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Abstract

The advantages of isolating vibrating machinery from its supporting structure are that
the chances of vibration induced fatigue failure of structural components are reduced,
the structure becomes more inhabitable for people due to less vibration exposure and the
sound radiated by the structure into the environment is reduced. This last point is
especially important for machinery operating in a marine environment because low
frequency sound propagates very well underwater, and the machinery induced sound
radiated from a ship or submarine is a primary detection and classification mechanism

for passive sonar systems.

This thesis investigates the control of vibration from an elastic support structure upon
which multiple vibrating systems are passively mounted. The excitations are assumed to
occur at discrete frequencies with a finite number of harmonic components and the
machines are all assumed to be supplied with power from the same electrical supply.
Active vibration control may be achieved by adjusting the phase of the voltage supplied
to one or more of the machines, so that a minimum value of a measurable cost function
is obtained. Adjusting the phase of a machine with respect to a reference machine is
known as synchrophasing and is a well established technique for controlling the sound
in aircraft cabins and in ducts containing axial fans. However, the use of the technique
for reducing the vibration of machinery mounted on elastic structures seems to have
received very little attention in the literature and would appear to be a gap in the current
knowledge. This thesis aims to address that gap by investigating theoretically and
experimentally how synchrophasing can be implemented as an active structural

vibration control technique.
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Chapter 1 Introduction

1 Introduction

1.1 Background

There are many reasons why it might be desirable to reduce the transmission of
vibration from vibrating sources to the surrounding structure. Excessive vibration may
accelerate fatigue failure of the machinery or of the host structure itself. Reducing the
vibration levels might make the structure more inhabitable for persons or equipment and
may reduce the sound radiated by the structure into the environment. This last point is
especially important in a marine environment, because low frequency sound propagates
very well underwater and the machinery induced sound radiated from a ship or
submarine is a primary detection and classification mechanism for passive sonar

systems.

The traditional approach to reducing the transmission of discrete frequency vibration
from vibrating sources such as rotating and reciprocating machinery, has been to
decouple the machinery from the structure by using passive isolation mounts.
Machinery plants on mobile platforms such as ships traditionally employ two-stage
passive isolation. For the first stage, several machines are mounted, using compliant
isolators, onto a large elastic support structure or raft. Secondly, the flexible raft is
further decoupled from the hull structure by passive isolation mounts. These mounts are
essentially damped springs and may not be effective at all frequencies at which
vibrations are occurring. Passive isolation mounts have two opposing constraints.
Firstly, the mount must have sufficient stiffness to support the static load of the
machine. Secondly, the mounts must have low enough dynamic stiffness such that the
resonance frequency of the machine on its mounts is well below the operating frequency

of the machine.

To address these opposing constraints, the vibration isolation achieved by using
compliant mounts can be supplemented by other passive control techniques, such as the

addition of mass to change the resonance frequencies, applying damping materials to
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reduce the vibration at resonance frequencies or fitting vibration neutralisers to reduce

the overall excitation experienced by the machinery raft.

An alternative strategy is to replace the passive isolation system with an entirely active
system. Active control is achievable for example, by electromagnetic levitation of the
machinery — active rafting. However, electromagnetic levitation is very expensive,
requires a large amount of power to implement and still needs a back up system of
conventional passive vibration mounts that will provide a fail safe should the active
mounting system fail. The preferred option is to use a hybrid solution, which combines
techniques of active vibration control such as active damping of residual vibration or
active vibration control using force actuators, with a passive mounting system.
However, these active components can also be expensive to install, and although they
may be included in the design of a machinery raft, they are often not fitted due to their

prohibitive expense.

This thesis considers the control of vibration from an elastic support structure upon
which multiple vibrating systems are passively mounted, as shown in Figure 1.1. The
figure depicts three machines with rotating components, which cause vibration to be
transmitted to the machinery raft due to rotational imbalance. The excitations are
assumed to occur at discrete frequencies with a finite number of harmonic components.
A two-stage passive isolation system is employed to minimise the vibration transmitted
from the machinery into the steel deck and hence into the surrounding structure. The
machines are all assumed to be supplied with power from the same power supply. An
example of such a structure is shown in Figure 1.2, which shows an arrangement of

pumps mounted on a machinery raft.

Since the machines are driven from the same power supply, active vibration control may
be achieved by adjusting the phase of the voltage supplied to one or more of the
machines so that a minimum value of a measurable cost function is obtained. Adjusting
the phase of a machine with respect to a reference machine is known as synchrophasing

and is a well established technique for controlling the sound in aircraft cabins and in
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ducts containing axial fans. However, the use of the technique for reducing the vibration
of machinery mounted on elastic structures seems to have received very little attention
in the literature and would appear to be a gap in the current knowledge. This thesis aims
to address that gap by investigating theoretically and experimentally how

synchrophasing can be implemented as an active structural vibration control technique.

1.2 Literature Review

This section describes previous work carried out in the field of structural vibration
control, where vibrating machinery is the primary source of vibration excitation. The
section starts by describing the advantages and limitations of traditional passive control
techniques, including using compliant mounts and neutralizers. Active vibration control
techniques are then described, with an overview of feedback and feedforward control,
response sensors, activators and control strategies. It is shown that optimum control is
achieved by adjusting both the magnitudes and the phases of the applied controlling
forces when the sources are harmonic. The literature review concludes with an overview
of work previously conducted into synchrophasing as a noise and vibration control

technique and describes the current gaps in knowledge.

1.2.1 Overview of Passive vibration control

The usual approach taken by designers of passive machinery isolation systems has been
to mount vibrating machinery on flexible isolation mounts in order to reduce the forces
that the machine applies to the surrounding structure. In order to achieve the highest
level of isolation, the simplest approach is to isolate each machine individually, and this
is the approach usually described in the texts on the theory of vibration isolation [1-4].
However, the machinery on a large structure such as a ship rarely operates in isolation
and so requires flexible interconnections between many of the machines. For example,
diesel engines require coupling to gearing and propeller drive shafts, pumps require
coupling to fluid systems and diesel generators supply power to many onboard electrical
systems. Designing flexible connectors that can provide effective isolation and perform

reliably for an extended period of time is very difficult [5, 6]. From the perspective of



Chapter 1 Introduction

machinery operation, reliability and ease of maintenance there is an advantage to
grouping machinery systems together on a large machinery raft and then isolating these
machinery rafts from the surrounding structure. These two-stage isolation systems are
dealt with in vibration textbooks as an extension to the simple theory of vibration
isolation, where the machinery raft is modelled as a rigid body structure and the force
transmitted from the machinery to the surrounding structure via the two-stage isolation
system is characterised by the force transmissibility [1, 2]. However, treating the
machinery raft as a rigid body is not appropriate at all frequencies where vibration
occurs, because ships are often equipped with lightweight flexible machinery rafts. In
these cases the vibration modes of the machinery raft, the positioning of the machinery
upon the raft and the positioning and number of mounts used to connect the raft to the

surrounding structure are all important for minimising the force transmissibility [6-10].

Examples of other passive techniques, that are used to help to minimise the force
transmission from the vibrating machinery to the surrounding structure, include careful
balancing of the rotating components of machinery. Balancing minimises the
transmission of vibration due to the presence of eccentric rotating masses, or the
misalignment of connecting components [1, 11]. Alternatively, mass can be added or
removed from the machinery raft in order to change its natural frequencies of vibration,
to ensure that it does not resonate at a frequency excited by the machinery vibration

[12].

An alternative technique proposed by Swinbanks [6] is to distribute the machinery raft
mounting points so that they are placed at positions of high mass, each with appropriate
stiffness to isolate the mass above it. This gives each mount the transmissibility

characteristics of a single degree of freedom isolator.

Another alternative is to introduce a dynamic vibration absorber as described by
Ormondroyd and Den Hartog [13] which reduces the vibration of the structure to which
it is attached at a single frequency, and is thus most suitable for machinery operating at

a constant speed. The vibration of variable speed machinery can be reduced, by using a
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vibration absorber with damping, when the speed range is known. A great deal of work
followed on from this paper, researching the effectiveness of vibration absorbers. This
led to a class of adaptive devices called vibration neutralizers, where the dynamic
stiffness of the neutralizer is adjustable, so that changes in machinery speed, and hence
excitation frequency can be tracked, allowing the vibration reduction to be optimised.
Examples of relevance are a method of global control of the vibrational kinetic energy
of a structure using single and multiple tunable vibration neutralizers [14, 15] and a
method of controlling the vibration transmitted from an aircraft engine to the fuselage

using vibration absorbers [16].

Damping techniques such as constrained layer damping and viscoelastic damping
mechanisms have also been suggested for reducing the vibration of lightweight

machinery rafts [17].

1.2.2 Overview of Active vibration control

The concept of cancelling unwanted sound or vibration by superimposing the signal

from one source onto another source with the same magnitude but with a 180° phase
shift is not new. In 1878 Lord Rayleigh described sets of waves which neutralize one
another to produce “points of silence” [18], which was utilising the principle of
superposition and the constructive and destructive interference of two wave fields in

order to cancel the total field at a point.

In 1934, the first example of actively adding a sound wave in order to control a sound
field was presented, when Lueg filed a patent for the idea of capturing the sound field
within a duct and generating an additional sound field further down the duct, in order to
reduce or eliminate the total noise field in the duct [19]. This patent contained the
essential elements of an active control system described by Fuller, Nelson and Elliott
[20], namely a sensor to detect the uncontrolled sound or vibration, an electronic
controlling system to manipulate and generate a controlling signal and an actuator, to
produce the controlling signal to change the response of the uncontrolled system such

that the total sound or vibration level is lowered.
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1.2.3 Overview of Feedback vibration control

Feedback control systems are those for which the control signal obtained from the
detecting sensor contains both the primary noise source and the secondary noise source.
For this approach, the original primary excitation signal cannot be observed in isolation
and thus cannot give a priori information about the primary noise source. This is shown
in Figure 1.3 for the case of a single primary excitation source, a single vibration
response sensor and a single actuator. An example of feedback control is the electronic
sound absorber [21] presented by Olson and May, which consists of a microphone
located close to a loudspeaker and an amplifier. This absorber is used to control the
sound pressure in the vicinity of a microphone by driving the loudspeaker in such a way
as to null the sound pressure, creating a quiet area around it. A further example of
feedback control can be seen in research conducted by Balas into the active vibration
control of large lightweight flexible structures such as space satellites, by using point
actuators to control certain critical modes of vibration [22]. The modal control method
was later refined by other researchers, for example the Independent Modal Space
Control method suggested by Meirovitch for controlling the vibrations of a distributed
mass system [23-25] and subsequently modified by others to minimise the effect of
control spillover into unmodelled modes, such as those that are truncated in the modal

formulation [26, 27] .

1.2.4 Overview of Feedforward vibration control

Feedforward control systems are those for which prior knowledge of the primary
excitation signal is available. In general, there are two cases which allow this a priori
knowledge. The first is the case where the vibration signal is propagating through a
mechanical structure or through the air in the case of a sound wave, and a sensor can be
used to detect the disturbance. The propagation time between the sensor and the actuator
must be long enough that there is time for the control system to determine and create the
signal that must be fed to the actuator. This case is especially amenable to cancellation

of guided sound waves in ducts where the primary and cancellation waves have the
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same direction of propagation, and a sensor can be placed far enough away from the

control source to avoid any near-field effects [28-30].

The second case is when the disturbance is deterministic, such that the future excitation
can be perfectly predicted from the previous behaviour. This is the case for harmonic
excitation, for example, the vibration generated by rotating machinery under constant
load conditions [31]. In this case, a reference signal can be derived from the primary
excitation source, for example a tachometer detecting the shaft speed on a rotating
machine. The phase of the secondary controlling signals can then be maintained with
respect to the primary reference phase. This case is shown in Figure 1.4 for a single
primary excitation source, a single response sensor and a single actuator providing the
secondary excitation. The primary excitation signal is fed in parallel to the vibrating
system and to the controller, where the secondary excitation waveform is generated. The
secondary excitation waveform may be a different amplitude and phase when compared
to the primary waveform, but because the primary signal is available, the phase of the

secondary can be fixed with respect to it.

Comparison of Figures 1.3 and 1.4 show that, while the response sensors form part of
the control path for feedback vibration control system, they do not form a direct part of
the control path for a feedforward vibration control system. Rather they are used to
adapt the response of the controller, usually with the aim of minimising the output from
one or more response sensors. For a feedback control approach, as the response signal
gets smaller the gain on the signal must be increased in order to provide the secondary
excitation, this can lead to instabilities in the feedback control system [20, 32]. For this
reason, a great deal of recent research has been concerned with feedforward control, as

this is inherently stable and offers improved performance over feedback methods [33].

1.2.5 Sensors and actuators

The number, type and positioning of response sensors on the vibrating system to be
controlled depends upon the control strategy chosen. Traditionally, accelerometers have

been used for measurements of vibration and as error sensors for feedforward active
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vibration control. Alternatives, such as polyvinylidene fluoride (PVDF) patches, long
thin PVDF sensors and optical fibre sensors have also been developed for vibration
control. Although they offer a distinct advantage in terms of conforming to the shape of
the vibrating structure and may be shaped and placed to generate a signal only when
certain modes of vibration are present, they can also be prone to electrical noise
problems [34-37]. The number of sensors used depends upon the type of control which
is attempted. In local control, the main focus is to minimise the error response at certain
points on the vibrating system and no consideration is given to the vibration response
outside these points. As such, local control requires sensors only at the points of
interest. Alternatively, global control requires more sensors because minimisation of

errors across the whole structure is considered.

Electromagnetic shakers have traditionally been used as actuators for active vibration
control. They are very convenient as the come in a very large range of sizes and masses
and so are suitable for use in systems from laboratory experiments up to large scale
installations on working platforms, such as ships. For systems which can be controlled
with low magnitudes of forces, then piezoelectric actuators offer a lightweight
alternative [38, 39]. Piezoceramic stack actuators can be built up from layers of
piezoelectric material and these are capable of providing higher control forces that are

more suitable for use in larger structures [40, 41].

1.2.6 Control strategies

The feedforward vibration control strategies that are relevant to the structure described
in this thesis are those controlling a thin flexible structure, such as the beam described
by Brennan et al [42]. The wave suppression approach is achieved by considering the
vibration as a wave propagating on the beam [43, 44] and is very similar to the
feedforward control suggested by Lueg for controlling the sound propagating in a duct.
Two other strategies that have been widely reported in the literature are those of
maximizing the power absorbed by secondary actuators, dampers or damping layers
[45, 46] and that of minimising the total power, or time averaged kinetic energy

supplied to the structure by all vibrating sources [47, 48]. All of these techniques show
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that the best control is achieved when both the amplitude and phase of the controlling

forces are adaptively changed as required [49].

Brennan et al/ concluded [42] that the best overall control strategy for global control on
a vibrating finite beam in flexure, was to minimize the total power supplied to the beam.
This thesis will compare a global approach, where the total time averaged kinetic energy
in the intermediate structure is minimised by synchrophasing, with a local approach,
where point amplitude measurements of squared velocity are used as the cost function.
These point amplitude measurements are made at each end of the intermediate structure,

where it is connected to the host structure via vibration isolators.

1.2.7 Overview of Synchrophasing

In 1905, Mallock reduced the vibrations originating from two engines of a steam ship
by making them run at the same speed, but in anti-phase to each other [50], which is the
first documented example of synchrophasing. Synchrophasing differs from full active
vibration control in that additional actuators to control the vibration are not usually
fitted to the vibrating structure. Instead, the phases of vibrating machines that are
already part of the structure are adjusted relative to a reference phase machine, the aim
being to reduce the overall vibration levels. So there is no additional weight penalty due
to extra components added to the structure. Synchrophasing is thus ideally suited to
reducing the noise and vibration levels from rotating structures such as axial fans within
a duct, aircraft propellers and ship propulsion systems. In 1940 Kalin patented a
method of synchrophasing the main propulsion engines of a ship with multiple
propellers, in order to reduce the vibration levels within the ship [51]. The system
maintained a constant phase angle between the crank shafts by means of governors
fitted to each Diesel engine. Kalin noted in the patent that the method could be applied
to synchronising pump-driving engines to reduce the vibration due to machinery
unbalance. Synchrophasing has become widely adopted for reducing the vibration levels
of main propulsion machinery, especially for cruise ships with pod propulsion systems.

Although the most usual technique is a fixed phase system, rather than an adaptive
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system which is capable of changing the phases of the power supplied to each pod as

operational requirements dictate.

In 1977 Harada obtained a patent for reducing the blade passage tonal noise of two fans
in a duct by changing the relative angle between the two sets of fan blades [52]. This
technique has been investigated experimentally and has shown that synchrophasing can
reduce the sound pressure level of the blade passage frequency or harmonics by 10 dB
[28]. However, since the fundamental blade passage frequency and the harmonics do
not generally have the same optimum synchrophase angles, it is generally not possible

to minimise the fundamental and all harmonics simultaneously.

By far the most literature on synchrophasing has been concerned with reducing the
cabin noise and vibration inside propeller driven aircraft. The most important
frequencies being the blade passage frequency and the lowest order harmonics. Previous
research in the 1980°s showed that synchrophasing could reduce the overall noise levels
within the cabin of a propeller driven aircraft by approximately 10 dB [53-56].
However, the success of synchrophasing was limited at the time by the technology
available. Commercial synchrophasers at the time were only capable of 25° steps, which
is insufficient to cope with the changes in propeller induced cabin noise experienced
during flight operations. Recent research has concentrated on active synchrophasing
using microphones and accelerometers positioned throughout the aircraft, together with
adaptive optimisation techniques to minimise the cabin noise and vibration over a wider
range of flight conditions [57-59]. Algorithms for finding the minimum of the cabin
noise sound pressure level include an exhaustive search of all the possible synchrophase
angle combinations and the iterative gradient decent technique [49]. The time penalty of
both of these techniques can be lessened by employing Propeller Signature Theory as
described by Johnston, Donham and Guinn [60], where the individual propeller
contribution at any location is called its signature at that location. So the total propeller
related noise and vibration at a particular location in the aircraft cabin is determined by
calculating the vector sum of the signatures from each propeller. Once the propeller

contribution at each response sensor is determined, the process of finding the minimum

10
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sound pressure level can be carried out using mathematical simulation assuming that the

system has local linearity.

For propeller driven aircraft, it is not usually practical to switch off all but one engine in
order to determine the signature for each propeller at each response sensor location.
Johnston describes using the same number of propeller phase combinations as there are
propellers, for a fully determined solution. For example, four different combinations of
propeller phases for an aircraft with four propellers will enable each propeller signature
to be determined. A more accurate method is to use more combinations of propeller
phases than there are propellers. This enables a least squares over-determined solution

to finding the signature of each propeller.

1.2.8 Current gaps in Knowledge

There are two patents by Pla [61, 62], for reducing noise and vibration from multiple
rotating machines such as engines, turbines and cooling fans. Other than this,
synchrophasing seems to have received very little attention in the literature for
controlling the vibration of raft mounted machinery by adjusting the phase of the

voltage supplied to the machinery.

To the author’s knowledge, no work has been reported using Propeller Signature Theory
to determine the signature between vibrating machinery mounted on a thin compliantly
mounted elastic raft and error sensors placed on the raft, with the aim of minimising a

cost function by synchrophasing, based upon the machinery signatures.

1.3 Thesis Objectives

This thesis aims to address some gaps in the current knowledge, of the effectiveness of
synchrophasing, when applied to the vibration control of compliantly mounted
machinery rafts, by presenting a theoretical and an experimental model of

synchrophasing on a laboratory scale.

11
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Propeller Signature Theory is used in the theoretical and experimental models to find

the minimum of a cost function by synchrophasing. The results obtained by simulation

using the theoretical model are compared to those obtained experimentally and the time

taken to perform an exhaustive full search is compared to the time taken to determine

the minimum by calculating the machinery signatures and using these in a simulated full

search using Propeller Signature Theory.

The objectives of this thesis are to:

12

e develop a receptance based analytical model to study the vibration of an elastic
structure due to forces generated by the vibrating machinery mounted on it.

e analyse the interactions between multiple vibrating harmonic sources when
mounted on a common elastic structure and acting at the same frequency.

e design a method to adapt synchrophasing from an active sound control technique
to an active structural vibration control technique.

e investigate the use of Propeller Signature Theory - a technique developed for
measuring and reducing aircraft propeller noise - in minimising the vibration of
machinery mounted on an elastic platform.

e design and build an experimental system to represent the machinery mounted on
an elastic structure.

e design and build an experimental synchrophasing system, to optimize the control
of the structural vibration of a simple structure, using different search methods to
minimize the cost function.

e verify the predictions obtained from the analytical model by conducting a series of
experiments using the laboratory based experimental synchrophasing system.

e present theoretical and experimental results to show the vibration reduction that is
achievable by using synchrophasing.

e determine the practical requirements for implementing a simple synchrophasing

system to control the transmission of vibration to the surrounding structure.
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1.4 Contributions of the Thesis

The work presented in this thesis, builds on the body of work of synchrophasing
reported for controlling the sound and vibration within an aircraft cabin. The
techniques are developed in the design of an adaptive synchrophasing system that
can be applied to a compliantly mounted machinery raft, upon which vibrating

machinery is the source of vibration.

