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Abstract—Analysing micro- and macro-structures within
images confers ability to include scale in texture analysis.
Filtering allows for selection of texture structures at different
scales, revealing the micro- and macro-structures which
would otherwise be concealed. The new approach to texture
segmentation uses low- and high-pass filters to achieve this
scale-based analysis. Segmentation is performed using Local
Binary Patterns as an example of the type of feature vector
that can be used with the new process. These are generated
for the original image and each of the filtered images. A two
stage training process is used to learn the optimum filter sizes
and to produce model histograms for each known texture
class. These are used in the supervised segmentation of tex-
ture mosaics generated from the VisTex database. The results
demonstrate the superiority of the new combined approach
compared to the best multi-resolution LBP configuration and
analysis only using lowpass filters. Noise analysis has also
confirmed the advantageous properties of low- and high-pass
filtering, and confirms that it is optimal to combine the two
forms in texture segmentation.
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I. INTRODUCTION

Natural images contain many different textures at differ-
ent scales. Also, depending on camera viewpoint, instances
of one texture may be present at different scales. Even
samples of texture in databases such as VisTex [6] do
not contain a single texture at a single scale. Applications
can be optimised to capture a specific texture within the
image, but this disregards information that could improve
the segmentation or classification rates for that sample.

The large scale components of an image are known
as macro-structures and the small scale components are
known as micro-structures. Image filtering can be used to
remove the structures from certain scales of the image.
Micro-structures, which are those that repeat the most
throughout the image, tend to be present in the high
frequency components of the image. Lowpass filtering
therefore can be used to remove these high frequencies,
and hence micro-structures, from the image. Similarly,
highpass filtering can be used to remove the macro-
structures from the image. As the cutoff frequency of
the filter is changed to remove more frequencies, more
structures will be removed from the image. It is possible
therefore, to analyse images in the absence of certain tex-
ture scales, thereby enhancing the effect of the remaining
components on segmentation performance.

Previous work on using filtering to construct a multi-
scale texture descriptor includes a paper by Turtinen and

Pietikäinen [8], where a multi-scale feature vector for each
pixel was extracted by taking three squares of increasing
size around the pixel and resizing the larger two to the
dimensions of the smallest using Gaussian filtering and
downsampling. A Local Binary Pattern (LBP) histogram
was computed for each square and the histograms con-
catenated together into a single feature. He et al. [1] used
a Gaussian pyramid to obtain features at different scales
and concatenated the histograms in a similar manner.
Both papers focussed on macro-structures, with micro-
structures only obtained from the original unfiltered image
in each case. Since filtering the image with a lowpass
Gaussian filter exposes the macro-structures we can use
a highpass filter to expose the micro-structures.

In this paper we introduce a technique of expanding
existing texture analysis operators to take advantage of
the composition of structures at different scales. Tradition-
ally, a feature vector is obtained from the sample image
which is compared to feature vectors from training images
for classification or segmentation. In this process, called
Accumulative Filtering, the sample image is filtered sep-
arately with a number of different highpass and lowpass
filters with varying cutoff frequencies. This produces a
set of images, each with a different range of frequencies
(and hence texture structures) removed. Feature vectors
are obtained from each of the filtered images and con-
catenated together into a single multi-scale feature vector.
This is then used for the classification or segmentation
of the original unfiltered image. We offer Local Binary
Patterns (LBP) as an example of a texture analysis operator
that can be extended using our Accumulative Filtering
process, however any other operator which provides a
feature vector could equally be considered. Tests using
LBP histograms as the feature vector demonstrate a greatly
improved segmentation accuracy across the entire image,
including texture boundaries.

II. MULTI-SCALE LOCAL BINARY PATTERNS

The basic Local Binary Pattern (LBP) operator [4]
provides a code representing the texture pattern for a pixel
based on a 3x3 pixel area of the image and is considered
too small for images containing larger scales. Mäenpää et
al. [2] introduced a multi-predicate LBP which increased
the area from which the LBP code is calculated. The his-
tograms from various predicates are concatenated together
to form a single multi-scale description of the texture.



This was found to provide improved results over those
obtained from the basic LBP. Ojala et al. [5] extended this
further with the multi-resolution rotation invariant LBP
which calculated the LBP code from P points on a circle
of radius R. This method of increasing the size of the
LBP operator enables it to capture the larger scales in the
image which would otherwise be missed, but it must still
be combined with the basic LBP to ensure that the smaller
scale elements of the image are also captured. This has the
same effect as the process of lowpass filtering followed by
downsampling seen in [8] and [1]; instead of increasing
the size of LBP, the image is reduced in size.

