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Abstract 
 

The advantages of isolating vibrating machinery from its supporting structure are that 

the chances of vibration induced fatigue failure of structural components are reduced, 

the structure becomes more inhabitable for people due to less vibration exposure and the 

sound radiated by the structure into the environment is reduced. This last point is 

especially important for machinery operating in a marine environment because low 

frequency sound propagates very well underwater, and the machinery induced sound 

radiated from a ship or submarine is a primary detection and classification mechanism 

for passive sonar systems. 

 

This thesis investigates the control of vibration from an elastic support structure upon 

which multiple vibrating systems are passively mounted. The excitations are assumed to 

occur at discrete frequencies with a finite number of harmonic components and the 

machines are all assumed to be supplied with power from the same electrical supply. 

Active vibration control may be achieved by adjusting the phase of the voltage supplied 

to one or more of the machines, so that a minimum value of a measurable cost function 

is obtained. Adjusting the phase of a machine with respect to a reference machine is 

known as synchrophasing and is a well established technique for controlling the sound 

in aircraft cabins and in ducts containing axial fans. However, the use of the technique 

for reducing the vibration of machinery mounted on elastic structures seems to have 

received very little attention in the literature and would appear to be a gap in the current 

knowledge. This thesis aims to address that gap by investigating theoretically and 

experimentally how synchrophasing can be implemented as an active structural 

vibration control technique.  
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1 

1 Introduction 

1.1 Background 

There are many reasons why it might be desirable to reduce the transmission of 

vibration from vibrating sources to the surrounding structure. Excessive vibration may 

accelerate fatigue failure of the machinery or of the host structure itself. Reducing the 

vibration levels might make the structure more inhabitable for persons or equipment and 

may reduce the sound radiated by the structure into the environment. This last point is 

especially important in a marine environment, because low frequency sound propagates 

very well underwater and the machinery induced sound radiated from a ship or 

submarine is a primary detection and classification mechanism for passive sonar 

systems. 

   

The traditional approach to reducing the transmission of discrete frequency vibration 

from vibrating sources such as rotating and reciprocating machinery, has been to 

decouple the machinery from the structure by using passive isolation mounts.  

Machinery plants on mobile platforms such as ships traditionally employ two-stage 

passive isolation. For the first stage, several machines are mounted, using compliant 

isolators, onto a large elastic support structure or raft. Secondly, the flexible raft is 

further decoupled from the hull structure by passive isolation mounts. These mounts are 

essentially damped springs and may not be effective at all frequencies at which 

vibrations are occurring. Passive isolation mounts have two opposing constraints. 

Firstly, the mount must have sufficient stiffness to support the static load of the 

machine. Secondly, the mounts must have low enough dynamic stiffness such that the 

resonance frequency of the machine on its mounts is well below the operating frequency 

of the machine.  

 

To address these opposing constraints, the vibration isolation achieved by using 

compliant mounts can be supplemented by other passive control techniques, such as the 

addition of mass to change the resonance frequencies, applying damping materials to 
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reduce the vibration at resonance frequencies or fitting vibration neutralisers to reduce 

the overall excitation experienced by the machinery raft.  

 

An alternative strategy is to replace the passive isolation system with an entirely active 

system. Active control is achievable for example, by electromagnetic levitation of the 

machinery – active rafting. However, electromagnetic levitation is very expensive, 

requires a large amount of power to implement and still needs a back up system of 

conventional passive vibration mounts that will provide a fail safe should the active 

mounting system fail. The preferred option is to use a hybrid solution, which combines 

techniques of active vibration control such as active damping of residual vibration or 

active vibration control using force actuators, with a passive mounting system. 

However, these active components can also be expensive to install, and although they 

may be included in the design of a machinery raft, they are often not fitted due to their 

prohibitive expense.  

 

This thesis considers the control of vibration from an elastic support structure upon 

which multiple vibrating systems are passively mounted, as shown in Figure 1.1. The 

figure depicts three machines with rotating components, which cause vibration to be 

transmitted to the machinery raft due to rotational imbalance. The excitations are 

assumed to occur at discrete frequencies with a finite number of harmonic components. 

A two-stage passive isolation system is employed to minimise the vibration transmitted 

from the machinery into the steel deck and hence into the surrounding structure. The 

machines are all assumed to be supplied with power from the same power supply. An 

example of such a structure is shown in Figure 1.2, which shows an arrangement of 

pumps mounted on a machinery raft. 

 

Since the machines are driven from the same power supply, active vibration control may 

be achieved by adjusting the phase of the voltage supplied to one or more of the 

machines so that a minimum value of a measurable cost function is obtained. Adjusting 

the phase of a machine with respect to a reference machine is known as synchrophasing 

and is a well established technique for controlling the sound in aircraft cabins and in 
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ducts containing axial fans. However, the use of the technique for reducing the vibration 

of machinery mounted on elastic structures seems to have received very little attention 

in the literature and would appear to be a gap in the current knowledge. This thesis aims 

to address that gap by investigating theoretically and experimentally how 

synchrophasing can be implemented as an active structural vibration control technique.  

 

1.2 Literature Review 

This section describes previous work carried out in the field of structural vibration 

control, where vibrating machinery is the primary source of vibration excitation. The 

section starts by describing the advantages and limitations of traditional passive control 

techniques, including using compliant mounts and neutralizers. Active vibration control 

techniques are then described, with an overview of feedback and feedforward control, 

response sensors, activators and control strategies. It is shown that optimum control is 

achieved by adjusting both the magnitudes and the phases of the applied controlling 

forces when the sources are harmonic. The literature review concludes with an overview 

of work previously conducted into synchrophasing as a noise and vibration control 

technique and describes the current gaps in knowledge.  

 

1.2.1 Overview of Passive vibration control 

The usual approach taken by designers of passive machinery isolation systems has been 

to mount vibrating machinery on flexible isolation mounts in order to reduce the forces 

that the machine applies to the surrounding structure. In order to achieve the highest 

level of isolation, the simplest approach is to isolate each machine individually, and this 

is the approach usually described in the texts on the theory of vibration isolation [1-4]. 

However, the machinery on a large structure such as a ship rarely operates in isolation 

and so requires flexible interconnections between many of the machines. For example, 

diesel engines require coupling to gearing and propeller drive shafts, pumps require 

coupling to fluid systems and diesel generators supply power to many onboard electrical 

systems. Designing flexible connectors that can provide effective isolation and perform 

reliably for an extended period of time is very difficult [5, 6]. From the perspective of 
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machinery operation, reliability and ease of maintenance there is an advantage to 

grouping machinery systems together on a large machinery raft and then isolating these 

machinery rafts from the surrounding structure. These two-stage isolation systems are 

dealt with in vibration textbooks as an extension to the simple theory of vibration 

isolation, where the machinery raft is modelled as a rigid body structure and the force 

transmitted from the machinery to the surrounding structure via the two-stage isolation 

system is characterised by the force transmissibility [1, 2]. However, treating the 

machinery raft as a rigid body is not appropriate at all frequencies where vibration 

occurs, because ships are often equipped with lightweight flexible machinery rafts. In 

these cases the vibration modes of the machinery raft, the positioning of the machinery 

upon the raft and the positioning and number of mounts used to connect the raft to the 

surrounding structure are all important for minimising the force transmissibility [6-10]. 

 

Examples of other passive techniques, that are used to help to minimise the force 

transmission from the vibrating machinery to the surrounding structure, include careful 

balancing of the rotating components of machinery. Balancing minimises the 

transmission of vibration due to the presence of eccentric rotating masses, or the 

misalignment of connecting components [1, 11]. Alternatively, mass can be added or 

removed from the machinery raft in order to change its natural frequencies of vibration, 

to ensure that it does not resonate at a frequency excited by the machinery vibration 

[12].  

 

An alternative technique proposed by Swinbanks [6] is to distribute the machinery raft 

mounting points so that they are placed at positions of high mass, each with appropriate 

stiffness to isolate the mass above it. This gives each mount the transmissibility 

characteristics of a single degree of freedom isolator.  

 

Another alternative is to introduce a dynamic vibration absorber as described by 

Ormondroyd and Den Hartog [13] which reduces the vibration of the structure to which 

it is attached at a single frequency, and is thus most suitable for machinery operating at 

a constant speed. The vibration of variable speed machinery can be reduced, by using a 
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vibration absorber with damping, when the speed range is known.  A great deal of work 

followed on from this paper, researching the effectiveness of vibration absorbers. This 

led to a class of adaptive devices called vibration neutralizers, where the dynamic 

stiffness of the neutralizer is adjustable, so that changes in machinery speed, and hence 

excitation frequency can be tracked, allowing the vibration reduction to be optimised. 

Examples of relevance are a method of global control of the vibrational kinetic energy 

of a structure using single and multiple tunable vibration neutralizers [14, 15] and a 

method of controlling the vibration transmitted from an aircraft engine to the fuselage 

using vibration absorbers [16].  

 

Damping techniques such as constrained layer damping and viscoelastic damping 

mechanisms have also been suggested for reducing the vibration of lightweight 

machinery rafts [17]. 

 

1.2.2 Overview of Active vibration control 

The concept of cancelling unwanted sound or vibration by superimposing the signal 

from one source onto another source with the same magnitude but with a o180  phase 

shift is not new. In 1878 Lord Rayleigh described sets of waves which neutralize one 

another to produce “points of silence” [18], which was utilising the principle of 

superposition and the constructive and destructive interference of two wave fields in 

order to cancel the total field at a point. 

  

In 1934, the first example of actively adding a sound wave in order to control a sound 

field was presented, when Lueg filed a patent for the idea of capturing the sound field 

within a duct and generating an additional sound field further down the duct, in order to 

reduce or eliminate the total noise field in the duct [19]. This patent contained the 

essential elements of an active control system described by Fuller, Nelson and Elliott 

[20], namely a sensor to detect the uncontrolled sound or vibration, an electronic 

controlling system to manipulate and generate a controlling signal and an actuator, to 

produce the controlling signal to change the response of the uncontrolled system such 

that the total sound or vibration level is lowered.  
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1.2.3 Overview of Feedback vibration control 

Feedback control systems are those for which the control signal obtained from the 

detecting sensor contains both the primary noise source and the secondary noise source. 

For this approach, the original primary excitation signal cannot be observed in isolation 

and thus cannot give a priori information about the primary noise source. This is shown 

in Figure 1.3 for the case of a single primary excitation source, a single vibration 

response sensor and a single actuator. An example of feedback control is the electronic 

sound absorber [21] presented by Olson and May, which consists of a microphone 

located close to a loudspeaker and an amplifier. This absorber is used to control the 

sound pressure in the vicinity of a microphone by driving the loudspeaker in such a way 

as to null the sound pressure, creating a quiet area around it. A further example of 

feedback control can be seen in research conducted by Balas into the active vibration 

control of large lightweight flexible structures such as space satellites, by using point 

actuators to control certain critical modes of vibration [22]. The modal control method 

was later refined by other researchers, for example the Independent Modal Space 

Control method suggested by Meirovitch for controlling the vibrations of a distributed 

mass system [23-25] and subsequently modified by others to minimise the effect of 

control spillover into unmodelled modes, such as those that are truncated in the modal 

formulation [26, 27] . 

 

1.2.4 Overview of Feedforward vibration control 

Feedforward control systems are those for which prior knowledge of the primary 

excitation signal is available. In general, there are two cases which allow this a priori 

knowledge. The first is the case where the vibration signal is propagating through a 

mechanical structure or through the air in the case of a sound wave, and a sensor can be 

used to detect the disturbance. The propagation time between the sensor and the actuator 

must be long enough that there is time for the control system to determine and create the 

signal that must be fed to the actuator. This case is especially amenable to cancellation 

of guided sound waves in ducts where the primary and cancellation waves have the 
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same direction of propagation, and a sensor can be placed far enough away from the 

control source to avoid any near-field effects [28-30]. 

 

The second case is when the disturbance is deterministic, such that the future excitation 

can be perfectly predicted from the previous behaviour. This is the case for harmonic 

excitation, for example, the vibration generated by rotating machinery under constant 

load conditions [31]. In this case, a reference signal can be derived from the primary 

excitation source, for example a tachometer detecting the shaft speed on a rotating 

machine. The phase of the secondary controlling signals can then be maintained with 

respect to the primary reference phase. This case is shown in Figure 1.4 for a single 

primary excitation source, a single response sensor and a single actuator providing the 

secondary excitation. The primary excitation signal is fed in parallel to the vibrating 

system and to the controller, where the secondary excitation waveform is generated. The 

secondary excitation waveform may be a different amplitude and phase when compared 

to the primary waveform, but because the primary signal is available, the phase of the 

secondary can be fixed with respect to it. 

 

Comparison of Figures 1.3 and 1.4 show that, while the response sensors form part of 

the control path for feedback vibration control system, they do not form a direct part of 

the control path for a feedforward vibration control system. Rather they are used to 

adapt the response of the controller, usually with the aim of minimising the output from 

one or more response sensors. For a feedback control approach, as the response signal 

gets smaller the gain on the signal must be increased in order to provide the secondary 

excitation, this can lead to instabilities in the feedback control system [20, 32]. For this 

reason, a great deal of recent research has been concerned with feedforward control, as 

this is inherently stable and offers improved performance over feedback methods [33]. 

 

1.2.5 Sensors and actuators 

The number, type and positioning of response sensors on the vibrating system to be 

controlled depends upon the control strategy chosen.  Traditionally, accelerometers have 

been used for measurements of vibration and as error sensors for feedforward active 
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vibration control. Alternatives, such as polyvinylidene fluoride (PVDF) patches, long 

thin PVDF sensors and optical fibre sensors have also been developed for vibration 

control. Although they offer a distinct advantage in terms of conforming to the shape of 

the vibrating structure and may be shaped and placed to generate a signal only when 

certain modes of vibration are present, they can also be prone to electrical noise 

problems [34-37]. The number of sensors used depends upon the type of control which 

is attempted. In local control, the main focus is to minimise the error response at certain 

points on the vibrating system and no consideration is given to the vibration response 

outside these points. As such, local control requires sensors only at the points of 

interest. Alternatively, global control requires more sensors because minimisation of 

errors across the whole structure is considered. 

 

Electromagnetic shakers have traditionally been used as actuators for active vibration 

control. They are very convenient as the come in a very large range of sizes and masses 

and so are suitable for use in systems from laboratory experiments up to large scale 

installations on working platforms, such as ships. For systems which can be controlled 

with low magnitudes of forces, then piezoelectric actuators offer a lightweight 

alternative [38, 39]. Piezoceramic stack actuators can be built up from layers of 

piezoelectric material and these are capable of providing higher control forces that are 

more suitable for use in larger structures [40, 41].  

 

1.2.6 Control strategies 

The feedforward vibration control strategies that are relevant to the structure described 

in this thesis are those controlling a thin flexible structure, such as the beam described 

by Brennan et al [42]. The wave suppression approach is achieved by considering the 

vibration as a wave propagating on the beam [43, 44] and is very similar to the 

feedforward control suggested by Lueg for controlling the sound propagating in a duct. 

Two other strategies that have been widely reported in the literature are those of 

maximizing the power absorbed by secondary actuators, dampers or damping layers 

[45, 46] and that of minimising the total power, or time averaged kinetic energy 

supplied to the structure by all vibrating sources [47, 48]. All of these techniques show 
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that the best control is achieved when both the amplitude and phase of the controlling 

forces are adaptively changed as required [49]. 

 

Brennan et al concluded [42] that the best overall control strategy for global control on 

a vibrating finite beam in flexure, was to minimize the total power supplied to the beam. 

This thesis will compare a global approach, where the total time averaged kinetic energy 

in the intermediate structure is minimised by synchrophasing, with a local approach, 

where point amplitude measurements of squared velocity are used as the cost function. 

These point amplitude measurements are made at each end of the intermediate structure, 

where it is connected to the host structure via vibration isolators. 

 

1.2.7 Overview of Synchrophasing 

In 1905, Mallock reduced the vibrations originating from two engines of a steam ship 

by making them run at the same speed, but in anti-phase to each other [50], which is the 

first documented example of synchrophasing. Synchrophasing differs from full active 

vibration control in that additional actuators to control the vibration are not usually 

fitted to the vibrating structure. Instead, the phases of vibrating machines that are 

already part of the structure are adjusted relative to a reference phase machine, the aim 

being to reduce the overall vibration levels. So there is no additional weight penalty due 

to extra components added to the structure. Synchrophasing is thus ideally suited to 

reducing the noise and vibration levels from rotating structures such as axial fans within 

a duct, aircraft propellers and ship propulsion systems.  In 1940 Kalin patented a 

method of synchrophasing the main propulsion engines of a ship with multiple 

propellers, in order to reduce the vibration levels within the ship [51]. The system 

maintained a constant phase angle between the crank shafts by means of governors 

fitted to each Diesel engine. Kalin noted in the patent that the method could be applied 

to synchronising pump-driving engines to reduce the vibration due to machinery 

unbalance. Synchrophasing has become widely adopted for reducing the vibration levels 

of main propulsion machinery, especially for cruise ships with pod propulsion systems. 

Although the most usual technique is a fixed phase system, rather than an adaptive 
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system which is capable of changing the phases of the power supplied to each pod as 

operational requirements dictate.  

 

In 1977 Harada obtained a patent for reducing the blade passage tonal noise of two fans 

in a duct by changing the relative angle between the two sets of fan blades [52]. This 

technique has been investigated experimentally and has shown that synchrophasing can 

reduce the sound pressure level of the blade passage frequency or harmonics by 10 dB 

[28]. However, since the fundamental blade passage frequency and the harmonics do 

not generally have the same optimum synchrophase angles, it is generally not possible 

to minimise the fundamental and all harmonics simultaneously. 

 

By far the most literature on synchrophasing has been concerned with reducing the 

cabin noise and vibration inside propeller driven aircraft. The most important 

frequencies being the blade passage frequency and the lowest order harmonics. Previous 

research in the 1980’s showed that synchrophasing could reduce the overall noise levels 

within the cabin of a propeller driven aircraft by approximately 10 dB [53-56]. 

However, the success of synchrophasing was limited at the time by the technology 

available. Commercial synchrophasers at the time were only capable of o25 steps, which 

is insufficient to cope with the changes in propeller induced cabin noise experienced 

during flight operations. Recent research has concentrated on active synchrophasing 

using microphones and accelerometers positioned throughout the aircraft, together with 

adaptive optimisation techniques to minimise the cabin noise and vibration over a wider 

range of flight conditions [57-59]. Algorithms for finding the minimum of the cabin 

noise sound pressure level include an exhaustive search of all the possible synchrophase 

angle combinations and the iterative gradient decent technique [49]. The time penalty of 

both of these techniques can be lessened by employing Propeller Signature Theory as 

described by Johnston, Donham and Guinn [60], where the individual propeller 

contribution at any location is called its signature at that location. So the total propeller 

related noise and vibration at a particular location in the aircraft cabin is determined by 

calculating the vector sum of the signatures from each propeller. Once the propeller 

contribution at each response sensor is determined, the process of finding the minimum 
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sound pressure level can be carried out using mathematical simulation assuming that the 

system has local linearity.   

 

For propeller driven aircraft, it is not usually practical to switch off all but one engine in 

order to determine the signature for each propeller at each response sensor location. 

Johnston describes using the same number of propeller phase combinations as there are 

propellers, for a fully determined solution. For example, four different combinations of 

propeller phases for an aircraft with four propellers will enable each propeller signature 

to be determined. A more accurate method is to use more combinations of propeller 

phases than there are propellers. This enables a least squares over-determined solution 

to finding the signature of each propeller. 

 

1.2.8 Current gaps in Knowledge 

There are two patents by Pla [61, 62], for reducing noise and vibration from multiple 

rotating machines such as engines, turbines and cooling fans. Other than this, 

synchrophasing seems to have received very little attention in the literature for 

controlling the vibration of raft mounted machinery by adjusting the phase of the 

voltage supplied to the machinery.  

 

To the author’s knowledge, no work has been reported using Propeller Signature Theory 

to determine the signature between vibrating machinery mounted on a thin compliantly 

mounted elastic raft and error sensors placed on the raft, with the aim of minimising a 

cost function by synchrophasing, based upon the machinery signatures. 

  

1.3 Thesis Objectives 

This thesis aims to address some gaps in the current knowledge, of the effectiveness of 

synchrophasing, when applied to the vibration control of compliantly mounted 

machinery rafts, by presenting a theoretical and an experimental model of 

synchrophasing on a laboratory scale. 
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Propeller Signature Theory is used in the theoretical and experimental models to find 

the minimum of a cost function by synchrophasing. The results obtained by simulation 

using the theoretical model are compared to those obtained experimentally and the time 

taken to perform an exhaustive full search is compared to the time taken to determine 

the minimum by calculating the machinery signatures and using these in a simulated full 

search using Propeller Signature Theory.  

 
The objectives of this thesis are to: 

 

• develop a receptance based analytical model to study the vibration of an elastic 

structure due to forces generated by the vibrating machinery mounted on it. 

• analyse the interactions between multiple vibrating harmonic sources when 

mounted on a common elastic structure and acting at the same frequency. 

• design a method to adapt synchrophasing from an active sound control technique 

to an active structural vibration control technique.   

• investigate the use of Propeller Signature Theory - a technique developed for 

measuring and reducing aircraft propeller noise - in minimising the vibration of 

machinery mounted on an elastic platform. 

• design and build an experimental system to represent the machinery mounted on 

an elastic structure. 