The contributions of this thesis are as follows:

e The importance of controlling the rigid body modes of a thin, flexible beam is
shown, when using the total time averaged kinetic energy as the cost function in
structural vibration control. Of particular importance is the position of the node of
the rotational rigid body mode, which depends upon the positions of the machinery

on the support structure.

e It is shown theoretically and experimentally that the techniques developed for
Propeller Signature Theory can be applied for structural vibration control of a

flexible machinery raft, and is an effective means of control.

e It is shown theoretically and experimentally that the total time averaged kinetic
energy in the support structure and the sum of the magnitude squared of the velocity
over each mount point, can both be used as effective global and local cost functions
respectively. The best cost function to use — in terms of achievable reduction —
depends upon the frequency of excitation and the positions of the machinery upon
the supporting raft with respect to the nodes of the dominant modes of the
machinery raft that are excited at the frequency of interest. Global control requires
knowledge of the transfer mobilities between the machinery and the masses of the
machinery and the supporting structure. Local control only requires vibration at the
mount points of the supporting structure to be measured, and so is more suitable to

implement and retro-fit onto an existing machinery raft.

13
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e It is shown analytically and with simulations that when only two vibrating sources
are present on a generalised elastic structure, then a simple expression can be
obtained for the optimum synchrophase angle of the control machine, with respect
to the phase of the reference machine. This angle is often just either in phase or in
anti-phase with the reference, and depends upon the positions of the vibrating
sources on the structure, the positions of the nodes of the dominant modes and the

magnitude of the modal forces.

e It is shown analytically and with simulations that when a generalised structure
contains more than two vibrating sources (one reference and P control sources) then
interaction terms exist between the control sources. These interaction terms can
work against each other, the result being that there may not be a unique minimum of
the cost function. In this situation it is necessary to perform a search over the whole
cost function surface in order to find a global minimum and the best synchrophase

angles.

1.5 Thesis outline

This section describes the layout and content of the rest of the thesis. Chapter 2
introduces an abstraction of the problem that is investigated in this thesis - the vibration
control of a machinery raft - to a generalised one dimensional structure. A model based
upon the point and transfer receptances of the constituent components is described and
used to predict the displacement at any point on the generalised structure due to local
vibration, for example that caused by machinery unbalance. Expressions for the
vibration response due to two vibrating sources and then multiple vibrating sources are

introduced and analysed.
Chapter 3 discusses the idea that, for the types of generalised structures of interest in

this thesis, it will not be possible to alter the magnitude of the unbalance forces caused

by the vibrating sources. This is because the vibrations are generated by machinery,

14
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which is required to run at a predetermined speed (RPM). Hence control can only be
attempted by altering the phases of the unbalanced forces with respect to a reference

source.

To quantify the effect of the control, cost functions are derived for the overall time
averaged kinetic energy of the structure and for the sum of the squares of the magnitude
of the velocities over each mount point. The latter cost function is simpler to implement
from a practical point of view and could easily be retro-fitted to existing machinery

rafts.

Two methods of finding the minimum of these cost functions are then described and
compared for ease of application and the ability to find the overall global minimum.
These two methods involve a full search conducted over all phase angles and a method
of determining the transfer function between each machine and each vibration sensor
based upon Propeller Signature Theory. The latter method enables a full search to be
simulated, using the transfer functions, which represents a considerable time saving
over having to step through each angle individually. The chapter concludes by
describing a fundamental difference between synchrophase control when only two

vibrating sources are present and that when more than two are present.

The experimental investigations of synchrophasing as a noise control technique and
supporting numerical simulations are presented in Chapter 4. The chapter begins with a
description of a physical model which was used to investigate control by
synchrophasing. The sources of vibration were electromagnetic shakers which applied a

force to the supporting beam as a result of the reaction against an attached mass load.

Methods of measuring the time averaged kinetic energy, using a laser vibrometer and
also measuring the sum of the squares of the magnitude of the velocity at each end of
the beam are described. A method of automating the calculation of the cost function, in
response to changes in the phase angles of the applied harmonic excitations is described

and implemented in LABVIEW® and MATLAB®. The experimental determination of

15
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the synchrophase angles demonstrates the power of the propeller signature theory
technique and enables much faster calculation of the optimum angles for each of the

vibrating sources. The results obtained are discussed and compared to simulations.
Chapter 5 presents the conclusions of the thesis and draws together the major findings

and ideas from the previous chapters. Recommendations for future studies and

extensions of synchrophasing are also provided.
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1.6 Figures

n

Compliant mounts Machinery raft

NI

Steel deck

Figure 1.1. A representation of machinery with rotating components mounted on an
elastic machinery raft. The system utilises two-stage passive isolation so the machinery
and the machinery raft are all supported by compliant mounts.
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Figure 1.2. Part of a machinery raft with rotating components mounted on a thin elastic
base. Courtesy of Shipbuilding Pictures Database NSnet.com.
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Figure 1.3. An example of feedback vibration control
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Figure 1.4. An example of feedforward vibration control
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2 Development of an analytical and a physical model

of a general elastic structure

2.1 Introduction

This chapter describes the development of two models of a generalised elastic structure
that are used to investigate the effectiveness of synchrophasing as an active structural
vibration control technique. A receptance approach is adopted for the analytical
modelling. Receptance techniques have been used for many years to study mechanical
systems involving lumped parameter and distributed parameter components [63]. It was
decided to use a receptance based model because the point and transfer receptances of
the constituent components can easily be measured experimentally without requiring

detailed knowledge of the system mode shapes.

The analytical model can be used to determine the displacement at any point on the
generalised structure caused by vibration due to machinery unbalance forces acting
upon the structure, and can be used to investigate synchrophasing. Expressions for the

displacement due to multiple vibrating sources are derived and introduced.

The receptance based analytical model is also used to guide the design and development
of a physical laboratory model. This physical model is used to validate the theoretical
predictions, to understand the practical limitations of implementing a synchrophasing

system on an existing structure and to provide a technology demonstrator.

2.2 Development of a Receptance based model

Figure 2.1 shows the generalised structure that is used to investigate the effectiveness of
synchrophasing as an active structural vibration control technique. In the physical
model, electromagnetic shakers are used to represent the extra masses of machinery
vibrating on a thin elastic support raft. The generalised structure consists of a
compliantly mounted thin elastic beam upon which P+1 shakers are mounted. This

allows for one shaker to be used as a reference phase source and P shakers to be used
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for synchrophasing control, where the phase of the voltage supplied to each shaker can
be varied with respect to the phase of the voltage applied to the reference shaker. Since
low frequency vibration is the most problematic vibration source for large machinery
installations [7, 33, 64], this thesis is concerned with situations where the flexural
wavelength is large compared to the thickness of the elastic beam, so the effects of shear
deformation and rotary inertia can be ignored [65]. Without loss of generality, the
models developed for this thesis use Euler-Bernoulli beam theory [1] to represent the

thin elastic support raft as a one-dimensional thin beam.

Figure 2.2 shows the coordinate system and variables used in modelling the generalised
structure, which is a composite system consisting of discrete components such as the
masses of the shakers and the stiffness of the supporting mounts, and a thin elastic beam
which is a distributed parameter element. The uniform box section beam is supported at

each end by mounts of stiffness &, at coordinate x, =0 and k, at coordinate x, =L,
where L is the length of the beam. &, and k, are complex due to damping in the
mounts. The shakers are considered to be point masses of mass m,,m,,m,...m,. The
positions of the shakers on the beam are given by the coordinates x, ,x,,x,...x,

respectively. Forces f to f, act on the beam as a result of the reaction against each

shaker mass load.

2.2.1 The receptance approach

The displacement w of the generalised elastic structure at any point x on the structure
can be determined if the point and transfer receptance of the components of the
composite system are known [66, 74]. The composite system is decomposed, such that
the receptance of the components are known either as simple functions, or in terms of
analytical expressions. The subdivision used in this analysis is to split the composite
system into a subsystem of discrete components, consisting of the external masses and
springs and a subsystem of continuous components consisting of the uniform thin beam
with free-free end conditions, as shown in Figure 2.3. The excitation and response of the

system are assumed to be harmonic at a single frequency.
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For clarity of deriving the system equations, the external components that are attached

to the beam at positions x, ... x,, x,,,x,, are given a single letter subscript x,,x,...x,

as shown in Figure 2.3, where four external masses mounted on the beam have been

assumed.

For the beam subsystem, the displacement of the beam at positions x,,x, ... x, where

the external components are attached can be represented by

w(x,) ] B B Bie Bu B ﬂaf Ja
w(x,) Bo B B B B ﬂbf Sy
w(x,) _ B Bo B Bu P ﬂcf /e 2.1)
w(x,) Buw B Bi Bu B :Bdf Ja
w(x,) B Bo B Bu P ﬂef /e

W) | | B By B Bu B By | Sy

where £ is the receptance of the free-free Euler-Bernoulli beam, i.e. the displacement

at position x; due to a force attached to the beam at position x;. f; is the force on the
uniform free-free beam at position x;. This can written in vector-matrix form as

Wdis = Bdisf (22)

beam

where the subscript dis is used to emphasise that the displacement vector w,, and
receptance matrix B, refer to points on the beam where the external discrete

components are attached. f,, 1s the vector of forces on the beam at the locations of the

attached external components. By using a ‘compatibility condition’ [66] which requires
the displacement of the external components to be the same as that of the beam at the
point where the external components are attached, the displacement of the external

components at positions x,,x, ... x, can be represented by
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wix)| [y 0 0 0 0 07
W(xb) 0 7bb 0 0 0 O fi
w(x, 0 0 .0 0 0
(x) | _ Vee / 23)
w(x,) 0 0 0 yu 0 01]f
w(x,) 0 0 0 0 y, O0]f,
(wx,)] |00 0 0 0 y,|f,]

where y, is the receptance of the attached mass or spring at position x;, f; is the force

on the point mass at position x; and f;; is the force on the spring mounts at x;. This can
written in vector-matrix form as

w,, =TT (2.4)

c

where the vector f. represents the forces acting upon the attached masses and springs
and I' is the receptance matrix for the attached components. Using the compatibility
condition, Equations (2.2) and (2.4) can be combined to give

B

f I'f (2.5)

dis " beam c

If the composite system is acted upon by external forces f, f, ... f,, then

+f =f

beam c ext

(2.6)

where, for external forces applied to the masses (shakers) as shown in Figure 2.3, the

vector of external forces is given by
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f.
fi
fo=" 2.7
ext fP ( )
0
- O -

where the last two elements are zero because no external forces are applied to the spring
mounts.
f

= F(f ) From which

ext

Combining Equations (2.5) and (2.6) gives B f, ... beam

foeam = (B, + ') I, (2.8)

Equation (2.8) gives the forces on the uniform thin beam with free-free end conditions
at the locations of the attached external components, in terms of the external forces
applied to the shakers — or any other external forces if required. From this, the
displacement of the composite system at any arbitrary position x on the beam can be

calculated by

w)=[B B B < B B B lfam (2.9)

where [ . is the receptance of the free-free Euler-Bernoulli beam, i.e. the response at

_w(x)

xj

an arbitrary position x, due to a force at x; i.e.

. Substituting Equation (2.8)
J

into Equation (2.9) gives

W) =[B B B v B B B [Bu+T)'Th,  (2.10)

which can be written as
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w(x)=A f

N (2.11)
where the composite system receptance for an arbitrary response position x due to

external forces and attached masses and springs is given by

Ax = [ﬂx,x, ﬁx,xl ﬂx,xl o IBx,xP IBx,xﬂ IBx,xA_2 deis + F)71 r (2 12)

Equation (2.11) is used to calculate the lateral displacement at a finite number of points
along the beam and can be used to simulate the measurement of the displacement at a
finite number of points along the length of the structure. This result is used in Chapters
3 and 4 to simulate vibration control by synchrophasing. In this chapter it is used to help
to design an experimental structure that can be used to demonstrate synchrophasing

practically.

If the system is vibrating freely then the external forces acting upon the composite

system are given by f_, =0, hence from Equation (2.6)

ext
+f. =0 (2.13)
This can be substituted into Equation (2.5) to give

(Bdis + l—‘)fbeam = 0 (2 14)
Hence the natural frequencies of the composite system can be determined by the
solutions of

By, +T=0 (2.15)
using an eigenvalue routine. The natural frequencies obtained from the analytical model

were compared with the natural frequencies obtained experimentally by impact testing

of the physical model, as part of the validation process.
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2.2.2 Time averaged Kkinetic energy of the composite beam system

In previous work [67], a discretised model of a thin beam with free ends was developed.
This was used to calculate the total time averaged kinetic energy by determining the
lateral displacement at a finite number of discrete points along the beam. It was reported
that this model was representative of an experimental determination of the kinetic
energy, where the lateral displacement along the beam is measured at discrete points,
using for example, a laser vibrometer. This method does not require knowledge of the
mode shapes of the composite system. The model that was developed can be extended
to give the total time averaged kinetic energy of a composite beam system. Figure 2.4

shows how the composite beam model can be discretised into N, discrete beam
elements, allowing for the possibility of up to N, external masses and/or springs. The
external masses are represented as point masses m, which can be zero for the elements

where no additional mass is attached to the beam. For the i small element, the time

averaged kinetic energy is given by [67]
o’ 2
(T.(@)), = (pdAx+mfw(x) (2.16)

where Ax=L/N, and represents the length of a small beam segment. The total time
averaged kinetic energy of the beam, composed of N, discrete beam elements and
external masses can be written as

2

(T(w)) = %WHMAW 2.17)

where w is a column vector of length N, containing the lateral displacement of each

element, the superscript H indicates the Hermitian transpose of vector w and M, is the

total mass matrix given by
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AL, 0 0 0 0
Nm
0 %mz 0 0 0
M, = 0 0 0 0 (2.18)
PAL
0 —+m
Nm N-1
0 0 0 0 PAL
L Nm n

Equation (2.17) can be used to determine the total time averaged kinetic energy of the
generalised structure experimentally by measuring the displacement vector w. To
determine the total time averaged kinetic energy analytically, the displacement vector w
is obtained using the receptance approach described previously, where the receptance of

the free-free beam f; at excitation frequency w 1s given by

31-2%y1-2y
@)= L1 5 P

mo —me’ k=l mm,k(a)/f(l+i77)_a)2)

(2.19)

where the first two terms of Equation (2.19) are rigid body modes, m,, , is the k"™ modal

mass, m is the mass of the beam, @y is the circular natural frequency of the k™ mode, 7
is the modal structural loss factor which is assumed to be constant for all modes and

W, (x) is the mode shape of the k" flexural mode of the free-free beam, normalised so

that
L
jWk(x)Wk(x) dc=L k=1203.. (2.20)
0

For practical purposes, the infinite series of receptances given by Equation (2.19) is
truncated to N terms. The two rigid-body modes and the first three flexural modes of

the thin beam with free end conditions are shown in Figure 2.5.
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2.3 Design and testing of the physical model

In order to investigate synchrophasing experimentally, it is necessary to have a
laboratory scale model of the generalised elastic structure, so that the practical
limitations of synchrophasing can be appreciated and a practical working

synchrophasing system be designed and demonstrated.

The requirements of the physical model were that the thin elastic beam should be stiff
but light, as this results in a system where the rigid-body modes of the beam on its
compliant end mounts are well separated in frequency from the flexural bending modes.
This facilitates an active control strategy of controlling the rigid body modes and
minimising their contribution to the overall cost function, as previous work [68] has
indicated that a large proportion of the total time averaged kinetic energy for a thin
beam with free end conditions is in the rigid body modes at frequencies at and below the
first flexural mode. To this end, it was decided to use a box section beam, as the box
section provides the stiffness required to support the additional masses in the form of
shakers, but is lighter than a solid beam. The properties of the extruded box section

beam used are shown in Table 2.1 below.

Two variants of the RLF compliant mounts were tested for their suitability for use in the

physical model, each with a different stiffness. The RLF Type 2 mounts had an
experimentally determined stiffness of —=9x10°Nm™ and the RLF Type 3 a stiffness of
k=17.4x10°Nm™.

The most suitable compliant mounts were RLF Type 2 mounts, which provided a large
deflection under load and were designed for shock protection of delicate instruments.
The stiffness of these mounts was determined experimentally by measuring the static

deflection under load and is given in Table 2.1.
It was necessary to use two mounts at each end of the beam in order to provide a stable

platform upon which to mount the shakers. The compliant mounts have screw threads at

the top and bottom for ease of mounting to the beam and to the supporting base.
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Beam Material Aluminium 6063-T6 | Units
Extruded
Box section
Length 1.2 m
Width 101.6 mm
Height 254 mm
Thickness 3.2512 mm
Young’s Modulus’ 6.7x10" Pa
Density' 2710 kgm™
Shaker Make Ling Dynamic
Systems
Model V101
Mass 0.91 kg
Load mass on shaker 0.178 kg
Mounts Make RLF’
High deflection
rubber
Type 2
Stiffness 9%10° Nm™'

1 From manufacturer’s data sheets
2 Measured by static loading

3 Purchased from antivibrationmethods.co.uk

Table 2.1. Physical properties of the experimental structure

Figure 2.6 shows simulations of the time averaged kinetic energy of the beam without
shakers on, when each variant of mount is used, to show the effect of the stiffness of the
supporting mounts on the time averaged kinetic energy of the beam. Also shown is the
case where no end mounts are used. The figure shows that the effect of adding the

springs at x//=0 and x// =1 is to increase the frequencies at which the rigid body

modes occur from 0 Hz when no end mounts are present, to 18 Hz and 33 Hz for the
RLF Type 2 mounts, and 24 Hz and 44 Hz for the RLF Type 3 mounts. This is in
concordance with the equations for the natural frequencies of vibration when the

compliantly mounted beam is considered as a two degree of freedom system, given by

[1]
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f L |k 2.21)

"2z \m

f =L\/E =31, (2.22)
2 \'m

which shows that f,, the natural frequency of the translational rigid body mode, and f,,

the natural frequency of the rotational rigid body mode of the structure, are both
proportional to the square root of the stiffness, where £ is the total stiffness and m is

the total mass.

The RLF Type 2 mounts were chosen for the physical model because they provided a
greater separation between the rigid body modes and the flexural modes. To provide a
steady supporting base for the beam, another section of extruded aluminium box section
beam was used, to which the compliant mounts were attached. Weights were attached
inside the box section base to give it sufficient mass to remain stationary during the
vibration testing. The experimental beam, compliant mounts and support base are

shown in Figure 2.7.

A suitable length of beam for the physical model was determined by using the analytical
model to calculate the natural frequencies of the composite system with different
lengths of beam. It was decided that three flexural modes would be sufficiently
representative of a real machinery raft, because the most problematic vibrations occur
on machinery rafts at low frequencies. The physical model was constructed so that the
first three flexural modes occurred at frequencies less than 1 kHz. This upper frequency
limit ensured that sufficient flexural modes could be excited and analysed within the

limitations of the experimental equipment available.
Once the physical model was constructed, the natural frequencies of the experimental

beam without shakers were determined, by using an instrumented hammer to excite the

structure, and measuring the acceleration of the beam to obtain the frequency response
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function [69]. The results of the hammer excitation tests are shown in Figure 2.8 which
shows the translational rigid body mode (RBM 1), the rotational rigid body mode (RBM
2) and the first two flexural modes (FM 1) and (FM 2) of the beam. It can be seen in
Figure 2.8 that the rigid-body modes are well separated from the flexural modes, as was
determined in the experimental design. The measured natural frequencies are compared
to those obtained using Equation (2.15) from the analytical receptance model in Table

2.2 below.

Mode Experimental | Analytical Difference Percentage
Natural Natural / Hz Difference
Frequency Frequency /%
/ Hz / Hz

Translational 19 18 1 5

Rigid body mode

Rotational 33 33 0 0

Rigid body mode

First 130 134 4 3

Flexural mode

Second 330 356 26 8

Flexural mode

Table 2.2. Comparison of the natural frequencies obtained experimentally with those
predicted using the analytical receptance model for the first four modes of the beam.

For the two rigid-body modes and the first flexural mode there is good agreement
between the analytical receptance model and the experimental physical model. There is
a difference of 26 Hz (8%) for the second flexural mode. This level of agreement gives
confidence in the analytical model, and shows that the physical model is well
represented by Euler-Bernoulli beam theory, i.e. the physical model behaves as a one-

dimensional beam at the frequencies of interest in this thesis.

Ling Dynamic Systems LDS V101 shakers were used to provide the external masses on
the beam and to generate the forces applied to the beam by vibrating a 178g load mass
as shown in Figure 2.9. An accelerometer was mounted on the load mass to measure the
acceleration and hence determine the applied force. During the experimental set-up

phase, the acceleration measured on the load mass was compared to the acceleration
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measured on an accelerometer on the beam adjacent to the shaker as shown in Figure
2.9. This gave confidence that measuring the acceleration of the load mass was a valid
method by which to infer the forces applied to the beam by the shaker. The mass of the

shaker armature is 6.5g [73], this was ignored in the calculation of the applied force.

