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Men say they know many things;
But lo! They have taken wings,—
The arts and the sciences,

And a thousand appliances;

The wind that blows

Is all that anybody knows.
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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT
AERONAUTICS, ASTRONAUTICS AND COMPUTATIONAL ENGINEERING

Doctor of Philosophy

MULTIDISCIPLINARY AND MULTIOBJECTIVE DESIGN OPTIMISATION OF
CORONARY STENTS

by Sanjay Pant

Coronary stents are tubular type scaffolds that are deployed, using an inflatable balloon on a
catheter, most commonly to recover the lumen size of narrowed (diseased) arterial segments.
Even though numerous stent designs, of varying geometrical and material complexity, are used
in clinical practice today, the adverse biological responses post-stenting are not completely
eliminated. In-stent restenosis (IR), reduction in lumen size due to neointima formation
within 12 months of procedure, and stent thrombosis (ST), formation of a blood clot inside a
stented vessel, are the two most common adverse responses to stents. Such adverse responses
are multifactorial and their causes are not completely understood. However, the geometric
design of a stent, which is a common differentiating factor between the numerous commer-
cially available stents, is known to be a key factor influencing adverse responses. In light of
the above, this thesis exploits stent geometry parameterisation in both constrained and mul-
tiobjective optimisation. Gaussian process surrogate modelling is used to cost effectively (a)
understand the influence of stent geometry parameters on metrics indicating adverse response,

and (b) obtain families of stent designs which are potentially more resistant to such responses.

Various computational models are developed to evaluate the efficay of a stent in terms of the
factors influencing the adverse responses. In particular, two finite element analysis (FEA)
models and two computational fluid dynamics (CFD) models are developed. The FEA mod-
els are used to simulate the balloon-expansion of stents in a representative coronary artery
and bending of stents on application of bending moments. On the other hand, the CFD
models simulate haemodynamic flow in the stented artery and the associated drug-release
into the tissue. The expansion FEA models are validated against manufacturer provided
pressure-diameter relationship and the flexibility FEA models are validated against the nu-
merical studies found in literature. The numerical models are then used to extract metrics
which are related to the adverse responses. Six metrics are formulated: (i) acute recoil, which
measures the radial strength of the stent; (ii) volume average stress, which measures potential
arterial injury caused by the stenting procedure; (iii) haemodynamic low and reverse index,
which measures the haemodynamic alteration relevant to IR; (iv) volume average drug, which
measures the amount of anti-proliferative drug delivered into the tissue; (v) drug deviation,
which measures the uniformity of drug-distribution in the tissue; and (vi) flexibility metric,
which measures the deliverability of the stent. These metrics are then used to compare the
performance of different geometric stent designs. Two parameterisation techniques — one for
a generic ring and link topology of stents, and one for the commercial CYPHER (Cordis
corporation, Johnson & Johnson company) — are proposed to study the effect of geometrical

variation in stent design on the formulated metrics of efficacy. These techniques are then



combined with surrogate modelling to perform stent design optimisation studies and study
the effect of stent geometry on the evaluation metrics. Finally, three paradigms to choose op-
timal stent designs from a set of non-dominated solutions, in terms of the evaluation metrics,

are proposed, and optimal designs under such paradigms are identified.

The last part of this thesis concerns surrogate assisted optimisation, and is not specific to
the problem of stent design. Here, the use of analytically available gradient information
in widely used Kriging predictors is explored. A search algorithm to locate all stationary
points of a Krig, using a combination of an iterative sequence of the Krig derivative and a

low-discrepancy sequence is proposed.
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Chapter 1

Aims & objectives

Coronary stents are tubular, often mesh-like, structures which are deployed in diseased
(stenosed) artery segments to provide a scaffolding feature that compresses atheromatus
plaque, hence restoring luminal area and maintaining vessel patency. Despite the widespread
clinical use of stents in cardiovascular intervention, the presence of such devices can cause
adverse responses leading to fatality or to the need for further treatment. The most common
unwanted responses of inflammation, in-stent restenosis and thrombosis, are multifactorial.
In-stent restenosis is caused by a cascade of events triggered by vessel injury during the bal-
loon angioplasty procedure whereas late thrombosis (usually associated with drug eluting
stents) typically occurs as a result of incomplete healing whereby inhibition of intimal pro-
liferation results in exposed parts of the stent providing ideal sites for thrombogenesis. Both
patient-specific factors, such as the geometry and morphology of the disease, combine with
procedural factors, such as the size, shape, material and other design properties of the stent,
to induce such responses.

This thesis aims to evaluate the effect of stent design parameters on the factors that
determine the severity of the aforementioned adverse biological responses, primarily in-stent
restenosis. Using such evaluations, design optimisation studies are conducted to obtain a

potentially optimum family of stent designs that are more resistant to the adverse responses.

1.1 Aims

Currently, an “ideal stent” — that recovers arterial shape with no adverse response — does not
exist, even though, as a multi-billion dollar industry, stent design has witnessed a fairly rapid
evolution from bare metal stents of increasing complexity, through shape memory alloy stents,
polymer coated, drug eluting stents to biodegradable (or bioresorbable or bioabsorbable)
stents made from polymers or corrodible metals. In recent years, drug eluting stents, which
elute an anti-proliferative drug to suppress smooth muscle cell proliferation, have witnessed
a major increase in popularity following early trials and approvals in 2002-2003, largely due
to their effectiveness in reducing in-stent restenosis. However, more recently, late thrombosis
has been identified following the discontinuation of anti-platelet therapy. Increasing concerns
over late thrombosis with drug eluting stents has led to a significant return to the use of bare

metal stents and to further impetus in the quest for improved alternatives.
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The coupling between arterial injury, which triggers the adverse responses, blood flow,
which leads to differential shear stress distribution on the artery wall, and the distribution
of an anti-proliferative drug in the arterial tissue, all three as a function of stent geometry,
constitute a complex multi-objective problem that is poorly understood. Thus, this thesis
aims to determine how, for typical stents or a new contemplated design, geometric variation
affects arterial injury, blood flow, and drug distribution. Moreover, flexibility of a stent, which
is extremely important for deliverability, is also a function of stent-geometry. Once a given
stent can be evaluated for the physical behaviour during and post implantation, measures
relating to the efficacy of the stent in arresting in-stent restenosis and deliverability can be
extracted. These measures can then be fed back to the geometrical design of the stent to

improve stent performance. With this background, the aims of this thesis are

e to assess the performance, i.e. deliverability and resistance to in-stent restenosis, of

coronary stents in relation to variations in geometric design;

e to use this assessment in order to find a family of stent designs that minimise the adverse

responses and maximise deliverability.

The final part of this thesis deals with the development of an optimisation algorithm, the aim

of which is

e to evaluate if the analytically available derivative information for the widely used Krig-

ing predictor, can be used for effective search of the surrogate model.

1.2 Objectives
The measurable objectives of this thesis in relation to the aims outlined above are

1. to develop a computational fluid dynamics model in order to evaluate flow features in

a stented coronary artery;

2. to formulate measures relating to in-stent restenosis from the above model so that stents

can be compared on their haemodynamic performance;

3. to develop a finite element analysis model in order to evaluate the process of balloon-

expansion of coronary stents;

4. to formulate measures relating to radial strength of a stent and arterial injury caused
by the procedure from the above model, which are shown to be related to in-stent

restenosis;

5. to develop a computational fluid dynamics model in order to evaluate the drug-distribution

achieved by a stent in a stented coronary artery;

6. to formulate measures relating both the amount of drug delivered and uniformity of
drug-distribution from the above model, which are both relevant to arresting in-stent

restenosis;

7. to develop a finite element analysis model in order to evaluate flexibility of stents on

application of bending loads;
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8. to formulate a measure of flexibility of a stent from the above model;
9. to construct surrogate models for each of the above extracted measures of performance;

10. to study trends in the measures of performance by variations in stent geometry with

the aid of surrogate models;
11. to propose a technique to parameterise stent geometrical design;

12. to conduct design optimisation studies — both constrained and multi-objective — to

demonstrate design improvement in coronary stents.

All the components of the above mentioned objectives can be seen in Figure L], where the
optimisation methodology is depicted. In this figure, the boxes inside the dashed boundary
represent the engineering analyses part of the objectives. The ‘simulations’ columns show
the computational models that are developed and the ‘physical quantity measured’ columns
show the corresponding attribute which is related to deliverability for flexibility and resistance
to in-stent restenosis for all other quantities. The boxes in the non-dashed part show the
optimisation loop. The loop starts with a parametric representation of the stent geometry,
such that different values of the parameters result in different stent geometries. The design
search space is defined by setting up appropriate bounds on such parameters. This design
space is then sampled at a number of points, defined by a sampling plan. For each point in the
sampling plan, engineering analysis is performed to evaluate the physical response. Surrogate
models are constructed for each of the measured attributes, and a search of these surrogates
is made. The results of the search are used to add more points for surrogate improvement
using an infill criterion. The analyses for these added points is conducted and the results are
used to update the surrogate. The resulting surrogates are searched again and this process
is repeated until a satisfactory surrogate is constructed or the required design improvement
has been obtained or the available computational budget has been exhausted.

As mentioned in section [LI], the last part of this thesis concerns how the analytically
available gradient information of a Kriging predictor (surrogate model) can be used for an

effective search of the Krig. For this part of the thesis, the objectives are

1. to derive the equations for the derivative of a Kriging predictor;
2. to formulate an iterative sequence which can search all stationary points of a Krig;

3. to formulate an optimisation algorithm which combines the above iterative sequence

with a low-discrepancy sequence for an effective search of the Krig.

1.3 Thesis overview

In this section an overview of the thesis is presented. This overview is divided into the

contents of each chapter as follows:



4 Chapter 1. Aims & objectives

fm e e e mm e m e —— e —— -
1 |
Parametric 1 PHYSICALQUANTITY !
SIMULATIONS |
representation of : MEASURED |
geometry :  ——— - :
1 Stent _;[ Recoil ] |
: expansion :
f ) ! analysis _’[ Arterialinj ] !
jury
Sampling plan | ~ - !
\ J 1 l :
Vo )
1 |
g . : Blood flow _’[ Haemodynamic ] :
Analysis : analysis alteration :
\. J 1 |
1 |
1 |
4 ) ( ) )
- ~ : Drug = | Quantity of drug :
. . . . » I
Surrogate construction : distribution . -
1 analysis i i !
N J e Y j—b‘ Uniformity of drug K
1 |
1 |
1 E— |
Search of surrogate : o . \ :
models . FIeX|b|I|.ty — Flexibility I
1 analysis \ J 1
|
: .
|
Infill criterion
(Optimisation using
surrogates)

Figure 1.1: Optimisation methodology

1.3.1 Chapter

Chapter [2 introduces coronary artery disease. Anatomy and histology of the coronary artery
is presented, and the available treatments for coronary artery disease are outlined. Thereafter,
the two main adverse responses of coronary stenting: in-stent restenosis and thrombosis, are
introduced. Finally, a classification of the variety of coronary stents available today are

presented, and computer modelling approaches to create stent geometry are outlined.

1.3.2 Chapter

Chapter [3 presents an introduction to surrogate modelling and optimisation. For the former,
the equations for a Gaussian process predictor are explained and for the latter, an overview
of constrained, unconstrained, single objective, and multiobjective optimisation methods —

both classical and evolutionary — is presented.

1.3.3 Chapter @

In Chapter Ml haemodynamic evaluation of stents is presented. Pulsatile computational fluid
dynamics (CFD) simulations are performed over five different coronary stents. Based on the
results obtained, a numerical index to quantify the haemodynamic flow features that influence

in-stent restenosis is formulated.
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1.3.4 Chapter

Chapter [ presents a model to simulate balloon expansion of a stent in a representative
diseased artery using finite element analysis (FEA). These models are validated against the
manufacturer provided experimental pressure-diameter relationship during the expansion of
the CYPHER stent, Cordis corporation, Johnson & Johnson company. Using the results of
the FEA analysis, arterial injury is quantified in a numerical index, and recoil is measured to

evaluate the radial strength of the stent.

1.3.5 Chapter

Chapter [0l presents a finite element model to measure the flexibility of a stent, and proposes
a numerical index to quantify flexibility in a numeric quantity which can be used to compare
stents based on deliverability. The FEA model used in this chapter is validated against the
numerical studies found in literature. In particular, a comparison of the moment-curvature
plot for the CYPHER stent is made against the model of De Beule [11].

1.3.6 Chapter [7]

Chapter [ presents a constrained optimisation study. A parameterisation technique to create
generic stent designs is proposed. A finite element model to evaluate drug-distribution is
described. This model, combined with the analyses of chapters Bl and [l and the proposed
parameterisation, is used in a constrained optimisation study to obtain design improvement

from the baseline geometry.

1.3.7 Chapter [§

Chapter [}l uses the expanded geometry obtained from Chapter Bl In this expanded geometry,
first a haemodynamic analysis is performed (using the model developed in Chapter M), and
then a drug release simulation is performed. Unlike the drug release model of chapter [0
the model used in this chapter includes haemodynamic flow in the lumen. This chapter also
proposes numerical indices to measure both the quantity of the drug transported to the tissue,

and the uniformity of the resulting distribution.

1.3.8 Chapter

This chapter brings together the contents of chapters [ [, [6l and [ in a multiobjective opti-
misation study for the CYPHER stent. A three parameter technique to represent CYPHER
like stents is proposed and from the results of surrogate assisted multiobjective optimisation
results, several conflicts between various pairs of desired attributes are shown. Features in
the geometric design of stents which effect each of the measurable attributes are also identi-
fied. Finally, three paradigms to choose optimal stent designs from a set of non-dominated

solutions are presented, and optimal stents under such paradigms are identified.

1.3.9 Chapter

Chapter I presents the development of a new optimisation algorithm for effective search of
a Kriging predictor. The chapter presents how iterative sequences can be formed using the

analytically available derivative information for the Kriging predictor, to locate stationary
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points. Such a sequence is combined with the space-filling properties of quasi-random se-
quences to propose the Krige-Newton-Raphson-Sobol (KNRS) algorithm for both global and
multimodal optimisation. Finally, the performance of this algorithm is compared with (i)
a standard genetic algorithm and a dynamic hill climbing algorithm for global optimisation
on 10 test-functions, and (ii) a fitness sharing genetic algorithm and a dynamic hill climbing

algorithm for multimodal optimisation on five test functions.

1.3.10 Chapter 01

Chapter [[T] concludes the thesis with a list of contributions made to (i) the areas coronary
stent design, analysis, and optimisation, and (ii) the area of surrogate assisted search and
optimisation. Finally, recommendations for further work in the aforementioned areas are

made.



Chapter 2

Introduction to coronary artery

disease and stents

2.1 Introduction

Coronary artery disease (CAD), also known as atherosclerotic heart disease, is a condition
caused by the accumulation of lipids and fibrous tissue (collectively referred as atherosclerotic
plaque) on the inner walls of a coronary artery [4]. This accumulation leads to narrowing
of the arteries, thereby resulting in reduced blood flow to the downstream heart muscles
(myocardium), and can consequently result in chest pain (angina pectoris) or heart attack
(myocardial infraction).

CAD is a leading cause of death in western countries. According to the British Heart
Foundation [2I], in 2008, CAD was the cause of 88,000 deaths in the UK (one in five male
and one in eight female deaths). Similarly, according to the American Heart Association
[22], CAD caused 425,425 deaths in the United States of America, in 2006. Even though
the treatment of CAD has evolved significantly in the past two decades, a treatment with no

adverse effects does not yet exist. This chapter has the following aims:

1. to introduce CAD and its available treatments,

2. to present the adverse issues associated with the most common treatment (coronary
stenting) for CAD,

3. to present a survey of coronary stent designs, outline the properties that are desirable

in an ideal stent, and introduce the basic stent design problem, and

4. to present computer approaches for modelling the geometry of coronary stents.

2.2 CAD and its treatments

2.2.1 Circulation in the heart: anatomical features

Coronary circulation refers to the circulation that supplies oxygen-rich blood and nutrients

to the myocardium, the muscle tissue of the heart. The vessels that supply blood to the

7
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myocardium are called coronary arteries and can, in general, be classified as one of the

following —

e Left Coronary Artery (LCA)

e Right Coronary Artery (RCA)

Aortic sinus valve cusp

) Left coronary artery
Right Coronary
artery

Circumflex branch
Posterior
interventricular
branch

Anterior interventricular
branch

Right marginal Level of sections

artery
Anterior view

Figure 2.1: Coronary circulation: Left and Right Coro-
nary Arteries [1]

Figure 2.1l shows the two coronary
arteries, both beginning at the root
of the aorta (LCA and RCA origi-
nating from the left and right aor-
tic sinus, respectively) and travel-
ling down forming a complex tree
structure with numerous bifurca-
tions.  Shortly after its origina-
tion the LCA divides into two main
branches: the anterior interventric-
ular branch (also known as the left

anterior descending (LAD) artery)

and the circumflex branch. Simi-
larly, the RCA divides into the right marginal artery and, in approximately 67% cases, into

the posterior interventricular branch [I].

2.2.2 Coronary artery disease

Coronary artery disease refers to the condition when
one or more branches, either the main branch or sub-
sequent bifurcations, of the LCA and/or the RCA be-
come narrowed (or get blocked) by gradual deposition
of plaque. The deposition of plaque gradually causes

the artery to harden, i.e. become less elastic. This

phenomenon is called atherosclerosis. Plaque consists
mainly of atheroma (composed of macrophage white Figure 2.2: An illustration of plaque
blood cells), cholesterol, and calcium deposits. The L
o . deposition inside a coronary artery [2]
deposition of plaque leads to a reduction of lumen
area. This lumen area reduction, also known as stenosis, reduces the blood supply to the
myocardium, leading to angina pectoris, chest pain, and sometimes to myocardial infraction
(MI), or heart attack. MI is generally a result of the complete blockage of an artery, usually
caused by a formation of blood clot (thrombus) over a ruptured plaque [23]. Figure 2.2 shows
a picture of a coronary artery that has narrowed down due to the deposition of plaque.
Stenosis is detected with the help of angiography, an imaging technique used to visualize
the lumen of an artery. In this process a radio-opaque agent, called contrast-agent, is in-
jected into the blood and then visualized using X-ray based techniques. Figure shows an

angiogram where the stenosed region has been circled.
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2.2.3 Histology of coronary artery

The artery wall has a complex structure com-
posed of various layers with different mechanical
properties. This makes the properties of the ar-
terial tissue highly non-linear and anisotropic. In
general, the artery wall is composed of the follow-
ing layers, proportions of which differ in different
parts of the circulation:

e The intima (inner)

e The media (middle)

Figure 2.3: Angiogram of a coronary

e The adventitia (outer
( ) artery: the circle shows the stenosed re-

Figure 24 shows the three layers of the artery 8O0 3]

wall structure. The inner-most layer, intima, is composed of two layers: endothelium, which
is a single layer of cells that acts as a barrier, and the internal elastic lamina that is composed
of elastic fibres. The central layer, media, is the thickest layer composed of elastin, collagen,
smooth muscle cells (SMC), and ground substance (glycosaminoglycans) [24]. The outer-
most layer, adventitia, is composed largely of collagen I with admixed elastic, fibroplasts,
and nerves [24]. The adventitia merges into the surrounding tissue thereby limiting the

longitudinal movement of the artery.

2.2.4 Treatments for CAD

CAD, if not severe, can be
treated by changes in lifestyle:

healthy eating, IOW-Saturated Monocytes Neutrophils T cells
> i <«— Blood

fat diet, regular exercise, and

not smoking [23]. However,

«— Endothelial
cells

if the disease is severe then

<— Intima

e < Internal
elastic lamina

either coronary artery bypass
graft (CABG) surgery, an-
gioplasty, or angioplasty with

<— Adventitia

stenting is used. The following

sections describe each of these
procedures. Figure 2.4: Artery wall structure: the three layers [4]

2.2.4.1 CABG

This is a surgical procedure in

which arteries/veins from other parts of the body (usually the leg) are grafted into the coro-
nary artery to bypass the narrowed (stenotic) region. The bypass graft is connected from the
aorta to the post-stenotic region, thereby bypassing the blockage to maintain the downstream
blood-supply. Figure 2.5al shows the CABG procedure. CABG, owing to its highly invasive

nature is used only if the disease is severe or can’t be treated with angioplasty/stenting.
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(b) Angioplasty: procedure [26] (c) Stenting: procedure [26]

Figure 2.5: Treatment options for CAD

2.2.4.2 Angioplasty

Percutaneous transluminal coronary angioplasty (PTCA), is a minimally invasive procedure in
which a catheter, with a balloon mounted on the end, is inserted through the femoral /brachial
arteries to the stenotic region. Once the catheter is positioned in the stenotic region, the
balloon is inflated /deflated multiple times to compress the plaque against the artery wall. The
catheter, along with the deflated balloon, is then withdrawn without leaving any permanent

object inside the artery. Figure 2.5b] shows the angioplasty procedure.

2.2.4.3 Stenting

Coronary artery stents are tubular metal structures (often meshes) which are inserted in the
stenotic region through a balloon catheter, usually after angioplasty, and then expanded until
they deform plastically to provide scaffolding support that prevents arterial recoil. After the
procedure, the metal stent remains inside the artery wall to prevent its recoil. Cells grow over
the stent after the procedure, making it a permanent part of the artery. Figure 2.5d shows

the procedure of stenting.

2.3 Issues with stenting: restenosis and thrombosis

The two most common issues that the use of angioplasty, with or without stenting, face today

are restenosis and thrombosis. The following sections describe both these issues.
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= = 3 g - . =
(a) Restenosis in an artery cross sec- (b) Restenosis in an artery cross
tion after angioplasty [5] section after angioplasty followed

by stenting [30]

Figure 2.6: Restenosis

2.3.1 Restenosis

Although balloon angioplasty and stenting are widely used procedures today, restenosis con-
tinues to be a major problem associated with it. Dangas and Fuster [27] define restenosis
as the reduction in lumen size at the cite of an angioplasty/stenting procedure. Restenosis
is a result of arterial damage that leads to the formation and proliferation of neointima, a
new thick layer of intima, at the procedure cite and occurs in 40-50% of cases within six
months of the procedure [27), 28]. Figure shows the occurrence of restenosis in coronary
arteries. Although, the advent of drug eluting stents (see section 2.4 for types of stents) has
significantly reduced the rates of restenosis to a level just above 10%, its presence can not be
neglected as the number of patients treated with drug eluting stents is large [28]. Restenosis
is a complex multifactorial biological process, the causes and mechanism of which are not
completely understood [28] 29]. However, there are several factors which have been identified
to contribute towards restenosis. These factors are discussed individually in future chapters.

Restenosis is usually measured in the following three ways:

e Angiographically (binary restenosis)

e Clinically (target lesion revascularization (TLR))

e Late loss (LL)

Angiographic (binary) restenosis refers to more than 50% diameter stenosis at follow-up.
TLR is defined as clinically driven repeat percutaneous intervention (PCI) of the lesion. It is
driven by clinical signs of ischemia, reduced downstream blood-flow. TLR is most relevant to
the patients as it reflects the risk of them needing a repeat interventional procedure [5]. Late

loss, measured in mm, is the most quantitative definition of the restenosis rate. It is defined as
Late Loss = (MLD immediately after procedure) - (MLD at follow-up)

where MLD denotes minimal lumen diameter.
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2.3.2 Thrombosis

Thrombosis refers to the formation of a blood clot, thrombus, inside a blood vessel. The pres-
ence of a thrombus may either reduce the supply of downstream blood or completely occlude
the blood vessel. The extent of non-occlusive thrombosis depends on the extent of vessel
injury [5]. It is a result of incomplete healing where the exposed parts of the stent, or parts of
ruptured plaque, provide ideal sites for thrombogenesis. Figure 2.7 shows a picture of throm-
bus along with the lumen, neo-intima, and the plaque on a cross section of a human artery.
Rabbat et. al. [31] identify several procedural
and patient specific risk-factors that contribute
towards thrombosis. Late thrombosis (occurring
after 30 days of stent implantation) [31] is gen-
erally associated with drug eluting stents, which
elute an anti-proliferative drug into the arterial
tissue to prevent restenosis. As opposed to the

bare metal stents, drug eluting stents (see section

2.4 for different types of stents) delay the process Figure 2.7: Thrombosis: artery cross sec-

of endothelialisation [32], the process of genera- tion of a patient that died after 10 months

tion of endothelial cell layer post stenting pro- of balloon angioplasty [
cedure, and can trigger a thrombogenic response

leading to late thrombosis [33].

2.4 Stents: classification and desirable properties

This section presents a classification of stents based on various design parameters such as
materials, geometry etc. After discussing the classification of stents, the properties that are
desirable in an ideal stent are outlined.

Stents can broadly be classified as bare metal stents (BMS), drug eluting stents (DES), and
bioabsorbable stents. BMS are made of metal only, and they may or may not have a biocom-
patible polymer coating. DES, on the other hand, necessarily have a drug coating, which is
most commonly bound within a polymer. The two most commonly used drugs are sirolimus
and paclitaxel. Both of these drugs are anti-proliferative which means that they interfere
with the cell growth/division cycle [30] and hence help in reducing restenosis. Biosbsorbable
stents are those made up of biodegradable materials that gradually degrade in roughly 12
months after the implant procedure depending on the type of biodegradable material used.
They may or may not have a drug coating. Early results showed vigorous inflammatory re-
sponse to bioabsorbable stents, but active research is currently being undertaken to develop
bioabsorbable stents [33].

Apart from the above mentioned broad classification stents can further be categorized
according to various properties. The handbook of coronary stents [34] lists the details of 43
commercially available stents. Stoeckel et. al. [6], in 2002, classified nearly 100 different com-
mercially available stents to differentiate them by their engineering properties. The following

sub-sections detail their classification with some modifications.
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2.4.1 Nature of expansion

The most obvious classification of stents is based on the nature of expansion. Stents can
either be balloon expandable or self expanding. Balloon expandable stents are made of metal,
usually stainless steel (316L), or alloys, such as platinum-chromium or cobalt-chromium, that
can plastically deform through balloon inflation. Self-expanding stents, on the other hand,
either rely on the elastic properties of the metal or are made up of shape memory alloys
(SMA), such as Nitinol (Nickel-Titanium), which can expand autonomously after release

from the delivery system.

2.4.2 Materials

The material of the stent depends on the nature of expansion and its bio-compatibility.
While most balloon-expandable stents are made of 316L stainless steel, a majority of self-
expandable stents are made of Nitinol. 316L stainless steel is a corrosion resistant material
with low carbon content with additions of molybdenum and niobium. Nitinol is an alloy
composed of 55% weight percent nickel and 45% titanium. In addition to stainless steel and
nitinol there are a number of other materials used to manufacture stents as tabulated in table
211 Recently, various metal alloys have emerged as a good alternative to stainless steel 316L,
for e.g. the latest Boston Scientific’s Promus™ Element™ coronary stent is made from a
Platinum-Chromium alloy and Medtronic’s Integrity stent is made from a cobalt-chromium
alloy. The advantage of using alloys is that they allow relatively thinner stent struts without

compromising structural strength.

Table 2.1: Stents classification: materials

Type Material Example
Balloon expandable  Stainless steel (316L) Bx VELOCITY stent
Tantalum Wiktor

Self Expanding

Martensitic Nitinol
Paladium Iridium
Polymers

Niobium alloy Iridium
Cobalt-Chromium alloys
Platinum Chromium alloy

Super elastic Nickel-Titanium
(Nitinol)

Cobalt alloy Iridium

Full Hard Stainless Steel

Paragon

Angio stent

Ingaki-Tamai stent

Lunar StarFlex

Integrity and Xience stents
Promus ELEMENT stent

Cordis SMART

Wallstent
Cook Z-Stent

2.4.3 Manufacturing form

Stents can be made from sheet metal, wires, or slotted tubes. For sheet-metal stents, the
pattern is made on the sheet which is then rolled to form a tubular structure. Alternatively,
wires can be knitted or braided together to form tubular meshes. The majority of stents
available today are made from tubes, which are laser-cut to carve specific patterns on the
tube. Table classifies the stents based on their form.
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Table 2.2: Stents classification: form

Type Description Example

Sheet rolled to make a stent NIR stent

Wire knitted or braided together Wallstent
Slotted-Tube laser-cut Bx VELOCITY stent

2.4.4 Fabrication method

Depending on the form of the stent, different fabrication methods can be used for manufac-
turing. Conventional wire-forming techniques like coiling, knitting or braiding are used to
form stents with wires. All coil stents available today are self-expanding and made of Nitinol.
Sometimes the wires after coiling are welded at certain locations to produce closed-cell wire
stents (e.g. the Symphony stent). For slotted-tube stents, laser cutting is typically used.
Balloon expandable stents are usually laser-cut in a crimped or near-crimped state and then
surface treated (for example electropolished). Alternatively, waterjet cutting can be used for
cutting out tubes (e.g. SCS stainless steel stent). This process does not produce a heat-
affected zone along the cutting edge like that produced in the process of laser cutting. Lastly,
photochemical etching can also be used to manufacture stents. This process is currently used
to produce stents from tubing, but is also applicable in sheet processing to produce a large

number of parts in a single run.

2.4.5 Geometry

Classification of stents based on geometry is the most interesting aspect of stent design. A
vast variety of stent designs are available today with contrasting geometrical features. One
of the main objectives of this thesis is to identify geometric properties that lead to better
results for restenosis rates. Initial stent designs started with simplistic geometries/patterns,
which over a period of time have evolved into more complex shapes. The following high level

categories were used for geometrical classification of stents by Stoeckel et. al. [6]

2.4.5.1 Coil

Coil design is most common in non-vascular applications as a coil stent can be retrieved after
implantation. Coil stents are extremely flexible. However, their strength is limited and they

have a low expansion ratio. Figure [2.8a] shows the Esophacoil device with a coil design.

2.4.5.2 Helical spiral

These are helix shaped stents with no or minimal connections. Helical designs produce highly
flexible stents but compromise on longitudinal support. Internal connections help the longi-
tudinal stability by compromising on flexibility. Figure 2.8blshows the Crossflex stent with a

helical spiral design.

2.4.5.3 Woven

Woven stents are typically wire stents which have been knitted/braided together. Self-
expanding stents are often made of nitinol wires. Woven stents provide excellent wall coverage

but typically shorten during expansion. Moreover, their radial strength is highly dependent



2.4. Stents: classification and desirable properties 15

(c) Woven stent design (d) Closed cell with non-flex links

(e) Closed cell with flex links (f) Open cell design

Figure 2.8: Stent classification based on geometry [6]

on axial fixation at the ends. Figure[2.8d shows the Cook ZA stent which has a knitted nitinol

wire design.

2.4.5.4 Sequential rings

Sequential rings can be joined together at various points to make a stent. The rings can take
various shapes, the most common of which is a sequence of zig-zag Z-shaped elements to form
a ring. These rings can have various types of connections between them to form a complete

mesh. Commonly found connections are:
e Regular connections - connections at each tip of the Z-shaped elements

e Periodic connections - connections at a subset of the tips of Z-shaped elements which

repeat perodically
e Peak-peak or peak-valley connections

These connectors either are straight segments (non-flex connectors) or flexible (flex con-
nectors). Another way to consider the sequential ring stents, more commonly applicable to

slotted-tube stents, is if they are closed cell or open cell:

e Closed cell designs - These are designs where all the tips of the structural members are

connected by bridging elements/connectors. Connectors can be either flex or non-flex,
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but the combination should make closed cells. Figure 2.8d| and figure [2.8¢] shows stent

designs with a non-flex and flex connector respectively.

e Open cell designs - These are designs produced by closed cell structures by eliminating
some/all of the bridges to open-up the closed cells. Open cell stents are usually more
flexible than their closed-cell counterparts because the unconnected elements increase
longitudinal flexibility. This category also entails stents which have no tip-tip connec-
tions but connectors originating from the middle of the struts (eg. BeStent). Figure

[2.8f shows a picture of a stent with open-cell architecture.

2.4.6 Additions

A number of enhancements are added to stents, to improve their performance or visibility.

The following are the most commonly used enhancements:

e Radio-opaque markers - Gold markers to improve the visibility for stent delivery and

follow-up diagnosis
e Radio opaque coating - Gold or silicon-carbide coating to improve visibility

e Biocompatibility coating - Coatings of tantalum, phosphorylcholine, carbon, or silicon-

carbide

2.4.7 Based on major stent manufacturers

Stents can also be classified according the major manufacturers. Currently, the following are

the major manufacturers operating in the stent market:
e Boston Scientific
e Abbott Vascular
e Medtronic
e Biosensors

In terms of engineering properties, the most widely studied drug eluting stent is the
CYPHER stent, manufactured until 2011" by Cordis Corporation, Johnson & Johnson com-
pany. CYPHER, although now discontinued, is a sirolimus eluting stent on the Bx VELOC-
ITY stent platform, i.e. the geometric shape of the Bx VELOCITY bare metal stent. Figure
2.9k shows a picture of the CYPHER stent. It has a closed cell design with ‘n’ shaped flex
connectors. In contrast to the CYPHER stent, Boston Scientific’s TAXUS Liberté stent is
an open cell design and is a paclitaxel eluting stent. Figure shows the TAXUS Lib-
erté stent. Similarly, Boston Scientific’s Promus ELEMENT stent, an open cell everolimus
(derivative of sirolimus) eluting stent, is shown in Figure 2Z09c. Xience V is the main DES
produced by Abbott Vascular (shown in Figure 2.9d). It has an open cell design and elutes
everolimus. Medtronic has a BMS stent, called the Integrity stent, and a DES, called the
Resolute Integrity stent. The Resolute Integrity stent is based on the Integrity stent plat-

form, and elutes zotarolimus, a synthetic derivative of sirolimus. The geometric platform

1Johnson & Johnson announced in June 2011 [35] that Cordis corporation will stop the production of
CYPHER stent owing to their focus on other areas of the interventional cardiology market.
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Figure 2.9: Contemporary stent designs [7, [§]

of these stents, which are made from a single wire in a sinusoidal form, is shown in Figure
29. Biosensors’ BioMatrix Flex stent, shown in Figure 2.0, is a Biolimus A9 drug eluting
stent. It has a unique stent design with quadrature S-shaped links between the Z-shaped
crowns/rings. The quadrature link comprises two links per band that are axially rotated
90° between successive crowns. A number of other manufacturers are active in research and
clinical trials. Each stent manufacturer, however, has a unique stent design and a unique
drug delivery method (polymer coating and drug combination) which is characteristic of the

stent-manufacturer.

2.5 Properties of an ideal coronary stent

An ideal stent can be defined as: ‘A stent which is easy to deliver, provides adequate arterial
support, and minimises the associated adverse processes of restenosis and thrombosis, both
in the short and long term.’. This definition, although easy to understand in a general
sense, provides many challenges in terms of what is precisely meant by ‘ease of deliveability’,
‘adequate arterial support’, and most importantly what is it in a stent that would minimise
the ‘associated adverse responses’. Consequently, there is a need to define these desirable

attributes in measurable engineering terms. An ideal stent should
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1. be flexible

2. have high radial stength

3. minimise arterial injury

4. minimise hemodynamic alteration

5. provide adequate drug delivery

6. facilitate uniform drug distribution (DD)

The first point of flexibility stems from ease of deliverability that is desired in an ideal
stent. The process of delivering a stent to the stenotic site involves manoeuvring through
arteries which can be highly curved and tortuous, thereby necessitating the need for high
flexibility. High radial strength is analogous to provision of adequate arterial support. It
is important to meet the very idea of stent invention i.e. to prevent arterial recoil. The
rest of the four properties listed above relate to limiting the adverse responses of restenosis
and thrombosis. This relation between these properties and adverse responses are briefly
discussed here, but are presented in detail in future chapters. Arterial injury caused during
the stenting procedure can be directly correlated with restenosis rates (see chapter [)). This
implies that an ideal stent should minimise the injury caused during deployment. Several
studies (see Chapter () have showed a link between altered haemodynamics in stented vessels
and restenosis rates. Consequently, a good stent should alter the haemodynamics minimally.
Since DES rely on an anti-proliferative drug to inhibit restenosis, a good stent should ensure
that adequate drug is delivered in the tissue. Moreover, depending on the toxic-to-therapeutic
ratio of the drug used, the drug distribution should be uniform across the tissue surrounding
the coronary lesion.

As will be discussed in future chapters, the geometrical features of a stent design dictate
all the aforementioned features. This leads to the conclusion that it should be possible to
alter stent geometry to improve the aforementioned properties, and consequently minimise
adverse responses. However, the consideration of numerous conflicting factors while designing
a stent presents a major challenge. A change in stent geometry leading to an improvement
in one of the desirable characteristics often leads to degradation in one or more of the other
characteristics. As a result, the consideration of all the desirable characteristics, all originating
from one stent design, lead to a very complex multi-objective and multi-disciplinary design
problem.

A major part of this thesis deals with this design problem. In future chapters, the afore-
mentioned desirable properties are quantified, so that given two geometrically different designs
a judgement regarding the superiority of one over the other, in terms of a particular desired
characteristic can be made. Thereafter, two studies, one based on a constrained optimisation
formulation and one based on a multiobjective formulation, are presented as potential solu-
tions to the stent design problem. Before concluding this chapter, various approaches that
are adopted to create computer aided design (CAD) models of stents is briefly presented in

the next section.
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2.6 CAD geometry construction

The first step to evaluate any property of a stent computationally is the construction of its
computer aided design (CAD) geometry. Rhinoceros 4.0 (Robert McNeel & Associates), a
commercially available NURBS (Non-uniform rational basis splines) based modelling software,
is used for this purpose. The following subsections describe various approaches that can be

employed to construct full 3-D stent geometries.

2.6.1 Approaches to model a stent

Figure 2.9 shows a few contemporary stent designs. Most stent designs used today in clinical
practice today are slotted-tube type. Three approaches can be used to model such stent

geometries:

e Approach 1: The base geometry in this approach is a cylindrical shell with the required
thickness of the stent. Cell patterns are then cut out (boolean difference) from this base

geometry to obtain the stent geometry.

e Approach 2: In this approach the base geometry is a plane sheet of required thickness.
The cell patterns, like in approach 1, are cut out from this plane sheet, and the resulting

structure wrapped/mapped on to a cylindrical shell to obtain the final stent geometry.

e Approach 3: This approach uses curves (splines or NURBS) to model the shape of
the stent struts on a flat plane. The resulting network of curves is then converted into
a closed surface, extruded to the required height, and mapped on to a cylindrical shell

to obtain the final stent geometry.

Depending on the stent design, one of the above methods can be used. If the pattern
is easy to construct and periodically repeating, then either of the first two methods can be
used. However, if the patterns in the stent design are not so apparent, and the shape consists
of non-periodic or complex shapes, the third option proves very powerful to construct 3-D
models.

Approaches 1 and 2 are similar, but it is more difficult to cut the patterns out from
a cylindrical shell than from a flat sheet/plate. Hence, either of approaches 2 and 3 are
used for constructing stent geometries in future chapters. The following subsections describe

approaches 2 and 3 in more detail.

2.6.1.1 Approach 2

Figure 2.10al shows the starting geometry, a flat plate, used in this approach. A periodic
pattern similar to the Palmaz-Schatz stent is created (Figure 2.10D). This pattern is a solid
which can be made by outlining the pattern with closed curves (usually NURBS), converting
them to a surface, and then extruding the surface to the required height. This pattern is
then repeated periodically to fill in the base plate (see Figure 2.10d). After this a boolean
subtraction operation is performed on the flat plate with the solid patterns, which results in
the flat geometry of the stent (Figure [2.10d]). This flat structure can then be rolled around a
cylinder to obtain the final stent model, as shown in Figure 2.10€l
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(a) The flat plate (b) Cutting Pattern

A

(c) Array of the cutting patterns (d) Stent in its flat configuration (a)-(c)

(e) Flat stent rolled to get a cylindrical shape

Figure 2.10: Approach 2 to construct stent geometry

2.6.1.2 Approach 3

This approach requires the stent struts to be modelled with the help of curves, splines or
NURBS, to create a network of curves(Figure 2.1Ta]). This network is then closed and con-
verted into a surface or a collection of surfaces (Figure 2.11D]). Thereafter these surfaces are
extruded to a height equal to the required strut thickness (Figure 2ZI1d) to obtain the flat
geometry of the stent. This flat geometry can then be wrapped around a cylinder to obtain
the final stent (Figure R211d).

Figure shows 3-D stent models constructed using the three approaches mentioned above.

2.6.2 Pre-crimped state models

The approaches discussed above show how the final expanded state geometries can be created.
In reality stents are manufactured, for example laser cut, in a pre-crimped state, whose
diameter is usually lower than the final diameter when expanded. These pre-crimped stents
are then crimped, through crimping machines, to further decrease the diameter and enable

mounting on a delivery system. Thus, to model the expansion process of the stents, pre-
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(c) Extrude srufaces to make flat solid (d) Flat stent rolled to get a cylindrical shape

Figure 2.11: Approach 3 to construct stent geometry

crimped or crimped state geometrical models of the stents, depending on whether the crimping
process is modelled or not, are needed. This does not present any difficulty in terms of CAD
modelling of stents as the dimensions, for example the width of the flat plane and the radius
of the cylindrical shell used for mapping, can be altered to create stent geometries in any
required dimensions. Figure 2.13] shows the two crimped state representative models for the
Bx VELOCITY and Xience V stents, both created using approach 3.

2.7 Conclusions

This chapter has introduced coronary artery disease, its treatment options, and issues related
to its most common treatment, coronary stenting. Furthermore, a survey of a variety of
coronary stents and their classification is presented. Thereafter, the properties that are
desirable in an ideal coronary stent are briefly outlined. These properties are discussed
individually in future chapters. Lastly, computer modelling approaches to create geometries
of both expanded and pre-crimped state stents are presented.

Before moving on to computational analysis of stents based on the desired properties, the
next chapter presents an introduction to surrogate modelling and optimisation methodologies

that are employed in future chapters.
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(c) Approach 3

Figure 2.12: Stents modelled from the three approaches

(a) Crimped state model of the Bx VELOCITY stent (b) Crimped state model of the Xience V stent

Figure 2.13: Crimped state models created using approach 3



Chapter 3

Introduction to surrogate modelling

and optimisation methodologies

This chapter presents an introduction of surrogate modelling and optimisation methodologies.
First, a need for surrogate modelling and the basic formulation of the surrogate model used
in this thesis, i.e. the Gaussian Process model, is presented. Thereafter, along with an
introduction to various optimisation methodologies, the optimisation framework adopted in

this thesis is presented.

3.1 What is optimisation?

In the most general sense optimisation can be defined as the process of “finding and com-
paring feasible solutions until no better solution can be found” [36]. Here, ‘solutions’ refer
to different designs of the problem at hand, for example in the case of aerodynamic wing
design solutions might refer to the different shapes of the wing; in the case of bridge design
solutions might refer to the different structures which the bridge can take; and in the case
of pharmaceutical drug design, it might refer to drugs produced by different combinations
of individual drug components. Hence, one design can be thought of as a combination of
several decision variables, where each decision variable can take multiple values. Decision
variables in the case of wing design could be the location of NURBS control points that
define the shape of the wing; for bridge design it could be the network (i.e. nodal locations
and connectivity) of trusses and the lengths, cross-sections, materials etc. for each truss;
and for drug design they could be the mole-fraction of each individual drug component. A
‘better’ solution in the definition refers to comparison with regards to a goal. For example,
in the case of wing design the goal could be to achieve minimum drag; for bridge design
the goal could be to achieve minimum weight; and for drug design the goal could be to kill
maximum cancerous cells. In all of the tasks the goal would involve either maximisation or
minimisation (collectively known as optimisation) [36] of a goal. Optimisation procedures
that have only one goal are known as single-objective optimisation procedures, and those
that have more than one goal are known as multi-objective optimisation procedures, where
the goal is to simultaneously minimise or maximise two or more goals. For example, in wing

design the two goals could be to minimise drag and maximise lift; for bridge design the goal

23
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could be to minimise weight and minimise the cost of materials; for the problem of drug
design the goal could be to maximise number of cancerous cells killed and minimise the cost
of production. The final term in the definition is ‘feasible solutions’. A feasible solution
refers to solutions that do not violate any constraints. Constraints are requirements that are
imposed irrespective of the goal. There are usually two type of constraints: those that are
imposed on decision variables, commonly known as decision variable bounds; and those that
are based on evaluation of a quantity based on the solution. An example of decision variable
bounds for bridge design could be that each truss must not exceed a pre-determined length;
and an example of an evaluated constraint could be that the maximum load that the bridge
structure can withstand without failure must not be lower than a pre-determined threshold.
Figure B shows an example of optimisa-
tion performed by National Aeronautics and
Space Administration (NASA), USA, to de-
sign a space antenna for the Space Tech-
nology (ST5) satellites [9]. Using a system-
atic search and a parameterisation, i.e. the
choice of design variables, that can represent

a large design space, often non-intuitive de-

signs, which are highly efficient can be ob-

tained by the process of optimisation. Figure 3.1: Space antenna designed by NASA

Given the above background, a gen- using evolutionary optimisation and artificial

eral single objective optimisation problem of , . elligence [9]

minimising a particular goal, say y(X) that

depends on n decision variables Xi, Xo, ..., Xy, collectively written as the vector X, subject to
decision variable bounds, X; € [XiL, X:J], | equality constraints, hj(x) =0, j =1,2,...,], and m
inequality constraints gk(X) > 0, k=1,2,...,m, can we written as
Minimise y(X) (3.1)
such that hj(x) =0 ji=12,....1
and ok(x) >0 k=12....m
subject to X € [XiL, XI-U] i=12,...,Nn

Similarly, a generic multiobjective optimisation problem, with q goals, yp(X), p=1,2,...,q,

can be written as

Minimise Yp(X) p=12,...,9 (3.2)
such that hj(x) =0 i=12,...,1

and ok(x) >0 k=12,...,m
subject to X € [XiL, XiU] i=12,...,n

In both the above formulations, many times, the variable bounds are included as inequality
constraints.

Several algorithms, ranging from classical point by point methods to population based
evolutionary algorithms have been developed to solve the above problems. Before discussing
such algorithms in section 3.3, an overview of surrogate modelling is first presented in the

following section.
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3.2 Surrogate modelling

Any algorithm that is used to solve the optimisation problems formulated in equations [B.]
and inevitably employs evaluation of the objective function, or goal(s), y(X) or yp(X), and
the constraints, hj(x) and gk(X), at multiple solutions, X, in order to guide the search process
towards the minimum. Usually, this does not present a problem if the objective function is
either available in analytical form, or can be computed cheaply. Low cost here refers to the
computational time taken to evaluate the objective function at one solution, and is a relative
term. For example, for aerodynamic wing design, various solvers based on their respective
complexity and assumptions, may take different amounts of computational time to evaluate
the drag or lift on the wing. If the cost of evaluating the objective and the constraints
at one solution is very high, cost being measured in terms of both analysis times and the
computational budget available, then the application of almost any optimisation algorithm
to such objective functions becomes impractical. This is primarily because it becomes difficult
to evaluate the expensive objective function, also known as the high-fidelity solution, at so
many solutions as required by any optimisation algorithm [18].

The aforementioned difficulty in using high-fidelity analysis for optimisation led to the
development of approximation techniques. Pioneered by Schmit, Farshi, and Miura [37, [38],
the concept that from the data obtained by the analysis of an initial design, an approximation
of the objectives in the neighbourhood of the initial design can be constructed was developed.
This later led to the development of more general approximation techniques [I8]. The central
notion behind such techniques is to represent the true functional relationship, y = f(X), as
an approximation, §¥ = f(x,@), where @ is a vector of unknown parameters. The unknown
parameters are either evaluated by a black-box based approach or a physics based approach
[18]. In contrast to physics based approaches, where the form of governing equations is
exploited to determine the functional form, § = fA(X, @), black-box approaches assume that the
existing analysis codes can not be modified and hence for each solution the only information
obtained from the analysis is the value of the objective function. Consequently, for black-
box approaches, the high-fidelity analysis code is typically run at a number of pre-selected
solutions (inputs) to find the corresponding objective function values (outputs). Thereafter,
the input-output data obtained is used to train a surrogate model, by various approaches
(most usually minimising a loss function, for example root mean squared error) [I8]. This
thesis is primarily concerned with this black-box surrogate modelling approach, owing to the
practical advantage of no modification to the analysis codes, such as the computational fluid
dynamics and finite element analysis codes that are employed to analyse the performance of
stents.

The approximation models developed, also known as surrogate models, are computation-
ally cheaper to evaluate and can be used in-lieu of the high fidelity analysis for all purposes,
including optimisation, where repeated evaluation at several solutions is required for the task.
As will be clear in future chapters, the high-fidelity analysis of each stent for evaluation of
the desired characteristics, takes over seven days of computing time. This makes surrogate
modelling indispensable for the design optimisation studies related to coronary stents.

In the following subsections, the three most popular approaches for surrogate modelling,
viz. polynomial models, radial basis function models, and Gaussian Process models are

presented. While the first two approaches are presented succinctly, the formulation for the
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Gaussian Process predictor is presented in detail (as it forms the basis for the optimisation
method developed in chapter [I0).

3.2.1 Polynomial models

In a polynomial surrogate model, the functional form of the input-output relationship, § =
fA(X), x € R" | is assumed to be of polynomial form [39, 40]. For example, a quadratic model

can be written as

¥=Co+ Z CjXj + Z Cp-1+j+k Xj Xk (3.3)
1<j<p 1<j<pk>j

where €, C1,...,Cm1, M= (N+1)(n+2)/2, are the m unknown coefficients. This model can be

compactly written as
9(x) = cx (3.4)
where € = [Co,C1,...,Cmn-1]" € R™ and X = [1, X1, X, ..., X5, XaXo, X1 X, - .., X3] 7. Now, if p
solutions are observed, i.e. the high-fidelity analysis is run over p points, x0,i = 1,2,...,p,
to evaluate the corresponding function value, Y),i = 1,2,...,p, the coefficients, ¢ can be

determining by using least squares regression, i.e. by solving the following system of equations:

Ac =y, (3.5)
where
1 ()2
1 x@ @ (2y2
A=| X2 ‘ (X'f) € RPM (3.6)
1 Xg-P) X(Zp) (XEP)Z
and
y = [yl’ yl’ ce ’yp]T E Rle' (3-7)

The reader is referred to the texts by Box and Draper [39] and Myers and Montgomery [40]

for further details of such models and methods of determining the accuracy of such models.

3.2.2 Radial Basis Function models

Radial Basis Function (RBF) models are similar to polynomial models except that they
employ a different set of basis functions, the radial basis functions, as opposed to polynomials

[18]. The general form of the surrogate model can be written as follows

p
§(x) = > aiK(lx = xO), (3.8)

i=1
where | - || represents the norm, usually the Euclidean distance, K(||x — x®||) is a radial basis
function and «j, i = 1,2,..., p, are unknown weights for each radial basis function centered

at the sampled point, X®). The many choices for the radial basis functions are listed in Table
B [18]. It can be observed from this table that the Gaussian, multiquadratics, and inverse
multiquadratics RBF's involve an additional parameter, 6, called the shape parameter. The
shape parameter controls the shape of the RBF and hence the domain over which each radial
basis function has an influence. For example, for the Gaussian RBF, as 6 increases, each RBF

gets wider, thereby influencing a larger domain.
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Table 3.1: Typical choices for RBFs for radial basis function surrogate modelling [I§]

RBF form for K(|)x — x®|)) (Equation B.8)
Linear splines [Ix — x|
Thin plate splines X = xOKIn [x = xO) : ke [2,4,..]
Cubic splines [Ix — x®13
. ( X - x@nz)
Gaussian exp|—————
— xy2\¥2
X=X
Multiquadratics (1 + %
Ix = xO2\ 2
Inverse multiquadratics (1 + T)
In order to calculate the weight vector @ = [a1, a2,..., cxp]T € RP*, the method of linear

least squares is employed, and the following system of equations is solved

Ka =y, (3.9)
where K is the Gram matrix [18]
K(IX® =x®)) - KIx® —x@) ... K(Ix® - x®y)
o K(IIX(Z).— X)) K(IIX(Z).— X)) - K(IIX(Z).— x®|)) R (3.10)
K(nx(p).— xOn) - K(Ix® - x@1) K(Ix® - x®|)
and
y=[yLyh . L yPlT e RPL (3.11)

For a discussion on singularities of the Gram matrix, that might lead to difficulties in
solving equation 3.9 the reader is referred to the work of Micchelli [41] and Wang [42]. As
mentioned before the Gaussian, multiquadratics, and the inverse multiquadratics RBFs have
an additional shape parameter 6, which is selected by the user. This shape parameter can
have a significant effect on the performance and smoothness of the approximation model [18].
Various methods are often employed to estimate the optimal value of 6 from the observed
data. The two primary methods to accomplish this are the ‘leave-one-out’ method and the
‘maximum likelihood’ method. In this section, the ‘leave-one-out’ method is described. The
‘maximum likelihood’ approach is presented in detail in the next section where the formulation
of a Gaussian Process predictor is presented.

