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Men say they know many things;

But lo! They have taken wings,—

The arts and the sciences,

And a thousand appliances;

The wind that blows
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ABSTRACT
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Doctor of Philosophy

MULTIDISCIPLINARY AND MULTIOBJECTIVE DESIGN OPTIMISATION OF

CORONARY STENTS

by Sanjay Pant

Coronary stents are tubular type scaffolds that are deployed, using an inflatable balloon on a

catheter, most commonly to recover the lumen size of narrowed (diseased) arterial segments.

Even though numerous stent designs, of varying geometrical and material complexity, are used

in clinical practice today, the adverse biological responses post-stenting are not completely

eliminated. In-stent restenosis (IR), reduction in lumen size due to neointima formation

within 12 months of procedure, and stent thrombosis (ST), formation of a blood clot inside a

stented vessel, are the two most common adverse responses to stents. Such adverse responses

are multifactorial and their causes are not completely understood. However, the geometric

design of a stent, which is a common differentiating factor between the numerous commer-

cially available stents, is known to be a key factor influencing adverse responses. In light of

the above, this thesis exploits stent geometry parameterisation in both constrained and mul-

tiobjective optimisation. Gaussian process surrogate modelling is used to cost effectively (a)

understand the influence of stent geometry parameters on metrics indicating adverse response,

and (b) obtain families of stent designs which are potentially more resistant to such responses.

Various computational models are developed to evaluate the efficay of a stent in terms of the

factors influencing the adverse responses. In particular, two finite element analysis (FEA)

models and two computational fluid dynamics (CFD) models are developed. The FEA mod-

els are used to simulate the balloon-expansion of stents in a representative coronary artery

and bending of stents on application of bending moments. On the other hand, the CFD

models simulate haemodynamic flow in the stented artery and the associated drug-release

into the tissue. The expansion FEA models are validated against manufacturer provided

pressure-diameter relationship and the flexibility FEA models are validated against the nu-

merical studies found in literature. The numerical models are then used to extract metrics

which are related to the adverse responses. Six metrics are formulated: (i) acute recoil, which

measures the radial strength of the stent; (ii) volume average stress, which measures potential

arterial injury caused by the stenting procedure; (iii) haemodynamic low and reverse index,

which measures the haemodynamic alteration relevant to IR; (iv) volume average drug, which

measures the amount of anti-proliferative drug delivered into the tissue; (v) drug deviation,

which measures the uniformity of drug-distribution in the tissue; and (vi) flexibility metric,

which measures the deliverability of the stent. These metrics are then used to compare the

performance of different geometric stent designs. Two parameterisation techniques – one for

a generic ring and link topology of stents, and one for the commercial CYPHER (Cordis

corporation, Johnson & Johnson company) – are proposed to study the effect of geometrical

variation in stent design on the formulated metrics of efficacy. These techniques are then



combined with surrogate modelling to perform stent design optimisation studies and study

the effect of stent geometry on the evaluation metrics. Finally, three paradigms to choose op-

timal stent designs from a set of non-dominated solutions, in terms of the evaluation metrics,

are proposed, and optimal designs under such paradigms are identified.

The last part of this thesis concerns surrogate assisted optimisation, and is not specific to

the problem of stent design. Here, the use of analytically available gradient information

in widely used Kriging predictors is explored. A search algorithm to locate all stationary

points of a Krig, using a combination of an iterative sequence of the Krig derivative and a

low-discrepancy sequence is proposed.
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Chapter 1

Aims & objectives

Coronary stents are tubular, often mesh-like, structures which are deployed in diseased

(stenosed) artery segments to provide a scaffolding feature that compresses atheromatus

plaque, hence restoring luminal area and maintaining vessel patency. Despite the widespread

clinical use of stents in cardiovascular intervention, the presence of such devices can cause

adverse responses leading to fatality or to the need for further treatment. The most common

unwanted responses of inflammation, in-stent restenosis and thrombosis, are multifactorial.

In-stent restenosis is caused by a cascade of events triggered by vessel injury during the bal-

loon angioplasty procedure whereas late thrombosis (usually associated with drug eluting

stents) typically occurs as a result of incomplete healing whereby inhibition of intimal pro-

liferation results in exposed parts of the stent providing ideal sites for thrombogenesis. Both

patient-specific factors, such as the geometry and morphology of the disease, combine with

procedural factors, such as the size, shape, material and other design properties of the stent,

to induce such responses.

This thesis aims to evaluate the effect of stent design parameters on the factors that

determine the severity of the aforementioned adverse biological responses, primarily in-stent

restenosis. Using such evaluations, design optimisation studies are conducted to obtain a

potentially optimum family of stent designs that are more resistant to the adverse responses.

1.1 Aims

Currently, an “ideal stent” – that recovers arterial shape with no adverse response – does not

exist, even though, as a multi-billion dollar industry, stent design has witnessed a fairly rapid

evolution from bare metal stents of increasing complexity, through shape memory alloy stents,

polymer coated, drug eluting stents to biodegradable (or bioresorbable or bioabsorbable)

stents made from polymers or corrodible metals. In recent years, drug eluting stents, which

elute an anti-proliferative drug to suppress smooth muscle cell proliferation, have witnessed

a major increase in popularity following early trials and approvals in 2002-2003, largely due

to their effectiveness in reducing in-stent restenosis. However, more recently, late thrombosis

has been identified following the discontinuation of anti-platelet therapy. Increasing concerns

over late thrombosis with drug eluting stents has led to a significant return to the use of bare

metal stents and to further impetus in the quest for improved alternatives.

1
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The coupling between arterial injury, which triggers the adverse responses, blood flow,

which leads to differential shear stress distribution on the artery wall, and the distribution

of an anti-proliferative drug in the arterial tissue, all three as a function of stent geometry,

constitute a complex multi-objective problem that is poorly understood. Thus, this thesis

aims to determine how, for typical stents or a new contemplated design, geometric variation

affects arterial injury, blood flow, and drug distribution. Moreover, flexibility of a stent, which

is extremely important for deliverability, is also a function of stent-geometry. Once a given

stent can be evaluated for the physical behaviour during and post implantation, measures

relating to the efficacy of the stent in arresting in-stent restenosis and deliverability can be

extracted. These measures can then be fed back to the geometrical design of the stent to

improve stent performance. With this background, the aims of this thesis are

• to assess the performance, i.e. deliverability and resistance to in-stent restenosis, of

coronary stents in relation to variations in geometric design;

• to use this assessment in order to find a family of stent designs that minimise the adverse

responses and maximise deliverability.

The final part of this thesis deals with the development of an optimisation algorithm, the aim

of which is

• to evaluate if the analytically available derivative information for the widely used Krig-

ing predictor, can be used for effective search of the surrogate model.

1.2 Objectives

The measurable objectives of this thesis in relation to the aims outlined above are

1. to develop a computational fluid dynamics model in order to evaluate flow features in

a stented coronary artery;

2. to formulate measures relating to in-stent restenosis from the above model so that stents

can be compared on their haemodynamic performance;

3. to develop a finite element analysis model in order to evaluate the process of balloon-

expansion of coronary stents;

4. to formulate measures relating to radial strength of a stent and arterial injury caused

by the procedure from the above model, which are shown to be related to in-stent

restenosis;

5. to develop a computational fluid dynamics model in order to evaluate the drug-distribution

achieved by a stent in a stented coronary artery;

6. to formulate measures relating both the amount of drug delivered and uniformity of

drug-distribution from the above model, which are both relevant to arresting in-stent

restenosis;

7. to develop a finite element analysis model in order to evaluate flexibility of stents on

application of bending loads;
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8. to formulate a measure of flexibility of a stent from the above model;

9. to construct surrogate models for each of the above extracted measures of performance;

10. to study trends in the measures of performance by variations in stent geometry with

the aid of surrogate models;

11. to propose a technique to parameterise stent geometrical design;

12. to conduct design optimisation studies – both constrained and multi-objective – to

demonstrate design improvement in coronary stents.

All the components of the above mentioned objectives can be seen in Figure 1.1, where the

optimisation methodology is depicted. In this figure, the boxes inside the dashed boundary

represent the engineering analyses part of the objectives. The ‘simulations’ columns show

the computational models that are developed and the ‘physical quantity measured’ columns

show the corresponding attribute which is related to deliverability for flexibility and resistance

to in-stent restenosis for all other quantities. The boxes in the non-dashed part show the

optimisation loop. The loop starts with a parametric representation of the stent geometry,

such that different values of the parameters result in different stent geometries. The design

search space is defined by setting up appropriate bounds on such parameters. This design

space is then sampled at a number of points, defined by a sampling plan. For each point in the

sampling plan, engineering analysis is performed to evaluate the physical response. Surrogate

models are constructed for each of the measured attributes, and a search of these surrogates

is made. The results of the search are used to add more points for surrogate improvement

using an infill criterion. The analyses for these added points is conducted and the results are

used to update the surrogate. The resulting surrogates are searched again and this process

is repeated until a satisfactory surrogate is constructed or the required design improvement

has been obtained or the available computational budget has been exhausted.

As mentioned in section 1.1, the last part of this thesis concerns how the analytically

available gradient information of a Kriging predictor (surrogate model) can be used for an

effective search of the Krig. For this part of the thesis, the objectives are

1. to derive the equations for the derivative of a Kriging predictor;

2. to formulate an iterative sequence which can search all stationary points of a Krig;

3. to formulate an optimisation algorithm which combines the above iterative sequence

with a low-discrepancy sequence for an effective search of the Krig.

1.3 Thesis overview

In this section an overview of the thesis is presented. This overview is divided into the

contents of each chapter as follows:
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Figure 1.1: Optimisation methodology

1.3.1 Chapter 2

Chapter 2 introduces coronary artery disease. Anatomy and histology of the coronary artery

is presented, and the available treatments for coronary artery disease are outlined. Thereafter,

the two main adverse responses of coronary stenting: in-stent restenosis and thrombosis, are

introduced. Finally, a classification of the variety of coronary stents available today are

presented, and computer modelling approaches to create stent geometry are outlined.

1.3.2 Chapter 3

Chapter 3 presents an introduction to surrogate modelling and optimisation. For the former,

the equations for a Gaussian process predictor are explained and for the latter, an overview

of constrained, unconstrained, single objective, and multiobjective optimisation methods –

both classical and evolutionary – is presented.

1.3.3 Chapter 4

In Chapter 4 haemodynamic evaluation of stents is presented. Pulsatile computational fluid

dynamics (CFD) simulations are performed over five different coronary stents. Based on the

results obtained, a numerical index to quantify the haemodynamic flow features that influence

in-stent restenosis is formulated.
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1.3.4 Chapter 5

Chapter 5 presents a model to simulate balloon expansion of a stent in a representative

diseased artery using finite element analysis (FEA). These models are validated against the

manufacturer provided experimental pressure-diameter relationship during the expansion of

the CYPHER stent, Cordis corporation, Johnson & Johnson company. Using the results of

the FEA analysis, arterial injury is quantified in a numerical index, and recoil is measured to

evaluate the radial strength of the stent.

1.3.5 Chapter 6

Chapter 6 presents a finite element model to measure the flexibility of a stent, and proposes

a numerical index to quantify flexibility in a numeric quantity which can be used to compare

stents based on deliverability. The FEA model used in this chapter is validated against the

numerical studies found in literature. In particular, a comparison of the moment-curvature

plot for the CYPHER stent is made against the model of De Beule [11].

1.3.6 Chapter 7

Chapter 7 presents a constrained optimisation study. A parameterisation technique to create

generic stent designs is proposed. A finite element model to evaluate drug-distribution is

described. This model, combined with the analyses of chapters 5 and 6, and the proposed

parameterisation, is used in a constrained optimisation study to obtain design improvement

from the baseline geometry.

1.3.7 Chapter 8

Chapter 8 uses the expanded geometry obtained from Chapter 5. In this expanded geometry,

first a haemodynamic analysis is performed (using the model developed in Chapter 4), and

then a drug release simulation is performed. Unlike the drug release model of chapter 7,

the model used in this chapter includes haemodynamic flow in the lumen. This chapter also

proposes numerical indices to measure both the quantity of the drug transported to the tissue,

and the uniformity of the resulting distribution.

1.3.8 Chapter 9

This chapter brings together the contents of chapters 4, 5, 6, and 8 in a multiobjective opti-

misation study for the CYPHER stent. A three parameter technique to represent CYPHER

like stents is proposed and from the results of surrogate assisted multiobjective optimisation

results, several conflicts between various pairs of desired attributes are shown. Features in

the geometric design of stents which effect each of the measurable attributes are also identi-

fied. Finally, three paradigms to choose optimal stent designs from a set of non-dominated

solutions are presented, and optimal stents under such paradigms are identified.

1.3.9 Chapter 10

Chapter 10 presents the development of a new optimisation algorithm for effective search of

a Kriging predictor. The chapter presents how iterative sequences can be formed using the

analytically available derivative information for the Kriging predictor, to locate stationary
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points. Such a sequence is combined with the space-filling properties of quasi-random se-

quences to propose the Krige-Newton-Raphson-Sobol (KNRS) algorithm for both global and

multimodal optimisation. Finally, the performance of this algorithm is compared with (i)

a standard genetic algorithm and a dynamic hill climbing algorithm for global optimisation

on 10 test-functions, and (ii) a fitness sharing genetic algorithm and a dynamic hill climbing

algorithm for multimodal optimisation on five test functions.

1.3.10 Chapter 11

Chapter 11 concludes the thesis with a list of contributions made to (i) the areas coronary

stent design, analysis, and optimisation, and (ii) the area of surrogate assisted search and

optimisation. Finally, recommendations for further work in the aforementioned areas are

made.



Chapter 2

Introduction to coronary artery

disease and stents

2.1 Introduction

Coronary artery disease (CAD), also known as atherosclerotic heart disease, is a condition

caused by the accumulation of lipids and fibrous tissue (collectively referred as atherosclerotic

plaque) on the inner walls of a coronary artery [4]. This accumulation leads to narrowing

of the arteries, thereby resulting in reduced blood flow to the downstream heart muscles

(myocardium), and can consequently result in chest pain (angina pectoris) or heart attack

(myocardial infraction).

CAD is a leading cause of death in western countries. According to the British Heart

Foundation [21], in 2008, CAD was the cause of 88,000 deaths in the UK (one in five male

and one in eight female deaths). Similarly, according to the American Heart Association

[22], CAD caused 425,425 deaths in the United States of America, in 2006. Even though

the treatment of CAD has evolved significantly in the past two decades, a treatment with no

adverse effects does not yet exist. This chapter has the following aims:

1. to introduce CAD and its available treatments,

2. to present the adverse issues associated with the most common treatment (coronary

stenting) for CAD,

3. to present a survey of coronary stent designs, outline the properties that are desirable

in an ideal stent, and introduce the basic stent design problem, and

4. to present computer approaches for modelling the geometry of coronary stents.

2.2 CAD and its treatments

2.2.1 Circulation in the heart: anatomical features

Coronary circulation refers to the circulation that supplies oxygen-rich blood and nutrients

to the myocardium, the muscle tissue of the heart. The vessels that supply blood to the

7
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myocardium are called coronary arteries and can, in general, be classified as one of the

following –

• Left Coronary Artery (LCA)

• Right Coronary Artery (RCA)

Figure 2.1: Coronary circulation: Left and Right Coro-

nary Arteries [1]

Figure 2.1 shows the two coronary

arteries, both beginning at the root

of the aorta (LCA and RCA origi-

nating from the left and right aor-

tic sinus, respectively) and travel-

ling down forming a complex tree

structure with numerous bifurca-

tions. Shortly after its origina-

tion the LCA divides into two main

branches: the anterior interventric-

ular branch (also known as the left

anterior descending (LAD) artery)

and the circumflex branch. Simi-

larly, the RCA divides into the right marginal artery and, in approximately 67% cases, into

the posterior interventricular branch [1].

2.2.2 Coronary artery disease

Figure 2.2: An illustration of plaque

deposition inside a coronary artery [2]

Coronary artery disease refers to the condition when

one or more branches, either the main branch or sub-

sequent bifurcations, of the LCA and/or the RCA be-

come narrowed (or get blocked) by gradual deposition

of plaque. The deposition of plaque gradually causes

the artery to harden, i.e. become less elastic. This

phenomenon is called atherosclerosis. Plaque consists

mainly of atheroma (composed of macrophage white

blood cells), cholesterol, and calcium deposits. The

deposition of plaque leads to a reduction of lumen

area. This lumen area reduction, also known as stenosis, reduces the blood supply to the

myocardium, leading to angina pectoris, chest pain, and sometimes to myocardial infraction

(MI), or heart attack. MI is generally a result of the complete blockage of an artery, usually

caused by a formation of blood clot (thrombus) over a ruptured plaque [23]. Figure 2.2 shows

a picture of a coronary artery that has narrowed down due to the deposition of plaque.

Stenosis is detected with the help of angiography, an imaging technique used to visualize

the lumen of an artery. In this process a radio-opaque agent, called contrast-agent, is in-

jected into the blood and then visualized using X-ray based techniques. Figure 2.3 shows an

angiogram where the stenosed region has been circled.
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2.2.3 Histology of coronary artery

Figure 2.3: Angiogram of a coronary

artery: the circle shows the stenosed re-

gion [3]

The artery wall has a complex structure com-

posed of various layers with different mechanical

properties. This makes the properties of the ar-

terial tissue highly non-linear and anisotropic. In

general, the artery wall is composed of the follow-

ing layers, proportions of which differ in different

parts of the circulation:

• The intima (inner)

• The media (middle)

• The adventitia (outer)

Figure 2.4 shows the three layers of the artery

wall structure. The inner-most layer, intima, is composed of two layers: endothelium, which

is a single layer of cells that acts as a barrier, and the internal elastic lamina that is composed

of elastic fibres. The central layer, media, is the thickest layer composed of elastin, collagen,

smooth muscle cells (SMC), and ground substance (glycosaminoglycans) [24]. The outer-

most layer, adventitia, is composed largely of collagen I with admixed elastic, fibroplasts,

and nerves [24]. The adventitia merges into the surrounding tissue thereby limiting the

longitudinal movement of the artery.

2.2.4 Treatments for CAD

Figure 2.4: Artery wall structure: the three layers [4]

CAD, if not severe, can be

treated by changes in lifestyle:

healthy eating, low-saturated

fat diet, regular exercise, and

not smoking [23]. However,

if the disease is severe then

either coronary artery bypass

graft (CABG) surgery, an-

gioplasty, or angioplasty with

stenting is used. The following

sections describe each of these

procedures.

2.2.4.1 CABG

This is a surgical procedure in

which arteries/veins from other parts of the body (usually the leg) are grafted into the coro-

nary artery to bypass the narrowed (stenotic) region. The bypass graft is connected from the

aorta to the post-stenotic region, thereby bypassing the blockage to maintain the downstream

blood-supply. Figure 2.5a shows the CABG procedure. CABG, owing to its highly invasive

nature is used only if the disease is severe or can’t be treated with angioplasty/stenting.
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(a) Coronary artery bypass graft surgery [25]

(b) Angioplasty: procedure [26] (c) Stenting: procedure [26]

Figure 2.5: Treatment options for CAD

2.2.4.2 Angioplasty

Percutaneous transluminal coronary angioplasty (PTCA), is a minimally invasive procedure in

which a catheter, with a balloon mounted on the end, is inserted through the femoral/brachial

arteries to the stenotic region. Once the catheter is positioned in the stenotic region, the

balloon is inflated/deflated multiple times to compress the plaque against the artery wall. The

catheter, along with the deflated balloon, is then withdrawn without leaving any permanent

object inside the artery. Figure 2.5b shows the angioplasty procedure.

2.2.4.3 Stenting

Coronary artery stents are tubular metal structures (often meshes) which are inserted in the

stenotic region through a balloon catheter, usually after angioplasty, and then expanded until

they deform plastically to provide scaffolding support that prevents arterial recoil. After the

procedure, the metal stent remains inside the artery wall to prevent its recoil. Cells grow over

the stent after the procedure, making it a permanent part of the artery. Figure 2.5c shows

the procedure of stenting.

2.3 Issues with stenting: restenosis and thrombosis

The two most common issues that the use of angioplasty, with or without stenting, face today

are restenosis and thrombosis. The following sections describe both these issues.
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(a) Restenosis in an artery cross sec-
tion after angioplasty [5]

(b) Restenosis in an artery cross
section after angioplasty followed
by stenting [30]

Figure 2.6: Restenosis

2.3.1 Restenosis

Although balloon angioplasty and stenting are widely used procedures today, restenosis con-

tinues to be a major problem associated with it. Dangas and Fuster [27] define restenosis

as the reduction in lumen size at the cite of an angioplasty/stenting procedure. Restenosis

is a result of arterial damage that leads to the formation and proliferation of neointima, a

new thick layer of intima, at the procedure cite and occurs in 40-50% of cases within six

months of the procedure [27, 28]. Figure 2.6 shows the occurrence of restenosis in coronary

arteries. Although, the advent of drug eluting stents (see section 2.4 for types of stents) has

significantly reduced the rates of restenosis to a level just above 10%, its presence can not be

neglected as the number of patients treated with drug eluting stents is large [28]. Restenosis

is a complex multifactorial biological process, the causes and mechanism of which are not

completely understood [28, 29]. However, there are several factors which have been identified

to contribute towards restenosis. These factors are discussed individually in future chapters.

Restenosis is usually measured in the following three ways:

• Angiographically (binary restenosis)

• Clinically (target lesion revascularization (TLR))

• Late loss (LL)

Angiographic (binary) restenosis refers to more than 50% diameter stenosis at follow-up.

TLR is defined as clinically driven repeat percutaneous intervention (PCI) of the lesion. It is

driven by clinical signs of ischemia, reduced downstream blood-flow. TLR is most relevant to

the patients as it reflects the risk of them needing a repeat interventional procedure [5]. Late

loss, measured in mm, is the most quantitative definition of the restenosis rate. It is defined as

Late Loss = (MLD immediately after procedure) - (MLD at follow-up)

where MLD denotes minimal lumen diameter.
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2.3.2 Thrombosis

Thrombosis refers to the formation of a blood clot, thrombus, inside a blood vessel. The pres-

ence of a thrombus may either reduce the supply of downstream blood or completely occlude

the blood vessel. The extent of non-occlusive thrombosis depends on the extent of vessel

injury [5]. It is a result of incomplete healing where the exposed parts of the stent, or parts of

ruptured plaque, provide ideal sites for thrombogenesis. Figure 2.7 shows a picture of throm-

bus along with the lumen, neo-intima, and the plaque on a cross section of a human artery.

Figure 2.7: Thrombosis: artery cross sec-

tion of a patient that died after 10 months

of balloon angioplasty [5]

Rabbat et. al. [31] identify several procedural

and patient specific risk-factors that contribute

towards thrombosis. Late thrombosis (occurring

after 30 days of stent implantation) [31] is gen-

erally associated with drug eluting stents, which

elute an anti-proliferative drug into the arterial

tissue to prevent restenosis. As opposed to the

bare metal stents, drug eluting stents (see section

2.4 for different types of stents) delay the process

of endothelialisation [32], the process of genera-

tion of endothelial cell layer post stenting pro-

cedure, and can trigger a thrombogenic response

leading to late thrombosis [33].

2.4 Stents: classification and desirable properties

This section presents a classification of stents based on various design parameters such as

materials, geometry etc. After discussing the classification of stents, the properties that are

desirable in an ideal stent are outlined.

Stents can broadly be classified as bare metal stents (BMS), drug eluting stents (DES), and

bioabsorbable stents. BMS are made of metal only, and they may or may not have a biocom-

patible polymer coating. DES, on the other hand, necessarily have a drug coating, which is

most commonly bound within a polymer. The two most commonly used drugs are sirolimus

and paclitaxel. Both of these drugs are anti-proliferative which means that they interfere

with the cell growth/division cycle [30] and hence help in reducing restenosis. Biosbsorbable

stents are those made up of biodegradable materials that gradually degrade in roughly 12

months after the implant procedure depending on the type of biodegradable material used.

They may or may not have a drug coating. Early results showed vigorous inflammatory re-

sponse to bioabsorbable stents, but active research is currently being undertaken to develop

bioabsorbable stents [33].

Apart from the above mentioned broad classification stents can further be categorized

according to various properties. The handbook of coronary stents [34] lists the details of 43

commercially available stents. Stoeckel et. al. [6], in 2002, classified nearly 100 different com-

mercially available stents to differentiate them by their engineering properties. The following

sub-sections detail their classification with some modifications.
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2.4.1 Nature of expansion

The most obvious classification of stents is based on the nature of expansion. Stents can

either be balloon expandable or self expanding. Balloon expandable stents are made of metal,

usually stainless steel (316L), or alloys, such as platinum-chromium or cobalt-chromium, that

can plastically deform through balloon inflation. Self-expanding stents, on the other hand,

either rely on the elastic properties of the metal or are made up of shape memory alloys

(SMA), such as Nitinol (Nickel-Titanium), which can expand autonomously after release

from the delivery system.

2.4.2 Materials

The material of the stent depends on the nature of expansion and its bio-compatibility.

While most balloon-expandable stents are made of 316L stainless steel, a majority of self-

expandable stents are made of Nitinol. 316L stainless steel is a corrosion resistant material

with low carbon content with additions of molybdenum and niobium. Nitinol is an alloy

composed of 55% weight percent nickel and 45% titanium. In addition to stainless steel and

nitinol there are a number of other materials used to manufacture stents as tabulated in table

2.1. Recently, various metal alloys have emerged as a good alternative to stainless steel 316L,

for e.g. the latest Boston Scientific’s PromusTM ElementTMcoronary stent is made from a

Platinum-Chromium alloy and Medtronic’s Integrity stent is made from a cobalt-chromium

alloy. The advantage of using alloys is that they allow relatively thinner stent struts without

compromising structural strength.

Table 2.1: Stents classification: materials

Type Material Example

Balloon expandable Stainless steel (316L) Bx VELOCITY stent
Tantalum Wiktor
Martensitic Nitinol Paragon
Paladium Iridium Angio stent
Polymers Ingaki-Tamai stent
Niobium alloy Iridium Lunar StarFlex
Cobalt-Chromium alloys Integrity and Xience stents
Platinum Chromium alloy Promus ELEMENT stent

Self Expanding Super elastic Nickel-Titanium
(Nitinol)

Cordis SMART

Cobalt alloy Iridium Wallstent
Full Hard Stainless Steel Cook Z-Stent

2.4.3 Manufacturing form

Stents can be made from sheet metal, wires, or slotted tubes. For sheet-metal stents, the

pattern is made on the sheet which is then rolled to form a tubular structure. Alternatively,

wires can be knitted or braided together to form tubular meshes. The majority of stents

available today are made from tubes, which are laser-cut to carve specific patterns on the

tube. Table 2.2 classifies the stents based on their form.
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Table 2.2: Stents classification: form

Type Description Example

Sheet rolled to make a stent NIR stent
Wire knitted or braided together Wallstent
Slotted-Tube laser-cut Bx VELOCITY stent

2.4.4 Fabrication method

Depending on the form of the stent, different fabrication methods can be used for manufac-

turing. Conventional wire-forming techniques like coiling, knitting or braiding are used to

form stents with wires. All coil stents available today are self-expanding and made of Nitinol.

Sometimes the wires after coiling are welded at certain locations to produce closed-cell wire

stents (e.g. the Symphony stent). For slotted-tube stents, laser cutting is typically used.

Balloon expandable stents are usually laser-cut in a crimped or near-crimped state and then

surface treated (for example electropolished). Alternatively, waterjet cutting can be used for

cutting out tubes (e.g. SCS stainless steel stent). This process does not produce a heat-

affected zone along the cutting edge like that produced in the process of laser cutting. Lastly,

photochemical etching can also be used to manufacture stents. This process is currently used

to produce stents from tubing, but is also applicable in sheet processing to produce a large

number of parts in a single run.

2.4.5 Geometry

Classification of stents based on geometry is the most interesting aspect of stent design. A

vast variety of stent designs are available today with contrasting geometrical features. One

of the main objectives of this thesis is to identify geometric properties that lead to better

results for restenosis rates. Initial stent designs started with simplistic geometries/patterns,

which over a period of time have evolved into more complex shapes. The following high level

categories were used for geometrical classification of stents by Stoeckel et. al. [6]

2.4.5.1 Coil

Coil design is most common in non-vascular applications as a coil stent can be retrieved after

implantation. Coil stents are extremely flexible. However, their strength is limited and they

have a low expansion ratio. Figure 2.8a shows the Esophacoil device with a coil design.

2.4.5.2 Helical spiral

These are helix shaped stents with no or minimal connections. Helical designs produce highly

flexible stents but compromise on longitudinal support. Internal connections help the longi-

tudinal stability by compromising on flexibility. Figure 2.8b shows the Crossflex stent with a

helical spiral design.

2.4.5.3 Woven

Woven stents are typically wire stents which have been knitted/braided together. Self-

expanding stents are often made of nitinol wires. Woven stents provide excellent wall coverage

but typically shorten during expansion. Moreover, their radial strength is highly dependent
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(a) Coil design (b) Helical Spring design

(c) Woven stent design (d) Closed cell with non-flex links

(e) Closed cell with flex links (f) Open cell design

Figure 2.8: Stent classification based on geometry [6]

on axial fixation at the ends. Figure 2.8c shows the Cook ZA stent which has a knitted nitinol

wire design.

2.4.5.4 Sequential rings

Sequential rings can be joined together at various points to make a stent. The rings can take

various shapes, the most common of which is a sequence of zig-zag Z-shaped elements to form

a ring. These rings can have various types of connections between them to form a complete

mesh. Commonly found connections are:

• Regular connections - connections at each tip of the Z-shaped elements

• Periodic connections - connections at a subset of the tips of Z-shaped elements which

repeat perodically

• Peak-peak or peak-valley connections

These connectors either are straight segments (non-flex connectors) or flexible (flex con-

nectors). Another way to consider the sequential ring stents, more commonly applicable to

slotted-tube stents, is if they are closed cell or open cell:

• Closed cell designs - These are designs where all the tips of the structural members are

connected by bridging elements/connectors. Connectors can be either flex or non-flex,
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but the combination should make closed cells. Figure 2.8d and figure 2.8e shows stent

designs with a non-flex and flex connector respectively.

• Open cell designs - These are designs produced by closed cell structures by eliminating

some/all of the bridges to open-up the closed cells. Open cell stents are usually more

flexible than their closed-cell counterparts because the unconnected elements increase

longitudinal flexibility. This category also entails stents which have no tip-tip connec-

tions but connectors originating from the middle of the struts (eg. BeStent). Figure

2.8f shows a picture of a stent with open-cell architecture.

2.4.6 Additions

A number of enhancements are added to stents, to improve their performance or visibility.

The following are the most commonly used enhancements:

• Radio-opaque markers - Gold markers to improve the visibility for stent delivery and

follow-up diagnosis

• Radio opaque coating - Gold or silicon-carbide coating to improve visibility

• Biocompatibility coating - Coatings of tantalum, phosphorylcholine, carbon, or silicon-

carbide

2.4.7 Based on major stent manufacturers

Stents can also be classified according the major manufacturers. Currently, the following are

the major manufacturers operating in the stent market:

• Boston Scientific

• Abbott Vascular

• Medtronic

• Biosensors

In terms of engineering properties, the most widely studied drug eluting stent is the

CYPHER stent, manufactured until 20111 by Cordis Corporation, Johnson & Johnson com-

pany. CYPHER, although now discontinued, is a sirolimus eluting stent on the Bx VELOC-

ITY stent platform, i.e. the geometric shape of the Bx VELOCITY bare metal stent. Figure

2.9a shows a picture of the CYPHER stent. It has a closed cell design with ‘n’ shaped flex

connectors. In contrast to the CYPHER stent, Boston Scientific’s TAXUS Liberté stent is

an open cell design and is a paclitaxel eluting stent. Figure 2.9b shows the TAXUS Lib-

erté stent. Similarly, Boston Scientific’s Promus ELEMENT stent, an open cell everolimus

(derivative of sirolimus) eluting stent, is shown in Figure 2.9c. Xience V is the main DES

produced by Abbott Vascular (shown in Figure 2.9d). It has an open cell design and elutes

everolimus. Medtronic has a BMS stent, called the Integrity stent, and a DES, called the

Resolute Integrity stent. The Resolute Integrity stent is based on the Integrity stent plat-

form, and elutes zotarolimus, a synthetic derivative of sirolimus. The geometric platform

1Johnson & Johnson announced in June 2011 [35] that Cordis corporation will stop the production of
CYPHER stent owing to their focus on other areas of the interventional cardiology market.
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Figure 2.9: Contemporary stent designs [7, 8]

of these stents, which are made from a single wire in a sinusoidal form, is shown in Figure

2.9e. Biosensors’ BioMatrix Flex stent, shown in Figure 2.9f, is a Biolimus A9 drug eluting

stent. It has a unique stent design with quadrature S-shaped links between the Z-shaped

crowns/rings. The quadrature link comprises two links per band that are axially rotated

90o between successive crowns. A number of other manufacturers are active in research and

clinical trials. Each stent manufacturer, however, has a unique stent design and a unique

drug delivery method (polymer coating and drug combination) which is characteristic of the

stent-manufacturer.

2.5 Properties of an ideal coronary stent

An ideal stent can be defined as: ‘A stent which is easy to deliver, provides adequate arterial

support, and minimises the associated adverse processes of restenosis and thrombosis, both

in the short and long term.’. This definition, although easy to understand in a general

sense, provides many challenges in terms of what is precisely meant by ‘ease of deliveability’,

‘adequate arterial support’, and most importantly what is it in a stent that would minimise

the ‘associated adverse responses’. Consequently, there is a need to define these desirable

attributes in measurable engineering terms. An ideal stent should
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1. be flexible

2. have high radial stength

3. minimise arterial injury

4. minimise hemodynamic alteration

5. provide adequate drug delivery

6. facilitate uniform drug distribution (DD)

The first point of flexibility stems from ease of deliverability that is desired in an ideal

stent. The process of delivering a stent to the stenotic site involves manoeuvring through

arteries which can be highly curved and tortuous, thereby necessitating the need for high

flexibility. High radial strength is analogous to provision of adequate arterial support. It

is important to meet the very idea of stent invention i.e. to prevent arterial recoil. The

rest of the four properties listed above relate to limiting the adverse responses of restenosis

and thrombosis. This relation between these properties and adverse responses are briefly

discussed here, but are presented in detail in future chapters. Arterial injury caused during

the stenting procedure can be directly correlated with restenosis rates (see chapter 5). This

implies that an ideal stent should minimise the injury caused during deployment. Several

studies (see Chapter 4) have showed a link between altered haemodynamics in stented vessels

and restenosis rates. Consequently, a good stent should alter the haemodynamics minimally.

Since DES rely on an anti-proliferative drug to inhibit restenosis, a good stent should ensure

that adequate drug is delivered in the tissue. Moreover, depending on the toxic-to-therapeutic

ratio of the drug used, the drug distribution should be uniform across the tissue surrounding

the coronary lesion.

As will be discussed in future chapters, the geometrical features of a stent design dictate

all the aforementioned features. This leads to the conclusion that it should be possible to

alter stent geometry to improve the aforementioned properties, and consequently minimise

adverse responses. However, the consideration of numerous conflicting factors while designing

a stent presents a major challenge. A change in stent geometry leading to an improvement

in one of the desirable characteristics often leads to degradation in one or more of the other

characteristics. As a result, the consideration of all the desirable characteristics, all originating

from one stent design, lead to a very complex multi-objective and multi-disciplinary design

problem.

A major part of this thesis deals with this design problem. In future chapters, the afore-

mentioned desirable properties are quantified, so that given two geometrically different designs

a judgement regarding the superiority of one over the other, in terms of a particular desired

characteristic can be made. Thereafter, two studies, one based on a constrained optimisation

formulation and one based on a multiobjective formulation, are presented as potential solu-

tions to the stent design problem. Before concluding this chapter, various approaches that

are adopted to create computer aided design (CAD) models of stents is briefly presented in

the next section.
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2.6 CAD geometry construction

The first step to evaluate any property of a stent computationally is the construction of its

computer aided design (CAD) geometry. Rhinoceros 4.0 (Robert McNeel & Associates), a

commercially available NURBS (Non-uniform rational basis splines) based modelling software,

is used for this purpose. The following subsections describe various approaches that can be

employed to construct full 3-D stent geometries.

2.6.1 Approaches to model a stent

Figure 2.9 shows a few contemporary stent designs. Most stent designs used today in clinical

practice today are slotted-tube type. Three approaches can be used to model such stent

geometries:

• Approach 1: The base geometry in this approach is a cylindrical shell with the required

thickness of the stent. Cell patterns are then cut out (boolean difference) from this base

geometry to obtain the stent geometry.

• Approach 2: In this approach the base geometry is a plane sheet of required thickness.

The cell patterns, like in approach 1, are cut out from this plane sheet, and the resulting

structure wrapped/mapped on to a cylindrical shell to obtain the final stent geometry.

• Approach 3: This approach uses curves (splines or NURBS) to model the shape of

the stent struts on a flat plane. The resulting network of curves is then converted into

a closed surface, extruded to the required height, and mapped on to a cylindrical shell

to obtain the final stent geometry.

Depending on the stent design, one of the above methods can be used. If the pattern

is easy to construct and periodically repeating, then either of the first two methods can be

used. However, if the patterns in the stent design are not so apparent, and the shape consists

of non-periodic or complex shapes, the third option proves very powerful to construct 3-D

models.

Approaches 1 and 2 are similar, but it is more difficult to cut the patterns out from

a cylindrical shell than from a flat sheet/plate. Hence, either of approaches 2 and 3 are

used for constructing stent geometries in future chapters. The following subsections describe

approaches 2 and 3 in more detail.

2.6.1.1 Approach 2

Figure 2.10a shows the starting geometry, a flat plate, used in this approach. A periodic

pattern similar to the Palmaz-Schatz stent is created (Figure 2.10b). This pattern is a solid

which can be made by outlining the pattern with closed curves (usually NURBS), converting

them to a surface, and then extruding the surface to the required height. This pattern is

then repeated periodically to fill in the base plate (see Figure 2.10c). After this a boolean

subtraction operation is performed on the flat plate with the solid patterns, which results in

the flat geometry of the stent (Figure 2.10d). This flat structure can then be rolled around a

cylinder to obtain the final stent model, as shown in Figure 2.10e.
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(a) The flat plate (b) Cutting Pattern

(c) Array of the cutting patterns (d) Stent in its flat configuration (a)-(c)

(e) Flat stent rolled to get a cylindrical shape

Figure 2.10: Approach 2 to construct stent geometry

2.6.1.2 Approach 3

This approach requires the stent struts to be modelled with the help of curves, splines or

NURBS, to create a network of curves(Figure 2.11a). This network is then closed and con-

verted into a surface or a collection of surfaces (Figure 2.11b). Thereafter these surfaces are

extruded to a height equal to the required strut thickness (Figure 2.11c) to obtain the flat

geometry of the stent. This flat geometry can then be wrapped around a cylinder to obtain

the final stent (Figure 2.11d).

Figure 2.12 shows 3-D stent models constructed using the three approaches mentioned above.

2.6.2 Pre-crimped state models

The approaches discussed above show how the final expanded state geometries can be created.

In reality stents are manufactured, for example laser cut, in a pre-crimped state, whose

diameter is usually lower than the final diameter when expanded. These pre-crimped stents

are then crimped, through crimping machines, to further decrease the diameter and enable

mounting on a delivery system. Thus, to model the expansion process of the stents, pre-
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(a) The Curves outlining the geometry (b) Surfaces made from curves

(c) Extrude srufaces to make flat solid (d) Flat stent rolled to get a cylindrical shape

Figure 2.11: Approach 3 to construct stent geometry

crimped or crimped state geometrical models of the stents, depending on whether the crimping

process is modelled or not, are needed. This does not present any difficulty in terms of CAD

modelling of stents as the dimensions, for example the width of the flat plane and the radius

of the cylindrical shell used for mapping, can be altered to create stent geometries in any

required dimensions. Figure 2.13 shows the two crimped state representative models for the

Bx VELOCITY and Xience V stents, both created using approach 3.

2.7 Conclusions

This chapter has introduced coronary artery disease, its treatment options, and issues related

to its most common treatment, coronary stenting. Furthermore, a survey of a variety of

coronary stents and their classification is presented. Thereafter, the properties that are

desirable in an ideal coronary stent are briefly outlined. These properties are discussed

individually in future chapters. Lastly, computer modelling approaches to create geometries

of both expanded and pre-crimped state stents are presented.

Before moving on to computational analysis of stents based on the desired properties, the

next chapter presents an introduction to surrogate modelling and optimisation methodologies

that are employed in future chapters.
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(a) Approach 1 (b) Approach 2

(c) Approach 3

Figure 2.12: Stents modelled from the three approaches

(a) Crimped state model of the Bx VELOCITY stent (b) Crimped state model of the Xience V stent

Figure 2.13: Crimped state models created using approach 3



Chapter 3

Introduction to surrogate modelling

and optimisation methodologies

This chapter presents an introduction of surrogate modelling and optimisation methodologies.

First, a need for surrogate modelling and the basic formulation of the surrogate model used

in this thesis, i.e. the Gaussian Process model, is presented. Thereafter, along with an

introduction to various optimisation methodologies, the optimisation framework adopted in

this thesis is presented.

3.1 What is optimisation?

In the most general sense optimisation can be defined as the process of “finding and com-

paring feasible solutions until no better solution can be found” [36]. Here, ‘solutions’ refer

to different designs of the problem at hand, for example in the case of aerodynamic wing

design solutions might refer to the different shapes of the wing; in the case of bridge design

solutions might refer to the different structures which the bridge can take; and in the case

of pharmaceutical drug design, it might refer to drugs produced by different combinations

of individual drug components. Hence, one design can be thought of as a combination of

several decision variables, where each decision variable can take multiple values. Decision

variables in the case of wing design could be the location of NURBS control points that

define the shape of the wing; for bridge design it could be the network (i.e. nodal locations

and connectivity) of trusses and the lengths, cross-sections, materials etc. for each truss;

and for drug design they could be the mole-fraction of each individual drug component. A

‘better’ solution in the definition refers to comparison with regards to a goal. For example,

in the case of wing design the goal could be to achieve minimum drag; for bridge design

the goal could be to achieve minimum weight; and for drug design the goal could be to kill

maximum cancerous cells. In all of the tasks the goal would involve either maximisation or

minimisation (collectively known as optimisation) [36] of a goal. Optimisation procedures

that have only one goal are known as single-objective optimisation procedures, and those

that have more than one goal are known as multi-objective optimisation procedures, where

the goal is to simultaneously minimise or maximise two or more goals. For example, in wing

design the two goals could be to minimise drag and maximise lift; for bridge design the goal

23
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could be to minimise weight and minimise the cost of materials; for the problem of drug

design the goal could be to maximise number of cancerous cells killed and minimise the cost

of production. The final term in the definition is ‘feasible solutions’. A feasible solution

refers to solutions that do not violate any constraints. Constraints are requirements that are

imposed irrespective of the goal. There are usually two type of constraints: those that are

imposed on decision variables, commonly known as decision variable bounds; and those that

are based on evaluation of a quantity based on the solution. An example of decision variable

bounds for bridge design could be that each truss must not exceed a pre-determined length;

and an example of an evaluated constraint could be that the maximum load that the bridge

structure can withstand without failure must not be lower than a pre-determined threshold.

Figure 3.1: Space antenna designed by NASA

using evolutionary optimisation and artificial

intelligence [9]

Figure 3.1 shows an example of optimisa-

tion performed by National Aeronautics and

Space Administration (NASA), USA, to de-

sign a space antenna for the Space Tech-

nology (ST5) satellites [9]. Using a system-

atic search and a parameterisation, i.e. the

choice of design variables, that can represent

a large design space, often non-intuitive de-

signs, which are highly efficient can be ob-

tained by the process of optimisation.

Given the above background, a gen-

eral single objective optimisation problem of

minimising a particular goal, say y(x) that

depends on n decision variables x1, x2, . . . , xn, collectively written as the vector x, subject to

decision variable bounds, xi ∈ [xL
i , x

U
i ], l equality constraints, h j(x) = 0, j = 1, 2, . . . , l, and m

inequality constraints gk(x) > 0, k = 1, 2, . . . ,m, can we written as

Minimise y(x) (3.1)

such that h j(x) = 0 j = 1, 2, . . . , l

and gk(x) > 0 k = 1, 2, . . . ,m

subject to xi ∈ [xL
i , x

U
i ] i = 1, 2, . . . , n.

Similarly, a generic multiobjective optimisation problem, with q goals, yp(x), p = 1, 2, . . . , q,

can be written as

Minimise yp(x) p = 1, 2, . . . , q (3.2)

such that h j(x) = 0 j = 1, 2, . . . , l

and gk(x) > 0 k = 1, 2, . . . ,m

subject to xi ∈ [xL
i , x

U
i ] i = 1, 2, . . . , n.

In both the above formulations, many times, the variable bounds are included as inequality

constraints.

Several algorithms, ranging from classical point by point methods to population based

evolutionary algorithms have been developed to solve the above problems. Before discussing

such algorithms in section 3.3, an overview of surrogate modelling is first presented in the

following section.
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3.2 Surrogate modelling

Any algorithm that is used to solve the optimisation problems formulated in equations 3.1

and 3.2 inevitably employs evaluation of the objective function, or goal(s), y(x) or yp(x), and

the constraints, h j(x) and gk(x), at multiple solutions, x, in order to guide the search process

towards the minimum. Usually, this does not present a problem if the objective function is

either available in analytical form, or can be computed cheaply. Low cost here refers to the

computational time taken to evaluate the objective function at one solution, and is a relative

term. For example, for aerodynamic wing design, various solvers based on their respective

complexity and assumptions, may take different amounts of computational time to evaluate

the drag or lift on the wing. If the cost of evaluating the objective and the constraints

at one solution is very high, cost being measured in terms of both analysis times and the

computational budget available, then the application of almost any optimisation algorithm

to such objective functions becomes impractical. This is primarily because it becomes difficult

to evaluate the expensive objective function, also known as the high-fidelity solution, at so

many solutions as required by any optimisation algorithm [18].

The aforementioned difficulty in using high-fidelity analysis for optimisation led to the

development of approximation techniques. Pioneered by Schmit, Farshi, and Miura [37, 38],

the concept that from the data obtained by the analysis of an initial design, an approximation

of the objectives in the neighbourhood of the initial design can be constructed was developed.

This later led to the development of more general approximation techniques [18]. The central

notion behind such techniques is to represent the true functional relationship, y = f (x), as

an approximation, ŷ = f̂ (x, α), where α is a vector of unknown parameters. The unknown

parameters are either evaluated by a black-box based approach or a physics based approach

[18]. In contrast to physics based approaches, where the form of governing equations is

exploited to determine the functional form, ŷ = f̂ (x, α), black-box approaches assume that the

existing analysis codes can not be modified and hence for each solution the only information

obtained from the analysis is the value of the objective function. Consequently, for black-

box approaches, the high-fidelity analysis code is typically run at a number of pre-selected

solutions (inputs) to find the corresponding objective function values (outputs). Thereafter,

the input-output data obtained is used to train a surrogate model, by various approaches

(most usually minimising a loss function, for example root mean squared error) [18]. This

thesis is primarily concerned with this black-box surrogate modelling approach, owing to the

practical advantage of no modification to the analysis codes, such as the computational fluid

dynamics and finite element analysis codes that are employed to analyse the performance of

stents.

The approximation models developed, also known as surrogate models, are computation-

ally cheaper to evaluate and can be used in-lieu of the high fidelity analysis for all purposes,

including optimisation, where repeated evaluation at several solutions is required for the task.

As will be clear in future chapters, the high-fidelity analysis of each stent for evaluation of

the desired characteristics, takes over seven days of computing time. This makes surrogate

modelling indispensable for the design optimisation studies related to coronary stents.

In the following subsections, the three most popular approaches for surrogate modelling,

viz. polynomial models, radial basis function models, and Gaussian Process models are

presented. While the first two approaches are presented succinctly, the formulation for the
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Gaussian Process predictor is presented in detail (as it forms the basis for the optimisation

method developed in chapter 10).

3.2.1 Polynomial models

In a polynomial surrogate model, the functional form of the input-output relationship, ŷ =

f̂ (x), x ∈ Rn , is assumed to be of polynomial form [39, 40]. For example, a quadratic model

can be written as

ŷ = c0 +

∑

1≤ j≤p

c jx j +

∑

1≤ j≤p,k> j

cp−1+ j+k x j xk , (3.3)

where c0, c1, . . . , cm−1, m = (n+ 1)(n + 2)/2, are the m unknown coefficients. This model can be

compactly written as

ŷ(x) = cT x̄ (3.4)

where c = [c0, c1, . . . , cm−1]T ∈ Rm×1, and x̄ = [1, x1, x2, . . . , x2
1, x1x2, x1x3, . . . , x2

n]T . Now, if p

solutions are observed, i.e. the high-fidelity analysis is run over p points, x(i), i = 1, 2, . . . , p,

to evaluate the corresponding function value, y(i), i = 1, 2, . . . , p, the coefficients, c can be

determining by using least squares regression, i.e. by solving the following system of equations:

Ac = y, (3.5)

where
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









































1 x(1)
1 x(1)

2 . . . (x(1)
n )2

1 x(2)
1 x(2)

2 . . . (x(2
n )2

...
...

...
. . .

...

1 x(p)
1 x(p)

2 . . . (x(p
n )2











































∈ Rp×m, (3.6)

and

y = [y1, y1, . . . , yp]T ∈ Rp×1. (3.7)

The reader is referred to the texts by Box and Draper [39] and Myers and Montgomery [40]

for further details of such models and methods of determining the accuracy of such models.

3.2.2 Radial Basis Function models

Radial Basis Function (RBF) models are similar to polynomial models except that they

employ a different set of basis functions, the radial basis functions, as opposed to polynomials

[18]. The general form of the surrogate model can be written as follows

ŷ(x) =
p

∑

i=1

αiK(||x − x(i)||), (3.8)

where || · || represents the norm, usually the Euclidean distance, K(||x − x(i) ||) is a radial basis

function and αi, i = 1, 2, . . . , p, are unknown weights for each radial basis function centered

at the sampled point, x(i). The many choices for the radial basis functions are listed in Table

3.1 [18]. It can be observed from this table that the Gaussian, multiquadratics, and inverse

multiquadratics RBFs involve an additional parameter, θ, called the shape parameter. The

shape parameter controls the shape of the RBF and hence the domain over which each radial

basis function has an influence. For example, for the Gaussian RBF, as θ increases, each RBF

gets wider, thereby influencing a larger domain.
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Table 3.1: Typical choices for RBFs for radial basis function surrogate modelling [18]

RBF form for K(||x − x(i)||) (Equation 3.8)

Linear splines ||x − x(i) ||
Thin plate splines ||x − x(i) ||k ln ||x − x(i)|| ; k ∈ [2, 4, . . .]

Cubic splines ||x − x(i) ||3

Gaussian exp

(

−||x − x(i)||2
θ

)

Multiquadratics

(

1+
||x − x(i)||2
θ

)1/2

Inverse multiquadratics

(

1+
||x − x(i)||2
θ

)−1/2

In order to calculate the weight vector α = [α1, α2, . . . , αp]T ∈ Rp×1, the method of linear

least squares is employed, and the following system of equations is solved

Kα = y, (3.9)

where K is the Gram matrix [18]
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∈ Rp×p, (3.10)

and

y = [y1, y1, . . . , yp]T ∈ Rp×1. (3.11)

For a discussion on singularities of the Gram matrix, that might lead to difficulties in

solving equation 3.9, the reader is referred to the work of Micchelli [41] and Wang [42]. As

mentioned before the Gaussian, multiquadratics, and the inverse multiquadratics RBFs have

an additional shape parameter θ, which is selected by the user. This shape parameter can

have a significant effect on the performance and smoothness of the approximation model [18].

Various methods are often employed to estimate the optimal value of θ from the observed

data. The two primary methods to accomplish this are the ‘leave-one-out’ method and the

‘maximum likelihood’ method. In this section, the ‘leave-one-out’ method is described. The

‘maximum likelihood’ approach is presented in detail in the next section where the formulation

of a Gaussian Process predictor is presented.

For the leave-one-out approach, first the prediction error needs to be defined. This error

refers to the square of the difference between the actual value of the function and the prediction

made by the surrogate model at a point x. It is defined as

Q(z,α) =



















y(i) −
p

∑

j=1

α jK(||x − x(j )||)



















2

, (3.12)

where z denotes the training data set, y(i) denotes the real function value at a point x, and x(j )

represents the training data points. If a validation data-set is available, the sum of the above

errors for all the points in the validation data-set can be minimised to yield an optimum value

of θ. However, this is not always practical, especially when the computational time to create
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the training data-set itself are high. The leave-one-out procedure overcomes this challenge.

The procedure involves calculating the weight vector, α, by using all but one training point,

i.e. leaving one point out, and making a prediction from the trained model at the left-out

point. Hence, the leave-one-out approximation error can be written as

Q(z,α−i) =



















y(i) −
p

∑

j=1, j,i

α jK(||x(i) − x(j )||)



















2

, (3.13)

where α−i represents the weight vector calculated by deleting the ith point from the training

data-set, and y(i) denotes the real function value at a point x(i). The leave-one-out process is

repeated p, the number of points in the training data set, times leaving out a different point

each time to calculate the total approximation error

Q(z) =
1
p

p
∑

i=1

Q(z,α−i), (3.14)

where Q(z) is the mean of the total approximation error. A value of θ that minimises the

above mean error is chosen as the optimal value of θ for the RBF model [18]. In the next

section, a popular surrogate model, the Gaussian Process model, is presented.