Figure 2.10 shows simulations which compare the time averaged kinetic energy of the
structure when three LDS V101 shakers are mounted on the beam, to the time averaged
kinetic energy when no external masses are present. This is to show the effect of the
extra mass of the three shakers on the beam. In both cases, the beam is excited by point

forces of the same magnitude and phase at positions x//=0.08, x//=0.33 and
x/1=0.66. As can be seen from Figure 2.10, the effect of the external masses is to

lower the natural frequencies of the structure. This is in concordance with the equations
for the natural frequencies of vibration of the two degree of freedom system given in
Equations (2.21) and (2.22), which showed that the translational and rotational rigid-
body modes are inversely proportional to the square root of the mass m . Also the

natural frequencies of the thin beam in flexure are given by [1]

E I
=N B~ (2.23)
2 PA

fn =
where £, is the frequency of the n™ flexural mode, E , is the Young’s modulus, 7 is the

second moment of area of the beam cross section about the neutral axis (the z axis using

the coordinate system of Figure 2.2), pis the density of the beam, A4 is the cross
sectional area of the beam and f3, is the n™ flexural wave number. It can be seen from

Equation (2.23), that the frequencies at which the flexural modes occur are proportional

to the square root of the bending stiffness £ / [70] and inversely proportional to the

square root of the mass per unit length pA .

Since each shaker is 0.91 kg and the static mass of the beam is 2.54 kg, the additional

2.73 kg mass of three shakers represents a significant increase to the mass of the generic

33



Chapter 2 An analytical and a physical model of a general elastic structure

structure. This is representative of a real machinery installation, where the mass of the

machinery is of the same order as the mass of the supporting raft structure.

2.4 Conclusions

This chapter has described the development of two models of a generalised one-
dimensional elastic structure that were used to investigate synchrophasing as an active
structural vibration control technique. One of these models is an analytical model and

the other is a physical model.

Expressions for the displacement at any point on the structure, due to multiple vibrating
sources that are attached to the structure, were derived by developing a receptance based
analytical model, where the composite structure was considered as lumped parameter

and distributed parameter components.

The receptance based analytical model was used to guide the design and development of
a physical laboratory scale model, by simulating the effect on the overall time averaged
kinetic energy of the structure, when the material and dimensions of the thin beam are
changed, when the stiffness of the compliant mounts is changed and when the masses of
the external components that are attached to the beam are changed. This enabled a
physical model to be constructed where the rigid-body modes are well separated from
the flexural modes and the first three flexural modes occurred at frequencies below 1

kHz.

After construction of the physical model, impact tests were performed to determine the
natural frequencies of vibration, these showed good agreement when compared to the
natural frequencies predicted using the analytical model. This gave confidence in the
analytical modelling technique and showed that the physical model was behaving as a
one-dimensional Euler-Bernoulli beam at the frequencies of interest in this thesis. The
physical model was used during the experimental investigations into synchrophasing,
which are described in Chapter 4. The analytical model was also used in Chapter 4 to

validate the experimental results.

34



Chapter 2 An analytical and a physical model of a general elastic structure

2.5 Figures

Reference Phase Machine Machine 1 Machine 2 Machine P

Thin support raft

Compliant mount

Figure 2.1. A diagram of the generalised structure. P+1 machines are mounted on a
thin support raft, such that the phase of the voltage applied to the P control machines
can be adjusted relative to the phase of the voltage applied to the reference machine. In
the diagram P=3.
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<

Displacement w(x)

Figure 2.2. The coordinate system and variables used in modelling the generalised
structure. The uniform box section beam is supported at each end by mounts of stiffness
k, and k,, which are complex due to damping in the mounts. The shakers are

considered to be point masses of mass m,,m,,m, ... m,. The positions of the shakers on

the beam are given by the coordinates x, ,x,,x,...x, respectively. Forces f to f, act
on the beam as a result of the reaction against each shaker mass load.
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[e)
N~

Figure 2.3. Subdivision of the composite system when P +1 shakers are mounted on the

beam which is compliantly mounted on two springs of stiffness &, and k,. For clarity,
the external components attached to the beam at positions x,...x,, x,x, are given a

sl

single letter subscript x,,x,...x, .
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S A Iy

| Im"l Im”l |

Figure 2.4. Discretisation of the composite system into N, small elements, each of

length Ax. Each small element has an additional mass m, which can be set to zero at the
positions where there is no shaker attached.
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Displacement w(x)

D¢ mmm Translational rigid body mode
mm Rotational rigid body mode

Flexural mode 1

Flexural mode 2

3 ‘ ‘ | —— Flexural mode 3 ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
(6]
T

Position along beam / length

Figure 2.5. The rigid-body modes and the first three flexural modes of a thin beam with
free ends.
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.......... No Mounts
RLF Type 2
o RLF Type 3

-20

-30

<T>t 40
dBrell
50

-60

-70

-80 . . . . R | .
10 10 10

Frequency / Hz

Figure 2.6. Simulations of the time averaged kinetic energy of the beam without shakers
on, to show the effect of the stiffness of the supporting mounts. The beam is driven by a
single point force at x//=0.25. For the dotted line no mounts were used in the

receptance model (A=0Nm™), the solid line used the stiffness of the RLF Type 2

mounts determined experimentally (k==9x10°Nm™ for each mount) in the receptance
model and the dashed line represents the case when the experimentally determined

stiffness for the RLF Type 3 mounts (k=17.4x10°Nm™ for each mount) is used in the
model.
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(a)

Aluminium box section beam

RLF high deflection rubber mount

B N 2 B 7 N Z
Aluminium box section beam Iron weights

(b)

i' .
RLF ‘fubber mount

Aluminium box section beam

Figure 2.7. A diagram (a) and a photograph (b) of the experimental beam used to
validate the analytical model and to assess the practical limitations of synchrophasing.
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Accelerance / dB re 1 ms>N"!

Mo 20 30 40 50 100 200 300 400

Frequency / Hz

Figure 2.8. Measured Frequency Response Function of the experimental beam without
shakers. An instrumented hammer was used to excite the structure and the acceleration
was measured using an accelerometer mounted on the beam. The figure shows the
translational rigid body mode (RBM 1), the rotational rigid body mode (RBM 2) and the
first two flexural modes (FM1 and FM2).
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Accelerometer

Load mass

Accelerometer

Figure 2.9. Ling Dynamic Systems V101 shaker with a load mass of 178g. An
accelerometer was mounted on the load mass to measure the acceleration of the load
mass. During the experimental set-up phase, another accelerometer was positioned on
the beam adjacent to the shaker and was used as a comparison with the accelerometer
on the load mass.
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101
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Frequency / Hz

Figure 2.10. Simulations of the time averaged kinetic energy of the beam showing the
effect of the extra mass due to the shakers. The beam is driven by three point forces of
the same magnitude and phase at x//=0.08, x/I=0.33 and x/I=0.66. The solid line
is a simulation using external masses equivalent to Ling Dynamic System V101 shakers
where each mass = 0.91 kg. The dotted line is a simulation where no external masses
are present on the beam.
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3 Control by synchrophasing

3.1 Introduction

This chapter elaborates on the requirement that, for the types of generalised elastic
structures of interest in this thesis, it is not be possible to alter the magnitude of the
unbalance forces due to any harmonic vibrating sources that are applied to the structure.
Hence control can only be achieved by altering the phases of the unbalanced forces with

respect to each other.

The aim of this chapter is to derive expressions for a measureable quantity, whose
magnitude changes in response to changes in the phases of the unbalance forces.

Methods of finding the minimum of that quantity are then developed and described.

In order to quantify the effectiveness of control, two cost functions are introduced.
Expressions are derived for these cost functions, the first of which determines the
overall time averaged kinetic energy of the structure, and the second of which is the sum
of the squares of the magnitudes of the velocity of the structure over each resilient
mounting point. Two methods of determining the minimum of these cost functions are
then described and compared. Their ease of application and ability to find the overall
global minimum are considered. The chapter concludes by describing the fundamental
difference between control when only two vibrating sources are present and control

when more than two sources are present.

3.2 Choice of Cost Function to minimise

It is necessary to choose a system parameter that can be adjusted in order to provide a
measure of the effect of the applied control. Suitable parameters should be real and any
time dependence averaged over a cycle. It is possible to optimise the performance of the
control system to either control the global vibration of the structure, in which case
vibration at all points on the structure are regarded as equally important, or the control

can be localised to certain important points on the structure. An example of such
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positions would be where the structure is attached to its surroundings, as this would be
expected to be an important path for vibration. A suitable quantity for investigating
global control is the time averaged kinetic energy of the structure. The vibrational
energy E of a structure vibrating in flexure is the sum of the elastic strain energy U
due to the structure flexing, and the kinetic energy 7' due to the velocity response of the

structure, given by
E=U+T (3.1)

Without loss of generality, the specific example of a thin beam as described in Chapter
2 is considered. It lies along the x axis between x=0 and x=L and flexes in a direction
parallel to the y axis. The instantaneous elastic strain energy for such a beam in flexure

is given by [65]
——f Ed(x )(‘W" ’)] X (3.2)

where E is the Youngs modulus and /(x) is the second moment of area of the beam

cross section about the neutral axis. The instantaneous kinetic energy 7 is given by [1,

65]

BY ow(x,t) )
T= 2! pA(x)( > j dx (3.3)

Where pand A(x) are the mass density and the cross sectional area of the beam
respectively. Since the instantaneous strain energy shown in Equation (3.2) contains the
second partial derivative of the flexural displacement w(x,#) with respect to x, U does
not contain any contributions from the rigid-body modes of the structure. This is
because displacement in the rigid body does not involve any flexure of the beam.

Previous work [7] has shown that rigid-body modes are often an important source of
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vibration for raft mounted machinery. Equation (3.3) shows that the kinetic energy

depends upon the first partial derivative of the flexural displacement w(x,#) with

respect to ¢, so the kinetic energy does include contributions from the rigid-body modes.
Thus the time averaged kinetic energy of the structure is considered to be a suitable cost

function for investigating global vibration control.

To investigate the effect of local control, an alternative cost function is necessary. This
cost function is the sum of the squares of the magnitudes of the velocities at the
structure mounting points. The rationale for this choice is that, these points are where
the vibrating structure is attached to any external structure and so this would be the path

of vibration from the structure into the surroundings.

3.2.1 Minimising the time averaged Kinetic energy of the structure

For a structure comprising P+1 machines, operating at identical speeds and causing

harmonic vibration at angular frequency @. The phases of P control machines at

arbitrary positions given by x,---x, can be adjusted relative to a reference machine at
arbitrary position x, as shown in Figure 3.1. The time averaged kinetic energy <T (a))>t
is given by [49]

2

(T(@)), = %[q,.fr +Q.f "M, [q,/,+Q.f ] (3.4)

where the superscript A indicates the Hermitian transpose and q, is the vector of modal

amplitudes due to the machine for which the phase is not varied — the reference phase

machine. For the n™ natural frequency @, of the structure to which the machines are

attached, the modal amplitude due to a source at position x, has the form

W, (x.)
m, (o, (1+ jn)-@®)

q,,(®)= (3.5)
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where 7 is the structural loss factor of the beam, which is assumed to be constant across
all of the modes, and W, is the n™ mode shape of the beam at the position of the
reference machine x,. M is a square matrix of inertia coefficients, the n™ modal mass
being given by m,, . Q, is a rectangular (N modes x P sources) matrix of terms of the

form

VVn (xp)
mm,n (C()j (1 + .]77) - a)z)

q,,(@)= (3.6)

which are proportional to the modal force contributions due to the control machine at

position x, and f, is a vector of control forces given by

ﬂqeﬁ}l
i
A,e’”

f. =1 (3.7

i
A.e’""

where the magnitude and phase of the p™ control force, relative to the reference force

¢»

f, 1s given by f,/lpej where 4, is a positive real number. The position of the

reference force is given by coordinate x, and the position of the p™ control force is at

coordinate x, for p=1...P.

Equation (3.4) can be expanded so that the total time averaged kinetic energy of the

system, considered as a sum over N modes, is given by
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> r 2|y anz : P N }fW‘n (x )
<T(a))>[= z 5 (X) 5 2+zz y 24/?
415 @ i -ot T m, @0 o)

s ()
42> A L 3.8
Z hd @2+ jm)-o")| Y

m,n

+iiﬂﬂ cos(¢ )ﬁ: UACIACH > where (s 1)

t=1 s=1 n=1 mm,n (a)j(1+‘]77)—a)2)‘

The terms in the square bracket on the first line of Equation (3.8) are terms representing
the time averaged kinetic energy if each machine alone is forcing the structure. As there
is no phase dependence within these terms, their contribution to the total time averaged

kinetic energy cannot be altered unless the magnitudes of the forces are changed.

The terms on the second line are phase dependent interaction terms between the
reference machine and each of the P control machines. As each of these terms depend

upon only one phase angle ¢, , they are decoupled from each other. As a consequence,

the phase angle of each control machine can be independently adjusted to minimise the
contribution made to the total time averaged kinetic energy from each term on the

second line.

For the case of a single control machine P =1, and any single mode 7, then using

Equations (3.5) and (3.6), the phase dependent term on the second line can be written as

24,co84, q,,(0)q,,(®). Since gq,,(®)q,,(®) is real and can be either positive or
negative, then the time averaged kinetic energy is minimised when cos¢ =-1 if
q,,(®)q,,(®) is positive and cos¢, =1 if ¢, ,(®)qg,,(®) is negative. From which the

optimum control source phase angle is either ¢ =7 or ¢ =0 respectively.
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The terms on the third line are interaction terms between the control machines. These
terms can be seen to depend upon the difference between the phases of combinations of

the pairs of the control machines (¢,-¢, ) and the product of the magnitudes of the
forces from the control machines (4, 4,). In minimising the kinetic energy in each of

the decoupled terms on the second line, the kinetic energy in the coupled terms on the

third line may be increased.

A more practical method of calculating the time averaged kinetic energy - which does

not require knowledge of the structural mode shapes - is to divide the structure into N,

mass ‘elements’ as shown in Figure 3.2. Each mass element comprises a proportion of
the mass of the elastic structure and some elements contain a proportion of the mass of
additional supported machinery. This formulation of the problem leads to a more

practically useful form of Equation (3.4) given by
1
(@), =5 (v.f, +YL) My, £, + Y.A,) (3.9)

Where y, is an N, x1 vector of transfer mobilities between the reference machine and

each of the mass elements shown in Figure 3.2 and given by

yl,r
y, =| (3.10)
yn,r

where y,, is the transfer mobility between the reference machine and the i mass

element given by

Vir = (3.11)

~|=
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Y. is an N, x P matrix of transfer mobilities between the P control machines and the

N, mass elements. In this case M is an N, x N, diagonal matrix containing the mass

m

of each element on the leading diagonal given by

[ m+AM, 0 0 0 0
0 m,+AM, 0 0 0
M= 0 0 0 0 (3.12)
0 0 0 my . +AM, 0
0 0 0 0 my +AM,

where m, ---m, represents the mass of each element of the elastic supporting structure
and a proportion of the mass of each additional machine AM , is included but can be

equal to zero for some elements. Hence for the experimental determination of the time
averaged kinetic energy, the transfer mobilities and the element masses must be known.

Knowledge of the mode shapes of the structure is not required.

Simulations of the time averaged kinetic energy using Equation (3.9) were calculated

using different numbers of element masses N, and testing for convergence. This

showed that at least five mass elements per flexural wavelength at the highest frequency

were required to accurately determine the time averaged kinetic energy.

3.2.2 Expressions for minimising the sum of the moduli of the velocities squared

over the mounting points

An alternative cost function which minimises the sum of the squares of the modulus of

the velocity at S sensor positions over the mounting points given by x,---x, upon the

thin beam structure is given by

J=w"w (3.13)
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where wis a vector of velocities at S positions on the structure given by

Ww(x,)
W = :

(3.14)

W(x,s)

where the velocity at a general point upon the beam, given by x, takes the form

N AUACH D IR ACH

W(x, @) = ]O)ZI: W, (x)— @a fljn) mp (3.15)

Hence the velocity at each mounting point contains a contribution from each of the
vibrating sources on the structure. Typically the velocity at each mounting point can be

determined experimentally by placing accelerometers upon the structure at these points.

By re-writing w in terms of the transfer mobilities and the applied forces

Vi Yiu Yz Vipa Nip i
Yo, Yor Voo Vapa Vor s
O e o I T N o e (3.16)
Vs, YVso11Vs12"" Vs-1,p-1Vs-1p S
| Vs | | Vs1 Vsa " Vspa Vsp | Ir

where f_ is given in Equation (3.7). Hence the cost function becomes

J=(y, [+ YL (y, [, +Y.L) (3.17)

It can be seen that both the cost functions defined by Equations (3.9) and (3.17) have the
same form. The difference being that Equation (3.9) provides a mechanism for global

control because all N, mass elements of the structure are included, whilst Equation

(3.17) provides local control at the S mounting points.
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Synchrophasing control is achieved by adjusting the phase angles ¢ ---¢, in the

expression for f, in Equation (3.7).

3.3 Methods of finding the minimum of the cost function

This section discusses methods of finding the control phases required to obtain the
minimum value of the cost function. The cost function given in Equation (3.13) can be

written as
J=wlw= Wow (3.18)

where w_from Equation (3.15) is given by
P
Wy =Y, fot DVt (3.19)
p=1
Expanding Equation (3.18) and using f, = fr/lpej % gives

J=J,+J,+J, (3.20)

where

S 2 0 2
‘]lzfr22|:ys,r +Zﬂ‘i ys,p :| (321)
s=1 p=1
) S P s
J,=2lf, ZRe yser/Ipys’pe o (3.22)
s=1 p=1

s Pl P o
J;=2f. ZZ{Re{Zﬂq z/lpy:,qys,pe](% %)H (3.23)
2y

s=1 gq=1 p=q+1

Equation (3.23) is only included in the cost function when more than one control

machine is present, i.e. P>1. When P =1 there are no interaction terms between the
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phases of the control machines. The cost function defined in Equation (3.20) has
stationary points when each of its P partial derivatives with respect to phase angles

¢, --- ¢, are equal to zero. These are given by

aij =2 f‘r 211] iRe{ysﬂryj,pjeijd)ﬂ }+ "
6¢p s=1

| AP S A Ty ) (3.24)
‘-}(”‘ Zz P quy“'aqys»[’e

s=1 g=1

for g=p

Equation (3.24) shows that the stationary points for each ¢, depend upon the phase of

the voltage supplied to each of the other P—1 control machines.

3.3.1 Synchrophasing with one control machine P=1

When synchrophasing with only one control machine such that P=1, Equation (3.20)

becomes
J=J,+J, (3.25)
where
e 2, 2
Jl :|f1| Zl:ys,r +Z’l ys,l :| (326)
s=1
and
2,9 ;
5 =21 A Y [Rely, e | (3.27)
s=1

Altering the phase of the single control machine ¢, only affects the term J, of Equation
(3.27). Hence the problem becomes one of minimising Equation (3.27). If y_.y;, is

written in terms of a magnitude and phase angle 6, such that

ys,ry:,l = R.S'ejes (328)

then the equation for J, can be written as
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Jy=2

fr zﬂ’liRs COS(@S _¢1) (329)
s=1

It can be seen that to minimise the contribution to the cost function at each sensor

requires cos(d, — ¢ )=—1. Implying that 6, — ¢ =(2n+1)z for n=0,1,2,3....

However, the cost function is formed from the sum of the contributions from each
sensor. Equation (3.27) can be written as

2 Hy =j¢

A Relyl'y,e | (3.30)

J,=2f,

where y, is a vector of transfer mobilities between the reference machine and each
sensor and y, is a vector of transfer mobilities between the control machine and each

sensor. These vectors are given by

y, = © | and y, =| : (3.31)

If y["y, is written in terms of a magnitude and phase in a similar way to Equation (3.28)
so that

V'Y, =Re’” (3.32)
then the equation for J, can be written as

J, =2 £.|P AR, cos(6, — ) (3.33)

£

Hence to minimise J, across all sensors requirescos(§, —¢,)=~1, implying that the

minimising phase angle ¢,_. is given by

min
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6-¢..=2n+)x for n=0,1,23.... (3.34)

The data that are required to achieve the minimisation are the transfer mobilities

between each machine and each sensor. If these are obtainable, then 6, is known, hence

the value of ¢ corresponding to ¢_. can be calculated.

Also, the phase to maximise ./, across all sensors requires cos(§, —¢ )=1. The value of

¢, corresponding to @__ is given by

max

0,—¢  =2nz for n=0,123.... (3.35)

Subtracting Equation (3.35) from Equation (3.34) gives

¢max _¢min =7 for n= 0917273'-'- (336)

Equation (3.36) shows that the difference between the phase angle required to minimise

the cost function and maximise it is 180" .

Figures 3.3 to 3.9 show simulations of synchrophasing with two vibrating sources
mounted on the beam. The system properties used for the simulations are given in Table

3.1 below.

Beam Length 1.2 m
Width 101.6 mm
Height 254 mm
Thickness 3.2512 mm
Young’s Modulus 6.7x10" Pa
Density 2710 kgm’3
Assumed flexural mode damping 5 %

Vibration Mass 0.91 kg

Source

Mounts Stiffness 9%10° Nm™

Table 3.1. System properties used for simulations
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For these simulations the reference phase source is positioned at x/L =0.08 and the
control source at x/L=0.33. The magnitude of each force was the same and the

minimum and maximum of the cost function was found by using a full search of all the

angles.