For the leave-one-out approach, first the prediction error needs to be defined. This error
refers to the square of the difference between the actual value of the function and the prediction

made by the surrogate model at a point X. It is defined as

2
P
Q) =y - > aiK(Ix- x| , (3.12)
=1
where z denotes the training data set, Y0) denotes the real function value at a point X, and x{0)
represents the training data points. If a validation data-set is available, the sum of the above
errors for all the points in the validation data-set can be minimised to yield an optimum value

of 8. However, this is not always practical, especially when the computational time to create
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the training data-set itself are high. The leave-one-out procedure overcomes this challenge.
The procedure involves calculating the weight vector, @, by using all but one training point,
i.e. leaving one point out, and making a prediction from the trained model at the left-out

point. Hence, the leave-one-out approximation error can be written as

p 2

Qza-) =y - > aK(x® x| , (3.13)

j=1j#

where a@_j represents the weight vector calculated by deleting the i point from the training
data-set, and y0) denotes the real function value at a point XV. The leave-one-out process is
repeated p, the number of points in the training data set, times leaving out a different point

each time to calculate the total approximation error
1 p
Q@ = o D .Qza), (3.14)
i=1

where Q(2) is the mean of the total approximation error. A value of 6 that minimises the
above mean error is chosen as the optimal value of 6 for the RBF model [18]. In the next

section, a popular surrogate model, the Gaussian Process model, is presented.

3.2.3 Gaussian Process surrogate models

Gaussian Process (GP) modelling is a widely used and statistically rigorous method for con-
structing surrogate models [18]. Its origins lie in the work of Krige [43], who developed the
method to predict mineral concentrations, in the area of geostatistics [44]. A detailed account
of Gaussian Process modelling can be found in the works of Sacks et. al. [45], Santner et.
al. [46], Mackay [47], and Rasmussen & Williams [48]. It must be noted that GP modelling
is also referred to as Kriging or DACE (design and analysis of computer experiments) mod-
elling [I8]. Throughout this thesis the words Kriging and Gaussian Process modelling are
used interchangeably to imply the same process. Similarly, the words Krigs and GP models
are also used interchangeably.

In what follows, the formulation of a Gaussian Process predictor, and the corresponding
uncertainty involved in the prediction, is presented. However, first it should be noted that
a Gaussian Process model by definition relies on Gaussian Processes, which are a kind of
stochastic processes. Hence, before moving on to the formulation of a GP predictor, the
concept of stochastic processes is discussed. Parzen [49] defines stochastic processes as “a
family of random variables {X(t),t € T}, indexed by a parameter t varying in an index set T”.
For example, if the radius, r, of a continuous one-dimensional wire of length L, is represented
as a stochastic process, then this stochastic process is the family of random variables that
represent the radius of the wire at each location t, where t can take any real value between 0
and length, L. Thus, the index set T to which each t belongs is [0,L]. Now, it seems that if
one wants to completely describe the radius of this wire through this stochastic process, then
an infinite number of random variables are needed in the process. However, it is possible [49],
for all practical purposes, to adequately represent the stochastic process by a finite number
of ordinates, t. Hence, one way to describe a stochastic process, {X(t),t € T}, is to specify the
joint probability distribution for n random variables, X(t1), X(t2), ..., X(ty), i.e. to specify the

form of
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FX(ty).,...X(t) (X1> X2, - - . » Xn) = P(X(1) < X1, X(t2) < X2, ..., X(tn) < Xn), (3.15)

.....

where F is the cumulative probability distribution function and P represents probability.

Alternatively, the probability density, f(Xg, Xp,..., X)) function may be specified, i.e.

X1 X2 Xn
Fx(t).... X(tn)(Xl,Xz,---,Xn)=f f f f(Xe, X2, ..., Xn) dx1dXz. .. dXn. (3.16)

It will be seen in the next section, that Gaussian process models, following the definition
of stochastic processes above, are stochastic processes where the aforementioned joint proba-
bility density function is assumed to be a multivariate Gaussian probability distribution, i.e.

f(X1, X2, ..., Xn) = T(X), where X = [X1, Xo, ..., %] € R™ is specified to be

F00 = (20) 21 ¥ 2exp 50~ )75 - ) (3.17)

where g € R™! is the mean vector and £ € R™" is the covariance matrix [48]. The above is

written compactly as

X~ N(u, ). (3.18)

With the above background, the formulation of the Gaussian Process predictor is pre-

sented in the next subsection.

3.2.3.1 Formulation of a Gaussian Process predictor

Let y be an unknown function which depends on n variables (X1, Xp,...,Xn). If the vector
X is written as X = [Xq, X2,..., Xa]", then the goal is to formulate a model structure which

represents the relationship of y as a function of the vector X, i.e.

y= (). (3.19)
In Gaussian process modelling, any finite number of function values, yx®), y(x®@), ..., y(x®),
evaluated at the q points, X, x@ ... x@ where x() = [xg),xg),...,x,q)]T, are assumed to

be random variables which are a realisation of the Gaussian random field, i.e. they have a
joint Gaussian (normal) distribution. If the mean of the Gaussian random field is g and its

covariance is I'(X, X’), then the model structure can be written as
Y(X) =B + Z(X), (3.20)

where B, the mean of the random field, is to be estimated, and Z(X) is a Gaussian process

with zero mean and the following covariance:

Cov(x,x’) = I'(x,X’) = o2R(X, X’), (3.21)

where o2 is the process variance and R(X,X’) is a parameterised correlation function, between

two points X and X’. A common choice for the correlation function is

R(x,x) = exp

=1

G X]I”‘J)], (3.22)
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where 6; > 0 and O < mj < 2 are undetermined hyperparameters. Since any finite observations
of the function are assumed to be realisations of the above field, the set of observed outputs
{y(xD),y(x@), ..., yx®PH}, compactly written as {y,y, .. yP} also have a joint normal
distribution. Thus the vector of outputs y = [y, y@, ..., y¥P]T has the following Gaussian

distribution with the assumed covariance structure as specified by equation B.2I] that is

y-~-N(@18T), (3.23)
where 1is[1,1,...,1]" € RP, and I € RP*P is the variance-covariance matrix whose i j element
is given by T(x®, x0), i.e.

F(X(l), X(l)) F(X(l), X(Z)) . F(X(l), X(p))
F(X(Z), X(l)) F(X(Z), X(Z)) . F(X(Z), X(p))

= . : . : : (3.24)
F(X(p), X(l)) F(X(p), X(Z)) . F(X(p), X(p))

Consequently, from equation [3.17 the likelihood function, i.e. the likelihood of the observed

data being generated by the parameterised Gaussian random field, is

L(6.8,0%) = (21) P2(02) PARI™Z exp _2%2(3/ ~1B)TRy - Jﬂ)), (3.25)

where 6 is a vector of the 6;, i = 1 to n, hyperparameters, R € RP*P is the correlation matrix

whose ij element is given by R(x®, x0)), i.e.

R(X(l), X(l)) R(X(l), X(Z)) . R(X(l), X(p))
R(X(Z), X(l)) R(X(Z), X(Z)) . R(X(Z), X(p))

R = . . ) . , (3.26)
R(X(p), X(l)) R(X(p), X(Z)) . R(X(p), X(p))

and |R|™Y2 is the determinant of the matrix R. In order to estimate the hyperparameters, 6, 3,
and o2, this likelihood function is maximised. This is equivalent to minimising the negative
log of the likelihood function (in order to convert the products into sums). The negative
log-likelihood function obtained from equation is

£(0.8,02) = % pln(27) + plno? + In|R| + %(y -18)"R Yy - 18)|. (3.27)

To minimise the above negative log-likelihood function, its derivatives with respect to the

hyperparameters are set to zero. The derivative with respect to 8 is

0L®.p,0%) 1

=—@1"Ry-1"RM1p) =0 3.28
-~ 1TR 1y

Similarly, differentiating the negative log-likelihood function with respect to o2 yields

0L0.8.09) 1[p 1

dog 2|of  (02)?

y-18)"R Y y-18)|=0 (3.30)
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— 2= %(y _ 18Ry - 18). (3.31)

Equations 3.29 and B.31] provide optimal estimates for 8 and o2, respectively, for a given 6.
Differentiating the negative log-likelihood function with respect to 6; yields

2
0L0.6,03) _1 [TT(R_la_R

_ (v — T —15_R 10, _ _
96 2 agj) y-15)'R ae,-R (y-18)|=0, (3.32)

where Tr denotes trace of a matrix, i.e. Tr(A) = Z}:ma“, when A € R™M. Unlike equations
and B30 equation does not yield an analytical solution for the estimate of 6.
Hence, an iterative scheme in 6 must be employed to minimise £, where, for each 6 the
optimal estimates for 8 and o2 are calculated using equations and B.3T1

Having calculated the maximum likelihood estimates for 8, 8, and 02, one can predict the
function value at an unobserved point, X*. If y* denotes the output at this unobserved point,
X*, then according to the prior assumption that any finite number of outputs (function values

calculated at different points) have a joint normal distribution, the following can be written

;

where 1p41 is [1,1,...,1]T € RP* and y(x*) = [02R(x*, xD), 2R(x*, x@), . .., o 2R(x*, xP)]T €

RP . Now, in order to get a prediction for y* we take the conditional distribution of y* given y.

(3.33)

r 7(X*) ]

“Nﬂl"”ﬁ]’ YT T x)

This is called the posterior probability distribution. Since the prior distribution is Gaussian,
the posterior distribution is also Gaussian (because conditional distribution of a Gaussian

distribution is a Gaussian; see appendix [A] for details), and is given by

yly = N(B+7(x)THy - 18) , T(x".x") = y(x) T 1y (x")). (3.34)

From the above, the posterior mean and posterior covariance can be written as

§(x) = B+ t() TRy - 1B), (3.35)
and  C(x.x) = o3(R(x.X') — ¥(x) T R ¢(x)), (3.36)
where t(x) = [R(X, x®), Rx,x@), ..., Rx,x®)]T € RP , and represents the correlation of the

new point at which prediction is being made with all the observed data points. The mean
of the posterior, as predicted by equation [3.35], is seen as the prediction of the output at the
new point, X, and the posterior variance given by the following equation is seen as a measure

of uncertainty associated with the prediction of the output

o?(x) = C(x.X) = oZ(1 - r(x) "R *r(x)). (3.37)

For computational efficiency, it is advantageous to write w = R™(y — 18), so that the posterior

mean can be written as a dot product of two vectors, W and ¥(X)", as follows

i=p
9(X) = B +1r(x)Tw =8+ Z wpR(x, x0). (3.38)
i=1
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This concludes the formulation of the Kriging predictor, where the prediction at a new point
and the associated uncertainty can be calculated by equations B38 (or B30) and B37 re-

spectively.

3.2.3.2 Validation methods for GP models

Once a GP model has been constructed, the validity of the model, i.e. the accuracy of the
model, needs to be ascertained. If testing data is available, i.e. the response of a function for
a number of points other than the training points, then the validity of the GP model can be
ascertained by evaluating the prediction error, i.e. the difference between the predicted value
and the actual function value, at the testing points. However, availability of testing data is
usually impractical owing to the computational cost of running the high-fidelity analysis at
the testing points. To circumvent this difficulty, Jones et. al. [50] proposed the concept of
“standardized cross-validated residual” (SCVR). It is based on both the leave-one-out method
presented in section and the posterior variance, as defined by equation B.37. The basic
idea is to create the GP model by leaving one point at a time, and calculating the posterior

mean and variance at the left-out point. SCVR is defined as

yO - 9-i(xM)

(3.39)

where Y@ is the observed value at the i point that is left-out in creating the GP model, §_; is
the prediction at the left-out point, and o_j is the square root of the posterior variance, O-Ei’
of the prediction at the left-out point. If the SCVR for all the points lies in [—3, +3] then the
GP model constructed is appropriate [I8]. This implies that the GP model is approximately
99.7% confident that the predictions lie between +3 times the square root of posterior variance
[50].

This concludes the introduction to surrogate modelling. Before moving on to presenting
an introduction to optimisation algorithms in the next section, useful tools of main effects and
sensitivity indices are introduced in the next subsection. These tools are helpful in extracting

relationships between the variables and the function that is modelled as a GP.

3.2.3.3 Extracting relationships between response and variables in GP models

It is apparent from equations and 337 that the GP predictors do not present the rela-
tionship between the components of decision variable, X, and the response, Y(X), in a readily
interpretable manner [51, [45], [52]. Hence, in order to understand the functional relationship,
the effect of one component of X, say X, on y(X) needs to be isolated from the effect of other
components of X. This is done by integrating out the effects of all variables but one from the

response Y(X) as [51}, 52]

1
) =& fv y(x) ﬂdxj, (3.40)
j#i
where Y(X) is called the main effect of variable X, and V is the hypervolume created by all
the variables excluding X;. The above integral can be approximated numerically as a sum
over a grid of points in the hypervolume [52]. It is often desirable to combine the main effects

into global sensitivity indices, as suggested by Sobol [53], as
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_ o) dx
T:lijz(Xj) dx;’

where n is the total number of variables influencing y(X), and S;j are global sensitivity indices,

(3.41)

which denote the relative effect/sensitivity of the variable X with respect to all other variables.
These sensitivity indices are used in chapter [1 to study the relative effect of design variable
specifying stent geometry on objective functions that measure stent performance. In the next

section a brief overview of optimisation methods is presented.

3.3 Optimisation algorithms

As discussed before the process of optimisation involves locating and comparison of feasible
solutions until better solutions can not be found [36]. Any numerical scheme that achieves
this task is known as an optimisation algorithm.

For a minimisation problem, a local minimum and global minimum can be defined. A
local minimiser of f(X) is defined as a point, X*, such that there is a neighbourhood, N, of X*
such that f(x*) < f(X) for all x € N [54]. On the other hand a global minimiser of f(X) is
defined as a point, X*, such that f(x*) < f(X) for all x € R", where n is the dimensionality of
f(X), or for all x€ D, where D is the search domain [54]. Hence, every global minimum is a
local minimum but the converse is not true.

The necessary and sufficient conditions for a local minimiser can be easily defined. The
first-order (implying that only first derivative information is used) necessary condition states
that “If X* is a local minimiser and f(X) is continuously differentiable in an open neighborhood
of X*, then Vf(x*) = 0”7 [54]. Intuitively, this can be rationalised by the argument that if V f(x*)
is non-zero, then the function is decreasing in the direction of —Vf(x*) and hence by moving
in that direction the function value can be further decreased, thereby implying that X* is not
a local minimum. The necessary conditions however do not guarantee that the solution found
is a local minimum: a point satisfying the necessary conditions is only a stationary point and
it could be a local minimum, local maximum, or a saddle point. In order to be certain about
the point being local minimum, the second-order sufficient conditions need to be satisfied.
These are stated as “Suppose that V2f(X) is continuous in an open neighbourhood of X* and
that VI(x*) = 0 and V?f(x*) is positive definite. Then X* is a strict local minimiser of f(X)”
[54].

Having laid out the necessary and sufficient conditions, in the following sections an
overview of optimisation algorithms according to a broad classification is presented. Unless

explicitly stated otherwise, a minimum in this chapter refers to a local minimum.

3.3.1 Gradient based methods

As the name suggests, gradient based methods use derivative information in order to guide
the search process towards a minimum. In its most general sense, starting from a feasible or
a random point in the search domain, the next point to be evaluated is decided by moving in
a search direction that is calculated by using derivative information at the start point. This
process is then repeated until no more improvement in the function value can be made. The

general form of such methods can be written as

XD = x4 o g (3.42)
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where x®*1) is the next point to be evaluated, x® is the current point, @ is the step length,
and s®) is the search direction at X®). In essence, at every point X®) a step of a is taken
in a direction s®, depending on the optimisation algorithm, to obtain the next point x®**+1,

Common methods to determine the search direction are described in the next subsections.

3.3.2 Steepest descent

The formulation of steepest descent direction is easy to understand if one considers the first

order Taylor’s series expansion of the function f(x) about the current point x*)

FxD) = £(x0 + @ W) & £(x¥) + @ ()T VH(xW), (3.43)

where V f(x®) represents the gradient vector at the current point X*). Along a search direction
s, the above equation represents a linear approximation for the function f(x) about the
current point X®). It is clear from this that maximum decrease in the function will be achieved
if ¥ is equal to —Vf(x®)) [55]. This direction is known as the direction of steepest descent
and an algorithm that uses this direction at each iteration of equation is called a steepest

descent search algorithm.

3.3.2.1 Newton’s method

Newton’s method considers the second order Taylor series expansion of the function along a

search direction s®

D) = F(x + @ $9) ~ F(x9) + @ ()T V(W) + ? %(s(“))THK EQ (3.44)

or

VD) x V(W) + oH* W, (3.45)

where H¥ represents the Hessian matrix, at the current point x®, i.e. the ijM element of H¥

is given by

« 02 (x9)
U a% 0x;”

(3.46)

First order optimality condition for an optimum implies that at the optimal solution, X*,
the first derivative is zero, i.e. Vf(X*) = 0. Newton’s method ensures this at each iteration by
setting Vf(x**D) to zero. Equation B45 then becomes

0= Vix¥W) +aH* ¥ (3.47)

or

a 9 = —[H 1V (xW). (3.48)

The above direction s¥ is used by the Newton’s method in Equation 42l Newton’s
method assumes that the Hessian matrix is available at each iteration. In many cases the
Hessian matrix is not available directly or is expensive to calculate [I8]. This led to the

development of Quasi-Newton methods, which are discussed next.
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3.3.2.2 Quasi-Newton or variable metric methods

Newton’s method, as shown above, required the inverse of the matrix to be computed at each
iteration. This might not be practical either due to the expense of calculating the inverse
of the Hessian or due to the non-availability of the Hessian directly. In Quasi-Newton or
variable metric methods, the inverse of the Hessian matrix is approximated in the region of
the minimum by a sequence of iterative application of first derivative information. The search

direction, instead of equation [3.48]] is written as
sM = — ARV (x), (3.49)

where A is an approximation to the inverse of the Hessian.
The Davidon, Fletcher, and Powell (DFP) [56, 57] method, calculates A¥ starting from

A0 = I, where | is an identity matrix [54, [55] using

AK,yK,yKTAK S(K)S(k)T
+

AK+1 = AX —
,yKTAK,yK ,yKTSK ’

(3.50)

where

v = VExED) — v (xW), (3.51)

The DFP method, although quite effective, was superseded by the BEFGS method [54].
The BFGS updating method, named after the inventors Broyden, Fletcher, Goldfarb, and

Shanno, constructs the approximations to the Hessian as

HKS(K) s(k)T H« ,)/K,)/KT

k+1 _ gk
= oA T (8.52)
and approximations to the inverse of the Hessian as
PRSI (Ol Y P -l 3.53
L) T e ) e 12:59)

The BFGS method is currently considered to be most effective of all the Quasi-Newton
methods [54]. Many other Quasi-Newton methods, such as the SR1 method, Broyden class
updates, etc. have been proposed in the literature. These are not discussed in this thesis,
but the reader is referred to the text by Nocedall [54] for details.

3.3.3 Conjugate Gradient methods

These methods originated with a view to solving the linear system of equations, Ax = b.
The solution to this equation can be seen as the minimiser to the quadratic function, f(x) =
%XTAX —~bTx [54]. The underlying idea is that the solution can be found in exactly n searches,
where nis the dimensionality of the problem, by sequentially searching along any n directions
that are conjugate to each other with respect to the matrix A. Two directions, s and st
are conjugate with respect to A if " As() = 0. The problem, however, is to find n directions
that are conjugate to each other with respect to the matrix A. Several techniques, such
as eigen value decomposition, Gram-Schmidt orthogonalization, etc. can be used to find
conjugate directions. However, this can be computationally expensive. To resolve this issue,
the method of conjugate gradients (CG) was developed. The method of CG computes a new

search direction, S¥, which is conjugate to all previous search directions, by using only the
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last search direction, SV, CG creates the new search direction, s¥), as a linear combination

of the negative current residual, —Vf(x®), and the previous search direction s as follows

V(x®)TA sk-1)
S(K—l)TA S(K—l)
Hence, in the above method, choosing the first direction to be the steepest descent direc-

9 = _vi(x®) + (3.54)

tion and calculating subsequent directions as defined above, the CG method would find the
minimum of a quadratic function in exactly n searches. Fletcher and Reeves [58] proposed a
modification to calculate search directions so that non-quadratic functions could be optimised
efficiently by the CG method. Their modification calculates successive search directions as

follows

VIGONT VI®)

& = v
)+ D) T VD)

(3.55)

3.3.4 Non-gradient methods

Non-gradient methods are those which do not use the derivative information to guide the
search process towards the minimum. These can be classified into pattern/direct search

methods and evolutionary methods.

3.3.4.1 Pattern or Direct Search methods

These methods rely only on function evaluations around the current point, i.e. the function
is evaluated in a neighbourhood and a decision, without evaluation of the gradient, is made
whether the current point should be updated by a surrounding point or not. The two well
known such methods are the pattern search by Hooke and Jeeves [59] and the simplex search
by Nelder and Mead [60]. The Hooke and Jeeves pattern search works with search directions
that span the search space, for example in an n-dimensional space n linearly independent
directions are required. The search works by a series of exploratory moves that are changed
heuristically [55]. In each iteration, the current point is perturbed in each of the search
directions sequentially (called the exploratory move). If a better point is found, the current
variable is updated to the best point; otherwise the perturbation distance is decreased by a
specified factor. When a better point is found after the exploratory move, a jump along the
direction of the movement in the exploratory move is made, in hope of a further decrease in
the function (the pattern move). Thereafter an exploratory search is carried out from the
new point obtained by the jump: if a better point is found, the current point is updated;
otherwise the perturbation distance is further reduced. This procedure is repeated until the
perturbation distance becomes smaller than a pre-specified convergence limit.

The Nelder and Mead [60] method works with a simplex. This simplex is a geometrical
shape with non-zero hypervolume and n+1 vertices in an n-dimensional space. The algorithm
begins by evaluating the function at all the vertices of the simplex and calculating the worst
point, best point, and the second best point. Thereafter, the simplex is changed by rules to
guide the search process away from the current worst point and towards the better points.
The four rules are reflection, expansion and reflection, contraction, and multiple contraction.
In reflection, the worst point is reflected through the opposite face of the simplex such that the
hypervolume of the simplex remains the same. In expansion and reflection, the worst point is

reflected but is placed further away than the previous case, thereby resulting in an increase
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of the hypervolume. In contraction one vertex is displaced towards the opposite face, and in
multiple contraction, a face is displaced towards the opposite vertex. The process is repeated
until the hypervolume of the simplex reduces to a size less than a pre-specified convergence

limit.

3.3.4.2 Evolutionary methods

Evolutionary Algorithms (EA) are algorithms that mimic evolutionary processes found in
nature for optimisation [36]. Keane and Nair [I§] identify two features common to all evo-
lutionary algorithms: first, that these algorithms employ random numbers, and hence the
repeated application of the same algorithm with identical parameters and starting points
yields different search trajectories to locate optimal solutions; and second, that all such algo-
rithms are global optimisation algorithms, i.e. locally optimal solutions might be discarded
during the search process. The most well-known EAs are genetic algorithms, simulated an-
nealing, evolution strategies, evolutionary programming, and particle swarm optimisation.

Here, one of these methods, genetic algorithms, is discussed.

3.3.4.3 Genetic algorithms

Genetic algorithms (GAs), due to their wide applicability and documented success, have be-
come a popular choice for optimisation procedures [36, [61]. As opposed to classical algorithms
for optimisation that work with a single point at a time, GAs work with a population of points.
An initial population is first created randomly in a search domain; then, at each iteration
the members of the this population undergo selection, crossover, and mutation to create the
next generation. As this process is repeated, the average fitness (representing the goodness
of solution(s)) of the population increases, thereby moving towards the global optimum of
the problem at hand. To represent solutions in a population, a representation of candidate
solutions is needed. An important distinction among GAs is made in this regard. GAs that
represent candidate solutions (phenotypes) as strings of binary bits (genotypes) are known as
Binary coded GAs. In such GAs each binary string is mapped on to the real space in order
to calculate fitness values. On the other hand GAs that work directly on real variables are
called Real coded GAs. The working principles of a GA can be succinctly described by the
following steps [36]:

Representaion: As mentioned above a candidate solution can either be represented as
a string of binary bits (sections of which correspond to different variables), or real

variables (no mapping needed).

Fitness assignment: Each candidate of the population is assigned a fitness value based on
the objective function value at that point. Many schemes exist for such assignment, for
example, fitness of a candidate can be equal to the objective function, an appropriately

scaled value of the objective function, rank of the candidate in the population, etc.

Selection: The selection operator is the first genetic operator that is applied to the popu-
lation in order to select candidates for a mating pool (i.e. for future genetic operators).
Its goal is to create more copies of strong (having relatively high fitness value) candi-

dates while diminishing the number of weak candidates (relatively low fitness value).
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The simplest, but powerful, of selection operators is tournament selection. In this pro-
cedure, any finite number of solutions are picked from the population, and the winner
(i.e. the candidate with best fitness among the picked candidates), is declared winner
and copied to the mating pool. This procedure is repeated until the mating pool is
full. Many other schemes exist for selection, such as roulette-wheel selection, stochastic

remainder roulette-wheel selection etc.

Crossover: This is the next genetic operator that is applied to candidates in the mating
pool. The goal of crossover is to create new candidate solutions (called the child solu-
tions) from the members of the mating pool. One such scheme for binary coded GAs
is the single-point crossover. In this scheme, two candidates are picked at random from
the mating pool, and a random crossover site (between one and length of the binary
string representation) is generated. Thereafter, with a probability (p¢) (crossover prob-
ability) the bits before the crossover site are exchanged between the picked candidates
to create two new child solutions. These children are added to the new population
and this procedure is repeated until the entire new population is created. The working
principles of a single-point crossover were implemented by Deb et. al. [62] for real
coded GAs. This operator, called the simulated binary crossover (SBX) operator, has
capabilities to restrict child solutions within the bounds of the search variables and
has been successfully applied in many test problems [15]. A number of other crossover

operators have been proposed and analysed in the GA literature; see [63] for details.

Mutation: The mutation operator is next applied to the post-crossover population. The
goal of a mutation operator is similar to that of the crossover operator, i.e. to create new
solutions. For binary coded GAs the mutation operator involves flipping the bits of a
candidate genotype with a, usually very low, mutation probability (pmy). For real coded
GAs, various equivalents, have been proposed [36]. One such widely used operator is

the Polynomial mutation operator proposed by Deb and Goyal [64].

To summarise, a GA starts with an initial population which is a random set of solutions
in the search domain. This population then undergoes selection, crossover, and mutation, to
create the next generation of the population, and this process is repeated. At each genera-
tion, the selection operator increases the number of relatively better solutions, the crossover
operator combines features of these relatively better solutions to create child solutions, and
the mutation operator changes the solution locally in the hope of creating better solutions.
Although not explicitly guaranteed, the combined effect of these operators is to increase the

fitness of solutions over generations, and consequently lead towards the optimum result [36].

3.4 Constrained optimisation

So far in this chapter, methods that solve only unconstrained problems have been discussed.
In this section an overview of optimisation methodology in the presence of constraints is
discussed (cf. equation BI]). At this point, a few definitions are necessary. The Lagrangian

function (£) of the general problem of equation [3.1] is defined as

m |
L£06U,V) = F) = > uea) - Y vi hj(x) (3.56)
k=1 i=1
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or

L u,v) = f(x) —uTg(x) - vT h(x), (3.57)
where U and Vk are the Lagrange multipliers, and the vectors u = [ug, uz,...,um]T and
V = [Vi,Vo,...,vu]T are the vectors of Lagrange multipliers for the inequality and equality

constraints, respectively. The addition of Lagrange multipliers combines the constraints to
yield an unconstrained optimisation problem. One also needs to differentiate between active
and Inactive constraints: an inequality constraint, say gj(X), is said to be active at a point
x* if the point falls on the constraint surface, i.e. @i(X*) = 0; otherwise the constraint is
called inactive. With this background, the first-order optimality conditions, also known as
the Karush-Kuhn-Tucker (KKT) conditions, for a point X* to be a local minimiser of equation
B can be stated as follows [54]

Theorem 3.4.1. If X* is a local solution to equation [31], the functions f(X), gi(X), and hj(X)
are continuosly differentiable, and the set of active constraints at the point X* are linearly
independent, then there exist Lagrange multiplier vectors U and V with components Ux, K =
12,....,mandvj, | =12,...,1 such that the following conditions are satisfied

VxL(X",u,v) = 0; (3.58)
=0 k=12,....m ( )
hj=0 j=12...1 (3.60)

wok=0 k=12,....,m ( )
w=0 k=212....,m ( )

Equation B.G1] represents the complementary conditions. They imply that either uk is
equal to zero or the constraint gx is active [54] [55]. The above stated KKT conditions form
the basis of many constrained optimisation algorithms.

A wide variety of optimisation problems are formulated as linear programming (LP) prob-
lems. A linear program is an optimisation problem with a linear objective function and linear
constraints [54]. The two types of methods used to solve linear programming problems are
active set methods and interior point methods. The simplex method developed by Dantzig
[65] (not to be confused with the simplex method by Nelder and Mead discussed earlier) is the
most famous of the active set methods to solve LP problems. Among interior point methods
Karmarkar’s projective algorithm [66] is very popular. These methods are not discussed in
detail in this thesis; the reader is referred to standard texts [54, (65, 66] for further details.
In what follows an overview of non-linear constrained optimisation algorithms is presented.

These algorithms can be grouped as

3.4.1 Quadratic Programming

Quadratic Programming (QP) methods aim to solve the quadratic problem, i.e. an optimisa-
tion problem where the objective function is quadratic and the constraints are linear. These
are important in non-linear constrained optimisation as many optimisation algorithms, such
as sequential programming methods, solve a sequence of quadratic sub-problems iteratively
[54]. The methods to solve quadratic programming problems can be divided into three groups:

active-set, gradient projection, and interior-point methods. Here these methods are discussed
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briefly. A general QP problem can be written as

Minimise q(x) = 3xXTGx +xTp (3.63)
subject to aij = b; i=12...,1
gx>de  k=12....m

If there are no inequality constraints, then by theorem [B.41] the set of KKT conditions

can be written as

G -AT| [x -
- 7P, (3.64)

A O u b
where A is a matrix whose rows are given by ajT, j=2L12,...,1, and u is a vector of Lagrange
multipliers for the equality constraints, and b is a vector containing bj, j =1,2,...,1. This

system of linear equations, can be solved by factorisation methods (such as LU factorisation),
or iterative CG methods.

In the presence of inequality constraints, many methods use the form discussed above as
subproblems to be solved in each iteration. Active set methods are those which maintain an
estimate of the inequality constraints that are active in each iteration. If the contents of the
active set, i.e. indices of inequality constraints that are active, are known, then the inequality
constraints that are not active can be ignored, the active inequality constraints can be posed
as equality constraints, and the resulting problem can be posed as the above discussed form
to be solved. However, the contents of the active set are not known a priori. Thus active set
methods move from one iterate to other by solving a subproblem where some of the inequality
constraints, called the working set, are treated as equalities [54], i.e. it is assumed that only
these inequality constraints are active. After each iteration the contents of the working set
are systematically modified to identify a solution for the QP.

In active set methods, the working set changes in each iteration usually changes only by
one index. This makes the method require a large number of iterations to converge to the
optimum point. Gradient projection methods remedy this problem by offering a rapid way
of changing the working set, and are most effective when the only constraints in the QP are
variable bounds [54]. In this method, a steepest descent search is made from the current point
until a constraint is encountered. When a constraint is encountered, the search direction is
‘bent’ to remain in the feasible region. Thus, the search is made along a piecewise linear
path, and a local minimiser, called the Cauchy Point, is located. The working set is updated
to the inequality constraints that are active the Cauchy point. Thereafter, a QP subproblem
is solved with this new working set at the Cauchy point to obtain the next iterate [54].

Interior point methods also work with the KKT optimality conditions (theorem B.Z4.T]).
They convert the inequality conditions, equations and .62, to equality conditions by
introducing slack variables. Furthermore a log barrier term is added to the objective function

to result in the following problem

Minimise IXTGx +XTp—pu YR logs (3.65)
subject to aij = b; i=12,...,1
gx—tk-s=0 k=12...m

where S¢ are the slack variables corresponding to the inequality constraints, and u is a barrier

parameter. In the limiting case of u — 0 the solution of the above problem is the solution to
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the QP. Most interior point methods employ Newton-Raphson’s iterations to solve the system
of KKT optimality conditions for the above problem and update the value of u to obtain the
solution at the limiting case of u — 0 [54].

The reader is referred to the text by Nocedal [54] for details of the aforementioned algo-

rithms.

3.4.2 Penalty and augmented Lagrangian methods

In these methods, the objective function and constraints are combined together, in each
iteration of the algorithm, to form an unconstrained optimisation problem [54], 55]. In penalty

methods, the general form of the combined function can be written as

C(x,R) = f(x) + Q(R, g(x), h(x)), (3.66)
where R is a set of penalty parameters, and Q is the penalty function [55]. Typical choices
for Q include, Rh;(x)? for equality constraints and Ri{(gj(x))? for inequality constraints (the
bracket operator (@) is equal to a if a is negative and zero otherwise) [55]. Typically, the
penalty parameter R is changed in successive iterations.

The augmented Lagrangian method, also known as the method of multipliers, uses the

following combined function for unconstrained optimisation at the « iteration [55] [54]

Cx R o®, 70 = £(x) + Rzm: [((gk(x)> + o) - (a(,f))z] (3.67)
k=1

+R§|: [(hj(X) + TEK))Z - (TEK))Z] ,
=t

where the bracket operator is as defined previously, and R is a penalty constant. The param-

eters ok and 7j are varied in successive iterations as follows

TEK‘F]—) — hj(X(K)) + TEK)' (3.69)

It can be shown that the solution obtained by the above procedure satisfies the first-order

KKT conditions [55]. Moreover, this method yields the Lagrange multiplier values

Ux = —2Ro, (3.70)
Vj = —ZRTJ'. (3.71)

Many modifications of the above method exist [54], for example a linearised or quadratic
form for the constraints and objective function at the current point can be used in lieu of the

original forms, in order to simplify the problem of unconstrained optimisation.

3.4.3 Linearised search techniques

Linearised search techniques work by linearising both the objective and constraints at the

current point, X¥. A non linear function, f(X) can be linearised at a point,x*, by the following
)
f(x) ~ FOX) + [VEX)]T (X = x9). (3.72)
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The linearisation of both objective function and constraints results in a linear programming
problem, which can be efficiently solved by the simplex method proposed by Dantzig [65].

One such algorithm is the Frank-Wolfe method [55], where to form the new iterate, x<*1,

a
line search is performed in the direction from the old point to the point found by the simplex
search of the linear programming problem. This procedure is repeated until convergence

criterion are met.

3.4.4 Cutting plane method

In the cutting plane method the objective function is minimised by introducing a new variable
y which is minimised in lieu of the original function [55]. To account for the objective func-
tion, f(X), an additional constraint, y — f(X) > 0 is artificially introduced. Thus the objective
function of the modified problem is y, which is a linear function. The cutting plane method
begins by ignoring all the constraints of the modified problem except the bounds. This is a
linear-programming problem which is solved using the simplex method. Next, at this solu-
tion, the most violated constraint is identified, and linearised. Now the linear programming
problem is solved again with the bound constraints and the linearised form of only the most
violated constraint. This solution forms the next iterate. Next, the most violated constraint
at the solution is found again and linearised. A new linear programming problem with the
bound constraints, previous constraint, and the currently linearised constraint, is solved, to
yield the next iterate. This process is repeated until the maximum constraint violation is
below the specified tolerance. This method works only when the feasible search space is

convex.

3.4.5 Feasible directions method

The method of feasible direction [55] [I8], [67] also works with linearised forms of the objec-
tive function and inequality constraints, and is only applicable in the absence of equality
constraints. The underlying idea of this method is that if the current iterate has no active
constraints then a steepest descent direction should be used for search, but if there are active
constraints then the search direction should also account for feasibility. A direction of descent
at a point X* is a direction, S, for which Vf(x¥) - s < 0. Similarly a direction, s, is feasible
for the ki inequality constraint if Vgy(x*)-s¢ > 0. The method of feasible direction achieves a
balance between these by solving the following linear-programming problem at each iterate,

XK

Maximise 0 (3.73)
subject to Vf(x¥)-s‘< -0
Vok(X¥) - s> 60 ke set of active constraints

-1<s<1l

The solution of the above problem is used to perform a unidirectional search along the
found direction to find the next iterate x**1. This process is repeated until no feasible direction

can be found, i.e. when the solution to the above linear programming problem is 6 < 0.
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3.4.6 Sequential Quadratic Programming (SQP) methods

Sequential programming methods (SQP) are one of the most effective methods to solve
non-linear constrained optimisation problems [54] 68]. SQP methods solve a quadratic sub-
problem in each iteration. A quadratic sub-problem of equation Bl at the current point X*

has the following form

Minimise  (r¥)Tdx + 30y B.dx (3.74)
subject to  Vh(x*)Tdy + h(x*) = 0,
Vg(x“)Tdy + g(x*) > 0,

where dy = X — X*. One choice for vector r* can be the gradient of f(x) at x*. Similarly, the
symmetric matrix B, can be chosen as the Hessian matrix of f(x) at x¥. This, however, is not
appropriate when the constraint functions are non-linear, as the objective function does not
include constraint non-linearity information and all the constraints have been linearised. To
account for the non-linearity of the constraints, while using the linearised form in the quadratic
sub-problem, SQP methods use a quadratic form of the Lagrangian as the objective function

[68]. Hence, r* is chosen to be the gradient of the Lagrangian function

r' = Vy LX<, u“,v9), (3.75)

where U* and V¥ are current estimates of the Lagrange multipliers. Similarly, B, is usually
chosen as an approximation to the Hessian of the Lagrangian rather than the actual Hessian.
Methods like BEGS updating, discussed in the previous section can be used for that purpose.

The solution of the quadratic sub-problem is then solved to yield a direction dy, which is
used to construct the new iterate x**! from the current iterate X< by taking a step from Xx*
in the direction of dy. To determine the length of the step, a merit function, ¢(x), is needed.
Typical choices for merit functions include penalty functions and augmented Lagrangian
functions as discussed in section A decrease in the merit function, ¢(X), ensures that
an improvement in the original non-linear problem has taken place. With this background,
the basic SQP method can be outlined as follows [6§]

Step 1 Start with approximations of (X%, u%,v®) and Bg. Set x = 0. Choose a merit function,
#(X); set k = 0.

Step 2 Formulate the quadratic programming problem, equation 374 at the current iterate
X¢. Solve the quadratic programming problem using any method from section B.4.1l
Obtain (dy, dy,dy) from the solution. dy and dy denote the difference between u and v

found by the solution of quadratic sub-problem and the current u and v.

Step 3 Choose step length @ by solving the unconstrained optimisation problem of min-

imising the merit function along dy, i.e. unconstrained minimisation of ¢(x* + ady).
Step 4 Calculate the new iterate by the following.

X1 = X + ady,

Ut = U + ad,,

Kk+1

VT = v + ady.
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Step 5 If convergence achieved, stop.
Step 6 Update B, using an update algorithm like BFGS to obtain B,1

Step 7 Increment x = k + 1; go to Step 2.

The SQP algorithm is used in chapter [ for constrained optimisation of coronary stents.

3.5 Multiobjective optimisation

Multiobjective optimisation, as mentioned in the beginning of this chapter, is an optimisation
procedure where the goal is to minimise more than one objective. Similar to the single
objective optimisation procedures, both classical, i.e. point by point search, methods and
evolutionary, i.e. population based, methods have been proposed to solve multiobjective
problems. However, evolutionary approaches, owing to the inherent advantage of working
with a population, and the fact the optimal solution is not one point but a set of points, have
gained popularity for such problems. This section reviews some of the algorithms proposed
for multiobjective optimisation.

In order to understand multiobjective optimisation, the concept of dominance and opti-
mality needs to be defined. In a problem with q objectives, as in equation B2 a solution X

is said to dominate x! if both the following are true [36]
1. The solution X' is no worse than x! in all the objectives, fox), p=12,...,q
2. The solution X is better than xJ in at least one objective

With the above definition of dominance, a non-dominated set of solutions from a set of
solutions can be defined. The non-dominated set of solutions, in a set of solutions P, is the set
of solutions that are not dominated by any member of the set P. If the set P consists of all the
members in the search domain, then the non-dominated set of P is called the Pareto-optimal
set [36]. In a non-dominated set of solutions, no solution can be deemed better than the
other. Hence, the goal of a multiobjective optimisation algorithm is to find non-dominated
sets of solutions, while being as close to the Pareto-optimal set as possible.

A range of algorithms — from classical gradient based algorithms to evolutionary algo-
rithms — have been proposed to obtain non-dominated solutions. The easiest extension of
single objective optimisation algorithms to multiobjective problems is the weighted metric
approach. In this approach the multiple objectives are combined into a single objective by
taking a weighted-metric of the objectives, for example weighted-sum or weighted deviations
from an ideal solution (eg. Tchebycheff metric) [36]. By choosing different weights for objec-
tives, different single objective optimisation problems can be formulated, and solved to obtain
a set of non-dominated solutions. Haimes et. al. [69] proposed the e-constraint method, and
suggested minimising one objective while specifying other objectives as constraints to lie in
small bounds. Das and Dennis proposed the normal boundary intersection method (NBI)
method to find a uniform spread of solutions on the Pareto front [70]. In this method first,
a simplex of the convex hull of all the individual minima (of all the objective functions) is
found. Thereafter, starting from a uniformly distributed set of points on this simplex, the
distance from each point towards the origin is maximised to find solutions that could po-

tentially be non-dominated. Ismail-Yahaya and Messac [71] proposed the normal constraint
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(NC) method, which was later improved by Messac et. al. [I7,[72]. In this method, the utopia
line/plane is first found (for a biobjective problem this is the line joining the individual min-
ima in the objective space). Thereafter a set of uniformly distributed points are generated
on the utopia line/plane and a constrained optimisation problem from each of these points
is solved. The constrained optimisation problem minimises one objective, while all other
objectives are formulated as constraints, normal plane/lines from the point on utopia plane,
to restrict the search space.

Compared to the aforementioned classical algorithms, evolutionary algorithms perform
significantly better on most problems, especially as the dimensionality of the search space
increases [30, [73]. Of the many evolutionary algorithms proposed for multiobjective optimi-
sation (see [36] for details), the most popular are the modified non-dominated sorting genetic
algorithm (NSGA-II) [74] and the improved strength Pareto evolutionary algorithm (SPEA2)
[75]. Zitzler et. al. [75] showed that SPEA2 and NSGA-II show best overall performance when
compared to the then contemporary multiobjective algorithms (namely Pareto-envelope based
selection algorithm (PESA) [76] and SPEA [77], the predecessor of SPEA2). Here, SPEA2
and NSGA-II are described.

3.5.1 Improved strength Pareto evolutionary algorithm (SPEA2)

The improved strength Pareto evolutionary algorithm (SPEA2) [75] is an improvement over
its predecessor SPEA [77] in three aspects: improved fitness assignment, density estimation,
and archive truncation. SPEA2 works with two sets: the GA population and an external
archive set. Fitness is assigned to every member of the population, P, and archive set, IS, as
follows. Every individual, i, in the union of these sets (P U IS) is assigned a strength value,
S(i), equal to the number of individuals i dominates. The raw fitness of every individual, i, is
then determined by summing the strength values of all members in PU P which dominate the
member i. Hence, a raw fitness of zero implies a non-dominated individual in the combined set.
Thereafter, density estimation for each individual is performed, to differentiate individuals
with identical raw fitness values. For this, the distances of each individual to all other
individuals in PUP are calculated, and sorted in a list. The inverse of the ki element of this
list (o-!‘), K being chosen by the user (analogous to the kK — th nearest neighbour method), is
chosen as the density estimate, D(i), i.e. D(i) = 1/ (0'=‘+ 2). The fitness of an individual is then
assigned to be the sum of its raw fitness score and density estimate.

After calculating the fitness values for each member of the population and the archive, an
archive update operation is performed. In this operation the non-dominated individuals in
the set PUP are copied to the archive of the next generation. If the number of non-dominated
individuals is less than the size of the archive size allocated, then, after filling the archive set
with the non-dominated individuals, the remaining places are filled with the best dominated
members from the set PUP. On the other hand, if the number of non-dominated individuals
is higher than the allocated archive size, a truncation procedure to remove non-dominated
individuals iteratively is performed. This ensures that the number of non-dominated solutions
copied to the archive is equal to the allocated archive size. With the fitness assignment and
archive update defined as above, population size N, archive size I\_I7 the SPEA2 algorithm can
be defined as follows [75]

Step 1 Create a random parent population Pg of size N; set the archive population ISO = o,
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where ¢ is the null set; set generation counter x = 0.
Step 2 Calculate fitness for all individuals in P, and F_>K.
Step 3 Perform archive update to generate P,.1 of size N.

Step 4 Stop is « > kmax, i.e. if maximum generations is reached. Return the non-dominated

individuals in Pyy1.

Step 5 Perform selection on |5K+1, binary tournament selection with replacement, to fill the

mating pool.

Step 6 Apply crossover and mutation operators to the mating pool obtained from Step 5,
to generate P,,1; go to Step 2.

3.5.2 Non-dominated sorting genetic algorithm

The non-dominated sorting genetic algorithm-II (NSGA-II) is one of the most widely used
evolutionary multiobjective optimisation algorithm. NSGA-II, proposed by Deb et. al. [74],
is an improvement the earlier proposed NSGA by Srinivas and Deb [78] over three areas:
computational complexity, elitism, and need of sharing parameter specification. NSGA-II
uses a fast non-dominated sorting algorithm to identify Pareto sets and a crowding compar-
ison operator to maintain diversity in the population. The latter aspect is driven by the
motivation to get a uniform distribution of the solutions in the Pareto set. Before describing
the algorithm, the fast non-dominated sorting algorithm and the crowding distance operator
are first described.

NSGA-IT works by classifying the population into non-dominated sets. The first non-
dominated set consists of all the non-dominated members of the population. The second set
consists of all the non-dominated members of the population after removing the members
of the first set. In this way the entire population is classified into different Pareto sets by
assigning a non-domination rank, irank: a non-domination rank of 1 is assigned to all members
of the first non-dominated set, non-domination rank of 2 to the next non-dominated set, and
so on. NSGA-II uses a fast method for this classification. Initially, for each solution, p, in the
popoulation two quantities: a) the domination count, np, which is the number of solutions
that dominate the solution p; and b) the set, Sp, containing all the members of the population
which are dominated by the member p, are calculated. Now, the first non-dominated set has
already been obtained, i.e. all the members who have their domination count equal to zero.
Thereafter, for each solution p with np = 0, the members of the set Sy are visited, and their
domination count is reduced by 1. During this process all members ¢ in the set, Sp, for
which the domination count becomes zero, are stored in a separate list. This separate list
constitutes the second non-dominated set, Q. This procedure of visiting each element of the
set Sp, belonging to each member of the list Q, and reducing its domination count by 1 is
now repeated. This process leads to classification of all the members of the population into
non-dominated sets.

For preservation of diversity in the population, NSGA-II uses crowding distance. For each
member, p, in a non-dominated set, identified by the aforementioned procedure, the crowding
distance, igigance, is the average distance between the two points on either side of the member,
p, in its non-dominated set. For the corner points, igigance 1S assigned to be infinity. Based

on this the crowding distance operator (<) is defined as follows [74]
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solution i <y solution j if
irank < jrank OT

irank = jrank and (idisance > Jdistance)

Thus, between two solutions belonging to two different non-dominated sets, the solution
with a lower non-domination rank is preferred; if the solutions belong to the same non-
dominated set, then the lesser crowded solution is preferred.

With this background, the NSGA-II algorithm can now be defined

Step 1 Create a random parent population Pg of size N;
Step 2 Sort Py into non-dominated sets, i.e. assign irank to each member i of N;

Step 3 Use the standard tournament, crossover, and mutation operators to form an offspring
population Qp (see section B.3.4.3)) of size N;

Step 4 Set generation count, « = 0,
Step 5 Generate combined population, R, by joining populations P, and Q,;

Step 6 Sort R, according to non-domination. Let the set F; refer to all members with

non-domination rank i;

Step 7 Create P, 1 by filling members from sets ¥, startin with i = 1 and incrementing i
by one. Identify the set ¥, the last non-dominated set which, if included, will make the

size of P,;1 will exceed N;

Step 8 Sort the last non-dominated set | based on crowding-distance operator, and fill the
remaining places in the population, P,y1, with the least crowded members of the last

front F;

Step 9 Create offspring population Q.1 by using the crowded-distance based tournament

operator, and standard crossover and mutation operators;

Step 10 If « is equal to the maximum generation count, stop; otherwise set k = k + 1 and

go to Step 5.

NSGA-IT is used in chapter [@ for a multiobjective optimisation study on coronary stents.

3.6 Surrogate assisted optimisation methodology

Having presented an overview of both surrogate modelling and optimisation algorithms in
this chapter, in this section the general optimisation methodology with the help of surro-
gates is outlined. As mentioned in section B.2] when the analysis times for the high-fidelity
simulations (real response) are high, it is practically advantageous to construct a surrogate
for the response. This surrogate can then be used by the optimisation algorithms in lieu
of the high-fidelity simulations for approximating the response at all the points which need
evaluation by the chosen optimisation algorithm. The general methodology for optimisation

in such cases is [18]
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Step 1: Choose a sampling plan to generate locations, x(), i = 1,2,..., p where the high-
fidelity simulations will be run to evaluate the real response of the function at these

points;

Step 2: Run high-fidelity simulations at x0, i = 1,2,..., p, to calculate the corresponding
function response, Y,y . (P Represent the inputs and outputs with the dataset,
D0 = (x0,0)}, i =1,2,..., p; set update counter, x = O;

Step 3: Construct a GP surrogate model using the dataset, ¥ by methods outlined in
section [3.2.3

Step 4: Apply an optimisation algorithm to search the predictor, §(X);

Step 5: Verify the results of the Step 4 by running the high-fidelity simulation on the

predicted optimum,;

Step 6: If stopping criterion are met stop; otherwise update! the dataset D* with additional
points generated either in Step 4 or other update methods [I8, 50, [79] such as expected
improvement criterion, maximum error, etc., to generate the appended dataset D+

set update counter x = k + 1; go to Step 4.

3.7 Conclusions

In this chapter an overview of surrogate modelling and optimisation is presented. It is clear
that in order to perform optimisation studies — single objective or multiobjective — on coronary
stents, figures or merit, i.e. objective functions, need to be formulated which can be used to
compare different stent designs. A major part of this thesis deals with such formulations. For
example, in the next chapter a measure of haemodynamic alteration in a stented coronary
artery is formulated. Similarly, in chapters [, [6] and [§ objective functions from the point of

view of structural analysis, flexibility, and drug-distribution are formulated, respectively.

!The update process of surrogate models is referred as active learning in the field of machine learning [18]



Chapter 4

Haemodynamics in stented vessels

This chapter! primarily deals with haemodynamic evaluation of coronary stents, i.e. to study
how the flow features in stented vessels are related to the design features of a stent. This re-
lation is made within the currently accepted paradigm for the causes of in-stent restenosis. In
subsequent chapters, other factors including arterial injury, drug-distribution, and flexibility

are evaluated. The aims of this chapter are

1. to set up a computational fluid dynamics (CFD) model to evaluate blood flow in a

stented segment of a coronary artery,

2. to compare flow features relevant to restenosis (cf. section 2:31)) in five different coro-

nary stents, and

3. to formulate an objective function that quantifies haemodynamic alteration, relevant to

restenosis, that can be used in optimisation studies.