3.2.3 Gaussian Process surrogate models

Gaussian Process (GP) modelling is a widely used and statistically rigorous method for con-

structing surrogate models [18]. Its origins lie in the work of Krige [43], who developed the

method to predict mineral concentrations, in the area of geostatistics [44]. A detailed account

of Gaussian Process modelling can be found in the works of Sacks et. al. [45], Santner et.

al. [46], Mackay [47], and Rasmussen & Williams [48]. It must be noted that GP modelling

is also referred to as Kriging or DACE (design and analysis of computer experiments) mod-

elling [18]. Throughout this thesis the words Kriging and Gaussian Process modelling are

used interchangeably to imply the same process. Similarly, the words Krigs and GP models

are also used interchangeably.

In what follows, the formulation of a Gaussian Process predictor, and the corresponding

uncertainty involved in the prediction, is presented. However, first it should be noted that

a Gaussian Process model by definition relies on Gaussian Processes, which are a kind of

stochastic processes. Hence, before moving on to the formulation of a GP predictor, the

concept of stochastic processes is discussed. Parzen [49] defines stochastic processes as “a

family of random variables {X(t), t ∈ T}, indexed by a parameter t varying in an index set T”.

For example, if the radius, r, of a continuous one-dimensional wire of length L, is represented

as a stochastic process, then this stochastic process is the family of random variables that

represent the radius of the wire at each location t, where t can take any real value between 0

and length, L. Thus, the index set T to which each t belongs is [0, L]. Now, it seems that if

one wants to completely describe the radius of this wire through this stochastic process, then

an infinite number of random variables are needed in the process. However, it is possible [49],

for all practical purposes, to adequately represent the stochastic process by a finite number

of ordinates, t. Hence, one way to describe a stochastic process, {X(t), t ∈ T}, is to specify the

joint probability distribution for n random variables, X(t1), X(t2), . . . , X(tn), i.e. to specify the

form of
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FX(t1),...,X(tn)(x1, x2, . . . , xn) = P(X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn), (3.15)

where F is the cumulative probability distribution function and P represents probability.

Alternatively, the probability density, f (x1, x2, . . . , xn) function may be specified, i.e.

FX(t1),...,X(tn)(x1, x2, . . . , xn) =
∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
f (x1, x2, . . . , xn) dx1dx2 . . . dxn. (3.16)

It will be seen in the next section, that Gaussian process models, following the definition

of stochastic processes above, are stochastic processes where the aforementioned joint proba-

bility density function is assumed to be a multivariate Gaussian probability distribution, i.e.

f (x1, x2, . . . , xn) = f (x), where x = [x1, x2, . . . , xn]T ∈ Rn×1 is specified to be

f (x) = (2π)−n/2|Σ|−1/2exp

(

−1
2

(x − µ)T
Σ
−1(x − µ)

)

, (3.17)

where µ ∈ Rn×1 is the mean vector and Σ ∈ Rn×n is the covariance matrix [48]. The above is

written compactly as

x ∽ N(µ,Σ). (3.18)

With the above background, the formulation of the Gaussian Process predictor is pre-

sented in the next subsection.

3.2.3.1 Formulation of a Gaussian Process predictor

Let y be an unknown function which depends on n variables (x1, x2, . . . , xn). If the vector

x is written as x = [x1, x2, . . . , xn]T , then the goal is to formulate a model structure which

represents the relationship of y as a function of the vector x, i.e.

y = f (x). (3.19)

In Gaussian process modelling, any finite number of function values, y(x(1)), y(x(2)), . . . , y(x(q)),

evaluated at the q points, x(1), x(2), . . . , x(q), where x(i)
= [x(i)

1 , x
(i)
2 , . . . , x

(i)
n ]T , are assumed to

be random variables which are a realisation of the Gaussian random field, i.e. they have a

joint Gaussian (normal) distribution. If the mean of the Gaussian random field is β and its

covariance is Γ(x, x′), then the model structure can be written as

Y(x) = β + Z(x), (3.20)

where β, the mean of the random field, is to be estimated, and Z(x) is a Gaussian process

with zero mean and the following covariance:

Cov(x, x′) = Γ(x, x′) = σ2
z R(x, x′), (3.21)

where σ2
z is the process variance and R(x, x′) is a parameterised correlation function, between

two points x and x′. A common choice for the correlation function is

R(x, x′) = exp



















−
n

∑

j=1

(θ j|x j − x′j|m j)



















, (3.22)



30 Chapter 3. Introduction to surrogate modelling and optimisation methodologies

where θ j ≥ 0 and 0 < m j ≤ 2 are undetermined hyperparameters. Since any finite observations

of the function are assumed to be realisations of the above field, the set of observed outputs

{y(x(1)), y(x(2)), . . . , y(x(p))}, compactly written as {y(1), y(2), . . . , y(p)}, also have a joint normal

distribution. Thus the vector of outputs y = [y(1), y(2), . . . , y(p)]T , has the following Gaussian

distribution with the assumed covariance structure as specified by equation 3.21, that is

y ∽ N (1β,Γ) , (3.23)

where 1 is [1, 1, . . . , 1]T ∈ Rp, and Γ ∈ Rp×p is the variance-covariance matrix whose i jth element

is given by Γ(x(i), x(j )), i.e.

Γ =











































Γ(x(1), x(1)) Γ(x(1), x(2)) . . . Γ(x(1), x(p))

Γ(x(2), x(1)) Γ(x(2), x(2)) . . . Γ(x(2), x(p))
...

...
. . .

...

Γ(x(p), x(1)) Γ(x(p), x(2)) . . . Γ(x(p), x(p))











































. (3.24)

Consequently, from equation 3.17, the likelihood function, i.e. the likelihood of the observed

data being generated by the parameterised Gaussian random field, is

L(θ, β, σ2
z ) = (2π)−p/2(σ2

z )−p/2|R|−1/2 exp

(

− 1

2σ2
z
(y − 1β)T R−1(y − 1β)

)

, (3.25)

where θ is a vector of the θi, i = 1 to n, hyperparameters, R ∈ Rp×p is the correlation matrix

whose i jth element is given by R(x(i), x(j )), i.e.

R =











































R(x(1), x(1)) R(x(1), x(2)) . . . R(x(1), x(p))

R(x(2), x(1)) R(x(2), x(2)) . . . R(x(2), x(p))
...

...
. . .

...

R(x(p), x(1)) R(x(p), x(2)) . . . R(x(p), x(p))











































, (3.26)

and |R|−1/2 is the determinant of the matrix R. In order to estimate the hyperparameters, θ, β,

and σ2
z , this likelihood function is maximised. This is equivalent to minimising the negative

log of the likelihood function (in order to convert the products into sums). The negative

log-likelihood function obtained from equation 3.25 is

L(θ, β, σ2
z ) =

1
2

[

pln(2π) + plnσ2
z + ln|R| + 1

σ2
z
(y − 1β)T R−1(y − 1β)

]

. (3.27)

To minimise the above negative log-likelihood function, its derivatives with respect to the

hyperparameters are set to zero. The derivative with respect to β is

∂L(θ, β, σ2
z )

∂β
=

1

2σ2
z
(1T R−1y − 1T R−11β) = 0 (3.28)

=⇒ β̂ =
1T R−1y
1T R−11

. (3.29)

Similarly, differentiating the negative log-likelihood function with respect to σ2
z yields

∂L(θ, β, σ2
z )

∂σ2
z

=
1
2

[

p

σ2
z
− 1

(σ2
z )2

(y − 1β)T R−1(y − 1β)
]

= 0 (3.30)
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=⇒ σ̂2
z =

1
p

(y − 1β)T R−1(y − 1β). (3.31)

Equations 3.29 and 3.31 provide optimal estimates for β and σ2
z , respectively, for a given θ.

Differentiating the negative log-likelihood function with respect to θ j yields

∂L(θ, β, σ2
z )

∂θ j
=

1
2

[

Tr

(

R−1 ∂R
∂θ j

)

− (y − 1β)T R−1 ∂R
∂θ j

R−1(y − 1β)
]

= 0, (3.32)

where Tr denotes trace of a matrix, i.e. Tr(A) =
∑i=m

i=1 aii, when A ∈ Rm×m. Unlike equations

3.28 and 3.30, equation 3.32 does not yield an analytical solution for the estimate of θ.

Hence, an iterative scheme in θ must be employed to minimise L, where, for each θ the

optimal estimates for β and σ2
z are calculated using equations 3.29 and 3.31.

Having calculated the maximum likelihood estimates for θ, β, and σ2
z , one can predict the

function value at an unobserved point, x∗. If y∗ denotes the output at this unobserved point,

x∗, then according to the prior assumption that any finite number of outputs (function values

calculated at different points) have a joint normal distribution, the following can be written















y

y∗















∽ N














[

1p+1β

]

,















Γ γ(x∗)

γ(x∗)T
Γ(x∗, x∗)





























, (3.33)

where 1p+1 is [1, 1, . . . , 1]T ∈ Rp+1 and γ(x∗) = [σ2
z R(x∗, x(1)), σ2

z R(x∗, x(2)), . . . , σ2
z R(x∗, x(p))]T ∈

R
p . Now, in order to get a prediction for y∗ we take the conditional distribution of y∗ given y.

This is called the posterior probability distribution. Since the prior distribution is Gaussian,

the posterior distribution is also Gaussian (because conditional distribution of a Gaussian

distribution is a Gaussian; see appendix A for details), and is given by

y∗|y ∽ N
(

β + γ(x∗)T
Γ
−1(y − 1β) , Γ(x∗, x∗) − γ(x∗)T

Γ
−1γ(x∗)

)

. (3.34)

From the above, the posterior mean and posterior covariance can be written as

ŷ(x) = β + r(x)T R−1(y − 1β), (3.35)

and C(x, x′) = σ2
z

(

R(x, x′) − r(x)T R−1
r(x′)

)

, (3.36)

where r(x) = [R(x, x(1)), R(x, x(2)), . . . , R(x, x(p))]T ∈ Rp , and represents the correlation of the

new point at which prediction is being made with all the observed data points. The mean

of the posterior, as predicted by equation 3.35, is seen as the prediction of the output at the

new point, x, and the posterior variance given by the following equation is seen as a measure

of uncertainty associated with the prediction of the output

σ2(x) = C(x, x) = σ2
z

(

1− r(x)T R−1
r(x)

)

. (3.37)

For computational efficiency, it is advantageous to write w = R−1(y − 1β), so that the posterior

mean can be written as a dot product of two vectors, w and r(x)T , as follows

ŷ(x) = β + r(x)T w = β +
i=p
∑

i=1

wpR(x, x(i)). (3.38)



32 Chapter 3. Introduction to surrogate modelling and optimisation methodologies

This concludes the formulation of the Kriging predictor, where the prediction at a new point

and the associated uncertainty can be calculated by equations 3.38 (or 3.35) and 3.37, re-

spectively.

3.2.3.2 Validation methods for GP models

Once a GP model has been constructed, the validity of the model, i.e. the accuracy of the

model, needs to be ascertained. If testing data is available, i.e. the response of a function for

a number of points other than the training points, then the validity of the GP model can be

ascertained by evaluating the prediction error, i.e. the difference between the predicted value

and the actual function value, at the testing points. However, availability of testing data is

usually impractical owing to the computational cost of running the high-fidelity analysis at

the testing points. To circumvent this difficulty, Jones et. al. [50] proposed the concept of

“standardized cross-validated residual” (SCVR). It is based on both the leave-one-out method

presented in section 3.2.2 and the posterior variance, as defined by equation 3.37. The basic

idea is to create the GP model by leaving one point at a time, and calculating the posterior

mean and variance at the left-out point. SCVR is defined as

SCVRi =
y(i) − ŷ−i(x(i))

σ−i(x(i))
, (3.39)

where y(i) is the observed value at the ith point that is left-out in creating the GP model, ŷ−i is

the prediction at the left-out point, and σ−i is the square root of the posterior variance, σ2
−i,

of the prediction at the left-out point. If the SCVR for all the points lies in [−3,+3] then the

GP model constructed is appropriate [18]. This implies that the GP model is approximately

99.7% confident that the predictions lie between ±3 times the square root of posterior variance

[50].

This concludes the introduction to surrogate modelling. Before moving on to presenting

an introduction to optimisation algorithms in the next section, useful tools of main effects and

sensitivity indices are introduced in the next subsection. These tools are helpful in extracting

relationships between the variables and the function that is modelled as a GP.

3.2.3.3 Extracting relationships between response and variables in GP models

It is apparent from equations 3.35 and 3.37 that the GP predictors do not present the rela-

tionship between the components of decision variable, x, and the response, y(x), in a readily

interpretable manner [51, 45, 52]. Hence, in order to understand the functional relationship,

the effect of one component of x, say xi, on y(x) needs to be isolated from the effect of other

components of x. This is done by integrating out the effects of all variables but one from the

response y(x) as [51, 52]

Υ(xi) =
1
V

∫

V
y(x)

∏

j,i

dx j, (3.40)

where Υ(xi) is called the main effect of variable xi, and V is the hypervolume created by all

the variables excluding xi. The above integral can be approximated numerically as a sum

over a grid of points in the hypervolume [52]. It is often desirable to combine the main effects

into global sensitivity indices, as suggested by Sobol [53], as
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S i =

∫

Υ
2
i (xi) dxi

∑n
j=1

∫

Υ
2
j(x j) dx j

, (3.41)

where n is the total number of variables influencing y(x), and S i are global sensitivity indices,

which denote the relative effect/sensitivity of the variable xi with respect to all other variables.

These sensitivity indices are used in chapter 7 to study the relative effect of design variable

specifying stent geometry on objective functions that measure stent performance. In the next

section a brief overview of optimisation methods is presented.

3.3 Optimisation algorithms

As discussed before the process of optimisation involves locating and comparison of feasible

solutions until better solutions can not be found [36]. Any numerical scheme that achieves

this task is known as an optimisation algorithm.

For a minimisation problem, a local minimum and global minimum can be defined. A

local minimiser of f (x) is defined as a point, x∗, such that there is a neighbourhood, N, of x∗

such that f (x∗) ≤ f (x) for all x ∈ N [54]. On the other hand a global minimiser of f (x) is

defined as a point, x∗, such that f (x∗) ≤ f (x) for all x ∈ Rn, where n is the dimensionality of

f (x), or for all x ∈ D, where D is the search domain [54]. Hence, every global minimum is a

local minimum but the converse is not true.

The necessary and sufficient conditions for a local minimiser can be easily defined. The

first-order (implying that only first derivative information is used) necessary condition states

that “If x∗ is a local minimiser and f (x) is continuously differentiable in an open neighborhood

of x∗, then ∇ f (x∗) = 0” [54]. Intuitively, this can be rationalised by the argument that if ∇ f (x∗)

is non-zero, then the function is decreasing in the direction of −∇ f (x∗) and hence by moving

in that direction the function value can be further decreased, thereby implying that x∗ is not

a local minimum. The necessary conditions however do not guarantee that the solution found

is a local minimum: a point satisfying the necessary conditions is only a stationary point and

it could be a local minimum, local maximum, or a saddle point. In order to be certain about

the point being local minimum, the second-order sufficient conditions need to be satisfied.

These are stated as “Suppose that ∇2 f (x) is continuous in an open neighbourhood of x∗ and

that ∇ f (x∗) = 0 and ∇2 f (x∗) is positive definite. Then x∗ is a strict local minimiser of f (x)”

[54].

Having laid out the necessary and sufficient conditions, in the following sections an

overview of optimisation algorithms according to a broad classification is presented. Unless

explicitly stated otherwise, a minimum in this chapter refers to a local minimum.

3.3.1 Gradient based methods

As the name suggests, gradient based methods use derivative information in order to guide

the search process towards a minimum. In its most general sense, starting from a feasible or

a random point in the search domain, the next point to be evaluated is decided by moving in

a search direction that is calculated by using derivative information at the start point. This

process is then repeated until no more improvement in the function value can be made. The

general form of such methods can be written as

x(κ+1)
= x(κ)

+ α s(κ) (3.42)
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where x(κ+1) is the next point to be evaluated, x(κ) is the current point, α is the step length,

and s(κ) is the search direction at x(κ). In essence, at every point x(κ) a step of α is taken

in a direction s(κ), depending on the optimisation algorithm, to obtain the next point x(κ+1).

Common methods to determine the search direction are described in the next subsections.

3.3.2 Steepest descent

The formulation of steepest descent direction is easy to understand if one considers the first

order Taylor’s series expansion of the function f (x) about the current point x(κ)

f (x(κ+1)) = f (x(κ)
+ α s(κ)) ≈ f (x(κ)) + α (s(κ))T ∇ f (x(κ)), (3.43)

where ∇ f (x(κ)) represents the gradient vector at the current point x(κ). Along a search direction

s(κ), the above equation represents a linear approximation for the function f (x) about the

current point x(κ). It is clear from this that maximum decrease in the function will be achieved

if s(κ) is equal to −∇ f (x(κ)) [55]. This direction is known as the direction of steepest descent

and an algorithm that uses this direction at each iteration of equation 3.42 is called a steepest

descent search algorithm.

3.3.2.1 Newton’s method

Newton’s method considers the second order Taylor series expansion of the function along a

search direction s(κ)

f (x(κ+1)) = f (x(κ)
+ α s(κ)) ≈ f (x(κ)) + α (s(κ))T ∇ f (x(κ)) + α2 1

2
(s(κ))T Hκ s(κ) (3.44)

or

∇ f (x(κ+1)) ≈ ∇ f (x(κ)) + αHκ s(κ), (3.45)

where Hκ represents the Hessian matrix, at the current point x(κ), i.e. the i jth element of Hκ

is given by

Hκi j =
∂2 f (xκ)
∂xi ∂x j

. (3.46)

First order optimality condition for an optimum implies that at the optimal solution, x∗,

the first derivative is zero, i.e. ∇ f (x∗) = 0. Newton’s method ensures this at each iteration by

setting ∇ f (x(κ+1)) to zero. Equation 3.45 then becomes

0 = ∇ f (x(κ)) + αHκ s(κ) (3.47)

or

α s(κ)
= −[Hκ]−1∇ f (x(κ)). (3.48)

The above direction s(κ) is used by the Newton’s method in Equation 3.42. Newton’s

method assumes that the Hessian matrix is available at each iteration. In many cases the

Hessian matrix is not available directly or is expensive to calculate [18]. This led to the

development of Quasi-Newton methods, which are discussed next.
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3.3.2.2 Quasi-Newton or variable metric methods

Newton’s method, as shown above, required the inverse of the matrix to be computed at each

iteration. This might not be practical either due to the expense of calculating the inverse

of the Hessian or due to the non-availability of the Hessian directly. In Quasi-Newton or

variable metric methods, the inverse of the Hessian matrix is approximated in the region of

the minimum by a sequence of iterative application of first derivative information. The search

direction, instead of equation 3.48, is written as

s(κ)
= −Aκ∇ f (x(κ)), (3.49)

where Aκ is an approximation to the inverse of the Hessian.

The Davidon, Fletcher, and Powell (DFP) [56, 57] method, calculates Aκ starting from

A0
= I , where I is an identity matrix [54, 55] using

Aκ+1
= Aκ − Aκγκγκ

T
Aκ

γκ
T Aκγκ

+
s(κ)s(k)T

γκ
T sκ
, (3.50)

where

γκ = ∇ f (x(κ+1)) − ∇ f (x(κ)). (3.51)

The DFP method, although quite effective, was superseded by the BFGS method [54].

The BFGS updating method, named after the inventors Broyden, Fletcher, Goldfarb, and

Shanno, constructs the approximations to the Hessian as

Hκ+1
= Hκ − Hκs(κ)s(k)T

Hκ

s(κ)Aκs(k)T +
γκγκ

T

γκ
T s(κ)
, (3.52)

and approximations to the inverse of the Hessian as

Aκ+1
=















I − s(κ)γκ
T

γκ
T s(κ)















Aκ














I − γ
κs(κ)T

γκ
T s(κ)















+
s(κ)s(κ)T

γκ
T s(κ)
. (3.53)

The BFGS method is currently considered to be most effective of all the Quasi-Newton

methods [54]. Many other Quasi-Newton methods, such as the SR1 method, Broyden class

updates, etc. have been proposed in the literature. These are not discussed in this thesis,

but the reader is referred to the text by Nocedall [54] for details.

3.3.3 Conjugate Gradient methods

These methods originated with a view to solving the linear system of equations, Ax = b.

The solution to this equation can be seen as the minimiser to the quadratic function, f (x) =
1
2

xT Ax−bT x [54]. The underlying idea is that the solution can be found in exactly n searches,

where n is the dimensionality of the problem, by sequentially searching along any n directions

that are conjugate to each other with respect to the matrix A. Two directions, s(i) and s( j)

are conjugate with respect to A if s(i)T
As( j)

= 0. The problem, however, is to find n directions

that are conjugate to each other with respect to the matrix A. Several techniques, such

as eigen value decomposition, Gram-Schmidt orthogonalization, etc. can be used to find

conjugate directions. However, this can be computationally expensive. To resolve this issue,

the method of conjugate gradients (CG) was developed. The method of CG computes a new

search direction, s(κ), which is conjugate to all previous search directions, by using only the
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last search direction, s(κ−1). CG creates the new search direction, s(κ), as a linear combination

of the negative current residual, −∇ f (x(κ)), and the previous search direction s(κ−1) as follows

s(κ)
= −∇ f (x(κ)) +

∇ f (x(κ))T A s(κ−1)

s(κ−1)T A s(κ−1)
. (3.54)

Hence, in the above method, choosing the first direction to be the steepest descent direc-

tion and calculating subsequent directions as defined above, the CG method would find the

minimum of a quadratic function in exactly n searches. Fletcher and Reeves [58] proposed a

modification to calculate search directions so that non-quadratic functions could be optimised

efficiently by the CG method. Their modification calculates successive search directions as

follows

s(κ)
= −∇ f (x(κ)) +

∇ f (x(κ)))T ∇ f (x(κ))

∇ f (x(κ−1)))T ∇ f (x(κ−1))
s(κ−1). (3.55)

3.3.4 Non-gradient methods

Non-gradient methods are those which do not use the derivative information to guide the

search process towards the minimum. These can be classified into pattern/direct search

methods and evolutionary methods.

3.3.4.1 Pattern or Direct Search methods

These methods rely only on function evaluations around the current point, i.e. the function

is evaluated in a neighbourhood and a decision, without evaluation of the gradient, is made

whether the current point should be updated by a surrounding point or not. The two well

known such methods are the pattern search by Hooke and Jeeves [59] and the simplex search

by Nelder and Mead [60]. The Hooke and Jeeves pattern search works with search directions

that span the search space, for example in an n-dimensional space n linearly independent

directions are required. The search works by a series of exploratory moves that are changed

heuristically [55]. In each iteration, the current point is perturbed in each of the search

directions sequentially (called the exploratory move). If a better point is found, the current

variable is updated to the best point; otherwise the perturbation distance is decreased by a

specified factor. When a better point is found after the exploratory move, a jump along the

direction of the movement in the exploratory move is made, in hope of a further decrease in

the function (the pattern move). Thereafter an exploratory search is carried out from the

new point obtained by the jump: if a better point is found, the current point is updated;

otherwise the perturbation distance is further reduced. This procedure is repeated until the

perturbation distance becomes smaller than a pre-specified convergence limit.

The Nelder and Mead [60] method works with a simplex. This simplex is a geometrical

shape with non-zero hypervolume and n+1 vertices in an n-dimensional space. The algorithm

begins by evaluating the function at all the vertices of the simplex and calculating the worst

point, best point, and the second best point. Thereafter, the simplex is changed by rules to

guide the search process away from the current worst point and towards the better points.

The four rules are reflection, expansion and reflection, contraction, and multiple contraction.

In reflection, the worst point is reflected through the opposite face of the simplex such that the

hypervolume of the simplex remains the same. In expansion and reflection, the worst point is

reflected but is placed further away than the previous case, thereby resulting in an increase
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of the hypervolume. In contraction one vertex is displaced towards the opposite face, and in

multiple contraction, a face is displaced towards the opposite vertex. The process is repeated

until the hypervolume of the simplex reduces to a size less than a pre-specified convergence

limit.

3.3.4.2 Evolutionary methods

Evolutionary Algorithms (EA) are algorithms that mimic evolutionary processes found in

nature for optimisation [36]. Keane and Nair [18] identify two features common to all evo-

lutionary algorithms: first, that these algorithms employ random numbers, and hence the

repeated application of the same algorithm with identical parameters and starting points

yields different search trajectories to locate optimal solutions; and second, that all such algo-

rithms are global optimisation algorithms, i.e. locally optimal solutions might be discarded

during the search process. The most well-known EAs are genetic algorithms, simulated an-

nealing, evolution strategies, evolutionary programming, and particle swarm optimisation.

Here, one of these methods, genetic algorithms, is discussed.

3.3.4.3 Genetic algorithms

Genetic algorithms (GAs), due to their wide applicability and documented success, have be-

come a popular choice for optimisation procedures [36, 61]. As opposed to classical algorithms

for optimisation that work with a single point at a time, GAs work with a population of points.

An initial population is first created randomly in a search domain; then, at each iteration

the members of the this population undergo selection, crossover, and mutation to create the

next generation. As this process is repeated, the average fitness (representing the goodness

of solution(s)) of the population increases, thereby moving towards the global optimum of

the problem at hand. To represent solutions in a population, a representation of candidate

solutions is needed. An important distinction among GAs is made in this regard. GAs that

represent candidate solutions (phenotypes) as strings of binary bits (genotypes) are known as

Binary coded GAs. In such GAs each binary string is mapped on to the real space in order

to calculate fitness values. On the other hand GAs that work directly on real variables are

called Real coded GAs. The working principles of a GA can be succinctly described by the

following steps [36]:

Representaion: As mentioned above a candidate solution can either be represented as

a string of binary bits (sections of which correspond to different variables), or real

variables (no mapping needed).

Fitness assignment: Each candidate of the population is assigned a fitness value based on

the objective function value at that point. Many schemes exist for such assignment, for

example, fitness of a candidate can be equal to the objective function, an appropriately

scaled value of the objective function, rank of the candidate in the population, etc.

Selection: The selection operator is the first genetic operator that is applied to the popu-

lation in order to select candidates for a mating pool (i.e. for future genetic operators).

Its goal is to create more copies of strong (having relatively high fitness value) candi-

dates while diminishing the number of weak candidates (relatively low fitness value).
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The simplest, but powerful, of selection operators is tournament selection. In this pro-

cedure, any finite number of solutions are picked from the population, and the winner

(i.e. the candidate with best fitness among the picked candidates), is declared winner

and copied to the mating pool. This procedure is repeated until the mating pool is

full. Many other schemes exist for selection, such as roulette-wheel selection, stochastic

remainder roulette-wheel selection etc.

Crossover: This is the next genetic operator that is applied to candidates in the mating

pool. The goal of crossover is to create new candidate solutions (called the child solu-

tions) from the members of the mating pool. One such scheme for binary coded GAs

is the single-point crossover. In this scheme, two candidates are picked at random from

the mating pool, and a random crossover site (between one and length of the binary

string representation) is generated. Thereafter, with a probability (pc) (crossover prob-

ability) the bits before the crossover site are exchanged between the picked candidates

to create two new child solutions. These children are added to the new population

and this procedure is repeated until the entire new population is created. The working

principles of a single-point crossover were implemented by Deb et. al. [62] for real

coded GAs. This operator, called the simulated binary crossover (SBX) operator, has

capabilities to restrict child solutions within the bounds of the search variables and

has been successfully applied in many test problems [15]. A number of other crossover

operators have been proposed and analysed in the GA literature; see [63] for details.

Mutation: The mutation operator is next applied to the post-crossover population. The

goal of a mutation operator is similar to that of the crossover operator, i.e. to create new

solutions. For binary coded GAs the mutation operator involves flipping the bits of a

candidate genotype with a, usually very low, mutation probability (pm). For real coded

GAs, various equivalents, have been proposed [36]. One such widely used operator is

the Polynomial mutation operator proposed by Deb and Goyal [64].

To summarise, a GA starts with an initial population which is a random set of solutions

in the search domain. This population then undergoes selection, crossover, and mutation, to

create the next generation of the population, and this process is repeated. At each genera-

tion, the selection operator increases the number of relatively better solutions, the crossover

operator combines features of these relatively better solutions to create child solutions, and

the mutation operator changes the solution locally in the hope of creating better solutions.

Although not explicitly guaranteed, the combined effect of these operators is to increase the

fitness of solutions over generations, and consequently lead towards the optimum result [36].

3.4 Constrained optimisation

So far in this chapter, methods that solve only unconstrained problems have been discussed.

In this section an overview of optimisation methodology in the presence of constraints is

discussed (cf. equation 3.1). At this point, a few definitions are necessary. The Lagrangian

function (L) of the general problem of equation 3.1 is defined as

L(x, u, v) = f (x) −
m

∑

k=1

uk gk(x) −
l

∑

j=1

v j h j(x) (3.56)



3.4. Constrained optimisation 39

or

L(x, u, v) = f (x) − uT g(x) − vT h(x), (3.57)

where uk and vk are the Lagrange multipliers, and the vectors u = [u1, u2, . . . , um]T and

v = [v1, v2, . . . , vl]T are the vectors of Lagrange multipliers for the inequality and equality

constraints, respectively. The addition of Lagrange multipliers combines the constraints to

yield an unconstrained optimisation problem. One also needs to differentiate between active

and inactive constraints: an inequality constraint, say gi(x), is said to be active at a point

x∗ if the point falls on the constraint surface, i.e. gi(x∗) = 0; otherwise the constraint is

called inactive. With this background, the first-order optimality conditions, also known as

the Karush-Kuhn-Tucker (KKT) conditions, for a point x∗ to be a local minimiser of equation

3.1 can be stated as follows [54]

Theorem 3.4.1. If x∗ is a local solution to equation 3.1, the functions f (x), gi(x), and hi(x)

are continuosly differentiable, and the set of active constraints at the point x∗ are linearly

independent, then there exist Lagrange multiplier vectors u and v with components uk, k =

1, 2, . . . ,m and v j, j = 1, 2, . . . , l such that the following conditions are satisfied

∇xL(x∗, u, v) = 0; (3.58)

gk ≥ 0 k = 1, 2, . . . ,m; (3.59)

h j = 0 j = 1, 2, . . . , l; (3.60)

ukgk = 0 k = 1, 2, . . . ,m; (3.61)

uk ≥ 0 k = 1, 2, . . . ,m. (3.62)

Equation 3.61 represents the complementary conditions. They imply that either uk is

equal to zero or the constraint gk is active [54, 55]. The above stated KKT conditions form

the basis of many constrained optimisation algorithms.

A wide variety of optimisation problems are formulated as linear programming (LP) prob-

lems. A linear program is an optimisation problem with a linear objective function and linear

constraints [54]. The two types of methods used to solve linear programming problems are

active set methods and interior point methods. The simplex method developed by Dantzig

[65] (not to be confused with the simplex method by Nelder and Mead discussed earlier) is the

most famous of the active set methods to solve LP problems. Among interior point methods

Karmarkar’s projective algorithm [66] is very popular. These methods are not discussed in

detail in this thesis; the reader is referred to standard texts [54, 65, 66] for further details.

In what follows an overview of non-linear constrained optimisation algorithms is presented.

These algorithms can be grouped as

3.4.1 Quadratic Programming

Quadratic Programming (QP) methods aim to solve the quadratic problem, i.e. an optimisa-

tion problem where the objective function is quadratic and the constraints are linear. These

are important in non-linear constrained optimisation as many optimisation algorithms, such

as sequential programming methods, solve a sequence of quadratic sub-problems iteratively

[54]. The methods to solve quadratic programming problems can be divided into three groups:

active-set, gradient projection, and interior-point methods. Here these methods are discussed
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briefly. A general QP problem can be written as

Minimise q(x) = 1
2xT Gx + xT p (3.63)

subject to aT
j x = b j j = 1, 2, . . . , l

cT
k x ≥ dk k = 1, 2, . . . ,m.

If there are no inequality constraints, then by theorem 3.4.1 the set of KKT conditions

can be written as
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where A is a matrix whose rows are given by aT
j , j = 1, 2, . . . , l, and u is a vector of Lagrange

multipliers for the equality constraints, and b is a vector containing b j, j = 1, 2, . . . , l. This

system of linear equations, can be solved by factorisation methods (such as LU factorisation),

or iterative CG methods.

In the presence of inequality constraints, many methods use the form discussed above as

subproblems to be solved in each iteration. Active set methods are those which maintain an

estimate of the inequality constraints that are active in each iteration. If the contents of the

active set, i.e. indices of inequality constraints that are active, are known, then the inequality

constraints that are not active can be ignored, the active inequality constraints can be posed

as equality constraints, and the resulting problem can be posed as the above discussed form

to be solved. However, the contents of the active set are not known a priori. Thus active set

methods move from one iterate to other by solving a subproblem where some of the inequality

constraints, called the working set, are treated as equalities [54], i.e. it is assumed that only

these inequality constraints are active. After each iteration the contents of the working set

are systematically modified to identify a solution for the QP.

In active set methods, the working set changes in each iteration usually changes only by

one index. This makes the method require a large number of iterations to converge to the

optimum point. Gradient projection methods remedy this problem by offering a rapid way

of changing the working set, and are most effective when the only constraints in the QP are

variable bounds [54]. In this method, a steepest descent search is made from the current point

until a constraint is encountered. When a constraint is encountered, the search direction is

‘bent’ to remain in the feasible region. Thus, the search is made along a piecewise linear

path, and a local minimiser, called the Cauchy Point, is located. The working set is updated

to the inequality constraints that are active the Cauchy point. Thereafter, a QP subproblem

is solved with this new working set at the Cauchy point to obtain the next iterate [54].

Interior point methods also work with the KKT optimality conditions (theorem 3.4.1).

They convert the inequality conditions, equations 3.59 and 3.62, to equality conditions by

introducing slack variables. Furthermore a log barrier term is added to the objective function

to result in the following problem

Minimise 1
2xT Gx + xT p − µ∑m

k=1 logsk (3.65)

subject to aT
j x = b j j = 1, 2, . . . , l

cT
k x − dk − sk = 0 k = 1, 2, . . . ,m,

where sk are the slack variables corresponding to the inequality constraints, and µ is a barrier

parameter. In the limiting case of µ→ 0 the solution of the above problem is the solution to



3.4. Constrained optimisation 41

the QP. Most interior point methods employ Newton-Raphson’s iterations to solve the system

of KKT optimality conditions for the above problem and update the value of µ to obtain the

solution at the limiting case of µ→ 0 [54].

The reader is referred to the text by Nocedal [54] for details of the aforementioned algo-

rithms.

3.4.2 Penalty and augmented Lagrangian methods

In these methods, the objective function and constraints are combined together, in each

iteration of the algorithm, to form an unconstrained optimisation problem [54, 55]. In penalty

methods, the general form of the combined function can be written as

C(x,R) = f (x) + Ω(R, g(x), h(x)), (3.66)

where R is a set of penalty parameters, and Ω is the penalty function [55]. Typical choices

for Ω include, Rihi(x)2 for equality constraints and Ri〈gi(x)〉2 for inequality constraints (the

bracket operator 〈a〉 is equal to a if a is negative and zero otherwise) [55]. Typically, the

penalty parameter Ri is changed in successive iterations.

The augmented Lagrangian method, also known as the method of multipliers, uses the

following combined function for unconstrained optimisation at the κth iteration [55, 54]

C(x,R, σ(κ), τ(κ)) = f (x) + R
m

∑

k=1

[

(

〈gk(x)〉 + σ(κ)
k

)2 −
(

σ
(κ)
k

)2
]

(3.67)

+R
l

∑

j=1

[

(

h j(x) + τ(κ)j

)2 −
(

τ
(κ)
j

)2
]

,

where the bracket operator is as defined previously, and R is a penalty constant. The param-

eters σk and τ j are varied in successive iterations as follows

σ
(κ+1)
k = 〈gk(x(κ))〉 + σ(κ)

k , (3.68)

τ
(κ+1)
j = h j(x(κ)) + τ(κ)j . (3.69)

It can be shown that the solution obtained by the above procedure satisfies the first-order

KKT conditions [55]. Moreover, this method yields the Lagrange multiplier values

uk = −2Rσk, (3.70)

v j = −2Rτ j. (3.71)

Many modifications of the above method exist [54], for example a linearised or quadratic

form for the constraints and objective function at the current point can be used in lieu of the

original forms, in order to simplify the problem of unconstrained optimisation.

3.4.3 Linearised search techniques

Linearised search techniques work by linearising both the objective and constraints at the

current point, xκ. A non linear function, f (x) can be linearised at a point,xκ, by the following

[55]

f (x) ≈ f (xκ) +
[∇ f (xκ)

]T (

x − xκ
)

. (3.72)
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The linearisation of both objective function and constraints results in a linear programming

problem, which can be efficiently solved by the simplex method proposed by Dantzig [65].

One such algorithm is the Frank-Wolfe method [55], where to form the new iterate, xκ+1, a

line search is performed in the direction from the old point to the point found by the simplex

search of the linear programming problem. This procedure is repeated until convergence

criterion are met.

3.4.4 Cutting plane method

In the cutting plane method the objective function is minimised by introducing a new variable

y which is minimised in lieu of the original function [55]. To account for the objective func-

tion, f (x), an additional constraint, y − f (x) ≥ 0 is artificially introduced. Thus the objective

function of the modified problem is y, which is a linear function. The cutting plane method

begins by ignoring all the constraints of the modified problem except the bounds. This is a

linear-programming problem which is solved using the simplex method. Next, at this solu-

tion, the most violated constraint is identified, and linearised. Now the linear programming

problem is solved again with the bound constraints and the linearised form of only the most

violated constraint. This solution forms the next iterate. Next, the most violated constraint

at the solution is found again and linearised. A new linear programming problem with the

bound constraints, previous constraint, and the currently linearised constraint, is solved, to

yield the next iterate. This process is repeated until the maximum constraint violation is

below the specified tolerance. This method works only when the feasible search space is

convex.

3.4.5 Feasible directions method

The method of feasible direction [55, 18, 67] also works with linearised forms of the objec-

tive function and inequality constraints, and is only applicable in the absence of equality

constraints. The underlying idea of this method is that if the current iterate has no active

constraints then a steepest descent direction should be used for search, but if there are active

constraints then the search direction should also account for feasibility. A direction of descent

at a point xκ is a direction, sκ, for which ∇ f (xκ) · sκ ≤ 0. Similarly a direction, sκ, is feasible

for the kth inequality constraint if ∇gk(xκ) · sκ ≥ 0. The method of feasible direction achieves a

balance between these by solving the following linear-programming problem at each iterate,

xκ

Maximise θ (3.73)

subject to ∇ f (xκ) · sκ ≤ −θ

∇gk(xκ) · sκ ≥ θ k ∈ set of active constraints

−1 ≤ si ≤ 1.

The solution of the above problem is used to perform a unidirectional search along the

found direction to find the next iterate xκ+1. This process is repeated until no feasible direction

can be found, i.e. when the solution to the above linear programming problem is θ ≤ 0.
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3.4.6 Sequential Quadratic Programming (SQP) methods

Sequential programming methods (SQP) are one of the most effective methods to solve

non-linear constrained optimisation problems [54, 68]. SQP methods solve a quadratic sub-

problem in each iteration. A quadratic sub-problem of equation 3.1, at the current point xκ

has the following form

Minimise (r κ)T dx +
1
2dx

T Bκdx (3.74)

subject to ∇h(xκ)T dx + h(xκ) = 0,

∇g(xκ)T dx + g(xκ) ≥ 0,

where dx = x − xκ. One choice for vector r κ can be the gradient of f (x) at xκ. Similarly, the

symmetric matrix Bκ can be chosen as the Hessian matrix of f (x) at xκ. This, however, is not

appropriate when the constraint functions are non-linear, as the objective function does not

include constraint non-linearity information and all the constraints have been linearised. To

account for the non-linearity of the constraints, while using the linearised form in the quadratic

sub-problem, SQP methods use a quadratic form of the Lagrangian as the objective function

[68]. Hence, r κ is chosen to be the gradient of the Lagrangian function

r κ = ∇x L(xκ, uκ, vκ), (3.75)

where uκ and vκ are current estimates of the Lagrange multipliers. Similarly, Bκ is usually

chosen as an approximation to the Hessian of the Lagrangian rather than the actual Hessian.

Methods like BFGS updating, discussed in the previous section can be used for that purpose.

The solution of the quadratic sub-problem is then solved to yield a direction dx, which is

used to construct the new iterate xκ+1 from the current iterate xκ by taking a step from xκ

in the direction of dx. To determine the length of the step, a merit function, φ(x), is needed.

Typical choices for merit functions include penalty functions and augmented Lagrangian

functions as discussed in section 3.4.2. A decrease in the merit function, φ(x), ensures that

an improvement in the original non-linear problem has taken place. With this background,

the basic SQP method can be outlined as follows [68]

Step 1 Start with approximations of (x0, u0, v0) and B0. Set κ = 0. Choose a merit function,

φ(x); set κ = 0.

Step 2 Formulate the quadratic programming problem, equation 3.74, at the current iterate

xκ. Solve the quadratic programming problem using any method from section 3.4.1.

Obtain (dx, du, dv) from the solution. du and dv denote the difference between u and v

found by the solution of quadratic sub-problem and the current u and v.

Step 3 Choose step length α by solving the unconstrained optimisation problem of min-

imising the merit function along dx, i.e. unconstrained minimisation of φ(xκ + αdx).

Step 4 Calculate the new iterate by the following.

xκ+1
= xκ + αdx,

uκ+1
= uκ + αdu,

vκ+1
= vκ + αdv.
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Step 5 If convergence achieved, stop.

Step 6 Update Bκ using an update algorithm like BFGS to obtain Bκ+1

Step 7 Increment κ = κ + 1; go to Step 2.

The SQP algorithm is used in chapter 7 for constrained optimisation of coronary stents.

3.5 Multiobjective optimisation

Multiobjective optimisation, as mentioned in the beginning of this chapter, is an optimisation

procedure where the goal is to minimise more than one objective. Similar to the single

objective optimisation procedures, both classical, i.e. point by point search, methods and

evolutionary, i.e. population based, methods have been proposed to solve multiobjective

problems. However, evolutionary approaches, owing to the inherent advantage of working

with a population, and the fact the optimal solution is not one point but a set of points, have

gained popularity for such problems. This section reviews some of the algorithms proposed

for multiobjective optimisation.

In order to understand multiobjective optimisation, the concept of dominance and opti-

mality needs to be defined. In a problem with q objectives, as in equation 3.2, a solution xi

is said to dominate x j if both the following are true [36]

1. The solution xi is no worse than x j in all the objectives, fp(x), p = 1, 2, . . . , q

2. The solution xi is better than x j in at least one objective

With the above definition of dominance, a non-dominated set of solutions from a set of

solutions can be defined. The non-dominated set of solutions, in a set of solutions P, is the set

of solutions that are not dominated by any member of the set P. If the set P consists of all the

members in the search domain, then the non-dominated set of P is called the Pareto-optimal

set [36]. In a non-dominated set of solutions, no solution can be deemed better than the

other. Hence, the goal of a multiobjective optimisation algorithm is to find non-dominated

sets of solutions, while being as close to the Pareto-optimal set as possible.

A range of algorithms – from classical gradient based algorithms to evolutionary algo-

rithms – have been proposed to obtain non-dominated solutions. The easiest extension of

single objective optimisation algorithms to multiobjective problems is the weighted metric

approach. In this approach the multiple objectives are combined into a single objective by

taking a weighted-metric of the objectives, for example weighted-sum or weighted deviations

from an ideal solution (eg. Tchebycheff metric) [36]. By choosing different weights for objec-

tives, different single objective optimisation problems can be formulated, and solved to obtain

a set of non-dominated solutions. Haimes et. al. [69] proposed the ǫ-constraint method, and

suggested minimising one objective while specifying other objectives as constraints to lie in

small bounds. Das and Dennis proposed the normal boundary intersection method (NBI)

method to find a uniform spread of solutions on the Pareto front [70]. In this method first,

a simplex of the convex hull of all the individual minima (of all the objective functions) is

found. Thereafter, starting from a uniformly distributed set of points on this simplex, the

distance from each point towards the origin is maximised to find solutions that could po-

tentially be non-dominated. Ismail-Yahaya and Messac [71] proposed the normal constraint
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(NC) method, which was later improved by Messac et. al. [17, 72]. In this method, the utopia

line/plane is first found (for a biobjective problem this is the line joining the individual min-

ima in the objective space). Thereafter a set of uniformly distributed points are generated

on the utopia line/plane and a constrained optimisation problem from each of these points

is solved. The constrained optimisation problem minimises one objective, while all other

objectives are formulated as constraints, normal plane/lines from the point on utopia plane,

to restrict the search space.

Compared to the aforementioned classical algorithms, evolutionary algorithms perform

significantly better on most problems, especially as the dimensionality of the search space

increases [36, 73]. Of the many evolutionary algorithms proposed for multiobjective optimi-

sation (see [36] for details), the most popular are the modified non-dominated sorting genetic

algorithm (NSGA-II) [74] and the improved strength Pareto evolutionary algorithm (SPEA2)

[75]. Zitzler et. al. [75] showed that SPEA2 and NSGA-II show best overall performance when

compared to the then contemporary multiobjective algorithms (namely Pareto-envelope based

selection algorithm (PESA) [76] and SPEA [77], the predecessor of SPEA2). Here, SPEA2

and NSGA-II are described.

3.5.1 Improved strength Pareto evolutionary algorithm (SPEA2)

The improved strength Pareto evolutionary algorithm (SPEA2) [75] is an improvement over

its predecessor SPEA [77] in three aspects: improved fitness assignment, density estimation,

and archive truncation. SPEA2 works with two sets: the GA population and an external

archive set. Fitness is assigned to every member of the population, P, and archive set, P̄, as

follows. Every individual, i, in the union of these sets (P ∪ P̄) is assigned a strength value,

S (i), equal to the number of individuals i dominates. The raw fitness of every individual, i, is

then determined by summing the strength values of all members in P∪ P̄ which dominate the

member i. Hence, a raw fitness of zero implies a non-dominated individual in the combined set.

Thereafter, density estimation for each individual is performed, to differentiate individuals

with identical raw fitness values. For this, the distances of each individual to all other

individuals in P∪ P̄ are calculated, and sorted in a list. The inverse of the kth element of this

list (σk
i ), k being chosen by the user (analogous to the k − th nearest neighbour method), is

chosen as the density estimate, D(i), i.e. D(i) = 1/(σk
i +2). The fitness of an individual is then

assigned to be the sum of its raw fitness score and density estimate.

After calculating the fitness values for each member of the population and the archive, an

archive update operation is performed. In this operation the non-dominated individuals in

the set P∪ P̄ are copied to the archive of the next generation. If the number of non-dominated

individuals is less than the size of the archive size allocated, then, after filling the archive set

with the non-dominated individuals, the remaining places are filled with the best dominated

members from the set P∪ P̄. On the other hand, if the number of non-dominated individuals

is higher than the allocated archive size, a truncation procedure to remove non-dominated

individuals iteratively is performed. This ensures that the number of non-dominated solutions

copied to the archive is equal to the allocated archive size. With the fitness assignment and

archive update defined as above, population size N, archive size N̄, the SPEA2 algorithm can

be defined as follows [75]

Step 1 Create a random parent population P0 of size N; set the archive population P̄0 = φ,
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where φ is the null set; set generation counter κ = 0.

Step 2 Calculate fitness for all individuals in Pκ and P̄κ.

Step 3 Perform archive update to generate P̄κ+1 of size N̄.

Step 4 Stop is κ > κmax, i.e. if maximum generations is reached. Return the non-dominated

individuals in P̄κ+1.

Step 5 Perform selection on P̄κ+1, binary tournament selection with replacement, to fill the

mating pool.

Step 6 Apply crossover and mutation operators to the mating pool obtained from Step 5,

to generate Pκ+1; go to Step 2.

3.5.2 Non-dominated sorting genetic algorithm

The non-dominated sorting genetic algorithm-II (NSGA-II) is one of the most widely used

evolutionary multiobjective optimisation algorithm. NSGA-II, proposed by Deb et. al. [74],

is an improvement the earlier proposed NSGA by Srinivas and Deb [78] over three areas:

computational complexity, elitism, and need of sharing parameter specification. NSGA-II

uses a fast non-dominated sorting algorithm to identify Pareto sets and a crowding compar-

ison operator to maintain diversity in the population. The latter aspect is driven by the

motivation to get a uniform distribution of the solutions in the Pareto set. Before describing

the algorithm, the fast non-dominated sorting algorithm and the crowding distance operator

are first described.

NSGA-II works by classifying the population into non-dominated sets. The first non-

dominated set consists of all the non-dominated members of the population. The second set

consists of all the non-dominated members of the population after removing the members

of the first set. In this way the entire population is classified into different Pareto sets by

assigning a non-domination rank, irank: a non-domination rank of 1 is assigned to all members

of the first non-dominated set, non-domination rank of 2 to the next non-dominated set, and

so on. NSGA-II uses a fast method for this classification. Initially, for each solution, p, in the

popoulation two quantities: a) the domination count, np, which is the number of solutions

that dominate the solution p; and b) the set, S p, containing all the members of the population

which are dominated by the member p, are calculated. Now, the first non-dominated set has

already been obtained, i.e. all the members who have their domination count equal to zero.

Thereafter, for each solution p with np = 0, the members of the set S p are visited, and their

domination count is reduced by 1. During this process all members q in the set, S p, for

which the domination count becomes zero, are stored in a separate list. This separate list

constitutes the second non-dominated set, Q. This procedure of visiting each element of the

set S p, belonging to each member of the list Q, and reducing its domination count by 1 is

now repeated. This process leads to classification of all the members of the population into

non-dominated sets.

For preservation of diversity in the population, NSGA-II uses crowding distance. For each

member, p, in a non-dominated set, identified by the aforementioned procedure, the crowding

distance, idistance, is the average distance between the two points on either side of the member,

p, in its non-dominated set. For the corner points, idistance is assigned to be infinity. Based

on this the crowding distance operator (≺n) is defined as follows [74]
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solution i ≺n solution j if

irank < jrank or

irank = jrank and (idistance > jdistance)

Thus, between two solutions belonging to two different non-dominated sets, the solution

with a lower non-domination rank is preferred; if the solutions belong to the same non-

dominated set, then the lesser crowded solution is preferred.

With this background, the NSGA-II algorithm can now be defined

Step 1 Create a random parent population P0 of size N;

Step 2 Sort P0 into non-dominated sets, i.e. assign irank to each member i of N;

Step 3 Use the standard tournament, crossover, and mutation operators to form an offspring

population Q0 (see section 3.3.4.3) of size N;

Step 4 Set generation count, κ = 0;

Step 5 Generate combined population, Rκ by joining populations Pκ and Qκ;

Step 6 Sort Rκ according to non-domination. Let the set Fi refer to all members with

non-domination rank i;

Step 7 Create Pκ+1 by filling members from sets Fi, startin with i = 1 and incrementing i

by one. Identify the set Fl, the last non-dominated set which, if included, will make the

size of Pκ+1 will exceed N;

Step 8 Sort the last non-dominated set Fl based on crowding-distance operator, and fill the

remaining places in the population, Pκ+1, with the least crowded members of the last

front Fl;

Step 9 Create offspring population Qκ+1 by using the crowded-distance based tournament

operator, and standard crossover and mutation operators;

Step 10 If κ is equal to the maximum generation count, stop; otherwise set κ = κ + 1 and

go to Step 5.

NSGA-II is used in chapter 9 for a multiobjective optimisation study on coronary stents.

3.6 Surrogate assisted optimisation methodology

Having presented an overview of both surrogate modelling and optimisation algorithms in

this chapter, in this section the general optimisation methodology with the help of surro-

gates is outlined. As mentioned in section 3.2, when the analysis times for the high-fidelity

simulations (real response) are high, it is practically advantageous to construct a surrogate

for the response. This surrogate can then be used by the optimisation algorithms in lieu

of the high-fidelity simulations for approximating the response at all the points which need

evaluation by the chosen optimisation algorithm. The general methodology for optimisation

in such cases is [18]
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Step 1: Choose a sampling plan to generate locations, x(i), i = 1, 2, . . . , p where the high-

fidelity simulations will be run to evaluate the real response of the function at these

points;

Step 2: Run high-fidelity simulations at x(i), i = 1, 2, . . . , p, to calculate the corresponding

function response, y(1), y(2), . . . , y(p). Represent the inputs and outputs with the dataset,

D0 ≡ {x(i), y(i)}, i = 1, 2, . . . , p; set update counter, κ = 0;

Step 3: Construct a GP surrogate model using the dataset, Dκ by methods outlined in

section 3.2.3;

Step 4: Apply an optimisation algorithm to search the predictor, ŷ(x);

Step 5: Verify the results of the Step 4 by running the high-fidelity simulation on the

predicted optimum;

Step 6: If stopping criterion are met stop; otherwise update1 the dataset Dκ with additional

points generated either in Step 4 or other update methods [18, 50, 79] such as expected

improvement criterion, maximum error, etc., to generate the appended dataset Dκ+1;

set update counter κ = κ + 1; go to Step 4.

3.7 Conclusions

In this chapter an overview of surrogate modelling and optimisation is presented. It is clear

that in order to perform optimisation studies – single objective or multiobjective – on coronary

stents, figures or merit, i.e. objective functions, need to be formulated which can be used to

compare different stent designs. A major part of this thesis deals with such formulations. For

example, in the next chapter a measure of haemodynamic alteration in a stented coronary

artery is formulated. Similarly, in chapters 5, 6, and 8, objective functions from the point of

view of structural analysis, flexibility, and drug-distribution are formulated, respectively.