Figure 3.3 shows a simulation of synchrophasing using the time averaged kinetic energy
given in Equation (3.9) as the cost function to be minimised. For this cost function, the
beam was considered to be split into twelve mass elements. The dotted line is the
maximum time averaged kinetic energy of the beam and the solid line is the minimum.
Figure 3.3 shows the two rigid-body modes - RBM 1 is the translational and RBM 2 is
the rotational rigid-body mode respectively - and the first three flexural modes given by
Equation (3.5) and labelled FM1-FM3 respectively. As can be seen from Figure 3.3, the
time averaged kinetic energy in the first rigid body mode is reduced by approximately
30 dB by synchrophasing and the first flexural mode is reduced by approximately 25
dB. Figure 3.3 shows that the rotational rigid body mode is not well controlled for this
configuration of sources. This is because the control source is positioned close to the
node of the operational deflection shape at the frequency corresponding to the rotational
rigid-body mode, so provides very little control. This is shown in Figure 3.5b where the

control force £, is close to the node at x/L =0.32.

Figure 3.4 shows the phase angle ¢ of the control machine required to minimise the
cost function shown in Figure 3.3. This figure shows that the optimum phase for
minimising the cost function is usually either a 0 phase shift, so that the sources are
vibrating in phase, or a 180 phase shift, so that the sources are vibrating in anti-phase.

This is in agreement with Equation (3.34). Figure 3.3 also shows that no control is
achieved at 80 Hz and Figure 3.4 shows that this is the frequency where the optimum
phase for minimising the cost function changes from a 180 phase angle to a 0 phase
angle with respect to the reference phase. This can be understood by considering the
rigid body and flexural modes of a beam with free ends. Previous work on the rigid

body modes of a thin beam with free end conditions [67, 68] has shown that for a force
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1 X, )
—or f’ > — then a node exists on the

w | N

applied to the beam on either of the intervals % <

beam, so that application of a controlling force at or near that node will not be effective

at reducing the overall cost function.

Figure 3.5a and Figure 3.5b show the translational and rotational rigid-body operational
deflection shapes respectively for the compliantly mounted thin beam with two shakers
on. The figures also show the positions of the reference and control forces at x/L = 0.08
and x/L =0.33 respectively, which were used in the simulations. Figure 3.4 showed
that to minimise the magnitude of vibration for the translational rigid body mode at 13
Hz, the control force is 180" out of phase with the reference force and this is shown by
the direction of the arrow at x/L =0.33 in Figure 3.5a. Figure 3.4 also showed that the
control force is in phase with the reference force when minimising the magnitude of
vibration of the rotational rigid body mode at 26.6 Hz, shown in Figure 3.5b. This is
because there is a node of the mode shape at x/L =0.32 which is between the two
forces. If the two applied forces had been on the same side of the node, then the most
effective phase for controlling vibration would be a 180" phase angle with respect to the
reference phase. The rotational rigid body mode is not well controlled because the
control source is very close to the node, so the time averaged kinetic energy is not
greatly reduced at any control phase angle. The first flexural mode at 103 Hz is shown
in Figure 3.5¢ and has nodes at x/L =0.2 and x/L =0.725 so there is a node of the first

flexural mode between the two sources. To most effectively control this mode the

control force should be in phase with the reference force, as is shown in Figure 3.4.

Figure 3.4 shows that for frequencies up to 70 Hz, the main modes excited are the rigid
body modes and the optimum phase for the control force to reduce the cost function is
180" out of phase with the reference force. Above 80 Hz the first flexural mode
becomes the most important and the most effective control is achieved with the control
force in phase with the reference force. Between 70 Hz and 80 Hz the two main modes

excited are the rotational rigid body mode and the first flexural mode. The cost function
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reduction obtained by minimising one of these modes is cancelled out by a cost function
increase in the other mode, so that the cost function is not significantly altered as can be

seen in Figure 3.3.

Figure 3.6 shows a simulation of synchrophasing using Equation (3.17) as the cost
function. This cost function minimises the sum of the magnitudes of the velocity
squared at each end of the beam. The sources were in the same simulated positions as
for Figure 3.3 and the figure shows that the translational rigid-body mode and the first
flexural mode are well controlled by this cost function while the rotational rigid-body
mode is not well controlled. The two cost functions are very similar in the effectiveness
of their control at frequencies below the second flexural mode. Figure 3.7 shows the
phase of the control machine required to minimise the cost function shown in Figure

3.6. This figure shows that the optimum phase for minimising the cost function is

usually either a 0" phase shift, so that the sources are vibrating in phase, or a 180 phase

shift, so that the sources are vibrating in anti-phase. This is in agreement with Equation

(3.34).

Figure 3.7 shows that between 40 Hz and 70 Hz, the optimum phase angle changes from
180 to 0" in a smooth transition. Over this frequency range, the dominant mode is the
rotational rigid body mode, although there is also some beam bending due to the first
flexural mode. Figure 3.8 shows the simulated operational deflection shapes for the

beam at 51 Hz when a phase shift is applied to the control source f,. When both sources

are in phase, as shown in Figure 3.8a, then the rotational rigid body mode is the
dominant mode. The influence of the first flexural mode can be seen in Figures 3.8b to
3.8d, when the control source is phase shifted with respect to the reference source, as it
causes a curve in the operational deflection shape. The cost function used in the
simulations shown in Figures 3.6 and 3.7, minimised the sum of the magnitudes of the
velocity squared at each end of the beam only, so the flexing can be used to minimise

the velocity at each end of the beam. For the simulations shown in Figure 3.8 at 51 Hz,

the cost function was minimised at 270 . Because only the ends of the beam are

considered in the minimisation, comparison of Figures 3.8a and 3.8d, shows that the
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displacement at the left hand end (x = 0 m) has decreased, whilst the displacement at the
right hand end (x = 1.2 m) has increased, when the control source phase has a 270" shift
with respect to the reference phase. In this case, the sum of the magnitude of the
velocity squared at each end of the beam is lower for the 270" control source phase

angle shown in Figure 3.8d.

The two cost functions are compared in Figure 3.9. The main difference between them
is at frequencies above the second flexural mode. The figure shows that the cost
function which minimises the sum of the magnitudes of the velocity squared — J in the
figure and Equation (3.17) - more closely resembles the time averaged kinetic energy
cost function as the number of sensor points along the beam increases. Both the cost
functions have a very similar form, as shown in Equations (3.9) and (3.17). So as the
number of sensor positions included in the determination of the cost function increases,
so the cost function for local control more closely resembles the cost function for global

control.

3.3.2 Synchrophasing with two control machines P=2

When P =2, such that control is achieved by adjusting the two phase angles ¢, and ¢, ,

Equation (3.20) becomes

J=J +J, (3.37)

where

2
2
+4

Jy = 24‘]12

fr

ys,r ys,l yS,z

2251[

s=1

2} (3.38)
and

e , . ‘
Jy= 2|f,| Z[Re{ys,r/’i’ly:,le_”}l +ys,r/1py:,ze_j¢2 }"‘ Re{ﬂq/lzy:,lys,zej(%_%)}] (3.39)

s=1

It can be seen that Equation (3.38) is independent of the two control phases ¢, and ¢, , so

the control problem becomes one of minimising Equation (3.39) by adjusting phase
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angles ¢ and ¢,. The partial derivatives of Equation (3.39) with respect to ¢, and ¢,

are given by

% =-2/, ’ ZS: [Re{ﬂ,lys’ry:’lje_-m }"‘ Im{ﬂ,l%y:,zysylej(?j‘_%)}]

| s=1

% =-2|f, ’ i [Re{/izys,ryzﬂ,zjeimz }"’ Im{ﬂfliz)’:,lys,zej(;}jﬁpl)}]
) s=l1

(3.40)

(3.41)

Using a similar notation to Equation (3.32), which is repeated here for convenience

yf]y) = Rleje1

The magnitude and phase of the vector products y.'y, and y/'y, are given by

y?y) = RZejaz

yi'y, = Rye’®

Hence the expressions for the derivatives become

Z; =2 f,[ T4 R sin(6, - ) + 44, R; sin(6, + 6, — 4,)]
oJ 2 . :
ﬁ =2|f. [ﬁsz sin(@, —@,) — A4 A, R, sin(6, + ¢, —¢1)]

(3.32)

(3.42)
(3.43)

(3.44)

(3.45)

Equations (3.44) and (3.45) show that the value of the partial derivatives, which define

the way in which the cost function is minimised with respect to a particular control

machine phase angle, depends not only upon that control phase angle, but also on the

phase angle of the other control machine.
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For P>1 there is no simple expression which relates the transfer mobilities between the
structure mounted machinery and the sensors to the optimum choice of control phase
angle, as there was when P =1 in Equations (3.33) and (3.34). This is because of the
interaction terms which exist between the phases of the control machines, as shown in
Equation (3.23) and the last expression in Equation (3.39). Instead, it is necessary to
resort to a strategy which searches through a range of phase angles for each control
machine, and calculates the optimum values of the control phases, by finding the global

minimum of the P dimensional function, if one exists.

Figure 3.10 shows a cost function surface obtained by calculating the time averaged
kinetic energy of the beam when 3 vibrating sources are present (P=2), as shown in
Equations (3.38) and (3.39). Control is achieved by altering the phases of the two
control sources ¢ and ¢, . For this simulation the reference source was at x,/L=0.16
and the two control sources were at x,/L=0.08 and x,/L=0.33 respectively. The
frequency chosen was 100 Hz, which is close to the first flexural mode of the beam.
Figure 3.10 shows that there is a clear minimum in the cost function, in this case when

¢, and ¢, are both 180" with respect to the reference phase machine.

A single clear minimum in the cost function is not always obtained. Figure 3.11 shows a
simulation of the time averaged kinetic energy cost function surface for a different
frequency and configuration of the sources. In this figure the reference source was at
x,/L=033 and the two control sources were at x,/L=0.08 and x,/L=0.75
respectively. The frequency was 10 Hz (k/=1.35). Figure 3.11 shows that more than one
clear local minimum can exist in the cost function surface and that the optimum phase
angles for the control sources are not always 0° or 180" . In this case there is symmetry
in surface of the cost function through the plane ¢ =¢,. This symmetry was
investigated experimentally and is discussed further in Chapter 4. The cost function

surface minimum in this simulation was given by ¢ =228  and ¢, =118".
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3.3.3 Full Search

The simplest search strategy is that of stepping through the phase of each control source

from 0° to 360° in suitable steps for each operating frequency of interest. This type of
searching in a practical implementation of synchrophasing, can be very time consuming,
as it is necessary to adjust the phase of one control machine, let the vibration settle to its
steady state, then calculate the cost function J, repeating this process over a range of

angles.

The number of measurements required at each frequency is (360/ N )P for an N’ step

size and P control machines. Even a crude search over 10° steps of two control

machines would take 1296 measurements. As the number of control machines P

increases, the number of measurements required increases as 36” for a step size of 10°.

For some situations, the time required may not be an important factor, and a full search
might be the best and simplest option. A full search will detect the global minimum in
cost function surfaces where there is more than one local minimum. But for other
situations, for example an adaptive synchrophasing system where the phase of the
control machinery changes in response to varying the machine loads, then the time to

obtain the optimum phase angles may be more important.

A partial search strategy for P=2, based upon Equations (3.44) and (3.45) can be
derived by noting that, at the global minimum, the partial derivatives given by
Equations (3.44) and (3.45) are both equal to zero. It should be noted that they are also
zero at other stationary points, such as maxima and saddle points. Summing Equations

(3.44) and (3.45) gives

2 /[ AR, sin(6, - ¢) + AR, sin(6, —4,)] = 0 (3.46)
from which
sin(f, —¢,) =— 1222 sin(6, —¢,) (3.47)

1
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Since A,R, /AR, is real and positive and 6,and 6, are constant whilst the machinery
load remains constant, then for each step of ¢,, there are two corresponding values of
¢, which satisfy Equation (3.47) and at which the value of the cost function can be
calculated to search for the minimum. Hence, if 4,R,/AR,, 6,and 6, are measurable
quantities, the number of measurements of the cost function J required, reduces
to Px360/ N, for an N°step size, which is 2x36 for a step size of 10° with two control

machines.

3.3.4 Application of Propeller Signature Theory

The time consuming part of the full search strategy is the time required to physically
adjust the phase of each control machine, allow a suitable period of settling and then to
make a measurement of the cost function. An alternative strategy, called Propeller
Signature Theory [60] has been adopted in aircraft propeller noise and vibration studies
[53-59, 61, 62, 71, 72]. It is based upon determining the transfer function between each
machine on the elastic structure and each control sensor by physical measurement, and
then using the transfer function data to run simulations of the effect of changing the
phase angles on the value of the cost function. Instead of writing the vector of velocities
at each sensor in terms of the transfer mobilities as shown in Equation (3.16) and given

by

Vi Vi 0 Ve /
T O (3.48)
Ysr Ysi v Vs | Sp

the mobility terms y,, and the magnitudes of the forces applied by each vibrating

machine source ‘ fp‘ are incorporated into a term representing the transfer function

between the vibrating machine and the control sensors, so that
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o o > o
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I
J#
‘. (3.49)
ej¢P
(3.50)
3.51)
ﬂP

The simplest way of determining the coefficients in the transfer function matrix I is to

switch all of the machines off, and then switch each on in turn, which will give the

contribution at each control sensor from each machine. As a consequence the columns

of the transfer function matrix I' are determined.

There are many situations where the machinery is critical and cannot be switched off in

this fashion. In this case, the transfer function can be determined by introducing a

known phase shift  onto each control machine in turn and obtaining a vector of

velocities at each sensor position for each independent angle i . This is given by
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wi(x)  wy(x) e We, () Yoo Yoo o ne |11 1 1
W ('xz) W, (.xz) ) WP+1.(X2) _ 7%,r 7/?,1 72.,13 1 e 1 (3.52)
. . . . 1 1
wi(xg) Wy(xg) o Wp,(xg) Vs Vsio o Vse |l 1 1 eV
Sx(P+1) Sx(P+1) (P+1)x(P+1)

where y,---y, are the known phase shifts applied to each control machine in turn.

Equation (3.52) can be written using matrix notation as
W=IY¥ (3.53)

For a fully determined solution on a system comprising P control machines and one
reference machine, (P+1) physical measurements of the vector of velocities w at

independent phase angles are required. These measurements form the columns of the

matrix W in Equation (3.52). If more measurements are made at independent phase
angles than there are control machines, then a least squares determination of I' can be

obtained by
r=we'[pw’ [’ (3.54)

Once the transfer function matrix I' has been determined, its elements are independent
of the phase angle chosen for the control machines. As long as the machine loads do not
change, T' can be regarded as a constant matrix. This allows the determination of the
optimum synchrophase angles for each of the control machines to be achieved by
simulation, using the elements determined for the transfer function matrix I' in a full
search, using a mathematical package such as MATLAB®™. Hence only P changes of
phase angle are required, as the first measurement is likely to be with none of the phases
altered, as is shown in the first column of matrix ¥ in Equation (3.52). The cost
function can then be expressed in terms of the transfer function matrix and the vector of

phases of the sources as
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J=w'w=9"T"Tg (3.55)

This method is considerably faster than a full search because only P changes of phase
angle are required. So only 2 phase changes are necessary rather than the 1296 in the

full search example given in subsection 3.3.3.

3.4 Conclusions

This chapter has developed expressions for two cost functions, which were used to
provide a measure of the effectiveness of vibration control when the phase angles of the

forces applied to a thin beam were adjusted. The two cost functions used were

= Global control by considering the time averaged kinetic energy of the structure.

= Local control by considering the sum of the squares of the magnitudes of the

velocities at the structure mounting points.

As the number of sensor positions included in the local control cost function increases,

so it more closely resembles the cost function for global control.

When only two vibrating sources are present on the structure, vibration control can be
achieved by altering the phase of the single control machine. The best phase angle for
the control machine is often just either in phase, or in anti-phase with respect to the
reference machine, depending upon the positions of the machines upon the structure, the
positions of the nodes of the dominant modes of vibration that are excited at the

frequency of interest and the magnitude of the modal forces.

For a structure supporting more than two vibrating machines, the coupled interaction
terms that contribute to the cost function can work ‘against each other’ depending upon
their magnitudes, so that no simple analytical expression for the optimum synchrophase

angles exists. The optimum phase angle for each control machine to take, in order to

67



Chapter 3 Control by synchrophasing

minimise the cost function, is not as intuitive as the two machine case. A single well
defined minimum of the cost function may not always be obtained because local

minima or symmetric minima may exist on the cost function surface.

Two methods of finding the minimum of the cost function have been discussed. Both
methods require a stepped search through all of the phase angles, but while one method
physically steps through the phase of each machine whilst it is running, the other
method simulates stepping through the angles using phase independent transfer
functions that are determined by measurements. The former method, although
simplistic, can be very time consuming as it is required to physically adjust the phase of
each control machine, allow a suitable period of settling and then to make a
measurement of the cost function. The latter method, also known as Propeller Signature
Theory only requires the same number of independent phase changes as there are
control machines. These phase changes are used to calculate the phase independent
transfer function between each machine and each sensor position. A simulation is then
run using the transfer functions to step through all of the phase angles to determine the
minimum of the cost function. This was shown to be much faster than the Full Search
method. This calculation of transfer function needs to be performed at each operating

speed and hence frequency for which synchrophasing is to be applied.
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3.5 Figures

Reference Phase Machine Machine 1 Machine 2 Machine P

»
»

X X X2 Xp

v =

Thin box section beam

Compliant mount

Figure 3.1. A thin box section beam supporting P +1 machines such that the phases of
P control machines are adjusted relative to a reference machine. In the diagram P=3.

Figure 3.2. The elastic beam divided into N, mass ‘elements’ some of which include a

proportion of mass due to additional machinery. The velocity of each mass element is
measured to calculate the time averaged kinetic energy.
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Figure 3.3. Simulations of synchrophasing using the time averaged kinetic energy as the
cost function. For the simulations two vibrating sources were mounted on the beam, one
reference source at x,/L=0.08 and one control source at x,/L=0.33. The figure
shows the maximum kinetic energy of the beam (dotted) and the minimum kinetic
energy of the beam (solid) achieved by synchrophasing one control source. RBM1 is the
translational and RBM2 is the rotational rigid body mode respectively. The first three
flexural modes are labelled FM1-FM3 respectively.
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Figure 3.4. Phase ¢ of the control machine required to minimise the time averaged

kinetic energy. For the simulation, two vibrating sources were mounted on the beam,

one reference source at x, /L

0.33.

0.08 and one control source at x, /L =
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Figure 3.5. The first three simulated operational deflection shapes for the compliantly
mounted thin beam with two shakers on. a) translational rigid-body modeshape, b)
rotational rigid-body modeshape with a node at x/L=0.32 and c) first flexural

modeshape with nodes at x/L=0.2 andx/L =0.725. The positions of the reference

source at x/L=0.08 and the control source at x/L=0.33 used in generating the

simulations are shown on the modeshapes.
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Figure 3.6. Simulations of synchrophasing using the sum of the magnitudes of the
velocity squared at each end of the beam as the cost function. For the simulations two
vibrating sources were mounted on the beam, one reference source at x, /L =0.08 and
one control source at x,/L=0.33. The figure shows the maximum cost function
(dotted) and the minimum (solid) achieved by synchrophasing one control source.

RBMI is the translational and RBM2 is the rotational rigid body mode respectively.
The first three flexural modes are labelled FM1-FM3 respectively.
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the simulation, two vibrating sources were mounted on the beam, one reference source

magnitudes of the squared velocities at each end of the beam as the cost function. For
at x, /L

Figure 3.7. Phase ¢ of the control machine required to minimise the sum of the

0.33.

0.08 and one control source at x, /L =
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Figure 3.8. Simulated operational deflection shapes at 51 Hz. The control source f, has
a phase shift ofa) 0° b) 90" ¢) 180" d) 270" with respect to the reference phase f,
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Figure 3.9. Comparison of the cost functions which minimise the time averaged kinetic
energy and the sum of the magnitude of the velocity squared J, at selected points along
the beam. The number of points selected is adjusted from one at each end of the beam
then 4, 7 and 12 equi-spaced points. For the simulation two vibrating sources were
mounted on the beam, one reference source at x, /L =0.08 and one control source at

x,/L=0233.
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Figure 3.10. Cost function surface obtained using the time averaged kinetic energy of
the beam as the cost function, with 3 vibrating sources on the beam (P=2). The plot was
generated from a simulation, where the reference source was at x, /L =0.16 and the two

control sources were at x,/L=0.08 and x,/L=0.33 respectively and the frequency
was 100 Hz (k[=4.2).
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Figure 3.11. Cost function surface obtained using the time averaged kinetic energy of
the beam as the cost function, with 3 vibrating sources on the beam (P=2). The plot was
generated from a simulation, where the reference source was at x, /L = 0.33 and the two

control sources were at x,/L=0.08 and x,/L=0.75 respectively and the frequency

was 10 Hz (kI=1.35).
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4 Experimental validation of synchrophasing

4.1 Introduction

The aim of this chapter is to describe the experimental work conducted to validate the
numerical simulations and subsequent conclusions presented in Chapter 3. The chapter
begins with a description of a physical beam model which was used to investigate
control of an elastic structure by synchrophasing. The vibration sources used in the
experiments were electromagnetic shakers. Each shaker applied a force to the

supporting beam as a result of a reaction against an attached mass load.