This chapter begins by a review of studies — in vivo, computational, and experimental —
that identify a potential link between altered haemodynamics and restenosis. Thereafter, the
details of the CFD model are presented, and the results of the comparison of flow features
between five different stents are discussed. Finally, a computationally measurable objective

function that can be used to compare stents based on haemodynamic alteration is formulated.

4.1 Introduction

Though coronary stent designs have evolved significantly over the past two decades, they
still face the problem of in-stent restenosis, formation of neo-intima within six-months of the
implant. Studies show that biological response post stent implantation depends on various
factors including the stent design and how it alters the haemodynamics. This chapter takes

five different stent designs, representing different coronary stents used in clinical practice,

!The contents of this chapter are published in the below mentioned article. Dr. A.I.J Forrester, as the
author’s then co-supervisor, contributed to this article through discussions, and Dr. N. Curzen is a cardiac
surgeon who actively advises the author regarding the clinical aspects of restenosis.

Pant, S., Bressloff, N. W., Forrester, A. I. J. and Curzen, N. The influence of strut-connectors in stented vessels
: A comparison of pulsatile flow through five different coronary stents. Annals of Biomedical Engineering,
38:1893-1907, 2010.
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and explores the haemodynamic differences arising due to the differences in their design. Of
particular interest is the design of the segments that connect two struts. Pulsatile blood
flow analysis is performed for each stent, using 3-D CFD, and various flow features viz.
recirculation zones, velocity profiles, wall shear stress (WSS) patterns, and oscillatory shear
indices are extracted for comparison. Vessel walls with abnormal flow features, particularly
low, reverse & oscillating WSS, are usually more susceptible to restenosis. Unlike previous
studies, which have considered the effect of design parameters such as strut-thickness and
strut-spacing on haemodynamics, this chapter investigates the differences in the flow arising
purely due to differences in stent-geometry, other parameters being similar.

The following subsections review the studies which show the effect of flow disturbance on

restenosis.

4.1.1 Effect of stent design: in wvivo studies

Kastrati et al. [80] analysed 4,510 patients with stent implantations and showed that ves-
sel size and stent design were first and second most important factors affecting restenosis,
respectively. In their analysis, which predominantly used eight different types of stents, it
was found that, depending on the stent design, the incidence of restenosis varied between
20.0% to 50.3%. Rogers and Edelman [81] studied denuded rabbit iliac arteries after im-
planting steel stents for 14 days. They reported that stent material and configuration were
critical factors in determining intimal hyperplasia and thrombosis. By comparing two stents,
with the same surface area and mass but different strut-strut intersections, they reported
that reducing strut-strut intersections significantly reduced vascular injury, thrombosis, and
neointimal hyperplasia. Kastrati et. al. [82] performed an analysis over 651 patients, in which
coronary stents of similar designs but different strut-thickness were implanted, and reported
that reduction in strut-thickness resulted in significant reduction in angiographic and clinical
restenosis.

From the point of view of altered haemodynamics, a significant body of evidence suggests
that sites with low mean shear stress, oscillatory shear stress, high particle residence times,
and non-laminar flow are the sites where most intimal-thickening occurs. Ku et. al. [83]
84] reported a strong correlation between low mean wall shear stress (less than 0.5 Pa)
and atherosclerotic intimal thickening in human carotid bifurcations. They also reported
that regions experiencing oscillating shear stress may enhance atherosclerosis. Moore et. al.
[85] studied intimal thickening in 15 post-mortem aortas and reported that in the region
of the infrarenal aorta, vessel regions exposed to low mean and oscillating WSS are more
inclined to the development of plaque when compared to regions exposed to high WSS.
Wentzel et. al. [86] studied neointimal thickness in 14 patients after 6-months of Wallstent
implantation. They used a 3-D reconstruction of arteries to determine neointimal thickness
and computational flow analysis to calculate shear stress on the surface of the stent. For 9
out of 14 implantations they observed that neointimal thickening and in-stent shear stress
were inversely correlated. The aforementioned studies suggest that stent design, which leads

to specific WSS patterns, is a key determinant of restenosis rates.



4.1. Introduction 51

4.1.2 Effect of stent design: studies on altered haemodynamics

This section reviews computational and experimental studies that have identified a link be-

tween stent design and haemodynamic alteration.

4.1.2.1 Computational Studies

Computational fluid dynamics provides an excellent tool for studying micro features of the
flow and has been widely used for flow analysis through stented vessels. Berry et. al. [87]
performed experimental and 2-D computational flow analysis using custom-made models of
a braided wire stent, Schneider Wallstent®, to reveal flow separation and formation of stag-
nation zones between wires. They studied the effect of wire spacing and diameter on the
stagnation zones and reported that stent geometry had a significant effect on arterial haemo-
dynamics. In particular, their findings concluded that the fluid stagnation zones are contin-
uous if wire spacings in the stent design is less than six wire diameters. Ladisa et. al. [88]
performed steady state 3-D CFD simulations in a Palmatz-Schatz slotted-tube stent using
data from in vivo measurements of canine left anterior descending coronary artery diameter
and blood flow velocity. They reported that regions of low wall shear stress are localized
around stent struts. They also suggested that angled struts that are aligned in the direction
of the flow could minimise flow disturbances. In another study they [89] reported that while
reducing the number of struts and strut-thickness reduced the percentage of arterial wall
area exposed to low wall shear stress, the opposite was observed if strut-width was decreased.
Rajamohan et. al. [90] studied pulsatile & non-Newtonian blood flow through a stent with a
helical strut matrix and identified recirculation zones immediately upstream and downstream
of each strut intersection. Their investigation suggested that such areas could be more sus-
ceptible to restenosis. Similar other studies [91], 92, 03, 94] have shown that stents, depending
on their design, cause significant alterations in haemodynamics leading to particular zones
which could be susceptible to smooth muscle cell proliferation and restenosis.

Seo et. al. [91] studied haemodynamic disturbances induced by stents in straight and
curved segments of vessels. They suggested that in curved segments the difference in WSS
patterns between the outer and inner walls depends on the vessel curvature and the flow
Reynolds number in a complex manner. They studied the flow for two different designs,
one with spiral structure and one with an intertwined ring structure, and revealed that the
stent-design had a major effect on the flow disturbances. Balossino et. al. [95] modelled
expansion of four different stents against plaque and artery using finite element analysis and
used the expanded geometries to evaluate the haemodynamics. They compared the WSS
distribution for these stent models and also studied the effect of strut-thickness on vessel
haemodynamics. In particular, they reported high wall shear stress values at the centre of
the stent cells and a decreasing trend in wall shear stress as one moved away from the centre
towards the stent struts. The aforementioned computational studies re-affirm the role of stent

design in determining WSS in stented artery segments, and hence restenosis rates.

4.1.2.2 Experimental Studies

Some experimental studies have been performed which employ various methods like dye
injection flow visualization and particle image velocimetry. Peacock et. al. [96] used an

in vitro pulse duplicator system to investigate flow disturbances in the downstream region
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of stented segments and used alumina particles for flow visualization. They detected flow
instabilities 1 ¢cm downstream, and no instabilities were found 5 cm downstream, for mild-
exercise conditions. Berry et. al. [87] used dye injection flow visualization and reported
accumulation of dye at each strut-strut intersection. Benard et. al. [97] used a programmable
pump and particle image velocimetry to investigate laminar flow over stents and identified
zones around the stent struts that had low WSS. Such experimental studies imply a correlation
between the stent design and flow instabilities in stented vessels, particularly in and around

the stent-struts.

4.1.3 Studies on endothelial cell response

Relatively few studies exist which investigate the response of endothelial cells to haemody-
namics in stented vessels. DePaola et. al. [98] showed by in vitro experiments that the
vascular endothelium responds to shear stress gradients. They reported that endothelial cells
migrate from areas where shear stress is low but the shear stress gradient is large, and that
cells remaining in such regions divide at a faster rate compared to the cells exposed to uni-
form shear. Nagel et. al. [99] reported that alteration of blood flow leads to differential WSS
gradients that modulate endothelial gene expression at atherosclerotic prone sites. Yeh et. al.
[100] compared the growth of endothelial cells on different stent materials. They concluded
that endothelial cell growth and protein expression level varies widely depending on the metal
sheet used. In particular, for all seeding levels, they found that endothelial cell growth was
high for TiN and TiO2 when compared to 316L stainless steel and nitinol.

Although many studies have tried to understand the effect of stent geometry on altered
haemodynamics, most have focussed on the effect of strut spacing and strut thickness. This
chapter deals with the effect of stent shape on haemodynamics. Connectors (mostly flex) are
an essential component of a stent-design as their presence makes the stent flexible, which in
turn improves stent deployment. With the new stent designs now used in clinical practice,
especially drug eluting stents, there comes a need to study the effect of these connectors,
along with the overall geometry, on haemodynamics. In order study these effects a CFD

model is developed. This model forms the content of next section.

4.2 Methodology

4.2.1 Geometry

The five stents used in this chapter resemble the ART stent [§], Bx VELOCITY stent [34],
NIR stent [34], the MULTI-LINK Zeta stent [34], and the Biomatrix stent [I0I]. These stents
are chosen to represent a wide range of stent geometric shapes: the ART stent has straight
connectors, the NIR, Bx VELOCITY, and MULTI-LINK ZETA stents have differnt complex-
ity of the curved connectors, and the Biomatrix stent does not follow quarter-symmetry like
the other stents. The details of each stent are listed in table [4.1]

In order to make a comparison between the stents, representative geometries for each
stent are constructed with the same diameter (3 mm), length (8 mm), strut width (0.05 mm),
and strut thickness (0.10 mm). Strut thickness represents the radial dimension of the struts
and strut width represents the circumferential dimension. It should be noted that the strut

spacings used in this chapter are purely representative and they are likely to differ, to some
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Table 4.1: Stents: details

Stent Manufacturer Referred as
ART stent Arterial Remodelling Technologies Stent A
BxVELOCITY stent Johnson & Johnson Stent B
NIR stent Boston Scientific Stent C
MULTI-LINK Zeta Abbott Vascular Stent D
Biomatrix stent Biosensors Stent E

vu

=

Figure 4.1: Flat geometries for the five stents — left top: Stent A, left mid: Stent B, left
bottom: Stent C, right top: Stent D, right bottom: Stent E

extent, from the actual spacings for each of the stent designs. Figure [£.1] shows the flattened
out geometries for one quarter of each stent except for Stent E, for which a half section
is shown. The straight lines drawn in each model define the line on the artery wall along
which wall shear stress and modified oscillatory shear index (MOSI) values are calculated
and compared in subsequent figures. For all flow simulations the stent is placed at the centre
of the artery with an axial distance of two times the artery diameter on both the proximal
and distal ends of the stent. The artery wall is assumed to be straight with a constant
diameter. Figure shows the stent-artery assembly for Stent B. Numerical simulations
are performed over a quarter of the stented segment for all stents, except for Stent E for
which a half segment (owing to the quadrature links which do not allow quarter symmetry)
is used, to exploit the periodic symmetry of the stent-artery assembly. All the geometries are
constructed in Rhinoceros 4.0, a NURBS-based CAD modelling tool (1993 — 2008, Robert
McNeel & Associates). Approach 2 (section 2Z.6.1.0)) is used to construct Stent A while all
the other stent models are created using approach 3 (section 2.6.1.2). Figure shows the
full 3-D models of the five stents.

4.2.2 Governing Equations

The following mass conservation (equation F.1)) and momentum conservation (equation E.2)

equations are solved over the computational flow domain of the stent-artery assembly:

V.(v) =0, (4.1)
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Figure 4.2: Stent-artery assembly for Stent B

(a) Stent A (b) Stent B

(c) Stent C (d) Stent D

(e) Stent E

Figure 4.3: 3-D models of the stents used in this chapter



4.2. Methodology 55

0
pa—‘t, +pv.Vv = —vP + uV2v. (4.2)
In the above equations v, p, u and P represent blood velocity, density, dynamic viscosity,
and pressure respectively. Blood flow is assumed to be pulsatile, incompressible, laminar, and
Newtonian with a density of 1.060x10~2 kg/m™ and dynamic viscosity [88] of 3.7x1072 Pa-s.

Reynolds number (Re) and Womersley parameter (@) are defined as follows:

— pviD - TP
Re = R and a=D 2T

where D is the internal diameter of the artery and T denotes the time period of the cardiac
pulse.

At every time, t, in the cardiac pulse the following two parameters are defined
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0, otherwise.
where 7\y and 75, represent wall shear stress magnitude and axial wall shear stress, respectively.
Hence, pi(t) and pr(t) denote the percentages of artery wall area exposed to WSS magnitude
less than 0.5 Pa and axial WSS less than 0.0 Pa respectively. While pi(t) is a measure of low
WSS in the artery wall, pr(t) measures the artery wall area exposed to reverse flow.
To compare the oscillatory nature of WSS, the modified oscillatory shear index [90], is
calculated using the following equation:

fOT Tt

Jo It

(4.6)

where both integrals are calculated over one cardiac pulse.

4.2.3 Boundary Conditions

The outer wall of the stent is assumed to conform to the inner artery wall with no gaps.
Both the stent and the artery wall are assumed to be rigid with a no-slip flow boundary
condition imposed on each. A physiologically realistic coronary artery waveform is applied
as the velocity inlet condition and the outlet is set to a zero pressure boundary. The inlet
velocity profile is based on laser doppler velocimeter (LDV) measurements carried out in a
replica of human LAD coronary artery [I02]. These velocities are applied as plug flow at
the inlet. Figure [£4] shows the inlet velocity waveform where the eight points of interest are

marked. Table summarizes the key features of the inlet waveform.



96 Chapter 4. Haemodynamics in stented vessels

Inlet velocity (cm/s)

2 time (s)

Figure 4.4: Inlet velocity profile showing the points of interest in one pulse

Table 4.2: Inlet velocity: key features

Feature Value

Time period (T) 0.967 s

Mean Velocity 16.29 cm/s

Peak velocity 29.0 cm/s

Mean Reynolds number 140

Peak Reynolds number 249

Womersley parameter (@) 1.97

Eight points of interest 0.026s, 0.078s, 0.217s, 0.340s, 0.419s,

0.489s, 0.677s, and 0.897s

4.2.4 Computational Fluid Dynamics

Star CCM+ 3.06.006, CD-adapco, Melville, NY USA, a commercially available flow solver, is
used for generating finite volume meshes and for numerically solving the governing equations.
An implicit unsteady solver and segregated laminar flow solver (which uses the semi-implicit
method for pressure-linked equations, SIMPLE, algorithm for pressure-velocity coupling), is
used [103]. A second order temporal discretisation scheme is used for the transient term and
a second order upwind scheme is used to discretise momentum. Under-relaxation factors of
0.7 and 0.3 are used for velocity and pressure, respectively.

Mesh, time-step, and pulse dependence studies are carried out for Stent C. Three different
meshes are used: base, mesh-1, and mesh-2 (mesh-1 and mesh -2 have 1.5 and 2.5 times the
number of cells relative to the base mesh, respectively). The WSS magnitude results for
mesh-1 and mesh-2 vary by less than 1% as shown in Figure [£5al

Four different times steps viz. 1072s, 1073s, 5x10~%s, and 10~%s are used for time-step
dependence study on mesh-1, see Figure [L5bl The maximum difference in WSS magnitude
between time steps of 107%s and 107 3s is nearly 30%. However differences in WSS magnitudes
for time steps 5x10~%s and 10~%s when compared to time-step of 103s are less than 1%.

Simulations for five pulses are carried out for mesh-1 and the results show little variation
after the second pulse as shown in Figure f.5d While the difference in WSS magnitude
values for pulse 1 and pulse 2 is quite large, the difference in WSS magnitude for the 2™
pulse onwards is less than 0.02%.

Based on the mesh, time-step and pulse dependence studies, all final simulations are run

for two pulses for a time step of 10~3s and mesh sizes as shown in table For each time-step
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Table 4.3: Mesh statistics

Stent Base size (mm) Cell size in stent No. of cells
Stent A 0.075 50% of base 1,076,793
Stent B 0.075 50% of base 1,097,951
Stent C 0.075 50% of base 1,097,788
Stent D 0.075 50% of base 1,031,211
Stent E 0.075 30% of base 1,855,559

50 inner iterations of the SIMPLE algorithm [I03] are carried out to achieve convergence.
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(a) Mesh dependence study: WSS magnitude along central line on artery wall for Stent C; second point in
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(b) Time-step dependence study: WSS magnitude along central line on artery wall for Stent C; fifth point in
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(c) Pulse dependence study: WSS magnitude along central line on artery wall for Stent C; first point in Figure
4} mesh-2; time-step 1073s

Figure 4.5: Mesh, time-step, and pulse dependence studies for Stent C
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4.3 Results

The flow features in the stented vessels are reported both qualitatively and quantitatively. In
particular, differences in wall shear stress patterns, recirculation zones, and oscillatory shear
indices are reported, thereby confirming the effect of stent design, especially the connectors,
on haemodynamics of stented vessels. Furthermore, the connector design in Stent C is varied

to study the effect of connector length, in the cross flow direction, on flow features.
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Figure 4.6: Axial WSS at point 5: Stents A-E from top to bottom

4.3.1 Wall Shear Stress

Wall shear stress follows a general trend for all the stents except for the regions between the
connectors. Figure shows the general axial WSS patterns for all stents at point 5, the
point of maximum inlet velocity on the cardiac pulse. For all five stents, axial WSS has a
high value proximal to the stent and a relatively lower value in the area occupied by the
stent. Artery wall area distal to the stent experiences a higher axial WSS again as the flow
disruptions minimize due to absence of stent struts. For Stents D and E, a larger artery
area is exposed to relatively low WSS (green area in Figure after the stent ends) , when
compared to Stents A, B, and C, at the distal end of the stents. For all stents, and more
notably for Stents A, B, and C in Figure 4.0, axial WSS at the centre of the struts decreases
for consecutive struts in the direction of the flow (transition from red to yellow in consecutive

struts). The artery wall region around the first strut experiences a relatively high WSS as
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Figure 4.7: Axial WSS for all stents along the central line at Point 3

compared to the area around other struts. The areas of low WSS are found to be localised
around the stent struts. This is in agreement with earlier findings of Ladisa et. al. [88] and
Rajamohan et. al. [90].

Recirculation zones are formed at the proximal and distal end of each strut/strut-connector
intersection, which cause the WSS to change sign before and after each strut/strut-connector
intersection. In Figure the blue regions show the artery wall area with negative axial
WSS implying formation of recirculation zones. The phenomenon of recirculating flow is
particularly significant in the decelerating phase of systole (point three, cf. Figure[dd]) as the
recirculation zones are largest during this phase. Figure [4£.7] shows the axial-WSS variation,
along a central line on the arterial wall (as shown in Figure [41]), for the five stents at point
3 of the cardiac pulse. For all stents the WSS values proximal and distal to the ends are
the same. In between the struts WSS recovers from zero to a peak value which decreases for
consecutive struts in the direction of flow. This peak value is different for all the stents and
depends on the overall stent design. Depending on the design of the strut connectors WSS
oscillates spatially in the connector region between zero, negative, and a positive value. In
contrast to other stents, Stent C connectors allow the WSS to recover to a positive value in
between the struts (as apparent in Figure [4.7]). This can be attributed to the fact that Stent
C connectors have more open space between the connectors.

Previous studies [83] [104] suggest that areas exposed to WSS magnitude of less than 0.5
Pa correlate to areas that show most intimal thickening. Balossino et al. [95] have used
this 0.5 Pa limit as a benchmark to compare the performance of stents. Figure [4.8al shows a
histogram of the percentage of vessel wall area, over the axial length occupied by the stent,
exposed to WSS less than 0.5 Pa, at the eight points listed in table At points 1 and 3
this area is 100% irrespective of the stent as the flow is decelerating in the systole phase of

the cardiac cycle. Point 2, also in the systole phase, shows unexpected behaviour of less than
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100% area exposed to low WSS. However, the reason for this becomes clear when considering
the negative WSS in Figure [4.8b Other points show considerable difference in the area
exposed to low WSS which can be used to compare their performance. Stent A outperforms
the other stents at all points except Point 2. Stents D and E have a significantly higher
percentage of low WSS area as compared to the other stents. While the difference between
Stents B and C is not very large, Stent C has a slightly higher area exposed to low WSS.
Another factor that could promote restenosis is negative WSS caused by reverse flow.
Figure [4.8D shows a histogram of the percentage vessel area exposed to reverse flow at the
eight points for all stents. Point 2, owing to the negative inlet velocity and a hence strong
reverse flow, has the highest percentage area exposed to reverse flow. While points 1 and 3
show no difference in terms of the 0.5 Pa WSS benchmark, these points show very significant
differences in the area exposed to reverse flow. Stent A, although outperforming other stents

at most points shows a near 100% area exposed to reverse flow at point 2.
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Figure 4.8: Percentage vessel wall area exposed to low WSS & reverse flow

4.3.2 Recirculation zones

The presence of a stent inside the vessel gives rise to the formation of recirculation zones.

Figure shows the recirculation zones formed between the struts and the connectors of all
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the stents at point 3 of the cardiac pulse. Each segment in the connector design gives rise
to one recirculation zone. For instance Stent B has four recirculation zones in the connector

region while Stent D has five.

(b) Stent B (c) Stent C

(d) Stent D (e) Stent E

Figure 4.9: Recirculation zones at point 3

Figure [4.10], shows the velocity profile adjacent to the artery wall for Stents B, C, and D
at point 3 of the cardiac pulse. Recirculation zones in the cross flow direction are observed for
these designs close to the artery wall. This can be attributed to the fact that the connectors
in these designs, owing to their wavy nature, protrude into the space between the struts and

hence cause more alteration in the flow.

4.3.3 Modified oscillatory shear index

For all the five stents modified oscillatory shear index is calculated using equation (£.6) along
the central line in the artery wall as shown in Figure Il MOSI is important as this index
gives a time average value and hence is a measure of axial WSS over the entire pulse as
opposed to single points in time. MOSI values of ‘1’ or ‘-1’ indicate that the axial WSS is
positive or negative over the entire cardiac pulse respectively. Figure [£.I1] shows a plot of
MOSI values along the central line mentioned above. Each plot shows the MOSI values for
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Figure 4.10: Stents B, C, and D : Secondary recirculation zones

the one connector-strut-connector segment from the assembly.

4.3.4 Variation in Stent C

In order to further investigate the effect of connector shape on haemodynamics, the design of
the connector in Stent C is varied. Keeping the thickness constant, its length in the cross-flow
direction is varied. This changes the area between the struts that is covered by the connector.
Figure shows the two altered designs — one with a shorter cross-flow length and one with
a longer cross-flow length. These are referred as Stent C-SC and Stent C-LC, respectively.
Simulations are carried out for these designs and the results are compared with Stent C.
Figure shows a comparison of percentage vessel area below 0.5 Pa and Figure [£.14] shows

a comparison of percentage vessel area exposed to reverse flow for Stent C and its variations.

4.4 Discussion and formulation of objective function

WSS, recirculation zones, MOSI, and results for all stent designs are reported above. While
the general qualitative features of WSS, such as localisation of low WSS regions around struts,
match those described in earlier studies [88], 89, 90|, 87, 2], this chapter brings forth finer
differences at different parts of the cardiac pulse by comparing the factors that could have an
effect on restenosis rates. Such differences, when compiled over the entire cardiac pulse, can
be used to compare the relative haemodynamic performance of various stents.

Areas of low WSS (less than 0.5 Pa) and reverse flow are found for all the stents during

the entire cardiac cycle. For points 1 and 3, 100% of wall area is exposed to low WSS. This
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Figure 4.11: MOSI values for a strut with connectors in each side

Figure 4.12: Variations in Stent C : top: normal, mid: shorter, and bottom: longer connectors
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Figure 4.14: Area exposed to reverse flow for Stent C variations

can be attributed to the decelerating nature of flow at these points and that the inlet velocity
is low. The peculiar behaviour of point 2, which too is in the decelerating phase and yet has
a less than 100% area exposed to low WSS, can be explained by the fact that in this phase
the inlet velocity gradients are high which cause a strong reverse flow thereby causing the
axial WSS to be negative but higher than 0.5 Pa in magnitude. This is confirmed in Figure
for the following index, AWI, as defined below for one cardiac pulse—

[y 7(00A
[ 9A

The horizontal dashed lines bound the region with axial WSS magnitude less than 0.5 Pa.

AWI (t) = (4.7)

Since other components of WSS are very small when compared to axial WSS, the major factor
determining the WSS magnitude is its axial component. Zones 1, 2, and 3 in Figure
mark the time zones in the systole phase of the cardiac pulse where the axial WSS magnitude
exceeds +£0.5 Pa. Since Point 2 lies in zone 2, the WSS magnitude at some regions in the
artery wall is greater than 0.5 Pa.

Returning to Figure [d£8al points 4, 5 ,6, 7, and 8 also show considerable differences in the

percentages of areas exposed to low WSS. Stents D and E stand out, both for low and reverse
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Figure 4.15: AWTI for all stents for one cardiac pulse

WSS — because of the relatively lower strut spacing. However, even though Stents A, B, and
C, have the same strut spacing, percentage areas exposed to low WSS differ significantly.
Similarly, for all points there are significant differences in the percentages of area exposed
to reverse flow between stents A, B, and C. This can be attributed to the difference in the
design of the connector.

The connectors in Stents B,C, and D have a finite length in the cross flow direction — this
cross-flow area coverage being largest for Stent C. Consequently, the struts tend to project
into the central part of the space between struts. This causes a further disruption of the
flow in that area - illustrated by Figure .10 which shows the velocity profile adjacent to the
artery wall at point 3 in the cardiac pulse. Recirculation in the top ends of the connectors is
clear in these designs. Such a phenomenon is absent in Stents A and E as the connectors are
a straight segment joining the struts. The difference of such a protruding connector design
is further confirmed when Stent C is altered to make the connector shorter and longer in the
cross-flow direction (Stent C-SC and Stent C-LC). It can be seen in Figures [£13 and E.14]
that areas exposed to low WSS and reverse flow are proportional to the connector length in
the cross-flow direction.

Traditionally [90], MOSI has been used to quantify the oscillatory nature of WSS. In
Figure [£17] we see that MOSI takes a value close to -1’ at each strut-connector intersection
and between the connectors. This implies incessant reverse flow or formation of recirculation
zones over a large part of the cardiac cycle at such points. In Stents B and D, due to the
presence of multiple gaps in the connector design multiple areas of persistent reverse flow
are formed. This is consistent with the results of dye injection flow visualisation studies [87]
where more dye accumulation was observed at each strut-strut intersection. The number of
recirculation zones formed is directly related to the design, specifically the number of gaps
either between struts or between the connector; see Figure [£.9 which illustrates this point.

However, the recirculation lengths depend on the overall strut-connector-strut configuration.
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Another factor which affects the extent of recirculation zones is the cross section of the struts.
This was shown in a study [105] where stents with cross sections of a circular arc shape were
compared with those having a rectangular shape. Streamlining of the strut cross section
would reduce the size of the recirculation zones, and consequently reduce the areas exposed
to low and reverse WSS.

An in vitro experimental study [98] showed that vascular endothelium responds to shear
stress gradients. It was reported that endothelial cells migrate from areas where shear stress
is low but the shear stress gradient is large, and that cells remaining in such regions divide at
a faster rate compared to the cells exposed to uniform shear. Hence, the endothelial response
to different WSS patterns created by different stents could be important in the process of
re-endothelialisation. Furthermore, if the tangential components on a plane perpendicular
to the flow direction are considered, additional recirculation of flow is observed; see Figure
which shows the in-plane velocity components, at the centre of the stent, at point 3.
This additional recirculation of flow, although with velocity magnitudes of roughly 1/100" of
the inlet velocity, induces transverse WSS and WSS gradients which could have an effect on
endothelial cell response. Qualitatively, Stents A and E, have minimum recirculation (when

the tangential components are considered) on planes perpendicular to the flow direction.

Figure 4.16: Recirculation zones on a cross section perpendicular to the flow direction: top
left:Stent A; top mid: Stent B; top right: Stent C; bottom left: Stent D; bottom right: Stent
E

From Figures £8al and [4.80] it can be concluded that differences in stent designs are
apparent for areas of both low WSS and reversed flow. Keeping both the factors in mind and
assuming that both the phenomena are equally unwanted, an index can be proposed which
takes a weighted average of these percentages at the relevant points. Thus the haemodynamic

low and reverse flow index (HLRFI) is defined as —
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n
Z(wi Pil + wiPir)
HLRFI = =2 : (4.8)

Zi Wi
i=1

where wj are the weights for each of the n points in the cycle, and pj & pir denote percentages

of areas exposed to low and reverse flow, respectively.

It is expected that the higher the value of n, the better will be the efficacy of the index in
determining the haemodynamic alteration due to stents. The reason for taking a weighted
average is that some specific points, such as the point of negative inlet velocity (point 2), could
be clinically more relevant than others, and may require (a higher) differential weighting.
The peculiar nature of such points on the cardiac pulse can be seen for Stent A, for which
percentage area, exposed to both low WSS and reverse flow, at point 2, is abnormally high
in reference to its relative performance at other points.

In order to capture the entire pulse, HLRFI can be modified as follows:

T @®p©) + wt)pr )t

HLRFI = :
2[5 w(t)dt

(4.9)

where w(t) is the weight function for the cardiac pulse and pi(t) & pr(t) is the percentages of
artery area, A, exposed to low and reverse WSS at time t. pi(t) & pr(t) can be defined as in
equations and .4 respectively.

It should be noted that the wall area over which the surface integrals for pi(t) & pr(t) are
calculated includes only the area exposed to flow, i.e. it exludes the wall area covered by
the stent. Assuming the weight function to be unity, HLRFI for all the stents and Stent C
variations, as calculated using equation [4.9] are shown in Figures [£.17 and .18 respectively.
HLRFI, being one single number evaluated over the entire pulse, can be used to rank stents
based on their haemodynamic performance. Lower HLRFI values indicate lesser alteration of

haemodynamics, and hence better resistance of a stent towards restenosis.
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Figure 4.17: HLRFI for all the stents

As the length of Stent C connector is lowered in the cross-flow direction the haemodyanamic
alteration decreases. This is reflected in decreasing HLRFI values for Stent C variations from
25.95% to 22.61% to 19.91%. This decreasing trend tends towards a value of 18.81% for Stent
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A, which can be seen as a Stent C variation with minimal connector length in cross-flow di-
rection. It is also interesting to note that Stent C-LC has the largest HLRFI value, even
higher than Stents D and E which have a shorter strut spacing. This further emphasizes the
effect design of strut connectors can have on stented vessel haemodynamics.

It is clear from the above findings that stent design dictates haemodyanamic alteration.
Although strut thickness and spacing are the most important factors, blood flow depends
strongly on the shape of the struts and the connectors. Strut thickness is governed mostly
by material properties of the stent to minimise post-expansion recoil and manufacturing
processes. Strut spacing is governed by the constraints of structural strength and flexibility.
Thus the shape of the struts and connectors can be varied to improve the haemodynamic
performance. It is important to be conscious of the fact that changing the stent design impacts
other properties too, especially drug distribution. For instance, haemodynamic results for
Stent C, C-SC, and C-LC, show that Stent C-LLC has poor haemodynamic performance —
however, it is likely to have better drug distribution potential as the links cover a larger wall
area in the cross-flow direction.

Significant differences exist between the stents with regards to the number and extent of
recirculation zones in the directions of both axial and cross-flow. Although it is not currently
very clear how endothelial cells respond to complex flow phenomenon, it is possible that
restenosis rates could be affected by them. It is notable that Stent A produces minimal
alteration of flow both in the axial direction and the direction perpendicular to the main
flow. This is reflected in its lowest HLRFI value (Figure [£17)) and minimal recirculation in
the direction perpendicular to the main flow (Figure [£16]). This behaviour can be attributed
to the fact that Stent A has straight segments as connectors between the struts. These straight
segments, being aligned in the direction of the flow, disturb the flow to a lesser extent when
compared to other connectors which, owing to their wavy nature, do not align completely
with the direction of the flow.

In order to rank stents, an objective function (figure of merit) is needed which quantifies
the flow features, and hence determines the patency of stents. In the past, relatively few
metrics have been defined to quantify the distribution of WSS in arterial flow. One such
metric is defined by Bressloff [106] to quantify relevant WSS information in a human carotid

bifurcation. Along similar lines, the proposed HLRFI index captures and quantifies the two
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Figure 4.18: HLRFI for all the Stent C variations
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phenomena of low and negative WSS which are detrimental to the resistance of a stent
against restenosis. HLRFI, defined as in equation (49]), can be used as an objective function
to compare a family of related stent designs solely on their haemodynamic performance. For
instance, Stent E, with an HLRFI value of 24.91%, has almost 33% worse haemodynamic
performance when compared to Stent A (with an HLRFI value of 18.81%). Similarly Stent
C-LC has 30% and 38% worse performance when compared with Stent C-SC and Stent A

respectively.

4.5 Conclusions

Different points in the cardiac pulse produce different responses to the stent when measured
by artery wall areas exposed to low WSS and reverse flow. Substantial differences in the
flow features exist when both these factors are considered, simultaneously. Even for similar
strut spacings, the design of the connector, especially its length in the cross-flow direction,
significantly influences blood flow. Particularly for Stent C, it can be concluded that the
haemodynamic alteration, measured by percentages of areas exposed to low and reverse WSS,
is proportional to the length of the connector in the cross-flow direction. The relatively better
performance of Stent A can be attributed to its connector’s minimal cross-flow length and
better alignment with the flow. Furthermore, the number of recirculation zones formed, and
hence the oscillations in the MOSI values along any axial line on the arterial wall, is equal
to the gaps between the stent struts and connectors. The differences in HLRFI values, which
may be indicative of a stent’s resistance to restenosis, reinforce the effect of stent design on
alteration of haemodynamics. In essence, overall stent efficacy can be improved by improving
the connector designs (in particular, their cross-flow length and alignment with flow) in the
stent for minimal alteration of blood flow or as a tradeoff to improve other features such as
drug distribution or flexibility.

To conclude, a CFD model to evaluate haemodynamic alteration is developed in this
chapter. Furthermore, with a view of performing design optimisation studies in future chap-
ters, an objective function, namely HLRFI, has been formulated. This measure of HLRFI
combines the flow features in a stented artery that relevant to restenosis. In future chapters
HLRFI is used as a figure of merit to compare different stents based on their haemodynamic
efficacy.

Having evaluated the haemodynamic response, the next chapter deals with balloon-
expansion of stents in order to quantify the mechanical stress-strain environment in a stented
artery. One of the limitations of the models in this chapter is that the artery segments are
assumed to be straight, cylindrical, and they contain no plaque. In reality, the stent is ex-
panded in the diseased artery using a balloon. Hence, it is important that the geometry used
for flow simulations, i.e. for the CFD models developed in this chapter, is the post balloon
expansion geometry of the stented artery. The balloon expansion models developed in the

next chapter serve this purpose.






Chapter 5

Balloon expansion of stents

This chapter deals with the numerical modelling of the expansion process of balloon-expandable

stents inside a stenosed artery. Such modelling is essential for the following three reasons —
e to investigate the acute recoil after the stenting procedure,
e to investigate the stress-strain distribution in the stent and the arterial tissue, and

e to obtain the post-stenting geometry of the stent, plaque, and the artery, which can be

used in haemodynamic models developed in chapter [4

As discussed in section 2.5, an ideal stent should have high radial strength. This radial
strength can be measured in term of the acute recoil after expansion of the stent. Further-
more, in order to minimise arterial injury due to the stenting procedure, an evaluation of
the stress-strain environment in the stented segment of the artery is needed. Lastly, the post
stenting geometry of the stented vessel is needed for accurate evaluation of haemodynamics
as discussed in chapter @ In this chapter finite element analysis (FEA) models are developed

to meet all these objectives. In particular this chapter has the following aims

1. to develop a balloon-expansion model of a stent against the plaque in a representative

model of a diseased artery,
2. to quantify structural strength of a stent in terms of acute recoil, and

3. to quantify the change in the mechanical stress-strain environment after the stenting

procedure.

This chapter is organised as follows. In the first section, a review of a) studies which show
a correlation between arterial injury and restenosis, and b) various approaches employed by
researchers to model expansion of stents is presented. Thereafter, the expansion modelling
approach adopted in this thesis is presented. Two sets of expansion are modelled. First, a
free expansion of a stent, i.e. without the presence of plaque and artery, using a balloon is
presented. This is primarily done to validate the obtained numerical results with manufacturer
data (in-vitro testing without the resistance of a vessel). Then, the expansion model which
includes a representative plaque and the artery is presented. Finally, the objective functions

(figures of merit), representing radial strength of a stent and injury caused by the stenting

71



72 Chapter 5. Balloon expansion of stents

procedure, are formulated. These objective functions are used for optimisation studies in

future chapters.

5.1 Introduction

Even though the primary aim of stenting is to achieve lumen gain in stenosed arteries, other
factors such as the post-procedural injury and the stress-strain environment in the arterial
tissue can not be neglected while designing a good stent. Several studies, Farb et. al [107],
Schwartz et. al. [108], Carter et. al. [109] and Konig et. al. [I10], have shown that neointimal
formation is correlated to the vessel injury caused during the stenting procedure. Rogers and
Edelman [81] showed that stent configuration was a key determinant of vessel injury caused
due to stent implantation.

Vessel injury comprises endothelial exposure, intima laceration, and rupture of the medial
layer [110]. Usually, it is quantified by the extent of strut penetrations into the arterial
tissue. Schwartz et. al. and Carter et. al. in their respective studies reported correlations of
r = 0.84 and r = 0.72 between mean neointimal hyperplasia and injury. Hoffman et. al. [I11]
performed a study with Palmaz-Schatz stents and showed that intimal hyperplasia moderately
correlated with the aggressiveness of the balloon implantation technique. Kornowski et. al.
[112] reported that neointimal formation after coronary stenting was dependent on both
arterial injury and inflammatory reaction. Other studies, Kastrati et. al. [82], Pache et. al.
[113], have concluded that stent geometry, specifically the strut thickness, is a key determinant
of restenosis rates. A review article by Morton et. al. [I14] showed the effect on restenosis of
various geometrical stent parameters, such as type of stent (coil, tube, slotted, etc.), length,
percentage metal coverage, number of struts, strut thickness, cross-section, surface finish,
symmetry, and material. This article, supported by a series of randomised trials, suggests
that stent geometry plays an important role in determining a stent’s resistance to restenosis.

In engineering terms, injury can be translated to the post-procedural stress-strain envi-
ronment in the arterial tissue. In order to pass an engineering judgement on the performance
of a group of stents, we must be able to evaluate the stresses, quantify them, and develop
a figure of merit (objective function) based on the evaluated stresses. Finite element anal-
ysis provides an efficient technique for such evaluations, and has been used in the past for
numerous numerical studies on stents.

A number of different techniques, with different levels of complexity, have been used in

the past to model stent expansion. Such strategies can be divided into the following classes —

e Disregard of balloon

— application of uniform radial pressure to the inner surface of the stent.

— application of uniform displacements to the inner surface of the stent.
e Using a cylindrical balloon

— application of uniform radial pressure to the inner surface of the cylinder.

— application of uniform displacements to the inner surface of the cylinder.
e Using a folded balloon

— uniform radial pressure inside a tri-folded balloon.
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— application of a negative pressure to a fully inflated balloon to get deflated shape
(multi-folded), and then inflating the balloon by application of uniform radial

pressure.

Before 2000, most studies on determining mechanical properties of stents were based on
self-expanding stents, Perry et. al. [115], Auricchio et. al. [II16], and Trouchu et. al.
[117, T18]. Rogers et. al. [I19] investigated the effect of balloon-artery interactions by means
of in vivo studies and 2-D finite element models. They demonstrated that inflation pressure,
strut spacing, and balloon compliance, all affect the surface contact stresses on the artery
wall.

Dumoulin et. al. [120] were the first to perform a 3D analysis of stent expansion. They
investigated the free expansion (without including the plaque and the artery) of a 3-D model
of a Palmaz P308 (Johnson & Johnson company) stent. They evaluated mechanical char-
acteristics such as recoil, shortening, resistance to crushing, buckling, and fatigue. Their
in vitro observations of an expanding stent led them to conclude that the stent expanded
uniformly everywhere except at the ends. Hence, they disregarded the balloon by assuming
an infinite length prosthesis, and drove the finite element analysis by applying a uniform
radial pressure to the inner surface of the stent. Auricchio et. al. [121I] did a similar study
with a Palmaz-Schatz (Johnson & Johnson) like stent for both free expansion and by in-
cluding the plaque and the artery in the analysis. Apart from reporting several mechanical
parameters such as elastic recoil, foreshortening, metal-artery ratio, and residual stenosis,
they suggested a modification in the stent geometry to facilitate uniform expansion of the
stent. This study too neglected the presence of the balloon. Etave et. al. [122] used FEA
to study two different types of stents — slotted tube and coil stents. They drove the analysis
by specifying radial displacements to the stent nodes. Apart from reporting the mechanical
properties like other aforementioned studies, they also evaluated flexibility. Migliavacca et.
al. [123] studied the effect of stent geometry (thickness, metal-to-artery ratio, etc.) on its
mechanical performance. Despite neglecting the balloon, their analysis, driven by uniform
internal pressure, went a step further by analyzing next generation stents (Multi-Link Tetra
and Carbostent) besides the Palmaz-Schatz like stents. Gu et. al. [124] performed a uniform
pressure driven FEA on a covered microstent (a stent with thin coatings) to evaluate the
effect of coatings on the mechanical performance and compared them with bare metal stents.
Holzapfel et. al. [125] proposed a parameterisation technique to enable generation of new
stent designs, and performed displacement driven FEA to analyze these designs. While most
studies mentioned so far had assumed the artery to be a straight cylindrical segment, this
study used a full 3-D geometrical model of a post-mortem specimen of a stenosed human iliac
artery. Moreover, they considered eight different types of tissue components for the artery
with different material properties. This study evaluated the effect of stent geometry on the
total mechanical environment post stenting, and quantified this stress-strain environment by
formulating scalar indicators which can be used to compare stents. Migliavacca et. al. [126]
used FEA to study the mechanical properties of the BX Velocity (Cordis corp., Johnson &
Johnson) stent, and compared the pressure-diameter (p-d) relationship during expansion to
those provided by the manufacturer. The comparison of the two p-d relationships led to the
conclusion that the absence of a balloon in numerical modelling was the cause of the observed
discrepancies between numerical and experimental data.

Holzapfel et. al. [127] introduced the balloon in their analysis for both angioplasty and
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stenting. They modelled the balloon as a rigid cylinder, and the analysis was driven by
specifying displacements. Their stenosed artery geometry was obtained by MRI scans of a
human external iliac artery and the constitutive models for each part of the tissue obtained
by mapping MRI data with histological tissue type. Liang et. al. [128] modelled the balloon
as a cylindrical hyperelastic shell to mimic the unfolding process of a folded balloon. Marrey
et. al. [129] modelled the balloon as a semi-rigid shell, although what the authors meant
by semi-rigid is not detailed. In their analysis the stent is first crimped to simulate the
stent-catheter assembly. This is done by putting a semi-rigid crimp cylinder outside the
stent and specifying the radial contraction of the crimp cylinder. Contact modelling between
the crimp cylinder and stent’s outer surface ensures cripming of the stent. Stent expansion
into the artery is modelled in a similar way. After the expansion step, the authors apply a
physiologically realistic cyclic pressure loading to the inner surface of the artery to simulate
systolic and diastolic blood pressure. The response of the stent is then used to investigate
fatigue resistance of the stents. Wang et. al. [130] studied the transient expansion of coronary
stents by modelling the balloon as an incompressible isotropic linear elastic material. They
evaluated the effect of varying balloon lengths on different stent geometries. Takashima et. al.
[131] used both experimental and numerical techniques to study the contact area between the
stent and the artery/plaque wall. They modelled the balloon as a linear elastic material with
a very high Young’s modulus, and drove the analysis by specifying radial displacements to the
balloon. Wu et. al. [I32] studied the expansion of stents in both straight and curved vessels
and compared the results. In their displacement driven analysis they modelled the balloon as
a rigid body, while the artery and tissue were modelled as hyperelastic materials. Gijsen et.
al. [133] studied the deployment of a stent in a realistic coronary artery. They constructed
the geometry of a right coronary artery of a 57-year old male using biplane angiography and
intravascular ultrasound (IVUS).

All the aforementioned studies have either neglected the balloon or treated it as a rigid
cylindrical shell. It was De Beule et. al. [134] who, in 2008, modelled a realistic balloon ex-
pansion of the CYPHER stent (Cordis corporation, Johnson & Johnson). They modelled the
balloon as a linear elastic material, whose properties were extracted from the manufacturer’s
compliance chart, and took into account the folded shape of the balloon. They validated their
results, specifically the p-d relationship with those provided by the manufacturer, and their
results showed a maximum error of 4.1%. In the same year, Gervaso et. al. [19] published
a study outlining different strategies for modelling balloon expansion of stents. They also
proposed a new technique to take into account the folded shape of the balloon. They started
with a fully expanded shape of balloon, with its nominal diameter, and applied a negative
pressure to deflate it. This resulted in a shape that could then fit inside the crimped stent
for expansion. The balloon was modelled as a linear elastic material, and the analysis was
driven by increasing the inflation pressure of the balloon. Their numerical results for the Bx
VELOCITY stent, which is similar to the CYPHER. stent used by De Beule et. al. except
for a thin drug coating, corresponded well with those provided by the manufacturer. Zunino
et. al. [20] extended this technique to take the expanded geometry of a unit model of the
Bx VELOCITY stent and performed flow and drug diffusion simulations on the deformed
shape. Although the application of such expansion techniques to realistic artery models, such
as those used by Holzapfel et. al. [127] [125], remains to be seen, to the best of the author’s
knowledge, these (De Beule et. al. [I34] and Gervaso et. al. [19]) are the only two realistic
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models for studying expansion of stents.

As mentioned earlier, in order to perform a design optimization study on stents, it is
necessary to model the expansion of stents for three reasons — first, to evaluate recoil, second,
to evaluate the mechanical stress-strain environment in the artery, and third, to obtain the
expanded geometry for evaluation of flow and drug distribution. In the following sections the

methodology adopted in this thesis for these purposes is presented.

5.2 Methodology

Of the various balloon expansion methodologies listed in section [B.] the one proposed by
Gervaso et. al. [19] is adopted in this study. While Gersavo et. al. presented the results only
for free expansion, results for both free expansion and expansion into a representative plaque
and artery model are presented in this chapter. The following sub-sections detail the steps

of the analysis procedure.

5.2.1 Geometry
5.2.1.1 Stent

The CYPHER stent is chosen for developing the expansion methodology. This is because the
CYPHER stent —

e was a widely used stent in clinical practice until its discontinuation in 2011 [35].

e is representative of most contemporary stent designs — circumferential rings connected

by flex connector segments.
e has been studied in the past in various FEA studies.

e has easily available pressure-diameter relationship chart provided by the manufacturer

after in vitro testing.

Figure [b.1] shows an electron microscope picture [34] of the Bx VELOCITY stent. Two
important features of the CYPHER/Bx VELOCITY stent geometry can be easily located.
First, it contains 4 circumferential rings placed in the longitudinal direction, and second, the

circumferential rings are connected by ‘n’ shaped connectors/links [34], [135].

Figure 5.1: Electron microscope image of Bx VELOCITY stent
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The important characteristics of the stent geometry used in this chapter are obtained

from the ‘instructions for use’ manual provided by the manufacturer [I35] and ‘the handbook

of coronary stents’ [34]. Table [5.] lists these properties

Table 5.1: Geometric information for the CYPHER stent

Dimension Value Note

Target artery diameter 3.00 mm a range of diameters are available; 3.0 mm is
chosen for this study

Length 8.00 mm arange of lengths are available; 8.0 mm is cho-

No. of circumferential cells 6

Strut thickness (radial) 0.14 mm
Strut width (circumferen- 0.13 mm
tial)

sen for this study

for 2.25-3.00 mm diameter stents, the number
of rings is 6

converted from inches to mm (0.0055 inch)
converted from inches to mm (0.0052 inch)

With the help of these geometric parameters and visual insepction of the crimped state

geometry, a representative model of the CYPHER stent is generated in Rhinoceros 4.0. The

semi-crimped state internal diameter is chosen to be 1.22 mm. An image of the semi-crimped

state CAD model is shown in Figure

Figure 5.2: CAD model of the CYPHER stent

5.2.1.2 Balloon

To construct the geometry for the balloon two important dimensions are needed — the nominal

diameter and the length. The nominal balloon diameter is chosen to be 2.85 mm, which was

obtained by De Beule et. al. [I34] after extrapolating the balloon’s compliance chart (provided

by the manufacturer) to a zero stress state. The nominal length of the balloon is specified
to be 10.0 mm according to the data in [I35] which specifies that the stent delivery balloon’s

length is nominally 2.0 mm longer than the stent being used. Based on this data the nominal

geometry of the balloon is created in Rhinoceros 4.0, see Figure

Figure 5.3: CAD model of the nominal balloon
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5.2.1.3 Artery and Plaque

The artery is assumed to be a single layer straight cylindrical tube with an internal diameter
of 3.00 mm, an outer diameter of 4.40 mm (thickness of 0.70 mm), and a length of 15.00
mm. As far as the geometry of the plaque/stenosis is concerned no statistical data could be
found in the literature. Most studies have assumed it to be cylindrical with round ends. The
stenosis shape, however, can have a significant effect on the performance of the stent, and a
stent that performs well for one particular stenosis shape might not perform as well with a
different stenosis shape. A different methodology to represent stenosis shapes which can easily
be altered by changing a few parameters is proposed. Hicks-Henne bump functions [136] are
a class of functions which allow easy manipulation of a shape representing a smooth bump by
altering three parameters. These functions, commonly used in aircraft wing design and used
by Kolachalama et. al. [I37] to represent a carotid artery stenosis, seem to appropriately
represent stenosis shapes. A Hicks-Henne bump function is represented by the following

formula —

y = A[sinGrxCNZ NIt for 0< x < 1, (5.1)

where A is the height of the bump (analogous to the peak stenosis), Xp is the location of
the peak, and t controls the width/sharpness of the peak. A larger value of t gives sharper
peaks representing a focal stenosis, while smaller values of t produce a more diffused stenosis
shape. To include any length of stenosis and add a base thickness to the plaque, the function
is modified as follows —

t

x\(=In2/1Inxp)
) I'; for0<x< L, (5.2)

y=to+ (A tb)[simr(E
where 1ty is the base thickness and L is the length of the stenosis. Figure (.4l shows the Hicks-
Henne bump function and the corresponding stenosis shape for A = 0.6, X, = 05, t = 5,

tp = 0.2, and L = 15. Figure shows the assembly of the stent, plaque and the artery.

5.2.2 Materials

The following subsections describe the material properties used for each of the stent, plaque,

and the artery.

5.2.2.1 Stent

Most of the bare metal stents, including the CYPHER stent [135] are made up of medical grade
316L Stainless Steel. The constitutive behaviour of a stent material depends on a number of
pre-treatments such as hot rolling, annealing, cold finishing, electropolishing etc. [134], [13§].
In the past a number of different material properties have been used for finite element analysis
of 316L Stainless Steel stent expansion processes. Table presents an extension to the list
presented in De Beule’s PhD thesis [11] where the different material properties used in different
studies are listed. Murphy et. al. [I0] performed uniaxial tensile tests on 316L stainless steel
strut specimens and presented the stress-strain curves for different size specimens. Figure
shows the engineering stress strain curves from their experiments. These stress-strain
curves, which have also been used by De Beule et. al. [134], are deemed most appropriate for

numerical studies in this chapter as these have been determined experimentally for the 316L
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(a) Hicks-henne bump function for A= 0.6, X, =0.5,t=5,1t, =02, and L = 15

(b) Stenosis shape by revolving the hicks-henne bump function

Figure 5.4: Stenosis shape

Figure 5.5: Assembly of the stent, plaque and artery (No balloon present)

stainless steel strut specimens of sizes similar to those used in this study. A Young’s modulus
(E) of 196,000 N/mn¥, a yield stress (oy) of 375 N/mnm?, and an isotropic piece-wise linear
hardening is used to mimic the plastic region. It must be noted that the geometric model of
the stent used in this study is a semi-crimped model, i.e. the crimping process of the stent
is ignored. Consequently, if kinematic hardening is taken into account, then it is likely that
due to the crimping of the stent, the yield stress for the expansion process will be lower than
375 N/mn? owing to the well known Bauschinger effect. This effect, however, is ignored in
this chapter.

