem. 

 

These solutions can be sought after using the NP methods discussed earlier by means 

of applying weighting and goal attainment functions for the defined objectives; 

however these approaches require precise expression of a usually not well understood 

set of weights and goals.  In addition to this NP methods can not handle multimodality 

and discontinuities in the function space well, and so are likely to find local solutions 

only. 

 

Because of the stochastic nature of the search mechanism, genetic algorithms (GA) 

are capable of searching the entire solution space with more likelihood of finding the 

global optimal than conventional methods.  Conventional methods usually require the 

objective function to be well behaved, whereas the generational nature of GAs can 

tolerate noisy, discontinuous and time-varying function evaluations.  Furthermore 

EAs allow the use of mixed decision variables (binary, n-ary and real-values) that 

allows the parameterisation to closely match the nature of the problem. 

 

It has been shown that EAs can offer an advantage over conventional methods in 

optimal design problems and the related field of performance seeking control [26]. 

 

3.6.1. Multi Objective Genetic Algorithm 

The idea of the fitness of an individual solution estimate and the associated objective 

function value are closely related in a single objective framework.  The objective 

function characterises the problem domain and cannot be changed at will, whereas the 

fitness of an individual can change depending on the solutions ability to reproduce 
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and as such can be treated as part of the GA search strategy.  However with the multi-

objective case, these two values cannot be linked so closely, and the distinction 

between them becomes more important.  As described by Fleming and Fonseca [15], 

this distinction becomes important when performance is measured as a vector of the 

objectives, because the fitness value must remain a scalar.  Individual are assigned a 

measure of utility dependant on whether they perform better, worse, or similar to 

others in the population. 

 

3.6.2. Decision Strategies 

In the absence of any information regarding the relative importance of design 

objectives, Pareto-dominance is the only method of determining the relative 

performance of solutions.  Non-dominated individuals are all therefore considered to 

be the best performers and are thus assigned the same fitness, e.g. zero.  However 

determining the fitness of dominated solutions is a more subjective matter.  An 

approach that can be used is to assign a cost proportional to the number of individuals 

in a population that dominate a given individual, as illustrated in Figure 3.5.  In this 

instance non-dominated individual are treated as desirable. 

 

 
Figure 3.5: Pareto Ranking 

 

If goal and/or priority information is available for the design objectives, then it may 

be possible to differentiate between some non-dominated solutions.  For example, if 
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degradation in an individual’s objectives still allow those goals to be maintained but 

also allow the attainment of some goals in other non-satisfied objectives, then these 

degradations should be accepted.  In cases where different priority levels are set for 

each objective then it is important to improve the high priority objective, such as hard 

constraints, after which the lower priority objectives may be improved. 

 

3.6.3. Initial MOGA Analysis 

A multi objective optimiser, MOGA, was initially employed using each individual 

component’s lethality probability as individual objectives (wings, engine fuselage, 

cockpit), with the overall lethality value as a fifth objective.  A population of fifty 

individuals per generation was initialised, using the three parameter setup employed 

in the previous studies (VM, VT, η).  The MOGA then generated a generation of 

solutions that provided a measure of how the individual components of Pk interacted 

with each other.  This showed that if the cockpit Pk value was high for example, then 

the engine Pk was lower, due to its relative position on the aircraft itself. 

 

 
Figure 3.6: Example MOGA Optimised Endgame Geometry 

 

An example of such a case is shown in Figure 3.6.  the MOGA attempts to optimise 

maximum damage to all components of the target aircraft and as a result, the cone of 
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fragments is a flat disc shape that hits the aircraft diagonally along the length of the 

craft in order to inflict damage upon all four components. 

 

3.6.2. Robust MOGA Optimisation 

The next stage for the MOGA software was to set the objectives as total Pk and the 

robustness value from the previous work with the standard Matlab optimisers.  This 

configuration was set such that for each suitable individual (solution) a routine was 

run that sampled ten deviant (from optimal parameters) solutions as for the Matlab 

optimiser and the worst case was used as the sensitivity measure.  For this setup the 

minimum value of perturbed samples was used.  However, a more suitable measure 

for this sensitivity is a standard deviation of the perturbed samples.  Another 

implementation of MOGA explored this measure of sensitivity as the second 

objective, and also a third objective of maximising the mean was implemented, 

although this is closely connected to the standard deviation, it gives a slightly easier 

visual of the performance of individuals in the population.  

  

All the endgame parameters were considered for this implementation.  The Trade-Off 

window is coded so that selecting an individual’s line would display the 

corresponding engagement geometry using the AGILE GUI.   

 

Three runs were undertaken, for front on, side on and rear on scenarios using 

engagement angle constraints (-45 < η < 45 for rear on, 45 < η < 135 for side on, and 

135 < η < 225 for front on), using 50 individual per generation, for 200 generations, 

and for each individual, 50 perturbed samples are taken to establish the sensitivity 

measure of standard deviation and mean.  The sensitivity measure is calculated by 

perturbing only those variables that are controllable, i.e. the missile parameters, δ, ε, 

x0, y0, z0, Zdelay. 

 

As can be seen there are many competing solutions present that offer high lethality 

probabilities which are also robust to perturbations in the missile parameters.  These 

solutions are shown in Figure 3.7.  The scatter plots of the Pareto Solutions (left), 

accompanied by the scatter plot of all solution found in 200 generations (right), are 

shown as overall Pk (nominal) vs. standard deviation. 
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Figure 3.7: MOGA Optimisations for 200 Generations 

 

As can be seen many solutions exist, however most are dominated by the Pareto set, 

and for each case the middle region of Pk yields sparser solutions.  Looking at the 

graphs on the right, for all solutions, a definite trend can be seen showing the increase 

in standard deviation as overall optimal probability increases, however there do exist 

some solutions that can provide a good robustness measure, and it is these that show 

on the Pareto Front. 
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It was found that whilst the MOGA yielded some interesting results, it did not present 

a viable practical solution, due the time taken by the optimiser to find solutions.  

Hence it was decided to pursue the regular optimisation techniques to find robust 

solutions due the speed at which optimisations can be performed on the initial 

endgame data. 

 

Summary 

This section has covered the topic of optimisation and robustness.  Different 

optimisation types have been discussed.  AGILE has been used in the objective 

function for an optimiser from the Matlab Toolbox, and its tolerance setting 

established.  Many scenarios have been optimised and related robustness measures 

found. 
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4. Modelling Fly-Out of Missile 

This chapter will describe MSTARS, a missile fly-out simulation tool for Simulink.   

Its basic workings and how it can be used with AGILE will be described and some 

sample fly-out scenarios illustrated.  Following this some fly-out scenarios will be 

analysed to see how lethality varies in the final stages of fly-out. 

 

4.1. MSTARS Overview 

Munition simulation tools and resources is a simulation toolbox for use within 

Matlab’s Simulink environment.  It allows the modelling and simulation of weapon 

systems for analysis purposes.  Various models can be employed, including launch-

capable airborne vehicles such as aircraft, helicopters, as well as ships and ground-

based vehicles.  MSTARS allows a user to construct various missile fly out scenarios 

using such vehicles as the missile launch vehicle and as the target. 

 

The advantages of using MSTARS include 

 

• A reduction in time required for analysis compared to previous methods 

o MSTARS runs faster than traditional approaches for building models 

& conducting analysis, such as  

• Graphical approach enables a user to build models in an easier manner 

• Reusable models and components make construction of complex scenarios 

easy 

• Ability export data to Matlab workspace 

o Allows Matlab functions and compiled c-code to be used for analysis, 

i.e. using the AGILE package. 

 

A simple simulation setup is shown in Figure 4.1, using two generic aircraft, and a 

generic missile launched from one at the other.  Initial conditions for the positions and 

velocities of the fighters can be defined prior to running a simulation.  Once the 

simulation has been run the final conditions can be exported to Matlab in order for a 
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lethality calculation to be made using the AGILE software, and also to enable the 

plotting of flight paths. 

 

 
Figure 4.1: Top Level MSTARS Simulation 

 

The above Simulink setup can be compiled using a built-in utility in allowing 

simulations to be processed faster using the command line interface rather than 

through the GUI.  This can then be used by Matlab scripts to run batches of 

simulations for analysis of various fly out conditions. 

 

4.1.1. Simulation Components 

As can be seen in Figure 4.1, a simulation consists of a set of blocks, each 

representing a component of the simulation.  In this example the components of the 

simulation are the target and fighter aircrafts, the missile system and the endgame 

component.  The connections between components represent the data flow of the 

system’s states and signals. 

 

4.1.1.1. Fighter and Target Aircraft Model 

Both the fighter and target aircraft models are made up using a simple generic fighter 

model.  This generic model, shown in Figure 4.2, contains the kinematics for the 
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aircraft, i.e. the state equations and equations of motion of an aircraft, including 

angles and positions and rates of change of these, as well as the missile launch data 

and logic system.  This data can be used to plot the path of the aircrafts and the 

missile.  The missile launch data need only be contained in the attacking aircraft 

model; it can disabled in the target aircraft. 

 

 
Figure 4.2: Fighter and Target Aircraft Model 

 

4.1.1.2. Missile Model 

The missile model consists of various components for each of the missile subsystems 

as shown in Figure 4.3.  These are described below: 

 

• Kinematic Seeker 

The seeker model provides calculations of range, closing velocity, 

azimuth and elevation line-of-sight angles, and relative position and 

velocity values. 

• Target Filter Kinematic Seeker 

The targeting filter works with the kinematic seeker and provides 

estimates of the line-of-sight angle rates, range, closing velocity, target 

position and relative position of the target with respect to the missile. 

• Biased Proportional Navigation Guidance 

Missile guidance is provided by a simple implementation of a biased 

proportional navigation (BPN) system.  It is used with the seeker and 

inertial navigation system, and directs the missile towards the target 

using. 
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• Autopilot 

A skid-to-turn linear dynamic compensator autopilot model is 

implemented.  This component produces control surface deflection 

commands for the missile in roll, pitch and yaw directions. 

• Four Fin Control System 

A simple four-fin control surface model that uses 1st order actuator 

models.  Commands from the autopilot are implemented here. 

• 6 Degrees of Freedom model 

This model contains the equations of motion for a symmetric body 

assuming a flat Earth. 

• One Stage Motor 

A simple motor model which has been incorporated that allows the 

missile to burn for a specified time, and provides thrust force data for 

the model. 

• Inertial Measurement Unit (IMU) 

A generic IMU model uses actual accelerometer specific force and rate 

gyro measurements and outputs either an ideal force and rate data, or 

incorporates an element of noise to the data. 

• Unaided Inertial Navigation System (INS) 

The INS model gives the missile estimates of position, velocity, 

acceleration, and the rotational equivalents.  The model bases its 

estimates on the outputs from the IMU.  The IMU values are integrated 

and added to the missile's knowledge of its original state to produce the 

estimates. 

• Stick Cone Fuse 

A basic model that provides a ‘warhead enable’ flag if the target is 

within the cone range. 
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Figure 4.3: Missile Sub-Systems 

 

4.1.2. Simulation Parameters 

There are two methods that can used to provide inputs for a simulation.  They can 

either be entered using the MSTARS GUI in Simulink, or they can be entered using 

the Matlab command line interface, and hence by a script file.  The advantage of 

using a script files is that it can allow for a batch of multiple runs to be processed at 

once. 

 

4.1.2.1. Simulation Inputs 

Inputs to the simulation can be of two parameter types. The first type is that of 

constant inputs which are kept identical throughout different simulations, such as 

missile start and end masses, gains for various systems (for example the autopilot 

system), and manoeuvre acceleration limits etc.  The other is of specified inputs that 

may vary for each simulation.  Primarily these will be the starting positions and 

velocities of the fighter and target aircrafts and will be classified dependent on the 

engagement scenario to be evaluated. 
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4.1.2.2. Simulations Outputs 

Outputs from each simulation are stored in the Matlab workspace.  These are 

connected to the simulation using standard ‘to workspace’ blocks from the Simulink 

model library.  The data from the simulation that are recorded for analysis purposes 

are made up of two sets (missile and target) of twenty one parameters, containing 

position (3), speed (3), acceleration (3), angular velocity (3) and orientation data 

(direction cosine matrix) (9). 

( )fRVVx =
•

],,,,[
.

θ        (4.1) 

 

The data that is returned from an MSTARS simulation can not be directly used in 

AGILE as MSTARS uses inertial coordinates for fly-out simulations.  As described in 

Section 2.1, AGILE requires the input parameters to be in GW372 notation.  This will 

require a conversion to take place to generate the thirteen GW372 input parameters 

for AGILE from the twenty one used by MSTARS. 

 

4.1.2.3. Conversion to GW372 Geometry 

The conversion of parameters to the GW372 coordinate system from the inertial 

system used by MSTARS simulations requires the following steps: 

 

• Initially the 21 parameters for each endgame entity are reduced to fifteen, 

using the direction cosine matrix to extract the Euler angles φ, θ, and ψ.   

 

• These are then used in a conversion function [27] to calculate the required 

GW372 parameters.  This function finds the speeds and angles required for 

AGILE to evaluate the probability of lethality. 

 

4.1.3. Fly-Out Scenarios 

Fly-out is the progress from the launch of the missile to either detonation or until the 

missile expends it fuel. 

 

Fly-out scenarios were categorised into three classes: front on, side on and tail on.   
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For each simulation in a particular category the starting positions and velocities are 

varied to provide a range of fly-outs that will yield differing endgame conditions to 

evaluate how lethality probabilities vary.  These classes are illustrated in Figure 4.4. 

 

 
Figure 4.4: Fly-Out Categories 

 

• Front On Scenario 
Front on scenarios involve a head-on engagement of fighter craft and target.  This 

occurs when the two aircraft are moving towards each other.  This results in 

scenarios where the engagement angle varies from 135° to 225° (i.e. ±45° from 

180°).   

 

• Side On Scenario 
A side on scenario occurs when the engagement angle lies in the ranges 45° to 

135° and 225° to 315°.  This will involve the fighter aircraft moving toward the 

target from either side of the target. 

 

• Rear On Scenario 
Rear on scenarios consists of tail chase conditions of engagement.  This arises 

from the fighter chasing the target aircraft from behind and results in engagement 

angles of ±45°, or 0° to 45° and 315° to 360°. 
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4.2. Initial Fly-Out Simulations 

Using these three categories, simulations can be run using MSTARS to fly-out a 

missile and calculate the final lethality probability from AGILE.  This evaluates Pk 

from a fly-out/engagement strategy.  This process can be automated such that several 

simulations can be run as a batch and then post processed to yield the endgame 

lethality values.   

 

For these batch runs the target initial start point and velocity is kept the same for each 

run, and the fighter aircraft has its start position and velocity varied randomly within 

set bounds to generate a set of endgame conditions that can be used for lethality 

analysis.  Not all simulations yield a valid endgame scenario, due to the random 

nature of the start points of each run, and also due to the simulation time used, of 60 

seconds.  The runs were categorised into front on, side on and rear on engagements 

for a fixed altitude for both the attack and target aircraft.  For each category, 100 

random start points were evaluated to determine the endgame scenario allowing the 

results to be processed by AGILE and a lethality calculation performed.  A summary 

of these results is given below. 

 

4.2.1. Front On 

For a front on set of 100 start points, 71 resulted in a valid endgame scenario, whereas 

the remaining 29 did not reach the target within the simulation time.  It was found that 

his was due to the start points for the fly out not permitting the missile to reach an 

endgame condition within the time parameters set for the simulations.  Figure 4.5 

shows the lethality probability distribution for each of the 71 valid endgames. 

 

From the graph it can be seen that there is a wide range of lethality values ranging 

from less than 10% all the way up to 100%.  This may be a result of the missile fusing 

with an orientation that is not pointing the warhead’s fragment cone appropriately 

toward the target.  Although the missile may be in close vicinity, the orientation of the 

warhead is important in order to maximise the lethality. 
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Figure 4.5: Front On Endgame Lethality 

 

4.2.2. Side On 

Of the 100 simulation runs performed for side on cases, 58 of these runs resulted in 

completed simulations, with 42 timing out due to the length of the simulation.  The 

lethality values for these solutions are shown in the graph in Figure 4.6. 

 

As the graph shows there is a wide range in probability values for lethality, from 

around 35% up to 100%.  This is slightly better than the front on cases in terms of 

average lethality; however fewer runs yielded an endgame condition compared to the 

front on scenarios. 
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Figure 4.6: Side On Endgame Lethality 

 

4.2.3. Rear On 

Similarly, for a rear on engagement scenario a series of 100 simulations were 

conducted resulting in a total of 54 completed runs, whose lethality is shown in Figure 

4.7.  It was noted that 46 runs timed out due to the length of the simulations.   This 

was due to the tail chase nature of the start conditions, as for some of these runs the 

missile did not start in a position from which it could reach the target within the 

bounds of the simulation time. 

 

From the graph again it can be seen that there is quite a large range of lethality 

probabilities, from less than 5% all the way up to 100%.  This is due to the tail chase 

nature of the fly out and also the orientation of the warhead cone at fusing. 
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Figure 4.7: Rear On Endgame Lethality 

 

 

It will be interesting to see how the missile approaches the target and to investigate 

whether it may have been better to fuse the missile at an earlier point, especially for 

those simulation runs that yield lower lethality probabilities.  This will be examined in 

the next section 

 

4.3. Study of Fly-Out Trajectory 

The missile fly-out data allows for the analysis of the missile flight path in order to 

verify if the missile engages the target at an optimal point along its path.  It is possible 

to step back along the missile trajectory to extract the GW372 parameters and find 

lethality probabilities along this path. 