In order to assess the effectiveness of control, two cost functions were investigated
experimentally. The cost functions were the measurement of the time averaged kinetic
energy of the elastic structure, and the measurement of the sum of the squares of the
magnitudes of the velocities at the structural mounting points of the beam. These cost

functions were investigated using simulations in Chapter 3.

For the initial experiments with two electromagnetic shakers, both cost functions were
investigated. For later experiments, only the cost function of minimising the sum of the
squares of the magnitudes of the velocities at the beam support positions was used, as
this was easier to implement experimentally. It would also be easier to fit into a
practical synchrophasing scheme as it does not require any information regarding the

mass distribution of the structure.

Methods for measuring the time averaged kinetic energy using a scanning laser
vibrometer, and measuring the sum of the squares of the magnitude of the velocity at
each end of the structure are described. A method for automating the calculation of the
cost function in response to changes in the phase angles of the applied voltages is

described and implemented using the software packages LABVIEW® and MATLAB®.

The experimental determination of the synchrophase angles revealed the power of the

propeller signature theory technique. It enabled much faster calculation of the optimum
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control angles for each of the vibrating sources. The results obtained are discussed and

compared to those obtained from simulations.

4.2 Experimental Set-up

Figure 4.1 shows the system configuration used to investigate synchrophasing when two
vibrating sources are mounted on an elastic platform. The physical properties of the

system are given in Table 4.1.

Beam Material Aluminium 6063-T6 | Units
Extruded
Box section
Length 1.2 m
Width 101.6 mm
Height 254 mm
Thickness 3.2512 mm
Young’s Modulus' 6.7x10" Pa
Density" 2710 kem™
Shaker Make Ling Dynamic
Systems
Model V101
Mass 0.91 kg
Load mass on shaker 0.178 kg
Mounts Make RLF
High deflection
rubber
Type 2
Stiffness” 9%10° Nm™

1 From manufacturer’s data sheets
2 Measured by static loading

Table 4.1. Physical properties of experimental system
An aluminium box section beam was used as the flexible mounting platform. Its

dimensions were chosen to provide separation between the two rigid-body modes of the

system and the flexible modes of the beam. An initial modal analysis of the beam without
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any shakers mounted on it was conducted using an instrumented hammer to excite the
structure. This revealed rigid body modes at 19 Hz and 33 Hz, and the first two flexural
modes at 130 Hz and 330 Hz. The beam was compliantly mounted at each corner using

flexible rubber mounts.

A Polytec PSV400 scanning laser vibrometer was used to measure the velocity over a
grid of positions covering the beam, as shown in Figure 4.2. The grid extended over 12
equispaced positions along the length of the beam and 3 positions across the width of
the beam. The choice of the number of measurement positions along the length of the
beam ensured that at least five points were measured per flexural wavelength at the
highest frequency of interest, which was 1 kHz. Using the Euler-Bernoulli beam

equation, also known as thin beam theory [1, 65] the bending wavelength 4, is given by

2r  [EI
4, =2E 2L 4.1
"= Jo \ o 4.1

where E is Young’s modulus, / is the second moment of area of the beam cross-section

about the neutral axis, pis the density, 4 is the cross sectional area and @ is the

angular frequency of vibration. Using the data in Table 4.1 for the physical properties of

the beam, for 1 kHz, 4, =0.57 m, so a grid spaced 0.1m apart was suitable.

For the comparison of cost functions, the 36 measured velocities were stored
individually and post-processed using MATLAB®. The three positions across the beam
were averaged, to try to reduce any contribution in the measured vibration due to the
beam twisting, as only flexural vibration was of interest and included in the analytical

model.

Figure 4.3 shows the experimental system configuration used to investigate
synchrophasing when three vibrating sources are mounted on the elastic platform. The
beam and mounts were the same as described previously and shown in Table 4.1. The

cost function used for the experiments with three vibrating sources was to minimise the
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sum of the squares of the magnitudes of the velocities over the mount points at each end
of the structure. As a result, only the acceleration at each end was required. This was
measured using accelerometers shown as A4 and AS5. This cost function is more
practically achievable in a real situation than the cost function which minimises the time
averaged kinetic energy, because the structure doesn’t need to be considered as a set of

mass elements or as a distributed continuous system.

4.2.1 Electromagnetic shakers as vibrating sources

Ling Dynamic Systems V101 shakers were placed on the beam and used to vibrate test
load masses. Thus a reaction inertial force was applied to the beam by each shaker.
Accelerometers were used to measure the acceleration on the load masses; these are
shown in Figures 4.1 and 4.3. These accelerations were used to infer the forces applied
to the beam, this assumes that the acceleration measured by the accelerometer on the
load mass is the same magnitude as that applied to the beam, i.e. that the shaker and
load mass system resonance is out of the measurement range. The resonant frequency of

the single degree of freedom, shaker load mass system is given by

f=t |k (4.2)

"2z \m

where k& is the suspension axial stiffness of the electrodynamic shaker [73]

k=3.15x10°Nm™ and m =0.18 kg is the mass of the load mass and the moving element

of the shaker. Hence f, =21Hz, which is between the two rigid body modes of the

14

system and right at the bottom of the measurement range.

Figure 4.4 shows a block diagram of the measurement and control set up used for
synchrophasing when three electrodynamic shakers were attached to the elastic beam.
The shaker excitation waveforms were generated on the laptop computer within the
LabView® software package. This enabled precise phases of waveforms to be generated
with respect to the reference waveform. These waveforms were converted into voltages

in the digital to analogue converter and then fed to the shakers via power amplifiers.
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Although the phases of the signals generated by LabView" were known, the effect of
any phase shifts due to the power amplifiers was not known. To mitigate for this, the
phases attributed to each control signal was that measured by the accelerometer on the
load mass for each shaker. The signals from each of the five accelerometers were
conditioned and then fed to the analogue to digital converter then processed in
LabView”. The three accelerometers on the load masses were used to determine the
applied phases of the control voltages, whilst the signals from the two accelerometers at

each end of the beam were used in the calculation of the cost function.

4.3 Experimental measurement techniques

For the set of measurements with two electrodynamic shakers present on the beam, the
velocity at each of the 36 grid positions shown in Figure 4.2 was measured using a
Polytec PSV400 scanning laser vibrometer. This enabled both the time averaged kinetic
energy of the whole system and the magnitude of the velocity at each end of the beam to

be determined; hence both methods could be assessed as control cost functions.

To calculate the total time averaged kinetic energy of the structure at each frequency, all
twelve of the averaged velocities along the length of the beam were used, averaging the
three velocity measurements across the beam to reduce the effects of beam twisting. To
calculate this cost function also requires knowledge of the mass of the structure and the
machinery mounted on the structure. For the cost function which minimises the sum of
the squares of the magnitudes of the velocities at each end, only the averaged velocity at

each end is required.

4.3.1 Using the transfer mobility to determine the local and global cost functions

In order to compare the vibration control possible using the global and local cost
functions, two electrodynamic shakers were used on the beam. Rather than finding the
minimum in the cost function by searching all of the phase angles, the transfer

mobilities were measured using the experimental system, and then used in simulations
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to find the maximum and minimum values of the cost function and hence calculate a

measure of the success of control.

For the investigation with two electrodynamic sources, the beam was excited by a force

f(x;) from each shaker in turn by applying a band limited pseudo random noise as the

excitation. This gave the transfer mobilities between each shaker and each measurement

point defined by

_ i, @)

Y.
=56 )

(4.3)

at each of the 36 measurement positions x, along the beam, for each of the two shaker
positions x; given by x, andx, as shown in Figure 4.1, and where Ww(x,,®)is the

velocity of the beam at measurement positionx, and frequency @. These mobilities

were used in the way described in Section 3.3.1 to find the optimum value for the phase
angle of the control source in order to minimise the cost function, and also to maximise

the cost function.

4.3.2 Minimisation using a full search

A full search methodology was implemented for synchrophasing when three
electrodynamic shakers were present upon the structure. The set up used for this series

of experiments is shown in Figure 4.4.

LabView” programs were written to change the phase of the voltage applied to each
control shaker in turn by a set increment. This increment could take any value, but was
typically 1°,5"or 10°. Once the system had settled to steady state conditions, the
acceleration at each end of the beam was measured and the value of the cost function
determined. Hence for the system comprising three vibrating sources, where two were

subject to control, a cost function surface was generated. Once all the required angles
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had been measured, the minimum of the cost function surface was determined

automatically using LabView”™ and MATLAB® tools.

Figures 4.5 and 4.6 show the LabView™ front panel used for a full search at a single
frequency when three shakers were attached to the beam. Figure 4.5 shows the
waveform parameters on the left hand side of the figure. At each phase angle increment,
three waveforms of 40,960 samples each, at a sample rate of 8192 were generated by
the computer and applied to each shaker. This gave a five second signal for each
measurement of the cost function at each phase increment. The only difference between
the three waveforms is that two were phase shifted with respect to the reference. These

were the two voltages that were applied to the control shakers.

Accelerometers 1 to 3 were mounted on the load masses driven by the shakers. These
were used in the calculation of the phase of the applied voltage. Measuring the phase
directly in this way, rather than using the phase shift generated in the signals meant that
any phase shift introduced by the power amplifiers would be taken into account.
Accelerometers 4 and 5 were mounted at each end of the beam and the signals from

these transducers were used to calculate the cost function.

The waveforms were ramped up for one second, then the amplitude was kept constant
for three seconds whilst the amplitude and phase of each signal was measured, then the
voltage was ramped down for a second. The ramping of the applied voltage at the
beginning and the end was in order to avoid exciting harmonics in the beam, due to
starting and ending the applied phase shifted signals at non-zero values. For example,

starting a waveform at a peak like a cosine wave, rather than at a zero like a sine wave.

Figure 4.5 shows that the whole signal for each accelerometer was monitored in the five
vertical graphs in the middle of the front panel. The uniform amplitude part of the
signal, that was used to calculate the amplitude and phase, was displayed in the five
vertical graphs on the right hand side of the front panel. To allow sufficient settling

time, two seconds of the five second signal were used in the analysis.
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The left hand side of Figure 4.6 shows a display of the ‘raw’ cost function obtained
during the measurement. This plot simply shows the cost function varying with time as
the control phase angles are changed. Once the cost function had been measured at all
the required phase angles, a cost function surface was generated and the minimum
found using MATLAB®. The cost function surface as a function of the control phase
angles is shown in matrix form on the right hand side of Figure 4.6, and these data were

stored to file to allow for any subsequent processing or analysis.

Using the full search method, it was only practical to measure a single frequency at a

time. With three shakers mounted on the beam, a search using 10° steps required 1296
measurements of the cost function. Allowing ten seconds for each measurement cycle

meant that it took over 3 hours to perform a full search at one frequency.

4.3.3 Propeller Signature Theory based minimisation

As an alternative to the full search methodology, the determination of the transfer
function between each shaker and each control sensor was implemented using Propeller

Signature Theory [60]. This also used the experimental set up shown in Figure 4.4.

LabView® programs were written to change the phase of each control machine
individually as described in Chapter 3. Once the system had settled to a steady state
condition, measurements were obtained of the acceleration at each control sensor. These
measurements were used to determine the phase independent transfer function between
each vibrating source and each control sensor as described in Chapter 3. These transfer
functions were used in simulations within MATLAB® to obtain the cost function
surface and hence the minimum of the cost function surface and the optimum control

angles to obtain the minimum.

This search method requires fewer actual measurements than the full search
methodology. Figure 4.7 shows part of the LabView" front panel used to determine the
transfer functions. Three measurements were required at each frequency to determine

the transfer function. For the experiment with the front panel shown in Figure 4.7, the
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first measurement was with all machines in phase. The second was with a phase shift of
90" applied only to shaker 2, and the third measurement was with a phase shift of

90° applied only to shaker 3. A set of measurements of the transfer function from 20 Hz
to 800 Hz in 10 Hz steps using three separate phase angles took approximately 50
minutes. Finding the minimum of the cost function at each frequency using simulations

in MATLAB® took approximately 5 minutes for all 78 frequencies.

4.4 Results

This section presents results from the experiments performed to validate the conclusions
drawn from the numerical simulations, and to test the feasibility of a practical
synchrophasing system for vibration control of a simple machinery raft like structure.

This section also contains a discussion of the results obtained.

4.4.1 Two electromagnetic vibrating sources on an elastic beam

Both cost functions were investigated by using the measured transfer mobilities in
control simulations with two vibrating sources mounted upon the structure. Figure 4.8
and Figure 4.9 show the two cost functions for the system consisting of a compliantly

mounted elastic beam with two shakers mounted upon it.

The positions of the shakers were at x,//=0.33 and x,/l=0.42, so the shakers were on

adjacent ‘mass elements’ of the structure, since the beam was divided into 12 elements
as described in Section 4.2 and shown in Figure 4.2. The magnitude of the voltage
applied to each shaker was the same, so the force that each shaker applied to the beam
was nominally the same. The cost functions were calculated by manipulating the
experimental transfer mobilities in computer based simulations, rather than searching

directly for a minimum and maximum experimentally.

Figure 4.8 shows the variation in the time averaged kinetic energy cost function <T >t

with frequency, and Figure 4.9 the variation in the cost function which sums the
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magnitude of the velocity squared at each end mounting point J. Both figures show the
maximum of the cost function as the dotted curve and the minimum of the cost function

as the solid curve.

By examining the displacement measured at each of the 36 positions along the beam, at
a single frequency, it was possible to recognise the two rigid-body modes of the beam at
14 Hz and 30 Hz and peaks in the forced response due to flexural modes at 110 Hz, 266
Hz, 658 Hz and 990 Hz. These are marked on the figures, with the lowest rigid body
mode being the translational mode. Other peaks in the forced response are observable at
high frequencies; these are due to vibration of the structure in higher order flexural

modes.

The figures show that the translational rigid body mode at 14 Hz has been well
controlled in both cost functions, a reduction of 20 dB in each cost function being
achieved by synchrophasing. The second rigid-body mode at approximately 32 Hz was
not controlled as well, with synchrophasing achieving a reduction of approximately 5
dB. Inspection of the operational deflection shape (ODS) at 32 Hz showed that the

shaker at x, /I =0.42 was near to a vibration minimum in the ODS. This is similar to the

node of the second rigid-body mode, when the shaker is in anti-phase with the reference
shaker. Hence the shaker was not effective at controlling the vibration. A reduction of
approximately 10 dB was then achieved up to 170 Hz including the first flexural mode
when using the time averaged kinetic energy cost function. This improvement then

reduces with frequency, until at 250 Hz there is practically no improvement.

The cost function minimising the magnitude of the velocity squared at each end of the
beam gave an improvement of approximately 10 dB at the first flexural mode. This
improvement then dropped rapidly, achieving approximately 2 dB improvement until
250 Hz. A modest improvement of 1-2 dB was achieved for the second flexural
resonance at 266 Hz. This improvement was small due to one of the shakers being
situated near a vibration minimum of the ODS, hence the applied force was ineffective

at reducing the cost function. The reduction then varied between 2 dB and 20 dB until
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383 Hz, where there was no improvement by synchrophasing in either cost function.
The reason for this lack of improvement is the cost functions that were chosen.
Although the energy in each element changes with the phase of shaker 2, the energy in
some elements increases and in others decreases hence little overall improvement is

obtained for the time averaged kinetic energy across the structure.

Little improvement can be seen in the cost function which minimises the magnitude
squared of the velocity at each end of the beam because the energy in the first and last
elements varies very little with the phase of shaker 2. The reduction achieved by
synchrophasing then increased, until approximately 8 dB reduction was achieved at the
mode at 590 Hz, with the kinetic energy cost function performing slightly better. The
third flexural mode at 658 Hz was not well controlled, synchrophasing achieving 2 to 4
dB reduction of the peak wvalue. Above 700 Hz the reduction achieved by
synchrophasing increased until a 25 dB reduction was obtained for the flexural mode at

990 Hz.

Figures 4.10 and 4.11 show simulations of the variation in the two cost functions, as the
phase of the controlling machine is changed. These simulations were generated using
the analytical model described in Chapters 2 and 3. These simulations show that the
predicted reduction achieved by synchrophasing is very similar for both cost functions.
Figures 4.10 and 4.11 both show that the first rigid-body mode was very well
controlled, but the second rigid-body mode was not well controlled. Both simulated cost
functions predicted a reduction of 8 dB at the first flexural mode, which compared well

with the experimental results, where a reduction of 10 dB was achieved.

Figures 4.12 and 4.13 show the measured control source phase angles required to
maximise and minimise the cost functions at each frequency. The shaker positions and
magnitudes of the applied voltages are the same as for Figures 4.8 and 4.9. The phase

angle ¢ was measured with respect to the phase of the reference source. Figure 4.12

and Figure 4.13 show that, away from the natural frequencies of the beam, the optimum
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phase is very close to being either in-phase or in anti-phase with respect to the reference
source.
From 10 Hz until 170 Hz, which includes the two rigid-body modes and the first

flexural mode, the optimum phase for minimising both cost functions varies from
170° —185° with respect to the reference phase. Except at 27 Hz, which is near to the
second rigid-body mode at 32 Hz, where it drops to 130° for the time averaged kinetic

energy cost function and 95° for the sum of the magnitude of the velocity squared cost

function.

The optimum synchrophase angle to minimise the kinetic energy remains in the region
170° —185° up to 250 Hz, whilst the optimum phase angle to minimise the square of the

magnitude of the velocity at the mounting positions increases from 180° to 360°

between 170 Hz and 190 Hz.

In the frequency range close to the second flexural mode at 266 Hz, the optimum phase

for control is close to 0°, although the improvement obtained by synchrophasing is

small as the energy in each element is insensitive to changes in the control phase angle.

Above the second flexural mode between 290 Hz and 315 Hz, the optimum phase angle

varies over a range of values between 10°—150" with both cost functions showing
similar changes in optimum angle. Figures 4.8 and 4.9 show that there are some modes

in this region but they are not flexural modes along the length of the beam.

Between 320 Hz and 380 Hz the optimum phase for control is once again close to 0° for
both cost functions, then from 400 Hz to 1 kHz, the optimum phase is close t0180°,

ranging from160° —190°. The only exception being the flexural mode at 658 Hz, which

as previously indicated, is not well controlled.

Figures 4.14 and 4.15 show simulations of the phase to maximise and minimise each

cost function. The figures confirm the prediction of Chapter 3 and agree with the
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experimental findings that the optimum phase angle for the control source is usually
either in phase or in anti-phase with respect to the reference source.

Figures 4.16 and 4.17 show experimental results and simulations of the cost function
reduction as a function of frequency for both cost functions. Figure 4.16 shows that both
the local and the global cost functions have been successful in reducing the value of the
cost function to below its maximum value for most frequencies. For this particular
configuration of the shakers on the beam, the reduction in the time averaged kinetic
energy cost function was the most successful. The greatest reduction occurs at
frequencies between 10 Hz and 300 Hz, corresponding to the frequency band containing
the rigid body modes and the first two flexural modes. The simulations shown in Figure
4.17 show a similar reduction to that obtained experimentally, except for near the first
rigid-body mode, where the simulated reduction is larger than that obtained
experimentally. The cost function reductions obtained experimentally and by

simulation, at frequencies corresponding to the two rigid body modes and the first two

flexural modes, for each of the two cost functions <T >t (indBrelJ)and J (in dB re

Im®s™), are summarised in Table 4.2.

Mode Experimental Results Simulation
Cost function reduction / dB Cost function reduction / dB
(), J (), J
RBM1 20 20 47 42
RBM2 5 4 3 3
FM1 10 10 8 8
FM2 1 1 4 4

Table 4.2. Summary of the cost function reduction obtained experimentally and using

simulations. For the source configuration x, //=0.33 and x,//=0.42.

To investigate the effect of source location, the two electrodynamic shakers were

moved. Figure 4.18 shows the variation in the time averaged kinetic energy cost
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function with frequency, and Figure 4.19 the variation in the cost function which sums
the magnitude of the velocity squared at each end mounting point, for shakers at

x,/1=025 and x,/l=0.58 i.e. the shakers were on either side of the centre of the

beam. The magnitude of the voltage applied to each shaker was the same.

By examining the displacement measured at each of the 36 positions along the beam, at
a single frequency, it was possible to recognise the two rigid-body modes of the beam at
14 Hz and 30 Hz and peaks in the forced response due to flexural modes at 110 Hz, 237
Hz, 743 Hz and 976 Hz. These are marked on the figures, with the lowest rigid body
mode being the translational mode. Examination of the peak in the forced response at
472 Hz showed that the beam was twisting as well as flexing at this frequency of

excitation.

For shakers in these positions upon the structure, both control methods exhibit a similar
reduction in levels at and around the rigid body modes, i.e. up to 35 Hz. Approximately
19 dB reduction being achieved around the translational rigid body mode. However,
little reduction was obtained between 40 Hz and 120 Hz, which includes the first
flexural mode. The first flexural mode at 110 Hz was not well controlled because the

shaker at x, // =0.25 is near a vibration minimum of the ODS.