5.2.2.2 Balloon

The semi-compliant balloon is made of single-layer nylon [135]. De Beule [11] derived the con-

stitutive properties of the semi-compliant Raptor™ balloon, which is used in the expansion
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Table 5.2: Different material properties used for FEA of 316L Stainless Steel stents

Group Young’s Yield stress Material reference; notes
modulus (oy)
(E)
(N/mm?) (N/mm?)
Auricchio [I21] 196000 205 Metals handbook (American Society
of Metals)
Etave [122] 196000 - Standard stress-strain curve for an-
nealed material
Migliavacaa 196000 205 Auricchio [121]
[123]
McGarry [138] 209000 264 Uniaxial tensile test
Gu [124] 196000 205 Auricchio [121]
Migliavacaa 196000 105 Auricchio [121]; included kinematic
[126] hardening in the plastic phase
Liang [128] 201000 330 Tensile test on wires
Hall [139] 196000 200 -
Wang [130] 201000 - Tensile test on annealed wire
De Beule [140)] 196000 205 Auricchio [121]
Wu [132] 201000 280 Standard true stress-strain curve for
annealed material
Takashima [I31] 200000 315 -
Gijsen [133] 196000 105 Petrini [I41], Migliavacca [126]
De Beule [134] 196000 375 Murphy [10] (Uniaxial tensile loading
of SS 316L strut specimens)
Gervaso [19] 193000 205 -
Zunino [20] 193000 205 Auricchio [121]; included degradation

of the hardening modulus

of the CYPHER stent [I35], using the compliance chart provided by the manufacturer and
using thin shell membrane theory. Their derived values have been adopted for the balloon
material properties in this study. The balloon is assumed to be a linear elastic material with
a Young’s modulus (E) of 920 N/mm?, and a Poisson’s ratio (v) of 0.4.

5.2.2.3 Artery

The artery material is described as an isotropic hyperelastic material based on a sixth order

reduced polynomial strain energy density function, U, given by

U = Cio(l1—3) + Caoll1 —3)*> + Cao(l1—3) + Caoll1—3)*

_ _ (5.3)
+ Cosol1 = 3)° + Ceoll1-3)°,
where, |1 is the first invariant of the deviatoric Cauchy-Green tensor —
li=A4° + 2% + A3, (5.4)

A =373, (5.5)
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Figure 5.6: Stress-strain curves for coronary stent strut specimens [10]

where A; are the principal stretches and J is the total volume ratio (J=det(IF), where F is the
deformation gradient.

Holzapfel et. al. [142] studied the deformation behavior of 13 non-stenotic human LADs,
and proposed a constitutive model for each of the three layers — intima, media, and the
adventitia. Their results were adopted for a reduced polynomial strain energy density function
(equation (3] by Gervaso et. al. [19], and Zunino et. al. [20]. Of these values, which are
outlined in Table (.3, the coefficients for the media layer are used in this study as the artery

is assumed to be a single layer.

Table 5.3: Coefficients for strain energy density function for artery layers [19] 20]

Layer Cio Cao Cao Cao Cso Ceo
Intima 6.7x10°9%  0.54 -1.11 10.65  -7.27 1.63
Media 6.52x10°0%  4.89x107%% 9.26x10° (.76 -0.43 8.69x10792
Adventitia  8.27x10°%  1.20x10°%% 0.52 -5.63 21.44 0.00

5.2.2.4 Plaque

There is little data available on the material properties of plaque. Holzapfel et. al. [143]
sampled 107 specimens from nine human high-grade stenotic iliac arteries, identified eight
different tissue types, and quantified the anisotropic mechanical response of these different
tissue types using histology and magnetic resonance imaging. The application of such material
properties for finite element studies requires realistic geometries and different tissue type
volumes identified by MRI scans. A simpler model for plaque was used by Wong et. al. [144].
They used a hyperelastic, Neo-Hookean strain energy function to describe the mechanical

behavior of plaque. A Neo-Hookean strain energy density function is defined as follows —

U= ’—;(G ~3) + ;(J ~ 1), (5.6)

where u is the initial shear modulus, K is the initial bulk modulus, and I, and J are as defined
in Eqns. B.4land This Neo-Hookean description of the plaque has also been used by Kock

et. al. [I45], and is used in this study as well. The initial shear modulus, y, can range from



5.3. Simulations 81

0.1 kPa to 60 kPa [144]. Smaller values of u indicate softer plaque while larger values tend
towards calcified plaque. In this chapter, u has been assumed to be 60 kPa. To model a
nearly incompressible plaque, which most biological tissues are [144), [146 145, [147], a value
of K = 2Qu is chosen, which gives a poisson’s ratio, v, of 0.475.

Other hyperelastic models such as the Mooney-Rivlin form have been used in studies by
Pericevic et. al. [146] and Lally et. al. [148].

5.2.3 Element type

An important consideration in FEA is the choice of element type. Hall et. al. [I39] presented
an interesting study which compared the use of following element types for stent to model

the expansion process —
e C3D8 — 8-node hexahedral solid element.
e C3D8R — 8-node linear hexahedral solid element with reduced integration.
e C3DS8I — 8-node linear hexahedral incompatible mode solid element.

e 5S4 — 4-node linear quadrilateral shell element with 5 integration points through the

thickness.

e S4R — 4-node linear quadrilateral shell element with reduced integration and 5 integra-

tion points through the thickness.
e B31- 2-node Timoshenko beam element with 5x 5 cross section integration points.

Their study showed that all the element formulations provide similar responses even
though the dimensionality of all the elements are different. Since evaluation of the post-
stenting haemodynamic response is one of the objectives of this thesis, C3D8R elements were
chosen for the stent, plaque, and the artery. These elements were also used in earlier studies,
e.g. De Beule et. al. [I34] and Gervaso et. al. [19]. For the balloon, M3D4R elements (4-node
quadrilateral elements with reduced integration) are chosen [134) [19] with a thickness of 0.02
mm [134].

5.3 Simulations

All the simulations are carried out using Abaqus/Explicit 6.9.1 (Dassault Systémes Simulia
Corp., Providence, RI, USA), a commercially available finite element solver. The simulations

are carried out in three sets —

1. Deflation of the balloon. The methodology of Gervaso et. al. [19] is adopted to obtain
the unexpanded shape of the balloon.

2. Free expansion of stent — without the resistance of plaque and artery.
3. Expansion into the plaque and the artery.

The following sub-sections detail the boundary conditions, loading process, and the mesh

and time-step dependence studies, for the three aforementioned steps.



82 Chapter 5. Balloon expansion of stents

5.3.1 Deflation of balloon

For the deflation of the balloon, the nominal shape of the balloon is taken and the following

boundary conditions are applied —

1. Two nodes at the extreme ends of the balloon are constrained to allow displacements

only in the axial direction.

2. Three nodes in the central axial cross section, forming an equilateral triangle, are con-

strained to move only in the radial direction.

Figure .17 shows the boundary conditions imposed on the balloon. A negative pressure of
0.01 MPa is then applied to the inner surface of the balloon. This results in deflation of the
balloon which can then be used for expanding the stent. The crimping process is neglected
in this study and the deflated balloon is used to expand the semi-crimped geometry created
directly by CAD modelling. Figure [£.8al shows the deformed balloon, and Figure shows

the balloon inserted inside the semi-crimped stent.

Radial movement only Longitudinal movement only

Figure 5.7: Boundary conditions imposed on the balloon for deflation analysis

5.3.2 Free expansion of stent

It is worth recalling that the simulations for free expansions are performed in order to validate
the results with those provided by the manufacturer. For these simulations, the balloon
configuration from the results of the above step is positioned midway into the stent (cf. figure
[E.8D). For the balloon, the same boundary conditions as specified in section [F.3.1]are imposed.
For the stent, in-order to constrain any potential rigid displacements [19], three nodes along
the central axial cross section of the stent are constrained to move only in the radial direction.
A pressure, P, is then applied to the inner surface of the balloon. In clinical practice inertia
has negligible effect on the expansion process [134]. Consequently the balloon expansion of
stents is usually modelled as a quasi-static process. A quasi-static process is characterized by
the ratio of kinetic energy of the deforming material to the total internal energy, such that
this ratio remains less than 5%, throughout the analysis [149]. Consequently, the loading rate

under the assumption of a quasi-static analysis can be increased considerably, provided the
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(a) Deflated balloon configuration
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(b) Deflated balloon inside stent

Figure 5.8: Deflated shape of the balloon

energy ratio requirements are met. Figure shows the variation of pressure P with clearly
defined loading and unloading phases. In reality, there is a ‘hold’ phase, between the loading
and unloading phases, where the pressure is maintained at its peak value for some time. This
‘hold phase’ is not included in the free expansion primarily because the manufacturer data
for validation are available only for the loading phase. A maximum pressure of 1.6 MPa is
chosen because the rated burst pressure for the Raptor™ balloon, used for expanding the
CYPHER stent, is 1.621 MPa [135]. To model the balloon self contact and the contact of
balloon with stent, a surface-to-surface discretisation method is used with a penalty based
constraint enforcement and finite-sliding formulation [149]. Finite sliding formulation takes
non-linear geometric effects into account and, as opposed to a small-sliding formulation, tracks
the relative motions of the surfaces in contact [149]. A Coulomb friction model, with a friction
coefficient of 0.2, is used for both the contact formulations, which is valid for both nylon-nylon
and nylon-steel contact [134, 150] . Figure shows the meshed assembly of balloon and

stent for the free expansion simulations.
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Figure 5.9: Loading profile for the free expansion of balloon

Mesh and time-step dependence studies are performed to be sure that the final simulations

are run for a mesh and time-step such that an increase in the mesh density and/or a decrease
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Figure 5.10: Stent and balloon assembly (meshed) for free expansion

in the time-step would have negligible effect on the results. Table 5.4l shows the combinations

of different mesh and time-steps used for the quasi-static explicit analysis. Such a study is

also helpful in determining the mesh size and time-step for future optimization studies where

a number of designs are analyzed while parsimoniously using computational resources. To

compare the effect of different mesh densities and time-steps the transient pressure-diameter

relationship is used. Since the stent does not expand uniformly along its length, owing

to the balloon expanding faster at the ends, an average diameter of stent is used. This

average diameter, d, is determined by taking eight nodes, distributed uniformly along the

axial direction of the stent, on the inner surface of the stent. Figure [(.11] shows the location

of these eight nodes used for calculating d.

Table 5.4: Different mesh and time-steps used for verification studies

Name No. of elements No. of elements time-step
Balloon Stent (s)

Base_le7 13068 19032 1077
Base_le8 13068 19032 1078
Mesh1_1e7 16800 33484 1077
Mesh1_5e8 16800 33484 5x 108
Mesh1_1e8 16800 33484 108
Mesh1_1e9 16800 33484 5x 107°
Mesh2_1e7 29800 42216 1077
Mesh2_1e8 29800 42216 1078
Mesh3_1e7 42960 64740 1077
Mesh3_1e8 42960 64670 1078

Figure 5.11: Eight nodes to measure the average diameter of stent during transient expansion
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Figure shows the pressure-diameter, p—d, relationship for four different time steps.
As can be seen in this figure, decreasing the time-step below 1078 s has negligible effect on the
profile. This implies that a time-step of 1078 seconds is computationally most appropriate to
accurately capture the transient behavior.

Figure shows the p—d relationship for all the four meshes using a time-step of 1078
seconds. This figure suggests that using a mesh density equivalent to Meshl for CYPHER
like stents would yield negligible numerical error if the mesh density is increased. Hence all

the results presented in sections [£.4] and are based on Meshl using a time-step of 1078

seconds.
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Figure 5.12: p—d relationship for different time-steps on Mesh1
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Figure 5.13: p—d relationship for different meshes using a time-step of 1078 s

5.3.3 Expansion into the plaque and artery

Having setup the simulations for the free-expansion of the stent the plaque and the artery
are now included in the expansion simulations. Figures [5.14al and respectively show
the geometry and the mesh for the assembly of the balloon, stent, plaque, and the artery.

The boundary conditions for the balloon and stent are kept the same as in the free expansion
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analysis (section [£.3.2). A tie-constraint is specified between the outer surface of the plaque
and the inner surface of the artery. An encastre boundary condition (Uj = 0; i = 1,2,3)
is imposed on the longitudinal ends of the artery. Moreover, three nodes on the central
cross section of the artery are constrained to move only in the radial direction [19} 20]. Two
additional contacts, apart from those in section [5.3.2], are specified — contact between balloon
and plaque, and contact between stent and plaque. Both these contacts are specified using
a surface-to-surface discretisation and penalty method for contact constraint enforcement. A
finite-sliding-formulation for the contact pairs with a Coulomb friction model is used [149].
Since there is no data available (to the best of the author’s knowledge) regarding friction
coeflicient values between either balloon or stent and the arterial tissue, a friction coefficient

of 0.2, the same as that between nylon-nylon and nylon-steel is used.

(a) Geometry

(b) Mesh

Figure 5.14: Assembly of balloon, stent, plaque, and artery

To drive the analysis a uniform pressure, p , is applied to the inner surface of the balloon
to simulate expansion. Figure shows the variation of p with time. Three distinct phases
of loading, hold, and unloading can be identified. A maximum pressure of 1.2 MPa is applied
as the nominal pressure for the CYPHER stent is 1.115 MPa [I35] (see table (.6). The
expansion is modelled as a quasi-static process, keeping the kinetic energy less than 5% of
total internal energy. The mesh densities for the stent and the balloon, and the time-step
to model the transient expansion, are justified in section — in particular, Meshl and a
time-step of 1078 seconds are chosen. To determine the mesh densities for plaque and the
artery appropriate mesh dependence studies are conducted. Three different mesh sizes are
used for plaque and artery. Table shows the different plaque and artery mesh densities
and time-steps used for this study. Even though a time-step of 1078 seconds is deemed most
appropriate, the tests are conducted for two sets of time steps viz. 1078 and 1077 seconds.
The reasons for this will become clear in section [5.3.41

In order to compare the effect of different mesh densities, the von Mises stresses on the
plaque inner surface along a central line at the end of the analysis are used. This final
state reflects the equilibrium stage after the balloon pressure has been unloaded. Figure
shows this line in the undeformed state of the plaque. Figure B.I17 shows a comparison of

the von-Mises stresses on this line for different meshes. The average difference between the
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Figure 5.15: Loading profile for the expansion of stent into the plaque and artery

Table 5.5: Different mesh and time-steps used for verification studies of stent expansion into
the plaque and artery

Name No. of elements No. of elements time-step
Plaque Artery (s)
PA _Base_le7 11948 19000 107/
PA_Base_le8 11948 19000 10°8
PA_Mesh1_1e7 25690 27072 1077
PA_Mesh1_1e8 25690 27072 10°8
PA_Mesh2_1e7 40216 43200 1077
PA_Mesh2_1e8 40216 43200 10°8

stress results for PA_Mesh1 and PA_Mesh?2 is less than 5%. Even though both PA_Mesh1 and
PA _Mesh2 are appropriate for stress calculations, PA_Mesh2 is chosen for future optimiza-

tion studies, as it gives a better resolution of plaque geometry for subsequent CFD studies

(presented in chapter [).

5.3.4 Choice of time-step for optimisation studies

Since design optimization is a process which needs evaluation of multiple points in a given
design space, multiple computational simulations are often not affordable for complex anal-
yses. The expansion analysis presented in Section suggests the use of a time-step of
1078 seconds, in order to capture the numerical transient expansion which is dependent of the
time-step chosen. However, a close look at Figure shows that the expansion behavior for
a time-step of 1078 s is similar to that for a time-step of 1077 s for pressures higher than 0.6
MPa with minimal errors. Based on this observation it is hypothesized that a time-step of
10~ seconds can be used for optimization studies, as it reduces the physical simulation time

from about over a week to 24 hrs. To prove this hypothesis the following four arguments are

considered —

Figure 5.16: Line on the plaque inner surface on which the Von Mises stresses are compared
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Figure 5.17: Von-mises stress comparison along a line on the inner surface of the plaque for
different meshes

1. The material properties for all the components of the expansion analysis, do not have

a time-dependent component.

2. None of the objective functions, that are used to judge the efficacy of the stent, are
based on the transient response of the stent during expansion, i.e. the metrics are

based on the final expanded state of the stent.

3. The ratio of kinetic energy to total internal energy remains below 5% for both the

time-steps.

4. The stresses on the components differ by numerically acceptable errors at the end of

the analysis for both the time-steps.

While points 1 and 2 are straightforward conclusions based on the modelling methodology,
points 3 and 4 are less obvious. For this reason, the ratio of energies is investigated for the
two time-steps of 1077 and 1078 seconds. Figure shows this ratio for the time steps
of 107" s and 10 s on PA_Mesh2 . It is found that this ratio remains under 5% for all
simulations. Next, along a central line in the plaque (shown in figure [£.16) the von-Mises
stresses are compared for the two time-steps of 107 and 1077 seconds. The results are plotted
in for PA_Mesh2. A time-step of 1077 s underpredicts the von-Mises stresses, on average
by approximately 12% when compared to a time-step of 1078 s. Moreover, the stress pattern
along the plaque line is similar for both the time-steps. Since the underprediction of von-
Mises stresses applies to all the designs being evaluated in the design space, it is proposed to

use a time step of 1077 s for subsequent optimisation studies.

5.4 Validation

To validate the numerical results the data provided by the manufacturer (Cordis Corp.,
Johnson & Johnson) [I35] is used. Table lists the data obtained by the manufacturer

during in-vitro testing at 37°C. The second row in the table (with bold numbers) indicates
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the nominal diameter of the stent and the subsequent rows indicate average stent/balloon
diameters at specific balloon inflation pressures without taking into account lesion resistance.
Since a 3.0 mm CYPHER stent is analysed in this study, the shaded column is applicable
for validation. Figure shows the comparison of the transient p—d data obtained from
numerical results (Meshl with a time step of 1078 s) to the data listed in Table The
maximum difference in the numerical analyses vs. the in-vitro data is 8.0%. Apart from a
good agreement with the experimental data, the transient expansion relationship obtained in
this chapter matches well with the work of De Beule et. al. [I34] and Gervaso et. al. [19].

Table 5.6: CYPHER stent expansion data provided by the manufacturer by in-vitro experi-

ments
Inflation pres- | Diameter Note
sure (MPa) (mm)
2.25 2.50 2.75 3.00 3.50
0.608 1.95 217 243 264 3.13
0.709 2.02 225 251 272 3.23
0.811 2.10 2.32 258 280 3.32
0.912 2.16 2.38 2.67 287 3.40
1.1013 2.22 244 2.71 294 347
1.115 2.26 249 2.76 299 3.52 | Nominal
1.216 2.30 253 2.82 3.03 3.57
1.317 2.34 2.56 2.84 3.07 3.61
1.419 2.37 259 287 3.11 3.64
1.520 2.39 2.62 289 3.14 3.67
1.621 2.42 2.64 292 316 3.70 | Rated Burst Pressure
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Figure 5.18: Ratio of energies for a time-step of 1077 and 1078 s for PA_Mesh2
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Figure 5.20: Comparison of numerical results with the experimental data

5.5 Results

The results for the free expansion and expansion into the plaque and the artery are presented

in the following sub-sections.

5.5.1 Free expansion of the stent

The transient free expansion of the stent is shown in figure [5.2Il It can be concluded that the
expansion of the stent is not uniform across the longitudinal axis. The stent expands more at
the distal ends than at the central part. This phenomenon is often referred to as dogboning,
DB, and is defined as —

DL, — D2
Dogboning (DB) = —43__—cenral, (5.7)
Ddista]
where DcFi)istaI and Dsentral are the stent diameters at the distal and central parts respectively
at any given load p. The maximum dogboning observed is 2.2%.
It can also be observed that the final length of the stent is smaller than the initial length
— as the stent expands in the radial direction, it foreshortens in the longitudinal direction.

This phenomenon is referred to as foreshortening, FS, and is defined as follows —
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Linitial — Lfinal

Foreshortening (FS) = 3
initial

, (5.8)

where Linitiar and Lging are the initial and final lengths of the stent respectively. The fore-
shortening observed in this case is 6.19%.

The most important factor determining the efficacy of the stent is its radial strength, and
recoil provides a good measure of this. Even though the stent might recoil many days after
the procedure (late recoil), the simulations presented in this thesis can only evaluate the acute
recoil (recoil immediately after the implantation procedure). Percentage acute recoil, R, is
defined as —

SIS -
Pmax

where Dy, and Dy, are the average stent diameters at maximum loading (P= Pmax) and after

unloading (p=0) respectively. The value of acute recoil observed in this case is 4.2%. Figure

shows the von-Mises stresses and max. principal plastic strains on the stent after the

unloading phase.

Figure 5.21: Stages of transient free expansion of the stent

5.5.2 Expansion into the plaque and the artery

The expansion of the stent into the plaque and the artery is depicted in figure The
parameters such as dogboning, foreshortening, and recoil defined in the previous section can
be evaluated for this case too. The expansion behavior in this case is different than the free-
expansion because of the additional contact/resistance of the lesion. After the acute recoil,
the stent is perfectly apposed to the plaque inner surface and since the contact formulations
allow embedding of the contact surfaces onto one another, the stent embeds itself into the

plaque tissue. Figures [5.24] (525 and [5.26, respectively show the von-Mises stresses on the
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Figure 5.22: Von Mises stresses (MPa) and maximum principal plastic strains on the stent
after free-expansion
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Figure 5.23: Stages of transient expansion of the stent into the plaque and artery
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Figure 5.24: Von Mises stresses (MPa) on the stent
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Figure 5.25: Von Mises stresses (MPa) on the plaque
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Figure 5.26: Von Mises stresses (MPa) on the artery
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Figure 5.27: Average stent diameter for expansion into the plaque and the artery
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Figure 5.28: Max. Principal plastic strains on the stent after expansion into the lesion



94 Chapter 5. Balloon expansion of stents

stent, plaque, and the artery after the unloading phase. Figure B.27 shows a plot of the
average diameter of the stent against the pressure applied, and figure 5.28 shows the max.
principal plastic strains for the stent at the end of the analysis (i.e. after the unloading

phase).

5.6 Discussion

For both the free-expansion and expansion into the lesion, the maximum stresses for the stent
are located at the curved parts of the struts (cf. figures5.221 and [5.24]). The maximum plastic
strains are also located in the same regions (cf. figures and [5.28)). Since the simulation
does not take into account the failure of the stent material, it is imperative to check that
the maximum total strain does not exceed the failure strain [I0]. The plastic strains are
a key component in designing a stent. A good stent should, on one hand, undergo plastic
deformation at the right locations so as to maintain the shape, which would lead to minimal
recoil, while on the other hand the plastic deformations should not be large enough so as to
cause failure. In the representative CYPHER stent considered in this chapter, the equivalent
plastic strains are approximately 15%. The strut thickness (see Table 5.1 is 140 microns,
and from Figure it can be seen for this range of strut thickness, the maximum permissible
strains are greater than 30%. Hence, it can be safely said that the representative CYPHER
stent would not fail for the expansion diameters used in this study.

For metallic stents, this constraint of not exceeding the maximum allowed plastic strains
and the observation that most stents have circumferential rings of varying shapes leads to
the conclusion that circumferential rings represent a vital component of a metallic stent.
This is primarily because very large plastic deformations for metals are not feasible, and it
seems that the circumferential rings provide a very effective way for the expansion as well as
the retention of the expanded shape through plastic deformations. Other ways of expansion
usually employ the use of polymeric material properties. The patent by Johnson & Johnson
[151] presents very interesting ways for stent expansion by utilizing the material properties
of more plastic materials.

Looking at the stresses and strains at the links between the circumferential rings, they
seem to not be playing an important part in the expansion of the stent, apart from tying the
circumferential rings together. Nonetheless, the links play an important part in determining
the flexibility of the stent, and their role is investigated in chapter [

Figure shows that the stent leaves a heavy imprint in the plaque, causing the stresses
to be highest at the contact interface. Moreover, since the stent has to work most in the central
region, where the stenosis is highest, the stresses in the central plaque region are the highest.
The stent imprint can also be seen in the artery surface in figure Observing all these
stress patterns in the plaque and the artery it can be concluded that the stress distribution in
these tissues is a function of the stent geometry. A good stent would ideally try to distribute
the stresses more uniformly, and minimize the maximum stresses. As mentioned earlier that
the quantification of stresses is one way of quantifying injury caused to the tissue, a strategy

to quantify this numerical information is needed. This forms the content of the next section.
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5.7 Formulation of objective function

The two most important parameters relevant to restenosis are stent diameter post-stenting

and injury. The following section describe these parameters and their quantification

5.7.1 Stent-diameter post stenting and recoil

Even though any of the parameters defined in section [(.5.0], viz. dogboning, foreshortening,
and acute recoil can be used as an objective function to rank the performance of stents,
acute recoil is chosen as one objective function in this thesis. This is primarily because acute
recoil is directly related to the minimum stent diameter, and which in turn is related to the
minimum lumen area, the primary goal of the stenting procedure. Moreover, minimum stent
area has direct relevance to restenosis. Clinical trials [I52] and other studies [153, [154] have
shown that restenosis rates are very low if the post-procedural minimal stent area is high
(greater than 9mm?). Kasaoka et. al. showed that for every 1-mm? increase in the minimum
stent area, the predicted risk of restenosis drops by 19%. Thus, a higher stent area post
stenting is a key deterrent of restenosis. Based on this the objective function, Recoil, without
the denominator of R; defined in equation (5.9 is

Recoil = Df&x — punioad (5.10)

avg avg

where DRS¢ and Dg(}goad represent the maximum average diameter of the stent during the
loading and hold phases and its diameter after the unloading phase, respectively. This Recoil
is shown graphically in figure It should be noted that in the above definition the av-
erage diameter is used, instead of the minimum diameter as suggested by clinical studies.
This is justified as only one representative plaque geometry is used in this thesis. In reality,
depending on the shape of the stenosis, the stent will expand differentially in different loca-
tions of the stenosis. Thus, the minimal stent diameter is determined, in part, by the shape
and morphology of the stenosis. An average measure used here represents the average radial
strength of the stent, and since the stenosis used in this thesis is not severe, is also represen-
tative of the minimum stent diameter. Moreover, it is observed that for later stent design
variations, material of the stent, and the stenosis shape used in this thesis, the variations in
stent diameter along the axial length of the stent are negligible.

Acute recoil is also reflective, in part, of the radial strength of a stent. One way to measure
the radial strength of a stent is to apply an increasing inward pressure on the outer surface of
the expanded stent and monitor the decrease in diameter. The pressure post which the stent
cannot withstand any more increase in pressure (stent collapse) would represent the radial
strength of the stent. Acute recoil measures this, in part, as the inward forces that are acting
on the outer surface of the stent are due to the elastic nature of the artery which wants to
regain its original configuration. Hence, although these forces are not increased to the extent
of stent collapse, acute recoil for different stents takes into account the initial relationship
between the external inward forces and diameter decrease.

Lastly, it is worth nothing that Recoil is also related to thrombosis, albeit indirectly.
Incomplete stent apposition is defined as the separation of stent struts from the inner walls
of the artery [I55], and is shown to be correlated with stent thrombosis [155, 156]. If a
coronary stent has high Recoil, then it is apparent that it will lead to incomplete apposition,

and consequently increase the risk of thrombosis.
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5.7.2 Quantifying injury caused by stent implantation

As mentioned in section [5.1], studies have shown a link between vessel injury, i.e. endothelial
exposure, intima laceration, and rupture of media [107, 108, 109] 110} 119} 8], and restenosis.
These factors can directly be related to the contact pressure between the expanded stent and
the inner surface of the artery/plaque [125]. A high contact pressure between the stent struts
and the intimal layer of artery can cause endothelial denudation and trauma which can lead
to higher neointimal hyperplasia. Therefore, it is reasonable to include this contact pressure,
which can be obtained by the FEA balloon expansion simulations developed, as a measure of
injury.

Holzapfel et. al. [125] proposed two scalar metrics to evaluate a stent’s efficacy by
expansion analysis — D1 based on intimal pressure concentration caused by stent struts and
D2 based on stress change in the arterial wall caused by stenting. As discussed above D1 is a
measure directly relevant to restenosis. On the other hand, D2 represents an average change
in the stress environment in the arterial tissue. Intuitively, it can be thought that if the
average change in the stress environment post stent implantation is low, then the mechanical
environment in the post-stented artery is not much different than that of the non-stented
artery. This could imply lower injury caused. The results of the study by Holzapfel [125]
are analysed and it is found that the two measures, unsurprisingly, are highly correlated
(r > 90%). Hence, from an optimisation point of view, it is of little significance whether D1
or D2 is used for comparing stents. Since the evaluation of the D2 metric is relatively easier
to compute compared to D1, a variant of the D2 metric is used in this thesis as an objective
function. This metric, volume average stress, VAS, which represents an average value of the

von Mises stresses imparted on the artery due to stenting, is defined as follows:

fVO'dV
fav’

where o represents the von Mises stresses and the integrals are calculated over the volumes

VAS = (5.11)

of plaque and the artery. For numerical simulations, when meshes are involved, VAS can be

calculated using the following formula —

3 (5.12)

where o7 represents the von Mises stress in the it element of plaque/artery, 6V; is the volume
of the i element, n is the total number of elements in the plaque/artery within the axial
domain of the stent plus a length of 0.5 mm on either side of the stent (as shown in figure
(.29), and the summation is carried out over the both the domains of plaque and artery.

VAS, averages the stresses over the volumes of plaque and the artery. Since we do not
assume any pre-stresses before the stenting procedure, any stresses produced in the artery
or plaque are seen as unwanted by the above definition. In a case that there do exist some
pre-stresses (0 pre), 0 can be replaced by Ao in the above equations, where Ao = (07 — 0pre)
[125].

The above two defined objective functions can be used to rank different designs of stents
from radial strength and arterial injury perspectives, respectively. A lower value of both the

objective functions indicates better designs.
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5.8 Conclusions

A methodology to evaluate the transient expansion of a coronary stent is presented in this
chapter. Such analysis is then used to extract information such as stresses and strains for all
the components, viz. stent, plaque, and the artery. For the CYPHER stent typical evaluation
parameters such as dogboning, foreshortening, and acute recoil are calculated. Finally, two
objective functions, Recoil and VAS, which can be used to compare the efficacy of different
stents, are formulated for use in optimization studies. It is shown that the maximum stresses
and strains for the expanded stent are located in the curved regions of the circumferential
rings. It is also observed that for the plaque and artery, maximum stresses occur in regions
where: a) stent struts come in contact with the tissue, and b) where the stenosis is high relative
to other regions. Apart from analyzing the stent’s expansion behaviour, which is critical for
design optimization studies, this chapter has also established a procedure for the study of
haemodynamics and drug-diffusion in realistically expanded geometries. Although a detailed
analysis of haemodynamics is presented in Chapter [ its primary shortcoming is to use non-
realistic geometries to evaluate flow. This chapter links that gap, and provides relatively
realistic geometries for haemodynamic and drug-diffusion evaluation (which are presented in
chapter [§). Before moving on to such haemodynamic and drug-diffusion analysis, in the next

chapter the issue of stent flexibility, which is key for deliverability, is explored.






Chapter 6

Flexibility of stents

The deployment of a stent involves the delivery system (comprising the balloon catheter and
the stent) to be manoeuvred through highly curved anatomical pathways to the stenosis site
[129]. Consequently, the flexibility of the stent becomes a concern, as potentially rigid stents

give rise to various problems during deployment. The aims of this chapter are as follows

1. to develop a FEA model to model bending of an unexpanded coronary stent, and

2. to formulate an objective function which can be used to compare stents based on their
flexibility.

This chapter starts with a review of methods that have been proposed to evaluate the
flexibility of a stent. Thereafter an FEA model to simulate bending of stents is presented.
Finally, a figure of merit, which can rank stents based on their flexibility, and hence in part

deliverability, is proposed.

6.1 Introduction

Although there are no standard tests to evaluate flexibility of a stent, several methods have
been used in the past. These methods can be broadly classified as either experimental or nu-
merical. In the experimental regime either a one-point [I57], three-point [I58], or a four-point
[157, 159] bending test is generally used. In the numerical methodology, bending is either
measured by specifying the rotational displacements of the longitudinal ends and measuring
the moments required [I41], or by applying the moments at the longitudinal ends and mea-
suring the rotational displacements [160]. Ormiston et. al. [I58] compared 13 stent designs
(two coil, two hybrid, and nine slotted tube designs) both before and after stent expansion by
using a three-point bending test. They reported a strong correlation between expanded stent
stiffness and number of longitudinal strut interconnections, and a poor correlation between
expanded stent stiffness and strut-thickness. They also reported that expanded stents were
more stiff than their crimped state counterparts. Szabadts et. al. [157] compared six designs
by using one-point and four-point bending tests. Mori et. al. [159] also used four-point bend-
ing tests on four different designs and proposed a simplified 2-D FEA method to evaluate
the effect of stent parameters on flexibility. Petrini et. al. [141] compared the flexibility of
the Bx VELOCITY stent and the Carbostent (Sorin Biomedica, Saluggia, VC, Italy) using

99
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FEA. They proposed specifying the rotational displacements of the longitudinal ends to sim-
ulate bending, and then measuring the corresponding moments. They also showed that the
response of one unit of stent closely followed the response of the full stent, and suggested that
one unit of stent, being computationally cheaper, is ideal for flexibility measurement. Wu et.
al. [160] proposed the use of multipoint constraints (MPC) in FEA to simulate the four-point
bending tests. Their proposed method, where the analysis is driven by application of mo-
ments, can be applied to achieve more complex bending shapes (such as an ‘S’ shape, which
is hard to simulate by specifying rotations) apart from the widely used pure-bending shape.
They reported that flexibility of stents after they undergo plastic deformation is roughly 16
times larger than when they deform elastically only, and hence concluded that stents which
can be plastically deformed easily are more flexible. Ju et. al. [I61] proposed a repeated
unit cell (RUC) approach to simulate pure bending of coronary stents, and reported that the
geometry of the link was a key determinant of stent flexibility.

In this chapter the methodology suggested by Wu et. al. [160] is used to simulate bending.
Thereafter, flexibility, both in the elastic and plastic regimes, is quantified to be used in

optimization studies. The following sections discuss the approach used for this purpose.

6.2 Methodology

6.2.1 Geometry and material

Following the work by Petrini et. al. [14I], which showed that the results of one unit of
stent are very similar to that of a full length stent, only a unit model of stent is used for
flexibility analysis in order to save computational time. The parameters of the stent geometry
are the same as described in section B.2Z.1.T], except that from the full length model, one unit
is extracted. Figure shows this model. The material of stent used in this chapter is the
same as described in section .2.2.711

Figure 6.1: A unit model of the stent

It must be noted that due to the plastic deformations in the stent during delivery, the stress-
strain history of the stent material for the expansion analysis will change. Consequently,
kinematic hardening effects such as the Bauschinger effect, will come to play during the
expansion of stent depending on the kind of plastic deformation occurred during the delivery
of the stent. However, as will be seen in this chapter, and in chapters [l and @ the plastic
deformation in the stent links is primarily important for delivery, and the plastic deformation
in the circumferential rings is primarily important for the expansion of the stent. In this

sense, for the stent designs considered in this thesis, these plastic deformations, and hence
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their strain history effects on each other are de-coupled. For these reasons the effect of strain

history during delivery on the expansion analysis is ignored.

6.2.2 Boundary conditions and analysis

Abaqus/Standard 6.9.1 (Dassault Systémes Simulia Corp., Providence, RI, USA) is used
for the flexibility analysis. Six edges on each longitudinal end are tied to their respective
reference points (RP-1 and RP-2) on the axial ends (as shown in Fig. [6.2a]) using multi-point
beam constraints. RP-1 is constrained not to move in either of the three X,Y, or Z directions
and RP-2 is constrained to move only in the X direction. Moreover, the rotation of RP-2 is
constrained about the X-axis. As the stent bends, the link on the compression side may come
into contact with itself. Hence, a self contact for the stent is specified using surface-to-surface
discretisation, Coulomb friction model, with a friction coefficient of 0.2, and penalty method
for constraint enforcement [149]. Linearly increasing equal and opposite moments (Mz and
—Mgz) from 0 to 1.5 N-mm are then applied to these reference points as depicted in Fig.
10-node tetrahedral (C3D10) elements [160] are used for the static flexibility analysis.

(b) Moment loads for flexibility analysis

Figure 6.2: Boundary conditions for flexibility model

6.2.3 Mesh dependence studies

Mesh dependence studies are performed to determine an appropriate mesh size for the analy-
sis. The moment vs. curvature index graph is used for this purpose. M is the moment applied

and y is the corresponding curvature index (y = 2¢/LUgent), where ¢ is the deformation angle
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as shown in figure and LUgent is the length of one unit of the stent. Table details
the three meshes used and the corresponding percentage differences relative to mesh-1. The
results show that mesh-1 sufficiently discretizes the domain and that increasing the mesh

density has minimal effect on the results.

Figure 6.3: Phi (¢) measurement in the bending analysis

Table 6.1: Mesh dependence study for flexibility analysis

No. of elements | max. % error from mesh-1 in M — y curve
mesh-1 55,047 -
mesh-2 72,167 0.25%
mesh-3 105,392 1.69%

6.3 Results and discussion

Figure [6.4] shows the bending of the stent. Figures[6.4] (¢) and (d) show how links on one side
compress and on the other side expand to allow for a flexible shape. Such a winding feature
of the links, which allows for both expansion and contraction, determines the flexibility of a
stent. A stent lacking such a design feature, for example, one with no curves (straight links),
would require considerably higher moments to bend by the same angle ¢ and hence would
be relatively less flexible. Relative to the expansion, contraction of the links requires more
consideration. The links, owing to their design, come into self contact after a certain ¢. For
a flexible stent, this should be avoided as far as possible because self-contact leads to the
requirement of higher moments for further increases in ¢. Consequently, flexibility decreases
and this makes the stent less suitable for manoeuvring through high curvatures.

Contact of the links is depicted in Fig. [6.5l The images show how increasing moment,
and consequently increasing y leads to more points of self contact in the links. While in Figs.
and c there is only contact location, in Fig. there are two contact locations. It is
observed that as the moment is increased further, the two more pairs (marked as ‘contact
imminent’ in Fig. (d)) come into contact. This leads to a significantly higher increase in

the moments required to further increase y. This phenomenon is also reflected in the M — y
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a) b)

Y Y

Lx Initial configuration (M., = 0) i—x M., = 0.91 N-mm

c)

V4
vox
Extension of the links(M,, = 0.91 N-mm) Compression of the links(M,, = 0.91 N-mm)

Figure 6.4: Flexibility results: snapshot at Mz = 0.91 N-mm; a) initial shape; b) deformed
shape; ¢) y~ view; and d) y* view

curve shown in Fig. Initially, when the deformations are only elastic, an almost linear
behaviour is observed. As the links deform plastically, the incremental moments required
to further increase y are very small until contact occurs. When the first contact occurs,
and until there are only one or two contact locations, a slight increase in the moments is
observed. After the contact locations increase to more than two, i.e. the link is in self contact
and also in contact with the stent struts, a very steep change in the slope of the M — y curve
is observed. Thus, the design of the links, which involves consideration of both allowing the
links to expand and contract and simultaneously avoid self contact, is a key determinant of

flexibility in stents.

a) b)

M., =0.91 N-mm M., = 0.93 N-mm
X = 0.09 rad/mm x = 0.11 rad/mm

d) Contact

M., =1.01 N-mm
x = 0.15 rad/mm

M., = 1.03 N-mm
X = 0.18 rad/mm

Contact
imminent

Figure 6.5: Contact in bending of stents
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Figure 6.6: Moment vs. curvature index curve

6.4 Validation

The model used in this chapter is validated against the numerical results obtained by De
Beule [11]. Figure shows the numerical result, M — y curve, obtained in this chapter
against the numerical results obtained by De Beule. The results match well both qualitatively
and quantitatively: the maximum difference being less than 10%. The differences can be
attributed to the differences in the geometry of the CYPHER stent used by De Beule and
the geometry used in this chapter.

1.5

E .

1 A'a
- xS
N X
N
=
g
£ 0.5
o
=

0

0 0.05 0.1 0.15 0.2
Curvature index, x (rad/mm)
—mesh2 x De Beule

Figure 6.7: Validation against numerical results obtained by De Beule et. al. [I1]

6.5 Formulation of objective function

The moment vs. curvature index graph gives a measure of flexibility of a stent. Petrini et.

al. [I41] have calculated the slopes both in the elastic and the plastic regions and used them
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to compare stents. Such differentiation of slopes in various regions is thought inappropriate
for purposes of design studies for two reasons — first that the number of such slopes, which
depends on the severity of contact at different values of ¢ is not known a priori, and second
that it is difficult to compare stents as two or more metrics are involved (one stent could
have a lower slope in the elastic region and a higher slope in the plastic region and the other
stent vice versa). Besides, the concept of slope in the non-elastic regions is a confusing one
and can lead to errors. To overcome this problem the area of the M — y curve is proposed.
A smaller area indicates that, on average, a smaller moment is required to deflect the stent.
Such a formulation overcomes the two aforementioned problems while dealing with slopes.

Consequently, the flexibility metric, FM, is defined as —

FM = fm M(y) dy, (6.1)
0

where ymax is either determined by the parameterisation used for a particular design study,
or the maximum curvature that is expected in the path of the stent to the stenosis site. Since
data about the latter are not available, while using the former method, the value of yyax
should be cross-checked to ensure that sufficient plastic deformation is taken into account. It
should be noted that since the CYPHER stent is symmetric in the circumferential direction,
i.e. it has uniformly repeating strut segments and links in the circumferential direction,
the proposed bending test is required only once by application of moments in a direction
perpendicular to one of the links. For stents which do not have this property, bending tests
should be performed in all directions since the M — y curve will vary depending on which
direction the moment is applied. In such cases, the maximum of FM in all the bending

directions can be taken as the objective function.

6.6 Conclusions

A method to evaluate flexibility is implemented in this chapter. The importance of the design
of links is depicted both qualitatively and quantitatively. It is concluded that a design which
avoids self contact and number of contact locations, for higher values of curvature index is,
in general, more flexible. Based on the results obtained, an objective function, called the
flexibility metric (FM), to quantify flexibility into a single numerical quantity is proposed.
As part of the analysis of stents, in order to formulate the comparison figures of merit, this
thesis has so far covered haemodynamics (flow), balloon expansion (structural), and flexibility
analyses. The drug diffusion merits still need to be formulated. These will be formulated in
chapter [§, but before that in the next chapter, a preliminary constrained optimisation study

is presented.






Chapter 7

Constrained optimisation of

coronary stents

This chapter! presents a constrained optimisation study on coronary stents. The thesis has
already formulated metrics for haemodynamic alteration (in chapter @), structural strength
(in chapter [), arterial injury (in chapter [B]), and flexibility (in chapter [6]). In this chapter, the
metrics from balloon expansion analysis from chapter Bl viz. VAS and Recoil, and flexibility
analysis from chapter [6], FM, are used. The haemodynamic metric from chapter 4, HLRFI, is
excluded in this chapter because of two reasons: a) CFD models to use the expanded geometry
from balloon expansion analysis for haemodynamic evaluation have not yet been explored;
and b) the metrics for VAS, Recoil, and FM are all related to finite element analysis, and hence
from a practical point of view can be obtained from one FEA package, thereby eliminating
the hard task of transferring geometries between FEA and CFD packages. Nonetheless, in
this chapter a fast model to evaluate drug-distribution is proposed. In line with the thought
of keeping all analysis in an FEA package, this model does not include flow in the lumen (as
that would be in the regime of CFD) and hence is formulated using a heat-transfer analogy

with a finite element formulation. With this background, the aims of this chapter are

1. to develop an FEA based model to evaluate drug-distribution in a stented artery,

2. to develop a parameterisation technique which can be used to create varying stent

geometries,

3. to perform a constrained optimisation study, in order to demonstrate improvement
in stent performance in terms of radial strength, arterial injury, flexibility, and drug

delivered, and

4. to evaluate trends between various merit functions and the parameters representing the

stent geometry.

!The contents of this chapter are published in the below mentioned article with the author’s supervisory
team.
Pant, S., Bressloff, N. W., and Limbert, G., Geometry Parameterization and Multidisciplinary Constrained
Optimisation of Coronary Stents. Biomechanics and Modeling in Mechanobiology, 11:61-82, 2012.
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This chapter is organised as follows: first, a review of the few optimisation studies in
the area of coronary stent design is presented; then an FEA model for drug-release is devel-
oped and an objective function from this model is formulated; thereafter, a parameterisation
technique to represent stent geometry is proposed; and finally, the details and results of the

constrained optimisation study are presented.

7.1 Introduction

Relatively few studies in the past have addressed the problem of stent design optimisation.
Atherton and Bates [162] have presented different approaches to design optimization and their
application in the field of stent design using computational fluid dynamics simulations. Li
et. al. [163],[164] performed an optimization study using a simplified expansion model for the
MAC STENT™ (amg international GmbH, Germany). Their analysis was based on the free
expansion of the stent (without considering the lesion) and they sought designs maximising
radial gain while minimising radial reduction, radial loss, and dogboning (uneven expansion
of the stent along its axial length). After imposing proper constraints on maximum stresses ,
foreshortening etc., they combined the multiple objectives onto a single objective. Blouza et.
al. [I65] performed an optimization study using a 2-D model for the stent by evaluating the
fluid-stent interaction. For the multi-objective problem of minimising the mean-square wall
shear stress and minimising the mean swirl value near the struts, they used an e-multiobjective
evolutionary algorithm. Wang et.al [I30] evaluated six different combinations of balloon
lengths and stent types to investigate design features to reduce dogboning and foreshortening.
Bedoya et. al. [I66] proposed a three parameter based technique to generate stent designs
and after evaluating eight designs concluded that large strut spacing, radius of curvature, and
large amplitude of the circumferential rings result in lesser stresses in the artery. Timmins
et. al. [I67] took the data of Bedoya et. al. and using Lagrange interpolation approximated
the values for relevant stresses, lumen gain, and maximum cyclic radial deflection. They
then identified designs minimising a weighted sum of these three metrics. Recently Wu et. al.
[168] used a 2-D morphing technique on biodegradable magnesium alloy stents to sequentially

minimise maximum principal strain and maximise mass.

7.2 A model for drug release

In this section a model for drug-release is developed as a heat transfer problem in Abaqus/
Standard 6.9.1 (Dassault Systémes Simulia Corp., Providence, RI, USA). As mentioned in
the beginning of this chapter the motive behind such a formulation is that all analyses for the
optimisation study can be performed in the FEA package. Hence, a finite element formulation
of drug-diffusion is needed. The similarity between the diffusion equations and the heat
equation is utilised for this purpose [169, 170, [171]. Since the objective of this model is to
evaluate the differences in the performance of a stent for different geometric designs only, the
drug release is modelled as a steady state diffusion problem. Hence, in the regions of plaque

and artery the following equations are solved respectively

DpVZCp =0 in plaque region, (7.1)
DaV2C, =0 in artery region, (7.2)
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where Cp and C, are drug concentrations in the plaque and artery, respectively, and Dp and
D, represent the drug diffusivities in the plaque and artery regions, respectively. The stent
region is set to unity drug concentration. Such a Dirichlet boundary condition for drug release
has also been used by Kolachalama et. al. [16]. The perivascular side, as shown in Fig. [1]
is set to a zero flux boundary condition. For the luminal side, shown in Fig. [} there are
two possibilities for the boundary condition: first, to assume a zero flux boundary condition;
and second, to assume a flux on the assumption that the drug concentration in the lumen is
zero, which in turn is based on the assumption that all drug in the lumen is washed out owing
to the luminal flow. In this chapter, the former approach is adopted. The latter approach is
explored in chapter B, where the drug concentration in the lumen is also solved for, and hence
the flux on the boundary is calculated more accurately. The longitudinal ends are set to a
zero concentration boundary condition. For the stent-plaque interface and the plaque-artery

interface, the following formulation is adopted —

0(Cs, Cp) = ksp(Cs — Cp) for the stent-plaque interface, (7.3)
A(Cp, Ca) = kpa(Cp — Cy) for the plaque-artery interface, (7.4)

where q represents the flux along an interface, Cs is the drug concentration in stent, and Kgp
and Kpa represent the permeabilities of the stent-plaque and plaque-artery interface, respec-
tively. For the values of the diffusivities of the drug in the plaque and the artery, the work
by Feenstra et. al. [I71] is used. Their diffusivity values of 2.2 x 10> mm?/s and 3.2 x 107
mm?/s for intima and media are as Dp and Dg, respectively, in this model. Disregarding the
porosity field, that was proposed by Feenstra et. al. [I71], in order to simplify the model, ksp

and Kpa are assumed to be 10% mm/s and 1 mm/s, respectively.

Perivascular side

)

Longitudinal end-2

Plaque-artery
interface

Stentregion

Longitudinalend-1 luminal side

Figure 7.1: Boundary condition surfaces for drug release analysis (baseline geometry)

7.2.1 Formulation of objective function

The drug related measure of performance can be considered in two aspects — a) a measurement

of the drug delivered into the tissue globally, and b) a measurement of the tissue volumes which
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receive low drug (less than therapeutic levels). In this thesis, the first aspect is considered
for two reasons — first that the determination of drug levels below which the effects are non-
therapeutic (specially for the steady state drug distribution model adopted in this chapter)
is not obvious, and second that depending on the minimum level set (most likely different for
different types of drug) the optimisation results will be different. The volume average metric
for drug, VAD, to measure the amount of drug transported into the tissue globally, is defined

as follows —

L cdVv
fav’

where C is the drug concentration in the tissue region (i.e. plaque and artery combined) lying

VAD =

(7.5)

within the axial domain of the stent plus a length of 0.5 mm on either side of the stent and

V is the volume. For discretized domains VAD can be calculated by

:=?_ GoV,

|
VAD = ==

SRR , (7.6)

where ¢ is the concentration of drug in an element of volume §V;, and the summation is
carried out over all the elements in the tissue lying in the axial domain of stent plus a length
of 0.5 mm on either side of the stent. This domain is similar to that used in the formulation
of VAS and is shown in figure [5.29

Yl coV,

VAD = 2L

(7.7)

A measure of uniformity of the drug-distribution is excluded from this chapter, and is pre-

sented in chapter 8

7.2.2 Stent geometry and parameterisation

Most stent designs used in clinical practice today have two distinct features — circumferential
rings and links/ connectors. The circumferential rings are the primary feature for expansion
as they undergo plastic deformation at the curved parts and the links provide flexibility to the
stent during deployment. The circumferential rings are crucial for metallic stents as an alter-
nate way of expansion, which would typically involve extremely large plastic deformations,
seems improbable. A change in the material properties (e.g. by using polymers), however,
can lead to very interesting stent designs which can sustain high plastic deformation (cf.
patent by Contiliano and Zhang [151]). Nonetheless, confined to a circumferential ring and
connector design topology, the present work uses a parametrization to parsimoniously alter
the shape of the stent. Since a stent is one single structure, composed of two parts (rings
and links), two parameters are used to describe the rings and two parameters to describe the
links.