 

For each category the missile trajectory is analysed for the last second of flight.  This 

final second is split into 25 intervals of 0.04s and a lethality calculation performed at 

each point.  The results of this analysis are described below. 
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4.3.1. Front On Trajectory Analysis 

Figure 4.8 shows the estimated lethality for each of the 71 valid endgames in the final 

second of flight.  In the graph it can be seen that a range of conditions occur.  For 

some of these runs the lethality reaches a maximum before the missile engages and as 

a result of this the lethality probability drops significantly at the end of the simulation. 

For some others the end lethality is high however it was greater at a point previous to 

engagement. For others the lethality values stayed high once this high value was 

attained.  Similarly for a few their probability stays low and never increases to a 

significant level of lethality. 

 
Figure 4.8: Front On Trajectory Analysis 

 

Some of these runs showed higher lethality values prior to the end of the simulation.  

A sample of these will have their trajectories plotted with some runs that yield high 

endgames at the end of the fly-out.  The trajectories of runs 33, 40, 50, 55, 62, 66, and 

67, are plotted in Figure 4.9 with a close-up inset showing the last few points of the 

fly-out.   

 

Table 4.1 shows the lethality probability data for points along the path.  It can be seen 

from the Table 4.1 and Figure 4.9 that for each run the missile approaches from 

slightly different directions and each leads to a different lethality probability.  The two 
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worst cases of lethality from the subset, runs 50 and 66, both approach from a similar 

direction and so appear to be part of the same basin of attraction as their respective 

maximum lethality values occur at the same point along the missile path.   

 

However run 62 has a similar path also but manages to finish with a high lethality.  

This may mean that there is a second basin very close by that yields higher lethality 

values, due to the missile fragments intersecting a different, more vulnerable part of 

the aircraft.   

 

 
Figure 4.9: Trajectories for Selected Front On Cases. 

 
Run 33 40 50 55 62 66 67 

Symbol x o + □ Δ ◊ * 

End Lethality, % 0.7266 1 0.1218 0.9784 0.9966 0.0767 0.8968 

Max Lethality, % 0.9998 1 0.9690 0.9883 0.9966 0.9908 0.8968 

Time before simulation 

end of maximum 

lethality, s 

0.28 0 0.52 0.4 0 10.52 0 

Table 4.1: Trajectory Data for Selected Front On Cases 
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Further investigation into the endgame conditions of these three runs (50, 62, and 66) 

determined that the key difference in the endgame parameters was the missile aim 

points.  Both runs 50 and 66 had very similar trajectories and the missile aim points 

were also close to each other, which resulted in the warhead fragments dissecting the 

aircraft’s wing, thus resulting in a lower lethality value.   

 

It was established that the aim point for run 62 was directed more along the 

longitudinal, and thus provided a greater intersection of warhead fragments with the 

target’s body, wing and cockpit, resulting in a higher lethality compared to the runs 50 

and 66.  The geometry of the endgame orientation is shown in Figure 4.10 for runs 50 

and 62. 

 

 
 

Figure 4.10: Front On Endgame Orientations 

 

Sensitivity of these results to disturbances can also be measured with a standard 

deviation calculated by varying the missile aim point parameters to simulate 

uncertainty in the endgame scenario. Figure 4.11 is a set of scatter plots for the seven 

runs from above showing how the lethality probability and it associated standard 

deviation varies for differing points along the trajectory of the final second of fly-out 

of the missile. 
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For some cases, for example runs 33, 50 and 66, the lethality increases as one moves 

back along the trajectory before it falls off, and at this increased lethality point the 

sensitivity has lowered too.  In contrast runs 40 and 62, which yielded an extremely 

high lethality with a relatively low sensitivity at fusing, maintains a high lethality as 

initially one moves back along the trajectory path, however the sensitivity increases 

until the lethality drops down by approximately 10% and the sensitivity is lowered 

again, before a big drop in lethality.  Run 55 at fusing has the desirable high lethality 

and low sensitivity but loses both these traits before recovering them slightly before a 

large decrease in lethality.  Run 67 fused again in a good position of high lethality and 

low sensitivity but in just one step the lethality is more than halved and the sensitivity 

has more than quadrupled, and in another time step the lethality has reduced to close 

to zero. 

 

Generally, as the lethality decreases the standard deviation tends to increase. This is 

intuitive because the lethality decreases as it becomes more difficult to inflict 

sufficient damage to the target and therefore any perturbation of parameters results in 

the low lethality being diminished further.   

 

For all cases, as the time along the trajectory increases to one second to fusing the 

lethality has decreased to zero in a region where no perturbation will increase the 

probability and the standard deviation is zero also.  

 

A good engagement for front-on scenarios occurs when the missile approaches at an 

angle, allowing the fragments of the warhead to intercept as much of the aircraft as 

possible. 
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Figure 4.11: Sensitivity Measure Along Front On Missile Trajectory 

Direction of movement 
as missile approaches 
target (final one second). 
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4.3.2. Side On Trajectory Analysis 

The results for the 58 completed side on cases from Section 4.2.2 are shown in Figure 

4.12.  From this graph it can be seen there a small decrease in lethality for runs 10 and 

41.  Runs 3, 29 and 42 all maintain high lethality values along part of the trajectory, 

whereas runs 43 and 48 only reach midrange lethality probabilities. 

These cases will be investigated further. 

 

 
Figure 4.12: Side On Trajectory Analysis 

 

Trajectory analysis on these seven cases is shown in Table 4.2 and Figure 4.13 with a 

close-up inset.  From this data it can be seen that runs 10, 41 and 48 all approach from 

a similar direction and all result in lethality probabilities that are midrange, and that 

any further delay may possibly lead to the missile passing the target. 
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Figure 4.13: Trajectories of Selected Side On Cases 

 
Run 3 10 29 41 42 43 48 

Symbol x o + □ Δ ◊ * 

End Lethality, % 1.0000 0.4349 0.9947 0.3709 1.0000 0.4108 0.5717 

Max Lethality, % 1.0000 0.4663 0.9968 0.4418 1.0000 0.4108 0.5717 

Time before simulation 

end of maximum 

lethality, s 

0 0.25 0.16 0.24 0 0 0 

Table 4.2: Trajectory Data for Selected Side On Cases 

 

Of these selected cases, runs 10, 29 and 41 achieve a maximum lethality value prior to 

the fusing point.  Simulation number 29 has a slightly different trajectory to the others 

but is still a good solution with high lethality. 

 

Run 43 engages the target at a higher altitude, and as a result the warhead fragments 

impact the target on the wing, resulting in little damage. Its lethality is only 0.41 

despite lying on a similar trajectory to runs 3 and 42, whose respective lethality 

probabilities are both 1.  This is due to these scenarios yielding a warhead fragment 

spread that impacts along the length of the aircraft, thus damaging the fuselage, 
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cockpit and engine.   The endgame orientation of runs 42 and 43 are shown below in 

Figure 4.14. 

 

Simulation number 29 has a slightly different trajectory to the others but is still a good 

solution with high lethality. 

Of these selected cases, runs 10, 29 and 41 achieve a maximum lethality value prior to 

the fusing point. 

 

  
Figure 4.14 Side On Endgame Orientations 

 

The standard deviation value was found for steps along the trajectory by perturbing 

the missile’s parameters and calculating the corresponding lethality variances.  Figure 

4.15 is a set of scatter plots for the seven runs from above showing how the lethality 

probability and it associated standard deviation varies for differing points along the 

trajectory of the final second of fly-out of the missile. 
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Figure 4.15: Sensitivity Measure Along Side On Missile Trajectory 

 

Direction of movement 
as missile approaches 
target (final one second). 
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From the graphs it can be seen that for the cases where the lethality found was close 

to one there are two distinct types of endgame scenarios.  Runs 3 and 42 show that as 

the missile approaches the target, both the lethality and the associated robustness 

increases until just before fusing at which point the standard deviation of the drops 

significantly.  This suggests that the probability of destroying the target aircraft is 

virtually certain, and that variations of the missile’s position and orientation would 

have little effect of the damage caused to the target.   

 

Conversely, for run 29 as the missile approaches the target, the lethality increases but 

the robustness of the lethality decreases, suggesting that a deviation in orientation of 

the missile would lead to a large drop in damage caused to the target craft.  However 

fusing at an earlier point would have resulted in a more robust solution as the standard 

deviation increased at the point at which fusing occurred  during the fly-out when. 

 

Runs 10 and 48, even though yield midrange lethality, are still fairly robust at fusing, 

however they drop off very quickly.  Both runs 41 and 43 yielded middle range 

lethality values that drop off as we step back along the trajectory.   

 

Thus, effective endgames, in terms of lethality probability, are those that are not pure 

side on but those at an angle of incidence similar to that of the front on cases.  The 

more effective endgame lethalities are those that fuse at an angle, as the fragment 

cone of the warhead are more likely to hit multiple parts of the target, if the target is 

not moving perpendicular to the missiles trajectory. 

 

4.3.3. Rear On Trajectory Analysis 

The results of stepping back along the trajectory of the 54 completed runs of rear on 

engagement scenarios from Section 4.2.3 are shown in Figure 4.16.  There are some 

simulation runs that yield higher lethality values prior to the final solution, for 

example runs 1, 6 and 46.  Some runs maintain a low lethality, such as runs 10 and 26, 

and some maintain high lethality values like runs 20 and 50. 
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Figure 4.16: Rear On Trajectory Analysis 

 

The trajectories of these seven runs are plotted in Figure 4.17 with a close-up inset, 

with their corresponding values of maximum and final lethality displayed in Table 

4.3.   

 
Figure 4.17: Trajectories of Selected Rear On Cases 
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Run 1 6 10 20 26 46 50 

Symbol x o + □ Δ ◊ * 

End Lethality, % 0.0888  0.9099 0.1080 1.0000 0.0585 0.9026 1.0000 

Max Lethality, % 1.0000 0.9981 0.1080 1.0000 0.0585 0.9978 1.0000 

Time before simulation 

end of maximum 

lethality, s 

0.12 0.16 0 0 0 0.2 0 

Table 4.3: Trajectory Data for Selected Rear On Cases 

 

Runs 6 and 46 appear to be along a similar path and both lead to high lethality 

probabilities.  These two cases also reached a maximum prior to fusing.  Likewise 

runs 10 and 26 appear to approach the target from the same region and both share 

very low lethality values. 

 

It can be seen that run number 1 yielded a lethality of 0.0888, despite it being 

calculated as 1 just 0.12s prior to the actual endpoint.  The reason for the drop in 

lethality is that the warhead fragments impacted the nose of the aircraft and narrowly 

missed the cockpit.  Contrary to that, runs 20 and 50 fuse the missile in a similar final 

position, however the lethality probability is calculated as 1, as the missiles warhead 

fragments impact the cockpit, a highly vulnerable area.  The endgame orientations for 

run 1and 20 have been shown in Figure 4.18. 

 

 
Figure 4.18: Rear On Endgame Orientations 
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For these seven cases, a sensitivity measure was calculated for points along the 

trajectory to see how sensitive to disturbances these cases are.  These are shown in 

Figure 4.19.  From the graphs it can be seen that both runs 20 and 50 follow similar 

patterns.  At the final fusing point these cases show very high lethality values and 

very little standard deviation resulting in good solutions. However the standard 

deviation of these runs tends to increase as the trajectory is pulled back whilst 

maintaining a high lethality value.  This shows that as the missile approached the 

target the certainty in the lethality increased.   

 

Runs 6 and 46 also follow similar patterns; as the missile approaches the target the 

lethality increases and the variations increase and then decrease to provide robust 

endgames, however at the point of fusing the lethality drops by 10%. 

 

It can be seen that for run 1 that fusing 0.12 seconds later resulted in a lethality drop 

of 0.088 from 1, where when the lethality was high the standard deviation was low. 

Runs 10 and 26 never appeared to increase lethality and as a result their standard 

deviations were higher.  As the trajectory was pulled further back all cases resulted in 

near zero lethality probabilities, as would be expected for a tail chase scenario.  

 

Thus, a good endgame from rear on engagements is more difficult to categorise.  

Missile orientation at fusing is an important factor as the target is moving away and as 

such the target offers less of a cross-section to the warhead fragments. 
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Figure 4.19: Sensitivity Measure Along Rear On Missile Trajectory 

 

Direction of movement 
as missile approaches 
target (final one second). 
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This section has described MSTARS, a simulation model for missile fly-out 

scenarios.  It has described the basic components of the model and a set of initial fly-

out scenarios have been assembled.  These simulations have been compiled into three 

categories, defined by the direction from which the engagement takes place.  It was 

noted that not all scenarios yielded high endgame lethality values and as a result of 

this the missile trajectory was looked at to see if it would have been beneficial to fuse 

the warhead prior to its eventual fusing point.  This study found that for some cases 

fusing earlier would have resulted in much higher lethality values.  

 

Summary 

It has been seen that for some solutions it would have been beneficial to fuse the 

missile at an earlier point along the fly-out in order to produce a higher lethality than 

the eventual fusing point.  It would therefore be beneficial to investigate whether it is 

possible to reclaim some of the ‘lost’ lethality by means of optimisation.  The missile 

system has the ability to use warhead ‘aim points’.  These effectively orientate the 

warhead cone of fragments in a specified direction.  This investigation will be 

undertaken in Chapter 5. 
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5. Endgame Optimisation Along Missile Trajectory 

This chapter will examine the missile trajectory in more detail.  Each point along the 

trajectory will be examined to see how the lethality varies along the trajectory prior to 

the fusing of the missile and whether the lethality value can be increased through 

optimisation.  From these studies, potential fusing strategies will be assessed. 

 

5.1. Motivation 

Inspection of the fly-out process for the missile system described in Section 4 reveals 

that on some occasions it may be prudent to fuse the missile earlier in order to 

increase lethality as the final fusing point may yield a lower lethality value compared 

to that at a previous point along the missile’s trajectory. 

 

By optimising the missile’s warhead aim points, which are three of the GW372 

parameters defined in AGILE we can explore whether some of this ‘lost’ lethality can 

be reclaimed.  Other variables will remain as they were during the simulation.  

Following this optimisation a perturbation analysis will be performed to find the 

sensitivity of these optimal solutions in order to assess how robust they are. 

 

5.2. Optimisation of Points Along Missile Trajectory 

The next three subsections will describe the optimisations performed on the data 

compiled from the cases that have been discussed previously in Section 4.3.  The 

optimisation that takes place is of the missile warhead’s aim points: 

 

( )000 ,,max zyxf→         (5.1) 

 

For each point along the trajectory a calculation of lethality is performed using 

AGILE.  In addition, an optimisation process will be performed on the lethality.  The 

missile aim point parameters, [x0, y0, z0], will be optimised within a limit of ±5m to 

establish if the lethality can be increased from the missile’s current position. 
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5.2.1. Front On Cases 

Taking the trajectories of the front on cases discussed earlier we can see from the 

graphs in Figure 5.1 that by optimising the missile aim point parameters it is possible 

to increase the lethality for points along the final second of fly-out of the missile’s 

path.  Overlaid on the graphs is a line plotting the miss distance of the missile to the 

target.  The miss distance is the separation between the missile and the target for 

points along the missile fly-out. 

 

In the graphs in Section 4.3, relating to the missile trajectory, the x-axis shows points 

along the missile’s flight path for x = 0 to 1 seconds before fusing, moving backwards 

in 0.04s time steps.  The y-axis shows the lethality probability as a percentage, and 

also the miss distance in metres.  The actual lethality, as calculated using the missile 

fly-out data is shown in green, blue is used for the optimised lethality for each point, 

and the red line plots the miss distance of the missile as it travels towards the target 

craft. 

 

These results for the font on cases can be generalised into the following groups: 

 

• Cases where the miss distance is decreasing gradually during fly-out and 

lethality increases as the missile approaches the target, as shown by runs 40, 

55, 62 and 67.  In such cases optimisation will allow the missile to fuse earlier 

and still reach peak lethality values. 

 

• Cases whereby the missile moves towards the target on a steeper gradient and 

then begins to move away, due to the angle at which the missile is flying the 

target, resulting in lower lethality at the burst point compared to if the missile 

had fused earlier, as seen in runs 33, 50 and 66.  This loss in lethality can be 

restored number of ways: 

o Without any optimisation this can be achieved by fusing earlier, i.e. at 

lowest miss distance, 

o Or with an optimisation to regain some lethality that has been lost, 

o Or by utilising both an optimisation and earlier fusing if it appears that 

the lethality is decreasing rapidly.  
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Figure 5.1: Optimisation of Trajectories of Front On Cases 

 

Optimal Lethality 

 
Original Lethality 
 
 

Miss Distance 
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The optimised solutions may not be robust in terms of how the lethality varies from 

changes in the lethality parameters, if the missile is not able to achieve the optimal 

orientation.  An ideal solution would be insensitive to variations in the missiles 

orientation so that disturbances are not a factor in reducing lethality by a significant 

amount 

 

The graphs in Figure 5.2 again show the actual and optimal lethality values and the 

miss distance, and overlaid on these are three lines depicting the robustness of the 

optimal solution found: one showing the mean lethality determined from perturbing 

the optimal parameters, and also two lines showing regions one and two standard 

deviation away from this mean, representing approximately 68% and 95% of the 

sampled deviations taken. 