Between 120 Hz and 230 Hz, the minimisation of the cost function which sums the
magnitude of the velocity squared over each end mount point performed much better
giving a reduction of approximately 8-11 dB, compared to the time averaged kinetic
energy cost function, which achieved very little reduction until 200 Hz. For this source
configuration, the second flexural mode is much better controlled giving a 10 dB
improvement at and around the resonance frequency. Between 250 Hz and 400 Hz the
cost function which sums the magnitude of the velocity squared over each end mount
point performs much better, giving a reduction of approximately 10 dB, compared to the
time averaged kinetic energy cost function, which achieves only 1 dB reduction. The
mode at 472 Hz and the third flexural mode at 743 Hz are also controlled by

synchrophasing, giving a 10 dB reduction for both using the time averaged kinetic
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energy cost function, and 25 dB and 10 dB respectively for the velocity cost function.
The fourth flexural mode at 976 Hz is reduced by 4 dB by both cost functions.
Figures 4.20 and 4.21 show simulations of synchrophasing using the two cost functions,

with simulated shakers at x,//=0.25 and x,/I=0.58. These figures confirm the

experimental result that for this configuration of shakers on the beam, a greater
reduction in the cost function is obtained at and around the second flexural mode (FM2)
by using the cost function which sums the magnitude of the velocity squared over each

end mount point.

Figure 4.22 and Figure 4.23 show the variation in the phase of the signal applied to the
experimental control source in order to either minimise or maximise the cost functions,
when synchrophasing using the same shaker positions as in Figures 4.18 and 4.19. It

can be seen again that the optimum synchrophase angles for extrema of the cost

function away from the frequencies where the modes occur are close to 0° or 180" i.e.
either in phase or in anti-phase with respect to the reference phase signal. Both of the
cost functions exhibit a small increase in the response at 154 Hz and 319 Hz. These are
not flexural modes along the length of the beam, however it can be seen that the control
phase changes rapidly around these frequencies. Figure 4.22 shows that the optimum
phase for controlling the time averaged kinetic energy is more variable than the phase
shown in Figure 4.23, the cost function which sums the magnitude of the velocity
squared over each end mount point at and around these two frequencies. Figure 4.24
shows the measured displacement of the beam, when the phase angle of the voltage
supplied to the control shaker is adjusted with respect to the reference shaker. The
figure uses experimental data measured at 162 Hz, which is between the first and
second flexural modes of the beam. Figure 4.24a shows the case when the control
shaker is anti-phase to the reference shaker. As can be seen, element 1 - which is at

x/1=0.042 - is vibrating the most and contains a large proportion of the system energy.

Figure 4.24b shows that, even when the phase angle is optimised to minimise the time
averaged kinetic energy across the whole structure, element 1 still contains a large
proportion of the energy. This is why minimisation using the time averaged kinetic

energy cost function has not been successful at this frequency, as was shown in Figure
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4.18. Figure 4.24c shows the displacement when the cost function which minimises the
sum of the magnitude of the velocity squared at each end of the beam is used. This
shows that the cost function has reduced the displacement at element 1 but increased it
slightly at element 12. Figure 4.19 showed that this cost function was far more
successful at this frequency than the global control cost function. However, this cost
function does not include vibration of the other parts of the structure. As can be seen in
Figure 4.24c, the displacement amplitude in the middle of the structure has increased
significantly. This could cause any machinery mounted at these positions to experience

much higher vibration levels and consequently more fatigue failure.

Figures 4.25 and 4.26 show simulations of the phase to maximise and minimise each
cost function using simulated shaker positions the same as Figures 4.18 to 4.23. Figure
4.25 agrees with the experimental observation that the optimum phase for controlling
the time averaged kinetic energy is more variable than the cost function which sums the

magnitude of the velocity squared over each end mount point at and around 150 Hz.

Figure 4.27 and 4.28 show experimental data and simulation of the cost function
reduction as a function of excitation frequency for this configuration of shakers. The
figures show that both the local and the global cost functions have been successful in
reducing the value of the cost function to below its maximum value, except at
frequencies just below the first flexural mode where minimal reduction has been
achieved. For this particular configuration of the shakers on the beam, both cost
functions performed similarly over the frequency range including the two rigid-body
modes and the first flexural mode. The cost function which minimises the sum of the
magnitude squared of the velocity at each end of the beam was the most successful cost
function from 120 Hz to 1 KHz, achieving a reduction of approximately 10 dB over the
frequency range in the experimental data shown in Figure 4.27. The cost function
reductions obtained experimentally and by simulation, at frequencies corresponding to

the two rigid-body modes and the first two flexural modes, for each of the two cost

functions <T >t and J, using this source configuration are summarised in Table 4.3.
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Mode Experimental Results Simulation
Cost function reduction / dB Cost function reduction / dB
(), / (), J
RBM1 20 19 38 30
RBM2 1 3 13 13
FM1 2 2 2 2
FM2 9 9 15 15

Table 4.3. Summary of the cost function reduction obtained experimentally and using

simulations. For the source configuration x,// =0.25 and x, // =0.58.

4.4.2 Three electromagnetic vibrating sources on an elastic beam

The system shown in Figure 4.3 was used to investigate variations in the cost function
which sums the magnitude of the velocity squared at each end mounting point, when
three vibrating sources were mounted upon the beam. The phase of the voltage supplied
to two of the shakers was adjusted with respect to the phase of the voltage supplied to a
reference shaker. Two methodologies were investigated, the first consisted of a full
search through the angles from 0° to 350" in 10° steps, so for two control shakers, this
necessitated 1296 individual measurements of the cost function. The second
methodology utilised Propeller Signature Theory to determine the phase independent
transfer function and required only 3 to 6 individual measurements of the cost function.
These phase independent transfer functions were then manipulated in the computer to
determine the optimum control angles. The Propeller Signature Theory method is much
faster as most of the searching for minima is done by simulation rather than by
physically searching by adjusting the phase of the voltage supplied to each shaker. For
the experimental results presented in this subsection, the phase reference source was at

coordinate x, =0.45m (x,//=0.375), and the control shakers were at coordinates

x,=025m (x,//=0.21) and x, =0.85m (x,/I =0.71) respectively.
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Both of these methodologies produce a cost function surface of the form shown in
Figure 4.29. The figure shows the variation in the cost function J (the sum of the
magnitude of the velocity squared at each end of the beam) as a function of the phase of

the two control shakers ¢, and¢@;. From a control point of view, the surface in Figure

4.29 is good for finding the minimum of the cost function, because it shows the

presence of a single, well defined minimum when ¢, and ¢, are adjusted between 0°

and 360°. However, a single well defined minimum is not always achievable, as was
shown using simulations in Chapter 3 and will be shown experimentally later in this

chapter.

The optimum phase to minimise the cost function over the range 0° to 360° for each
control source can be determined from the cost function surface by using the
MATLAB® MIN function to search the surface for the minimum. Both of these
methodologies give similar results for the cost function minima and maxima. This is
shown in Figure 4.30, which depicts the minima and maxima of the cost function as a
function of frequency. The solid and dotted curves are the cost function minimum and
maximum respectively, obtained using Propeller Signature Theory to determine the
phase independent transfer functions, whilst the filled and clear dots show the results
obtained using a full search over the range 0° to 350°. Because the time taken to
determine the optimum control source angles using Propeller Signature Theory is so
much less than the time required to perform a full search, Figure 4.30 contains data for
Propeller Signature Theory every 10 Hz and data using a full search at a few individual
frequencies. Figures 4.30 and 4.31 show experimentally and by simulation respectively,
that the cost function can be reduced by 10-20 dB over a large part of the frequency
range investigated with this configuration of forces on the beam. This frequency range

includes the second rigid body mode of the system and the first three flexural modes.
Figure 4.32 shows experimentally, the phases required of the two control sources in

order to minimise the cost function, obtained using both the full search and propeller

signature theory. The solid dots and squares show the best phase angle at each
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frequency for the machine at x, and the clear dots and squares, the best phase angle at
each frequency for the machine at x; . The figure shows that over the frequency band 20

Hz to 90 Hz, which includes the rotational rigid body mode, the phases required from

the two control shakers are very similar. At the first flexural mode of 110 Hz, the phases

of the control shakers are 7° for the shaker at x,//=0.21 and 182° for the shaker
atx,/[=0.71. Since the beam is resiliently mounted, the first flexural mode shape is
very similar to that of a beam with free end conditions, which has nodes at x// =0.22
andx/l =0.78 . The analytical receptance based model derived in Chapter 2 predicts
minima in the operational deflection shape at x//=0.27 andx/l=0.73. So there is a
node between the phase reference shaker at x,//=0.375 and the control shaker
atx,/[=0.21. In order to minimise the vibration at the ends, the control shaker at
x,/l=0.21 is virtually in phase with the phase reference shaker. There is no node
between the phase reference shaker and the control shaker atx,//=0.71, hence to

minimise the vibration, the optimum phase for this control shaker is virtually anti-phase

with respect to the phase reference.

The optimum phase is very similar for both control shakers over the frequency range
100 Hz to 300 Hz, which includes the second flexural resonance at 220 Hz. Above 300

Hz, both control phases change rapidly, especially the phase of the source at x; near to

the resonance at 350 Hz. Figure 4.32 shows that the optimum phase in this frequency
range is neither in-phase with the reference shaker or in anti-phase, but a range of angles

in between.

Figure 4.33 shows a simulation of the minimising control phase angles for the same
configuration as was used experimentally in Figure 4.32. This simulation also shows a
range of optimum phase angles around the rotational rigid-body mode at 26 Hz, the first
flexural mode at 118 Hz, the second flexural mode at 258 Hz and between the second

flexural mode and the third flexural mode at 518 Hz.
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At 26 Hz, the control source phase angles to minimise the cost function are ¢, =91 and

¢, =73 respectively. Figure 4.34 shows a simulation of the operational deflection

shape of the beam at 26 Hz (RBM 2). The dotted line is the ODS when just the
reference vibrating source is exciting the beam, although the two control machines are
present. The solid line is the ODS when all three sources are driving the beam using the
phase angles of the control sources calculated to minimise the cost function. The
magnitude of the drive voltage applied to each shaker was the same. As can be seen
from Figure 4.34, vibration in the rotational rigid body mode will cause a large value for
the cost function, because the cost function is proportional to the sum of the magnitudes
of the displacement at each end of the beam, and for the rotational rigid body mode, the
displacement is the largest at the ends of the beam. Synchrophasing reduces the
vibration in the rotational rigid body mode shape, so that the residual vibration consists
of motion in the translational rigid body mode shape, as shown by the solid line in
Figure 4.34. The displacement at each end is at a much lower level in this case, and so

the cost function is reduced.

Figure 4.35 shows a simulation of the operational deflection shape of the beam at 118
Hz. This is close to the first flexural mode shape of the beam and the dotted line in the
figure shows that when the beam is driven by a single vibrating source, then the ODS is
very similar to the first flexural mode of the beam. Synchrophasing at 118 Hz reduces
the vibration in the first flexural mode, so that the ODS consists of the rotational rigid

body mode and some residual flexing, as shown by the solid line of Figure 4.35.

Figure 4.36 shows a simulation of the ODS at 258 Hz, which is close to the second
flexural mode shape of the beam. The dotted line in the figure shows the ODS when the
beam is driven by a single vibrating source. The cost function is dominated by vibration

at one end of the beam so that the sensor at x=L is the most important.
Synchrophasing at 258 Hz using ¢, = 25" and ¢, = 6" respectively reduces the vibration

in the second flexural mode and produces the ODS shown as the solid line in Figure
4.36. This operational deflection shape shows that the translational rigid body mode and

the first flexural mode are now the main components of the beam motion. Figures 4.34
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to 4.36 show that even at operating frequencies very close to a mode of the structure, the

cost function will still contain residual contributions due to other modes of the structure.

At any general operating frequency away from the modes, the optimum control source
phase angles to reduce the cost function in one mode may well increase the vibration of
another mode. This can be seen in Figure 4.37, which shows simulations of the ODS at
80 Hz, which is between the rotational rigid body mode and the first flexural mode.
With all three sources vibrating in phase, the displacement is primarily due to the
translational rigid body mode, with some bending due to the first flexural mode. This is

shown as the dashed line.

In order to reduce the translational rigid body mode, the phases of the control sources
can be set to ¢, =180° and ¢, =180" respectively. This reduces the component of

displacement due to the translational rigid body mode, but increases the component due

to the first flexural mode. This is shown by the solid line.

If ¢, =0" and ¢, =180° then the translational rigid body mode and the first flexural

mode are reduced, but the rotational rigid body mode is excited. This is shown as the

dotted line.

It 1s these opposing modal requirements in the control source phase angles which drives
and limits the effectiveness of cost function minimisation using synchrophasing at each
frequency. This effect where active control of one mode excites other modes of

vibration is known as control spillover [22].

Figure 4.38 compares the cost function reduction obtained experimentally by
synchrophasing with that obtained from simulations. The solid curve is the reduction
achieved experimentally using the cost function which minimises the sum of the
magnitude squared of the velocity at each end of the beam. The dotted curve is the
reduction of the same cost function obtained by simulation. The positions of the shakers

were x,/I=0.375(phase reference), x,//=0.21 andx,// =0.71. The magnitude of the
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drive voltage applied to each shaker was the same. These are the data shown in Figures
4.30 and 4.31 respectively. The figure shows very good agreement between the
simulations and experimental data between 20 Hz and 120 Hz. This corresponds to a
frequency range from just below the rotational rigid-body mode to just above the first
flexural mode. The figure shows that synchrophasing can reduce the cost function by
greater than 5 dB over this whole range and achieves a greater than 10 dB improvement
over most of the range. Above the first flexural mode the experimental results and the
simulations do differ because the modal frequencies predicted by simulation are higher
than those measured experimentally. However the experimental data and the

simulations do show a similar shape and a similar cost function reduction.

Figure 4.39 shows the cost function surface for 200 Hz, obtained by stepping through
the control phase angles ¢, and ¢, from 0° to 350° in 10° steps. The shakers were in
the same positions as the cost function surface shown in Figure 4.29. For this excitation
frequency, the change in the cost function is larger with respect to control phase ¢,.
Control phase ¢, does not affect the cost function to a great extent and this leads to a

shallower, less well defined minimum in the cost function. Because the minimum

occurs near to the edges of the phase angle range, this shallow response is better shown

by changing the phase range to —180° to 180° as is shown in Figure 4.40 for the same
data as depicted in Figure 4.39.

Figure 4.41 shows the experimental cost function surface for 800 Hz generated by using

a full search, and stepping the control phase angles generated by the LabView" code
from a nominal 0° to 350" in 10°steps. The figure shows the presence of a global

minimum at ¢, =150 and @ =80 . There is another local minimum at ¢, =270 and

$, =320 but the cost function is not as small at this local minimum as at the global

minimum. The figure also shows that the cost function surface is not symmetric in this
case. The implications here are that, if symmetry had been assumed and a smaller range
of angles had been searched, then it is possible that a local minimum might have been

found but not the global minimum.
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4.4.3 Synchrophasing for unequal amplitude sources

Figure 4.42 shows a comparison of the cost function reduction obtained experimentally
using synchrophasing when the magnitude of the drive voltage applied to each shaker
was changed. The cost function reduction was obtained by calculating the difference
between the maximum value of the cost function and the minimum value, when the

phase of the drive voltage applied to the control sources is adjusted.

The effect of changing the magnitude of the drive voltage is to change the force applied
by the shaker to the beam, thus simulating a change in a machine’s vibration level. The

shaker at position x,, which was used for the phase reference, was also used for the
drive voltage magnitude reference. A scaling factor A, is used to denote the magnitude

of the n™ control source drive voltage with respect to the reference source. For the solid
curve, the magnitude of the drive voltage applied to each shaker was the same, i.c.

A, =1 and A, =1. For the dotted curve 4, =2/3 and A, =1/3 and for the dashed curve
A, =1/3 and A, =2/3.

The differences in the curves show that the amount that the cost function can be
reduced, depends upon the magnitudes of the applied drive voltages and hence the
applied forces on the beam. In practice this means that if the vibration levels of a
machine change, either due to fatigue, a change in load conditions, operating speed or a
gradual increase in unbalance during the machine’s lifetime, then the cost function may

also change.

Figure 4.42 shows that over the frequency range 50 Hz to 200 Hz, having the control
sources at equal magnitude with the reference machine gave the best cost function
reduction for this configuration of shakers on the beam, although the first flexural mode
at 110 Hz is not well controlled, as shown by the low level of cost function reduction at
110 Hz. Above 200 Hz a better cost function reduction could be achieved by reducing
the magnitude of the control sources. The dashed line in Figure 4.42 shows that at 250

Hz a better cost function reduction is achieved when A, =1/3 and A, =2/3 than when
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A, =1 and 4, =1. This is due to the choice of cost function, and the positioning of the
machinery on the structure, with respect to the nodes of the main mode shapes that
contribute to the operational deflection shape at any frequency. Figure 4.36 shows a
simulation of the ODS at 258 Hz for 4, =1 and A4, =1. In this case a large amplitude of
displacement is seen at one end of the beam, which was the major contribution to the
cost function. When synchrophasing was used to minimise the cost function, the ODS
was then primarily composed of translational rigid-body motion. Simulation at 250 Hz
using A, =1/3 and A, =2/3 revealed that synchrophasing can minimise the cost
function so that the ODS consists primarily of the first flexural mode, with some
contribution from the translational rigid-body mode. In this case, the displacement at the
ends — and hence the cost function — is reduced to a greater extent than the case when

A, =1and 4, =1.

Figures 4.43 and 4.44 compare the optimum synchrophase angles ¢, and ¢,

respectively, obtained experimentally for the control sources, when the magnitudes of

the drive voltages are adjusted. Figure 4.43 shows ¢, , the phase required for the control
machine at x, and Figure 4.44 shows ¢,, the phase required for the control machine at
x, to achieve the global minimum of the cost function at each frequency. For the solid

curve, the magnitude of the drive voltage applied to each shaker was the same,

ie. 4, =1 and A, =1. For the dotted curve A, =2/3 and A, =1/3 and for the dashed
curve A, =1/3 and 4, =2/3. The figures show that, below 200 Hz, i.e. below the

second flexural mode of the beam, the optimum phases are very similar regardless of
the magnitude of the drive voltage. At these frequencies the main modal contributors to

the ODS are the two rigid-body modes and the first flexural mode [67, 68].

At the second flexural mode, at 220 Hz, the cost function reduction achieved, as shown
in Figure 4.42, is dependent upon the magnitude of the drive voltages applied to the
control sources. There is approximately an 18 dB difference in the cost function

reduction for the two cases where the magnitudes of the drive voltage applied to the
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control sources were adjusted. Figure 4.43 shows that ¢,, the optimum phase for the
control source at x,, changes markedly in this region, whereas Figure 4.44 shows that
¢, the optimum phase for the control source at x, does not vary as much. The optimum

synchrophase angles for different magnitudes of the excitation voltages at 220 Hz are

summarised in Table 4.4.

Magnitude of the control source Voltage phase to minimise the cost
voltage with respect to the reference function
A, A ¢,/ Degrees ¢,/ Degrees
1 1 351 14
2/3 1/3 172 21
1/3 2/3 106 24

Table 4.4. Optimum synchrophase angles at 220 Hz (second flexural mode) obtained

experimentally for three different configurations of the excitation voltage magnitude A .

Figure 4.45 shows that at frequencies over the range 300 Hz to 400 Hz, which is close
to the third flexural mode at 350 Hz, synchrophase angle ¢, does not vary by a great
deal as the excitation voltage magnitude is changed. ¢, does vary by approximately 79
degrees at the third flexural mode at 350 Hz. Figure 4.46 shows that at frequencies at

and around the third flexural mode, ¢, is more variable than ¢,, changing by up to 180

degrees as the magnitude of the excitation voltage is changed.

Between 400 Hz and 650 Hz, the magnitude of the control excitation voltages does not
have a significant effect on the optimum synchrophase angles, but above 650 Hz, it can
be seen in Figure 4.43 that ¢, again changes by more than 100 degrees. The optimum
synchrophase angles for different magnitudes of the drive voltages at 750 Hz are

summarised in Table 4.5.
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Magnitude of the control source Voltage phase to minimise the cost
voltage with respect to the reference function
A, A, @,/ Degrees ¢,/ Degrees
1 1 86 19
2/3 1/3 202 53
1/3 2/3 101 44

Table 4.5. Optimum synchrophase angles at 750 Hz obtained experimentally for three

different configurations of the drive voltage magnitude A .

The experimental results presented in Figures 4.42 to 4.46 and Tables 4.4 and 4.5 show
that the optimum control source phase angles for minimising the cost function using
synchrophasing can be dependent on the amplitude of the sources, as these determine
the magnitudes of the forces applied to the beam. In general, this will mean that, in a
practical situation, if the vibration levels of the sources change, for reasons such as wear
and tear, fatigue or a change in operating load, then the shape of the cost function will
change and the optimum synchrophase angles of the control sources to minimise the

cost function will also change.