The rotation invariant uniform LBP code for a point,
LBP riu2

P,R [5], is calculated by:

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise
(1)

where the number of bit changes is

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|
+
∑P−1

p=1 |s(gp − gc)− s(gp−1 − gc)|
(2)

and s(x) is 1 if x ≥ 0 and 0 otherwise. g0 to gP−1 are the
grey values of the interpolated points on the circle around
the central pixel, grey value gc, for which the LBP code
is calculated.

III. ACCUMULATIVE FILTERING

In conventional segmentation, a texture class is assigned
to a pixel dependant on a training database and a chosen
distance metric. Although accuracy can appear high due
to spatial coverage, detail can be lost as in Figure 1(b).
For mislabelled pixels the correct texture class is often at
a close distance to the selected class. To compensate for
this the image can be processed by a texture operator of
different size, or can be filtered to enhance cohesion of
texture classes.

Our new Accumulative Filtering (AF) algorithm seg-
ments an image by filtering the image multiple times each
with a different cutoff frequency and then segmenting
the original image and each filtered image concurrently.
A final decision is made on the texture class for each
pixel by combining the results from each filtered image
using the log likelihood measure in Equation 5, which
has the effect of adding the distances obtained for each
texture class from each filtered image. The larger the
number of filtered images included in this process, the
higher the segmentation accuracy. In Figure 1, the original
image in 1(a) is filtered with a lowpass and highpass
filter to produce the images in 1(c) and 1(d). The result
in 1(b) is obtained from segmentation using the feature
vectors obtained from the original image. In 1(e), the
feature vectors from 1(a) and 1(c) are combined and the
result in 1(f) is from the combination of all three images.
The segmentation accuracies show that each time another
feature vector is added the result improves. This can
also be determined from a visual inspection of the noise
within each segment of the results. Segmentation of the
filtered images on their own gives an increasingly poor

result as more frequencies are removed, shown in Figure
2, however Figure 3 shows how the combination of the
feature vector from one filtered image with the original
feature vector has a positive effect on the segmentation
accuracy. For both highpass and lowpass filtering, all filter
sizes within a range increase the segmentation accuracy
when compared with the original segmentation shown by
a green horizontal line on the graphs.

A. Filtering Process

Images are filtered in the frequency domain as per
Equations 3 and 4 which describe lowpass and highpass
filtering.

FLP (u, v) =

{
F(u, v) if

√
u2 + v2 ≤ f · w

0 otherwise
(3)

FHP (u, v) =

{
0 if

√
u2 + v2 ≤ f · w

F(u, v) otherwise
(4)

The width of the image in pixels, w, is necessary for
the filtering process because larger images are represented
by a larger range of spatial frequencies in the frequency
domain. This is important during supervised image seg-
mentation when sample and model images are of different
sizes. The filter size, f , is related to the cutoff frequency of
the filter. Lowpass filtered images could be downsampled,
but image size is retained to allow later comparison
with highpass filtered images. More sophisticated filter
mechanisms could have been used, but our premise here
is to explore whether frequency domain filtering (and
particularly highpass) can be used to explore scale to
advantage in texture segmentation.

B. Segmentation Algorithm

The Accumulative Filtering process requires a texture
descriptor and comparison algorithm as a preprocessor
to provide a distance between a sample and each known
texture class for each filtered image. Due to their popu-
larity and potency, we have chosen Uniform Local Binary
Patterns (LBP) [5] as our texture descriptor and Histogram
Comparison (HC) [2] is used as the distance metric. This
choice is not fundamental to the success of our process and
any other alternative approach which can provides these
distances would be equally applicable.

The uniform LBP is described in Equations 1 and 2
and the output from the HC algorithm is a distance from
each pixel in the image to each of the possible texture
classes. Our AF process provides multiple histograms for
each texture class; one for each filter size used. A two-
dimensional log likelihood metric is used [2] to calculate
the distance between sample and model in this case:

L(S,M) = −
∑
f∈A

N∑
n=1

Sfn lnMfn (5)

where N is the number of histogram bins, Sfn and Mfn

are the probabilities of bin n in histogram f for the sample
and model respectively and A is the set of filter sizes



(a) Original image. (b) Result from unfiltered image: 81.1% accuracy.

(c) Image applied with low pass filter of size
f=0.31.

(d) Image applied with high pass filter of size
f=0.13.

(e) Result from lowpass f=0.31 combined with
unfiltered: 88.5% accuracy.

(f) Result from highpass f=0.13, lowpass f=0.31
and unfiltered: 91.3% accuracy.

Figure 1. Segmenting a texture mosaic with 0, 1 and 2 filtered images added.
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(a) Lowpass filtering.
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(b) Highpass filtering.

Figure 2. Effects of low- and high-pass filtering for 50 texture mosaics.
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(a) Lowpass Accumulative Filtering with one added filter.
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(b) Highpass Accumulative Filtering with one added filter.