 

It can be seen in the graphs, that for cases such as run 50, the mean of perturbed 

variables about the optimal parameters is higher than the optimal.  This is because the 

optimisation that takes place has bounds on the missile aim point variables and if the 

boundary occurs at a point where the lethality is increasing then the optimal parameter 

will lie on this boundary.   Therefore sampling around this point will lead to some 

samples that are at points outside the initial optimisation boundary which will result in 

higher lethality values and thus yield a higher mean.  In fact if the optimisation 

boundary was increased (or even unbounded) then the optimal solution would yield 

much higher lethality values than those encountered.  However this is not practical in 

a physical sense, in that the aim is to improve the missile’s performance in its current 

spatial position instead of looking for a new position for the missile to be in. 

 

It is interesting to observe how the lower bounds (68% and 95%) vary for these 

scenarios.  For the cases that have the minimum miss distance prior to the end fuse 

point (runs 33, 50, 66) it is also the most robust about this point.   
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Figure 5.2: Robustness of Front On Optimised Cases 

Optimal Lethality 
 
Original Lethality 
 
 

Mean 
 

Mean – 1 St. Dev. 
 

Mean – 2 St. Devs. 
 

Miss Distance 
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For runs 40 and 62, both of which have high lethality values and require little 

optimisation, the robustness values are more desirable a few steps before fusing.  The 

robustness begins to increase even though the lethality remains the same.  This 

suggests that again it would be better to fuse slightly earlier. 

 

Runs 55 and 67 shows that even for large lethality gains by optimisation the results 

have low variations, and show that it is possible to fuse earlier. 

 

It can be seen from the sample orientations in Figure 5.3, that for run 67, at a point 0.2 

seconds prior to the missile’s original fuse point, the variation in the lethality from the 

actual position (left) and optimal solution (right) is due to the warhead being aimed in 

a manner that results in a greater number of warhead fragments to impact the 

fuselage. 

 

It can be seen that the best solution is the one that provides the most robust optimised 

solution as this would be the solution that would be able to yield the most damage to 

the target, even if the actual endgame parameters are not met.  From the front on cases 

it can be seen that the beast case is thus run 62, as it the most robust. 

 

Figure 5.3: Original and Optimal Missile Orientation 
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5.2.2. Side On Cases 

By optimising the missile aim points for the trajectories of the cases examined 

previously we can see if lethality can be improved, especially for cases where lethality 

is lost in the final few milliseconds before fusing.  The results are shown below in 

Figure 5.4. 

 

From these graphs for side on cases it can be seen that they all seem to follow a 

similar path in terms of the rate of change of miss distance.  All of these cases show 

that the miss distance decreases continually and the missile does not move away from 

the target.  However, the steepness of the approach and the final miss distance does 

affect the final lethality.  For steeper approaches the lethality is not as high at fusing 

compared to the lethality for cases with a shallower approach, and those cases that 

fuse at a distance greater than 10m show a much lower lethality (runs 10, 41 and 48) 

compared to the cases that fuse much closer to the target (runs 3, 19, 42, and 43), as 

shown by the red lines on the plots. 

 

These cases can be categorised into three groups, 

 

• Fly-outs that once they have high lethality probabilities continued to stay high, 

like runs 3, 29, and 42, 

• Cases that can provide mid-range lethality values but can be optimised to give 

good results, such as run 43, 

• And those that yield low to mid-range results even after optimisation, such as 

runs 10, 41 and 48. 
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Figure 5.4: Optimisation of Trajectories of Side On Cases 
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Original Lethality 
 
 

Miss Distance 
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The robustness associated these optimisations is shown in the plots in Figure 5.5.  

This measure will provide a good idea of when it is useful to fuse the missile earlier in 

terms of the confidence that the optimised lethality will not be affected by variations 

in the aim points of the missile.  For example run 43 showed high gains in lethality 

but it may be the case that the increase is very sensitive to the missile achieving the 

exact optimal parameters and that any slight variation degrades the lethality back 

down to a lower value. 

 

Run 3 provides the most robust solution at the fusing point as the lower bound of 2 

standard deviations from the mean remains as high as the optimal.  In addition to this 

case, runs 29 and 42 which both achieve very high lethality values, show that if the 

miss distance is decreasing then it is prudent to wait for fusing the warhead as this 

tends to increase the robustness of the solution. 

 

Of these three cases run 42 has an interesting property when the optimal lethality is 

large.  The confidence associated with the robustness of the optimised parameters 

shows that even when the lethality gain is large the robustness, even at two standard 

deviations below the mean, is above the initial lethality where the optimisation began.   

 

In contrast for run 3, the two standard deviation bound lies close to the original 

lethality, and therefore using the optimal parameters may increase the probability of 

lethality, it will not hinder it by falling below the initial probability level.   

 

For run 29 however, the two standard deviations bound falls below even the original 

lethality so would be a less ideal solution as there is potentially a much larger chance 

of lethality drop should the optimal condition not be met. 
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Figure 5.5: Robustness of Side On Optimised Cases 
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The case with the most improved lethality is run 43, which from 0.3s prior to fusing 

optimised to near perfect lethality from initial points of 12% up to 40% at actual 

fusing.  The robustness varied greatly to during this phase of the fly-out, however at 

the end the optimal solution provide a robustness value similar to those of run 29, 

which has a more desirable fly-out in terms of lethality levels during the fly-out. 

 

Runs 10, 41 and 48 all follow a similar pattern and despite them providing an increase 

in lethality, it is not a great increase as seen in the other.  This is mainly due to the 

miss distance; this missile appears to be arcing too soon and results in the minimum 

distance to too great.  It can be seen that for run 48 at a distance of 10m the optimised 

lethality is 74% compared to run 42 which at the same distance away only has a 

lethality of 22%, however the latter closes the distance and as result finishes in better 

position. 

 

It can be seen that the best solution is the one that provides the most robust optimised 

solution as this would be the solution that would be able to yield the most damage to 

the target, even if the actual endgame parameters are not met.  From the side on cases 

it can be seen that the beast case is thus run 3, as it the most robust. 

 

The orientation of the endgame for run 43 is shown in Figure 5.6.  It can be seen that 

the reason for the optimised orientation providing a much higher lethality is because 

the warhead fragments impact the aircraft’s fuselage as well as the wing, whereas in 

the original orientation only the wing is clipped. 
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Figure 5.6: Side On Orientations 

 

5.2.3. Rear On cases 

The results for the optimisation of the trajectories for the rear on fly-out cases 

investigated in Section 4.3 are shown in Figure 5.7.  The initial and optimal lethality 

probabilities are shown by the green and blue bars, and the missile miss distance by 

the red line. 

 

As can be seen there are also some trends that are followed by these results that can 

be classified into three basic groups based on how the lethality varies during the last 

second of fly-out prior to the missile fusing.  For all cases, as the missile approaches 

from the rear the miss distance is always decreasing and, as for the side on cases, the 

steepness of the approach affects the level of lethality. 

 

• Lethality probability increases and stays high, and by optimising allows the 

fusing to take place earlier, for example runs 20 and 50, 

• Lethality increases but then drops off but can be kept high by optimisation to 

recoup the loss or by fusing earlier, as shown in runs 1, 6, and 46, 

• Lethality is very low at fusing point, but can be dramatically increased to very 

high levels by optimisation, seen for runs 10 and 26. 
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Figure 5.7: Optimisation of Trajectories of Rear On Cases 
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The robustness of these solutions was evaluated, in particular, the two cases that 

showed a large improvement in lethality.  Also the means and 68% and 95% bounds 

vary along the final second of the fly-out was calculated in order to see if fusing could 

take place earlier. 

 

The plots are shown in Figure 5.8, with the initial and optimal lethality values shown 

as bar graphs, the associated mean value plotted as a red line, and the lower bounds 

shown using black dotted (68%) and solid (95%) lines. 

 

From the graphs it can be seen that for all the cases the mean and lower bounds 

remain very high for the optimal lethality found at the fusing point.  It can also be 

seen for all cases that there is a point where the mean of the perturbed optimal 

parameters is higher than the optimal.  This is because the optimisation that takes 

place has bounds on the missile aim point variables and if the boundary occurs at a 

point where the lethality is increasing then the optimal parameter will lie on this 

boundary.    

 

Therefore sampling around this point will lead to some samples that are at points 

outside the initial optimisation boundary which will result in higher lethality values 

and thus yield a higher mean.  In fact if the optimisation boundary was increased (or 

even unbounded) then the optimal solution would yield much higher lethality values 

than those encountered.  However this is not practical in a physical sense, in that the 

aim is to improve the missile’s performance in its current spatial position instead of 

looking for a new position for the missile to be in. 

 

For the two cases that showed the most improvement, runs 10 and 26, they both have 

a slight decrease in the confidence of robustness at points along the fly-out, after 

reaching a high level, resulting in a potential drop in lethality of 10% and 25% 

respectively if the optimal parameters are not achieved.  Run 50 shows a similar trait 

to these cases at 0.3s before the fusing point. 
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Figure 5.8: Robustness of Rear On Optimised Cases 
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For runs 1, 6 and 20 there are also similar points along the fly-out path where the 

lower bound drops off but in these cases the drop is minimal and suggest that not 

achieving the optimal parameters would result in a loss of less than 5%.  In this 

respect run 46 does not show this characteristic and maintains the high levels once 

they are achieved.  However, of the cases that required that are similar in pattern, for 

example runs 1 and 6 this high level is attained closer to the end of fly-out compared 

to the other cases which reach higher levels of lethality sooner. 

 

It can be seen that the best solution is the one that provides the most robust optimised 

solution as this would be the solution that would be able to yield the most damage to 

the target, even if the actual endgame parameters are not met.  From the rear on cases 

it can be seen that the beast case is thus runs 20 and 50, as they are the most robust. 

 

The orientations for the actual and optimal solutions for run 10 are shown in Figure 

5.9.  It can be seen that the reason for the large increase in lethality is due to warhead 

fragments impacting the cockpit of the target aircraft which is the most vulnerable 

part of the vehicle. 

 

  
Figure 5.9: Rear On Orientations 
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5.2.4. Summary of Results 

It could be seen that the best cases within each category were those that yielded the 

most robust, high lethality solution, such that each of these would be able to inflict the 

most damage even if the optimal condition is not physically realised. 

 

It can be seen that for all three categories of fly-out there are similarities in the 

observations seen from the results.  These can be generalised as follows: 

 

• Cases that increase in lethality as the missile fly-out 

continues and the lethality stays high, and does not require 

optimisation. 

 

• Cases in which the lethality peaks and then drops off before 

fusing and this loss can be regained via optimisation. 

 

• Cases in which the lethality increases and then drops as 

before but can not be remedied by optimisation. 

 

• Cases that have low to mid-range lethality values that can 

be optimised to yield desirable levels of lethality. 

 

• Cases that show low to mid-range levels of lethality but can 

not yield higher values by optimisation. 

 

From these findings it is possible to suggest the course of action that should be taken 

in order to achieve the highest possible lethality probability for a given starting 

condition for a fly-out. 

 

It is possible to employ a decision process, especially for those scenarios whereby the 

lethality dropped by a large amount.  This process would decide whether to fuse the 

missile warhead or to continue as is, and would be an ‘online’ process.  There are 

many factors and combinations of measurements that can be used to decide how and 

when to fuse the missile as it approaches and sometimes even passes its target.  There 
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are many methods by which this decision can be made and these will be discussed in 

Chapter 6. 

 

Summary 

This section has further investigated the results of the fly-out scenarios simulated in 

Chapter 4.  Missile trajectory data has been used to calculate lethality probability data 

for points along the missile trajectory in order to examine how lethality varied, and if 

it had been suitable to fuse the missile earlier for cases that displayed lower final 

lethality values.  This study showed that for some cases the endgame lethality was 

indeed lower at the end of the simulation compared to some points along the missile 

trajectory. 

 

Furthermore each point along the trajectory was then optimised for the missile aim 

points in order to see if lethality could be increased for cases that showed lower 

lethality values, and a robustness measure was also calculated to see how sensitive 

these optimal conditions were to variations in the optimised parameters.  It could be 

seen that the best cases were those that yielded the most robust, high lethality 

solutions within each category. 

 

From these studies it has been shown that a decision process could be utilised in order 

to obtain more desirable endgame conditions, especially for cases where by the 

missile has fused too late and resulted in lower lethality probabilities compared to 

previous points along the missile path. 
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6. Fusing Strategies 

From the results above it can be seen that there exists a need for a decision to be made 

for when the missile system should fuse the warhead, and whether or not an 

optimisation is required to increase the lethality probability.  This Chapter will 

describe differing methods by which a decision on whether the missile should fuse or 

not can be made.  There are many strategies that can be employed, depending on the 

situation being considered, and the most relevant are now considered.  

 

6.1. Current State of Fusing Strategies 

The current state of fusing involves the use of radio frequency proximity fusing to 

trigger the warhead.  A proximity fuse is designed to detonate the warhead charge 

when a received signal breaches a specified threshold value, usually based on the 

effectiveness of the warhead fragments field.  The proximity is calculated by 

transmitting a radio signal out from the missile and ‘listening’ for a reflected signal to 

be received.  The received signal is out of phase with the transmitted signal, due to the 

relative velocity of the missile and target.  The interference pattern caused from 

combining the two signals can be amplified and used to activate the warhead trigger.  

The amplitude of combined signal is a function of the distance between the missile 

and the target, and as such this signal can be used as a trigger to detonate the warhead.  

This is achieved by tuning the gain on the amplifier and by setting a threshold (bias) 

that the amplitude of the combined signal has to reach for fusing to take place.  A 

delay can also be employed. 

 

Possible fusing strategies are discussed below.  These will be split into three 

categories, simple decision processes, complex decision processes, and knowledge 

based decision processes.  Each will be described and a framework for how each will 

be implemented will be shown. 
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6.2. Simple Strategies 

6.2.1. Minimum Distance 

The simplest strategy is based on the miss distance.  The warhead is triggered when 

this miss distance is at a minimum.  The missile can be configured such that as soon 

as the missile’s approach to the target begins to move away from the target fusing 

takes place.  The method does not perform any lethality calculation or optimisation 

and as can be seen in some of the front on results previously that this method, if 

employed, would have yielded higher lethality values than the final fusing point of the 

simulation.  If an optimisation is performed during fly-out then this data could also be 

incorporated to maximise the lethality for a minimum miss distance fusing strategy. 

 

The minimum distance fusing trigger is the simplest method of fusing the missile.  

The miss distance is an important parameter to consider in order to achieve high 

lethality probabilities in the endgame.  The missile will continue to fly toward the 

target craft until the miss distance, Sr, begins to increase as shown in Figure 6.1 and 

described below: 

 

if 0≤
dt

dSr  then activate the trigger     (6.1) 

 

At this point the missile will trigger the fuse and detonate the warhead.  There are no 

lethality calculations that take place in this method. 

 

The advantages of this method are that the process of detecting the distance is simple 

and quick as it uses on-board sensors, and as shown in some of the cases in Chapter 5 

the minimum distance does yield a high value of lethality.  The disadvantages are that 

there are no lethality calculations or optimisations that take place and as such fusing 

may result in sub optimal lethality values. 
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Figure 6.1: Minimum Distance Fusing 

 

6.2.2. Threshold Level Fusing 

 
Another simple method that does not necessarily require optimisation but would 

require lethality calculation is use a threshold lethality value.  A lethality probability 

is calculated and if the probability is above a set value then the missile fusing takes 

place.  This threshold value would ideally need to be set extremely high in order to 

inflict sufficient damage to the target.  This method can also be employed using an 

optimised lethality to see if the optimal probability is above the threshold.  

Additionally the lower bound of the robustness could also be utilised to see if 

uncertainties in the optimal aim points will reduce the lethality below the threshold in 

which case fusing should not take place. 

 

A threshold level fusing trigger will calculate the lethality, Pk, as the missile moves 

towards the target and fuse when the value of Pk passes above a set threshold value. 

 

if lethality ≥ threshold value then activate the trigger  (6.2) 

 

This will ensure that the probability of damaging the target is high; however this will 

not be robust as no other calculation is carried out to ensure that any sudden changes 
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in conditions between the check and fusing times will affect the lethality.  An 

example with the threshold set to 95% is given in Figure 6.2. 

 

 
Figure 6.2: Threshold Level Fusing 

 

As can be seen the missile at the start of the graph calculates a lethality of only 12%, 

which initially drops down to 10% before gradually increasing up until the point at 

which the threshold value is reached.  At this point the trigger would be initiated and 

the target would be engaged. 

 

The advantage of using this method for fusing is that as a calculation is performed on-

board the missile will only detonate when the threshold is reached, and by setting this 

value very high it can be ensured that fusing will only take place in conditions that 

will yield a high lethality.  This disadvantage of this method is that for some cases the 

missile may never reach a point in its trajectory that will yield a lethality probability 

that breaches the set threshold and hence would not fuse at all.  Additionally, as no 

robustness measure is computed there is no way of knowing how sensitive the 

lethality probability will be if there are any errors in measurements used to calculate 

the probability. 
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A more advanced decision maker would take into account other factors such as 

robustness measures, and also look at a both the miss distance and lethality 

probability. 

