The University of Southampton
University of Southampton Institutional Repository

Water mass transformation and subduction in the South Atlantic

Water mass transformation and subduction in the South Atlantic
Water mass transformation and subduction in the South Atlantic
The transformation of water masses induced by air–sea fluxes in the South Atlantic Ocean is calculated with a global ocean model, Ocean Circulation and Climate Advanced Modeling (OCCAM), and has been compared with several observational datasets. Air–sea interaction supplies buoyancy to the ocean at almost all density levels. The uncertainty of the estimates of water mass transformations is at least 10 Sv (Sv ? 106 m3 s?1), largely caused by the uncertainties in heat fluxes. Further analysis of the buoyancy budget of the mixed layer in the OCCAM model shows that diffusion extracts buoyancy from the water column at all densities. In agreement with observations, water mass formation of surface water by air–sea interaction is completely balanced by consumption from diffusion. There is a large interocean exchange with the Indian and Pacific Oceans. Intermediate water is imported from the Pacific, and light surface water is imported from the Indian Ocean. South Atlantic Central Water and denser water masses are exported to the Indian Ocean. The air–sea formation rate is only a qualitative estimate of the sum of subduction and interocean exchange. Subduction generates teleconnections between the South Atlantic and remote areas where these water masses reemerge in the mixed layer. Therefore, the subduction is analyzed with a Lagrangian trajectory analysis. Surface water obducts in the South Atlantic, while all other water masses experience net subduction. The subducted Antarctic Intermediate Water and Subantarctic Mode Water reemerge mainly in the Antarctic Circumpolar Current farther downstream. Lighter waters reemerge in the eastern tropical Atlantic. As a result, the extratropical South Atlantic has a strong link with the tropical Atlantic basin and only a weak direct link with the extratropical North Atlantic. The impact of the South Atlantic on the upper branch of the thermohaline circulation is indirect: water is significantly transformed by air–sea fluxes and mixing in the South Atlantic, but most of it reemerges and subducts again farther downstream.
0022-3670
1841-1860
Donners, J.
4c955edf-4ba2-4091-ab0f-9015f2407475
Drijfhout, S.S.
a5c76079-179b-490c-93fe-fc0391aacf13
Hazeleger, W.
0bd826a1-4713-43ab-aace-3ea59d2fc37e
Donners, J.
4c955edf-4ba2-4091-ab0f-9015f2407475
Drijfhout, S.S.
a5c76079-179b-490c-93fe-fc0391aacf13
Hazeleger, W.
0bd826a1-4713-43ab-aace-3ea59d2fc37e

Donners, J., Drijfhout, S.S. and Hazeleger, W. (2005) Water mass transformation and subduction in the South Atlantic. Journal of Physical Oceanography, 35 (10), 1841-1860. (doi:10.1175/JPO2782.1).

Record type: Article

Abstract

The transformation of water masses induced by air–sea fluxes in the South Atlantic Ocean is calculated with a global ocean model, Ocean Circulation and Climate Advanced Modeling (OCCAM), and has been compared with several observational datasets. Air–sea interaction supplies buoyancy to the ocean at almost all density levels. The uncertainty of the estimates of water mass transformations is at least 10 Sv (Sv ? 106 m3 s?1), largely caused by the uncertainties in heat fluxes. Further analysis of the buoyancy budget of the mixed layer in the OCCAM model shows that diffusion extracts buoyancy from the water column at all densities. In agreement with observations, water mass formation of surface water by air–sea interaction is completely balanced by consumption from diffusion. There is a large interocean exchange with the Indian and Pacific Oceans. Intermediate water is imported from the Pacific, and light surface water is imported from the Indian Ocean. South Atlantic Central Water and denser water masses are exported to the Indian Ocean. The air–sea formation rate is only a qualitative estimate of the sum of subduction and interocean exchange. Subduction generates teleconnections between the South Atlantic and remote areas where these water masses reemerge in the mixed layer. Therefore, the subduction is analyzed with a Lagrangian trajectory analysis. Surface water obducts in the South Atlantic, while all other water masses experience net subduction. The subducted Antarctic Intermediate Water and Subantarctic Mode Water reemerge mainly in the Antarctic Circumpolar Current farther downstream. Lighter waters reemerge in the eastern tropical Atlantic. As a result, the extratropical South Atlantic has a strong link with the tropical Atlantic basin and only a weak direct link with the extratropical North Atlantic. The impact of the South Atlantic on the upper branch of the thermohaline circulation is indirect: water is significantly transformed by air–sea fluxes and mixing in the South Atlantic, but most of it reemerges and subducts again farther downstream.

This record has no associated files available for download.

More information

Published date: October 2005
Organisations: Ocean and Earth Science

Identifiers

Local EPrints ID: 349161
URI: http://eprints.soton.ac.uk/id/eprint/349161
ISSN: 0022-3670
PURE UUID: befdcf27-376f-400c-b32f-e96d4a19f43c

Catalogue record

Date deposited: 26 Feb 2013 10:59
Last modified: 07 Jan 2022 21:25

Export record

Altmetrics

Contributors

Author: J. Donners
Author: S.S. Drijfhout
Author: W. Hazeleger

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×