1The update process of surrogate models is referred as active learning in the field of machine learning [18]



Chapter 4

Haemodynamics in stented vessels

This chapter1 primarily deals with haemodynamic evaluation of coronary stents, i.e. to study

how the flow features in stented vessels are related to the design features of a stent. This re-

lation is made within the currently accepted paradigm for the causes of in-stent restenosis. In

subsequent chapters, other factors including arterial injury, drug-distribution, and flexibility

are evaluated. The aims of this chapter are

1. to set up a computational fluid dynamics (CFD) model to evaluate blood flow in a

stented segment of a coronary artery,

2. to compare flow features relevant to restenosis (cf. section 2.3.1) in five different coro-

nary stents, and

3. to formulate an objective function that quantifies haemodynamic alteration, relevant to

restenosis, that can be used in optimisation studies.

This chapter begins by a review of studies – in vivo, computational, and experimental –

that identify a potential link between altered haemodynamics and restenosis. Thereafter, the

details of the CFD model are presented, and the results of the comparison of flow features

between five different stents are discussed. Finally, a computationally measurable objective

function that can be used to compare stents based on haemodynamic alteration is formulated.

4.1 Introduction

Though coronary stent designs have evolved significantly over the past two decades, they

still face the problem of in-stent restenosis, formation of neo-intima within six-months of the

implant. Studies show that biological response post stent implantation depends on various

factors including the stent design and how it alters the haemodynamics. This chapter takes

five different stent designs, representing different coronary stents used in clinical practice,

1The contents of this chapter are published in the below mentioned article. Dr. A.I.J Forrester, as the
author’s then co-supervisor, contributed to this article through discussions, and Dr. N. Curzen is a cardiac
surgeon who actively advises the author regarding the clinical aspects of restenosis.
Pant, S., Bressloff, N. W., Forrester, A. I. J. and Curzen, N. The influence of strut-connectors in stented vessels
: A comparison of pulsatile flow through five different coronary stents. Annals of Biomedical Engineering,
38:1893–1907, 2010.
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and explores the haemodynamic differences arising due to the differences in their design. Of

particular interest is the design of the segments that connect two struts. Pulsatile blood

flow analysis is performed for each stent, using 3-D CFD, and various flow features viz.

recirculation zones, velocity profiles, wall shear stress (WSS) patterns, and oscillatory shear

indices are extracted for comparison. Vessel walls with abnormal flow features, particularly

low, reverse & oscillating WSS, are usually more susceptible to restenosis. Unlike previous

studies, which have considered the effect of design parameters such as strut-thickness and

strut-spacing on haemodynamics, this chapter investigates the differences in the flow arising

purely due to differences in stent-geometry, other parameters being similar.

The following subsections review the studies which show the effect of flow disturbance on

restenosis.

4.1.1 Effect of stent design: in vivo studies

Kastrati et al. [80] analysed 4,510 patients with stent implantations and showed that ves-

sel size and stent design were first and second most important factors affecting restenosis,

respectively. In their analysis, which predominantly used eight different types of stents, it

was found that, depending on the stent design, the incidence of restenosis varied between

20.0% to 50.3%. Rogers and Edelman [81] studied denuded rabbit iliac arteries after im-

planting steel stents for 14 days. They reported that stent material and configuration were

critical factors in determining intimal hyperplasia and thrombosis. By comparing two stents,

with the same surface area and mass but different strut-strut intersections, they reported

that reducing strut-strut intersections significantly reduced vascular injury, thrombosis, and

neointimal hyperplasia. Kastrati et. al. [82] performed an analysis over 651 patients, in which

coronary stents of similar designs but different strut-thickness were implanted, and reported

that reduction in strut-thickness resulted in significant reduction in angiographic and clinical

restenosis.

From the point of view of altered haemodynamics, a significant body of evidence suggests

that sites with low mean shear stress, oscillatory shear stress, high particle residence times,

and non-laminar flow are the sites where most intimal-thickening occurs. Ku et. al. [83,

84] reported a strong correlation between low mean wall shear stress (less than 0.5 Pa)

and atherosclerotic intimal thickening in human carotid bifurcations. They also reported

that regions experiencing oscillating shear stress may enhance atherosclerosis. Moore et. al.

[85] studied intimal thickening in 15 post-mortem aortas and reported that in the region

of the infrarenal aorta, vessel regions exposed to low mean and oscillating WSS are more

inclined to the development of plaque when compared to regions exposed to high WSS.

Wentzel et. al. [86] studied neointimal thickness in 14 patients after 6-months of Wallstent

implantation. They used a 3-D reconstruction of arteries to determine neointimal thickness

and computational flow analysis to calculate shear stress on the surface of the stent. For 9

out of 14 implantations they observed that neointimal thickening and in-stent shear stress

were inversely correlated. The aforementioned studies suggest that stent design, which leads

to specific WSS patterns, is a key determinant of restenosis rates.
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4.1.2 Effect of stent design: studies on altered haemodynamics

This section reviews computational and experimental studies that have identified a link be-

tween stent design and haemodynamic alteration.

4.1.2.1 Computational Studies

Computational fluid dynamics provides an excellent tool for studying micro features of the

flow and has been widely used for flow analysis through stented vessels. Berry et. al. [87]

performed experimental and 2-D computational flow analysis using custom-made models of

a braided wire stent, Schneider Wallstent R©, to reveal flow separation and formation of stag-

nation zones between wires. They studied the effect of wire spacing and diameter on the

stagnation zones and reported that stent geometry had a significant effect on arterial haemo-

dynamics. In particular, their findings concluded that the fluid stagnation zones are contin-

uous if wire spacings in the stent design is less than six wire diameters. Ladisa et. al. [88]

performed steady state 3-D CFD simulations in a Palmatz-Schatz slotted-tube stent using

data from in vivo measurements of canine left anterior descending coronary artery diameter

and blood flow velocity. They reported that regions of low wall shear stress are localized

around stent struts. They also suggested that angled struts that are aligned in the direction

of the flow could minimise flow disturbances. In another study they [89] reported that while

reducing the number of struts and strut-thickness reduced the percentage of arterial wall

area exposed to low wall shear stress, the opposite was observed if strut-width was decreased.

Rajamohan et. al. [90] studied pulsatile & non-Newtonian blood flow through a stent with a

helical strut matrix and identified recirculation zones immediately upstream and downstream

of each strut intersection. Their investigation suggested that such areas could be more sus-

ceptible to restenosis. Similar other studies [91, 92, 93, 94] have shown that stents, depending

on their design, cause significant alterations in haemodynamics leading to particular zones

which could be susceptible to smooth muscle cell proliferation and restenosis.

Seo et. al. [91] studied haemodynamic disturbances induced by stents in straight and

curved segments of vessels. They suggested that in curved segments the difference in WSS

patterns between the outer and inner walls depends on the vessel curvature and the flow

Reynolds number in a complex manner. They studied the flow for two different designs,

one with spiral structure and one with an intertwined ring structure, and revealed that the

stent-design had a major effect on the flow disturbances. Balossino et. al. [95] modelled

expansion of four different stents against plaque and artery using finite element analysis and

used the expanded geometries to evaluate the haemodynamics. They compared the WSS

distribution for these stent models and also studied the effect of strut-thickness on vessel

haemodynamics. In particular, they reported high wall shear stress values at the centre of

the stent cells and a decreasing trend in wall shear stress as one moved away from the centre

towards the stent struts. The aforementioned computational studies re-affirm the role of stent

design in determining WSS in stented artery segments, and hence restenosis rates.

4.1.2.2 Experimental Studies

Some experimental studies have been performed which employ various methods like dye

injection flow visualization and particle image velocimetry. Peacock et. al. [96] used an

in vitro pulse duplicator system to investigate flow disturbances in the downstream region
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of stented segments and used alumina particles for flow visualization. They detected flow

instabilities 1 cm downstream, and no instabilities were found 5 cm downstream, for mild-

exercise conditions. Berry et. al. [87] used dye injection flow visualization and reported

accumulation of dye at each strut-strut intersection. Benard et. al. [97] used a programmable

pump and particle image velocimetry to investigate laminar flow over stents and identified

zones around the stent struts that had low WSS. Such experimental studies imply a correlation

between the stent design and flow instabilities in stented vessels, particularly in and around

the stent-struts.

4.1.3 Studies on endothelial cell response

Relatively few studies exist which investigate the response of endothelial cells to haemody-

namics in stented vessels. DePaola et. al. [98] showed by in vitro experiments that the

vascular endothelium responds to shear stress gradients. They reported that endothelial cells

migrate from areas where shear stress is low but the shear stress gradient is large, and that

cells remaining in such regions divide at a faster rate compared to the cells exposed to uni-

form shear. Nagel et. al. [99] reported that alteration of blood flow leads to differential WSS

gradients that modulate endothelial gene expression at atherosclerotic prone sites. Yeh et. al.

[100] compared the growth of endothelial cells on different stent materials. They concluded

that endothelial cell growth and protein expression level varies widely depending on the metal

sheet used. In particular, for all seeding levels, they found that endothelial cell growth was

high for TiN and TiO2 when compared to 316L stainless steel and nitinol.

Although many studies have tried to understand the effect of stent geometry on altered

haemodynamics, most have focussed on the effect of strut spacing and strut thickness. This

chapter deals with the effect of stent shape on haemodynamics. Connectors (mostly flex) are

an essential component of a stent-design as their presence makes the stent flexible, which in

turn improves stent deployment. With the new stent designs now used in clinical practice,

especially drug eluting stents, there comes a need to study the effect of these connectors,

along with the overall geometry, on haemodynamics. In order study these effects a CFD

model is developed. This model forms the content of next section.

4.2 Methodology

4.2.1 Geometry

The five stents used in this chapter resemble the ART stent [8], Bx VELOCITY stent [34],

NIR stent [34], the MULTI-LINK Zeta stent [34], and the Biomatrix stent [101]. These stents

are chosen to represent a wide range of stent geometric shapes: the ART stent has straight

connectors, the NIR, Bx VELOCITY, and MULTI-LINK ZETA stents have differnt complex-

ity of the curved connectors, and the Biomatrix stent does not follow quarter-symmetry like

the other stents. The details of each stent are listed in table 4.1.

In order to make a comparison between the stents, representative geometries for each

stent are constructed with the same diameter (3 mm), length (8 mm), strut width (0.05 mm),

and strut thickness (0.10 mm). Strut thickness represents the radial dimension of the struts

and strut width represents the circumferential dimension. It should be noted that the strut

spacings used in this chapter are purely representative and they are likely to differ, to some
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Table 4.1: Stents: details

Stent Manufacturer Referred as

ART stent Arterial Remodelling Technologies Stent A
BxVELOCITY stent Johnson & Johnson Stent B
NIR stent Boston Scientific Stent C
MULTI-LINK Zeta Abbott Vascular Stent D
Biomatrix stent Biosensors Stent E

Figure 4.1: Flat geometries for the five stents – left top: Stent A, left mid: Stent B, left
bottom: Stent C, right top: Stent D, right bottom: Stent E

extent, from the actual spacings for each of the stent designs. Figure 4.1 shows the flattened

out geometries for one quarter of each stent except for Stent E, for which a half section

is shown. The straight lines drawn in each model define the line on the artery wall along

which wall shear stress and modified oscillatory shear index (MOSI) values are calculated

and compared in subsequent figures. For all flow simulations the stent is placed at the centre

of the artery with an axial distance of two times the artery diameter on both the proximal

and distal ends of the stent. The artery wall is assumed to be straight with a constant

diameter. Figure 4.2 shows the stent-artery assembly for Stent B. Numerical simulations

are performed over a quarter of the stented segment for all stents, except for Stent E for

which a half segment (owing to the quadrature links which do not allow quarter symmetry)

is used, to exploit the periodic symmetry of the stent-artery assembly. All the geometries are

constructed in Rhinoceros 4.0, a NURBS-based CAD modelling tool (1993 – 2008, Robert

McNeel & Associates). Approach 2 (section 2.6.1.1) is used to construct Stent A while all

the other stent models are created using approach 3 (section 2.6.1.2). Figure 4.3 shows the

full 3-D models of the five stents.

4.2.2 Governing Equations

The following mass conservation (equation 4.1) and momentum conservation (equation 4.2)

equations are solved over the computational flow domain of the stent-artery assembly:

∇.(v) = 0, (4.1)
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Figure 4.2: Stent-artery assembly for Stent B

(a) Stent A (b) Stent B

(c) Stent C (d) Stent D

(e) Stent E

Figure 4.3: 3-D models of the stents used in this chapter
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ρ
∂v

∂t
+ ρv.∇v = −▽P + µ∇2v. (4.2)

In the above equations v, ρ, µ and P represent blood velocity, density, dynamic viscosity,

and pressure respectively. Blood flow is assumed to be pulsatile, incompressible, laminar, and

Newtonian with a density of 1.060×10−3 kg/m−3 and dynamic viscosity [88] of 3.7×10−3 Pa-s.

Reynolds number (Re) and Womersley parameter (α) are defined as follows:

Re = ρ|v|D
µ
, and α = D

√

πρ

2µT .

where D is the internal diameter of the artery and T denotes the time period of the cardiac

pulse.

At every time, t, in the cardiac pulse the following two parameters are defined

pl(t) =

∫∫

wall
τmw0.5 dA

∫∫

wall
dA

, (4.3)

pr(t) =

∫∫

wall
τx

w0.0 dA
∫∫

wall
dA

, (4.4)

where

τ
(·)
wx =



















1, if τ(·)w <= x;

0, otherwise.
(4.5)

where τmw and τx
w represent wall shear stress magnitude and axial wall shear stress, respectively.

Hence, pl(t) and pr(t) denote the percentages of artery wall area exposed to WSS magnitude

less than 0.5 Pa and axial WSS less than 0.0 Pa respectively. While pl(t) is a measure of low

WSS in the artery wall, pr(t) measures the artery wall area exposed to reverse flow.

To compare the oscillatory nature of WSS, the modified oscillatory shear index [90], is

calculated using the following equation:

MOS I =

∫ T

0
τx

wdt
∫ T

0 |τ
x
w|dt
, (4.6)

where both integrals are calculated over one cardiac pulse.

4.2.3 Boundary Conditions

The outer wall of the stent is assumed to conform to the inner artery wall with no gaps.

Both the stent and the artery wall are assumed to be rigid with a no-slip flow boundary

condition imposed on each. A physiologically realistic coronary artery waveform is applied

as the velocity inlet condition and the outlet is set to a zero pressure boundary. The inlet

velocity profile is based on laser doppler velocimeter (LDV) measurements carried out in a

replica of human LAD coronary artery [102]. These velocities are applied as plug flow at

the inlet. Figure 4.4 shows the inlet velocity waveform where the eight points of interest are

marked. Table 4.2 summarizes the key features of the inlet waveform.
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Figure 4.4: Inlet velocity profile showing the points of interest in one pulse

Table 4.2: Inlet velocity: key features

Feature Value

Time period (T) 0.967 s
Mean Velocity 16.29 cm/s
Peak velocity 29.0 cm/s
Mean Reynolds number 140
Peak Reynolds number 249
Womersley parameter (α) 1.97
Eight points of interest 0.026s, 0.078s, 0.217s, 0.340s, 0.419s,

0.489s, 0.677s, and 0.897s

4.2.4 Computational Fluid Dynamics

Star CCM+ 3.06.006, CD-adapco, Melville, NY USA, a commercially available flow solver, is

used for generating finite volume meshes and for numerically solving the governing equations.

An implicit unsteady solver and segregated laminar flow solver (which uses the semi-implicit

method for pressure-linked equations, SIMPLE, algorithm for pressure-velocity coupling), is

used [103]. A second order temporal discretisation scheme is used for the transient term and

a second order upwind scheme is used to discretise momentum. Under-relaxation factors of

0.7 and 0.3 are used for velocity and pressure, respectively.

Mesh, time-step, and pulse dependence studies are carried out for Stent C. Three different

meshes are used: base, mesh-1, and mesh-2 (mesh-1 and mesh -2 have 1.5 and 2.5 times the

number of cells relative to the base mesh, respectively). The WSS magnitude results for

mesh-1 and mesh-2 vary by less than 1% as shown in Figure 4.5a.

Four different times steps viz. 10−2s, 10−3s, 5x10−4s, and 10−4s are used for time-step

dependence study on mesh-1, see Figure 4.5b. The maximum difference in WSS magnitude

between time steps of 10−2s and 10−3s is nearly 30%. However differences in WSS magnitudes

for time steps 5x10−4s and 10−4s when compared to time-step of 10−3s are less than 1%.

Simulations for five pulses are carried out for mesh-1 and the results show little variation

after the second pulse as shown in Figure 4.5c. While the difference in WSS magnitude

values for pulse 1 and pulse 2 is quite large, the difference in WSS magnitude for the 2nd

pulse onwards is less than 0.02%.

Based on the mesh, time-step and pulse dependence studies, all final simulations are run

for two pulses for a time step of 10−3s and mesh sizes as shown in table 4.3. For each time-step
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Table 4.3: Mesh statistics

Stent Base size (mm) Cell size in stent No. of cells

Stent A 0.075 50% of base 1,076,793
Stent B 0.075 50% of base 1,097,951
Stent C 0.075 50% of base 1,097,788
Stent D 0.075 50% of base 1,031,211
Stent E 0.075 30% of base 1,855,559

50 inner iterations of the SIMPLE algorithm [103] are carried out to achieve convergence.

(a) Mesh dependence study: WSS magnitude along central line on artery wall for Stent C; second point in

Figure 4.4; second pulse; time-step 10−3s

(b) Time-step dependence study: WSS magnitude along central line on artery wall for Stent C; fifth point in

Figure 4.4; mesh-2; second pulse

(c) Pulse dependence study: WSS magnitude along central line on artery wall for Stent C; first point in Figure

4.4; mesh-2; time-step 10−3s

Figure 4.5: Mesh, time-step, and pulse dependence studies for Stent C
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4.3 Results

The flow features in the stented vessels are reported both qualitatively and quantitatively. In

particular, differences in wall shear stress patterns, recirculation zones, and oscillatory shear

indices are reported, thereby confirming the effect of stent design, especially the connectors,

on haemodynamics of stented vessels. Furthermore, the connector design in Stent C is varied

to study the effect of connector length, in the cross flow direction, on flow features.

Figure 4.6: Axial WSS at point 5: Stents A-E from top to bottom

4.3.1 Wall Shear Stress

Wall shear stress follows a general trend for all the stents except for the regions between the

connectors. Figure 4.6 shows the general axial WSS patterns for all stents at point 5, the

point of maximum inlet velocity on the cardiac pulse. For all five stents, axial WSS has a

high value proximal to the stent and a relatively lower value in the area occupied by the

stent. Artery wall area distal to the stent experiences a higher axial WSS again as the flow

disruptions minimize due to absence of stent struts. For Stents D and E, a larger artery

area is exposed to relatively low WSS (green area in Figure 4.6 after the stent ends) , when

compared to Stents A, B, and C, at the distal end of the stents. For all stents, and more

notably for Stents A, B, and C in Figure 4.6, axial WSS at the centre of the struts decreases

for consecutive struts in the direction of the flow (transition from red to yellow in consecutive

struts). The artery wall region around the first strut experiences a relatively high WSS as
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Figure 4.7: Axial WSS for all stents along the central line at Point 3

compared to the area around other struts. The areas of low WSS are found to be localised

around the stent struts. This is in agreement with earlier findings of Ladisa et. al. [88] and

Rajamohan et. al. [90].

Recirculation zones are formed at the proximal and distal end of each strut/strut-connector

intersection, which cause the WSS to change sign before and after each strut/strut-connector

intersection. In Figure 4.6 the blue regions show the artery wall area with negative axial

WSS implying formation of recirculation zones. The phenomenon of recirculating flow is

particularly significant in the decelerating phase of systole (point three, cf. Figure 4.4) as the

recirculation zones are largest during this phase. Figure 4.7 shows the axial-WSS variation,

along a central line on the arterial wall (as shown in Figure 4.1), for the five stents at point

3 of the cardiac pulse. For all stents the WSS values proximal and distal to the ends are

the same. In between the struts WSS recovers from zero to a peak value which decreases for

consecutive struts in the direction of flow. This peak value is different for all the stents and

depends on the overall stent design. Depending on the design of the strut connectors WSS

oscillates spatially in the connector region between zero, negative, and a positive value. In

contrast to other stents, Stent C connectors allow the WSS to recover to a positive value in

between the struts (as apparent in Figure 4.7). This can be attributed to the fact that Stent

C connectors have more open space between the connectors.

Previous studies [83, 104] suggest that areas exposed to WSS magnitude of less than 0.5

Pa correlate to areas that show most intimal thickening. Balossino et al. [95] have used

this 0.5 Pa limit as a benchmark to compare the performance of stents. Figure 4.8a shows a

histogram of the percentage of vessel wall area, over the axial length occupied by the stent,

exposed to WSS less than 0.5 Pa, at the eight points listed in table 4.2. At points 1 and 3

this area is 100% irrespective of the stent as the flow is decelerating in the systole phase of

the cardiac cycle. Point 2, also in the systole phase, shows unexpected behaviour of less than
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100% area exposed to low WSS. However, the reason for this becomes clear when considering

the negative WSS in Figure 4.8b. Other points show considerable difference in the area

exposed to low WSS which can be used to compare their performance. Stent A outperforms

the other stents at all points except Point 2. Stents D and E have a significantly higher

percentage of low WSS area as compared to the other stents. While the difference between

Stents B and C is not very large, Stent C has a slightly higher area exposed to low WSS.

Another factor that could promote restenosis is negative WSS caused by reverse flow.

Figure 4.8b shows a histogram of the percentage vessel area exposed to reverse flow at the

eight points for all stents. Point 2, owing to the negative inlet velocity and a hence strong

reverse flow, has the highest percentage area exposed to reverse flow. While points 1 and 3

show no difference in terms of the 0.5 Pa WSS benchmark, these points show very significant

differences in the area exposed to reverse flow. Stent A, although outperforming other stents

at most points shows a near 100% area exposed to reverse flow at point 2.

(a) Percentage vessel wall area below 0.5 Pa WSS magnitude

(b) Percentage vessel wall area exposed to reverse flow

Figure 4.8: Percentage vessel wall area exposed to low WSS & reverse flow

4.3.2 Recirculation zones

The presence of a stent inside the vessel gives rise to the formation of recirculation zones.

Figure 4.9 shows the recirculation zones formed between the struts and the connectors of all
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the stents at point 3 of the cardiac pulse. Each segment in the connector design gives rise

to one recirculation zone. For instance Stent B has four recirculation zones in the connector

region while Stent D has five.

(a) Stent A

(b) Stent B (c) Stent C

(d) Stent D (e) Stent E

Figure 4.9: Recirculation zones at point 3

Figure 4.10, shows the velocity profile adjacent to the artery wall for Stents B, C, and D

at point 3 of the cardiac pulse. Recirculation zones in the cross flow direction are observed for

these designs close to the artery wall. This can be attributed to the fact that the connectors

in these designs, owing to their wavy nature, protrude into the space between the struts and

hence cause more alteration in the flow.

4.3.3 Modified oscillatory shear index

For all the five stents modified oscillatory shear index is calculated using equation (4.6) along

the central line in the artery wall as shown in Figure 4.1. MOSI is important as this index

gives a time average value and hence is a measure of axial WSS over the entire pulse as

opposed to single points in time. MOSI values of ‘1’ or ‘-1’ indicate that the axial WSS is

positive or negative over the entire cardiac pulse respectively. Figure 4.11 shows a plot of

MOSI values along the central line mentioned above. Each plot shows the MOSI values for
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Figure 4.10: Stents B, C, and D : Secondary recirculation zones

the one connector-strut-connector segment from the assembly.

4.3.4 Variation in Stent C

In order to further investigate the effect of connector shape on haemodynamics, the design of

the connector in Stent C is varied. Keeping the thickness constant, its length in the cross-flow

direction is varied. This changes the area between the struts that is covered by the connector.

Figure 4.12 shows the two altered designs – one with a shorter cross-flow length and one with

a longer cross-flow length. These are referred as Stent C-SC and Stent C-LC, respectively.

Simulations are carried out for these designs and the results are compared with Stent C.

Figure 4.13 shows a comparison of percentage vessel area below 0.5 Pa and Figure 4.14 shows

a comparison of percentage vessel area exposed to reverse flow for Stent C and its variations.

4.4 Discussion and formulation of objective function

WSS, recirculation zones, MOSI, and results for all stent designs are reported above. While

the general qualitative features of WSS, such as localisation of low WSS regions around struts,

match those described in earlier studies [88, 89, 90, 87, 92], this chapter brings forth finer

differences at different parts of the cardiac pulse by comparing the factors that could have an

effect on restenosis rates. Such differences, when compiled over the entire cardiac pulse, can

be used to compare the relative haemodynamic performance of various stents.

Areas of low WSS (less than 0.5 Pa) and reverse flow are found for all the stents during

the entire cardiac cycle. For points 1 and 3, 100% of wall area is exposed to low WSS. This
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Figure 4.11: MOSI values for a strut with connectors in each side

Figure 4.12: Variations in Stent C : top: normal, mid: shorter, and bottom: longer connectors
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Figure 4.13: Area exposed to WSS magnitude below 0.5 Pa for Stent C variations

Figure 4.14: Area exposed to reverse flow for Stent C variations

can be attributed to the decelerating nature of flow at these points and that the inlet velocity

is low. The peculiar behaviour of point 2, which too is in the decelerating phase and yet has

a less than 100% area exposed to low WSS, can be explained by the fact that in this phase

the inlet velocity gradients are high which cause a strong reverse flow thereby causing the

axial WSS to be negative but higher than 0.5 Pa in magnitude. This is confirmed in Figure

4.15 for the following index, AWI, as defined below for one cardiac pulse–

AWI(t) =

∫∫

wall
τx

w(t)dA
∫∫

wall
dA

. (4.7)

The horizontal dashed lines bound the region with axial WSS magnitude less than 0.5 Pa.

Since other components of WSS are very small when compared to axial WSS, the major factor

determining the WSS magnitude is its axial component. Zones 1, 2, and 3 in Figure 4.15

mark the time zones in the systole phase of the cardiac pulse where the axial WSS magnitude

exceeds ±0.5 Pa. Since Point 2 lies in zone 2, the WSS magnitude at some regions in the

artery wall is greater than 0.5 Pa.

Returning to Figure 4.8a, points 4, 5 ,6, 7, and 8 also show considerable differences in the

percentages of areas exposed to low WSS. Stents D and E stand out, both for low and reverse



4.4. Discussion and formulation of objective function 65

Figure 4.15: AWI for all stents for one cardiac pulse

WSS – because of the relatively lower strut spacing. However, even though Stents A, B, and

C, have the same strut spacing, percentage areas exposed to low WSS differ significantly.

Similarly, for all points there are significant differences in the percentages of area exposed

to reverse flow between stents A, B, and C. This can be attributed to the difference in the

design of the connector.

The connectors in Stents B,C, and D have a finite length in the cross flow direction – this

cross-flow area coverage being largest for Stent C. Consequently, the struts tend to project

into the central part of the space between struts. This causes a further disruption of the

flow in that area - illustrated by Figure 4.10 which shows the velocity profile adjacent to the

artery wall at point 3 in the cardiac pulse. Recirculation in the top ends of the connectors is

clear in these designs. Such a phenomenon is absent in Stents A and E as the connectors are

a straight segment joining the struts. The difference of such a protruding connector design

is further confirmed when Stent C is altered to make the connector shorter and longer in the

cross-flow direction (Stent C-SC and Stent C-LC). It can be seen in Figures 4.13 and 4.14

that areas exposed to low WSS and reverse flow are proportional to the connector length in

the cross-flow direction.

Traditionally [90], MOSI has been used to quantify the oscillatory nature of WSS. In

Figure 4.11 we see that MOSI takes a value close to ’-1’ at each strut-connector intersection

and between the connectors. This implies incessant reverse flow or formation of recirculation

zones over a large part of the cardiac cycle at such points. In Stents B and D, due to the

presence of multiple gaps in the connector design multiple areas of persistent reverse flow

are formed. This is consistent with the results of dye injection flow visualisation studies [87]

where more dye accumulation was observed at each strut-strut intersection. The number of

recirculation zones formed is directly related to the design, specifically the number of gaps

either between struts or between the connector; see Figure 4.9 which illustrates this point.

However, the recirculation lengths depend on the overall strut-connector-strut configuration.
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Another factor which affects the extent of recirculation zones is the cross section of the struts.

This was shown in a study [105] where stents with cross sections of a circular arc shape were

compared with those having a rectangular shape. Streamlining of the strut cross section

would reduce the size of the recirculation zones, and consequently reduce the areas exposed

to low and reverse WSS.

An in vitro experimental study [98] showed that vascular endothelium responds to shear

stress gradients. It was reported that endothelial cells migrate from areas where shear stress

is low but the shear stress gradient is large, and that cells remaining in such regions divide at

a faster rate compared to the cells exposed to uniform shear. Hence, the endothelial response

to different WSS patterns created by different stents could be important in the process of

re-endothelialisation. Furthermore, if the tangential components on a plane perpendicular

to the flow direction are considered, additional recirculation of flow is observed; see Figure

4.16 which shows the in-plane velocity components, at the centre of the stent, at point 3.

This additional recirculation of flow, although with velocity magnitudes of roughly 1/100th of

the inlet velocity, induces transverse WSS and WSS gradients which could have an effect on

endothelial cell response. Qualitatively, Stents A and E, have minimum recirculation (when

the tangential components are considered) on planes perpendicular to the flow direction.

Figure 4.16: Recirculation zones on a cross section perpendicular to the flow direction: top
left:Stent A; top mid: Stent B; top right: Stent C; bottom left: Stent D; bottom right: Stent
E

From Figures 4.8a and 4.8b it can be concluded that differences in stent designs are

apparent for areas of both low WSS and reversed flow. Keeping both the factors in mind and

assuming that both the phenomena are equally unwanted, an index can be proposed which

takes a weighted average of these percentages at the relevant points. Thus the haemodynamic

low and reverse flow index (HLRFI) is defined as –
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HLRFI =

n
∑

i=1

(4i pil + 4i pir)

2
n

∑

i=1

4i

, (4.8)

where 4i are the weights for each of the n points in the cycle, and pil & pir denote percentages

of areas exposed to low and reverse flow, respectively.

It is expected that the higher the value of n, the better will be the efficacy of the index in

determining the haemodynamic alteration due to stents. The reason for taking a weighted

average is that some specific points, such as the point of negative inlet velocity (point 2), could

be clinically more relevant than others, and may require (a higher) differential weighting.

The peculiar nature of such points on the cardiac pulse can be seen for Stent A, for which

percentage area, exposed to both low WSS and reverse flow, at point 2, is abnormally high

in reference to its relative performance at other points.

In order to capture the entire pulse, HLRFI can be modified as follows:

HLRFI =

∫ T

0 (4(t)pl(t) + 4(t)pr(t)))dt

2
∫ T

0 4(t)dt
, (4.9)

where 4(t) is the weight function for the cardiac pulse and pl(t) & pr(t) is the percentages of

artery area, A, exposed to low and reverse WSS at time t. pl(t) & pr(t) can be defined as in

equations 4.3 and 4.4 respectively.

It should be noted that the wall area over which the surface integrals for pl(t) & pr(t) are

calculated includes only the area exposed to flow, i.e. it exludes the wall area covered by

the stent. Assuming the weight function to be unity, HLRFI for all the stents and Stent C

variations, as calculated using equation 4.9, are shown in Figures 4.17 and 4.18 respectively.

HLRFI, being one single number evaluated over the entire pulse, can be used to rank stents

based on their haemodynamic performance. Lower HLRFI values indicate lesser alteration of

haemodynamics, and hence better resistance of a stent towards restenosis.

Figure 4.17: HLRFI for all the stents

As the length of Stent C connector is lowered in the cross-flow direction the haemodyanamic

alteration decreases. This is reflected in decreasing HLRFI values for Stent C variations from

25.95% to 22.61% to 19.91%. This decreasing trend tends towards a value of 18.81% for Stent
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A, which can be seen as a Stent C variation with minimal connector length in cross-flow di-

rection. It is also interesting to note that Stent C-LC has the largest HLRFI value, even

higher than Stents D and E which have a shorter strut spacing. This further emphasizes the

effect design of strut connectors can have on stented vessel haemodynamics.

It is clear from the above findings that stent design dictates haemodyanamic alteration.

Although strut thickness and spacing are the most important factors, blood flow depends

strongly on the shape of the struts and the connectors. Strut thickness is governed mostly

by material properties of the stent to minimise post-expansion recoil and manufacturing

processes. Strut spacing is governed by the constraints of structural strength and flexibility.

Thus the shape of the struts and connectors can be varied to improve the haemodynamic

performance. It is important to be conscious of the fact that changing the stent design impacts

other properties too, especially drug distribution. For instance, haemodynamic results for

Stent C, C-SC, and C-LC, show that Stent C-LC has poor haemodynamic performance –

however, it is likely to have better drug distribution potential as the links cover a larger wall

area in the cross-flow direction.

Significant differences exist between the stents with regards to the number and extent of

recirculation zones in the directions of both axial and cross-flow. Although it is not currently

very clear how endothelial cells respond to complex flow phenomenon, it is possible that

restenosis rates could be affected by them. It is notable that Stent A produces minimal

alteration of flow both in the axial direction and the direction perpendicular to the main

flow. This is reflected in its lowest HLRFI value (Figure 4.17) and minimal recirculation in

the direction perpendicular to the main flow (Figure 4.16). This behaviour can be attributed

to the fact that Stent A has straight segments as connectors between the struts. These straight

segments, being aligned in the direction of the flow, disturb the flow to a lesser extent when

compared to other connectors which, owing to their wavy nature, do not align completely

with the direction of the flow.

In order to rank stents, an objective function (figure of merit) is needed which quantifies

the flow features, and hence determines the patency of stents. In the past, relatively few

metrics have been defined to quantify the distribution of WSS in arterial flow. One such

metric is defined by Bressloff [106] to quantify relevant WSS information in a human carotid

bifurcation. Along similar lines, the proposed HLRFI index captures and quantifies the two

Figure 4.18: HLRFI for all the Stent C variations
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phenomena of low and negative WSS which are detrimental to the resistance of a stent

against restenosis. HLRFI, defined as in equation (4.9), can be used as an objective function

to compare a family of related stent designs solely on their haemodynamic performance. For

instance, Stent E, with an HLRFI value of 24.91%, has almost 33% worse haemodynamic

performance when compared to Stent A (with an HLRFI value of 18.81%). Similarly Stent

C-LC has 30% and 38% worse performance when compared with Stent C-SC and Stent A

respectively.

4.5 Conclusions

Different points in the cardiac pulse produce different responses to the stent when measured

by artery wall areas exposed to low WSS and reverse flow. Substantial differences in the

flow features exist when both these factors are considered, simultaneously. Even for similar

strut spacings, the design of the connector, especially its length in the cross-flow direction,

significantly influences blood flow. Particularly for Stent C, it can be concluded that the

haemodynamic alteration, measured by percentages of areas exposed to low and reverse WSS,

is proportional to the length of the connector in the cross-flow direction. The relatively better

performance of Stent A can be attributed to its connector’s minimal cross-flow length and

better alignment with the flow. Furthermore, the number of recirculation zones formed, and

hence the oscillations in the MOSI values along any axial line on the arterial wall, is equal

to the gaps between the stent struts and connectors. The differences in HLRFI values, which

may be indicative of a stent’s resistance to restenosis, reinforce the effect of stent design on

alteration of haemodynamics. In essence, overall stent efficacy can be improved by improving

the connector designs (in particular, their cross-flow length and alignment with flow) in the

stent for minimal alteration of blood flow or as a tradeoff to improve other features such as

drug distribution or flexibility.

To conclude, a CFD model to evaluate haemodynamic alteration is developed in this

chapter. Furthermore, with a view of performing design optimisation studies in future chap-

ters, an objective function, namely HLRFI, has been formulated. This measure of HLRFI

combines the flow features in a stented artery that relevant to restenosis. In future chapters

HLRFI is used as a figure of merit to compare different stents based on their haemodynamic

efficacy.

Having evaluated the haemodynamic response, the next chapter deals with balloon-

expansion of stents in order to quantify the mechanical stress-strain environment in a stented

artery. One of the limitations of the models in this chapter is that the artery segments are

assumed to be straight, cylindrical, and they contain no plaque. In reality, the stent is ex-

panded in the diseased artery using a balloon. Hence, it is important that the geometry used

for flow simulations, i.e. for the CFD models developed in this chapter, is the post balloon

expansion geometry of the stented artery. The balloon expansion models developed in the

next chapter serve this purpose.
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Balloon expansion of stents

This chapter deals with the numerical modelling of the expansion process of balloon-expandable

stents inside a stenosed artery. Such modelling is essential for the following three reasons –

• to investigate the acute recoil after the stenting procedure,

• to investigate the stress-strain distribution in the stent and the arterial tissue, and

• to obtain the post-stenting geometry of the stent, plaque, and the artery, which can be

used in haemodynamic models developed in chapter 4.

As discussed in section 2.5, an ideal stent should have high radial strength. This radial

strength can be measured in term of the acute recoil after expansion of the stent. Further-

more, in order to minimise arterial injury due to the stenting procedure, an evaluation of

the stress-strain environment in the stented segment of the artery is needed. Lastly, the post

stenting geometry of the stented vessel is needed for accurate evaluation of haemodynamics

as discussed in chapter 4. In this chapter finite element analysis (FEA) models are developed

to meet all these objectives. In particular this chapter has the following aims

1. to develop a balloon-expansion model of a stent against the plaque in a representative

model of a diseased artery,

2. to quantify structural strength of a stent in terms of acute recoil, and

3. to quantify the change in the mechanical stress-strain environment after the stenting

procedure.

This chapter is organised as follows. In the first section, a review of a) studies which show

a correlation between arterial injury and restenosis, and b) various approaches employed by

researchers to model expansion of stents is presented. Thereafter, the expansion modelling

approach adopted in this thesis is presented. Two sets of expansion are modelled. First, a

free expansion of a stent, i.e. without the presence of plaque and artery, using a balloon is

presented. This is primarily done to validate the obtained numerical results with manufacturer

data (in-vitro testing without the resistance of a vessel). Then, the expansion model which

includes a representative plaque and the artery is presented. Finally, the objective functions

(figures of merit), representing radial strength of a stent and injury caused by the stenting

71
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procedure, are formulated. These objective functions are used for optimisation studies in

future chapters.

5.1 Introduction

Even though the primary aim of stenting is to achieve lumen gain in stenosed arteries, other

factors such as the post-procedural injury and the stress-strain environment in the arterial

tissue can not be neglected while designing a good stent. Several studies, Farb et. al [107],

Schwartz et. al. [108], Carter et. al. [109] and König et. al. [110], have shown that neointimal

formation is correlated to the vessel injury caused during the stenting procedure. Rogers and

Edelman [81] showed that stent configuration was a key determinant of vessel injury caused

due to stent implantation.

Vessel injury comprises endothelial exposure, intima laceration, and rupture of the medial

layer [110]. Usually, it is quantified by the extent of strut penetrations into the arterial

tissue. Schwartz et. al. and Carter et. al. in their respective studies reported correlations of

r = 0.84 and r = 0.72 between mean neointimal hyperplasia and injury. Hoffman et. al. [111]

performed a study with Palmaz-Schatz stents and showed that intimal hyperplasia moderately

correlated with the aggressiveness of the balloon implantation technique. Kornowski et. al.

[112] reported that neointimal formation after coronary stenting was dependent on both

arterial injury and inflammatory reaction. Other studies, Kastrati et. al. [82], Pache et. al.

[113], have concluded that stent geometry, specifically the strut thickness, is a key determinant

of restenosis rates. A review article by Morton et. al. [114] showed the effect on restenosis of

various geometrical stent parameters, such as type of stent (coil, tube, slotted, etc.), length,

percentage metal coverage, number of struts, strut thickness, cross-section, surface finish,

symmetry, and material. This article, supported by a series of randomised trials, suggests

that stent geometry plays an important role in determining a stent’s resistance to restenosis.

In engineering terms, injury can be translated to the post-procedural stress-strain envi-

ronment in the arterial tissue. In order to pass an engineering judgement on the performance

of a group of stents, we must be able to evaluate the stresses, quantify them, and develop

a figure of merit (objective function) based on the evaluated stresses. Finite element anal-

ysis provides an efficient technique for such evaluations, and has been used in the past for

numerous numerical studies on stents.

A number of different techniques, with different levels of complexity, have been used in

the past to model stent expansion. Such strategies can be divided into the following classes –

• Disregard of balloon

– application of uniform radial pressure to the inner surface of the stent.

– application of uniform displacements to the inner surface of the stent.

• Using a cylindrical balloon

– application of uniform radial pressure to the inner surface of the cylinder.

– application of uniform displacements to the inner surface of the cylinder.

• Using a folded balloon

– uniform radial pressure inside a tri-folded balloon.
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– application of a negative pressure to a fully inflated balloon to get deflated shape

(multi-folded), and then inflating the balloon by application of uniform radial

pressure.

Before 2000, most studies on determining mechanical properties of stents were based on

self-expanding stents, Perry et. al. [115], Auricchio et. al. [116], and Trouchu et. al.

[117, 118]. Rogers et. al. [119] investigated the effect of balloon-artery interactions by means

of in vivo studies and 2-D finite element models. They demonstrated that inflation pressure,

strut spacing, and balloon compliance, all affect the surface contact stresses on the artery

wall.

Dumoulin et. al. [120] were the first to perform a 3D analysis of stent expansion. They

investigated the free expansion (without including the plaque and the artery) of a 3-D model

of a Palmaz P308 (Johnson & Johnson company) stent. They evaluated mechanical char-

acteristics such as recoil, shortening, resistance to crushing, buckling, and fatigue. Their

in vitro observations of an expanding stent led them to conclude that the stent expanded

uniformly everywhere except at the ends. Hence, they disregarded the balloon by assuming

an infinite length prosthesis, and drove the finite element analysis by applying a uniform

radial pressure to the inner surface of the stent. Auricchio et. al. [121] did a similar study

with a Palmaz-Schatz (Johnson & Johnson) like stent for both free expansion and by in-

cluding the plaque and the artery in the analysis. Apart from reporting several mechanical

parameters such as elastic recoil, foreshortening, metal-artery ratio, and residual stenosis,

they suggested a modification in the stent geometry to facilitate uniform expansion of the

stent. This study too neglected the presence of the balloon. Etave et. al. [122] used FEA

to study two different types of stents – slotted tube and coil stents. They drove the analysis

by specifying radial displacements to the stent nodes. Apart from reporting the mechanical

properties like other aforementioned studies, they also evaluated flexibility. Migliavacca et.

al. [123] studied the effect of stent geometry (thickness, metal-to-artery ratio, etc.) on its

mechanical performance. Despite neglecting the balloon, their analysis, driven by uniform

internal pressure, went a step further by analyzing next generation stents (Multi-Link Tetra

and Carbostent) besides the Palmaz-Schatz like stents. Gu et. al. [124] performed a uniform

pressure driven FEA on a covered microstent (a stent with thin coatings) to evaluate the

effect of coatings on the mechanical performance and compared them with bare metal stents.

Holzapfel et. al. [125] proposed a parameterisation technique to enable generation of new

stent designs, and performed displacement driven FEA to analyze these designs. While most

studies mentioned so far had assumed the artery to be a straight cylindrical segment, this

study used a full 3-D geometrical model of a post-mortem specimen of a stenosed human iliac

artery. Moreover, they considered eight different types of tissue components for the artery

with different material properties. This study evaluated the effect of stent geometry on the

total mechanical environment post stenting, and quantified this stress-strain environment by

formulating scalar indicators which can be used to compare stents. Migliavacca et. al. [126]

used FEA to study the mechanical properties of the BX Velocity (Cordis corp., Johnson &

Johnson) stent, and compared the pressure-diameter (p-d) relationship during expansion to

those provided by the manufacturer. The comparison of the two p-d relationships led to the

conclusion that the absence of a balloon in numerical modelling was the cause of the observed

discrepancies between numerical and experimental data.

Holzapfel et. al. [127] introduced the balloon in their analysis for both angioplasty and
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stenting. They modelled the balloon as a rigid cylinder, and the analysis was driven by

specifying displacements. Their stenosed artery geometry was obtained by MRI scans of a

human external iliac artery and the constitutive models for each part of the tissue obtained

by mapping MRI data with histological tissue type. Liang et. al. [128] modelled the balloon

as a cylindrical hyperelastic shell to mimic the unfolding process of a folded balloon. Marrey

et. al. [129] modelled the balloon as a semi-rigid shell, although what the authors meant

by semi-rigid is not detailed. In their analysis the stent is first crimped to simulate the

stent-catheter assembly. This is done by putting a semi-rigid crimp cylinder outside the

stent and specifying the radial contraction of the crimp cylinder. Contact modelling between

the crimp cylinder and stent’s outer surface ensures cripming of the stent. Stent expansion

into the artery is modelled in a similar way. After the expansion step, the authors apply a

physiologically realistic cyclic pressure loading to the inner surface of the artery to simulate

systolic and diastolic blood pressure. The response of the stent is then used to investigate

fatigue resistance of the stents. Wang et. al. [130] studied the transient expansion of coronary

stents by modelling the balloon as an incompressible isotropic linear elastic material. They

evaluated the effect of varying balloon lengths on different stent geometries. Takashima et. al.

[131] used both experimental and numerical techniques to study the contact area between the

stent and the artery/plaque wall. They modelled the balloon as a linear elastic material with

a very high Young’s modulus, and drove the analysis by specifying radial displacements to the

balloon. Wu et. al. [132] studied the expansion of stents in both straight and curved vessels

and compared the results. In their displacement driven analysis they modelled the balloon as

a rigid body, while the artery and tissue were modelled as hyperelastic materials. Gijsen et.

al. [133] studied the deployment of a stent in a realistic coronary artery. They constructed

the geometry of a right coronary artery of a 57-year old male using biplane angiography and

intravascular ultrasound (IVUS).

All the aforementioned studies have either neglected the balloon or treated it as a rigid

cylindrical shell. It was De Beule et. al. [134] who, in 2008, modelled a realistic balloon ex-

pansion of the CYPHER stent (Cordis corporation, Johnson & Johnson). They modelled the

balloon as a linear elastic material, whose properties were extracted from the manufacturer’s

compliance chart, and took into account the folded shape of the balloon. They validated their

results, specifically the p-d relationship with those provided by the manufacturer, and their

results showed a maximum error of 4.1%. In the same year, Gervaso et. al. [19] published

a study outlining different strategies for modelling balloon expansion of stents. They also

proposed a new technique to take into account the folded shape of the balloon. They started

with a fully expanded shape of balloon, with its nominal diameter, and applied a negative

pressure to deflate it. This resulted in a shape that could then fit inside the crimped stent

for expansion. The balloon was modelled as a linear elastic material, and the analysis was

driven by increasing the inflation pressure of the balloon. Their numerical results for the Bx

VELOCITY stent, which is similar to the CYPHER stent used by De Beule et. al. except

for a thin drug coating, corresponded well with those provided by the manufacturer. Zunino

et. al. [20] extended this technique to take the expanded geometry of a unit model of the

Bx VELOCITY stent and performed flow and drug diffusion simulations on the deformed

shape. Although the application of such expansion techniques to realistic artery models, such

as those used by Holzapfel et. al. [127, 125], remains to be seen, to the best of the author’s

knowledge, these (De Beule et. al. [134] and Gervaso et. al. [19]) are the only two realistic
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models for studying expansion of stents.

As mentioned earlier, in order to perform a design optimization study on stents, it is

necessary to model the expansion of stents for three reasons – first, to evaluate recoil, second,

to evaluate the mechanical stress-strain environment in the artery, and third, to obtain the

expanded geometry for evaluation of flow and drug distribution. In the following sections the

methodology adopted in this thesis for these purposes is presented.

5.2 Methodology

Of the various balloon expansion methodologies listed in section 5.1 the one proposed by

Gervaso et. al. [19] is adopted in this study. While Gersavo et. al. presented the results only

for free expansion, results for both free expansion and expansion into a representative plaque

and artery model are presented in this chapter. The following sub-sections detail the steps

of the analysis procedure.

5.2.1 Geometry

5.2.1.1 Stent

The CYPHER stent is chosen for developing the expansion methodology. This is because the

CYPHER stent –

• was a widely used stent in clinical practice until its discontinuation in 2011 [35].

• is representative of most contemporary stent designs – circumferential rings connected

by flex connector segments.

• has been studied in the past in various FEA studies.

• has easily available pressure-diameter relationship chart provided by the manufacturer

after in vitro testing.

Figure 5.1 shows an electron microscope picture [34] of the Bx VELOCITY stent. Two

important features of the CYPHER/Bx VELOCITY stent geometry can be easily located.

First, it contains 4 circumferential rings placed in the longitudinal direction, and second, the

circumferential rings are connected by ‘n’ shaped connectors/links [34, 135].

Figure 5.1: Electron microscope image of Bx VELOCITY stent
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The important characteristics of the stent geometry used in this chapter are obtained

from the ‘instructions for use’ manual provided by the manufacturer [135] and ‘the handbook

of coronary stents’ [34]. Table 5.1 lists these properties

Table 5.1: Geometric information for the CYPHER stent

Dimension Value Note

Target artery diameter 3.00 mm a range of diameters are available; 3.0 mm is
chosen for this study

Length 8.00 mm a range of lengths are available; 8.0 mm is cho-
sen for this study

No. of circumferential cells 6 for 2.25-3.00 mm diameter stents, the number
of rings is 6

Strut thickness (radial) 0.14 mm converted from inches to mm (0.0055 inch)
Strut width (circumferen-
tial)

0.13 mm converted from inches to mm (0.0052 inch)

With the help of these geometric parameters and visual insepction of the crimped state

geometry, a representative model of the CYPHER stent is generated in Rhinoceros 4.0. The

semi-crimped state internal diameter is chosen to be 1.22 mm. An image of the semi-crimped

state CAD model is shown in Figure 5.2.

Figure 5.2: CAD model of the CYPHER stent

5.2.1.2 Balloon

To construct the geometry for the balloon two important dimensions are needed – the nominal

diameter and the length. The nominal balloon diameter is chosen to be 2.85 mm, which was

obtained by De Beule et. al. [134] after extrapolating the balloon’s compliance chart (provided

by the manufacturer) to a zero stress state. The nominal length of the balloon is specified

to be 10.0 mm according to the data in [135] which specifies that the stent delivery balloon’s

length is nominally 2.0 mm longer than the stent being used. Based on this data the nominal

geometry of the balloon is created in Rhinoceros 4.0, see Figure 5.3.

Figure 5.3: CAD model of the nominal balloon
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5.2.1.3 Artery and Plaque

The artery is assumed to be a single layer straight cylindrical tube with an internal diameter

of 3.00 mm, an outer diameter of 4.40 mm (thickness of 0.70 mm), and a length of 15.00

mm. As far as the geometry of the plaque/stenosis is concerned no statistical data could be

found in the literature. Most studies have assumed it to be cylindrical with round ends. The

stenosis shape, however, can have a significant effect on the performance of the stent, and a

stent that performs well for one particular stenosis shape might not perform as well with a

different stenosis shape. A different methodology to represent stenosis shapes which can easily

be altered by changing a few parameters is proposed. Hicks-Henne bump functions [136] are

a class of functions which allow easy manipulation of a shape representing a smooth bump by

altering three parameters. These functions, commonly used in aircraft wing design and used

by Kolachalama et. al. [137] to represent a carotid artery stenosis, seem to appropriately

represent stenosis shapes. A Hicks-Henne bump function is represented by the following

formula –

y = A[sin(πx(− ln 2/ ln xp))]t ; for 0 < x < 1, (5.1)

where A is the height of the bump (analogous to the peak stenosis), xp is the location of

the peak, and t controls the width/sharpness of the peak. A larger value of t gives sharper

peaks representing a focal stenosis, while smaller values of t produce a more diffused stenosis

shape. To include any length of stenosis and add a base thickness to the plaque, the function

is modified as follows –

y = tb + (A − tb)[sinπ
( x
L

)(− ln 2/ ln xp)
]t ; for 0 < x < L, (5.2)

where tb is the base thickness and L is the length of the stenosis. Figure 5.4 shows the Hicks-

Henne bump function and the corresponding stenosis shape for A = 0.6, xp = 0.5, t = 5,

tb = 0.2, and L = 15. Figure 5.5 shows the assembly of the stent, plaque and the artery.

5.2.2 Materials

The following subsections describe the material properties used for each of the stent, plaque,

and the artery.

5.2.2.1 Stent

Most of the bare metal stents, including the CYPHER stent [135] are made up of medical grade

316L Stainless Steel. The constitutive behaviour of a stent material depends on a number of

pre-treatments such as hot rolling, annealing, cold finishing, electropolishing etc. [134, 138].

In the past a number of different material properties have been used for finite element analysis

of 316L Stainless Steel stent expansion processes. Table 5.2 presents an extension to the list

presented in De Beule’s PhD thesis [11] where the different material properties used in different

studies are listed. Murphy et. al. [10] performed uniaxial tensile tests on 316L stainless steel

strut specimens and presented the stress-strain curves for different size specimens. Figure

5.6 shows the engineering stress strain curves from their experiments. These stress-strain

curves, which have also been used by De Beule et. al. [134], are deemed most appropriate for

numerical studies in this chapter as these have been determined experimentally for the 316L
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(a) Hicks-henne bump function for A = 0.6, xp = 0.5, t = 5, tb = 0.2, and L = 15

(b) Stenosis shape by revolving the hicks-henne bump function

Figure 5.4: Stenosis shape

Figure 5.5: Assembly of the stent, plaque and artery (No balloon present)

stainless steel strut specimens of sizes similar to those used in this study. A Young’s modulus

(E) of 196,000 N/mm2, a yield stress (σy) of 375 N/mm2, and an isotropic piece-wise linear

hardening is used to mimic the plastic region. It must be noted that the geometric model of

the stent used in this study is a semi-crimped model, i.e. the crimping process of the stent

is ignored. Consequently, if kinematic hardening is taken into account, then it is likely that

due to the crimping of the stent, the yield stress for the expansion process will be lower than

375 N/mm2 owing to the well known Bauschinger effect. This effect, however, is ignored in

this chapter.