• design and build an experimental synchrophasing system, to optimize the control 

of the structural vibration of a simple structure, using different search methods to 

minimize the cost function. 

• verify the predictions obtained from the analytical model by conducting a series of 

experiments using the laboratory based experimental synchrophasing system.  

• present theoretical and experimental results to show the vibration reduction that is 

achievable by using synchrophasing. 

•  determine the practical requirements for implementing a simple synchrophasing 

system to control the transmission of vibration to the surrounding structure. 
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1.4 Contributions of the Thesis 

 

The work presented in this thesis, builds on the body of work of synchrophasing 

reported for controlling the sound and vibration within an aircraft cabin. The 

techniques are developed in the design of an adaptive synchrophasing system that 

can be applied to a compliantly mounted machinery raft, upon which vibrating 

machinery is the source of vibration. 

 

The contributions of this thesis are as follows:  

 

• The importance of controlling the rigid body modes of a thin, flexible beam is 

shown, when using the total time averaged kinetic energy as the cost function in 

structural vibration control. Of particular importance is the position of the node of 

the rotational rigid body mode, which depends upon the positions of the machinery 

on the support structure. 

 

• It is shown theoretically and experimentally that the techniques developed for 

Propeller Signature Theory can be applied for structural vibration control of a 

flexible machinery raft, and is an effective means of control. 

 

• It is shown theoretically and experimentally that the total time averaged kinetic 

energy in the support structure and the sum of the magnitude squared of the velocity 

over each mount point, can both be used as effective global and local cost functions 

respectively. The best cost function to use – in terms of achievable reduction – 

depends upon the frequency of excitation and the positions of the machinery upon 

the supporting raft with respect to the nodes of the dominant modes of the 

machinery raft that are excited at the frequency of interest. Global control requires 

knowledge of the transfer mobilities between the machinery and the masses of the 

machinery and the supporting structure. Local control only requires vibration at the 

mount points of the supporting structure to be measured, and so is more suitable to 

implement and retro-fit onto an existing machinery raft.   



Chapter 1 Introduction 

 

 

14 

• It is shown analytically and with simulations that when only two vibrating sources 

are present on a generalised elastic structure, then a simple expression can be 

obtained for the optimum synchrophase angle of the control machine, with respect 

to the phase of the reference machine. This angle is often just either in phase or in 

anti-phase with the reference, and depends upon the positions of the vibrating 

sources on the structure, the positions of the nodes of the dominant modes and the 

magnitude of the modal forces. 

 

• It is shown analytically and with simulations that when a generalised structure 

contains more than two vibrating sources (one reference and P control sources) then 

interaction terms exist between the control sources. These interaction terms can 

work against each other, the result being that there may not be a unique minimum of 

the cost function. In this situation it is necessary to perform a search over the whole 

cost function surface in order to find a global minimum and the best synchrophase 

angles. 

 

 

 

1.5 Thesis outline 

This section describes the layout and content of the rest of the thesis. Chapter 2 

introduces an abstraction of the problem that is investigated in this thesis - the vibration 

control of a machinery raft - to a generalised one dimensional structure. A model based 

upon the point and transfer receptances of the constituent components is described and  

used to predict the displacement at any point on the generalised structure due to local 

vibration, for example that caused by machinery unbalance. Expressions for the 

vibration response due to two vibrating sources and then multiple vibrating sources are 

introduced and analysed.  

 

Chapter 3 discusses the idea that, for the types of generalised structures of interest in 

this thesis, it will not be possible to alter the magnitude of the unbalance forces caused 

by the vibrating sources. This is because the vibrations are generated by machinery, 
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which is required to run at a predetermined speed (RPM). Hence control can only be 

attempted by altering the phases of the unbalanced forces with respect to a reference 

source.  

 

To quantify the effect of the control, cost functions are derived for the overall time 

averaged kinetic energy of the structure and for the sum of the squares of the magnitude 

of the velocities over each mount point. The latter cost function is simpler to implement 

from a practical point of view and could easily be retro-fitted to existing machinery 

rafts. 

 

Two methods of finding the minimum of these cost functions are then described and 

compared for ease of application and the ability to find the overall global minimum. 

These two methods involve a full search conducted over all phase angles and a method 

of determining the transfer function between each machine and each vibration sensor 

based upon Propeller Signature Theory. The latter method enables a full search to be 

simulated, using the transfer functions, which represents a considerable time saving 

over having to step through each angle individually. The chapter concludes by 

describing a fundamental difference between synchrophase control when only two 

vibrating sources are present and that when more than two are present. 

 

The experimental investigations of synchrophasing as a noise control technique and 

supporting numerical simulations are presented in Chapter 4. The chapter begins with a 

description of a physical model which was used to investigate control by 

synchrophasing. The sources of vibration were electromagnetic shakers which applied a 

force to the supporting beam as a result of the reaction against an attached mass load. 

  

Methods of measuring the time averaged kinetic energy, using a laser vibrometer and 

also measuring the sum of the squares of the magnitude of the velocity at each end of 

the beam are described. A method of automating the calculation of the cost function, in 

response to changes in the phase angles of the applied harmonic excitations is described 

and implemented in LABVIEW® and MATLAB®. The experimental determination of 
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the synchrophase angles demonstrates the power of the propeller signature theory 

technique and enables much faster calculation of the optimum angles for each of the 

vibrating sources. The results obtained are discussed and compared to simulations. 

 

Chapter 5 presents the conclusions of the thesis and draws together the major findings 

and ideas from the previous chapters. Recommendations for future studies and 

extensions of synchrophasing are also provided. 
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1.6 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. A representation of machinery with rotating components mounted on an 
elastic machinery raft. The system utilises two-stage passive isolation so the machinery 
and the machinery raft are all supported by compliant mounts. 
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Figure 1.2. Part of a machinery raft with rotating components mounted on a thin elastic 
base. Courtesy of Shipbuilding Pictures Database NSnet.com. 
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Figure 1.3. An example of feedback vibration control 
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Figure 1.4. An example of feedforward vibration control 
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2 Development of an analytical and a physical model 

of a general elastic structure 

2.1 Introduction 

This chapter describes the development of two models of a generalised elastic structure 

that are used to investigate the effectiveness of synchrophasing as an active structural 

vibration control technique. A receptance approach is adopted for the analytical 

modelling. Receptance techniques have been used for many years to study mechanical 

systems involving lumped parameter and distributed parameter components [63]. It was 

decided to use a receptance based model because the point and transfer receptances of 

the constituent components can easily be measured experimentally without requiring 

detailed knowledge of the system mode shapes.  

 

The analytical model can be used to determine the displacement at any point on the 

generalised structure caused by vibration due to machinery unbalance forces acting 

upon the structure, and can be used to investigate synchrophasing.  Expressions for the 

displacement due to multiple vibrating sources are derived and introduced. 

  

The receptance based analytical model is also used to guide the design and development 

of a physical laboratory model. This physical model is used to validate the theoretical 

predictions, to understand the practical limitations of implementing a synchrophasing 

system on an existing structure and to provide a technology demonstrator. 

 

2.2 Development of a Receptance based model 

Figure 2.1 shows the generalised structure that is used to investigate the effectiveness of 

synchrophasing as an active structural vibration control technique. In the physical 

model, electromagnetic shakers are used to represent the extra masses of machinery 

vibrating on a thin elastic support raft.  The generalised structure consists of a 

compliantly mounted thin elastic beam upon which 1+P  shakers are mounted. This 

allows for one shaker to be used as a reference phase source and P shakers to be used 
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for synchrophasing control, where the phase of the voltage supplied to each shaker can 

be varied with respect to the phase of the voltage applied to the reference shaker. Since 

low frequency vibration is the most problematic vibration source for large machinery 

installations [7, 33, 64], this thesis is concerned with situations where the flexural 

wavelength is large compared to the thickness of the elastic beam, so the effects of shear 

deformation and rotary inertia can be ignored [65]. Without loss of generality, the 

models developed for this thesis use Euler-Bernoulli beam theory [1] to represent the 

thin elastic support raft as a one-dimensional thin beam.  

 

Figure 2.2 shows the coordinate system and variables used in modelling the generalised 

structure, which is a composite system consisting of discrete components such as the 

masses of the shakers and the stiffness of the supporting mounts, and a thin elastic beam 

which is a distributed parameter element. The uniform box section beam is supported at 

each end by mounts of stiffness 1k  at coordinate 01 =sx  and 2k  at coordinate Lxs =2 , 

where L  is the length of the beam. 1k  and 2k  are complex due to damping in the 

mounts. The shakers are considered to be point masses of mass rm , 1m , 2m … Pm . The 

positions of the shakers on the beam are given by the coordinates rx , 1x , 2x … Px  

respectively. Forces rf  to Pf  act on the beam as a result of the reaction against each 

shaker mass load. 

 

2.2.1 The receptance approach 

The displacement w of the generalised elastic structure at any point x on the structure 

can be determined if the point and transfer receptance of the components of the 

composite system are known [66, 74]. The composite system is decomposed, such that 

the receptance of the components are known either as simple functions, or in terms of 

analytical expressions. The subdivision used in this analysis is to split the composite 

system into a subsystem of discrete components, consisting of the external masses and 

springs and a subsystem of continuous components consisting of the uniform thin beam 

with free-free end conditions, as shown in Figure 2.3. The excitation and response of the 

system are assumed to be harmonic at a single frequency.  
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For clarity of deriving the system equations, the external components that are attached 

to the beam at positions rx … Px , 1sx , 2sx  are given a single letter subscript ax , bx … fx  

as shown in Figure 2.3, where four external masses mounted on the beam have been 

assumed. 

 

For the beam subsystem, the displacement of the beam at positions ax , bx … fx  where 

the external components are attached can be represented by 
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   (2.1) 

 

where ijβ  is the receptance of the free-free Euler-Bernoulli beam, i.e. the displacement 

at position xi due to a force attached to the beam at position xj.  fi is the force on the 

uniform free-free beam at position xi. This can written in vector-matrix form as  

 

beamdisdis fBw =        (2.2) 

 

where the subscript dis is used to emphasise that the displacement vector disw  and 

receptance matrix disB  refer to points on the beam where the external discrete 

components are attached. beamf  is the vector of forces on the beam at the locations of the 

attached external components. By using a ‘compatibility condition’ [66] which requires 

the displacement of the external components to be the same as that of the beam at the 

point where the external components are attached, the displacement of the external 

components at positions ax , bx … fx can be represented by 
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   (2.3) 

 

where iiγ  is the receptance of the attached mass or spring at position xi ,  fi is the force 

on the point mass at position xi and fsi is the force on the spring mounts at xi . This can 

written in vector-matrix form as  

 

cdis Γfw =        (2.4) 

 

where the vector fc represents the forces acting upon the attached masses and springs 

and Γ  is the receptance matrix for the attached components. Using the compatibility 

condition, Equations (2.2) and (2.4) can be combined to give  

 

cbeamdis ΓffB =       (2.5) 

 

If the composite system is acted upon by external forces 1f  2f … Pf , then  

 

extcbeam fff =+       (2.6) 

 

where, for external forces applied to the masses (shakers) as shown in Figure 2.3, the 

vector of external forces is given by 
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where the last two elements are zero because no external forces are applied to the spring 

mounts.  

 

Combining Equations (2.5) and (2.6) gives   ( )
beamextbeamdis ffΓfB −= . From which  

     

         ( ) ext
1

disbeam ΓfΓBf −+=             (2.8) 

 

Equation (2.8) gives the forces on the uniform thin beam with free-free end conditions 

at the locations of the attached external components, in terms of the external forces 

applied to the shakers – or any other external forces if required. From this, the 

displacement of the composite system at any arbitrary position x on the beam can be 

calculated by  

 

[ ] beamf )(
2121 ,,,,,, ssPr xxxxxxxxxxxxxw ββββββ L=   (2.9) 

 

where jx,β  is the receptance of the free-free Euler-Bernoulli beam, i.e. the response at 

an arbitrary position x, due to a force at xj i.e. 
j

jx f
xw )(

, =β . Substituting Equation (2.8) 

into Equation (2.9) gives 

 

 [ ]( ) ext
1

dis ΓfΓB −+=
2121 ,,,,,,)(

ssPr xxxxxxxxxxxxxw ββββββ L      (2.10) 

 

which can be written as 
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extfA xxw =)(          (2.11) 

 

where the composite system receptance for an arbitrary response position x due to 

external forces and attached masses and springs is given by 

 

[ ]( ) ΓΓBA 1
dis

−+=
2121 ,,,,,, ssPr xxxxxxxxxxxxx ββββββ L   (2.12) 

 

Equation (2.11) is used to calculate the lateral displacement at a finite number of points 

along the beam and can be used to simulate the measurement of the displacement at a 

finite number of points along the length of the structure. This result is used in Chapters 

3 and 4 to simulate vibration control by synchrophasing. In this chapter it is used to help 

to design an experimental structure that can be used to demonstrate synchrophasing 

practically. 

 

If the system is vibrating freely then the external forces acting upon the composite 

system are given by 0fext = , hence from Equation (2.6) 

 

0ff cbeam =+        (2.13) 

 

This can be substituted into Equation (2.5) to give 

 

( ) 0fΓB beamdis =+      (2.14) 

 

Hence the natural frequencies of the composite system can be determined by the 

solutions of 

0=+ΓBdis       (2.15) 

 

using an eigenvalue routine. The natural frequencies obtained from the analytical model 

were compared with the natural frequencies obtained experimentally by impact testing 

of the physical model, as part of the validation process. 
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2.2.2 Time averaged kinetic energy of the composite beam system 

In previous work [67], a discretised model of a thin beam with free ends was developed. 

This was used to calculate the total time averaged kinetic energy by determining the 

lateral displacement at a finite number of discrete points along the beam. It was reported 

that this model was representative of an experimental determination of the kinetic 

energy, where the lateral displacement along the beam is measured at discrete points, 

using for example, a laser vibrometer. This method does not require knowledge of the 

mode shapes of the composite system. The model that was developed can be extended 

to give the total time averaged kinetic energy of a composite beam system. Figure 2.4 

shows how the composite beam model can be discretised into mN  discrete beam 

elements, allowing for the possibility of up to mN  external masses and/or springs. The 

external masses are represented as point masses im which can be zero for the elements 

where no additional mass is attached to the beam. For the ith small element, the time 

averaged kinetic energy is given by [67] 

   

       2
2

)()(
4

)( iiti xwmxρAT +Δ=
ωω        (2.16) 

 

where mNLx /=Δ  and represents the length of a small beam segment. The total time 

averaged kinetic energy of the beam, composed of mN  discrete beam elements and 

external masses can be written as 

 

wMw Δ
H

t
T

4
)(

2ωω =     (2.17) 

 

where w is a column vector of length mN  containing the lateral displacement of each 

element, the superscript H indicates the Hermitian transpose of vector w and MΔ is the 

total mass matrix given by 
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Equation (2.17) can be used to determine the total time averaged kinetic energy of the 

generalised structure experimentally by measuring the displacement vector w. To 

determine the total time averaged kinetic energy analytically, the displacement vector w 

is obtained using the receptance approach described previously, where the receptance of 

the free-free beam βij at excitation frequency ω  is given by  

 

       ∑
∞

= −+
+

−

−−
+

−
=

1
22

,
22 ))1((

)()()21)(21(31)(
k kkm

jkik

ji

ij im
xWxW

m
l
x

l
x

m ωηωωω
ωβ   (2.19) 

 

where the first two terms of Equation (2.19) are rigid body modes, kmm ,  is the thk modal 

mass, m is the mass of the beam, ωk is the circular natural frequency of the thk  mode, η 

is the modal structural loss factor which is assumed to be constant for all modes and 

)(xWk  is the mode shape of the thk  flexural mode of the free-free beam, normalised so 

that 

 

... 3 ,2 ,1      )()(
0

==∫ kLdxxWxW
L

kk      (2.20) 

 

For practical purposes, the infinite series of receptances given by Equation (2.19) is 

truncated to N terms.  The two rigid-body modes and the first three flexural modes of 

the thin beam with free end conditions are shown in Figure 2.5.  
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2.3 Design and testing of the physical model 

In order to investigate synchrophasing experimentally, it is necessary to have a 

laboratory scale model of the generalised elastic structure, so that the practical 

limitations of synchrophasing can be appreciated and a practical working 

synchrophasing system be designed and demonstrated.  

 

The requirements of the physical model were that the thin elastic beam should be stiff 

but light, as this results in a system where the rigid-body modes of the beam on its 

compliant end mounts are well separated in frequency from the flexural bending modes. 

This facilitates an active control strategy of controlling the rigid body modes and 

minimising their contribution to the overall cost function, as previous work [68] has 

indicated that a large proportion of the total time averaged kinetic energy for a thin 

beam with free end conditions is in the rigid body modes at frequencies at and below the 

first flexural mode. To this end, it was decided to use a box section beam, as the box 

section provides the stiffness required to support the additional masses in the form of 

shakers, but is lighter than a solid beam. The properties of the extruded box section 

beam used are shown in Table 2.1 below. 

 

Two variants of the RLF compliant mounts were tested for their suitability for use in the 

physical model, each with a different stiffness. The RLF Type 2 mounts had an 

experimentally determined stiffness of k= -13 Nm109×  and the RLF Type 3 a stiffness of 

k= -13 Nm1017.4× . 

 

The most suitable compliant mounts were RLF Type 2 mounts, which provided a large 

deflection under load and were designed for shock protection of delicate instruments. 

The stiffness of these mounts was determined experimentally by measuring the static 

deflection under load and is given in Table 2.1.  

 

It was necessary to use two mounts at each end of the beam in order to provide a stable 

platform upon which to mount the shakers. The compliant mounts have screw threads at 

the top and bottom for ease of mounting to the beam and to the supporting base.  
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Material Aluminium 6063-T6 
Extruded 
Box section 
 

Units 

Length 1.2 m 
Width 101.6 mm 
Height 25.4 mm 
Thickness 3.2512 mm 
Young’s Modulus1 10107.6 ×  Pa 

Beam 

Density1 2710 
 

3kgm−  

Make Ling Dynamic 
Systems 
 

 

Model V101  
Mass 0.91 kg 

Shaker 

Load mass on shaker  0.178 
 

kg 

Make RLF3 
High deflection 
rubber  

 

Type 2  

Mounts 

Stiffness2 3109×  
 

1Nm−  

1 From manufacturer’s data sheets 
2 Measured by static loading 
3 Purchased from antivibrationmethods.co.uk 
 
Table 2.1. Physical properties of the experimental structure  
 

Figure 2.6 shows simulations of the time averaged kinetic energy of the beam without 

shakers on, when each variant of mount is used, to show the effect of the stiffness of the 

supporting mounts on the time averaged kinetic energy of the beam. Also shown is the 

case where no end mounts are used. The figure shows that the effect of adding the 

springs at 0=lx  and 1=lx  is to increase the frequencies at which the rigid body 

modes occur from 0 Hz when no end mounts are present, to 18 Hz and 33 Hz for the 

RLF Type 2 mounts, and 24 Hz and 44 Hz for the RLF Type 3 mounts. This is in 

concordance with the equations for the natural frequencies of vibration when the 

compliantly mounted beam is considered as a two degree of freedom system, given by 

[1] 
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m
kf

π2
1

1 =        (2.21) 

 

12 3    3
2
1 f

m
kf ==

π
       (2.22) 

 

which shows that 1f , the natural frequency of the translational rigid body mode, and 2f , 

the natural frequency of the rotational rigid body mode of the structure, are both 

proportional to the square root of the stiffness, where k is the total stiffness and m  is 

the total mass. 

 

The RLF Type 2 mounts were chosen for the physical model because they provided a 

greater separation between the rigid body modes and the flexural modes. To provide a 

steady supporting base for the beam, another section of extruded aluminium box section 

beam was used, to which the compliant mounts were attached. Weights were attached 

inside the box section base to give it sufficient mass to remain stationary during the 

vibration testing. The experimental beam, compliant mounts and support base are 

shown in Figure 2.7. 

  

A suitable length of beam for the physical model was determined by using the analytical 

model to calculate the natural frequencies of the composite system with different 

lengths of beam. It was decided that three flexural modes would be sufficiently 

representative of a real machinery raft, because the most problematic vibrations occur 

on machinery rafts at low frequencies. The physical model was constructed so that the 

first three flexural modes occurred at frequencies less than 1 kHz. This upper frequency 

limit ensured that sufficient flexural modes could be excited and analysed within the 

limitations of the experimental equipment available. 

 

Once the physical model was constructed, the natural frequencies of the experimental 

beam without shakers were determined, by using an instrumented hammer to excite the 

structure, and measuring the acceleration of the beam to obtain the frequency response 
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function [69]. The results of the hammer excitation tests are shown in Figure 2.8 which 

shows the translational rigid body mode (RBM 1), the rotational rigid body mode (RBM 

2) and the first two flexural modes (FM 1) and (FM 2) of the beam. It can be seen in 

Figure 2.8 that the rigid-body modes are well separated from the flexural modes, as was 

determined in the experimental design. The measured natural frequencies are compared 

to those obtained using Equation (2.15) from the analytical receptance model in Table 

2.2 below. 

 

Mode Experimental 
Natural 
Frequency  
/ Hz 

Analytical 
Natural 
Frequency 
/ Hz 

Difference 
/ Hz 

Percentage 
Difference 
/ % 

Translational  
Rigid body mode 

19 18 1 5 

Rotational  
Rigid body mode 

33 33 0 0 

First  
Flexural mode 

130 134 4 3 

Second  
Flexural mode 

330 356 26 8 

 
Table 2.2. Comparison of the natural frequencies obtained experimentally with those 
predicted using the analytical receptance model for the first four modes of the beam. 
 