 

6.3. Complex Strategies 

A more detailed approach would look at the lethality value at the previous point along 

the missile trajectory and compare that to a current calculation.  If lethality is 

increasing then the missile continues to the next sample point.  Another indication of 

this may be if the mean from the robustness measure is above lethality as shown in 

some cases.  The robustness measure of the current lethality, if desirable, can be used 

to trigger the fuse of the missile if this robustness measure is beyond a threshold and 

the lethality is high (above its own threshold).   

 

If the lethality drops and the previous measured lethality is higher than the current 

value, then an optimisation can be performed to see if lethality can be recovered.  It 

may be prudent to trigger the missile fuse at the optimal if the drop in lethality is 

greater than a set amount.  For a smaller drop in lethality if the optimal regains the 

loss of lethality then the missile can continue for another step.  However it may be 

prudent to fuse the missile if there are consecutive drops in lethality and if the 

combined loss is above a set value. 

 

It will also be useful to maintain a check on the rate of change of miss distance.  If 

lethality is high and the miss distance is decreasing then again it would be better to 

continue the fly-out in order to get as close to the target a possible.  Of course it will 

be necessary to ensure that lethality does not drop as a result of the missile trying to 

achieve a smaller miss distance. 

 

For example it may be beneficial to use a closest point of approach method if the 

target begins to move away from the missile, as is the case in some front-on scenarios.  

As it would be difficult to find that exact point during a fly-out, it may be better to 

fuse just after this condition arises and by optimising the aim point to recover any loss 

in lethality incurred by the slight increase in miss distance resultant from the delay in 

fusing. 
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This section will describe more advanced forms of decision making that can be used 

by the missile to engage a target in an endgame.  These advanced methods will 

attempt to incorporate strategies based on the observations made in Section 5.2. 

 

6.3.1. Conditional Decision 

A conditional decision process uses tests of statements or rules in order to reach a 

decision.  Simple examples of these are the approaches of Section 6.2.  Both test a 

condition in order to return a true or false answer.  In the minimum distance case the 

condition being tested is:  

 

“Is the miss distance, Sr, at a minimum, or alternatively, is the rate of 

change of miss distance, δSr, positive (i.e. moving away from the 

target)?  If so, then activate the trigger.” 

 

or  

 

“if δSr > 0 then activate the trigger” 

 

For this statement the missile will trigger the fuse when the missile begins to move 

away from the target. 

 

Similarly for the lethality threshold fusing case the following statement can be tested: 

 

“Is the calculated lethality, Pk, above the set threshold value?  If so 

then activate the trigger.” 

 

or if the threshold is set to, say, 95% 

 

“if Pk ≥ 95%  then activate the trigger” 

 

Again the missile will trigger the fuse when the lethality probability reaches the 

threshold value set on the missile. 
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It is possible to create a more complex decision making process by using a number of 

conditional statements together.  This will create a set of rules for the missile to assess 

and make a decision with in order to decide whether to trigger the fuse of the missile 

or not. 

 

Using the information obtained in Chapter 5 a set of rules can be developed to create a 

decision process.  This rule base will examine various conditions that can lead to a 

more robust and desirable fusing point. 

 

6.3.2. Rule Base Description 

The following section will describe the set of statements that will be assessed and 

used for the missile fusing decision protocol.  Unlike the simple fusing methods, 

which look at the current miss distance or lethality value individually, this more 

complex decision maker will use of combinations of values and also look at how 

lethality and miss distance are changing by looking at the current and previous 

measurements.  These rules are based on observations made during the previous 

studies of Sections 3, 4 and 5. 

 

Rule 1 

‘Is lethality above a threshold value?’ 

 

This rule is the same as in the previous section, whereby fusing should occur if 

lethality is sufficiently high.  The next rule is related to the threshold value. 

  

Rule 2 

‘Is miss distance, Sr, decreasing?’ 

 

This rule tests the condition of whether the missile is approaching the target or 

whether it is moving away from it.  Generally if the missile is approaching the target 

then fusing should not take place.  

 

Rule 3 

‘Is lethality, Pk, increasing?’ 
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This rule tests if the calculated lethality has increased from the previous measurement.  

If lethality is increasing then fusing should not occur.  The next rule is related to this 

as it tests the robustness of the calculation. 

 

Rule 4 

‘Is the mean of perturbed solutions around the measured case 

higher than the measured case?’ 

 

From some of the cases shown in Section 5 it can be said that when the lethality is 

increasing the mean of perturbed cases is higher than the measured lethality. Hence, if 

the mean is higher then fusing should not occur as it is likely that the next 

measurement will yield a better outcome. 

 

Rule 5 

‘Has lethality decreased?’ 

 

This rule looks at the amount the lethality has dropped by and if necessary will trigger 

the fuse if the drop is greater than a predefined amount.   

 

Rule 6 

‘Is the lower bound of perturbed cases higher than the 

threshold value? 

 

This rule will check if the lower bound of the perturbations, PkLB, to the lethality still 

lies above the fusing threshold level.  If so then this is an ideal point to trigger the fuse 

as the missile will be in a good robust position. 

 

The rules are utilised to enable a decision to be made on whether the trigger should be 

activated or not.  A fusing matrix, Table 6.1, shows the combination of conditions that 

will decide whether fusing will take place, depending on the conditions from the rules 

above.  Each row is dependant on the row above, and so the conditions for each rule 

will be checked in order. 
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PK 

THRESHOLD 

SR 

DECREASING 

PK 

INCREASED 
PKMEAN > PK 

IS PK DROP 

> LIMIT 

LOWER BOUND 

> THRESHOLD 
FUSE? 

Y N N/A N/A N/A N Y 

Y Y N/A N/A N/A Y Y 

Y Y N/A N/A N/A N N 

N N Y N N/A N/A Y 

N Y Y N N/A N/A N 

N Y Y Y N/A N/A N 

N Y N Y Y N/A Y 

N Y N Y N N/A N 

N Y N N Y N/A Y 

N Y N N N N/A N 

N N N Y Y N/A Y 

N N N Y N N/A N 

N N N N Y N/A Y 

N N N N N N/A Y 

Table 6.1: Fusing Matrix for Original Values of Lethality 

 

These rules only look at the calculated lethality values, and no optimisation takes 

place.  The same set of rules can be used for optimised lethality values along the fly-

out of the missile. 

 

These rules look at lethality and optimised lethality calculations and base decisions by 

looking back one step in order to decide whether to fuse or not.  This is performed on 

an individual run-by-run basis and does not contain any kind of memory of 

simulations or data knowledge for prediction. 

 

The next section will discuss methods for decision making for the trigger based on 

knowledge attained from previous fly-out cases. 

 

6.4. Knowledge Based Decision Strategy 

A decision maker algorithm is to be utilised that incorporates memory, or knowledge, 

to base the decision of when to trigger the missile’s fuse.  This is achieved by using 

data from the previous fly-out cases used in earlier sections.    There are many 
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methods by which a knowledge base can be initiated, including Case Based 

Reasoning [28], and the rule based methods described above. 

 

6.4.1. Case Based Reasoning 

Case Based Reasoning (CBR) has been used for many years in different subject areas.  

The basic concept behind CBR involves making decisions based on past experiences 

and the knowledge gained from these experiences.  A case is a piece of knowledge 

that represents an experience, in the form of a lesson that can be applied to a set 

problem in a particular context.  This process has been used in many diverse 

applications from legal firms, which can use CBR to contain various legal precedents, 

to engineering companies, which make use of CBR for fault diagnosis and repair of 

components in, for example, aircraft.  There are essentially four main steps in the 

CBR process, as shown in Figure 6.3.   

 

These steps are: 

 

• Retrieve; 

A problem is matched against cases in the case base and those which 

are similar to the problem are retrieved. 

• Reuse; 

Solutions suggested by retrieved cases are reused and tested for 

success. 

• Revise; 

Retrieved cases that are not a close match to the problem will need to 

be revised and evaluated for its suitability to the problem. 

• Retain; 

This new, suitable, revised case will then be retained in the case base. 
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Figure 6.3: CBR Process 

 

It is proposed that a variation of CBR be used in the decision process for the missile 

endgame fusing study, in which the data gathered previously will be used as a case 

base, integrated into two algorithmic solutions and applied to a sample of missile 

endgame fusing problems 

 

6.4.2. Using Case Based Reasoning for Missile Fusing Algorithm 

A case base will be used to compare missile readings for miss distance and calculated 

lethality and provide a basis for the fusing.  The data gathered will be used in order to 

provide a probability of whether the lethality is likely to increase or decrease.  This is 

achieved by categorising how the lethality varied in previous simulations using miss 

distance and the calculated current lethality as the two keys for indexing the data.  The 

case base will therefore be indexed using these two properties, and contain 

information on how the lethality changed for each case.  By categorising many cases 

that show similar circumstances and collating their outcomes a probability can be 

found to aid the fusing process. 

 

The case base is to be generated by running and partitioning 5,000 simulations of 

engagement fly-outs and endgames using MSTARS and AGILE.  The case base can 

be visualised as a 2D table of rows and columns as shown in Figure 6.4.  Each row 
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and column corresponds to a miss distance range and lethality range respectively.  

Within each cell, corresponding to a specific distance and lethality, a data structure 

will be defined to contain the following information:  

 

• Whether the lethality at the next step increases, or decreases; 

• An average of the increase or decrease in the lethality. 

 

Figure 6.4: Case Base Table Design 

 

For each fly-out, a lethality calculation will be performed for east step along the 

simulation and categorised using the lethality and miss distance as the defining 

indices.  The lethality at the next point will be calculated and used to populate the 

case base data structure, thus, through this form of reinforcement learning [29], 

providing a probability of the nature of how the lethality changes for each ‘cell’ 

within the case base table, to will be used in the decision making process. 

 

This probability will be used as a factor for the decision maker for the trigger of the 

missile.  If the probability indicates that the chance of an increase in lethality is likely, 

then the missile will continue on its fly out.  If, on the contrary, the probability is such 

that a drop in lethality is more likely, then the missile will fuse after performing an 

optimisation. 
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The algorithm will include elements from the rules stated previously in Section 6.3, 

for example fusing with calculated lethality levels above a threshold value if within a 

robustness level.  In addition to the lethality threshold and robustness check, a missile 

approach check will be assessed prior to this to this probability of change being found 

from the case base.  If the lethality calculated is above the threshold value and within 

the robustness bound then a check of whether the miss distance is decreasing is 

performed.  If the missile is closing in on the target then fusing will not take place, 

else if the missile begins to move away then fusing will occur.  If the threshold is 

achieved but the robustness is beyond the bound set then again if the missile is 

moving toward the target then fusing will not occur.  If the miss distance is increasing 

then fusing will take place following an optimisation in order to attempt to improve 

the robustness for the case. 

 

A flow chart outlining the steps described for the above algorithm is shown in Figure 

6.5.  This algorithm will be evaluated in Chapter 7. 
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Figure 6.5: Flow Chart for Simple Predictive Decision Algorithm 
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This is a relatively simple decision algorithm.  A more advanced version of the 

algorithm can be used which examines the data in more detail in order to base the 

fusing decision.  This is described next. 

 

6.4.3. Advanced CBR Algorithm for Missile Endgame Fusing Problem 

A more advanced case based algorithmic solution is proposed that will use fly-out 

properties other than just a probability from the case base data in order to invoke the 

fusing of the missile.    

 

This advanced algorithm includes the elements from the previous algorithm and will 

add some more modified rules from Section 6.3.  One such adaptation will involve 

rule six.  Rule 6 stated that if the drop in lethality was to exceed beyond a certain 

predetermined amount then fusing would take place.  This will be extended by adding 

the notion that if the lethality does drop but not by more than a set amount, then a flag 

will be raised for the next iteration of the algorithm, and so if lethality drops again 

then the missile will trigger the fuse.  Therefore if the lethality drops it is given the 

chance to increase again before fusing. 

 

The fusing algorithm is shown in Figure 6.6 as a flow chart.  From this chart it can be 

seen how a decision is reached whether to fuse or not, and this algorithm will be 

evaluated in Section 7. 
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Figure 6.6: Flow Chart for Advanced Fusing Algorithm
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In total there will be four flags used in the algorithm for the following 

 

• Pk Decrease – will flag true if the lethality decreases and if 

flag is already set to true then fusing will occur as this will 

indicate consecutive decreases in lethality; 

• Robustness – will flag true if the calculated lethality is 

robust such that the lower bound is within a set limit from 

the lethality; 

• Delta Sr - will flag whether the missile is approaching the 

target or moving away from it; 

• Fusing – will flag false to continue and will change to true 

in order to detonate. 

 

At the start of the iteration the algorithm has the two flags sent to it to indicate if the 

missile is closing in on the target, and if the lethality had decreased previously.  From 

here the lethality and its associated robustness is calculated based on the endgame 

parameters.  If this lethality is above the threshold then a check is performed to see if 

it is within the robustness limit and if so a second check, on whether the missile is 

approaching the target is performed.  If both flags are true, i.e. yes it is robust and 

getting closer to the target, the algorithm goes to the next step as it is desirable to fuse 

closer to the target.  If the delta Sr flag is false then fusing will take place. 

 

Following the lethality threshold check the algorithm will look at the data from the 

case base of previous fly-outs and match the current lethality and miss distance to the 

data.  From this data a probability will be found on the likelihood of the lethality 

increasing, decreasing or remaining in the same range. 

  

If the probability of a decrease in lethality is highest, then the average loss is found 

from the data and compared to the limit imposed on lethality loss.  If the predicted 

average loss is greater than the limit then fusing will take place following an 

optimisation.  If the average loss is within the limit value then the Pk Decrease flag is 

set to true for the next iteration.  If the Pk Decrease flag was already set to true then 

the fusing flag is set to true and the missile will detonate following an optimisation. 
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If the probability of change from the case base suggests that the lethality will remain 

in a similar range at the next time step then again the delta Sr flag is checked.  If the 

missile is still approaching the target then the missile will continue as it is preferable 

to be closer to the target, and the Pk decrease flag is reset.  If the missile is moving 

away from the target then the missile will fuse at optimal conditions. 

 

If the probability from the case base retrieval suggests that the lethality will increase 

then the missile will continue if the miss distance is decreasing.  If the missile is 

moving away then the lower bound of an optimisation on the current lethality is found 

and compared to the average gain from the probability.  If the lower bound of the 

optimal is greater than the predicted lethality from the gain then the missile will fuse, 

else it will continue and the Pk decrease flag will be reset to false. 

 

 

Summary 

This section has described various methods by which fusing can be achieved.  This 

included simple decision makers that look at just one parameter for example 

minimum distance or a threshold lethality value.  Conditional or rule based methods 

were then described that are more complex than the simple methods and look at 

various conditional rules that need to be considered for the decision to fuse the missile 

to be made.  Finally two case based reasoning algorithms have been developed.  

These will all be evaluated in the next chapter. 
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7. Analysis of Fusing Methods 

Using the methods described in Chapter 6, a batch of 5,000 end game yielding 

scenarios will be evaluated, and the performance of each method compared.  The 

strategies evaluated will include, minimum distance, lethality threshold level, fusing 

matrix with original and optimal lethality values, and advanced fusing algorithms. 

 

7.1. Minimum Distance Fusing 

Minimum distance fusing involves the measurement of the rate of change of the miss 

distance of the missile to the target, and fusing at the point that the missile begins to 

move away from the target. 

 

Using a batch of 5,000 random start points as a reference, the lethality at the minimum 

miss distance was calculated.  A histogram showing the distribution of lethality 

probabilities is shown below in Figure 7.1.   

 

From the graph above it can be seen that for the 5000 scenarios used 74% of the 

samples values yielded extremely high probabilities of lethality, i.e. above 85% 

lethality.  However there are also 233 runs yielding a lethality below 10%., which 

reinforces the fact that there is a need for more advance triggering mechanisms than 

the minimum distance fusing criteria. 
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Figure 7.1: Minimum Miss Distance Lethality Distribution 

 

It may seem that the distribution of lethality values is favourable; however many of 

these runs are not very robust.  Figure 7.2 shows in a histogram how the distribution 

of lethality probabilities varies when the lower bound of the lethality is taken into 

account.  The lower bound is calculated as the original value of lethality less two 

standard deviations based on varying the missile aim point parameters, as described in 

Chapter 3.4.  

 

The number of scenarios that yielded a lethality probability above 85% fell to less 

than 2029 runs, a drop to 41% of the 5000 simulations.   The number of scenarios in 

the range 50%-85% increased to almost half the scenarios.  The number of scenarios 

in which the lethality probability fell to less than 10% increased by over 350% to 827 

runs. 
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Figure 7.2: Distribution of Lower Bound Lethality at  

Minimum Miss Distance 

 

 

From this it can be deduced that whilst the minimum distance of the missile from the 

target can be used as a strategy for fusing the missile to provide high lethality 

probabilities, these probabilities tend to be sensitive to variations of the missile aim 

points.  Hence it may be better to use other strategies for fusing. 