5.2.2.2 Balloon

The semi-compliant balloon is made of single-layer nylon [135]. De Beule [11] derived the con-

stitutive properties of the semi-compliant RaptorTM balloon, which is used in the expansion
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Table 5.2: Different material properties used for FEA of 316L Stainless Steel stents

Group Young’s

modulus

(E)

Yield stress

(σy)

Material reference; notes

(N/mm2) (N/mm2)

Auricchio [121] 196000 205 Metals handbook (American Society

of Metals)

Etave [122] 196000 - Standard stress-strain curve for an-

nealed material

Migliavacaa

[123]

196000 205 Auricchio [121]

McGarry [138] 209000 264 Uniaxial tensile test

Gu [124] 196000 205 Auricchio [121]

Migliavacaa

[126]

196000 105 Auricchio [121]; included kinematic

hardening in the plastic phase

Liang [128] 201000 330 Tensile test on wires

Hall [139] 196000 290 -

Wang [130] 201000 - Tensile test on annealed wire

De Beule [140] 196000 205 Auricchio [121]

Wu [132] 201000 280 Standard true stress-strain curve for

annealed material

Takashima [131] 200000 315 -

Gijsen [133] 196000 105 Petrini [141], Migliavacca [126]

De Beule [134] 196000 375 Murphy [10] (Uniaxial tensile loading

of SS 316L strut specimens)

Gervaso [19] 193000 205 -

Zunino [20] 193000 205 Auricchio [121]; included degradation

of the hardening modulus

of the CYPHER stent [135], using the compliance chart provided by the manufacturer and

using thin shell membrane theory. Their derived values have been adopted for the balloon

material properties in this study. The balloon is assumed to be a linear elastic material with

a Young’s modulus (E) of 920 N/mm2, and a Poisson’s ratio (ν) of 0.4.

5.2.2.3 Artery

The artery material is described as an isotropic hyperelastic material based on a sixth order

reduced polynomial strain energy density function, U, given by

U = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3 + C40(Ī1 − 3)4

+ C50(Ī1 − 3)5 + C60(Ī1 − 3)6,
(5.3)

where, Ī1 is the first invariant of the deviatoric Cauchy-Green tensor –

Ī1 = λ̄1
2
+ λ̄2

2
+ λ̄3

2
, (5.4)

λ̄i = J−1/3λi, (5.5)
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Figure 5.6: Stress-strain curves for coronary stent strut specimens [10]

where λi are the principal stretches and J is the total volume ratio (J=det(�), where � is the

deformation gradient.

Holzapfel et. al. [142] studied the deformation behavior of 13 non-stenotic human LADs,

and proposed a constitutive model for each of the three layers – intima, media, and the

adventitia. Their results were adopted for a reduced polynomial strain energy density function

(equation 5.3) by Gervaso et. al. [19], and Zunino et. al. [20]. Of these values, which are

outlined in Table 5.3, the coefficients for the media layer are used in this study as the artery

is assumed to be a single layer.

Table 5.3: Coefficients for strain energy density function for artery layers [19, 20]

Layer C10 C20 C30 C40 C50 C60

Intima 6.7×10−03 0.54 -1.11 10.65 -7.27 1.63

Media 6.52×10−03 4.89×10−02 9.26×10−03 0.76 -0.43 8.69×10−02

Adventitia 8.27×10−03 1.20×10−02 0.52 -5.63 21.44 0.00

5.2.2.4 Plaque

There is little data available on the material properties of plaque. Holzapfel et. al. [143]

sampled 107 specimens from nine human high-grade stenotic iliac arteries, identified eight

different tissue types, and quantified the anisotropic mechanical response of these different

tissue types using histology and magnetic resonance imaging. The application of such material

properties for finite element studies requires realistic geometries and different tissue type

volumes identified by MRI scans. A simpler model for plaque was used by Wong et. al. [144].

They used a hyperelastic, Neo-Hookean strain energy function to describe the mechanical

behavior of plaque. A Neo-Hookean strain energy density function is defined as follows –

U =
µ

2
(Ī1 − 3) +

K
2

(J − 1)2, (5.6)

where µ is the initial shear modulus, K is the initial bulk modulus, and Ī1 and J are as defined

in Eqns. 5.4 and 5.5. This Neo-Hookean description of the plaque has also been used by Kock

et. al. [145], and is used in this study as well. The initial shear modulus, µ, can range from



5.3. Simulations 81

0.1 kPa to 60 kPa [144]. Smaller values of µ indicate softer plaque while larger values tend

towards calcified plaque. In this chapter, µ has been assumed to be 60 kPa. To model a

nearly incompressible plaque, which most biological tissues are [144, 146, 145, 147], a value

of K = 20µ is chosen, which gives a poisson’s ratio, ν, of 0.475.

Other hyperelastic models such as the Mooney-Rivlin form have been used in studies by

Pericevic et. al. [146] and Lally et. al. [148].

5.2.3 Element type

An important consideration in FEA is the choice of element type. Hall et. al. [139] presented

an interesting study which compared the use of following element types for stent to model

the expansion process –

• C3D8 – 8-node hexahedral solid element.

• C3D8R – 8-node linear hexahedral solid element with reduced integration.

• C3D8I – 8-node linear hexahedral incompatible mode solid element.

• S4 – 4-node linear quadrilateral shell element with 5 integration points through the

thickness.

• S4R – 4-node linear quadrilateral shell element with reduced integration and 5 integra-

tion points through the thickness.

• B31– 2-node Timoshenko beam element with 5× 5 cross section integration points.

Their study showed that all the element formulations provide similar responses even

though the dimensionality of all the elements are different. Since evaluation of the post-

stenting haemodynamic response is one of the objectives of this thesis, C3D8R elements were

chosen for the stent, plaque, and the artery. These elements were also used in earlier studies,

e.g. De Beule et. al. [134] and Gervaso et. al. [19]. For the balloon, M3D4R elements (4-node

quadrilateral elements with reduced integration) are chosen [134, 19] with a thickness of 0.02

mm [134].

5.3 Simulations

All the simulations are carried out using Abaqus/Explicit 6.9.1 (Dassault Systèmes Simulia

Corp., Providence, RI, USA), a commercially available finite element solver. The simulations

are carried out in three sets –

1. Deflation of the balloon. The methodology of Gervaso et. al. [19] is adopted to obtain

the unexpanded shape of the balloon.

2. Free expansion of stent – without the resistance of plaque and artery.

3. Expansion into the plaque and the artery.

The following sub-sections detail the boundary conditions, loading process, and the mesh

and time-step dependence studies, for the three aforementioned steps.
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5.3.1 Deflation of balloon

For the deflation of the balloon, the nominal shape of the balloon is taken and the following

boundary conditions are applied –

1. Two nodes at the extreme ends of the balloon are constrained to allow displacements

only in the axial direction.

2. Three nodes in the central axial cross section, forming an equilateral triangle, are con-

strained to move only in the radial direction.

Figure 5.7 shows the boundary conditions imposed on the balloon. A negative pressure of

0.01 MPa is then applied to the inner surface of the balloon. This results in deflation of the

balloon which can then be used for expanding the stent. The crimping process is neglected

in this study and the deflated balloon is used to expand the semi-crimped geometry created

directly by CAD modelling. Figure 5.8a shows the deformed balloon, and Figure 5.8b shows

the balloon inserted inside the semi-crimped stent.

Figure 5.7: Boundary conditions imposed on the balloon for deflation analysis

5.3.2 Free expansion of stent

It is worth recalling that the simulations for free expansions are performed in order to validate

the results with those provided by the manufacturer. For these simulations, the balloon

configuration from the results of the above step is positioned midway into the stent (cf. figure

5.8b). For the balloon, the same boundary conditions as specified in section 5.3.1 are imposed.

For the stent, in-order to constrain any potential rigid displacements [19], three nodes along

the central axial cross section of the stent are constrained to move only in the radial direction.

A pressure, P, is then applied to the inner surface of the balloon. In clinical practice inertia

has negligible effect on the expansion process [134]. Consequently the balloon expansion of

stents is usually modelled as a quasi-static process. A quasi-static process is characterized by

the ratio of kinetic energy of the deforming material to the total internal energy, such that

this ratio remains less than 5%, throughout the analysis [149]. Consequently, the loading rate

under the assumption of a quasi-static analysis can be increased considerably, provided the
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(a) Deflated balloon configuration

(b) Deflated balloon inside stent

Figure 5.8: Deflated shape of the balloon

energy ratio requirements are met. Figure 5.9 shows the variation of pressure P with clearly

defined loading and unloading phases. In reality, there is a ‘hold’ phase, between the loading

and unloading phases, where the pressure is maintained at its peak value for some time. This

‘hold phase’ is not included in the free expansion primarily because the manufacturer data

for validation are available only for the loading phase. A maximum pressure of 1.6 MPa is

chosen because the rated burst pressure for the RaptorTM balloon, used for expanding the

CYPHER stent, is 1.621 MPa [135]. To model the balloon self contact and the contact of

balloon with stent, a surface-to-surface discretisation method is used with a penalty based

constraint enforcement and finite-sliding formulation [149]. Finite sliding formulation takes

non-linear geometric effects into account and, as opposed to a small-sliding formulation, tracks

the relative motions of the surfaces in contact [149]. A Coulomb friction model, with a friction

coefficient of 0.2, is used for both the contact formulations, which is valid for both nylon-nylon

and nylon-steel contact [134, 150] . Figure 5.10 shows the meshed assembly of balloon and

stent for the free expansion simulations.

Figure 5.9: Loading profile for the free expansion of balloon

Mesh and time-step dependence studies are performed to be sure that the final simulations

are run for a mesh and time-step such that an increase in the mesh density and/or a decrease
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Figure 5.10: Stent and balloon assembly (meshed) for free expansion

in the time-step would have negligible effect on the results. Table 5.4 shows the combinations

of different mesh and time-steps used for the quasi-static explicit analysis. Such a study is

also helpful in determining the mesh size and time-step for future optimization studies where

a number of designs are analyzed while parsimoniously using computational resources. To

compare the effect of different mesh densities and time-steps the transient pressure-diameter

relationship is used. Since the stent does not expand uniformly along its length, owing

to the balloon expanding faster at the ends, an average diameter of stent is used. This

average diameter, d, is determined by taking eight nodes, distributed uniformly along the

axial direction of the stent, on the inner surface of the stent. Figure 5.11 shows the location

of these eight nodes used for calculating d.

Table 5.4: Different mesh and time-steps used for verification studies

Name No. of elements No. of elements time-step

Balloon Stent (s)

Base 1e7 13068 19032 10−7

Base 1e8 13068 19032 10−8

Mesh1 1e7 16800 33484 10−7

Mesh1 5e8 16800 33484 5× 10−8

Mesh1 1e8 16800 33484 10−8

Mesh1 1e9 16800 33484 5× 10−9

Mesh2 1e7 29800 42216 10−7

Mesh2 1e8 29800 42216 10−8

Mesh3 1e7 42960 64740 10−7

Mesh3 1e8 42960 64670 10−8

Figure 5.11: Eight nodes to measure the average diameter of stent during transient expansion
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Figure 5.12 shows the pressure-diameter, p−d, relationship for four different time steps.

As can be seen in this figure, decreasing the time-step below 10−8 s has negligible effect on the

profile. This implies that a time-step of 10−8 seconds is computationally most appropriate to

accurately capture the transient behavior.

Figure 5.13 shows the p−d relationship for all the four meshes using a time-step of 10−8

seconds. This figure suggests that using a mesh density equivalent to Mesh1 for CYPHER

like stents would yield negligible numerical error if the mesh density is increased. Hence all

the results presented in sections 5.4 and 5.5 are based on Mesh1 using a time-step of 10−8

seconds.

Figure 5.12: p−d relationship for different time-steps on Mesh1

Figure 5.13: p−d relationship for different meshes using a time-step of 10−8 s

5.3.3 Expansion into the plaque and artery

Having setup the simulations for the free-expansion of the stent the plaque and the artery

are now included in the expansion simulations. Figures 5.14a and 5.14b respectively show

the geometry and the mesh for the assembly of the balloon, stent, plaque, and the artery.

The boundary conditions for the balloon and stent are kept the same as in the free expansion
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analysis (section 5.3.2). A tie-constraint is specified between the outer surface of the plaque

and the inner surface of the artery. An encastre boundary condition (Ui = 0; i = 1, 2, 3)

is imposed on the longitudinal ends of the artery. Moreover, three nodes on the central

cross section of the artery are constrained to move only in the radial direction [19, 20]. Two

additional contacts, apart from those in section 5.3.2, are specified – contact between balloon

and plaque, and contact between stent and plaque. Both these contacts are specified using

a surface-to-surface discretisation and penalty method for contact constraint enforcement. A

finite-sliding-formulation for the contact pairs with a Coulomb friction model is used [149].

Since there is no data available (to the best of the author’s knowledge) regarding friction

coefficient values between either balloon or stent and the arterial tissue, a friction coefficient

of 0.2, the same as that between nylon-nylon and nylon-steel is used.

(a) Geometry

(b) Mesh

Figure 5.14: Assembly of balloon, stent, plaque, and artery

To drive the analysis a uniform pressure, p , is applied to the inner surface of the balloon

to simulate expansion. Figure 5.15 shows the variation of p with time. Three distinct phases

of loading, hold, and unloading can be identified. A maximum pressure of 1.2 MPa is applied

as the nominal pressure for the CYPHER stent is 1.115 MPa [135] (see table 5.6). The

expansion is modelled as a quasi-static process, keeping the kinetic energy less than 5% of

total internal energy. The mesh densities for the stent and the balloon, and the time-step

to model the transient expansion, are justified in section 5.3.2 – in particular, Mesh1 and a

time-step of 10−8 seconds are chosen. To determine the mesh densities for plaque and the

artery appropriate mesh dependence studies are conducted. Three different mesh sizes are

used for plaque and artery. Table 5.5 shows the different plaque and artery mesh densities

and time-steps used for this study. Even though a time-step of 10−8 seconds is deemed most

appropriate, the tests are conducted for two sets of time steps viz. 10−8 and 10−7 seconds.

The reasons for this will become clear in section 5.3.4.

In order to compare the effect of different mesh densities, the von Mises stresses on the

plaque inner surface along a central line at the end of the analysis are used. This final

state reflects the equilibrium stage after the balloon pressure has been unloaded. Figure 5.16

shows this line in the undeformed state of the plaque. Figure 5.17 shows a comparison of

the von-Mises stresses on this line for different meshes. The average difference between the



5.3. Simulations 87

Figure 5.15: Loading profile for the expansion of stent into the plaque and artery

Table 5.5: Different mesh and time-steps used for verification studies of stent expansion into
the plaque and artery

Name No. of elements No. of elements time-step
Plaque Artery (s)

PA Base 1e7 11948 19000 10−7

PA Base 1e8 11948 19000 10−8

PA Mesh1 1e7 25690 27072 10−7

PA Mesh1 1e8 25690 27072 10−8

PA Mesh2 1e7 40216 43200 10−7

PA Mesh2 1e8 40216 43200 10−8

stress results for PA Mesh1 and PA Mesh2 is less than 5%. Even though both PA Mesh1 and

PA Mesh2 are appropriate for stress calculations, PA Mesh2 is chosen for future optimiza-

tion studies, as it gives a better resolution of plaque geometry for subsequent CFD studies

(presented in chapter 8).

5.3.4 Choice of time-step for optimisation studies

Since design optimization is a process which needs evaluation of multiple points in a given

design space, multiple computational simulations are often not affordable for complex anal-

yses. The expansion analysis presented in Section 5.3.2 suggests the use of a time-step of

10−8 seconds, in order to capture the numerical transient expansion which is dependent of the

time-step chosen. However, a close look at Figure 5.12 shows that the expansion behavior for

a time-step of 10−8 s is similar to that for a time-step of 10−7 s for pressures higher than 0.6

MPa with minimal errors. Based on this observation it is hypothesized that a time-step of

10−7 seconds can be used for optimization studies, as it reduces the physical simulation time

from about over a week to 24 hrs. To prove this hypothesis the following four arguments are

considered –

Figure 5.16: Line on the plaque inner surface on which the Von Mises stresses are compared
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Figure 5.17: Von-mises stress comparison along a line on the inner surface of the plaque for
different meshes

1. The material properties for all the components of the expansion analysis, do not have

a time-dependent component.

2. None of the objective functions, that are used to judge the efficacy of the stent, are

based on the transient response of the stent during expansion, i.e. the metrics are

based on the final expanded state of the stent.

3. The ratio of kinetic energy to total internal energy remains below 5% for both the

time-steps.

4. The stresses on the components differ by numerically acceptable errors at the end of

the analysis for both the time-steps.

While points 1 and 2 are straightforward conclusions based on the modelling methodology,

points 3 and 4 are less obvious. For this reason, the ratio of energies is investigated for the

two time-steps of 10−7 and 10−8 seconds. Figure 5.18 shows this ratio for the time steps

of 10−7 s and 10−8 s on PA Mesh2 . It is found that this ratio remains under 5% for all

simulations. Next, along a central line in the plaque (shown in figure 5.16) the von-Mises

stresses are compared for the two time-steps of 10−8 and 10−7 seconds. The results are plotted

in 5.19 for PA Mesh2. A time-step of 10−7 s underpredicts the von-Mises stresses, on average

by approximately 12% when compared to a time-step of 10−8 s. Moreover, the stress pattern

along the plaque line is similar for both the time-steps. Since the underprediction of von-

Mises stresses applies to all the designs being evaluated in the design space, it is proposed to

use a time step of 10−7 s for subsequent optimisation studies.

5.4 Validation

To validate the numerical results the data provided by the manufacturer (Cordis Corp.,

Johnson & Johnson) [135] is used. Table 5.6 lists the data obtained by the manufacturer

during in-vitro testing at 37oC. The second row in the table (with bold numbers) indicates
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the nominal diameter of the stent and the subsequent rows indicate average stent/balloon

diameters at specific balloon inflation pressures without taking into account lesion resistance.

Since a 3.0 mm CYPHER stent is analysed in this study, the shaded column is applicable

for validation. Figure 5.20 shows the comparison of the transient p−d data obtained from

numerical results (Mesh1 with a time step of 10−8 s) to the data listed in Table 5.6. The

maximum difference in the numerical analyses vs. the in-vitro data is 8.0%. Apart from a

good agreement with the experimental data, the transient expansion relationship obtained in

this chapter matches well with the work of De Beule et. al. [134] and Gervaso et. al. [19].

Table 5.6: CYPHER stent expansion data provided by the manufacturer by in-vitro experi-

ments

Inflation pres-

sure (MPa)

Diameter

(mm)

Note

2.25 2.50 2.75 3.00 3.50

0.608 1.95 2.17 2.43 2.64 3.13

0.709 2.02 2.25 2.51 2.72 3.23

0.811 2.10 2.32 2.58 2.80 3.32

0.912 2.16 2.38 2.67 2.87 3.40

1.1013 2.22 2.44 2.71 2.94 3.47

1.115 2.26 2.49 2.76 2.99 3.52 Nominal

1.216 2.30 2.53 2.82 3.03 3.57

1.317 2.34 2.56 2.84 3.07 3.61

1.419 2.37 2.59 2.87 3.11 3.64

1.520 2.39 2.62 2.89 3.14 3.67

1.621 2.42 2.64 2.92 3.16 3.70 Rated Burst Pressure

Figure 5.18: Ratio of energies for a time-step of 10−7 and 10−8 s for PA Mesh2
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Figure 5.19: Stress comparison for time-steps of 10−7 and 10−8 seconds on PA Mesh2

Figure 5.20: Comparison of numerical results with the experimental data

5.5 Results

The results for the free expansion and expansion into the plaque and the artery are presented

in the following sub-sections.

5.5.1 Free expansion of the stent

The transient free expansion of the stent is shown in figure 5.21. It can be concluded that the

expansion of the stent is not uniform across the longitudinal axis. The stent expands more at

the distal ends than at the central part. This phenomenon is often referred to as dogboning,

DB, and is defined as –

Dogboning (DB) =
Dp

distal − Dp
central

Dp
distal

, (5.7)

where Dp
distal and Dp

central are the stent diameters at the distal and central parts respectively

at any given load p. The maximum dogboning observed is 2.2%.

It can also be observed that the final length of the stent is smaller than the initial length

– as the stent expands in the radial direction, it foreshortens in the longitudinal direction.

This phenomenon is referred to as foreshortening, FS , and is defined as follows –
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Foreshortening (FS ) =
Linitial − L f inal

Linitial
, (5.8)

where Linitial and L f inal are the initial and final lengths of the stent respectively. The fore-

shortening observed in this case is 6.19%.

The most important factor determining the efficacy of the stent is its radial strength, and

recoil provides a good measure of this. Even though the stent might recoil many days after

the procedure (late recoil), the simulations presented in this thesis can only evaluate the acute

recoil (recoil immediately after the implantation procedure). Percentage acute recoil, Rc, is

defined as –

Rc =
Dpmax − Dp0

Dpmax

, (5.9)

where Dpmax and Dp0 are the average stent diameters at maximum loading (p= pmax) and after

unloading (p=0) respectively. The value of acute recoil observed in this case is 4.2%. Figure

5.22 shows the von-Mises stresses and max. principal plastic strains on the stent after the

unloading phase.

Figure 5.21: Stages of transient free expansion of the stent

5.5.2 Expansion into the plaque and the artery

The expansion of the stent into the plaque and the artery is depicted in figure 5.23. The

parameters such as dogboning, foreshortening, and recoil defined in the previous section can

be evaluated for this case too. The expansion behavior in this case is different than the free-

expansion because of the additional contact/resistance of the lesion. After the acute recoil,

the stent is perfectly apposed to the plaque inner surface and since the contact formulations

allow embedding of the contact surfaces onto one another, the stent embeds itself into the

plaque tissue. Figures 5.24, 5.25, and 5.26, respectively show the von-Mises stresses on the
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Figure 5.22: Von Mises stresses (MPa) and maximum principal plastic strains on the stent
after free-expansion

Figure 5.23: Stages of transient expansion of the stent into the plaque and artery

Figure 5.24: Von Mises stresses (MPa) on the stent
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Figure 5.25: Von Mises stresses (MPa) on the plaque

Figure 5.26: Von Mises stresses (MPa) on the artery

Figure 5.27: Average stent diameter for expansion into the plaque and the artery

Figure 5.28: Max. Principal plastic strains on the stent after expansion into the lesion
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stent, plaque, and the artery after the unloading phase. Figure 5.27 shows a plot of the

average diameter of the stent against the pressure applied, and figure 5.28 shows the max.

principal plastic strains for the stent at the end of the analysis (i.e. after the unloading

phase).

5.6 Discussion

For both the free-expansion and expansion into the lesion, the maximum stresses for the stent

are located at the curved parts of the struts (cf. figures 5.22 and 5.24). The maximum plastic

strains are also located in the same regions (cf. figures 5.22 and 5.28). Since the simulation

does not take into account the failure of the stent material, it is imperative to check that

the maximum total strain does not exceed the failure strain [10]. The plastic strains are

a key component in designing a stent. A good stent should, on one hand, undergo plastic

deformation at the right locations so as to maintain the shape, which would lead to minimal

recoil, while on the other hand the plastic deformations should not be large enough so as to

cause failure. In the representative CYPHER stent considered in this chapter, the equivalent

plastic strains are approximately 15%. The strut thickness (see Table 5.1) is 140 microns,

and from Figure 5.6 it can be seen for this range of strut thickness, the maximum permissible

strains are greater than 30%. Hence, it can be safely said that the representative CYPHER

stent would not fail for the expansion diameters used in this study.

For metallic stents, this constraint of not exceeding the maximum allowed plastic strains

and the observation that most stents have circumferential rings of varying shapes leads to

the conclusion that circumferential rings represent a vital component of a metallic stent.

This is primarily because very large plastic deformations for metals are not feasible, and it

seems that the circumferential rings provide a very effective way for the expansion as well as

the retention of the expanded shape through plastic deformations. Other ways of expansion

usually employ the use of polymeric material properties. The patent by Johnson & Johnson

[151] presents very interesting ways for stent expansion by utilizing the material properties

of more plastic materials.

Looking at the stresses and strains at the links between the circumferential rings, they

seem to not be playing an important part in the expansion of the stent, apart from tying the

circumferential rings together. Nonetheless, the links play an important part in determining

the flexibility of the stent, and their role is investigated in chapter 6.

Figure 5.25 shows that the stent leaves a heavy imprint in the plaque, causing the stresses

to be highest at the contact interface. Moreover, since the stent has to work most in the central

region, where the stenosis is highest, the stresses in the central plaque region are the highest.

The stent imprint can also be seen in the artery surface in figure 5.26. Observing all these

stress patterns in the plaque and the artery it can be concluded that the stress distribution in

these tissues is a function of the stent geometry. A good stent would ideally try to distribute

the stresses more uniformly, and minimize the maximum stresses. As mentioned earlier that

the quantification of stresses is one way of quantifying injury caused to the tissue, a strategy

to quantify this numerical information is needed. This forms the content of the next section.
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5.7 Formulation of objective function

The two most important parameters relevant to restenosis are stent diameter post-stenting

and injury. The following section describe these parameters and their quantification

5.7.1 Stent-diameter post stenting and recoil

Even though any of the parameters defined in section 5.5.1, viz. dogboning, foreshortening,

and acute recoil can be used as an objective function to rank the performance of stents,

acute recoil is chosen as one objective function in this thesis. This is primarily because acute

recoil is directly related to the minimum stent diameter, and which in turn is related to the

minimum lumen area, the primary goal of the stenting procedure. Moreover, minimum stent

area has direct relevance to restenosis. Clinical trials [152] and other studies [153, 154] have

shown that restenosis rates are very low if the post-procedural minimal stent area is high

(greater than 9mm2). Kasaoka et. al. showed that for every 1-mm2 increase in the minimum

stent area, the predicted risk of restenosis drops by 19%. Thus, a higher stent area post

stenting is a key deterrent of restenosis. Based on this the objective function, Recoil, without

the denominator of Rc defined in equation 5.9, is

Recoil = Dmax
avg − Dunload

avg , (5.10)

where Dmax
avg and Dunload

avg represent the maximum average diameter of the stent during the

loading and hold phases and its diameter after the unloading phase, respectively. This Recoil

is shown graphically in figure 5.27. It should be noted that in the above definition the av-

erage diameter is used, instead of the minimum diameter as suggested by clinical studies.

This is justified as only one representative plaque geometry is used in this thesis. In reality,

depending on the shape of the stenosis, the stent will expand differentially in different loca-

tions of the stenosis. Thus, the minimal stent diameter is determined, in part, by the shape

and morphology of the stenosis. An average measure used here represents the average radial

strength of the stent, and since the stenosis used in this thesis is not severe, is also represen-

tative of the minimum stent diameter. Moreover, it is observed that for later stent design

variations, material of the stent, and the stenosis shape used in this thesis, the variations in

stent diameter along the axial length of the stent are negligible.

Acute recoil is also reflective, in part, of the radial strength of a stent. One way to measure

the radial strength of a stent is to apply an increasing inward pressure on the outer surface of

the expanded stent and monitor the decrease in diameter. The pressure post which the stent

cannot withstand any more increase in pressure (stent collapse) would represent the radial

strength of the stent. Acute recoil measures this, in part, as the inward forces that are acting

on the outer surface of the stent are due to the elastic nature of the artery which wants to

regain its original configuration. Hence, although these forces are not increased to the extent

of stent collapse, acute recoil for different stents takes into account the initial relationship

between the external inward forces and diameter decrease.

Lastly, it is worth nothing that Recoil is also related to thrombosis, albeit indirectly.

Incomplete stent apposition is defined as the separation of stent struts from the inner walls

of the artery [155], and is shown to be correlated with stent thrombosis [155, 156]. If a

coronary stent has high Recoil, then it is apparent that it will lead to incomplete apposition,

and consequently increase the risk of thrombosis.
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5.7.2 Quantifying injury caused by stent implantation

As mentioned in section 5.1, studies have shown a link between vessel injury, i.e. endothelial

exposure, intima laceration, and rupture of media [107, 108, 109, 110, 119, 81], and restenosis.

These factors can directly be related to the contact pressure between the expanded stent and

the inner surface of the artery/plaque [125]. A high contact pressure between the stent struts

and the intimal layer of artery can cause endothelial denudation and trauma which can lead

to higher neointimal hyperplasia. Therefore, it is reasonable to include this contact pressure,

which can be obtained by the FEA balloon expansion simulations developed, as a measure of

injury.

Holzapfel et. al. [125] proposed two scalar metrics to evaluate a stent’s efficacy by

expansion analysis – D1 based on intimal pressure concentration caused by stent struts and

D2 based on stress change in the arterial wall caused by stenting. As discussed above D1 is a

measure directly relevant to restenosis. On the other hand, D2 represents an average change

in the stress environment in the arterial tissue. Intuitively, it can be thought that if the

average change in the stress environment post stent implantation is low, then the mechanical

environment in the post-stented artery is not much different than that of the non-stented

artery. This could imply lower injury caused. The results of the study by Holzapfel [125]

are analysed and it is found that the two measures, unsurprisingly, are highly correlated

(r > 90%). Hence, from an optimisation point of view, it is of little significance whether D1

or D2 is used for comparing stents. Since the evaluation of the D2 metric is relatively easier

to compute compared to D1, a variant of the D2 metric is used in this thesis as an objective

function. This metric, volume average stress, VAS , which represents an average value of the

von Mises stresses imparted on the artery due to stenting, is defined as follows:

VAS =

∫

V
σ dV

∫

V
dV
, (5.11)

where σ represents the von Mises stresses and the integrals are calculated over the volumes

of plaque and the artery. For numerical simulations, when meshes are involved, VAS can be

calculated using the following formula –

VAS =

∑i=n
i=1σiδVi
∑i=n

i=1 δVi
, (5.12)

where σi represents the von Mises stress in the ith element of plaque/artery, δVi is the volume

of the ith element, n is the total number of elements in the plaque/artery within the axial

domain of the stent plus a length of 0.5 mm on either side of the stent (as shown in figure

5.29), and the summation is carried out over the both the domains of plaque and artery.

VAS , averages the stresses over the volumes of plaque and the artery. Since we do not

assume any pre-stresses before the stenting procedure, any stresses produced in the artery

or plaque are seen as unwanted by the above definition. In a case that there do exist some

pre-stresses (σpre), σi can be replaced by ∆σi in the above equations, where ∆σi = (σi −σpre)

[125].

The above two defined objective functions can be used to rank different designs of stents

from radial strength and arterial injury perspectives, respectively. A lower value of both the

objective functions indicates better designs.
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Figure 5.29: Volume domains used for computation of VAS

5.8 Conclusions

A methodology to evaluate the transient expansion of a coronary stent is presented in this

chapter. Such analysis is then used to extract information such as stresses and strains for all

the components, viz. stent, plaque, and the artery. For the CYPHER stent typical evaluation

parameters such as dogboning, foreshortening, and acute recoil are calculated. Finally, two

objective functions, Recoil and VAS , which can be used to compare the efficacy of different

stents, are formulated for use in optimization studies. It is shown that the maximum stresses

and strains for the expanded stent are located in the curved regions of the circumferential

rings. It is also observed that for the plaque and artery, maximum stresses occur in regions

where: a) stent struts come in contact with the tissue, and b) where the stenosis is high relative

to other regions. Apart from analyzing the stent’s expansion behaviour, which is critical for

design optimization studies, this chapter has also established a procedure for the study of

haemodynamics and drug-diffusion in realistically expanded geometries. Although a detailed

analysis of haemodynamics is presented in Chapter 4, its primary shortcoming is to use non-

realistic geometries to evaluate flow. This chapter links that gap, and provides relatively

realistic geometries for haemodynamic and drug-diffusion evaluation (which are presented in

chapter 8). Before moving on to such haemodynamic and drug-diffusion analysis, in the next

chapter the issue of stent flexibility, which is key for deliverability, is explored.





Chapter 6

Flexibility of stents

The deployment of a stent involves the delivery system (comprising the balloon catheter and

the stent) to be manoeuvred through highly curved anatomical pathways to the stenosis site

[129]. Consequently, the flexibility of the stent becomes a concern, as potentially rigid stents

give rise to various problems during deployment. The aims of this chapter are as follows

1. to develop a FEA model to model bending of an unexpanded coronary stent, and

2. to formulate an objective function which can be used to compare stents based on their

flexibility.

This chapter starts with a review of methods that have been proposed to evaluate the

flexibility of a stent. Thereafter an FEA model to simulate bending of stents is presented.

Finally, a figure of merit, which can rank stents based on their flexibility, and hence in part

deliverability, is proposed.

6.1 Introduction

Although there are no standard tests to evaluate flexibility of a stent, several methods have

been used in the past. These methods can be broadly classified as either experimental or nu-

merical. In the experimental regime either a one-point [157], three-point [158], or a four-point

[157, 159] bending test is generally used. In the numerical methodology, bending is either

measured by specifying the rotational displacements of the longitudinal ends and measuring

the moments required [141], or by applying the moments at the longitudinal ends and mea-

suring the rotational displacements [160]. Ormiston et. al. [158] compared 13 stent designs

(two coil, two hybrid, and nine slotted tube designs) both before and after stent expansion by

using a three-point bending test. They reported a strong correlation between expanded stent

stiffness and number of longitudinal strut interconnections, and a poor correlation between

expanded stent stiffness and strut-thickness. They also reported that expanded stents were

more stiff than their crimped state counterparts. Szabad́ts et. al. [157] compared six designs

by using one-point and four-point bending tests. Mori et. al. [159] also used four-point bend-

ing tests on four different designs and proposed a simplified 2-D FEA method to evaluate

the effect of stent parameters on flexibility. Petrini et. al. [141] compared the flexibility of

the Bx VELOCITY stent and the Carbostent (Sorin Biomedica, Saluggia, VC, Italy) using

99
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FEA. They proposed specifying the rotational displacements of the longitudinal ends to sim-

ulate bending, and then measuring the corresponding moments. They also showed that the

response of one unit of stent closely followed the response of the full stent, and suggested that

one unit of stent, being computationally cheaper, is ideal for flexibility measurement. Wu et.

al. [160] proposed the use of multipoint constraints (MPC) in FEA to simulate the four-point

bending tests. Their proposed method, where the analysis is driven by application of mo-

ments, can be applied to achieve more complex bending shapes (such as an ‘S’ shape, which

is hard to simulate by specifying rotations) apart from the widely used pure-bending shape.

They reported that flexibility of stents after they undergo plastic deformation is roughly 16

times larger than when they deform elastically only, and hence concluded that stents which

can be plastically deformed easily are more flexible. Ju et. al. [161] proposed a repeated

unit cell (RUC) approach to simulate pure bending of coronary stents, and reported that the

geometry of the link was a key determinant of stent flexibility.

In this chapter the methodology suggested by Wu et. al. [160] is used to simulate bending.

Thereafter, flexibility, both in the elastic and plastic regimes, is quantified to be used in

optimization studies. The following sections discuss the approach used for this purpose.

6.2 Methodology

6.2.1 Geometry and material

Following the work by Petrini et. al. [141], which showed that the results of one unit of

stent are very similar to that of a full length stent, only a unit model of stent is used for

flexibility analysis in order to save computational time. The parameters of the stent geometry

are the same as described in section 5.2.1.1, except that from the full length model, one unit

is extracted. Figure 6.1 shows this model. The material of stent used in this chapter is the

same as described in section 5.2.2.1.

Figure 6.1: A unit model of the stent

It must be noted that due to the plastic deformations in the stent during delivery, the stress-

strain history of the stent material for the expansion analysis will change. Consequently,

kinematic hardening effects such as the Bauschinger effect, will come to play during the

expansion of stent depending on the kind of plastic deformation occurred during the delivery

of the stent. However, as will be seen in this chapter, and in chapters 7 and 9, the plastic

deformation in the stent links is primarily important for delivery, and the plastic deformation

in the circumferential rings is primarily important for the expansion of the stent. In this

sense, for the stent designs considered in this thesis, these plastic deformations, and hence
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their strain history effects on each other are de-coupled. For these reasons the effect of strain

history during delivery on the expansion analysis is ignored.

6.2.2 Boundary conditions and analysis

Abaqus/Standard 6.9.1 (Dassault Systèmes Simulia Corp., Providence, RI, USA) is used

for the flexibility analysis. Six edges on each longitudinal end are tied to their respective

reference points (RP-1 and RP-2) on the axial ends (as shown in Fig. 6.2a) using multi-point

beam constraints. RP-1 is constrained not to move in either of the three X,Y, or Z directions

and RP-2 is constrained to move only in the X direction. Moreover, the rotation of RP-2 is

constrained about the X-axis. As the stent bends, the link on the compression side may come

into contact with itself. Hence, a self contact for the stent is specified using surface-to-surface

discretisation, Coulomb friction model, with a friction coefficient of 0.2, and penalty method

for constraint enforcement [149]. Linearly increasing equal and opposite moments (Mzz and

−Mzz) from 0 to 1.5 N-mm are then applied to these reference points as depicted in Fig. 6.2b.

10-node tetrahedral (C3D10) elements [160] are used for the static flexibility analysis.

(a) MPC constraints for application of moments

(b) Moment loads for flexibility analysis

Figure 6.2: Boundary conditions for flexibility model

6.2.3 Mesh dependence studies

Mesh dependence studies are performed to determine an appropriate mesh size for the analy-

sis. The moment vs. curvature index graph is used for this purpose. M is the moment applied

and χ is the corresponding curvature index (χ = 2φ/Lustent), where φ is the deformation angle
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as shown in figure 6.3 and Lustent is the length of one unit of the stent. Table 6.1 details

the three meshes used and the corresponding percentage differences relative to mesh-1. The

results show that mesh-1 sufficiently discretizes the domain and that increasing the mesh

density has minimal effect on the results.

Figure 6.3: Phi (φ) measurement in the bending analysis

Table 6.1: Mesh dependence study for flexibility analysis

No. of elements max. % error from mesh-1 in M − χ curve

mesh-1 55,047 -
mesh-2 72,167 0.25%
mesh-3 105,392 1.69%

6.3 Results and discussion

Figure 6.4 shows the bending of the stent. Figures 6.4 (c) and (d) show how links on one side

compress and on the other side expand to allow for a flexible shape. Such a winding feature

of the links, which allows for both expansion and contraction, determines the flexibility of a

stent. A stent lacking such a design feature, for example, one with no curves (straight links),

would require considerably higher moments to bend by the same angle φ and hence would

be relatively less flexible. Relative to the expansion, contraction of the links requires more

consideration. The links, owing to their design, come into self contact after a certain φ. For

a flexible stent, this should be avoided as far as possible because self-contact leads to the

requirement of higher moments for further increases in φ. Consequently, flexibility decreases

and this makes the stent less suitable for manoeuvring through high curvatures.

Contact of the links is depicted in Fig. 6.5. The images show how increasing moment,

and consequently increasing χ leads to more points of self contact in the links. While in Figs.

6.5b and c there is only contact location, in Fig. 6.5d there are two contact locations. It is

observed that as the moment is increased further, the two more pairs (marked as ‘contact

imminent’ in Fig. 6.5 (d)) come into contact. This leads to a significantly higher increase in

the moments required to further increase χ. This phenomenon is also reflected in the M − χ



6.3. Results and discussion 103

Figure 6.4: Flexibility results: snapshot at Mzz = 0.91 N-mm; a) initial shape; b) deformed
shape; c) y− view; and d) y+ view

curve shown in Fig. 6.6. Initially, when the deformations are only elastic, an almost linear

behaviour is observed. As the links deform plastically, the incremental moments required

to further increase χ are very small until contact occurs. When the first contact occurs,

and until there are only one or two contact locations, a slight increase in the moments is

observed. After the contact locations increase to more than two, i.e. the link is in self contact

and also in contact with the stent struts, a very steep change in the slope of the M − χ curve

is observed. Thus, the design of the links, which involves consideration of both allowing the

links to expand and contract and simultaneously avoid self contact, is a key determinant of

flexibility in stents.

Figure 6.5: Contact in bending of stents
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Figure 6.6: Moment vs. curvature index curve

6.4 Validation

The model used in this chapter is validated against the numerical results obtained by De

Beule [11]. Figure 6.7 shows the numerical result, M − χ curve, obtained in this chapter

against the numerical results obtained by De Beule. The results match well both qualitatively

and quantitatively: the maximum difference being less than 10%. The differences can be

attributed to the differences in the geometry of the CYPHER stent used by De Beule and

the geometry used in this chapter.

Figure 6.7: Validation against numerical results obtained by De Beule et. al. [11]

6.5 Formulation of objective function

The moment vs. curvature index graph gives a measure of flexibility of a stent. Petrini et.

al. [141] have calculated the slopes both in the elastic and the plastic regions and used them



6.6. Conclusions 105

to compare stents. Such differentiation of slopes in various regions is thought inappropriate

for purposes of design studies for two reasons – first that the number of such slopes, which

depends on the severity of contact at different values of φ is not known a priori, and second

that it is difficult to compare stents as two or more metrics are involved (one stent could

have a lower slope in the elastic region and a higher slope in the plastic region and the other

stent vice versa). Besides, the concept of slope in the non-elastic regions is a confusing one

and can lead to errors. To overcome this problem the area of the M − χ curve is proposed.

A smaller area indicates that, on average, a smaller moment is required to deflect the stent.

Such a formulation overcomes the two aforementioned problems while dealing with slopes.

Consequently, the flexibility metric, FM, is defined as –

FM =
∫ χmax

0
M(χ) dχ, (6.1)

where χmax is either determined by the parameterisation used for a particular design study,

or the maximum curvature that is expected in the path of the stent to the stenosis site. Since

data about the latter are not available, while using the former method, the value of χmax

should be cross-checked to ensure that sufficient plastic deformation is taken into account. It

should be noted that since the CYPHER stent is symmetric in the circumferential direction,

i.e. it has uniformly repeating strut segments and links in the circumferential direction,

the proposed bending test is required only once by application of moments in a direction

perpendicular to one of the links. For stents which do not have this property, bending tests

should be performed in all directions since the M − χ curve will vary depending on which

direction the moment is applied. In such cases, the maximum of FM in all the bending

directions can be taken as the objective function.

6.6 Conclusions

A method to evaluate flexibility is implemented in this chapter. The importance of the design

of links is depicted both qualitatively and quantitatively. It is concluded that a design which

avoids self contact and number of contact locations, for higher values of curvature index is,

in general, more flexible. Based on the results obtained, an objective function, called the

flexibility metric (FM), to quantify flexibility into a single numerical quantity is proposed.

As part of the analysis of stents, in order to formulate the comparison figures of merit, this

thesis has so far covered haemodynamics (flow), balloon expansion (structural), and flexibility

analyses. The drug diffusion merits still need to be formulated. These will be formulated in

chapter 8, but before that in the next chapter, a preliminary constrained optimisation study

is presented.





Chapter 7

Constrained optimisation of

coronary stents

This chapter1 presents a constrained optimisation study on coronary stents. The thesis has

already formulated metrics for haemodynamic alteration (in chapter 4), structural strength

(in chapter 5), arterial injury (in chapter 5), and flexibility (in chapter 6). In this chapter, the

metrics from balloon expansion analysis from chapter 5, viz. VAS and Recoil, and flexibility

analysis from chapter 6, FM, are used. The haemodynamic metric from chapter 4, HLRFI, is

excluded in this chapter because of two reasons: a) CFD models to use the expanded geometry

from balloon expansion analysis for haemodynamic evaluation have not yet been explored;

and b) the metrics for VAS , Recoil, and FM are all related to finite element analysis, and hence

from a practical point of view can be obtained from one FEA package, thereby eliminating

the hard task of transferring geometries between FEA and CFD packages. Nonetheless, in

this chapter a fast model to evaluate drug-distribution is proposed. In line with the thought

of keeping all analysis in an FEA package, this model does not include flow in the lumen (as

that would be in the regime of CFD) and hence is formulated using a heat-transfer analogy

with a finite element formulation. With this background, the aims of this chapter are

1. to develop an FEA based model to evaluate drug-distribution in a stented artery,

2. to develop a parameterisation technique which can be used to create varying stent

geometries,

3. to perform a constrained optimisation study, in order to demonstrate improvement

in stent performance in terms of radial strength, arterial injury, flexibility, and drug

delivered, and

4. to evaluate trends between various merit functions and the parameters representing the

stent geometry.

1The contents of this chapter are published in the below mentioned article with the author’s supervisory
team.
Pant, S., Bressloff, N. W., and Limbert, G., Geometry Parameterization and Multidisciplinary Constrained
Optimisation of Coronary Stents. Biomechanics and Modeling in Mechanobiology, 11:61–82, 2012.
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This chapter is organised as follows: first, a review of the few optimisation studies in

the area of coronary stent design is presented; then an FEA model for drug-release is devel-

oped and an objective function from this model is formulated; thereafter, a parameterisation

technique to represent stent geometry is proposed; and finally, the details and results of the

constrained optimisation study are presented.

7.1 Introduction

Relatively few studies in the past have addressed the problem of stent design optimisation.

Atherton and Bates [162] have presented different approaches to design optimization and their

application in the field of stent design using computational fluid dynamics simulations. Li

et. al. [163, 164] performed an optimization study using a simplified expansion model for the

MAC STENTTM(amg international GmbH, Germany). Their analysis was based on the free

expansion of the stent (without considering the lesion) and they sought designs maximising

radial gain while minimising radial reduction, radial loss, and dogboning (uneven expansion

of the stent along its axial length). After imposing proper constraints on maximum stresses ,

foreshortening etc., they combined the multiple objectives onto a single objective. Blouza et.

al. [165] performed an optimization study using a 2-D model for the stent by evaluating the

fluid-stent interaction. For the multi-objective problem of minimising the mean-square wall

shear stress and minimising the mean swirl value near the struts, they used an ǫ-multiobjective

evolutionary algorithm. Wang et.al [130] evaluated six different combinations of balloon

lengths and stent types to investigate design features to reduce dogboning and foreshortening.

Bedoya et. al. [166] proposed a three parameter based technique to generate stent designs

and after evaluating eight designs concluded that large strut spacing, radius of curvature, and

large amplitude of the circumferential rings result in lesser stresses in the artery. Timmins

et. al. [167] took the data of Bedoya et. al. and using Lagrange interpolation approximated

the values for relevant stresses, lumen gain, and maximum cyclic radial deflection. They

then identified designs minimising a weighted sum of these three metrics. Recently Wu et. al.

[168] used a 2-D morphing technique on biodegradable magnesium alloy stents to sequentially

minimise maximum principal strain and maximise mass.

7.2 A model for drug release

In this section a model for drug-release is developed as a heat transfer problem in Abaqus/

Standard 6.9.1 (Dassault Systèmes Simulia Corp., Providence, RI, USA). As mentioned in

the beginning of this chapter the motive behind such a formulation is that all analyses for the

optimisation study can be performed in the FEA package. Hence, a finite element formulation

of drug-diffusion is needed. The similarity between the diffusion equations and the heat

equation is utilised for this purpose [169, 170, 171]. Since the objective of this model is to

evaluate the differences in the performance of a stent for different geometric designs only, the

drug release is modelled as a steady state diffusion problem. Hence, in the regions of plaque

and artery the following equations are solved respectively

Dp∇2Cp = 0 in plaque region, (7.1)

Da∇2Ca = 0 in artery region, (7.2)
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where Cp and Ca are drug concentrations in the plaque and artery, respectively, and Dp and

Da represent the drug diffusivities in the plaque and artery regions, respectively. The stent

region is set to unity drug concentration. Such a Dirichlet boundary condition for drug release

has also been used by Kolachalama et. al. [16]. The perivascular side, as shown in Fig. 7.1,

is set to a zero flux boundary condition. For the luminal side, shown in Fig. 7.1, there are

two possibilities for the boundary condition: first, to assume a zero flux boundary condition;

and second, to assume a flux on the assumption that the drug concentration in the lumen is

zero, which in turn is based on the assumption that all drug in the lumen is washed out owing

to the luminal flow. In this chapter, the former approach is adopted. The latter approach is

explored in chapter 8, where the drug concentration in the lumen is also solved for, and hence

the flux on the boundary is calculated more accurately. The longitudinal ends are set to a

zero concentration boundary condition. For the stent-plaque interface and the plaque-artery

interface, the following formulation is adopted –

q(Cs,Cp) = ksp(Cs −Cp) for the stent-plaque interface, (7.3)

q(Cp,Ca) = kpa(Cp −Ca) for the plaque-artery interface, (7.4)

where q represents the flux along an interface, Cs is the drug concentration in stent, and ksp

and kpa represent the permeabilities of the stent-plaque and plaque-artery interface, respec-

tively. For the values of the diffusivities of the drug in the plaque and the artery, the work

by Feenstra et. al. [171] is used. Their diffusivity values of 2.2× 10−5 mm2/s and 3.2× 10−5

mm2/s for intima and media are as Dp and Da, respectively, in this model. Disregarding the

porosity field, that was proposed by Feenstra et. al. [171], in order to simplify the model, ksp

and kpa are assumed to be 10−4 mm/s and 1 mm/s, respectively.

Figure 7.1: Boundary condition surfaces for drug release analysis (baseline geometry)

7.2.1 Formulation of objective function

The drug related measure of performance can be considered in two aspects – a) a measurement

of the drug delivered into the tissue globally, and b) a measurement of the tissue volumes which
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receive low drug (less than therapeutic levels). In this thesis, the first aspect is considered

for two reasons – first that the determination of drug levels below which the effects are non-

therapeutic (specially for the steady state drug distribution model adopted in this chapter)

is not obvious, and second that depending on the minimum level set (most likely different for

different types of drug) the optimisation results will be different. The volume average metric

for drug, VAD, to measure the amount of drug transported into the tissue globally, is defined

as follows –

VAD =

∫

V
cdV

∫

V
dV
, (7.5)

where c is the drug concentration in the tissue region (i.e. plaque and artery combined) lying

within the axial domain of the stent plus a length of 0.5 mm on either side of the stent and

V is the volume. For discretized domains VAD can be calculated by

VAD =

∑i=n
i=1 ciδVi
∑i=n

i=1 δVi
, (7.6)

where ci is the concentration of drug in an element of volume δVi, and the summation is

carried out over all the elements in the tissue lying in the axial domain of stent plus a length

of 0.5 mm on either side of the stent. This domain is similar to that used in the formulation

of VAS and is shown in figure 5.29.

VAD =

∑i=n
i=1 ciδVi

∑i=n
i=1 δVi

, (7.7)

A measure of uniformity of the drug-distribution is excluded from this chapter, and is pre-

sented in chapter 8.

7.2.2 Stent geometry and parameterisation

Most stent designs used in clinical practice today have two distinct features – circumferential

rings and links/ connectors. The circumferential rings are the primary feature for expansion

as they undergo plastic deformation at the curved parts and the links provide flexibility to the

stent during deployment. The circumferential rings are crucial for metallic stents as an alter-

nate way of expansion, which would typically involve extremely large plastic deformations,

seems improbable. A change in the material properties (e.g. by using polymers), however,

can lead to very interesting stent designs which can sustain high plastic deformation (cf.

patent by Contiliano and Zhang [151]). Nonetheless, confined to a circumferential ring and

connector design topology, the present work uses a parametrization to parsimoniously alter

the shape of the stent. Since a stent is one single structure, composed of two parts (rings

and links), two parameters are used to describe the rings and two parameters to describe the

links.

Geometry construction/ parameterisation is performed in Rhinoceros 4.0. The base struc-

ture for the circumferential rings is first created. Figure 7.2a shows this structure (note that

the lines depicted in Fig. 7.2a are construction lines). The radius of the initial shape (semi

crimped state) of the stent, Rstent, and its length, Lstent, are fixed to be equal to 0.75 mm and

8.0 mm respectively. Four rings in the longitudinal direction are used and there are 12 (Ny)

curved parts in each circumferential ring. Consequently, dH is equal to 2πRstent/Ny, where dH
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is the distance between successive linear regions in the circumferential rings. The parameter

hc, as shown in Fig. 7.2a, is allowed to vary. Since Lstent is constant, hc controls the length of

each circumferential ring, and hence the length of the links too. The small horizontal lines in

Fig. 7.2a show the location where the links are joined to the circumferential rings. From each

curved peak in the circumferential ring, these lines are at a distance of half the value of strut

width (Wstrut), which is the second variable parameter. In order to parameterise the link, a

two parameter (p1 and p2) based polynomial of 5th order is used. While seeking the form of

the polynomial two considerations are kept in mind – first that the polynomial should take a

value of zero at the ends, and second that the polynomial should have zero slope at the ends.

The second condition ensures tangency at the ends so that the connectors can smoothly join

the circumferential rings (c.f. Fig. 7.2b). Such a polynomial could take the following form

f (t) = p1t2(1− t)2 ; for 0 < t < 1. (7.8)

Observing that many stents (CYPHER stent, Multi-link ZETA stent etc.) have an oscillating

link shape, a second link parameter, p2, is introduced and the parametrisation is represented

as a fifth order polynomial

f (t) = p1t2(1− t)2(p2 − t) ; for 0 < t < 1 & 0 < p2 < 1. (7.9)

Equation 7.9 now represents a smooth curve which takes a value of zero at t = p2 and

has opposite sign values for intervals (0 < t < p2) and (p2 < t < 1). Adding more parameters

such as p2 would introduce more such oscillations in the function value. However, to keep

the number of parameters low, this is avoided here. Since the peak values of f (t) in Eq. 7.9

depends on the value of p2, the final form chosen for this chapter is the following –

f (t) =
p1t2(1− t)2(p2 − t)

|t20(1− t0)2(p2 − t0)|
; for 0 < t < 1 & 0 < p2 < 1, (7.10)

where, t0 is

t0 =



















t1 if F(t1) > F(t2)

t2 if F(t1) < F(t1)
, (7.11)

and t1 and t2 are the extremum values (besides 0 and 1) for the function–

F(t) = |t2(1− t)2(p2 − t)|. (7.12)

Such a formulation ensures that p1 is the maximum value that the curve takes. Once

the curves for both the circumferential rings and the links are obtained, they are offset by

a distance of Wstrut/2 and nwidth/2 respectively on either side, where nwidth is the width of

the links (constant in this chapter with a value of 0.07 mm, which is roughly half of the

strut-width value for the CYPHER stent, Cordis Corporation, Johnson & Johnson). Figure

7.2d shows this network of curves after the offset operation. All the regions bounded by the

curves are then converted to surfaces, the surfaces extruded to a value equal to strut thickness

(radial dimension) Tstrut (constant and equal to 0.14 mm, based on the strut height of the

CYPHER stent [34], in this chapter), and the resulting structure wrapped to make the final

stent shown in Fig. 7.2e.