For the two rigid-body modes and the first flexural mode there is good agreement 

between the analytical receptance model and the experimental physical model. There is 

a difference of 26 Hz (8%) for the second flexural mode. This level of agreement gives 

confidence in the analytical model, and shows that the physical model is well 

represented by Euler-Bernoulli beam theory, i.e. the physical model behaves as a one-

dimensional beam at the frequencies of interest in this thesis. 

  

Ling Dynamic Systems LDS V101 shakers were used to provide the external masses on 

the beam and to generate the forces applied to the beam by vibrating a 178g load mass 

as shown in Figure 2.9. An accelerometer was mounted on the load mass to measure the 

acceleration and hence determine the applied force. During the experimental set-up 

phase, the acceleration measured on the load mass was compared to the acceleration 
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measured on an accelerometer on the beam adjacent to the shaker as shown in Figure 

2.9. This gave confidence that measuring the acceleration of the load mass was a valid 

method by which to infer the forces applied to the beam by the shaker.  The mass of the 

shaker armature is 6.5g [73], this was ignored in the calculation of the applied force. 

 

Figure 2.10 shows simulations which compare the time averaged kinetic energy of the 

structure when three LDS V101 shakers are mounted on the beam, to the time averaged 

kinetic energy when no external masses are present. This is to show the effect of the 

extra mass of the three shakers on the beam. In both cases, the beam is excited by point 

forces of the same magnitude and phase at positions 08.0=lx , 33.0=lx  and 

66.0=lx . As can be seen from Figure 2.10, the effect of the external masses is to 

lower the natural frequencies of the structure. This is in concordance with the equations 

for the natural frequencies of vibration of the two degree of freedom system given in 

Equations (2.21) and (2.22), which showed that the translational and rotational rigid-

body modes are inversely proportional to the square root of the mass m . Also the 

natural frequencies of the thin beam in flexure are given by [1] 

 

A
IE

f y
nn ρ

β
π

2

2
1

=       (2.23) 

 

where nf  is the frequency of the thn flexural mode, yE is the Young’s modulus, I is the 

second moment of area of the beam cross section about the neutral axis (the z axis using 

the coordinate system of Figure 2.2), ρ is the density of the beam, A  is the cross 

sectional area of the beam and nβ  is the thn flexural wave number. It can be seen from 

Equation (2.23), that the frequencies at which the flexural modes occur are proportional 

to the square root of the bending stiffness IEy  [70] and inversely proportional to the 

square root of the mass per unit length Aρ . 

 

Since each shaker is 0.91 kg and the static mass of the beam is 2.54 kg, the additional 

2.73 kg mass of three shakers represents a significant increase to the mass of the generic 
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structure. This is representative of a real machinery installation, where the mass of the 

machinery is of the same order as the mass of the supporting raft structure.  

 

2.4 Conclusions 

This chapter has described the development of two models of a generalised one-

dimensional elastic structure that were used to investigate synchrophasing as an active 

structural vibration control technique. One of these models is an analytical model and 

the other is a physical model. 

 

Expressions for the displacement at any point on the structure, due to multiple vibrating 

sources that are attached to the structure, were derived by developing a receptance based 

analytical model, where the composite structure was considered as lumped parameter 

and distributed parameter components. 

 

The receptance based analytical model was used to guide the design and development of 

a physical laboratory scale model, by simulating the effect on the overall time averaged 

kinetic energy of the structure, when the material and dimensions of the thin beam are 

changed, when the stiffness of the compliant mounts is changed and when the masses of 

the external components that are attached to the beam are changed. This enabled a 

physical model to be constructed where the rigid-body modes are well separated from 

the flexural modes and the first three flexural modes occurred at frequencies below 1 

kHz. 

 

After construction of the physical model, impact tests were performed to determine the 

natural frequencies of vibration, these showed good agreement when compared to the 

natural frequencies predicted using the analytical model. This gave confidence in the 

analytical modelling technique and showed that the physical model was behaving as a 

one-dimensional Euler-Bernoulli beam at the frequencies of interest in this thesis.  The 

physical model was used during the experimental investigations into synchrophasing, 

which are described in Chapter 4. The analytical model was also used in Chapter 4 to 

validate the experimental results.   
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2.5 Figures 

 

 
Figure 2.1. A diagram of the generalised structure. 1+P  machines are mounted on a 
thin support raft, such that the phase of the voltage applied to the P control machines 
can be adjusted relative to the phase of the voltage applied to the reference machine. In 
the diagram P=3. 
 

1 Machine 2 Machine P MachineMachine Phase Reference

Thin support raft 

Compliant mount 



Chapter 2 An analytical and a physical model of a general elastic structure 

 

 

36 

 

 

Figure 2.2. The coordinate system and variables used in modelling the generalised 
structure. The uniform box section beam is supported at each end by mounts of stiffness 

1k  and 2k , which are complex due to damping in the mounts. The shakers are 
considered to be point masses of mass rm , 1m , 2m … Pm . The positions of the shakers on 
the beam are given by the coordinates rx , 1x , 2x … Px  respectively. Forces rf  to Pf  act 
on the beam as a result of the reaction against each shaker mass load. 
 

1k  
2k  

rx  1x  2x  Px  

rm  1m  2m  Pm  

rf  1f  2f  Pf  

1sx  

Displacement )(xw  
y  

x  
2sx  
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Figure 2.3. Subdivision of the composite system when 1+P  shakers are mounted on the 
beam which is compliantly mounted on two springs of stiffness 1k  and 2k . For clarity, 
the external components attached to the beam at positions rx … Px , 1sx , 2sx  are given a 
single letter subscript ax , bx … fx . 
 

x
0  

ax  bx  
L  

rf  1f  2f  Pf  

cx  dx  

1k  
2k  

ex  fx  

ef  af  bf  cf  df  ff  
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Figure 2.4. Discretisation of the composite system into mN  small elements, each of 
length Δx. Each small element has an additional mass im which can be set to zero at the 
positions where there is no shaker attached. 
 

Δx 

rf  1f  Pf  

rm  1m  Pm  
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Figure 2.5. The rigid-body modes and the first three flexural modes of a thin beam with 
free ends. 
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Figure 2.6. Simulations of the time averaged kinetic energy of the beam without shakers 
on, to show the effect of the stiffness of the supporting mounts.  The beam is driven by a 
single point force at 25.0=lx . For the dotted line no mounts were used in the 
receptance model (k=0 -1Nm ), the solid line used the stiffness of the RLF Type 2 
mounts determined experimentally (k= -13 Nm109×  for each mount) in the receptance 
model and the dashed line represents the case when the experimentally determined 
stiffness for the RLF Type 3 mounts (k= -13 Nm1017.4×  for each mount) is used in the 
model. 
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Figure 2.7. A diagram (a) and a photograph (b) of the experimental beam used to 
validate the analytical model and to assess the practical limitations of synchrophasing. 
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RLF high deflection rubber mount 
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Figure 2.8. Measured Frequency Response Function of the experimental beam without 
shakers. An instrumented hammer was used to excite the structure and the acceleration 
was measured using an accelerometer mounted on the beam. The figure shows the 
translational rigid body mode (RBM 1), the rotational rigid body mode (RBM 2) and the 
first two flexural modes (FM1 and FM2).  
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Figure 2.9. Ling Dynamic Systems V101 shaker with a load mass of 178g. An 
accelerometer was mounted on the load mass to measure the acceleration of the load 
mass. During the experimental set-up phase, another accelerometer was positioned on 
the beam adjacent to the shaker and was used as a comparison with the accelerometer 
on the load mass.  
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Figure 2.10. Simulations of the time averaged kinetic energy of the beam showing the 
effect of the extra mass due to the shakers.  The beam is driven by three point forces of 
the same magnitude and phase at 08.0=lx , 33.0=lx  and 66.0=lx . The solid line 
is a simulation using external masses equivalent to Ling Dynamic System V101 shakers 
where each mass = 0.91 kg. The dotted line is a simulation where no external masses 
are present on the beam. 
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3 Control by synchrophasing 

3.1 Introduction 

This chapter elaborates on the requirement that, for the types of generalised elastic 

structures of interest in this thesis, it is not be possible to alter the magnitude of the 

unbalance forces due to any harmonic vibrating sources that are applied to the structure. 

Hence control can only be achieved by altering the phases of the unbalanced forces with 

respect to each other. 

 

The aim of this chapter is to derive expressions for a measureable quantity, whose 

magnitude changes in response to changes in the phases of the unbalance forces. 

Methods of finding the minimum of that quantity are then developed and described. 

 

In order to quantify the effectiveness of control, two cost functions are introduced. 

Expressions are derived for these cost functions, the first of which determines the 

overall time averaged kinetic energy of the structure, and the second of which is the sum 

of the squares of the magnitudes of the velocity of the structure over each resilient 

mounting point. Two methods of determining the minimum of these cost functions are 

then described and compared. Their ease of application and ability to find the overall 

global minimum are considered. The chapter concludes by describing the fundamental 

difference between control when only two vibrating sources are present and control 

when more than two sources are present. 

 

3.2 Choice of Cost Function to minimise 

It is necessary to choose a system parameter that can be adjusted in order to provide a 

measure of the effect of the applied control. Suitable parameters should be real and any 

time dependence averaged over a cycle. It is possible to optimise the performance of the 

control system to either control the global vibration of the structure, in which case 

vibration at all points on the structure are regarded as equally important, or the control 

can be localised to certain important points on the structure. An example of such 
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positions would be where the structure is attached to its surroundings, as this would be 

expected to be an important path for vibration. A suitable quantity for investigating 

global control is the time averaged kinetic energy of the structure. The vibrational 

energy E  of a structure vibrating in flexure is the sum of the elastic strain energy U  

due to the structure flexing, and the kinetic energy T  due to the velocity response of the 

structure, given by 

 

TUE +=                  (3.1) 

 

Without loss of generality, the specific example of a thin beam as described in Chapter 

2 is considered. It lies along the x axis between x=0 and x=L and flexes in a direction 

parallel to the y axis. The instantaneous elastic strain energy for such a beam in flexure 

is given by [65] 
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where yE  is the Youngs modulus and )(xI  is the second moment of area of the beam 

cross section about the neutral axis. The instantaneous kinetic energy T is given by [1, 

65] 
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Where ρ and )(xA  are the mass density and the cross sectional area of the beam 

respectively. Since the instantaneous strain energy shown in Equation (3.2) contains the 

second partial derivative of the flexural displacement ),( txw  with respect to x, U  does 

not contain any contributions from the rigid-body modes of the structure. This is 

because displacement in the rigid body does not involve any flexure of the beam.  

Previous work [7] has shown that rigid-body modes are often an important source of 
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vibration for raft mounted machinery. Equation (3.3) shows that the kinetic energy 

depends upon the first partial derivative of the flexural displacement ),( txw  with 

respect to t, so the kinetic energy does include contributions from the rigid-body modes. 

Thus the time averaged kinetic energy of the structure is considered to be a suitable cost 

function for investigating global vibration control.  

 

To investigate the effect of local control, an alternative cost function is necessary.  This 

cost function is the sum of the squares of the magnitudes of the velocities at the 

structure mounting points. The rationale for this choice is that, these points are where 

the vibrating structure is attached to any external structure and so this would be the path 

of vibration from the structure into the surroundings.  

 

3.2.1 Minimising the time averaged kinetic energy of the structure 

For a structure comprising 1+P  machines, operating at identical speeds and causing 

harmonic vibration at angular frequency ω . The phases of P control machines at 

arbitrary positions given by Pxx L1  can be adjusted relative to a reference machine at 

arbitrary position rx  as shown in Figure 3.1. The time averaged kinetic energy 
t

T )(ω  

is given by [49] 

 

[ ] [ ]ccrr
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4
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2ωω      (3.4) 

 

where the superscript H indicates the Hermitian transpose and rq  is the vector of modal 

amplitudes due to the machine for which the phase is not varied – the reference phase 

machine. For the nth natural frequency nω  of the structure to which the machines are 

attached, the modal amplitude due to a source at position rx  has the form 
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where η  is the structural loss factor of the beam, which is assumed to be constant across 

all of the modes, and nW  is the nth mode shape of the beam at the position of the 

reference machine rx . mM  is a square matrix of inertia coefficients, the nth modal mass 

being given by nmm , . cQ  is a rectangular (N modes x P sources) matrix of terms of the 

form 
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which are proportional to the modal force contributions due to the control machine at 

position px  and cf  is a vector of control forces given by 
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where the magnitude and phase of the  pth control force, relative to the reference force 

rf  is given by pj
pr ef φλ  where pλ  is a positive real number. The position of the 

reference force is given by coordinate rx  and the position of the  pth control force is at 

coordinate  px  for Pp  ... 1= . 

 

Equation (3.4) can be expanded so that the total time averaged kinetic energy of the 

system, considered as a sum over N modes, is given by 
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The terms in the square bracket on the first line of Equation (3.8) are terms representing 

the time averaged kinetic energy if each machine alone is forcing the structure. As there 

is no phase dependence within these terms, their contribution to the total time averaged 

kinetic energy cannot be altered unless the magnitudes of the forces are changed.  

 

The terms on the second line are phase dependent interaction terms between the 

reference machine and each of the P control machines. As each of these terms depend 

upon only one phase angle pφ , they are decoupled from each other. As a consequence, 

the phase angle of each control machine can be independently adjusted to minimise the 

contribution made to the total time averaged kinetic energy from each term on the 

second line.  

 

For the case of a single control machine 1=P , and any single mode n , then using 

Equations (3.5) and (3.6), the phase dependent term on the second line can be written as 

)( )(  cos2 1,,11 ωωφλ nnr qq∗ . Since )( )( 1,, ωω nnr qq∗  is real and can be either positive or 

negative, then the time averaged kinetic energy is minimised when -1cos 1 =φ  if 

)( )( 1,, ωω nnr qq∗  is positive and 1cos 1 =φ  if )( )( 1,, ωω nnr qq∗  is negative. From which the 

optimum control source phase angle is either πφ =1  or 01 =φ respectively. 
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The terms on the third line are interaction terms between the control machines. These 

terms can be seen to depend upon the difference between the phases of combinations of 

the pairs of the control machines ( tφ - sφ ) and the product of the magnitudes of the 

forces from the control machines ( tλ sλ ). In minimising the kinetic energy in each of 

the decoupled terms on the second line, the kinetic energy in the coupled terms on the 

third line may be increased.  

 

A more practical method of calculating the time averaged kinetic energy - which does 

not require knowledge of the structural mode shapes - is to divide the structure into mN  

mass ‘elements’ as shown in Figure 3.2. Each mass element comprises a proportion of 

the mass of the elastic structure and some elements contain a proportion of the mass of 

additional supported machinery. This formulation of the problem leads to a more 

practically useful form of Equation (3.4) given by  
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Where ry  is an 1×mN  vector of transfer mobilities between the reference machine and 

each of the mass elements shown in Figure 3.2 and given by  
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where riy ,  is the transfer mobility between the reference machine and the ith mass 

element given by 
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cY  is an PNm ×  matrix of transfer mobilities between the P control machines and the 

mN  mass elements. In this case M  is an mm NN ×  diagonal matrix containing the mass 

of each element on the leading diagonal given by  
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where 
mNmm L1 represents the mass of each element of the elastic supporting structure 

and a proportion of the mass of each additional machine pMΔ  is included but can be 

equal to zero for some elements. Hence for the experimental determination of the time 

averaged kinetic energy, the transfer mobilities and the element masses must be known. 

Knowledge of the mode shapes of the structure is not required. 

 

Simulations of the time averaged kinetic energy using Equation (3.9) were calculated 

using different numbers of element masses mN  and testing for convergence. This 

showed that at least five mass elements per flexural wavelength at the highest frequency 

were required to accurately determine the time averaged kinetic energy. 

 

 

3.2.2 Expressions for minimising the sum of the moduli of the velocities squared 

over the mounting points 

An alternative cost function which minimises the sum of the squares of the modulus of 

the velocity at S sensor positions over the mounting points given by sSs xx L1   upon the 

thin beam structure is given by 

 

ww && HJ =        (3.13) 
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where w& is a vector of velocities at S positions on the structure given by 
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where the velocity at a general point upon the beam, given by x, takes the form 
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Hence the velocity at each mounting point contains a contribution from each of the 

vibrating sources on the structure. Typically the velocity at each mounting point can be 

determined experimentally by placing accelerometers upon the structure at these points. 

 

By re-writing w& in terms of the transfer mobilities and the applied forces 
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where cf  is given in Equation (3.7). Hence the cost function becomes 

 

( ) ( )ccrr
H

ccrr ffJ fYyfYy ++=       (3.17) 

 

It can be seen that both the cost functions defined by Equations (3.9) and (3.17) have the 

same form. The difference being that Equation (3.9) provides a mechanism for global 

control because all mN  mass elements of the structure are included, whilst Equation 

(3.17) provides local control at the S mounting points. 
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Synchrophasing control is achieved by adjusting the phase angles Pφφ L1  in the 

expression for cf  in Equation (3.7). 

 

3.3 Methods of finding the minimum of the cost function 

This section discusses methods of finding the control phases required to obtain the 

minimum value of the cost function. The cost function given in Equation (3.13) can be 

written as  
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where sw& from Equation (3.15) is given by 
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Expanding Equation (3.18) and using pj
prp eff φλ=  gives 
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Equation (3.23) is only included in the cost function when more than one control 

machine is present, i.e. 1>P . When 1=P  there are no interaction terms between the 
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phases of the control machines. The cost function defined in Equation (3.20) has 

stationary points when each of its P partial derivatives with respect to phase angles 

Pφφ L1  are equal to zero. These are given by  
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Equation (3.24) shows that the stationary points for each pφ  depend upon the phase of 

the voltage supplied to each of the other 1−P  control machines. 

 

3.3.1 Synchrophasing with one control machine P=1 

When synchrophasing with only one control machine such that P=1, Equation (3.20) 

becomes  
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Altering the phase of the single control machine 1φ  only affects the term 2J  of Equation 

(3.27). Hence the problem becomes one of minimising Equation (3.27). If ∗
1,, srs yy  is 

written in terms of a magnitude and phase angle sθ  such that  
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then the equation for 2J  can be written as 
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It can be seen that to minimise the contribution to the cost function at each sensor 

requires ( ) 1cos 1 −=−φθs . Implying that πφθ )12(1 +=− ns  for .... 0,1,2,3=n  

 

However, the cost function is formed from the sum of the contributions from each 

sensor. Equation (3.27) can be written as 
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where ry  is a vector of transfer mobilities between the reference machine and each 

sensor and 1y  is a vector of transfer mobilities between the control machine and each 

sensor. These vectors are given by  
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If r
H yy1 is written in terms of a magnitude and phase in a similar way to Equation (3.28) 

so that 
1

11
θj

r
H eR=yy        (3.32) 

 

then the equation for 2J  can be written as 
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2 φθλ −= RfJ r       (3.33) 

 

Hence to minimise 2J  across all sensors requires ( ) 1cos 11 −=−φθ , implying that the 

minimising phase angle minφ  is given by 
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 πφθ )12(min1 +=− n  for .... 0,1,2,3=n      (3.34) 

 

The data that are required to achieve the minimisation are the transfer mobilities 

between each machine and each sensor. If these are obtainable, then 1θ  is known, hence 

the value of 1φ  corresponding to minφ  can be calculated. 

 

Also, the phase to maximise 2J  across all sensors requires ( ) 1cos 11 =−φθ . The value of 

1φ  corresponding to maxφ  is given by 

 

πφθ n2max1 =−  for .... 0,1,2,3=n      (3.35) 

 

Subtracting Equation (3.35) from Equation (3.34) gives  

 

 πφφ =− minmax   for .... 0,1,2,3=n       (3.36) 

 

Equation (3.36) shows that the difference between the phase angle required to minimise 

the cost function and maximise it is °180 .  

 

Figures 3.3 to 3.9 show simulations of synchrophasing with two vibrating sources 

mounted on the beam. The system properties used for the simulations are given in Table 

3.1 below.  

Length 1.2 m 
Width 101.6 mm 
Height 25.4 mm 
Thickness 3.2512 mm 
Young’s Modulus 10107.6 ×  Pa 
Density 2710 3kgm−  

Beam 

Assumed flexural mode damping 5 % 
Vibration  
Source 

Mass 0.91 kg 

Mounts Stiffness 3109×  1Nm−  
 

Table 3.1. System properties used for simulations 
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For these simulations the reference phase source is positioned at 08.0=Lx  and the 

control source at 33.0=Lx . The magnitude of each force was the same and the 

minimum and maximum of the cost function was found by using a full search of all the 

angles. 

 

Figure 3.3 shows a simulation of synchrophasing using the time averaged kinetic energy 

given in Equation (3.9) as the cost function to be minimised. For this cost function, the 

beam was considered to be split into twelve mass elements. The dotted line is the 

maximum time averaged kinetic energy of the beam and the solid line is the minimum. 

Figure 3.3 shows the two rigid-body modes - RBM 1 is the translational and RBM 2 is 

the rotational rigid-body mode respectively - and the first three flexural modes given by 

Equation (3.5) and labelled FM1-FM3 respectively.  As can be seen from Figure 3.3, the 

time averaged kinetic energy in the first rigid body mode is reduced by approximately 

30 dB by synchrophasing and the first flexural mode is reduced by approximately 25 

dB. Figure 3.3 shows that the rotational rigid body mode is not well controlled for this 

configuration of sources. This is because the control source is positioned close to the 

node of the operational deflection shape at the frequency corresponding to the rotational 

rigid-body mode, so provides very little control. This is shown in Figure 3.5b where the 

control force 1f  is close to the node at 32.0=Lx . 

