The University of Southampton
University of Southampton Institutional Repository

The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results

The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results
The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results
Data from a global ocean general circulation model (OCCAM) has been used to investigate the interocean exchange of thermocline and intermediate waters in the South Atlantic Ocean. To resolve the pathways between different ocean basins a Lagrangian particle following technique has been used. The results have been compared with various inverse models and observational studies addressing the interocean exchange in the South Atlantic Ocean. To facilitate the comparison, section-integrated transports in the same density classes and at the same locations as used in the observational studies have been calculated for OCCAM. The flow toward the North Atlantic excluding the Antarctic Bottom Water, is made up for more than 50% of thermocline water. The exact ratio of thermocline to intermediate transport depends on the definition of the water masses. Transport of intermediate water plays a less important role. More than 90% of the flow toward the North Atlantic originates from the Indian Ocean via leakage from the Agulhas Current system. Agulhas leakage into the South Atlantic occurs to 2000-m depth, but transport below 1200 m recirculates within the subtropical gyre and flows back into the Indian Ocean. Several observational studies have indicated a dominant role in the transport toward the North Atlantic for intermediate water or for the direct inflow from Drake Passage. The section-averaged water mass transports in OCCAM are largely in agreement with these observational estimates. Also in OCCAM, the section-integrated transports suggest a minor contribution from Agulhas leakage to the upper branch of interocean exchange in the South Atlantic, in apparent contradiction with the Lagrangian path that was calculated explicitly. The reason for this discrepancy is that at the eastern side of the South Atlantic the net mass flux consists of opposing, and in the thermocline layer nearly compensating, east- and westward flows. In the thermocline layer, part of the westward flow connects with the cross-equatorial flow in the Atlantic, while the eastward flow is partly derived from upwelled intermediate and thermocline water that originates from Drake Passage. The detailed Lagrangian analysis suggests that it is arguable to draw conclusions about the flow pathways from integrated mass fluxes across ocean sections, especially when these contain opposing flows in the same density classes.
0022-3670
1019-1035
Donners, J.
4c955edf-4ba2-4091-ab0f-9015f2407475
Drijfhout, S.S.
a5c76079-179b-490c-93fe-fc0391aacf13
Donners, J.
4c955edf-4ba2-4091-ab0f-9015f2407475
Drijfhout, S.S.
a5c76079-179b-490c-93fe-fc0391aacf13

Donners, J. and Drijfhout, S.S. (2004) The Lagrangian view of South Atlantic interocean exchange in a global ocean model compared with inverse model results. Journal of Physical Oceanography, 34 (5), 1019-1035. (doi:10.1175/1520-0485(2004)034<1019:TLVOSA>2.0.CO;2).

Record type: Article

Abstract

Data from a global ocean general circulation model (OCCAM) has been used to investigate the interocean exchange of thermocline and intermediate waters in the South Atlantic Ocean. To resolve the pathways between different ocean basins a Lagrangian particle following technique has been used. The results have been compared with various inverse models and observational studies addressing the interocean exchange in the South Atlantic Ocean. To facilitate the comparison, section-integrated transports in the same density classes and at the same locations as used in the observational studies have been calculated for OCCAM. The flow toward the North Atlantic excluding the Antarctic Bottom Water, is made up for more than 50% of thermocline water. The exact ratio of thermocline to intermediate transport depends on the definition of the water masses. Transport of intermediate water plays a less important role. More than 90% of the flow toward the North Atlantic originates from the Indian Ocean via leakage from the Agulhas Current system. Agulhas leakage into the South Atlantic occurs to 2000-m depth, but transport below 1200 m recirculates within the subtropical gyre and flows back into the Indian Ocean. Several observational studies have indicated a dominant role in the transport toward the North Atlantic for intermediate water or for the direct inflow from Drake Passage. The section-averaged water mass transports in OCCAM are largely in agreement with these observational estimates. Also in OCCAM, the section-integrated transports suggest a minor contribution from Agulhas leakage to the upper branch of interocean exchange in the South Atlantic, in apparent contradiction with the Lagrangian path that was calculated explicitly. The reason for this discrepancy is that at the eastern side of the South Atlantic the net mass flux consists of opposing, and in the thermocline layer nearly compensating, east- and westward flows. In the thermocline layer, part of the westward flow connects with the cross-equatorial flow in the Atlantic, while the eastward flow is partly derived from upwelled intermediate and thermocline water that originates from Drake Passage. The detailed Lagrangian analysis suggests that it is arguable to draw conclusions about the flow pathways from integrated mass fluxes across ocean sections, especially when these contain opposing flows in the same density classes.

Full text not available from this repository.

More information

Published date: 2004
Organisations: Ocean and Earth Science

Identifiers

Local EPrints ID: 349168
URI: https://eprints.soton.ac.uk/id/eprint/349168
ISSN: 0022-3670
PURE UUID: e4b87e01-a715-4dfb-9194-be891b470a6b

Catalogue record

Date deposited: 26 Feb 2013 11:13
Last modified: 16 Jul 2019 21:42

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×