In essence, there are four parameters which are allowed to vary for each stent design –

Wstrut, hc, p1, and p2. For the baseline geometry, shown in Figure 7.3, Wstrut, hc, p1, and p2
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(a) The base shape for parameterisation (hc as the pa-
rameter)

(b) Parameterisation for the link (p1 and p2
as parameters)

(c) Figure with links and the base structure

(d) Shape after offsetting the curves(Wstrut as the
parameter)

(e) Final stent geometry

Figure 7.2: Stent parameterisation: stages in creating the stent geometry

Figure 7.3: Baseline geometry for constrained optimisation studies
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Table 7.1: Limits imposed on the design parameters

Wstrut hc p1 p2

mm mm mm

Min. 0.05 0.7 0 0
Max. 0.17 1.1 0.5 1

are specified to be equal to 0.11 mm, 0.9 mm, 0.25 mm, and 0.5 units respectively. Figure

7.4 shows some alternate designs created by using this parameterisation.

Figure 7.4: Sample designs generated from the parameterisation described in section 7.2.2
and Figure 7.2

Figure 7.5: Explanation of the lower bound on the parameter hc

Table 7.1 shows the bounds imposed on each of the four free parameters. The choice of

the bounds is decided by the following:

1. Wstrut: The upper bound on Wstrut is decided by the fact that a very high value of Wstrut

results in self contact of the circumferential rings (since the number of curved regions in

each circumferential ring is constant). The lower bound on Wstrut is decided by meshing

constraints.
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2. hc: From Fig. 7.2a and 7.2d it is clear that the axial length occupied by one circum-

ferential ring is hc + dH +Wstrut. The value of dH is fixed (0.393 mm) owing to the fact

there are 12 curved regions in each circumferential ring. For maximum values of Wstrut

and hc the axial length of one ring is 1.663 mm. Consequently the length of four rings

is 6.650 mm. This leaves about 17 % of the total axial length (8 mm) for three sets of

links, implying just over 5% of the total axial length for each link. Any increase in the

upper bound of hc makes this percentage even smaller which is not considered desirable.

Based on a simplistic idea of seeing the expansion as a stretching of the circumfer-

ential rings in a flat plane, the lower bound reflects a maximum limit of an angle of 70o

on the angle between the curved regions of the circumferential rings. Figure 7.5 shows

this scenario.

3. p1: The upper bound for p1 is chosen considering that a very high value of p1 results

in contact of one link with the one vertically above it. The lower bound for p1, p1 = 0,

results in straight links.

4. p2: The parameter p2 by definition lies between 0 and 1.

7.2.3 Baseline results

The baseline geometry, defined by the middle values between the upper and lower bounds

for all the four parameters, is shown in Figure 7.3. The values of the various metrics of

Recoil,VAS ,VAD, and FM for this design are 0.168 mm, 0.046 MPa, 1.278 units, and 0.505

N-rad, respectively. The balloon expansion and flexibility analysis for this design yields results

similar to those reported in chapters 5 and 6. These results can be found in appendix C.

Here, the results of the drug-distribution model on the baseline geometry are presented.

The steady state drug contours, from the drug release simulations, are shown in Fig. 7.6.

Due to higher penetration of the stent into the plaque tissue in the central region, and the fact

that the central region receives drug from both ends of the stent, the drug concentration is

higher in these areas. The impression of the stent can be seen in the plaque drug concentration

contours too. This is expected as the stent is the source of the drug. The volume average

drug in the plaque and the tissue region calculated from Eq. 7.7 is 78.2 × 10−2 units.

Figure 7.6: Steady state drug contours for the baseline geometry
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7.2.4 Optimization

7.2.4.1 Optimization problem

The four metrics used in this chapter for evaluation of stents are: Recoil (equation 5.10), VAS

(equation 5.12), VAD−1 (cf. equation 7.7), and FM (equation 6.1). Note than an inverse of

VAD is chosen so that a lower value across all the four merits, implies a better design. With

these four metrics, three optimisation problems are formulated as single objective constrained

problems. The setting up of the inequality constraints of the form gi(x) < gmax
i requires

an understanding of the minimum allowed values of Recoil, VAS , VAD, and FM. Such

minimum allowed values for each objective are hard to determine. To overcome this problem,

the approach used in this study is to start from the baseline geometry and then search for

improvement in one of the objectives without compromising on any of the other three. So,

the optimisation problems are–

Minimise f (x) , s.t. (7.13)

g1(x) < g1(x)baseline,

g2(x) < g2(x)baseline,

g3(x) < g3(x)baseline,

where x is the vector containing the four parameter values and f (x) is either of the three VAS ,

VAD−1, or FM. Depending on which of the VAS , VAD−1, or FM is being minimised, the other

three metrics are formulated as constraints, g1(x), g2(x), and g3(x), with one of them always

being Recoil. The idea of having Recoil always as a constraint stems from the discussion in

section 5.7.1, where it was mentioned that clinical trials have shown a significant reduction in

restenosis rates for minimum stent area greater than certain thresholds. Hence, in the process

of designing a stent, Recoil, is more likely to be formulated as a constraint, as opposed to

other metrics, for example VAS , for which clinical thresholds are hard to determine.

7.2.4.2 Optimisation methodology

Surrogate modelling (see section 3.2) is used to model the response of each of the four metrics.

Surrogate modelling is pertinent as the evaluation of one design for all the four metrics in

this chapter takes over 24 hours (wall time), using 8 parallel compute processes (Microsoft

Windows 64-bit high performance computing platform, Intel quad core 2.8 GHz processor,

16 GB RAM). In particular, the Gaussian Process surrogate modelling approach (see section

3.2.3) is adopted in this chapter.

An LPτ [172] based sampling plan is used to construct a 40-point sample. The choice

of 40 points is based on the general rule of sampling 10 times the number of parameters.

High fidelity simulations, i.e. the analyses presented in chapters 5, 6 and section 7.2, are

carried out for each of these 40 designs, and corresponding metrics of Recoil, VAS , VAD−1,

and FM are extracted. The first five columns of Table 7.2 show the normalised values of the

four parameters for the 34 successful evaluations out of 40. The analysis for six points failed

due to issues faced in the automated processes of geometry export from the CAD package,

geometry import into the FEA package, and automated meshing.

Based on the metric values obtained for the 34 designs, individual Gaussian Process models

are constructed for each of the metrics of Recoil, VAS , VAD−1, and FM. These models are

validated using the SCVR methodology discussed in section 3.2.3.2.
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Table 7.2: Design table showing the parameter values (normalised) for the points analysed
and respective objective function values

Design Wstrut hc p1 p2 Recoil VAS VAD−1 FM
mm MPa units N-rad

DOE-1 0.500 0.500 0.500 0.500 0.168 0.046 1.278 0.505
DOE-2 0.250 0.750 0.250 0.750 0.262 0.039 1.515 1.096
DOE-3 0.750 0.250 0.750 0.250 0.112 0.046 1.233 0.587
DOE-4 0.625 0.125 0.375 0.375 0.123 0.045 1.283 0.743
DOE-5 0.375 0.375 0.625 0.125 0.183 0.043 1.422 0.590
DOE-6 0.875 0.875 0.125 0.625 0.139 0.047 1.192 1.894
DOE-7 0.063 0.938 0.688 0.313 0.316 0.036 1.740 0.510
DOE-8 0.563 0.438 0.188 0.813 0.145 0.046 1.285 1.401
DOE-9 0.313 0.188 0.938 0.563 0.186 0.044 1.440 0.416
DOE-10 0.813 0.688 0.438 0.063 0.132 0.047 1.207 0.941
DOE-11 0.188 0.313 0.313 0.688 0.222 0.040 1.876 0.852
DOE-12 0.688 0.813 0.813 0.188 0.162 0.047 1.214 0.620
DOE-13 0.438 0.563 0.063 0.438 0.179 0.044 1.361 2.072
DOE-14 0.938 0.063 0.563 0.938 0.089 0.043 1.214 0.700
DOE-15 0.031 0.531 0.406 0.219 0.331 0.033 2.091 0.689
DOE-16 0.531 0.031 0.906 0.719 0.125 0.045 1.323 0.424
DOE-17 0.781 0.781 0.656 0.469 0.144 0.048 1.198 0.609
DOE-18 0.156 0.156 0.531 0.844 0.232 0.039 1.875 0.610
DOE-19 0.656 0.656 0.031 0.344 0.147 0.046 1.243 2.199
DOE-20 0.906 0.406 0.281 0.594 0.108 0.046 1.206 0.947
DOE-21 0.594 0.969 0.344 0.906 0.184 0.046 1.234 1.132
DOE-22 0.344 0.719 0.594 0.656 0.217 0.043 1.384 0.597
DOE-23 0.844 0.219 0.094 0.156 0.101 0.045 1.227 2.077
DOE-24 0.719 0.344 0.719 0.031 0.118 0.045 1.237 0.615
DOE-25 0.469 0.094 0.469 0.281 0.139 0.044 1.379 0.676
DOE-26 0.969 0.594 0.969 0.781 0.115 0.047 1.185 0.487
DOE-27 0.016 0.797 0.953 0.672 0.323 0.035 1.801 0.367
DOE-28 0.516 0.297 0.453 0.172 0.149 0.045 1.313 0.742
DOE-29 0.266 0.047 0.703 0.422 0.197 0.042 1.604 0.406
DOE-30 0.766 0.547 0.203 0.922 0.124 0.046 1.222 1.406
DOE-31 0.141 0.422 0.078 0.297 0.265 0.037 1.903 1.468
DOE-32 0.641 0.922 0.578 0.797 0.174 0.047 1.223 0.896
DOE-33 0.891 0.172 0.828 0.047 0.095 0.045 1.214 0.552
DOE-34 0.078 0.234 0.266 0.984 0.272 0.036 2.164 0.947

Once the Gaussian process models are constructed and validated for each metric, the

following two tasks are performed

1. sensitivity indices and main effects (see section 3.2.3.3) of each variable on each of the

merit functions are calculated in order to understand the relationship between the merit

functions and parameters representing stent geometry.

2. a Fortran feasible sequential quadratic programming (see section 3.4.6 for an introduc-

tion to SQP) search (FFSQP) [173], is made over the surrogates for the three constrained

optimisation problems represented by equation 7.13.
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7.3 Results

7.3.1 GP model validation

Based on the objective function values of the 34-point sample data (listed in table 7.2),

Gaussian Process models for each of the objectives are constructed. To assess the validity of

the GP model, the leave-one-out process is adopted (see section 3.2.3.2). In this method, one

point is left out for calculating the correlation matrix in the Gaussian Process model, thereby

excluding its effect, and a prediction for the function value at that point is made. This process

is repeated for all the points. A plot between the actual values and the predicted values, if

showing a linear behavior with a slope of 45 degrees, suggests a good model. The leave-one-

out plots are shown in Fig. 7.7. These plots suggest that the Gaussian process models predict

function values close to the actual values. These plots also suggest that the predictor for FM

is the relatively most inaccurate of all the four GP predictors. Another method to assess the

validity of a Gaussian Process model is to evaluate the standardized cross validated residual

(SCVR) values in the leave-one-out process (see section 3.2.3.2). The SCVR value at a point

i denotes the number of standard errors by which the predicted and actual values for the left

out point differ. The Gaussian Process model predicts, with approximately 99.7% confidence,

that the values lie within the mean prediction plus or minus three standard errors. Thus, if

the SCVR lies in the interval [−3,+3], the Gaussian Process model is appropriate. Figure

7.8 shows the SCVRs for the four Gaussian Process models for each point, and all points lie

within the interval [−3,+3], thereby asserting the validity of these models.

Figure 7.7: Surrogate model validation: Leave-one-out plots for recoil (Reoil), volume average
stress (VAS ), volume average drug (VAD), and the flexibility metric (FM)

7.3.2 Response surfaces and errors

Having constructed the GP predictors for the four metrics, the prediction values can be plotted

over the search domain. Figures 7.9 – 7.12 show the tile plots for the four merit functions
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Figure 7.8: Standardised cross validated residual (SCVR) values for all points analysed –
recoil (Recoil), volume average stress (VAS ), volume average drug (VAD), and the flexibility
metric (FM)

Recoil, VAS , VAD−1, and FM, respectively. These tile plots show the four dimensional

function in terms of various slices through the Wstrut−hc planes; each subplot represents Wstrut

on the x-axis and hc on the y-axis, parameter p1 increases horizontally from left to right

(while p2 remains constant in each row), and parameter p2 increases vertically downwards

(while parameter p2 remains constant in each column). Figures 7.13 – 7.16 show the error

plots, as predicted by the GP model, for the merit functions Recoil, VAS , VAD−1, and FM,

respectively in a similar fashion. These plots are highly informative: for example, Figure 7.13

shows that except in the small red regions (top regions of each plot), where the predicted

errors are quite high, in most of the search domain, the errors are of the order of 10−3 mm.

Observing the column for Recoil (column 5) in table 7.2, one can see that the differences in

Recoil values for the designs are of the order of 10−2 mm. This implies that the GP predictor

can be trusted in most of the search domain. Similar arguments hold for the GP predictors

of VAS and VAD−1. Finally, as observed in previous section from the leave-one-out plots, the

relatively high inaccuracy of the FM predictor is also apparent from Figure 7.16. In particular

high uncertainty is observed for extreme values of the parameters p1 and p2.

The accuracy of these models can be improved by using more points to create the GP

predictors. A naive approach is to use a larger space filling sample plan. Other more efficient

ways include searching the error function to find points where the error is maximised and

appending these points to the training set. Another approach is to use the expected im-

provement criterion proposed by Jones et. al. [50] that balances efforts to both improve the

minimum function value and error simultaneously [50]. However, owing to the high computa-

tional expense of running more high fidelity simulations, this is avoided in this chapter. The
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Figure 7.9: Response contours for Recoil as predicted by GP models: each subplot, with
Wstrut on x-axis and hc on y-axis, shows function value contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom

current predictors are searched using an SQP method and the results obtained are analysed

using the high fidelity simulations. These results are presented in section 7.3.4. Returning

to figures 7.9 – 7.12, some key observations are made. Figure 7.9 suggests that varying the

parameters p1 and p2 has negligible effect on Recoil since all the slices in this plot are very

similar. This figure also suggests that higher values of Wstrut and lower values of hc yield best

result in terms of Recoil. Similarly, Figure 7.10 suggests that VAS too is not influenced by

changes in p1 and p2, and that lower values of Wstrut and higher values of hc are preferred in

terms of VAS . This is an apparent conflict between Recoil and VAS , which is quite evident

by observing the blue and red regions of Figures 7.9 and 7.10. Figure 7.11 suggests that the

parameter p2 does not influence VAD−1 but unlike Recoil and VAS , p1 mildly effects VAD−1.

This figure also suggests that higher values of Wstrut, higher values of hc, and higher values of

p1 produce best stent designs in terms of VAD−1. Finally, figure 7.12 shows that both while
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Figure 7.10: Response contours for VAS as predicted by GP models: each subplot, with
Wstrut on x-axis and hc on y-axis, shows function value contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom

Wstrut and hc do not influence FM significantly, FM is most sensitive to the parameter p1

(higher values preferred in terms of FM followed by Wstrut and p2.
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Figure 7.11: Response contours for VAD−1 as predicted by GP models: each subplot, with
Wstrut on x-axis and hc on y-axis, shows function value contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom
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Figure 7.12: Response contours for FM as predicted by GP models: each subplot, with
Wstrut on x-axis and hc on y-axis, shows function value contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom
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Figure 7.13: Error contours for Recoil as predicted by GP models: each subplot, with Wstrut

on x-axis and hc on y-axis, shows the error in prediction contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom
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Figure 7.14: Error contours for VAS as predicted by GP models: each subplot, with Wstrut

on x-axis and hc on y-axis, shows error in prediction contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom
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Figure 7.15: Error contours for VAD−1 as predicted by GP models: each subplot, with Wstrut

on x-axis and hc on y-axis, shows the error in prediction contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom
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Figure 7.16: Error contours for FM as predicted by GP models: each subplot, with Wstrut on
x-axis and hc on y-axis, shows the error in prediction contours at fixed p1 and p2; p1 varies
horizontally from left to right, and p2 varies vertically from top to bottom
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Figure 7.17: Trade-off plots for all combinations of the four metrics

7.3.3 Objective function trade-offs

Figure 7.17 plots the four metrics against each other for the 34-point sample, thereby showing

the relationship between the objective functions. Across all these plots better designs tend

to lie towards the bottom left corner. The centre-right plot shows that volume average drug

and recoil are not in conflict with each other – a lower recoil generally implies a higher

volume average drug. The top-left and the top-right plots suggest that volume average stress

is in conflict with both volume average drug and recoil – a lower volume average stress

would generally imply a higher volume average drug and higher recoil. The rest of the

plots where flexibility is one of the variables imply that flexibility is not highly correlated

with any of the other metrics. To locate the features in the parameterisation to explain

the observations of these plots one can use the information provided by the surrogate models

(Figures 7.9 – 7.12). Moreover, main-effects calculated from the GP predictors can be used to

aid this understanding. Hence, the sensitivity indices of the main effects (see section 3.2.3.3)

for each objective, which evaluate the relative effects of the individual parameters on the

GP predictor, are calculated. Representative pie charts for the main effects are plotted in

Fig. 7.18. These provide a graphic indication of the parameters that are most influential

in determining the physical response in terms of the four evaluation metrics. This figure

reinforces the observations made in the previous section, and readily explains the behaviour

of flexibility. While the parameter p1, the peak height of the links, affects flexibility most, it
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Figure 7.18: Sensitivity indices for each of the four metrics

has minimal effect on the other objectives. This explains the independence of flexibility with

other objectives as varying p1 could improve the flexibility without having much effect on the

other metrics. The effect of p1 seems most appropriate if one observes the bottom pictures

of Fig. C.4 in the appendix. A higher peak value of p1 gives more length to the curved link

which helps it expand as well as contract. A straight link, p1 = 0, would not have such a

designed feature for expansion/contraction and consequently will not be as flexible as with a

finite p1.

The main effects and GP predictor plots also explain the conflict between volume average

stress with drug and recoil observed in Fig. 7.17. The strut width, Wstrut, is the parameter

influencing all three of these objectives most. Intuitively, a higher Wstrut implies more metal in

the stent, leading to higher contact area between the stent and the tissue, and consequently

higher stresses. This simple generalisation that more metal (in terms of higher Wstrut) in the

stent leads to higher stresses needs more explanation, even though it is quite clear from figure

7.10 that this is the case. One would think that for the same inward force by artery, trying to

regain its original configuration, a thinner strut will lead to a higher contact pressure owing

to a low contact area. This is apparently against the observations of figure 7.10 where clearly

higher Wstrut leads to higher stresses. The explanation of this counter-intuitive phenomenon

lies in figure 7.9, where it can be seen the Recoil is also influenced by Wstrut. High Wstrut values

lead to lower recoil, which implies that for these stents the artery is more stretched (higher

expanded diameter) when compared to the stent designs with lower Wstrut. Consequently, for

stent designs with higher Wstrut, there is more force imparted by the artery on to the stent
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relative to the designs with lower Wstrut, and hence explains why higher Wstrut values lead to

higher stresses. Such high Wstrut values, though unwanted from the point of view of stresses,

seems favourable for the drug as a higher Wstrut leads to higher drug availability, and a higher

contact area implies more drug transport from the stent into the tissue. It could be argued, at

this point, that the uniformity of the drug distribution is as important, as the amount of drug

in the tissue. An easy way to look at the uniformity of the drug, and easily implemented in

discretised domains, is to calculate the mean value of the drug concentration in all the elements

and then look at the standard deviation of the data. This value effectively implies the root

mean square error of the difference between each element’s drug concentration and the overall

mean. It is found that for the parameterisation and modelling techniques used in this chapter,

the volume average drug is negatively correlated to the standard deviation, implying that a

higher amount of drug is also reflective of a relatively lesser uniform distribution around its

mean. This standard deviation of drug concentration can be used as one of the objective

functions in design studies. It is important that such a metric for uniformity must be used in

conjunction with the average drug concentration, as a device allowing for uniform distribution

could have a low mean. This would imply uniform distribution of non-therapeutic levels for

the drug. Such a measure of uniformity is avoided in this chapter to keep the number of

evaluation metrics low.

An explanation of the apparent correlation between the inverse of volume average drug

and recoil is now sought. Both these quantities are most affected by Wstrut followed by hc.

For the same expansion radius, thicker struts undergo more plastic deformation at the curved

ends of the circumferential rings (all other parameters being equal) and consequently reduce

recoil. This partly explains why volume average drug inverse and recoil seem to be correlated.

The role of hc in recoil, with a relatively large main-effect value of 8.3%, can be explained

by consideration of Fig. 7.19. The expansion of a stent can be seen as stretching of the

circumferential rings in a flat plane. For the same stretch, d, circumferential rings with smaller

hc undergo higher plastic deformation at the curved regions. A higher plastic deformation

consequently results in a lower recoil. The effect of hc can also be understood for volume

average drug and stresses. A smaller value of hc implies a smaller length of the circumferential

rings. Such designs have a relatively lower surface area and hence lesser contact area between

the stent and the plaque. This affects both volume average drug (negatively) and stresses

(positively).

Table 7.3: Results for constrained optimisation (Normalized design parameters)

Wstrut hc p1 p2 Recoil VAS VAD−1 FM

mm mm mm - mm MPa unit−1 N-rad

Baseline 0.5000 0.5000 0.5000 0.5000 0.1685 0.0458 1.2783 0.5045

min (VAS ) 1.0000 0.0001 0.9599 0.8508 0.1685 0.0432 1.2783 0.5045

min (VAD−1) 0.9402 0.3993 0.9316 0.8712 0.1685 0.0458 1.1760 0.5045

min (FM) 0.5063 0.2433 0.8658 0.6850 0.1685 0.0458 1.2783 0.4138
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Figure 7.19: Effect of hc on plastic strains

7.3.4 Optimisation results

After the construction of GP predictors for each metric, a Fortran feasible sequential quadratic

programming search (FFSQP) [173], is made over the surrogates for the constrained optimisa-

tion problems. The results for the three different sets of optimisation problems are tabulated

in Table 7.3. As discussed in the above paragraph, both Wstrut and hc affect the metrics for

stress, drug, and recoil. It is primarily the interplay between these two parameters which

results in the trade-off between various metrics and hence influence the results for the opti-

misation studies.

For the case of stress minimisation, the optimal designs have a high value of Wstrut but

low values of hc, both being pushed towards their respective bounds. A high value of Wstrut to

minimise the stresses appears to be paradoxical but can be partly explained when combined

with a low value of hc. It is worth recalling that starting from the baseline geometry, design

improvement is being sought which minimises stresses without compromising on the other

three metrics. Given the broad relationship between the parameters and the metrics, as

discussed in the previous paragraph, the first thought should be to decrease Wstrut to decrease

stresses. However, decreasing Wstrut comes at a price – any decrease in the value of Wstrut can

increase both the recoil and the volume average drug relative to the baseline geometry. It

is here that the interplay between all the parameters has to be considered. A high value of

Wstrut, as suggested by the optimal solution, satisfies the constraints imposed on the recoil

and drug metric, and a design improvement in the stress metric is obtained by decreasing

hc. Minimising hc leads to shorter circumferential rings, which, even with higher Wstrut could

have a lower surface area, which minimises stresses. Furthermore, a high value of p1 balances

the decrease in flexibility (relative to the baseline geometry) due to increased Wstrut. A high

value of p1 also ensures better artery wall coverage to improve drug delivery. The result of

the optimisation algorithm is confirmed by performing verification simulations on the optimal

design predicted. For the solution of minimising the stress, the FEA analysis gives a value

of 0.0421 MPa, the predicted value being 0.0432 MPa (error ≈ 2.5 %) for the optimized

solution. The resulting improvement relative to the baseline geometry being 8%. Note that

the optimal solutions suggested by the optimisation algorithm push the constraints to zero for
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all the three optimisation problems, implying that the optimal solution lies on the boundary

of the constraint functions. This constraint value of zero, however, is based on the GP

predictors. FEA verification analyses, for the problem of minimising stress gives errors of

0.7%, 1.3%, and 3.8%, respectively, for Recoil, VAD−1, and FM between the predicted and

actual values.

Similar arguments as in the above paragraph hold for the results of maximising the drug

metric. An increase in Wstrut is desirable as it allows for more contact area which results in

higher transfer of drug into the tissue. However, the increase in the stress values due to in-

crease in Wstrut must be balanced by a decrease in hc in order to satisfy the specified constraint

on the stress metric. Moreover, the decreased flexibility due to higher Wstrut is balanced by

high values of p1. FEA verification for the optimal design for maximizing drug metric gives a

value of 1.19 mm3/unit for VAD−1 (the predicted value being 1.176 mm3/unit; error ≈ 1%).

The resulting improvement relative to the baseline geometry is approximately 7%. FEA ver-

ification analyses, for this problem gives errors of 1.2%, 2.5%, and 4.1%, respectively, for

Recoil, VAS , and FM between the predicted and actual values.

Figure 7.20: Optimal designs from single-objective constrained optimisation

The problem of minimising the flexibility metric does not face such serious issues as Wstrut

is not the parameter having most effect. The solution methodology in this case seems to be

simpler – since the value of the flexibility metric is most dependent on p1, and the fact that

p1 does not significantly affect the other metrics, the optimal solution has a high value of

p1 without much change in the value of Wstrut from the baseline geometry. Although Wstrut

has an effect on flexibility, with lower strut width stents being more flexible, the optimised

solution does not show a decrease in its value as that would reduce VAD when compared to the

baseline geometry. Figure 7.20 shows the optimal stent geometries as suggested by FFSQP

when run over the constructed Gaussian process models. It is worth noting that the optimal

stents have the links curved only once, unlike the baseline geometry whose links are curved

twice. This can be explained by the fact that a flexible stent design is more likely to avoid

the self contact in the links in the compression part (c.f. Fig. C.4: bottom-left image). If the
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links cross the medial line again, then there is a higher likelihood of self contact in the link.

A self contact would result in increased moment requirement for high curvatures implying

reduced flexibility. The validation FEA run on the optimized solution for minimising the

flexibility metric gives an FM value of 0.4332 N-rad (the predicted value being 0.4138 N-rad;

error ≈ 4.5%) which is an improvement of approximately 14% over the baseline geometry.

FEA verification analyses, for this problem gives errors of 1.0%, 2.3%, and 1.6%, respectively,

for Recoil, VAS , and VAD−1 between the predicted and actual values.

It should be noted that the accuracy of GP models can be further enhanced by running

high fidelity simulations at more points obtained by searching either the error function for the

predictors or by searching the expected improvement function, see Jones et. al. [50], for each

objective. If such a procedure is adopted then there is a possibility that further improvement

in designs can be obtained. However, this comes at the added expense of performing more

high-fidelity analysis, practical issues of geometry construction, geometry import and export

from CAD packages to FEA packages, automated meshing, and various peculiarities of each

analysis package used in the process. Nonetheless, improving the accuracy of the surrogate

models can help better understand the relationships between the design parameters and the

objective functions, and forms an obvious extension for future work.

7.4 Conclusions

This chapter proposes a parameterisation technique for stent designs with circumferential

rings and links. A 34-point sample using the LPτ sampling plan is constructed, and the

resulting designs using the proposed parameterisation are evaluated for four performance

metrics. Thereafter, Gaussian process models are constructed to approximate the response

for each evaluation metric. The relative effects of each of the parameters on individual perfor-

mance metrics are quantified. The results of single objective constrained optimization show

significant improvement in the metrics relative to the baseline geometry demonstrating the

applicability and suitability of the Gaussian process modelling to approximate the physical

response by efficient sampling at only a small number of points. The conflict between various

metrics and the parameters to achieve improvement in a particular metric while not altering

the others is shown and discussed. For the parameterisation technique used in this chapter,

the optimal solutions have a higher strut width compared to the baseline geometry, but a

lower value of circumferential ring length. Although the effect of parameters such as strut

thickness in the performance of stents is very well known and researched, both experimentally

and numerically, the effect of other parameters, such as Wstrut, hc, and p1, are shown here

to have significantly influenced stent performance. The strut width, Wstrut is shown to be a

key determinant of recoil, stresses, and amount of drug delivered. The plastic deformation

produced by smaller hc, in the obtained optimal designs, implies that a deviation from the

circumferential ring type structure for new stents, which allows for designed plastic deforma-

tion at specific locations, could potentially improve the stent design. This conclusion can be

seen independently, i.e. without any influence from this study, implemented in the geometric

design for Boston Scientific’s latest ELEMENT stent series, as shown in Figure 7.21. The

design of the ELEMENT series platform has been modified to specifically introduce higher

plastic strains in the curved segments of the stent circumferential rings [7]. Similarly, a lower

value for stent segments, i.e. smaller value of the parameter hc used in this study, is preferred
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in the design of the ELEMENT stent series [7]. This study also concludes that the param-

eters defining the peak cross length of the links, p1 in the current parameterisation, can be

manipulated to produce flexible stents without affecting other metrics such as volume average

stress and drug. Finally, the results suggest that minimising the number of curved regions in

the link design, in order to delay self-contact, can be beneficial in terms of flexibility, stresses,

and drug delivery. In the ELEMENT stent series, see Figure 7.21, the self contact is avoided

by having a nested peak structure.

Figure 7.21: Boston scientific’s geometric platform for the latest ELEMENT stent series [7]

Having performed a preliminary optimisation study in this chapter, the next chapter fo-

cuses on the development of CFD drug-distribution models that account for haemodynamic

flow in the lumen. Subsequently, chapter 9 uses all the metrics used in this chapter, along

with the drug uniformity metric defined in the next chapter, for a multiobjective design study.

A constrained optimisation formulation, as the one used in this chapter, is useful in two sce-

narios: first, if the constraint limits are known; and second, if a good design is available

which performs well on all aspects but one, and it is required to improve its performance in

this one aspect without deteriorating others. The former scenario stems from the thought

that for many objectives, although hard to estimate, minimum thresholds could be available

in future. For example it was already discussed how some clinical trials have suggested a

minimum stent area threshold to arrest restenosis. Similarly, if the maximum curvature of

the arteries is known, then the stent need not be more flexible than it is required for easy

deliverability through the most difficult artery sections. Based on this data, a minimum

threshold for FM could be determined. Finally, for the drug, once the biochemistry of the
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drugs is fully understood, the minimum and maximum levels of drug that are allowed to

be administered, depending on the toxic-to-therapeutic ratio of a particular drug, could be

ascertained. These values could then be represented in the constrained optimisation problem

as two constraints: one for the minimum therapeutic level and one for the maximum toxic

level. On the other hand, when such thresholds are not known, but it is known, for example,

that lower recoil, higher flexibility, lower injury, and higher drug, are preferred, then a multi-

objective formulation of the design problem is more suitable. This is primarily because, such

a formulation, focuses on minimising all objectives simultaneously, rather than focusing on

only one objective at a time. Hence, a family of optimal designs, when all objectives are con-

sidered simultaneously, can be obtained using such a formulation. Such a formulation, which

also results in a better understanding of the trade-offs involved in improving one objective

with respect to others, forms the content of chapter 9.



Chapter 8

Drug distribution in stented vessels

This chapter concerns the final aspect of engineering analysis of stents considered here, namely

drug distribution. The distribution of anti-proliferative drug plays an important role acting

against restenosis. However, for an ideal stent design, an adequate and uniform drug dis-

tribution is required. If adequate drug is not delivered in the tissue, the therapeutic effects

of the drug might abate; and if excessive drug is delivered then the toxic effects of the drug

might aggravate. Hence, both adequacy and uniformity from a drug-distribution, which are

governed by the stent design, are required. In chapter 7, a basic model for drug-release, which

considered pure diffusion of the drug in tissue region and neglected luminal blood flow was

developed. The development of this model was primarily governed by practical reasons of

keeping all analyses in a finite element analysis package. In this chapter, a CFD model for

drug-release which accounts for the haemodynamic flow in the lumen is developed. Similarly,

the idealised CFD model for haemodynamic evaluation presented in chapter 4, is extended in

this chapter to include post-expansion geometry of the stent-artery assembly obtained from

chapter 5. The aims of this chapter are

1. to apply the model for haemodynamic evaluation developed in chapter 4 to the expanded

assembly obtained from chapter 5. This provides a one way coupling between the FEA

and CFD analysis, and consequently gives a more realistic evaluation of the HLRFI

metric (defined in chapter 4, equation 4.9),

2. to develop a CFD model to evaluate drug-distribution in a stented artery, and

3. to formulate an objective function which measures the uniformity of the drug distribu-

tion in the tissue to complement the VAD metric developed in chapter 7.

This chapter is divided into two parts – part I deals with the results of the haemodynamic

evaluation in the geometry obtained by FEA expansion, and part II details the model for the

drug distribution. Part II begins with a brief introduction to the workings of the different

drugs used in DES. Then, after a review of drug-distribution models proposed in the literature,

the details of the drug distribution model proposed in this thesis are presented. Finally, a

measure of uniformity of drug delivered in the tissue is formulated.

135
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8.1 Part I : Haemodynamics results

The details of the haemodynamic model are provided in chapter 4. Here the results of the

same model when applied to the geometry obtained through the FEA analysis of chapter 5

are presented. The deformed geometry after the unloading phase (c.f. Figure 5.15) in section

5.5.2 is first obtained and exported to the CFD package, Star-CCM+ 3.06.006, Melville, NY

USA. Since only the flow volume is needed, only the geometries of plaque and the stent are

exported. Figure 8.1 shows this geometry.

Figure 8.1: Imported geometry of plaque and stent in the CFD package

The imported geometry is meshed using polyhedral volume cells. Figure 8.2 shows this

mesh. The irregularities in the central part of the mesh can be attributed to the embedding of

the stent into the plaque during the expansion simulations. Since the stenosis is highest in the

central region, which leads to higher contact stresses in the central region, a higher embedding

of the stent into the tissue occurs. Such embedment leads to distortion of the plaque elements

and can only be avoided by using a very high mesh density for the plaque during the expansion

analysis. This, although possible, is avoided as it increases the computational time for the

expansion analysis to impractical limits. Nonetheless, to overcome convergence issues, a fine

surface mesh for the plaque is used in this chapter for CFD simulations. Figure 8.3 shows

a closeup of the volume mesh (number of cells ≈ 1.6 million) which sufficiently resolves the

irregularities and does not cause convergence issues. Pulsatile flow calculations are performed

on this mesh to evaluate the wall shear stress and velocity profiles.

Figure 8.4 shows the axial wall shear stress contours on the surface of the plaque at point

5 of the cardiac pulse (c.f. figure 4.4). Figure 8.5 shows the velocity profiles on a cross section

of the plaque-stent assembly. Even though the dimensions of the stents are not the same as

in Chapter 4 and this chapter, one observation can be made – the recirculation zones in the

geometry of this chapter are smaller. This can be visually observed in Fig. 8.5, and can be

attributed to tissue prolapse. Tissue prolapse refers to the tissue volume protruding into the

lumen area between the stent struts. This can be seen in Figure 8.7. The protruding tissue

reduces the severity of the effective backward facing step that the flow faces. Immediately

after any strut, the blood flow hits the plaque surface earlier due to this protrusion, and

consequently reduces the extent of the recirculation zones. Similar to the results presented in

chapter 4, the percentages of plaque area exposed to low wall shear stress (below 0.5 Pa) and

reverse flow are calculated. These values are then combined using equation 4.9 to calculate

HLRFI. The value for HLRFI is 27.4 %. Figure 8.6 shows the secondary recirculation of flow

in a layer adjacent to the plaque wall in the lumen.
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Figure 8.2: Volume mesh of the imported geometry

Figure 8.3: Volume mesh of the imported geometry: closeup

Figure 8.4: Axial WSS at point 5 of the cardiac pulse (c.f. figure 4.4)
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(a) Velocity profile: links

(b) Velocity profile: central region

Figure 8.5: Velocity profiles for flow on geometry obtained post FEA analysis: point 3 (c.f.
figure 4.4) of cardiac pulse

Figure 8.6: Secondary recirculation
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Figure 8.7: Tissue prolapse and it effect on recirculation

Figure 8.8: Percentage area exposed to WSS magnitude below 0.5 Pa over the entire cardiac

pulse

Figure 8.9: Percentage area exposed to reverse flow over the entire cardiac pulse
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8.2 Part II : Drug-distribution

In this section a CFD model to evaluate the distribution of drug in a stented artery segment

is discussed.

8.3 Introduction

The modelling of drug diffusion in the stented vessel applies to drug eluting stents which

release a drug to inhibit inflammatory response and smooth muscle cell migration and prolif-

eration. Since most drugs do not bind to the metallic stent surface easily, a polymer coating

is often needed both to fix the drug on the stent and control the release kinetics [174]. Al-

though a uniform surface coating is the norm in DES, another technology known as the

reservoir (RES) technology is being researched by Conor Medsystems LLC, Johnson & John-

son. RES technology stents have small multiple reservoirs on the stent struts, each reservoir

comprising various layers of drug and polymers to control drug release [175, 176]. The drug,

a biologically active agent, arrests any one of the phases of the cell cycle. Figure 8.10 shows

this cell cycle [12], the series of events after stenting which lead to in-stent restenosis, and

the main targets of common drugs to inhibit restenosis. The cell cycle has four phases –

1. G1 phase – This is also known as the gap-1 phase (gap referring to the time between

the previous M phase and the beginning of DNA synthesis). During this phase various

enzymes are synthesized to be used for the S phase.

2. S phase – This phase involves DNA synthesis and replication of the chromosomes.

3. G2 phase – Also known as the gap-2 phase, this phase involves preparation (biosynthe-

sis) for the M phase.

4. M phase – This phase involves Mitosis which leads to separation of chromosomes and

cytoplasm.

Different drugs attack the cell cycle at different points, and consequently have a different

mechanism of suppressing restenosis. The two most common drugs used in DES today are

Sirolimus and Paclitaxel. While Paclitaxel attacks the M-phase, Sirolimus inhibits the G1

phase. The implication of using different drug types to arrest restenosis is out of the scope of

this thesis. Focusing on the engineering evaluation of drug-distribution, a general methodol-

ogy for drug transport, the diffusivity values of the drug depending on the type of drug used,

is presented here.

In the past many studies have been performed on the modelling of drug diffusion in

stented vessels. Hwang et. al. [177] performed experimental drug distribution studies by

spray-coating Palmaz-Schatz Crown stents with fluorescein sodium ethlylene vinyl acetate

copolymer solution in dicholoromethane, and implanting these stents in bovine carotid ar-

teries. The resulting fluorescence microscope images revealed a high spatial heterogeneity in

drug concentrations. They also evaluated the effect of strut placement in the circumferential

direction by setting up a 2-D model and randomly placing the struts. They reported that

inhomogeneous stent strut placement along the circumference can result in a highly non-

uniform spatial distribution of drug in the tissue (implying higher concentration near struts

and a lower concentration in the inter-strut spaces). Lovich et. al. [178] performed perfusion
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Figure 8.10: The cell cycle and targets for drugs used in DES [12]

experiments on calf carotid arteries and concluded that convective drug transport in the tis-

sue played a significant role in de-endothelialised arteries when compared to those where the

endothelium was intact. Hose et. al. [170] studied Paclitaxel distribution from a BiodivYsio

stent using a computational model. They reported significant heterogeneity in spatial distri-

bution of the drug in the tissue and attributed this to the design of the stent. Sakharov et.

al. [179] implemented reverse binding of the drug in the tissue and numerically showed that

high polymer diffusion resistance increased average concentration of the drug in the tissue.

Pontrelli et. al. [180] presented analytical solutions for the problem of 1-D drug transport

from a polymer layer into the tissue. Zunino [181] modelled the drug-release dynamics from

the stent coating in a 2-D setup and evaluated the effect of drug properties, stent coating,

and arterial wall on drug dynamics. Borghi et. al. [182], in an axi-symmetric geometry,

evaluated the difference between pure diffusive transport and reverse binding. Balakrishnan

et. al. [183] implemented a coupled CFD and mass transfer model to study drug-release dy-

namics in a 2-D setup. They concluded that flow alteration and location of struts were very

important to achieve higher drug deposition. Migliavacca et. al. [184] developed a model to

study drug-diffusion on a geometry obtained by FE stent expansion analysis. They proposed

a model for plasma infiltration into the tissue and then used the advection-diffusion equations

to model drug release. Their model accounted for reverse binding of the drug in the tissue and

the drug dissolved in plasma. Zunino et. al. [20] proposed a unified methodology to evaluate

the expansion, haemodynamics, and drug-release for DES. Their drug release simulations

involved a standard advection-diffusion process with no reverse binding of the drug with the

tissue. Feenstra et. al. proposed a sequential expansion and drug-release analysis. Along

with the geometry, they extracted the interstitial fluid velocity, from the expansion analysis

and included reverse binding of the drug with the tissue. Similar to the work by Balakrishnan
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et. al. mentioned above, Kolachalama et. al. [16] studied the effect of flow in the lumen

on arterial drug deposition. Their steady state and pulsatile flow models, implemented in

a 2-D geometry, revealed differential lengths of recirculation zones around the struts which

affect the transfer of drug into the tissue. They then extended the steady state models to

3-D geometry of stents placed in a bifurcation [185], and evaluated the effect of the location

of the stent in the main branch relative to the side branch.

In this chapter, a steady state, pure diffusion model in the tissue, and an advection-

diffusion model in the lumen, with appropriate coupling is used to evaluate the drug-distribution

patterns. The effect of reverse binding (endocytosis) and advection in the tissue is ignored

[20].

8.4 Methodology

The following subsections describe the methodology adopted in this chapter.

8.4.1 Geometry

The geometry is obtained from the deformed shape of section 5.5.2. The plaque and the artery

regions are combined to represent one homogeneous and isotropic tissue region. Figure 8.11

shows this assembly. The embedding of the stent into the tissue region, as shown in the

figure, makes the stent both a part of the lumen and the tissue region.

8.4.2 Governing equations

The flow in the lumen significantly affects the drug distribution, as the distribution of drug in

the lumen follows an advection-diffusion pattern. This presents a challenge – since the time-

scales of the flow and drug-diffusion differ in orders of magnitude, the coupling of unsteady

flow with the drug diffusion equations becomes computationally very expensive. Moreover,

since the objective of this thesis to search for optimal designs for drug delivery which involves

comparison of the drug distribution patterns for different stent geometries, a steady state

drug-diffusion problem is considered in this chapter. Although an unsteady time-dependent

release, without considering the luminal flow, can be modelled to gain insight on drug de-

livery patterns, a steady state problem, by including the flow, gives enough variation when

comparing different designs. Transmural convection, due to the interstitial flow in the tissue,

is neglected. This is based on the study by Kolachalama et. al. [16] where it is shown

that transmural convection has an effect of less than 1% on volume weighted average con-

centrations of drug. This study also shows that steady state simulations are reflective of

the instantaneous flux of drug through the interface, and hence can provide useful relevant

information.

The following continuity, momentum, and diffusion, equations are solved in the lumen –

∇.v = 0, (8.1)

ρv.∇v = −∇P + ∇.(µ∇v), (8.2)

v.∇Cl = Dl∇2Cl, (8.3)

where v, ρ, P, and µ denote the velocity, density, pressure, and the viscosity of blood, respec-

tively. Cl is the drug concentration in the lumen and Dl is the diffusivity of the drug in blood.
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As in chapter 4, ρ and µ are assumed to be equal to 1.060×10−3 kg/m−3 and 3.7×10−3 Pa-s.

In the tissue region (comprising both the plaque and the artery), the following pure

diffusion equation, similar to equations 7.1 and 7.2 used in chapter 7, is solved –

Dt∇2Ct = 0, (8.4)

where Ct is the drug concentration in the tissue, and Dt is the diffusivity of the drug in tissue.

The interface between the lumen and plaque is modelled in a similar manner as the plaque-

artery interface in chapter 7 (equation 7.4). The flux across the lumen-plaque interface is

defines as –

q(Cl,Ct) = kp(Cl −Ct), (8.5)

where q is the flux across the interface, kp is the permeability, and Cl, Ct are drug concentra-

tions in the lumen and drug respectively.

Figure 8.11: Section of the assembly for the drug release simulation – lumen and tissue

8.4.3 Boundary conditions

For the both the lumen and the tissue region, the stent is set to a unity concentration boundary

condition. Such a Dirichlet boundary condition has also been used by Kolachalama et. al.

[16] to model drug release. The ‘lumen inlet’ is set to an inlet velocity of 16.29 cm/s (mean

velocity of the inlet profile shown in figure 4.4, and a zero concentration boundary. The

‘lumen outlet’ is set to a zero pressure boundary for flow and a zero flux boundary is specified

for concentration. In the tissue region the ‘tissue inlet side’ is set to a zero concentration

boundary, and both the ‘tissue outlet side’ and the ‘perivascular side’ are set to a zero flux

boundary condition for the drug. The plaque interface is modelled using equation 8.5. The

diffusivity of drug in the lumen (Dl) and tissue (Dt) are assigned a value of 1.5×10−4 mm2/s

and 7.7×10−6 mm2/s respectively, and the permeability (kp) is assumed to be 4×10−4 mm/s

[20, 186]. Equations 8.1-8.4, coupled by Eqn. 8.5, are then solved over the domains of

lumen and tissue. The equations are modelled as a heat transfer problem in Star-CCM+

3.06.006. The similarity between the diffusion equations and the heat equation is utilized for

this purpose [169, 171, 170].
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Figure 8.12: Drug distribution contours

8.5 Results & Discussion

Figure 8.12 shows the drug contours on various sections of the two domains. The highest

drug concentrations are observed near the stent struts. This is not surprising as the stent

is the source of the drug. As one moves away from the stent struts, the drug concentration

decreases. In the axial cross sections it is observed that the drug concentration in the tissue

region between any two consecutive struts in the circumferential direction reaches a minimum.

This is attributed to the design of the stent. If one considers the entire tissue domain then

the uniformity of drug distribution can be attributed to the areas where the source region

(unity concentration boundary condition) lies. In other words, the stent can be seen as a set

of curves on the plaque surface, and the topology of these curves determine the pattern of

drug distribution. Areas which are far from such curves both in the circumferential and the

axial directions are more likely to receive less drug relative to the areas which are nearer.

In the lumen region most of the drug is washed away because of the high convective

transfer. It is the recirculation of the flow which retains some drug near the struts, and hence

helps drug transport into the tissue. This is shown in figure 8.13. The only areas in the lumen

which have a non-zero drug concentration are the areas of recirculation. Each recirculation

zone, formed before and after each strut, arrests the washing-out of drug. Part of this drug is

then transported to the tissue across the plaque interface. These recirculation zones, although

unwanted while considering the haemodynamics, appear to be beneficial for drug transport.

In many of the newer DES designs, the drug is coated only on the abluminal side of the stent

struts. This prevents the drug loss due to the high convective transport in the lumen.

8.6 Formulation of objective functions

As mentioned in chapter 7, two factors are considered important relating to the drug response

of a stent – first concerning the amount of drug in the tissue, and second concerning the

uniformity of drug. The metric relating to the former, VAD, is formulated in section 7.2.1,

chapter 7. In line with the discussion in section 7.3.3 (page 129), the standard deviation of

the drug distribution in the tissue region is proposed to measure uniformity of drug delivered.
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Figure 8.13: Drug distribution contours on a section plane: effect of flow

Let ncell be the number of tissue cells lying in the axial domain shown in Figure 5.29 (page 97),

and the set Dd = {c1, c2, c3, ..., cncell} contain the drug concentrations, ci, in each of these ncell

cells. Then, the standard deviation (Ddev) of this can be used as a measure of uniformity of

drug-distribution around its mean.

Ddev =

√

√

√

1
ncell

i=ncell
∑

i−1

(ci − c̄)2, (8.6)

where c̄ is the mean of elements in set Dd. A lower value of Ddev implies a more uniform

distribution of the drug around its mean.

As discussed in section 7.3.3, it is important to node that Ddev could have a low value

(implying a more uniform distribution) even when the mean is low (implying lesser drug).

Hence, this measure should be used in conjunction with VAD in order to compare stents. The

values for VAD and Ddev for the geometry used in this chapter are 0.3701 and 0.2525 units

respectively.

8.7 Conclusions

In this chapter, haemodynamic evaluation of stented vessels, whose geometry is obtained by

FEA expansion analysis, is performed. Recirculation zones, similar to those reported in chap-

ter 4, are observed. However, considerable tissue prolapse is observed in the post-expansion

geometry, which reduces the size of the recirculation zones. Furthermore, a CFD model, that

accounts for luminal blood flow, to evaluate drug-distribution in the post-expansion stent-

artery assembly is developed. High concentrations of drug are observed, both in the tissue
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and lumen region, around the struts. It is concluded that recirculation zones, although unde-

sirable from a haemodynamic point of view, promote drug transport from the lumen in to the

tissue. Lastly, an objective function Ddev, which quantifies the uniformity of drug-distribution

in a stented artery is formulated.

This chapter concludes the engineering analysis of stents. Now, the performance of any

stent design can be measured by six figures of merit (objective functions) which represent

1. acute recoil, Recoil, defined by equation 5.10, which is a measure of both restenosis and

structural strength of a stent (see section 5.7.1),

2. tissue stresses, VAS , defined by equation 5.12, which is a measure of injury caused to

the artery by the stenting procedure (see section 5.7.2),

3. haemodynamic disturbance, HLRFI, defined by equation 4.9, which is a measure of

stented artery area exposed to low shear stress and reverse flow (see section 4.4),

4. drug delivered to the tissue, VAD, which is a measure of the average amount of drug

delivered to the tissue by the stent (see section 7.2.1),

5. uniformity of drug distribution, Ddev, defined by equation 8.6 (see section 8.6), and

6. stent flexibility, FM, defined by equation 6.1 (see section 6.5).

With the above metrics, the next chapter concerns with a multiobjective formulation of

the stent design problem.



Chapter 9

Multiobjective optimisation study

on the CYPHER stent

This chapter1 combines the stent analysis performed in previous chapters to present the first

multi-objective and multi-disciplinary coronary stent design optimization study of its kind.

In line with the discussion on section 7.4 (page 133), in this chapter an improvement in all

the metrics, used to measure a stent’s efficacy, is sought simultaneously, as opposed to one at

a time in chapter 7. The aims of this chapter are

1. to propose a parameterisation technique for the CYPHER (Cordis corporation, Johnson

& Johnson co.) stent. The details of this parameterisation and a justification for this

choice are discussed in section 9.1,

2. to perform a multiobjective optimisation study using the above proposed parameteri-

sation technique,

3. to study trade-offs between various pairs of objectives that are in conflict,

4. to evaluate trends between the non-dominated solutions and parameters defining stent

geometry,

5. to propose various paradigms, which can be used to choose ideal stent(s), from the set

of non-dominated solutions, and

6. to demonstrate a link betweeen the results of the multiobjective study of this chapter

and the constrained optimisation study presented in chapter 7.

The performance of each stent design is measured by six figures of merit (objectives/metrics):

Recoil, VAS , HLRFI, VAD, Ddev, and FM. These metrics are obtained from computational

simulations of

1The contents of this chapter are published in the below mentioned article with the author’s supervisory
team and Dr. N. Curzen. Dr. N. Curzen is a cardiac surgeon who actively advises the author regarding the
clinical aspects of restenosis.
Pant, S., Limbert, G., Curzen, N. P., Bressloff, N. W. Multiobjective design optimisation of coronary stents.
Biomaterials, 32:7755–7773, 2011.

147



148 Chapter 9. Multiobjective optimisation study on the CYPHER stent

1. structural deformation through balloon inflated expansion of a stent into contact with

a stenosed vessel (see chapter 5),

2. pulsatile flow over the deformed stent embedded in the vessel wall (see chapters 4 and

8),

3. steady-state drug distribution into the tissue (see chapter 8), and

4. flexibility of a stent in response to an applied moment (see chapter 6).

Design improvement is obtained by a multi-objective surrogate modelling approach (see sec-

tion 3.2.3) using a non-dominated sorting genetic algorithm (NSGA-II, see section 3.5.2) to

search for an optimal family of designs. A number of trade-offs between the different objec-

tives are identified. In particular a conflict between pairs of the following objectives are shown

– (a) volume average stress vs recoil, (b) volume average drug vs. volume average stress, (c)

flexibility vs volume average stress, (d) flexibility vs. haemodynamic disturbance, (e) volume

average drug vs. haemodynamic disturbance, and (f) uniformity of drug vs. volume average

stress.

Having presented a review of the optimisation studies in the area of stent design in chap-

ter 7 (section 7.1), this chapter starts with the definition of the proposed parameterisation

technique for the CYPHER stent. Then, the multiobjective problem is formulated and the

solution methodology adopted to solve this problem is presented. Thereafter, various slices

of the obtained Pareto front are discussed, and based on these results different paradigms

to choose the optimal designs from the Pareto fronts are proposed. Finally, under each such

paradigm, the optimal designs and their relative positions with respect to a representative

CYPHER stent are shown.