  

Figure 3.4 shows the phase angle 1φ  of the control machine required to minimise the 

cost function shown in Figure 3.3. This figure shows that the optimum phase for 

minimising the cost function is usually either a °0 phase shift, so that the sources are 

vibrating in phase, or a °180 phase shift, so that the sources are vibrating in anti-phase. 

This is in agreement with Equation (3.34). Figure 3.3 also shows that no control is 

achieved at 80 Hz and Figure 3.4 shows that this is the frequency where the optimum 

phase for minimising the cost function changes from a °180 phase angle to a °0 phase 

angle with respect to the reference phase. This can be understood by considering the 

rigid body and flexural modes of a beam with free ends. Previous work on the rigid 

body modes of a thin beam with free end conditions [67, 68] has shown that for a force 
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applied to the beam on either of the intervals 
3
1

≤
L
xr or 

3
2

≥
L
xr  then a node exists on the 

beam, so that application of a controlling force at or near that node will not be effective 

at reducing the overall cost function.  

 

Figure 3.5a and Figure 3.5b show the translational and rotational rigid-body operational 

deflection shapes respectively for the compliantly mounted thin beam with two shakers 

on. The figures also show the positions of the reference and control forces at 08.0=Lx  

and 33.0=Lx  respectively, which were used in the simulations. Figure 3.4 showed 

that to minimise the magnitude of vibration for the translational rigid body mode at 13 

Hz, the control force is °180  out of phase with the reference force and this is shown by 

the direction of the arrow at 33.0=Lx  in Figure 3.5a. Figure 3.4 also showed that the 

control force is in phase with the reference force when minimising the magnitude of 

vibration of the rotational rigid body mode at 26.6 Hz, shown in Figure 3.5b. This is 

because there is a node of the mode shape at 32.0=Lx  which is between the two 

forces. If the two applied forces had been on the same side of the node, then the most 

effective phase for controlling vibration would be a °180 phase angle with respect to the 

reference phase. The rotational rigid body mode is not well controlled because the 

control source is very close to the node, so the time averaged kinetic energy is not 

greatly reduced at any control phase angle.  The first flexural mode at 103 Hz is shown 

in Figure 3.5c and has nodes at 2.0=Lx  and 725.0=Lx  so there is a node of the first 

flexural mode between the two sources. To most effectively control this mode the 

control force should be in phase with the reference force, as is shown in Figure 3.4. 

 

Figure 3.4 shows that for frequencies up to 70 Hz, the main modes excited are the rigid 

body modes and the optimum phase for the control force to reduce the cost function is 
°180  out of phase with the reference force. Above 80 Hz the first flexural mode 

becomes the most important and the most effective control is achieved with the control 

force in phase with the reference force. Between 70 Hz and 80 Hz the two main modes 

excited are the rotational rigid body mode and the first flexural mode. The cost function 
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reduction obtained by minimising one of these modes is cancelled out by a cost function 

increase in the other mode, so that the cost function is not significantly altered as can be 

seen in Figure 3.3. 

 

Figure 3.6 shows a simulation of synchrophasing using Equation (3.17) as the cost 

function. This cost function minimises the sum of the magnitudes of the velocity 

squared at each end of the beam. The sources were in the same simulated positions as 

for Figure 3.3 and the figure shows that the translational rigid-body mode and the first 

flexural mode are well controlled by this cost function while the rotational rigid-body 

mode is not well controlled. The two cost functions are very similar in the effectiveness 

of their control at frequencies below the second flexural mode. Figure 3.7 shows the 

phase of the control machine required to minimise the cost function shown in Figure 

3.6. This figure shows that the optimum phase for minimising the cost function is 

usually either a °0 phase shift, so that the sources are vibrating in phase, or a °180 phase 

shift, so that the sources are vibrating in anti-phase. This is in agreement with Equation 

(3.34).  

 

Figure 3.7 shows that between 40 Hz and 70 Hz, the optimum phase angle changes from 
°180 to °0 in a smooth transition. Over this frequency range, the dominant mode is the 

rotational rigid body mode, although there is also some beam bending due to the first 

flexural mode. Figure 3.8 shows the simulated operational deflection shapes for the 

beam at 51 Hz when a phase shift is applied to the control source 1f . When both sources 

are in phase, as shown in Figure 3.8a, then the rotational rigid body mode is the 

dominant mode. The influence of the first flexural mode can be seen in Figures 3.8b to 

3.8d, when the control source is phase shifted with respect to the reference source, as it 

causes a curve in the operational deflection shape. The cost function used in the 

simulations shown in Figures 3.6 and 3.7, minimised the sum of the magnitudes of the 

velocity squared at each end of the beam only, so the flexing can be used to minimise 

the velocity at each end of the beam. For the simulations shown in Figure 3.8 at 51 Hz, 

the cost function was minimised at °270 . Because only the ends of the beam are 

considered in the minimisation, comparison of Figures 3.8a and 3.8d, shows that the 
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displacement at the left hand end ( 0=x m) has decreased, whilst the displacement at the 

right hand end ( 2.1=x m) has increased, when the control source phase has a °270  shift 

with respect to the reference phase. In this case, the sum of the magnitude of the 

velocity squared at each end of the beam is lower for the °270  control source phase 

angle shown in Figure 3.8d.  

 

The two cost functions are compared in Figure 3.9. The main difference between them 

is at frequencies above the second flexural mode. The figure shows that the cost 

function which minimises the sum of the magnitudes of the velocity squared – J in the 

figure and Equation (3.17) - more closely resembles the time averaged kinetic energy 

cost function as the number of sensor points along the beam increases. Both the cost 

functions have a very similar form, as shown in Equations (3.9) and (3.17). So as the 

number of sensor positions included in the determination of the cost function increases, 

so the cost function for local control more closely resembles the cost function for global 

control. 

 

3.3.2 Synchrophasing with two control machines P=2  

When 2=P , such that control is achieved by adjusting the two phase angles 1φ  and 2φ , 

Equation (3.20) becomes 
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It can be seen that Equation (3.38) is independent of the two control phases 1φ  and 2φ , so 

the control problem becomes one of minimising Equation (3.39) by adjusting phase 
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angles 1φ  and 2φ . The partial derivatives of Equation (3.39) with respect to 1φ  and 2φ  

are given by 
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Using a similar notation to Equation (3.32), which is repeated here for convenience 

 
1
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The magnitude and phase of the vector products r
H yy 2  and 21 yy H  are given by 

 
2
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Hence the expressions for the derivatives become 
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Equations (3.44) and (3.45) show that the value of the partial derivatives, which define 

the way in which the cost function is minimised with respect to a particular control 

machine phase angle, depends not only upon that control phase angle, but also on the 

phase angle of the other control machine.  
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For 1>P  there is no simple expression which relates the transfer mobilities between the 

structure mounted machinery and the sensors to the optimum choice of control phase 

angle, as there was when 1=P  in Equations (3.33) and (3.34). This is because of the 

interaction terms which exist between the phases of the control machines, as shown in 

Equation (3.23) and the last expression in Equation (3.39). Instead, it is necessary to 

resort to a strategy which searches through a range of phase angles for each control 

machine, and calculates the optimum values of the control phases, by finding the global 

minimum of the P dimensional function, if one exists. 

  

Figure 3.10 shows a cost function surface obtained by calculating the time averaged 

kinetic energy of the beam when 3 vibrating sources are present (P=2), as shown in 

Equations (3.38) and (3.39). Control is achieved by altering the phases of the two 

control sources 1φ  and 2φ . For this simulation the reference source was at 16.0=Lxr  

and the two control sources were at 08.01 =Lx  and 33.02 =Lx  respectively. The 

frequency chosen was 100 Hz, which is close to the first flexural mode of the beam. 

Figure 3.10 shows that there is a clear minimum in the cost function, in this case when 

1φ  and 2φ are both °180 with respect to the reference phase machine. 

  

A single clear minimum in the cost function is not always obtained. Figure 3.11 shows a 

simulation of the time averaged kinetic energy cost function surface for a different 

frequency and configuration of the sources. In this figure the reference source was at 

33.0=Lxr  and the two control sources were at 08.01 =Lx  and 75.02 =Lx  

respectively. The frequency was 10 Hz (kl=1.35). Figure 3.11 shows that more than one 

clear local minimum can exist in the cost function surface and that the optimum phase 

angles for the control sources are not always °0  or °180  . In this case there is symmetry 

in surface of the cost function through the plane 21 φφ = . This symmetry was 

investigated experimentally and is discussed further in Chapter 4. The cost function 

surface minimum in this simulation was given by °= 2281φ  and °=1182φ . 
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3.3.3 Full Search  

The simplest search strategy is that of stepping through the phase of each control source 

from o0  to o360  in suitable steps for each operating frequency of interest. This type of 

searching in a practical implementation of synchrophasing, can be very time consuming, 

as it is necessary to adjust the phase of one control machine, let the vibration settle to its 

steady state, then calculate the cost function J, repeating this process over a range of 

angles. 

  

The number of measurements required at each frequency is ( )PN360  for an oN step 

size and P control machines. Even a crude search over o10  steps of two control 

machines would take 1296 measurements. As the number of control machines P 

increases, the number of measurements required increases as P36  for a step size of o10 .  

 

For some situations, the time required may not be an important factor, and a full search 

might be the best and simplest option. A full search will detect the global minimum in 

cost function surfaces where there is more than one local minimum. But for other 

situations, for example an adaptive synchrophasing system where the phase of the 

control machinery changes in response to varying the machine loads, then the time to 

obtain the optimum phase angles may be more important. 

  

A partial search strategy for 2=P , based upon Equations (3.44) and (3.45) can be 

derived by noting that, at the global minimum, the partial derivatives given by 

Equations (3.44) and (3.45) are both equal to zero. It should be noted that they are also 

zero at other stationary points, such as maxima and saddle points. Summing Equations 

(3.44) and (3.45) gives 

 

[ ] 0)sin()sin(2 22221111
2 =−+− φθλφθλ RRfr    (3.46) 

from which  

)sin()sin( 22
11

22
11 φθ

λ
λφθ −−=−

R
R     (3.47) 



Chapter 3 Control by synchrophasing 

 

 

 

64 

Since 1122 RR λλ is real and positive and 1θ and 2θ  are constant whilst the machinery 

load remains constant, then for each step of 2φ , there are two corresponding values of 

1φ  which satisfy Equation (3.47) and at which the value of the cost function can be 

calculated to search for the minimum.  Hence, if 1122 RR λλ , 1θ and 2θ  are measurable 

quantities, the number of measurements of the cost function J required, reduces 

to NP 360× , for an oN step size, which is 362×  for a step size of o10  with two control 

machines. 

 

3.3.4 Application of Propeller Signature Theory 

The time consuming part of the full search strategy is the time required to physically 

adjust the phase of each control machine, allow a suitable period of settling and then to 

make a measurement of the cost function. An alternative strategy, called Propeller 

Signature Theory [60] has been adopted in aircraft propeller noise and vibration studies 

[53-59, 61, 62, 71, 72]. It is based upon determining the transfer function between each 

machine on the elastic structure and each control sensor by physical measurement, and 

then using the transfer function data to run simulations of the effect of changing the 

phase angles on the value of the cost function. Instead of writing the vector of velocities 

at each sensor in terms of the transfer mobilities as shown in Equation (3.16) and given 

by  
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the mobility terms psy ,  and the magnitudes of the forces applied by each vibrating 

machine source pf  are incorporated into a term representing the transfer function 

between the vibrating machine and the control sensors, so that 
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becomes 
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where 
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The simplest way of determining the coefficients in the transfer function matrix Γ  is to 

switch all of the machines off, and then switch each on in turn, which will give the 

contribution at each control sensor from each machine. As a consequence the columns 

of the transfer function matrix Γ  are determined.  

 

There are many situations where the machinery is critical and cannot be switched off in 

this fashion. In this case, the transfer function can be determined by introducing a 

known phase shift ψ  onto each control machine in turn and obtaining a vector of 

velocities at each sensor position for each independent angle ψ . This is given by 
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      ( ) ( ) ( ) ( )1  1                1                                   1 +×++×+× PPPSPS    

 

where Pψψ L1  are the known phase shifts applied to each control machine in turn. 

Equation (3.52) can be written using matrix notation as 

 

ΓΨW =&        (3.53) 

 

For a fully determined solution on a system comprising P  control machines and one 

reference machine, (P+1) physical measurements of the vector of velocities w&  at 

independent phase angles are required. These measurements form the columns of the 

matrix W& in Equation (3.52).  If more measurements are made at independent phase 

angles than there are control machines, then a least squares determination of Γ  can be 

obtained by 

 

 [ ] 1−
= TT ΨΨΨWΓ &          (3.54) 

 

Once the transfer function matrix Γ  has been determined, its elements are independent 

of the phase angle chosen for the control machines. As long as the machine loads do not 

change, Γ  can be regarded as a constant matrix. This allows the determination of the 

optimum synchrophase angles for each of the control machines to be achieved by 

simulation, using the elements determined for the transfer function matrix Γ  in a full 

search, using a mathematical package such as MATLAB®. Hence only P changes of 

phase angle are required, as the first measurement is likely to be with none of the phases 

altered, as is shown in the first column of matrix Ψ  in Equation (3.52). The cost 

function can then be expressed in terms of the transfer function matrix and the vector of 

phases of the sources as 
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ΓφΓφww HHHJ == &&      (3.55) 

 

This method is considerably faster than a full search because only P changes of phase 

angle are required. So only 2 phase changes are necessary rather than the 1296 in the 

full search example given in subsection 3.3.3.  

 

3.4 Conclusions  

This chapter has developed expressions for two cost functions, which were used to 

provide a measure of the effectiveness of vibration control when the phase angles of the 

forces applied to a thin beam were adjusted. The two cost functions used were 

 

 Global control by considering the time averaged kinetic energy of the structure. 

 

 Local control by considering the sum of the squares of the magnitudes of the 

velocities at the structure mounting points. 

 

As the number of sensor positions included in the local control cost function increases, 

so it more closely resembles the cost function for global control. 

 

When only two vibrating sources are present on the structure, vibration control can be 

achieved by altering the phase of the single control machine. The best phase angle for 

the control machine is often just either in phase, or in anti-phase with respect to the 

reference machine, depending upon the positions of the machines upon the structure, the 

positions of the nodes of the dominant modes of vibration that are excited at the 

frequency of interest and the magnitude of the modal forces.  

 

For a structure supporting more than two vibrating machines, the coupled interaction 

terms that contribute to the cost function can work ‘against each other’ depending upon 

their magnitudes, so that no simple analytical expression for the optimum synchrophase 

angles exists. The optimum phase angle for each control machine to take, in order to 
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minimise the cost function, is not as intuitive as the two machine case. A single well 

defined minimum of the cost function may not always be obtained because local 

minima or symmetric minima may exist on the cost function surface.  

 

Two methods of finding the minimum of the cost function have been discussed. Both 

methods require a stepped search through all of the phase angles, but while one method 

physically steps through the phase of each machine whilst it is running, the other 

method simulates stepping through the angles using phase independent transfer 

functions that are determined by measurements. The former method, although 

simplistic, can be very time consuming as it is required to physically adjust the phase of 

each control machine, allow a suitable period of settling and then to make a 

measurement of the cost function. The latter method, also known as Propeller Signature 

Theory only requires the same number of independent phase changes as there are 

control machines. These phase changes are used to calculate the phase independent 

transfer function between each machine and each sensor position. A simulation is then 

run using the transfer functions to step through all of the phase angles to determine the 

minimum of the cost function. This was shown to be much faster than the Full Search 

method. This calculation of transfer function needs to be performed at each operating 

speed and hence frequency for which synchrophasing is to be applied. 
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3.5 Figures 

 

Figure 3.1. A thin box section beam supporting 1+P  machines such that the phases of 
P control machines are adjusted relative to a reference machine. In the diagram P=3. 
 

 

 

Figure 3.2. The elastic beam divided into mN  mass ‘elements’ some of which include a 
proportion of mass due to additional machinery. The velocity of each mass element is 
measured to calculate the time averaged kinetic energy.   
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Figure 3.3. Simulations of synchrophasing using the time averaged kinetic energy as the 
cost function. For the simulations two vibrating sources were mounted on the beam, one 
reference source at 08.0=Lxr  and one control source at 33.01 =Lx . The figure 
shows the maximum kinetic energy of the beam (dotted) and the minimum kinetic 
energy of the beam (solid) achieved by synchrophasing one control source. RBM1 is the 
translational and RBM2 is the rotational rigid body mode respectively. The first three 
flexural modes are labelled FM1-FM3 respectively. 
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Figure 3.4. Phase 1φ  of the control machine required to minimise the time averaged 
kinetic energy. For the simulation, two vibrating sources were mounted on the beam, 
one reference source at 08.0=Lxr  and one control source at 33.01 =Lx . 
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Figure 3.5. The first three simulated operational deflection shapes for the compliantly 
mounted thin beam with two shakers on. a) translational rigid-body modeshape, b) 
rotational rigid-body modeshape with a node at 32.0=Lx  and c) first flexural 
modeshape with nodes at 2.0=Lx  and 725.0=Lx . The positions of the reference 
source at 08.0=Lx  and the control source at 33.0=Lx  used in generating the 
simulations are shown on the modeshapes.  
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Figure 3.6. Simulations of synchrophasing using the sum of the magnitudes of the 
velocity squared at each end of the beam as the cost function. For the simulations two 
vibrating sources were mounted on the beam, one reference source at 08.0=Lxr  and 
one control source at 33.01 =Lx .  The figure shows the maximum cost function 
(dotted) and the minimum  (solid) achieved by synchrophasing one control source. 
RBM1 is the translational and RBM2 is the rotational rigid body mode respectively. 
The first three flexural modes are labelled FM1-FM3 respectively. 
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Figure 3.7. Phase 1φ  of the control machine required to minimise the sum of the 
magnitudes of the squared velocities at each end of the beam as the cost function. For 
the simulation, two vibrating sources were mounted on the beam, one reference source 
at 08.0=Lxr  and one control source at 33.01 =Lx . 
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Figure 3.8. Simulated operational deflection shapes at 51 Hz. The control source 1f  has 
a phase shift of a) °0   b) °90   c) °180   d) °270 with respect to the reference phase rf  
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Figure 3.9. Comparison of the cost functions which minimise the time averaged kinetic 
energy and the sum of the magnitude of the velocity squared J, at selected points along 
the beam. The number of points selected is adjusted from one at each end of the beam 
then 4, 7 and 12 equi-spaced points. For the simulation two vibrating sources were 
mounted on the beam, one reference source at 08.0=Lxr  and one control source at 

33.01 =Lx . 
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Figure 3.10. Cost function surface obtained using the time averaged kinetic energy of 
the beam as the cost function, with 3 vibrating sources on the beam (P=2). The plot was 
generated from a simulation, where the reference source was at 16.0=Lxr and the two 
control sources were at 08.01 =Lx  and 33.02 =Lx  respectively and the frequency 
was 100 Hz (kl=4.2). 
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Figure 3.11. Cost function surface obtained using the time averaged kinetic energy of 
the beam as the cost function, with 3 vibrating sources on the beam (P=2). The plot was 
generated from a simulation, where the reference source was at 33.0=Lxr and the two 
control sources were at 08.01 =Lx  and 75.02 =Lx  respectively and the frequency 
was 10 Hz (kl=1.35). 
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4 Experimental validation of synchrophasing 

4.1 Introduction 

The aim of this chapter is to describe the experimental work conducted to validate the 

numerical simulations and subsequent conclusions presented in Chapter 3. The chapter 

begins with a description of a physical beam model which was used to investigate 

control of an elastic structure by synchrophasing. The vibration sources used in the 

experiments were electromagnetic shakers.  Each shaker applied a force to the 

supporting beam as a result of a reaction against an attached mass load. 

 

In order to assess the effectiveness of control, two cost functions were investigated 

experimentally. The cost functions were the measurement of the time averaged kinetic 

energy of the elastic structure, and the measurement of the sum of the squares of the 

magnitudes of the velocities at the structural mounting points of the beam. These cost 

functions were investigated using simulations in Chapter 3. 

 

 For the initial experiments with two electromagnetic shakers, both cost functions were 

investigated. For later experiments, only the cost function of minimising the sum of the 

squares of the magnitudes of the velocities at the beam support positions was used, as 

this was easier to implement experimentally. It would also be easier to fit into a 

practical synchrophasing scheme as it does not require any information regarding the 

mass distribution of the structure.  

  

Methods for measuring the time averaged kinetic energy using a scanning laser 

vibrometer, and measuring the sum of the squares of the magnitude of the velocity at 

each end of the structure are described. A method for automating the calculation of the 

cost function in response to changes in the phase angles of the applied voltages is 

described and implemented using the software packages LABVIEW® and MATLAB®. 

  

The experimental determination of the synchrophase angles revealed the power of the 

propeller signature theory technique. It enabled much faster calculation of the optimum 
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control angles for each of the vibrating sources. The results obtained are discussed and 

compared to those obtained from simulations. 

 

4.2 Experimental Set-up 

Figure 4.1 shows the system configuration used to investigate synchrophasing when two 

vibrating sources are mounted on an elastic platform.  The physical properties of the 

system are given in Table 4.1.  