Figure 3. Low- and high-pass Accumulative Filtering with a single added filter with a varying filter size, f . The green line represents the segmentation
result for the original unfiltered images.

chosen for the segmentation. All segmentation for AF is
done using the uniform LBP with P=8 and R=1 where
the points are the values of the eight boundary pixels in a
3x3 grid. This is because we found this arrangement gave
the best results.

IV. RESULTS

Local Binary Patterns (LBP) have been selected as a
standard state-of-the-art operator and there is rich literature
on the LBP and its developments along with comparisons
to other approaches [7]. We have compared our Accumu-
lative Filtering approach against the standard LBP and best
multi-resolution LBP configuration from [5]. Two sets of
50 mosaics each of size 512x512 pixels were generated
by random selection of four textures from a subset of 30
textures from the VisTex database [6], one of which is
shown in Figure 1(a). This database was chosen because
it provides texture images representative of real world
conditions. From each texture sample used, one quarter
was included in the first mosaic set, a different quarter
was used for the second mosaic set and a third quarter was
used for the training data for supervised segmentation. The
optimum filter sizes for Accumulative Filtering (AF) to use
for the Vistex database were learned using the first set of
mosaics. The second set of mosaics was then segmented
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Figure 4. Average mosaic segmentation accuracy during the AF training
process.

using these filters to demonstrate the effects of the AF
process. The selected filter sizes reflect integer values for
the expression f · w in Equation 3 for the images used.

For the lowpass filters, we used 182 filter sizes between
3.9 × 10−3 and 7.1 × 10−1. Larger lowpass filter sizes
removed no further information from the image and had
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Figure 5. Average mosaic segmentation with increasing levels of
additive Gaussian noise.

the same effect as no filtering. For highpass, 100 filters
sized between 3.9 × 10−3 and 3.9 × 10−1 were used.
Further increases to the highpass filter size removed so
much information from the image that their inclusion was
always detrimental to the process. Initially we performed
three experiments on this data to determine the best combi-
nation of filters to include; a lowpass test, AFL, where the
filtered images for AF were selected from the 182 lowpass
filters, a highpass test, AFH , where the training process
selected from the 100 highpass filters and a combined low
and highpass test, AFLH , where the training process was
free to choose from any of the lowpass or highpass filters.
For each experiment, we determined the optimum filter
sizes to use by adding them in stages, singly. The set of
filters used at stage i is calculated by:

Ai = {Ai−1 + fmax} (6)

where

fmax = argmaxf (AF ({Ai−1 + f | f ∈ Z})) (7)

and Z is the set of all available filter sizes and AF (A)
is the segmentation accuracy from the Accumulative Fil-
tering process using set of filter sizes A. Set A0 contains
only a highpass filter of size 0, which is equivalent to
no filtering and segmentation using this is the same as
using the standard LBP method, LBP riu2

8,1 . In total, 10
filters were added in each experiment. Statistical analysis
using a paired T-test has demonstrated that the accuracy
increase with each additional filtered image result added
is statistically significant up to and including the tenth
additional filter. There were small differences between the
results, shown in Figure 4, between AFL and AFH at
all stages, with AFH performing slightly better at 81.1%
compared to AFL’s 80.9% at 10 added filters. The com-
bined AFLH exceeded the results of both other tests at all
stages, with a segmentation accuracy of 83.4% achieved at
10 added filters. The combined experiment showed that the
optimum configuration was an equal amount of low- and

Table I
AVERAGE MOSAIC SEGMENTATION ACCURACY USING AF AND THE

BEST MULTI-RESOLUTION LBP CONFIGURATIONS FROM [5].

Algorithm Training (%) Test (%)
LBP riu2

8,1 76.5 76.0
LBP riu2

8,1+24,3 75.1 74.8
LBP riu2

16,2+24,3 70.0 70.2
LBP riu2

8,1+16,2+24,3 75.9 76.0
AFL 80.9 79.0
AFH 81.1 80.5
AFLH 84.0 82.8
AFPR 82.6 81.9
AFLHPR 86.2 85.2

high-pass filters, and the filter sizes automatically selected
by the process were the same or similar to those chosen in
the separate experiments. The filter sizes selected during
this training process were used in the segmentation of
the second set of mosaics; the results, shown in Table
I, show that significant improvements can be made in
the segmentation results by using AF compared with the
standard LBP and multi-resolution LBP configurations.