9.1 Stent geometry parameterisation

The constrained optimisation study, chapter 7, showed that while the parameters Wstrut, hc,

and p1, had significant effect on the metrics used, the parameter p2 had little effect on the

efficacy of a stent (see sensitivity analysis: Figure 7.18, page 128). Hence, it is unreasonable

to include two parameters for defining the links, thereby increasing the dimensionality of the

design space, when one variable does not have significant effect on the evaluation metrics.

With this view, an alternate parameterisation for the links is sought, while the parameter-

isation of circumferential rings is kept the same as in chapter 7. For the links, a CYPHER

like link is chosen for two reasons. First, the link in CYPHER stent has a uniform ‘n’ shaped

structure. Hence, only one parameter which specifies the height of the links (i.e. circum-

ferential dimension) acts similar to the p1 parameter used in chapter 7. Second, the FEA

analysis used in this thesis have been validated for a representative CYPHER stent (against

manufacturer data for expansion analysis, and against De Beule’s study [11] for flexibility

analysis). Hence, in the results, i.e. in the set of the non-dominated solutions, an assessment

regarding the relative position of this representative CYPHER stent with respect to other

solutions can be made.

Figure 9.1 shows the various parameters for the proposed parameterisation. The length of

the stent, Lstent, and its semi-crimped state outer radius, Rstent, are fixed to be equal to 8.0 mm

and 0.75 mm respectively. Four circumferential rings in the longitudinal direction are used
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Figure 9.1: Stent parameterisation used in this chapter

and there are twelve curved parts (six peaks and six troughs) in each circumferential ring.

The parameters which are allowed to vary are the longitudinal length of the circumferential

rings, hc, circumferential strut width, Wstrut, and the height of the ‘n’ shaped links, nheight.

Since Lstent is constant, hc also controls the length of the links. The circumferential width of

the links is kept constant at 0.07 mm. Strut thickness, i.e. the stent dimension in the radial

direction, is also kept constant at 0.14 mm based on the value for the CYPHER stent [135].

The shape of the links is kept similar to the CYPHER stent using NURBS curves as shown

in Fig. 9.2.

Figure 9.2: Stent link construction using NURBS control points

Table 9.1 shows the values of the three parameters for the representative CYPHER stent
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and the bounds imposed on each parameter. For an explanation of the bounds on Wstrut and

hc refer to section 7.2.2. The upper bound for nheight is chosen considering that a very high

value of nheight results in contact of one link with the other. The lower bound for nheight is

chosen considering the geometry of the ‘n’ links – with a constant circumferential width of

the links a very small value of nheight results in almost straight links. Figure 9.3 shows some

of the designs created using this parameterisation.

Figure 9.3: Sample designs created using the proposed parameterisation

9.2 Optimisation problem & solution methodology

The multi-objective optimisation problem is formulated as follows-

Minimise Recoil (Wstrut, hc, nheight) (9.1)

Minimise VAS (Wstrut, hc, nheight)

Minimise HLRFI (Wstrut, hc, nheight)

Minimise −VAD (Wstrut, hc, nheight)

Minimise Ddev (Wstrut, hc, nheight)

Minimise FM (Wstrut, hc, nheight)

Table 9.1: Limits imposed on the design parameters

Wstrut hc nheight

mm mm mm

CYPHER stent 0.130 0.825 1.600
Lower bound 0.050 0.700 0.700
Upper bound 0.170 1.100 1.900
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such that,

0.050 mm ≤ Wstrut ≤ 0.170 mm,

0.700 mm ≤ hc ≤ 1.100 mm,

0.700 mm ≤ nheight ≤ 1.900 mm.

As discussed in section 7.4, some of the objectives in the above formulation could be specified

as constraints.

The use of Kriging for the optimisation procedure is justified as the evaluation of all the

metrics used in equation 9.1 for one design takes over 120 hours (wall time) using 8 parallel

compute processes (Microsoft Windows 64-bit high performance computing platform, Intel

quad core 2.8 GHz processor, 16 GB RAM). This high computational time and the limited

licenses available for Abaqus/Exlpicit, Abaqus/Standard, and StarCCM+, limit the compu-

tational budget available for the analyses to 30 stent designs. Consequently, high-fidelity

analysis is performed for 30 designs, which is 10 times the number of design variables used in

this chapter. Based on this, the solution methodology adopted in this chapter is depicted in

Figure 9.4. The process starts with the parametric definition of the stent geometry. A number

of designs (15 in this chapter), uniformly distributed over the design search space, are created

using the proposed parameterisation. This process of selecting the initial points in the design

space is known as sampling. Each of these designs are then analysed for the six objectives

defined in previous sections. The box with dashed lines in Fig. 9.4 illustrates the steps for

analysis. For each design, CAD geometries are constructed, in a semi-crimped state, and ex-

ported to the FEA package to solve for the equations governing the stent expansion process

and bending (for flexibility). The expanded geometries obtained as an output from the ex-

pansion analysis are then exported into the CFD package to model haemodynamics and drug

distribution process. The objective functions from each of these four analyses are extracted

and used to construct the initial surrogate model. The surrogate models are constructed using

Gaussian Process modeling/Kriging (see section 3.2.3. These models (Krigs/GP models) are

then searched using multi-objective non-dominated sorting genetic algorithm-II (NSGA-II)

[74] (see section 3.5.2), resulting in an initial predicted Pareto front. It should be noted that

the obtained Pareto front is a predicted one, and is only as good as the accuracy of the Krigs.

To improve the quality of the Krigs the update process is carried out. The number of update

points (five in this chapter), also known as the infill points, are selected uniformly along the

predicted Pareto front. After the analysis of the new points, the Krigs are reconstructed and

the NSGA-II search is performed on the updated Krigs to obtain an improved Pareto front.

This process is repeated twice more, based on the computational budget available.

An LPτ [172] based sampling plan is used to construct a 15-point design of experiments

[46]. An LPτ based sampling plan is suitable as it gives a uniform coverage of the design

space. The distribution of 30 evaluations is divided into an intial sampling of 15 points, and

three subsequent updates, each update adding five new points. Once the Kriging models

are constructed the NSGA-II algorithm is run for 50 generations, each generation having a

population of 50 members, to search the Krigs. The methodology in this chapter can be

summarised in the following steps –

Step 1: Analyse initial 15 points→ Construct Krigs for each objective → perform an NSGA-

II search to obtain the Pareto front → identify five update points → analyse the new points.
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Figure 9.4: Flow chart detailing the optimisation methodology adopted in this chapter

Step 2: Construct Krigs for each objective using 15+5 points→ perform an NSGA-II search

to obtain the Pareto front → identify five update points → analyse the new points.

Step 3: Construct Krigs for each objective using 15+5+5 points → perform an NSGA-

II search to obtain the Pareto front → identify five update points → analyse the new points

→ Stop.

Step 4: Appraise the optimal designs.

It is worth noting at this point that there are many methods proposed in the past to find

update points. The method adopted in this chapter, i.e. to choose uniformly distributed

update points on the predicted Pareto front, is the simplest of these. For single objective

optimisation Jones et. al. [50] proposed an expected improvement criterion to find update

points. This criterion was extended to multi-objective optimisation in many different algo-

rithms [187, 188, 189, 190, 191, 192, 193]. A discussion on these algorithms is out of scope

of this thesis. Nonetheless, the choice of a full exploitive approach adopted in this chapter

is based on the following rationale: first, it is observed from chapter 7 that the objective

functions modelled are not highly multimodal in nature, i.e. the physical responses show a

relatively simple trend of increase or decrease in terms of a particular parameter in the search

space modelled; and second the errors at the end of first update (shown in figure 9.5) are

deemed acceptable in most of the search domain.
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Figure 9.5: Errors in the Kriging models after first update: each subplot shows Wstrut in x-axis, hc on y-axis, while nheight is constant; and nheight increases
vertically downwards in subplots
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Table 9.2: Result matrix for the 15 point intial sampling and the three updates

Design Wstrut hc nheight Recoil VAS HLRFI VAD Ddev FM

CYPHER 0.1300 0.8250 1.6000 0.1337 0.0464 27.40% -0.3701 0.2525 0.1775

DOE BX 1 0.1100 0.9000 1.3000 0.1716 0.0463 26.10% -0.3605 0.2511 0.2094

DOE BX 2 0.0800 1.0000 1.0000 0.2707 0.0398 24.42% -0.3460 0.2528 0.2557

DOE BX 3 0.1400 0.8000 1.6000 0.1146 0.0473 26.89% -0.3792 0.2528 0.1690

DOE BX 4 0.0650 0.9500 1.7500 0.2918 0.0400 26.43% -0.3533 0.2648 0.2553

DOE BX 5 0.1250 0.7500 1.1500 0.1226 0.0457 25.24% -0.3632 0.2631 0.2241

DOE BX 6 0.0950 0.8500 1.4500 0.1851 0.0449 27.39% -0.3660 0.2610 0.1807

DOE BX 7 0.1550 1.0500 0.8500 0.1405 0.0480 26.12% -0.3696 0.2541 0.4149

DOE BX 8 0.0575 1.0750 1.5250 0.3054 0.0376 26.34% -0.3619 0.2564 0.1841

DOE BX 9 0.1175 0.8750 0.9250 0.1548 0.0462 26.15% -0.3528 0.2509 0.2808

DOE BX 10 0.0875 0.7750 1.8250 0.1867 0.0446 27.90% -0.3768 0.2512 0.1410

DOE BX 11 0.1475 0.9750 1.2250 0.1372 0.0478 27.06% -0.3645 0.2576 0.2557

DOE BX 12 0.0725 0.8250 1.0750 0.2467 0.0398 24.56% -0.3452 0.2551 0.2259

DOE BX 13 0.1325 1.0250 1.6750 0.1639 0.0485 26.70% -0.3787 0.2526 0.2089

DOE BX 14 0.1025 0.9250 0.7750 0.1845 0.0448 24.56% -0.3452 0.2509 0.3157

DOE BX 15 0.1625 0.7250 1.3750 0.0901 0.0450 25.53% -0.3772 0.2525 0.1907

DOE BX 16 0.1395 1.0320 0.7367 0.1540 0.0473 24.80% -0.3605 0.2519 0.4074

DOE BX 17 0.0721 0.8256 1.1727 0.2529 0.0396 24.85% -0.3482 0.2520 0.2101

DOE BX 18 0.0503 1.0860 0.7232 0.3222 0.0345 23.34% -0.3391 0.2596 0.2608

DOE BX 19 0.1137 0.7068 1.7700 0.1439 0.0522 28.53% -0.3758 0.2517 0.1440

DOE BX 20 0.0890 1.0263 1.7776 0.2006 0.0435 26.65% -0.3747 0.2544 0.1720

DOE BX 21 0.1377 0.7051 1.8544 0.1098 0.0465 27.30% -0.3886 0.2577 0.1403

DOE BX 22 0.0500 1.0113 0.7010 0.3291 0.0340 23.31% -0.3343 0.2566 0.2600

DOE BX 23 0.0500 1.0576 1.0760 0.3090 0.0360 24.06% -0.3475 0.2579 0.2162

DOE BX 24 0.1677 1.0504 0.7021 0.1278 0.0479 24.76% -0.3737 0.2536 0.3354

DOE BX 25 0.0500 0.8121 1.7705 0.2922 0.0404 26.80% -0.3771 0.2650 0.1359

DOE BX 26 0.1175 0.7004 1.8919 0.1315 0.0472 27.76% -0.3787 0.2493 0.1358

DOE BX 27 0.0725 0.9891 0.7056 0.2542 0.0393 23.69% -0.3427 0.2528 0.2969

DOE BX 28 0.1550 0.9958 0.7010 0.1305 0.0475 24.76% -0.3659 0.2520 0.4273

DOE BX 29 0.0800 0.9997 0.7010 0.2710 0.0393 23.71% -0.3387 0.2515 0.3137

DOE BX 30 0.0632 0.7498 1.9000 0.2480 0.0403 26.71% -0.3792 0.2611 0.1306

9.3 Results & Discussion

9.3.1 Model validation and response surfaces

For model validation, the same approach as used in chapter 7 is adopted. The leave-one-out

and SCVR (see section 3.2.3.2) plots for each objective function after the end of three updates

are shown in figures 9.6 – 9.11. These plots show that for each function the SCVR values after

every update cycle, lie in the interval [-3,+3], thereby asserting the validity of the Kriging

models for the chosen metrics. In each of these figures, every subplot represents Wstrut on the

x-axis and hc on the y-axis; nheight increases vertically downwards through subplots.

The response surfaces for all the objective functions at the end of each update are shown

in Figures 9.12 – 9.17. Figures 9.12 and 9.15 show that the response surfaces for Recoil and

VAD do not change significantly through the three updates. On the other hand considerable
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change, especially for nheight values lower than 0.6, is observed for the response of FM and

HLRFI as update points are added (see figures 9.14 and 9.17). Significant change in the

response of VAS is also observed by the addition of update points (cf. figure 9.13). The

plots for Ddev show extreme changes through the updates. This could be a result of many

factors: first, it could be that the response of Ddev is too complicated to be modelled by a

Kriging model (even though the SCVR plots suggest otherwise); second, it could be that the

response of Ddev is governed completely by only one parameter, namely Wstrut, which explains

the vertical patches of colors in the last column of Figure 9.16 and insignificant change in Ddev

by changes in hc and nheight; third, it could be that Ddev is not a particularly good measure to

differentiate stents based on uniformity of drug distribution; and fourth, it could be, looking

down the second-last column of table 9.2, that it is the very similar Ddev response of even

drastically different stent geometries that make this objective difficult to model. The last

problem could potentially be remedied by choosing an appropriate transformation for the

Ddev metric and constructing a Krig of the transformed metric instead of Ddev.
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Figure 9.6: SCVR and leave-one-out plots for Recoil after each update

Figure 9.7: SCVR and leave-one-out plots for VAS after each update
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Figure 9.8: SCVR and leave-one-out plots for HLRFI after each update

Figure 9.9: SCVR and leave-one-out plots for −VAD after each update
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Figure 9.10: SCVR and leave-one-out plots for Ddev after each update

Figure 9.11: SCVR and leave-one-out plots for FM after each update
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Figure 9.12: Colour plot for Recoil after the three updates; first column: update-1; second

column: update-2; third column: update-3; each subplot represents Wstrut on the x-axis, hc

on the y-axis, and nheight increases vertically downwards
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Figure 9.13: Colour plot for VAS after the three updates; first column: update-1; second

column: update-2; third column: update-3; each subplot represents Wstrut on the x-axis, hc

on the y-axis, and nheight increases vertically downwards
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Figure 9.14: Colour plot for HLRFI after the three updates; first column: update-1; second

column: update-2; third column: update-3; each subplot represents Wstrut on the x-axis, hc

on the y-axis, and nheight increases vertically downwards
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Figure 9.15: Colour plot for −VAD after the three updates; first column: update-1; second

column: update-2; third column: update-3; each subplot represents Wstrut on the x-axis, hc

on the y-axis, and nheight increases vertically downwards
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Figure 9.16: Colour plot for Ddev after the three updates; first column: update-1; second

column: update-2; third column: update-3; each subplot represents Wstrut on the x-axis, hc

on the y-axis, and nheight increases vertically downwards
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Figure 9.17: Colour plot for FM after the three updates; first column: update-1; second

column: update-2; third column: update-3; each subplot represents Wstrut on the x-axis, hc

on the y-axis, and nheight increases vertically downwards
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9.3.2 Pareto fronts

Figure 9.18 shows slices from the Pareto fronts after each update cycle – green circles showing

the pareto front after the initial sample and first update, the blue circles after second update,

and the red pluses after the final update. Figure 9.19 shows one of the plots (VAD vs. VAS )

and marks the update points in each update cycle. As can be observed in this figure the

update points serve two purposes - first to fill in each successive Pareto front and second to

push it towards the bottom left corner.

Figure 9.19: The update process - green front indicates the initial sample + first update, the
blue front indicates the second update, and the red front indicates the third update

Clear trade offs are observed for the following set of objectives in Fig. 9.18 –

• VAS vs. Recoil

• VAD vs. VAS

• FM vs. VAS

• FM vs. HLRFI

• VAD vs. HLRFI

• Ddev vs. VAS

The following subsections discuss the individual trade-offs in detail–

9.3.2.1 Stress vs. Recoil

Figure 9.20 shows a slice from the final pareto front depicting the trade-off between volume

average stress and acute recoil. Designs with lower value of acute recoil show a higher value of

VAS . This inverse relationship between average stresses and recoil is inevitable. Lower recoil

implies a higher lumen area which leads to higher circumferential strains in the artery/tissue
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and consequently higher stresses. Although such an inverse relationship is bound to appear

in every family of stent designs, it is interesting to note how the stent design (relative to

the three design parameters) changes along the Pareto front. As one moves from top-left

towards the bottom-right of this front the stent design changes significantly – in particular,

the value of hc increases while the value of Wstrut decreases. The third parameter, nheight, does

not follow any particular trend in this plot. This can be explained by the fact that changes

in nheight result in insignificant changes in both Recoil and VAS (see last columns of Figures

9.12 and 9.13, respectively). The effect of Wstrut can be explained by the reasoning that a

higher value of Wstrut, other parameters being equal, implies a higher metal-to-artery ratio

(consequently a higher contact area) and hence results in higher stresses. For acute recoil,

increasing the value of Wstrut has the opposite effect. The curved parts of circumferential

rings with wider struts undergo higher plastic deformation and consequently resist recoil.

Thus an increase in the value of Wstrut is better in terms of reducing recoil but comes at a

price of increased average stresses. The effect of the parameter hc is not as straightforward

Figure 9.20: Final Pareto front slice showing the trade-off between volume average stress
(VAS ) and acute recoil (Recoil)

as the effect of Wstrut. In terms of recoil a lower value of hc results in larger plastic strains

in the curved regions of the circumferential rings. This can be understood by imagining the

unfolded stent on a flat plane and viewing the expansion process as the stretching of these

rings (c.f. Figure 7.19). Consequently designs with a lower value of hc have lower recoil. In

terms of the metal-to-artery ratio (contact area between stent and plaque) the effect of hc

depends on nheight. Since the circumferential width of the links is constant (0.07 mm) whether

a decrease in hc results in an increase or decrease of the metal-to-artery ratio depends on

the net change in area brought by the two competing factors: decrease of area due to the

shortening of circumferential rings and increase in area due to the higher axial length that

the connectors/links occupy. In general, if the value of Wstrut is much lower than 0.07 mm

and the value of nheight is relatively large, then a decrease in hc will result in a net increase
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in the contact area of the stent. However, if the value of Wstrut is much higher than 0.07 mm

and nheight is small, a decrease in the value of hc will result in a net decrease in area. This

relationship also explains the behaviour in Figure 9.13 as follows. For the last subplot of the

last column, i.e. the plot of VAS for a high nheight value, consider the region where Wstrut is

lower than 0.07 mm (0.16 in the normalised plot). Here, VAS is observed to increase with

a decrease in hc. Contrast this figure with the first plot of the same column; i.e. the plot

with a low nheight value, and consider the region for of high Wstrut. Here, a decrease in VAS

is observed with a decrease in hc. This effect is reflected in all the columns of the plot: for

lower values of Wstrut decreasing hc results in increase of VAS , while for higher values of Wstrut

decreasing hc results in a decrease of VAS . This complicated relationship is reflected in the

observed Pareto front, Figure 9.20, in the following way – when moving from left to right,

the initial design changes reflect a decrease in Wstrut with little change in hc. This happens

until the value of Wstrut is close to 0.07 mm, after which the design change is largely due to

an increase in hc as opposed to a decrease in the value of Wstrut.

9.3.2.2 Drug vs. Stress

Figure 9.21 shows a slice from the final Pareto front depicting the trade-off between volume

average drug and volume average stress. The designs which lead to a higher volume average

drug value (lower value of the VAD metric) are the designs associated with higher values of

volume average stress. As a general trend along the Pareto front, the designs for better drug

response (and consequently worse stress response) have high Wstrut values, high nheight values,

and low hc values. Since both Recoil and VAD are in competition with VAS , intuitively it is

Figure 9.21: Final Pareto front slice showing the trade-off between volume average drug
(VAD) and volume average stress (VAS )

expected that Recoil and VAD would be positively correlated. This can be seen in Fig. 9.18.

As expected Recoil and VAD follow a general trend of positive correlation. However, there

are significant deviations from the general trend. This is primarily due to the fact that while

the link height does not play any particular role in determining Recoil, it significantly affects
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volume average drug (see Figures 9.12 and 9.15). This phenomenon is demonstrated in the

best designs for Recoil, i.e. DOE BX 15 and VAD, i.e. DOE BX 21, on the pareto front. The

best design for VAD has a lower value of Wstrut and a higher nheight value when compared to

the best design for Recoil on the Pareto front. A longer length of the link provides a better

coverage of the artery wall, and since the links provide a source of the drug, the concept

of better wall coverage becomes a key contributor in determining VAD. One is inclined to

relate the contact area of the stent (metal-to-artery ratio) as one of the factors determining

VAD. Although this is an important factor, the distribution of the struts can not be ignored.

This is illustrated by a comparison of designs DOE BX 10 and DOE BX 20 in figure 9.22.

While DOE BX 20 has roughly 9% higher contact area when compared to DOE BX 10, it

does not perform better in terms of VAD. The distribution of struts in DOE BX 10 provides

a relatively uniform wall coverage and hence has a similar response to DOE BX 20 in terms

of VAD despite its lower surface area.

Figure 9.22: Contact area of a stent and its effect on VAD

9.3.2.3 Flexibility vs. Stress

Figure 9.23 shows a slice from the final Pareto front depicting the trade-off between the

flexibility metric and volume average stress. The conflict between FM and VAS is primarily a

result of the cross-flow (circumferential) length of the links. While thinner struts are preferred

both in terms of volume average stress and flexibility, the competition results from the length

of the links, nheight. Two desirable characteristics are observed for designs which are relatively

more flexible – hc has lower values and nheight has larger values. Smaller values of hc ensure

that the links occupy a larger axial length which in turn delays self contact between the ’n’

shaped links as there is more free space between the links. The parameter nheight on the other

hand gives more length to the links. A longer length of the link is desirable as the bending of

the stent can be seen as a stretching and compression of the links. If the links are straight or

the value for nheight is small, there is little allowance for the links to unfold (while stretching)

and squeeze (while compressing), which leads to decreased flexibility. Consequently, the best

design in terms of flexibility (DOE BX 30) has very low value of hc and the maximum allowed
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value (upper bound) for nheight. The effect of hc in Fig. 9.23 can be explained along the same

lines as in section 9.3.2.1. Lower values of hc are not preferred by VAS when Wstrut is low

(owing to the relative effect of area change of the links versus the area of the circumferential

rings). In such regions, i.e. when Wstrut is low, a lower value of hc is preferred by FM, as it

leads to a larger axial length for the links (which results in delayed self contact and hence

improved flexibility).

Figure 9.23: Final Pareto front slice showing the trade-off between the flexibility metric (FM)
and volume average stress (VAS )

9.3.2.4 Flexibility vs. flow

Figure 9.24 shows a slice from the final Pareto front depicting the trade-off between the

flexibility metric and the flow index (HLRFI). As a general trend more flexible designs tend

to show worse response in terms of haemodynamics. This can be attributed primarily to the

length of the links. It was shown in chapter 4 (see section 4.4) that the length of the links in

the cross-flow direction (nheight) is key in determining the flow response. A direct dependence

of HLRFI on nheight was shown and it was observed that higher values of nheight lead to higher

alteration of the haemodynamic features relevant to restenosis, i.e. high HLRFI. As discussed

in the previous section larger values of nheight improve the response in terms of flexibility. This

conflict in the parameter nheight is the primary reason for the observed trade-off between FM

and HLRFI in the Pareto front. In terms of Wstrut, lower values are preferred by both flexibility

and HLRFI. Since recirculation zones are formed in between the links, the designs with good

HLRFI response tend to have large values of hc. This minimises the axial length covered by

the links and hence leads to a relatively better flow response. However, as discussed in the

section 9.3.2.3 this is not favourable in terms of flexibility, as lower axial length for the links

implies sooner self-contact with increase in curvature index.
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Figure 9.24: Final Pareto front slice showing the trade-off between the flexibility metric (FM)
and the flow index (HLRFI)

9.3.2.5 Drug vs. flow

Figure 9.25 shows a slice from the final Pareto front depicting the trade-off between the

volume average drug and the flow index (HLRFI). As one moves from top-left to bottom-

right along the front the design changes from low Wstrut, high hc, and low nheight values to

high Wstrut, low hc, and high nheight values. In terms of Wstrut, a high value is favourable for

VAD so that more drug can be delivered, but the flow metric favours thinner struts as they

cause less haemodynamic alteration. Minimisation of flow disturbances within the links drive

hc to higher values so that the axial length occupied by the links is less. Similarly nheight

is driven to lower values too for improved HLRFI. However, these changes in hc and nheight

are not preferred from the drug perspective as these result in a) disturbing the uniformity

of strut distribution and b) lowering the overall contact area, which is important for drug

transport. A strong conflict occurs in these two objectives as all the three parameters drive

the objectives in opposite directions.

9.3.2.6 Drug standard deviation vs. stress

Figure 9.26 shows a slice from the final Pareto front depicting the trade-off between the

standard deviation of the drug concentration and the volume average stress. The standard

deviation of drug concentration is primarily governed by the uniformity of the metal dis-

tribution in the stent. The designs in the bottom right corner of the Pareto front have a

relatively uniform distribution of struts when compared to the designs in the top-left corner.

The conflict in these two objectives is a result of the fact that a design which covers the

artery wall in a uniform manner generally has a higher metal-to-artery ratio, which leads to

a higher contact area and consequently higher contact stresses.
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Figure 9.25: Final Pareto front slice showing the trade-off between volume average drug
(VAD) and the flow index (HLRFI)

Figure 9.26: Final Pareto front slice showing the trade-off between standard deviation of drug
concentration (Ddev) and the volume average stress (VAS )
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9.3.2.7 Other plots

The other sub-plots in Figure 9.18 which have not been discussed in the above sections do not

display any conclusive trade-off between the objectives. The behaviour of most of these plots

can be partly explained by the reasoning given in the above sections. For instance, section

9.3.2.3 explains the trade-off between FM and VAS , and section 9.3.2.4 explains the trade-off

between FM and HLRFI. Since both VAS and HLRFI both are in conflict with FM, they

are bound to show some positive correlation. Similar reasoning holds for the other plots too.

The plots with Ddev as one of the objectives do not show any particular trend and hence

lead to no particular conclusions (except for the plot discussed in section 9.3.2.6). As discussed

in section 9.3.1, this could be because Ddev, as defined by Eq. 8.6, is not a particularly good

measure for the uniformity of the drug distribution in a stented artery.

9.4 Choosing the ideal stent

The choice of an ideal stent, even after obtaining the Pareto front, is not trivial. Owing to

the multiple number of desirable characteristics, computational studies can only lead to the

non-dominated (Pareto) designs. Several approaches can be taken to identify designs which

could potentially be considered ideal –

9.4.1 A conservative paradigm

A conservative design approach, assuming no other information (clinical or otherwise) is

available to judge individual designs in the non-dominated family, is to remain in the middle

region of the Pareto front, thereby avoiding poor performance in any of the objectives. Using

this approach designs DOE BX 20 and DOE BX 30 stand out (cf. Figs 9.20, 9.21, 9.23, 9.24,

9.25, and 9.26). When compared with the CYPHER stent, which also lies on the Pareto front

but is usually skewed towards one end in all the Pareto slices, these designs provide a more

balanced trade-off between the various merits.

Of particular interest, besides the designs DOE BX 20 and DOE BX 30, are designs DOE BX 10

and DOE BX 15. While both these designs perform well, under the conservative paradigm

discussed above, in almost all objectives, DOE BX 10 performs relatively poorly in terms of

HLRFI and DOE BX 15 in terms of VAS .

9.4.2 A constraint based paradigm

This approach utilises additional information based on clinical guidance. For instance, a

maximum required value of FM (minimum flexibility of a stent) could be assigned based on

the maximum curvature of the stent deployment path. Similarly, a maximum value for the

recoil could be assigned based on the required minimum lumen area; and dependent on the

biochemistry of the drug being delivered, a minimum value of VAD could be ascertained.

Once such limits are determined, the design choice can be narrowed down to a handful of

designs satisfying such constraints. However, the determination of such limits is not an easy

task and further statistical research is required, to determine them especially when account-
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ing for patient variability.

A constraint optimisation approach for stent design, where the concept of assigning one

or more of objectives as constraints was demonstrated in chapter 7. It was assumed that

the limits of Recoil, VAS , VAD, and FM were set by the values of the baseline design, and

improvement in design was sought for one objective at a time. Since the two parameters,

Wstrut and hc, are similar to the ones used in that chapter, a comparison can be made between

the results of chapter 7 and the findings of this chapter. Figure 9.27 is used for this purpose.

First, consider the problem of minimizing the VAS , relative to baseline (DOE BX 1 in this

case), without any decrease in Recoil, VAD, and FM. In the first plot of Fig. 9.27 one can

draw a vertical line passing through DOE BX 1, Line-1. All designs to the left of this line,

viz. designs 3, 5, 9, 13, 15, 16, 21, 24, 26, and 28, are designs which do not have worse

recoil relative to design 1. Similarly, a horizontal line through DOE BX 1, Line-2, can be

drawn. All designs below this line do not have worse VAS values relative to DOE BX 1.

Hence, from this plot, it can be seen that only designs 15, 5, and 9, show an improvement in

VAS without compromising Recoil. Similar vertical and horizontal lines can be drawn in the

second and third plots of Figure 9.27 where designs in the bottom-left quadrant are feasible

designs. Of the designs selected from the first plot, listed above, only design 15 satisfies the

feasibility criteria in the other two plots. A similar exercise can be performed for the other two

objectives of VAD and FM. For minimizing VAD and FM, designs 21 and 26 are identified to

be the best, respectively, even though they are marginally on the wrong side of the vertical

lines in the second and third plots. This is not unreasonable as the parameters p1 and p2 in

the chapter 7 are not equivalent to just one nheight parameter used in this chapter. However,

the qualitative agreement of designs 15, 21, and 26 for the corresponding optimum solutions

obtained for minimising VAS , VAD, and FM in chapter 7 is convincing – high values of Wstrut

combined with low values of hc for minimising VAS and VAD, and mid-range values of Wstrut

and low values of hc for maximising FM.

Figure 9.27: Constraint based approach to pick designs from the Pareto plots; comparison
with the study of chapter 7
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Figure 9.28: Response surface contour plots for the four objective functions, Recoil, VAS ,
VAD, and FM, after the third update (all design parameters are normalised): each subplot
has Wstrut on x-axis, hc on y-axis, and the parameter nheight increases vertically downwards
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The above stated mechanics of finding optimal designs in consideration of constraints can

also be seen in the response surfaces for various objectives, as show in Figure 9.28. This figure

shows contour slices, of the four objective functions viz. Recoil, VAS , VAD, and FM against

Wstrut (on the x-axis of each sub-plot) and hc (on the y-axis of each sub-plot) at different

values of nheight (aligned vertically). The nheight values chosen include two sets – one at a

constant interval of 0.25 units between 0 and 1 (in the non-dimensional space) to illustrate

the general trend of the response surfaces, and the other to include slices for the designs

discussed before, i.e. 1, 20, 30, 15, 21, and 26 (the positions of the numbers correspond to

the values of the design parameters). For constrained optimisation of VAS with respect to

the baseline geometry, consider rows 3 and 4 (numbered from 1) of the figure which show

designs 1 and 15, respectively. From the VAS plot of row 3, it can be observed that major

improvement in VAS , with respect to design 1, can be achieved by moving to the left side of

the plot (i.e. going from the red region to the blue region). The FM plots favour this response

as the left-top and left-bottom regions of the plots (nheight > 0.5) show no worse value of FM

relative to design 1. However, the Recoil and VAD plots reveal that movement to the left will

compromise Recoil and VAD. Hence a move to the right remains the only choice. Moreover, a

move to the right-bottom corner, region where design 15 lies, is the only region which shows

VAS improvement without compromising other objectives. Similar reasoning can be applied

for designs such as 21 and 26 which closely resemble the constrained optimal designs for VAD

and FM found in chapter 7.

The contour plots of Figure 9.28 also show the location of the optimal designs in the

conservative paradigm, viz. designs 20 and 30 in rows 6 and 9, respectively. These designs

lie in the yellow/blue regions of all the objectives, thereby not taking extreme values for any

of the objective under the proposed paradigm.

9.4.3 The experimental approach

This approach requires experimental guidance. A few designs across the Pareto front can be

picked and tested ex-vivo in a laboratory, known as bench-testing. Such experimental results

can then guide the process of choosing the optimal stent. Furthermore, leaving the ethics

and morality of the process aside, testing in animal models can also be used to guide such an

experimental process.

Notwithstanding the merit of the above discussion, on a philosophical note it seems rather

unreasonable to think of one stent design as ‘ideal’ given the differences in the lesion geometry,

morphology, and other inter-patient variability found inherently in the human population. A

more logical approach, though extremely challenging in terms of computational, technical, and

practical aspects, would be to perform patient-specific optimisation studies using magnetic

resonance imaging (MRI)/ angiography/intravascular ultrasound (IVUS) data to obtain both

the geometry and morphology of the specific lesions. Another approach, midway between the

one-size-fits-all approach and patient-specific optimal designs, could be to classify lesions into

manageable number of classes, and find optimal designs, most likely to be different, for each

class separately.

A final note should be mentioned here with regards to the Krig-update methodology

adopted in this chapter. As mentioned in section 9.2, various other update strategies, can be
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adopted for choosing update points. However, on account of the extremely high evaluation

times needed for evaluation of all the objectives, a comparison of the performance of such

methods on the stent design problem is out of the scope of this thesis, and forms one area of

future work. Similarly, the results of this chapter show that not all pairs of objectives are in

conflict with each other. The apparent correlation between some objectives can be used to

decrease the number of objectives to less than six and consequently result in a more efficient

optimisation study.

9.5 Conclusions

This chapter proposes a three-parameter technique to vary the design of the widely known

CYPHER stent. Six figures of merit (numeric indicators of a stent’s efficacy) viz. acute recoil,

volume average stress, flow index, volume average drug, drug uniformity, and flexibility, are

formulated. A surrogate modelling technique coupled with NSGA-II is employed to obtain

the Pareto front showing the trade-off between different sets of the six figures of merit. The

effect of the three parameters on these metrics is also studied. It is demonstrated that a

change in one parameter that leads to an improvement in one of the objectives often leads

to a compromise in one or more of the other objectives. It is found that while strut width

and the length of the circumferential rings most affect volume average stress and recoil,

the length of the links in the cross-flow direction significantly affects volume average drug,

flexibility, and the flow index. The complex interplay between stent design (distribution of

struts, link design, strut thickness, and circumferential ring design) and stent performance,

from the perspective of the various conflicting/desirable properties, is clearly shown. Despite

this complex interplay, the non-dominated solutions, which represent a potentially optimum

family of CYPHER like stents, for the proposed parameterisation are obtained and discussed.

Moreover, several approaches for selecting optimal designs are identified and a parallel has

been shown between the constraint optimisation study presented in chapter 7. In particular,

designs 20 and 30 are identified as optimal in terms of all the objectives in a conservative

paradigm, and their relative position with respect to a representative CYPHER stent is shown.

Finally, in a constraint based approach, designs 15, 21, and 26 are identified as designs showing

maximal improvement, from the baseline geometry, in the corresponding chosen objectives.

In essence, a methodology to perform design optimisation studies on stents and the process

of choosing different stent designs appropriate to different needs is presented.

This chapter culminates the process of finding an optimal family of coronary stent de-

signs, by combining all the stent analysis methods developed in previous chapters in a single

multiobjective design study. The next chapter is not specific to the problem of coronary stent

design. It looks at Kriging-assisted optimisation at a more fundamental level, and explores

how derivative information in a Krig can be used for efficient search of the Krig. This under-

lying idea emerged during the process of learning and applying the Gaussian Process models

as described so far.





Chapter 10

An Optimisation algorithm that

exploits derivative information in

Kriging

In this chapter, the use of derivative information in a Kriging predictor, which is available

analytically, but not hitherto used in any known optimisation method, is explored to propose

an optimisation algorithm that can be used for both global and multimodal optimisation of

Kriging predictors. This chapter has stemmed from the process of learning and applying

Gaussian process models for the problem of stent design, and the first principles belief that if

the analytical form for a function is available and differentiable, then it makes sense to equate

the analytical expression of the derivative to zero, and explore if any useful information can

be obtained from such an expression.

10.1 Motivation

The motivation for this chapter stems from the realisation that Kriging predictors can be

differentiated, and the fact that, to the best of author’s knowledge, this gradient information

has not been explored to be used in optimisation algorithms. Moreover, the exciting aspect

of using derivative information of a Krig is that no matter what underlying phenomenon is

being modelled by the Kriging predictor, the mathematical form of the Kriging predictor

remains the same. Hence, if an algorithm were to use this mathematical form to calculate the

derivatives, the need to code different derivatives for different functions is eliminated. Lastly,

the derivative information, if derived analytically, is available in exact form and need not be

approximated by finite differencing methods.

Based on these motivations, in this chapter the following tasks are performed:

1. An expression for the derivative of a Kriging predictor is derived.

2. The above expression is manipulated to yield a fixed-point iterative sequence in order

to find the stationary points of the Kriging predictor.

3. The convergence of such a fixed-point iterative sequence is explored.

179
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4. Modifications to this fixed-point iterative sequence and a Newton-Raphson equivalent

of the sequence in order to improve convergence is proposed.

5. Based on the results of the above, a new algorithm for finding stationary points of a

Kriging predictor is proposed.

6. The proposed algorithm is compared for global and multimodal optimisation with a

standard genetic algorithm, a fitness sharing genetic algorithm, and a dynamic hill

climbing algorithm.

It must be noted that this chapter does not concern methods which improve the accuracy

of the Krig during the process of optimisation, such as the EGO algorithm [50]. This chapter

deals with the case when a reasonably accurate Krig has been constructed, although it is

applicable to any Krig regardless of its accuracy, and there is a need to search this Krig,

either for global optimisation, or for multimodal optimisation.

10.2 Derivative of the Kriging predictor

The formulation of a Gaussian Process predictor is presented in section 3.2.3.1. This section

continues from there, and uses the same notation. To summarise, the equations for the

correlation function used, GP predcitor (i.e. posterior mean), and posterior variance are

given by equations 3.22, 3.35/3.38, and 3.37, respectively.

In this section the derivative of the Kriging predictor is calculated. Henceforth, the

discussion is limited to cases where the parameter m j in equation 3.22 is equal to 2, implying

the prior belief that the engineering functions involved are infinitely differentiable.

If {X(t), t ≥ 0} is a stochastic process, then the derivative of the process, X′(t), is defined as

X′(t) = lim
h→0

X(t + h) − X(t)
h

. (10.1)

The above limit exists in a mean square sense if the derivative of the mean function of

the stochastic process, m(t), exists and the mixed second derivative, i.e.

∂2

∂s ∂t
Cov[X(s), X(t)] (10.2)

exists and is continuous [49]. When these conditions are satisfied, as in the case of the Kriging

predictor, the derivative is a linear operator. This implies that the ‘mean of the derivative’

and the ‘derivative of the mean’ are equal and can be interchanged [194] , i.e.

E[X′(t)] = E

[

d
dt

X(t)

]

=
d
dt

E[X(t)] = m′(t), (10.3)

where E[·] is the expectation operator.

Applying the above to the Kriging predictor of equation 3.35, the mean of the derivative

at a point, x, can be written as

ŷ′(x) =
d
dx

(

β + r(x)T R−1(y − 1β)
)

(10.4)

or, following equation 3.38, since R−1(y − 1β) does not depend on x,

ŷ′(x) =
d

dx

(

β + r(x)T w
)

. (10.5)
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Since x ∈ Rn, the above equation represents a set of n equations, i.e.

∂ŷ(x)
∂xi

=
∂

∂xi

(

β + r(x)T w
)

; i = 1 . . . n. (10.6)

Next, the ith equation from the above set is expanded, to yield

∂ŷ(x)
∂xi

=
∂

∂xi

(

r(x)T w
)

(10.7)

∂ŷ(x)
∂xi

=

(

∂

∂xi
r(x)

)T

w (10.8)

∂ŷ(x)
∂xi

=

[

∂R(x, x(1))
∂xi

∂R(x, x(2))
∂xi

· · · ∂R(x, x(p))
∂xi

]

w. (10.9)

Since m j = 2, using equation 3.22, the above equation can be written as

∂ŷ(x)
∂xi

=
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i

)
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...

−2θi
(
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T

w (10.10)

∂ŷ(x)
∂xi

= −2θi
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w (10.11)

∂ŷ(x)
∂xi

= −2θi Di(x) Z(x) w ; i = 1 . . . n, (10.12)

where

Di(x) =
[(

xi − x(1)
i

) (

xi − x(2)
i

)

· · ·
(

xi − x(p)
i

)]

∈ R1×p , (10.13)
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∈ Rp×p (10.14)

and

w = R−1(y − 1β) ∈ Rp×1. (10.15)

This completes the expression for the derivative of the Kriging predictor, where the n

partial derivatives are given by equation 10.12. In the following sections, the use of this

derivative in optimisation is explored.

10.3 Fixed point (FP) iterative scheme to find stationary points

of a Krig

One of the tasks in the realm of optimisation is to locate the stationary points of a function.

These are points where the derivative vanishes, and hence are either a local maximum, local

minimum, or a saddle point, depending on the behaviour of the second derivative at that
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point. In order to find the stationary points of a Krig, one can set equation 10.12 to zero and

solve for x, i.e. solve the following equation

− 2θi Di(x) Z(x) w = 0 ; i = 1 . . . n. (10.16)

It is clear that an analytical expression for the above set of equations does not exist.

However, it is noticed that if this set of equations is written in a suitable form, then a fixed

point iterative scheme can be employed to find a solution. In the following two sections, first

the principles behind a fixed point iterative scheme are presented, and then such a scheme

for solving equation 10.16 is deduced.

10.3.1 Fixed point iteration

A fixed point (FP) of a function, f (x) is a point that maps the function onto itself, i.e. the

value of f evaluated at the fixed point, xp, is equal to xp. For example, x = 0.739085133is

a fixed point for the function Cos(x) as Cos(0.739085133)= 0.739085133. Mathematically, a

fixed point of the function f (x) is a solution, x∗, if it exists, to the following equation [195]

x = f (x). (10.17)

If a fixed point is aymptotically stable (explained in section 10.3.3), then starting from a

point, say x0, close enough to the solution, x∗, the iterative sequence

x0 , f (x0) , f ( f (x0)) , f ( f ( f (x0))) , . . . (10.18)

converges to x∗. This iterative sequence is called the fixed point iterative sequence, also known

as nonlinear Richardson iteration, Picard iteration, or the method of successive substitution

[195], and can be written as follows

xκ+1 = f (xκ) ; starting from a guess point x0. (10.19)

In case of a solution of n non-linear equations in n unknowns, x = [x1, x2, x3, . . . , xn]T as

represented by the following system

x1 = f1(x) (10.20)

x2 = f2(x) (10.21)

... (10.22)

xn = fn(x), (10.23)

the iterative sequence can be written as

xκ+1
1 = f1(xκ) (10.24)

xκ+1
2 = f2(xκ) (10.25)

... (10.26)

xκ+1
n = fn(xκ), (10.27)

starting from an initial guess x0
= [x0

1, x
0
2, x

0
3, . . . , x

0
n]T .
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10.3.2 Fixed point iterative form of the Krig derivative

In order to solve equation 10.16, the matrix Di(x), defined in equation 10.13, is written as

Di(x) =
[

xi xi · · · xi

]

−
[

x(1)
i x(2)

i · · · x(p)
i

]

∈ R1×p , (10.28)

Di(x) = xi

[

1 1 · · · 1
]

−
[

x(1)
i x(2)

i · · · x(p)
i

]

∈ R1×p , (10.29)

Di(x) = xi1p − Xi, (10.30)

where

1p = [1, 1, . . . , 1] ∈ R1×p, (10.31)

and

Xi =
[

x(1)
i x(2)

i · · · x(p)
i

]

. (10.32)

The components of Xi represent the ith dimensions of each of the p points used to construct

the Kriging model. Substituting the above equation for Di(x) in equation 10.33 yields

− 2θi
[

xi1p − Xi

]

Z(x) w = 0 ; i = 1 . . . n. (10.33)

When θi , 0, this yields

[

xi1p − Xi

]

Z(x) w = 0 ; i = 1 . . . n (10.34)

xi

[

1p Z(x) w
]

− [Xi Z(x) w] = 0 ; i = 1 . . . n (10.35)

xi =
Xi Z(x) w
1p Z(x) w

= Gi(x) ; i = 1 . . . n (10.36)

or

xi = Gi(x) ; i = 1 . . . n, (10.37)

where

Gi(x) =
Xi Z(x) w
1p Z(x) w

. (10.38)

The above equation shows that the stationary points of the Kriging predictor function are the

fixed points of the set of functions represented by Gi(x), i = 1 . . . n. Consequently, starting

from an initial guess, x0
= [x0

1, x
0
2, x

0
3, . . . , x

0
n]T , the following sequence can be used to reach a

solution

xκ+1
i =

Xi Z(xκ) w
1p Z(xκ) w

. (10.39)

For computational efficiency, the entire xκ ∈ Rκ×1 vector can be calculated using the following

iterative equation

xκ+1
= G(xκ) (10.40)

and

G(x) =
X Z (x) w
1p Z(x) w

(10.41)
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where X ∈ Rn×p is given by

X =
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1 · · · x(p)

1

x(1)
2 x(2)
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2 · · · x(p)

2
...

...
...
. . .

...

x(1)
n x(2)

n x(3)
2 · · · x(p)

n
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. (10.42)

10.3.3 Convergence conditions

In this section the conditions under which a fixed point iterative sequence converges to a fixed

point are outlined. Fixed points can be classified into three categories [196]

• Asymptotically stable points: These are fixed points with a property that all nearby

points converge to the fixed point.

• Stable points: These are fixed points with a property that all nearby points stay nearby.

• Unstable points: These are fixed points with a property that almost all nearby points

diverge away from the fixed point.

For a scalar function, g(u), g : R→ R, the following theorem for convergence of the fixed point

iterative scheme holds

Theorem 10.3.1. “Let g(u) be a continuously differentiable scalar function. Suppose u∗ =

g(u∗) is a fixed point. If |g′(u∗)| < 1, then u∗ is an asymptotically stable fixed point, and hence

any sequence of iterates u(κ) which starts out sufficiently close to u∗ will converge to u∗. On

the other hand, if |g′(u∗)| > 1, then u∗ is an unstable fixed point, and the only iterates which

converge to it are those that land exactly on it, i.e., u(κ)
= u∗ for some κ ≥ 0.” [196]

Similarly, for a set of functions , g(u), g : Rn → Rn, the following theorem for convergence of

the fixed point iterative scheme holds

Theorem 10.3.2. “Let u∗ be a fixed point for the discrete dynamical system u(κ+1)
= g(u(κ)).

If the Jacobian matrix norm ||g′(u∗)|| < 1, then g is a contraction at u∗, and hence the fixed

point u∗ is asymptotically stable.” [196]

In other words, the above theorem implies that if the spectral radius (supremum of the

set containing absolute values of the eigen values) of g′(u∗) is less than one, then u∗ is an

asymptotically stable point [196], i.e.

ρ(g′(u∗)) < 1, (10.43)

where ρ(·) represents the spectral radius. Furthermore, the convergence rate of a fixed point

iteration is directly related to the spectral radius. A smaller spectral radius of the Jacobian

matrix at a stationary point implies faster convergence of nearby iterates to the stationary

point [196].

Having laid out the convergence conditions, the term basin of attraction can be defined

as

Let u∗ be a fixed point for the discrete dynamical system u(κ+1)
= g(u(κ)). Then the set of all

points, uγ, for which the iterative sequence u(κ+1)
= g(u(κ)), starting from uγ, converges to the
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solution u∗ is called the basin of attraction of u∗.

Hence, from the view of finding the stationary points through a fixed point iterative sequence,

it is desirable to have a large basin of attraction for all stationary points.

Applying theorem 10.3.2 to the iterative sequence represented by equation 10.40, the

iterative sequence converges to a stationary point, x∗ of the Kriging predictor if

||G′(x∗)|| < 1, (10.44)

where || · || denotes a norm and G′(x∗) is the Jacobian matrix of G(x) evaluated at x∗, and is

given by

G′(x∗) =
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at x∗

∈ Rn×n. (10.45)

The i jth term of the above Jacobian matrix is evaluated next

∂Gi(x)
∂x j

=

(

1p Z(x) w
) ∂

∂x j

(

X i Z(x) w
)

−
(

X i Z(x) w
) ∂

∂x j

(

1p Z(x) w
)

(

1p Z(x) w
)2

(10.46)

∂Gi(x)
∂x j

=

(

1p Z(x) w
) (

−2θ j

) (

X i Z(x) K j w
)

−
(

X i Z(x) w
) (

−2θ j

) (

1p Z(x) K j w
)

(

1p Z(x) w
)2

, (10.47)

where
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∈ Rp×p. (10.48)

Equation 10.47 represents the general partial derivative at any point x. At a stationary

point, x∗, we have an additional condition represented by equation 10.36, i.e.

x∗i
(

1p Z(x∗) w
)

= Xi Z(x∗) w; (10.49)

substituting this in equation 10.47, yields

∂Gi(x∗)
∂x j

=

(

1p Z(x∗) w
) (

−2θ j

) (

X i Z(x∗) K j w
)

−
(

x∗i 1p Z(x∗) w
) (

−2θ j

) (

1p Z(x∗) K j w
)

(

1p Z(x∗) w
)2

.

(10.50)

Now, when
(

1p Z(x∗) w
)

, 0, the above equation becomes
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∂Gi(x∗)
∂x j

=

(

−2θ j

) (

X i Z(x∗) K j w
)

−
(

x∗i
) (

−2θ j

) (

1p Z(x∗) K j w
)

(

1p Z(x∗) w
) (10.51)

∂Gi(x∗)
∂x j

=

(

−2θ j

)

(

X i Z(x∗) K j w
)

−
(

x∗i 1p Z(x∗) K j w
)

(

1p Z(x∗) w
) (10.52)

∂Gi(x∗)
∂x j

=

(

2θ j

)

(

x∗i 1p − X i

)

(

Z(x∗) K j w
)

(

1p Z(x∗) w
) . (10.53)

Using this equation, the Jacobian matrix G′(x∗) ∈ Rn×n (from equation 10.45) can be calculated

as follows

G′(x∗) =
2 D(x∗) Z(x∗) W DT(x∗) Θ

1p Z(x∗) w
∈ Rn×n, (10.54)

where
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or

w = W 1p, (10.57)
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∈ Rn×n, (10.58)

and DT represents the transpose of D. Hence, if the norm of the Jacobian matrix at a station-

ary point, ||G′(x∗)||, as calculated by equation 10.54 is less than one, then the stationary point

is asymptotically stable, and an iterative sequence starting from a point near the stationary

point converges to the stationary point.

10.3.4 Application to Branin function

The Branin function [197], as shown in Figure 10.1, is a widely used two variable test function

for global optimisation. It is defined as follows

f (x1, x2) = a(x2 − bx2
1 + cx1 − d)2

+ e(1− f ) cos(x1) + e, (10.59)
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Figure 10.1: Contours of the original Branin Function

Figure 10.2: Contours of the Kriging predictor (generated from sampling 20 points shown in
as red ’+’) for the Branin Function

Figure 10.3: Equation 10.40 applied to the Kriging predictor of Branin Function starting
from five different points
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where −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15, a = 1, b =
5

4π2
, c =

5
π
, d = 6, e = 10, and f =

1
8π

.

The Branin function has three global minima, f (x1, x2) = 0.397887, at (x1, x2) = (−π, 12.275),

(π, 2.275), and (9.42478, 2.475). A Krig of this function is created using 20 points generated

using a semi-optimised Latin hypercube [18, 198] sampling plan (100 Latin hypercube samples

are generated and the one with lowest metric proposed by Audze and Eglais [199] is chosen).

The function as predicted by the Kriging model is shown in Figure 10.2. A fixed point

iterative scheme represented by equation 10.40 is applied to this Krig starting from five

points, viz. [(4, 6), (9, 10), (−2, 10), (0, 3.5), (6, 4)]. The five points are chosen such that

each point is closest to one of the stationary points of the Branin function Krig. The results

of this are shown in Figure 10.3; the black dots represent the starting points of the fixed

point iteration and the arrows show the points to which the iteration converge. It is observed

that all iterations converge to one of the stationary points of the Krig function. However,

the locations to which these iterations converge are far from ideal. The Branin function has

five stationary points, three minima and two saddle points. The five chosen starting points

lie close to one of these stationary points and hence, in an ideal case, iterations starting

from each of these points should converge to the respective stationary points (see Figure

10.5 for such an ideal distribution). The observed behaviour of the points, especially point

(−2, 10), can be understood by looking at the spectral radius of the minimum closest to it,

i.e. (−2.933, 11.456). Note that this is slightly different from (−π, 12.275), the minimum of the

real Branin function, as we are working with the current Kriging predictor, the accuracy of

which can be improved, if desired, by adding more points at suitable locations to construct

the Krig. The spectral radius at this minimum is 1.519, see Table 10.1 (normal case), while

the spectral radius at the other two minima are 0.638 and 0.740. This explains why a fixed

point iteration starting from any point, except that which starts from the minimum itself,

does not converge to this minimum as the spectral radius at this point is greater than one.

Table 10.1 also explains why the two saddle points are missed as the spectral radii there are

1.763 and 1.984, both greater than one.