 

7.2. Threshold Level Fusing 

Threshold fusing strategy comprises of choosing a fusing point based on a calculation 

of lethality and comparing that to see if it exceeds a threshold value.  For the 5000 

scenarios assessed in this section, the fuse point of the missile is taken as the point 

along the missile’s trajectory that the lethality probability exceeds the threshold value 

set.  For a lethality threshold set to 85%, 3831 runs reached the threshold value, 

whereas 1169, or 28% of the runs failed to reach the threshold value.  Analysis of 

when the threshold value is met in the simulation is shown in Figure 7.3. 
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Figure 7.3: Time Before Simulation End of Fusing Point for  

Lethality Threshold Fusing 

 

From the graph it is noted that the threshold is reached before the simulations 

finished, hence the missile could have fused earlier.  However by examining the 

robustness of the lethality it can be seen that fusing the missile at the point at which 

the missile reaches the threshold level is not very good.  Figure 7.4 shows the lower 

bound of the lethality for the point along the missile trajectory where the calculated 

lethality first reaches the threshold value of 85%. 
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Figure 7.4: Robustness of Threshold Fusing Strategy Simulations 

 

Only three of the 3831 runs that reached the threshold level were robust enough to 

maintain the lethality value above 85%.  47% of the runs were very sensitive to 

disturbances, resulting in a potential drop of lethality probability to below 50%.     

 

From this it can be deduced that it may be beneficial to not fuse at the earliest point at 

which the lethality is calculated to be above the threshold value set, as that point may 

not be robust to potential variances in the missile’s position.  It would therefore be 

better to wait before fusing, for example, if the missile is still approaching the target. 

 

7.3. Rule Based Fusing  

7.3.1 Original Lethality Values 

The rule based fusing matrix is shown in Section 6.3, and identifies the various 

conditions for fusing to occur based on missile parameters and lethality calculations.  

For the 5000 scenarios evaluated, the point of fusing has been plotted in Figure 7.5.  
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Using the fusing matrix a fusing point before the end of the simulation was found for 

4188 of the simulations.  Of these, only 145 of the simulations resulted in the fusing 

occurring at time zero, the time at which the missile simulation ended.  The remaining 

812 runs did not meet any of the condition described in the matrix; hence the 

simulation end point values were assessed.   

 

 
Figure 7.5: Fusing Points of Simulations Using Fusing Matrix 

 

As shown in the figure above, fusing occurs at a variety of points before the end of the 

simulation.  However, the fusing of the missile early results in significant reductions 

of lethality compared to fusing at the end of each simulation.   Figure 7.6 shows that 

the lethality values are not as high as for the minimum distance fusing. 
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Figure 7.6:  Original Values Fusing Matrix Lethality Distribution 

 

The histogram shows that despite fusing earlier using the fusing matrix, the 

distribution of lethality values is not very good.  1390 of the simulations yielded 

lethality values above 85%, with the majority of fused points leading to lethality 

values of less than 10%.   

 

In addition the scenarios which yielded higher probability values were not very 

robust.  The lower bound of lethality values if shown in Figure 7.7.  Of the 1390 

higher lethality end game scenarios 773, or 56%, maintained a lethality probability 

above 85%.  3144 of the simulations had a robustness lower bound less than 10%. 
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Figure 7.7:  Robustness of Original Values Fusing Matrix Lethality  

 

Again, this is not a very good return compared to previous method of minimum 

distance and threshold level fusing, however an improvement can be made if an 

optimisation is performed at each step, and the fusing matrix reapplied to the 

optimised values. 

 

7.3.1 Optimised Lethality Values 

Using the fusing matrix described in Section 6.3 and calculated optimised lethality 

values using the original fly out data, a fuse point was determined for the 5000 fly out 

scenarios.  Of these, 4919 fly-out simulations resulted in triggering of the fuse, with 

the simulation end lethality values used for the remaining 81 runs.   

 

The lethality distribution of this method of fusing is shown in Figure 7.8.  Of the 

simulations, 1038 runs, or 21% of the runs yield lethality values above 85%.  Over 

three quarters of the fly-out runs fused giving a lethality of less than 10%. 
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Figure 7.8:  Optimal Values Fusing Matrix Lethality Distribution 

 

The robustness of these simulations is shown in Figure 7.9.  95% of the scenarios that 

yielded high lethality maintained a lethality value above 85%, which is an 

improvement on the original value robustness seen in Figure 7.7 previously, where 

only 56% of the high lethality fly-outs maintained their lethality values.  The number 

of scenarios that resulted in low endgame lethality values (i.e. <10%) increased by 13 

to 3811. 
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Figure 7.9:  Robustness of Optimal Values Fusing Matrix Lethality  

 

The fusing matrix method has produced some lethality values that yielded higher 

values of robustness, however only a small percentage of the fly-out scenarios 

resulted in high vales of lethality.  The predictive fusing methods will be evaluated to 

assess if a better method of choosing when to fuse the missile is available using past 

fly out data. 

 

7.4. Simple Predictive Fusing Method 

The simple predictive algorithm is described in Section 6.4.  An algorithm was 

produced which followed the flowchart shown in Figure 6.4.  The lethality 

distribution of the 5000 fly-out scenarios is displayed in Figure 7.10.  From these 

5000 runs, 3308 of the fly-out scenarios yielded lethality values above 85%.  This 

equates to 66% of the scenarios, however 1339 scenarios yielded lethality values 

below 10%.   Although these scenarios did not yield acceptable endgame lethality 

values, this is never the less an improvement on the methods utilised previously, and 
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as such suggests that a more advanced algorithm more improve lethality of these cases 

further.  

 

 
Figure 7.10:  Simple Predictive Algorithm Lethality Distribution  

 

The robustness of these solutions was also found in order to ascertain whether any 

uncertainty in the missile aim points would reduce the lethality by a significant 

amount.  A histogram of the robustness is shown in Figure 7.11. 

 

From the 3308 fly-out scenarios that yielded lethality above the 85% mark, 1702, or 

34% of the fly-outs were robust enough to keep a high lethality above that level.  The 

number of cases that gave robustness values below 10% increased to 1510. 
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Figure 7.11:  Robustness of Simple Algorithm Lethality Values  

 

From these results it is can be seen that there is may be some potential for a more 

advanced algorithm to be employed that would raise the robustness at the point at 

which fusing occurs.  This advanced algorithm will be evaluated in the next section. 

 

7.5. Advanced Fusing Algorithm 

The advanced fusing algorithm, described in Section 6.4, has been implemented and 

applied to the 5000 fly-outs.  The distribution of lethality values that resulted from the 

algorithm has been plotted in Figure 7.12.   

 

The number of fly-outs that yielded lethality values above 85% increased to 4611 

using this algorithm.  This represents 92% of the fly-outs.  Only 66 of the runs yielded 

lethality values below 10%, which is an improvement of the strategies reviewed 

earlier. 
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Figure 7.12:  Lethality Distribution of Advanced Fusing Algorithm 

 

The distribution of the associated robustness of the solutions found using the 

advanced fusing algorithm is shown in Figure 7.13.  The number of solutions that 

maintain lethality above the 85% mark falls to 3946 fly-outs.  This represents 86% of 

the high yielding simulations.  The number of simulations in the lowest 10 percentile 

rises to 128 fly-outs. 
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Figure 7.13:  Robustness Distribution of Advanced Fusing Algorithm 

 

From these results it can be seen that the use of the advanced algorithm is beneficial 

as it would allow the missile to trigger its fuse in such a manner that the lethality 

would be robust to potential variations in the aim point of the missile warhead, by 

performing on board calculations of lethality and robustness as well as on board 

optimisations of lethality that can be used to maximise the probability of inflicting the 

most damage to a target. 

 

A sample endgame orientation for a robust endgame, found using the advanced 

algorithm is shown in Figure 7.14.  It can be seen that the warhead fragment cones 

intercept the target cockpit, fuselage and wing, resulting in a robust solution as 

variation in the missile orientation will not reduce the lethality by a large amount. 
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Figure 7.14:  Example Orientation from Advanced Fusing Algorithm 

 

 

Summary 

A number of fusing strategies have been evaluated, both in terms of actual lethality 

and the associated robustness of lethality, to investigate how the lethality varies if the 

actual endgame scenario is not achieved.  Strategies such as minimum distance and 

threshold level fusing provide a simple method of choosing when to fuse a missile; 

however they do not provide very robust solutions.  Fusing matrix strategies based on 

original and optimal values whilst yielding high values of lethality again did not result 

in very robust solutions.  The advanced algorithm strategies improved upon the fusing 

matrices and yielded solutions that not only provided high levels of end game lethality 

but also an increase in the robustness of the solutions. 
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8. Conclusions and Future Work 

8.1. Conclusions 

This thesis has investigated possible missile warhead fusing strategies which may be 

used in order to provide robust, high lethality probability engagement conditions for 

an air-to-air missile system. 

 

The concept of endgame lethality and how it can be calculated was discussed.  The 

key parameters of the engagement geometry were defined and illustrated.  AGILE, the 

missile endgame lethality probability calculator, which uses Gaussian functions to 

represent the missile warhead and target aircraft, and performs operations on the 

Gaussian functions to calculate the level of damage inflicted on a target aircraft.   A 

target aircraft was defined and a simple random search performed using the endgame 

parameters which highlighted how large and complex the search space was, and that 

optimisation may be an effective method with which to improve the level of lethality. 

 

Following the initial introduction to lethality probability, a review of fast optimisation 

methods was performed, including a discussion on the aspects of sensitivity to 

disturbances and the resulting robustness of the prime solution found from 

optimisation.  Optimisation of a representative set of endgame scenarios was 

performed within Matlab to establish if an optimal exists for each of the scenarios, 

and a corresponding robustness measure was found to assess how sensitive the 

optimal solution was to disturbances in the missile parameters. 

 

A missile fly-out simulator, MSTARS, was described and its interface with AGILE 

discussed.  Following this some example fly-out scenarios were analysed to see how 

lethality probability varied in the final stages of fly-out.  It was seen that for some 

solutions it would have been beneficial to fuse the missile at an earlier point along the 

fly-out in order to produce a higher lethality than the eventual fusing point.  It was 

proposed that optimisation could be used to reclaim some of the ‘lost’ lethality for 

some of the fly-out scenarios, and also that by optimising the missile’s aim points 

along the fly-out trajectory that fusing could occur earlier. 
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Missile trajectory data was used to calculate lethality probability data for points along 

the missile trajectory.  This allowed the examination of how lethality varied, and to 

ascertain if it had been suitable to fuse the missile earlier for simulations that 

displayed lower final lethality values.  This study showed that for some cases the 

endgame lethality was lower at the end of the simulation compared to some points 

along the missile trajectory. 

 

Each point along the trajectory was then optimised for the missile aim points in order 

to see if lethality could be increased for cases that showed lower lethality values, and 

a robustness measure was also calculated to see how sensitive these optimal 

conditions were to variations in the optimised parameters 

 

From these studies it was suggested that a decision process could be utilised to 

provide a strategy in order to obtain more desirable endgame conditions, especially 

for cases whereby the missile has fused too late and resulted in lower lethality 

probabilities compared to previous points along the missile path. 

 

Each possible fusing strategy was described and a framework for how each would be 

implemented was documented.  The strategies included:  

 

• A simple decision maker that look at just one parameter (minimum distance or 

a threshold lethality value).   

 

• Conditional or rule based methods were then described that were more 

complex than the simple methods and looked at various conditional rules in a 

fusing matrix that needed to be considered for the decision to fuse the missile 

to be made.   

 

• Two advanced fusing algorithms were developed that utilised past simulation 

data to aid the fusing decision process. 

 

The fusing strategies have been implemented and evaluated, both in terms of actual 

lethality and robustness of lethality.  Strategies such as minimum distance and 



137 

threshold level fusing provided a simple method of choosing when to fuse a missile; 

however they did not provide very robust solutions.   

 

Fusing matrix strategies based on the original and optimal lethality values did yield 

high values of endgame lethality probability, but again did not result in very robust 

solutions.   

 

The advanced algorithm strategies improved upon the fusing matrix strategies and 

yielded solutions that not only provided high levels of end game lethality but also an 

increase in the robustness of the solutions. 

 

From these studies it can be seen that the use of the advanced algorithm would be 

beneficial as it would allow the missile to trigger its fuse in such a manner that the 

lethality would be robust to potential variations in the aim point of the missile 

warhead. 

 

8.2. Contributions 

A review of optimisation techniques has been performed (Section 3) which looked at 

the various methods of optimisation available within Matlab. 

 

The development of various fusing strategies has been performed based on 

observations during the undertaking of this research (Sections 4, 5, & 6).  This 

included the development of the rules used for the fusing matrix strategy and the 

advanced fusing algorithms that look at past lethality data to aid the decision process 

of when to fuse the missile. 

 

Analysis of the developed missile fusing strategies has been undertaken, and it was 

established that an advanced knowledge based decision process using on board 

calculations and optimisation can enhance the lethality probability for a maille-target 

endgame scenario.  

 

Initial multi-objective optimisation work has been performed which could be carried 

forward to develop a multi-objective optimisation based fusing algorithm.  A paper 
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has been published at the 16th IFAC World Congress in 2005 which highlights the 

multi-objective work initially performed. 

  

8.3. Future Work 

Possible work that could be performed in the future includes: 

 

• Refinement of the fusing matrix and advanced fusing algorithm methods to 

further improve the number of solutions which would yield higher endgame 

lethality probability values, which are also robust. 

 

• Further study of the fly-out of the missile to see if improvements can be made 

to the MSTARS model set up.  This can involve the inclusion of evasive target 

manoeuvring concepts, which can be used to add to the knowledge based used 

for the warhead fuse trigger decision process. 

 

• Further study of other optimisation techniques that could potentially be used as 

an ‘on board’ system to aid the fusing decision process of the missile warhead, 

possibly incorporating system noise into the parameter definitions. 

 

• Continuation of initial work performed using multi-objective optimisation, 

which could lead to the finding of possible solutions or scenarios that yield 

both high lethality and highly robust fuse points. 
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Appendix A. AGILE Target Definitions 

A.1. Helicopter Definition 

A helicopter used in Multi Objective Optimisation Studies, is defined [30] using the 

following data.  Figure A.1 shows the graphical representation of the components of 

the helicopter. 

 
% Crew 
display_target 1 
amp   0                
mean  0 -1.25 4.5 
stdev 0.265 0.265 0 
  
% Cockpit Structure 
display_target 2 
amp   0 
mean  0 -1.75 4.5 
stdev 0.354 0.265 0.530 
 
% Main Rotor Inner Ellipsoid 
display_target 3 
amp   0 
mean  0 1.5 0 
stdev 1.237 0.035 1.237 
 
% Main Rotor Outer ellipsoid 
display_target 4 
amp   0 
mean  0 1.5 0 
stdev 2.475 0.035 2.475 
 
% Main Rotor Hub 
display_target 5 
amp   0 
mean  0 1.5 0 
stdev 0.177 0.177 0.177 
 
% Engines 
display_target 6 
amp   0 
mean  0 0.5 2 
stdev 0.265 0.177 0.354 
 
% Hydraulics & Gearbox 
display_target 7 
amp   0 
mean  0 0.5 -0.5 
stdev 0.354 0.177 0.530 
 
% Transmission platform  
display_target 8 
amp   0 
mean  0 0 0.5 
stdev 0.442 0.035 1.061 

% Port Store 
display_target 9 
amp   0 
mean  1.5 -1.75 -0.75 
stdev 0.088 0.088 0.442 
 
% Starboard Store 
display_target 10 
amp   0 
mean  -1.5 -1.75 -0.075 
stdev 0.088 0.088 0.442 
 
% Fuel Tanks 
display_target 11 
amp   0 
mean  0 -2.25 0.5 
stdev 0.442 0.088 0.884 
 
% Drive Shaft 
display_target 12 
amp   0 
mean  0 0 -5 
stdev 0.025 0.025 0.884 
 
% Tail Controls 
display_target 13 
amp   0 
mean  0 -0.5 -5 
stdev 0.007 0.007 0.884 
 
% Tail Fin 
display_target 14 
amp   0 
mean  0 0.5 -8.5  
stdev 0.035 0.177 0.530 
 
% Stabiliser 
display_target 15 
amp   0 
mean  1 1 -9 
stdev 0.354 0.035 0.177 
 
% Tail Rotor Disc 
display_target 16 
amp   0 
mean  -0.5 1 -9 
stdev 0.035 0.530 0.530 
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Description: 
1. Crew 
2. Cockpit structure 
3. Main rotor inner ellipsoid 
4. Main rotor outer ellipsoid 
5. Main rotor hub 
6. Engines 
7. Hydraulics & gearbox 
8.  Transmission platform structure 
9. &10. Stores 
11. Fuel tanks 
12. Drive shaft 
13. Tail controls 
14. Tail fin 
15. Stabiliser 
16. Tail rotor disc 
 

Figure A.1: Helicopter Target Geometry
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Appendix B. Multi-Objective Optimisation 

 
Evolutionary algorithms are based on computational models of fundamental 

evolutionary processes such as selection, recombination and mutation. An overview 

of a general evolutionary algorithm is shown in Figure B.1.  Individuals, or current 

approximations, are encoded as strings composed over some alphabet, i.e. binary, 

integer, real-valued, etc., and an initial population is produced by randomly sampling 

these strings.  Once a population has been produced it may be evaluated using an 

objective function or functions that characterise an individual’s performance in the 

problem domain.  The objective function(s) is also used as the basis for selection and 

determines how well an individual performs in its environment.  A fitness value is 

then derived from the raw performance measure given by the objective function(s) 

and is used to bias the selection process towards promising areas of the search space.  