 

Material Aluminium 6063-T6 
Extruded 
Box section 

Units 

Length 1.2 m 
Width 101.6 mm 
Height 25.4 mm 
Thickness 3.2512 mm 
Young’s Modulus1 10107.6 ×  Pa 

Beam 

Density1 2710 
 

3kgm−  

Make Ling Dynamic 
Systems 

 

Model V101  
Mass 0.91 kg 

Shaker 

Load mass on shaker  0.178 
 

kg 

Make RLF 
High deflection 
rubber  

 

Type 2  

Mounts 

Stiffness2 3109×  
 

1Nm−  

1 From manufacturer’s data sheets 
2 Measured by static loading 
 

Table 4.1. Physical properties of experimental system  

 

An aluminium box section beam was used as the flexible mounting platform. Its 

dimensions were chosen to provide separation between the two rigid-body modes of the 

system and the flexible modes of the beam. An initial modal analysis of the beam without 



Chapter 4 Experimental validation of synchrophasing 

 

 

 

81 

any shakers mounted on it was conducted using an instrumented hammer to excite the 

structure. This revealed rigid body modes at 19 Hz and 33 Hz, and the first two flexural 

modes at 130 Hz and 330 Hz. The beam was compliantly mounted at each corner using 

flexible rubber mounts. 

  

A Polytec PSV400 scanning laser vibrometer was used to measure the velocity over a 

grid of positions covering the beam, as shown in Figure 4.2. The grid extended over 12 

equispaced positions along the length of the beam and 3 positions across the width of 

the beam. The choice of the number of measurement positions along the length of the 

beam ensured that at least five points were measured per flexural wavelength at the 

highest frequency of interest, which was 1 kHz. Using the Euler-Bernoulli beam 

equation, also known as thin beam theory [1, 65] the bending wavelength bλ  is given by 

 

4  2
A

EI
b ρω

πλ =        (4.1) 

 

where E is Young’s modulus, I is the second moment of area of the beam cross-section 

about the neutral axis, ρ is the density, A is the cross sectional area and ω  is the 

angular frequency of vibration. Using the data in Table 4.1 for the physical properties of 

the beam, for 1 kHz, 57.0=bλ m, so a grid spaced 0.1m apart was suitable. 

 

For the comparison of cost functions, the 36 measured velocities were stored 

individually and post-processed using MATLAB®. The three positions across the beam 

were averaged, to try to reduce any contribution in the measured vibration due to the 

beam twisting, as only flexural vibration was of interest and included in the analytical 

model. 

 

Figure 4.3 shows the experimental system configuration used to investigate 

synchrophasing when three vibrating sources are mounted on the elastic platform. The 

beam and mounts were the same as described previously and shown in Table 4.1. The 

cost function used for the experiments with three vibrating sources was to minimise the 
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sum of the squares of the magnitudes of the velocities over the mount points at each end 

of the structure. As a result, only the acceleration at each end was required. This was 

measured using accelerometers shown as A4 and A5. This cost function is more 

practically achievable in a real situation than the cost function which minimises the time 

averaged kinetic energy, because the structure doesn’t need to be considered as a set of 

mass elements or as a distributed continuous system. 

 

4.2.1 Electromagnetic shakers as vibrating sources 

Ling Dynamic Systems V101 shakers were placed on the beam and used to vibrate test 

load masses. Thus a reaction inertial force was applied to the beam by each shaker. 

Accelerometers were used to measure the acceleration on the load masses; these are 

shown in Figures 4.1 and 4.3. These accelerations were used to infer the forces applied 

to the beam, this assumes that the acceleration measured by the accelerometer on the 

load mass is the same magnitude as that applied to the beam, i.e. that the shaker and 

load mass system resonance is out of the measurement range. The resonant frequency of 

the single degree of freedom, shaker load mass system is given by  

 

m
kfr π2

1
=       (4.2) 

 

where k  is the suspension axial stiffness of the electrodynamic shaker [73] 
-13 Nm1015.3 ×=k  and 18.0=m kg is the mass of the load mass and the moving element 

of the shaker. Hence 21=rf Hz, which is between the two rigid body modes of the 

system and right at the bottom of the measurement range.  

 

Figure 4.4 shows a block diagram of the measurement and control set up used for 

synchrophasing when three electrodynamic shakers were attached to the elastic beam. 

The shaker excitation waveforms were generated on the laptop computer within the 

LabView® software package. This enabled precise phases of waveforms to be generated 

with respect to the reference waveform. These waveforms were converted into voltages 

in the digital to analogue converter and then fed to the shakers via power amplifiers. 
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Although the phases of the signals generated by LabView® were known, the effect of 

any phase shifts due to the power amplifiers was not known. To mitigate for this, the 

phases attributed to each control signal was that measured by the accelerometer on the 

load mass for each shaker. The signals from each of the five accelerometers were 

conditioned and then fed to the analogue to digital converter then processed in 

LabView®. The three accelerometers on the load masses were used to determine the 

applied phases of the control voltages, whilst the signals from the two accelerometers at 

each end of the beam were used in the calculation of the cost function. 

 

4.3 Experimental measurement techniques 

For the set of measurements with two electrodynamic shakers present on the beam, the 

velocity at each of the 36 grid positions shown in Figure 4.2 was measured using a 

Polytec PSV400 scanning laser vibrometer. This enabled both the time averaged kinetic 

energy of the whole system and the magnitude of the velocity at each end of the beam to 

be determined; hence both methods could be assessed as control cost functions.  

 

To calculate the total time averaged kinetic energy of the structure at each frequency, all 

twelve of the averaged velocities along the length of the beam were used, averaging the 

three velocity measurements across the beam to reduce the effects of beam twisting. To 

calculate this cost function also requires knowledge of the mass of the structure and the 

machinery mounted on the structure. For the cost function which minimises the sum of 

the squares of the magnitudes of the velocities at each end, only the averaged velocity at 

each end is required.  

 

4.3.1 Using the transfer mobility to determine the local and global cost functions 

In order to compare the vibration control possible using the global and local cost 

functions, two electrodynamic shakers were used on the beam. Rather than finding the 

minimum in the cost function by searching all of the phase angles, the transfer 

mobilities were measured using the experimental system, and then used in simulations 
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to find the maximum and minimum values of the cost function and hence calculate a 

measure of the success of control.  

  

For the investigation with two electrodynamic sources, the beam was excited by a force 

)( jxf  from each shaker in turn by applying a band limited pseudo random noise as the 

excitation. This gave the transfer mobilities between each shaker and each measurement 

point defined by 

 

),(
),()(

ω
ωω

j

i
ij xf

xwY
&

=        (4.3) 

 

at each of the 36 measurement  positions ix  along the beam, for each of the two shaker 

positions jx  given by 1x  and 2x  as shown in Figure 4.1, and where ),( ωixw& is the 

velocity of the beam at measurement position ix  and frequency ω . These mobilities 

were used in the way described in Section 3.3.1 to find the optimum value for the phase 

angle of the control source in order to minimise the cost function, and also to maximise 

the cost function. 

 

4.3.2 Minimisation using a full search 

A full search methodology was implemented for synchrophasing when three 

electrodynamic shakers were present upon the structure. The set up used for this series 

of experiments is shown in Figure 4.4.  

 

LabView® programs were written to change the phase of the voltage applied to each 

control shaker in turn by a set increment. This increment could take any value, but was 

typically o1 , o5 or o10 . Once the system had settled to steady state conditions, the 

acceleration at each end of the beam was measured and the value of the cost function 

determined. Hence for the system comprising three vibrating sources, where two were 

subject to control, a cost function surface was generated. Once all the required angles 
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had been measured, the minimum of the cost function surface was determined 

automatically using LabView® and MATLAB® tools. 

 

Figures 4.5 and 4.6 show the LabView® front panel used for a full search at a single 

frequency when three shakers were attached to the beam. Figure 4.5 shows the 

waveform parameters on the left hand side of the figure. At each phase angle increment, 

three waveforms of 40,960 samples each, at a sample rate of 8192 were generated by 

the computer and applied to each shaker. This gave a five second signal for each 

measurement of the cost function at each phase increment.  The only difference between 

the three waveforms is that two were phase shifted with respect to the reference. These 

were the two voltages that were applied to the control shakers. 

  

Accelerometers 1 to 3 were mounted on the load masses driven by the shakers. These 

were used in the calculation of the phase of the applied voltage. Measuring the phase 

directly in this way, rather than using the phase shift generated in the signals meant that 

any phase shift introduced by the power amplifiers would be taken into account. 

Accelerometers 4 and 5 were mounted at each end of the beam and the signals from 

these transducers were used to calculate the cost function. 

 

The waveforms were ramped up for one second, then the amplitude was kept constant 

for three seconds whilst the amplitude and phase of each signal was measured, then the 

voltage was ramped down for a second. The ramping of the applied voltage at the 

beginning and the end was in order to avoid exciting harmonics in the beam, due to 

starting and ending the applied phase shifted signals at non-zero values. For example, 

starting a waveform at a peak like a cosine wave, rather than at a zero like a sine wave. 

  

Figure 4.5 shows that the whole signal for each accelerometer was monitored in the five 

vertical graphs in the middle of the front panel. The uniform amplitude part of the 

signal, that was used to calculate the amplitude and phase, was displayed in the five 

vertical graphs on the right hand side of the front panel. To allow sufficient settling 

time, two seconds of the five second signal were used in the analysis. 
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The left hand side of Figure 4.6 shows a display of the ‘raw’ cost function obtained 

during the measurement. This plot simply shows the cost function varying with time as 

the control phase angles are changed. Once the cost function had been measured at all 

the required phase angles, a cost function surface was generated and the minimum 

found using MATLAB®. The cost function surface as a function of the control phase 

angles is shown in matrix form on the right hand side of Figure 4.6, and these data were 

stored to file to allow for any subsequent processing or analysis.  

 

Using the full search method, it was only practical to measure a single frequency at a 

time. With three shakers mounted on the beam, a search using o10 steps required 1296 

measurements of the cost function. Allowing ten seconds for each measurement cycle 

meant that it took over 3 hours to perform a full search at one frequency.  

 

4.3.3 Propeller Signature Theory based minimisation 

As an alternative to the full search methodology, the determination of the transfer 

function between each shaker and each control sensor was implemented using Propeller 

Signature Theory [60]. This also used the experimental set up shown in Figure 4.4. 

 

LabView® programs were written to change the phase of each control machine 

individually as described in Chapter 3. Once the system had settled to a steady state 

condition, measurements were obtained of the acceleration at each control sensor. These 

measurements were used to determine the phase independent transfer function between 

each vibrating source and each control sensor as described in Chapter 3. These transfer 

functions were used in simulations within MATLAB® to obtain the cost function 

surface and hence the minimum of the cost function surface and the optimum control 

angles to obtain the minimum. 

  

This search method requires fewer actual measurements than the full search 

methodology. Figure 4.7 shows part of the LabView® front panel used to determine the 

transfer functions. Three measurements were required at each frequency to determine 

the transfer function. For the experiment with the front panel shown in Figure 4.7, the 



Chapter 4 Experimental validation of synchrophasing 

 

 

 

87 

first measurement was with all machines in phase. The second was with a phase shift of 
o90 applied only to shaker 2, and the third measurement was with a phase shift of 
o90 applied only to shaker 3. A set of measurements of the transfer function from 20 Hz 

to 800 Hz in 10 Hz steps using three separate phase angles took approximately 50 

minutes. Finding the minimum of the cost function at each frequency using simulations 

in MATLAB® took approximately 5 minutes for all 78 frequencies. 

 

4.4 Results 

This section presents results from the experiments performed to validate the conclusions 

drawn from the numerical simulations, and to test the feasibility of a practical 

synchrophasing system for vibration control of a simple machinery raft like structure. 

This section also contains a discussion of the results obtained. 

 

4.4.1 Two electromagnetic vibrating sources on an elastic beam 

Both cost functions were investigated by using the measured transfer mobilities in 

control simulations with two vibrating sources mounted upon the structure. Figure 4.8 

and Figure 4.9 show the two cost functions for the system consisting of a compliantly 

mounted elastic beam with two shakers mounted upon it.  

 

The positions of the shakers were at  33.01 =lx  and 42.02 =lx , so the shakers were on 

adjacent ‘mass elements’ of the structure, since the beam was divided into 12 elements 

as described in Section 4.2 and shown in Figure 4.2. The magnitude of the voltage 

applied to each shaker was the same, so the force that each shaker applied to the beam 

was nominally the same. The cost functions were calculated by manipulating the 

experimental transfer mobilities in computer based simulations, rather than searching 

directly for a minimum and maximum experimentally. 

  

Figure 4.8 shows the variation in the time averaged kinetic energy cost function 
t

T  

with frequency, and Figure 4.9 the variation in the cost function which sums the 
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magnitude of the velocity squared at each end mounting point J. Both figures show the 

maximum of the cost function as the dotted curve and the minimum of the cost function 

as the solid curve.  

 

By examining the displacement measured at each of the 36 positions along the beam, at 

a single frequency, it was possible to recognise the two rigid-body modes of the beam at 

14 Hz and 30 Hz and peaks in the forced response due to flexural modes at 110 Hz, 266 

Hz, 658 Hz and 990 Hz. These are marked on the figures, with the lowest rigid body 

mode being the translational mode. Other peaks in the forced response are observable at 

high frequencies; these are due to vibration of the structure in higher order flexural 

modes. 

 

The figures show that the translational rigid body mode at 14 Hz has been well 

controlled in both cost functions, a reduction of 20 dB in each cost function being 

achieved by synchrophasing. The second rigid-body mode at approximately 32 Hz was 

not controlled as well, with synchrophasing achieving a reduction of approximately 5 

dB. Inspection of the operational deflection shape (ODS) at 32 Hz showed that the 

shaker at 42.02 =lx was near to a vibration minimum in the ODS. This is similar to the 

node of the second rigid-body mode, when the shaker is in anti-phase with the reference 

shaker. Hence the shaker was not effective at controlling the vibration. A reduction of 

approximately 10 dB was then achieved up to 170 Hz including the first flexural mode 

when using the time averaged kinetic energy cost function. This improvement then 

reduces with frequency, until at 250 Hz there is practically no improvement.  

 

The cost function minimising the magnitude of the velocity squared at each end of the 

beam gave an improvement of approximately 10 dB at the first flexural mode. This 

improvement then dropped rapidly, achieving approximately 2 dB improvement until 

250 Hz. A modest improvement of 1-2 dB was achieved for the second flexural 

resonance at 266 Hz. This improvement was small due to one of the shakers being 

situated near a vibration minimum of the ODS, hence the applied force was ineffective 

at reducing the cost function. The reduction then varied between 2 dB and 20 dB until 
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383 Hz, where there was no improvement by synchrophasing in either cost function. 

The reason for this lack of improvement is the cost functions that were chosen. 

Although the energy in each element changes with the phase of shaker 2, the energy in 

some elements increases and in others decreases hence little overall improvement is 

obtained for the time averaged kinetic energy across the structure.  

 

Little improvement can be seen in the cost function which minimises the magnitude 

squared of the velocity at each end of the beam because the energy in the first and last 

elements varies very little with the phase of shaker 2. The reduction achieved by 

synchrophasing then increased, until approximately 8 dB reduction was achieved at the 

mode at 590 Hz, with the kinetic energy cost function performing slightly better. The 

third flexural mode at 658 Hz was not well controlled, synchrophasing achieving 2 to 4 

dB reduction of the peak value. Above 700 Hz the reduction achieved by 

synchrophasing increased until a 25 dB reduction was obtained for the flexural mode at 

990 Hz. 

  

Figures 4.10 and 4.11 show simulations of the variation in the two cost functions, as the 

phase of the controlling machine is changed. These simulations were generated using 

the analytical model described in Chapters 2 and 3. These simulations show that the 

predicted reduction achieved by synchrophasing is very similar for both cost functions. 

Figures 4.10 and 4.11 both show that the first rigid-body mode was very well 

controlled, but the second rigid-body mode was not well controlled. Both simulated cost 

functions predicted a reduction of 8 dB at the first flexural mode, which compared well 

with the experimental results, where a reduction of 10 dB was achieved. 

  

Figures 4.12 and 4.13 show the measured control source phase angles required to 

maximise and minimise the cost functions at each frequency. The shaker positions and 

magnitudes of the applied voltages are the same as for Figures 4.8 and 4.9. The phase 

angle φ  was measured with respect to the phase of the reference source. Figure 4.12 

and Figure 4.13 show that, away from the natural frequencies of the beam, the optimum 
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phase is very close to being either in-phase or in anti-phase with respect to the reference 

source. 

 From 10 Hz until 170 Hz, which includes the two rigid-body modes and the first 

flexural mode, the optimum phase for minimising both cost functions varies from 
oo 185170 −  with respect to the reference phase. Except at 27 Hz, which is near to the 

second rigid-body mode at 32 Hz, where it drops to o130  for the time averaged kinetic 

energy cost function and o95  for the sum of the magnitude of the velocity squared cost 

function. 

 

The optimum synchrophase angle to minimise the kinetic energy remains in the region 
oo 185170 −  up to 250 Hz, whilst the optimum phase angle to minimise the square of the 

magnitude of the velocity at the mounting positions increases from o180  to o360  

between 170 Hz and 190 Hz. 

  

In the frequency range close to the second flexural mode at 266 Hz, the optimum phase 

for control is close to o0 , although the improvement obtained by synchrophasing is 

small as the energy in each element is insensitive to changes in the control phase angle. 

  

Above the second flexural mode between 290 Hz and 315 Hz, the optimum phase angle 

varies over a range of values between oo 15010 −  with both cost functions showing 

similar changes in optimum angle. Figures 4.8 and 4.9 show that there are some modes 

in this region but they are not flexural modes along the length of the beam. 

  

Between 320 Hz and 380 Hz the optimum phase for control is once again close to o0  for 

both cost functions, then from 400 Hz to 1 kHz, the optimum phase is close to o180 , 

ranging from oo 190160 − . The only exception being the flexural mode at 658 Hz, which 

as previously indicated, is not well controlled. 

 

Figures 4.14 and 4.15 show simulations of the phase to maximise and minimise each 

cost function. The figures confirm the prediction of Chapter 3 and agree with the 
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experimental findings that the optimum phase angle for the control source is usually 

either in phase or in anti-phase with respect to the reference source. 

 Figures 4.16 and 4.17 show experimental results and simulations of the cost function 

reduction as a function of frequency for both cost functions. Figure 4.16 shows that both 

the local and the global cost functions have been successful in reducing the value of the 

cost function to below its maximum value for most frequencies.  For this particular 

configuration of the shakers on the beam, the reduction in the time averaged kinetic 

energy cost function was the most successful. The greatest reduction occurs at 

frequencies between 10 Hz and 300 Hz, corresponding to the frequency band containing 

the rigid body modes and the first two flexural modes. The simulations shown in Figure 

4.17 show a similar reduction to that obtained experimentally, except for near the first 

rigid-body mode, where the simulated reduction is larger than that obtained 

experimentally. The cost function reductions obtained experimentally and by 

simulation, at frequencies corresponding to the two rigid body modes and the first two 

flexural modes, for each of the two cost functions  
t

T  (in dB re 1 J) and J  (in dB re 

22sm1 − ), are summarised in Table 4.2. 

 

Experimental Results 

Cost function reduction / dB 

Simulation 

Cost function reduction / dB 

Mode 

t
T  J  

t
T  J  

RBM1 20 20 47 42 

RBM2 5 4 3 3 

FM1 10 10 8 8 

FM2 1 1 4 4 

 

Table 4.2. Summary of the cost function reduction obtained experimentally and using 

simulations. For the source configuration 33.01 =lx  and 42.02 =lx . 

 

To investigate the effect of source location, the two electrodynamic shakers were 

moved. Figure 4.18 shows the variation in the time averaged kinetic energy cost 
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function with frequency, and Figure 4.19 the variation in the cost function which sums 

the magnitude of the velocity squared at each end mounting point, for shakers at  

25.01 =lx  and 58.02 =lx  i.e. the shakers were on either side of the centre of the 

beam. The magnitude of the voltage applied to each shaker was the same. 

  

By examining the displacement measured at each of the 36 positions along the beam, at 

a single frequency, it was possible to recognise the two rigid-body modes of the beam at 

14 Hz and 30 Hz and peaks in the forced response due to flexural modes at 110 Hz, 237 

Hz, 743 Hz and 976 Hz. These are marked on the figures, with the lowest rigid body 

mode being the translational mode. Examination of the peak in the forced response at 

472 Hz showed that the beam was twisting as well as flexing at this frequency of 

excitation. 

 

For shakers in these positions upon the structure, both control methods exhibit a similar 

reduction in levels at and around the rigid body modes, i.e. up to 35 Hz. Approximately 

19 dB reduction being achieved around the translational rigid body mode. However, 

little reduction was obtained between 40 Hz and 120 Hz, which includes the first 

flexural mode. The first flexural mode at 110 Hz was not well controlled because the 

shaker at 25.01 =lx  is near a vibration minimum of the ODS.  

 

Between 120 Hz and 230 Hz, the minimisation of the cost function which sums the 

magnitude of the velocity squared over each end mount point performed much better 

giving a reduction of approximately 8-11 dB, compared to the time averaged kinetic 

energy cost function, which achieved very little reduction until 200 Hz.  For this source 

configuration, the second flexural mode is much better controlled giving a 10 dB 

improvement at and around the resonance frequency. Between 250 Hz and 400 Hz the 

cost function which sums the magnitude of the velocity squared over each end mount 

point performs much better, giving a reduction of approximately 10 dB, compared to the 

time averaged kinetic energy cost function, which achieves only 1 dB reduction. The 

mode at 472 Hz and the third flexural mode at 743 Hz are also controlled by 

synchrophasing, giving a 10 dB reduction for both using the time averaged kinetic 
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energy cost function, and 25 dB and 10 dB respectively for the velocity cost function. 