The above discussion leads to the question as to whether equation 10.40 can be posed in

another way such that the spectral radius at all/more stationary points could be reduced to

a quantity less than one in order to ensure that all fixed point iterative sequences starting

from points closer to the stationary points converge to the respective stationary points. Such

transformations form the discussion of the next sub-section.

10.3.5 Modifying the form of the fixed point Krig equation

Since the spectral radius of the Jacobian matrix, equation 10.45 is directly related to the

magnitude of entries in the matrix, any transformation sought should be based on the un-

derlying concept to decrease the magnitude of these entries. Example transformations for a

general equation, x = f (x), are:

x =
√

(x f (x)) (10.60)

x =
x

f (x)
+ x − 1 (10.61)

x =
f (x)

x
+ x − 1 (10.62)

x =
1
2

(x + f (x)) . (10.63)
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Table 10.1: Spectral radii for the stationary points of the Branin function Kriging Predictor

Stationary Point Spectral radii

normal nd = 2 nd = 10 nd = 50 nd = 1000
(−2.933, 11.456) 1.519 0.706 0.941 0.988 0.999
(3.070, 2.672) 0.638 0.665 0.933 0.986 0.999
(9.756, 2.963) 0.740 0.467 0.893 0.978 0.998
(−0.008, 5.008) 1.763 1.381 1.076 1.015 1.0007
(6.342, 1.121) 1.984 1.492 1.098 1.019 1.0009

Clearly, one can write the same equation in many other forms, each still representing a fixed

point iterative scheme. However, following the underlying idea of keeping the entries of the

Jacobian matrix of the RHS of the above equations low, a general form for the final equation

(equation 10.63) shown above is chosen:

x =
1
nd

(

(nd − 1)x + f (x)
)

; nd ≥ 1 and nd ∈ Z, (10.64)

where nd is an integer greater than or equal to one. The derivative of the RHS in such a form,

x = g(x) is

g′(x) =
nd − 1

nd
+

f ′(x)
nd
, (10.65)

where f ′(x) would be the derivative of the RHS of the original form, x = f (x). From the above

equation one can observe that the original derivative term is now divided by the factor nd,

and a term of (nd − 1)/nd has been added. It can be concluded that if f ′(x∗) is finite, then

lim
n→∞

g′(x∗) = 1. (10.66)

The above method works well in cases where the original derivative, f ′(x∗), is negative,

in which case the above limit tends to one from the left. For example, if f ′(x∗) = −1.5, then

when nd = 2 from the equation g′(x∗) = −0.25, with a magnitude less than one, and hence

x∗ becomes asymptotically stable, i.e. fixed point iterative sequences starting from points

close to it converge to it. The form of equation 10.64 when applied to equation 10.40 for the

Kriging multidimensional case becomes

xκ+1
=

1
nd

(

(nd − 1) xκ +G(xκ)
)

(10.67)

with the Jacobian matrix, J for such a fixed point iteration being

J =
(

nd − 1
nd

)

I +
1
nd

G′(x), (10.68)

where I is an identity matrix, I ∈ Rn×n.

Figure 10.4 shows the results of the five test points when the iteration represented by

equation 10.67, with nd = 2, is applied to the Branin function Krig (c.f. figure 10.2). Com-

paring this with Figure 10.3, it is observed that now the point (−2, 10) converges to the closest

(desired) minimum. This is also apparent by calculating the spectral radius of the right hand

side of the fixed point equation. As shown in Table 10.1 the spectral radius for this minima

is 0.706 (less than one) as opposed to the original case where the spectral radius was 1.519

(greater than one), and hence the minima has now become asymptotically stable. However,

as can be seen from Figure 10.4, the saddle points of the Branin function are still not found.
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Figure 10.4: Equation 10.67 applied to the Kriging predictor of Branin Function starting
from five different points

This is also revealed by the spectral radii in Table 10.1 where it is found that the spectral

radii for the saddle points approach one as nd increases from the right. Consequently, no

finite value of nd, no matter how large, makes the spectral radius of the Jacobian matrix less

than one. This is primarily because the largest entries of the Jacobian matrix for these saddle

points are positive in which case it is inevitable that the spectral radius approaches the limit

of 1 from the right, as nd increases. Lastly, it was mentioned in section 10.3.3 that the con-

vergence of a fixed point iteration is related to the spectral radius of the Jacobian matrix; a

smaller spectral radius implies faster convergence. With an increase in nd, the spectral radii,

as shown above, tends to one either from the left or the right. For the latter case, there is no

convergence to the stationary point, and for the former case, the increase in spectral radius,

as nd increases leads to slower convergence.

In order to resolve the issues of spectral radii being less than one, and identifying a

universal form for the fixed point iteration which ensures convergence, the Newton-Raphson

(NR) scheme for the Krig equations is explored in the following section.

10.4 Newton-Raphson (NR) scheme to find stationary points

of a Krig

The Newton-Raphson (NR) method is a fixed point iterative method to find the roots of an

equation, f (x) = 0. The iterative scheme is defined as follows

xκ+1
= xκ − f (xκ)

f ′(xκ)
. (10.69)

It can readily be observed that the derivative of the RHS of the fixed point equation, i.e.

g(x) = x − f (x)/ f ′(x), is

g′(x) =
f (x) f ′′(x)

f ′(x)2
. (10.70)

At the root, i.e. when f (x∗) = 0, g′(x∗) = 0, implying that every stationary point is asymp-

totically stable. When applied to finding a solution to equation 10.37, this procedure ensures

that every stationary point of the Krig is asymptotically stable. However, this comes at a cost

of calculating the derivative (i.e. the Jacobian matrix) in each iteration. The set of equations
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represented by Equation 10.40 can be writtn as

F(x) = x −G(x) = 0. (10.71)

Hence, the Newton Raphson iteration can be written as

xκ+1
= xκ − F(xκ)

F′(xκ)
(10.72)

xκ+1
= xκ − F′(xκ)−1F(xκ), (10.73)

where F′(x)−1 is the inverse of the Jacobian matrix of F(x), obtainable from

F′(x) = I −G′(x), (10.74)

where I is an identity matrix, I ∈ Rn×n, and G′(x) is given by equation 10.45. Using equation

10.47, F′(x) can be written as

F′(x) = I −
2

(

X Z (x) w 1p

) (

Z(x) W DT(x) Θ
)

(

1p Z(x) w
)2

+

2 (X)
(

Z(x) W DT(x) Θ
)

(

1p Z(x) w
) , (10.75)

where X, Z(x), w, W, D(x), and Θ are defined by equations 10.42, 10.14, 10.15, 10.56, 10.55,

and 10.58, respectively.

Figure 10.5 shows the results of the five test points when the iteration represented by

equation 10.73 is applied to the Branin function Krig. Comparing this with Figures 10.3

and 10.4, it is readily observed that, in this scheme of fixed point iterations, each stationary

point, i.e. the three minima and the two saddle points, is asymptotically stable and, hence,

iterative sequences starting from points in their neighbourhood converge to the stationary

points. This, however, comes at a cost of computing the Jacobian matrix and its inverse at

each iteration.

Figure 10.5: Newton-Raphson equation 10.73 applied to the Kriging predictor of the Branin
Function starting from five different points

Henceforth, throughout this chapter, the three fixed point iterative sequences are referred

as

1. Standard fixed point iteration (SFP): The standard fixed point iteration derived from

the Kriging predictor (equation 10.40).
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Table 10.2: Sample size to construct Krigs and grid-size to evaluate the MFP and NR iterative
sequences

Function Sample size grid size nd (MFP)

Branin function 20 21× 21 2
De Jong’s function 20 10× 10 2
Rosenbrock’s function 50 9× 9 2
Rastrigin’s function 150 21× 21 10
Bump function 200 21× 21 6
Ackley’s function 150 21× 21 2
Six-hump camel back function 100 21× 21 1
Dropwave function 150 21× 21 2
Easom’s function 200 21× 21 2
Goldstein-Price’s function 150 21× 21 2

2. Modified fixed point iteration (MFP): The modified form of the standard fixed point

iteration (equation 10.67).

3. Newton-Raphson iteration (NR): The Newton-Raphson form of the fixed point iteration

(equation 10.73).

10.5 Example Applications

In this section the above formulated fixed point iterative sequences are applied to find the

stationary points of a Krig of several test functions. These functions are used widely for

testing optimisation algorithms and, unless otherwise stated, have been taken from the list

provided by Molga et. al. [200] and Yang [201]. For each of the functions, a suitable sample

size, that which ensures a low error (posterior variance) as predicted by equation 3.37, is

used to construct the Krigs. Thereafter, a suitable grid size, i.e. a grid size that sufficiently

depicts the behaviour of the two iterative sequences, is used to generate starting points for

the MFP and NR iterative sequences. The results of these are presented by arrow plots,

where each arrow starts from the starting point of the sequences and points to the point

where that sequence converged. For each of the following functions, the sample size, p, used

to construct the Krigs, the grid size to evaluate the iterative sequences, and the value of nd

used in equation 10.67 for the MFP sequence, are shown in Table 10.2.

10.5.1 Branin function

The Branin function has already been the exemplary function so far. Figures 10.6a and 10.6b

show the behaviour of the MFP and NR sequences for a 21× 21 grid of starting points. The

MFP sequence, as can be seen from Figure 10.6a does not converge to the two saddle points.

The basins of attraction for the three minima are relatively large when compared to the NR

sequence. However, the NR sequence does find all the stationary points of the function, with

a considerable sized basin of attraction for each of the stationary points.
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(a) MFP iterations with nd = 2

(b) NR fixed point iterations

Figure 10.6: Iterative schemes for finding stationary points of Branin function Krig; grid size
= 21× 21
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10.5.2 De Jong’s function

The simple De Jong’s sphere function is defined as

f (x) =
n

∑

i=1

x2
i ; −5.12≤ xi ≤ 5.12 (10.76)

This unimodal and convex function has its global minimum, f (x∗) = 0, at x∗i = 0, i = 1 . . . n.

Figures 10.7a and 10.7b show the original De Jong’s function and its Krig created by

sampling 20 points, respectively. Figures 10.7c and 10.7d show the behaviour of the MFP

and NR sequences for a 10× 10 grid of starting points. Being a unimodal convex quadratic

function, the observed behaviour of the sequences, i.e. all points converge to the global

minimum, is not surprising. Such behaviour, for this simple function, is expected out of every

gradient based optimiser.

(a) Original De Jong’s function (b) Krig of De Jong’s function (20 sample points shown
in red ’plus’)

(c) MFP iterations with nd = 2 (d) NR fixed point iterations

Figure 10.7: Iterative schemes for finding stationary points of De Jong’s function Krig; grid
size = 10× 10

10.5.3 Rosenbrock’s function

The Rosenbrock’s function, also known as the Banana function, is defined as

f (x) =
n−1
∑

i=1

[

(xi − 1)2 + 100(xi+1 − x2
i )2

]

; −2.048≤ xi ≤ 2.048. (10.77)

The global optimum of the above function lies in a narrow valley of parabolic shape. Most

algorithms easily locate the valley, however the challenge to any algorithm lies in converging
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to the global optimum in the valley. The global minimum, f (x∗) = 0, for the Rosenbrock’s

function is located at x∗i = 1, i = 1 . . . n.

Figures 10.8a and 10.8b show the original Rosenbrock’s function and its Krig created by

sampling 50 points, respectively. Figures 10.8c and 10.8d show the behaviour of the MFP

and NR sequences for a 9× 9 grid of starting points. This choice of grid is intentional, as for

the MFP sequence it is found that only those sequences that start from within an extremely

narrow window around the x coordinate of the minimum converge to the desired minimum; a

sequence starting from every other point diverges. This does not seem to be the case with the

NR sequence, for which the basins of attraction for each stationary point are relative large.

(a) Original Rosenbrock’s function (b) Krig of Rosenbrock’s function (50 sample points
shown in red ’plus’)

(c) MFP iterations with nd = 2 (d) NR fixed point iterations

Figure 10.8: Iterative schemes for finding stationary points of Rosenbrock’s function Krig;
grid size = 9× 9

10.5.4 Rastrigin’s function

The Rastrigin’s function is a highly multi-modal problem with regularly distributed minima.

It is defined as

f (x) = 10n +
n

∑

i=1

[

x2
i − 10cos(2πxi)

]

; −2.0 ≤ xi ≤ 2.0. (10.78)

The presence of the cosine term in the function definition leads to the high multi-modality of

this function. Its global minimum, f (x∗) = 0 is located at x∗i = 0, i = 1 . . . n.

Figures 10.9a and 10.9b show, respectively, the original Rastrigin’s function and its Krig

created by sampling 150points. Figures 10.9c and 10.9d show the behaviour of the MFP and

NR sequences for a 21× 21 grid of starting points. A finer grid is used here owing to the high
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multimodality of the Rastrigin’s function. As can be seein in Figure 10.9c, the MFP sequence

is able to find most minima, albeit with a high value of nd = 10. However, the MFP sequence

misses all the saddle points, unlike the NR sequence, for which the basins of attraction for

all the stationary points are well defined. This, if the goal of the procedure to find only the

minima and maxima, lies in favour of the MFP method since size of the basins of attraction

of the saddle points for the NR sequence, is gained by the basins of attraction of the minima

for the MFP sequence. Nevertheless, if the goal was to find all the stationary points, then

clearly NR method is superior.
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(a) Original Rastrigin’s function (b) Krig of Rastrigin’s function (150 sample points shown

in red ’plus’)

(c) MFP iterations with nd = 10

(d) NR fixed point iteration

Figure 10.9: Iterative schemes for finding stationary points of Rastrigin’s function Krig; grid

size = 21× 21
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10.5.5 Bump Function

The Bump function, proposed by Keane [18], is a multi-modal function with several peaks of

decreasing heights. It is defined as

f (x) =
−abs

[

∑n
i=1 cos4(xi) − 2

∏n
i=1 cos2(xi)

]

√

∑n
i=1 ix2

i

; 0.0 ≤ xi ≤ 10.0. (10.79)

The bump function is widely used to test constrained optimisation algorithms, however its

high multimodality makes it suitable to test the iterative sequences developed in this chapter.

Figures 10.10a and 10.10b show, respectively, the original Bump function and its Krig created

by sampling 200 points. Figures 10.10c and 10.10d show the behaviour of the MFP and NR

sequences for a 21× 21 grid of starting points. For the Bump function as well, it is observed

that the MFP method is effective in finding the minima, with a high value of nd = 6, but is

not able to find the saddle points.

10.5.6 Ackley’s Function

Ackley’s function is also a widely used highly multi-modal test function. It is defined as

f (x) = −a exp
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+ a + exp(1) ; −2.0 ≤ xi ≤ 2.0. (10.80)

Its global minimum, f (x∗) = 0 is located at x∗i = 0, i = 0 . . . n.

Figures 10.11a and 10.11b show, respectively, the original Ackley’s function and its Krig

created by sampling 150 points. Figures 10.11c and 10.11d show the behaviour of the MFP

and NR sequences for a 21×21 grid of starting points. The behaviour of the two sequences for

Ackley’s function is very similar to that for Rastrigin’s function. The difference between Ack-

ley’s function and Rastrigin’s function is that the height of the peaks decreases considerably

faster, further away from the centre for Ackley’s function. This can effect the behaviour of

population based optimisers, such as a fitness sharing genetic algorithm, but does not affect

the performance of a gradient based optimiser, used to formulate the MFP and NR sequences.

10.5.7 Six-hump camel back function

The Six-hump camel back function is a two variable function with six minima (two global

and four local). It is defined as

f (x, y) =

(

4− 2.1x2
+

1
3

x4
)

x2
+ xy + 4(y2 − 1)y2 ; −3 ≤ x ≤ 3 ; −2 ≤ y ≤ 2. (10.81)

The two global minima, f (x∗, y∗) ≈ 1.0316, are located at (x∗, y∗) = (0.0898,−0.7126) and

(−0.0898, 0.7126).

Figures 10.12a and 10.12b show, respectively, the original Six-hump camel back function

and its Krig created by sampling 150points. Figures 10.12c and 10.12d show the behaviour of

the MFP and NR sequences for a 21×21 grid of starting points. For this function, it is found

that an MFP sequence converges only for nd = 1, i.e. for nd > 1 all the sequences starting
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(a) Original Bump’s function (b) Krig of Bump’s function (200 sample points shown in
black ’plus’)

(c) MFP iterations with nd = 6

(d) NR fixed point iterations

Figure 10.10: Iterative schemes for finding stationary points of the Bump function Krig; grid
size = 21× 21
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(a) Original Ackley’s function (b) Krig of Ackley’s function (150 sample points shown
in black ’plus’)

(c) MFP iterations with nd = 2

(d) NR fixed point iterations

Figure 10.11: Iterative schemes for finding stationary points of Ackley’s function Krig; grid
size = 21× 21
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(a) Original Six-hump camel back function (b) Krig of Six-hump camel back function (100 sample
points shown in red ’plus’)

(c) MFP iterations with nd = 1

(d) NR fixed point iterations

Figure 10.12: Iterative schemes for finding stationary points of Six-hump camel back function
Krig; grid size = 21× 21
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from all the points in the grid diverge. This is because, as discussed in section 10.3.5, the

spectral radii of the six minima (found by nd = 1) tend to one from the right as nd increases.

On the other hand, the NR sequence faces no such difficulties, and finds all the stationary

points of the Krig.

10.5.8 Dropwave function

The Dropwave function is a highly multi-modal test function with only two variables and is

defined as

f (x, y) = −1+ cos(12
√

x2 + y2)
1
2(x2 + y2) + 2

; −1 ≤ x ≤ 1 ; −1 ≤ y ≤ 1. (10.82)

Its global minimum, f (x∗, y∗) ≈ −1.0, is located at (x∗, y∗) = (0.0, 0.0). Figure 10.13 shows a

surface plot of the Dropwave function. As can be seen this function has concentric circular

shaped rings that represent alternate local minima and maxima. This is a challenging function

for gradient based optimisers as the gradient at every point on each ring is zero and hence a

local optimum, from a gradient point of view.

Figures 10.14a and 10.14b show, respectively, the original Dropwave function and its Krig

created by sampling 150 points. Figures 10.14c and 10.14d show the behaviour of the MFP

and NR sequences for a 21×21 grid of starting points. As can be seen from these figures, both

the sequences seem apparently confused and converge to various points in the circular rings.

Moreover, no MFP sequence converges to any of the rings that represent a local maximum.

However, starting from a point inside the central basin of the function, both the sequences

converge to the global minimum at (x∗, y∗) = (0.0, 0.0).

Figure 10.13: Surface plot of the Dropwave function
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(a) Original Dropwave function (b) Krig of Dropwave function (150 sample points shown
in red ’plus’)

(c) MFP iterations with nd = 6

(d) NR fixed point iterations

Figure 10.14: Iterative schemes for finding stationary points of Dropwave function Krig; grid
size = 21× 21
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10.5.9 Easom’s function

The Easom function is a unimodal test function with two variables. It is a difficult function

to optimise as the global minimum has a very small basin of attraction and the function

everywhere else is relatively flat, i.e. it yields no information about the location of the global

minima. The Easom function is defined as

f (x, y) = −cos(x) cos(y) exp
[

−(x − π)2 − (y − π)2
]

; −20≤ x ≤ 20 ; −20≤ y ≤ 20. (10.83)

Its global minimum, f (x∗, y∗) ≈ −1.0, is located at (x∗, y∗) = (π, π).

A surface plot of Easom’s function is shown in Figure 10.15. The relative flatness of

the function and the relatively small size of the basin of the global minimum can readily be

observed from this figure. Figures 10.16a and 10.16b show, respectively, the original Easom’s

function and its Krig created by sampling 200 points. A high sample size for this function

is needed to capture the flatness of the function in an extremely large part of the domain.

Figures 10.16c and 10.16d show the behaviour of the MFP and NR sequences for a 21×21 grid

of starting points. Both the sequences converge to various local minima of the Krig distributed

in the search domain. For the grid size chosen, only 4 points for the MFP sequence and 5

points for the NR sequence, that fall within the basin of the global minimum, converge to the

global minimum.

Figure 10.15: Surface plot of Easom’s function
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(a) Original Easom’s function (b) Krig of Easom’s function (200 sample points not
shown)

(c) MFP iterations with nd = 2

(d) NR fixed point iterations

Figure 10.16: Iterative schemes for finding stationary points of Easom’s function Krig; grid
size = 21× 21
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10.5.10 Goldstein-Price’s function

The Goldstein-Price’s function is a multi-modal test function with two variables. It is defined

as

f (x, y) =
[

1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

.
[

30+ (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)
]

−2 ≤ x ≤ 2 ; −2 ≤ y ≤ 2. (10.84)

Its global minimum, f (x∗1, x
∗
2) ≈ 3.0, is located at (x∗1, x

∗
2) = (0,−1).

This function is challenging for the optimisation algorithms as the local minima lie in rela-

tively flat region. Figures 10.17a and 10.17b show, respectively, the original Goldstein-Price’s

function and its Krig created by sampling 150 points. Figures 10.17c and 10.17d show the

behaviour of the MFP and NR sequences for a 21× 21 grid of starting points. Interestingly,

for no value of nd in the MFP sequence, are any of the desired stationary points in the domain

found. The NR sequence, however, finds all the stationary points.

Based on the aforementioned results, the following conclusions can be made regarding the

FP and NR sequences:

1. The FP sequences finds stationary points, but is limited by the spectral radii of the

stationary points. This limitation can be overcome up to a certain extent by using

higher values of nd. However, this still does not guarantee convergence of this sequence

to all stationary points. Moreover, how to estimate the nd factor a priori is not clear.

2. The NR sequence guarantees convergence to all stationary points, provided the starting

point of the sequence lies within the basin of attraction of the stationary points.

10.6 Development of the Krige-Newton-Raphson-Sobol (KNRS)

method

In this section an optimisation algorithm called the Krige-Newton-Raphson-Sobol (KNRS)

method is proposed for global and multimodal optimisation.

From the results of the previous section, it is clear that the NR sequence is more robust

in finding the stationary points when compared to MFP sequence. Moreover, based on the

results and theorem 10.3.2, a strong proposition is that as long as an algorithm can get one

starting point in the basin of attraction of the stationary point, the stationary point is guar-

anteed to be found. Finally, Newton-Raphson iterations, starting from a point sufficiently

close to the stationary point, converge q-quadratically to the stationary point, when the Ja-

cobian matrix is non-singular (see equation 10.73) [195]. This means that the error, difference

between the solution (u∗) and current point in the sequence (uκ), at κ + 1th iterate is related

to the error at κth iterate by ||uκ+1 − u∗|| ≤ τ ||uκ − u∗||2, for some τ > 0 [196].

The above thoughts lead to a hypothesis that if an algorithm chooses successive starting

points for the NR iterative sequence carefully, i.e. to explore regions of the search space

uniformly, then all stationary points of the Krig should be found. For choosing successive

starting points, a quasi-random (low discrepancy) sequence, called the SOBOL sequence (or

the LPτ sequence) [202, 203] is proposed. The SOBOL sequence has an attractive property in
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(a) Original Goldstein-Price’s function (b) Krig of Goldstein-Price’s function (150 sample points
not shown)

(c) MFP iterations with nd = 2

(d) NR fixed point iterations

Figure 10.17: Iterative schemes for finding stationary points of Goldstein-Price’s function
Krig; grid size = 21× 21
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(a) 20 points (b) 40 points (c) 60 points

(d) 80 points (e) 100 points (f) 120 points

(g) 140 points (h) 160 points (i) 180 points

Figure 10.18: 20 points added successively from the LPτ sequence

that the points are uniformly space filling, i.e. as more points from the sequence are added the

space is sampled more, uniformly. This property makes these sequences a reasonable choice for

exploring a design space. Figure 10.18 shows an instance of this sequence in two dimensions

where starting from a random point in the sequence, 20 points are added successively. Figure

10.19 shows 200 points from this sequence starting from a random point in the sequence. The

space filling properties of such a sequence are apparent from these figures. For all the results

presented in this chapter, the SOBOL sequences are generated by the code provided by Dr.

John Burkardt at his homepage [204].

Based on the above reasoning, the KNRS algorithm is described as follows and depicted

in figure 10.20. The algorithm begins by developing the necessary Kriging predictor for

the required function or physical response. Then a random skip number (a positive inte-

ger, i) [205] is generated. This number means that if l points are needed from the SOBOL
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.19: 200 points from the LPτ sequence with a random start between 0 and 10,000

sequence, S = (S1,S2,S3, . . . ,Sn), then instead of taking the first l points from the sequence,

(S1,S2,S3, . . . ,Sl), the points used are (Si+1,Si+2,Si+3, . . . ,Si+l). A NR iteration (equation 10.73)

is then performed starting from the first point Si+1. This iteration either diverges, oscillates,

or converges to a stationary point. If the iteration converges, then the results are appended to

an offline list of found stationary points. Next, the second point from the SOBOL sequence,

Si+2 is chosen as the starting point and a NR iteration carried out from this point. This

procedure of taking the next point from the SOBOL sequence and running an NR iteration

starting from this point is repeated until any of the convergence criteria are met: (a) either

the computational budget is reached, or (b) if the user is satisfied by the hitherto found

minimum value from the stationary points, or (c) the number of desired stationary points

are found. As an additional step on the list of unique stationary points the following two

operations can be performed: first, if the user is only looking for the global minimum, then
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the list can be sorted and the minimum value point can be to the user; and second if the

user is interested in differentiating between minima, maxima, and the saddle points, then

each of the stationary points found can be classified into these categories by performing 2m

function evaluations, where m is the dimension of the function, around each stationary point

and evaluating the function value at these points.

To conclude the formulation of the KNRS algorithm, the following three important points

underlying the motivation to develop the KNRS algorithm are highlighted.

1. NR iteration guarantees quadratic convergence to the stationary point, if starting suf-

ficiently close (i.e. in the basin of attraction) of a stationary point. Since an exact

expression, i.e. not evaluated by finite differencing, is used for the Kriging predictor,

the NR sequence proposed is very robust, i.e. free from discretisation errors.

2. SOBOL sequences sample the space uniformly. Starting anywhere from a SOBOL

sequence, successive points are space filling, and hence explore all the regions of the

search domain equally.

3. A combination of the local search provided by the NR sequence coupled by the ex-

ploratory power of SOBOL sequence offers a powerful paradigm to perform optimisa-

tion, and forms the basis for the KNRS algorithm proposed.

10.7 Comparison of the KNRS algorithm with other algo-

rithms for Global optimisation

In this section, the above proposed KNRS algorithm is compared to two algorithms: a real

coded Genetic algorithm [36] and dynamic hill climbing [206, 13], for testing global optimi-

sation capabilities. In the following sub-sections, these algorithms are first briefly described

and then the results of the comparison are presented.

10.7.1 Genetic algorithms

The working of a Genetic algorithm is described in section 3.3.4.3. In all the comparisons made

in this section, a real coded GA with a binary tournament operator is used for selection, the

SBX operator is used for crossover, and polynomial mutation operator is used for mutation.

The GA used is coded in the Python programming environment [207] by the author. The

parameter settings used for comparison are tabulated in Table 10.3.

10.7.2 Dynamic Hill Climbing

Dynamic Hill Climbing (DHC) is a search algorithm proposed by Yuret and Maza [206, 13]

which is based on the ideas of genetic algorithms, hill climbing, and conjugate gradients.

Yuret and Maza, in their publications, showed this algorithm to be very effective on a test-

suite of De Jong’s five functions. Keane [188] has used DHC for the optimisation of Kriging

hyperparameters.

The central idea of Dynamic Hill Climbing lies in having an inner and outer loop: the

inner loop being a hill climber which starts from a seed point and performs a hill climb;



10.7. Comparison of the KNRS algorithm with other algorithms for Global optimisation 211

Figure 10.20: KNRS algorithm
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Table 10.3: GA settings for comparion of KNRS for global optimisation

Parameter Value

Coding Real-coded
population size 50
number of generations 50
Selection operator Binary tournament
Crossover operator Simulated Binary Crossover (SBX)
SBX parameter (ηc) 10.0
Crossover probability 0.5
Mutation operator Polynomial mutation
Mutation probability 0.05
Polynomial mutation parameter (ηm) 10.0

and the outer loop seeding the next start point far from the already found local minima.

The inner loop has a dynamic coordinate frame: initially the directions of movement are

the coordinate axis directions and a step length in these directions is decided. Hence, for a

problem of n dimensions, 2n evaluations are made and a move is made along the direction

of the best point found. If none of the 2n points are better than the current point, the

step length is halved and another 2n evaluations are carried out. Additionally, the previous

successful directions of movement are stored in a buffer. After every successful move, a Gram-

Schmidt orthogonalization procedure is used to construct a new coordinate frame based on

the difference of previous moves. This provides additional flexibility as the set of orthogonal

search directions are not fixed to the coordinate axes. Convergence is determined when the

step length becomes smaller than a predetermined limit. The outer loop’s goal is to seed

the next starting point far from the previously found local minima, which are stored in a

buffer, in order to promote exploration. Yuret and Maza proposed several methods for this.

For binary coded algorithms they proposed maximising the Hamming distance (difference in

the bits of two vectors) of the new point from already found local minima. They [13] also

proposed two other methods for the outer loop: first, to choose a set of points randomly in

the search space and initialize the inner loop with the best among these points; second, to

divide the search space into hyper-rectangles based on the local minima already found, and

choosing a random point in the hyper-rectangle of largest area (hyper-volume). The latter

procedure is similar to the binary search algorithm proposed by Hughes [208].

DHC has three parameters to set: a) the first starting point; b) the starting step length;

and c) the minimum step length. For all the DHC comparisons in this chapter, the first

starting point is chosen at random within the search domain, the starting step length is set

D/2, where, D is the difference between the upper and lower bound on decision variables (as

suggested by the authors), and the minimum step length is set to 10−3. The DHC used in

this study is coded by the author in the Python programming environment [207]. For the

outer loop, the method of evaluating 50 random points in the search domain and choosing

the best among these as the seed for the inner loop is used. The results of this code are

validated against the results reported by the Yuret and Maza [13] for a test suite of De Jong’s

five functions, as shown in Figures 10.21 and 10.22. Comparing these figures it can be seen

that for all the test functions, except the Quartic function, the mean of the best fitness value

reaches the minimum at approximately similar number of function evaluations for the two

implementations: ≈ 100 for Sphere function; ≈ 1,000 for Rosenbrock’s function; ≈ 10,000 for



10.7. Comparison of the KNRS algorithm with other algorithms for Global optimisation 213

Figure 10.21: Best point average over 10 runs for five functions by the developers of DHC [13]:
(A) Sphere function, (B) Rosenbrock’s function, (C) Step function, (D) Quartic function, and
(E) Shekel’s function [13]

Step function; and ≈ 1,000 for the Shekel’s function.
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(a) Sphere function (b) Rosenbrock’s function

(c) Step function (d) Quartic function

(e) Shekel’s function

Figure 10.22: Best point average over 10 runs for five functions to validate the DHC code
(Author’s code)
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10.7.3 Comparison results and discussion

To compare the performance of KNRS against the performance of GA and DHC, 50 runs of

all the three algorithms are performed for the 10 test functions in table 10.2.

Figures 10.23 – 10.32 show the optimisation histories for the best point and the mean of

the best point for 50 runs of the KNRS, GA, and DHC algorithms on the 10 test functions.

Table 10.5 shows the corresponding times taken for the 50 runs, and time per evaluation.

Before any comments on these numbers, the working of the KNRS algorithm is explored. Let

us consider Figure 10.23a. One observation is that since each NR iteration converges to one

of the stationary points of a function, the best point values in any run are likely to be the

stationary point function values for a long time, i.e. until any better point is found. This

leads to a band formation around the function values of the stationary points. In other words,

depending on the convergence accuracy of the inner NR iterations, the converged values of the

NR iterations lie in a small interval around the stationary points function values. For example

for the Branin function, the function value around the stationary points is approximately 20

and hence a a dark line (i.e. a set of lines corresponding to this band) is observed in Figure

10.23a. To further understand the working of this algorithm two independent runs on the

Branin function and key points along the run are shown in Table 10.4. Comparing the

first run in Table 10.4 to Figure 10.23a, it can be seen that this is the only run on Figure

10.23a that has not converged to any of the minima of Branin function Krig. The most

likely reason for the non-convergence of this run is that a NR sequence is actually diverging.

This is an important issue, especially when a fixed number of evaluations are allowed in the

algorithm. In the case of the Branin function, this limit is 50 evaluations. Now, if the number

of iterations in an NR sequence (without convergence) before which it is declared that the

sequence is either oscillating or diverging, is greater than 50, then if the first point of the

SOBOL sequence starts to diverge, then there will be no function improvement in the entire

run. This issue can be resolved by either checking inside each iteration as to whether the

series is diverging or oscillating, or by keeping a sensible limit on the maximum iterations

for the NR sequence. In all the comparisons presented in this section, the latter approach is

adopted and the limit on maximum iterations in an NR sequence is set to 50. The effect of

the diverging solution in the case of Branin function is also reflected in the plot for the mean

of the best point (Figure 10.23b): the dashed line represents the mean of all the 50 runs and

the solid line shows the mean when the run with the diverging solution is removed. This is a

direct result of choosing 50 as the inner iteration limit, and the fact that only 50 evaluations

are considered in these runs, thereby disallowing any further point to be evaluated before the

maximum evaluation limit is reached.

Returning to the comparison of the three algorithms on the 10 test functions (Figures

10.23 – 10.32), it is important to compare the time taken by each algorithm per evaluation.

Each algorithm has a different mechanism to converge to the optima, based on what the

algorithm does after evaluating a point. It should be noted that the time per evaluation here

implies, the time taken by one complete inner iteration of an algorithm, i.e. time taken to

evaluate the function value once plus other inner workings of the algorithm. For example,

time per evaluation for KNRS includes time taken for generation of the next point in the

SOBOL sequence plus one iteration of the NR sequence and convergence checks within the

iteration. For the GA, time per evaluation is the time taken for selection, crossover, and

mutation, per generation divided by the number of members in a generation. Similarly, for
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Table 10.4: Two independent runs of the KNRS algorithm on the Brainin function

Eval.
count

f (x) Comment Comment f (x) Eval.
count

1 37.52934 1st point in SOBOL sequence 1st point in SOBOL sequence 39.48397 1
2 19.60173 39.48397 2
3 19.60173 0.40519 3
4 19.60173 0.39996 4
5 19.60173 0.39996 5
6 19.60173 0.39996 6
7 19.60173 0.39996 7
8 19.59964 0.39996 8
9 19.59964 0.39996 9
10 19.59964 0.39996 10
11 19.59964 0.39996 11
12 19.59964 1st NR converges to a saddle

point
0.39996 12

13 16.76393 2nd point in SOBOL sequence 0.39996 13
14 16.76393 0.39996 14
15 16.76393 0.39996 15
16 16.76393 0.39996 16
17 16.76393 0.39996 17
18 16.76393 0.39996 18
19 16.76393 0.39996 19
20 16.76393 NR sequences up till here con-

verged to a minima
0.39996 20

21 16.76393 Next NR sequence converges
to a different minima

0.25473 21

22 16.76393 0.24775 22
23 16.76393 0.24775 23
24 16.76393 0.24775 24
25 16.76393 NR sequences up till here,

starting from the second point
in the SOBOL sequence, con-
verge to either a maxima out-
side bounds, or to a saddle
point

0.24775 25

26 16.24129 Next point in SOBOL se-
quence

0.24775 26

27 16.24129 0.24775 27
28 16.24129 0.24775 28
29 16.24129 0.24775 29
30 16.24129 0.24775 30
31 16.24129 0.24775 31
32 16.24129 0.24775 32
33 16.24129 0.24775 33
34 16.24129 0.24775 34
35 16.24129 0.24775 35
36 16.24129 0.24775 36
37 16.24129 0.24775 37
38 16.24129 0.24775 38
39 16.24129 0.24775 39
40 16.24129 0.24775 40
41 16.24129 0.24775 41
42 16.24129 0.24775 42
43 16.24129 0.24775 43
44 16.24129 0.24775 44
45 16.24129 0.24775 45
46 16.24129 0.24775 46
47 16.24129 0.24775 47
48 16.24129 0.24775 48
49 16.24129 0.24775 49
50 16.24129 The NR sequences since the

previous NR sequence are
either converging to saddle
points again or the last se-
quence is diverging; max.
eval. reached

No subsequent NR sequence
could converge to a better
minima; max. eval reached

0.24775 50
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the DHC, time per evaluation implies time taken for generating the search direction from a

point and deciding whether to move in that direction or to decrease the step length, plus

convergence checks. These times per evaluation are calculated on an average for all 50 runs

and are reported in Table 10.5.

Table 10.5: Global optimisation: Comparison of time per evaluation for KNRS, GA, and
DHC (50 runs for each algorithm in each test function)

Function KNRS GA (50× 50) DHC Time per eval. (10−3)s

neval time (s) neval time (s) neval time (s) KNRS GA DHC

Branin 50 14.07 2500 210.56 500 81.76 5.63 1.68 3.27
De Jong’s 50 6.23 2500 95.45 500 37.68 2.49 0.76 1.51
Rosenbrock’s 50 15.42 2500 209.25 500 75.00 6.17 1.67 3.00
Rastrigin’s 500 412.17 2500 608.96 2500 1316.33 16.49 4.87 10.53
Bump 500 594.79 2500 819.54 2500 1206.55 23.79 6.56 9.65
Ackley’s 500 358.96 2500 610.72 2500 945.84 14.36 4.89 7.57
Six-hump
camel back

500 277.91 2500 409.06 2500 619.23 11.12 3.27 4.95

Dropwave 500 451.73 2500 631.82 2500 912.31 18.07 5.05 7.3
Easom’s 500 636.72 2500 850.36 2500 1216.11 25.47 6.8 9.73
Goldstein-
Price’s

500 433.26 2500 613.82 2500 936.68 17.33 4.91 7.49

Average 14.09 4.05 6.50

Averaged over all the runs and functions the time taken for one evaluation of the KNRS

algorithm is longer than a GA and DHC by a factor or 3.5 and 2, respectively. However, for

all the test functions, except Easom’s and Six-hump camel back function, the implementation

of KNRS, finds the global optimum in considerably fewer evaluations than a GA (see Table

10.6). Comparison with DHC yields mixed results. On average KNRS finds the global optima

earlier than DHC (see Table 10.6) for the Branin function (by a factor of ≈ 4), De Jong’s

function (by a factor of ≈ 9), Rosenbrock’s function (by a factor of ≈ 3), Bump function (by

a factor of ≈ 2), and Goldstein-Price’s function (by a factor of ≈ 1.5). On the other hand,

DHC finds the global optima earlier than KNRS for the Six-hump camel back function (by

a factor of ≈ 5). The comparison times for the Dropwave function are comparable and for

the highly multimodal Rastrigin’s and Ackley’s functions are inconclusive as the mean for

the KNRS algorithm for these functions has not converged to the global minimum value for

the 500 evaluations used. The issues and possible causes for this observed behaviour, and the

special Easom’s function, are discussed next.

10.7.3.1 Branin, De Jong’s, Rosenbrock’s, Bump, and Goldstein-Price’s func-

tions

The behaviour for the De Jong’s function is the simplest to explain. Being a quadratic

function, the NR iterations for the original function converge in one NR evaluation. Since

we are working with the Krig instead of the original function, it takes 3-4 iterations for each

NR sequence, irrespective of where the iteration starts, to converge to the global minimum.

This is apparent in Figure 10.24a where all runs converge to the minimum in less than five

evaluations. DHC, on the other hand, takes about 30 evaluations on average to converge to

the minimum, as it does not use gradient information directly.
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Table 10.6: Average number of evaluations before the error between the mean of the best
point (for 50 runs) for each algorithm and the global minimum reaches 2%; ‘-’ represents a
case when the algorithm, in the number of maximum evaluations specified (Table 10.5), has
not converged close to the minimum

Function Absolute no. of evaluations No. Evaluations relative to KNRS

KNRS DHC GA KNRS DHC GA

Branin 32 129 2050 1 4 64.1
De Jong’s 4 35 1150 1 8.8 287.5
Rosenbrock’s 44 142 - 1 3.2 -
Rastrigin’s - 112 - - - -
Bump 282 476 2100 1 1.7 7.4
Ackley’s - 56 1700 - - -
Six-hump camel back 165 35 700 1 0.2 4.2
Dropwave 483 384 - 1 0.8 -
Easom’s - 722 - - - -
Goldstein-Price’s 180 255 - 1 1.4 -

The Branin function has seven stationary points, two outside the decision variable bounds

and five within these bounds. The basins of attraction for the five stationary points within

the decision variable bounds can be seen in Figure 10.6b. On average one NR sequence for

the Krig of the Branin function used here converges in seven evaluations. Hence, according

to Figure 10.23b on average, about 5 NR sequences (≈ 35/7) have to be evaluated, starting

from anywhere in the SOBOL sequence, to get a starting point that converges to any of

the three global minima. DHC, on the other hand, owing to its strategy of decreasing the

step lengths sequentially to assure convergence, takes many more evaluations (≈ 150) to

converge to the global optima. Similar arguments hold for the Rosenbrock’s, Bump, and

Goldstein-Price’s function. An important observation is made for the Bump function. In

the same way that there are two maxima outside the search domain of the Krig of the

Branin function Krig, for the Krig of the Bump function the global minima, if the bounds are

not considered, lies below the bound-constrained minima (see Figure 10.10d: arrows within

the box [x1 ∈ (1.5, 2.0), x2 ∈ (0, 0.4)] point towards this bound-unconstrained minima). The

KNRS, following the NR sequence, converges to this minima. On the other hand, since DHC

is constrained to search only within the search domain, it converges to the bound-constrained

global minima. This explains why in the mean plots (Figure 10.27b and 10.27f) the mean

for KNRS converges to a value lower than that for DHC. Nonetheless, this behaviour of the

KNRS algorithm is undesirable a from constrained optimisation point of view, where the

bounds must be honoured.

10.7.3.2 Six-hump camel back and Dropwave functions

The relatively poor performance of the KNRS algorithm with respect to DHC on the Six-

hump camel back function is primarily because the basins of attraction of the two global

minima, at (0.0898, -0.7126) and (-0.0898, 0.7126), are relatively small when compared to

the surrounding stationary points (see Figure 10.12d). Consequently, more points in the

SOBOL sequence are needed to locate a point in the basin of attraction of the global minima.

Nonetheless, on average, the mean of the best point in 50 runs converges to the global minima

in approximately 140 evaluations.
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For the Dropwave function, the performance of KNRS and DHC are comparable. Similar

to the Six-hump camel back function, the basin of attraction of the global minima for the

Dropwave is small relative to the search domain (see Figure 10.14d). DHC struggles equally

for this function due to the presence of concentric ridges which can cause DHC to oscillate

between these ridges.

10.7.3.3 Rastrigin’s & Ackley’s function

The Rastrigin’s and Ackley’s functions are the most multimodal among the test functions

used here. They both have regularly alternating minima and maxima, and saddle points

between them (Figures 10.9b and 10.11b). At first glance, comparing Figure 10.26b with

Figure 10.26f, and more importantly Figure 10.28b with Figure 10.28f, it may be concluded

that the KNRS algorithm has performed extremely poorly when compared to DHC on these

functions. This is indeed true, when the goal is to find the global optimum. However, further

insight is obtained by considering that facts that (i) a limited number of evaluations of the

algorithm have been performed for both the algorithms and (ii) the non-convergence of the

mean to the global minimum for the KNRS algorithm on these two functions is neither

because any of the starting points in the NR sequence are diverging, nor because the SOBOL

sequence is performing insufficient exploration of the design space. Every NR iteration is

actually converging to the closest stationary point. Indeed, it is the sheer number of such

stationary points for these functions that 500 evaluations are not enough to gather entire

information about the landscape, i.e. the location of all stationary points including the global

minimum. This aspect, although magnified for the case of Rastrigin’s and Ackley’s functions,

is relevant to all the functions. However, in other functions, the number of evaluations used

was sufficient to explore the search region sufficient enough to find the global minima. This

aspect is demonstrated in Figure 10.34 where the results of one random run of the 50 runs

for all the test functions are plotted. The red dots show the locations where the various NR

sequences converged during this single run. Notice how many stationary points are found and

some are missed during each of these runs. Particularly notice the plots for Rastrigin’s and

Ackley’s functions. Here, inevitably, a few stationary points are missed if only 500 evaluations

are used. For some runs, these missed stationary points could as well be the global minima.

However, if the algorithm is allowed to run for a higher number of evaluations, the global

minima is to be found, inevitably, due to the space-filling nature of the SOBOL sequence.

Encouragingly, every NR sequence of the KNRS algorithm, unless diverging (which is

not the case for the Rastrigin’s and Ackley’s function), results in yielding some information

about the landscape of the function. Hence, it is the author’s hypothesis that the merit of

the KNRS algorithm, although effective in a global optimisation problem, lies in multimodal

optimisation, where the goal is not just to find the global minima but other optima as well

irrespective of their relative function values. This aspect is explored further in section 10.8.

10.7.4 Easom’s function

As mentioned earlier Easom’s function is an extremely challenging function for optimisation

algorithms because: a) the size of the basin of attraction of the global minimum is very small

when compared to the search domain; and b) the function elsewhere is relatively flat, with a

function value close to zero. In Figures 10.31a and 10.31b, 23 out of 50 runs have not found
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(a) Optimisation history KNRS : best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history GA : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.23: KNRS, GA, and DHC, algorithms on the Branin function: optimisation history
for best point and mean of the best point for sample of 50 runs

the global minima. One of the reasons for the relatively better performance of DHC for this

function could be the outer loop of DHC. In order to seed the inner loop, 50 random points

are evaluated and the inner loop is seeded with the best point among these 50 points. Clearly,

if any of these points lies in the basin of the global minima, DHC’s inner loop will quickly

converge to it. Nonetheless, if KNRS is allowed higher maximum evaluations, then the evenly

exploratory nature of the SOBOL sequence should find the minima. This indeed happens, as

shown in Figure 10.33.

Lastly, as can be observed from Figures 10.23–10.32, a standard GA for the chosen test

functions, performs relatively poorly when compared to KNRS and DHC. In the next section

the multimodal optimisation capabilities of KNRS are explored in detail.
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history GA : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.24: KNRS, GA, and DHC, algorithms on the De Jong’s function: optimisation
history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS : mean of the best point
for 50 runs

(c) Optimisation history GA : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.25: KNRS, GA, and DHC, algorithms on the Rosenbrock’s function: optimisation
history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history KNRS : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.26: KNRS, GA, and DHC, algorithms on the Rastrigin’s function: optimisation
history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history KNRS : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.27: KNRS, GA, and DHC, algorithms on the Bump function: optimisation history
for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history KNRS : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.28: KNRS, GA, and DHC, algorithms on the Ackley’s function: optimisation
history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history KNRS : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.29: KNRS, GA, and DHC, algorithms on the Six-hump camel back function: op-
timisation history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history KNRS : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.30: KNRS, GA, and DHC, algorithms on the Dropwave function: optimisation
history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history K: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history GA : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.31: KNRS, GA, and DHC, algorithms on the Easom’s function: optimisation
history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

(c) Optimisation history KNRS : best point for 50 runs (d) Optimisation history GA: mean of the best point for
50 runs

(e) Optimisation history DHC : best point for 50 runs (f) Optimisation history DHC: mean of the best point for
50 runs

Figure 10.32: KNRS, GA, and DHC, algorithms on the Goldstein-Price’s function: optimi-
sation history for best point and mean of the best point for sample of 50 runs
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(a) Optimisation history KNRS: best point for 50 runs (b) Optimisation history KNRS: mean of the best point
for 50 runs

Figure 10.33: KNRS on the Easom’s function: higher maximum evaluations allowed
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(a) Branin function (b) De Jong’s function

(c) Rosenbrock’s function (d) Rastrigin’s function

(e) Bump function (f) Ackley’s function

(g) Six-hump camel back function (h) Dropwave function

(i) Easom’s function (j) Goldstein-Price’s function

Figure 10.34: Random KNRS run on the test functions: optimal solutions found in red circles
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10.8 Comparison of KNRS with other algorithms for multi-

modal optimisation

Multimodal optimisation is applicable to functions that are multimodal, i.e. such functions

have multiple optimal solutions: either more than one global minima, or a global minimum

with several local minima, or a combination of both. The objective of a multimodal optimisa-

tion algorithm is to find all the minima (global and local) [15]. The following section outlines

the basic concepts of evolutionary algorithms proposed for multimodal optimisation.

10.8.1 Evolutionary algorithms for multimodal optimisation

Since evolutionary algorithms work with a population rather than a point-by-point search,

they are thought to be at an inherent advantage at finding more than one optimal solution.

However, even in the presence of multiple optima with the same fitness value, a standard GA

eventually converges to a single optimum solution. De Jong [209] describes this as generic

drift. Hence, in order to avoid convergence of a GA to a single peak and hence find mul-

tiple solutions, sufficient diversity in the population must be maintained [210, 15]. In GA

literature each peak is considered to be a niche, that can only support a certain number of

population members. The methods used to maintain population diversity so that members

can be sustained at different peaks are called niche formation methods [210]. Many methods

for niche formation have been proposed in the past. The most prominent of such approaches

are the crowding approach [209, 211, 212] and sharing approach [213, 214, 215, 216, 217]. The

central idea behind niche formation strategies is to modify the genetic operators, usually the

selection operator, in a standard GA. Crowding schemes discourage crowding of population

members by employing a strategy that when offsprings are created they replace an individual

from the population based on a similarity metric. Thus a similar offspring replaces a like

parent, thereby preserving diversity. On the other hand sharing approaches work by degrad-

ing the fitness of similar solutions, thereby penalising the fitness of members based on the

number of similar individuals in the population. Such a GA is known as a fitness sharing GA

and is described next. Lastly, it should be mentioned that recently in 2012, Deb and Saha

[218] have proposed a bi-objective algorithm for multimodal optimisation. This algorithm

converts a multimodal optimisation into a bi-objective problem and proposes to solve this

problem using multiobjective evolutionary algorithms. The discussion of this algorithm and

its performance comparison with the KNRS algorithm is out of scope of this thesis.

10.8.1.1 Fitness sharing Genetic algorithms

As mentioned earlier a fitness sharing GA works by degrading the fitness of members based

on a similarity metric. If there are q peaks and the objective function value at each peak is

fi, then the basic idea is that if the fitness of each member belonging to a peak is assigned

to be its objective function value divided by the number of members on the peak, then the

optimal distribution of points, mi, on a peak should follow the following

f1
m1
=

f2
m2
= .... =

fq
mq

and

q
∑

i=1

= N, (10.85)

where N is the population size. The above is optimal in the sense that if peak i recieves any

more members than mi, as calculated above, then the fitness of all the individuals at that
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peak will become less than the optimal ratio stated in the above equation, thereby decreasing

the population count at that peak in subsequent generations. Similarly if peak i has less

members than mi, as calculate above, then the fitness of the members at that peak will be

higher than others, thereby encouraging selection of more copies of the members at that

peak in subsequent generations. In order to clasify members belonging to each peak (niche),

Goldberg and Richardson [213] proposed the following sharing function

Sh(d) =















1−
(

d
σshare

)α
d ≤ σshare

0 otherwise
, (10.86)

where d is the distance (phenotype distance for real-coded GAs) between two members, and

α controls the shape of the sharing function. Thus, two members share fitness only if the

distance between them is less than a pre-specified sharing parameter σshare, implying that

solutions are close (similar) to each other. The fitness of a member is then defined by its

objective function value divided by its niche count, nci, defined as

nci =

N
∑

i=1

Sh(di j), (10.87)

where the summation is carried out over the entire population size, N. Thus the fitness value

becomes:

fitnessi =
fi

nci
, (10.88)

where fi is the objective function value. In essence, the parameter σshare denotes the radius

of sharing effect: a member’s fitness is degraded by all the members within the radius σshare

depending on the distance (higher distance means less sharing; this is dictated by the sharing

function Sh(d)).

The two parameters in a fitness sharing GA are α and σshare. Deb [219] showed that

the parameter α does not have too much effect on the performance of fitness sharing GAs.

On the other hand, the parameter σshare is important as it determines the niche size of each

peak. Based on a guess for the number of peaks in a function, say q, Deb and Goldberg

[214] suggested the following to calculate the value of σshare assuming that the q minima are

divided equally in the n-dimensional search space

σshare =

√

∑n
i=1

(

xU
i − xL

i

)2

2 n
√

q
, (10.89)

where xU
i and xL

i represent the upper and lower bounds on the ith decision variable, respec-

tively. Using the above method, σshare can be calculated if the number of optima is known

or estimated. Thus, in a fitness sharing GA, only the selection operator needs modification,

without any changes to the crossover and mutation operators. Oei et. al. [220] showed that

the standard binary tournament resulted in chaotic fluctuations in a fitness sharing GA as

shared fitness values for a population are calculated based on the previous generation. They

suggested that a continuously updated tournament strategy, where the shared fitness values

are calculated from the population of a new generation, as it is created, reduced the chaotic

fluctuations in the number of members at each peak.

The above stated fitness sharing GA, using the continuously updated binary tournament

strategy, is coded in the Python programming environment [207] by the author. The results
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(a) Author’s fitness sharing GA on MM2 function (b) Result of fitness sharing GA on MM2 function by
Kumar [14] and Deb & Kumar [15]

(c) Author’s fitness sharing GA on Himmelblau’s function(d) Result of fitness sharing GA on the Himmelblau’s
function by Kumar [14] and Deb & Kumar [15]

Figure 10.35: Comparison of Author’s fitness sharing GA implementation with that of [14, 15]:
results of fitness sharing GA with 100 members after 200 generations (ηc = 35)

of this are validated against the results of the implementation by Deb and Kumar [15] and

Kumar [14] for the MM2 and MM5 functions. The reader is referred to these studies for

the details of MM2 function. The MM5 function, the modified Himmelblau’s function, is

described as follows. This function is described as this is one of the two dimensional test

problem used for comparison in this section.

f (x1, x2) =

















1−
(

(x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2
)

2186

















− 6 ≤ x1, x2 ≤ 6. (10.90)

Figure 10.35 shows the results of the author’s fitness sharing GA and Deb and Kumar’s

implementation [15, 14] of such a GA for the functions MM2 and the Himmelblau’s function.