In [5], Ojala et al. found that using multiple LBP
operators with different P and R values gave better results
than using a single operator. However, the results do not
go beyond combining more than three operators together
and only a very limited selection of P and R combinations
are used. To better compare this approach against using
AFLH , we have used the AF process with varying values
of P and R, AFPR. We used all combinations of P
values between 8 and 40 (increments of 4) and R values
between 1 and 5 (increments of 0.5). AFPR achieved
an accuracy of 82.6% at when 10 operators were added;
better than either AFL or AFH . AFPR performed slightly
better than AFLH up to 3 additional filters, but AFLH

is much better for all subsequent stages tested. Finally,
we tried AF selecting from lowpass, highpass and P and
R values, AFLHPR. This vastly outperformed all other
tests, achieving 86.2% with ten additions. These results
demonstrate that low and highpass filtering are best used in
conjunction with varying P and R. We segmented an im-
age of a pyramid from the Berkeley Segmentation Dataset
(BSDS) [3] using LBP riu2

8,1 , AFLHPR and the two best
multi-resolution LBP configurations. The results, shown
in Figure 6 show a marked improvement, particularly
around the texture boundaries and in homogeneity within
the texture regions using our new method . There was
also an increase in performance over the multi-resolution
LBP segmentations. We also segmented a second BSDS
image, shown in Figure 7. The advantages for Accumu-
lative Filtering are clear for this image, with non-trivial
improvements over the original and multi-resolution LBP.
This shows that while the configurations for the multi-
resolution LBP worked well for the pyramid, they only
provide a marginal improvement for the chick image. The
advantage of Accumulative Filtering is that filter sizes can
be learnt for different types of images and so an optimal
solution can always be found.



A. Additive Noise

Susceptibility to noise is often considered to be a
problem with highpass filtering, however we are pleased
to note that this is not the case here. For this analysis, we
have introduced additive Gaussian noise to the test mosaics
before filtering and segmentation. The filter sizes used for
the Accumulative Filtering process are the same as those
used in previous tests; learnt from the training mosaics.
The texture samples used in segmentation are the original
ones and do not include the additive noise. The first test
is performing standard LBP histogram segmentation with
varying levels of noise added to the mosaics; this is to
ascertain the effects of noise on the LBP process absent
the effects of filtering. As shown in the graph in Figure
5, noise has a large effect on the standard LBP. Because
the texture samples the mosaics are compared to do not
include additive noise, the mosaics will have a greater
similarity to the texture class with the greatest proportion
of the high frequency components that closely resemble
Gaussian noise. This will result in a reduced likelihood of
the correct texture class being chosen for each pixel and ul-
timately a lower segmentation accuracy. The segmentation
accuracies for highpass Accumulative Filtering are initially
higher than those without filtering, but after the noise
level has reached σ = 0.02 it performs slightly worse.
This reduction in performance is not as large as could
be expected. Lowpass Accumulative Filtering performs
better under noise than LBP with no filtering. This is
to be expected as the filters will remove much of the
noise from the image prior to segmentation. Accumulative
Filtering using both low- and high-pass filtering performs
significantly better that LBP with no filtering, regardless
of the level of additive noise. As such, it appears that
the combination of highpass and lowpass Accumulative
Filtering is an optimal choice for image segmentation and
noise does not markedly affect either type of filter.

V. CONCLUSIONS

In this paper a new scale based technique has been
presented which increases the segmentation accuracy for
textured images using any texture operator which provides
a feature vector. Local Binary Pattern histograms have
been used as an example to demonstrate the effects of
our new process, which we call Accumulative Filtering.
During the segmentation process we extract LBP his-
tograms focussing on micro- and macro-structures within
the image by using a novel combination of lowpass filters,
highpass filters and varying sizes of the LBP operator.
Combinations of these histograms give vastly improved
results over segmentation using the standard LBP operator
alone. We employed a learning algorithm to select the
optimum filter sizes to use on a set of mosaics and
tested these using a different set. The results show that
application of the new process using the learnt filter sizes
gives excellent results exceeding those obtained using the
best multi-resolution LBP configuration and the standard
LBP operator by around 10 percentage points. In addition,
segmentation along texture boundaries is improved with

the new method and the susceptibility to noise is no
different to that of the standard LBP without filtering.
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(a) Original image. (b) Manual segmentation.

(c) LBP riu2
8,1 result: 90.3%. (d) LBP riu2

8,1 + LBP riu2
24,3 result: 92.6%.

(e) LBP riu2
8,1 + LBP riu2

16,2 + LBP riu2
24,3 result:

92.7%.
(f) AFLHPR result: 93.4%.

Figure 6. Segmenting an image of a pyramid using Accumulative Filtering.



(a) Original image. (b) Manual segmentation.

(c) LBP riu2
8,1 result: 69.9%. (d) LBP riu2

8,1 + LBP riu2
24,3 result: 71.0%.

(e) LBP riu2
8,1 + LBP riu2

16,2 + LBP riu2
24,3 result:

72.4%.
(f) AFLHPR result: 80.4%.

Figure 7. Segmenting an image of chicks in a nest using Accumulative Filtering.