Geometry construction/ parameterisation is performed in Rhinoceros 4.0. The base struc-
ture for the circumferential rings is first created. Figure [C.2al shows this structure (note that
the lines depicted in Fig. [[.2h are construction lines). The radius of the initial shape (semi
crimped state) of the stent, Rgent, and its length, Lgent, are fixed to be equal to 0.75 mm and
8.0 mm respectively. Four rings in the longitudinal direction are used and there are 12 (Ny)

curved parts in each circumferential ring. Consequently, dH is equal to 27Rgent/Ny, where dH
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is the distance between successive linear regions in the circumferential rings. The parameter
he, as shown in Fig. [[.2a] is allowed to vary. Since Lgent is constant, he controls the length of
each circumferential ring, and hence the length of the links too. The small horizontal lines in
Fig. [[.2a] show the location where the links are joined to the circumferential rings. From each
curved peak in the circumferential ring, these lines are at a distance of half the value of strut
width (Wgyryt), which is the second variable parameter. In order to parameterise the link, a
two parameter (p; and pp) based polynomial of 51 order is used. While seeking the form of
the polynomial two considerations are kept in mind — first that the polynomial should take a
value of zero at the ends, and second that the polynomial should have zero slope at the ends.
The second condition ensures tangency at the ends so that the connectors can smoothly join

the circumferential rings (c.f. Fig. [[.2D]). Such a polynomial could take the following form

f(t)= pit2(1—1)% ; for O<t< 1. (7.8)

Observing that many stents (CYPHER stent, Multi-link ZETA stent etc.) have an oscillating
link shape, a second link parameter, py, is introduced and the parametrisation is represented

as a fifth order polynomial
f(t) = pit?(L—t)%(p2—t) ; for O<t<1 & O<pr < 1. (7.9)

Equation now represents a smooth curve which takes a value of zero at t = p, and
has opposite sign values for intervals (0 <t < py) and (pz <t < 1). Adding more parameters
such as pz would introduce more such oscillations in the function value. However, to keep
the number of parameters low, this is avoided here. Since the peak values of f(t) in Eq.

depends on the value of po, the final form chosen for this chapter is the following —

_ pat?(1 - )*(p2 - 1)
[t5(1 — t0)2(p2 — to)|

f(t) ;for0O<t<l & O<pr<l, (7.10)

where, tg is

to = €] if F(tl) > F(tz) , (7.11)
t2 if F(tl) < F(tl)

and t; and t are the extremum values (besides 0 and 1) for the function—

F(0) = I*(1 - )*(p2 ~ D). (7.12)
Such a formulation ensures that p; is the maximum value that the curve takes. Once
the curves for both the circumferential rings and the links are obtained, they are offset by
a distance of Wgryi/2 and Nyigin/2 respectively on either side, where Nyigin is the width of
the links (constant in this chapter with a value of 0.07 mm, which is roughly half of the
strut-width value for the CYPHER stent, Cordis Corporation, Johnson & Johnson). Figure
[7.2dl shows this network of curves after the offset operation. All the regions bounded by the
curves are then converted to surfaces, the surfaces extruded to a value equal to strut thickness
(radial dimension) Tgryt (constant and equal to 0.14 mm, based on the strut height of the
CYPHER stent [34], in this chapter), and the resulting structure wrapped to make the final
stent shown in Fig. [[.2¢
In essence, there are four parameters which are allowed to vary for each stent design —

Wsrut, he, p1, and pp. For the baseline geometry, shown in Figure [.3] Wegryt, he, pP1, and po
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Table 7.1: Limits imposed on the design parameters

Wetrut he P1 P2
mm mm mm
Min. 0.05 0.7 0 0
Max. 0.17 1.1 0.5 1

are specified to be equal to 0.11 mm, 0.9 mm, 0.25 mm, and 0.5 units respectively. Figure

[.4] shows some alternate designs created by using this parameterisation.

W
=TT SR

H

@) Tatrut = 0.110; he = 0.900; p; = 0.250; p2 = 0.500 b) Ttpur = 0.088; he = 0.775; p; = 0.469; p, = 0.563

¢) Totrur = 0.129; he = 0.963; p; = 0.016;p = 0.344

===

€) Tstrut = 0.148; h. = 0.975; p1 = 0.219; p; = 0.063

===

9) Tstrut = 0.058; h. = 1.075; p1 = 0.344; p2 = 0.313 h) Tsprur = 0.159; b = 0.863; p; = 0.141; po = 0.594

Figure 7.4: Sample designs generated from the parameterisation described in section [.2.2
and Figure

Initial shape

Final shape

Figure 7.5: Explanation of the lower bound on the parameter hg

Table [Z.1] shows the bounds imposed on each of the four free parameters. The choice of
the bounds is decided by the following;:

1. Wgrut: The upper bound on Wyt is decided by the fact that a very high value of Wyt
results in self contact of the circumferential rings (since the number of curved regions in
each circumferential ring is constant). The lower bound on Wyt is decided by meshing

constraints.



114 Chapter 7. Constrained optimisation of coronary stents

2. he: From Fig. [[.2h and it is clear that the axial length occupied by one circum-
ferential ring is he + dH + Wyt The value of dH is fixed (0.393 mm) owing to the fact
there are 12 curved regions in each circumferential ring. For maximum values of Wyt
and h¢ the axial length of one ring is 1.663 mm. Consequently the length of four rings
is 6.650 mm. This leaves about 17 % of the total axial length (8 mm) for three sets of
links, implying just over 5% of the total axial length for each link. Any increase in the

upper bound of he makes this percentage even smaller which is not considered desirable.

Based on a simplistic idea of seeing the expansion as a stretching of the circumfer-
ential rings in a flat plane, the lower bound reflects a maximum limit of an angle of 70°
on the angle between the curved regions of the circumferential rings. Figure shows

this scenario.

3. p1: The upper bound for p; is chosen considering that a very high value of p; results
in contact of one link with the one vertically above it. The lower bound for p;, p1 = 0,

results in straight links.

4. p2: The parameter pp by definition lies between 0 and 1.

7.2.3 Baseline results

The baseline geometry, defined by the middle values between the upper and lower bounds
for all the four parameters, is shown in Figure The values of the various metrics of
Recoil, VAS,VAD, and FM for this design are 0.168 mm, 0.046 MPa, 1.278 units, and 0.505
N-rad, respectively. The balloon expansion and flexibility analysis for this design yields results
similar to those reported in chapters [l and These results can be found in appendix [Cl
Here, the results of the drug-distribution model on the baseline geometry are presented.
The steady state drug contours, from the drug release simulations, are shown in Fig.
Due to higher penetration of the stent into the plaque tissue in the central region, and the fact
that the central region receives drug from both ends of the stent, the drug concentration is
higher in these areas. The impression of the stent can be seen in the plaque drug concentration
contours too. This is expected as the stent is the source of the drug. The volume average

drug in the plaque and the tissue region calculated from Eq. [0 s 78.2 x 1072 units.

Drug Drug
Conc. Conc.

Plaque Artery

Figure 7.6: Steady state drug contours for the baseline geometry
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7.2.4 Optimization
7.2.4.1 Optimization problem

The four metrics used in this chapter for evaluation of stents are: Recoil (equation [.10), VAS
(equation 5.12), VAD™! (cf. equation [7), and FM (equation [6.1]). Note than an inverse of
VAD is chosen so that a lower value across all the four merits, implies a better design. With
these four metrics, three optimisation problems are formulated as single objective constrained
problems. The setting up of the inequality constraints of the form gij(x) < g™ requires
an understanding of the minimum allowed values of Recoil, VAS, VAD, and FM. Such
minimum allowed values for each objective are hard to determine. To overcome this problem,
the approach used in this study is to start from the baseline geometry and then search for
improvement in one of the objectives without compromising on any of the other three. So,

the optimisation problems are—
Minimise f(x), st. (7.13)
91(X) < 91(X)pasdines
92(X) < G2(X)pasdines

93(X) < 93(X)paseline>

where X is the vector containing the four parameter values and f(X) is either of the three VAS,
VAD™, or FM. Depending on which of the VAS, VAD™, or FM is being minimised, the other
three metrics are formulated as constraints, gi(X), g2(X), and gz(X), with one of them always
being Recoil. The idea of having Recoil always as a constraint stems from the discussion in
section (.71l where it was mentioned that clinical trials have shown a significant reduction in
restenosis rates for minimum stent area greater than certain thresholds. Hence, in the process
of designing a stent, Recoil, is more likely to be formulated as a constraint, as opposed to

other metrics, for example VAS, for which clinical thresholds are hard to determine.

7.2.4.2 Optimisation methodology

Surrogate modelling (see section B.2)) is used to model the response of each of the four metrics.
Surrogate modelling is pertinent as the evaluation of one design for all the four metrics in
this chapter takes over 24 hours (wall time), using 8 parallel compute processes (Microsoft
Windows 64-bit high performance computing platform, Intel quad core 2.8 GHz processor,
16 GB RAM). In particular, the Gaussian Process surrogate modelling approach (see section
[3.2.3]) is adopted in this chapter.

An LP, [I72] based sampling plan is used to construct a 40-point sample. The choice
of 40 points is based on the general rule of sampling 10 times the number of parameters.
High fidelity simulations, i.e. the analyses presented in chapters [l [6] and section [Z.2], are
carried out for each of these 40 designs, and corresponding metrics of Recoil, VAS, VAD™L,
and FM are extracted. The first five columns of Table show the normalised values of the
four parameters for the 34 successful evaluations out of 40. The analysis for six points failed
due to issues faced in the automated processes of geometry export from the CAD package,
geometry import into the FEA package, and automated meshing.

Based on the metric values obtained for the 34 designs, individual Gaussian Process models
are constructed for each of the metrics of Recoil, VAS, VAD™!, and FM. These models are
validated using the SCVR methodology discussed in section
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Table 7.2: Design table showing the parameter values (normalised) for the points analysed
and respective objective function values

Design | Warut he p1 P2 Recoil  VAS VAD1 FM

mm MPa units N-rad
DOE-1 [ 0500  0.500  0.500  0.500 0.168  0.046 1.278  0.505
DOE-2 | 0250  0.750  0.250  0.750 0.262  0.039 1.515 1.096
DOE-3 | 0.750  0.250  0.750  0.250 0.112  0.046 1.233  0.587
DOE-4 | 0625  0.125  0.375 0.375 0.123  0.045 1.283  0.743
DOE-5 | 0375  0.375  0.625 0.125 0.183  0.043 1.422  0.590
DOE-6 | 0.875  0.875  0.125 0.625 0.139  0.047 1.192 1.894
DOE-7 | 0.063  0.938  0.688  0.313 0.316  0.036 1.740 0510
DOE-8 | 0.563  0.438  0.188  0.813 0.145  0.046 1.285 1.401
DOE-9 | 0.313  0.18  0.938  0.563 0.186  0.044 1.440  0.416
DOE-10 | 0.813  0.688  0.438  0.063 0.132  0.047 1.207  0.941
DOE-11 | 0.188  0.313  0.313  0.688 0.222  0.040 1.876  0.852
DOE-12 | 0.688  0.813  0.813  0.188 0.162  0.047 1.214  0.620
DOE-13 | 0.438  0.563  0.063  0.438 0.179  0.044 1.361 2.072
DOE-14 | 0.938  0.063  0.563  0.938 0.089  0.043 1.214  0.700
DOE-15 | 0.031 0.531 0.406  0.219 0.331 0.033 2.091 0.689
DOE-16 | 0.531 0.031 0.906  0.719 0.125  0.045 1.323  0.424
DOE-17 | 0.781 0.781 0.656  0.469 0.144  0.048 1.198  0.609
DOE-18 | 0.156  0.156  0.531 0.844 0.232  0.039 1.875  0.610
DOE-19 | 0.656  0.656  0.031 0.344 | 0.147  0.046 1.243  2.199
DOE-20 | 0.906  0.406  0.281 0.594 0.108  0.046 1.206  0.947
DOE-21 | 0.594  0.969  0.344  0.906 0.184  0.046 1.234 1.132
DOE-22 | 0.344  0.719  0.594  0.656 0.217  0.043 1.384  0.597
DOE-23 | 0.844  0.219  0.094  0.156 0.101 0.045 1.227  2.077
DOE-24 | 0.719  0.344  0.719  0.031 0.118  0.045 1.237 0615
DOE-25 | 0.469  0.094  0.469  0.281 0.139  0.044 1.379  0.676
DOE-26 | 0.969  0.594  0.969  0.781 0.115  0.047 1.185  0.487
DOE-27 | 0.016  0.797 0953  0.672 0.323  0.035 1.801 0.367
DOE-28 | 0.516  0.297  0.453  0.172 0.149  0.045 1.313  0.742
DOE-29 | 0.266  0.047  0.703  0.422 0.197  0.042 1.604  0.406
DOE-30 | 0.766  0.547  0.203  0.922 0.124  0.046 1.222 1.406
DOE-31 | 0.141 0422  0.078  0.297 | 0265  0.037 1.903 1.468
DOE-32 | 0.641 0.922  0.578  0.797 | 0.174  0.047 1.223  0.896
DOE-33 | 0.891 0.172  0.828  0.047 | 0.095  0.045 1.214  0.552
DOE-34 | 0.078  0.234  0.266  0.984 0.272  0.036 2.164  0.947

Once the Gaussian process models are constructed and validated for each metric, the

following two tasks are performed

1. sensitivity indices and main effects (see section B.2.3.3) of each variable on each of the
merit functions are calculated in order to understand the relationship between the merit

functions and parameters representing stent geometry.

2. a Fortran feasible sequential quadratic programming (see section B.4.0] for an introduc-
tion to SQP) search (FFSQP) [173], is made over the surrogates for the three constrained

optimisation problems represented by equation [Z.13
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7.3 Results

7.3.1 GP model validation

Based on the objective function values of the 34-point sample data (listed in table [T.2]),
Gaussian Process models for each of the objectives are constructed. To assess the validity of
the GP model, the leave-one-out process is adopted (see section 3.2.3.2). In this method, one
point is left out for calculating the correlation matrix in the Gaussian Process model, thereby
excluding its effect, and a prediction for the function value at that point is made. This process
is repeated for all the points. A plot between the actual values and the predicted values, if
showing a linear behavior with a slope of 45 degrees, suggests a good model. The leave-one-
out plots are shown in Fig. [[7l These plots suggest that the Gaussian process models predict
function values close to the actual values. These plots also suggest that the predictor for FM
is the relatively most inaccurate of all the four GP predictors. Another method to assess the
validity of a Gaussian Process model is to evaluate the standardized cross validated residual
(SCVR) values in the leave-one-out process (see section B.2.3.2). The SCVR value at a point
i denotes the number of standard errors by which the predicted and actual values for the left
out point differ. The Gaussian Process model predicts, with approximately 99.7% confidence,
that the values lie within the mean prediction plus or minus three standard errors. Thus, if
the SCVR lies in the interval [—-3,+3], the Gaussian Process model is appropriate. Figure
[7.8 shows the SCVRs for the four Gaussian Process models for each point, and all points lie
within the interval [-3, +3], thereby asserting the validity of these models.
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Figure 7.7: Surrogate model validation: Leave-one-out plots for recoil (Reoil), volume average
stress (VAS), volume average drug (VAD), and the flexibility metric (FM)

7.3.2 Response surfaces and errors

Having constructed the GP predictors for the four metrics, the prediction values can be plotted

over the search domain. Figures — [[12] show the tile plots for the four merit functions
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Figure 7.8: Standardised cross validated residual (SCVR) values for all points analysed —
recoil (Recoil), volume average stress (VAS), volume average drug (VAD), and the flexibility
metric (FM)

Recoil, VAS, VAD™!, and FM, respectively. These tile plots show the four dimensional
function in terms of various slices through the Wgrt — e planes; each subplot represents Wgyyt
on the x-axis and h; on the y-axis, parameter p; increases horizontally from left to right
(while py remains constant in each row), and parameter pp increases vertically downwards
(while parameter p, remains constant in each column). Figures - show the error
plots, as predicted by the GP model, for the merit functions Recoil, VAS, VAD™, and FM,
respectively in a similar fashion. These plots are highly informative: for example, Figure [[.13]
shows that except in the small red regions (top regions of each plot), where the predicted
errors are quite high, in most of the search domain, the errors are of the order of 10~ mm.
Observing the column for Recoil (column 5) in table [[.2] one can see that the differences in
Recoil values for the designs are of the order of 102 mm. This implies that the GP predictor
can be trusted in most of the search domain. Similar arguments hold for the GP predictors
of VAS and VAD™L. Finally, as observed in previous section from the leave-one-out plots, the
relatively high inaccuracy of the FM predictor is also apparent from Figure[[.16 In particular
high uncertainty is observed for extreme values of the parameters p; and ps.

The accuracy of these models can be improved by using more points to create the GP
predictors. A naive approach is to use a larger space filling sample plan. Other more efficient
ways include searching the error function to find points where the error is maximised and
appending these points to the training set. Another approach is to use the expected im-
provement criterion proposed by Jones et. al. [50] that balances efforts to both improve the
minimum function value and error simultaneously [50]. However, owing to the high computa-

tional expense of running more high fidelity simulations, this is avoided in this chapter. The
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Figure 7.9: Response contours for Recoil as predicted by GP models: each subplot, with
Wegryt on x-axis and hg on y-axis, shows function value contours at fixed p; and pp; p1 varies
horizontally from left to right, and p, varies vertically from top to bottom

current predictors are searched using an SQP method and the results obtained are analysed
using the high fidelity simulations. These results are presented in section [7.3.4l Returning
to figures —[[12] some key observations are made. Figure suggests that varying the
parameters p; and Pz has negligible effect on Recoil since all the slices in this plot are very
similar. This figure also suggests that higher values of Wgryt and lower values of h¢ yield best
result in terms of Recoil. Similarly, Figure suggests that VAS too is not influenced by
changes in p; and pp, and that lower values of Wgryt and higher values of he are preferred in
terms of VAS. This is an apparent conflict between Recoil and VAS, which is quite evident
by observing the blue and red regions of Figures[7.9 and [[.TOl Figure [[.11] suggests that the
parameter Pz does not influence VAD™? but unlike Recoil and VAS, p; mildly effects VAD™L.
This figure also suggests that higher values of Wy, higher values of he, and higher values of
p1 produce best stent designs in terms of VAD™. Finally, figure shows that both while



120

Chapter 7. Constrained optimisation of coronary stents

p1=02;p2=02 p; =04;p2=02 p; =06;p2=02 p; =08;py=0.2
1.0 1.0 ; 1.0 1.0 :

] 5.2e-02
1
0.5 0.5 0.5 0.5
4.9e-02
0.0 W= 0.0 & 0.0 B= 0.0 =
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
4.7e-02
pr=02;po=04 p;=04;p=04 p;=06;p2=04 p; =08;p;=04
1.0 - : 1.0 - - 1.0 g 1.0 p—
4.4e-02
0.5 0.5 0.5
0.0 0.0 E— 0.0 : j 4502
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
p1=02;po=06 p1 =04;p2=06 p; =06;p=06 p;3 =0.8;py=0.6
10 ; 1.0 T 1.0 - 1.0 g 3.9¢-02
0.5
3.7e-02
0.0 0.0 0.0 g
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
3.4e-02
p1=02;po=08 p; =04;p2=08 p; =06;p=08 p; =08;py=0.8
1.0 1.0 0 1.0 g 1.0
3.2e-02
0.5
0.0 2.9e-02

0.0 0.5 1.0

Wstrut

Figure 7.10: Response contours for VAS as predicted by GP models: each subplot, with
Wyt on x-axis and he on y-axis, shows function value contours at fixed p; and pp; p1 varies
horizontally from left to right, and p, varies vertically from top to bottom

Wgryt and he do not influence FM significantly, FM is most sensitive to the parameter p;

(higher values preferred in terms of FM followed by Wegryt and pa.



7.3. Results

121

1.0 3

0.5

0.0
0.0

0.5

p1=02;p2=04
1.0

0.0 :
0.0

1.0

0.0

0.0 0.5 1.0

p1 =02;p2=0.8
1.0 3

0.5

=
0.0
0.0 0.5 1.0
W@trut

p1 =04 ;p=0.2
1.0 .

0.5

0.5 1.0

1.0

0.5

1.0

0.0
0.0

0.5

p1 =04 ;p,=0.8
1.0 ronm

0.5

p1 =0.6 ;p2 =0.2
1.0 1

0.5 F

0.0

0.0 0.5 1.0

p1 =06 ;p2 =04
1.0 1

0.5

0.5 1.0

p1=02;po=06 p; =04;p2=06 p; =0.6;p>=0.6

0.5

1.0

p1 =0.6 ;p2=0.8
1.0

0.5

0.0
0.0

b1
1.0

0.5

0.0
0.0

P1
1.0

0.0
0.0

D1
1.0

0.5

0.0
0.0

P
1.0

0.5

0.0
0.0

0.8 ;p2 =0.2

=08;p2=04

0.5

= 0.8 ;p2 = 0.6

1.0

2.3e+0(

2.2¢+0(

5 2.0e+0(

1.9e+0(

1.7e+0t

1.6e+0t

1 1.5e+0(

1.3e+0(

1.2¢40(

1.0e+0(
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Figure 7.15: Error contours for VAD™! as predicted by GP models: each subplot, with Wyt
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Figure 7.16: Error contours for FM as predicted by GP models: each subplot, with Wy on
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Figure 7.17: Trade-off plots for all combinations of the four metrics

7.3.3 Objective function trade-offs

Figure[ZIT plots the four metrics against each other for the 34-point sample, thereby showing
the relationship between the objective functions. Across all these plots better designs tend
to lie towards the bottom left corner. The centre-right plot shows that volume average drug
and recoil are not in conflict with each other — a lower recoil generally implies a higher
volume average drug. The top-left and the top-right plots suggest that volume average stress
is in conflict with both volume average drug and recoil — a lower volume average stress
would generally imply a higher volume average drug and higher recoil. The rest of the
plots where flexibility is one of the variables imply that flexibility is not highly correlated
with any of the other metrics. To locate the features in the parameterisation to explain
the observations of these plots one can use the information provided by the surrogate models
(Figures[.9]-[7.12). Moreover, main-effects calculated from the GP predictors can be used to
aid this understanding. Hence, the sensitivity indices of the main effects (see section B.2.3.3)
for each objective, which evaluate the relative effects of the individual parameters on the
GP predictor, are calculated. Representative pie charts for the main effects are plotted in
Fig. [[I8 These provide a graphic indication of the parameters that are most influential
in determining the physical response in terms of the four evaluation metrics. This figure
reinforces the observations made in the previous section, and readily explains the behaviour

of flexibility. While the parameter p;, the peak height of the links, affects flexibility most, it
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has minimal effect on the other objectives. This explains the independence of flexibility with
other objectives as varying p; could improve the flexibility without having much effect on the
other metrics. The effect of p; seems most appropriate if one observes the bottom pictures
of Fig. [C4lin the appendix. A higher peak value of p; gives more length to the curved link
which helps it expand as well as contract. A straight link, p1 = 0, would not have such a
designed feature for expansion/contraction and consequently will not be as flexible as with a
finite p;.

The main effects and GP predictor plots also explain the conflict between volume average
stress with drug and recoil observed in Fig. [[T7l The strut width, Wy, is the parameter
influencing all three of these objectives most. Intuitively, a higher Wy, implies more metal in
the stent, leading to higher contact area between the stent and the tissue, and consequently
higher stresses. This simple generalisation that more metal (in terms of higher W) in the
stent leads to higher stresses needs more explanation, even though it is quite clear from figure
[.10] that this is the case. One would think that for the same inward force by artery, trying to
regain its original configuration, a thinner strut will lead to a higher contact pressure owing
to a low contact area. This is apparently against the observations of figure [T.10] where clearly
higher Wgryt leads to higher stresses. The explanation of this counter-intuitive phenomenon
lies in figure 7.9, where it can be seen the Recail is also influenced by Wgryt. High Weryt values
lead to lower recoil, which implies that for these stents the artery is more stretched (higher
expanded diameter) when compared to the stent designs with lower Wgryt. Consequently, for

stent designs with higher Wgyy;, there is more force imparted by the artery on to the stent
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relative to the designs with lower Wy, and hence explains why higher Wyt values lead to
higher stresses. Such high Wy values, though unwanted from the point of view of stresses,
seems favourable for the drug as a higher Wy, leads to higher drug availability, and a higher
contact area implies more drug transport from the stent into the tissue. It could be argued, at
this point, that the uniformity of the drug distribution is as important, as the amount of drug
in the tissue. An easy way to look at the uniformity of the drug, and easily implemented in
discretised domains, is to calculate the mean value of the drug concentration in all the elements
and then look at the standard deviation of the data. This value effectively implies the root
mean square error of the difference between each element’s drug concentration and the overall
mean. It is found that for the parameterisation and modelling techniques used in this chapter,
the volume average drug is negatively correlated to the standard deviation, implying that a
higher amount of drug is also reflective of a relatively lesser uniform distribution around its
mean. This standard deviation of drug concentration can be used as one of the objective
functions in design studies. It is important that such a metric for uniformity must be used in
conjunction with the average drug concentration, as a device allowing for uniform distribution
could have a low mean. This would imply uniform distribution of non-therapeutic levels for
the drug. Such a measure of uniformity is avoided in this chapter to keep the number of
evaluation metrics low.

An explanation of the apparent correlation between the inverse of volume average drug
and recoil is now sought. Both these quantities are most affected by Wegryt followed by he.
For the same expansion radius, thicker struts undergo more plastic deformation at the curved
ends of the circumferential rings (all other parameters being equal) and consequently reduce
recoil. This partly explains why volume average drug inverse and recoil seem to be correlated.
The role of he in recoil, with a relatively large main-effect value of 8.3%, can be explained
by consideration of Fig. [.T9 The expansion of a stent can be seen as stretching of the
circumferential rings in a flat plane. For the same stretch, d, circumferential rings with smaller
he undergo higher plastic deformation at the curved regions. A higher plastic deformation
consequently results in a lower recoil. The effect of he can also be understood for volume
average drug and stresses. A smaller value of he implies a smaller length of the circumferential
rings. Such designs have a relatively lower surface area and hence lesser contact area between
the stent and the plaque. This affects both volume average drug (negatively) and stresses

(positively).

Table 7.3: Results for constrained optimisation (Normalized design parameters)

Warut he P P2 Recoil VAS VAD! FM

mim mim mimn - mim MPa unit1 N-rad

Baseline 0.5000 0.5000 0.5000 0.5000 0.1685 0.0458 1.2783 0.5045
min (VAS)  1.0000 0.0001 0.9599 0.8508 0.1685 0.0432 1.2783  0.5045
min (VAD™Y) 0.9402 0.3993 0.9316 0.8712 0.1685 0.0458 1.1760  0.5045
min (FM) 0.5063 0.2433 0.8658 0.6850 0.1685  0.0458  1.2783  0.4138
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Figure 7.19: Effect of he on plastic strains

7.3.4 Optimisation results

After the construction of GP predictors for each metric, a Fortran feasible sequential quadratic
programming search (FFSQP) [I73], is made over the surrogates for the constrained optimisa-
tion problems. The results for the three different sets of optimisation problems are tabulated
in Table As discussed in the above paragraph, both Wgr¢ and h; affect the metrics for
stress, drug, and recoil. It is primarily the interplay between these two parameters which
results in the trade-off between various metrics and hence influence the results for the opti-
misation studies.

For the case of stress minimisation, the optimal designs have a high value of Wgry but
low values of he, both being pushed towards their respective bounds. A high value of Wyt to
minimise the stresses appears to be paradoxical but can be partly explained when combined
with a low value of he. It is worth recalling that starting from the baseline geometry, design
improvement is being sought which minimises stresses without compromising on the other
three metrics. Given the broad relationship between the parameters and the metrics, as
discussed in the previous paragraph, the first thought should be to decrease Wyt to decrease
stresses. However, decreasing Wgy ¢ comes at a price — any decrease in the value of Wgry can
increase both the recoil and the volume average drug relative to the baseline geometry. It
is here that the interplay between all the parameters has to be considered. A high value of
Warut, as suggested by the optimal solution, satisfies the constraints imposed on the recoil
and drug metric, and a design improvement in the stress metric is obtained by decreasing
he. Minimising he leads to shorter circumferential rings, which, even with higher Wgry could
have a lower surface area, which minimises stresses. Furthermore, a high value of p; balances
the decrease in flexibility (relative to the baseline geometry) due to increased Wgryt. A high
value of p; also ensures better artery wall coverage to improve drug delivery. The result of
the optimisation algorithm is confirmed by performing verification simulations on the optimal
design predicted. For the solution of minimising the stress, the FEA analysis gives a value
of 0.0421 MPa, the predicted value being 0.0432 MPa (error ~ 2.5 %) for the optimized
solution. The resulting improvement relative to the baseline geometry being 8%. Note that

the optimal solutions suggested by the optimisation algorithm push the constraints to zero for
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all the three optimisation problems, implying that the optimal solution lies on the boundary
of the constraint functions. This constraint value of zero, however, is based on the GP
predictors. FEA verification analyses, for the problem of minimising stress gives errors of
0.7%, 1.3%, and 3.8%, respectively, for Recoil, VAD™Y, and FM between the predicted and
actual values.

Similar arguments as in the above paragraph hold for the results of maximising the drug
metric. An increase in Wgyyt is desirable as it allows for more contact area which results in
higher transfer of drug into the tissue. However, the increase in the stress values due to in-
crease in Wgryt must be balanced by a decrease in he in order to satisfy the specified constraint
on the stress metric. Moreover, the decreased flexibility due to higher Wy is balanced by
high values of p1. FEA verification for the optimal design for maximizing drug metric gives a
value of 1.19 mm?3/unit for VAD™ (the predicted value being 1.176 mm?3/unit; error ~ 1%).
The resulting improvement relative to the baseline geometry is approximately 7%. FEA ver-
ification analyses, for this problem gives errors of 1.2%, 2.5%, and 4.1%, respectively, for
Recail, VAS, and FM between the predicted and actual values.
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Figure 7.20: Optimal designs from single-objective constrained optimisation

The problem of minimising the flexibility metric does not face such serious issues as Wyt
is not the parameter having most effect. The solution methodology in this case seems to be
simpler — since the value of the flexibility metric is most dependent on pi, and the fact that
p1 does not significantly affect the other metrics, the optimal solution has a high value of
p1 without much change in the value of Wy from the baseline geometry. Although Wgyy
has an effect on flexibility, with lower strut width stents being more flexible, the optimised
solution does not show a decrease in its value as that would reduce VAD when compared to the
baseline geometry. Figure shows the optimal stent geometries as suggested by FFSQP
when run over the constructed Gaussian process models. It is worth noting that the optimal
stents have the links curved only once, unlike the baseline geometry whose links are curved
twice. This can be explained by the fact that a flexible stent design is more likely to avoid

the self contact in the links in the compression part (c.f. Fig. bottom-left image). If the
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links cross the medial line again, then there is a higher likelihood of self contact in the link.
A self contact would result in increased moment requirement for high curvatures implying
reduced flexibility. The validation FEA run on the optimized solution for minimising the
flexibility metric gives an FM value of 0.4332 N-rad (the predicted value being 0.4138 N-rad;
error ~ 4.5%) which is an improvement of approximately 14% over the baseline geometry.
FEA verification analyses, for this problem gives errors of 1.0%, 2.3%, and 1.6%, respectively,
for Recoil, VAS, and VAD™ between the predicted and actual values.

It should be noted that the accuracy of GP models can be further enhanced by running
high fidelity simulations at more points obtained by searching either the error function for the
predictors or by searching the expected improvement function, see Jones et. al. [50], for each
objective. If such a procedure is adopted then there is a possibility that further improvement
in designs can be obtained. However, this comes at the added expense of performing more
high-fidelity analysis, practical issues of geometry construction, geometry import and export
from CAD packages to FEA packages, automated meshing, and various peculiarities of each
analysis package used in the process. Nonetheless, improving the accuracy of the surrogate
models can help better understand the relationships between the design parameters and the

objective functions, and forms an obvious extension for future work.

7.4 Conclusions

This chapter proposes a parameterisation technique for stent designs with circumferential
rings and links. A 34-point sample using the LP, sampling plan is constructed, and the
resulting designs using the proposed parameterisation are evaluated for four performance
metrics. Thereafter, Gaussian process models are constructed to approximate the response
for each evaluation metric. The relative effects of each of the parameters on individual perfor-
mance metrics are quantified. The results of single objective constrained optimization show
significant improvement in the metrics relative to the baseline geometry demonstrating the
applicability and suitability of the Gaussian process modelling to approximate the physical
response by efficient sampling at only a small number of points. The conflict between various
metrics and the parameters to achieve improvement in a particular metric while not altering
the others is shown and discussed. For the parameterisation technique used in this chapter,
the optimal solutions have a higher strut width compared to the baseline geometry, but a
lower value of circumferential ring length. Although the effect of parameters such as strut
thickness in the performance of stents is very well known and researched, both experimentally
and numerically, the effect of other parameters, such as Wgryt, he, and p;, are shown here
to have significantly influenced stent performance. The strut width, Wgyyt is shown to be a
key determinant of recoil, stresses, and amount of drug delivered. The plastic deformation
produced by smaller he, in the obtained optimal designs, implies that a deviation from the
circumferential ring type structure for new stents, which allows for designed plastic deforma-
tion at specific locations, could potentially improve the stent design. This conclusion can be
seen independently, i.e. without any influence from this study, implemented in the geometric
design for Boston Scientific’s latest ELEMENT stent series, as shown in Figure [.211 The
design of the ELEMENT series platform has been modified to specifically introduce higher
plastic strains in the curved segments of the stent circumferential rings [7]. Similarly, a lower

value for stent segments, i.e. smaller value of the parameter h; used in this study, is preferred
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in the design of the ELEMENT stent series [7]. This study also concludes that the param-
eters defining the peak cross length of the links, p; in the current parameterisation, can be
manipulated to produce flexible stents without affecting other metrics such as volume average
stress and drug. Finally, the results suggest that minimising the number of curved regions in
the link design, in order to delay self-contact, can be beneficial in terms of flexibility, stresses,
and drug delivery. In the ELEMENT stent series, see Figure [T.21] the self contact is avoided

by having a nested peak structure.
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Figure 7.21: Boston scientific’s geometric platform for the latest ELEMENT stent series [7]

Having performed a preliminary optimisation study in this chapter, the next chapter fo-
cuses on the development of CFD drug-distribution models that account for haemodynamic
flow in the lumen. Subsequently, chapter [ uses all the metrics used in this chapter, along
with the drug uniformity metric defined in the next chapter, for a multiobjective design study.
A constrained optimisation formulation, as the one used in this chapter, is useful in two sce-
narios: first, if the constraint limits are known; and second, if a good design is available
which performs well on all aspects but one, and it is required to improve its performance in
this one aspect without deteriorating others. The former scenario stems from the thought
that for many objectives, although hard to estimate, minimum thresholds could be available
in future. For example it was already discussed how some clinical trials have suggested a
minimum stent area threshold to arrest restenosis. Similarly, if the maximum curvature of
the arteries is known, then the stent need not be more flexible than it is required for easy
deliverability through the most difficult artery sections. Based on this data, a minimum
threshold for FM could be determined. Finally, for the drug, once the biochemistry of the
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drugs is fully understood, the minimum and maximum levels of drug that are allowed to
be administered, depending on the toxic-to-therapeutic ratio of a particular drug, could be
ascertained. These values could then be represented in the constrained optimisation problem
as two constraints: one for the minimum therapeutic level and one for the maximum toxic
level. On the other hand, when such thresholds are not known, but it is known, for example,
that lower recoil, higher flexibility, lower injury, and higher drug, are preferred, then a multi-
objective formulation of the design problem is more suitable. This is primarily because, such
a formulation, focuses on minimising all objectives simultaneously, rather than focusing on
only one objective at a time. Hence, a family of optimal designs, when all objectives are con-
sidered simultaneously, can be obtained using such a formulation. Such a formulation, which
also results in a better understanding of the trade-offs involved in improving one objective

with respect to others, forms the content of chapter [l



Chapter 8

Drug distribution in stented vessels

This chapter concerns the final aspect of engineering analysis of stents considered here, namely
drug distribution. The distribution of anti-proliferative drug plays an important role acting
against restenosis. However, for an ideal stent design, an adequate and uniform drug dis-
tribution is required. If adequate drug is not delivered in the tissue, the therapeutic effects
of the drug might abate; and if excessive drug is delivered then the toxic effects of the drug
might aggravate. Hence, both adequacy and uniformity from a drug-distribution, which are
governed by the stent design, are required. In chapter[d a basic model for drug-release, which
considered pure diffusion of the drug in tissue region and neglected luminal blood flow was
developed. The development of this model was primarily governed by practical reasons of
keeping all analyses in a finite element analysis package. In this chapter, a CFD model for
drug-release which accounts for the haemodynamic flow in the lumen is developed. Similarly,
the idealised CFD model for haemodynamic evaluation presented in chapter [l is extended in
this chapter to include post-expansion geometry of the stent-artery assembly obtained from

chapter Bl The aims of this chapter are

1. to apply the model for haemodynamic evaluation developed in chapter dlto the expanded
assembly obtained from chapter Bl This provides a one way coupling between the FEA
and CFD analysis, and consequently gives a more realistic evaluation of the HLRFI
metric (defined in chapter [, equation [4.9)),

2. to develop a CFD model to evaluate drug-distribution in a stented artery, and

3. to formulate an objective function which measures the uniformity of the drug distribu-

tion in the tissue to complement the VAD metric developed in chapter [7

This chapter is divided into two parts — part I deals with the results of the haemodynamic
evaluation in the geometry obtained by FEA expansion, and part II details the model for the
drug distribution. Part II begins with a brief introduction to the workings of the different
drugs used in DES. Then, after a review of drug-distribution models proposed in the literature,
the details of the drug distribution model proposed in this thesis are presented. Finally, a

measure of uniformity of drug delivered in the tissue is formulated.

135



136 Chapter 8. Drug distribution in stented vessels

8.1 Part I : Haemodynamics results

The details of the haemodynamic model are provided in chapter @ Here the results of the
same model when applied to the geometry obtained through the FEA analysis of chapter
are presented. The deformed geometry after the unloading phase (c.f. Figure 5.I5]) in section
is first obtained and exported to the CFD package, Star-CCM+ 3.06.006, Melville, NY
USA. Since only the flow volume is needed, only the geometries of plaque and the stent are

exported. Figure shows this geometry.

Figure 8.1: Imported geometry of plaque and stent in the CFD package

The imported geometry is meshed using polyhedral volume cells. Figure shows this
mesh. The irregularities in the central part of the mesh can be attributed to the embedding of
the stent into the plaque during the expansion simulations. Since the stenosis is highest in the
central region, which leads to higher contact stresses in the central region, a higher embedding
of the stent into the tissue occurs. Such embedment leads to distortion of the plaque elements
and can only be avoided by using a very high mesh density for the plaque during the expansion
analysis. This, although possible, is avoided as it increases the computational time for the
expansion analysis to impractical limits. Nonetheless, to overcome convergence issues, a fine
surface mesh for the plaque is used in this chapter for CFD simulations. Figure shows
a closeup of the volume mesh (number of cells ~ 1.6 million) which sufficiently resolves the
irregularities and does not cause convergence issues. Pulsatile flow calculations are performed
on this mesh to evaluate the wall shear stress and velocity profiles.

Figure shows the axial wall shear stress contours on the surface of the plaque at point
5 of the cardiac pulse (c.f. figure[d4). Figure shows the velocity profiles on a cross section
of the plaque-stent assembly. Even though the dimensions of the stents are not the same as
in Chapter 4 and this chapter, one observation can be made — the recirculation zones in the
geometry of this chapter are smaller. This can be visually observed in Fig. B3 and can be
attributed to tissue prolapse. Tissue prolapse refers to the tissue volume protruding into the
lumen area between the stent struts. This can be seen in Figure The protruding tissue
reduces the severity of the effective backward facing step that the flow faces. Immediately
after any strut, the blood flow hits the plaque surface earlier due to this protrusion, and
consequently reduces the extent of the recirculation zones. Similar to the results presented in
chapter [l the percentages of plaque area exposed to low wall shear stress (below 0.5 Pa) and
reverse flow are calculated. These values are then combined using equation to calculate
HLRFI. The value for HLRFI is 27.4 %. Figure 8.6 shows the secondary recirculation of flow

in a layer adjacent to the plaque wall in the lumen.
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Figure 8.2: Volume mesh of the imported geometry

Figure 8.3: Volume mesh of the imported geometry: closeup

WallShearStress(i) (Pa)
1.41 2.44 3.47

Figure 8.4: Axial WSS at point 5 of the cardiac pulse (c.f. figure [4.4])
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(a) Velocity profile: links

(b) Velocity profile: central region

Figure 8.5: Velocity profiles for flow on geometry obtained post FEA analysis: point 3 (c.f.
figure 4] of cardiac pulse
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Figure 8.6: Secondary recirculation
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120%
100%
80%
60%
40%
20%
0%

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Percentage area below 0.5 Pa

_

time (s)

_J

Figure 8.8: Percentage area exposed to WSS magnitude below 0.5 Pa over the entire cardiac

pulse

120%
100%
80%
60%
40%
20%
0%

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Percentage area exposed to reverse flow

J

I

time (s)

Figure 8.9:

Percentage area exposed to reverse flow over the entire cardiac pulse



140 Chapter 8. Drug distribution in stented vessels

8.2 Part II : Drug-distribution

In this section a CFD model to evaluate the distribution of drug in a stented artery segment

is discussed.

8.3 Introduction

The modelling of drug diffusion in the stented vessel applies to drug eluting stents which
release a drug to inhibit inflammatory response and smooth muscle cell migration and prolif-
eration. Since most drugs do not bind to the metallic stent surface easily, a polymer coating
is often needed both to fix the drug on the stent and control the release kinetics [174]. Al-
though a uniform surface coating is the norm in DES, another technology known as the
reservoir (RES) technology is being researched by Conor Medsystems LLC, Johnson & John-
son. RES technology stents have small multiple reservoirs on the stent struts, each reservoir
comprising various layers of drug and polymers to control drug release [175] [176]. The drug,
a biologically active agent, arrests any one of the phases of the cell cycle. Figure shows
this cell cycle [12], the series of events after stenting which lead to in-stent restenosis, and

the main targets of common drugs to inhibit restenosis. The cell cycle has four phases —

1. G1 phase — This is also known as the gap-1 phase (gap referring to the time between
the previous M phase and the beginning of DNA synthesis). During this phase various

enzymes are synthesized to be used for the S phase.
2. S phase — This phase involves DNA synthesis and replication of the chromosomes.

3. G2 phase — Also known as the gap-2 phase, this phase involves preparation (biosynthe-
sis) for the M phase.

4. M phase — This phase involves Mitosis which leads to separation of chromosomes and

cytoplasm.

Different drugs attack the cell cycle at different points, and consequently have a different
mechanism of suppressing restenosis. The two most common drugs used in DES today are
Sirolimus and Paclitaxel. While Paclitaxel attacks the M-phase, Sirolimus inhibits the G1
phase. The implication of using different drug types to arrest restenosis is out of the scope of
this thesis. Focusing on the engineering evaluation of drug-distribution, a general methodol-
ogy for drug transport, the diffusivity values of the drug depending on the type of drug used,
is presented here.

In the past many studies have been performed on the modelling of drug diffusion in
stented vessels. Hwang et. al. [I77] performed experimental drug distribution studies by
spray-coating Palmaz-Schatz Crown stents with fluorescein sodium ethlylene vinyl acetate
copolymer solution in dicholoromethane, and implanting these stents in bovine carotid ar-
teries. The resulting fluorescence microscope images revealed a high spatial heterogeneity in
drug concentrations. They also evaluated the effect of strut placement in the circumferential
direction by setting up a 2-D model and randomly placing the struts. They reported that
inhomogeneous stent strut placement along the circumference can result in a highly non-
uniform spatial distribution of drug in the tissue (implying higher concentration near struts

and a lower concentration in the inter-strut spaces). Lovich et. al. [I78] performed perfusion
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Figure 8.10: The cell cycle and targets for drugs used in DES [12]

experiments on calf carotid arteries and concluded that convective drug transport in the tis-
sue played a significant role in de-endothelialised arteries when compared to those where the
endothelium was intact. Hose et. al. [I70] studied Paclitaxel distribution from a BiodivYsio
stent using a computational model. They reported significant heterogeneity in spatial distri-
bution of the drug in the tissue and attributed this to the design of the stent. Sakharov et.
al. [I79] implemented reverse binding of the drug in the tissue and numerically showed that
high polymer diffusion resistance increased average concentration of the drug in the tissue.
Pontrelli et. al. [I80] presented analytical solutions for the problem of 1-D drug transport
from a polymer layer into the tissue. Zunino [181] modelled the drug-release dynamics from
the stent coating in a 2-D setup and evaluated the effect of drug properties, stent coating,
and arterial wall on drug dynamics. Borghi et. al. [I82], in an axi-symmetric geometry,
evaluated the difference between pure diffusive transport and reverse binding. Balakrishnan
et. al. [I83] implemented a coupled CFD and mass transfer model to study drug-release dy-
namics in a 2-D setup. They concluded that flow alteration and location of struts were very
important to achieve higher drug deposition. Migliavacca et. al. [184] developed a model to
study drug-diffusion on a geometry obtained by FE stent expansion analysis. They proposed
a model for plasma infiltration into the tissue and then used the advection-diffusion equations
to model drug release. Their model accounted for reverse binding of the drug in the tissue and
the drug dissolved in plasma. Zunino et. al. [20] proposed a unified methodology to evaluate
the expansion, haemodynamics, and drug-release for DES. Their drug release simulations
involved a standard advection-diffusion process with no reverse binding of the drug with the
tissue. Feenstra et. al. proposed a sequential expansion and drug-release analysis. Along
with the geometry, they extracted the interstitial fluid velocity, from the expansion analysis

and included reverse binding of the drug with the tissue. Similar to the work by Balakrishnan
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et. al. mentioned above, Kolachalama et. al. [I6] studied the effect of flow in the lumen
on arterial drug deposition. Their steady state and pulsatile flow models, implemented in
a 2-D geometry, revealed differential lengths of recirculation zones around the struts which
affect the transfer of drug into the tissue. They then extended the steady state models to
3-D geometry of stents placed in a bifurcation [I85], and evaluated the effect of the location
of the stent in the main branch relative to the side branch.

In this chapter, a steady state, pure diffusion model in the tissue, and an advection-
diffusion model in the lumen, with appropriate coupling is used to evaluate the drug-distribution
patterns. The effect of reverse binding (endocytosis) and advection in the tissue is ignored

[20].

8.4 Methodology

The following subsections describe the methodology adopted in this chapter.

8.4.1 Geometry

The geometry is obtained from the deformed shape of section[5.5.21 The plaque and the artery
regions are combined to represent one homogeneous and isotropic tissue region. Figure [R.11]
shows this assembly. The embedding of the stent into the tissue region, as shown in the

figure, makes the stent both a part of the lumen and the tissue region.

8.4.2 Governing equations

The flow in the lumen significantly affects the drug distribution, as the distribution of drug in
the lumen follows an advection-diffusion pattern. This presents a challenge — since the time-
scales of the flow and drug-diffusion differ in orders of magnitude, the coupling of unsteady
flow with the drug diffusion equations becomes computationally very expensive. Moreover,
since the objective of this thesis to search for optimal designs for drug delivery which involves
comparison of the drug distribution patterns for different stent geometries, a steady state
drug-diffusion problem is considered in this chapter. Although an unsteady time-dependent
release, without considering the luminal flow, can be modelled to gain insight on drug de-
livery patterns, a steady state problem, by including the flow, gives enough variation when
comparing different designs. Transmural convection, due to the interstitial flow in the tissue,
is neglected. This is based on the study by Kolachalama et. al. [I6] where it is shown
that transmural convection has an effect of less than 1% on volume weighted average con-
centrations of drug. This study also shows that steady state simulations are reflective of
the instantaneous flux of drug through the interface, and hence can provide useful relevant
information.

The following continuity, momentum, and diffusion, equations are solved in the lumen —

V.v =0, (8.1)
pV.VV = —VP + V.(uVv), (8.2)
v.VC = D\V2C, (8.3)

where v, p, P, and p denote the velocity, density, pressure, and the viscosity of blood, respec-

tively. Cj is the drug concentration in the lumen and Dj is the diffusivity of the drug in blood.
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As in chapter B p and u are assumed to be equal to 1.060x1073 kg/m™2 and 3.7x107% Pa-s.
In the tissue region (comprising both the plaque and the artery), the following pure
diffusion equation, similar to equations [Z.I] and used in chapter [T, is solved —

D;V2C; = 0, (8.4)

where C; is the drug concentration in the tissue, and Dy is the diffusivity of the drug in tissue.
The interface between the lumen and plaque is modelled in a similar manner as the plaque-
artery interface in chapter [ (equation [(4]). The flux across the lumen-plaque interface is

defines as —

A(Ci, CY) = kp(Ci — Co), (8.5)

where q is the flux across the interface, Kp is the permeability, and C;, C; are drug concentra-

tions in the lumen and drug respectively.

Stent (tissue side)
Perivascular side

Plaque (luminal side)

Tissue inlet side Tissue outlet side

Lumen outlet
Lumen inlet

Stent lumen side
Plaque (luminal side)

Figure 8.11: Section of the assembly for the drug release simulation — lumen and tissue

8.4.3 Boundary conditions

For the both the lumen and the tissue region, the stent is set to a unity concentration boundary
condition. Such a Dirichlet boundary condition has also been used by Kolachalama et. al.
[16] to model drug release. The ‘lumen inlet’ is set to an inlet velocity of 16.29 cm/s (mean
velocity of the inlet profile shown in figure 4] and a zero concentration boundary. The
‘lumen outlet’ is set to a zero pressure boundary for flow and a zero flux boundary is specified
for concentration. In the tissue region the ‘tissue inlet side’ is set to a zero concentration
boundary, and both the ‘tissue outlet side’ and the ‘perivascular side’ are set to a zero flux
boundary condition for the drug. The plaque interface is modelled using equation The
diffusivity of drug in the lumen (Dj) and tissue (D) are assigned a value of 1.5x10™% mm?/s
and 7.7x107% mm?/s respectively, and the permeability (kp) is assumed to be 4x10™* mm/s
[20, 186]. Equations BIH8.4 coupled by Eqn. [BH are then solved over the domains of
lumen and tissue. The equations are modelled as a heat transfer problem in Star-CCM+
3.06.006. The similarity between the diffusion equations and the heat equation is utilized for

this purpose [169] 171, [170].
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Figure 8.12: Drug distribution contours

8.5 Results & Discussion

Figure shows the drug contours on various sections of the two domains. The highest
drug concentrations are observed near the stent struts. This is not surprising as the stent
is the source of the drug. As one moves away from the stent struts, the drug concentration
decreases. In the axial cross sections it is observed that the drug concentration in the tissue
region between any two consecutive struts in the circumferential direction reaches a minimum.
This is attributed to the design of the stent. If one considers the entire tissue domain then
the uniformity of drug distribution can be attributed to the areas where the source region
(unity concentration boundary condition) lies. In other words, the stent can be seen as a set
of curves on the plaque surface, and the topology of these curves determine the pattern of
drug distribution. Areas which are far from such curves both in the circumferential and the
axial directions are more likely to receive less drug relative to the areas which are nearer.

In the lumen region most of the drug is washed away because of the high convective
transfer. It is the recirculation of the flow which retains some drug near the struts, and hence
helps drug transport into the tissue. This is shown in figure[8I3l The only areas in the lumen
which have a non-zero drug concentration are the areas of recirculation. Each recirculation
zone, formed before and after each strut, arrests the washing-out of drug. Part of this drug is
then transported to the tissue across the plaque interface. These recirculation zones, although
unwanted while considering the haemodynamics, appear to be beneficial for drug transport.
In many of the newer DES designs, the drug is coated only on the abluminal side of the stent

struts. This prevents the drug loss due to the high convective transport in the lumen.

8.6 Formulation of objective functions

As mentioned in chapter[7, two factors are considered important relating to the drug response
of a stent — first concerning the amount of drug in the tissue, and second concerning the
uniformity of drug. The metric relating to the former, VAD, is formulated in section [Z.2.1],
chapter [7l In line with the discussion in section (page [129), the standard deviation of

the drug distribution in the tissue region is proposed to measure uniformity of drug delivered.
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Figure 8.13: Drug distribution contours on a section plane: effect of flow

Let negi be the number of tissue cells lying in the axial domain shown in Figure [5.29] (page [07),
and the set Dg = {C1,Cp, C3, ..., Cny,} contain the drug concentrations, Cj, in each of these Neg
cells. Then, the standard deviation (Dgey) of this can be used as a measure of uniformity of

drug-distribution around its mean.

i=Ncell

Daev = F.le” Z (¢ - 92, (8.6)

i-1

where C is the mean of elements in set Dg. A lower value of Dge, implies a more uniform
distribution of the drug around its mean.