The results are presented at the end of 200 generations with 100 members per generation,

using the SBX crossover parameter, ηc = 35, and a good correspondence between the results

of Kumar [14] and the implementation used in this chapter is found.

The parameter settings used for comparison of a fitness sharing GA with KNRS and DHC

are tabulated in Table 10.7.

10.8.2 Dynamic Hill Climbing for multimodal optimisation

As mentioned earlier in section 10.7.2, Yuret and Maza proposed different ways to perform

exploration through the outer loop of DHC. In the previous section, for comparing the global

optimisation capabilities of DHC, the outer loop implementation where a set of random points

are chosen, evaluated for fitness, and the best point chosen as the starting seed for the inner
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Table 10.7: Sharing GA settings for comparion of KNRS for multimodal optimisation

Parameter Value

Coding Real-coded
population size 100 (except for Rastrigin’s function, where

population size is 200)
number of generations 200
Selection operator Continuously updated binary tournament [220]
Crossover operator Simulated Binary Crossover (SBX)
SBX parameter (ηc) 35.0 [15]
Crossover probability 0.9
Mutation probability 0
Sharing function Equation 10.86; α = 1
Sharing parameter σshare Equation 10.89

loop was used. However, for multimodal optimisation, where the goal is to find all optima,

the author’s opinion is that the hyper-rectangle method (see [13] for details), similar to the

binary search algorithm by Hughes [208] is preferable as it promotes exploration. Such an

implementation is used for all the comparisons in this section. It is worth mentioning at this

stage that although DHC is not designed for multimodal optimisation. It is designed to store

the local minima locations in memory to guide the search towards the global minimum.

10.8.3 Comparison of KNRS with fitness sharing GA and DHC

A set of five functions are chosen for the comparison of KNRS with a fitness sharing GA and

DHC, in the context of multimodal optimisation. The functions are:

1. Branin function (Equation 10.59)

2. Rosenbrock’s function (Equation 10.77)

3. Himmelblau’s function (Equation 10.90)

4. Six-hump camel back function (Equation 10.81)

5. Rastrigin’s function (Equation 10.78)

For all these functions 10 runs are performed and the times per evaluation are calculated

for these. These times are reported in Table 10.8. The relative times between the KNRS

and DHC remain similar as in the previous section. However, the time per evaluation for

a fitness sharing GA is significantly larger than the standard GA. This is not surprising, as

a fitness sharing GA takes a significant amount of time in calculating the shared fitness for

each member of the population as it has to loop over all the members of the population being

generated and calculate the distances between these points.

Since the goal here is to find multiple optima, it is not clear if the best point history

and mean of the best point over evaluations are of any significance. Instead, for KNRS and

DHC, the number of stationary points found and the number of minima (local or global)

found, respectively, are plotted against evaluation count. These are shown in Figure 10.36.

Moreover, for a GA, it is not clear how such a count can be made as a function of generations.

Hence, for multimodal optimisation, the comparisons with GA are more based on the abilities

of the algorithms to find the minima as opposed to how fast this task is accomplished.
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Table 10.8: Multimodal optimisation: comparison of time per evaluation for KNRS, GA, and
DHC (10 runs for each algorithm for each test function)

Function KNRS GA (50× 50) DHC Time per eval.(10−3s)

neval time (s) neval time (s) neval time (s) KNRS GA DHC

Branin 500 22.5 10,000 2450.8 2500 56.9 4.5 24.51 2.28
Rosenbrock’s 500 22.6 10,000 2442.7 10,000 217.7 4.52 24.43 2.18
Himmelblau 2500 228.5 10,000 3331.4 10,000 116.0 9.14 33.31 1.16
Six-hump
camel back

2500 228.5 10,000 3354.4 10,000 480.0 9.14 33.54 4.80

Rastrigin’s 2500 357.0 10,000 4229.1 10,000 734.9 14.28 42.29 7.35

Average 8.32 31.62 3.55

As can be seen in Figure 10.36 the KNRS algorithm finds all the stationary points, and

hence all the minima, for all the five test functions in 2500 evaluations. In the last section

the issue with Rastrigin’s and Ackley’s functions while performing global optimisation was

discussed and it was said that given a higher evaluation count the algorithms would find the

global minima. It can be seen in Figure 10.36i, that this has indeed happened for a maximum

evaluation count of 2500 as oppposed to that of 500 in the previous section. For this function,

it is clear that for all the 50 runs, 81 stationary points (which includes all the minima) have

been found in just over 1000 evaluations. Moreover, DHC has only found a maximum of 12

minima (from a total of 25 minima) in 10,000 evaluations. Similar performance is true for

all the test functions used when comparing KNRS with DHC (Figure 10.36). However, this

should not be held against DHC as it was mentioned earlier that DHC has not been designed

to find local minima, but to use local minima information to guide its search to the global

minimum.

To compare the robustness of a fitness sharing GA with KNRS, in Figure 10.37 all the

minima found at the end of 2500 evaluations by KNRS, and the final population at the end

of 200 generations for the fitness sharing GA are plotted, respectively. The fitness sharing

GA performs well for the Rastrigin’s, Himmelblau’s, and the Six-hump camel back functions.

However, it performs poorly on the Branin and Rosenbrock’s functions.

Unlike a fitness sharing GA, one advantage of KNRS is that it does not require a guess

regarding how many minima there could be in the function. The setting of appropriate σshare,

and a corresponding population size that can maintain sub-populations at all peaks is very

hard to determine a priori. On the other hand, KNRS explores the entire space sequentially

and uniformly. The only parameter that KNRS, in its current implementation, requires is

to set the maximum number of inner iterations for the NR sequence. This parameter can

be completely eliminated by performing a check for oscillation or divergence inside the NR

iteration loop.

10.9 Limitations

Even though this chapter has compared the performance of KNRS, genetic algorithms (both

standard and fitness sharing), and DHC, for a suite of 10 test functions, it is important to

note that all the test functions are two dimensional. The performance of KNRS relative to

any other algorithm on functions in higher dimensions remains to be evaluated. In higher

dimensions, KNRS , owwing to the space filling features of the SOBOL sequence will even-
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(a) Branin function (KNRS) (b) Branin function (DHC)

(c) Rosenbrock’s function (KNRS) (d) Rosenbrock’s function (DHC)

(e) Himmemblau’s function (KNRS) (f) Himmemblau’s function (DHC)

(g) Six-hump camel back function (KNRS) (h) Six-hump camel back function (DHC)

(i) Rastrigin’s function (KNRS) (j) Rastrigin’s function (DHC)

Figure 10.36: Performance of KNRS and DHC for five test functions



238 Chapter 10. An Optimisation algorithm that exploits derivative information in Kriging

(a) Branin function (KNRS) (b) Branin function (GA)

(c) Rosenbrock’s function (KNRS) (d) Rosenbrock’s function (GA)

(e) Himmemblau’s function (KNRS) (f) Himmemblau’s function (GA)

(g) Six-hump camel back function (KNRS) (h) Six-hump camel back function (GA)

(i) Rastrigin’s function (KNRS) (j) Rastrigin’s function (GA)

Figure 10.37: Performance of KNRS and fitness sharing GA for five test functions: results
at 200 generations of GA with a population of 100 members (except for Rastrigin where
population size is 200); and KNRS for 2500 evaluations of each function
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tually find all the optima; however this chapter has not addressed how effective this process

might be as opposed to standard optimisation algorithms. Lastly, as observed in the case

for Bump function, in section 10.7.3.1, KNRS does not, in its current form, honour bounds.

Consequently, for constrained optimisation a modification to KNRS is required.

10.10 Note on SOBOL sampling in KNRS

Even though the idea of global exploration through the use of a low-discrepancy sequence, such

as the SOBOL sequence, is developed independently by the author, there have been similar

use of low-discrepancy sequences for global optimisation in the past. These methods go by the

name of Single Linkage (SL) and Multi-Level Single Linkage (MLSL) algorithms. The reader

is referred to [221, 222, 223, 224, 225] for details of such algorithms. An important aspect of

these methods, which is also applicable to the KNRS algorithm, is that based on the number

of starting points for the local search, such as steepest descent (or NR sequence in KNRS),

and the number of local minima found, Bayesian estimates on the number of local minima in

the underlying function can be ascertained, see for example [221, 222, 223]. The evaluation

of such estimates, which can be used as a stopping criterion for the KNRS algorithm is out

of scope of this thesis, but forms an important part for future work. Similarly, theoretical

analyses such as those presented in [226, 227], can be used to obtain statistical evidence

that all the local minima of a function have been found. Lastly, it should be noted that

low-discrepancy sequences have also been used in evolutionary algorithms and evolutionary

strategies. The reader is referred to [228, 229] for details of these.

10.11 Conclusions

The following conclusions can be made from this chapter:

1. Starting with a realisation that Kriging predictors can be differentiated and that the

derivative information has hitherto not been explored, an expression for the derivative

of the Kriging predictor is derived. This expression is then manipulated to form a

fixed-point iterative sequence to find the stationary points of a Kriging predictor.

2. The fixed point iterative sequence is evaluated for its convergence and its convergence is

explored on the Branin function. In order to overcome the limitations of the fixed point

iteration, a modification of the sequence is proposed. Moreover, a Newton-Raphson

equivalent of the same fixed-point sequence is derived, which guarantees convergence

to stationary points provided the starting point is close enough to the stationary point

(within the basin of attraction).

3. The convergence of the MFP and NR sequences are further explored and tested on a

test suite of 10 two-dimensional functions.

4. Based on the performance of the Newton-Raphson sequence on the above test functions,

a new algorithm, called KNRS, is proposed.

5. The performance of KNRS is tested for global optimisation against a genetic algorithm

and a dynamic hill climbing algorithm for a test suite of 10 two-dimensional functions.
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6. For global optimisation KNRS performs favourably relative to GA for all the test func-

tions, and favourably relative to DHC on most test functions. From the results it is

realised that an important merit of the KNRS algorithm lies in multimodal optimisa-

tion.

7. The performance of KNRS for multimodal optimisation is tested against a fitness shar-

ing genetic algorithm and a dynamic hill climber.

8. On the test functions chosen, KNRS performs favourably relative to both a fitness

sharing GA and DHC.

9. The capabilities of KNRS, both for global optimisation and multimodal optimisation,

have not been evaluated in higher (greater than two) dimensional spaces.



Chapter 11

Conclusions & recommendations for

further work

11.1 Conclusions

The following subsections present the conclusions made from this thesis.

11.1.1 Most Significant contributions

Even though the area of interventional cardiology has witnessed a rapid evolution in coronary

stent designs – from bare-metal stents to drug-eluting stents to biodegradable stents – there

exists a substantial gap between the engineering analysis of stents, their comparison based

on such analysis, and the use of such comparisons to design better stents by the use of

optimisation methods. To fill this gap, the most significant contributions made by this thesis,

to the field of coronary stent design, analysis, and optimisation are:

1. the development of engineering models to evaluate a stent’s performance based on var-

ious features relevant to in-stent restenosis, and formulation of the corresponding stent

evaluation metrics,

2. demonstration of how design improvement can be obtained in both constrained and

multiobjective optimisation studies for the problem of stent design,

3. demonstration of how the parameters defining stent geometry influence various physical

features that are directly related to in-stent restenosis, and

4. demonstration of various paradigms which determine the choice of an ideal stent, from

a set of stent designs, based on various needs.

11.1.2 Multiobjective study

A NURBS based three parameter parameterisation for the widely studied CYPHER stent,

Cordis corporation, Johnson & Johnson company, is proposed. Based on this parameter-

isation, a multiobjective optimisation study, using surrogate modelling and NSGA-II, is
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performed to minimise acute recoil, minimise volume average stresses, minimise haemody-

namic alteration, maximise volume average drug delivered, maximise uniformity of drug-

distribution, and maximise flexibility. It is found that the following pairs of objectives are in

conflict with each other

• volume average stresses (arterial injury) and acute recoil;

• volume average drug delivered and volume average stresses (arterial injury);

• flexibility and volume average stresses (arterial injury);

• flexibility and flow disturbance;

• volume average drug delivered and flow disturbance;

• uniformity of drug distribution and volume average stresses.

The complex interplay between stent design (distribution of struts, link design, strut thick-

ness, and circumferential ring design) and stent performance, from the perspective of the

various conflicting/desirable properties, is demonstrated. It is found that while strut width

and the axial length of the circumferential rings most affect volume average stresses and recoil,

the length of the links in the cross-flow direction significantly affects volume average drug,

flexibility, and the flow index. The non-dominated solutions, which represent a potentially

optimum family of CYPHER like stents, for the proposed parameterisation are obtained and

discussed. The position of a representative CYPHER stent in various slices of Pareto front

is also shown. Based on the results, it is also hypothesised that the proposed metric for mea-

suring the uniformity of drug-distribution, Ddev, might be misleading for comparing stents,

especially when using Gaussian process based surrogate modelling.

Three paradigms, viz. conservative, constrained, and experimental, are proposed for the

selection of optimal designs from the set of non-dominated solutions. Designs 20 and 30

are identified as the optimal designs under a conservative approach. Similarly, designs 15,

21, and 26, are identified as optimal from one of the views of constrained paradigm. The

relation of these designs obtained by the multiobjective study with the results of constrained

optimisation study is also shown.

11.1.3 Constrained optimisation study

A parameterisation technique for creating general circumferential-rings and wavy-links based

stent geometries is proposed. A polynomial form for the parameterisation of links (flex con-

nectors) is formulated to control the waviness of the links. Based on this parameterisation,

a constrained optimisation study to obtain design improvement from the baseline geometry

one objective at a time, without compromising any other objective, is performed. Significant

design improvement is obtained for the three cases of individually minimising volume aver-

age stresses, maximising volume average drug delivered, and maximising flexibility, without

deteriorating any other objective. It is found that the optimal designs have a higher strut

width compared to the baseline geometry but a lower length of circumferential rings. It is

concluded that strut width is a key determinant of acute recoil, volume average stresses, and

drug delivered; and the axial length of the circumferential rings affects acute recoil most. It

is also shown that the optimal designs minimise the number of curved regions in the flex

connectors.
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11.1.4 Findings

The following contributions are made from the engineering analysis of stents performed in

this thesis

1. It is found that the length of flex connectors in contemporary stent designs, which are

introduced to improve flexibility, significantly influences flow features relevant to in-

stent restenosis. In particular, it is shown that a higher length of the flex connectors

leads to deterioration of the relevant flow-features.

2. It is shown that while the plastic deformations in the curved regions of the stent are

key in determining acute recoil, the contact area between the stent and the artery

significantly affect volume average stresses.

3. It is shown that the ability of the flex connectors to delay self contact with increasing

curvature index is key in determining the flexibility of a stent. In particular, it is shown

that a higher delay in self contact and minimising the number of potential contact

locations while bending, leads to improved flexibility.

4. It is shown that the balloon expansion of a stent in a stenosed coronary artery leads to

significant tissue prolapse. This tissue prolapse affects the extent of flow recirculation

zones formed in the stented artery. It is also shown that the formation of recirculation

zones in and around the struts promotes delivery of drug from the lumen to the tissue.

11.1.5 Analysis models and evaluation metrics

The following contributions are made in terms of engineering analysis of stents in relation to

in-stent restenosis

1. The analysis of coronary stents to assess haemodynamic alteration relevant to the ad-

verse response of in-stent restenosis is demonstrated. To this effect, a computational

fluid dynamics model is developed to simulate blood flow in a stented coronary artery.

2. The haemodynamic low and reverse flow index, HLRFI, that quantifies the flow features

relevant to in-stent restenosis in a stented coronary artery is formulated.

3. The analysis of coronary stents to assess arterial injury during balloon expansion and

minimum post-procedural stent area is demonstrated. To this effect, a finite element

analysis model is adopted to model the balloon-expansion of stent in a representative

stenosed coronary artery.

4. The metrics of Recoil, that measures acute recoil post stent implantation, and VAD,

that measures the volume average stresses in the artery post stenting, are formulated.

These are shown to measure structural strength of a stent and arterial injury due to

stenting procedure, respectively.

5. The analysis of coronary stents to assess their flexibility is demonstrated. To this effect,

a finite element analysis model is adopted to study the response of stent deformation

on application of bending loads.
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6. The flexibility metric, FM, which quantifies the flexibility of a stent, in both elastic and

plastic deformation phases, in a single numeric quantity is formulated.

7. The analysis of coronary stents to assess their drug distribution capabilities is demon-

strated. To this effect, a computational fluid dynamics model is developed to simulate

drug-delivery in a stented coronary artery.

8. Two metrics of volume average drug, VAD, and standard deviation of drug delivered,

Ddev, are formulated to quantify the properties of drug delivery in a stented coronary

artery. The metrics quantify the amount of drug delivered and the uniformity of the

drug delivered, respectively.

11.1.6 Conclusions for the KNRS algorithm

In the final chapter of this thesis, a methodology to search the Krig (Gaussian process model)

of a function, based on the hitherto unexploited and analytically available derivative infor-

mation is explored. To this end, the following contributions to the field of Gaussian process

assisted optimisation are made:

1. An expression for the derivative of the Gaussian process predictor is derived.

2. The expression for the above derivative when equated to zero (in order to find stationary

points) is manipulated to yield a standard fixed point iterative sequence (SFP).

3. To improve convergence of the SFP sequence to more stationary points, a modification

of the sequence, the modified fixed point iterative (MFP) sequence, is proposed.

4. A Newton-Raphson (NR) equivalent of the SFP is proposed. It is shown that the

NR sequence guarantees convergence to the stationary points of the Krig provided the

starting point is close enough to the stationary point (within the basin of attraction).

5. The convergence of the MFP and NR sequences are further explored and tested on a

suite of 10 two-dimensional functions.

6. Based on the performance of the Newton-Raphson sequence on the above test functions,

a new algorithm, called Krige-Newton-Raphson-Sobol (KNRS) algorithm, is proposed.

7. The performance of KNRS is tested for global optimisation against a genetic algorithm

and a dynamic hill climbing algorithm for a test suite of 10 two-dimensional functions.

8. It is found that for global optimisation KNRS performs favourably to GA for all the test

functions, and favourably to DHC on most test functions. From the results it is realised

that an important merit of the KNRS algorithm lies in multimodal optimisation.

9. The performance of KNRS for multimodal optimisation is tested against a fitness shar-

ing genetic algorithm and a dynamic hill climber.

10. It is found that on the test functions chosen, KNRS performs favourably to both a

fitness sharing GA and DHC.

11. The capabilities of KNRS on higher dimensional spaces remains to be explored.
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11.2 Recommendations for Further Work

Although a number of conclusions have been made regarding the influence of stent design

parameters on factors affecting in-stent restenosis, a number of improvements can be made

in both stent analysis and stent optimisation. In the area of searching the GP models, KNRS

offers a range of extensions for further investigation. The areas of further work can be broadly

classified into

1. Improvements in stent analysis

a) Realistic geometry of stenosed arteries;

b) Realistic morphology of stenosed arteries (layers, anisotropy);

c) Transient release of drug-distribution (including factors like reverse binding of

drug).

2. Improvements in stent optimisation methodology

a) Parameterisation techniques for stent design;

b) Refinement of objective functions;

c) Refinement in terms of surrogate update methods;

d) Treatment of the design problem as a many-objective problem.

3. Investigation and extension of KNRS

a) Investigation of performance in higher dimensional spaces;

b) Possibility of a surrogate update method by KNRS;

c) Extension to constrained optimisation;

d) Extension to multiobjective optimisation.

The following sections outline each of the above themes.

11.3 Improvements in stent analysis

Further work in this area is primarily needed to make the stent analyses more realistic. In

particular, efforts in the following areas are required

11.3.1 Realistic geometry of stenosed arteries

Throughout this thesis, a representative model for the geometry of stenosed artery is used.

The artery is assumed to be cylindrical and the plaque is defined by the Hicks Henne bump

function. In reality, the geometries of stenosed arteries can be very complex with high cur-

vature and asymmetric distribution of plaque. An inclusion of such geometries, which can

be obtained by intravascular ultrasound and magnetic resonance imaging techniques, in the

analyses models – for both balloon-expansion and haemodynamic alteration – will further

enhance the understanding of the interaction between the stent and the artery.
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11.3.2 Realistic morphology of stenosed arteries

Apart from the complex geometries of stenosed arteries as discussed above, the morphology

of the disease can be quite complex as well. In this thesis, an isotropic single layer for

both the plaque and the artery is assumed. In reality, as discussed in chapter 2.2.3, the

artery is composed of three layers: the intima, the media, and the adventitia. Furthermore,

the variation in plaque composition can be significant, ranging from soft fibrous plaque to

hard calcified plaque in the same lesion. Lastly, all human tissue is usually anisotropic. An

inclusion of such morphological properties in the stent analyses will bridge the gap between

the results of computational analyses and clinically observed outcomes.

11.3.3 Transient release of drug-distribution

In this thesis, a steady-state drug-distribution model is used. Even though this model captures

the result of geometrical variation in the amount of drug-delivered, the model does not give

much insight on the transient process of drug-delivery. To this end, further investigation

in terms of development of a transient advection-diffusion drug-distribution model, which

includes effects of reverse-binding of the drug (endocytosis), is required.

11.4 Improvements in stent optimisation methodology

Further work in the area of improving the stent design optimisation method includes the

following

11.4.1 Parameterisation techniques for stent design

One of the most important features of any optimisation study is the parameterisation chosen

to represent geometries. The optimisation algorithms can only find the optimum solution(s)

in the design space represented by the chosen parameterisation. Hence, better techniques to

parametrically represent stent geometries can be implemented, so that a wider design space

represented by the parameterisation. A few possible parameterisation techniques are listed

below

• Using an n control point approach to define a network of NURBS curves representing

the stent struts on a flat plane. Specification of appropriate constraints on such curves

can lead to a vast and novel design space, which can then be used for design optimisation

studies.

• The Class-Shape-Transformation (CST) method suggested by Kulfan [230] can be used

to define the 2-D patterns, which can then be repeated periodically to create stent

designs using approach 2 (see Section 2.6.1.1).

• A custom shape function for a baseline stent geometry can be defined, which when

combined with polynomials such as the Bernstein polynomials will lead to creation of

new designs.

• Shape grammar can be employed to use the information from the currently existing

stents to create new designs which combine the features of multiple, currently existing,

stent designs.
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• A mesh morphing technique can be implemented to directly manipulate the mesh, rather

than the curves/surfaces defining the stent geometry. This is particularly attractive as

automated meshing of complex geometries is currently quite hard.

• Intellectually most challenging, inspiration from nature such as the bifurcation patterns

of the arteries, patterns of vein bifurcation in leaves, can be used to create stent pa-

rameterisation techniques. These, by virtue of natural evolution are optimised at least

for one objective (for example, the vein bifurcation patterns of leaves is optimised for

nutrient transport which can be seen as analogous to drug-delivery).

11.4.2 Refinement of objective functions

In this thesis several objective functions which relate measurable quantities from engineering

analyses to the factors that contribute towards in-stent restenosis are formulated. As a first

approximation, average measures for stress and drug delivered are introduced. However, it

is not yet clinically known whether it is the peak stresses in the artery, irrespective of the

location where such peak stresses occur, or it is the volume average measures that the human

body responds to in terms of restenosis. Similarly, for drug-delivery, perhaps only the volumes

of tissue which receive less drug than a certain therapeutic threshold, and not the average

amount of drug delivered, are relevant in terms of restenosis. Further investigation, more

from the clinical community, is needed in such regards.

11.4.3 Refinement in terms of surrogate update methods

It was discussed in chapter 9 that many methods to decide update points for multi-objective

kriging assisted optimisation have been proposed [187, 188, 189, 190, 191, 192, 193]. The

choice of these update methods, as opposed to the simple pure exploitative approach adopted

in this chapter, could lead to an improved set of non-dominated solutions. Further investi-

gation, regarding the performance of such algorithms for the problem of stent design will be

very useful.

11.4.4 Treatment of the design problem as a many-objective problem

This results of this thesis have shown that many objective pairs in the optimisation problem

defined in chapter 9 are correlated to each other, rather than being in conflict. Methods from

the field of many-objective optimisation methods, can be employed to reduce the number

of objectives to fewer than six to decrease the complexity of the problem. This will both

minimise the time required for high-fidelity simulations and with fewer objectives will lead to

better estimation of the Pareto front.

11.5 Investigation and extension of KNRS

In the development of KNRS, an intial algorithm is proposed in this thesis. However, further

investigation of the performance of this algorithm is needed in the following areas
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11.5.1 Bayesian analysis for an estimate of the number of local minima

Using methods such as those presented in [221, 222, 223], an analysis which determines a

Bayesian estimate on the number of local minima of the underlying function, based on the

number of NR sequence starting points and the number of local minima found by such starting

points, needs to be performed in future. Such an analysis can lead to an efficient stopping

criterion for the KNRS algorithm.

11.5.2 Investigation of performance in higher dimensional spaces

The 10 test functions that are chosen in this thesis are all complex but 2-dimensional. Conse-

quently, the relative performance of KNRS with other algorithms like GA, which are known

to have a better search power in higher dimensional spaces, for both global and multimodal

optimisation remains to be explored.

11.5.3 Possibility of a surrogate update method by KNRS

With the search performed by KNRS, one advantage is that all the stationary points of the

Krig are located. Perhaps, using this information about the landscape of the current form of

the Krig, an update methodology to balance exploration and exploitation can be developed.

The ideas for this are still at a nascent stage, for which further work is required.

11.5.4 Extension to constrained optimisation

The results of the performance of KNRS on the 10 test functions, in particular the Bump

function, showed that KNRS, in its current form, does not honour any constraints. Hence,

a modification of KNRS to include both equality and inequality constraints is needed. En-

couragingly, since the form of equations used in KNRS is universal, i.e. it is related to the

Krig rather than the function itself and hence has the same mathematical form for every

function, methods from classical optimisaion (such as gradient projection methods) can be

used to formulate the constrained version of the algorithm.

11.5.5 Extension to multiobjective optimisation

Lastly, an extension of KNRS for multiobjective optimisation is needed. The author has

made significant progress in this regard. This formulation and some preliminary results are

presented in appendix D. This extension to multiobjective optimisation, however, needs more

testing in higher dimensional objective spaces.
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Appendix A

Conditional distribution for a

Gaussian Process

In chapter 3, section 3.2.3, it was said that the joint probability distribution of the function

value at a new point, y∗, and the function values at all the sample points, y, is assumed to be

jointly Normal. Here the conditional distribution of y∗ given the values of y is derived.

From equation 3.33 we have
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The conditional distribution of y∗ given y is

p(y∗ |y) =
p(y, y∗)

p(y)
(A.2)

where p represents the probability. From equation A.1 p(y, y∗) can be written as
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hence
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The partitioned inverse using Schur complement of Σ can be written as
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where I p ∈ Rp×p is an identity matrix, and M is the Schur complement

M =
(

Γ(x∗, x∗) − γ(x∗)T
Γ
−1γ(x∗)

)−1
(A.7)

Using this, the terms inside the exponential in equation A.5 can be written as

251



252 Appendix A. Conditional distribution for a Gaussian Process

− 1
2

[

(y − 1p β)
T (y∗ − β)

]















I p −Γ−1γ(x∗)

0 1





























Γ
−1 0

0 M





























I p 0

−γ(x∗)T
Γ
−1 1





























y − 1p β

y∗ − β















(A.8)

or

− 1
2

[

(y − 1p β)
T (y∗ − β) − (y − 1p β)

T
Γ
−1γ(x∗)T

]















Γ
−1 0

0 M





























y − 1p β

(y∗ − β) − γ(x∗)T
Γ
−1(y − 1p)β















(A.9)

or

− 1
2

[

(y − 1p β)
T

(

(y∗ − β) − γ(x∗)Γ−1(y − 1p β)
)T

]















Γ
−1(y − 1p β)

M
(

(y∗ − β) − γ(x∗)T
Γ
−1(y − 1p)β

)















(A.10)

or

−1
2

[

(y − 1p β)
T
Γ
−1(y − 1p β)

]

−1
2

[

(

(y∗ − β) − γ(x∗)Γ−1(y − 1p β)
)T

M
(

(y∗ − β) − γ(x∗)T
Γ
−1(y − 1p)β

)

]

(A.11)

−1
2

[

(y − 1p β)
T
Γ
−1(y − 1p β)

]

−1
2

[

(

y∗ −
[

β + γ(x∗)Γ−1(y − 1p β)
])T

M
(

y∗ −
[

β + γ(x∗)T
Γ
−1(y − 1p)β

)]

]

(A.12)

or

− 1
2

[

(y − 1p β)
T
Γ
−1(y − 1p β)

]

− 1
2

[

(

y∗ − µ∗)T M
(

y∗ − µ∗)
]

(A.13)

where

µ∗ =
[

β + γ(x∗)Γ−1(y − 1p β)
]

(A.14)

substituting this in equation A.5
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Now, in equation A.2, p(y), is
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Hence, using equations A.15 and A.16, the condition distribution given by equation A.2 is
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which is a Gauusian with mean
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Appendix B

Effect of shear-thinning on results

of chapter 4

This appendix shows the results of comparison between the WSS patterns when blood is

considered to be a Newtonian and non-Newtonian fluid. Yilmaz and Gundogdu [231] present

an excellent review of the various Non-Newtonian models that have been proposed to model

blood flow. In this appendix a comparison of the model used in this chapter with the widely

used Carreau model [231, 16] is presented. The Carreau model relates the shear rate, γ̇ to

the fluid viscosity, µ, as

µ = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2 (B.1)

where µ is the effective viscosity, µ∞ and µ0 are fluid viscosities at infinite and zero shear

rates, γ̇ is the shear rate, λ is a time constant, and n is the power law index.

A steady state CFD simulation for Stent-C (see chapter 4) is used for a comparison be-

tween the Newtonian model and the Carreau model. The values of Carreau model parameters

are taken from [16]. Figure B.2 shows a plot of WSS magnitude, for the two models. Simi-

larly, figure B.2 shows a contour plot of WSS magnitude for the two cases. It is found from

these figures that the Newtonian model underpredicts WSS marginally when compared to

the non-Newtonian model. This marginal underprediction minimally effects the comparison

of stents based on the HLRFI metric as the difference in WSS is related to the fluid viscosity

properties (not the stent geometry) implying that such underprediction is applicable to all

stents irrespective of their geometry.
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Figure B.1: Wall shear stress magnitude on the central line of a representative NIR stent
(Stent-C in chapter 4): results for steady state flow comparison with Newtonian and non-
Newtonian blood properties. The non-newtonian model adopted is the Carreu model [16];
steady state flow velocity = 0.1382 m/s

Figure B.2: Wall shear stress magnitude color plot on a representative NIR stent (Stent-C
in chapter 4): results for steady state flow comparison with Newtonian and non-Newtonian
blood properties. The non-newtonian model adopted is the Carreu model [16]; steady state
flow velocity = 0.1382 m/s



Appendix C

Results for baseline geometry for

constrained optimisation study

In this appendix the results for balloon expansion analysis and flexibility analysis for the

baseline geometry used in chapter 7 (figure 7.3) are presented.

Figure C.1 shows the different stages of the transient balloon expansion of the stent. In

the initial phase of expansion (cf Fig. C.1c) the stent expands unevenly along its length. This

phenomenon, commonly referred to as dogboning, where the expansion is relatively larger in

the longitudinal ends than the centre, can be observed. A recoil of 0.17 mm, calculated using

Eq. 5.10, can be observed visually in Figs. C.1e and C.1f, which show the states of the

assembly at the peak load and post-unloading conditions, respectively. This acute recoil can

be seen as the ‘spring back’ effect owing to the elasto-plastic properties of the stent and the

loading imparted on to the stent by the stretched artery. The average radius vs. time plot

shows this effect clearly in Fig. C.2d. The average radius maintains a peak value during the

hold phase of the loading cycle, and as the load is removed, the stent contracts as a result of

reduced loading stresses. One of the goals while designing a good stent is to either minimise

this recoil or apply a maximum limit to it.

The final stresses (after unloading) in the stent, plaque, and the artery are shown in

Figure C.2. For the stent, it can be seen that the peak stresses are located in the curved

parts of the circumferential rings as they form the key feature in a stent design to allow for

expansion. In the plaque, maximum stresses are observed where contact occurs between the

stent struts and plaque surface. These contact stresses lead to an observable stent imprint on

the plaque both in terms of geometrical deformation and stress contours. The stresses in the

artery are considerably lower than the stresses in the plaque (a difference of roughly one order

of magnitude). It is interesting to note that even though the stent imprint can be seen in the

form of stresses along the length of both plaque and the artery, the stresses in the central part

are higher than on the distal ends. This is attributed to the shape of the stenosis. Since the

stenosis is highest in the central region (owing to the Hicks-Henne parameter xp=0.5), the

stent faces higher expansion resistance in the central region, resulting in higher stresses. The

volume averaged von-Mises stress in the plaque and the artery combined (calculated using

Eq. 5.12) is 45.8×10−3 MPa.

Figure C.3 shows the distribution of max. principal plastic strains on the stent after
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expansion. As with the stresses it can be readily observed that the curved regions of the

circumferential rings are the regions where maximum plastic strains occur. These plastic

deformations restrict recoil of the stent. A geometry which allows more plastic deformation

in these areas has less acute recoil. It can also be observed from Fig. C.3 that the curved

regions of the links have relatively higher plastic strains than the straight segments of both

the circumferential rings and the links. When the circumferential rings expand their axial

length decreases, to account for the increased angle between the struts of the circumferential

rings. This causes an axial stretching of the links which leads to plastic deformation at the

curved tips of the links.

Figure C.1: Transient balloon expansion of the baseline geometry stent

Figure C.4 shows the results of the flexibility analysis, in particular the deformed state

Figure C.2: Stent, plaque, and artery final stresses, and average radius vs. time plot for the
baseline geometry
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Figure C.3: Max. principal plastic strains on the stent post-expansion

Figure C.4: Flexibility analysis for the baseline geometry: a) initial shape; b) deformed shape;
c) deformed shape (y+ view); deformed shape (y− view)

of the stent with a moment of 1.14 N-mm is shown. As can be observed in this figure, the

links play an important role in determining the flexibility of the stent. As the stent bends,

the links on one side compress while the those on the other side expand to allow for the

bending curvature. This can be seen in the bottom two images of Fig. C.4. It is apparent

that the links on the compression side will come into self contact after a certain level of

curvature. Such contact, which depends on the specific design of the links, can result in

increased resistance to bending. A plot of the moment vs. the curvature index, the M − χ
curve, is shown in Fig. C.5. This curve has two parts – the initial linear part which shows the

regime when the deformations are only elastic in nature, and a curved (relatively flat) part

when the deformation reach the plastic domain. The area under the M − χ curve, a lower

value of which implies a more flexible stent, calculated using Eq. 6.1 is 50.45×10−2 N-rad.
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Figure C.5: Moment-curvature index curve for the baseline geometry



Appendix D

Extension of KNRS to

multiobjective optimisation

In this appendix, an extension to KNRS algorithm, see section 10.6, is proposed. This

extension is then tested on a few biobjective test problems.

D.1 Formulation of the multiobjective KNRS algorithm

The formulation of the multiobjective KNRS algorithm is based on the normalised normal

constraint (NC) method proposed by Messac et. al. [17]. This extension is referred to as

M-KNRS method, the ‘M’ referring to both multiobjective and Messac.

In this appendix, the development of the M-KNRS method is shown only for a bi-objective

problem. The notation used in chapters 3 and 10 is adopted here. The Kriging predictors

for the two objectives are referred to as y1(x) and y2(x), which have been created by sampling

the real function at p1 and p2 points respectively. Hence the Kriging predictors for the two

responses are

y1(x) = β1 + r1(x)T w1, (D.1)

y2(x) = β2 + r2(x)T w2, (D.2)

where r1(x) and r2(x) are the corresponding correlation vectors between the point x and the

sampled points, respectively, w1 and w2 are the associated weight vectors (see equation 3.38),

and β1 and β2 are the corresponding hyperparameters for the Kriging models.

The algorithm begins by finding, just like the normalised normal constraint method, the

individual minima for the two functions. These can be found by any global optimisaton

algorithm, including the KNRS algorithm. Let the points x̂1 and x̂2, represent the individual

minima for the two Kriging predictors, y1(x) and y2(x), respectively. These points are the

extreme points on the Pareto front as shown in figure D.1a. The objective space is then

normalised with respect to the distance l1 and l2 (shown in figure D.1a) as

l1 = y1(x̂2) − y1(x̂1), (D.3)

l2 = y2(x̂1) − y2(x̂2), (D.4)
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(a) Pareto front of the objective functions (y1(x) and y2(x))
and their respective individual minimums

(b) The normalised space of the objective functions (ȳ1(x)
and ȳ2(x))

(c) The utopia line in the normalised space and points on
the utopia line

(d) The normal line from a point (shown in green) on
the utopia line and the corresponding feasible space for
constrained optimisation problem; the optimal solution
is shown in red

Figure D.1: Steps in the normalised normal constrained method [17] which forms the basis
of M-KNRS method

ȳ1(x) =
y1(x) − y1(x̂1)

l1
, (D.5)

ȳ2(x) =
y2(x) − y2(x̂2)

l2
, (D.6)

where ȳ1(x) and ȳ2(x) represent the normalised objective space for y1(x) and y2(x), respectively

(see figure D.1b). For mathematical convenience y1(x̂1) and y2(x̂2) are written as z1 and z2,

respectively,that is



D.1. Formulation of the multiobjective KNRS algorithm 263

z1 = y1(x̂1), (D.7)

z2 = y2(x̂2). (D.8)

(D.9)

Consequently,

ȳ1(x) =
y1(x) − z1

l1
, (D.10)

ȳ2(x) =
y2(x) − z2

l2
. (D.11)

The utopial line is referred as the line which joins the individual minima of the two objective

functions in the normalised objective space. This utopia line is shown in figure D.1c. Messac

et. al. proposed generating uniformly distributed points in this line, as shown in figure D.1c

and solving a single objective constrained optimisation problem from each of the generated

point. The constrained optimisation problem, minimises one objective subject to all other

objectives formulated as constraints. The constraints are formulated using a normal line from

the chosen point on the utopia line. Figure D.1d shows this constraint in the bi-objective

case, where the normal line is generated from one chosen point (shown in green). This normal

line when posed as a constraint reduces the feasible space. A minimisation of one objective,

ȳ2(x), in this reduces feasible space leads to a point on the Pareto front, shown in red in figure

D.1d. This constraint when formulated by choosing a different point on the utopia line, and

hence a different normal line, leads to different points on the Pareto front. In this way, the

uniformity of points on the Pareto front is determined by the uniformity of points chosen on

the utopia line.

The normal line vector, N, is defined as

N =















n1

n2















=















1

0















−














0

1















=















1

−1















. (D.12)

Let the starting point on the utopia line be s, defined in terms of its components as

s= [s1, s2]. (D.13)

The single objective constrained minimisation problem then becomes

Minimise ȳ2(x) (D.14)

subject to g(x) ≤ 0 (D.15)

where g(x) = (ȳ1 − s1)n1 + (ȳ1 − s2)n1. (D.16)

It should be noted that conceptually the constraint can also be posed as an equality constraint.

The optimisation problem then becomes

Minimise ȳ2(x) (D.17)

subject to h(x) = 0 (D.18)

where h(x) = (ȳ1 − s1)n1 + (ȳ1 − s2)n1. (D.19)
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Here, the latter equality constraint formulation is adopted for demonstration. From equations

D.10, D.11, D.1, and D.2, ȳ1(x) and ȳ2(x) can be written as

ȳ1(x) =
β1 + r1(x)T w1 − z1

l1
, (D.20)

ȳ2(x) =
β2 + r2(x)T w2 − z2

l2
. (D.21)

The constraint equation, equation D.19, then becomes

h(x) =

(

β1 + r1(x)T w1 − z1

l1
− s1

)

n1 +

(

β2 + r2(x)T w2 − z2

l2
− s2

)

n1 = 0. (D.22)

The Lagrangian for the equality constrained optimisation problem, equations D.17, D.18, and

D.19, can be written as

L(λ, x) = ȳ2 + λh(x), (D.23)

where λ is the lagrange multiplier for the equality constraint. Using equation D.22, the above

can be written as

L(λ, x) =

(

β2 + r2(x)T w2 − z2

l2

)

+ λ

[(

β1 + r1(x)T w1 − z1

l1
− s1

)

n1 +

(

β2 + r2(x)T w2 − z2

l2
− s2

)

n1

]

(D.24)

L(λ, x) =

(

1
l2
+
λn2

l2

)

r2(x)T w2+

(

λn1

l1

)

r1(x)T w1+ λ

[

β1 − z1 − s1l1
l1

n1 +
β2 − z2 − s2l1

l2
n2

]

+
β2 − z2

l2
.

(D.25)

The solution of the constrained optimisation is located at the stationary points of the La-

grangian. The stationary points can be obtained by equating the derivatives of the Lagrangian

to zero, i.e.

∂L(λ, x)
∂x

= 0 (D.26)

∂L(λ, x)
∂λ

= 0. (D.27)

Let us expand the ith derivative of equation D.27

∂L(λ, x)
∂xi

= −2θ2i

(

1
l2
+
λn2

l2

)

D2i (x)Z2(x)w2 − 2θ1i

(

λn1

l1

)

D1i (x)Z1(x)w1. (D.28)

For mathematical convenience, m1 and m2 are defined as

m1 =
2λm1

l1
, (D.29)

m2 = −
2
l2
− 2λn2

l2
. (D.30)

Equation D.28 then becomes

∂L(λ, x)
∂xi

= 2θ2im2D2i (x)Z2(x)w2 − 2θ1i m1D1i (x)Z1(x)w1, (D.31)
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where, similar to equation 10.30 in chapter 10, D1i (x) and D2i (x), are defined as

D1i (x) = xi1p1 − X1i , (D.32)

D2i (x) = xi1p2 − X2i , (D.33)

where

1p1 = [1, 1, . . . , 1] ∈ R1×p1, (D.34)

1p2 = [1, 1, . . . , 1] ∈ R1×p2, (D.35)

and

X1i =

[

x(1)
1i

x(2)
1i
· · · x(p1)

1i

]

, (D.36)

X2i =

[

x(1)
2i

x(2)
2i
· · · x(p2)

2i

]

. (D.37)

Equation D.31 then becomes

∂L(λ, x)
∂xi

= 2θ2i m2

(

xi1p1 − X1i

)

Z2(x)w2 − 2θ1im1

(
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)

Z1(x)w1, (D.38)

where
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and
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Equating the above to zero to find the stationary point of the Lagrangian, which represent

the solution to the constrained optimisation problem, yields

∂L(λ, x)
∂xi

= 0 (D.41)

2θ2im2

(

xi1p1 − X1i

)

Z2(x)w2 − 2θ1i m1

(

xi1p2 − X2i

)

Z1(x)w1 = 0 (D.42)

xi =
θ2im2X2iZ2(x)w2 − θ1im1X1iZ1(x)w1

θ2i m21p2Z2(x)w2 − θ1im11p1Z1(x)w1
(D.43)

xi = gi(x, λ) , (D.44)

where

gi(x, λ) =
θ2i m2X2iZ2(x)w2 − θ1im1X1iZ1(x)w1

θ2i m21p2Z2(x)w2 − θ1im11p1Z1(x)w1
(D.45)

or
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Fi((x, λ)) = xi − gi(x, λ) = 0 . (D.46)

Similarly, equating the derivative of Lagrangian with respect to λ to zero yields

∂L(λ, x)
∂λ

= 0 (D.47)

∂L(λ, x)
∂λ

=

(

n2

l2

)

r2(x)T w2 +

(

n1

l1

)

r1(x)T w1 +

[

β1 − z1 − s1l1
l1

n1 +
β2 − z2 − s2l1

l2
n2

]

(D.48)

or

n(x) =

(

n2

l2

)

r2(x)T w2 +

(

n1

l1

)

r1(x)T w1 +

[

β1 − z1 − s1l1
l1

n1 +
β2 − z2 − s2l1

l2
n2

]

(D.49)

or

n(x) = 0 . (D.50)

The system of equations represented by equations D.44 and D.50 represents a solution to

the constrained optimisation problem. Observe that equation D.44 is a fixed point iterative

sequence derived in chapter 10 (equation 10.37). Consequently, the methods proposed in

chapter 10, viz. the SFP, MFP, and the NR sequences could potentially be employed to obtain

a solution for these. However, the equation for λ, i.e. equation D.50, can not be represented

in a form λ = f(x, λ), where f is some function of x and λ, primarily because equation D.50

does not have the term λ in it. If this were possible, then the set of equations represented by

equation D.44 and λ = f(x, λ) would form a simple fixed point iterative sequence (analogous to

the SFP of chapter 10). Introducing λ as a pseudo-variable in equation D.50, for example by

multiplying both sides of equation D.50 by λ or adding λ to both sides, to convert D.50 into

the form of λ = f(x, λ), as found by the author, is of no use and results in divergence of the

fixed point iterative sequence. This apparent difficulty is resolved by thinking that equation

D.50 represents an equation in x, which in turn are dependent on λ through equation D.44.

Hence, a Newton-Raphson sequence in λ can be formed using equation D.50 as

λnew = λold −
n(x)

(∂n(x)/∂λ)
, (D.51)

where the term (∂n(x)/∂λ) can be evaluated using the chain rule as

∂n(x)
∂λ

=

n
∑

i=1

∂n(x)
∂xi

∂xi

∂λ
. (D.52)

In the above summation, the partial derivatives of n can be written as

∂n(x)
∂xi

= −2θ1i

(

λn1

l1

)

D1i (x)Z1(x)w1 − 2θ2i

(

λn2

l2

)

D2i (x)Z2(x)w2, (D.53)

and the partial derivative of xi with respect to λ need to be calculated from equation D.44.

These derivatives can be evaluated analytically using equation D.44, or estimated using a

finite difference method. The results presented in this appendix employ a forward finite

difference formulation. Another approach to solve the system of equations represented by

D.46 and D.50 is to employ a Newton-Raphson scheme for all the equations. This results in

more robust convergence in finding the Pareto front. With this background, the M-KNRS

method, for a biobjective problem, can be written in the following steps
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Inputs

1. The number of points required on the Pareto front: Np

2. The number of starting points to solve the constrained optimisation problem that

is used to generated one point in the Pareto front: Ns.

3. An upper bound on the Lagrange multiplier value: λmax.

Begin M-KNRS

Step 1: Construct appropriate Krigs for the two objective functions involved.

Step 2: Find the individual global minima of the two objectives using KNRS or any other

preferred algorithm.

Step 3: Using the individual minima normalise the objective functions and construct the

utopia line in the normalised space.

Step 4: Generate Np uniformly distributed points in the utopia line. This is the number of

points required on the Pareto front. Let these points be represented by s1, s2, . . . , sNp

Step 5: Initialise the list containing the Pareto solutions, PF = Φ.

For each s ∈ [s1, s2, . . . , sNp ]

Inner Step 1: Initialise the list P(s) = Φ

Inner Step 2: Formulate the constrained optimisation problem, say minimise ȳ2(x)

subject to h(x) = 0, using s as the chosen point in the utopia line.

Inner Step 3: Generate SOBOL sequence of Ns points in the space of [x, λ], x varies

between the design space bounds and λ varies between 10−06 and λmax. Let this

SOBOL sequence be represented by S1,S2, . . . ,SNs. Set κ = 1;

Inner Step 4: Starting from [(x0, λ0)] = Sκ, use equation D.44, i.e. xnew = gi(xold, λ),

and equation D.51 to update the values of x and λ, respectively. Repeat this

update procedure, from the new values, until the solution converges or is declared

diverging.

Inner Step 5: If the above iteration converged then store then append the converged

solution to the list P(s)

Inner Step 6: Set κ = κ + 1; If κ ≤ Ns go to Inner Step 7; otherwise go to Inner

Step 4

Inner Step 7: Find the solution in P(s) for which the objective minimised in the

constrained optimisation problem, i.e. ȳ2(x) has the minimum value. Append this

solution to the list PF.

End for loop

Step 6: Return the list PF as the list containing Pareto solutions.

End M-KNRS
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As mentioned before, the workings of the for loop can be changed in the above algorithm to

solve equations D.44 and D.50 using a combined Newton-Raphson iteration.

D.2 Application of M-KNRS on test functions

The performance of M-KNRS on a few test functions is tested in this section. The test

functions chosen are

1. Schaffer’s function (SCH) [74, 232] defined as

f1(x) = x2 (D.54)

f2(x) = (x − 2)2 (D.55)

x ∈ [−103, 103].

The SCH function has a convex Pareto front. The optimal solutions lie in [0, 2].

2. Two variable Fonseca and Fleming’s (FON) function [74, 233] defined as

f1(x) = 1− exp
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f2(x) = 1− exp
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(D.57)

x ∈ [−4, 4].

The FON function has a non-convex Pareto front. The optimal solutions lie in x1, x2, x3 ∈
[− 1√

3
, 1√

3
].

3. Poloni’s function (POL) [74, 234] defined as

f1(x) = 1+ (A1 − B1)
2
+ (A2 − B2)

2 (D.58)

f2(x) = (x1 + 3)2 + (x2 + 1)2 (D.59)

A1 = 0.5sin 1− 2cos 1+ sin 2− 1.5cos 2 (D.60)

A2 = 1.5sin 1− cos 1+ 2sin 2− 0.5cos 2 (D.61)

B1 = 0.5sin x1 − 2cos x1 + sin x2 − 1.5cos x2 (D.62)

B2 = 0.5sin x1 − cos x1 + 2sin x2 − 0.5cos x2 (D.63)

x ∈ [−π, π].

The POL function has a non-convex disconnected Pareto front.

Figures D.2 and D.3 show, respectively, the feasible objective space and the results of the

M-KNRS algorithm on the SCH function. In the latter figure, the green circles show the

points on the utopia line (transformed back to original space from the normalised space), the

red circles show the soultion(s) for the inner constrained optimisation problem, and the arrows

point from the point on the utopia line used to form the constrained optimisation problem

to the corresponding solution(s). It can be seen from this figure that for the relatively easy

SCH function, a well distributed set of points on the convex Pareto front are found.
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Figures D.4 and D.5 show, respectively, the feasible objective space and the results of

the M-KNRS algorithm on the FON function. In the latter figure, for the inner constrained

optimisation problem from each point on the utopia line, all solutions (as opposed to only the

minimum) are shown. This is done to understand the workings of M-KNRS, so that the local

Pareto fronts, found by the algorithm can also be seen. For the FON function, it can be seen

that the non-convex Pareto front is found by the M-KNRS algorithm with a well distributed

set of points. It can also be seen that one solution of the constrained optimisation problem,

converged to top-right end of the feasible space. This is not unreasonable, as the M-KNRS

algorithm tries, depending on the parameter Ns, to converge to all the stationary points of

the Lagrangian. These stationary points can be either a minimum, maximum, or a saddle

point, one of the saddle points representing the real solution to the constrained optimisation

problem.

Figures D.6 and D.7 show, respectively, the feasible objective space and the results of the

M-KNRS algorithm on the POL function. It can be seen from these figures that the M-KNRS

algorithm does not have difficulty in finding the Pareto front, non-convex and disconnected,

for the PON problem. Figure D.7 also shows the various local Pareto fronts that the inner

loop of the algorithm converged to. Of particular interest are the solutions which lie outside

the constraint bounds shown in this figure. It is well known [36] that for the POL problem,

the existence of the Pareto front labeled ‘Region A’ is purely due to limiting the decision

variable bounds to [−π, π]. In particular, if the first decision variable is allowed to take values

below −π, then ‘Region A’ does not form part of the global Pareto front. This is because,

the solutions that are marked ‘solutions outside bounds’ shown in figure D.7 become feasible,

thereby dominating the solutions of ‘Region A’. The M-KNRS algorithm, similar to the KNRS

algorithm, in its current form is not designed to honour variable bounds. This, although not

a problem, for the POL function, as both fronts are found, is a limitation of the M-KNRS

algorithm. Thus, similar to KNRS algorithm, the M-KNRS algorithm needs modification so

that the constraints, including variable bounds, can be satisfied.

D.3 Conclusions

In this appendix, an extension of the KNRS algorithm for multiobjective optimisation, the M-

KNRS algorithm, is proposed. Although the algorithm is tested for three multiobjective test

functions, and its performance is deemed convincing, further investigation of its performance

on problems with both higher number of decision variables and higher number of objective

functions is needed. Furthermore, it is identified that the M-KNRS algorithm has a limitation

of converging to solutions that lie outside the variable bounds similar to the KNRS algorithm.

This issue needs to be addressed for further development of the algorithm.
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Figure D.2: Feasible space for the SCH function

Figure D.3: M-KNRS algorithm on SCH function; Np = 50, Ns = 5, λmax = 1.0; green points
show the uniformly distributed points in the utopia line and red points show the corresponding
solution(s) for the constrained optimisation problem
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Figure D.4: Feasible space for the FON function

Figure D.5: M-KNRS algorithm on FON function; Np = 50, Ns = 5, λmax = 1.0; green points
show the uniformly distributed points in the utopia line and red points show the corresponding
solution(s) for the constrained optimisation problem



272 Appendix D. Extension of KNRS to multiobjective optimisation

Figure D.6: Feasible space for the POL function

Figure D.7: M-KNRS algorithm on POL function; Np = 50, Ns = 50, λmax = 1.0; green points
show the uniformly distributed points in the utopia line and red points show the corresponding
solution(s) for the constrained optimisation problem
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