Highly fit individuals will be assigned a higher probability of being selected for 

reproduction than individuals with a lower fitness value.  Therefore, the average 

performance of individuals is expected to increase as fitter individual are more likely 

to be selected for reproduction and the lower fitness individuals get discarded.  

Individuals can be selected more than once at any generation (iteration) of the EA. 

 

 
Figure B.1: An Evolutionary Algorithm 

 

Selected individuals are the reproduced, usually in pairs, through the application of 

genetic operators.  These operators are applied to pairs of individuals with a given 

probability and result in new offspring that contain material exchanged from their 

parents.  The offspring from reproduction are further perturbed by mutation.  These 

new individuals then make up the next generation.  The processes of selection, 

Procedure EA { 
 t = 0; 
 initialise P(t); 
 evaluate P(t); 
 while not finished do { 
  t=t+1; 
  select P(t) from P(t-1); 
  reproduce pairs in P(t); 
  mutate P(t); 
  evaluate P(t); 
 } 
} 
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reproduction and evaluation are then repeated until some terminal criteria are 

satisfied, e.g. a certain number of generations completed, a mean deviation in the 

performance in the population, or when a particular point in the search space is 

reached. 

 

B.1. Multi-Objective Optimisation 

The use of multi-objective optimisation (MO) in engineering design recognises that 

most practical problems involve a number of design criteria that need to be satisfied 

simultaneously, such that: 

 

Ω∈x
xG )(min

        (B.1) 

where x =[x1, x2,…, xn] and Ω define the set of free variables, x, subject to any 

constraints and G(x) = [g1(x), g2(x),…, gn(x)] are the design objectives to be optimised. 

 

For this set of functions, G(x), it can be seen that there is no one ideal optimal 

solution, but rather a set of solutions for which an improvement in one design 

objective will lead to a degradation in one or more of the other objectives.  This set is 

known as the Pareto-optimal solution set.  These solutions are also known as non-

dominated solutions to the MO optimisation problem. 

 

These solutions can be sought after using the NP methods discussed earlier by means 

of applying weighting and goal attainment functions for the objectives, however these 

approaches require precise expression of a usually not well understood set of weights 

and goals.  In addition to this NP methods can not handle multimodality and 

discontinuities in the function space well, and so are likely to find local solutions 

only. 

 

Evolutionary Algorithms (EA) on the other hand, do not require derivative 

information or a formal initial estimate of the solution region.  Because of the 

stochastic nature of the search mechanism, genetic algorithms (GA) are capable of 

searching the entire solution space with more likelihood of finding the global optimal 

than conventional methods.  Conventional methods usually require the objective 
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function to be well behaved, whereas the generational nature of GAs can tolerate 

noisy, discontinuous and time-varying function evaluations.  Furthermore EAs allow 

the use of mixed decision variables (binary, n-ary and real-values) that allows the 

parameterisation to closely match the nature of the problem. 

 

It has been shown that EAs can offer an advantage over conventional methods in 

optimal design problems and the related field of performance seeking control [26]. 

 

B.2. Multi-Objective Genetic Algorithms 

The idea of the fitness of an individual solution estimate and the associated objective 

function value are closely related in a single objective framework.  The objective 

function characterises the problem domain and cannot be changed at will, whereas the 

fitness of an individual can change depending on the solutions ability to reproduce 

and as such can be treated as part of the GA search strategy.  However with the multi-

objective case, these two values cannot be linked so closely, and the distinction 

between them becomes more important.  As described by Fleming and Fonseca [15], 

this distinction becomes important when performance is measured as a vector of the 

objectives, because the fitness value must remain a scalar.  Individual are assigned a 

measure of utility dependant on whether they perform better, worse, or similar to 

others in the population. 

 

B.2.1. Decision Strategies 

In the absence of any information regarding the relative importance of design 

objectives, Pareto-dominance is the only method of determining the relative 

performance of solutions.  Non-dominated individuals are all therefore considered to 

be the best performers and are thus assigned the same fitness, e.g. zero.  However 

determining the fitness of dominated solutions is a more subjective matter.  An 

approach that can be used is to assign a cost proportional to the number of individuals 

in a population that dominate a given individual, as illustrated in Figure B.2.  In this 

instance non-dominated individual are treated as desirable. 
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If goal and/or priority information is available for the design objectives, then it may 

be possible to differentiate between some non-dominated solutions.  For example, if 

degradation in an individual’s objectives still allow those goals to be maintained but 

also allow the attainment of some goals in other non-satisfied objectives, then these 

degradations should be accepted.  In cases where different priority levels are set for 

each objective then it is important to improve the high priority objective, such as hard 

constraints, after which the lower priority objectives may be improved. 

 

 
Figure B.2: Pareto Ranking 

 

These considerations have been formalized in terms of a transitive relational operator, 

preferability, based on Pareto-dominance, which selectively excludes objectives 

according to priority and goal attainment [31].  For simplicity one level of priority is 

considered as follows.  Consider two objective vectors u and v and their 

corresponding set of design goals, g.  Let the smile u(  denote the components of u that 

meet their goals and the frown u)  those that do not.  Assuming minimisation, one may 

then write 
uuuu gugu
))((

>∧≤        (B.2) 

where the inequalities apply component wise.  This is equivalent to, 

iiii guigui >∈∀∧≤∈∀ , , uu )(      (B.3) 
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where ui and gi represent the components of u and g respectively.  Then, u is said to 

be preferable to v given g if and only if 

[ ]{ })()()()( uuuuvuvu vugvvuvu
(((())))

pp ∨≤∧=∨    (B.4) 

where apb is used to denote that a dominates b.  Hence u will be preferable to v if 

and only if one of the following is true: 

The violating components of u dominate the corresponding components of v. 

The violating components of u are the same as the corresponding components in v, 

but v violates at least on goal. 

The violating components of u are equal to the corresponding components of v, but u 

dominates v as a whole. 

 

B.2.2. Fitness Mapping and Selection 

After a cost has been assigned to each individual, the selection of individuals can take 

place.  There are many schemes that exist, including rank-based cost-to-fitness 

mapping [32] followed by stochastic universal sampling [33], or tournament selection, 

also based on cost, as described by Ritzel et al. [34]. 

 

Exponential rank-based fitness assignment is shown in Figure B.3.  Individuals are 

sorted by their cost (in this case the values from Figure B.2 previously), and assigned 

fitness values according to an exponential rule in the first instance, shown by the 

narrow bars in Figure B.3.  A single fitness value is then derived for each group of 

individuals sharing the same cost. Through averaging, and is shown in the figure by 

the wider bars. 
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Figure B.3: Rank-Based Fitness Assignment 

 

B.2.3. Fitness Sharing 

Even though all preferred individuals in the population are assigned the same level 

fitness, the number of offspring they produce may differ due to the stochastic nature 

of EAs.  Over generations, these imbalances may accumulate resulting in the 

population focussing on an arbitrary area of the trade-off surface, known as genetic 

drift [35].  Additionally, recombination and mutation may be less likely to produce 

individuals at certain area of the trade-off surface, e.g. the extremes, giving only a 

partial coverage of the trade-off surface. 

 

Originally introduced as an approach to sampling multiple fitness peaks, fitness 

sharing [36] helps counteract the effects of genetic drift.  This is done by penalising 

individuals according to the number of others in their neighbourhood.  Each 

individual is assigned a niche count, initially set to zero, which is incremented by a 

certain amount for every individual in the population, including itself.  A sharing 

determined the contribution or other individuals to the niche count as a function of 

their mutual distance in genotype, phenotype, or objective space.  Raw fitness values 

are then weighted by the inverse of the niche count and normalised by the sum of the 

weights prior to selection.  The total fitness of the population is redistributed, and thus 

shared, by the population.  However a problem with the use of fitness sharing is the 
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difficulty in determining the niche size, σshare, i.e. how close individuals may be 

before degradation occurs. 

 

An alternative, but analogous, approach to niche count computations are kernel 

density estimation methods [37] as used by statisticians.  Instead of a niche size, a 

smoothing parameter, h, whose value is ultimately subjective, is used.  However 

guidelines have been developed for suitable selection of the value of h for certain 

kernels, such as the standard normal probability density function and Epanechnikov 

kernels.  The Epanechnikov kernel may be written as [38] 
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where n is the number of decision variable, cn is the volume of the unit n-dimensional 

sphere, and d/h is the normalised Euclidean distance between individuals. 

Silverman [37] gives a smoothing factor that is approximately optimal in the least 

mean integrated square error sense when the population follows a multivariate normal 

distribution for the Epanechnikov kernel Ke(d)as 
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for a population with N individuals and identity covariance matrix.  Where 

populations have an arbitrary sample covariance matrix , S, this may simple be 

‘sphered’, or normalised, by multiplying each individual by a matrix R such that 

RRT=S-1.  This means that the niche size, which depends on S and h, may be 

automatically and constantly updated, regardless of the cost function, to suit the 

population at each generation. 

 

B.2.4. Mating Restriction 

Mating restrictions can be employed to bias the way the in which individuals are 

paired for reproduction [38].  Recombining arbitrary individuals form along the trade-

off surface may lead to the production of a large number of unfit offspring, known as 

lethals, which could adversely affect the performance of the search.  To alleviate this 

potential problem, mating can be restricted, where feasible, to individuals from within 

a given distance of each other, σmate.  A common practise is to set σmate=σshare so that 
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individuals are allowed to mate with one another only if they lie within a distance h 

from each other in the ‘sphered’ space used for sharing [15]. 

 

B.2.5. Interactive Search and Optimisation 

As the population of the MOGA evolves, trade off information will be acquired.  In 

response to the optimisation so far, one may want to investigate a smaller region of 

the search space, or even move to a totally new region.  This can be achieved by 

resetting the goals supplied to the MOGA which, in turn, affects the ranking of the 

population and modifies the fitness landscape concentrating the population on a 

different area of search space.  The priority of design objectives may also be changed 

interactively using this scheme. 

 

The introduction of a small number of random individuals at each generation has been 

shown to make the EA more responsive to sudden changes in the fitness landscape, as 

occurs when the optimisation is changed interactively [39]. 

 
 

B.3. Review of Current Multi-Objective Genetic Algorithms 

The main differences between various Multi-Objective Genetic Algorithms are the 

methods by which the processes of fitness selection, recombination and mutation are 

used to maintain a set of solutions that are evenly distributed along the Pareto front. 

 

B.3.1. VEGA 

Schaffer, 1985 
 

An early form of a multi-objective genetic algorithm, presented by Schaffer [40], is 

the Vector Evaluated Genetic Algorithm (VEGA).  VEGA involved using sub-

populations of the original population.  Each sub-population is made by calculating 

one objective function at a time, rather than aggregating all objectives.  Selection is 

performed by computational loops, whereby at each loop the fitness of an individual 

is evaluated using a single objective function.  Members are selected for the next 

generation using stochastic selection methods.  This selection process is repeated for 
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each objective function.  For example, a problem with k objectives, k sub-populations 

will be created, each with N/k individuals, where N is the total population size.  The 

sub-populations are shuffled together to create a new generation.  This is similar to 

using weighted sums for objectives. 

 

This process is based on the notion that minimum of an objective is a unique Pareto 

optimal point, and as such these would define the vertices of the Pareto optimal set.  

Schaffer’s method however, does not necessarily yield an evenly distributed set of 

Pareto optimal points, as solution tend to cluster about each individual objective’s 

minimum.  The resulting cluster is referred to as a species, which are groups of 

solutions that share common attributes. 

 

Schaffer proposed two solutions, the cross-breeding of sub-populations (species), and 

that non-dominated solutions be given a selection preference. 

 

B.3.2. Ranking 

Some Alternatives to VEGA were described by Goldberg [41], Fonseca & Fleming 

[15], Srinivas & Deb [42], and Cheng & Li [43].  They proposed assigning a fitness 

ranking system to the population based on an individual’s dominance within the 

population.  All non-dominant members are assigned a rank of 1, and temporarily 

discarded.  The next set of non-dominated solutions relative to this reduced 

population is then assigned rank 2, and so on.  Therefore the fittest solutions have 

lowest rank value, i.e. Fitness is inversely proportional to rank.  There are many 

methods described ([24], [15], [41], and Narayanan & Azarm [44]).  Another method, 

Belegundu et al [45], suggests that high ranking members (i.e. those with low fitness 

values) should be discarded and replaced with new randomly created individuals. 

 

B.3.3. Pareto-Set Filter 

Sometimes it is possible that a Pareto optimal point does not survive to the next 

generation.  To overcome this issue, Cheng & Li [46] suggest the use of a Pareto Set 

Filter. 
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At each generation, two sets of solutions are created, the current population of 

solutions, and the Filter which provides an approximation to the theoretical Pareto 

optimal set.  This Filter is the set of all non-dominated solutions.  At each generation 

new solutions with rank 1 are added to the filter and checked for non-dominance 

within the set.  Any dominated solutions within the Filter are discarded.  The size of 

the Filter is usually the size of the population.  When the Filter reaches capacity, new 

solutions replace a solution that is situated close-by to another within the set.  This 

helps maintain a distribution of points along the Pareto front, and would eventually 

converge to the true Pareto front. 

 

B.3.4. Elitist Strategy 

A similar approach to the Pareto-set filter was proposed by Ishibuchi & Murata [47] 

called Elitist Strategy, which functions independent of rank.  As before two sets of 

solutions are created, the current population and a ‘tentative set of non-dominated 

solutions’, which is an approximate Pareto set.  All points in the current set that are 

non-dominated by points in the tentative set are added to the tentative set.  Then 

dominated solutions in the set are discarded.  Following crossover and mutation a user 

specified number of solutions are reintroduced to the current population.  These points 

are called elite points.  Following up from this procedure Murata et al [48] suggest 

that x number of solutions with best values for each objective can be regarded as elite 

points and be kept for the next generation. 

 

B.3.5. Tournament Selection 

Another method for the selection process, Tournament Selection, developed by Horn 

et al [49], involves choosing two solutions from the population at random, called 

candidate points.  These two will compete for survival into the next generation.  A 

second set called the tournament set (or comparison set) is generated, again using 

random solution from the current population.  The two candidate points are compared 

with each member of the tournament set for dominance.  If one of the candidate points 

is non-dominant relative to the tournament set, it is selected for the next generation.  

If there is a tie, or no preference fitness sharing (see below) is used to select the 

appropriate candidate.  Note that the size of the tournament set is crucial in this 
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process.  If the set is too small only a few Pareto optimal points will be found.  Also if 

it is too large then the GA may converge prematurely.  The size is usually a 

percentage of the total population size, and relates to the dominance pressure, or 

degree of difficulty for an individual survivability. 

 

 

 

B.3.6. Niche Techniques 

When a number of solutions group together it is known as a niche.  Niche techniques 

(also known as niche schemes) are employed to ensure that the GA does not converge 

to a niche, i.e. a limited number of Pareto points.  Therefore these techniques are used 

to yield an even spread of Pareto points.  Multi-Objective GA’s tend to cluster around 

or converge to a limited number of Pareto points.  This process is known as genetic 

drift, and niche techniques aim to develop many of these niches whilst ensuring that 

each niche does not grow too much. 

 

B.3.6.1. Fitness Sharing 

One such niche technique is fitness sharing.  It is achieved by penalising the fitness 

value of points that are located close to one another, effectively reducing the 

probability of selection for the group of solutions (Goldberg [41], Deb [50], Srinivas 

& Deb [42]).  The fitness value is divided by a constant, k, where k is proportional to 

the number of points in the nearby space.  Therefore the fitness of all points in this 

niche are ‘shared’ in some sense, hence the term fitness sharing. 

 

In the context of tournament selection, if two individuals are dominated or non-

dominated, the winner is the one with the fewer individuals close to it.  This is known 

as ‘equivalence class sharing’. 

 

B.3.6.2. Preselection 

Cheng & Li [43] suggest that if an offspring has a higher fitness value than its parent 

then it replaces its parent.  Children have equivalent or superior characteristics to 
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parents and remain close to parent positions, avoiding drift.  This is known as 

preselection. 

 

Following on from this method, Narayana & Azarm [44] present a method in which a 

limit is placed on the distance between parents.  If they are close together then they 

are not selected for crossover.  Also suggested is that only non-dominated solutions be 

evaluated for constraint violation and a fitness penalty is assigned to point that violate 

a constraint. 

B.3.7. Non-Dominated Sorting Genetic Algorithm, NSGA-II 

  Deb, K, Pratap A, Agarwal S, and Meyarivan T, 2002 [51] 
 

NSGA-II is an improved version of the NSGA proposed by Deb et al [42].  The idea 

behind the non-dominated sorting procedure is that a ranking selection method is used 

to highlight good points and a niche method is used to maintain stable subpopulations 

of good points.  The algorithm was developed based on these concepts.  