As discussed in section [7.3.3], it is important to node that Dges could have a low value
(implying a more uniform distribution) even when the mean is low (implying lesser drug).
Hence, this measure should be used in conjunction with VAD in order to compare stents. The
values for VAD and Dge, for the geometry used in this chapter are 0.3701 and 0.2525 units

respectively.

8.7 Conclusions

In this chapter, haemodynamic evaluation of stented vessels, whose geometry is obtained by
FEA expansion analysis, is performed. Recirculation zones, similar to those reported in chap-
ter M are observed. However, considerable tissue prolapse is observed in the post-expansion
geometry, which reduces the size of the recirculation zones. Furthermore, a CFD model, that
accounts for luminal blood flow, to evaluate drug-distribution in the post-expansion stent-

artery assembly is developed. High concentrations of drug are observed, both in the tissue
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and lumen region, around the struts. It is concluded that recirculation zones, although unde-

sirable from a haemodynamic point of view, promote drug transport from the lumen in to the

tissue. Lastly, an objective function Dgey, which quantifies the uniformity of drug-distribution

in a stented artery is formulated.

This chapter concludes the engineering analysis of stents. Now, the performance of any

stent design can be measured by six figures of merit (objective functions) which represent

5.

6.

. acute recoil, Recoil, defined by equation [5.10, which is a measure of both restenosis and

structural strength of a stent (see section B.7.1]),

. tissue stresses, VAS, defined by equation [B.12] which is a measure of injury caused to

the artery by the stenting procedure (see section [(B.7.2]),

haemodynamic disturbance, HLRFI, defined by equation 49, which is a measure of

stented artery area exposed to low shear stress and reverse flow (see section [£.7]),

drug delivered to the tissue, VAD, which is a measure of the average amount of drug
delivered to the tissue by the stent (see section [[.2.1]),

uniformity of drug distribution, Dgey, defined by equation (see section [R.0]), and

stent flexibility, FM, defined by equation (see section [6.0]).

With the above metrics, the next chapter concerns with a multiobjective formulation of

the stent design problem.



Chapter 9

Multiobjective optimisation study
on the CYPHER stent

This chapter! combines the stent analysis performed in previous chapters to present the first

multi-objective and multi-disciplinary coronary stent design optimization study of its kind.

In line with the discussion on section [T4] (page I33)), in this chapter an improvement in all

the metrics, used to measure a stent’s efficacy, is sought simultaneously, as opposed to one at

a time in chapter [l The aims of this chapter are

1. to propose a parameterisation technique for the CYPHER (Cordis corporation, Johnson

& Johnson co.) stent. The details of this parameterisation and a justification for this

choice are discussed in section [0.1]

2. to perform a multiobjective optimisation study using the above proposed parameteri-

sation technique,

3. to study trade-offs between various pairs of objectives that are in conflict,

4. to evaluate trends between the non-dominated solutions and parameters defining stent

geometry,

5. to propose various paradigms, which can be used to choose ideal stent(s), from the set

of non-dominated solutions, and

6. to demonstrate a link betweeen the results of the multiobjective study of this chapter

and the constrained optimisation study presented in chapter [7

The performance of each stent design is measured by six figures of merit (objectives/metrics):
Recoil, VAS, HLRFI, VAD, Dge,, and FM. These metrics are obtained from computational

simulations of

!The contents of this chapter are published in the below mentioned article with the author’s supervisory
team and Dr. N. Curzen. Dr. N. Curzen is a cardiac surgeon who actively advises the author regarding the

clinical aspects of restenosis.

Pant, S., Limbert, G., Curzen, N. P.; Bressloff, N. W. Multiobjective design optimisation of coronary stents.

Biomaterials, 32:7755-7773, 2011.
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1. structural deformation through balloon inflated expansion of a stent into contact with

a stenosed vessel (see chapter [,

2. pulsatile flow over the deformed stent embedded in the vessel wall (see chapters [ and

),

3. steady-state drug distribution into the tissue (see chapter [{]), and

4. flexibility of a stent in response to an applied moment (see chapter [@).

Design improvement is obtained by a multi-objective surrogate modelling approach (see sec-
tion B23)) using a non-dominated sorting genetic algorithm (NSGA-II, see section B:5.2) to
search for an optimal family of designs. A number of trade-offs between the different objec-
tives are identified. In particular a conflict between pairs of the following objectives are shown
— (a) volume average stress vs recoil, (b) volume average drug vs. volume average stress, (c)
flexibility vs volume average stress, (d) flexibility vs. haemodynamic disturbance, (e) volume
average drug vs. haemodynamic disturbance, and (f) uniformity of drug vs. volume average
stress.

Having presented a review of the optimisation studies in the area of stent design in chap-
ter [7 (section [T]), this chapter starts with the definition of the proposed parameterisation
technique for the CYPHER stent. Then, the multiobjective problem is formulated and the
solution methodology adopted to solve this problem is presented. Thereafter, various slices
of the obtained Pareto front are discussed, and based on these results different paradigms
to choose the optimal designs from the Pareto fronts are proposed. Finally, under each such
paradigm, the optimal designs and their relative positions with respect to a representative
CYPHER stent are shown.

9.1 Stent geometry parameterisation

The constrained optimisation study, chapter [7, showed that while the parameters Wgryt, he,
and pi1, had significant effect on the metrics used, the parameter p, had little effect on the
efficacy of a stent (see sensitivity analysis: Figure [[.I8] page [I28)). Hence, it is unreasonable
to include two parameters for defining the links, thereby increasing the dimensionality of the
design space, when one variable does not have significant effect on the evaluation metrics.
With this view, an alternate parameterisation for the links is sought, while the parameter-
isation of circumferential rings is kept the same as in chapter [ For the links, a CYPHER
like link is chosen for two reasons. First, the link in CYPHER stent has a uniform ‘n’ shaped
structure. Hence, only one parameter which specifies the height of the links (i.e. circum-
ferential dimension) acts similar to the p; parameter used in chapter [l Second, the FEA
analysis used in this thesis have been validated for a representative CYPHER stent (against
manufacturer data for expansion analysis, and against De Beule’s study [I1] for flexibility
analysis). Hence, in the results, i.e. in the set of the non-dominated solutions, an assessment
regarding the relative position of this representative CYPHER stent with respect to other
solutions can be made.

Figure shows the various parameters for the proposed parameterisation. The length of
the stent, Lgent, and its semi-crimped state outer radius, Rgent, are fixed to be equal to 8.0 mm

and 0.75 mm respectively. Four circumferential rings in the longitudinal direction are used
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Wstrut

27TRstent

10.07 + 0.35 X npeigne

e

Lstent

Figure 9.1: Stent parameterisation used in this chapter

and there are twelve curved parts (six peaks and six troughs) in each circumferential ring.
The parameters which are allowed to vary are the longitudinal length of the circumferential
rings, he, circumferential strut width, Wgry, and the height of the ‘n’ shaped links, Nheight
Since Lgent is constant, he also controls the length of the links. The circumferential width of
the links is kept constant at 0.07 mm. Strut thickness, i.e. the stent dimension in the radial
direction, is also kept constant at 0.14 mm based on the value for the CYPHER stent [135].
The shape of the links is kept similar to the CYPHER stent using NURBS curves as shown
in Fig.

Top Curve as offset of the bottom curve

l I—‘O.O7 mm

Bottom curve made using 3"4 degree  Control points for the bottom curve
NURBS curve

Figure 9.2: Stent link construction using NURBS control points

Table shows the values of the three parameters for the representative CYPHER stent
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and the bounds imposed on each parameter. For an explanation of the bounds on Wyt and

he refer to section [LZ2l The upper bound for Nhegnt is chosen considering that a very high

value of Npeight results in contact of one link with the other. The lower bound for Npeignt is

chosen considering the geometry of the ‘n’ links — with a constant circumferential width of

the links a very small value of Nheignt results in almost straight links. Figure shows some

of the designs created using this parameterisation.

Figure 9.3: Sample designs created using the proposed parameterisation

9.2 Optimisation problem & solution methodology

The multi-objective optimisation problem is formulated as follows-

Minimise
Minimise
Minimise
Minimise
Minimise

Minimise

Recoil (Wetrut, e, Nheight) (9-1)
VAS (Wsrut, Ne, Nheight)

HLRFI (Wsrut, e, Nheight)

—~VAD (Wetrut, Ne, Nheight)

Ddev (Wetrut, e, Nheight)

FM (Wetrut, Ne, Nheight)

Table 9.1: Limits imposed on the design parameters

Wetrut he Nheight

mm mm mm
CYPHER stent 0.130 0.825 1.600
Lower bound 0.050 0.700 0.700
Upper bound 0.170 1.100 1.900
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such that,

0.050 mMm < Wyt < 0.170 mm,
0.700 mm < he < 1.100 mm,

0.700 mm < Npeight < 1.900 mm.

As discussed in section [(.4], some of the objectives in the above formulation could be specified
as constraints.

The use of Kriging for the optimisation procedure is justified as the evaluation of all the
metrics used in equation for one design takes over 120 hours (wall time) using 8 parallel
compute processes (Microsoft Windows 64-bit high performance computing platform, Intel
quad core 2.8 GHz processor, 16 GB RAM). This high computational time and the limited
licenses available for Abaqus/Exlpicit, Abaqus/Standard, and StarCCM+, limit the compu-
tational budget available for the analyses to 30 stent designs. Consequently, high-fidelity
analysis is performed for 30 designs, which is 10 times the number of design variables used in
this chapter. Based on this, the solution methodology adopted in this chapter is depicted in
Figure[@.4l The process starts with the parametric definition of the stent geometry. A number
of designs (15 in this chapter), uniformly distributed over the design search space, are created
using the proposed parameterisation. This process of selecting the initial points in the design
space is known as sampling. Each of these designs are then analysed for the six objectives
defined in previous sections. The box with dashed lines in Fig. illustrates the steps for
analysis. For each design, CAD geometries are constructed, in a semi-crimped state, and ex-
ported to the FEA package to solve for the equations governing the stent expansion process
and bending (for flexibility). The expanded geometries obtained as an output from the ex-
pansion analysis are then exported into the CFD package to model haemodynamics and drug
distribution process. The objective functions from each of these four analyses are extracted
and used to construct the initial surrogate model. The surrogate models are constructed using
Gaussian Process modeling/Kriging (see section These models (Krigs/GP models) are
then searched using multi-objective non-dominated sorting genetic algorithm-II (NSGA-II)
[74] (see section B.5.2)), resulting in an initial predicted Pareto front. It should be noted that
the obtained Pareto front is a predicted one, and is only as good as the accuracy of the Krigs.
To improve the quality of the Krigs the update process is carried out. The number of update
points (five in this chapter), also known as the infill points, are selected uniformly along the
predicted Pareto front. After the analysis of the new points, the Krigs are reconstructed and
the NSGA-II search is performed on the updated Krigs to obtain an improved Pareto front.
This process is repeated twice more, based on the computational budget available.

An LP; [I72] based sampling plan is used to construct a 15-point design of experiments
[46]. An LP; based sampling plan is suitable as it gives a uniform coverage of the design
space. The distribution of 30 evaluations is divided into an intial sampling of 15 points, and
three subsequent updates, each update adding five new points. Once the Kriging models
are constructed the NSGA-II algorithm is run for 50 generations, each generation having a
population of 50 members, to search the Krigs. The methodology in this chapter can be

summarised in the following steps —

Step 1: Analyse initial 15 points — Construct Krigs for each objective — perform an NSGA-

II search to obtain the Pareto front — identify five update points — analyse the new points.
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Figure 9.4: Flow chart detailing the optimisation methodology adopted in this chapter

Step 2: Construct Krigs for each objective using 1545 points — perform an NSGA-II search

to obtain the Pareto front — identify five update points — analyse the new points.

Step 3: Construct Krigs for each objective using 15+5+5 points — perform an NSGA-
II search to obtain the Pareto front — identify five update points — analyse the new points

— Stop.
Step 4: Appraise the optimal designs.

It is worth noting at this point that there are many methods proposed in the past to find
update points. The method adopted in this chapter, i.e. to choose uniformly distributed
update points on the predicted Pareto front, is the simplest of these. For single objective
optimisation Jones et. al. [50] proposed an expected improvement criterion to find update
points. This criterion was extended to multi-objective optimisation in many different algo-
rithms [187, [188], 189, 190, 191], 192, 193]. A discussion on these algorithms is out of scope
of this thesis. Nonetheless, the choice of a full exploitive approach adopted in this chapter
is based on the following rationale: first, it is observed from chapter [{ that the objective
functions modelled are not highly multimodal in nature, i.e. the physical responses show a
relatively simple trend of increase or decrease in terms of a particular parameter in the search
space modelled; and second the errors at the end of first update (shown in figure [0.5) are

deemed acceptable in most of the search domain.
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Table 9.2: Result matrix for the 15 point intial sampling and the three updates

Design Watrut he Nheight ~ Recoil VAS HLRFI VAD Ddev FM

CYPHER 0.1300 0.8250 1.6000 0.1337 0.0464 27.40% -0.3701 0.2525 0.1775
DOEBX.1 0.1100 0.9000 1.3000 0.1716 0.0463 26.10% -0.3605 0.2511 0.2094
DOEBX.2 0.0800 1.0000 1.0000 0.2707 0.0398 24.42% -0.3460 0.2528 0.2557
DOEBX.3  0.1400 0.8000 1.6000 0.1146 0.0473 26.89% -0.3792 0.2528 0.1690
DOEBX.4  0.0650 0.9500 1.7500 0.2918 0.0400 26.43% -0.3533 0.2648 0.2553
DOEBX.5 0.1250 0.7500 1.1500 0.1226 0.0457 25.24% -0.3632 0.2631 0.2241
DOEBX. 6 0.0950 0.8500 1.4500 0.1851 0.0449 27.39% -0.3660 0.2610 0.1807
DOEBX.7  0.1550 1.0500 0.8500 0.1405 0.0480 26.12% -0.3696 0.2541 0.4149
DOEBX.8 0.0575 1.0750 1.5250 0.3054 0.0376 26.34% -0.3619 0.2564 0.1841
DOEBX9 0.1175 0.8750 0.9250 0.1548 0.0462 26.15% -0.3528 0.2509 0.2808
DOE_BX_10 0.0875 0.7750 1.8250 0.1867 0.0446 27.90% -0.3768 0.2512 0.1410
DOEBX_11 0.1475 0.9750 1.2250 0.1372 0.0478 27.06% -0.3645 0.2576 0.2557
DOE_BX_12 0.0725 0.8250 1.0750 0.2467 0.0398 24.56% -0.3452 0.2551 0.2259
DOEBX_.13 0.1325 1.0250 1.6750 0.1639 0.0485 26.70% -0.3787 0.2526 0.2089
DOEBX_14 0.1025 0.9250 0.7750 0.1845 0.0448 24.56% -0.3452 0.2509 0.3157
DOEBX_.15 0.1625 0.7250 1.3750 0.0901 0.0450 25.53% -0.3772 0.2525 0.1907

DOEBX_16 0.1395 1.0320 0.7367 0.1540 0.0473 24.80% -0.3605 0.2519 0.4074
DOEBX_17 0.0721 0.8256 1.1727 0.2529 0.0396 24.85% -0.3482 0.2520 0.2101
DOE_BX_18 0.0503 1.0860 0.7232 0.3222 0.0345 23.34% -0.3391 0.2596 0.2608
DOEBX_19 0.1137 0.7068 1.7700 0.1439 0.0522 28.53% -0.3758 0.2517 0.1440
DOEBX_ 20 0.0890 1.0263 1.7776 0.2006 0.0435 26.65% -0.3747 0.2544 0.1720

DOEBX_21 0.1377 0.7051 1.8544 0.1098 0.0465 27.30% -0.3886 0.2577 0.1403
DOE_BX 22 0.0500 1.0113 0.7010 0.3291 0.0340 23.31% -0.3343 0.2566 0.2600
DOE_BX_23 0.0500 1.0576 1.0760 0.3090 0.0360 24.06% -0.3475 0.2579 0.2162
DOEBX 24 0.1677 1.0504 0.7021 0.1278 0.0479 24.76% -0.3737 0.2536 0.3354
DOE_BX_ 25 0.0500 0.8121 1.7705 0.2922 0.0404 26.80% -0.3771 0.2650 0.1359

DOEBX_26 0.1175 0.7004 1.8919 0.1315 0.0472 27.76% -0.3787 0.2493 0.1358
DOE_BX 27 0.0725 0.9891 0.7056 0.2542 0.0393 23.69% -0.3427 0.2528 0.2969
DOEBX_28 0.1550 0.9958 0.7010 0.1305 0.0475 24.76% -0.3659 0.2520 0.4273
DOE_BX 29 0.0800 0.9997 0.7010 0.2710 0.0393 23.71% -0.3387 0.2515 0.3137
DOE_BX_ 30 0.0632 0.7498 1.9000 0.2480 0.0403 26.71% -0.3792 0.2611 0.1306

9.3 Results & Discussion

9.3.1 Model validation and response surfaces

For model validation, the same approach as used in chapter [1 is adopted. The leave-one-out
and SCVR (see section B.2.3.2)) plots for each objective function after the end of three updates
are shown in figures[@.6]—[@.T11 These plots show that for each function the SCVR values after
every update cycle, lie in the interval [-3,4-3], thereby asserting the validity of the Kriging
models for the chosen metrics. In each of these figures, every subplot represents Wyt on the
x-axis and he on the y-axis; Nheight increases vertically downwards through subplots.

The response surfaces for all the objective functions at the end of each update are shown
in Figures - Figures and show that the response surfaces for Recoil and
VAD do not change significantly through the three updates. On the other hand considerable



9.3. Results & Discussion 155

change, especially for Nheignt values lower than 0.6, is observed for the response of FM and
HLRFI as update points are added (see figures and @I7)). Significant change in the
response of VAS is also observed by the addition of update points (cf. figure [@.I3). The
plots for Dgey, show extreme changes through the updates. This could be a result of many
factors: first, it could be that the response of Dge, is too complicated to be modelled by a
Kriging model (even though the SCVR plots suggest otherwise); second, it could be that the
response of Dgey is governed completely by only one parameter, namely Wy, which explains
the vertical patches of colors in the last column of Figure and insignificant change in Dgey
by changes in he and Npeignt; third, it could be that Dgey is not a particularly good measure to
differentiate stents based on uniformity of drug distribution; and fourth, it could be, looking
down the second-last column of table [0.2] that it is the very similar Dge, response of even
drastically different stent geometries that make this objective difficult to model. The last
problem could potentially be remedied by choosing an appropriate transformation for the

Dgev metric and constructing a Krig of the transformed metric instead of Dgey.
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Standardised Cross Validated Residual (SCVR)

Figure 9.6: SCVR and leave-one-out plots for Recoil after each update
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Figure 9.7: SCVR and leave-one-out plots for VAS after each update
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Figure 9.10: SCVR and leave-one-out plots for Dge, after each update
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Figure 9.11: SCVR and leave-one-out plots for FM after each update
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on the y-axis, and Npeight increases vertically downwards
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9.3.2 Pareto fronts

Figure shows slices from the Pareto fronts after each update cycle — green circles showing
the pareto front after the initial sample and first update, the blue circles after second update,
and the red pluses after the final update. Figure shows one of the plots (VAD vs. VAS)
and marks the update points in each update cycle. As can be observed in this figure the
update points serve two purposes - first to fill in each successive Pareto front and second to

push it towards the bottom left corner.
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Figure 9.19: The update process - green front indicates the initial sample + first update, the
blue front indicates the second update, and the red front indicates the third update

Clear trade offs are observed for the following set of objectives in Fig. .18 —

e VAS vs. Recail

VAD vs. VAS

e FM vs. VAS
e FM vs. HLRFI
e VAD vs. HLRFI

[ ] Dda/ VS. VAS

The following subsections discuss the individual trade-offs in detail—

9.3.2.1 Stress vs. Recoil

Figure [0.200 shows a slice from the final pareto front depicting the trade-off between volume
average stress and acute recoil. Designs with lower value of acute recoil show a higher value of
VAS. This inverse relationship between average stresses and recoil is inevitable. Lower recoil

implies a higher lumen area which leads to higher circumferential strains in the artery/tissue
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and consequently higher stresses. Although such an inverse relationship is bound to appear
in every family of stent designs, it is interesting to note how the stent design (relative to
the three design parameters) changes along the Pareto front. As one moves from top-left
towards the bottom-right of this front the stent design changes significantly — in particular,
the value of h¢ increases while the value of Wgryt decreases. The third parameter, Nhegnt, does
not follow any particular trend in this plot. This can be explained by the fact that changes
in Nheignt result in insignificant changes in both Recoil and VAS (see last columns of Figures
and [0.I3] respectively). The effect of Wyt can be explained by the reasoning that a
higher value of Wgyyt, other parameters being equal, implies a higher metal-to-artery ratio
(consequently a higher contact area) and hence results in higher stresses. For acute recoil,
increasing the value of Wy has the opposite effect. The curved parts of circumferential
rings with wider struts undergo higher plastic deformation and consequently resist recoil.

Thus an increase in the value of Wy is better in terms of reducing recoil but comes at a

price of increased average stresses. The effect of the parameter he is not as straightforward
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Figure 9.20: Final Pareto front slice showing the trade-off between volume average stress
(VAS) and acute recoil (Recoil)

as the effect of Wgryt. In terms of recoil a lower value of he results in larger plastic strains
in the curved regions of the circumferential rings. This can be understood by imagining the
unfolded stent on a flat plane and viewing the expansion process as the stretching of these
rings (c.f. Figure [[.19). Consequently designs with a lower value of he have lower recoil. In
terms of the metal-to-artery ratio (contact area between stent and plaque) the effect of he
depends on Npegnt. Since the circumferential width of the links is constant (0.07 mm) whether
a decrease in hg results in an increase or decrease of the metal-to-artery ratio depends on
the net change in area brought by the two competing factors: decrease of area due to the
shortening of circumferential rings and increase in area due to the higher axial length that
the connectors/links occupy. In general, if the value of Wyt is much lower than 0.07 mm

and the value of Nhegnt is relatively large, then a decrease in he will result in a net increase
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in the contact area of the stent. However, if the value of Wgryt is much higher than 0.07 mm
and Nheight is small, a decrease in the value of he will result in a net decrease in area. This
relationship also explains the behaviour in Figure as follows. For the last subplot of the
last column, i.e. the plot of VAS for a high Nheght value, consider the region where Wgyt is
lower than 0.07 mm (0.16 in the normalised plot). Here, VAS is observed to increase with
a decrease in h;. Contrast this figure with the first plot of the same column; i.e. the plot
with a low Nheght value, and consider the region for of high Wgry. Here, a decrease in VAS
is observed with a decrease in he. This effect is reflected in all the columns of the plot: for
lower values of Wgryt decreasing he results in increase of VAS, while for higher values of Wyt
decreasing h¢ results in a decrease of VAS. This complicated relationship is reflected in the
observed Pareto front, Figure [.20, in the following way — when moving from left to right,
the initial design changes reflect a decrease in Wgry with little change in he. This happens
until the value of Wyt is close to 0.07 mm, after which the design change is largely due to

an increase in he as opposed to a decrease in the value of Wgryt.

9.3.2.2 Drug vs. Stress

Figure shows a slice from the final Pareto front depicting the trade-off between volume
average drug and volume average stress. The designs which lead to a higher volume average
drug value (lower value of the VAD metric) are the designs associated with higher values of
volume average stress. As a general trend along the Pareto front, the designs for better drug
response (and consequently worse stress response) have high Wegryt values, high Nheigne values,

and low h¢ values. Since both Recoil and VAD are in competition with VAS, intuitively it is
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Figure 9.21: Final Pareto front slice showing the trade-off between volume average drug
(VAD) and volume average stress (VAS)

expected that Recoil and VAD would be positively correlated. This can be seen in Fig. 0.18
As expected Recoil and VAD follow a general trend of positive correlation. However, there
are significant deviations from the general trend. This is primarily due to the fact that while

the link height does not play any particular role in determining Recoil, it significantly affects
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volume average drug (see Figures and [0.15]). This phenomenon is demonstrated in the
best designs for Recoil, i.e. DOE_BX_15 and VAD, i.e. DOE_BX 21, on the pareto front. The
best design for VAD has a lower value of Wgryt and a higher npeignt value when compared to
the best design for Recoil on the Pareto front. A longer length of the link provides a better
coverage of the artery wall, and since the links provide a source of the drug, the concept
of better wall coverage becomes a key contributor in determining VAD. One is inclined to
relate the contact area of the stent (metal-to-artery ratio) as one of the factors determining
VAD. Although this is an important factor, the distribution of the struts can not be ignored.
This is illustrated by a comparison of designs DOE_BX_10 and DOE_BX_20 in figure
While DOE_BX_20 has roughly 9% higher contact area when compared to DOE_BX_10, it
does not perform better in terms of VAD. The distribution of struts in DOE_BX_10 provides
a relatively uniform wall coverage and hence has a similar response to DOE_BX_20 in terms

of VAD despite its lower surface area.

Design: DOE_BX_10

Outer Surface area = 9.02 mm?

Volume average drug (VAD) = 0.377 units
Dger = 0.251 units

— —
Design: DOE_BX_20
Outer Surface area = 9.86 mm?

Volume average drug = 0.375 units
Dgey = 0.254 units

Figure 9.22: Contact area of a stent and its effect on VAD

9.3.2.3 Flexibility vs. Stress

Figure shows a slice from the final Pareto front depicting the trade-off between the
flexibility metric and volume average stress. The conflict between FM and VAS is primarily a
result of the cross-flow (circumferential) length of the links. While thinner struts are preferred
both in terms of volume average stress and flexibility, the competition results from the length
of the links, Nheight. Two desirable characteristics are observed for designs which are relatively
more flexible — he has lower values and Nhegnt has larger values. Smaller values of he ensure
that the links occupy a larger axial length which in turn delays self contact between the 'n’
shaped links as there is more free space between the links. The parameter Npeght on the other
hand gives more length to the links. A longer length of the link is desirable as the bending of
the stent can be seen as a stretching and compression of the links. If the links are straight or
the value for Nheignt is small, there is little allowance for the links to unfold (while stretching)
and squeeze (while compressing), which leads to decreased flexibility. Consequently, the best

design in terms of flexibility (DOE_BX_30) has very low value of h; and the maximum allowed
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value (upper bound) for Npeight. The effect of he in Fig. can be explained along the same
lines as in section Lower values of h; are not preferred by VAS when Wgryt is low
(owing to the relative effect of area change of the links versus the area of the circumferential
rings). In such regions, i.e. when Wyt is low, a lower value of he is preferred by FM, as it
leads to a larger axial length for the links (which results in delayed self contact and hence

improved flexibility).
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Figure 9.23: Final Pareto front slice showing the trade-off between the flexibility metric (FM)
and volume average stress (VAS)

9.3.2.4 Flexibility vs. flow

Figure shows a slice from the final Pareto front depicting the trade-off between the
flexibility metric and the flow index (HLRFI). As a general trend more flexible designs tend
to show worse response in terms of haemodynamics. This can be attributed primarily to the
length of the links. It was shown in chapter @ (see section [£4)) that the length of the links in
the cross-flow direction (Nheignt) is key in determining the flow response. A direct dependence
of HLRFT on npgght was shown and it was observed that higher values of Nheight lead to higher
alteration of the haemodynamic features relevant to restenosis, i.e. high HLRFI. As discussed
in the previous section larger values of Nheight improve the response in terms of flexibility. This
conflict in the parameter Npeignt is the primary reason for the observed trade-off between FM
and HLRFI in the Pareto front. In terms of Wy, lower values are preferred by both flexibility
and HLRFI. Since recirculation zones are formed in between the links, the designs with good
HLRFI response tend to have large values of he. This minimises the axial length covered by
the links and hence leads to a relatively better flow response. However, as discussed in the
section this is not favourable in terms of flexibility, as lower axial length for the links

implies sooner self-contact with increase in curvature index.
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Figure 9.24: Final Pareto front slice showing the trade-off between the flexibility metric (FM)
and the flow index (HLRFI)

9.3.2.5 Drug vs. flow

Figure shows a slice from the final Pareto front depicting the trade-off between the
volume average drug and the flow index (HLRFI). As one moves from top-left to bottom-
right along the front the design changes from low Wgyryt, high he, and low Npegnt values to
high Weryt, low he, and high Npeignt values. In terms of Wery, a high value is favourable for
VAD so that more drug can be delivered, but the flow metric favours thinner struts as they
cause less haemodynamic alteration. Minimisation of flow disturbances within the links drive
he to higher values so that the axial length occupied by the links is less. Similarly Nheight
is driven to lower values too for improved HLRFI. However, these changes in he and Nheight
are not preferred from the drug perspective as these result in a) disturbing the uniformity
of strut distribution and b) lowering the overall contact area, which is important for drug
transport. A strong conflict occurs in these two objectives as all the three parameters drive

the objectives in opposite directions.

9.3.2.6 Drug standard deviation vs. stress

Figure shows a slice from the final Pareto front depicting the trade-off between the
standard deviation of the drug concentration and the volume average stress. The standard
deviation of drug concentration is primarily governed by the uniformity of the metal dis-
tribution in the stent. The designs in the bottom right corner of the Pareto front have a
relatively uniform distribution of struts when compared to the designs in the top-left corner.
The conflict in these two objectives is a result of the fact that a design which covers the
artery wall in a uniform manner generally has a higher metal-to-artery ratio, which leads to

a higher contact area and consequently higher contact stresses.
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Figure 9.25: Final Pareto front slice showing the trade-off between volume average drug
(VAD) and the flow index (HLRFI)
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9.3.2.7 Other plots

The other sub-plots in Figure which have not been discussed in the above sections do not
display any conclusive trade-off between the objectives. The behaviour of most of these plots
can be partly explained by the reasoning given in the above sections. For instance, section
explains the trade-off between FM and VAS, and section explains the trade-off
between FM and HLRFI. Since both VAS and HLRFI both are in conflict with FM, they
are bound to show some positive correlation. Similar reasoning holds for the other plots too.

The plots with Dgey as one of the objectives do not show any particular trend and hence
lead to no particular conclusions (except for the plot discussed in section [@0.3.2.6]). As discussed
in section [0.3.1] this could be because Dgyey, as defined by Eq. B8] is not a particularly good

measure for the uniformity of the drug distribution in a stented artery.

9.4 Choosing the ideal stent

The choice of an ideal stent, even after obtaining the Pareto front, is not trivial. Owing to
the multiple number of desirable characteristics, computational studies can only lead to the
non-dominated (Pareto) designs. Several approaches can be taken to identify designs which

could potentially be considered ideal —

9.4.1 A conservative paradigm

A conservative design approach, assuming no other information (clinical or otherwise) is
available to judge individual designs in the non-dominated family, is to remain in the middle
region of the Pareto front, thereby avoiding poor performance in any of the objectives. Using
this approach designs DOE_BX_20 and DOE_BX_30 stand out (cf. Figs[0.20] 0.21] [0.23] [0.24]
[0.25, and @.26). When compared with the CYPHER stent, which also lies on the Pareto front
but is usually skewed towards one end in all the Pareto slices, these designs provide a more

balanced trade-off between the various merits.

Of particular interest, besides the designs DOE_BX_20 and DOE_BX_30, are designs DOE_BX_10
and DOE_BX_15. While both these designs perform well, under the conservative paradigm
discussed above, in almost all objectives, DOE_BX_10 performs relatively poorly in terms of
HLRFI and DOE_BX_15 in terms of VAS.

9.4.2 A constraint based paradigm

This approach utilises additional information based on clinical guidance. For instance, a
maximum required value of FM (minimum flexibility of a stent) could be assigned based on
the maximum curvature of the stent deployment path. Similarly, a maximum value for the
recoil could be assigned based on the required minimum lumen area; and dependent on the
biochemistry of the drug being delivered, a minimum value of VAD could be ascertained.
Once such limits are determined, the design choice can be narrowed down to a handful of
designs satisfying such constraints. However, the determination of such limits is not an easy

task and further statistical research is required, to determine them especially when account-
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ing for patient variability.

A constraint optimisation approach for stent design, where the concept of assigning one
or more of objectives as constraints was demonstrated in chapter [l It was assumed that
the limits of Recoil, VAS, VAD, and FM were set by the values of the baseline design, and
improvement in design was sought for one objective at a time. Since the two parameters,
Waryt and he, are similar to the ones used in that chapter, a comparison can be made between
the results of chapter [ and the findings of this chapter. Figure is used for this purpose.
First, consider the problem of minimizing the VAS, relative to baseline (DOE_BX_1 in this
case), without any decrease in Recoil, VAD, and FM. In the first plot of Fig. [0.27 one can
draw a vertical line passing through DOE_BX 1, Line-1. All designs to the left of this line,
viz. designs 3, 5, 9, 13, 15, 16, 21, 24, 26, and 28, are designs which do not have worse
recoil relative to design 1. Similarly, a horizontal line through DOE_BX_1, Line-2, can be
drawn. All designs below this line do not have worse VAS values relative to DOE_BX_1.
Hence, from this plot, it can be seen that only designs 15, 5, and 9, show an improvement in
VAS without compromising Recoil. Similar vertical and horizontal lines can be drawn in the
second and third plots of Figure where designs in the bottom-left quadrant are feasible
designs. Of the designs selected from the first plot, listed above, only design 15 satisfies the
feasibility criteria in the other two plots. A similar exercise can be performed for the other two
objectives of VAD and FM. For minimizing VAD and FM, designs 21 and 26 are identified to
be the best, respectively, even though they are marginally on the wrong side of the vertical
lines in the second and third plots. This is not unreasonable as the parameters p; and p2 in
the chapter [l are not equivalent to just one Npegnt parameter used in this chapter. However,
the qualitative agreement of designs 15, 21, and 26 for the corresponding optimum solutions
obtained for minimising VAS, VAD, and FM in chapter [l is convincing — high values of Wgr
combined with low values of he for minimising VAS and VAD, and mid-range values of Wgyyt

and low values of he for maximising FM.
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The above stated mechanics of finding optimal designs in consideration of constraints can
also be seen in the response surfaces for various objectives, as show in Figure[@.28 This figure
shows contour slices, of the four objective functions viz. Recoil, VAS, VAD, and FM against
Wsryt (on the x-axis of each sub-plot) and he (on the y-axis of each sub-plot) at different
values of Nheignt (aligned vertically). The Npeight values chosen include two sets — one at a
constant interval of 0.25 units between 0 and 1 (in the non-dimensional space) to illustrate
the general trend of the response surfaces, and the other to include slices for the designs
discussed before, i.e. 1, 20, 30, 15, 21, and 26 (the positions of the numbers correspond to
the values of the design parameters). For constrained optimisation of VAS with respect to
the baseline geometry, consider rows 3 and 4 (numbered from 1) of the figure which show
designs 1 and 15, respectively. From the VAS plot of row 3, it can be observed that major
improvement in VAS, with respect to design 1, can be achieved by moving to the left side of
the plot (i.e. going from the red region to the blue region). The FM plots favour this response
as the left-top and left-bottom regions of the plots (Nheght > 0.5) show no worse value of FM
relative to design 1. However, the Recoil and VAD plots reveal that movement to the left will
compromise Recoil and VAD. Hence a move to the right remains the only choice. Moreover, a
move to the right-bottom corner, region where design 15 lies, is the only region which shows
VAS improvement without compromising other objectives. Similar reasoning can be applied
for designs such as 21 and 26 which closely resemble the constrained optimal designs for VAD
and FM found in chapter [

The contour plots of Figure [0.2§ also show the location of the optimal designs in the
conservative paradigm, viz. designs 20 and 30 in rows 6 and 9, respectively. These designs
lie in the yellow/blue regions of all the objectives, thereby not taking extreme values for any

of the objective under the proposed paradigm.

9.4.3 The experimental approach

This approach requires experimental guidance. A few designs across the Pareto front can be
picked and tested ez-vivo in a laboratory, known as bench-testing. Such experimental results
can then guide the process of choosing the optimal stent. Furthermore, leaving the ethics
and morality of the process aside, testing in animal models can also be used to guide such an
experimental process.

Notwithstanding the merit of the above discussion, on a philosophical note it seems rather
unreasonable to think of one stent design as ‘ideal’ given the differences in the lesion geometry,
morphology, and other inter-patient variability found inherently in the human population. A
more logical approach, though extremely challenging in terms of computational, technical, and
practical aspects, would be to perform patient-specific optimisation studies using magnetic
resonance imaging (MRI)/ angiography/intravascular ultrasound (IVUS) data to obtain both
the geometry and morphology of the specific lesions. Another approach, midway between the
one-size-fits-all approach and patient-specific optimal designs, could be to classify lesions into
manageable number of classes, and find optimal designs, most likely to be different, for each
class separately.

A final note should be mentioned here with regards to the Krig-update methodology

adopted in this chapter. As mentioned in section [@.2] various other update strategies, can be
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adopted for choosing update points. However, on account of the extremely high evaluation
times needed for evaluation of all the objectives, a comparison of the performance of such
methods on the stent design problem is out of the scope of this thesis, and forms one area of
future work. Similarly, the results of this chapter show that not all pairs of objectives are in
conflict with each other. The apparent correlation between some objectives can be used to
decrease the number of objectives to less than six and consequently result in a more efficient

optimisation study.

9.5 Conclusions

This chapter proposes a three-parameter technique to vary the design of the widely known
CYPHER stent. Six figures of merit (numeric indicators of a stent’s efficacy) viz. acute recoil,
volume average stress, flow index, volume average drug, drug uniformity, and flexibility, are
formulated. A surrogate modelling technique coupled with NSGA-II is employed to obtain
the Pareto front showing the trade-off between different sets of the six figures of merit. The
effect of the three parameters on these metrics is also studied. It is demonstrated that a
change in one parameter that leads to an improvement in one of the objectives often leads
to a compromise in one or more of the other objectives. It is found that while strut width
and the length of the circumferential rings most affect volume average stress and recoil,
the length of the links in the cross-flow direction significantly affects volume average drug,
flexibility, and the flow index. The complex interplay between stent design (distribution of
struts, link design, strut thickness, and circumferential ring design) and stent performance,
from the perspective of the various conflicting/desirable properties, is clearly shown. Despite
this complex interplay, the non-dominated solutions, which represent a potentially optimum
family of CYPHER like stents, for the proposed parameterisation are obtained and discussed.
Moreover, several approaches for selecting optimal designs are identified and a parallel has
been shown between the constraint optimisation study presented in chapter [ In particular,
designs 20 and 30 are identified as optimal in terms of all the objectives in a conservative
paradigm, and their relative position with respect to a representative CYPHER stent is shown.
Finally, in a constraint based approach, designs 15, 21, and 26 are identified as designs showing
maximal improvement, from the baseline geometry, in the corresponding chosen objectives.
In essence, a methodology to perform design optimisation studies on stents and the process
of choosing different stent designs appropriate to different needs is presented.

This chapter culminates the process of finding an optimal family of coronary stent de-
signs, by combining all the stent analysis methods developed in previous chapters in a single
multiobjective design study. The next chapter is not specific to the problem of coronary stent
design. It looks at Kriging-assisted optimisation at a more fundamental level, and explores
how derivative information in a Krig can be used for efficient search of the Krig. This under-
lying idea emerged during the process of learning and applying the Gaussian Process models

as described so far.






Chapter 10

An Optimisation algorithm that
exploits derivative information in

Kriging

In this chapter, the use of derivative information in a Kriging predictor, which is available
analytically, but not hitherto used in any known optimisation method, is explored to propose
an optimisation algorithm that can be used for both global and multimodal optimisation of
Kriging predictors. This chapter has stemmed from the process of learning and applying
Gaussian process models for the problem of stent design, and the first principles belief that if
the analytical form for a function is available and differentiable, then it makes sense to equate
the analytical expression of the derivative to zero, and explore if any useful information can

be obtained from such an expression.

10.1 Motivation

The motivation for this chapter stems from the realisation that Kriging predictors can be
differentiated, and the fact that, to the best of author’s knowledge, this gradient information
has not been explored to be used in optimisation algorithms. Moreover, the exciting aspect
of using derivative information of a Krig is that no matter what underlying phenomenon is
being modelled by the Kriging predictor, the mathematical form of the Kriging predictor
remains the same. Hence, if an algorithm were to use this mathematical form to calculate the
derivatives, the need to code different derivatives for different functions is eliminated. Lastly,
the derivative information, if derived analytically, is available in exact form and need not be
approximated by finite differencing methods.

Based on these motivations, in this chapter the following tasks are performed:
1. An expression for the derivative of a Kriging predictor is derived.

2. The above expression is manipulated to yield a fixed-point iterative sequence in order

to find the stationary points of the Kriging predictor.

3. The convergence of such a fixed-point iterative sequence is explored.

179
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4. Modifications to this fixed-point iterative sequence and a Newton-Raphson equivalent

of the sequence in order to improve convergence is proposed.

5. Based on the results of the above, a new algorithm for finding stationary points of a

Kriging predictor is proposed.

6. The proposed algorithm is compared for global and multimodal optimisation with a
standard genetic algorithm, a fitness sharing genetic algorithm, and a dynamic hill

climbing algorithm.

It must be noted that this chapter does not concern methods which improve the accuracy
of the Krig during the process of optimisation, such as the EGO algorithm [50]. This chapter
deals with the case when a reasonably accurate Krig has been constructed, although it is
applicable to any Krig regardless of its accuracy, and there is a need to search this Krig,

either for global optimisation, or for multimodal optimisation.

10.2 Derivative of the Kriging predictor

The formulation of a Gaussian Process predictor is presented in section B.2.3.1l This section
continues from there, and uses the same notation. To summarise, the equations for the
correlation function used, GP predcitor (i.e. posterior mean), and posterior variance are
given by equations B.22] B:35/B.38, and B3, respectively.

In this section the derivative of the Kriging predictor is calculated. Henceforth, the
discussion is limited to cases where the parameter m; in equation is equal to 2, implying
the prior belief that the engineering functions involved are infinitely differentiable.

If {X(t),t > 0} is a stochastic process, then the derivative of the process, X'(t), is defined as

X(t + h) — X(t)
_—

The above limit exists in a mean square sense if the derivative of the mean function of

X'(t) = fim (10.1)

the stochastic process, m(t), exists and the mixed second derivative, i.e.
2

0
as ot

exists and is continuous [49]. When these conditions are satisfied, as in the case of the Kriging

Cov[X(S), X()] (10.2)

predictor, the derivative is a linear operator. This implies that the ‘mean of the derivative’

and the ‘derivative of the mean’ are equal and can be interchanged [194] , i.e.

ol - el 9 _d _
E[X'(0)] = E[ dtxa)] = SEIXO] = (). (10.3)

where E[] is the expectation operator.
Applying the above to the Kriging predictor of equation [3.35] the mean of the derivative

at a point, X, can be written as

0 = S g+ e(9TR My - 19) (10.4)

or, following equation 338, since R™(y — 18) does not depend on X,

¥ (x) = d—cj((ﬁ+r(x)TW). (10.5)
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Since X € R", the above equation represents a set of n equations, i.e.

o (9%(. (ﬁ + r(x)Tw) coi=1...n (10.6)

Next, the i equation from the above set is expanded, to yield

Y 9

Wyx) _ (0 ! 10.8

ox (amt(x)) " e
m B [aR(x,X(1>) AR(x, x?) aR(X,X(p))]W (10.9)
x| ax o 0% |

Since mM; = 2, using equation [3.22], the above equation can be written as

—26; (xi - xi(l)) R(x, x(D) T

~ —26; (% — ) R(x, x@
a;/_si() = b N ) R®) (10.10)
-26; (x; - xl.(p)) R(x, x(®))
(Xi - XI.(l)) T R(X, X(l)) 0 e 0
9 .~ x® 0 @y ... 0
HX) _ g, (x _)ﬂ ) . R(X’.X ) o |w (10.11)
9% : : : :
(% - xi(p)) 0 0 . R(x, x®)
% = =26, Di(xX) ZXx)w ; i=1...n, (10.12)
where
D) = [(x-xP) (x-x?) - (x-xP)| er™P, (10.13)
R(X, X(l)) 0 0
0 R(X, X(Z)) ... 0
Z(x) = . . . € RP*P (10.14)
0 0 e R(X, X(p))
and
w=RYy-18) eRP<L (10.15)

This completes the expression for the derivative of the Kriging predictor, where the n
partial derivatives are given by equation [[0.12] In the following sections, the use of this

derivative in optimisation is explored.

10.3 Fixed point (FP) iterative scheme to find stationary points
of a Krig
One of the tasks in the realm of optimisation is to locate the stationary points of a function.

These are points where the derivative vanishes, and hence are either a local maximum, local

minimum, or a saddle point, depending on the behaviour of the second derivative at that
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point. In order to find the stationary points of a Krig, one can set equation [[0.12] to zero and

solve for X, i.e. solve the following equation

-26,Di(x) Z(x)w =0 ; i=1...n (10.16)

It is clear that an analytical expression for the above set of equations does not exist.
However, it is noticed that if this set of equations is written in a suitable form, then a fixed
point iterative scheme can be employed to find a solution. In the following two sections, first
the principles behind a fixed point iterative scheme are presented, and then such a scheme
for solving equation is deduced.

10.3.1 Fixed point iteration

A fixed point (FP) of a function, f(X) is a point that maps the function onto itself, i.e. the
value of f evaluated at the fixed point, Xp, is equal to Xp. For example, X = 0.739085133is
a fixed point for the function Cos(X) as Cos(0.739085133)= 0.739085133 Mathematically, a

fixed point of the function f(X) is a solution, X*, if it exists, to the following equation [195]

x = f(x). (10.17)

If a fixed point is aymptotically stable (explained in section [[0.3.3]), then starting from a

point, say Xp, close enough to the solution, X*, the iterative sequence

X, f(x0). f(f(x). f(f(f(x0))). ... (10.18)

converges to X*. This iterative sequence is called the fixed point iterative sequence, also known
as nonlinear Richardson iteration, Picard iteration, or the method of successive substitution

[195], and can be written as follows

X1 = f(X) ; starting from a guess point Xg. (10.19)

In case of a solution of N non-linear equations in N unknowns, X = [X1, X2, X3, ..., Xn]" as

represented by the following system

x1 = f1(x) (10.20)
X2 = f2(X) (10.21)

: (10.22)
Xn = fa(X), (10.23)

the iterative sequence can be written as

X = f(x) (10.24)
XL = fp(x) (10.25)

: (10.26)
Xt = fa(X), (10.27)

starting from an initial guess x° = [X(l) Xg Xg, eI L
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10.3.2 Fixed point iterative form of the Krig derivative

In order to solve equation [[0.16] the matrix Dj(x), defined in equation M0.13] is written as

Di =[x x - x| - [P x®@ ... | er>®, (10.28)
D= x[1 1 - 1] = [P @ ... ] er®P, (10.29)
Di(X)Z Xilp—Xi, (10.30)

where
1, =[1,1,...,1] e R™P, (10.31)

and
Xi=[x" @ ... £ (10.32)

The components of X;j represent the i" dimensions of each of the p points used to construct

the Kriging model. Substituting the above equation for Dj(X) in equation [0.33] yields

-2 [x1p-Xi| ZK)w =0 ; i=1...n (10.33)
When 6; # 0, this yields
[x1p-Xi| ZGyw =0 ; i=1...n (10.34)
X [1p Z)w|-[Xi Z)w] = 0 ; i=1...n (10.35)
XiZx)w L
LZoow Gi(x) ; i=1...n (10.36)
X = Gix) ; i=1...n, (10.37)
where X: Z()
i Z(X) w
Gi(x) = L 700w (10.38)

The above equation shows that the stationary points of the Kriging predictor function are the
fixed points of the set of functions represented by Gj(x), i = 1...n. Consequently, starting
from an initial guess, x° = [Xg, Xg, Xg, .., X7, the following sequence can be used to reach a

solution

X Z(X)w

+1
X' = LZo W (10.39)

For computational efficiency, the entire x* € R“*! vector can be calculated using the following

iterative equation

Xt = G(x¥) (10.40)

and
XZ(X)w

G = L Zx)w

(10.41)
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where X € R™P is given by

(1) (2) (3) (p)
I
p,

x=|2 R (10.42)
x,(ql) x,(qZ) )é3) Xgp)

10.3.3 Convergence conditions

In this section the conditions under which a fixed point iterative sequence converges to a fixed

point are outlined. Fixed points can be classified into three categories [196]

e Asymptotically stable points: These are fixed points with a property that all nearby

points converge to the fixed point.
e Stable points: These are fixed points with a property that all nearby points stay nearby.

e Unstable points: These are fixed points with a property that almost all nearby points

diverge away from the fixed point.

For a scalar function, g(u),g: R — R, the following theorem for convergence of the fixed point

iterative scheme holds

Theorem 10.3.1. “Let g(u) be a continuously differentiable scalar function. Suppose U* =
g(u®) is a fized point. If |g(U")| < 1, then U* is an asymptotically stable fixed point, and hence
any sequence of iterates UX) which starts out sufficiently close to u* will converge to u*. On
the other hand, if |g'(U")| > 1, then U* is an unstable fixed point, and the only iterates which

converge to it are those that land exactly on it, i.e., u®) = u* for some k > 0.” [196]

Similarly, for a set of functions , g(u),g: R" — R", the following theorem for convergence of

the fixed point iterative scheme holds

Theorem 10.3.2. “Let U* be a fized point for the discrete dynamical system u®*1) = g(u®).
If the Jacobian matriz norm ||’ (U")|| < 1, then g is a contraction at U*, and hence the fized

point U* is asymptotically stable.” [196]

In other words, the above theorem implies that if the spectral radius (supremum of the
set containing absolute values of the eigen values) of ¢g'(U*) is less than one, then u* is an

asymptotically stable point [196], i.e.

p(gu)) <1, (10.43)

where p(-) represents the spectral radius. Furthermore, the convergence rate of a fixed point
iteration is directly related to the spectral radius. A smaller spectral radius of the Jacobian
matrix at a stationary point implies faster convergence of nearby iterates to the stationary
point [196].

Having laid out the convergence conditions, the term basin of attraction can be defined

as

Let u* be a fixed point for the discrete dynamical system u®*1 = g(u®). Then the set of all

points, UY, for which the iterative sequence u** = g(u®), starting from u¥, converges to the
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solution U* is called the basin of attraction of u*.

Hence, from the view of finding the stationary points through a fixed point iterative sequence,

it is desirable to have a large basin of attraction for all stationary points.
Applying theorem [I0.3.2] to the iterative sequence represented by equation [I0.40, the

iterative sequence converges to a stationary point, X* of the Kriging predictor if

IG" (<)l < 1, (10.44)
where | - || denotes a norm and G’(x") is the Jacobian matrix of G(X) evaluated at X*, and is
given by

[0G1(x)  9Ga(X) 0G1(X)]
X1 0Xo 0Xn
9G2(x)  9G2(x) 9G2(x)
X1 0Xo 0Xn
G'(X*) = e R™", (10.45)
9Gn(x)  9Gn(X) 9Gn(x)
X1 02 0%y Jat x-
The i term of the above Jacobian matrix is evaluated next
0 0
(1p Z(X) W) —_(Xi Z(X) W) - (Xi Z(X) W) — (1p Z(X) W)
dGi(x) X 0Xi
o = ; (10.46)
j (1p Z(x) w)
9Gi(x) (1p 209 w) (=205) (Xi Z(x) Kj w) = (Xi Z(x) w) (-26}) (1o Z() K w) 10,47
- 2 ’ :
X (1p Z(X) W)
where
(x- - xgl)) 0 0
0 (xJ - x(.z)) 0
Kj = o € RP<P, (10.48)
. (p)
0 0 (xJ - X )

Equation [0.47 represents the general partial derivative at any point X. At a stationary

point, X*, we have an additional condition represented by equation [10.36] i.e.