The fourth flexural mode at 976 Hz is reduced by 4 dB by both cost functions. 

Figures 4.20 and 4.21 show simulations of synchrophasing using the two cost functions, 

with simulated shakers at 25.01 =lx  and 58.02 =lx . These figures confirm the 

experimental result that for this configuration of shakers on the beam, a greater 

reduction in the cost function is obtained at and around the second flexural mode (FM2) 

by using the cost function which sums the magnitude of the velocity squared over each 

end mount point. 

 

Figure 4.22 and Figure 4.23 show the variation in the phase of the signal applied to the 

experimental control source in order to either minimise or maximise the cost functions, 

when synchrophasing using the same shaker positions as in Figures 4.18 and 4.19.  It 

can be seen again that the optimum synchrophase angles for extrema of the cost 

function away from the frequencies where the modes occur are close to o0  or o180  i.e. 

either in phase or in anti-phase with respect to the reference phase signal. Both of the 

cost functions exhibit a small increase in the response at 154 Hz and 319 Hz. These are 

not flexural modes along the length of the beam, however it can be seen that the control 

phase changes rapidly around these frequencies. Figure 4.22 shows that the optimum 

phase for controlling the time averaged kinetic energy is more variable than the phase 

shown in Figure 4.23, the cost function which sums the magnitude of the velocity 

squared over each end mount point at and around these two frequencies. Figure 4.24 

shows the measured displacement of the beam, when the phase angle of the voltage 

supplied to the control shaker is adjusted with respect to the reference shaker. The 

figure uses experimental data measured at 162 Hz, which is between the first and 

second flexural modes of the beam. Figure 4.24a shows the case when the control 

shaker is anti-phase to the reference shaker. As can be seen, element 1 - which is at 

042.0=lx  - is vibrating the most and contains a large proportion of the system energy. 

Figure 4.24b shows that, even when the phase angle is optimised to minimise the time 

averaged kinetic energy across the whole structure, element 1 still contains a large 

proportion of the energy. This is why minimisation using the time averaged kinetic 

energy cost function has not been successful at this frequency, as was shown in Figure 
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4.18. Figure 4.24c shows the displacement when the cost function which minimises the 

sum of the magnitude of the velocity squared at each end of the beam is used. This 

shows that the cost function has reduced the displacement at element 1 but increased it 

slightly at element 12. Figure 4.19 showed that this cost function was far more 

successful at this frequency than the global control cost function. However, this cost 

function does not include vibration of the other parts of the structure. As can be seen in 

Figure 4.24c, the displacement amplitude in the middle of the structure has increased 

significantly. This could cause any machinery mounted at these positions to experience 

much higher vibration levels and consequently more fatigue failure. 

  

Figures 4.25 and 4.26 show simulations of the phase to maximise and minimise each 

cost function using simulated shaker positions the same as Figures 4.18 to 4.23. Figure 

4.25 agrees with the experimental observation that the optimum phase for controlling 

the time averaged kinetic energy is more variable than the cost function which sums the 

magnitude of the velocity squared over each end mount point at and around 150 Hz. 

 

Figure 4.27 and 4.28 show experimental data and simulation of the cost function 

reduction as a function of excitation frequency for this configuration of shakers.  The 

figures show that both the local and the global cost functions have been successful in 

reducing the value of the cost function to below its maximum value, except at 

frequencies just below the first flexural mode where minimal reduction has been 

achieved.  For this particular configuration of the shakers on the beam, both cost 

functions performed similarly over the frequency range including the two rigid-body 

modes and the first flexural mode.  The cost function which minimises the sum of the 

magnitude squared of the velocity at each end of the beam was the most successful cost 

function from 120 Hz to 1 KHz, achieving a reduction of approximately 10 dB over the 

frequency range in the experimental data shown in Figure 4.27. The cost function 

reductions obtained experimentally and by simulation, at frequencies corresponding to 

the two rigid-body modes and the first two flexural modes, for each of the two cost 

functions 
t

T  and J , using this source configuration are summarised in Table 4.3. 
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Experimental Results 

Cost function reduction / dB 

Simulation 

Cost function reduction / dB 

Mode 

t
T  J  

t
T  J  

RBM1  20 19  38   30 

RBM2 1  3  13   13 

FM1 2   2 2   2 

FM2  9 9  15  15  

 

Table 4.3. Summary of the cost function reduction obtained experimentally and using 

simulations. For the source configuration 25.01 =lx  and 58.02 =lx . 

 

4.4.2 Three electromagnetic vibrating sources on an elastic beam 

The system shown in Figure 4.3 was used to investigate variations in the cost function 

which sums the magnitude of the velocity squared at each end mounting point, when 

three vibrating sources were mounted upon the beam. The phase of the voltage supplied 

to two of the shakers was adjusted with respect to the phase of the voltage supplied to a 

reference shaker. Two methodologies were investigated, the first consisted of a full 

search through the angles from o0  to o350 in o10  steps, so for two control shakers, this 

necessitated 1296 individual measurements of the cost function. The second 

methodology utilised Propeller Signature Theory to determine the phase independent 

transfer function and required only 3 to 6 individual measurements of the cost function. 

These phase independent transfer functions were then manipulated in the computer to 

determine the optimum control angles. The Propeller Signature Theory method is much 

faster as most of the searching for minima is done by simulation rather than by 

physically searching by adjusting the phase of the voltage supplied to each shaker. For 

the experimental results presented in this subsection, the phase reference source was at 

coordinate m 45.01 =x  )375.0( 1 =lx , and the control shakers were at coordinates 

m 25.02 =x  )21.0( 2 =lx  and m 85.03 =x )71.0( 3 =lx  respectively. 
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Both of these methodologies produce a cost function surface of the form shown in 

Figure 4.29. The figure shows the variation in the cost function J (the sum of the 

magnitude of the velocity squared at each end of the beam) as a function of the phase of 

the two control shakers 2φ  and 3φ . From a control point of view, the surface in Figure 

4.29 is good for finding the minimum of the cost function, because it shows the 

presence of a single, well defined minimum when 2φ  and 3φ  are adjusted between o0  

and o360 . However, a single well defined minimum is not always achievable, as was 

shown using simulations in Chapter 3 and will be shown experimentally later in this 

chapter. 

 

The optimum phase to minimise the cost function over the range o0  to o360  for each 

control source can be determined from the cost function surface by using the 

MATLAB® MIN function to search the surface for the minimum. Both of these 

methodologies give similar results for the cost function minima and maxima. This is 

shown in Figure 4.30, which depicts the minima and maxima of the cost function as a 

function of frequency. The solid and dotted curves are the cost function minimum and 

maximum respectively, obtained using Propeller Signature Theory to determine the 

phase independent transfer functions, whilst the filled and clear dots show the results 

obtained using a full search over the range o0  to o350 . Because the time taken to 

determine the optimum control source angles using Propeller Signature Theory is so 

much less than the time required to perform a full search, Figure 4.30 contains data for 

Propeller Signature Theory every 10 Hz and data using a full search at a few individual 

frequencies. Figures 4.30 and 4.31 show experimentally and by simulation respectively, 

that the cost function can be reduced by 10-20 dB over a large part of the frequency 

range investigated with this configuration of forces on the beam. This frequency range 

includes the second rigid body mode of the system and the first three flexural modes. 

  

Figure 4.32 shows experimentally, the phases required of the two control sources in 

order to minimise the cost function, obtained using both the full search and propeller 

signature theory. The solid dots and squares show the best phase angle at each 
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frequency for the machine at 2x  and the clear dots and squares, the best phase angle at 

each frequency for the machine at 3x . The figure shows that over the frequency band 20 

Hz to 90 Hz, which includes the rotational rigid body mode, the phases required from 

the two control shakers are very similar. At the first flexural mode of 110 Hz, the phases 

of the control shakers are o7  for the shaker at 21.02 =lx  and °182  for the shaker 

at 71.03 =lx . Since the beam is resiliently mounted, the first flexural mode shape is 

very similar to that of a beam with free end conditions, which has nodes at 22.0=lx  

and 78.0=lx . The analytical receptance based model derived in Chapter 2 predicts 

minima in the operational deflection shape at 27.0=lx  and 73.0=lx . So there is a 

node between the phase reference shaker at 375.01 =lx  and the control shaker 

at 21.02 =lx . In order to minimise the vibration at the ends, the control shaker at 

21.02 =lx  is virtually in phase with the phase reference shaker. There is no node 

between the phase reference shaker and the control shaker at 71.03 =lx , hence to 

minimise the vibration, the optimum phase for this control shaker is virtually anti-phase 

with respect to the phase reference. 

 

 The optimum phase is very similar for both control shakers over the frequency range 

100 Hz to 300 Hz, which includes the second flexural resonance at 220 Hz. Above 300 

Hz, both control phases change rapidly, especially the phase of the source at 3x   near to 

the resonance at 350 Hz. Figure 4.32 shows that the optimum phase in this frequency 

range is neither in-phase with the reference shaker or in anti-phase, but a range of angles 

in between. 

 

Figure 4.33 shows a simulation of the minimising control phase angles for the same 

configuration as was used experimentally in Figure 4.32. This simulation also shows a 

range of optimum phase angles around the rotational rigid-body mode at 26 Hz, the first 

flexural mode at 118 Hz, the second flexural mode at 258 Hz and between the second 

flexural mode and the third flexural mode at 518 Hz.  
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At 26 Hz, the control source phase angles to minimise the cost function are o912 =φ  and 
o733 =φ  respectively. Figure 4.34 shows a simulation of the operational deflection 

shape of the beam at 26 Hz (RBM 2). The dotted line is the ODS when just the 

reference vibrating source is exciting the beam, although the two control machines are 

present. The solid line is the ODS when all three sources are driving the beam using the 

phase angles of the control sources calculated to minimise the cost function. The 

magnitude of the drive voltage applied to each shaker was the same. As can be seen 

from Figure 4.34, vibration in the rotational rigid body mode will cause a large value for 

the cost function, because the cost function is proportional to the sum of the magnitudes 

of the displacement at each end of the beam, and for the rotational rigid body mode, the 

displacement is the largest at the ends of the beam. Synchrophasing reduces the 

vibration in the rotational rigid body mode shape, so that the residual vibration consists 

of motion in the translational rigid body mode shape, as shown by the solid line in 

Figure 4.34. The displacement at each end is at a much lower level in this case, and so 

the cost function is reduced. 

 

Figure 4.35 shows a simulation of the operational deflection shape of the beam at 118 

Hz. This is close to the first flexural mode shape of the beam and the dotted line in the 

figure shows that when the beam is driven by a single vibrating source, then the ODS is 

very similar to the first flexural mode of the beam. Synchrophasing at 118 Hz reduces 

the vibration in the first flexural mode, so that the ODS consists of the rotational rigid 

body mode and some residual flexing, as shown by the solid line of Figure 4.35. 

 

Figure 4.36 shows a simulation of the ODS at 258 Hz, which is close to the second 

flexural mode shape of the beam. The dotted line in the figure shows the ODS when the 

beam is driven by a single vibrating source. The cost function is dominated by vibration 

at one end of the beam so that the sensor at Lx =  is the most important. 

Synchrophasing at 258 Hz using o252 =φ  and o63 =φ  respectively reduces the vibration 

in the second flexural mode and produces the ODS shown as the solid line in Figure 

4.36. This operational deflection shape shows that the translational rigid body mode and 

the first flexural mode are now the main components of the beam motion. Figures 4.34 
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to 4.36 show that even at operating frequencies very close to a mode of the structure, the 

cost function will still contain residual contributions due to other modes of the structure.  

 

At any general operating frequency away from the modes, the optimum control source 

phase angles to reduce the cost function in one mode may well increase the vibration of 

another mode. This can be seen in Figure 4.37, which shows simulations of the ODS at 

80 Hz, which is between the rotational rigid body mode and the first flexural mode. 

With all three sources vibrating in phase, the displacement is primarily due to the 

translational rigid body mode, with some bending due to the first flexural mode. This is 

shown as the dashed line. 

  

In order to reduce the translational rigid body mode, the phases of the control sources 

can be set to o1802 =φ  and o1803 =φ  respectively. This reduces the component of 

displacement due to the translational rigid body mode, but increases the component due 

to the first flexural mode. This is shown by the solid line. 

  

If o02 =φ  and o1803 =φ  then the translational rigid body mode and the first flexural 

mode are reduced, but the rotational rigid body mode is excited. This is shown as the 

dotted line. 

 

It is these opposing modal requirements in the control source phase angles which drives 

and limits the effectiveness of cost function minimisation using synchrophasing at each 

frequency.  This effect where active control of one mode excites other modes of 

vibration is known as control spillover [22]. 

 

Figure 4.38 compares the cost function reduction obtained experimentally by 

synchrophasing with that obtained from simulations. The solid curve is the reduction 

achieved experimentally using the cost function which minimises the sum of the 

magnitude squared of the velocity at each end of the beam. The dotted curve is the 

reduction of the same cost function obtained by simulation. The positions of the shakers 

were 375.01 =lx (phase reference), 21.02 =lx  and 71.03 =lx . The magnitude of the 
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drive voltage applied to each shaker was the same. These are the data shown in Figures 

4.30 and 4.31 respectively. The figure shows very good agreement between the 

simulations and experimental data between 20 Hz and 120 Hz. This corresponds to a 

frequency range from just below the rotational rigid-body mode to just above the first 

flexural mode. The figure shows that synchrophasing can reduce the cost function by 

greater than 5 dB over this whole range and achieves a greater than 10 dB improvement 

over most of the range. Above the first flexural mode the experimental results and the 

simulations do differ because the modal frequencies predicted by simulation are higher 

than those measured experimentally. However the experimental data and the 

simulations do show a similar shape and a similar cost function reduction.  

 

Figure 4.39 shows the cost function surface for 200 Hz, obtained by stepping through 

the control phase angles 2φ  and 3φ  from o0  to o350  in o10  steps. The shakers were in 

the same positions as the cost function surface shown in Figure 4.29. For this excitation 

frequency, the change in the cost function is larger with respect to control phase 3φ . 

Control phase 2φ  does not affect the cost function to a great extent and this leads to a 

shallower, less well defined minimum in the cost function. Because the minimum 

occurs near to the edges of the phase angle range, this shallow response is better shown 

by changing the phase range to o180−  to o180  as is shown in Figure 4.40 for the same 

data as depicted in Figure 4.39. 

 

Figure 4.41 shows the experimental cost function surface for 800 Hz generated by using 

a full search, and stepping the control phase angles generated by the LabView® code 

from a nominal o0  to o350  in o10 steps. The figure shows the presence of a global 

minimum at °=1502φ and °= 803φ . There is another local minimum at °= 2702φ and 

°= 3203φ  but the cost function is not as small at this local minimum as at the global 

minimum. The figure also shows that the cost function surface is not symmetric in this 

case. The implications here are that, if symmetry had been assumed and a smaller range 

of angles had been searched, then it is possible that a local minimum might have been 

found but not the global minimum. 
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4.4.3 Synchrophasing for unequal amplitude sources  

Figure 4.42 shows a comparison of the cost function reduction obtained experimentally 

using synchrophasing when the magnitude of the drive voltage applied to each shaker 

was changed. The cost function reduction was obtained by calculating the difference 

between the maximum value of the cost function and the minimum value, when the 

phase of the drive voltage applied to the control sources is adjusted.   

 

The effect of changing the magnitude of the drive voltage is to change the force applied 

by the shaker to the beam, thus simulating a change in a machine’s vibration level. The 

shaker at position 1x , which was used for the phase reference, was also used for the 

drive voltage magnitude reference. A scaling factor nλ  is used to denote the magnitude 

of the nth control source drive voltage with respect to the reference source. For the solid 

curve, the magnitude of the drive voltage applied to each shaker was the same, i.e. 

12 =λ  and 13 =λ . For the dotted curve 322 =λ  and 313 =λ  and for the dashed curve 

312 =λ  and 323 =λ .   

 

The differences in the curves show that the amount that the cost function can be 

reduced, depends upon the magnitudes of the applied drive voltages and hence the 

applied forces on the beam. In practice this means that if the vibration levels of a 

machine change, either due to fatigue, a change in load conditions, operating speed or a 

gradual increase in unbalance during the machine’s lifetime, then the cost function may 

also change. 

  

Figure 4.42 shows that over the frequency range 50 Hz to 200 Hz, having the control 

sources at equal magnitude with the reference machine gave the best cost function 

reduction for this configuration of shakers on the beam, although the first flexural mode 

at 110 Hz is not well controlled, as shown by the low level of cost function reduction at 

110 Hz. Above 200 Hz a better cost function reduction could be achieved by reducing 

the magnitude of the control sources. The dashed line in Figure 4.42 shows that at 250 

Hz a better cost function reduction is achieved when 312 =λ  and 323 =λ  than when 
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12 =λ  and 13 =λ . This is due to the choice of cost function, and the positioning of the 

machinery on the structure, with respect to the nodes of the main mode shapes that 

contribute to the operational deflection shape at any frequency. Figure 4.36 shows a 

simulation of the ODS at 258 Hz for 12 =λ  and 13 =λ . In this case a large amplitude of 

displacement is seen at one end of the beam, which was the major contribution to the 

cost function. When synchrophasing was used to minimise the cost function, the ODS 

was then primarily composed of translational rigid-body motion. Simulation at 250 Hz 

using 312 =λ  and 323 =λ  revealed that synchrophasing can minimise the cost 

function so that the ODS consists primarily of the first flexural mode, with some 

contribution from the translational rigid-body mode. In this case, the displacement at the 

ends – and hence the cost function – is reduced to a greater extent than the case when 

12 =λ  and 13 =λ . 

 

Figures 4.43 and 4.44 compare the optimum synchrophase angles 2φ  and 3φ  

respectively, obtained experimentally for the control sources, when the magnitudes of 

the drive voltages are adjusted. Figure 4.43 shows 2φ , the phase required for the control 

machine at 2x  and Figure 4.44 shows 3φ , the phase required for the control machine at 

3x  to achieve the global minimum of the cost function at each frequency. For the solid 

curve, the magnitude of the drive voltage applied to each shaker was the same, 

i.e. 12 =λ  and 13 =λ . For the dotted curve 322 =λ  and 313 =λ  and for the dashed 

curve 312 =λ  and 323 =λ .  The figures show that, below 200 Hz, i.e. below the 

second flexural mode of the beam, the optimum phases are very similar regardless of 

the magnitude of the drive voltage. At these frequencies the main modal contributors to 

the ODS are the two rigid-body modes and the first flexural mode [67, 68].  

 

At the second flexural mode, at 220 Hz, the cost function reduction achieved, as shown 

in Figure 4.42, is dependent upon the magnitude of the drive voltages applied to the 

control sources. There is approximately an 18 dB difference in the cost function 

reduction for the two cases where the magnitudes of the drive voltage applied to the 
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control sources were adjusted. Figure 4.43 shows that 2φ , the optimum phase for the 

control source at 2x , changes markedly in this region, whereas Figure 4.44 shows that 

3φ  the optimum phase for the control source at 3x  does not vary as much. The optimum 

synchrophase angles for different magnitudes of the excitation voltages at 220 Hz are 

summarised in Table 4.4. 

 

Magnitude of the control source 

voltage with respect to the reference 

Voltage phase to minimise the cost 

function 

2λ  3λ  2φ / Degrees 3φ / Degrees 

1 1 351 14 

2/3 1/3 172 21 

1/3 2/3 106 24 

 

Table 4.4. Optimum synchrophase angles at 220 Hz (second flexural mode) obtained 

experimentally for three different configurations of the excitation voltage magnitude λ . 

 

Figure 4.45 shows that at frequencies over the range 300 Hz to 400 Hz, which is close 

to the third flexural mode at 350 Hz, synchrophase angle 2φ  does not vary by a great 

deal as the excitation voltage magnitude is changed. 2φ  does vary by approximately 79 

degrees at the third flexural mode at 350 Hz. Figure 4.46 shows that at frequencies at 

and around the third flexural mode, 3φ  is more variable than 2φ , changing by up to 180 

degrees as the magnitude of the excitation voltage is changed.  

 

Between 400 Hz and 650 Hz, the magnitude of the control excitation voltages does not 

have a significant effect on the optimum synchrophase angles, but above 650 Hz, it can 

be seen in Figure 4.43 that 2φ  again changes by more than 100 degrees.  The optimum 

synchrophase angles for different magnitudes of the drive voltages at 750 Hz are 

summarised in Table 4.5. 
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Magnitude of the control source 

voltage with respect to the reference 

Voltage phase to minimise the cost 

function 

2λ  3λ  2φ / Degrees 3φ / Degrees 

1 1 86 19 

2/3 1/3 202 53 

1/3 2/3 101 44 

 

Table 4.5. Optimum synchrophase angles at 750 Hz obtained experimentally for three 

different configurations of the drive voltage magnitude λ . 

 

The experimental results presented in Figures 4.42 to 4.46 and Tables 4.4 and 4.5 show 

that the optimum control source phase angles for minimising the cost function using 

synchrophasing can be dependent on the amplitude of the sources, as these determine 

the magnitudes of the forces applied to the beam. In general, this will mean that, in a 

practical situation, if the vibration levels of the sources change, for reasons such as wear 

and tear, fatigue or a change in operating load, then the shape of the cost function will 

change and the optimum synchrophase angles of the control sources to minimise the 

cost function will also change.  