The velocity at each sensor on the beam was given in Chapter 3 in Equation (3.49) and

is repeated here for convenience

YVip Yo o yp |l 00 0 1
0 0 0| e

W=/ y?,r y:z,l ‘ Y2:,P . 21 4.4)
Vsr Ysi vt Ysp |0 0 Ap e/’

where y, -~ are the point and transfer mobilities, 4, is the magnitude of the n™ control

force relative to the reference force f, and ¢, is the phase of the n™ control source with

respect to the reference source. The transfer function between each vibrating source and

each control sensor is then defined as
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If the relative magnitudes of the control sources change, this will affect the diagonal

matrix of A, terms and hence the transfer function matrix I'.

If a full search methodology is employed, then this will necessitate running the full
search again with the machines under their new load conditions. If the experimentally
determined transfer functions are being used to simulate a full search, then in general,
these transfer function terms will need to be re-determined for the new load conditions.
However if the forces applied by each machine all increase or decrease by the same

amount J such that

Yo Y o0 Yplo 0 0 0
0 o 0 O
r-;s Yo y?,l Ya.p 4, . : (4.6)
: 0 O .o
Vs Ysiot Vs O 0 - 64,

then the cost function surface will have the same shape and hence the same control
source phase angles will be required to minimise the cost function. Alternatively, if the

change in each applied force could be measured locally so o,,6,,6,:--6, are all

measurable, such that

Yo Yo Ve |0, 0 0 0

poy|Yr Yo 2] 004000 4.7)
: : " : 0 0 . :
Vsrp Ysiot Vs L0 0 - O,
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then the change in transfer function can be corrected for and used in simulations to find
the new cost function minimum without the need to recalculate the transfer function.
Calculating the applied forces and mobilities on a large scale installation would, in
practice be very difficult, and this is the reason that the transfer function approach was
implemented as it does not require exact knowledge of the mobilities and the forces

applied by each vibrating source.

Figure 4.47 shows the result of correcting the experimental transfer function data to
simulate a different machinery load state. In this figure, the solid lines show the
maximum and minimum of the cost function surface at each frequency when the

magnitudes of the drive voltages applied were all the same, i.e. when 4, =1 and A, =1.

The dotted lines show the maximum and minimum of the cost function for the same
vibrating source positions, but when A, =1/3 and A, =2/3 i.e. the magnitudes of the
drive voltages have changed. The dashed lines show the maximum and minimum of the
cost function by correcting for the change in drive voltage. These data were acquired

experimentally using A, =1/3 and A, =2/3 but then corrections have been applied to
simulate equal drive voltage magnitudes of A, =1 and A, =1, by using 6, =3and

5,=3/2.

Figure 4.47 shows that it is possible to use one set of transfer function data to simulate
the cost function surface, that will be obtained when different force magnitudes are
applied to the beam, and hence predict the likely success of synchrophasing in reducing

the cost function with different machinery states.

4.5 Conclusions

The purpose of the experimental investigation into synchrophasing described in this
chapter was to compare the experimental results with the numerical simulations and to
investigate the practical implementation of a synchrophasing system on a relatively

simple structure.
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Two control functions were initially investigated. Firstly, a cost function which
minimised the total time averaged kinetic energy across the whole structure. This may
be considered as a global cost function as it measures the cost function along the
structure. Alternatively, a cost function which minimised the sum of the magnitude
squared of the velocity measured at each end of the beam was evaluated for comparison
and observation. This latter case may be considered as a local cost function as only the
extremities of the structure were monitored. The results presented show that each
method is able to provide some level of control and that the best cost function to use

depends upon the positions of the vibrating sources upon the beam.

The advantage of the local cost function is that it is much easier to implement because it
simply requires sensors over the structural mounting points and it does not require any
information about the masses of the machinery mounted upon the structure or the
structure itself. This information is required to determine the time averaged kinetic

energy in each element of the structure when using the global cost function.

The disadvantage of the local cost function is that because only the structural mounting
points are considered in the minimisation, the structure may be subjected to high
amplitude vibrations at points away from those monitored and this was shown in the
experimental data when two vibrating sources were mounted upon the structure. This
may have implications for fatigue failure of the structure or may cause additional wear

on machinery or rotating shafts.

Two methods of obtaining the cost function were investigated. The first was to simply
change the phase of the voltage supplied to each control source so that phase angles
from 0° to 360" using a suitable step size were applied, and the resultant cost function
measured. This method has the advantage of simplicity as very little additional
processing is required to determine the total cost function surface. However this method
is very time consuming if the cost function surface is to be determined with any

meaningful fidelity.

107



Chapter 4 Experimental validation of synchrophasing

The second method investigated was to determine the transfer mobility between each
machine and each sensor point by operating one machine at a time. As it may not be
practical or possible to switch off all but one machine, the method was altered using an

established aircraft engine synchrophasing method called Propeller Signature Theory.

Using this theory, a phase independent transfer function between each machine and
each sensor point was determined, by introducing a known phase shift to the voltage
supplied to each vibrating source in turn. The resulting measured velocities are then
used to calculate either a fully determined or over determined solution for the phase
independent transfer functions. These phase independent transfer functions can then be
used in MATLAB® simulations to determine the whole cost function surface at any

fidelity required.

This method is much quicker than physically stepping through all the possible phase
angles and would be far more suitable as a form of close to real time adaptive vibration
control. The transfer function values are not transfer mobilities as they do not calculate
the forces applied by each vibration source. Hence if the load or speed of any machine
were to change, it may be necessary to re-determine the transfer functions, because the
optimum phase angles for minimising the cost function using synchrophasing could

change if the applied forces change.

These experiments have shown that synchrophasing can be an effective vibration
reduction technique and is relatively simple to install upon a structure. The main
obstacle to overcome is likely to be how the phase of the voltage supplied to each
machine can be varied and measured. The experimental results obtained using two and
three electromagnetic shakers upon a thin box section beam show that very similar
reductions in the cost functions were obtained both experimentally and using numerical

simulations.
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4.6 Figures

Scanning
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A1-A2 Accelerometers Al and A2
LM1-LM2 Load mass 1 and Load mass 2

Figure 4.1. Diagram showing the experimental system configuration used when two
shakers were located on the thin box section beam. Accelerometer Al was located on
the load mass used as the phase reference. Its position on the beam is defined by
coordinate x, . Accelerometer A2 was located on the load mass of the shaker to which
the phase of the applied signals are adjusted. The coordinate of this shaker is given
by x, . The velocity of the beam was measured using a scanning laser vibrometer.
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Shaker 1

Figure 4.2. Showing a) the arrangement of points where the laser vibrometer was used
to measure the velocity on the beam. The beam was divided into twelve sections and
each section was measured at three positions across its width, b) the laser vibrometer
scanning the beam one point at a time.
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Figure 4.3. Diagram showing the experimental system configuration used when three
shakers were located on the thin box section beam. Accelerometer A1 was located on
the load mass used as the phase reference. Its position on the beam is defined by
coordinatex, . Accelerometers A2 and A3 were located on the load masses of the
shakers to which the phase of the applied signals are to be adjusted. The coordinates of
these shakers are given by x,and x, respectively. A4 and A5 were located over the

compliant mounts at each end of the beam.
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Figure 4.4. Block diagram of the experimental set up used to minimise the cost function
of the sum of the magnitude squared of the velocity at each end of the beam. The
measurements are stored and processed and the control signals generated by a laptop
computer running LabView™. The acceleration responses at the 5 accelerometer
positions, shown as dotted lines are fed to an analogue to digital converter (ADC), via
signal conditioning amplifiers (SCA). The excitation waveforms are generated in
LabView” and are converted to analogue signals in the digital to analogue converter
(DAC). These are fed to power amplifiers (PA) which drive the shakers, shown as
dashed lines.
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Figure 4.5. The LabView" front panel showing the experimental signals measured on
the accelerometers during a full search at a single frequency. Accelerometers 1 to 3
were mounted on the load masses on the shakers, and accelerometers 4 and 5 were
mounted at each end of the beam. A voltage was applied to each shaker at a specific
phase angle for 5 seconds. For the first second, the signals were ramped up. The
analysis was performed over the period 1.5s to 3.5s and this is shown in the
Accelerometer analysis windows on the right hand side. After the analysis, the voltage
was then ramped down. The time on the LabView" front panel was measured in
seconds.
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Figure 4.6. The LabView" front panel showing the calculation of the cost function and
generation of the cost function surface from the signals measured on the accelerometers
during a full search at a single frequency.
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Figure 4.7. The LabView" front panel used to determine the experimental transfer
function between each shaker and each control sensor. Accelerometers 1 to 3 were
mounted on the load masses on the shakers, and accelerometers 4 and 5 were mounted
at each end of the beam. A voltage was applied to each shaker at a specific phase angle
for 5 seconds. For the first second the signals were ramped up. The analysis was
performed over the period 1.5s to 3.5s and this is shown in the Accelerometer analysis
windows on the right hand side. Once the analysis was completed, the voltage was then
ramped down. Because only three measurements of phase were required to determine
the transfer function, the program ran over a frequency range, rather than at a single
frequency. The values of the transfer function at each frequency were stored in a text
file and used in MATLAB® simulations to determine the cost function surface at each
frequency.
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Figure 4.8. Experimental determination of the time averaged kinetic energy of the
beam. The dotted curve shows the maximum and solid curve the minimum achieved by
synchrophasing. The positions of the shakers were x,//=0.33 andx,/l=0.42, the
magnitude of the drive voltage applied to each shaker was the same. The figure shows
the two rigid body modes (RBM) of the beam on the elastic end supports and the first 4
flexural modes (FM1 to FM4). Other peaks in the forced response are observable at
higher frequencies, but these are not clearly attributable to a particular mode of a beam
in flexure.
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Figure 4.9. Experimental determination of the sum of the magnitude squared of the
velocity at each end of the beam. The dotted curve shows the maximum and solid curve
the minimum achieved by synchrophasing. The positions of the shakers were
x,;/I=0.33 andx,/l =0.42, the magnitude of the drive voltage applied to each shaker
was the same. The figure shows the two rigid body modes (RBM) of the beam on the
elastic end supports and the first 4 flexural modes (FM1 to FM4). Other peaks in the
forced response are observable at higher frequencies, but these are not clearly
attributable to a particular mode of a beam in flexure.
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Figure 4.10. Simulations of the time averaged kinetic energy of the beam. The dotted
curve shows the maximum and solid curve the minimum achieved by synchrophasing.
The positions of the shakers were x,//=0.33 andx,/l=0.42, the magnitude of the

drive voltage applied to each shaker was the same. The figure shows the two rigid body
modes (RBM) of the beam and the first 4 flexural modes (FM1 to FM4).
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Figure 4.11. Simulations of the sum of the magnitude squared of the velocity at each
end of the beam. The dotted curve shows the maximum and solid curve the minimum
achieved by synchrophasing. The positions of the shakers were x,//=0.33
and x, /I = 0.42 , the magnitude of the drive voltage applied to each shaker was the same.

The figure shows the two rigid body modes (RBM) of the beam and the first 4 flexural
modes (FM1 to FM4).
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Figure 4.12. Experimental result showing the phase of the control source corresponding
to the maximum and minimum of the time averaged kinetic energy. The clear dots show
the phase to obtain the maximum kinetic energy and solid dots the phase to achieve the

minimum by synchrophasing. The positions of the shakers were x,//=0.33

and x, // = 0.42 , the magnitude of the drive voltage applied to each shaker was the same.
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Figure 4.13. Experimental result showing the phase of the control source corresponding

to the maximum and minimum of the cost function summing the magnitude squared of
the velocity at each end of the beam. The clear dots show the phase to obtain the

maximum value of the cost function and solid dots the phase to achieve the minimum

by synchrophasing. The positions of the shakers were x,//=0.33 andx,/l =0.42, the

magnitude of the drive voltage applied to each shaker was the same.
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Figure 4.14. Simulations of the phase of the control source corresponding to the
maximum and minimum of the time averaged kinetic energy. The clear dots show the
phase to obtain the maximum kinetic energy and solid dots the phase to achieve the

minimum by synchrophasing. The positions of the shakers were x,//=0.33

and x, // = 0.42 , the magnitude of the drive voltage applied to each shaker was the same.
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Figure 4.15. Simulations of the phase of the control source corresponding to the
maximum and minimum of the cost function summing the magnitude squared of the
velocity at each end of the beam. The clear dots show the phase to obtain the maximum

the phase to achieve the minimum by

value of the cost function and solid dots

0.42, the

synchrophasing. The positions of the shakers were x,//=0.33 andx,/I

magnitude of the drive voltage applied to each shaker was the same.
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Figure 4.16. Experimental result showing the cost function reduction as a function of
frequency of excitation. This was obtained by calculating the difference between the
maximum value of the cost function and the minimum. The solid curve is the reduction
achieved using the time averaged kinetic energy cost function (in dB re 1 J) and the
dotted curve is the reduction achieved using the cost function which minimises the sum
of the magnitude squared of the velocity at each end of the beam (in dB re Im’s™>). The
positions of the shakers were x,//=0.33 andx,/l =0.42, the magnitude of the drive

voltage applied to each shaker was the same.
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Figure 4.17. Simulations of the cost function reduction as a function of frequency of
excitation. This was obtained by calculating the difference between the maximum value
of the cost function and the minimum. The solid curve is the reduction achieved using
the time averaged kinetic energy cost function (in dB re 1 J) and the dotted curve is the
reduction achieved using the cost function which minimises the sum of the magnitude
squared of the velocity at each end of the beam (in dB re 1m’°s™). The simulated
positions of the shakers were x,//=0.33 andx,/l=0.42, the magnitude of the drive

voltage applied to each shaker was the same.
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Figure 4.18. Experimental determination of the time averaged kinetic energy of the
beam. The dotted curve shows the maximum and solid curve the minimum achieved by
synchrophasing. The positions of the shakers were x,//=0.25 andx,/l=0.58, the
magnitude of the drive voltage applied to each shaker was the same. The figure shows
the two rigid body modes (RBM) of the beam and the first 4 flexural modes (FM1 to
FM4).
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Figure 4.19. Experimental result showing the sum of the magnitude squared of the
velocity at each end of the beam. The dotted curve shows the maximum and solid curve
the minimum achieved by synchrophasing. The positions of the shakers were
x,/l=0.25 andx, /I =0.58, the magnitude of the drive voltage applied to each shaker
was the same. The figure shows the two rigid body modes (RBM) of the beam and the
first 4 flexural modes (FM1 to FM4).

127



Chapter 4 Experimental validation of synchrophasing

-20

RBM RBM
. FMI
30p i FM2

40

<T>t -50

dBrell
-60

=70+

-80

_90 1 1 1 1 1 1 Lo 1 1 1 1 1 1 [
10" 107 10°

Frequency / Hz

Figure 4.20. Simulations of the time averaged kinetic energy of the beam. The dotted
curve shows the maximum and solid curve the minimum achieved by synchrophasing.
The positions of the shakers were x,//=0.25 andx,/l=0.58, the magnitude of the

drive voltage applied to each shaker was the same. The figure shows the two rigid body
modes (RBM) of the beam and the first 4 flexural modes (FM1 to FM4).
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Figure 4.21. Simulations of the sum of the magnitude squared of the velocity at each
end of the beam. The dotted curve shows the maximum and solid curve the minimum
achieved by synchrophasing. The positions of the shakers were x,/I=0.25

andx, /I =0.58 , the magnitude of the drive voltage applied to each shaker was the same.
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Figure 4.22. Experimental result showing the phase of the control source corresponding

to the maximum and minimum of the time averaged kinetic energy. The clear dots show
the phase to obtain the maximum kinetic energy and solid dots the phase to achieve the

minimum by synchrophasing. The positions of the shakers were x,//=0.25

and x, /1

0.58, the magnitude of the drive voltage applied to each shaker was the same.
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to the maximum and minimum of the cost function summing the magnitude squared of
the velocity at each end of the beam. The clear dots show the phase to obtain the
maximum value of the cost function and solid dots the phase to achieve the minimum

Figure 4.23. Experimental result showing the phase of the control source corresponding
by synchrophasing. The positions of the shakers were x,//=0.25 andx,// =0.58, the

magnitude of the drive voltage applied to each shaker was the same.
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Figure 4.24. The measured displacement of the beam at 162 Hz when the phase of the
control shaker was a) anti-phase with the reference, b) optimised to minimise the time
averaged kinetic energy cost function, c¢) optimised to minimise the sum of the
magnitudes of velocity squared at each end of the beam. The positions of the shakers
were x,/l=0.25 andx,/l =0.58, the magnitude of the drive voltage applied to each

shaker was the same.
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Figure 4.25. Simulations of the phase of the control source corresponding to the
maximum and minimum of the time averaged kinetic energy. The clear dots show the

phase to obtain the maximum kinetic energy and solid dots the phase to achieve the

0.25

0.58, the magnitude of the drive voltage applied to each shaker was the same.

synchrophasing. The positions of the shakers were x,/!

minimum by
and x, /I
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0.58, the

of the shakers were x,//=0.25 andx,/I

Frequency / Hz
magnitude of the drive voltage applied to each shaker was the same.

Figure 4.26. Simulations of the phase of the control source corresponding to the
maximum and minimum of the cost function summing the magnitude squared of the
velocity at each end of the beam. The clear dots show the phase to obtain the maximum
value of the cost function and solid dots the phase to achieve the minimum by

synchrophasing. The positions
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Figure 4.27. Experimental result showing the cost function reduction as a function of
the excitation frequency. This was obtained by calculating the difference between the
maximum value of the cost function and the minimum. The solid curve is the reduction
achieved using the time averaged kinetic energy cost function (in dB re 1 J) and the
dotted curve is the reduction achieved using the cost function which minimises the sum
of the magnitude squared of the velocity at each end of the beam (in dB re Im’s™). The
positions of the shakers were x,//=0.25 andx,/l=0.58, the magnitude of the drive

voltage applied to each shaker was the same.
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Figure 4.28. Simulations of the cost function reduction as a function of the excitation
frequency. This was obtained by calculating the difference between the maximum value
of the cost function and the minimum. The solid curve is the reduction achieved using
the time averaged kinetic energy cost function (in dB re 1 J) and the dotted curve is the
reduction achieved using the cost function which minimises the sum of the magnitude
squared of the velocity at each end of the beam (in dB re 1m”s™*). The positions of the
shakers were x,//=0.25 andx, /I =0.58, the simulated magnitude of the drive voltage

applied to each shaker was the same.
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Figure 4.29. Experimentally obtained cost function surface at 70 Hz, using a cost
function which sums the magnitude squared of the velocity at each end of the beam. The
positions of the shakers were x,//=0.375(phase reference), x,/l=0.21

andx, /I =0.71. The magnitude of the drive voltage applied to each shaker was the

same. The synchrophasing shaker phases ¢, and ¢, were varied from 0° to 350" in 10°
steps.
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Figure 4.30. Experimental result showing the sum of the magnitude squared of the
velocity at each end of the beam. The dotted curve shows the maximum and solid curve
the minimum achieved by synchrophasing using Propeller Signature Theory. The dots
show the cost function maximum — clear and minimum - solid obtained from searching
over a range of angles. The positions of the shakers were x, /I =0.375 (shaker used as
the phase reference), x,//=0.21 andx,/l=0.71. The magnitude of the drive voltage

applied to each shaker was the same.
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Figure 4.31. Simulations of sum of the magnitude squared of the velocity at each end of
the beam. The dotted curve shows the maximum and solid curve the minimum achieved

by synchrophasing. The simulated positions of the shakers were x, /I =0.375(shaker
used as the phase reference), x,/l=0.21 andx,//=0.71, the simulated magnitude of

the drive voltage applied to each shaker was the same.
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Figure 4.32. Experimental result showing the control phases ¢, and ¢, required to

minimise the cost function summing the magnitude squared of the velocity at each end
of the beam.

The solid dots show the phase required for the control machine at x, to obtain the
minimum value of the cost function, and clear dots show the phase required for the
control machine at x; to achieve the minimum by synchrophasing using propeller

signature theory.

The squares show the required phase angles to minimise the cost function obtained by
searching over a range of angles. The solid squares are the phases for the control
machine at x, and the clear squares the control machine at x,

The positions of the shakers were x,//=0.375(phase reference), x,//=0.21
andx, /I =0.71. The magnitude of the drive voltage applied to each shaker was the

same.
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Figure 4.33. Simulations of the control phases ¢, and @, required to minimise the cost

function summing the magnitude squared of the velocity at each end of the beam.

The solid dots show the phase required for the control machine at x, to obtain the

minimum value of the cost function, and clear dots show the phase required for the
control machine at x, to achieve the minimum by synchrophasing using propeller

signature theory.

0.375(phase reference), x,/l=0.21

0.71. The magnitude of the drive voltage applied to each shaker was the

The positions of the shakers were x, /I

andx, /I
same.
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Figure 4.34. Simulations of the Operational Deflection Shape at 26 Hz corresponding to
the rotational rigid body mode.

The dotted line is the ODS when just the reference vibrating source is driving the beam,
although the two control machines are present. The solid line is the ODS when all three
sources are driving the beam. The phases of the control sources are the values calculated
to minimise the cost function. The magnitude of the drive voltage applied to each shaker
was the same.

The positions of the shakers, shown as lines, were x,//=0.375(phase reference),
x,/I=021 andx, /I =0.71.
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Figure 4.35. Simulations of the Operational Deflection Shape at 118 Hz corresponding
to the first flexural mode.