X' (1p Z(X") W) = Xi Z(X*) w; (10.49)
substituting this in equation [0.47, yields
0Gi(x) (1p ZO) w) (=205) (Xi Z(<) Ky w) = (%1, Z(x) w) (-26;) (1o Z(x") K w)
2 (1p Z(x) W)2 ‘

(10.50)
Now, when (lp Z(x¥) W) # 0, the above equation becomes
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9Gi(X) _ (—zej)(xi Z(x*) K; w) - (>g) (—29,-) (1p2(x*) K; w)

10.51
X (1p Z(<) w) (1051)
aGI(X") (_29-) (Xi Z(x*) K W) - (xi* 1, Z(x*) K W) (1052)
0X; : (1p Z(x") W) .
0Gi(x") () (X1p = Xi) (Z(<) Kj w) (1053
0x; ' (1p Z(x") w) ' '
Using this equation, the Jacobian matrix G’(x*) € R™" (from equation [[0.45]) can be calculated
as follows
o 2D(X) Z(X)WDT(X') © nxn
= 10.54
G’ (x%) L2 w e R™, (10.54)
where [ (1) (2) N
(=x") (a—x7) - (a-x")
< (1) s (2) * ()
(6-%") (6-%7) -~ (6-%")
D(x*) = € R™P (10.55)
(=) (6-x2) - (- xP)]
W1 0 0
0 Wy .- 0
w=|_ | err (10.56)
0 O Wp
or
w = W1, (10.57)
60 O 0
0 6 --- 0
o=|. | erm™ (10.58)
0 O O

and DT represents the transpose of D. Hence, if the norm of the Jacobian matrix at a station-
ary point, ||G’(X")||, as calculated by equation [I0.54] is less than one, then the stationary point
is asymptotically stable, and an iterative sequence starting from a point near the stationary

point converges to the stationary point.

10.3.4 Application to Branin function

The Branin function [197], as shown in Figure [I0.1] is a widely used two variable test function

for global optimisation. It is defined as follows

f(x1, X2) = a(xp — bx§ + cxg — d)? + (1 — f) cos(x1) + &, (10.59)
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Figure 10.1: Contours of the original Branin Function
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Figure 10.2: Contours of the Kriging predictor (generated from sampling 20 points shown in
as red '+’) for the Branin Function
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Figure 10.3: Equation [10.40] applied to the Kriging predictor of Branin Function starting
from five different points
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5 5 1
Where—55X1§10,0§X2§15,a:1,b:ﬁ,C:—,d:G,ele andf:8—.

The Branin function has three global minimyz;, f(X1,7)€2) = 0.397887 at (X1, X2) :ﬂ(—n, 12.275),
(m,2.275), and (9.424782.475) A Krig of this function is created using 20 points generated
using a semi-optimised Latin hypercube [I18],198] sampling plan (100 Latin hypercube samples
are generated and the one with lowest metric proposed by Audze and Eglais [199] is chosen).
The function as predicted by the Kriging model is shown in Figure A fixed point
iterative scheme represented by equation [10.40] is applied to this Krig starting from five
points, viz. [(4,6), (9,10), (-2,10), (0,3.5), (6,4)]. The five points are chosen such that
each point is closest to one of the stationary points of the Branin function Krig. The results
of this are shown in Figure [[0.3t the black dots represent the starting points of the fixed
point iteration and the arrows show the points to which the iteration converge. It is observed
that all iterations converge to one of the stationary points of the Krig function. However,
the locations to which these iterations converge are far from ideal. The Branin function has
five stationary points, three minima and two saddle points. The five chosen starting points
lie close to one of these stationary points and hence, in an ideal case, iterations starting
from each of these points should converge to the respective stationary points (see Figure
for such an ideal distribution). The observed behaviour of the points, especially point
(-2,10), can be understood by looking at the spectral radius of the minimum closest to it,
i.e. (-2.93311.456) Note that this is slightly different from (-7, 12275), the minimum of the
real Branin function, as we are working with the current Kriging predictor, the accuracy of
which can be improved, if desired, by adding more points at suitable locations to construct
the Krig. The spectral radius at this minimum is 1.519, see Table [[0.I] (normal case), while
the spectral radius at the other two minima are 0.638 and 0.740. This explains why a fixed
point iteration starting from any point, except that which starts from the minimum itself,
does not converge to this minimum as the spectral radius at this point is greater than one.
Table IQ.1] also explains why the two saddle points are missed as the spectral radii there are
1.763 and 1.984, both greater than one.

The above discussion leads to the question as to whether equation [[0.40] can be posed in
another way such that the spectral radius at all/more stationary points could be reduced to
a quantity less than one in order to ensure that all fixed point iterative sequences starting
from points closer to the stationary points converge to the respective stationary points. Such

transformations form the discussion of the next sub-section.

10.3.5 Modifying the form of the fixed point Krig equation

Since the spectral radius of the Jacobian matrix, equation [[0.45] is directly related to the
magnitude of entries in the matrix, any transformation sought should be based on the un-
derlying concept to decrease the magnitude of these entries. Example transformations for a

general equation, X = f(X), are:

X = +/(xf(x)) (10.60)

X
X:erX_l (10.61)
x:lxx)+x—l (10.62)

X = %(x+ f(x). (10.63)
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Table 10.1: Spectral radii for the stationary points of the Branin function Kriging Predictor

Stationary Point Spectral radii

normal ng=2 ng = 10 ng = 50 ng = 1000
(—2.933 11.456) 1.519 0.706 0.941 0.988 0.999
(3.0702.672) 0.638 0.665 0.933 0.986 0.999
(9.756 2.963) 0.740 0.467 0.893 0.978 0.998
(—0.008 5.008) 1.763 1.381 1.076 1.015 1.0007
(6.342 1.121) 1.984 1.492 1.098 1.019 1.0009

Clearly, one can write the same equation in many other forms, each still representing a fixed
point iterative scheme. However, following the underlying idea of keeping the entries of the
Jacobian matrix of the RHS of the above equations low, a general form for the final equation

(equation [[0.63) shown above is chosen:
1
X = n—((nd —x+f(x) ; ng>landng ez (10.64)
d

where ng is an integer greater than or equal to one. The derivative of the RHS in such a form,

X =g(X) is

ng—1 f'(X

na-1, P&
N Ng

g =

where f/(X) would be the derivative of the RHS of the original form, X = f(X). From the above

(10.65)

equation one can observe that the original derivative term is now divided by the factor ng,
and a term of (Ng — 1)/ng has been added. It can be concluded that if f/(X*) is finite, then

lim g'(x") = 1. (10.66)

Nn—oo

The above method works well in cases where the original derivative, f’(X"), is negative,
in which case the above limit tends to one from the left. For example, if f’(x*) = —1.5, then
when nq = 2 from the equation ¢'(x") = —0.25, with a magnitude less than one, and hence
X" becomes asymptotically stable, i.e. fixed point iterative sequences starting from points
close to it converge to it. The form of equation [10.64] when applied to equation [[0.40] for the

Kriging multidimensional case becomes
k+1 1 K K
X0 = (ng — 1) X“ + G(x*) (10.67)
d

with the Jacobian matrix, J for such a fixed point iteration being

ng -1 1
J= ( d )I + =G'(X), (10.68)
Ng Ng

where | is an identity matrix, | € R™",

Figure [10.4] shows the results of the five test points when the iteration represented by
equation [[0.67) with ng = 2, is applied to the Branin function Krig (c.f. figure [[0.2)). Com-
paring this with Figure 0.3 it is observed that now the point (-2, 10) converges to the closest
(desired) minimum. This is also apparent by calculating the spectral radius of the right hand
side of the fixed point equation. As shown in Table [I0.1] the spectral radius for this minima
is 0.706 (less than one) as opposed to the original case where the spectral radius was 1.519
(greater than one), and hence the minima has now become asymptotically stable. However,

as can be seen from Figure [[0.4] the saddle points of the Branin function are still not found.
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Figure 10.4: Equation [I0.67 applied to the Kriging predictor of Branin Function starting
from five different points

This is also revealed by the spectral radii in Table [[0.1] where it is found that the spectral
radii for the saddle points approach one as ng increases from the right. Consequently, no
finite value of ng, no matter how large, makes the spectral radius of the Jacobian matrix less
than one. This is primarily because the largest entries of the Jacobian matrix for these saddle
points are positive in which case it is inevitable that the spectral radius approaches the limit
of 1 from the right, as ng increases. Lastly, it was mentioned in section that the con-
vergence of a fixed point iteration is related to the spectral radius of the Jacobian matrix; a
smaller spectral radius implies faster convergence. With an increase in ng, the spectral radii,
as shown above, tends to one either from the left or the right. For the latter case, there is no
convergence to the stationary point, and for the former case, the increase in spectral radius,
as Ng increases leads to slower convergence.

In order to resolve the issues of spectral radii being less than one, and identifying a
universal form for the fixed point iteration which ensures convergence, the Newton-Raphson

(NR) scheme for the Krig equations is explored in the following section.

10.4 Newton-Raphson (NR) scheme to find stationary points
of a Krig

The Newton-Raphson (NR) method is a fixed point iterative method to find the roots of an

equation, f(X) = 0. The iterative scheme is defined as follows
_ ()
fr(x)
It can readily be observed that the derivative of the RHS of the fixed point equation, i.e.
9(¥) = x— f(x)/1'(x), is

XK+1 —

(10.69)

_ f ()

g0 =—7 B (10.70)

At the root, i.e. when f(X*) = 0, g’(x*) = 0, implying that every stationary point is asymp-
totically stable. When applied to finding a solution to equation [0.37] this procedure ensures
that every stationary point of the Krig is asymptotically stable. However, this comes at a cost

of calculating the derivative (i.e. the Jacobian matrix) in each iteration. The set of equations
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represented by Equation [0.40] can be writtn as
F(X) = x=G(x) = 0. (10.71)

Hence, the Newton Raphson iteration can be written as

F(x¥)

K+l gk 10.72
X X F'(XK) ( 0.7 )
NG x"—F’(XK)_lF(XK), (10.73)

where F/(x)! is the inverse of the Jacobian matrix of F(x), obtainable from

F(x) = 1-G(x), (10.74)

where | is an identity matrix, | € R™" and G’(X) is given by equation [0.45 Using equation
[M0.47 F’(X) can be written as

2(XZ)wi) (ZOOWDT(x)®) 2 (X) (Z6)WDT(x) ©)
+
(15 200 w)° (1p Z(x) w)

where X, Z(x), w, W, D(x), and © are defined by equations [[0.42], 10.14] [10.15], 10.56] 10.55,

and [[0.58, respectively.
Figure [10.5] shows the results of the five test points when the iteration represented by

equation [[0.73 is applied to the Branin function Krig. Comparing this with Figures [[0.3]

and [I0.4], it is readily observed that, in this scheme of fixed point iterations, each stationary

Fix) =1 -

., (10.75)

point, i.e. the three minima and the two saddle points, is asymptotically stable and, hence,
iterative sequences starting from points in their neighbourhood converge to the stationary

points. This, however, comes at a cost of computing the Jacobian matrix and its inverse at

M- —
12 R

10 R

~ 8h

=

6

each iteration.
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Figure 10.5: Newton-Raphson equation [[0.73] applied to the Kriging predictor of the Branin
Function starting from five different points

Henceforth, throughout this chapter, the three fixed point iterative sequences are referred

as

1. Standard fixed point iteration (SFP): The standard fixed point iteration derived from
the Kriging predictor (equation [[0.40).
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Table 10.2: Sample size to construct Krigs and grid-size to evaluate the MFP and NR iterative
sequences

Function Sample size grid size ng (MFP)
Branin function 20 21x21 2
De Jong’s function 20 10x 10 2
Rosenbrock’s function 50 9%x9 2
Rastrigin’s function 150 21x 21 10
Bump function 200 21x 21 6
Ackley’s function 150 21x 21 2
Six-hump camel back function 100 21x 21 1
Dropwave function 150 21x21 2
Easom’s function 200 21x21 2
Goldstein-Price’s function 150 21x 21 2

2. Modified fixed point iteration (MFP): The modified form of the standard fixed point
iteration (equation [[0.67)).

3. Newton-Raphson iteration (NR): The Newton-Raphson form of the fixed point iteration

(equation [10.73).

10.5 Example Applications

In this section the above formulated fixed point iterative sequences are applied to find the
stationary points of a Krig of several test functions. These functions are used widely for
testing optimisation algorithms and, unless otherwise stated, have been taken from the list
provided by Molga et. al. [200] and Yang [201]. For each of the functions, a suitable sample
size, that which ensures a low error (posterior variance) as predicted by equation B37, is
used to construct the Krigs. Thereafter, a suitable grid size, i.e. a grid size that sufficiently
depicts the behaviour of the two iterative sequences, is used to generate starting points for
the MFP and NR iterative sequences. The results of these are presented by arrow plots,
where each arrow starts from the starting point of the sequences and points to the point
where that sequence converged. For each of the following functions, the sample size, p, used
to construct the Krigs, the grid size to evaluate the iterative sequences, and the value of ng
used in equation for the MFP sequence, are shown in Table

10.5.1 Branin function

The Branin function has already been the exemplary function so far. Figures [I0.6al and [10.6b]
show the behaviour of the MFP and NR sequences for a 21x 21 grid of starting points. The
MFP sequence, as can be seen from Figure [[0.6al does not converge to the two saddle points.
The basins of attraction for the three minima are relatively large when compared to the NR
sequence. However, the NR sequence does find all the stationary points of the function, with

a considerable sized basin of attraction for each of the stationary points.
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Figure 10.6: Iterative schemes for finding stationary points of Branin function Krig; grid size
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10.5.2 De Jong’s function

The simple De Jong’s sphere function is defined as

n
f) = > % ; -512<x <512 (10.76)
i=1
This unimodal and convex function has its global minimum, f(x*) =0, at X’ =0, i=1...n.

Figures M0.7al and show the original De Jong’s function and its Krig created by
sampling 20 points, respectively. Figures [[0.7d and show the behaviour of the MFP
and NR sequences for a 10x 10 grid of starting points. Being a unimodal convex quadratic
function, the observed behaviour of the sequences, i.e. all points converge to the global
minimum, is not surprising. Such behaviour, for this simple function, is expected out of every

gradient based optimiser.

I
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|k =2)
(T
=

(a) Original De Jong’s function (b) Krig of De Jong’s function (20 sample points shown
in red ’plus’)

it
s
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D

T
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(c) MFP iterations with ng = 2 (d) NR fixed point iterations

Figure 10.7: Iterative schemes for finding stationary points of De Jong’s function Krig; grid
size = 10x 10

10.5.3 Rosenbrock’s function
The Rosenbrock’s function, also known as the Banana function, is defined as
n-1
f() = >[04 -1 + 10061 — ¥)?| ; -2048< X <2048 (10.77)
i=1

The global optimum of the above function lies in a narrow valley of parabolic shape. Most

algorithms easily locate the valley, however the challenge to any algorithm lies in converging
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to the global optimum in the valley. The global minimum, f(x*) = 0, for the Rosenbrock’s
function is located at X' =1, i=1...n.

Figures [[0.8al and show the original Rosenbrock’s function and its Krig created by
sampling 50 points, respectively. Figures [[0.8d and [10.8d show the behaviour of the MFP
and NR sequences for a 9x 9 grid of starting points. This choice of grid is intentional, as for
the MFP sequence it is found that only those sequences that start from within an extremely
narrow window around the X coordinate of the minimum converge to the desired minimum; a
sequence starting from every other point diverges. This does not seem to be the case with the

NR sequence, for which the basins of attraction for each stationary point are relative large.

3840
3420
3000
4 2580
2160
1740
1320

SsS—
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(b) Krig of Rosenbrock’s function (50 sample points
shown in red ’plus’)

N/
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(c) MFP iterations with ng = 2 (d) NR fixed point iterations

Figure 10.8: Iterative schemes for finding stationary points of Rosenbrock’s function Krig;
grid size = 9% 9

10.5.4 Rastrigin’s function

The Rastrigin’s function is a highly multi-modal problem with regularly distributed minima.
It is defined as

f(x) = 10n+ Z [} - 10cos(2rx)] ; -2.0<x <20. (10.78)
i=1

The presence of the cosine term in the function definition leads to the high multi-modality of
this function. Its global minimum, f(x*) = 0is located at X" =0, i=1...n.

Figures [[0.9al and show, respectively, the original Rastrigin’s function and its Krig
created by sampling 150 points. Figures[I0.9d and [[0.9d] show the behaviour of the MFP and
NR sequences for a 21x 21 grid of starting points. A finer grid is used here owing to the high
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multimodality of the Rastrigin’s function. As can be seein in Figure [[0.9d, the MFP sequence
is able to find most minima, albeit with a high value of ng = 10. However, the MFP sequence
misses all the saddle points, unlike the NR, sequence, for which the basins of attraction for
all the stationary points are well defined. This, if the goal of the procedure to find only the
minima and maxima, lies in favour of the MFP method since size of the basins of attraction
of the saddle points for the NR sequence, is gained by the basins of attraction of the minima
for the MFP sequence. Nevertheless, if the goal was to find all the stationary points, then

clearly NR method is superior.
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Figure 10.9: Iterative schemes for finding stationary points of Rastrigin’s function Krig; grid
size = 21x 21
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10.5.5 Bump Function

The Bump function, proposed by Keane [I§], is a multi-modal function with several peaks of

decreasing heights. It is defined as

—abs |3 4(x) =210 2(x
fx) = — o[ 2y cost) — 2Ty cos’()] . 0.0<x <100. (10.79)
n 2

i=1 1%

The bump function is widely used to test constrained optimisation algorithms, however its

high multimodality makes it suitable to test the iterative sequences developed in this chapter.
Figures [I0.10al and [[0.10b show, respectively, the original Bump function and its Krig created
by sampling 200 points. Figures [0.10d and [10.10dl show the behaviour of the MFP and NR

sequences for a 21x 21 grid of starting points. For the Bump function as well, it is observed
that the MFP method is effective in finding the minima, with a high value of ng = 6, but is
not able to find the saddle points.

10.5.6 Ackley’s Function

Ackley’s function is also a widely used highly multi-modal test function. It is defined as

n

1
-b HZXIZ

i=1

n

% Z cos(CX;)

i=1

f(x) = —aexp — exp +a+exp(l) ; -20<x <20. (10.80)

Its global minimum, f(x*) = 0 is located at X' =0, i=0...n.

Figures M0.1Tal and [10.11D] show, respectively, the original Ackley’s function and its Krig
created by sampling 150 points. Figures [0.11d and [10.11dl show the behaviour of the MFP
and NR sequences for a 21x 21 grid of starting points. The behaviour of the two sequences for
Ackley’s function is very similar to that for Rastrigin’s function. The difference between Ack-
ley’s function and Rastrigin’s function is that the height of the peaks decreases considerably
faster, further away from the centre for Ackley’s function. This can effect the behaviour of
population based optimisers, such as a fitness sharing genetic algorithm, but does not affect

the performance of a gradient based optimiser, used to formulate the MFP and NR sequences.

10.5.7 Six-hump camel back function

The Six-hump camel back function is a two variable function with six minima (two global

and four local). It is defined as

f(xy) = (4—2.1x2+%x4)x2+xy+4(y2—1)y2 ; -3<x<3;-2<y<2 (10.81)

The two global minima, f(Xx*,y*) ~ 1.0316 are located at (X*,y") = (0.0898 —0.7126) and
(-0.0898 0.7126)

Figures [[0.12a] and [[0.120] show, respectively, the original Six-hump camel back function
and its Krig created by sampling 150 points. Figures I0.12d and [10.12d] show the behaviour of
the MFP and NR sequences for a 21x 21 grid of starting points. For this function, it is found

that an MFP sequence converges only for ng = 1, i.e. for ng > 1 all the sequences starting
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Figure 10.10: Iterative schemes for finding stationary points of the Bump function Krig; grid
size = 21x 21
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from all the points in the grid diverge. This is because, as discussed in section [0.3.5] the
spectral radii of the six minima (found by ng = 1) tend to one from the right as ng increases.
On the other hand, the NR sequence faces no such difficulties, and finds all the stationary
points of the Krig.

10.5.8 Dropwave function

The Dropwave function is a highly multi-modal test function with only two variables and is
defined as

1+ cos(12y/X2+y?)

1<x<1l;-1<y<l 10.82
0@ +y2) +2 Y ( :

f(xy) =

Its global minimum, f(X*,y*) ~ —1.0, is located at (X*,y*) = (0.0,0.0). Figure shows a
surface plot of the Dropwave function. As can be seen this function has concentric circular
shaped rings that represent alternate local minima and maxima. This is a challenging function
for gradient based optimisers as the gradient at every point on each ring is zero and hence a
local optimum, from a gradient point of view.

Figures [[0.14al and [[0.140 show, respectively, the original Dropwave function and its Krig
created by sampling 150 points. Figures [[0.14c and [10.14d] show the behaviour of the MFP
and NR sequences for a 21x 21 grid of starting points. As can be seen from these figures, both

the sequences seem apparently confused and converge to various points in the circular rings.
Moreover, no MFP sequence converges to any of the rings that represent a local maximum.
However, starting from a point inside the central basin of the function, both the sequences

converge to the global minimum at (X*,y*) = (0.0, 0.0).

1.0-1.0

Figure 10.13: Surface plot of the Dropwave function
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10.5.9 Easom’s function

The Easom function is a unimodal test function with two variables. It is a difficult function
to optimise as the global minimum has a very small basin of attraction and the function
everywhere else is relatively flat, i.e. it yields no information about the location of the global

minima. The Easom function is defined as

f(xy) = —cos(X) cos(y) exp [—(X— 72— (y- 71)2] ; —20<x<20;-20<y<20 (10.83)

Its global minimum, f (X*,y*) ~ —1.0, is located at (X*,y*) = (r, 7).

A surface plot of Easom’s function is shown in Figure [0.I5l The relative flatness of
the function and the relatively small size of the basin of the global minimum can readily be
observed from this figure. Figures [0.16al and [10.160] show, respectively, the original Easom’s
function and its Krig created by sampling 200 points. A high sample size for this function
is needed to capture the flatness of the function in an extremely large part of the domain.
Figures [T0.16d and [10.16dl show the behaviour of the MFP and NR sequences for a 21x21 grid
of starting points. Both the sequences converge to various local minima of the Krig distributed
in the search domain. For the grid size chosen, only 4 points for the MFP sequence and 5
points for the NR sequence, that fall within the basin of the global minimum, converge to the

global minimum.

Figure 10.15: Surface plot of Easom’s function
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Figure 10.16: Iterative schemes for finding stationary points of Easom’s function Krig; grid
size = 21x 21
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10.5.10 Goldstein-Price’s function

The Goldstein-Price’s function is a multi-modal test function with two variables. It is defined

as
f(xy) = [1 + (X + X2 + 1)P(19— 14x1 + 3% — 14%; + 6X1 X + 3x§)] .
|30+ (2x1 - 3x2)?(18 — 32 + 12 + 48Xz — 36x1 Xz + 273)|
—2<Xx<2;-2<y<?2 (10.84)

Its global minimum, f(X], X;) ~ 3.0, is located at (X}, X;) = (0, -1).

This function is challenging for the optimisation algorithms as the local minima lie in rela-
tively flat region. Figures [[0.17al and [10.170] show, respectively, the original Goldstein-Price’s
function and its Krig created by sampling 150 points. Figures [0.17d and [10.17dl show the
behaviour of the MFP and NR sequences for a 21 x 21 grid of starting points. Interestingly,
for no value of ng in the MFP sequence, are any of the desired stationary points in the domain

found. The NR sequence, however, finds all the stationary points.

Based on the aforementioned results, the following conclusions can be made regarding the

FP and NR sequences:

1. The FP sequences finds stationary points, but is limited by the spectral radii of the
stationary points. This limitation can be overcome up to a certain extent by using
higher values of ng. However, this still does not guarantee convergence of this sequence

to all stationary points. Moreover, how to estimate the ng factor a priori is not clear.

2. The NR sequence guarantees convergence to all stationary points, provided the starting

point of the sequence lies within the basin of attraction of the stationary points.

10.6 Development of the Krige-Newton-Raphson-Sobol (KNRS)
method

In this section an optimisation algorithm called the Krige-Newton-Raphson-Sobol (KNRS)
method is proposed for global and multimodal optimisation.

From the results of the previous section, it is clear that the NR sequence is more robust
in finding the stationary points when compared to MFP sequence. Moreover, based on the
results and theorem [[0.3.2] a strong proposition is that as long as an algorithm can get one
starting point in the basin of attraction of the stationary point, the stationary point is guar-
anteed to be found. Finally, Newton-Raphson iterations, starting from a point sufficiently
close to the stationary point, converge q-quadratically to the stationary point, when the Ja-
cobian matrix is non-singular (see equation [I0.73)) [195]. This means that the error, difference
between the solution (U*) and current point in the sequence (U¥), at « + 1 iterate is related
to the error at ™ iterate by [Ju*1 — u*|| < 7 |lu¥ — u*||?, for some 7 > 0 [196].

The above thoughts lead to a hypothesis that if an algorithm chooses successive starting
points for the NR iterative sequence carefully, i.e. to explore regions of the search space
uniformly, then all stationary points of the Krig should be found. For choosing successive
starting points, a quasi-random (low discrepancy) sequence, called the SOBOL sequence (or

the LP; sequence) [202] 203] is proposed. The SOBOL sequence has an attractive property in
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Figure 10.18: 20 points added successively from the LPt sequence

that the points are uniformly space filling, i.e. as more points from the sequence are added the

space is sampled more, uniformly. This property makes these sequences a reasonable choice for

exploring a design space. Figure [[0.18 shows an instance of this sequence in two dimensions

where starting from a random point in the sequence, 20 points are added successively. Figure

[[0.19 shows 200 points from this sequence starting from a random point in the sequence. The

space filling properties of such a sequence are apparent from these figures. For all the results

presented in this chapter, the SOBOL sequences are generated by the code provided by Dr.
John Burkardt at his homepage [204].
Based on the above reasoning, the KNRS algorithm is described as follows and depicted

in figure [10.20

The algorithm begins by developing the necessary Kriging predictor for

the required function or physical response. Then a random skip number (a positive inte-

ger, 1) [205] is generated. This number means that if | points are needed from the SOBOL
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Figure 10.19: 200 points from the LP7 sequence with a random start between 0 and 10,000

sequence, S = (S1,$%, S3,...,9"), then instead of taking the first | points from the sequence,
(SL, 2, S5,...,9), the points used are (S*1,S+2, S+3, ..., S*). A NR iteration (equation [T0.73])
is then performed starting from the first point S*1. This iteration either diverges, oscillates,
or converges to a stationary point. If the iteration converges, then the results are appended to
an offline list of found stationary points. Next, the second point from the SOBOL sequence,
S*2 is chosen as the starting point and a NR iteration carried out from this point. This
procedure of taking the next point from the SOBOL sequence and running an NR iteration
starting from this point is repeated until any of the convergence criteria are met: (a) either
the computational budget is reached, or (b) if the user is satisfied by the hitherto found
minimum value from the stationary points, or (c) the number of desired stationary points
are found. As an additional step on the list of unique stationary points the following two

operations can be performed: first, if the user is only looking for the global minimum, then
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the list can be sorted and the minimum value point can be to the user; and second if the
user is interested in differentiating between minima, maxima, and the saddle points, then
each of the stationary points found can be classified into these categories by performing 2m
function evaluations, where mis the dimension of the function, around each stationary point

and evaluating the function value at these points.

To conclude the formulation of the KNRS algorithm, the following three important points
underlying the motivation to develop the KNRS algorithm are highlighted.

1. NR iteration guarantees quadratic convergence to the stationary point, if starting suf-
ficiently close (i.e. in the basin of attraction) of a stationary point. Since an exact
expression, i.e. not evaluated by finite differencing, is used for the Kriging predictor,

the NR sequence proposed is very robust, i.e. free from discretisation errors.

2. SOBOL sequences sample the space uniformly. Starting anywhere from a SOBOL
sequence, successive points are space filling, and hence explore all the regions of the

search domain equally.

3. A combination of the local search provided by the NR sequence coupled by the ex-
ploratory power of SOBOL sequence offers a powerful paradigm to perform optimisa-

tion, and forms the basis for the KNRS algorithm proposed.

10.7 Comparison of the KNRS algorithm with other algo-

rithms for Global optimisation

In this section, the above proposed KNRS algorithm is compared to two algorithms: a real
coded Genetic algorithm [36] and dynamic hill climbing [206], 13], for testing global optimi-
sation capabilities. In the following sub-sections, these algorithms are first briefly described

and then the results of the comparison are presented.

10.7.1 Genetic algorithms

The working of a Genetic algorithm is described in section B.3.4.3 In all the comparisons made
in this section, a real coded GA with a binary tournament operator is used for selection, the
SBX operator is used for crossover, and polynomial mutation operator is used for mutation.
The GA used is coded in the Python programming environment [207] by the author. The

parameter settings used for comparison are tabulated in Table I3l

10.7.2 Dynamic Hill Climbing

Dynamic Hill Climbing (DHC) is a search algorithm proposed by Yuret and Maza [206], [13]
which is based on the ideas of genetic algorithms, hill climbing, and conjugate gradients.
Yuret and Maza, in their publications, showed this algorithm to be very effective on a test-
suite of De Jong’s five functions. Keane [I88] has used DHC for the optimisation of Kriging
hyperparameters.

The central idea of Dynamic Hill Climbing lies in having an inner and outer loop: the

inner loop being a hill climber which starts from a seed point and performs a hill climb;
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BEGIN KNRS

Step 0: Start with a sampling plan (such as a Latin hypercube sampling

plan) to generate points where the function is sampled.

Step 1: Sample the function (Analysis: CFD. FEA etc.) at the sample

points. =
&
Step 2: Construct the Kriging predictor for the function 12

Step 3: If errors for the predictor are less than the required accuracy of

the Krig then go to Step 5

Step 4: Estimate additional number of points to be added to improve
the Kriging predictor based on an in-fill plan (such as the expected

improvement criterion). Return to Step 1

Step 5: Generate a random skip number (an integer ¢) for the SOBOL
sequence. From the SOBOL sequence, pick the i + 1t point, S; ;.

Store this point in variable X0, 1. Xgam = S;jp1- Set counter.
K = }.
Step 6: Starting from the point X4, run the NR sequence (equation z
a8 —
10.73) < C
~ e8]
= C
Step 7: If the iteration in Step 6 converges go to Step 8, otherwise 2 %
Xgtart = W;42, 80 to Step 6 2
Step 8: Append the converged location of the iteration in Step 6 to the
list of stationary points found. E:
Step 9: Find the unique points from the list of stationary minima found: CIF
update the list of unique stationary points found.

Step 10: Check stopping criterion: (a) if the computational budget is
reached, or (b) if the minimum value found so far is satisfactory, or
(¢) if the number of desired unique stationary points are found. If not.

then x4 = S;12. # = K+ 1. go to Step 6.

Step 11: If needed, perform a check on the unique stationary points found

to classify them as maxima, minima, or saddle points.

END KNRS

Classification

Figure 10.20: KNRS algorithm
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Table 10.3: GA settings for comparion of KNRS for global optimisation

Parameter Value

Coding Real-coded

population size 50

number of generations 50

Selection operator Binary tournament

Crossover operator Simulated Binary Crossover (SBX)
SBX parameter (1c) 10.0

Crossover probability 0.5

Mutation operator Polynomial mutation

Mutation probability 0.05

Polynomial mutation parameter (ny) 10.0

and the outer loop seeding the next start point far from the already found local minima.
The inner loop has a dynamic coordinate frame: initially the directions of movement are
the coordinate axis directions and a step length in these directions is decided. Hence, for a
problem of n dimensions, 2n evaluations are made and a move is made along the direction
of the best point found. If none of the 2n points are better than the current point, the
step length is halved and another 2n evaluations are carried out. Additionally, the previous
successful directions of movement are stored in a buffer. After every successful move, a Gram-
Schmidt orthogonalization procedure is used to construct a new coordinate frame based on
the difference of previous moves. This provides additional flexibility as the set of orthogonal
search directions are not fixed to the coordinate axes. Convergence is determined when the
step length becomes smaller than a predetermined limit. The outer loop’s goal is to seed
the next starting point far from the previously found local minima, which are stored in a
buffer, in order to promote exploration. Yuret and Maza proposed several methods for this.
For binary coded algorithms they proposed maximising the Hamming distance (difference in
the bits of two vectors) of the new point from already found local minima. They [13] also
proposed two other methods for the outer loop: first, to choose a set of points randomly in
the search space and initialize the inner loop with the best among these points; second, to
divide the search space into hyper-rectangles based on the local minima already found, and
choosing a random point in the hyper-rectangle of largest area (hyper-volume). The latter
procedure is similar to the binary search algorithm proposed by Hughes [208].

DHC has three parameters to set: a) the first starting point; b) the starting step length;
and c¢) the minimum step length. For all the DHC comparisons in this chapter, the first
starting point is chosen at random within the search domain, the starting step length is set
D/2, where, D is the difference between the upper and lower bound on decision variables (as
suggested by the authors), and the minimum step length is set to 1073, The DHC used in
this study is coded by the author in the Python programming environment [207]. For the
outer loop, the method of evaluating 50 random points in the search domain and choosing
the best among these as the seed for the inner loop is used. The results of this code are
validated against the results reported by the Yuret and Maza [13] for a test suite of De Jong’s
five functions, as shown in Figures [0.21] and Comparing these figures it can be seen
that for all the test functions, except the Quartic function, the mean of the best fitness value
reaches the minimum at approximately similar number of function evaluations for the two

implementations: =~ 100 for Sphere function; ~ 1,000 for Rosenbrock’s function; ~ 10,000 for
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Figure 10.21: Best point average over 10 runs for five functions by the developers of DHC [13]:
(A) Sphere function, (B) Rosenbrock’s function, (C) Step function, (D) Quartic function, and
(E) Shekel’s function [13]

Step function; and = 1,000 for the Shekel’s function.
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10.7.3 Comparison results and discussion

To compare the performance of KNRS against the performance of GA and DHC, 50 runs of
all the three algorithms are performed for the 10 test functions in table [[0.21

Figures [0.23] - 10.32 show the optimisation histories for the best point and the mean of
the best point for 50 runs of the KNRS, GA, and DHC algorithms on the 10 test functions.
Table shows the corresponding times taken for the 50 runs, and time per evaluation.
Before any comments on these numbers, the working of the KNRS algorithm is explored. Let
us consider Figure [0.23h. One observation is that since each NR iteration converges to one
of the stationary points of a function, the best point values in any run are likely to be the
stationary point function values for a long time, i.e. until any better point is found. This
leads to a band formation around the function values of the stationary points. In other words,
depending on the convergence accuracy of the inner NR iterations, the converged values of the
NR iterations lie in a small interval around the stationary points function values. For example
for the Branin function, the function value around the stationary points is approximately 20
and hence a a dark line (i.e. a set of lines corresponding to this band) is observed in Figure
M[0.23h. To further understand the working of this algorithm two independent runs on the
Branin function and key points along the run are shown in Table [[0.4. Comparing the
first run in Table [0.4] to Figure [0.23h, it can be seen that this is the only run on Figure
[[0.23h that has not converged to any of the minima of Branin function Krig. The most
likely reason for the non-convergence of this run is that a NR sequence is actually diverging.
This is an important issue, especially when a fixed number of evaluations are allowed in the
algorithm. In the case of the Branin function, this limit is 50 evaluations. Now, if the number
of iterations in an NR sequence (without convergence) before which it is declared that the
sequence is either oscillating or diverging, is greater than 50, then if the first point of the
SOBOL sequence starts to diverge, then there will be no function improvement in the entire
run. This issue can be resolved by either checking inside each iteration as to whether the
series is diverging or oscillating, or by keeping a sensible limit on the maximum iterations
for the NR sequence. In all the comparisons presented in this section, the latter approach is
adopted and the limit on maximum iterations in an NR sequence is set to 50. The effect of
the diverging solution in the case of Branin function is also reflected in the plot for the mean
of the best point (Figure [[0.23b): the dashed line represents the mean of all the 50 runs and
the solid line shows the mean when the run with the diverging solution is removed. This is a
direct result of choosing 50 as the inner iteration limit, and the fact that only 50 evaluations
are considered in these runs, thereby disallowing any further point to be evaluated before the
maximum evaluation limit is reached.

Returning to the comparison of the three algorithms on the 10 test functions (Figures
M0.23] - M0.32), it is important to compare the time taken by each algorithm per evaluation.
Each algorithm has a different mechanism to converge to the optima, based on what the
algorithm does after evaluating a point. It should be noted that the time per evaluation here
implies, the time taken by one complete inner iteration of an algorithm, i.e. time taken to
evaluate the function value once plus other inner workings of the algorithm. For example,
time per evaluation for KNRS includes time taken for generation of the next point in the
SOBOL sequence plus one iteration of the NR sequence and convergence checks within the
iteration. For the GA, time per evaluation is the time taken for selection, crossover, and

mutation, per generation divided by the number of members in a generation. Similarly, for
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Table 10.4: Two independent runs of the KNRS algorithm on the Brainin function

Eval.  f(X) Comment Comment f(x) Eval.
count count
1 37.52934 1% point in SOBOL sequence 1% point in SOBOL sequence | 39.48397 1
2 19.60173 39.48397 2
3 19.60173 0.40519 3
4 19.60173 0.39996 4
5 19.60173 0.39996 5
6 19.60173 0.39996 6
7 19.60173 0.39996 7
8 19.59964 0.39996 8
9 19.59964 0.39996 9
10 19.59964 0.39996 10
11 19.59964 0.39996 11
12 19.59964 1% NR converges to a saddle 0.39996 12

point
13 16.76393 2™ point in SOBOL sequence 0.39996 13
14 16.76393 0.39996 14
15 16.76393 0.39996 15
16 16.76393 0.39996 16
17 16.76393 0.39996 17
18 16.76393 0.39996 18
19 16.76393 0.39996 19
20 16.76393 NR sequences up till here con- | 0.39996 20

verged to a minima
21 16.76393 Next NR sequence converges | 0.25473 21
to a different minima

22 16.76393 0.24775 22
23 16.76393 0.24775 23
24 16.76393 0.24775 24
25 16.76393 NR sequences up till here, 0.24775 25

starting from the second point

in the SOBOL sequence, con-

verge to either a maxima out-

side bounds, or to a saddle

point
26 16.24129 Next point in SOBOL se- 0.24775 26

quence
27 16.24129 0.24775 27
28 16.24129 0.24775 28
29 16.24129 0.24775 29
30 16.24129 0.24775 30
31 16.24129 0.24775 31
32 16.24129 0.24775 32
33 16.24129 0.24775 33
34 16.24129 0.24775 34
35 16.24129 0.24775 35
36 16.24129 0.24775 36
37 16.24129 0.24775 37
38 16.24129 0.24775 38
39 16.24129 0.24775 39
40 16.24129 0.24775 40
41 16.24129 0.24775 41
42 16.24129 0.24775 42
43 16.24129 0.24775 43
44 16.24129 0.24775 44
45 16.24129 0.24775 45
46 16.24129 0.24775 46
47 16.24129 0.24775 47
48 16.24129 0.24775 48
49 16.24129 0.24775 49
50 16.24129 The NR sequences since the No subsequent NR sequence | 0.24775 50

previous NR sequence are
either converging to saddle
points again or the last se-
quence is diverging;
eval. reached

max.

could converge to a better
minima; max. eval reached
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the DHC, time per evaluation implies time taken for generating the search direction from a
point and deciding whether to move in that direction or to decrease the step length, plus
convergence checks. These times per evaluation are calculated on an average for all 50 runs
and are reported in Table

Table 10.5: Global optimisation: Comparison of time per evaluation for KNRS, GA, and
DHC (50 runs for each algorithm in each test function)

Function KNRS GA (50x 50) DHC Time per eval. (10°)s
Neval time (S) | Nevar  time (s) | Nevar  time (s) || KNRS GA  DHC
Branin o0  14.07 2500 210.56 500  81.76 0.63 1.68 3.27
De Jong’s 50  6.23 2500 95.45 500  37.68 2.49 0.76 1.51

Rosenbrock’s | 50 15.42 2500 209.25 500  75.00 6.17 1.67 3.00
Rastrigin’s 500 412.17 2500 608.96 2500 1316.33 || 16.49  4.87 10.53
Bump 500 594.79 2500 819.54 2500 1206.55 || 23.79  6.56  9.65
Ackley’s 500 358.96 2500 610.72 2500 945.84 14.36  4.89 7.57
Six-hump 500 277.91 2500 409.06 2500 619.23 11.12  3.27 4.95
camel back
Dropwave 500 451.73 2500 631.82 2500 912.31 18.07 5.05 7.3
Easom’s 500 636.72 2500 850.36 2500 1216.11 || 25.47 6.8 9.73
Goldstein- 500 433.26 2500 613.82 2500 936.68 17.33 491 7.49
Price’s
Average 14.09 4.05 6.50

Averaged over all the runs and functions the time taken for one evaluation of the KNRS
algorithm is longer than a GA and DHC by a factor or 3.5 and 2, respectively. However, for
all the test functions, except Easom’s and Six-hump camel back function, the implementation
of KNRS, finds the global optimum in considerably fewer evaluations than a GA (see Table
I0.6). Comparison with DHC yields mixed results. On average KNRS finds the global optima
earlier than DHC (see Table [[0.6]) for the Branin function (by a factor of ~ 4), De Jong’s
function (by a factor of ~ 9), Rosenbrock’s function (by a factor of ~ 3), Bump function (by
a factor of ~ 2), and Goldstein-Price’s function (by a factor of = 1.5). On the other hand,
DHC finds the global optima earlier than KNRS for the Six-hump camel back function (by
a factor of » 5). The comparison times for the Dropwave function are comparable and for
the highly multimodal Rastrigin’s and Ackley’s functions are inconclusive as the mean for
the KNRS algorithm for these functions has not converged to the global minimum value for
the 500 evaluations used. The issues and possible causes for this observed behaviour, and the

special Easom’s function, are discussed next.

10.7.3.1 Branin, De Jong’s, Rosenbrock’s, Bump, and Goldstein-Price’s func-

tions

The behaviour for the De Jong’s function is the simplest to explain. Being a quadratic
function, the NR iterations for the original function converge in one NR evaluation. Since
we are working with the Krig instead of the original function, it takes 3-4 iterations for each
NR sequence, irrespective of where the iteration starts, to converge to the global minimum.
This is apparent in Figure where all runs converge to the minimum in less than five
evaluations. DHC, on the other hand, takes about 30 evaluations on average to converge to

the minimum, as it does not use gradient information directly.



218 Chapter 10. An Optimisation algorithm that exploits derivative information in Kriging

Table 10.6: Average number of evaluations before the error between the mean of the best
point (for 50 runs) for each algorithm and the global minimum reaches 2%; ‘-’ represents a
case when the algorithm, in the number of maximum evaluations specified (Table [[0.5]), has
not converged close to the minimum

Function Absolute no. of evaluations | No. Evaluations relative to KNRS ‘
KNRS DHC GA KNRS DHC GA
Branin 32 129 2050 1 4 64.1
De Jong’s 4 35 1150 1 8.8 287.5
Rosenbrock’s 44 142 - 1 3.2 -
Rastrigin’s - 112 - - - -
Bump 282 476 2100 1 1.7 7.4
Ackley’s - 56 1700 - - -
Six-hump camel back 165 35 700 1 0.2 4.2
Dropwave 483 384 - 1 0.8 -
Easom’s - 722 - - - -
Goldstein-Price’s 180 255 - 1 1.4 -

The Branin function has seven stationary points, two outside the decision variable bounds
and five within these bounds. The basins of attraction for the five stationary points within
the decision variable bounds can be seen in Figure [[0.6bl On average one NR sequence for
the Krig of the Branin function used here converges in seven evaluations. Hence, according
to Figure on average, about 5 NR sequences (~ 35/7) have to be evaluated, starting
from anywhere in the SOBOL sequence, to get a starting point that converges to any of
the three global minima. DHC, on the other hand, owing to its strategy of decreasing the
step lengths sequentially to assure convergence, takes many more evaluations (~ 150) to
converge to the global optima. Similar arguments hold for the Rosenbrock’s, Bump, and
Goldstein-Price’s function. An important observation is made for the Bump function. In
the same way that there are two maxima outside the search domain of the Krig of the
Branin function Krig, for the Krig of the Bump function the global minima, if the bounds are
not considered, lies below the bound-constrained minima (see Figure [[0.10dt arrows within
the box [X1 € (1.5,2.0), x2 € (0,0.4)] point towards this bound-unconstrained minima). The
KNRS, following the NR sequence, converges to this minima. On the other hand, since DHC
is constrained to search only within the search domain, it converges to the bound-constrained
global minima. This explains why in the mean plots (Figure and [[0.27f) the mean
for KNRS converges to a value lower than that for DHC. Nonetheless, this behaviour of the
KNRS algorithm is undesirable a from constrained optimisation point of view, where the

bounds must be honoured.

10.7.3.2 Six-hump camel back and Dropwave functions

The relatively poor performance of the KNRS algorithm with respect to DHC on the Six-
hump camel back function is primarily because the basins of attraction of the two global
minima, at (0.0898, -0.7126) and (-0.0898, 0.7126), are relatively small when compared to
the surrounding stationary points (see Figure [[0.12d]). Consequently, more points in the
SOBOL sequence are needed to locate a point in the basin of attraction of the global minima.
Nonetheless, on average, the mean of the best point in 50 runs converges to the global minima

in approximately 140 evaluations.
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For the Dropwave function, the performance of KNRS and DHC are comparable. Similar
to the Six-hump camel back function, the basin of attraction of the global minima for the
Dropwave is small relative to the search domain (see Figure [[0.14d]). DHC struggles equally
for this function due to the presence of concentric ridges which can cause DHC to oscillate

between these ridges.

10.7.3.3 Rastrigin’s & Ackley’s function

The Rastrigin’s and Ackley’s functions are the most multimodal among the test functions
used here. They both have regularly alternating minima and maxima, and saddle points
between them (Figures [10.9b] and [I0.1TD). At first glance, comparing Figure with
Figure [0.26f, and more importantly Figure with Figure [[0.28f, it may be concluded
that the KNRS algorithm has performed extremely poorly when compared to DHC on these

functions. This is indeed true, when the goal is to find the global optimum. However, further
insight is obtained by considering that facts that (i) a limited number of evaluations of the
algorithm have been performed for both the algorithms and (ii) the non-convergence of the
mean to the global minimum for the KNRS algorithm on these two functions is neither
because any of the starting points in the NR sequence are diverging, nor because the SOBOL
sequence is performing insufficient exploration of the design space. Every NR iteration is
actually converging to the closest stationary point. Indeed, it is the sheer number of such
stationary points for these functions that 500 evaluations are not enough to gather entire
information about the landscape, i.e. the location of all stationary points including the global
minimum. This aspect, although magnified for the case of Rastrigin’s and Ackley’s functions,
is relevant to all the functions. However, in other functions, the number of evaluations used
was sufficient to explore the search region sufficient enough to find the global minima. This
aspect is demonstrated in Figure [[0.34] where the results of one random run of the 50 runs
for all the test functions are plotted. The red dots show the locations where the various NR
sequences converged during this single run. Notice how many stationary points are found and
some are missed during each of these runs. Particularly notice the plots for Rastrigin’s and
Ackley’s functions. Here, inevitably, a few stationary points are missed if only 500 evaluations
are used. For some runs, these missed stationary points could as well be the global minima.
However, if the algorithm is allowed to run for a higher number of evaluations, the global
minima is to be found, inevitably, due to the space-filling nature of the SOBOL sequence.
Encouragingly, every NR sequence of the KNRS algorithm, unless diverging (which is
not the case for the Rastrigin’s and Ackley’s function), results in yielding some information
about the landscape of the function. Hence, it is the author’s hypothesis that the merit of
the KNRS algorithm, although effective in a global optimisation problem, lies in multimodal
optimisation, where the goal is not just to find the global minima but other optima as well

irrespective of their relative function values. This aspect is explored further in section [I0.8

10.7.4 FEasom’s function

As mentioned earlier Easom’s function is an extremely challenging function for optimisation
algorithms because: a) the size of the basin of attraction of the global minimum is very small
when compared to the search domain; and b) the function elsewhere is relatively flat, with a
function value close to zero. In Figures [0.3Th and [0.3Tb, 23 out of 50 runs have not found
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Figure 10.23: KNRS, GA, and DHC, algorithms on the Branin function: optimisation history
for best point and mean of the best point for sample of 50 runs

the global minima. One of the reasons for the relatively better performance of DHC for this
function could be the outer loop of DHC. In order to seed the inner loop, 50 random points
are evaluated and the inner loop is seeded with the best point among these 50 points. Clearly,
if any of these points lies in the basin of the global minima, DHC’s inner loop will quickly
converge to it. Nonetheless, if KNRS is allowed higher maximum evaluations, then the evenly
exploratory nature of the SOBOL sequence should find the minima. This indeed happens, as
shown in Figure [[0.33

Lastly, as can be observed from Figures [0.23HI0.32] a standard GA for the chosen test
functions, performs relatively poorly when compared to KNRS and DHC. In the next section

the multimodal optimisation capabilities of KNRS are explored in detail.
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Figure 10.27: KNRS, GA, and DHC, algorithms on the Bump function: optimisation history
for best point and mean of the best point for sample of 50 runs
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10.8 Comparison of KNRS with other algorithms for multi-

modal optimisation

Multimodal optimisation is applicable to functions that are multimodal, i.e. such functions
have multiple optimal solutions: either more than one global minima, or a global minimum
with several local minima, or a combination of both. The objective of a multimodal optimisa-
tion algorithm is to find all the minima (global and local) [I5]. The following section outlines

the basic concepts of evolutionary algorithms proposed for multimodal optimisation.

10.8.1 Evolutionary algorithms for multimodal optimisation

Since evolutionary algorithms work with a population rather than a point-by-point search,
they are thought to be at an inherent advantage at finding more than one optimal solution.
However, even in the presence of multiple optima with the same fitness value, a standard GA
eventually converges to a single optimum solution. De Jong [209] describes this as generic
drift. Hence, in order to avoid convergence of a GA to a single peak and hence find mul-
tiple solutions, sufficient diversity in the population must be maintained [210], 15]. In GA
literature each peak is considered to be a niche, that can only support a certain number of
population members. The methods used to maintain population diversity so that members
can be sustained at different peaks are called niche formation methods [210]. Many methods
for niche formation have been proposed in the past. The most prominent of such approaches
are the crowding approach [209, 211, 212] and sharing approach [213], 214], 2T5], 216],217]. The
central idea behind niche formation strategies is to modify the genetic operators, usually the
selection operator, in a standard GA. Crowding schemes discourage crowding of population
members by employing a strategy that when offsprings are created they replace an individual
from the population based on a similarity metric. Thus a similar offspring replaces a like
parent, thereby preserving diversity. On the other hand sharing approaches work by degrad-
ing the fitness of similar solutions, thereby penalising the fitness of members based on the
number of similar individuals in the population. Such a GA is known as a fitness sharing GA
and is described next. Lastly, it should be mentioned that recently in 2012, Deb and Saha
[218] have proposed a bi-objective algorithm for multimodal optimisation. This algorithm
converts a multimodal optimisation into a bi-objective problem and proposes to solve this
problem using multiobjective evolutionary algorithms. The discussion of this algorithm and

its performance comparison with the KNRS algorithm is out of scope of this thesis.

10.8.1.1 Fitness sharing Genetic algorithms

As mentioned earlier a fitness sharing GA works by degrading the fitness of members based
on a similarity metric. If there are ( peaks and the objective function value at each peak is
f;, then the basic idea is that if the fitness of each member belonging to a peak is assigned
to be its objective function value divided by the number of members on the peak, then the

optimal distribution of points, m, on a peak should follow the following

f q
h_of_ ol > =N (10.85)
AL My i=1

where N is the population size. The above is optimal in the sense that if peak i recieves any

more members than my, as calculated above, then the fitness of all the individuals at that
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peak will become less than the optimal ratio stated in the above equation, thereby decreasing
the population count at that peak in subsequent generations. Similarly if peak i has less
members than my, as calculate above, then the fitness of the members at that peak will be
higher than others, thereby encouraging selection of more copies of the members at that
peak in subsequent generations. In order to clasify members belonging to each peak (niche),

Goldberg and Richardson [213] proposed the following sharing function

otherwise

1 (—9_\"
Sh(d) ={ 5 (Faws) dsowae (10.86)

where d is the distance (phenotype distance for real-coded GAs) between two members, and
a controls the shape of the sharing function. Thus, two members share fitness only if the
distance between them is less than a pre-specified sharing parameter o gare, implying that
solutions are close (similar) to each other. The fitness of a member is then defined by its

objective function value divided by its niche count, ncj, defined as

N
nei = " Sh(d), (10.87)
i=1
where the summation is carried out over the entire population size, N. Thus the fitness value
becomes:
fi
fitness; = —, (10.88)
Ng;j

where f; is the objective function value. In essence, the parameter o-ghare denotes the radius
of sharing effect: a member’s fitness is degraded by all the members within the radius o gare
depending on the distance (higher distance means less sharing; this is dictated by the sharing
function Sh(d)).