 

The velocity at each sensor on the beam was given in Chapter 3 in Equation (3.49) and 

is repeated here for convenience 
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where psy ,  are the point and transfer mobilities, nλ  is the magnitude of the nth control 

force relative to the reference force rf  and nφ  is the phase of the nth control source with 

respect to the reference source. The transfer function between each vibrating source and 

each control sensor is then defined as  
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If the relative magnitudes of the control sources change, this will affect the diagonal 

matrix of nλ  terms and hence the transfer function matrix Γ . 

 

If a full search methodology is employed, then this will necessitate running the full 

search again with the machines under their new load conditions. If the experimentally 

determined transfer functions are being used to simulate a full search, then in general, 

these transfer function terms will need to be re-determined for the new load conditions. 

However if the forces applied by each machine all increase or decrease by the same 

amount δ such that  
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then the cost function surface will have the same shape and hence the same control 

source phase angles will be required to minimise the cost function. Alternatively, if the 

change in each applied force could be measured locally so Pr δδδδ L21,,  are all 

measurable, such that 
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then the change in transfer function can be corrected for and used in simulations to find 

the new cost function minimum without the need to recalculate the transfer function. 

Calculating the applied forces and mobilities on a large scale installation would, in 

practice be very difficult, and this is the reason that the transfer function approach was 

implemented as it does not require exact knowledge of the mobilities and the forces 

applied by each vibrating source.  

 

Figure 4.47 shows the result of correcting the experimental transfer function data to 

simulate a different machinery load state. In this figure, the solid lines show the 

maximum and minimum of the cost function surface at each frequency when the 

magnitudes of the drive voltages applied were all the same, i.e. when 12 =λ  and 13 =λ . 

The dotted lines show the maximum and minimum of the cost function for the same 

vibrating source positions, but when 312 =λ  and 323 =λ  i.e. the magnitudes of the 

drive voltages have changed. The dashed lines show the maximum and minimum of the 

cost function by correcting for the change in drive voltage. These data were acquired 

experimentally using 312 =λ  and 323 =λ  but then corrections have been applied to 

simulate equal drive voltage magnitudes of 12 =λ  and 13 =λ , by using 32 =δ and 

2/33 =δ . 

  

Figure 4.47 shows that it is possible to use one set of transfer function data to simulate 

the cost function surface, that will be obtained when different force magnitudes are 

applied to the beam, and hence predict the likely success of synchrophasing in reducing 

the cost function with different machinery states. 

 

4.5 Conclusions 

The purpose of the experimental investigation into synchrophasing described in this 

chapter was to compare the experimental results with the numerical simulations and to 

investigate the practical implementation of a synchrophasing system on a relatively 

simple structure. 
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Two control functions were initially investigated. Firstly, a cost function which 

minimised the total time averaged kinetic energy across the whole structure. This may 

be considered as a global cost function as it measures the cost function along the 

structure. Alternatively, a cost function which minimised the sum of the magnitude 

squared of the velocity measured at each end of the beam was evaluated for comparison 

and observation. This latter case may be considered as a local cost function as only the 

extremities of the structure were monitored. The results presented show that each 

method is able to provide some level of control and that the best cost function to use 

depends upon the positions of the vibrating sources upon the beam. 

  

The advantage of the local cost function is that it is much easier to implement because it 

simply requires sensors over the structural mounting points and it does not require any 

information about the masses of the machinery mounted upon the structure or the 

structure itself. This information is required to determine the time averaged kinetic 

energy in each element of the structure when using the global cost function. 

  

The disadvantage of the local cost function is that because only the structural mounting 

points are considered in the minimisation, the structure may be subjected to high 

amplitude vibrations at points away from those monitored and this was shown in the 

experimental data when two vibrating sources were mounted upon the structure.  This 

may have implications for fatigue failure of the structure or may cause additional wear 

on machinery or rotating shafts. 

 

Two methods of obtaining the cost function were investigated. The first was to simply 

change the phase of the voltage supplied to each control source so that phase angles 

from o0  to o360  using a suitable step size were applied, and the resultant cost function 

measured. This method has the advantage of simplicity as very little additional 

processing is required to determine the total cost function surface. However this method 

is very time consuming if the cost function surface is to be determined with any 

meaningful fidelity. 
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The second method investigated was to determine the transfer mobility between each 

machine and each sensor point by operating one machine at a time. As it may not be 

practical or possible to switch off all but one machine, the method was altered using an 

established aircraft engine synchrophasing method called Propeller Signature Theory. 

 

Using this theory, a phase independent transfer function between each machine and 

each sensor point was determined, by introducing a known phase shift to the voltage 

supplied to each vibrating source in turn. The resulting measured velocities are then 

used to calculate either a fully determined or over determined solution for the phase 

independent transfer functions. These phase independent transfer functions can then be 

used in MATLAB® simulations to determine the whole cost function surface at any 

fidelity required.  

 

This method is much quicker than physically stepping through all the possible phase 

angles and would be far more suitable as a form of close to real time adaptive vibration 

control. The transfer function values are not transfer mobilities as they do not calculate 

the forces applied by each vibration source. Hence if the load or speed of any machine 

were to change, it may be necessary to re-determine the transfer functions, because the 

optimum phase angles for minimising the cost function using synchrophasing could 

change if the applied forces change. 

 

These experiments have shown that synchrophasing can be an effective vibration 

reduction technique and is relatively simple to install upon a structure. The main 

obstacle to overcome is likely to be how the phase of the voltage supplied to each 

machine can be varied and measured. The experimental results obtained using two and 

three electromagnetic shakers upon a thin box section beam show that very similar 

reductions in the cost functions were obtained both experimentally and using numerical 

simulations.  
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4.6 Figures 

Key 

A1-A2 Accelerometers A1 and A2 

LM1-LM2 Load mass 1 and Load mass 2 

 

Figure 4.1. Diagram showing the experimental system configuration used when two 
shakers were located on the thin box section beam. Accelerometer A1 was located on 
the load mass used as the phase reference. Its position on the beam is defined by 
coordinate 1x . Accelerometer A2 was located on the load mass of the shaker to which 
the phase of the applied signals are adjusted. The coordinate of this shaker is given 
by 2x . The velocity of the beam was measured using a scanning laser vibrometer. 
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a) 

 
b) 

 
Figure 4.2. Showing a) the arrangement of points where the laser vibrometer was used 
to measure the velocity on the beam. The beam was divided into twelve sections and 
each section was measured at three positions across its width, b) the laser vibrometer 
scanning the beam one point at a time.  
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Shaker 1 

Shaker 2 
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Key 

A1-A5 Accelerometers A1 to A5 

LM1-LM3 Load mass 1 to Load mass 3 

 

Figure 4.3. Diagram showing the experimental system configuration used when three 
shakers were located on the thin box section beam. Accelerometer A1 was located on 
the load mass used as the phase reference. Its position on the beam is defined by 
coordinate 1x . Accelerometers A2 and A3 were located on the load masses of the 
shakers to which the phase of the applied signals are to be adjusted. The coordinates of 
these shakers are given by 2x and 3x  respectively. A4 and A5 were located over the 
compliant mounts at each end of the beam. 
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Figure 4.4. Block diagram of the experimental set up used to minimise the cost function 
of the sum of the magnitude squared of the velocity at each end of the beam. The 
measurements are stored and processed and the control signals generated by a laptop 
computer running LabView®. The acceleration responses at the 5 accelerometer 
positions, shown as dotted lines are fed to an analogue to digital converter (ADC), via 
signal conditioning amplifiers (SCA). The excitation waveforms are generated in 
LabView® and are converted to analogue signals in the digital to analogue converter 
(DAC). These are fed to power amplifiers (PA) which drive the shakers, shown as 
dashed lines.  
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Figure 4.5. The LabView® front panel showing the experimental signals measured on 
the accelerometers during a full search at a single frequency. Accelerometers 1 to 3 
were mounted on the load masses on the shakers, and accelerometers 4 and 5 were 
mounted at each end of the beam. A voltage was applied to each shaker at a specific 
phase angle for 5 seconds. For the first second, the signals were ramped up. The 
analysis was performed over the period 1.5s to 3.5s and this is shown in the 
Accelerometer analysis windows on the right hand side. After the analysis, the voltage 
was then ramped down. The time on the LabView® front panel was measured in 
seconds. 
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Figure 4.6. The LabView® front panel showing the calculation of the cost function and 
generation of the cost function surface from the signals measured on the accelerometers 
during a full search at a single frequency. 
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Figure 4.7. The LabView® front panel used to determine the experimental transfer 
function between each shaker and each control sensor. Accelerometers 1 to 3 were 
mounted on the load masses on the shakers, and accelerometers 4 and 5 were mounted 
at each end of the beam. A voltage was applied to each shaker at a specific phase angle 
for 5 seconds. For the first second the signals were ramped up. The analysis was 
performed over the period 1.5s to 3.5s and this is shown in the Accelerometer analysis 
windows on the right hand side. Once the analysis was completed, the voltage was then 
ramped down. Because only three measurements of phase were required to determine 
the transfer function, the program ran over a frequency range, rather than at a single 
frequency. The values of the transfer function at each frequency were stored in a text 
file and used in MATLAB® simulations to determine the cost function surface at each 
frequency. 
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Figure 4.8.  Experimental determination of the time averaged kinetic energy of the 
beam. The dotted curve shows the maximum and solid curve the minimum achieved by 
synchrophasing. The positions of the shakers were 33.01 =lx  and 42.02 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. The figure shows 
the two rigid body modes (RBM) of the beam on the elastic end supports and the first 4 
flexural modes (FM1 to FM4). Other peaks in the forced response are observable at 
higher frequencies, but these are not clearly attributable to a particular mode of a beam 
in flexure. 
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Figure 4.9. Experimental determination of the sum of the magnitude squared of the 
velocity at each end of the beam. The dotted curve shows the maximum and solid curve 
the minimum achieved by synchrophasing. The positions of the shakers were 

33.01 =lx  and 42.02 =lx , the magnitude of the drive voltage applied to each shaker 
was the same. The figure shows the two rigid body modes (RBM) of the beam on the 
elastic end supports and the first 4 flexural modes (FM1 to FM4). Other peaks in the 
forced response are observable at higher frequencies, but these are not clearly 
attributable to a particular mode of a beam in flexure. 
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Figure 4.10. Simulations of the time averaged kinetic energy of the beam. The dotted 
curve shows the maximum and solid curve the minimum achieved by synchrophasing. 
The positions of the shakers were 33.01 =lx  and 42.02 =lx , the magnitude of the 
drive voltage applied to each shaker was the same. The figure shows the two rigid body 
modes (RBM) of the beam and the first 4 flexural modes (FM1 to FM4).  
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Figure 4.11. Simulations of the sum of the magnitude squared of the velocity at each 
end of the beam. The dotted curve shows the maximum and solid curve the minimum 
achieved by synchrophasing. The positions of the shakers were 33.01 =lx  
and 42.02 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
The figure shows the two rigid body modes (RBM) of the beam and the first 4 flexural 
modes (FM1 to FM4). 
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Figure 4.12.  Experimental result showing the phase of the control source corresponding 
to the maximum and minimum of the time averaged kinetic energy. The clear dots show 
the phase to obtain the maximum kinetic energy and solid dots the phase to achieve the 
minimum by synchrophasing. The positions of the shakers were 33.01 =lx  
and 42.02 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.13. Experimental result showing the phase of the control source corresponding 
to the maximum and minimum of the cost function summing the magnitude squared of 
the velocity at each end of the beam. The clear dots show the phase to obtain the 
maximum value of the cost function and solid dots the phase to achieve the minimum 
by synchrophasing. The positions of the shakers were 33.01 =lx  and 42.02 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.14.  Simulations of the phase of the control source corresponding to the 
maximum and minimum of the time averaged kinetic energy. The clear dots show the 
phase to obtain the maximum kinetic energy and solid dots the phase to achieve the 
minimum by synchrophasing. The positions of the shakers were 33.01 =lx  
and 42.02 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.15. Simulations of the phase of the control source corresponding to the 
maximum and minimum of the cost function summing the magnitude squared of the 
velocity at each end of the beam. The clear dots show the phase to obtain the maximum 
value of the cost function and solid dots the phase to achieve the minimum by 
synchrophasing. The positions of the shakers were 33.01 =lx  and 42.02 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.16. Experimental result showing the cost function reduction as a function of 
frequency of excitation. This was obtained by calculating the difference between the 
maximum value of the cost function and the minimum. The solid curve is the reduction 
achieved using the time averaged kinetic energy cost function (in dB re 1 J) and the 
dotted curve is the reduction achieved using the cost function which minimises the sum 
of the magnitude squared of the velocity at each end of the beam (in dB re 22sm1 − ). The 
positions of the shakers were 33.01 =lx  and 42.02 =lx , the magnitude of the drive 
voltage applied to each shaker was the same. 
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Figure 4.17. Simulations of the cost function reduction as a function of frequency of 
excitation. This was obtained by calculating the difference between the maximum value 
of the cost function and the minimum. The solid curve is the reduction achieved using 
the time averaged kinetic energy cost function (in dB re 1 J) and the dotted curve is the 
reduction achieved using the cost function which minimises the sum of the magnitude 
squared of the velocity at each end of the beam (in dB re 22sm1 − ). The simulated 
positions of the shakers were 33.01 =lx  and 42.02 =lx , the magnitude of the drive 
voltage applied to each shaker was the same. 
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Figure 4.18. Experimental determination of the time averaged kinetic energy of the 
beam. The dotted curve shows the maximum and solid curve the minimum achieved by 
synchrophasing. The positions of the shakers were 25.01 =lx  and 58.02 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. The figure shows 
the two rigid body modes (RBM) of the beam and the first 4 flexural modes (FM1 to 
FM4). 
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Figure 4.19. Experimental result showing the sum of the magnitude squared of the 
velocity at each end of the beam. The dotted curve shows the maximum and solid curve 
the minimum achieved by synchrophasing. The positions of the shakers were 

25.01 =lx  and 58.02 =lx , the magnitude of the drive voltage applied to each shaker 
was the same. The figure shows the two rigid body modes (RBM) of the beam and the 
first 4 flexural modes (FM1 to FM4). 
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Figure 4.20. Simulations of the time averaged kinetic energy of the beam. The dotted 
curve shows the maximum and solid curve the minimum achieved by synchrophasing. 
The positions of the shakers were 25.01 =lx  and 58.02 =lx , the magnitude of the 
drive voltage applied to each shaker was the same. The figure shows the two rigid body 
modes (RBM) of the beam and the first 4 flexural modes (FM1 to FM4). 
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Figure 4.21. Simulations of the sum of the magnitude squared of the velocity at each 
end of the beam. The dotted curve shows the maximum and solid curve the minimum 
achieved by synchrophasing. The positions of the shakers were 25.01 =lx  
and 58.02 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.22. Experimental result showing the phase of the control source corresponding 
to the maximum and minimum of the time averaged kinetic energy. The clear dots show 
the phase to obtain the maximum kinetic energy and solid dots the phase to achieve the 
minimum by synchrophasing. The positions of the shakers were 25.01 =lx  
and 58.02 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.23. Experimental result showing the phase of the control source corresponding 
to the maximum and minimum of the cost function summing the magnitude squared of 
the velocity at each end of the beam. The clear dots show the phase to obtain the 
maximum value of the cost function and solid dots the phase to achieve the minimum 
by synchrophasing. The positions of the shakers were 25.01 =lx  and 58.02 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.24. The measured displacement of the beam at 162 Hz when the phase of the 
control shaker was a) anti-phase with the reference, b) optimised to minimise the time 
averaged kinetic energy cost function, c) optimised to minimise the sum of the 
magnitudes of velocity squared at each end of the beam. The positions of the shakers 
were 25.01 =lx  and 58.02 =lx , the magnitude of the drive voltage applied to each 
shaker was the same. 
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Figure 4.25. Simulations of the phase of the control source corresponding to the 
maximum and minimum of the time averaged kinetic energy. The clear dots show the 
phase to obtain the maximum kinetic energy and solid dots the phase to achieve the 
minimum by synchrophasing. The positions of the shakers were 25.01 =lx  
and 58.02 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.26. Simulations of the phase of the control source corresponding to the 
maximum and minimum of the cost function summing the magnitude squared of the 
velocity at each end of the beam. The clear dots show the phase to obtain the maximum 
value of the cost function and solid dots the phase to achieve the minimum by 
synchrophasing. The positions of the shakers were 25.01 =lx  and 58.02 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. 
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Figure 4.27. Experimental result showing the cost function reduction as a function of 
the excitation frequency. This was obtained by calculating the difference between the 
maximum value of the cost function and the minimum. The solid curve is the reduction 
achieved using the time averaged kinetic energy cost function (in dB re 1 J) and the 
dotted curve is the reduction achieved using the cost function which minimises the sum 
of the magnitude squared of the velocity at each end of the beam (in dB re 22sm1 − ). The 
positions of the shakers were 25.01 =lx  and 58.02 =lx , the magnitude of the drive 
voltage applied to each shaker was the same. 
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Figure 4.28. Simulations of the cost function reduction as a function of the excitation 
frequency. This was obtained by calculating the difference between the maximum value 
of the cost function and the minimum. The solid curve is the reduction achieved using 
the time averaged kinetic energy cost function (in dB re 1 J) and the dotted curve is the 
reduction achieved using the cost function which minimises the sum of the magnitude 
squared of the velocity at each end of the beam (in dB re 22sm1 − ). The positions of the 
shakers were 25.01 =lx  and 58.02 =lx , the simulated magnitude of the drive voltage 
applied to each shaker was the same. 
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Figure 4.29. Experimentally obtained cost function surface at 70 Hz, using a cost 
function which sums the magnitude squared of the velocity at each end of the beam. The 
positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx . The magnitude of the drive voltage applied to each shaker was the 
same. The synchrophasing shaker phases 2φ  and 3φ  were varied from o0  to o350  in o10  
steps. 
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Figure 4.30. Experimental result showing the sum of the magnitude squared of the 
velocity at each end of the beam. The dotted curve shows the maximum and solid curve 
the minimum achieved by synchrophasing using Propeller Signature Theory. The dots 
show the cost function maximum – clear and minimum - solid obtained from searching 
over a range of angles. The positions of the shakers were 375.01 =lx (shaker used as 
the phase reference), 21.02 =lx  and 71.03 =lx . The magnitude of the drive voltage 
applied to each shaker was the same. 
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Figure 4.31. Simulations of sum of the magnitude squared of the velocity at each end of 
the beam. The dotted curve shows the maximum and solid curve the minimum achieved 
by synchrophasing. The simulated positions of the shakers were 375.01 =lx (shaker 
used as the phase reference), 21.02 =lx  and 71.03 =lx , the simulated magnitude of 
the drive voltage applied to each shaker was the same. 
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Figure 4.32. Experimental result showing the control phases 2φ  and 3φ  required to 
minimise the cost function summing the magnitude squared of the velocity at each end 
of the beam.  
 
The solid dots show the phase required for the control machine at 2x  to obtain the 
minimum value of the cost function, and clear dots show the phase required for the 
control machine at 3x  to achieve the minimum by synchrophasing using propeller 
signature theory. 
 
 The squares show the required phase angles to minimise the cost function obtained by 
searching over a range of angles. The solid squares are the phases for the control 
machine at 2x  and the clear squares the control machine at 3x  
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx . The magnitude of the drive voltage applied to each shaker was the 
same. 
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Figure 4.33. Simulations of the control phases 2φ  and 3φ  required to minimise the cost 
function summing the magnitude squared of the velocity at each end of the beam.  
 
The solid dots show the phase required for the control machine at 2x  to obtain the 
minimum value of the cost function, and clear dots show the phase required for the 
control machine at 3x  to achieve the minimum by synchrophasing using propeller 
signature theory. 
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx . The magnitude of the drive voltage applied to each shaker was the 
same. 
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Figure 4.34. Simulations of the Operational Deflection Shape at 26 Hz corresponding to 
the rotational rigid body mode.  
 
The dotted line is the ODS when just the reference vibrating source is driving the beam, 
although the two control machines are present. The solid line is the ODS when all three 
sources are driving the beam. The phases of the control sources are the values calculated 
to minimise the cost function. The magnitude of the drive voltage applied to each shaker 
was the same. 
 
The positions of the shakers, shown as lines, were 375.01 =lx (phase reference), 

21.02 =lx  and 71.03 =lx .  
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Figure 4.35. Simulations of the Operational Deflection Shape at 118 Hz corresponding 
to the first flexural mode.  
 
The dotted line is the ODS when just the reference vibrating source is driving the beam, 
although the two control machines are present. The solid line is the ODS when all three 
sources are driving the beam. The phases of the control sources are the values calculated 
to minimise the cost function. The magnitude of the drive voltage applied to each shaker 
was the same. 
 
The positions of the shakers, shown as lines, were 375.01 =lx (phase reference), 

21.02 =lx  and 71.03 =lx .  
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Figure 4.36. Simulations of the Operational Deflection Shape at 258 Hz corresponding 
to the second flexural mode.  
 
The dotted line is the ODS when just the reference vibrating source is driving the beam, 
although the two control machines are present. The solid line is the ODS when all three 
sources are driving the beam. The phases of the control sources are the values calculated 
to minimise the cost function. The magnitude of the drive voltage applied to each shaker 
was the same. 
 