B.3.7.1. NSGA (I) 

The NSGA varies from the simple genetic algorithm in the way that the selection 

operators work.  The crossover and mutation operators remain as normal.  Before the 

selection process is performed the population is ranked on the basis of an individual’s 

non-dominance of other individuals.  The non-dominated individuals present in the 

population are first identified from the current population.  These individuals are then 

assumed to constitute the first non-dominated front in the population and assigned 

a large dummy fitness value.  The same fitness value is assigned to give an equal 

reproductive potential to all these non-dominated individuals.  In order to maintain the 

diversity of the population these individuals are then shared with their dummy fitness 

values.  Sharing is achieved by performing a selection operation using degraded 

fitness values which are obtained by dividing the original fitness value of an 

individual by a quantity proportional to the number of individuals around it.  This 

allows multiple optimal points to co-exist in the population.  After sharing these non-

dominated individuals are ignored temporarily to process the rest of population in the 

same way to identify individuals for the second non-dominated front.  These new set 

of points are then assigned a new dummy fitness value which is kept smaller than the 
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minimum shared dummy fitness value of the previous group.  This process is 

continued until the entire population is classified into several fronts.  The population 

is then reproduced according to the dummy fitness values assigned.  A stochastic 

remainder proportionate selection is used by the NSGA.  Since individuals in the first 

front have the maximum fitness value they always get more copies than the rest of the 

population.  This is in order to search for non-dominated regions or Pareto-Optimal 

fronts.  This results in quick convergence of the population towards non-dominated 

regions and sharing helps to distribute it over this Pareto region.  The efficiency of 

NSGA come from the way multiple objectives are reduced to dummy fitness 

functions using a non-dominated sorting procedure.   

 

Figure B.4 shows a flow chart of this algorithm.  The algorithm is similar to a simple 

GA except that the classification of non-dominated fronts and the sharing operators.  

The ranking classification is performed according to the non-dominance of the 

individuals in the population and a distribution of the non-dominated points is 

maintained using a niche formation technique.  Both these aspects cause the distinct 

non-dominated points to be found in the population. 
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Figure B.4: Flow Chart for the NSGA 
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This NSGA is computationally expensive for large populations, due to the nature of 

non-dominated sorted procedure being complex which had to be performed at each 

generation.  The NSGA also lacked elitism, which would result in the loss of some 

good individuals from the population 

 

B.3.7.2. NSGA-II 

The NSGA-II addresses these issues and incorporated techniques to overcome these 

problems.  Using the following description, a fast non-dominated sorting approach is 

shown which requires fewer computations.  Firstly, for each solution two values are 

calculated: 

 

1.   The domination count, which is the number of solutions that dominate 

the solution, and; 

2. A set of solutions that the solution dominates. 

 

All solutions in the first non-dominated front will have their domination count as zero.  

Then for each solution with a domination count of zero, the members of its set of 

dominated solutions have their domination counts reduced by one. If by doing so, any 

member of this set has its domination count become zero, it is put in a separate list, 

and these members belong to the second non-dominated front. Now, the above 

procedure is continued with each member of this list and the third front is identified. 

This process continues until all fronts are identified.  Once a solution has a dominance 

count of zero, the solution is assigned a non-domination level and will never be 

visited again.  Thus, the overall complexity of the procedure is reduced. 

 

As well as convergence to the Pareto-optimal set, it is also desired that a GA 

maintains a good spread of solutions in the obtained set of solutions. The original 

NSGA used the well-known sharing function approach, which has been found to 

maintain sustainable diversity in a population with appropriate setting of its associated 

parameters. The sharing function method involves a sharing parameter, which sets the 

extent of sharing desired in a problem. This parameter is related to the distance metric 

chosen to calculate the proximity measure between two population members. The 
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parameter denotes the largest value of that distance metric within which any two 

solutions share each other’s fitness. This parameter is usually set by the user. There 

are two difficulties with this sharing function approach: 

 

1. The performance of the sharing function method in maintaining a spread of 

solutions depends largely on the chosen value; 

2. Since each solution must be compared with all other solutions in the 

population, the overall complexity of the sharing function approach is quite 

high. 

 

In the NSGA-II, the sharing function approach is replaced with a crowded-

comparison approach that eliminates both the above difficulties to some extent. The 

new approach did not require any user-defined parameter for maintaining diversity 

among population members. Also, the suggested approach had a better computational 

complexity. To describe this approach, we first define a density-estimation metric and 

then present the crowded-comparison operator. 

 

B.3.7.2.1. Density Estimation:  

 
Figure B.5: Crowding Distance 

 

To get an estimate of the density of solutions surrounding a particular solution in the 

population, we calculate the average distance of two points on either side of this point 

along each of the objectives. This quantity serves as an estimate of the perimeter of 

the cuboid formed by using the nearest neighbours as the vertices (call this the 
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crowding distance). In Figure B.5 the crowding distance of the nth solution in its front 

(marked with solid circles) is the average side length of the cuboid (shown with a 

dashed box).  The crowding distance computation requires sorting the population 

according to each objective function value in ascending order of magnitude. Then for 

each objective function, the boundary solutions (i.e. those with smallest and largest 

function values) are assigned an infinite distance value. All other intermediate 

solutions are assigned a distance value equal to the absolute normalized difference in 

the function values of two adjacent solutions. This calculation is continued with other 

objective functions. The overall crowding distance value is calculated as the sum of 

individual distance values corresponding to each objective. Each objective function is 

normalized before calculating the crowding distance. 

 

After all population members in the set are assigned a distance metric, two solutions 

can be compared for the extent of their proximity with other solutions. A solution 

with a smaller value of this distance measure is, in some sense, more crowded by 

other solutions.. Although Figure B.5 illustrates the crowding distance computation 

for two objectives, the procedure is applicable to more than two objectives as well. 

 

B.3.7.2.2. Crowded Comparison Operator: 

The crowded comparison operator guides the selection process at the various stages of 

the algorithm toward a uniformly spread out Pareto-Optimal front. Assuming that 

every individual in the population has two attributes: 

 

1. A non-domination rank; 

2. A crowding distance. 

 

An order is defined, that between two solutions with differing non-domination ranks, 

the solution with the lower (better) rank is preferred.  Otherwise, if both solutions 

belong to the same front, then the solution that is located in a lesser crowded region is 

preferred.   

The NSGA-II is implemented using these new innovations (a fast non-dominated 

sorting procedure, a fast crowded distance estimation procedure, 

and a simple crowded comparison operator). 
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B.3.8. Relational Multi-Objective Genetic Algorithm, RMOGA 

Lee, S and Tsui, H, 2004 [52] 

 

The Relation Multi-Objective Genetic Algorithm, RMOGA, proposed a new operator 

for a GA, inheritance. 

 

B.3.8.1. Inheritance Operator 

Inheritance is similar to the crossover operator; however it aims to exchange 

mathematical relationships, but not values, between two selected sub chromosomes 

(as opposed to the genes used in crossover).  Such relationships can be time, 

temperature, spatial, hierarchical relationships etc. depending on the application and 

definition of the chromosome. 

 

The process for this operator is as follows: 

 

1 Find the Relationship function; 

2. Calculate genetic relationship between pairs of sub-chromosomes; 

3. Swap their relationship; 

4. Calculate the values in solution space from the inverse of the relationship function. 

 

To provide an example of this procedure, suppose a set of two chromosomes {C1, C2, 

C3} and {C4, C5, C6}.  Traditional crossover operators would swap sub 

chromosomes C3 and C6 to give offspring {C1, C2, C6} and {C4, C5, C3}.  The 

relationship between {C2, C3} and {C5, C6} is lost.  The best relationship may not 

propagate to the next generation. 
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Figure B.6 Inheritance Operation 

 

Figure B.6 illustrates this idea inheritance, which keeps relationships between sub 

chromosomes.  Let R1, R2, R3, R4 be the relationship between {C1, C2}, {C2, C3}, 

{C4, C5} and {C5, C6} respectively.  The relationships are swapped, yielding {R1, 

R4}, and {R3, R2}.  The offspring chromosomes are {C1, C2, A} and (C4, C5, B} 

where A and B are calculated from the inverse of the relationship function such that 

the relation ship of {C2, A} equals that of {C5, C6}, and similarly, {C5, B} to {C2, 

C3}.  These relationships are dependent on the problem and can be linear, or non-

linear. 

 

B.3.8.2. RMOGA 

This can then be implemented within a MOGA framework, show below in Figure B.7, 

whereby the new offspring can be created from three modes: elitism (direct copy from 

parents), crossover with mutation (search for optimal at a micro level), and 

inheritance with mutation (optimal solution search at macro level). 

In the selection stage the, the offspring, N, from each mode are selected to a given 

ratio, i.e. 2: (N-1)/2: (N-1)/2. 
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Figure B.7: RMOGA Structure 

 

B.4. Multi Objective Studies 

B.4.1. Initial MOGA Analysis 

A multi objective optimiser, MOGA, was initially employed using each individual 

component’s lethality probability as individual objectives (wings, engine fuselage, 

cockpit), with the overall lethality value as a fifth objective.  A population of fifty 

individuals per generation was initialised, using the three parameter setup employed 

in the previous studies.  The MOGA then generated a generation of solutions that 

provided a measure of how the individual components of Pk interacted with each 

other.  This showed that if the cockpit Pk value was high for example, then the engine 

Pk was lower, due to its relative position on the aircraft itself.  The output for the 

MOGA optimiser is shown below, in Figure B.8.  As can be seen there are many 

solutions competing for optimality for this particular configuration, shown as the lines 

on the trade-off graph. 
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Figure B.8: MOGA Optimiser Window 

 

An example of such a case is shown in Figure B.9.  the MOGA attempts to optimise 

maximum damage to all components of the target aircraft and as a result, the cone of 

fragments is a flat disc shape that hits the aircraft diagonally along the length of the 

craft in order to inflict damage upon all four components. 

 

 
Figure B.9: Example MOGA Optimised Endgame Geometry 

 



162 

B.4.2. Robust MOGA Optimisation 

The next stage for the MOGA software was to set the objectives as total Pk and the 

robustness value from the previous work with the standard Matlab optimisers.  This 

configuration was set such that for each suitable individual (solution) a routine was 

run that sampled ten deviant (from optimal parameters) solutions as for the Matlab 

optimiser and the worst case was used as the sensitivity measure.  This configuration 

is shown in Figure B.10. 

 

Figure B.10: MOGA Robustness Trade-Off Window 

 
For this setup the minimum value of perturbed samples was used.  However, a more 

suitable measure for this sensitivity is a standard deviation of the perturbed samples.  

Another implementation of MOGA explored this measure of sensitivity as the second 

objective, and also a third objective of maximising the mean was implemented, 

although this is closely connected to the standard deviation, it gives a slightly easier 

visual of the performance of individuals in the population.  

  

All the endgame parameters were considered for this implementation.  The Trade-Off 

window is coded so that selecting an individual’s line would display the 

corresponding engagement geometry using the AGILE GUI.   

 

Figure B.11 shows a MOGA Trade Off window for this setup.  Three runs were 

undertaken, for front on, side on and rear on scenarios using engagement angle 

constraints (-45 < η < 45 for rear on, 45 < η < 135 for side on, and 135 < η < 225 for 
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front on), using 50 individual per generation, for 200 generations, and for each 

individual, 50 perturbed samples are taken to establish the sensitivity measure of 

standard deviation and mean.  The sensitivity measure is calculated by perturbing 

only those variables that are controllable, i.e. the missile parameters, δ, ε, x0, y0, z0, 

Zdelay. 

 

 
Figure B.11: Objective MOGA Trade-Off Graph 

 

As can be seen there are many competing solutions present that offer high lethality 

probabilities which are also robust to perturbations in the missile parameters.  These 

solutions are shown in Figure B.12.  The scatter plots of the Pareto Solutions (left), 

accompanied by the scatter plot of all solution found in 200 generations (right), are 

shown as overall Pk (nominal) vs. standard deviation. 
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Figure B.12: MOGA Optimisations for 200 Generations 

 

As can be seen many solutions exist, however most are dominated by the Pareto set, 

and for each case the middle region of Pk yields sparser solutions.  Looking at the 

graphs on the right, for all solutions, a definite trend can be seen showing the increase 

in standard deviation as overall optimal probability increases, however there do exist 

some solutions that can provide a good robustness measure, and it is these that show 

on the Pareto Front. 

 

Some example endgame geometries from the studies above are shown below. 
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 (a): Front On   (b): Side On  

 
(c): Rear On 

Figure B.13: Example of Engagement Geometry 

 

In Figure B.13(a) the damage is inflicted on the aircraft across the cockpit and 

fuselage, with some damage to the wing.  This provides a good likelihood of kill as 

the cockpit is deemed highly vulnerable to damage.  The side on engagement, (b), 

again aims to line up the majority of fragment to hit the wing structure and the 

cockpit, and this is also fairly robust as slight changes will still inflict quite a lot of 

damage. The rear on case (c), however shows that although fragments hit the edge of 

the wing and the cockpit regions it could easily miss the target entirely if the 

parameters deviate slightly in the wrong direction. 

 

B.4.3. NSGA-II Implementation For AGILE 

The above optimisations performed on MOGA were duplicated using the NSGA-II 

algorithm for comparison.  The following results were yielded following a 

preliminary run on the NSGA-II for 50 generations.  In Figure B.14, the upper section 
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shows the nominal (*) and mean (o) values.  As can be seen only a few solutions are 

found compared to the MOGA implementations. 

 

 
Figure B.14: Initial NSGA-II Optimisation on Simple Aircraft Model 

 

However this result will need to be investigated further to ensure that the NSGA-II 

has been setup correctly, and this process is currently under way. 

 

B.4.4. Initial Helicopter Model Work 

Following the work carried out using the simple fixed wing aircraft model, the 

helicopter model described in Appendix A has been implemented using the MOGA 

setup used previously.  Three optimisations for front on, side on and rear on 

engagements were initialised using 50 individuals per generation, 50 perturbations per 

individual, and for 100 generations.  The results are plotted in the graphs in Figure 

B.15, showing the competing Pareto optimal solutions (left), and all solutions found 

by the optimiser (right).   
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Figure B.15:  MOGA Optimisations for Helicopter Model 

 

As can be seen a Pareto front exists containing many solutions, and that overall a 

concave surface of solutions exist, showing that for some engagements of high 

lethality and low lethality there is very little deviation in perturbations of controllable 

parameters.  However for inter mediate lethality values (0.3 < lethality < 0.7) there 

appears to be some deviation.  This area of the search space warrants further study.  

Examples of endgame geometry from one of the solutions for each category are 

shown in Figures B.16.   
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(a): Front On  

 
(b): Side On  

 
(c): Rear On  

Figure B.16: Endgame Geometry for Helicopter MOGA Optimisation 

 

From the front on scenario (a), it can be seen that the missile fragments are hitting the 

helicopter target across the main rotor and cockpit structures, providing a fairly robust 

solution as the rotor is a highly vulnerable component and slight deviation will still 

result in a high kill probability.  Similarly for the side on engagement, (b), the missile 

is aiming to hit the cockpit and main rotor structures.  For the rear on engagement (c), 

however, it is much harder to hit the cockpit as it is located at the front of the target, 

therefore in this solution the drive shaft to the tail has been hit from below and to the 

rear as this is also a vulnerable area of the target. 
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the endgame, the final few milliseconds before detonation, can yield 
improvements in overall lethality. As there is likely to be uncertainty in 
both the target parameters and missile coordinates, a multiobjective 
problem is developed so that the robustness of a solution can be traded 
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likely to be of benefit when exploiting modern control schemes, such as 
MPC, that offer improved accuracy and agility. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The present generation of missile systems are 
likely to be sub-optimal in many engagement 
scenarios currently considered. Examples of 
engagements include both anti-air and ground 
attack domains and these have to allow for an 
increased use of stealth, more effective 
countermeasures and the use of redundant 
subsystems for increased mission survivability. 
Traditionally, improvements in missile lethality 
have been sought through improved guidance 
and control laws, for example, to optimize 
guidance for a specific control law and 
engagement conditions (Gurfil, 2001) or by 
solving receding horizon optimizations to 
achieve fast and realisable online target tracking 
(Kim et al, 2001). In this paper, the focus is on 
optimization of the endgame, i.e., the reachable 
set of outcomes in terms of engagement 
geometry, rather than the guidance and control 
laws that result in such a state being achieved.  
 
Flyout is the portion of flight from release to 
immediately before detonation. During flyout the 
missile has to engage the target and deliver the 
warhead to within a close distance of the target. 
The engagement geometry at the start of the 
endgame is critical to the lethality and is the state 
at the end of flyout. The next section describes 
how the endgame can be modelled and a 
programme (AGILE) for achieving that is briefly 
described. The use of optimization to enhance 
the lethality of endgames is then considered and 
further developed with multiobjective 
formulations to find endgames that have a high 

probability of kill as well as robustness to 
variations in the parameters of the problem. 
 

2. ENGAGEMENT MODELLING 
 
The trajectories and orientations of the missile 
and target in the final milliseconds before 
detonation are collectively known as the 
endgame geometry. Consider the missile-target 
engagement shown in Fig. 1. Using GW372 
notation (Payne, 1995) the relationship between 
the Cartesian frames of reference for the missile 
and the target can be defined where the x, y and z 
axes are usually aligned in both frames as 
follows: 

• The x-axis is to the left (e.g., along the 
port wing of a fixed-wing aircraft); 

• The y-axis is up (in level flight, the 
direction of the pilot’s torso); 

• The z-axis is ahead, along the centre 
line of the aircraft or missile (i.e., in 
direction of flight with zero incidence). 

Φ

γ

ω

Rη
η

 
Fig. 1: Engagement geometry in GW372 

notation. 
 