The two parameters in a fitness sharing GA are a and o gare- Deb [219] showed that
the parameter @ does not have too much effect on the performance of fitness sharing GAs.
On the other hand, the parameter oghgre is important as it determines the niche size of each
peak. Based on a guess for the number of peaks in a function, say g, Deb and Goldberg
[214] suggested the following to calculate the value of o-gnare assuming that the g minima are

divided equally in the n-dimensional search space
2
U
1 (Xi - % )
23/q ’

where XI-U and XiL represent the upper and lower bounds on the iy decision variable, respec-

(10.89)

O share =

tively. Using the above method, o-gare can be calculated if the number of optima is known
or estimated. Thus, in a fitness sharing GA, only the selection operator needs modification,
without any changes to the crossover and mutation operators. Oei et. al. [220] showed that
the standard binary tournament resulted in chaotic fluctuations in a fitness sharing GA as
shared fitness values for a population are calculated based on the previous generation. They
suggested that a continuously updated tournament strategy, where the shared fitness values
are calculated from the population of a new generation, as it is created, reduced the chaotic
fluctuations in the number of members at each peak.

The above stated fitness sharing GA, using the continuously updated binary tournament

strategy, is coded in the Python programming environment [207] by the author. The results
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Figure 10.35: Comparison of Author’s fitness sharing GA implementation with that of [14, [15]:
results of fitness sharing GA with 100 members after 200 generations (1 = 35)

of this are validated against the results of the implementation by Deb and Kumar [15] and
Kumar [14] for the MM2 and MMS5 functions. The reader is referred to these studies for
the details of MM2 function. The MMJ5 function, the modified Himmelblau’s function, is
described as follows. This function is described as this is one of the two dimensional test

problem used for comparison in this section.

1= (08 +x2 - 11 + (xa + X2 = 7))
2186

f(xq, %) = - 6< X1, % <6. (10.90)
Figure shows the results of the author’s fitness sharing GA and Deb and Kumar’s
implementation [I5, [14] of such a GA for the functions MM2 and the Himmelblau’s function.
The results are presented at the end of 200 generations with 100 members per generation,
using the SBX crossover parameter, ne = 35, and a good correspondence between the results
of Kumar [14] and the implementation used in this chapter is found.

The parameter settings used for comparison of a fitness sharing GA with KNRS and DHC
are tabulated in Table 0.7

10.8.2 Dynamic Hill Climbing for multimodal optimisation

As mentioned earlier in section [0.7.2] Yuret and Maza proposed different ways to perform
exploration through the outer loop of DHC. In the previous section, for comparing the global
optimisation capabilities of DHC, the outer loop implementation where a set of random points

are chosen, evaluated for fitness, and the best point chosen as the starting seed for the inner
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Table 10.7: Sharing GA settings for comparion of KNRS for multimodal optimisation

Parameter Value

Coding Real-coded

population size 100 (except for Rastrigin’s function, where
population size is 200)

number of generations 200

Selection operator Continuously updated binary tournament [220]

Crossover operator Simulated Binary Crossover (SBX)

SBX parameter (1¢) 35.0 [15]

Crossover probability 0.9

Mutation probability 0

Sharing function Equation 1086} @ =1

Sharing parameter o gare Equation

loop was used. However, for multimodal optimisation, where the goal is to find all optima,
the author’s opinion is that the hyper-rectangle method (see [13] for details), similar to the
binary search algorithm by Hughes [208] is preferable as it promotes exploration. Such an
implementation is used for all the comparisons in this section. It is worth mentioning at this
stage that although DHC is not designed for multimodal optimisation. It is designed to store

the local minima locations in memory to guide the search towards the global minimum.

10.8.3 Comparison of KNRS with fitness sharing GA and DHC

A set of five functions are chosen for the comparison of KNRS with a fitness sharing GA and

DHC, in the context of multimodal optimisation. The functions are:
1. Branin function (Equation [[0.59)
2. Rosenbrock’s function (Equation [[0.77)
3. Himmelblau’s function (Equation [10.90)
4. Six-hump camel back function (Equation [[0.8T])
5. Rastrigin’s function (Equation [I0.78))

For all these functions 10 runs are performed and the times per evaluation are calculated
for these. These times are reported in Table [0.8 The relative times between the KNRS
and DHC remain similar as in the previous section. However, the time per evaluation for
a fitness sharing GA is significantly larger than the standard GA. This is not surprising, as
a fitness sharing GA takes a significant amount of time in calculating the shared fitness for
each member of the population as it has to loop over all the members of the population being
generated and calculate the distances between these points.

Since the goal here is to find multiple optima, it is not clear if the best point history
and mean of the best point over evaluations are of any significance. Instead, for KNRS and
DHC, the number of stationary points found and the number of minima (local or global)
found, respectively, are plotted against evaluation count. These are shown in Figure
Moreover, for a GA, it is not clear how such a count can be made as a function of generations.
Hence, for multimodal optimisation, the comparisons with GA are more based on the abilities

of the algorithms to find the minima as opposed to how fast this task is accomplished.
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Table 10.8: Multimodal optimisation: comparison of time per evaluation for KNRS, GA, and
DHC (10 runs for each algorithm for each test function)

Function KNRS GA (50x 50) DHC Time per eval.(107%)
Neval time (s) | Neyal time (s) | Neva  time (s) || KNRS GA  DHC
Branin 500 22.5 10,000 2450.8 2500  56.9 4.5 24.51 2.28
Rosenbrock’s| 500 22.6 10,000 2442.7 10,000 217.7 4.52 24.43 2.18
Himmelblau | 2500 228.5 10,000 3331.4 10,000 116.0 9.14 33.31 1.16
Six-hump 2500 228.5 10,000 3354.4 10,000 480.0 9.14 33.54 4.80
camel back
Rastrigin’s | 2500 357.0 10,000 4229.1 10,000 734.9 14.28 4229 7.35
Average 8.32 31.62 3.55

As can be seen in Figure the KNRS algorithm finds all the stationary points, and
hence all the minima, for all the five test functions in 2500 evaluations. In the last section
the issue with Rastrigin’s and Ackley’s functions while performing global optimisation was
discussed and it was said that given a higher evaluation count the algorithms would find the
global minima. It can be seen in Figure I0.36l, that this has indeed happened for a maximum
evaluation count of 2500 as oppposed to that of 500 in the previous section. For this function,
it is clear that for all the 50 runs, 81 stationary points (which includes all the minima) have
been found in just over 1000 evaluations. Moreover, DHC has only found a maximum of 12
minima (from a total of 25 minima) in 10,000 evaluations. Similar performance is true for
all the test functions used when comparing KNRS with DHC (Figure [[0.36]). However, this
should not be held against DHC as it was mentioned earlier that DHC has not been designed
to find local minima, but to use local minima information to guide its search to the global
minimum.

To compare the robustness of a fitness sharing GA with KNRS, in Figure [0.37 all the
minima found at the end of 2500 evaluations by KNRS, and the final population at the end
of 200 generations for the fitness sharing GA are plotted, respectively. The fitness sharing
GA performs well for the Rastrigin’s, Himmelblau’s, and the Six-hump camel back functions.
However, it performs poorly on the Branin and Rosenbrock’s functions.

Unlike a fitness sharing GA, one advantage of KNRS is that it does not require a guess
regarding how many minima there could be in the function. The setting of appropriate o gare,
and a corresponding population size that can maintain sub-populations at all peaks is very
hard to determine a priori. On the other hand, KNRS explores the entire space sequentially
and uniformly. The only parameter that KNRS, in its current implementation, requires is
to set the maximum number of inner iterations for the NR sequence. This parameter can
be completely eliminated by performing a check for oscillation or divergence inside the NR

iteration loop.

10.9 Limitations

Even though this chapter has compared the performance of KNRS, genetic algorithms (both
standard and fitness sharing), and DHC, for a suite of 10 test functions, it is important to
note that all the test functions are two dimensional. The performance of KNRS relative to
any other algorithm on functions in higher dimensions remains to be evaluated. In higher

dimensions, KNRS , owwing to the space filling features of the SOBOL sequence will even-
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tually find all the optima; however this chapter has not addressed how effective this process
might be as opposed to standard optimisation algorithms. Lastly, as observed in the case
for Bump function, in section [0.7.3.T], KNRS does not, in its current form, honour bounds.

Consequently, for constrained optimisation a modification to KNRS is required.

10.10 Note on SOBOL sampling in KNRS

Even though the idea of global exploration through the use of a low-discrepancy sequence, such
as the SOBOL sequence, is developed independently by the author, there have been similar
use of low-discrepancy sequences for global optimisation in the past. These methods go by the
name of Single Linkage (SL) and Multi-Level Single Linkage (MLSL) algorithms. The reader
is referred to [221], [222], 223, 224, [225] for details of such algorithms. An important aspect of
these methods, which is also applicable to the KNRS algorithm, is that based on the number
of starting points for the local search, such as steepest descent (or NR sequence in KNRS),
and the number of local minima found, Bayesian estimates on the number of local minima in
the underlying function can be ascertained, see for example [221], 222] 223]. The evaluation
of such estimates, which can be used as a stopping criterion for the KNRS algorithm is out
of scope of this thesis, but forms an important part for future work. Similarly, theoretical
analyses such as those presented in [226, 227], can be used to obtain statistical evidence
that all the local minima of a function have been found. Lastly, it should be noted that
low-discrepancy sequences have also been used in evolutionary algorithms and evolutionary
strategies. The reader is referred to [228], 229] for details of these.

10.11 Conclusions

The following conclusions can be made from this chapter:

1. Starting with a realisation that Kriging predictors can be differentiated and that the
derivative information has hitherto not been explored, an expression for the derivative
of the Kriging predictor is derived. This expression is then manipulated to form a

fixed-point iterative sequence to find the stationary points of a Kriging predictor.

2. The fixed point iterative sequence is evaluated for its convergence and its convergence is
explored on the Branin function. In order to overcome the limitations of the fixed point
iteration, a modification of the sequence is proposed. Moreover, a Newton-Raphson
equivalent of the same fixed-point sequence is derived, which guarantees convergence
to stationary points provided the starting point is close enough to the stationary point

(within the basin of attraction).

3. The convergence of the MFP and NR sequences are further explored and tested on a

test suite of 10 two-dimensional functions.

4. Based on the performance of the Newton-Raphson sequence on the above test functions,

a new algorithm, called KNRS, is proposed.

5. The performance of KNRS is tested for global optimisation against a genetic algorithm

and a dynamic hill climbing algorithm for a test suite of 10 two-dimensional functions.
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For global optimisation KNRS performs favourably relative to GA for all the test func-
tions, and favourably relative to DHC on most test functions. From the results it is
realised that an important merit of the KNRS algorithm lies in multimodal optimisa-

tion.

The performance of KNRS for multimodal optimisation is tested against a fitness shar-

ing genetic algorithm and a dynamic hill climber.

On the test functions chosen, KNRS performs favourably relative to both a fitness
sharing GA and DHC.

The capabilities of KNRS, both for global optimisation and multimodal optimisation,

have not been evaluated in higher (greater than two) dimensional spaces.



Chapter 11

Conclusions & recommendations for

further work

11.1 Conclusions

The following subsections present the conclusions made from this thesis.

11.1.1 Most Significant contributions

Even though the area of interventional cardiology has witnessed a rapid evolution in coronary
stent designs — from bare-metal stents to drug-eluting stents to biodegradable stents — there
exists a substantial gap between the engineering analysis of stents, their comparison based
on such analysis, and the use of such comparisons to design better stents by the use of
optimisation methods. To fill this gap, the most significant contributions made by this thesis,

to the field of coronary stent design, analysis, and optimisation are:

1. the development of engineering models to evaluate a stent’s performance based on var-
ious features relevant to in-stent restenosis, and formulation of the corresponding stent

evaluation metrics,

2. demonstration of how design improvement can be obtained in both constrained and

multiobjective optimisation studies for the problem of stent design,

3. demonstration of how the parameters defining stent geometry influence various physical

features that are directly related to in-stent restenosis, and

4. demonstration of various paradigms which determine the choice of an ideal stent, from

a set of stent designs, based on various needs.

11.1.2 Multiobjective study

A NURBS based three parameter parameterisation for the widely studied CYPHER stent,
Cordis corporation, Johnson & Johnson company, is proposed. Based on this parameter-

isation, a multiobjective optimisation study, using surrogate modelling and NSGA-II, is
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performed to minimise acute recoil, minimise volume average stresses, minimise haemody-
namic alteration, maximise volume average drug delivered, maximise uniformity of drug-
distribution, and maximise flexibility. It is found that the following pairs of objectives are in

conflict with each other
e volume average stresses (arterial injury) and acute recoil;

e volume average drug delivered and volume average stresses (arterial injury);

flexibility and volume average stresses (arterial injury);

flexibility and flow disturbance;
e volume average drug delivered and flow disturbance;
e uniformity of drug distribution and volume average stresses.

The complex interplay between stent design (distribution of struts, link design, strut thick-
ness, and circumferential ring design) and stent performance, from the perspective of the
various conflicting/desirable properties, is demonstrated. It is found that while strut width
and the axial length of the circumferential rings most affect volume average stresses and recoil,
the length of the links in the cross-flow direction significantly affects volume average drug,
flexibility, and the flow index. The non-dominated solutions, which represent a potentially
optimum family of CYPHER like stents, for the proposed parameterisation are obtained and
discussed. The position of a representative CYPHER stent in various slices of Pareto front
is also shown. Based on the results, it is also hypothesised that the proposed metric for mea-
suring the uniformity of drug-distribution, Dgey, might be misleading for comparing stents,
especially when using Gaussian process based surrogate modelling.

Three paradigms, viz. conservative, constrained, and experimental, are proposed for the
selection of optimal designs from the set of non-dominated solutions. Designs 20 and 30
are identified as the optimal designs under a conservative approach. Similarly, designs 15,
21, and 26, are identified as optimal from one of the views of constrained paradigm. The
relation of these designs obtained by the multiobjective study with the results of constrained

optimisation study is also shown.

11.1.3 Constrained optimisation study

A parameterisation technique for creating general circumferential-rings and wavy-links based
stent geometries is proposed. A polynomial form for the parameterisation of links (flex con-
nectors) is formulated to control the waviness of the links. Based on this parameterisation,
a constrained optimisation study to obtain design improvement from the baseline geometry
one objective at a time, without compromising any other objective, is performed. Significant
design improvement is obtained for the three cases of individually minimising volume aver-
age stresses, maximising volume average drug delivered, and maximising flexibility, without
deteriorating any other objective. It is found that the optimal designs have a higher strut
width compared to the baseline geometry but a lower length of circumferential rings. It is
concluded that strut width is a key determinant of acute recoil, volume average stresses, and
drug delivered; and the axial length of the circumferential rings affects acute recoil most. It
is also shown that the optimal designs minimise the number of curved regions in the flex

connectors.
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11.1.4 Findings

The following contributions are made from the engineering analysis of stents performed in
this thesis

1. It is found that the length of flex connectors in contemporary stent designs, which are
introduced to improve flexibility, significantly influences flow features relevant to in-
stent restenosis. In particular, it is shown that a higher length of the flex connectors

leads to deterioration of the relevant flow-features.

2. It is shown that while the plastic deformations in the curved regions of the stent are
key in determining acute recoil, the contact area between the stent and the artery

significantly affect volume average stresses.

3. It is shown that the ability of the flex connectors to delay self contact with increasing
curvature index is key in determining the flexibility of a stent. In particular, it is shown
that a higher delay in self contact and minimising the number of potential contact

locations while bending, leads to improved flexibility.

4. It is shown that the balloon expansion of a stent in a stenosed coronary artery leads to
significant tissue prolapse. This tissue prolapse affects the extent of flow recirculation
zones formed in the stented artery. It is also shown that the formation of recirculation

zones in and around the struts promotes delivery of drug from the lumen to the tissue.

11.1.5 Analysis models and evaluation metrics

The following contributions are made in terms of engineering analysis of stents in relation to

in-stent restenosis

1. The analysis of coronary stents to assess haemodynamic alteration relevant to the ad-
verse response of in-stent restenosis is demonstrated. To this effect, a computational

fluid dynamics model is developed to simulate blood flow in a stented coronary artery.

2. The haemodynamic low and reverse flow index, HLRFI, that quantifies the flow features

relevant to in-stent restenosis in a stented coronary artery is formulated.

3. The analysis of coronary stents to assess arterial injury during balloon expansion and
minimum post-procedural stent area is demonstrated. To this effect, a finite element
analysis model is adopted to model the balloon-expansion of stent in a representative

stenosed coronary artery.

4. The metrics of Recoil, that measures acute recoil post stent implantation, and VAD,
that measures the volume average stresses in the artery post stenting, are formulated.
These are shown to measure structural strength of a stent and arterial injury due to

stenting procedure, respectively.

5. The analysis of coronary stents to assess their flexibility is demonstrated. To this effect,
a finite element analysis model is adopted to study the response of stent deformation

on application of bending loads.
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6.

The flexibility metric, FM, which quantifies the flexibility of a stent, in both elastic and

plastic deformation phases, in a single numeric quantity is formulated.

The analysis of coronary stents to assess their drug distribution capabilities is demon-
strated. To this effect, a computational fluid dynamics model is developed to simulate

drug-delivery in a stented coronary artery.

Two metrics of volume average drug, VAD, and standard deviation of drug delivered,
Dgev, are formulated to quantify the properties of drug delivery in a stented coronary
artery. The metrics quantify the amount of drug delivered and the uniformity of the

drug delivered, respectively.

11.1.6 Conclusions for the KNRS algorithm

In the final chapter of this thesis, a methodology to search the Krig (Gaussian process model)

of a function, based on the hitherto unexploited and analytically available derivative infor-

mation is explored. To this end, the following contributions to the field of Gaussian process

assisted optimisation are made:

10.

11.

. An expression for the derivative of the Gaussian process predictor is derived.

. The expression for the above derivative when equated to zero (in order to find stationary

points) is manipulated to yield a standard fixed point iterative sequence (SFP).

To improve convergence of the SFP sequence to more stationary points, a modification

of the sequence, the modified fixed point iterative (MFP) sequence, is proposed.

A Newton-Raphson (NR) equivalent of the SFP is proposed. It is shown that the
NR sequence guarantees convergence to the stationary points of the Krig provided the

starting point is close enough to the stationary point (within the basin of attraction).

. The convergence of the MFP and NR sequences are further explored and tested on a

suite of 10 two-dimensional functions.

Based on the performance of the Newton-Raphson sequence on the above test functions,

a new algorithm, called Krige-Newton-Raphson-Sobol (KNRS) algorithm, is proposed.

The performance of KNRS is tested for global optimisation against a genetic algorithm

and a dynamic hill climbing algorithm for a test suite of 10 two-dimensional functions.

It is found that for global optimisation KNRS performs favourably to GA for all the test
functions, and favourably to DHC on most test functions. From the results it is realised

that an important merit of the KNRS algorithm lies in multimodal optimisation.

The performance of KNRS for multimodal optimisation is tested against a fitness shar-

ing genetic algorithm and a dynamic hill climber.

It is found that on the test functions chosen, KNRS performs favourably to both a
fitness sharing GA and DHC.

The capabilities of KNRS on higher dimensional spaces remains to be explored.
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11.2 Recommendations for Further Work

Although a number of conclusions have been made regarding the influence of stent design
parameters on factors affecting in-stent restenosis, a number of improvements can be made
in both stent analysis and stent optimisation. In the area of searching the GP models, KNRS
offers a range of extensions for further investigation. The areas of further work can be broadly

classified into

1. Improvements in stent analysis

a) Realistic geometry of stenosed arteries;

b) Realistic morphology of stenosed arteries (layers, anisotropy);

c) Transient release of drug-distribution (including factors like reverse binding of
drug).

2. Improvements in stent optimisation methodology

a) Parameterisation techniques for stent design;

b

)

) Refinement of objective functions;

¢) Refinement in terms of surrogate update methods;
)

d) Treatment of the design problem as a many-objective problem.

3. Investigation and extension of KNRS

a) Investigation of performance in higher dimensional spaces;

Extension to constrained optimisation;

)
b) Possibility of a surrogate update method by KNRS;
c)

)

d

Extension to multiobjective optimisation.

The following sections outline each of the above themes.

11.3 Improvements in stent analysis

Further work in this area is primarily needed to make the stent analyses more realistic. In

particular, efforts in the following areas are required

11.3.1 Realistic geometry of stenosed arteries

Throughout this thesis, a representative model for the geometry of stenosed artery is used.
The artery is assumed to be cylindrical and the plaque is defined by the Hicks Henne bump
function. In reality, the geometries of stenosed arteries can be very complex with high cur-
vature and asymmetric distribution of plaque. An inclusion of such geometries, which can
be obtained by intravascular ultrasound and magnetic resonance imaging techniques, in the
analyses models — for both balloon-expansion and haemodynamic alteration — will further

enhance the understanding of the interaction between the stent and the artery.
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11.3.2 Realistic morphology of stenosed arteries

Apart from the complex geometries of stenosed arteries as discussed above, the morphology
of the disease can be quite complex as well. In this thesis, an isotropic single layer for
both the plaque and the artery is assumed. In reality, as discussed in chapter 2.2.3] the
artery is composed of three layers: the intima, the media, and the adventitia. Furthermore,
the variation in plaque composition can be significant, ranging from soft fibrous plaque to
hard calcified plaque in the same lesion. Lastly, all human tissue is usually anisotropic. An
inclusion of such morphological properties in the stent analyses will bridge the gap between

the results of computational analyses and clinically observed outcomes.

11.3.3 Transient release of drug-distribution

In this thesis, a steady-state drug-distribution model is used. Even though this model captures
the result of geometrical variation in the amount of drug-delivered, the model does not give
much insight on the transient process of drug-delivery. To this end, further investigation
in terms of development of a transient advection-diffusion drug-distribution model, which

includes effects of reverse-binding of the drug (endocytosis), is required.

11.4 Improvements in stent optimisation methodology

Further work in the area of improving the stent design optimisation method includes the

following

11.4.1 Parameterisation techniques for stent design

One of the most important features of any optimisation study is the parameterisation chosen
to represent geometries. The optimisation algorithms can only find the optimum solution(s)
in the design space represented by the chosen parameterisation. Hence, better techniques to
parametrically represent stent geometries can be implemented, so that a wider design space
represented by the parameterisation. A few possible parameterisation techniques are listed

below

e Using an n control point approach to define a network of NURBS curves representing
the stent struts on a flat plane. Specification of appropriate constraints on such curves
can lead to a vast and novel design space, which can then be used for design optimisation

studies.

e The Class-Shape-Transformation (CST) method suggested by Kulfan [230] can be used
to define the 2-D patterns, which can then be repeated periodically to create stent
designs using approach 2 (see Section 2.6.1.7]).

e A custom shape function for a baseline stent geometry can be defined, which when
combined with polynomials such as the Bernstein polynomials will lead to creation of

new designs.

e Shape grammar can be employed to use the information from the currently existing
stents to create new designs which combine the features of multiple, currently existing,

stent designs.
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e A mesh morphing technique can be implemented to directly manipulate the mesh, rather
than the curves/surfaces defining the stent geometry. This is particularly attractive as

automated meshing of complex geometries is currently quite hard.

e Intellectually most challenging, inspiration from nature such as the bifurcation patterns
of the arteries, patterns of vein bifurcation in leaves, can be used to create stent pa-
rameterisation techniques. These, by virtue of natural evolution are optimised at least
for one objective (for example, the vein bifurcation patterns of leaves is optimised for

nutrient transport which can be seen as analogous to drug-delivery).

11.4.2 Refinement of objective functions

In this thesis several objective functions which relate measurable quantities from engineering
analyses to the factors that contribute towards in-stent restenosis are formulated. As a first
approximation, average measures for stress and drug delivered are introduced. However, it
is not yet clinically known whether it is the peak stresses in the artery, irrespective of the
location where such peak stresses occur, or it is the volume average measures that the human
body responds to in terms of restenosis. Similarly, for drug-delivery, perhaps only the volumes
of tissue which receive less drug than a certain therapeutic threshold, and not the average
amount of drug delivered, are relevant in terms of restenosis. Further investigation, more

from the clinical community, is needed in such regards.

11.4.3 Refinement in terms of surrogate update methods

It was discussed in chapter [0 that many methods to decide update points for multi-objective
kriging assisted optimisation have been proposed [I87, [I88| [189) 190, 191, [192], 193]. The
choice of these update methods, as opposed to the simple pure exploitative approach adopted
in this chapter, could lead to an improved set of non-dominated solutions. Further investi-
gation, regarding the performance of such algorithms for the problem of stent design will be

very useful.

11.4.4 Treatment of the design problem as a many-objective problem

This results of this thesis have shown that many objective pairs in the optimisation problem
defined in chapter [ are correlated to each other, rather than being in conflict. Methods from
the field of many-objective optimisation methods, can be employed to reduce the number
of objectives to fewer than six to decrease the complexity of the problem. This will both
minimise the time required for high-fidelity simulations and with fewer objectives will lead to

better estimation of the Pareto front.

11.5 Investigation and extension of KNNRS

In the development of KNRS, an intial algorithm is proposed in this thesis. However, further

investigation of the performance of this algorithm is needed in the following areas
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11.5.1 Bayesian analysis for an estimate of the number of local minima

Using methods such as those presented in [221], 222, 223], an analysis which determines a
Bayesian estimate on the number of local minima of the underlying function, based on the
number of NR sequence starting points and the number of local minima found by such starting
points, needs to be performed in future. Such an analysis can lead to an efficient stopping
criterion for the KNRS algorithm.

11.5.2 Investigation of performance in higher dimensional spaces

The 10 test functions that are chosen in this thesis are all complex but 2-dimensional. Conse-
quently, the relative performance of KNRS with other algorithms like GA, which are known
to have a better search power in higher dimensional spaces, for both global and multimodal

optimisation remains to be explored.

11.5.3 Possibility of a surrogate update method by KNRS

With the search performed by KNRS, one advantage is that all the stationary points of the
Krig are located. Perhaps, using this information about the landscape of the current form of
the Krig, an update methodology to balance exploration and exploitation can be developed.

The ideas for this are still at a nascent stage, for which further work is required.

11.5.4 Extension to constrained optimisation

The results of the performance of KNRS on the 10 test functions, in particular the Bump
function, showed that KNRS, in its current form, does not honour any constraints. Hence,
a modification of KNRS to include both equality and inequality constraints is needed. FEn-
couragingly, since the form of equations used in KNRS is universal, i.e. it is related to the
Krig rather than the function itself and hence has the same mathematical form for every
function, methods from classical optimisaion (such as gradient projection methods) can be

used to formulate the constrained version of the algorithm.

11.5.5 Extension to multiobjective optimisation

Lastly, an extension of KNRS for multiobjective optimisation is needed. The author has
made significant progress in this regard. This formulation and some preliminary results are
presented in appendix[Dl This extension to multiobjective optimisation, however, needs more

testing in higher dimensional objective spaces.
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Appendix A

Conditional distribution for a

(Gaussian Process

In chapter Bl section B.2.3] it was said that the joint probability distribution of the function
value at a new point, y*, and the function values at all the sample points, Yy, is assumed to be
jointly Normal. Here the conditional distribution of y* given the values of y is derived.

From equation [B.33] we have

o] e

The conditional distribution of y* given V is

Loy
Yo" r<x*,x*)D A

ply.y)
piy'ly) = oY) (A.2)

where p represents the probability. From equation [AT] p(y,y*) can be written as

y=1p8 D (A.3)
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where
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hence
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Y.y = (Zﬂ)_(p+l)/2|2|_l/zexp{ 2o~ 7o) y oh ]
The partitioned inverse using Schur complement of ¥ can be written as
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where |p € RP*P is an identity matrix, and M is the Schur complement
ER * — * -1
= (P, x) = 7 (x") Ty (x)) (A7)

Using this, the terms inside the exponential in equation [A.5 can be written as
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substituting this in equation [A.5]
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(A.15)
Now, in equation [A.2] p(y), is
1
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Hence, using equations [A.T5] and [A.T6], the condition distribution given by equation [A.2] is
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From equation [A.6l, it can be seen that (|Z|_1/2/|F|_1/2) = IM|"Y2, Hence the conditional

distribution is
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which is a Gauusian with mean

w = [B+y (O Hy - 1, 8)] (A.19)

and variance

M = (T, X) - () Ty (x)) (A.20)

that is,

Yly ~ N(B+7(x)THy - 18) , T(x",X") = y(x") T y(x*)) (A.21)






Appendix B

Effect of shear-thinning on results

of chapter 4

This appendix shows the results of comparison between the WSS patterns when blood is
considered to be a Newtonian and non-Newtonian fluid. Yilmaz and Gundogdu [231] present
an excellent review of the various Non-Newtonian models that have been proposed to model
blood flow. In this appendix a comparison of the model used in this chapter with the widely
used Carreau model [231], [16] is presented. The Carreau model relates the shear rate, y to

the fluid viscosity, u, as

f = oo + (o = peo)[L + (7)) "DV (B.1)

where u is the effective viscosity, u. and ug are fluid viscosities at infinite and zero shear

rates, y is the shear rate, A is a time constant, and n is the power law index.

A steady state CFD simulation for Stent-C (see chapter M) is used for a comparison be-
tween the Newtonian model and the Carreau model. The values of Carreau model parameters
are taken from [16]. Figure [B.2 shows a plot of WSS magnitude, for the two models. Simi-
larly, figure [B.2 shows a contour plot of WSS magnitude for the two cases. It is found from
these figures that the Newtonian model underpredicts WSS marginally when compared to
the non-Newtonian model. This marginal underprediction minimally effects the comparison
of stents based on the HLRFI metric as the difference in WSS is related to the fluid viscosity
properties (not the stent geometry) implying that such underprediction is applicable to all

stents irrespective of their geometry.
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Figure B.1: Wall shear stress magnitude on the central line of a representative NIR stent
(Stent-C in chapter @]): results for steady state flow comparison with Newtonian and non-
Newtonian blood properties. The non-newtonian model adopted is the Carreu model [16];
steady state flow velocity = 0.1382 m/s

Newtonian

Figure B.2: Wall shear stress magnitude color plot on a representative NIR stent (Stent-C
in chapter M)): results for steady state flow comparison with Newtonian and non-Newtonian
blood properties. The non-newtonian model adopted is the Carreu model [16]; steady state
flow velocity = 0.1382 m/s



Appendix C

Results for baseline geometry for

constrained optimisation study

In this appendix the results for balloon expansion analysis and flexibility analysis for the
baseline geometry used in chapter [ (figure [(3]) are presented.

Figure shows the different stages of the transient balloon expansion of the stent. In
the initial phase of expansion (cf Fig. [C.Tk) the stent expands unevenly along its length. This
phenomenon, commonly referred to as dogboning, where the expansion is relatively larger in
the longitudinal ends than the centre, can be observed. A recoil of 0.17 mm, calculated using
Eq. BI0, can be observed visually in Figs. [C.Ie and [CIf, which show the states of the
assembly at the peak load and post-unloading conditions, respectively. This acute recoil can
be seen as the ‘spring back’ effect owing to the elasto-plastic properties of the stent and the
loading imparted on to the stent by the stretched artery. The average radius vs. time plot
shows this effect clearly in Fig. [C.2d. The average radius maintains a peak value during the
hold phase of the loading cycle, and as the load is removed, the stent contracts as a result of
reduced loading stresses. One of the goals while designing a good stent is to either minimise
this recoil or apply a maximum limit to it.

The final stresses (after unloading) in the stent, plaque, and the artery are shown in
Figure For the stent, it can be seen that the peak stresses are located in the curved
parts of the circumferential rings as they form the key feature in a stent design to allow for
expansion. In the plaque, maximum stresses are observed where contact occurs between the
stent struts and plaque surface. These contact stresses lead to an observable stent imprint on
the plaque both in terms of geometrical deformation and stress contours. The stresses in the
artery are considerably lower than the stresses in the plaque (a difference of roughly one order
of magnitude). It is interesting to note that even though the stent imprint can be seen in the
form of stresses along the length of both plaque and the artery, the stresses in the central part
are higher than on the distal ends. This is attributed to the shape of the stenosis. Since the
stenosis is highest in the central region (owing to the Hicks-Henne parameter x,=0.5), the
stent faces higher expansion resistance in the central region, resulting in higher stresses. The
volume averaged von-Mises stress in the plaque and the artery combined (calculated using
Eq. BI2) is 45.8x1072 MPa.

Figure shows the distribution of max. principal plastic strains on the stent after
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expansion. As with the stresses it can be readily observed that the curved regions of the
circumferential rings are the regions where maximum plastic strains occur. These plastic
deformations restrict recoil of the stent. A geometry which allows more plastic deformation
in these areas has less acute recoil. It can also be observed from Fig. that the curved
regions of the links have relatively higher plastic strains than the straight segments of both
the circumferential rings and the links. When the circumferential rings expand their axial
length decreases, to account for the increased angle between the struts of the circumferential
rings. This causes an axial stretching of the links which leads to plastic deformation at the

curved tips of the links.

Figure C.1: Transient balloon expansion of the baseline geometry stent

Figure shows the results of the flexibility analysis, in particular the deformed state
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Figure C.2: Stent, plaque, and artery final stresses, and average radius vs. time plot for the
baseline geometry
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Figure C.3: Max. principal plastic strains on the stent post-expansion
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d)

X Extension of links

z Compression of links

Figure C.4: Flexibility analysis for the baseline geometry: a) initial shape; b) deformed shape;
c¢) deformed shape (y* view); deformed shape (y~ view)

of the stent with a moment of 1.14 N-mm is shown. As can be observed in this figure, the
links play an important role in determining the flexibility of the stent. As the stent bends,
the links on one side compress while the those on the other side expand to allow for the
bending curvature. This can be seen in the bottom two images of Fig. It is apparent
that the links on the compression side will come into self contact after a certain level of
curvature. Such contact, which depends on the specific design of the links, can result in
increased resistance to bending. A plot of the moment vs. the curvature index, the M — y
curve, is shown in Fig. This curve has two parts — the initial linear part which shows the
regime when the deformations are only elastic in nature, and a curved (relatively flat) part
when the deformation reach the plastic domain. The area under the M — y curve, a lower
value of which implies a more flexible stent, calculated using Eq. is 50.45%1072 N-rad.
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Figure C.5: Moment-curvature index curve for the baseline geometry



Appendix D

Extension of KNRS to

multiobjective optimisation

In this appendix, an extension to KNRS algorithm, see section [T0.6] is proposed. This

extension is then tested on a few biobjective test problems.

D.1 Formulation of the multiobjective KNNRS algorithm

The formulation of the multiobjective KNRS algorithm is based on the normalised normal
constraint (NC) method proposed by Messac et. al. [I7]. This extension is referred to as
M-KNRS method, the ‘M’ referring to both multiobjective and Messac.

In this appendix, the development of the M-KNRS method is shown only for a bi-objective
problem. The notation used in chapters [3] and is adopted here. The Kriging predictors
for the two objectives are referred to as y1(X) and y»(X), which have been created by sampling
the real function at p; and py points respectively. Hence the Kriging predictors for the two

responses are

y1(X) = B + t1(X) W, (D.1)
y2(X) = B2 + t2(X) T Wa, (D.2)

where r1(X) and r»(X) are the corresponding correlation vectors between the point X and the
sampled points, respectively, wy and Wy are the associated weight vectors (see equation [3.38]),
and B1 and B are the corresponding hyperparameters for the Kriging models.

The algorithm begins by finding, just like the normalised normal constraint method, the
individual minima for the two functions. These can be found by any global optimisaton
algorithm, including the KNRS algorithm. Let the points X3 and X2, represent the individual
minima for the two Kriging predictors, y1(X) and Yyo(X), respectively. These points are the
extreme points on the Pareto front as shown in figure [D.Jal The objective space is then

normalised with respect to the distance 1 and I, (shown in figure [D.1al) as

l1 = y1(X2) - ya(Xa), (D.3)
12 = y2(X1) - y2(X2), (D.4)

261
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™
= =

Pareto front

- —

(a) Pareto front of the objective functions (y1(X) and y»(x))(b) The normalised space of the objective functions (y1(X)
and their respective individual minimums and Yz(X))

™ o .
> I Normal line

|

> 1 —

(c¢) The utopia line in the normalised space and points on(d) The normal line from a point (shown in green) on

the utopia line the utopia line and the corresponding feasible space for
constrained optimisation problem; the optimal solution
is shown in red

Figure D.1: Steps in the normalised normal constrained method [I7] which forms the basis
of M-KNRS method

Fi(x) = M (D5)
Fa(x) = M (D.6)

where y1(X) and y»(X) represent the normalised objective space for y1(X) and y»(X), respectively
(see figure [D.ID). For mathematical convenience y1(X1) and y,(X) are written as z and 2z,

respectively,that is
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21 = Y1(X1), (D.7)
2z = y2(X2). (D.8)
(D.9)
Consequently,
yi(x) = %1_21 (D.10)
yo(X) = %2_22 (D.11)

The utopial line is referred as the line which joins the individual minima of the two objective
functions in the normalised objective space. This utopia line is shown in figure [D.1d Messac
et. al. proposed generating uniformly distributed points in this line, as shown in figure [D.1d
and solving a single objective constrained optimisation problem from each of the generated
point. The constrained optimisation problem, minimises one objective subject to all other
objectives formulated as constraints. The constraints are formulated using a normal line from
the chosen point on the utopia line. Figure [D.1d| shows this constraint in the bi-objective
case, where the normal line is generated from one chosen point (shown in green). This normal
line when posed as a constraint reduces the feasible space. A minimisation of one objective,
y2(X), in this reduces feasible space leads to a point on the Pareto front, shown in red in figure
[D.1dl This constraint when formulated by choosing a different point on the utopia line, and
hence a different normal line, leads to different points on the Pareto front. In this way, the
uniformity of points on the Pareto front is determined by the uniformity of points chosen on
the utopia line.

The normal line vector, N, is defined as

n 1 0 1
N=| 1= _ = . (D.12)
ny 0 1 -1
Let the starting point on the utopia line be s, defined in terms of its components as

s=[s1, $]. (D.13)

The single objective constrained minimisation problem then becomes

Minimise y2(X) (D.14)
subject to gx) <0 (D.15)
where g(x) = (i — Sy + (72 — )y (D.16)

It should be noted that conceptually the constraint can also be posed as an equality constraint.

The optimisation problem then becomes

Minimise Y2(X) (D.17)
subject to h(x) =0 (D.18)
where h(x) = (y1 — sp))n1 + (Y1 — S2)ny. (D.19)
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Here, the latter equality constraint formulation is adopted for demonstration. From equations

[D.10l D11l Dl and D2l y;1(x) and y2(X) can be written as

1+ 110wy — 7

yi(x) = £ i : (D.20)
Two —
7o) = P2+ tZ(XI)Z o2 (D.21)
The constraint equation, equation [D.19], then becomes
Tw. _ T, _
h(x) = ﬁ1+r1(x|) Wi-2 Sl) ny +(ﬂz+rz(><l) Wo—2 SQ) Y (D.22)
1 2

The Lagrangian for the equality constrained optimisation problem, equations[D.17, [D.18], and
[D.19 can be written as

L(2,%) = ¥2 + Ah(x), (D.23)

where A is the lagrange multiplier for the equality constraint. Using equation [D.22] the above

can be written as

.
+ 12(X)TWo — 2
B2+ 12(X) Wy 2)+/1

| (,81 ()W -2z SEL) - (ﬂz +12(x) w2 ~ 25
2

i 2 ) 32) ”1]

(D.24)

L(A4,X) = (

1

L(1,X) = (1 + @) to(X) "Wy + (/ll) r1(X)Twy + 2

P
(D.25)

The solution of the constrained optimisation is located at the stationary points of the La-

LI l1 l1 I

-z - <l -2 - sl -z
PL—271 S11nl+,32 0) 321n2]+ﬂ2 2

grangian. The stationary points can be obtained by equating the derivatives of the Lagrangian

to zero, i.e.

LA X)

=0 (D.26)
0L(4,X)

= =0. (D.27)

Let us expand the i derivative of equation [D.27

0L(4, X 1 an An
L( ) = —292i — + 2 D2i (X)Zz(X)Wz - 291i 1 Dli (X)Zl(X)Wl. (D.28)
0% I I I
For mathematical convenience, my and mp are defined as
2a1m
m == L (D.29)
1
2 2An
m=-=-2"2 (D.30)
I I
Equation [D.28 then becomes
0L(A, X
( : ) = 205, mpDy, (X)Z2(X)W2 — 201, myDy, (X)Z 1 (X)W1, (D.31)

9%



D.1. Formulation of the multiobjective KNRS algorithm 265

where, similar to equation [[0.30] in chapter [0} Dy,(X) and Dy (X), are defined as

Dli (X) = Xilp1 - Xli’ (D.32)
Do (X) = X1p, — X2, (D.33)
where
1p, = [1,1,...,1] e RMP, (D.34)
1y, = [1,1,...,1] e R™P2, (D.35)
and
Xy, = [X(lil) X2 x(lf’1> , (D.36)
— [@® @ (p2)
Xy = [x2i X Xt ] . (D.37)
Equation [D.31] then becomes
0L(A, X
% = 292i mp (Xi 1p1 - Xli) Zz(X)Wz - 291i m (Xi 1p2 - Xzi) Zl(X)Wl, (D.38)
where
[R(X, x(ll)) 0 e 0
0 R(X, x(lz)) e 0
Z1(X) = _ _ . _ € RPP1, (D.39)
0 0 R(X, x(lpl))f
and ) O
R(X,x357) 0 0
0 R(X, x(zz)) ‘e 0
Z5(x) = ) ) . ) € RP2XP2, (D.40)
0 0 o R(X, x(2p2))7

Equating the above to zero to find the stationary point of the Lagrangian, which represent

the solution to the constrained optimisation problem, yields

0L(A,X)
=0 D.41
o% (D.41)
205, (X1, — X1,) Za(X)W2 — 2603,y (X 1p, — X2,) Z1(x)wq = O (D.42)

_ 0ampX5Za(X)We — O, M Xy, Z1(X)wy
62,Mp1p, Zo(X)W2 — 64, 1p, Z1 (X)W

x=a ) D4y

(D.43)

where

O mpXp Zo(X)Wo — 6,y X3, Z (X)W
02,1, Zo(X)W2 — Oy, 1, Z1 (X)W1

gi(X, 4) (D.45)

or
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|Bi((6, D) = % —gi(x.4) = 0] (D.46)

Similarly, equating the derivative of Lagrangian with respect to A to zero yields

0L(A,X) _

0 D.47
91 (D.47)

9L, _ (1 t2(X) "W + M () Wy + Przn- Slllnl (Pemz- SQIlnz (D.48)
oA P I l1 2
or I I
n(x) = (%) r2(X) Wz + (%)tl(x)Twl + [ﬁl — le “Shy, P le — % lnz] (D.49)
2 1 1 2
or

(169 =0] (D.50)

The system of equations represented by equations [D.44] and [D.50 represents a solution to
the constrained optimisation problem. Observe that equation [D.44] is a fixed point iterative
sequence derived in chapter [I0 (equation [[0.37). Consequently, the methods proposed in
chapter[IQ, viz. the SFP, MFP, and the NR sequences could potentially be employed to obtain
a solution for these. However, the equation for A, i.e. equation [D.50, can not be represented
in a form A = f(X, 1), where { is some function of X and A, primarily because equation [D.5(]
does not have the term A in it. If this were possible, then the set of equations represented by
equation [D.44] and A = f(x, 1) would form a simple fixed point iterative sequence (analogous to
the SFP of chapter [I0). Introducing A as a pseudo-variable in equation [D.50] for example by
multiplying both sides of equation [D.50] by A or adding A to both sides, to convert [D.50] into
the form of A = f(X, 1), as found by the author, is of no use and results in divergence of the
fixed point iterative sequence. This apparent difficulty is resolved by thinking that equation
[D.50] represents an equation in X, which in turn are dependent on A through equation [D.44l

Hence, a Newton-Raphson sequence in A can be formed using equation [D.50] as

n(x)

Adnew = dgd — ——0———, D.51
new old ((')H(X)/@/l) ( )
where the term (dn(x)/d1) can be evaluated using the chain rule as
mx) < an(x) 9%
= —. D.52
oA — X 04 ( )
In the above summation, the partial derivatives of 1 can be written as
on(X An An
% = —291i (I—ll) Dli (X)Zl(X)Wl - 292i (f) D2i (X)Zz(X)Wz, (D.53)

and the partial derivative of X with respect to A need to be calculated from equation [D.44]
These derivatives can be evaluated analytically using equation [D.44] or estimated using a
finite difference method. The results presented in this appendix employ a forward finite
difference formulation. Another approach to solve the system of equations represented by
[D.46) and [D.50] is to employ a Newton-Raphson scheme for all the equations. This results in
more robust convergence in finding the Pareto front. With this background, the M-KNRS

method, for a biobjective problem, can be written in the following steps
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Inputs

1. The number of points required on the Pareto front: Np

2. The number of starting points to solve the constrained optimisation problem that

is used to generated one point in the Pareto front: Ns.

3. An upper bound on the Lagrange multiplier value: Amax.
Begin M-KNRS
Step 1: Construct appropriate Krigs for the two objective functions involved.

Step 2: Find the individual global minima of the two objectives using KNRS or any other

preferred algorithm.

Step 3: Using the individual minima normalise the objective functions and construct the

utopia line in the normalised space.

Step 4: Generate Np uniformly distributed points in the utopia line. This is the number of
points required on the Pareto front. Let these points be represented by st, s2,..., s\

Step 5: Initialise the list containing the Pareto solutions, PF = ®.

For cach se [sh,S2, ..., sV]

Inner Step 1: Initialise the list P(s) = ®

Inner Step 2: Formulate the constrained optimisation problem, say minimise Yo(X)

subject to h(x) = 0, using S as the chosen point in the utopia line.

Inner Step 3: Generate SOBOL sequence of Ng points in the space of [X, ], X varies
between the design space bounds and A varies between 107 and Amax. Let this
SOBOL sequence be represented by S1,Sp,..., Sy, Set « = 1;

Inner Step 4: Starting from [(Xg, Ag)] = S, use equation [D.44] i.e. Xnew = 8i(Xold> 4),
and equation [D.51] to update the values of X and A, respectively. Repeat this
update procedure, from the new values, until the solution converges or is declared

diverging.

Inner Step 5: If the above iteration converged then store then append the converged
solution to the list P(S)

Inner Step 6: Set k = k + 1; If k < Ng go to Inner Step 7; otherwise go to Inner
Step 4

Inner Step 7: Find the solution in P(S) for which the objective minimised in the
constrained optimisation problem, i.e. Y»(X) has the minimum value. Append this
solution to the list PF.

End for loop
Step 6: Return the list PF as the list containing Pareto solutions.

End M-KNRS
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As mentioned before, the workings of the for loop can be changed in the above algorithm to

solve equations [D.44] and [D.50] using a combined Newton-Raphson iteration.

D.2 Application of M-KNRS on test functions

The performance of M-KNRS on a few test functions is tested in this section. The test

functions chosen are

1. Schaffer’s function (SCH) [74], 232] defined as

fi(x) = ¥ (D.54)
fo(X) = (x - 2) (D.55)
x € [-10%,107].

The SCH function has a convex Pareto front. The optimal solutions lie in [0, 2].

2. Two variable Fonseca and Fleming’s (FON) function [74] 233] defined as

2 2
f1(X) = 1 - exp [— > (>q - %) ) (D.56)

i=1
2 1 2}

fo(X) = 1—exp| - P+ — D.57

) p[ ;(m @) (D.57)
X € [-4,4]

The FON function has a non-convex Pareto front. The optimal solutions lie in Xg, Xp, X3 €
1 1
L. 41,

3. Poloni’s function (POL) [74], 234] defined as

f1(x) = 1+ (AL — B1)? + (A2 — Bp)? (D.58)

fa(X) = (X1 + 3)° + (%2 + 1) (D.59)

A1 = 0.5sin 1 — 2cos 1+ sin 2 — 1.5cos 2 (D.60)

Ay =15sin 1 - cos 1+ 2sin 2 - 0.5cos 2 ( )

B; = 0.5sin X3 — 2cos X1 + sin X2 — 1.5cos Xo ( )
By = 0.5sin X1 — cos X1 + 2sin Xo — 0.5cos Xo ( )

X € [-m, 7).
The POL function has a non-convex disconnected Pareto front.

Figures [D.2 and [D.3] show, respectively, the feasible objective space and the results of the
M-KNRS algorithm on the SCH function. In the latter figure, the green circles show the
points on the utopia line (transformed back to original space from the normalised space), the
red circles show the soultion(s) for the inner constrained optimisation problem, and the arrows
point from the point on the utopia line used to form the constrained optimisation problem
to the corresponding solution(s). It can be seen from this figure that for the relatively easy

SCH function, a well distributed set of points on the convex Pareto front are found.
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Figures [D.4] and [D.5] show, respectively, the feasible objective space and the results of
the M-KNRS algorithm on the FON function. In the latter figure, for the inner constrained
optimisation problem from each point on the utopia line, all solutions (as opposed to only the
minimum) are shown. This is done to understand the workings of M-KNRS, so that the local
Pareto fronts, found by the algorithm can also be seen. For the FON function, it can be seen
that the non-convex Pareto front is found by the M-KNRS algorithm with a well distributed
set of points. It can also be seen that one solution of the constrained optimisation problem,
converged to top-right end of the feasible space. This is not unreasonable, as the M-KNRS
algorithm tries, depending on the parameter Ng, to converge to all the stationary points of
the Lagrangian. These stationary points can be either a minimum, maximum, or a saddle
point, one of the saddle points representing the real solution to the constrained optimisation
problem.

Figures [D.6 and [D.7 show, respectively, the feasible objective space and the results of the
M-KNRS algorithm on the POL function. It can be seen from these figures that the M-KNRS
algorithm does not have difficulty in finding the Pareto front, non-convex and disconnected,
for the PON problem. Figure [D.7 also shows the various local Pareto fronts that the inner
loop of the algorithm converged to. Of particular interest are the solutions which lie outside
the constraint bounds shown in this figure. It is well known [36] that for the POL problem,
the existence of the Pareto front labeled ‘Region A’ is purely due to limiting the decision
variable bounds to [-,7]. In particular, if the first decision variable is allowed to take values
below —m, then ‘Region A’ does not form part of the global Pareto front. This is because,
the solutions that are marked ‘solutions outside bounds’ shown in figure [D.7 become feasible,
thereby dominating the solutions of ‘Region A’. The M-KNRS algorithm, similar to the KNRS
algorithm, in its current form is not designed to honour variable bounds. This, although not
a problem, for the POL function, as both fronts are found, is a limitation of the M-KNRS
algorithm. Thus, similar to KNRS algorithm, the M-KNRS algorithm needs modification so

that the constraints, including variable bounds, can be satisfied.

D.3 Conclusions

In this appendix, an extension of the KNRS algorithm for multiobjective optimisation, the M-
KNRS algorithm, is proposed. Although the algorithm is tested for three multiobjective test
functions, and its performance is deemed convincing, further investigation of its performance
on problems with both higher number of decision variables and higher number of objective
functions is needed. Furthermore, it is identified that the M-KNRS algorithm has a limitation
of converging to solutions that lie outside the variable bounds similar to the KNRS algorithm.

This issue needs to be addressed for further development of the algorithm.
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Figure D.3: M-KNRS algorithm on SCH function; Np = 50, Ns = 5, Apax = 1.0; green points
show the uniformly distributed points in the utopia line and red points show the corresponding
solution(s) for the constrained optimisation problem
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Figure D.5: M-KNRS algorithm on FON function; Np = 50, Ns = 5, Amax = 1.0; green points
show the uniformly distributed points in the utopia line and red points show the corresponding
solution(s) for the constrained optimisation problem
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Figure D.6: Feasible space for the POL function
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Figure D.7: M-KNRS algorithm on POL function; Np = 50, Ng = 50, Amax = 1.0; green points
show the uniformly distributed points in the utopia line and red points show the corresponding
solution(s) for the constrained optimisation problem
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