The positions of the shakers, shown as lines, were 375.01 =lx (phase reference), 

21.02 =lx  and 71.03 =lx .  
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Figure 4.37. Simulations of the Operational Deflection Shape at 80 Hz obtained by 
changing the control phases 2φ  and 3φ . 
 

For the solid line o1802 =φ  and o1803 =φ  respectively. 
For the dotted line o02 =φ  and o1803 =φ  respectively.  
For the dashed line o02 =φ  and o03 =φ  respectively.  
 
The magnitude of the drive voltage applied to each shaker was the same. 
 
The positions of the shakers, shown as lines, were 375.01 =lx (phase reference), 

21.02 =lx  and 71.03 =lx .  
 

Position along beam / m 

D
is

pl
ac

em
en

t /
 m

 



Chapter 4 Experimental validation of synchrophasing 

 

 

 

146 

10020              800
0

5

10

15

20

25

30

35

40

45

50

 
Figure 4.38. Comparison of the cost function reduction obtained experimentally by 
synchrophasing with that predicted using simulations. The solid curve is the reduction 
achieved experimentally using the cost function which minimises the sum of the 
magnitude squared of the velocity at each end of the beam. The dotted curve is the 
reduction of the same cost function obtained by simulation. The positions of the shakers 
were 375.01 =lx (phase reference), 21.02 =lx  and 71.03 =lx . The magnitude of the 
drive voltage applied to each shaker was the same. 
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Figure 4.39. Experimental cost function surface at 200 Hz, using a cost function which 
sums the magnitude squared of the velocity at each end of the beam. The positions of 
the shakers were 375.01 =lx (phase reference), 21.02 =lx  and 71.03 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. The 
synchrophasing shaker phases 2φ  and 3φ  were varied from o0  to o350  in o10  steps. 
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Figure 4.40. Experimental cost function surface at 200 Hz, using a cost function which 
sums the magnitude squared of the velocity at each end of the beam. The positions of 
the shakers were 375.01 =lx (phase reference), 21.02 =lx  and 71.03 =lx , the 
magnitude of the drive voltage applied to each shaker was the same. The 
synchrophasing shaker phases 2φ  and 3φ  were varied from o0  to o350  in o10  steps. For 
this figure, the data are plotted as if the shaker phases were varied from o170−  to o180  
to better show the small variation of the cost function with 2φ  
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Figure 4.41. Experimental cost function surface at 800 Hz, using the cost function 
which sums the magnitude squared of the velocity at each end of the beam. The 
positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx , the magnitude of the drive voltage applied to each shaker was the same. 
The synchrophasing shaker phases 2φ  and 3φ  were varied from a nominal o0  to o350  in 

o10  steps.  
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Figure 4.42. Comparison of the cost function reduction obtained experimentally by 
synchrophasing when the magnitude of the drive voltage applied to each shaker is 
adjusted. A scaling factor nλ  is used to denote the magnitude of the nth control source 
drive voltage with respect to the reference source. 
 
The solid curve: 12 =λ  and 13 =λ . 
The dotted curve: 322 =λ  and 313 =λ . 
The dashed curve:  312 =λ  and 323 =λ . 
 
The positions of the three shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx .  
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Figure 4.43. Comparison of the optimum synchrophase angles for 2φ  determined 
experimentally for the control machine at 2x , to achieve the minimum value of the cost 
function, when the magnitude of the drive voltage applied to each shaker is adjusted. A 
scaling factor nλ  is used to denote the magnitude of the nth control source drive voltage 
with respect to the reference source. 
 

The solid curve: 12 =λ  and 13 =λ . 
The dotted curve: 322 =λ  and 313 =λ . 
The dashed curve: 312 =λ  and 323 =λ . 
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx .  
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Figure 4.44. Comparison of the optimum synchrophase angles for 3φ  determined 
experimentally for the control machine at 3x , to achieve the minimum value of the cost 
function, when the magnitude of the drive voltage applied to each shaker is adjusted. A 
scaling factor nλ  is used to denote the magnitude of the nth control source drive voltage 
with respect to the reference source. 
 

The solid curve: 12 =λ  and 13 =λ . 
The dotted curve: 322 =λ  and 313 =λ . 
The dashed curve: 312 =λ  and 323 =λ . 
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx .  
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Figure 4.45. Comparison of the optimum synchrophase angles for 2φ  determined 
experimentally for the control machine at 2x , to achieve the minimum value of the cost 
function, when the magnitude of the drive voltage applied to each shaker is adjusted. A 
scaling factor nλ  is used to denote the magnitude of the nth control source drive voltage 
with respect to the reference source. 
 

The solid curve: 12 =λ  and 13 =λ . 
The dotted curve: 322 =λ  and 313 =λ . 
The dashed curve: 312 =λ  and 323 =λ . 
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx .  
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Figure 4.46. Comparison of the optimum synchrophase angles for 3φ  determined 
experimentally for the control machine at 3x , to achieve the minimum value of the cost 
function, when the magnitude of the drive voltage applied to each shaker is adjusted. A 
scaling factor nλ  is used to denote the magnitude of the nth control source drive voltage 
with respect to the reference source. 
 

The solid curve: 12 =λ  and 13 =λ . 
The dotted curve: 322 =λ  and 313 =λ . 
The dashed curve: 312 =λ  and 323 =λ . 
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx .  
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Figure 4.47. The maximum and minimum of the cost function obtained experimentally 
by synchrophasing when the magnitude of the drive voltage applied to each shaker is 
adjusted. A scaling factor nλ  is used to denote the magnitude of the nth control source 
drive voltage with respect to the reference source. 
 
The solid black curves 12 =λ  and 13 =λ . 
The dotted blue curves 312 =λ  and 323 =λ . 
The dashed red curves  312 =λ  and 323 =λ  corrected to simulate 12 =λ  and 13 =λ  
by using 32 =δ  and 2/33 =δ . 
 
The positions of the shakers were 375.01 =lx (phase reference), 21.02 =lx  
and 71.03 =lx .  
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5 Summary and Conclusions 

5.1 Summary 

Synchrophasing has been investigated as an active vibration control technique for 

controlling the vibration of a large flexible machinery raft. This type of structure is 

commonly found on ships, and is used to provide a degree of isolation between the 

vibrating machinery and the ship’s hull. The techniques developed could also be applied 

to any generalised flexible structure on which vibrating sources are mounted.  

 

Synchrophasing differs from other methods of active vibration control in that no 

additional vibration sources are added to the structure for synchrophasing. All of the 

control is achieved by adjusting the phases of the source excitations that are applied to 

the structure, the magnitudes of the forces are not changed. With AC powered 

machinery such as pumps, which are commonly found on ship’s machinery rafts, this 

means adjusting the phase of the voltage that is applied to each machine. Other methods 

of active vibration control commonly use actuators in order to apply additional forces to 

the structure to achieve an overall reduction. Although the use of actuators can provide 

a higher degree of active vibration control, because both the magnitude and phase of the 

additional forces can be adjusted, the system costs and space requirements of fitting 

additional components can make active vibration control much more costly, and has 

previously meant that active vibration control is sometimes dropped from the final ship 

machinery raft build.   

 

Two models of a generalised one dimensional elastic structure have been developed. 

The first was a receptance based analytical model, and the second was a laboratory scale 

physical model of a one dimensional thin flexible beam supporting vibrating sources. It 

was decided to use a receptance based approach to the theoretical modelling because 

this approach is well established for studying mechanical systems consisting of lumped 

and distributed parameter components.  Receptance techniques can also be used in a 

physical implementation of synchrophasing, because the point and transfer receptances 

of the vibrating machinery can be measured experimentally, without requiring detailed 
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knowledge of the mode shapes of the supporting structure. The analytical model can be 

used to determine the displacement at any point on the generalised structure caused by 

vibration due to machinery unbalance forces acting upon the structure, and can be used 

to investigate synchrophasing. Expressions for the displacement due to multiple 

vibrating sources were derived and introduced.  

 

The receptance based analytical model was also used to guide the design and 

development of a physical laboratory model to ensure that each rigid body mode and 

flexural mode was separated in frequency, so that the vibration control achieved could 

be quantified for each mode. The analytical model was also used in simulations to 

ensure that sufficient flexural modes could be excited within the limitations of the 

experimental equipment available. It was decided that three flexural modes would be 

sufficiently representative of the most problematic vibrations of a real machinery raft 

and that the physical model should be constructed so that the first three flexural modes 

occurred at frequencies under 1 kHz.  

 

The laboratory scale physical model was used to validate the predictions of the 

theoretical model and to understand the practical requirements of implementing a 

synchrophasing system onto an existing machinery raft. A PC driven data acquisition 

and analysis unit was used as the feed forward controller, providing the phase shifted 

signals to the shakers and processing the sensor signals from the accelerometers on the 

structure. Software was written in LABVIEW® to generate the phase shifted signals and 

to collect and analyse the accelerometer signals. Software was also written in 

MATLAB® to find the minimum of the cost function. 

 

Both models were used as tools to analyse the interactions between the multiple 

vibrating harmonic sources when they are mounted on a common elastic structure and 

acting at the same frequency. 

 

Two cost functions were investigated theoretically and experimentally. These were a 

global control cost function achieved by calculating the total time averaged kinetic 
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energy in the support structure and a local control cost function achieved by calculating 

the sum of the magnitude squared of the velocity over each mount point. For global 

control, the vibration at any point on the structure is regarded as equally important, 

where as for local control, only certain points on the structure are considered to be 

important.  Mounting points where the machinery raft attaches to the rest of the ships 

superstructure are important paths for vibration control because vibration can be 

transmitted from the machinery raft into the superstructure and then radiate into the 

water. 

 

The best cost function to use depends upon the frequency of excitation and the positions 

of the machinery upon the supporting raft, with respect to the nodes of the dominant 

modes of the machinery raft that are excited at the frequency of interest. Global control 

requires knowledge of the transfer mobilities between the machinery and the mass 

distribution of the machinery and the supporting structure. Local control only requires 

vibration at the mount points of the supporting structure to be measured, and so is more 

suitable to implement and retro-fit onto an existing machinery raft.   

 

Two methods of finding the minimum of a cost function surface have been investigated 

theoretically and experimentally. The simplest method is a full incremental search, 

which consisted of changing the phase of each control source in turn from o0  to o360  in 

suitable steps. This gave a cost function surface for each operating frequency of interest. 

The minimum of the cost function surface was then found using MATLAB® to analyse 

the complete data set. The laboratory synchrophase system showed that this type of 

searching can be very time consuming, as it is necessary to adjust the phase of one 

control machine, let the vibration settle to its steady state, then calculate the cost 

function, repeating this process over a range of phase angles. A simple laboratory 

synchrophasing system consisting of three vibrating sources - one reference source and 

two control sources - took approximately three hours to perform a full search at a single 

frequency using a o10  step size. 
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As an alternative to a full search, the models were used to investigate the application of 

Propeller Signature Theory in finding the minimum of the cost function. This technique 

was originally developed for minimising the effects of aircraft propeller noise inside the 

cabin of the aircraft. Since then it has been successfully used to minimise the vibration 

inside the cabin of an aircraft. However, this thesis contains the first known work 

reported using Propeller Signature Theory to determine the signature between vibrating 

machinery mounted on a thin elastic raft and error sensors placed on the raft, with the 

aim of minimising a cost function by synchrophasing, based upon the machinery 

signatures and the modes of the raft structure. Propeller Signature Theory is used to 

calculate the phase independent transfer function or signature between each machine 

and each error sensor. A fully determined calculation of the transfer functions on a 

system comprising P  control machines and one reference machine requires (P+1) 

physical measurements at independent phase angles, i.e. the same number of phase 

changes as there are control sources. Once the phase independent transfer functions are 

obtained, they can be used in simulations using a full search to calculate the minimum 

of a cost function surface and hence find the optimum synchrophase angles for the 

control machines. 

 

A simple laboratory synchrophasing system consisting of three vibrating sources, one 

reference source and two control sources, using the method developed from Propeller 

Signature Theory took approximately one hour to determine the minimum of the cost 

function at 78 frequencies using a o1  phase angle step size. This was considerably faster 

than using a full search, because only three measurements on each accelerometer were 

required at each frequency, and it is the physical process of changing the phase angle of 

the applied voltage, allowing a settling time and making the measurement that takes the 

time. 

 

A method for automating the calculation of the cost function in response to changes in 

the phase angles of the applied voltages was described and implemented in LABVIEW® 

and MATLAB® for both the full search method and the determination of the transfer 

functions by using Propeller Signature Theory. The models showed theoretically and 
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experimentally that the techniques developed for Propeller Signature Theory can 

successfully be applied for structural vibration control of a flexible machinery raft and 

are considerably faster than implementing a physical full search and would be more 

suitable as a form of close to real time adaptive vibration control. 

 

The transfer function values determined using Propeller Signature Theory are not 

transfer mobilities as they do not calculate the forces applied by each vibration source. 

Hence if the load or speed of any machine were to change, it may be necessary to re-

determine the transfer functions, because the optimum phase angles for minimising the 

cost function using synchrophasing could change if the applied forces change.  The 

physical model was used to show that if the magnitudes of the applied forces change by 

a known amount then the transfer functions can be adapted to find the optimum 

synchrophase angles at the new vibration levels without requiring re-calculation of the 

transfer functions. However this may not be practical on a real machinery installation as 

a change in vibration measured locally on a machine may not be proportional to a 

change in the force applied to the machinery raft.  

 

5.2 Conclusions 

This work has shown that synchrophasing can successfully be applied as an active 

structural vibration control technique for reducing the vibration of a large thin elastic 

structure such as a machinery raft of the type commonly found on ships. The optimum 

synchrophase angles, and the amount of control achieved, depend upon the positions of 

the vibrating sources on the structure and also on the relative magnitudes of the forces 

that result from the vibration. Of particular importance to ship-borne machinery is the 

control of any rigid-body modes and the first flexural mode because the main vibrations 

generated by rotating and reciprocating machinery often lies in this frequency region. It 

has been shown that the position of the node of the rotational rigid body mode depends 

upon the positions of the machinery upon the flexible structure. 

 

A one-dimensional receptance based analytical model was developed in order to 

understand synchrophasing and to guide the development of a laboratory scale physical 
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model and synchrophasing system. The receptance based model proved to be very 

successful at predicting the natural frequencies of the two rigid body modes and the first 

two flexural modes of the laboratory model which were well separated and could 

always be recognised. Higher order flexural modes were harder to recognise and there 

was an increasing difference between the theoretical predictions and the physical model. 

Analysis of the physical laboratory model in vibration showed that the beam twisted 

when excited at some frequencies above the second flexural mode. Torsional and 

flexural modes across the width of the beam are not included in the one-dimensional 

Euler-Bernoulli based receptance model. The receptance based model proved to be very 

useful in understanding the operational deflection shapes obtained from the physical 

model and why control was not achieved at certain frequencies and positions of the 

shakers on the beam. 

 

The analytical model and the laboratory physical synchrophasing system were used to 

test and compare two different cost functions and two methods of searching for the 

optimum synchrophase angles necessary to minimise the cost functions. It was shown 

that local control and global control could both be achieved using synchrophasing and 

that the most effective method of control depended upon the frequency of excitation and 

the positions of the shakers upon the beam. Techniques developed in Propeller 

Signature Theory to determine a phase independent transfer function between each 

vibrating source and each sensor, enabled much faster calculation of the optimum 

synchrophase angles for each machine, than the simpler method of incrementally 

stepping through all combinations of angles. 

 

It was shown analytically that when only two vibrating sources are mounted on the thin 

beam, then a simple analytical expression can be obtained for the optimum 

synchrophase angle of the single control source. This angle is often just either in phase 

or in anti-phase with the reference source. Experimental studies and simulations 

confirmed that the optimum synchrophasing angle to minimise the cost function 

depended upon the positions of the vibrating sources on the structure, the positions of 
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the nodes of the main modes of vibration that are excited at the frequency of interest and 

the magnitude of the modal forces. 

 

It was shown analytically that when more than two vibrating sources are mounted on the 

flexible structure, so that there is more than one control source (one reference and P 

control sources), then interaction terms exist between the control shakers, so that no 

simple analytical expression for the optimum synchrophase angle for each control 

source could be found. The effect of these interaction terms are that they can work 

against each other, the result being that synchrophasing may not be as effective and that 

local minima of the cost function surface can exist. This highlighted the requirement to 

perform a search over the whole cost function surface, i.e. over the whole phase range, 

to ensure that the global cost function minimum is found, hence the best synchrophase 

angles. 

 

5.3 Recommendations for further research 

This research has used simulations where a normal force has been applied to the thin 

elastic beam. Although a reciprocating machine would be expected to apply normal 

forces to the supporting structure, rotating machinery would also be likely to apply a 

torsional moment. To accommodate this, it could be necessary to use a beam theory 

other than Euler-Bernoulli, such as Timoshenko thick beam theory, when modelling 

more complex situations where the effects of rotary inertia and shear deformation need 

to be considered. Controlling and adjusting the phase of the voltage supplied to a 

laboratory shaker is far simpler than adjusting the phase of the voltage applied to an 

industrial machine, where larger currents are involved. Follow on work to investigate 

how the phase could be changed practically on a real machinery installation would be a 

good next step to further investigate the practicalities and usefulness of synchrophasing. 

 

It is likely that more than one frequency will be generated by the vibrating machine. 

This is particularly troublesome in a military marine environment where the detection of 

several ‘tonals’ from ship or submarine machinery can be used to identify the vessel to 

potential attackers. Further work could be conducted into controlling a cost function 
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based upon more than one frequency. For example, minimising the magnitude of the 

velocity squared at each mount point at 50 Hz, 100 Hz, 150 Hz and 200 Hz 

simultaneously.  

A real machinery raft installation on a ship or submarine will have some mounting 

points situated on or close to the hull and other mounting points situated away from the 

hull. Previous research has indicated that mounting points that connect directly to the 

external hull will create larger contributions to the overall radiated noise signature of the 

vessel and so it is more important to control the vibration at these points. An extension 

to the work conducted so far would be to weight the magnitude of the velocity squared 

at each mount point based upon its position on the structure. In this way, the most 

important points on the structure to be controlled can be given addition weighting or 

importance on the generation of the cost function surface.  
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List of symbols used 

 

nβ  thn flexural wave number. 

pMΔ  A proportion of the mass of machinery which is added to each mass element. 

Γ  Transfer function matrix relating the out of balance forces applied to the elastic 

mounting structure by each machine to the velocity at each cost function sensor. 

η  Proportional damping factor. 

nθ  Phase of the complex quantity obtained from a vector multiplication of the form 

p
H
n yy  where 31L=n . 

nλ  Scalar factor relating the magnitude of the force applied to the structure by the nth 

control machine to the magnitude of the force applied by the reference phase 

machine. 

Λ  Diagonal matrix of scalar factors of the form nλ . 

ρ  Density, mass density. 

nφ  Phase of the force applied to the structure by the nth control machine with respect 

to the phase of the reference machine. 

φ  Vector of phases of the force applied to the structure by the reference machine and 

the n control machines. 

nψ  A known phase shift applied to a machine, when determining the transfer function 

matrix. 

Ψ  The matrix of known phase shifts, applied to the machines when determining the 

transfer function matrix. 

ω  Angular frequency of oscillation. 

nω  nth natural frequency of oscillation of a structure. 

A   Cross sectional area of the structure. 

E  Energy of a structure. 

yE  Youngs modulus. 

rf  Force applied to the structure due to the reference phase machine. 
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cf  Vector of forces applied to the structure due to the control machines. 

I      Second moment of area of the structure cross section about the neutral axis. 

J  Cost function based upon calculating the sum of the magnitude squared of the 

velocities over sensor positions. 

k  Stiffness of support mounts. 

L  Length of the structure. 

nm  nth mass element of the structure. 

nmm ,  nth modal mass. 

M  Diagonal matrix containing the mass of each element on the leading diagonal. 

mM  Matrix of modal masses. 

N  Number of modes considered in modal summation equations. 

mN    Number of mass elements. 

P  Number of machines used to achieve control. 

rq  Vector of modal receptances. 

cQ  Matrix of modal receptances. 

nR  Magnitude of the complex quantity obtained from a vector multiplication of the 

form p
H
n yy  where 31L=n . 

S  Number of sensors used determining the cost function. 

T  Kinetic Energy. 

U  Elastic strain energy. 

w   Displacement. 

w&  Vector of velocities at the sensor positions on the structure. 

sw&  Velocity at sensor s. 

nW  nth mode shape of the beam. 

W&  A matrix of velocities, the columns of which correspond to the velocities 

measured for each particular known phase shift. Used in determining the transfer 

function matrix. 

nx     The position of the nth machine on the structure. 
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riY ,  Transfer mobility between the reference machine and the ith mass element. 

psy ,  Transfer mobility between the sth sensor and the pth machine. 

ny  Vector of transfer mobilities between the nth control machine (or the reference 

machine if rn = ) and each of the mass elements/sensors. 

Y  Matrix of transfer mobilities between each of the machines and each of the cost 

function sensors. 

cY  Matrix of transfer mobilities between the control machines and each of the mass 

elements/sensors. 

 

 

List of operations 

 

t
ℑ   Time averaged value of ℑ  

ℑ&   Time derivative of ℑ  given by 
dt
dℑ  

Hℑ   Hermitian (conjugate transpose) of matrix ℑ  

)Re(ℑ  Real part of complex number ℑ  

)Im(ℑ  Imaginary part of complex number ℑ  
∗ℑ   The complex conjugate of ℑ  
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