The dotted line is the ODS when just the reference vibrating source is driving the beam,
although the two control machines are present. The solid line is the ODS when all three
sources are driving the beam. The phases of the control sources are the values calculated
to minimise the cost function. The magnitude of the drive voltage applied to each shaker
was the same.

The positions of the shakers, shown as lines, were x,//=0.375(phase reference),
x,/1=0.21 and x, /[ =0.71.
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Figure 4.36. Simulations of the Operational Deflection Shape at 258 Hz corresponding
to the second flexural mode.

The dotted line is the ODS when just the reference vibrating source is driving the beam,
although the two control machines are present. The solid line is the ODS when all three
sources are driving the beam. The phases of the control sources are the values calculated
to minimise the cost function. The magnitude of the drive voltage applied to each shaker

was the same.

The positions of the shakers, shown as lines, were x,//=0.375(phase reference),
x,/I=021 andx, /I =0.71.
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Figure 4.37. Simulations of the Operational Deflection Shape at 80 Hz obtained by
changing the control phases ¢, and ¢,.

For the solid line ¢, =180" and ¢, =180° respectively.
For the dotted line ¢, =0" and ¢, =180° respectively.
For the dashed line ¢, =0" and ¢, =0° respectively.

The magnitude of the drive voltage applied to each shaker was the same.

The positions of the shakers, shown as lines, were x,//=0.375(phase reference),
x,/1=0.21 andx, /I =0.71.
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Figure 4.38. Comparison of the cost function reduction obtained experimentally by
synchrophasing with that predicted using simulations. The solid curve is the reduction
achieved experimentally using the cost function which minimises the sum of the
magnitude squared of the velocity at each end of the beam. The dotted curve is the
reduction of the same cost function obtained by simulation. The positions of the shakers
were x, /I =0.375(phase reference), x,// =0.21 andx,// =0.71. The magnitude of the

drive voltage applied to each shaker was the same.
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Figure 4.39. Experimental cost function surface at 200 Hz, using a cost function which
sums the magnitude squared of the velocity at each end of the beam. The positions of
the shakers were x,//=0.375(phase reference), x,//=021 andx,/I=0.71, the
magnitude of the drive voltage applied to each shaker was the same. The
synchrophasing shaker phases ¢, and ¢, were varied from 0° to 350 in 10" steps.
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Figure 4.40. Experimental cost function surface at 200 Hz, using a cost function which
sums the magnitude squared of the velocity at each end of the beam. The positions of
the shakers were x,/I=0.375(phase reference), x,//=021 andx,//=0.71, the
magnitude of the drive voltage applied to each shaker was the same. The
synchrophasing shaker phases ¢, and ¢, were varied from 0° to 350° in 10° steps. For

this figure, the data are plotted as if the shaker phases were varied from —170° to 180°

to better show the small variation of the cost function with ¢,
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Figure 4.41. Experimental cost function surface at 800 Hz, using the cost function
which sums the magnitude squared of the velocity at each end of the beam. The
positions of the shakers were x,//=0.375(phase reference), x,/l=0.21

and x, /I =0.71, the magnitude of the drive voltage applied to each shaker was the same.
The synchrophasing shaker phases ¢, and ¢, were varied from a nominal 0° to 350" in

10° steps.

149



Chapter 4 Experimental validation of synchrophasing

15

\H L]

40

35} .
2 a0 J
~
=
2
S 25t ! .
2 i
o h
S 20f ik He
kS 1
iy ]
Q
=
=]
i
+~
wn
o
O

800

10 % E

*

*

0.‘
~ ‘0‘ .0'.‘¢“-'....-0’
5- ~-.‘~ é’ﬂ _
“~~¢ \’,
‘ll..
0 | |
50 100
Frequency / Hz

Figure 4.42. Comparison of the cost function reduction obtained experimentally by
synchrophasing when the magnitude of the drive voltage applied to each shaker is
adjusted. A scaling factor A is used to denote the magnitude of the n™ control source

drive voltage with respect to the reference source.

The solid curve: 4, =1 and 4, =1.
The dotted curve: 4, =2/3 and A, =1/3.
The dashed curve: A, =1/3 and 4, =2/3.

The positions of the three shakers were x,/I=0.375(phase reference), x,/l=0.21

andx, /I =0.71.
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Figure 4.43. Comparison of the optimum synchrophase angles for ¢, determined
experimentally for the control machine at x,, to achieve the minimum value of the cost

function, when the magnitude of the drive voltage applied to each shaker is adjusted. A
scaling factor 4, is used to denote the magnitude of the n™ control source drive voltage

with respect to the reference source.

The solid curve: 4, =1 and A, =1.
The dotted curve: 4, =2/3 and A, =1/3.
The dashed curve: 4, =1/3 and A, =2/3.

The positions of the shakers were x,//=0.375(phase reference), x,//=0.21
andx, /I =0.71.
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scaling factor A is used to denote the magnitude of the n™ control source drive voltage

Figure 4.44. Comparison of the optimum synchrophase angles for ¢ determined
experimentally for the control machine at x,, to achieve the minimum value of the cost

The positions of the shakers were x,/!

The dashed curve: A, =1/3 and A,
and x, /I

with respect to the reference source.
The solid curve: 4, =1 and 4, =1.

The dotted curve: 4,
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Figure 4.45. Comparison of the optimum synchrophase angles for ¢, determined
experimentally for the control machine at x,, to achieve the minimum value of the cost

function, when the magnitude of the drive voltage applied to each shaker is adjusted. A
scaling factor A is used to denote the magnitude of the n™ control source drive voltage

with respect to the reference source.

The solid curve: 4, =1 and 4, =1.
The dotted curve: 4, =2/3 and A, =1/3.
The dashed curve: 4, =1/3 and A, =2/3.

The positions of the shakers were x,//=0.375(phase reference), x,//=0.21
andx, /[ =0.71.
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Figure 4.46. Comparison of the optimum synchrophase angles for ¢, determined

experimentally for the control machine at x,, to achieve the minimum value of the cost

th

function, when the magnitude of the drive voltage applied to each shaker is adjusted. A
scaling factor 4, is used to denote the magnitude of the n™ control source drive voltage

with respect to the reference source.

The solid curve: 4, =1 and 4, =1.

The dotted curve: 4, =2/3 and A, =1/3.

The dashed curve: 4, =1/3 and 4,

=2/3.
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Figure 4.47. The maximum and minimum of the cost function obtained experimentally
by synchrophasing when the magnitude of the drive voltage applied to each shaker is
adjusted. A scaling factor A is used to denote the magnitude of the n™ control source

drive voltage with respect to the reference source.

The solid black curves 4, =1 and 4, =1.

The dotted blue curves A, =1/3 and A, =2/3.

The dashed red curves A, =1/3 and A, =2/3 corrected to simulate 4, =1 and A, =1
by using 0, =3 and 5, =3/2.

The positions of the shakers were x,//=0.375(phase reference), x,//=0.21
andx, /[ =0.71.
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S Summary and Conclusions

5.1 Summary

Synchrophasing has been investigated as an active vibration control technique for
controlling the vibration of a large flexible machinery raft. This type of structure is
commonly found on ships, and is used to provide a degree of isolation between the
vibrating machinery and the ship’s hull. The techniques developed could also be applied

to any generalised flexible structure on which vibrating sources are mounted.

Synchrophasing differs from other methods of active vibration control in that no
additional vibration sources are added to the structure for synchrophasing. All of the
control is achieved by adjusting the phases of the source excitations that are applied to
the structure, the magnitudes of the forces are not changed. With AC powered
machinery such as pumps, which are commonly found on ship’s machinery rafts, this
means adjusting the phase of the voltage that is applied to each machine. Other methods
of active vibration control commonly use actuators in order to apply additional forces to
the structure to achieve an overall reduction. Although the use of actuators can provide
a higher degree of active vibration control, because both the magnitude and phase of the
additional forces can be adjusted, the system costs and space requirements of fitting
additional components can make active vibration control much more costly, and has
previously meant that active vibration control is sometimes dropped from the final ship

machinery raft build.

Two models of a generalised one dimensional elastic structure have been developed.
The first was a receptance based analytical model, and the second was a laboratory scale
physical model of a one dimensional thin flexible beam supporting vibrating sources. It
was decided to use a receptance based approach to the theoretical modelling because
this approach is well established for studying mechanical systems consisting of lumped
and distributed parameter components. Receptance techniques can also be used in a
physical implementation of synchrophasing, because the point and transfer receptances

of the vibrating machinery can be measured experimentally, without requiring detailed
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knowledge of the mode shapes of the supporting structure. The analytical model can be
used to determine the displacement at any point on the generalised structure caused by
vibration due to machinery unbalance forces acting upon the structure, and can be used
to investigate synchrophasing. Expressions for the displacement due to multiple

vibrating sources were derived and introduced.

The receptance based analytical model was also used to guide the design and
development of a physical laboratory model to ensure that each rigid body mode and
flexural mode was separated in frequency, so that the vibration control achieved could
be quantified for each mode. The analytical model was also used in simulations to
ensure that sufficient flexural modes could be excited within the limitations of the
experimental equipment available. It was decided that three flexural modes would be
sufficiently representative of the most problematic vibrations of a real machinery raft
and that the physical model should be constructed so that the first three flexural modes

occurred at frequencies under 1 kHz.

The laboratory scale physical model was used to validate the predictions of the
theoretical model and to understand the practical requirements of implementing a
synchrophasing system onto an existing machinery raft. A PC driven data acquisition
and analysis unit was used as the feed forward controller, providing the phase shifted
signals to the shakers and processing the sensor signals from the accelerometers on the
structure. Software was written in LABVIEW™ to generate the phase shifted signals and
to collect and analyse the accelerometer signals. Software was also written in

MATLAB® to find the minimum of the cost function.
Both models were used as tools to analyse the interactions between the multiple
vibrating harmonic sources when they are mounted on a common elastic structure and

acting at the same frequency.

Two cost functions were investigated theoretically and experimentally. These were a

global control cost function achieved by calculating the total time averaged kinetic
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energy in the support structure and a local control cost function achieved by calculating
the sum of the magnitude squared of the velocity over each mount point. For global
control, the vibration at any point on the structure is regarded as equally important,
where as for local control, only certain points on the structure are considered to be
important. Mounting points where the machinery raft attaches to the rest of the ships
superstructure are important paths for vibration control because vibration can be
transmitted from the machinery raft into the superstructure and then radiate into the

water.

The best cost function to use depends upon the frequency of excitation and the positions
of the machinery upon the supporting raft, with respect to the nodes of the dominant
modes of the machinery raft that are excited at the frequency of interest. Global control
requires knowledge of the transfer mobilities between the machinery and the mass
distribution of the machinery and the supporting structure. Local control only requires
vibration at the mount points of the supporting structure to be measured, and so is more

suitable to implement and retro-fit onto an existing machinery raft.

Two methods of finding the minimum of a cost function surface have been investigated

theoretically and experimentally. The simplest method is a full incremental search,

which consisted of changing the phase of each control source in turn from 0° to 360° in
suitable steps. This gave a cost function surface for each operating frequency of interest.
The minimum of the cost function surface was then found using MATLAB® to analyse
the complete data set. The laboratory synchrophase system showed that this type of
searching can be very time consuming, as it is necessary to adjust the phase of one
control machine, let the vibration settle to its steady state, then calculate the cost
function, repeating this process over a range of phase angles. A simple laboratory
synchrophasing system consisting of three vibrating sources - one reference source and

two control sources - took approximately three hours to perform a full search at a single

frequency using a 10° step size.
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As an alternative to a full search, the models were used to investigate the application of
Propeller Signature Theory in finding the minimum of the cost function. This technique
was originally developed for minimising the effects of aircraft propeller noise inside the
cabin of the aircraft. Since then it has been successfully used to minimise the vibration
inside the cabin of an aircraft. However, this thesis contains the first known work
reported using Propeller Signature Theory to determine the signature between vibrating
machinery mounted on a thin elastic raft and error sensors placed on the raft, with the
aim of minimising a cost function by synchrophasing, based upon the machinery
signatures and the modes of the raft structure. Propeller Signature Theory is used to
calculate the phase independent transfer function or signature between each machine
and each error sensor. A fully determined calculation of the transfer functions on a
system comprising P control machines and one reference machine requires (P+1)
physical measurements at independent phase angles, i.e. the same number of phase
changes as there are control sources. Once the phase independent transfer functions are
obtained, they can be used in simulations using a full search to calculate the minimum
of a cost function surface and hence find the optimum synchrophase angles for the

control machines.

A simple laboratory synchrophasing system consisting of three vibrating sources, one
reference source and two control sources, using the method developed from Propeller
Signature Theory took approximately one hour to determine the minimum of the cost
function at 78 frequencies using a 1" phase angle step size. This was considerably faster
than using a full search, because only three measurements on each accelerometer were
required at each frequency, and it is the physical process of changing the phase angle of
the applied voltage, allowing a settling time and making the measurement that takes the

time.

A method for automating the calculation of the cost function in response to changes in
the phase angles of the applied voltages was described and implemented in LABVIEW"
and MATLAB" for both the full search method and the determination of the transfer

functions by using Propeller Signature Theory. The models showed theoretically and
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experimentally that the techniques developed for Propeller Signature Theory can
successfully be applied for structural vibration control of a flexible machinery raft and
are considerably faster than implementing a physical full search and would be more

suitable as a form of close to real time adaptive vibration control.

The transfer function values determined using Propeller Signature Theory are not
transfer mobilities as they do not calculate the forces applied by each vibration source.
Hence if the load or speed of any machine were to change, it may be necessary to re-
determine the transfer functions, because the optimum phase angles for minimising the
cost function using synchrophasing could change if the applied forces change. The
physical model was used to show that if the magnitudes of the applied forces change by
a known amount then the transfer functions can be adapted to find the optimum
synchrophase angles at the new vibration levels without requiring re-calculation of the
transfer functions. However this may not be practical on a real machinery installation as
a change in vibration measured locally on a machine may not be proportional to a

change in the force applied to the machinery raft.

5.2 Conclusions

This work has shown that synchrophasing can successfully be applied as an active
structural vibration control technique for reducing the vibration of a large thin elastic
structure such as a machinery raft of the type commonly found on ships. The optimum
synchrophase angles, and the amount of control achieved, depend upon the positions of
the vibrating sources on the structure and also on the relative magnitudes of the forces
that result from the vibration. Of particular importance to ship-borne machinery is the
control of any rigid-body modes and the first flexural mode because the main vibrations
generated by rotating and reciprocating machinery often lies in this frequency region. It
has been shown that the position of the node of the rotational rigid body mode depends

upon the positions of the machinery upon the flexible structure.

A one-dimensional receptance based analytical model was developed in order to

understand synchrophasing and to guide the development of a laboratory scale physical
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model and synchrophasing system. The receptance based model proved to be very
successful at predicting the natural frequencies of the two rigid body modes and the first
two flexural modes of the laboratory model which were well separated and could
always be recognised. Higher order flexural modes were harder to recognise and there
was an increasing difference between the theoretical predictions and the physical model.
Analysis of the physical laboratory model in vibration showed that the beam twisted
when excited at some frequencies above the second flexural mode. Torsional and
flexural modes across the width of the beam are not included in the one-dimensional
Euler-Bernoulli based receptance model. The receptance based model proved to be very
useful in understanding the operational deflection shapes obtained from the physical
model and why control was not achieved at certain frequencies and positions of the

shakers on the beam.

The analytical model and the laboratory physical synchrophasing system were used to
test and compare two different cost functions and two methods of searching for the
optimum synchrophase angles necessary to minimise the cost functions. It was shown
that local control and global control could both be achieved using synchrophasing and
that the most effective method of control depended upon the frequency of excitation and
the positions of the shakers upon the beam. Techniques developed in Propeller
Signature Theory to determine a phase independent transfer function between each
vibrating source and each sensor, enabled much faster calculation of the optimum
synchrophase angles for each machine, than the simpler method of incrementally

stepping through all combinations of angles.

It was shown analytically that when only two vibrating sources are mounted on the thin
beam, then a simple analytical expression can be obtained for the optimum
synchrophase angle of the single control source. This angle is often just either in phase
or in anti-phase with the reference source. Experimental studies and simulations
confirmed that the optimum synchrophasing angle to minimise the cost function

depended upon the positions of the vibrating sources on the structure, the positions of
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the nodes of the main modes of vibration that are excited at the frequency of interest and

the magnitude of the modal forces.

It was shown analytically that when more than two vibrating sources are mounted on the
flexible structure, so that there is more than one control source (one reference and P
control sources), then interaction terms exist between the control shakers, so that no
simple analytical expression for the optimum synchrophase angle for each control
source could be found. The effect of these interaction terms are that they can work
against each other, the result being that synchrophasing may not be as effective and that
local minima of the cost function surface can exist. This highlighted the requirement to
perform a search over the whole cost function surface, i.e. over the whole phase range,
to ensure that the global cost function minimum is found, hence the best synchrophase

angles.

5.3 Recommendations for further research

This research has used simulations where a normal force has been applied to the thin
elastic beam. Although a reciprocating machine would be expected to apply normal
forces to the supporting structure, rotating machinery would also be likely to apply a
torsional moment. To accommodate this, it could be necessary to use a beam theory
other than Euler-Bernoulli, such as Timoshenko thick beam theory, when modelling
more complex situations where the effects of rotary inertia and shear deformation need
to be considered. Controlling and adjusting the phase of the voltage supplied to a
laboratory shaker is far simpler than adjusting the phase of the voltage applied to an
industrial machine, where larger currents are involved. Follow on work to investigate
how the phase could be changed practically on a real machinery installation would be a

good next step to further investigate the practicalities and usefulness of synchrophasing.

It is likely that more than one frequency will be generated by the vibrating machine.
This is particularly troublesome in a military marine environment where the detection of
several ‘tonals’ from ship or submarine machinery can be used to identify the vessel to

potential attackers. Further work could be conducted into controlling a cost function
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based upon more than one frequency. For example, minimising the magnitude of the
velocity squared at each mount point at 50 Hz, 100 Hz, 150 Hz and 200 Hz
simultaneously.

A real machinery raft installation on a ship or submarine will have some mounting
points situated on or close to the hull and other mounting points situated away from the
hull. Previous research has indicated that mounting points that connect directly to the
external hull will create larger contributions to the overall radiated noise signature of the
vessel and so it is more important to control the vibration at these points. An extension
to the work conducted so far would be to weight the magnitude of the velocity squared
at each mount point based upon its position on the structure. In this way, the most
important points on the structure to be controlled can be given addition weighting or

importance on the generation of the cost function surface.
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List of symbols used

B, n" flexural wave number.
AM , A proportion of the mass of machinery which is added to each mass element.

I' Transfer function matrix relating the out of balance forces applied to the elastic
mounting structure by each machine to the velocity at each cost function sensor.

Proportional damping factor.

¢ Phase of the complex quantity obtained from a vector multiplication of the form
y,y, where n=1---3.
A Scalar factor relating the magnitude of the force applied to the structure by the 1™

control machine to the magnitude of the force applied by the reference phase

machine.

A Diagonal matrix of scalar factors of the form A .
p  Density, mass density.
¢, Phase of the force applied to the structure by the n™ control machine with respect

to the phase of the reference machine.

¢  Vector of phases of the force applied to the structure by the reference machine and
the n control machines.

v, A known phase shift applied to a machine, when determining the transfer function
matrix.

¥  The matrix of known phase shifts, applied to the machines when determining the

transfer function matrix.

@  Angular frequency of oscillation.

@, n'™ natural frequency of oscillation of a structure.

A Cross sectional area of the structure.

E  Energy of a structure.

Ey Y oungs modulus.

/. Force applied to the structure due to the reference phase machine.
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Vector of forces applied to the structure due to the control machines.

Second moment of area of the structure cross section about the neutral axis.

Cost function based upon calculating the sum of the magnitude squared of the
velocities over sensor positions.

Stiffness of support mounts.

Length of the structure.

h

n" mass element of the structure.

n™ modal mass.

Diagonal matrix containing the mass of each element on the leading diagonal.
Matrix of modal masses.

Number of modes considered in modal summation equations.

Number of mass elements.

Number of machines used to achieve control.

Vector of modal receptances.
Matrix of modal receptances.
Magnitude of the complex quantity obtained from a vector multiplication of the
form y,'y,, where n=1---3.

Number of sensors used determining the cost function.
Kinetic Energy.

Elastic strain energy.

Displacement.

Vector of velocities at the sensor positions on the structure.

Velocity at sensor s.
n™ mode shape of the beam.

A matrix of velocities, the columns of which correspond to the velocities
measured for each particular known phase shift. Used in determining the transfer
function matrix.

The position of the n™ machine on the structure.
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Y, Transfer mobility between the reference machine and the /™ mass element.
Y, [Transfer mobility between the s sensor and the p™ machine.

y, Vector of transfer mobilities between the n" control machine (or the reference

machine if n =r) and each of the mass elements/sensors.
Y  Matrix of transfer mobilities between each of the machines and each of the cost
function sensors.

Y  Matrix of transfer mobilities between the control machines and each of the mass

elements/sensors.

List of operations

<S>l Time averaged value of 3

3 Time derivative of 3 given by o

R Hermitian (conjugate transpose) of matrix 3
Re(J) Real part of complex number I

Im(3J) Imaginary part of complex number I

3 The complex conjugate of 3
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