The GW372 coordinates only specify relative 
position, velocity and orientation. Higher 
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derivatives, e.g., acceleration and rotation rates, 
are not required as lethality is not usually 
sensitive to them due to the very short time 
periods involved in damage mechanisms. All 
angles in GW372 are specified in degrees and 
from Fig. 1 the following are identified: 

• Vm and Vt are missile and target speeds 
(m/s). 

• η is the engagement angle that is 
subtended between the missile and 
target velocity vectors (η = 0 → tail 
chase, η = 180° → head-on). 

• ω is target roll. 
• δ, ε, and ψ define missile yaw, pitch and 

roll. 
• φ, Sr and z define the missile burst 

points. φ is known as the dartboard 
angle, Sr is the dartboard radius and z 
specifies the position of the burst point 
along the trajectory. 

• Additional parameters, x0, y0 and z0, 
define a missile aim point in the target’s 
frame of reference. This point defines 
the warhead detonation point as the 
cylindrical polar coordinate system (φ, 
Sr and z) where the x-axis is aligned 
with missile velocity. 

 
The important feature of this system is the use of 
a ‘Common Velocity’ (CV) plane as a datum for 
measuring many of the angles in the system.  The 
CV plane is defined as the plane containing the 
missile and target velocity vectors (or parallel 
vectors), and passing through the target origin.  
The CV plane can have any orientation in space. 
In reality the missile and target both move along 
their respective velocity vectors; however it is 
easier to think of the target as stationary with the 
missile moving along a vector VR towards it.  It is 
usually assumed that as the missile approaches 
the target along VR all the other parameters 
remain constant (no manoeuvre takes place).  
This assumption is justified because all the 
fusing and lethality events take place over a few 
milliseconds and within a very short distance (a 
few meters) of the trajectory length.  The GW372 
system therefore has the advantage that the 
primary parameters can be changed 
independently of each other, and each has a clear 
physical meaning. 
A lethality prediction tool, Analytic Gaussian 
Intersection for Lethality Engagement (AGILE), 
allows engagements defined using GW372 to be 
evaluated and a value (probability) of 
engagement uncertainty, or ‘kill probability’, Pk 
determined (Watson, 2003).  AGILE can 
evaluate an endgame geometry in milliseconds, 
including: prediction of damage inflicted by 
warhead fragments on the target or target 
components; a close-burst model incorporating 

blast effects; direct impact model; and a simple 
fuzing model. 
 
The principal method of representing the above 
model features is by using 3-dimensional 
Gaussian functions. A Gaussian function f has 
the following form: 

( ) ( )11( ) exp
2

Tf x a x b C x b−⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 

 
where x is a spatial position vector (with three 
Cartesian components),  a is the maximum value 
of f, b is the position vector where f is maximal 
and C is a 3 × 3 positive-definite symmetric 
matrix representing the shape and orientation of 
level sets (surface contours) of f. The level sets 
of a Gaussian are ellipsoids, so the Gaussian 
itself can be thought of as a fuzzy ellipsoid; the 
value of f decays smoothly from a to zero as the 
distance from the centre b of the ellipsoids 
increases. 
 
The following objects are represented by sums 
of Gaussian functions in AGILE: 
• Target vulnerability to warhead fragment 

damage. Regions of high vulnerability are 
close to the centre of one of more 
Gaussians, whilst regions of low or zero 
vulnerability are typically further away 
from the centres. 

• Warhead fragment cluster density. This is 
not the density or mass of individual 
fragments, but their average number per 
unit volume, or ‘population density’. 
Where the target vulnerability and 
warhead fragment density are both high, 
the level of damage (probability of target 
kill or component failure) will be high. 

• Close-burst lethality and warhead blast 
damage. A set of ellipsoids and cylinders 
is used to define a neighbourhood of the 
target for which a ‘kill’ is certain. This 
neighbourhood is the set of all points 
inside one of more of these objects; the 
latter are derived from level sets (contour 
surfaces) of Gaussian functions. 

• Target shape, which is used by both the 
fuzing and impact models. In the fuzing 
model Gaussians are used to define the 
external shape of the target and its 
reflectivity to the radiation used by the 
fuzing sensor. In the impact model 
Gaussians are used to define the shape of 
both the missile and target, so that the 
severity of a collision can be calculated. 

• Missile shape. Used by the impact model. 
• Radiation pattern of the fuzing sensor. 

This information is used in conjunction 
with the shape and reflectivity of the 
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target to predict the moment when the 
fuze is triggered. 

 
Gaussian components are used in AGILE for the 
following reasons: 
• Their intersections can be computed very 

efficiently using an analytical formula, 
hence the acronym Analytic Gaussian 
Intersection for Lethality Engagement. 

• Uncertainty in the endgame geometry can 
be represented directly by Gaussian 
components, reducing or avoiding the 
need for Monte-Carlo methods. 

 
The reason for AGILE’s speed is its ability to 
represent many warhead fragments as a single 
entity; instead of computing the intersection of 
each fragment with the target, a single 
calculation can applied to hundreds of fragments 
as an ensemble. Fig. 2 shows an example of an 
endgame for a simple fixed-wing target. Here, 
the engagement angle η = 46°, represents a rear, 
side-on impact at a miss-distance of 15m. From 
the fragment trajectories, it can be seen that for 
this endgame geometry, the port wing is 
vulnerable to fragment damage while the rest of 
the aircraft remains unshaved. AGILE evaluates 
kill probabilities from the Gaussian components 
described above assigning an overall probability 
of kill, Pk, and individual probabilities for a kill 
arising from cockpit, fuselage, engine and wing 
damage. Clearly, in Fig. 2 the majority of the Pk 
arises from fragments damaging the wing and its 
components. 

 
Fig. 2: Fragment vulnerability for simple fixed-

wing aircraft. 
 
The parameters listed in Table 1 can be varied 
over the ranges shown in an AGILE endgame 
evaluation.  Fig. 3 shows the result of exercising 
AGILE with 1000 input sets where the values for 
the parameters are chosen randomly over these 
ranges. It is clearly unlikely that a random 
endgame will yield a high value of Pk. By 
optimizing the endgame geometry to achieve 
high and/or robust Pk, the missile flyout endpoint 
is determined and a suitable guidance law can be 
developed using conventional approaches such as 

Shinar & Vladimir (2003) or intelligent ones 
such as Leng (1996). 
 
In the next section, a series of optimizations are 
employed to determine good engagement 
geometries. The engagement space is first 
sampled and direct optimization of the 
probability of kill considered through a restricted 
parameter set. However, a requirement of a good 
endgame is that the probability of kill should be 
robust to uncertainty in the parameters. Thus, 
multiobjective optimization is used to identify 
such solutions and their properties assessed.  

Table 1: Agile engagement parameters 

Parameter Min Max Nominal 

VM 0 2000 - 

VT 0 2000 - 

η 0 180 - 

SR 0 100 15 

ω 0 360 0 

δ 0 180 0 

ε 0 180 0 

ψ 0 360 0 

x0 -5 5 0 

y0 -5 5 0 

z0 -5 5 0 

Zdelay -10 10 0 
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Fig. 3: Random search Pk distribution. 

3. ENDGAME OPTIMIZATION 
 
The endgame is the final few milliseconds of 
flight before detonation of the warhead. In order 
to maximize the probability of a kill, the missile 
guidance system must ensure that the missile 
parameters approach those of a suitable 
endgame. Alternatively, achieving the maximum 
Pk given a limited deviation from a nominal 
endgame might be a suitable goal for a model-
based predictive controller used in the guidance 
loop. The following four problems explore the 
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use of AGILE as a tool for determining and 
maximizing endgame lethality. 
 
Problem 1: max Pk  
The three most significant parameters affecting 
the endgame are missile speed, VM, target speed, 
VT, and the missile-target engagement angle, η. 
The single objective considered is min (-Pk) and 
Table 2 shows ten examples of achievable Pk 
given the starting point { }, ,Mi Ti iV V η . These 
optimizations where performed using the SQP 
algorithm in the MATLAB Optimization 
Toolbox with the remaining parameters set to the 
nominal values of Table 1. The initial sets are not 
always sensible, but demonstrate how the 
engagement geometry should be modified to 
improve potential lethality. For example the 
initial set {1400, 1600, 0} represents a tail-
chasing missile travelling slower than its target. 
However, given that it is detonated 15 m from 
the tail of the target, the low probability of kill, 
0.366, arises mostly from fragment damage to 
the engine. By slowing the target to 1465 m s-1, 
increasing the missile speed to 1538 m s-1 and 
engaging at a slight incidence of 1.2°, Pk 
increases to 0.967.  
 
Table 2: Three parameter engagement geometry 

optimizations 
VMi VTi ηi Pki VM VT η Pk 
750 500 90 0.6

19 
767 300 66.

8 
0.91
2 

100
0 

500 90 0.4
18 

800 322 65.
7 

0.90
6 

100
0 

600 90 0.4
41 

899 400 63.
3 

0.88
5 

130
0 

900 60 0.4
94 

124
3 

700 55 0.79
7 

170
0 

110
0 

30 0.4
5 

168
1 

111
9 

24.
4 

0.50
9 

140
0 

160
0 

0 0.3
66 

153
8 

146
5 

1.2 0.96
7 

180
0 

120
0 

15 0.2
81 

179
8 

120
1 

4.4 0.92
2 

100
0 

500 0 0.6
07 

100
0 

500 5.2 0.93
7 

100
0 

500 75 0.5
46 

800 322 65.
7 

0.90
6 

180
0 

130
0 

50 0.2
88 

165
1 

110
0 

46.
9 

0.68
1 

 
The first three endgames in Table 2 represent 
side-on engagement. In all three cases, increasing 
the difference in speed between the missile and 
target and engaging more towards tail-chase 
significantly improves Pk. Fig. 4 shows the 
variation in Pk with VM and η about the 
optimized set  { }, ,M TV V η  from the first row of 
Table 2 for fixed VT = 300 m s-1. Similarly, Fig. 5 
shows how Pk varies with VT and VM for a fixed 
η = 66.8°. These two figures confirm what would 
be expected during an engagement, namely that 
maximum lethality will occur at an angle and 

missile-target speed ratio such that fragment 
damage is focused on the more vulnerable areas. 

 
Fig. 4: Variation in Pk for fixed VT = 300 m s-1. 

 
Figs. 6 and 7 show lethality plots for the 
engagement of the eighth row of Table 2. The 
plots are in quite a different area of the 
permissible engagement space than those of Figs 
4 and 5 although the plots show similar 
characteristics. 
 
Note though that while the engagement of Fig. 4 
is relatively insensitive to angle, that of Fig. 6 is 
very sensitive to variation in engagement angle. 
Thus a small error in engagement angle in the 
first case will result in only a small reduction in 
Pk, in the second case the same small change in 
η could result in Pk of less than 0.4. 
 
In realistic engagement problems, the target is 
not completely known and the feedback 
measurements will be imperfect. The 
engagement will be also subject to exogenous 
disturbances. Although these unknowns can be 
accommodated to some degree in the Gaussians 
modelling the engagement, it is also important to 
understand the sensitivity of solutions to 
parameter uncertainty.  In practise this can be 
achieved by sampling around an ‘optimal’ 
solution by, say, taking 100 samples uniformly 
distributed at random by perturbing the 
parameters within a percentage of full-scale as 
depicted in Fig. 8. 

 
Fig. 5: Variation in Pk for fixed η = 66.8°. 
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Fig. 6: Variation in Pk for fixed VT = 500 m s-1. 

 
Fig. 7: Variation in Pk for fixed η = 5.2°. 

 

 
Fig. 8: Perturbation for robustness trade. 

 
Problem 2: max Pk and check for robustness 
In practise, a realistic endgame, and therefore 
flyout, is unlikely to be achievable using 
only{ }, ,M TV V η , not least because the target 
velocity is unlikely to be under the control of the 
missile. In this example all parameters in Table 1 
are used and the missile’s controllable 
parameters, i.e. δ, ε, x0, y0,z0, and Zdelay, are 
optimized to determine suitable endgames for 
engaging targets grouped in either head-on, side-
on or tail-chase categories, based on engagement 
angle.  The same SQP used in Problem 1 is kept, 
and 500 scenarios were calculated for each 
engagement category. For each scenario the 
optimised parameters are then perturbed 1000 
times and the resultant standard deviation of Pk is 
recorded. 
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Fig. 9: Scatter plot of head-on engagements and 

variance (standard deviation) with 10% 
uncertainty. 

 
As can be seen in Fig. 9, a pair of scenarios with 
similar Pk’s can have varying robustness values. 
As well as maximizing Pk, it is also desirable to 
maximize the robustness of the solution to 
uncertainty in the parameters Minimizing the 
standard deviation in the sample is the 
equivalent of minimizing loss in Pk due to 
parameter variations. Attempting to maximize Pk 
while simultaneously minimizing the standard 
deviation should result in endgames that have 
both a high probability of kill and a high-degree 
of robustness to parameter uncertainty. 
 
Problem 3: max Pk min s(Pk) using novel 
methods 
This problem was addressed with a 
multiobjective genetic algorithm, as described by 
Fonseca and Fleming (1998), to determine 
fitness on the basis of non-dominance of the 
individuals. A MOGA was attractive as the 
population-based nature of the search allows 
many endgames to be evaluated at each 
generation. The objectives used to assess the per-
formance being (i) overall Pk as used in problem 
1, and (ii) robustness of Pk calculated as 
described above. In the example presented here, 
a ±10% uncertainty is assumed on the free 
parameters. In Fig. 10 individual endgames are 
plotted with their Pk against the standard 
deviation in 20 samples around that point 
in{ }, ,M TV V η . Clearly, a fairly large number of 
high Pk solutions appear to offer robust endgame 
performance. 
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Fig. 10: Scatter plot showing Pk and variance in 
Pk (standard deviation) with 10% uncertainty. 

 
The trade-off between robustness and lethality is 
shown in Fig. 11 and for the lowest variance 
sample at Pk = 0.9189, s = 0.0298 the endgame is 
illustrated in Fig. 12. Improving Pk to 0.9569 
results in an increase in variance to s = 0.25. A 
choice of which was the best Pk would have to be 
made on a number of factors including: time to 
endgame; precision of missile; and target 
vulnerability. The flyout to arrive at an endgame 
will also have uncertainties arising from the 
usual modelling considerations, but may also 
account for target manoeuvring. 
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Fig. 11: Trade-off between Pk and endgame 

robustness. 

 
Fig. 12: Robust endgame with Pk = 0.9189. 
The engagement shown in Fig. 12 has VM = 
1214, VT = 705, η = 2.7 and achieves 
probabilities of kill of 0.9048 for cockpit damage 
and 0.1447 for the fuselage. No engine or wing 
damage is predicted by AGILE. The reason that 
this is robust to variations in { }, ,M TV V η is the 

relatively high vulnerability of the cockpit area 
and the coverage of fragments from the warhead. 
Such an endgame therefore exploits the 
characteristics of the missile and the target. 
 
Problem 4: max Pk min s(Pk), 

0 0 0( , , , , , , , , , , , )k M T R dP f V V S x y z Zη ω δ ε ψ=  
The same MOGA formulation employed in 
Problem 3 is retained, and the uncertainty is 
assumed over all the parameters and the 
corresponding number of samples at each 
nominal geometry is increased to 50. 

 
Fig. 13: Pk vs. robustness trade-off, Problem 4. 
 
The Pareto optimal solutions for side-on 
scenarios found after 200 generations of 50 
individuals are shown in the trade-off of Fig. 13. 
While similar characteristics can be observed to 
that of Fig. 11 (Problem 2), in this case the 
search space is now much larger and hence the 
greater spread in the solutions.  The cross in Fig 
13 identifies the endgame shown in Fig 14. 

 
 

Fig. 14: Engagement with good robustness.  
 
This figure shows an engagement where the 
missile is approaching fast from towards the 
aircraft side (VM = 749.91 m s-1, η = 108°) and 
the missile is oriented {δ, ε, ψ} = { 27°, 209°, -
8°} with a burst point (fuze delay) -2 m along 
the missile trajectory. The overall Pk = 0.8 with 
0.7192 cockpit, 0.08 fuselage, and zero engine 
and wing probabilities of kill. Although a very 
different endgame to that presented in Fig. 12, 
the endgame of Fig. 14 is robust in that the 
fragment damage to the cockpit is achieved 
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when the missile is detonated within a large 
region of the ‘optimal’ point identified in Fig. 13. 

 
 

4. CONCLUDING REMARKS 
 

This paper has demonstrated how missile 
endgame conditions with a high probability of 
kill can be identified using optimization 
techniques against various performance criteria. 
There is not one single ‘optimal’ engagement for 
a missile-target rather there are families of 
solutions that trade-off overall lethality with 
robustness to parameter uncertainty at a number 
of different condition, for example target speed 
or engagement angle. Having a better 
understanding of the location and sensitivity of 
potential engagement conditions can be readily 
used in the guidance system to enhance the 
overall efficacy of the missile which is essential 
if projected future threats are to be dealt with 
effectively.  The final choice of a suitable 
endgame will inevitably be a compromise over 
the criteria and will be determined to some 
degree by flyout considerations. However, an 
acceptably accurate simulation, AGILE, can 
readily and rapidly be used to determine suitable 
engagement geometries. 
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